task_type
stringclasses
1 value
dataset
stringclasses
1 value
input
list
output
stringlengths
28
294
situation
stringclasses
1 value
label
stringclasses
1 value
extra
stringclasses
1 value
instruction
stringclasses
1 value
generation
aste-data-v2
[ "Bartender was unable to tear himself away from friends at bar ." ]
[['Bartender', 'unable to tear', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Anyways , if you 're in the neighborhood to eat good food , I would n't waste my time trying to find something , rather go across the street to Tamari ." ]
[['food', 'good', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "This was my frist time at Cafe St. Bart 's and I must say how delicous the food and the service was ." ]
[['food', 'delicous', 'positive'], ['service', 'delicous', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "One would think we 'd get an apology or complimentary drinks - instead , we got a snobby waiter would n't even take our order for 15 minutes and gave us lip when we asked him to do so ." ]
[['waiter', 'snobby', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "We actually gave 10 % tip ( which we have never done despite mediocre food and service ) , because we felt totally ripped off ." ]
[['food', 'mediocre', 'neutral'], ['service', 'mediocre', 'neutral']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "We were looking forward to nice glass of Sangria when we arrived ." ]
[['glass of Sangria', 'nice', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "I would highly recommend requesting a table by the window ." ]
[['table by the window', 'recommend', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "While we enjoyed the food , we were highly disappointed by the poor service ( waiter was not quite competent and SLOW service ) and lack of remorse ." ]
[['food', 'enjoyed', 'positive'], ['service', 'poor', 'negative'], ['waiter', 'not quite competent', 'negative'], ['service', 'SLOW', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "We 've been to Grocery three times and not once has an item on the menu disappointed ." ]
[['menu', 'disappointed', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "A touch more jalapeno heat for contrast and it would have been very good indeed ." ]
[['jalapeno', 'good', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "We ate out in the back patio , which is worth it as it 's cool and the music is hear well there ." ]
[['back patio', 'worth', 'positive'], ['back patio', 'cool', 'positive'], ['music', 'well', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Guacamole+shrimp appetizer was really great , we both had the filet , very good , did n't much like the frites that came with , but the filet was so good , neither of us cared ." ]
[['Guacamole+shrimp appetizer', 'great', 'positive'], ['filet', 'good', 'positive'], ['filet', 'good', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Nothing fancy but really good food with pretty reasonable price ." ]
[['food', 'good', 'positive'], ['price', 'reasonable', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "While I quite liked the food and the ambience , I 'm not quite sure if it they really deserve it the Michelin rating they have displayed so prooudly in the window ." ]
[['food', 'liked', 'positive'], ['ambience', 'liked', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Not worth the prices ." ]
[['prices', 'worth', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "From the moment you enter till the moment you walk out the friendly and helpful staff was was just Fantastic ." ]
[['staff', 'friendly', 'positive'], ['staff', 'helpful', 'positive'], ['staff', 'Fantastic', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Service was good and food is wonderful ." ]
[['Service', 'good', 'positive'], ['food', 'wonderful', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The quality of food at this restaurant accompanied by fantastic live jazz makes this place a perfect 10 !" ]
[['quality of food', 'perfect', 'positive'], ['live jazz', 'fantastic', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "If your visiting , you 'll enjoy the ambiance and the fact that it 's in Time Sq ..." ]
[['ambiance', 'enjoy', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Service and food is what any one would expect when spending that type of money ." ]
[['Service', 'expect', 'neutral'], ['food', 'expect', 'neutral']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "LOVE the atmosphere - felt like I was in Paris ." ]
[['atmosphere', 'LOVE', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Every course was better than the next ." ]
[['course', 'better', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The staff is incredibly helpful and attentive ." ]
[['staff', 'helpful', 'positive'], ['staff', 'attentive', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The Yellowtail was particularly good as well ." ]
[['Yellowtail', 'good', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "I ate clams oreganta and spectacular salad with perfectly marinated cucumbers and tomatoes with lots of shrimp and basil ." ]
[['salad with perfectly marinated cucumbers and tomatoes with lots of shrimp and basil', 'perfectly', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The menu changed , portions were even smaller than before , a lentil dish was salty beyond edibility , a basmati rice dish lacked flavor ." ]
[['menu', 'changed', 'negative'], ['portions', 'smaller', 'negative'], ['lentil dish', 'salty', 'negative'], ['basmati rice dish', 'lacked flavor', 'negative'], ['flavor', 'lacked', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Patroon features a nice cigar bar and has great staff ." ]
[['cigar bar', 'nice', 'positive'], ['staff', 'great', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Very affordable and excellent ambient !" ]
[['ambient', 'affordable', 'positive'], ['ambient', 'excellent', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "More important , the sushi rivals the best in Tokyo ." ]
[['sushi', 'best', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Why do people rave about the ambience ." ]
[['ambience', 'rave', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Fluke sashimi drizzled with jalapeno-lime olive oil , the fruit of the oil nicely highlighting the fish 's sweetness ." ]
[['fruit of the oil', 'nicely', 'positive'], ['fish', 'sweetness', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Great sushi experience ." ]
[['sushi', 'Great', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "If you 're looking for a great meal at a decent price , go to Del Frisco 's !" ]
[['meal', 'great', 'positive'], ['price', 'decent', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Try the congee and the donut like deep fried dough they call Ow Ley Soh , a delicious and sweet tasting bread ." ]
[['congee', 'Try', 'positive'], ['bread', 'delicious', 'positive'], ['bread', 'sweet tasting', 'positive'], ['donut like deep fried dough they call Ow Ley Soh', 'delicious', 'positive'], ['donut like deep fried dough they call Ow Ley Soh', 'sweet', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The food was delicious and the waiter was incredibly helpful and attentive ( considering we were the only ones there for the first hour ) ." ]
[['food', 'delicious', 'positive'], ['waiter', 'helpful', 'positive'], ['waiter', 'attentive', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The place was real empty but that was because this was the first Sunday they ever opened ." ]
[['place', 'empty', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "This little place definitely exceeded my expectations and you sure get a lot of food for your money ." ]
[['food', 'lot', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Ambience is delightful , service impeccable ." ]
[['Ambience', 'delightful', 'positive'], ['service', 'impeccable', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "You get the sense that the people there care about their restaurant and about your experience and that is very nice ." ]
[['people', 'nice', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Both are delicious , the cooks are friendly and are willing to take a moment and speak to you and shake your hand ." ]
[['cooks', 'friendly', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The staff was accomodating , the food was absolutely delicious and the place is lovely ." ]
[['staff', 'accomodating', 'positive'], ['food', 'delicious', 'positive'], ['place', 'lovely', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "my picks are : - Scallion Pancake ( fried with vegetable juice , very special and tasty ) - Guizhou Chicken - Shredded Squid Family Style ( one of my personal favorites ) - Sichuan Spicy Soft Shell Crab - Shuizhu Fish ( this one is for hardcore Sichuan food fans , I would n't recommend to my American friends as it 's very spicy ." ]
[['Scallion Pancake', 'special', 'positive'], ['Scallion Pancake', 'tasty', 'positive'], ['Shredded Squid Family Style', 'favorites', 'positive'], ['Shuizhu Fish', 'spicy', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "They smell like they stuff them with old canned vegetables like the spinach mushroom calzone ." ]
[['spinach mushroom calzone', 'old', 'negative'], ['canned vegetables', 'old', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "There was a great deal for 6 Blue Point oysters and a beer or glass of wine for $ 8 !" ]
[['Blue Point oysters', 'great', 'neutral'], ['beer', 'great', 'neutral'], ['glass of wine', 'great', 'neutral']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "I really liked the noodle dishes at Rice Avenue compared to their Green Curry dish ." ]
[['noodle dishes', 'liked', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "But for whatever reason , prices are about twice as high ." ]
[['prices', 'high', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "I am relatively new to the area and tried Pick a bgel on 2nd and was disappointed with the service and I thought the food was overated and on the pricey side ." ]
[['service', 'disappointed', 'negative'], ['food', 'overated', 'negative'], ['food', 'pricey', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Great atmoshere and worth every bit ." ]
[['atmoshere', 'Great', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The staff was knowledgeable and full of personality ." ]
[['staff', 'knowledgeable', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Only complaint would be that at an average cost of $ 12- $ 15 per meal , I 'd like not to have to worry about finding a seat !" ]
[['cost', 'complaint', 'negative'], ['seat', 'not to have to worry', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The banana tower is an amazing dessert as well ." ]
[['banana tower', 'amazing', 'positive'], ['dessert', 'amazing', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Excellent atmosphere , delicious dishes good and friendly service ." ]
[['atmosphere', 'Excellent', 'positive'], ['dishes', 'delicious', 'positive'], ['service', 'good', 'positive'], ['service', 'friendly', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "A cool place to hang with your friends for a couple of healthy drinks and desserts ." ]
[['place', 'cool', 'positive'], ['drinks', 'healthy', 'positive'], ['desserts', 'healthy', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "I like Mamoun 's food as well , but side by side , Kati Rolls just produce tastier food hands down ." ]
[['food', 'like', 'positive'], ['food', 'tastier', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The service is a bit slow , but harkens back to my years growing up in Napoli , Italy where things are not rushed and when you sit down for dinner the table is yours all night ." ]
[['service', 'slow', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "A cool bar with great food , and tons of excellent beer ." ]
[['bar', 'cool', 'positive'], ['food', 'great', 'positive'], ['beer', 'excellent', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Be sure to try the seasonal , and always delicious , specials ." ]
[['specials', 'try', 'positive'], ['specials', 'seasonal', 'positive'], ['specials', 'delicious', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The ambience is authentic and relaxing and we have always received attentive and prompt service ." ]
[['ambience', 'authentic', 'positive'], ['ambience', 'relaxing', 'positive'], ['service', 'attentive', 'positive'], ['service', 'prompt', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Fresh , authentic , french cuisine in substantial portions ." ]
[['french cuisine', 'Fresh', 'positive'], ['french cuisine', 'authentic', 'positive'], ['portions', 'substantial', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Drinks got screwed up , she acted put upon ." ]
[['Drinks', 'screwed up', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The one vegetarian entree ( Abby 's treasure ) was actually quite a surprise - it was delicious and had wintermelon covering an assortment of fresh mushrooms and vegetables ." ]
[['vegetarian entree', 'surprise', 'positive'], ['vegetarian entree', 'delicious', 'positive'], ["Abby 's treasure", 'surprise', 'positive'], ["Abby 's treasure", 'delicious', 'positive'], ['assortment of fresh mushrooms and vegetables', 'fresh', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "But the pizza is way to expensive ." ]
[['pizza', 'expensive', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "And the staff is also young , energeic and hot ! ! ! !" ]
[['staff', 'young', 'positive'], ['staff', 'energeic', 'positive'], ['staff', 'hot', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Even better , they know how to cook French classics like Steak au Poivre and Onglet without burning it to death or overcooking it ." ]
[['Steak au Poivre', 'better', 'positive'], ['Onglet', 'better', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "We had a wonderful meal at Naples 45 a month ago on a visit to NYC ." ]
[['meal', 'wonderful', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Good drink ." ]
[['drink', 'Good', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Even though I made the reservation at 3pm for the same night through Dinnerbroker , we were seated at a table with one of the best view !" ]
[['table', 'best', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "I did n't take a look at the rest menu , but the oysters were fantastic ." ]
[['oysters', 'fantastic', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The grilled cheese at home afterwards was better . ! !" ]
[['grilled cheese', 'better', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Great service , great food ." ]
[['service', 'Great', 'positive'], ['food', 'great', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "sometimes i get bad food and bad service , sometimes i get good good and bad service ." ]
[['food', 'bad', 'negative'], ['service', 'bad', 'negative'], ['service', 'bad', 'negative'], ['good', 'good', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "In summer-eat outside on a terrace ( another great feature of Suan ) ! ! !" ]
[['terrace', 'great', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "It 's the perfect restaurant for NY life style , it got cool design , awesome drinks and food and lot 's of good looking people eating and hanging at the pink bar ..." ]
[['design', 'cool', 'positive'], ['drinks', 'awesome', 'positive'], ['food', 'awesome', 'positive'], ['bar', 'pink', 'neutral']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Good , fast service ." ]
[['service', 'Good', 'positive'], ['service', 'fast', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "I was in love with Pongsri on 48th , but compared to Suan it is slow in service and overpriced ." ]
[['service', 'slow', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "My friends and I experienced amazing cheese and a delicious , new summer menu at Artisanal last night ." ]
[['cheese', 'amazing', 'positive'], ['menu', 'delicious', 'positive'], ['menu', 'new', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "It 's charmingly small and that leads to an atmoshere that is extremely cozy and romantic , even ." ]
[['atmoshere', 'cozy', 'positive'], ['atmoshere', 'romantic', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Love the Jazz bands on Fri and Sat ." ]
[['Jazz bands', 'Love', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The service was ok ." ]
[['service', 'ok', 'neutral']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Do n't expect to sit down inside though , there are only a few tables and they are always full ." ]
[['tables', 'few', 'negative'], ['tables', 'full', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The staff is accomodating , the ambiance is exciting and yet relaxed , and the food is out of this world !" ]
[['staff', 'accomodating', 'positive'], ['ambiance', 'exciting', 'positive'], ['ambiance', 'relaxed', 'positive'], ['food', 'out of this world', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The food was delicious ( I had a halibut special , my husband had steak ) , and the service was top-notch ." ]
[['food', 'delicious', 'positive'], ['halibut special', 'delicious', 'positive'], ['steak', 'delicious', 'positive'], ['service', 'top-notch', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The manager claimed that he could not compensate us for anything on the bill which just shows the lack of sophistication from the entire group ." ]
[['manager', 'lack of sophistication', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "it 's the only place you can get yummy authentic japanese comfort food ." ]
[['japanese comfort food', 'yummy authentic', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "We took advanatage of the half price sushi deal on saturday so it was well worth it ." ]
[['half price sushi deal', 'worth', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The staff are attentive , and have smiles on their faces ." ]
[['staff', 'attentive', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Largest and freshest pieces of sushi , and delicious !" ]
[['pieces of sushi', 'Largest', 'positive'], ['pieces of sushi', 'freshest', 'positive'], ['pieces of sushi', 'delicious', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Even the pasta is delicious here ( a rarity in New York pizza restaurants ) ." ]
[['pasta', 'delicious', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "but when we looked at the menu , there were n't a lot of choices , most of them were dumplings in the appetizer section ." ]
[['menu', "were n't a lot of choices", 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Wait staff is blantently unappreciative of your business but its the best pie on the UWS !" ]
[['Wait staff', 'unappreciative', 'negative'], ['pie', 'best', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The ingredients taste fresher , the crust is thinner and crispier , the slice is less oily , and it 's never burnt like it occasionally is at Joe 's ." ]
[['ingredients', 'fresher', 'positive'], ['crust', 'thinner', 'positive'], ['crust', 'crispier', 'positive'], ['slice', 'less oily', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Fish is so very fresh ." ]
[['Fish', 'fresh', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The prices were CHEAP compared to the quality of service and food ." ]
[['prices', 'CHEAP', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Top spot in town for Vietnamese classics , better than places that cost a lot more ." ]
[['Vietnamese classics', 'Top', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "less wait time for me !" ]
[['wait time', 'less', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The decor is really blah , and not at all hip or happening ." ]
[['decor', 'blah', 'negative'], ['decor', 'not at all hip', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "I come from a family of pizzeria owners , and I 'm almost ashamed to say that the pizza in Fornino 's blows my families receipies away ." ]
[['pizza', 'ashamed', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The lobster sandwich is good and the spaghetti with Scallops and Shrimp is great ." ]
[['lobster sandwich', 'good', 'positive'], ['spaghetti with Scallops and Shrimp', 'great', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The food was authentic ." ]
[['food', 'authentic', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The dim sum is delectable while the prices are quite easy on the wallet ." ]
[['dim sum', 'delectable', 'positive'], ['prices', 'easy', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]