|
--- |
|
license: cc-by-sa-4.0 |
|
size_categories: |
|
- n<1K |
|
task_categories: |
|
- graph-ml |
|
pretty_name: 2D external aero CFD RANS datasets, under geometrical variations |
|
tags: |
|
- physics learning |
|
- geometry learning |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: all_samples |
|
path: data/all_samples-* |
|
dataset_info: |
|
description: |
|
legal: |
|
owner: Safran |
|
license: CC-by-SA 4.0 |
|
data_production: |
|
type: simulation |
|
physics: 2D stationary RANS |
|
simulator: elsA |
|
split: |
|
train: |
|
- 0 |
|
- 1 |
|
- 2 |
|
- 3 |
|
- 4 |
|
- 5 |
|
- 6 |
|
- 7 |
|
- 8 |
|
- 9 |
|
- 10 |
|
- 11 |
|
- 12 |
|
- 13 |
|
- 14 |
|
- 15 |
|
- 16 |
|
- 17 |
|
- 18 |
|
- 19 |
|
- 20 |
|
- 21 |
|
- 22 |
|
- 23 |
|
- 24 |
|
- 25 |
|
- 26 |
|
- 27 |
|
- 28 |
|
- 29 |
|
- 30 |
|
- 31 |
|
- 32 |
|
- 33 |
|
- 34 |
|
- 35 |
|
- 36 |
|
- 37 |
|
- 38 |
|
- 39 |
|
- 40 |
|
- 41 |
|
- 42 |
|
- 43 |
|
- 44 |
|
- 45 |
|
- 46 |
|
- 47 |
|
- 48 |
|
- 49 |
|
- 50 |
|
- 51 |
|
- 52 |
|
- 53 |
|
- 54 |
|
- 55 |
|
- 56 |
|
- 57 |
|
- 58 |
|
- 59 |
|
- 60 |
|
- 61 |
|
- 62 |
|
- 63 |
|
- 64 |
|
- 65 |
|
- 66 |
|
- 67 |
|
- 68 |
|
- 69 |
|
- 70 |
|
- 71 |
|
- 72 |
|
- 73 |
|
- 74 |
|
- 75 |
|
- 76 |
|
- 77 |
|
- 78 |
|
- 79 |
|
- 80 |
|
- 81 |
|
- 82 |
|
- 83 |
|
- 84 |
|
- 85 |
|
- 86 |
|
- 87 |
|
- 88 |
|
- 89 |
|
- 90 |
|
- 91 |
|
- 92 |
|
- 93 |
|
- 94 |
|
- 95 |
|
- 96 |
|
- 97 |
|
- 98 |
|
- 99 |
|
- 100 |
|
- 101 |
|
- 102 |
|
- 103 |
|
- 104 |
|
- 105 |
|
- 106 |
|
- 107 |
|
- 108 |
|
- 109 |
|
- 110 |
|
- 111 |
|
- 112 |
|
- 113 |
|
- 114 |
|
- 115 |
|
- 116 |
|
- 117 |
|
- 118 |
|
- 119 |
|
- 120 |
|
- 121 |
|
- 122 |
|
- 123 |
|
- 124 |
|
- 125 |
|
- 126 |
|
- 127 |
|
- 128 |
|
- 129 |
|
- 130 |
|
- 131 |
|
- 132 |
|
- 133 |
|
- 134 |
|
- 135 |
|
- 136 |
|
- 137 |
|
- 138 |
|
- 139 |
|
- 140 |
|
- 141 |
|
- 142 |
|
- 143 |
|
- 144 |
|
- 145 |
|
- 146 |
|
- 147 |
|
- 148 |
|
- 149 |
|
- 150 |
|
- 151 |
|
- 152 |
|
- 153 |
|
- 154 |
|
- 155 |
|
- 156 |
|
- 157 |
|
- 158 |
|
- 159 |
|
- 160 |
|
- 161 |
|
- 162 |
|
- 163 |
|
- 164 |
|
- 165 |
|
- 166 |
|
- 167 |
|
- 168 |
|
- 169 |
|
- 170 |
|
- 171 |
|
- 172 |
|
- 173 |
|
- 174 |
|
- 175 |
|
- 176 |
|
- 177 |
|
- 178 |
|
- 179 |
|
- 180 |
|
- 181 |
|
- 182 |
|
- 183 |
|
- 184 |
|
- 185 |
|
- 186 |
|
- 187 |
|
- 188 |
|
- 189 |
|
- 190 |
|
- 191 |
|
- 192 |
|
- 193 |
|
- 194 |
|
- 195 |
|
- 196 |
|
- 197 |
|
- 198 |
|
- 199 |
|
- 200 |
|
- 201 |
|
- 202 |
|
- 203 |
|
- 204 |
|
- 205 |
|
- 206 |
|
- 207 |
|
- 208 |
|
- 209 |
|
- 210 |
|
- 211 |
|
- 212 |
|
- 213 |
|
- 214 |
|
- 215 |
|
- 216 |
|
- 217 |
|
- 218 |
|
- 219 |
|
- 220 |
|
- 221 |
|
- 222 |
|
- 223 |
|
- 224 |
|
- 225 |
|
- 226 |
|
- 227 |
|
- 228 |
|
- 229 |
|
- 230 |
|
- 231 |
|
- 232 |
|
- 233 |
|
- 234 |
|
- 235 |
|
- 236 |
|
- 237 |
|
- 238 |
|
- 239 |
|
- 240 |
|
- 241 |
|
- 242 |
|
- 243 |
|
- 244 |
|
- 245 |
|
- 246 |
|
- 247 |
|
- 248 |
|
- 249 |
|
- 250 |
|
- 251 |
|
- 252 |
|
- 253 |
|
- 254 |
|
- 255 |
|
- 256 |
|
- 257 |
|
- 258 |
|
- 259 |
|
- 260 |
|
- 261 |
|
- 262 |
|
- 263 |
|
- 264 |
|
- 265 |
|
- 266 |
|
- 267 |
|
- 268 |
|
- 269 |
|
- 270 |
|
- 271 |
|
- 272 |
|
- 273 |
|
- 274 |
|
- 275 |
|
- 276 |
|
- 277 |
|
- 278 |
|
- 279 |
|
- 280 |
|
- 281 |
|
- 282 |
|
- 283 |
|
- 284 |
|
- 285 |
|
- 286 |
|
- 287 |
|
- 288 |
|
- 289 |
|
- 290 |
|
- 291 |
|
- 292 |
|
- 293 |
|
- 294 |
|
- 295 |
|
- 296 |
|
- 297 |
|
- 298 |
|
- 299 |
|
test: |
|
- 300 |
|
- 301 |
|
- 302 |
|
- 303 |
|
- 304 |
|
- 305 |
|
- 306 |
|
- 307 |
|
- 308 |
|
- 309 |
|
- 310 |
|
- 311 |
|
- 312 |
|
- 313 |
|
- 314 |
|
- 315 |
|
- 316 |
|
- 317 |
|
- 318 |
|
- 319 |
|
- 320 |
|
- 321 |
|
- 322 |
|
- 323 |
|
- 324 |
|
- 325 |
|
- 326 |
|
- 327 |
|
- 328 |
|
- 329 |
|
- 330 |
|
- 331 |
|
- 332 |
|
- 333 |
|
- 334 |
|
- 335 |
|
- 336 |
|
- 337 |
|
- 338 |
|
- 339 |
|
- 340 |
|
- 341 |
|
- 342 |
|
- 343 |
|
- 344 |
|
- 345 |
|
- 346 |
|
- 347 |
|
- 348 |
|
- 349 |
|
- 350 |
|
- 351 |
|
- 352 |
|
- 353 |
|
- 354 |
|
- 355 |
|
- 356 |
|
- 357 |
|
- 358 |
|
- 359 |
|
- 360 |
|
- 361 |
|
- 362 |
|
- 363 |
|
- 364 |
|
- 365 |
|
- 366 |
|
- 367 |
|
- 368 |
|
- 369 |
|
- 370 |
|
- 371 |
|
- 372 |
|
- 373 |
|
- 374 |
|
- 375 |
|
- 376 |
|
- 377 |
|
- 378 |
|
- 379 |
|
- 380 |
|
- 381 |
|
- 382 |
|
- 383 |
|
- 384 |
|
- 385 |
|
- 386 |
|
- 387 |
|
- 388 |
|
- 389 |
|
- 390 |
|
- 391 |
|
- 392 |
|
- 393 |
|
- 394 |
|
- 395 |
|
- 396 |
|
- 397 |
|
- 398 |
|
- 399 |
|
task: regression |
|
in_scalars_names: [] |
|
out_scalars_names: [] |
|
in_timeseries_names: [] |
|
out_timeseries_names: [] |
|
in_fields_names: [] |
|
out_fields_names: |
|
- Mach |
|
- Pressure |
|
- Velocity-x |
|
- Velocity-y |
|
in_meshes_names: |
|
- /Base_2_2/Zone |
|
out_meshes_names: [] |
|
features: |
|
- name: sample |
|
dtype: binary |
|
splits: |
|
- name: all_samples |
|
num_bytes: 1290091704 |
|
num_examples: 400 |
|
download_size: 813895818 |
|
dataset_size: 1290091704 |
|
--- |
|
|
|
# Dataset Card |
|
 |
|
 |
|
|
|
This dataset contains a single huggingface split, named 'all_samples'. |
|
|
|
The samples contains a single huggingface feature, named called "sample". |
|
|
|
Samples are instances of [plaid.containers.sample.Sample](https://plaid-lib.readthedocs.io/en/latest/autoapi/plaid/containers/sample/index.html#plaid.containers.sample.Sample). |
|
Mesh objects included in samples follow the [CGNS](https://cgns.github.io/) standard, and can be converted in |
|
[Muscat.Containers.Mesh.Mesh](https://muscat.readthedocs.io/en/latest/_source/Muscat.Containers.Mesh.html#Muscat.Containers.Mesh.Mesh). |
|
|
|
|
|
Example of commands: |
|
```python |
|
from datasets import load_dataset |
|
from plaid.containers.sample import Sample |
|
import pickle |
|
|
|
# Load the dataset |
|
hf_dataset = load_dataset("PLAID-datasets/2D_profile", split="all_samples") |
|
|
|
# Get split ids |
|
ids_train = hf_dataset.description["split"]['train'] |
|
ids_test = hf_dataset.description["split"]['test'] |
|
|
|
# Get inputs/outputs names |
|
in_scalars_names = hf_dataset.description["in_scalars_names"] |
|
out_fields_names = hf_dataset.description["out_fields_names"] |
|
|
|
# Get samples |
|
sample = Sample.model_validate(pickle.loads(hf_dataset[ids_train[0]]["sample"])) |
|
sample_2 = Sample.model_validate(pickle.loads(hf_dataset[ids_test[0]]["sample"])) |
|
|
|
# Examples data retrievals |
|
nodes = sample.get_nodes() |
|
elements = sample.get_elements() |
|
nodal_tags = sample.get_nodal_tags() |
|
|
|
for fn in ['Mach', 'Pressure', 'Velocity-x', 'Velocity-y']: |
|
field = sample.get_field(fn) |
|
|
|
# Get the mesh and convert it to Muscat |
|
from Muscat.Bridges import CGNSBridge |
|
CGNS_tree = sample.get_mesh() |
|
mesh = CGNSBridge.CGNSToMesh(CGNS_tree) |
|
print(mesh) |
|
``` |
|
|
|
## Dataset Details |
|
|
|
### Dataset Description |
|
|
|
|
|
This dataset contains 2D external aero CFD RANS solutions, under geometrical variations. |
|
|
|
The variablity in the samples is the geometry (mesh). Outputs of interest are 4 fields. Each sample have been computed on large refined meshes, which have been cut close to the profil. |
|
|
|
Dataset created using the [PLAID](https://plaid-lib.readthedocs.io/) library and datamodel, version 0.1. |
|
|
|
- **Language:** [PLAID](https://plaid-lib.readthedocs.io/) |
|
- **License:** cc-by-sa-4.0 |
|
- **Owner:** Safran |
|
|
|
### Dataset Sources |
|
|
|
- **Repository:** [Zenodo](https://zenodo.org/records/15155119) |
|
|