problem
stringlengths 10
7.44k
| answer
stringlengths 1
270
| difficulty
stringclasses 8
values |
---|---|---|
On the island of misfortune, there live truth-tellers, who always tell the truth, and liars, who always lie. One day, 2023 natives, among which there are $N$ liars, stood in a circle, and each said, "Both of my neighbors are liars." How many different values can $N$ take? | 337 | 2/8 |
The polynomial $-400x^5+2660x^4-3602x^3+1510x^2+18x-90$ has five rational roots. Suppose you guess a rational number which could possibly be a root (according to the rational root theorem). What is the probability that it actually is a root? | 1/36 | 1/8 |
In \(\triangle ABC\), the incenter is \(I\), and the incircle touches sides \(AB\) and \(AC\) at points \(M\) and \(N\) respectively. The extensions of \(BI\) and \(CI\) intersect \(MN\) at points \(K\) and \(L\) respectively. Prove that the circumcircle of \(\triangle ILK\) being tangent to the incircle of \(\triangle ABC\) is a sufficient and necessary condition for \(AB + AC = 3BC\). | AB+AC=3BC | 1/8 |
Any six points are taken inside or on a rectangle with dimensions $1 \times 2$. Let $b$ be the smallest possible value such that it is always possible to select one pair of points from these six such that the distance between them is equal to or less than $b$. Determine the value of $b$. | \frac{\sqrt{5}}{2} | 1/8 |
The school store is running out of supplies, but it still has five items: one pencil (costing $\$ 1 $), one pen (costing $ \ $1$ ), one folder (costing $\$ 2 $), one pack of paper (costing $ \ $3$ ), and one binder (costing $\$ 4 $). If you have $ \ $10$ , in how many ways can you spend your money? (You don't have to spend all of your money, or any of it.) | 31 | 5/8 |
When dividing the polynomial \( x^{1051} - 1 \) by \( x^4 + x^3 + 2x^2 + x + 1 \), what is the coefficient of \( x^{14} \) in the quotient? | -1 | 1/8 |
Line segment $\overline{AB}$ is a diameter of a circle with $AB = 24$. Point $C$, not equal to $A$ or $B$, lies on the circle. As point $C$ moves around the circle, the centroid (center of mass) of $\triangle ABC$ traces out a closed curve missing two points. To the nearest positive integer, what is the area of the region bounded by this curve?
$\textbf{(A)} \indent 25 \qquad \textbf{(B)} \indent 32 \qquad \textbf{(C)} \indent 50 \qquad \textbf{(D)} \indent 63 \qquad \textbf{(E)} \indent 75$
| 50 | 1/8 |
The factory's planned output value for this year is $a$ million yuan, which is a 10% increase from last year. If the actual output value this year can exceed the plan by 1%, calculate the increase in the actual output value compared to last year. | 11.1\% | 4/8 |
Given point P(2, 1) is on the parabola $C_1: x^2 = 2py$ ($p > 0$), and the line $l$ passes through point Q(0, 2) and intersects the parabola $C_1$ at points A and B.
(1) Find the equation of the parabola $C_1$ and the equation for the trajectory $C_2$ of the midpoint M of chord AB;
(2) If lines $l_1$ and $l_2$ are tangent to $C_1$ and $C_2$ respectively, and $l_1$ is parallel to $l_2$, find the shortest distance from $l_1$ to $l_2$. | \sqrt{3} | 5/8 |
Given that $x > 0$, $y > 0$, and $x + 2y = 2$, find the minimum value of $xy$. | \frac{1}{2} | 1/8 |
Solve the Cauchy problem with the differential equation \( 3 y^{\prime \prime} = 4 \frac{x^{3}}{(y^{\prime})^{2}} \) and initial conditions \( y(1) = 0 \), \( y^{\prime}(1) = 2 \). After the substitution \( y^{\prime} = p(x) \), we obtain the equation \( 3 p^{\prime} = 4 \frac{x^{3}}{p^{2}} \). | y(x)=\int_{1}^{x}\sqrt[3]{^4+7}\,dt | 3/8 |
For how many ordered pairs of positive integers $(x,y),$ with $y<x\le 100,$ are both $\frac xy$ and $\frac{x+1}{y+1}$ integers?
| 85 | 7/8 |
Let $m$ be a fixed integer greater than $1$. The sequence $x_0$, $x_1$, $x_2$, $\ldots$ is defined as follows:
\[x_i = \begin{cases}2^i&\text{if }0\leq i \leq m - 1;\\\sum_{j=1}^mx_{i-j}&\text{if }i\geq m.\end{cases}\]
Find the greatest $k$ for which the sequence contains $k$ consecutive terms divisible by $m$ .
[i] | k=m-1 | 1/8 |
Let $F(0)=0$ , $F(1)=\frac32$ , and $F(n)=\frac{5}{2}F(n-1)-F(n-2)$ for $n\ge2$ .
Determine whether or not $\displaystyle{\sum_{n=0}^{\infty}\,
\frac{1}{F(2^n)}}$ is a rational number.
(Proposed by Gerhard Woeginger, Eindhoven University of Technology)
| 1 | 6/8 |
Person A and person B start walking towards each other from locations A and B simultaneously. The speed of person B is $\frac{3}{2}$ times the speed of person A. After meeting for the first time, they continue to their respective destinations, and then immediately return. Given that the second meeting point is 20 kilometers away from the first meeting point, what is the distance between locations A and B? | 50 | 5/8 |
Given points $M(4,0)$ and $N(1,0)$, any point $P$ on curve $C$ satisfies: $\overset{→}{MN} \cdot \overset{→}{MP} = 6|\overset{→}{PN}|$.
(I) Find the trajectory equation of point $P$;
(II) A line passing through point $N(1,0)$ intersects curve $C$ at points $A$ and $B$, and intersects the $y$-axis at point $H$. If $\overset{→}{HA} = λ_1\overset{→}{AN}$ and $\overset{→}{HB} = λ_2\overset{→}{BN}$, determine whether $λ_1 + λ_2$ is a constant value. If it is, find this value; if not, explain the reason. | -\frac{8}{3} | 7/8 |
Given positive real numbers \(x\), \(y\), and \(z\) that satisfy the following system of equations:
\[
\begin{aligned}
x^{2}+y^{2}+x y &= 1, \\
y^{2}+z^{2}+y z &= 4, \\
z^{2}+x^{2}+z x &= 5,
\end{aligned}
\]
find \(x+y+z\). | \sqrt{5+2\sqrt{3}} | 7/8 |
There are \( n \) points on a plane such that the area of any triangle formed by these points does not exceed 1. Prove that all these points can be enclosed within a triangle of area 4. | 4 | 5/8 |
In a rectangle trapezoid, there are two circles. One of them, with a radius of 4, is inscribed in the trapezoid, and the other, with a radius of 1, touches two sides of the trapezoid and the first circle. Find the area of the trapezoid. | \frac{196}{3} | 1/8 |
We subtract the sum of its digits from a three-digit number. We repeat the same procedure on the resulting difference, again and again, a total of one hundred times. Prove that the resulting number is 0. | 0 | 3/8 |
A right circular cone is sliced into five pieces of equal height by planes parallel to its base. Determine the ratio of the volume of the second-largest piece to the volume of the largest piece. | \frac{37}{61} | 7/8 |
How many ways can we arrange 4 math books, 6 English books, and 2 Science books on a shelf if:
1. All books of the same subject must stay together.
2. The Science books can be placed in any order, but cannot be placed next to each other.
(The math, English, and Science books are all different.) | 207360 | 1/8 |
We inscribe spheres with a radius of \(\frac{1}{2}\) around the vertices of a cube with edge length 1. There are two spheres that touch each of these eight spheres. Calculate the difference in volume between these two spheres. | \frac{10}{3} \pi | 6/8 |
Given a quadrilateral $ABCD$ inscribed in a circle, where $AB = BC = AD + CD$, $\angle BAD = \alpha$, and $AC = d$, find the area of triangle $ABC$. | \frac{1}{2}^2\sin\alpha | 2/8 |
How many incongruent triangles have integer sides and perimeter 1994? | 82834 | 2/8 |
Convert $5214_8$ to a base 10 integer. | 2700 | 7/8 |
A positive integer is called primer if it has a prime number of distinct prime factors. A positive integer is called primest if it has a primer number of distinct primer factors. Find the smallest primest number. | 72 | 1/8 |
In triangle $ABC$ we have $AB=36$ , $BC=48$ , $CA=60$ . The incircle of $ABC$ is centered at $I$ and touches $AB$ , $AC$ , $BC$ at $M$ , $N$ , $D$ , respectively. Ray $AI$ meets $BC$ at $K$ . The radical axis of the circumcircles of triangles $MAN$ and $KID$ intersects lines $AB$ and $AC$ at $L_1$ and $L_2$ , respectively. If $L_1L_2 = x$ , compute $x^2$ .
*Proposed by Evan Chen* | 720 | 6/8 |
Two adjacent faces of a tetrahedron, which are equilateral triangles with side length 1, form a dihedral angle of 60 degrees. The tetrahedron rotates around the common edge of these faces. Find the maximum area of the projection of the rotating tetrahedron on the plane containing the given edge. (12 points) | \frac{\sqrt{3}}{4} | 1/8 |
The gravitational force that Earth exerts on an object is inversely proportional to the square of the distance between the center of the Earth and the object. When Alice is on the surface of Earth, 6,000 miles from the center, the gravitational force is 400 Newtons. What is the gravitational force (in Newtons) that the Earth exerts on her when she's standing on a space station, 360,000 miles from the center of the earth? Express your answer as a fraction. | \frac{1}{9} | 7/8 |
Let \( a_1, a_2, \cdots, a_n \) be integers with a greatest common divisor of 1. Let \( S \) be a set of integers satisfying:
(1) \( a_i \in S \) for \( i = 1, 2, \cdots, n \);
(2) \( a_i - a_j \in S \) for \( 1 \leq i, j \leq n \) (where \( i \) and \( j \) can be the same);
(3) For any integers \( x, y \in S \), if \( x + y \in S \), then \( x - y \in S \).
Prove that \( S \) is equal to the set of all integers. | S | 1/8 |
Petya and Vasya came up with ten quadratic trinomials. Then Vasya sequentially named consecutive natural numbers (starting from some number), and Petya substituted each named number into one of the trinomials of his choice and wrote the obtained values on the board from left to right. It turned out that the numbers written on the board formed an arithmetic progression (in that specific order).
What is the maximum number of numbers Vasya could have named? | 20 | 1/8 |
On a chemistry quiz, there were $7y$ questions. Tim missed $2y$ questions. What percent of the questions did Tim answer correctly? | 71.43\% | 2/8 |
Find all integers $n$ for which $\frac{n^{3}+8}{n^{2}-4}$ is an integer. | 0,1,3,4,6 | 1/8 |
The radius of the circle circumscribed around the triangle $K L M$ is $R$. A line is drawn through vertex $L$, perpendicular to the side $K M$. This line intersects at points $A$ and $B$ the perpendicular bisectors of the sides $K L$ and $L M$. It is known that $A L = a$. Find $B L$. | \frac{R^2}{} | 3/8 |
In triangle \(ABC\), median \(BM\) and height \(AH\) are drawn. It is known that \(BM = AH\). Find the angle \(\angle MBC\). | 30 | 6/8 |
Compose a differential equation for which the functions $y_{1}(x)=e^{x^{2}}$ and $y_{2}(x)=e^{-x^{2}}$ form a fundamental system of solutions. | y''-\frac{1}{x}y'-4x^2y=0 | 1/8 |
The solutions to the equation $x^2 - 3|x| - 2 = 0$ are. | \frac{-3 - \sqrt{17}}{2} | 6/8 |
If the digits of a natural number can be divided into two groups such that the sum of the digits in each group is equal, the number is called a "balanced number". For example, 25254 is a "balanced number" because $5+2+2=4+5$. If two adjacent natural numbers are both "balanced numbers", they are called a pair of "twin balanced numbers". What is the sum of the smallest pair of "twin balanced numbers"? | 1099 | 1/8 |
In a tennis tournament there are participants from $n$ different countries. Each team consists of a coach and a player whom should settle in a hotel. The rooms considered for the settlement of coaches are different from players' ones. Each player wants to be in a room whose roommates are **<u>all</u>** from countries which have a defense agreement with the player's country. Conversely, each coach wants to be in a room whose roommates are **<u>all</u>** from countries which don't have a defense agreement with the coach's country. Find the minimum number of the rooms such that we can <u>**always**</u> grant everyone's desire.
*proposed by Seyed Reza Hosseini and Mohammad Amin Ghiasi* | n+1 | 7/8 |
Given vectors $a$ and $b$ that satisfy $|a|=2$, $|b|=1$, and $a\cdot (a-b)=3$, find the angle between $a$ and $b$. | \frac{\pi }{3} | 4/8 |
Camilla had three times as many blueberry jelly beans as cherry jelly beans. She also had some raspberry jelly beans, the number of which is not initially given. After eating 15 blueberry and 5 cherry jelly beans, she now has five times as many blueberry jelly beans as cherry jelly beans. Express the original number of blueberry jelly beans in terms of the original number of cherry jelly beans. | 15 | 6/8 |
Let $f(n)$ be a function that, given an integer $n$, returns an integer $k$, where $k$ is the smallest possible integer such that $k!$ is divisible by $n$. Given that $n$ is a multiple of 15, what is the smallest value of $n$ such that $f(n) > 15$? | n = 255 | 5/8 |
Two circles with radii \( R \) and \( r \) are externally tangent to each other. An external common tangent is drawn to these circles, and a circle is inscribed in the curvilinear triangle formed by these elements. Find the area of the inscribed circle. | \frac{\piR^2r^2}{(\sqrt{R}+\sqrt{r})^4} | 1/8 |
The diagonals of a trapezoid are mutually perpendicular, and one of them is 13. Find the area of the trapezoid if its height is 12. | 1014/5 | 4/8 |
Let \(ABC\) be a triangle with \(AB = 13\), \(BC = 14\), and \(CA = 15\). Company XYZ wants to locate their base at the point \(P\) in the plane minimizing the total distance to their workers, who are located at vertices \(A\), \(B\), and \(C\). There are 1, 5, and 4 workers at \(A, B\), and \(C\), respectively. Find the minimum possible total distance Company XYZ's workers have to travel to get to \(P\). | 69 | 1/8 |
Let \( n \) be a positive integer. Calculate
\[
P = \prod_{k=0}^{n-1} \sin \left(\theta + \frac{k \pi}{n} \right).
\] | \frac{\sin(n\theta)}{2^{n-1}} | 3/8 |
Let \( P-ABCD \) be a regular quadrilateral pyramid. The dihedral angle between a lateral face and the base is \( \alpha \), and the dihedral angle between two adjacent lateral faces is \( \beta \). Find \( 2 \cos \beta + \cos 2 \alpha \). | -1 | 3/8 |
Find $ [\sqrt{19992000}]$ where $ [x]$ is the greatest integer less than or equal to $ x$ . | 4471 | 7/8 |
Given the function $y=\sin (3x+ \frac {\pi}{3})\cos (x- \frac {\pi}{6})+\cos (3x+ \frac {\pi}{3})\sin (x- \frac {\pi}{6})$, find the equation of one of the axes of symmetry. | \frac {\pi}{12} | 7/8 |
In a 4x4 grid, you need to place 5 crosses so that there is at least one cross in each row and each column. How many ways can this be done? | 432 | 2/8 |
$\frac{\text{华杯赛}}{\text{少} \times \text{俊} + \text{金坛} + \text{论} \times \text{数}} = 15$
In the above equation, different Chinese characters represent different digits between $1$ and $9$. When the three-digit number "华杯赛" reaches its maximum value, please write a solution where the equation holds. | 975 | 3/8 |
Given vectors $\overrightarrow{a} = (\sin x, \cos x)$, $\overrightarrow{b} = (\sin x, \sin x)$, and $f(x) = \overrightarrow{a} \cdot \overrightarrow{b}$
(1) If $x \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$, find the range of the function $f(x)$.
(2) Let the sides opposite the acute angles $A$, $B$, and $C$ of triangle $\triangle ABC$ be $a$, $b$, and $c$, respectively. If $f(B) = 1$, $b = \sqrt{2}$, and $c = \sqrt{3}$, find the value of $a$. | \frac{\sqrt{6} + \sqrt{2}}{2} | 6/8 |
A club consists of three board members and a certain number of regular members. Every year, the board members retire and are not replaced. Each regular member recruits one new person to join as a regular member. Initially, there are nine people in the club total. How many people total will be in the club after four years? | 96 | 5/8 |
Two circles of radius 3 are centered at $(3,0)$ and at $(0,3)$. What is the area of the intersection of the interiors of these two circles? Express your answer in fully expanded form in terms of $\pi$. | \frac{9\pi}{2} - 9 | 5/8 |
Given that -9, a_{1}, a_{2}, -1 are four real numbers forming an arithmetic sequence, and -9, b_{1}, b_{2}, b_{3}, -1 are five real numbers forming a geometric sequence, find the value of b_{2}(a_{2}-a_{1}). | -8 | 7/8 |
Find all the solutions to
\[\sqrt[3]{2 - x} + \sqrt{x - 1} = 1.\]Enter all the solutions, separated by commas. | 1,2,10 | 1/8 |
Given is a triangle $ABC$ with the property that $|AB| + |AC| = 3|BC|$ . Let $T$ be the point on segment $AC$ such that $|AC| = 4|AT|$ . Let $K$ and $L$ be points on the interior of line segments $AB$ and $AC$ respectively such that $KL \parallel BC$ and $KL$ is tangent to the inscribed circle of $\vartriangle ABC$ . Let $S$ be the intersection of $BT$ and $KL$ . Determine the ratio $\frac{|SL|}{|KL|}$ | \frac{2}{3} | 5/8 |
On the lateral side \( C D \) of the trapezoid \( A B C D \) (\( A D \parallel B C \)), a point \( M \) is marked. From the vertex \( A \), a perpendicular \( A H \) is dropped onto the segment \( B M \). It turns out that \( A D = H D \). Find the length of the segment \( A D \), given that \( B C = 16 \), \( C M = 8 \), and \( M D = 9 \). | 18 | 4/8 |
There are four cards, each with one of the numbers $2$, $0$, $1$, $5$ written on them. Four people, A, B, C, and D, each take one card.
A says: None of the numbers you three have differ by 1 from the number I have.
B says: At least one of the numbers you three have differs by 1 from the number I have.
C says: The number I have cannot be the first digit of a four-digit number.
D says: The number I have cannot be the last digit of a four-digit number.
If it is known that anyone who has an even number is lying, and anyone who has an odd number is telling the truth, what is the four-digit number formed by the numbers A, B, C, and D have, in that order? | 5120 | 6/8 |
What is the maximum number of points that can be placed on a segment of length 1 such that on any subsegment of length \( d \) within this segment, there are no more than \( 1 + 1000d^{2} \) points? | 32 | 1/8 |
If $3x^3-9x^2+kx-12$ is divisible by $x-3$, then it is also divisible by:
$\textbf{(A)}\ 3x^2-x+4\qquad \textbf{(B)}\ 3x^2-4\qquad \textbf{(C)}\ 3x^2+4\qquad \textbf{(D)}\ 3x-4 \qquad \textbf{(E)}\ 3x+4$ | \textbf{(C)}\3x^2+4 | 1/8 |
In a single-round robin table tennis tournament, it is known that the winner won more than 68% and less than 69% of their matches. What is the minimum number of participants in the tournament? | 17 | 2/8 |
What is $1010101_2 + 1001001_2$? Write your answer in base $10$. | 158 | 3/8 |
There are five gifts priced at 2 yuan, 5 yuan, 8 yuan, 11 yuan, and 14 yuan, and five boxes priced at 1 yuan, 3 yuan, 5 yuan, 7 yuan, and 9 yuan. Each gift is paired with one box. How many different total prices are possible? | 19 | 6/8 |
ABCD is an isosceles trapezoid with \(AB = CD\). \(\angle A\) is acute, \(AB\) is the diameter of a circle, \(M\) is the center of the circle, and \(P\) is the point of tangency of the circle with the side \(CD\). Denote the radius of the circle as \(x\). Then \(AM = MB = MP = x\). Let \(N\) be the midpoint of the side \(CD\), making the triangle \(MPN\) right-angled with \(\angle P = 90^{\circ}\), \(\angle MNP = \angle A = \alpha\), and \(MN = \frac{x}{\sin \alpha}\). Let \(K\) be the point where the circle intersects the base \(AD\) (with \(K \neq A\)). Triangle \(ABK\) is right-angled with \(\angle K = 90^{\circ}\), and \(BK\) is the height of the trapezoid with \(BK = AB \sin \alpha = 2x \sin \alpha\).
Given that the area of the trapezoid is \(S_{ABCD} = MN \cdot BK = 2x^2 = 450\), solve for \(x\).
Then, \(AK = AB \cos \alpha = 2x \cos \alpha\) and \(KD = MN = \frac{x}{\sin \alpha}\).
Given that \(\frac{AK}{KD} = \frac{24}{25}\), solve to find the values of \(\sin \alpha\) and \(\cos \alpha\).
For the first case, find \(AD\) and \(BC\).
For the second case, find \(AD\) and \(BC\). | 30 | 1/8 |
Given \( 0 \leq x \leq \pi \) and \( 3 \sin \frac{x}{2} = \sqrt{1 + \sin x} - \sqrt{1 - \sin x} \), find the value of \( \tan x \). | 0 | 5/8 |
Let $p_1,p_2,p_3,p_4$ be four distinct primes, and let $1=d_1<d_2<\ldots<d_{16}=n$ be the divisors of $n=p_1p_2p_3p_4$ . Determine all $n<2001$ with the property that $d_9-d_8=22$ . | 1995 | 1/8 |
A confectionery factory received 5 spools of ribbon, each 60 meters long, for packaging cakes. How many cuts are needed to obtain pieces of ribbon, each 1 meter 50 centimeters long? | 195 | 7/8 |
Given four points \( A, B, C, D \) in space, with at most one of the segments \( AB, AC, AD, BC, BD, CD \) having a length greater than 1, find the maximum sum of the lengths of these six segments. | 5+\sqrt{3} | 2/8 |
A man born in the first half of the nineteenth century was $x$ years old in the year $x^2$. He was born in:
$\textbf{(A)}\ 1849 \qquad \textbf{(B)}\ 1825 \qquad \textbf{(C)}\ 1812 \qquad \textbf{(D)}\ 1836 \qquad \textbf{(E)}\ 1806$ | \textbf{(E)}\1806 | 1/8 |
Define the function \( f: \mathbb{R} \rightarrow \mathbb{R} \) by
\[
f(x)=\left\{\begin{array}{ll}
\frac{1}{x^{2}+\sqrt{x^{4}+2 x}} & \text{ if } x \notin (-\sqrt[3]{2}, 0] \\
0 & \text{ otherwise }
\end{array}\right.
\]
The sum of all real numbers \( x \) for which \( f^{10}(x)=1 \) can be written as \( \frac{a+b\sqrt{c}}{d} \), where \( a, b, c, d \) are integers, \( d \) is positive, \( c \) is square-free, and \( \operatorname{gcd}(a, b, d)=1 \). Find \( 1000a + 100b + 10c + d \).
(Here, \( f^{n}(x) \) is the function \( f(x) \) iterated \( n \) times. For example, \( f^{3}(x) = f(f(f(x))) \).) | 932 | 1/8 |
Anya, Vanya, Danya, and Tanya collected apples. Each of them collected a whole number percentage from the total number of apples, and all these numbers are distinct and more than zero. Then Tanya, who collected the most apples, ate her apples. After that, each of the remaining kids still had a whole percentage of the remaining apples. What is the minimum number of apples that could have been collected? | 20 | 1/8 |
In the diagram, $AB$ is a line segment. What is the value of $x$?
[asy]
draw((0,0)--(10,0),black+linewidth(1));
draw((4,0)--(4,8),black+linewidth(1));
draw((4,0)--(3.5,0)--(3.5,0.5)--(4,0.5)--cycle,black+linewidth(1));
draw((4,0)--(9,7),black+linewidth(1));
label("$A$",(0,0),W);
label("$B$",(10,0),E);
label("$x^\circ$",(4.75,2.25));
label("$52^\circ$",(5.5,0.75));
[/asy] | 38 | 5/8 |
A set of $n$ numbers has the sum $s$. Each number of the set is increased by $20$, then multiplied by $5$, and then decreased by $20$. The sum of the numbers in the new set thus obtained is:
$\textbf{(A)}\ s \plus{} 20n\qquad
\textbf{(B)}\ 5s \plus{} 80n\qquad
\textbf{(C)}\ s\qquad
\textbf{(D)}\ 5s\qquad
\textbf{(E)}\ 5s \plus{} 4n$ (Error compiling LaTeX. Unknown error_msg) | \textbf{(B)}\5s+80n | 1/8 |
Let \( D \) be a point inside the acute triangle \( \triangle ABC \). Given that \( \angle ADB = \angle ACB + 90^\circ \) and \( AC \cdot BD = AD \cdot BC \), find the value of \( \frac{AB \cdot CD}{AC \cdot BD} \). | \sqrt{2} | 2/8 |
In the triangular pyramid \( P-ABC \), the angles between each of the three lateral faces and the base face are equal. The areas of the three lateral faces are 3, 4, and 5, and the area of the base face is 6. What is the surface area of the circumscribing sphere of the triangular pyramid \( P-ABC \)? | \frac{79\pi}{3} | 1/8 |
Find the greatest positive integer $n$ for which there exist $n$ nonnegative integers $x_1, x_2,\ldots , x_n$ , not all zero, such that for any $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ from the set $\{-1, 0, 1\}$ , not all zero, $\varepsilon_1 x_1 + \varepsilon_2 x_2 + \cdots + \varepsilon_n x_n$ is not divisible by $n^3$ . | 9 | 1/8 |
Given a hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ ($a>0, b>0$) with a point C on it, a line passing through the center of the hyperbola intersects the hyperbola at points A and B. Let the slopes of the lines AC and BC be $k_1$ and $k_2$ respectively. Find the eccentricity of the hyperbola when $\frac{2}{k_1 k_2} + \ln{k_1} + \ln{k_2}$ is minimized. | \sqrt{3} | 5/8 |
In a certain company, 20% of the most productive employees perform 80% of the work. What is the minimum percentage of work that 40% of the most productive employees can perform?
We will call an employee more productive if they perform more work. | 85 | 5/8 |
In the quadrilateral \(ABCD\), it is known that \(AB = BD\) and \(\angle ABD = \angle DBC\), with \(\angle BCD = 90^\circ\). A point \(E\) on segment \(BC\) is such that \(AD = DE\). What is the length of segment \(BD\), given that \(BE = 7\) and \(EC = 5\)? | 17 | 5/8 |
In a chess-playing club, some of the players take lessons from other players. It is possible (but not necessary) for two players both to take lessons from each other. It so happens that for any three distinct members of the club, $A, B$, and $C$, exactly one of the following three statements is true: $A$ takes lessons from $B ; B$ takes lessons from $C ; C$ takes lessons from $A$. What is the largest number of players there can be? | 4 | 1/8 |
If \( A \) is a positive integer such that \( \frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \cdots + \frac{1}{(A+1)(A+3)} = \frac{12}{25} \), find the value of \( A \). | 22 | 7/8 |
Given that \(a_{1}, a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}, b_{4}, c_{1}, c_{2}, c_{3}, c_{4}\) are all permutations of \(\{1, 2, 3, 4\}\), find the minimum value of \(\sum_{i=1}^{4} a_{i} b_{i} c_{i}\). | 44 | 1/8 |
On side \( AC \) of \( \triangle ABC \), take a point \( D \) such that \( \angle BDC = \angle ABC \). If \( BC = 1 \), what is the minimum possible distance between the circumcenter of \( \triangle ABC \) and the circumcenter of \( \triangle ABD \)? | \frac{1}{2} | 1/8 |
A certain orange orchard has a total of 120 acres, consisting of both flat and hilly land. To estimate the average yield per acre, a stratified sampling method is used to survey a total of 10 acres. If the number of hilly acres sampled is 2 times plus 1 acre more than the flat acres sampled, then the number of acres of flat and hilly land in this orange orchard are respectively \_\_\_\_\_\_\_\_ and \_\_\_\_\_\_\_\_. | 84 | 2/8 |
Find the range of
\[f(A)=\frac{\sin A(3\cos^{2}A+\cos^{4}A+3\sin^{2}A+\sin^{2}A\cos^{2}A)}{\tan A (\sec A-\sin A\tan A)}\]if $A\neq \dfrac{n\pi}{2}$ for any integer $n.$ Enter your answer using interval notation. | (3,4) | 6/8 |
Let \( a, b, c \) be positive real numbers with \( abc = 1 \). Determine all possible values that the expression
\[
\frac{1+a}{1+a+ab} + \frac{1+b}{1+b+bc} + \frac{1+c}{1+c+ca}
\]
can accept. | 2 | 7/8 |
The vertices of a triangle correspond to complex numbers \( a, b \), and \( c \), lying on the unit circle centered at the origin. Prove that if points \( z \) and \( w \) are isogonally conjugate, then \( z + w + abc \bar{z} \bar{w} = a + b + c \) (Morley). | z+w+abc\bar{z}\bar{w}= | 1/8 |
The factors of $x^4+64$ are:
$\textbf{(A)}\ (x^2+8)^2\qquad\textbf{(B)}\ (x^2+8)(x^2-8)\qquad\textbf{(C)}\ (x^2+2x+4)(x^2-8x+16)\\ \textbf{(D)}\ (x^2-4x+8)(x^2-4x-8)\qquad\textbf{(E)}\ (x^2-4x+8)(x^2+4x+8)$ | \textbf{(E)}\(x^2-4x+8)(x^2+4x+8) | 1/8 |
There are 2021 points placed on a circle. Kostya marks a point, then marks the next point to the right, then marks the point to the right skipping one, then the point to the right skipping two, and so on. On which move will a point be marked for the second time? | 67 | 3/8 |
Given \(0 \leqslant x_{1} \leqslant x_{2}\), the sequence \(\left\{x_{n}\right\}\) satisfies
\[ x_{n+2} = x_{n+1} + x_{n} \quad (n \geqslant 1). \]
If \(1 \leqslant x_{7} \leqslant 2\), then the range of possible values for \(x_{8}\) is: | [\frac{21}{13},\frac{13}{4}] | 6/8 |
We plotted the graph of the function \( f(x) = \frac{1}{x} \) in the coordinate system. How should we choose the new, still equal units on the axes, if we want the curve to become the graph of the function \( g(x) = \frac{2}{x} \)? | \frac{\sqrt{2}}{2} | 3/8 |
How many solutions does the equation $\tan x = \tan(\tan x + x)$ have on the interval $0 \leq x \leq \tan^{-1} 500$? | 160 | 6/8 |
Given an odd function defined on $\mathbb{R}$, when $x > 0$, $f(x)=x^{2}+2x-1$.
(1) Find the value of $f(-3)$;
(2) Find the analytic expression of the function $f(x)$. | -14 | 1/8 |
Given real numbers $a,c,d$ show that there exists at most one function $f:\mathbb{R}\rightarrow\mathbb{R}$ which satisfies:
\[f(ax+c)+d\le x\le f(x+d)+c\quad\text{for any}\ x\in\mathbb{R}\] | f(x)=x- | 7/8 |
As shown in the left picture, seven letters are placed in a circle. Each time, three circles containing the central circle (these three circles' centers form an equilateral triangle) are rotated clockwise by $120^\circ$. This is called an operation. For example, you can rotate $A, B, D$, so that $B$ appears in the original position of $D$ (denoted as $B \rightarrow D$), $D \rightarrow A$, $A \rightarrow B$. You can also rotate $D, E, F$ ($D \rightarrow E$, $E \rightarrow F$, $F \rightarrow D$), but you cannot rotate $A, D, G$ or $C, B, E$. After several operations, the right picture is obtained. What is the minimum number of operations needed? | 3 | 6/8 |
In trapezoid $PQRS$ with $\overline{QR}\parallel\overline{PS}$, let $QR = 1500$ and $PS = 3000$. Let $\angle P = 37^\circ$, $\angle S = 53^\circ$, and $X$ and $Y$ be the midpoints of $\overline{QR}$ and $\overline{PS}$, respectively. Find the length $XY$. | 750 | 7/8 |
295
Some cells of an infinite grid of graph paper are painted red, while the remaining ones are painted blue, such that each rectangle of 6 cells of size $2 \times 3$ contains exactly two red cells. How many red cells can a rectangle of 99 cells of size $9 \times 11$ contain?
296
The shorties living in Flower Town suddenly started to get sick with the flu. On one day, several shorties caught a cold and got sick, and although no one caught a cold after that, healthy shorties would get sick after visiting their sick friends. It is known that each shorty is sick with the flu for exactly one day, and after that, he has immunity for at least one more day - that is, he is healthy and cannot get sick again on that day. Despite the epidemic, each healthy shorty visits all his sick friends daily. When the epidemic began, the shorties forgot about vaccinations and didn't get them.
Prove that:
a) If some shorties had made a vaccination before the first day of the epidemic and had immunity on the first day, the epidemic can continue indefinitely.
b) If no one had immunity on the first day, the epidemic will eventually end. | 33 | 3/8 |
In the figure below, all corner angles are right angles and each number represents the unit-length of the segment which is nearest to it. How many square units of area does the figure have?
[asy]
draw((0,0)--(12,0)--(12,5)--(8,5)--(8,4)--(5,4)
--(5,6)--(0,6)--(0,0));
label("6",(0,3),W);
label("5",(2.5,6),N);
label("2",(5,5),W);
label("3",(6.5,4),S);
label("1",(8,4.5),E);
label("4",(10,5),N);
[/asy] | 62 | 2/8 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.