problem
stringlengths
10
7.44k
answer
stringlengths
1
270
difficulty
stringclasses
8 values
In a kingdom of animals, tigers always tell the truth, foxes always lie, and monkeys sometimes tell the truth and sometimes lie. There are 100 animals of each kind, divided into 100 groups, with each group containing exactly 2 animals of one kind and 1 animal of another kind. After grouping, Kung Fu Panda asked each animal in each group, "Is there a tiger in your group?" and 138 animals responded "yes." He then asked, "Is there a fox in your group?" and 188 animals responded "yes." How many monkeys told the truth both times?
76
1/8
In the cells of a 9 × 9 square, there are non-negative numbers. The sum of the numbers in any two adjacent rows is at least 20, and the sum of the numbers in any two adjacent columns does not exceed 16. What can be the sum of the numbers in the entire table?
80
1/8
Five points on a circle are numbered 1,2,3,4, and 5 in clockwise order. A bug jumps in a clockwise direction from one point to another around the circle; if it is on an odd-numbered point, it moves one point, and if it is on an even-numbered point, it moves two points. If the bug begins on point 5, after 1995 jumps it will be on point $\mathrm{(A) \ 1 } \qquad \mathrm{(B) \ 2 } \qquad \mathrm{(C) \ 3 } \qquad \mathrm{(D) \ 4 } \qquad \mathrm{(E) \ 5 }$
(D)\4
1/8
An $10 \times 25$ rectangle is divided into two congruent polygons, and these polygons are rearranged to form a rectangle again. Determine the length of the smaller side of the resulting rectangle.
10
1/8
Find the minimum value of the function $$ f(x)=x^{2}+(x-2)^{2}+(x-4)^{2}+\ldots+(x-100)^{2} $$ If the result is a non-integer, round it to the nearest whole number.
44200
7/8
Let \( f(x) = x^2 + bx + c \). Let \( C \) be the curve \( y = f(x) \) and let \( P_i \) be the point \( (i, f(i)) \) on \( C \). Let \( A_i \) be the point of intersection of the tangents at \( P_i \) and \( P_{i+1} \). Find the polynomial of smallest degree passing through \( A_1, A_2, \ldots, A_9 \).
x^2+bx+\frac{1}{4}
7/8
There are 80 beads. Five years ago, two sisters divided the beads according to the ratio of their ages, and used all the beads. This year, they once again divided the beads according to the ratio of their ages, and again used all the beads. Given that the older sister is 2 years older than the younger sister, how many more beads did the older sister receive the second time compared to the first time?
4
3/8
For any positive integer $n$ , let $a_n$ denote the closest integer to $\sqrt{n}$ , and let $b_n=n+a_n$ . Determine the increasing sequence $(c_n)$ of positive integers which do not occur in the sequence $(b_n)$ .
c_n=n^2
1/8
The numbers $1, 2, 3, 4, 5$ are to be arranged in a circle. An arrangement is $\textit{bad}$ if it is not true that for every $n$ from $1$ to $15$ one can find a subset of the numbers that appear consecutively on the circle that sum to $n$. Arrangements that differ only by a rotation or a reflection are considered the same. How many different bad arrangements are there? $\textbf {(A) } 1 \qquad \textbf {(B) } 2 \qquad \textbf {(C) } 3 \qquad \textbf {(D) } 4 \qquad \textbf {(E) } 5$ .
\textbf{(B)}\2
1/8
A group of one hundred friends, including Petya and Vasya, live in several cities. Petya found the distance from his city to the city of each of the other 99 friends and summed these 99 distances, obtaining a total of 1000 km. What is the maximum possible total distance that Vasya could obtain using the same method? Assume cities are points on a plane and if two friends live in the same city, the distance between their cities is considered to be zero.
99000
2/8
There are two docks, $A$ and $B$, on a river, where dock $A$ is upstream and dock $B$ is downstream. There are two boats, Boat 1 and Boat 2. The speed of Boat 1 in still water is twice the speed of Boat 2. Both boats start simultaneously from docks $A$ and $B$, respectively, and move towards each other. When Boat 1 departs, it leaves a floating cargo box on the water. After 20 minutes, the two boats meet and Boat 1 leaves another identical cargo box on the water. A while later, Boat 1 notices that it is missing cargo and turns around to search for it. When Boat 1 finds the second cargo box, Boat 2 encounters the first cargo box. Determine how many minutes have passed since Boat 1 departed when it realizes its cargo is missing. (Assume the time for turning around is negligible.)
40
3/8
There are $2021$ points on a circle. Kostya marks a point, then marks the adjacent point to the right, then he marks the point two to its right, then three to the next point's right, and so on. Which move will be the first time a point is marked twice? *K. Kokhas*
66
7/8
Note that $12^2=144$ ends in two $4$ s and $38^2=1444$ end in three $4$ s. Determine the length of the longest string of equal nonzero digits in which the square of an integer can end.
3
3/8
Perform the following operation on a natural number: if it is even, divide it by 2; if it is odd, add 1. Continue this process until the result is 1. How many numbers require exactly 8 operations to reach the result of 1?
21
3/8
Points \( D, E, F \) lie on circle \( O \) such that the line tangent to \( O \) at \( D \) intersects ray \( \overrightarrow{EF} \) at \( P \). Given that \( PD = 4 \), \( PF = 2 \), and \( \angle FPD = 60^\circ \), determine the area of circle \( O \).
12\pi
5/8
Let $O$ be the circumcenter of the acute triangle $\triangle ABC$, with $AB = 6$ and $AC = 10$. If $\overrightarrow{AO} = x \overrightarrow{AB} + y \overrightarrow{AC}$, and $2x + 10y = 5$, find $\cos \angle BAC = \quad$.
\frac{1}{3}
7/8
The sequence $\left\{a_{n}\right\}$ is an arithmetic sequence and satisfies $3a_{5} = 8a_{12} > 0$. The sequence $\left\{b_{n}\right\}$ satisfies $b_{n} = a_{n} \cdot a_{n+1} \cdot a_{n+2}$ for $n \in \mathbf{N}^{*}$, and the sum of the first $n$ terms of $\left\{b_{n}\right\}$ is denoted as $S_{n}$. For what value of $n$ does $S_{n}$ reach its maximum value? Explain the reason.
16
7/8
Given that $P$ is any point on the circle $C$: $(x-2)^{2}+(y-2)^{2}=1$, and $Q$ is any point on the line $l$: $x+y=1$, find the minimum value of $| \overrightarrow{OP}+ \overrightarrow{OQ}|$.
\frac{5 \sqrt{2}-2}{2}
3/8
Let $p$ be an arbitrary odd prime and $\sigma(n)$ for $1 \le n \le p-1$ denote the inverse of $n \pmod p$ . Show that the number of pairs $(a,b) \in \{1,2,\cdots,p-1\}^2$ with $a<b$ but $\sigma(a) > \sigma(b)$ is at least $$ \left \lfloor \left(\frac{p-1}{4}\right)^2 \right \rfloor $$ *usjl* Note: Partial credits may be awarded if the $4$ in the statement is replaced with some larger constant
\lfloor(\frac{p-1}{4})^2\rfloor
1/8
Let $\triangle ABC$ be an acute triangle, and let $I_B, I_C,$ and $O$ denote its $B$-excenter, $C$-excenter, and circumcenter, respectively. Points $E$ and $Y$ are selected on $\overline{AC}$ such that $\angle ABY = \angle CBY$ and $\overline{BE}\perp\overline{AC}.$ Similarly, points $F$ and $Z$ are selected on $\overline{AB}$ such that $\angle ACZ = \angle BCZ$ and $\overline{CF}\perp\overline{AB}.$ Lines $I_B F$ and $I_C E$ meet at $P.$ Prove that $\overline{PO}$ and $\overline{YZ}$ are perpendicular.
\overline{PO}\perp\overline{YZ}
1/8
Determine all functions $f : \mathbb{R} - [0,1] \to \mathbb{R}$ such that \[ f(x) + f \left( \dfrac{1}{1-x} \right) = \dfrac{2(1-2x)}{x(1-x)} . \]
\frac{x+1}{x-1}
2/8
In $\triangle ABC$, the circumradius \( R = 1 \) and the area \( S_{\triangle} = \frac{1}{4} \). Prove that: \[ \sqrt{a} + \sqrt{b} + \sqrt{c} < \frac{1}{a} + \frac{1}{b} + \frac{1}{c}. \]
\sqrt{}+\sqrt{b}+\sqrt{}<\frac{1}{}+\frac{1}{b}+\frac{1}{}
3/8
Find the number of partitions of the set $\{1,2,3,\cdots ,11,12\}$ into three nonempty subsets such that no subset has two elements which differ by $1$ . [i]Proposed by Nathan Ramesh
1023
5/8
A rectangular tank with a horizontal cross-sectional area of \(S = 6 \ \text{m}^2\) is filled with water up to a height of \(H = 5 \ \text{m}\). Determine the time it takes for all the water to flow out of the tank through a small hole at the bottom with an area of \(s = 0.01 \ \text{m}^2\), assuming that the outflow speed of the water is \(0.6 \sqrt{2gh}\), where \(h\) is the height of the water level above the hole and \(g\) is the acceleration due to gravity.
1010
4/8
Given that $2x + 5y = 20$ and $5x + 2y = 26$, find $20x^2 + 60xy + 50y^2$.
\frac{59600}{49}
2/8
Given that \( m \) and \( n \) are positive integers, prove that there exists a constant \( a > 1 \) independent of \( m \) and \( n \) such that if \( \frac{m}{n} < \sqrt{7} \), then \( 7 - \frac{m^2}{n^2} \geq \frac{a}{n^2} \), and determine the maximum value of \( a \).
3
6/8
What number is one third of the way from $\frac14$ to $\frac34$? $\textbf{(A)}\ \frac {1}{3} \qquad \textbf{(B)}\ \frac {5}{12} \qquad \textbf{(C)}\ \frac {1}{2} \qquad \textbf{(D)}\ \frac {7}{12} \qquad \textbf{(E)}\ \frac {2}{3}$
\textbf{(B)}\\frac{5}{12}
1/8
Given a quadrilateral $ABCD$ with $AB = BC =3$ cm, $CD = 4$ cm, $DA = 8$ cm and $\angle DAB + \angle ABC = 180^o$ . Calculate the area of the quadrilateral.
13.2
2/8
Piravena must make a trip from $A$ to $B$, then from $B$ to $C$, then from $C$ to $A$. Each of these three parts of the trip is made entirely by bus or entirely by airplane. The cities form a right-angled triangle as shown, with $C$ a distance of 3000 km from $A$ and with $B$ a distance of 3250 km from $A$. To take a bus, it costs Piravena $\$0.15$ per kilometer. To take an airplane, it costs her a $\$100$ booking fee, plus $\$0.10$ per kilometer. [asy] pair A, B, C; C=(0,0); B=(0,1250); A=(3000,0); draw(A--B--C--A); label("A", A, SE); label("B", B, NW); label("C", C, SW); label("3000 km", (A+C)/2, S); label("3250 km", (A+B)/2, NE); draw((0,125)--(125,125)--(125,0)); [/asy] Piravena chose the least expensive way to travel between cities. What was the total cost?
\$1012.50
6/8
Suppose that for some positive integer $n$ , the first two digits of $5^n$ and $2^n$ are identical. Suppose the first two digits are $a$ and $b$ in this order. Find the two-digit number $\overline{ab}$ .
31
1/8
Each vertex of a cube is to be labeled with an integer 1 through 8, with each integer being used once, in such a way that the sum of the four numbers on the vertices of a face is the same for each face. Arrangements that can be obtained from each other through rotations of the cube are considered to be the same. How many different arrangements are possible?
6
1/8
Let \( S \) be the smallest positive multiple of 15 that comprises exactly \( 3k \) digits with \( k \) '0's, \( k \) '3's, and \( k \) '8's. Find the remainder when \( S \) is divided by 11. (A) 0 (B) 3 (C) 5 (D) 6 (E) 8
6
1/8
Suppose that \(a + x^2 = 2006\), \(b + x^2 = 2007\), and \(c + x^2 = 2008\), and \(abc = 3\). Find the value of: \[ \frac{a}{bc} + \frac{b}{ca} + \frac{c}{ab} - \frac{1}{a} - \frac{1}{b} - \frac{1}{c}. \]
1
7/8
What is the largest number $N$ for which there exist $N$ consecutive positive integers such that the sum of the digits in the $k$ -th integer is divisible by $k$ for $1 \le k \le N$ ? (S Tokarev)
21
1/8
A right rectangular prism has 6 faces, 12 edges, and 8 vertices. A new pyramid is to be constructed using one of the rectangular faces as the base. Calculate the maximum possible sum of the number of exterior faces, vertices, and edges of the combined solid (prism and pyramid).
34
7/8
Given a regular rectangular pyramid \(\Gamma\) with a height of 3 and an angle of \(\frac{\pi}{3}\) between its lateral faces and its base, first inscribe a sphere \(O_{1}\) inside \(\Gamma\). Then, sequentially inscribe spheres \(O_{2}, O_{3}, O_{4}, \ldots\) such that each subsequent sphere is tangent to the preceding sphere and to the four lateral faces of \(\Gamma\). Find the sum of the volumes of all the inscribed spheres.
\frac{18\pi}{13}
3/8
The area of a rectangular grassy park is $4000 \mathrm{~m}^{2}$. Two concrete paths parallel to the sides intersect in the park. The area of one path is $400 \mathrm{~m}^{2}$, and the area of the other path is $250 \mathrm{~m}^{2}$. What percentage of the park's area is covered with grass?
84.375
6/8
Suppose $f(x), g(x), h(x), p(x)$ are linear equations where $f(x) = x + 1$, $g(x) = -x + 5$, $h(x) = 4$, and $p(x) = 1$. Define new functions $j(x)$ and $k(x)$ as follows: $$j(x) = \max\{f(x), g(x), h(x), p(x)\},$$ $$k(x)= \min\{f(x), g(x), h(x), p(x)\}.$$ Find the length squared, $\ell^2$, of the graph of $y=k(x)$ from $x = -4$ to $x = 4$.
64
1/8
Define a number to be an anti-palindrome if, when written in base 3 as $a_{n} a_{n-1} \ldots a_{0}$, then $a_{i}+a_{n-i}=2$ for any $0 \leq i \leq n$. Find the number of anti-palindromes less than $3^{12}$ such that no two consecutive digits in base 3 are equal.
126
1/8
Cube $A B C D E F G H$ has edge length 100. Point $P$ is on $A B$, point $Q$ is on $A D$, and point $R$ is on $A F$, as shown, so that $A P=x, A Q=x+1$ and $A R=\frac{x+1}{2 x}$ for some integer $x$. For how many integers $x$ is the volume of triangular-based pyramid $A P Q R$ between $0.04 \%$ and $0.08 \%$ of the volume of cube $A B C D E F G H$?
28
7/8
Given a triangle \( \triangle ABC \) with \(\angle B = 90^\circ\). The incircle touches sides \(BC\), \(CA\), and \(AB\) at points \(D\), \(E\), and \(F\) respectively. Line \(AD\) intersects the incircle at another point \(P\), and \(PF \perp PC\). Find the ratio of the side lengths of \(\triangle ABC\).
3:4:5
1/8
On sides \( BC \) and \( AC \) of triangle \( ABC \), points \( D \) and \( E \) are chosen respectively such that \( \angle BAD = 50^\circ \) and \( \angle ABE = 30^\circ \). Find \( \angle BED \) if \( \angle ABC = \angle ACB = 50^\circ \).
40
2/8
In triangle \( ABC \), \( AB = AC \) and the angle \( \angle BAC = 20^\circ \). Let \( E \) and \( F \) be points on the sides \( AB \) and \( AC \) such that \( \angle BCE = 50^\circ \) and \( \angle CBF = 60^\circ \). What is the angle between the lines \( BC \) and \( EF \)?
30
1/8
Five positive consecutive integers starting with $a$ have average $b$. What is the average of $5$ consecutive integers that start with $b$?
$a+4$
3/8
Determine the smallest positive real number \(x\) such that \[\lfloor x^2 \rfloor - x \lfloor x \rfloor = 7.\]
\frac{71}{8}
2/8
Each of the eight letters in "GEOMETRY" is written on its own square tile and placed in a bag. What is the probability that a tile randomly selected from the bag will have a letter on it that is in the word "ANGLE"? Express your answer as a common fraction.
\frac{1}{4}
1/8
Find the minimum possible value of the largest of $x y, 1-x-y+x y$, and $x+y-2 x y$ if $0 \leq x \leq y \leq 1$.
\frac{4}{9}
1/8
Can ten distinct numbers \( a_1, a_2, b_1, b_2, b_3, c_1, c_2, d_1, d_2, d_3 \) be chosen from \(\{0, 1, 2, \ldots, 14\}\), so that the 14 differences \(|a_1 - b_1|\), \(|a_1 - b_2|\), \(|a_1 - b_3|\), \(|a_2 - b_1|\), \(|a_2 - b_2|\), \(|a_2 - b_3|\), \(|c_1 - d_1|\), \(|c_1 - d_2|\), \(|c_1 - d_3|\), \(|c_2 - d_1|\), \(|c_2 - d_2|\), \(|c_2 - d_3|\), \(|a_1 - c_1|\), \(|a_2 - c_2|\) are all distinct?
No
1/8
In the Cartesian coordinate system $xOy$, the parametric equations of the line $l$ are $\left\{{\begin{array}{l}{x=4-\frac{{\sqrt{2}}}{2}t}\\{y=4+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$ (where $t$ is a parameter). Establish a polar coordinate system with the origin $O$ as the pole and the positive x-axis as the polar axis. The polar coordinate equation of curve $C$ is $\rho =8\sin \theta $, and $A$ is a point on curve $C$. $(1)$ Find the maximum distance from $A$ to the line $l$; $(2)$ If point $B$ is the intersection point of line $l$ and curve $C$ in the first quadrant, and $∠AOB=\frac{{7π}}{{12}}$, find the area of $\triangle AOB$.
4 + 4\sqrt{3}
2/8
Masha is placing tennis balls into identical boxes. If she uses 4 boxes, the last box has room for 8 more balls, and if she uses 3 boxes, 4 balls won't fit into the boxes. How many balls can one box hold?
12
7/8
In a given acute triangle $\triangle ABC$ with the values of angles given (known as $a$ , $b$ , and $c$ ), the inscribed circle has points of tangency $D,E,F$ where $D$ is on $BC$ , $E$ is on $AB$ , and $F$ is on $AC$ . Circle $\gamma$ has diameter $BC$ , and intersects $\overline{EF}$ at points $X$ and $Y$ . Find $\tfrac{XY}{BC}$ in terms of the angles $a$ , $b$ , and $c$ .
\sin\frac{}{2}
1/8
Let $f(x)=\cos(\cos(\cos(\cos(\cos(\cos(\cos(\cos(x))))))))$ , and suppose that the number $a$ satisfies the equation $a=\cos a$ . Express $f'(a)$ as a polynomial in $a$ .
^8-4a^6+6a^4-4a^2+1
1/8
Given \( x \in [0, 3] \), find the maximum value of \( \frac{\sqrt{2 x^3 + 7 x^2 + 6 x}}{x^2 + 4 x + 3} \).
\frac{1}{2}
5/8
For four distinct points \( P_{1}, P_{2}, P_{3}, P_{4} \) on a plane, find the minimum value of the ratio \( \frac{\sum_{1 \leqslant i<j \leqslant 4} P_{i} P_{j}}{\min_{1 \leqslant j \leqslant 4} P_{i} P_{j}} \).
5+\sqrt{3}
1/8
Circles with centers $(2,4)$ and $(14,9)$ have radii $4$ and $9$, respectively. The equation of a common external tangent to the circles can be written in the form $y=mx+b$ with $m>0$. What is $b$?
\frac{912}{119}
6/8
Let \( g(n) = (n^2 - 2n + 1)^{1/3} + (n^2 - 1)^{1/3} + (n^2 + 2n + 1)^{1/3} \). Find \( \frac{1}{g(1)} + \frac{1}{g(3)} + \frac{1}{g(5)} + \ldots + \frac{1}{g(999999)} \).
50
7/8
\(F_{1}\) and \(F_{2}\) are the foci of the ellipse \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 (a>b>0)\). \(P\) is a point on the ellipse. If the area of the triangle \(P F_{1} F_{2}\) is \(1\), \(\tan(\angle P F_{1} F_{2}) = \frac{1}{2}\), and \(\tan(\angle P F_{2} F_{1}) = -2\), then \(a = \frac{\sqrt{15}}{2}\).
\frac{\sqrt{15}}{2}
4/8
On a chessboard, \( n \) white rooks and \( n \) black rooks are placed such that rooks of different colors do not threaten each other. Find the maximum possible value of \( n \).
16
1/8
A "Hishgad" lottery ticket contains the numbers $1$ to $mn$ , arranged in some order in a table with $n$ rows and $m$ columns. It is known that the numbers in each row increase from left to right and the numbers in each column increase from top to bottom. An example for $n=3$ and $m=4$ : [asy] size(3cm); Label[][] numbers = {{" $1$ ", " $2$ ", " $3$ ", " $9$ "}, {" $4$ ", " $6$ ", " $7$ ", " $10$ "}, {" $5$ ", " $8$ ", " $11$ ", " $12$ "}}; for (int i=0; i<5;++i) { draw((i,0)--(i,3)); } for (int i=0; i<4;++i) { draw((0,i)--(4,i)); } for (int i=0; i<4;++i){ for (int j=0; j<3;++j){ label(numbers[2-j][i], (i+0.5, j+0.5)); }} [/asy] When the ticket is bought the numbers are hidden, and one must "scratch" the ticket to reveal them. How many cells does it always suffice to reveal in order to determine the whole table with certainty?
(n-1)(-1)
1/8
All coefficients of the polynomial \( p(x) \) are non-negative and none exceed \( p(0) \). If \( p(x) \) has degree \( n \), show that the coefficient of \( x^{n+1} \) in \( p(x)^2 \) is at most \( \frac{p(1)^2}{2} \).
\frac{p(1)^2}{2}
3/8
A function $f(x)$ is defined for all real numbers $x$. For all non-zero values $x$, we have \[3f\left(x\right) + f\left(\frac{1}{x}\right) = 6x + \sin x + 3\] Let $S$ denote the sum of all of the values of $x$ for which $f(x) = 1001$. Compute the integer nearest to $S$.
445
2/8
Through a simulation experiment, 20 groups of random numbers were generated: 830, 3013, 7055, 7430, 7740, 4422, 7884, 2604, 3346, 0952, 6807, 9706, 5774, 5725, 6576, 5929, 9768, 6071, 9138, 6754. If exactly three numbers are among 1, 2, 3, 4, 5, 6, it indicates that the target was hit exactly three times. Then, the probability of hitting the target exactly three times in four shots is approximately \_\_\_\_\_\_\_\_.
25\%
7/8
Laura added two three-digit positive integers. All six digits in these numbers are different. Laura's sum is a three-digit number $S$. What is the smallest possible value for the sum of the digits of $S$?
4
1/8
In the diagram, \( AB \parallel EF \parallel DC \). Given that \( AC + BD = 250 \), \( BC = 100 \), and \( EC + ED = 150 \), find \( CF \).
60
1/8
Find all real numbers $p$ such that the cubic equation $5x^{3} - 5(p+1)x^{2} + (71p-1)x + 1 = 66p$ has three natural number roots.
76
3/8
How many ways can a student schedule $3$ mathematics courses -- algebra, geometry, and number theory -- in a $6$-period day if no two mathematics courses can be taken in consecutive periods? (What courses the student takes during the other $3$ periods is of no concern here.)
24
4/8
A $6 \times 6$ board is given such that each unit square is either red or green. It is known that there are no $4$ adjacent unit squares of the same color in a horizontal, vertical, or diagonal line. A $2 \times 2$ subsquare of the board is *chesslike* if it has one red and one green diagonal. Find the maximal possible number of chesslike squares on the board. *Proposed by Nikola Velov*
25
6/8
Compute the number of tuples $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ of (not necessarily positive) integers such that $a_{i} \leq i$ for all $0 \leq i \leq 5$ and $$a_{0}+a_{1}+\cdots+a_{5}=6$$
2002
6/8
Let \( t = \left( \frac{1}{2} \right)^{x} + \left( \frac{2}{3} \right)^{x} + \left( \frac{5}{6} \right)^{x} \). Find the sum of all real solutions of the equation \( (t-1)(t-2)(t-3) = 0 \) with respect to \( x \).
4
6/8
For a natural number $n$, if $n+6$ divides $n^3+1996$, then $n$ is called a lucky number of 1996. For example, since $4+6$ divides $4^3+1996$, 4 is a lucky number of 1996. Find the sum of all lucky numbers of 1996.
3720
7/8
Let $a,$ $b,$ $c$ be real numbers such that $1 \le a \le b \le c \le 4.$ Find the minimum value of \[(a - 1)^2 + \left( \frac{b}{a} - 1 \right)^2 + \left( \frac{c}{b} - 1 \right)^2 + \left( \frac{4}{c} - 1 \right)^2.\]
12 - 8 \sqrt{2}
5/8
In trapezoid \(ABCD\), the side \(AD\) is equal to the diagonal \(BD\). On the minor arc \(CD\) of the circumcircle of triangle \(ACD\), point \(E\) is chosen such that \(AD = DE\). Find the angle \(\angle BEC\).
90
1/8
Given the function $f(x) = x^3 + ax^2 + bx + a^2$ has an extremum at $x = 1$ with the value of 10, find the values of $a$ and $b$.
-11
7/8
A teacher received a number of letters from Monday to Friday, which were 10, 6, 8, 5, 6, respectively. The variance $s^2$ of this set of data is \_\_\_\_\_\_.
3.2
2/8
Let $A(x)=\lfloor\frac{x^2-20x+16}{4}\rfloor$ , $B(x)=\sin\left(e^{\cos\sqrt{x^2+2x+2}}\right)$ , $C(x)=x^3-6x^2+5x+15$ , $H(x)=x^4+2x^3+3x^2+4x+5$ , $M(x)=\frac{x}{2}-2\lfloor\frac{x}{2}\rfloor+\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}+\ldots$ , $N(x)=\textrm{the number of integers that divide }\left\lfloor x\right\rfloor$ , $O(x)=|x|\log |x|\log\log |x|$ , $T(x)=\sum_{n=1}^{\infty}\frac{n^x}{\left(n!\right)^3}$ , and $Z(x)=\frac{x^{21}}{2016+20x^{16}+16x^{20}}$ for any real number $x$ such that the functions are defined. Determine $$ C(C(A(M(A(T(H(B(O(N(A(N(Z(A(2016)))))))))))))). $$ *2016 CCA Math Bonanza Lightning #5.3*
3
1/8
The side $AB$ of triangle $ABC$ is divided into $n$ equal parts (with division points $B_0 = A, B_1, B_2, \ldots, B_n = B$), and the side $AC$ of this triangle is divided into $n+1$ equal parts (with division points $C_0 = A, C_1, C_2, \ldots, C_{n+1} = C$). The triangles $C_i B_i C_{i+1}$ are shaded. What fraction of the area of the whole triangle is shaded?
\frac{1}{2}
7/8
For how many of the given drawings can the six dots be labelled to represent the links between suspects?
2
1/8
The angles of a pentagon are in arithmetic progression. One of the angles in degrees, must be: $\textbf{(A)}\ 108\qquad\textbf{(B)}\ 90\qquad\textbf{(C)}\ 72\qquad\textbf{(D)}\ 54\qquad\textbf{(E)}\ 36$
108\textbf{(A)}
1/8
Three vertices of parallelogram $PQRS$ are $P(-3,-2), Q(1,-5), R(9,1)$ with $P$ and $R$ diagonally opposite. The sum of the coordinates of vertex $S$ is: $\textbf{(A)}\ 13 \qquad \textbf{(B)}\ 12 \qquad \textbf{(C)}\ 11 \qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ 9$
\textbf{(E)}\9
1/8
A positive integer is called "oddly even" if the sum of its digits is even. Find the sum of the first 2013 oddly even numbers.
4055187
1/8
Dima calculated the factorials of all natural numbers from 80 to 99, found the reciprocals of them, and printed the resulting decimal fractions on 20 endless ribbons (for example, the last ribbon had the number \(\frac{1}{99!}=0. \underbrace{00\ldots00}_{155 \text{ zeros}} 10715 \ldots \) printed on it). Sasha wants to cut a piece from one ribbon that contains \(N\) consecutive digits without any decimal points. For what largest \(N\) can he do this so that Dima cannot determine from this piece which ribbon Sasha spoiled?
155
1/8
Five unit squares are arranged in the coordinate plane as shown, with the lower left corner at the origin. The slanted line, extending from $(c,0)$ to $(3,3)$, divides the entire region into two regions of equal area. What is $c$?
\frac{2}{3}
1/8
In a chessboard with $1983 \times 1984$ squares, each white square is filled with either the number 1 or -1. It is given that for every black square, the product of the numbers in all the adjacent white squares is equal to 1. Prove that all the numbers in the white squares are 1.
1
2/8
Using the numbers 0, 1, 2, 3, 4, 5 to form unique three-digit numbers, determine the total number of even numbers that can be formed.
52
6/8
An author writes a book containing 60,000 words in 100 hours. For the first 20% of the time, the author writes with 50% increased productivity. How many words per hour did the author write on average?
600
7/8
Given that a website publishes pictures of five celebrities along with five photos of the celebrities when they were teenagers, but only three of the teen photos are correctly labeled, and two are unlabeled, determine the probability that a visitor guessing at random will match both celebrities with the correct unlabeled teen photos.
\frac{1}{20}
1/8
A bag contains $8$ green candies and $4$ red candies. You randomly select one candy at a time to eat. If you eat five candies, there are relatively prime positive integers $m$ and $n$ so that $\frac{m}{n}$ is the probability that you do not eat a green candy after you eat a red candy. Find $m+n$ .
6
6/8
For each real number $p > 1$ , find the minimum possible value of the sum $x+y$ , where the numbers $x$ and $y$ satisfy the equation $(x+\sqrt{1+x^2})(y+\sqrt{1+y^2}) = p$ .
\frac{p-1}{\sqrt{p}}
2/8
The walls of a room are in the shape of a triangle $ABC$ with $\angle ABC = 90^\circ$ , $\angle BAC = 60^\circ$ , and $AB=6$ . Chong stands at the midpoint of $BC$ and rolls a ball toward $AB$ . Suppose that the ball bounces off $AB$ , then $AC$ , then returns exactly to Chong. Find the length of the path of the ball.
3\sqrt{21}
6/8
Let $P(x)$ be the polynomial of degree at most $6$ which satisfies $P(k)=k!$ for $k=0,1,2,3,4,5,6$ . Compute the value of $P(7)$ .
3186
6/8
Circle $I$ passes through the center of, and is tangent to, circle $II$. The area of circle $I$ is $4$ square inches. Then the area of circle $II$, in square inches, is: $\textbf{(A) }8\qquad \textbf{(B) }8\sqrt{2}\qquad \textbf{(C) }8\sqrt{\pi}\qquad \textbf{(D) }16\qquad \textbf{(E) }16\sqrt{2}$
\textbf{(D)}16
1/8
A $30 \times 30$ square board is divided along the grid lines into 225 parts of equal area. Find the maximum possible total length of the cuts.
1065
1/8
How many values of $x$, $-17<x<100$, satisfy $\cos^2 x + 3\sin^2 x = \cot^2 x$? (Note: $x$ is measured in radians.)
37
1/8
An isosceles trapezoid is circumscribed around a circle. The longer base of the trapezoid is $20$, and one of the base angles is $\arcsin(0.6)$. Find the area of the trapezoid given that the height of the trapezoid is $9$.
100
2/8
Given the sets $$ \begin{array}{l} A=\{(x, y) \mid |x| + |y| = a, a > 0\}, \\ B=\{(x, y) \mid |xy| + 1 = |x| + |y|\} \end{array} $$ If $A \cap B$ forms the vertices of a regular octagon in the plane, find the value of $a$.
\sqrt{2}
3/8
A plane passes through the vertex \(A\) of the base of the triangular pyramid \(SABC\), bisects the median \(SK\) of triangle \(SAB\), and intersects the median \(SL\) of triangle \(SAC\) at a point \(D\) such that \(SD:DL = 1:2\). In what ratio does this plane divide the volume of the pyramid?
1:14
1/8
The figure below is a map showing $12$ cities and $17$ roads connecting certain pairs of cities. Paula wishes to travel along exactly $13$ of those roads, starting at city $A$ and ending at city $L$, without traveling along any portion of a road more than once. (Paula is allowed to visit a city more than once.) How many different routes can Paula take?
4
1/8
The sequence \(\{a_n\}\) satisfies the following conditions: \[ \begin{array}{l} a_1 = 1, a_2 = \frac{3}{2}, \\ a_n^2 - a_n a_{n+1} - a_n a_{n-1} + a_{n+1} a_{n-1} + 2a_n - a_{n+1} - a_{n-1} = 0 \quad (n \geq 2). \end{array} \] Prove: \( a_{2016} > 6 \).
a_{2016}>6
2/8
Given two lines $l_1: ax+2y+6=0$ and $l_2: x+(a-1)y+a^2-1=0$. When $a$ \_\_\_\_\_\_, $l_1$ intersects $l_2$; when $a$ \_\_\_\_\_\_, $l_1$ is perpendicular to $l_2$; when $a$ \_\_\_\_\_\_, $l_1$ coincides with $l_2$; when $a$ \_\_\_\_\_\_, $l_1$ is parallel to $l_2$.
-1
7/8
A notebook costs 10 rubles. Eight children bought notebooks, and each had a different amount of rubles left (non-zero), but none had enough for one more notebook. The children then combined their remaining rubles, and the total was enough to buy exactly a few more notebooks. How much money did each child have left before combining?
1,2,3,4,6,7,8,9
1/8