|
--- |
|
pretty_name: IGVC Segmentation Dataset |
|
tags: |
|
- image |
|
license: cc-by-4.0 |
|
--- |
|
|
|
# IGCV Segmentation Dataset |
|
|
|
Dataset for training a semantic image segmentation model for the [Intelligent Ground Vehicle Competition](http://www.igvc.org/). |
|
|
|
## Composition |
|
|
|
Each instance consists of an reference image from the point of view of the robot and the corresponding obstacle (e.g. construction drums, buckets) and lane segmentation masks. |
|
|
|
**Train** |
|
|
|
256 frames rendered in 4 different lighting environments using Blender = 1024 images |
|
|
|
**Test** |
|
|
|
10 frames captured from the [SCR 2023 IGVC run](https://www.youtube.com/watch?v=7tZsk3T3STA) (manually segmented) + 13 frames rendered in 4 lighting environments = 62 images |
|
|
|
## Usage |
|
|
|
For usage with PyTorch it is recommended to wrap the dataset into a [`Dataset`](https://docs.pytorch.org/docs/stable/data.html#torch.utils.data.Dataset) adapter class and generate a training/validation split: |
|
|
|
```python |
|
from torch.utils.data import Dataset |
|
from datasets import load_dataset, Dataset as HFDataset |
|
import numpy as np |
|
|
|
class Split: |
|
TRAIN = "train" |
|
VALID = "valid" |
|
TEST = "test" |
|
|
|
class SegmentationDataset(Dataset): |
|
def __init__(self, path="Nico0302/IGVC-Segmentation", split=Split.TRAIN, transform=None, mask_name="obstacle_mask", valid_size=0.125): |
|
self.path = path |
|
self.split = split |
|
self.transform = transform |
|
self.mask_name = mask_name |
|
self.valid_size = valid_size |
|
|
|
self.data = self._read_split() |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, idx): |
|
item = self.data[idx] |
|
|
|
sample = dict(image=np.array(item["image"]), mask=np.array(item[self.mask_name])) |
|
if self.transform is not None: |
|
sample = self.transform(**sample) |
|
|
|
return { |
|
"image": np.transpose(sample["image"], (2, 0, 1)), # HWC to CHW (3, H, W) |
|
"mask": np.expand_dims(sample["mask"].astype(np.float32) / 255.0, 0), # HW to CHW (1, H, W) |
|
} |
|
|
|
def _read_split(self): |
|
dataset = load_dataset(self.path, split="test" if self.split == Split.TEST else "train") |
|
assert isinstance(dataset, HFDataset), "Dataset must be a Hugging Face Dataset" |
|
|
|
if (self.split == Split.TEST): |
|
return dataset |
|
|
|
splits = dataset.train_test_split(test_size=self.valid_size, seed=42) |
|
if self.split == Split.VALID: |
|
return splits["test"] |
|
return splits["train"] |
|
``` |
|
|
|
Using this adapter, the dataset can simple be passed to the [`DataLoader`](https://docs.pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader): |
|
|
|
```python |
|
train_dataset = SegmentationDataset(split=Split.TRAIN) |
|
valid_dataset = SegmentationDataset(split=Split.VALID) |
|
test_dataset = SegmentationDataset(split=Split.TEST) |
|
|
|
train_dataloader = DataLoader(train_dataset) |
|
valid_dataloader = DataLoader(valid_dataset) |
|
test_dataloader = DataLoader(test_dataset) |
|
``` |
|
|
|
## Acknowledgements |
|
|
|
Thank you for [Sooner Competitive Robotics](https://ou.edu/scr/) for allowing me to use frames from their IGVC 2023 run video as part of the test set. |
|
|
|
## Citation |
|
|
|
If you are using this dataset, please cite |
|
|
|
```bibtex |
|
@misc{gres2025IGVC, |
|
author = { Nicolas Gres }, |
|
title = { IGCV Segmentation Dataset }, |
|
year = 2025, |
|
url = { https://huggingface.co/datasets/Nico0302/IGVC-Segmentation }, |
|
publisher = { Hugging Face } |
|
} |
|
``` |