metadata
license: mit
🕳️ Black Hole Sim — Randomized Dataset (ProCreations)
ProCreations/black-hole-sim-randomized is a high-fidelity, randomized simulation dataset of relativistic physics near Kerr and Schwarzschild black holes. Designed to train and evaluate AI systems on general relativity, orbital mechanics, and spacetime geometry—without any visual dependencies.
📦 Dataset Overview
- Samples: 400,000+
- Format: JSON Lines (
.jsonl
) - Size: ~583 MB
- Compression: Optionally
.jsonl.gz
- Language/Structure: Pure structured JSON (1 per line)
- Generated on: Apple Silicon (Metal-accelerated)
- Use cases: Pretraining, fine-tuning, RAG, reasoning, QA, simulation
✨ Features per Sample
Each sample describes a single randomly sampled scenario, containing:
🕳️ Black Hole
mass_solar
– In solar masses (randomized log-uniform from 3 to 1e9)spin
– Kerr spin parametera
(0.0 to 0.998)type
–"Schwarzschild"
or"Kerr"
👁️ Observer
- 3D position (
r_km
,theta_rad
,phi_rad
) - Orbital velocity vector in spherical coordinates
- Orbital angular velocity
omega
📐 Metrics (GR & physics)
time_dilation
,redshift
,gamma
orbital_period_s
,frame_dragging
,extremeness_score
metric_tensor
– Full 4x4 Kerr metric in Boyer–Lindquist coordinatesa_spin_m
,event_horizon_m
,delta
,rho_squared
- Velocity vector + coordinate positions
horizon_proximity_ratio
(how close the observer is to Rs)
🧪 Raw Parameters
- Ground truth values like
mass_kg
,radius_m
,rs_m
📁 Example
{
"step": 2,
"black_hole": {
"mass_solar": 219.051486,
"spin": 0.504345,
"type": "Kerr"
},
"observer": {
"r_km": 1600.060345,
"theta_rad": 0.624667,
"phi_rad": 4.083344,
"v_phi_rad_s": 128884.609375
},
"metrics": {
"time_dilation": 0.771804,
"redshift": 0.295665,
"frame_dragging": true,
"metric_tensor": [[...]],
"horizon_proximity_ratio": 2.654,
"gr_metric_type": "Kerr"
},
"notes": "Spin=0.504, Time dilation=0.772, Redshift=0.296"
}