text
stringlengths 145
7.65M
|
---|
========================================================================================================================
SOURCE CODE FILE: instancenorm.py
LINES: 1
SIZE: 20.30 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\modules\instancenorm.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
import warnings
import torch.nn.functional as F
from torch import Tensor
from .batchnorm import _LazyNormBase, _NormBase
__all__ = [
"InstanceNorm1d",
"InstanceNorm2d",
"InstanceNorm3d",
"LazyInstanceNorm1d",
"LazyInstanceNorm2d",
"LazyInstanceNorm3d",
]
class _InstanceNorm(_NormBase):
def __init__(
self,
num_features: int,
eps: float = 1e-5,
momentum: float = 0.1,
affine: bool = False,
track_running_stats: bool = False,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__(
num_features, eps, momentum, affine, track_running_stats, **factory_kwargs
)
def _check_input_dim(self, input):
raise NotImplementedError
def _get_no_batch_dim(self):
raise NotImplementedError
def _handle_no_batch_input(self, input):
return self._apply_instance_norm(input.unsqueeze(0)).squeeze(0)
def _apply_instance_norm(self, input):
return F.instance_norm(
input,
self.running_mean,
self.running_var,
self.weight,
self.bias,
self.training or not self.track_running_stats,
self.momentum if self.momentum is not None else 0.0,
self.eps,
)
def _load_from_state_dict(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
version = local_metadata.get("version", None)
# at version 1: removed running_mean and running_var when
# track_running_stats=False (default)
if version is None and not self.track_running_stats:
running_stats_keys = []
for name in ("running_mean", "running_var"):
key = prefix + name
if key in state_dict:
running_stats_keys.append(key)
if len(running_stats_keys) > 0:
error_msgs.append(
"Unexpected running stats buffer(s) {names} for {klass} "
"with track_running_stats=False. If state_dict is a "
"checkpoint saved before 0.4.0, this may be expected "
"because {klass} does not track running stats by default "
"since 0.4.0. Please remove these keys from state_dict. If "
"the running stats are actually needed, instead set "
"track_running_stats=True in {klass} to enable them. See "
"the documentation of {klass} for details.".format(
names=" and ".join(f'"{k}"' for k in running_stats_keys),
klass=self.__class__.__name__,
)
)
for key in running_stats_keys:
state_dict.pop(key)
super()._load_from_state_dict(
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
)
def forward(self, input: Tensor) -> Tensor:
self._check_input_dim(input)
feature_dim = input.dim() - self._get_no_batch_dim()
if input.size(feature_dim) != self.num_features:
if self.affine:
raise ValueError(
f"expected input's size at dim={feature_dim} to match num_features"
f" ({self.num_features}), but got: {input.size(feature_dim)}."
)
else:
warnings.warn(
f"input's size at dim={feature_dim} does not match num_features. "
"You can silence this warning by not passing in num_features, "
"which is not used because affine=False"
)
if input.dim() == self._get_no_batch_dim():
return self._handle_no_batch_input(input)
return self._apply_instance_norm(input)
class InstanceNorm1d(_InstanceNorm):
r"""Applies Instance Normalization.
This operation applies Instance Normalization
over a 2D (unbatched) or 3D (batched) input as described in the paper
`Instance Normalization: The Missing Ingredient for Fast Stylization
<https://arxiv.org/abs/1607.08022>`__.
.. math::
y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
The mean and standard-deviation are calculated per-dimension separately
for each object in a mini-batch. :math:`\gamma` and :math:`\beta` are learnable parameter vectors
of size `C` (where `C` is the number of features or channels of the input) if :attr:`affine` is ``True``.
The variance is calculated via the biased estimator, equivalent to
`torch.var(input, unbiased=False)`.
By default, this layer uses instance statistics computed from input data in
both training and evaluation modes.
If :attr:`track_running_stats` is set to ``True``, during training this
layer keeps running estimates of its computed mean and variance, which are
then used for normalization during evaluation. The running estimates are
kept with a default :attr:`momentum` of 0.1.
.. note::
This :attr:`momentum` argument is different from one used in optimizer
classes and the conventional notion of momentum. Mathematically, the
update rule for running statistics here is
:math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
new observed value.
.. note::
:class:`InstanceNorm1d` and :class:`LayerNorm` are very similar, but
have some subtle differences. :class:`InstanceNorm1d` is applied
on each channel of channeled data like multidimensional time series, but
:class:`LayerNorm` is usually applied on entire sample and often in NLP
tasks. Additionally, :class:`LayerNorm` applies elementwise affine
transform, while :class:`InstanceNorm1d` usually don't apply affine
transform.
Args:
num_features: number of features or channels :math:`C` of the input
eps: a value added to the denominator for numerical stability. Default: 1e-5
momentum: the value used for the running_mean and running_var computation. Default: 0.1
affine: a boolean value that when set to ``True``, this module has
learnable affine parameters, initialized the same way as done for batch normalization.
Default: ``False``.
track_running_stats: a boolean value that when set to ``True``, this
module tracks the running mean and variance, and when set to ``False``,
this module does not track such statistics and always uses batch
statistics in both training and eval modes. Default: ``False``
Shape:
- Input: :math:`(N, C, L)` or :math:`(C, L)`
- Output: :math:`(N, C, L)` or :math:`(C, L)` (same shape as input)
Examples::
>>> # Without Learnable Parameters
>>> m = nn.InstanceNorm1d(100)
>>> # With Learnable Parameters
>>> m = nn.InstanceNorm1d(100, affine=True)
>>> input = torch.randn(20, 100, 40)
>>> output = m(input)
"""
def _get_no_batch_dim(self):
return 2
def _check_input_dim(self, input):
if input.dim() not in (2, 3):
raise ValueError(f"expected 2D or 3D input (got {input.dim()}D input)")
class LazyInstanceNorm1d(_LazyNormBase, _InstanceNorm):
r"""A :class:`torch.nn.InstanceNorm1d` module with lazy initialization of the ``num_features`` argument.
The ``num_features`` argument of the :class:`InstanceNorm1d` is inferred from the ``input.size(1)``.
The attributes that will be lazily initialized are `weight`, `bias`, `running_mean` and `running_var`.
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
on lazy modules and their limitations.
Args:
num_features: :math:`C` from an expected input of size
:math:`(N, C, L)` or :math:`(C, L)`
eps: a value added to the denominator for numerical stability. Default: 1e-5
momentum: the value used for the running_mean and running_var computation. Default: 0.1
affine: a boolean value that when set to ``True``, this module has
learnable affine parameters, initialized the same way as done for batch normalization.
Default: ``False``.
track_running_stats: a boolean value that when set to ``True``, this
module tracks the running mean and variance, and when set to ``False``,
this module does not track such statistics and always uses batch
statistics in both training and eval modes. Default: ``False``
Shape:
- Input: :math:`(N, C, L)` or :math:`(C, L)`
- Output: :math:`(N, C, L)` or :math:`(C, L)` (same shape as input)
"""
cls_to_become = InstanceNorm1d # type: ignore[assignment]
def _get_no_batch_dim(self):
return 2
def _check_input_dim(self, input):
if input.dim() not in (2, 3):
raise ValueError(f"expected 2D or 3D input (got {input.dim()}D input)")
class InstanceNorm2d(_InstanceNorm):
r"""Applies Instance Normalization.
This operation applies Instance Normalization
over a 4D input (a mini-batch of 2D inputs
with additional channel dimension) as described in the paper
`Instance Normalization: The Missing Ingredient for Fast Stylization
<https://arxiv.org/abs/1607.08022>`__.
.. math::
y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
The mean and standard-deviation are calculated per-dimension separately
for each object in a mini-batch. :math:`\gamma` and :math:`\beta` are learnable parameter vectors
of size `C` (where `C` is the input size) if :attr:`affine` is ``True``.
The standard-deviation is calculated via the biased estimator, equivalent to
`torch.var(input, unbiased=False)`.
By default, this layer uses instance statistics computed from input data in
both training and evaluation modes.
If :attr:`track_running_stats` is set to ``True``, during training this
layer keeps running estimates of its computed mean and variance, which are
then used for normalization during evaluation. The running estimates are
kept with a default :attr:`momentum` of 0.1.
.. note::
This :attr:`momentum` argument is different from one used in optimizer
classes and the conventional notion of momentum. Mathematically, the
update rule for running statistics here is
:math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
new observed value.
.. note::
:class:`InstanceNorm2d` and :class:`LayerNorm` are very similar, but
have some subtle differences. :class:`InstanceNorm2d` is applied
on each channel of channeled data like RGB images, but
:class:`LayerNorm` is usually applied on entire sample and often in NLP
tasks. Additionally, :class:`LayerNorm` applies elementwise affine
transform, while :class:`InstanceNorm2d` usually don't apply affine
transform.
Args:
num_features: :math:`C` from an expected input of size
:math:`(N, C, H, W)` or :math:`(C, H, W)`
eps: a value added to the denominator for numerical stability. Default: 1e-5
momentum: the value used for the running_mean and running_var computation. Default: 0.1
affine: a boolean value that when set to ``True``, this module has
learnable affine parameters, initialized the same way as done for batch normalization.
Default: ``False``.
track_running_stats: a boolean value that when set to ``True``, this
module tracks the running mean and variance, and when set to ``False``,
this module does not track such statistics and always uses batch
statistics in both training and eval modes. Default: ``False``
Shape:
- Input: :math:`(N, C, H, W)` or :math:`(C, H, W)`
- Output: :math:`(N, C, H, W)` or :math:`(C, H, W)` (same shape as input)
Examples::
>>> # Without Learnable Parameters
>>> m = nn.InstanceNorm2d(100)
>>> # With Learnable Parameters
>>> m = nn.InstanceNorm2d(100, affine=True)
>>> input = torch.randn(20, 100, 35, 45)
>>> output = m(input)
"""
def _get_no_batch_dim(self):
return 3
def _check_input_dim(self, input):
if input.dim() not in (3, 4):
raise ValueError(f"expected 3D or 4D input (got {input.dim()}D input)")
class LazyInstanceNorm2d(_LazyNormBase, _InstanceNorm):
r"""A :class:`torch.nn.InstanceNorm2d` module with lazy initialization of the ``num_features`` argument.
The ``num_features`` argument of the :class:`InstanceNorm2d` is inferred from the ``input.size(1)``.
The attributes that will be lazily initialized are `weight`, `bias`,
`running_mean` and `running_var`.
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
on lazy modules and their limitations.
Args:
num_features: :math:`C` from an expected input of size
:math:`(N, C, H, W)` or :math:`(C, H, W)`
eps: a value added to the denominator for numerical stability. Default: 1e-5
momentum: the value used for the running_mean and running_var computation. Default: 0.1
affine: a boolean value that when set to ``True``, this module has
learnable affine parameters, initialized the same way as done for batch normalization.
Default: ``False``.
track_running_stats: a boolean value that when set to ``True``, this
module tracks the running mean and variance, and when set to ``False``,
this module does not track such statistics and always uses batch
statistics in both training and eval modes. Default: ``False``
Shape:
- Input: :math:`(N, C, H, W)` or :math:`(C, H, W)`
- Output: :math:`(N, C, H, W)` or :math:`(C, H, W)` (same shape as input)
"""
cls_to_become = InstanceNorm2d # type: ignore[assignment]
def _get_no_batch_dim(self):
return 3
def _check_input_dim(self, input):
if input.dim() not in (3, 4):
raise ValueError(f"expected 3D or 4D input (got {input.dim()}D input)")
class InstanceNorm3d(_InstanceNorm):
r"""Applies Instance Normalization.
This operation applies Instance Normalization
over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper
`Instance Normalization: The Missing Ingredient for Fast Stylization
<https://arxiv.org/abs/1607.08022>`__.
.. math::
y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
The mean and standard-deviation are calculated per-dimension separately
for each object in a mini-batch. :math:`\gamma` and :math:`\beta` are learnable parameter vectors
of size C (where C is the input size) if :attr:`affine` is ``True``.
The standard-deviation is calculated via the biased estimator, equivalent to
`torch.var(input, unbiased=False)`.
By default, this layer uses instance statistics computed from input data in
both training and evaluation modes.
If :attr:`track_running_stats` is set to ``True``, during training this
layer keeps running estimates of its computed mean and variance, which are
then used for normalization during evaluation. The running estimates are
kept with a default :attr:`momentum` of 0.1.
.. note::
This :attr:`momentum` argument is different from one used in optimizer
classes and the conventional notion of momentum. Mathematically, the
update rule for running statistics here is
:math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
new observed value.
.. note::
:class:`InstanceNorm3d` and :class:`LayerNorm` are very similar, but
have some subtle differences. :class:`InstanceNorm3d` is applied
on each channel of channeled data like 3D models with RGB color, but
:class:`LayerNorm` is usually applied on entire sample and often in NLP
tasks. Additionally, :class:`LayerNorm` applies elementwise affine
transform, while :class:`InstanceNorm3d` usually don't apply affine
transform.
Args:
num_features: :math:`C` from an expected input of size
:math:`(N, C, D, H, W)` or :math:`(C, D, H, W)`
eps: a value added to the denominator for numerical stability. Default: 1e-5
momentum: the value used for the running_mean and running_var computation. Default: 0.1
affine: a boolean value that when set to ``True``, this module has
learnable affine parameters, initialized the same way as done for batch normalization.
Default: ``False``.
track_running_stats: a boolean value that when set to ``True``, this
module tracks the running mean and variance, and when set to ``False``,
this module does not track such statistics and always uses batch
statistics in both training and eval modes. Default: ``False``
Shape:
- Input: :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)`
- Output: :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)` (same shape as input)
Examples::
>>> # Without Learnable Parameters
>>> m = nn.InstanceNorm3d(100)
>>> # With Learnable Parameters
>>> m = nn.InstanceNorm3d(100, affine=True)
>>> input = torch.randn(20, 100, 35, 45, 10)
>>> output = m(input)
"""
def _get_no_batch_dim(self):
return 4
def _check_input_dim(self, input):
if input.dim() not in (4, 5):
raise ValueError(f"expected 4D or 5D input (got {input.dim()}D input)")
class LazyInstanceNorm3d(_LazyNormBase, _InstanceNorm):
r"""A :class:`torch.nn.InstanceNorm3d` module with lazy initialization of the ``num_features`` argument.
The ``num_features`` argument of the :class:`InstanceNorm3d` is inferred from the ``input.size(1)``.
The attributes that will be lazily initialized are `weight`, `bias`,
`running_mean` and `running_var`.
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
on lazy modules and their limitations.
Args:
num_features: :math:`C` from an expected input of size
:math:`(N, C, D, H, W)` or :math:`(C, D, H, W)`
eps: a value added to the denominator for numerical stability. Default: 1e-5
momentum: the value used for the running_mean and running_var computation. Default: 0.1
affine: a boolean value that when set to ``True``, this module has
learnable affine parameters, initialized the same way as done for batch normalization.
Default: ``False``.
track_running_stats: a boolean value that when set to ``True``, this
module tracks the running mean and variance, and when set to ``False``,
this module does not track such statistics and always uses batch
statistics in both training and eval modes. Default: ``False``
Shape:
- Input: :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)`
- Output: :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)` (same shape as input)
"""
cls_to_become = InstanceNorm3d # type: ignore[assignment]
def _get_no_batch_dim(self):
return 4
def _check_input_dim(self, input):
if input.dim() not in (4, 5):
raise ValueError(f"expected 4D or 5D input (got {input.dim()}D input)")
```
|
================================================================================================================
SOURCE CODE FILE: lazy.py
LINES: 1
SIZE: 11.85 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\modules\lazy.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
import itertools
from typing import Any, Optional, Protocol
import torch
from torch.nn.parameter import is_lazy
__all__ = ["LazyModuleMixin"]
class _LazyProtocol(Protocol):
"""This class is used to avoid errors with mypy checks for the attributes in a mixin.
https://mypy.readthedocs.io/en/latest/more_types.html#mixin-classes
"""
def _register_load_state_dict_pre_hook(self, hook):
...
def register_forward_pre_hook(self, hook, *, prepend=False, with_kwargs=False):
...
def _lazy_load_hook(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
...
def _get_name(self):
...
def _infer_parameters(self, module, input):
...
@property
def _parameters(self):
...
@property
def _buffers(self):
...
@property
def _non_persistent_buffers_set(self):
...
@property
def _load_hook(self):
...
@property
def _initialize_hook(self):
...
class LazyModuleMixin:
r"""A mixin for modules that lazily initialize parameters, also known as "lazy modules".
.. warning:
Lazy modules are an experimental new feature under active development,
and their API is likely to change.
Modules that lazily initialize parameters, or "lazy modules",
derive the shapes of their parameters from the first input(s)
to their forward method. Until that first forward they contain
:class:`torch.nn.UninitializedParameter` s that should not be accessed
or used, and afterward they contain regular :class:`torch.nn.Parameter` s.
Lazy modules are convenient since they don't require computing some
module arguments, like the :attr:`in_features` argument of a
typical :class:`torch.nn.Linear`.
After construction, networks with lazy modules should first
be converted to the desired dtype and placed on the expected device.
This is because lazy modules only perform shape inference so the usual dtype
and device placement behavior applies.
The lazy modules should then perform "dry runs" to initialize all the components in the module.
These "dry runs" send inputs of the correct size, dtype, and device through
the network and to each one of its lazy modules. After this the network can be used as usual.
>>> # xdoctest: +SKIP
>>> class LazyMLP(torch.nn.Module):
... def __init__(self) -> None:
... super().__init__()
... self.fc1 = torch.nn.LazyLinear(10)
... self.relu1 = torch.nn.ReLU()
... self.fc2 = torch.nn.LazyLinear(1)
... self.relu2 = torch.nn.ReLU()
...
... def forward(self, input):
... x = self.relu1(self.fc1(input))
... y = self.relu2(self.fc2(x))
... return y
>>> # constructs a network with lazy modules
>>> lazy_mlp = LazyMLP()
>>> # transforms the network's device and dtype
>>> # NOTE: these transforms can and should be applied after construction and before any 'dry runs'
>>> lazy_mlp = lazy_mlp.cuda().double()
>>> lazy_mlp
LazyMLP( (fc1): LazyLinear(in_features=0, out_features=10, bias=True)
(relu1): ReLU()
(fc2): LazyLinear(in_features=0, out_features=1, bias=True)
(relu2): ReLU()
)
>>> # performs a dry run to initialize the network's lazy modules
>>> lazy_mlp(torch.ones(10,10).cuda())
>>> # after initialization, LazyLinear modules become regular Linear modules
>>> lazy_mlp
LazyMLP(
(fc1): Linear(in_features=10, out_features=10, bias=True)
(relu1): ReLU()
(fc2): Linear(in_features=10, out_features=1, bias=True)
(relu2): ReLU()
)
>>> # attaches an optimizer, since parameters can now be used as usual
>>> optim = torch.optim.SGD(mlp.parameters(), lr=0.01)
A final caveat when using lazy modules is that the order of initialization of a network's
parameters may change, since the lazy modules are always initialized after other modules.
For example, if the LazyMLP class defined above had a :class:`torch.nn.LazyLinear` module
first and then a regular :class:`torch.nn.Linear` second, the second module would be
initialized on construction and the first module would be initialized during the first dry run.
This can cause the parameters of a network using lazy modules to be initialized differently
than the parameters of a network without lazy modules as the order of parameter initializations,
which often depends on a stateful random number generator, is different.
Check :doc:`/notes/randomness` for more details.
Lazy modules can be serialized with a state dict like other modules. For example:
>>> lazy_mlp = LazyMLP()
>>> # The state dict shows the uninitialized parameters
>>> lazy_mlp.state_dict()
OrderedDict([('fc1.weight', Uninitialized parameter),
('fc1.bias',
tensor([-1.8832e+25, 4.5636e-41, -1.8832e+25, 4.5636e-41, -6.1598e-30,
4.5637e-41, -1.8788e+22, 4.5636e-41, -2.0042e-31, 4.5637e-41])),
('fc2.weight', Uninitialized parameter),
('fc2.bias', tensor([0.0019]))])
Lazy modules can load regular :class:`torch.nn.Parameter` s (i.e. you can serialize/deserialize
initialized LazyModules and they will remain initialized)
>>> full_mlp = LazyMLP()
>>> # Dry run to initialize another module
>>> full_mlp.forward(torch.ones(10, 1))
>>> # Load an initialized state into a lazy module
>>> lazy_mlp.load_state_dict(full_mlp.state_dict())
>>> # The state dict now holds valid values
>>> lazy_mlp.state_dict()
OrderedDict([('fc1.weight',
tensor([[-0.3837],
[ 0.0907],
[ 0.6708],
[-0.5223],
[-0.9028],
[ 0.2851],
[-0.4537],
[ 0.6813],
[ 0.5766],
[-0.8678]])),
('fc1.bias',
tensor([-1.8832e+25, 4.5636e-41, -1.8832e+25, 4.5636e-41, -6.1598e-30,
4.5637e-41, -1.8788e+22, 4.5636e-41, -2.0042e-31, 4.5637e-41])),
('fc2.weight',
tensor([[ 0.1320, 0.2938, 0.0679, 0.2793, 0.1088, -0.1795, -0.2301, 0.2807,
0.2479, 0.1091]])),
('fc2.bias', tensor([0.0019]))])
Note, however, that the loaded parameters will not be replaced when doing a "dry run" if they are initialized
when the state is loaded. This prevents using initialized modules in different contexts.
"""
# modules inheriting from this will change their __class__ to the specified
# one after they are fully initialized
cls_to_become: Optional[type[Any]] = None
def __init__(self: _LazyProtocol, *args, **kwargs):
# Mypy doesnt like this super call in a mixin
super().__init__(*args, **kwargs) # type: ignore[misc]
self._load_hook = self._register_load_state_dict_pre_hook(self._lazy_load_hook)
self._initialize_hook = self.register_forward_pre_hook(
self._infer_parameters, with_kwargs=True
)
def _save_to_state_dict(self: _LazyProtocol, destination, prefix, keep_vars):
# This should be ideally implemented as a hook,
# but we should override `detach` in the UninitializedParameter to return itself
# which is not clean
for name, param in self._parameters.items():
if param is not None:
if not (is_lazy(param) or keep_vars):
param = param.detach()
destination[prefix + name] = param
for name, buf in self._buffers.items():
if buf is not None and name not in self._non_persistent_buffers_set:
if not (is_lazy(buf) or keep_vars):
buf = buf.detach()
destination[prefix + name] = buf
def _lazy_load_hook(
self: _LazyProtocol,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
"""load_state_dict pre-hook function for lazy buffers and parameters.
The purpose of this hook is to adjust the current state and/or
``state_dict`` being loaded so that a module instance serialized in
both un/initialized state can be deserialized onto both un/initialized
module instance.
See comment in ``torch.nn.Module._register_load_state_dict_pre_hook``
for the details of the hook specification.
"""
for name, param in itertools.chain(
self._parameters.items(), self._buffers.items()
):
key = prefix + name
if key in state_dict and param is not None:
input_param = state_dict[key]
if is_lazy(param):
# The current parameter is not initialized but the one being loaded one is
# create a new parameter based on the uninitialized one
if not is_lazy(input_param):
with torch.no_grad():
param.materialize(input_param.shape)
def initialize_parameters(self: _LazyProtocol, *args, **kwargs):
r"""Initialize parameters according to the input batch properties.
This adds an interface to isolate parameter initialization from the
forward pass when doing parameter shape inference.
"""
raise NotImplementedError(
f"initialize_parameters is not implemented for {self.__class__.__name__}"
)
def has_uninitialized_params(self: _LazyProtocol):
r"""Check if a module has parameters that are not initialized."""
# This is to avoid the JIT to track this parameter and force
# custom modules __setstate__ to add it
params = self._parameters.values()
buffers = self._buffers.values()
for param in itertools.chain(params, buffers):
if is_lazy(param):
return True
return False
# torchrec tests the code consistency with the following code
# fmt: off
def _infer_parameters(self: _LazyProtocol, module, args, kwargs=None):
r"""Infers the size and initializes the parameters according to the provided input batch.
Given a module that contains parameters that were declared inferrable
using :class:`torch.nn.parameter.ParameterMode.Infer`, runs a forward pass
in the complete module using the provided input to initialize all the parameters
as needed.
The module is set into evaluation mode before running the forward pass in order
to avoid saving statistics or calculating gradients
"""
kwargs = kwargs if kwargs else {}
module.initialize_parameters(*args, **kwargs)
if module.has_uninitialized_params():
raise RuntimeError(f'module {self._get_name()} has not been fully initialized')
module._initialize_hook.remove()
module._load_hook.remove()
delattr(module, '_initialize_hook')
delattr(module, '_load_hook')
if module.cls_to_become is not None:
module.__class__ = module.cls_to_become
# fmt: on
def _replicate_for_data_parallel(self: _LazyProtocol):
raise RuntimeError(
"Modules with uninitialized parameters can't be used with `DataParallel`. "
"Run a dummy forward pass to correctly initialize the modules"
)
```
|
==================================================================================================================
SOURCE CODE FILE: linear.py
LINES: 1
SIZE: 10.81 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\modules\linear.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
import math
from typing import Any
import torch
from torch import Tensor
from torch.nn import functional as F, init
from torch.nn.parameter import Parameter, UninitializedParameter
from .lazy import LazyModuleMixin
from .module import Module
__all__ = [
"Bilinear",
"Identity",
"LazyLinear",
"Linear",
]
class Identity(Module):
r"""A placeholder identity operator that is argument-insensitive.
Args:
args: any argument (unused)
kwargs: any keyword argument (unused)
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Output: :math:`(*)`, same shape as the input.
Examples::
>>> m = nn.Identity(54, unused_argument1=0.1, unused_argument2=False)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 20])
"""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__()
def forward(self, input: Tensor) -> Tensor:
return input
class Linear(Module):
r"""Applies an affine linear transformation to the incoming data: :math:`y = xA^T + b`.
This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
Args:
in_features: size of each input sample
out_features: size of each output sample
bias: If set to ``False``, the layer will not learn an additive bias.
Default: ``True``
Shape:
- Input: :math:`(*, H_\text{in})` where :math:`*` means any number of
dimensions including none and :math:`H_\text{in} = \text{in\_features}`.
- Output: :math:`(*, H_\text{out})` where all but the last dimension
are the same shape as the input and :math:`H_\text{out} = \text{out\_features}`.
Attributes:
weight: the learnable weights of the module of shape
:math:`(\text{out\_features}, \text{in\_features})`. The values are
initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
:math:`k = \frac{1}{\text{in\_features}}`
bias: the learnable bias of the module of shape :math:`(\text{out\_features})`.
If :attr:`bias` is ``True``, the values are initialized from
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
:math:`k = \frac{1}{\text{in\_features}}`
Examples::
>>> m = nn.Linear(20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])
"""
__constants__ = ["in_features", "out_features"]
in_features: int
out_features: int
weight: Tensor
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(
torch.empty((out_features, in_features), **factory_kwargs)
)
if bias:
self.bias = Parameter(torch.empty(out_features, **factory_kwargs))
else:
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self) -> None:
# Setting a=sqrt(5) in kaiming_uniform is the same as initializing with
# uniform(-1/sqrt(in_features), 1/sqrt(in_features)). For details, see
# https://github.com/pytorch/pytorch/issues/57109
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
init.uniform_(self.bias, -bound, bound)
def forward(self, input: Tensor) -> Tensor:
return F.linear(input, self.weight, self.bias)
def extra_repr(self) -> str:
return f"in_features={self.in_features}, out_features={self.out_features}, bias={self.bias is not None}"
# This class exists solely to avoid triggering an obscure error when scripting
# an improperly quantized attention layer. See this issue for details:
# https://github.com/pytorch/pytorch/issues/58969
# TODO: fail fast on quantization API usage error, then remove this class
# and replace uses of it with plain Linear
class NonDynamicallyQuantizableLinear(Linear):
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=None,
) -> None:
super().__init__(
in_features, out_features, bias=bias, device=device, dtype=dtype
)
class Bilinear(Module):
r"""Applies a bilinear transformation to the incoming data: :math:`y = x_1^T A x_2 + b`.
Args:
in1_features: size of each first input sample
in2_features: size of each second input sample
out_features: size of each output sample
bias: If set to ``False``, the layer will not learn an additive bias.
Default: ``True``
Shape:
- Input1: :math:`(*, H_\text{in1})` where :math:`H_\text{in1}=\text{in1\_features}` and
:math:`*` means any number of additional dimensions including none. All but the last dimension
of the inputs should be the same.
- Input2: :math:`(*, H_\text{in2})` where :math:`H_\text{in2}=\text{in2\_features}`.
- Output: :math:`(*, H_\text{out})` where :math:`H_\text{out}=\text{out\_features}`
and all but the last dimension are the same shape as the input.
Attributes:
weight: the learnable weights of the module of shape
:math:`(\text{out\_features}, \text{in1\_features}, \text{in2\_features})`.
The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
:math:`k = \frac{1}{\text{in1\_features}}`
bias: the learnable bias of the module of shape :math:`(\text{out\_features})`.
If :attr:`bias` is ``True``, the values are initialized from
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
:math:`k = \frac{1}{\text{in1\_features}}`
Examples::
>>> m = nn.Bilinear(20, 30, 40)
>>> input1 = torch.randn(128, 20)
>>> input2 = torch.randn(128, 30)
>>> output = m(input1, input2)
>>> print(output.size())
torch.Size([128, 40])
"""
__constants__ = ["in1_features", "in2_features", "out_features"]
in1_features: int
in2_features: int
out_features: int
weight: Tensor
def __init__(
self,
in1_features: int,
in2_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.in1_features = in1_features
self.in2_features = in2_features
self.out_features = out_features
self.weight = Parameter(
torch.empty((out_features, in1_features, in2_features), **factory_kwargs)
)
if bias:
self.bias = Parameter(torch.empty(out_features, **factory_kwargs))
else:
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self) -> None:
bound = 1 / math.sqrt(self.weight.size(1))
init.uniform_(self.weight, -bound, bound)
if self.bias is not None:
init.uniform_(self.bias, -bound, bound)
def forward(self, input1: Tensor, input2: Tensor) -> Tensor:
return F.bilinear(input1, input2, self.weight, self.bias)
def extra_repr(self) -> str:
return (
f"in1_features={self.in1_features}, in2_features={self.in2_features}, "
f"out_features={self.out_features}, bias={self.bias is not None}"
)
class LazyLinear(LazyModuleMixin, Linear):
r"""A :class:`torch.nn.Linear` module where `in_features` is inferred.
In this module, the `weight` and `bias` are of :class:`torch.nn.UninitializedParameter`
class. They will be initialized after the first call to ``forward`` is done and the
module will become a regular :class:`torch.nn.Linear` module. The ``in_features`` argument
of the :class:`Linear` is inferred from the ``input.shape[-1]``.
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
on lazy modules and their limitations.
Args:
out_features: size of each output sample
bias: If set to ``False``, the layer will not learn an additive bias.
Default: ``True``
Attributes:
weight: the learnable weights of the module of shape
:math:`(\text{out\_features}, \text{in\_features})`. The values are
initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
:math:`k = \frac{1}{\text{in\_features}}`
bias: the learnable bias of the module of shape :math:`(\text{out\_features})`.
If :attr:`bias` is ``True``, the values are initialized from
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
:math:`k = \frac{1}{\text{in\_features}}`
"""
cls_to_become = Linear # type: ignore[assignment]
weight: UninitializedParameter
bias: UninitializedParameter # type: ignore[assignment]
def __init__(
self, out_features: int, bias: bool = True, device=None, dtype=None
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
# bias is hardcoded to False to avoid creating tensor
# that will soon be overwritten.
super().__init__(0, 0, False)
self.weight = UninitializedParameter(**factory_kwargs)
self.out_features = out_features
if bias:
self.bias = UninitializedParameter(**factory_kwargs)
def reset_parameters(self) -> None:
if not self.has_uninitialized_params() and self.in_features != 0:
super().reset_parameters()
def initialize_parameters(self, input) -> None: # type: ignore[override]
if self.has_uninitialized_params():
with torch.no_grad():
self.in_features = input.shape[-1]
self.weight.materialize((self.out_features, self.in_features))
if self.bias is not None:
self.bias.materialize((self.out_features,))
self.reset_parameters()
# TODO: PartialLinear - maybe in sparse?
```
|
================================================================================================================
SOURCE CODE FILE: loss.py
LINES: 6
SIZE: 93.40 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\modules\loss.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
from typing import Callable, Optional, Union
from typing_extensions import deprecated
from torch import Tensor
from torch.nn import _reduction as _Reduction, functional as F
from .distance import PairwiseDistance
from .module import Module
__all__ = [
"L1Loss",
"NLLLoss",
"NLLLoss2d",
"PoissonNLLLoss",
"GaussianNLLLoss",
"KLDivLoss",
"MSELoss",
"BCELoss",
"BCEWithLogitsLoss",
"HingeEmbeddingLoss",
"MultiLabelMarginLoss",
"SmoothL1Loss",
"HuberLoss",
"SoftMarginLoss",
"CrossEntropyLoss",
"MultiLabelSoftMarginLoss",
"CosineEmbeddingLoss",
"MarginRankingLoss",
"MultiMarginLoss",
"TripletMarginLoss",
"TripletMarginWithDistanceLoss",
"CTCLoss",
]
class _Loss(Module):
reduction: str
def __init__(self, size_average=None, reduce=None, reduction: str = "mean") -> None:
super().__init__()
if size_average is not None or reduce is not None:
self.reduction: str = _Reduction.legacy_get_string(size_average, reduce)
else:
self.reduction = reduction
class _WeightedLoss(_Loss):
def __init__(
self,
weight: Optional[Tensor] = None,
size_average=None,
reduce=None,
reduction: str = "mean",
) -> None:
super().__init__(size_average, reduce, reduction)
self.register_buffer("weight", weight)
self.weight: Optional[Tensor]
class L1Loss(_Loss):
r"""Creates a criterion that measures the mean absolute error (MAE) between each element in
the input :math:`x` and target :math:`y`.
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = \left| x_n - y_n \right|,
where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then:
.. math::
\ell(x, y) =
\begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
\end{cases}
:math:`x` and :math:`y` are tensors of arbitrary shapes with a total
of :math:`N` elements each.
The sum operation still operates over all the elements, and divides by :math:`N`.
The division by :math:`N` can be avoided if one sets ``reduction = 'sum'``.
Supports real-valued and complex-valued inputs.
Args:
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when :attr:`reduce` is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Target: :math:`(*)`, same shape as the input.
- Output: scalar. If :attr:`reduction` is ``'none'``, then
:math:`(*)`, same shape as the input.
Examples::
>>> loss = nn.L1Loss()
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.randn(3, 5)
>>> output = loss(input, target)
>>> output.backward()
"""
__constants__ = ["reduction"]
def __init__(self, size_average=None, reduce=None, reduction: str = "mean") -> None:
super().__init__(size_average, reduce, reduction)
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.l1_loss(input, target, reduction=self.reduction)
class NLLLoss(_WeightedLoss):
r"""The negative log likelihood loss. It is useful to train a classification
problem with `C` classes.
If provided, the optional argument :attr:`weight` should be a 1D Tensor assigning
weight to each of the classes. This is particularly useful when you have an
unbalanced training set.
The `input` given through a forward call is expected to contain
log-probabilities of each class. `input` has to be a Tensor of size either
:math:`(minibatch, C)` or :math:`(minibatch, C, d_1, d_2, ..., d_K)`
with :math:`K \geq 1` for the `K`-dimensional case. The latter is useful for
higher dimension inputs, such as computing NLL loss per-pixel for 2D images.
Obtaining log-probabilities in a neural network is easily achieved by
adding a `LogSoftmax` layer in the last layer of your network.
You may use `CrossEntropyLoss` instead, if you prefer not to add an extra
layer.
The `target` that this loss expects should be a class index in the range :math:`[0, C-1]`
where `C = number of classes`; if `ignore_index` is specified, this loss also accepts
this class index (this index may not necessarily be in the class range).
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = - w_{y_n} x_{n,y_n}, \quad
w_{c} = \text{weight}[c] \cdot \mathbb{1}\{c \not= \text{ignore\_index}\},
where :math:`x` is the input, :math:`y` is the target, :math:`w` is the weight, and
:math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then
.. math::
\ell(x, y) = \begin{cases}
\sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n}} l_n, &
\text{if reduction} = \text{`mean';}\\
\sum_{n=1}^N l_n, &
\text{if reduction} = \text{`sum'.}
\end{cases}
Args:
weight (Tensor, optional): a manual rescaling weight given to each
class. If given, it has to be a Tensor of size `C`. Otherwise, it is
treated as if having all ones.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when :attr:`reduce` is ``False``. Default: ``None``
ignore_index (int, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. When
:attr:`size_average` is ``True``, the loss is averaged over
non-ignored targets.
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``None``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will
be applied, ``'mean'``: the weighted mean of the output is taken,
``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in
the meantime, specifying either of those two args will override
:attr:`reduction`. Default: ``'mean'``
Shape::
- Input: :math:`(N, C)` or :math:`(C)`, where `C = number of classes`, `N = batch size`, or
:math:`(N, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1`
in the case of `K`-dimensional loss.
- Target: :math:`(N)` or :math:`()`, where each value is
:math:`0 \leq \text{targets}[i] \leq C-1`, or
:math:`(N, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case of
K-dimensional loss.
- Output: If :attr:`reduction` is ``'none'``, shape :math:`(N)` or
:math:`(N, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case of K-dimensional loss.
Otherwise, scalar.
Examples::
>>> log_softmax = nn.LogSoftmax(dim=1)
>>> loss_fn = nn.NLLLoss()
>>> # input to NLLLoss is of size N x C = 3 x 5
>>> input = torch.randn(3, 5, requires_grad=True)
>>> # each element in target must have 0 <= value < C
>>> target = torch.tensor([1, 0, 4])
>>> loss = loss_fn(log_softmax(input), target)
>>> loss.backward()
>>>
>>>
>>> # 2D loss example (used, for example, with image inputs)
>>> N, C = 5, 4
>>> loss_fn = nn.NLLLoss()
>>> data = torch.randn(N, 16, 10, 10)
>>> conv = nn.Conv2d(16, C, (3, 3))
>>> log_softmax = nn.LogSoftmax(dim=1)
>>> # output of conv forward is of shape [N, C, 8, 8]
>>> output = log_softmax(conv(data))
>>> # each element in target must have 0 <= value < C
>>> target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C)
>>> # input to NLLLoss is of size N x C x height (8) x width (8)
>>> loss = loss_fn(output, target)
>>> loss.backward()
"""
__constants__ = ["ignore_index", "reduction"]
ignore_index: int
def __init__(
self,
weight: Optional[Tensor] = None,
size_average=None,
ignore_index: int = -100,
reduce=None,
reduction: str = "mean",
) -> None:
super().__init__(weight, size_average, reduce, reduction)
self.ignore_index = ignore_index
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.nll_loss(
input,
target,
weight=self.weight,
ignore_index=self.ignore_index,
reduction=self.reduction,
)
@deprecated(
"`NLLLoss2d` has been deprecated. "
"Please use `NLLLoss` instead as a drop-in replacement and see "
"https://pytorch.org/docs/main/nn.html#torch.nn.NLLLoss for more details.",
category=FutureWarning,
)
class NLLLoss2d(NLLLoss):
def __init__(
self,
weight: Optional[Tensor] = None,
size_average=None,
ignore_index: int = -100,
reduce=None,
reduction: str = "mean",
) -> None:
super().__init__(weight, size_average, ignore_index, reduce, reduction)
class PoissonNLLLoss(_Loss):
r"""Negative log likelihood loss with Poisson distribution of target.
The loss can be described as:
.. math::
\text{target} \sim \mathrm{Poisson}(\text{input})
\text{loss}(\text{input}, \text{target}) = \text{input} - \text{target} * \log(\text{input})
+ \log(\text{target!})
The last term can be omitted or approximated with Stirling formula. The
approximation is used for target values more than 1. For targets less or
equal to 1 zeros are added to the loss.
Args:
log_input (bool, optional): if ``True`` the loss is computed as
:math:`\exp(\text{input}) - \text{target}*\text{input}`, if ``False`` the loss is
:math:`\text{input} - \text{target}*\log(\text{input}+\text{eps})`.
full (bool, optional): whether to compute full loss, i. e. to add the
Stirling approximation term
.. math::
\text{target}*\log(\text{target}) - \text{target} + 0.5 * \log(2\pi\text{target}).
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when :attr:`reduce` is ``False``. Default: ``True``
eps (float, optional): Small value to avoid evaluation of :math:`\log(0)` when
:attr:`log_input = False`. Default: 1e-8
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Examples::
>>> loss = nn.PoissonNLLLoss()
>>> log_input = torch.randn(5, 2, requires_grad=True)
>>> target = torch.randn(5, 2)
>>> output = loss(log_input, target)
>>> output.backward()
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Target: :math:`(*)`, same shape as the input.
- Output: scalar by default. If :attr:`reduction` is ``'none'``, then :math:`(*)`,
the same shape as the input.
"""
__constants__ = ["log_input", "full", "eps", "reduction"]
log_input: bool
full: bool
eps: float
def __init__(
self,
log_input: bool = True,
full: bool = False,
size_average=None,
eps: float = 1e-8,
reduce=None,
reduction: str = "mean",
) -> None:
super().__init__(size_average, reduce, reduction)
self.log_input = log_input
self.full = full
self.eps = eps
def forward(self, log_input: Tensor, target: Tensor) -> Tensor:
return F.poisson_nll_loss(
log_input,
target,
log_input=self.log_input,
full=self.full,
eps=self.eps,
reduction=self.reduction,
)
class GaussianNLLLoss(_Loss):
r"""Gaussian negative log likelihood loss.
The targets are treated as samples from Gaussian distributions with
expectations and variances predicted by the neural network. For a
``target`` tensor modelled as having Gaussian distribution with a tensor
of expectations ``input`` and a tensor of positive variances ``var`` the loss is:
.. math::
\text{loss} = \frac{1}{2}\left(\log\left(\text{max}\left(\text{var},
\ \text{eps}\right)\right) + \frac{\left(\text{input} - \text{target}\right)^2}
{\text{max}\left(\text{var}, \ \text{eps}\right)}\right) + \text{const.}
where :attr:`eps` is used for stability. By default, the constant term of
the loss function is omitted unless :attr:`full` is ``True``. If ``var`` is not the same
size as ``input`` (due to a homoscedastic assumption), it must either have a final dimension
of 1 or have one fewer dimension (with all other sizes being the same) for correct broadcasting.
Args:
full (bool, optional): include the constant term in the loss
calculation. Default: ``False``.
eps (float, optional): value used to clamp ``var`` (see note below), for
stability. Default: 1e-6.
reduction (str, optional): specifies the reduction to apply to the
output:``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction
will be applied, ``'mean'``: the output is the average of all batch
member losses, ``'sum'``: the output is the sum of all batch member
losses. Default: ``'mean'``.
Shape:
- Input: :math:`(N, *)` or :math:`(*)` where :math:`*` means any number of additional
dimensions
- Target: :math:`(N, *)` or :math:`(*)`, same shape as the input, or same shape as the input
but with one dimension equal to 1 (to allow for broadcasting)
- Var: :math:`(N, *)` or :math:`(*)`, same shape as the input, or same shape as the input but
with one dimension equal to 1, or same shape as the input but with one fewer
dimension (to allow for broadcasting), or a scalar value
- Output: scalar if :attr:`reduction` is ``'mean'`` (default) or
``'sum'``. If :attr:`reduction` is ``'none'``, then :math:`(N, *)`, same
shape as the input
Examples::
>>> loss = nn.GaussianNLLLoss()
>>> input = torch.randn(5, 2, requires_grad=True)
>>> target = torch.randn(5, 2)
>>> var = torch.ones(5, 2, requires_grad=True) # heteroscedastic
>>> output = loss(input, target, var)
>>> output.backward()
>>> loss = nn.GaussianNLLLoss()
>>> input = torch.randn(5, 2, requires_grad=True)
>>> target = torch.randn(5, 2)
>>> var = torch.ones(5, 1, requires_grad=True) # homoscedastic
>>> output = loss(input, target, var)
>>> output.backward()
Note:
The clamping of ``var`` is ignored with respect to autograd, and so the
gradients are unaffected by it.
Reference:
Nix, D. A. and Weigend, A. S., "Estimating the mean and variance of the
target probability distribution", Proceedings of 1994 IEEE International
Conference on Neural Networks (ICNN'94), Orlando, FL, USA, 1994, pp. 55-60
vol.1, doi: 10.1109/ICNN.1994.374138.
"""
__constants__ = ["full", "eps", "reduction"]
full: bool
eps: float
def __init__(
self, *, full: bool = False, eps: float = 1e-6, reduction: str = "mean"
) -> None:
super().__init__(None, None, reduction)
self.full = full
self.eps = eps
def forward(
self, input: Tensor, target: Tensor, var: Union[Tensor, float]
) -> Tensor:
return F.gaussian_nll_loss(
input, target, var, full=self.full, eps=self.eps, reduction=self.reduction
)
class KLDivLoss(_Loss):
r"""The Kullback-Leibler divergence loss.
For tensors of the same shape :math:`y_{\text{pred}},\ y_{\text{true}}`,
where :math:`y_{\text{pred}}` is the :attr:`input` and :math:`y_{\text{true}}` is the
:attr:`target`, we define the **pointwise KL-divergence** as
.. math::
L(y_{\text{pred}},\ y_{\text{true}})
= y_{\text{true}} \cdot \log \frac{y_{\text{true}}}{y_{\text{pred}}}
= y_{\text{true}} \cdot (\log y_{\text{true}} - \log y_{\text{pred}})
To avoid underflow issues when computing this quantity, this loss expects the argument
:attr:`input` in the log-space. The argument :attr:`target` may also be provided in the
log-space if :attr:`log_target`\ `= True`.
To summarise, this function is roughly equivalent to computing
.. code-block:: python
if not log_target: # default
loss_pointwise = target * (target.log() - input)
else:
loss_pointwise = target.exp() * (target - input)
and then reducing this result depending on the argument :attr:`reduction` as
.. code-block:: python
if reduction == "mean": # default
loss = loss_pointwise.mean()
elif reduction == "batchmean": # mathematically correct
loss = loss_pointwise.sum() / input.size(0)
elif reduction == "sum":
loss = loss_pointwise.sum()
else: # reduction == "none"
loss = loss_pointwise
.. note::
As all the other losses in PyTorch, this function expects the first argument,
:attr:`input`, to be the output of the model (e.g. the neural network)
and the second, :attr:`target`, to be the observations in the dataset.
This differs from the standard mathematical notation :math:`KL(P\ ||\ Q)` where
:math:`P` denotes the distribution of the observations and :math:`Q` denotes the model.
.. warning::
:attr:`reduction`\ `= "mean"` doesn't return the true KL divergence value, please use
:attr:`reduction`\ `= "batchmean"` which aligns with the mathematical definition.
Args:
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to `False`, the losses are instead summed for each minibatch. Ignored
when :attr:`reduce` is `False`. Default: `True`
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is `False`, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: `True`
reduction (str, optional): Specifies the reduction to apply to the output. Default: `"mean"`
log_target (bool, optional): Specifies whether `target` is the log space. Default: `False`
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Target: :math:`(*)`, same shape as the input.
- Output: scalar by default. If :attr:`reduction` is `'none'`, then :math:`(*)`,
same shape as the input.
Examples::
>>> kl_loss = nn.KLDivLoss(reduction="batchmean")
>>> # input should be a distribution in the log space
>>> input = F.log_softmax(torch.randn(3, 5, requires_grad=True), dim=1)
>>> # Sample a batch of distributions. Usually this would come from the dataset
>>> target = F.softmax(torch.rand(3, 5), dim=1)
>>> output = kl_loss(input, target)
>>> kl_loss = nn.KLDivLoss(reduction="batchmean", log_target=True)
>>> log_target = F.log_softmax(torch.rand(3, 5), dim=1)
>>> output = kl_loss(input, log_target)
"""
__constants__ = ["reduction"]
def __init__(
self,
size_average=None,
reduce=None,
reduction: str = "mean",
log_target: bool = False,
) -> None:
super().__init__(size_average, reduce, reduction)
self.log_target = log_target
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.kl_div(
input, target, reduction=self.reduction, log_target=self.log_target
)
class MSELoss(_Loss):
r"""Creates a criterion that measures the mean squared error (squared L2 norm) between
each element in the input :math:`x` and target :math:`y`.
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = \left( x_n - y_n \right)^2,
where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then:
.. math::
\ell(x, y) =
\begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
\end{cases}
:math:`x` and :math:`y` are tensors of arbitrary shapes with a total
of :math:`N` elements each.
The mean operation still operates over all the elements, and divides by :math:`N`.
The division by :math:`N` can be avoided if one sets ``reduction = 'sum'``.
Args:
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when :attr:`reduce` is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Target: :math:`(*)`, same shape as the input.
Examples::
>>> loss = nn.MSELoss()
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.randn(3, 5)
>>> output = loss(input, target)
>>> output.backward()
"""
__constants__ = ["reduction"]
def __init__(self, size_average=None, reduce=None, reduction: str = "mean") -> None:
super().__init__(size_average, reduce, reduction)
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.mse_loss(input, target, reduction=self.reduction)
class BCELoss(_WeightedLoss):
r"""Creates a criterion that measures the Binary Cross Entropy between the target and
the input probabilities:
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = - w_n \left[ y_n \cdot \log x_n + (1 - y_n) \cdot \log (1 - x_n) \right],
where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then
.. math::
\ell(x, y) = \begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
\end{cases}
This is used for measuring the error of a reconstruction in for example
an auto-encoder. Note that the targets :math:`y` should be numbers
between 0 and 1.
Notice that if :math:`x_n` is either 0 or 1, one of the log terms would be
mathematically undefined in the above loss equation. PyTorch chooses to set
:math:`\log (0) = -\infty`, since :math:`\lim_{x\to 0} \log (x) = -\infty`.
However, an infinite term in the loss equation is not desirable for several reasons.
For one, if either :math:`y_n = 0` or :math:`(1 - y_n) = 0`, then we would be
multiplying 0 with infinity. Secondly, if we have an infinite loss value, then
we would also have an infinite term in our gradient, since
:math:`\lim_{x\to 0} \frac{d}{dx} \log (x) = \infty`.
This would make BCELoss's backward method nonlinear with respect to :math:`x_n`,
and using it for things like linear regression would not be straight-forward.
Our solution is that BCELoss clamps its log function outputs to be greater than
or equal to -100. This way, we can always have a finite loss value and a linear
backward method.
Args:
weight (Tensor, optional): a manual rescaling weight given to the loss
of each batch element. If given, has to be a Tensor of size `nbatch`.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when :attr:`reduce` is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Target: :math:`(*)`, same shape as the input.
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(*)`, same
shape as input.
Examples::
>>> m = nn.Sigmoid()
>>> loss = nn.BCELoss()
>>> input = torch.randn(3, 2, requires_grad=True)
>>> target = torch.rand(3, 2, requires_grad=False)
>>> output = loss(m(input), target)
>>> output.backward()
"""
__constants__ = ["reduction"]
def __init__(
self,
weight: Optional[Tensor] = None,
size_average=None,
reduce=None,
reduction: str = "mean",
) -> None:
super().__init__(weight, size_average, reduce, reduction)
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.binary_cross_entropy(
input, target, weight=self.weight, reduction=self.reduction
)
class BCEWithLogitsLoss(_Loss):
r"""This loss combines a `Sigmoid` layer and the `BCELoss` in one single
class. This version is more numerically stable than using a plain `Sigmoid`
followed by a `BCELoss` as, by combining the operations into one layer,
we take advantage of the log-sum-exp trick for numerical stability.
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = - w_n \left[ y_n \cdot \log \sigma(x_n)
+ (1 - y_n) \cdot \log (1 - \sigma(x_n)) \right],
where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then
.. math::
\ell(x, y) = \begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
\end{cases}
This is used for measuring the error of a reconstruction in for example
an auto-encoder. Note that the targets `t[i]` should be numbers
between 0 and 1.
It's possible to trade off recall and precision by adding weights to positive examples.
In the case of multi-label classification the loss can be described as:
.. math::
\ell_c(x, y) = L_c = \{l_{1,c},\dots,l_{N,c}\}^\top, \quad
l_{n,c} = - w_{n,c} \left[ p_c y_{n,c} \cdot \log \sigma(x_{n,c})
+ (1 - y_{n,c}) \cdot \log (1 - \sigma(x_{n,c})) \right],
where :math:`c` is the class number (:math:`c > 1` for multi-label binary classification,
:math:`c = 1` for single-label binary classification),
:math:`n` is the number of the sample in the batch and
:math:`p_c` is the weight of the positive answer for the class :math:`c`.
:math:`p_c > 1` increases the recall, :math:`p_c < 1` increases the precision.
For example, if a dataset contains 100 positive and 300 negative examples of a single class,
then ``pos_weight`` for the class should be equal to :math:`\frac{300}{100}=3`.
The loss would act as if the dataset contains :math:`3\times 100=300` positive examples.
Examples::
>>> target = torch.ones([10, 64], dtype=torch.float32) # 64 classes, batch size = 10
>>> output = torch.full([10, 64], 1.5) # A prediction (logit)
>>> pos_weight = torch.ones([64]) # All weights are equal to 1
>>> criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight)
>>> criterion(output, target) # -log(sigmoid(1.5))
tensor(0.20...)
In the above example, the ``pos_weight`` tensor's elements correspond to the 64 distinct classes
in a multi-label binary classification scenario. Each element in ``pos_weight`` is designed to adjust the
loss function based on the imbalance between negative and positive samples for the respective class.
This approach is useful in datasets with varying levels of class imbalance, ensuring that the loss
calculation accurately accounts for the distribution in each class.
Args:
weight (Tensor, optional): a manual rescaling weight given to the loss
of each batch element. If given, has to be a Tensor of size `nbatch`.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when :attr:`reduce` is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
pos_weight (Tensor, optional): a weight of positive examples to be broadcasted with target.
Must be a tensor with equal size along the class dimension to the number of classes.
Pay close attention to PyTorch's broadcasting semantics in order to achieve the desired
operations. For a target of size [B, C, H, W] (where B is batch size) pos_weight of
size [B, C, H, W] will apply different pos_weights to each element of the batch or
[C, H, W] the same pos_weights across the batch. To apply the same positive weight
along all spacial dimensions for a 2D multi-class target [C, H, W] use: [C, 1, 1].
Default: ``None``
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Target: :math:`(*)`, same shape as the input.
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(*)`, same
shape as input.
Examples::
>>> loss = nn.BCEWithLogitsLoss()
>>> input = torch.randn(3, requires_grad=True)
>>> target = torch.empty(3).random_(2)
>>> output = loss(input, target)
>>> output.backward()
"""
def __init__(
self,
weight: Optional[Tensor] = None,
size_average=None,
reduce=None,
reduction: str = "mean",
pos_weight: Optional[Tensor] = None,
) -> None:
super().__init__(size_average, reduce, reduction)
self.register_buffer("weight", weight)
self.register_buffer("pos_weight", pos_weight)
self.weight: Optional[Tensor]
self.pos_weight: Optional[Tensor]
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.binary_cross_entropy_with_logits(
input,
target,
self.weight,
pos_weight=self.pos_weight,
reduction=self.reduction,
)
class HingeEmbeddingLoss(_Loss):
r"""Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`
(containing 1 or -1).
This is usually used for measuring whether two inputs are similar or
dissimilar, e.g. using the L1 pairwise distance as :math:`x`, and is typically
used for learning nonlinear embeddings or semi-supervised learning.
The loss function for :math:`n`-th sample in the mini-batch is
.. math::
l_n = \begin{cases}
x_n, & \text{if}\; y_n = 1,\\
\max \{0, margin - x_n\}, & \text{if}\; y_n = -1,
\end{cases}
and the total loss functions is
.. math::
\ell(x, y) = \begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
\end{cases}
where :math:`L = \{l_1,\dots,l_N\}^\top`.
Args:
margin (float, optional): Has a default value of `1`.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when :attr:`reduce` is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(*)` where :math:`*` means, any number of dimensions. The sum operation
operates over all the elements.
- Target: :math:`(*)`, same shape as the input
- Output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input
"""
__constants__ = ["margin", "reduction"]
margin: float
def __init__(
self,
margin: float = 1.0,
size_average=None,
reduce=None,
reduction: str = "mean",
) -> None:
super().__init__(size_average, reduce, reduction)
self.margin = margin
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.hinge_embedding_loss(
input, target, margin=self.margin, reduction=self.reduction
)
class MultiLabelMarginLoss(_Loss):
r"""Creates a criterion that optimizes a multi-class multi-classification
hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
and output :math:`y` (which is a 2D `Tensor` of target class indices).
For each sample in the mini-batch:
.. math::
\text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}
where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
:math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
:math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
:math:`y` and :math:`x` must have the same size.
The criterion only considers a contiguous block of non-negative targets that
starts at the front.
This allows for different samples to have variable amounts of target classes.
Args:
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when :attr:`reduce` is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(C)` or :math:`(N, C)` where `N` is the batch size and `C`
is the number of classes.
- Target: :math:`(C)` or :math:`(N, C)`, label targets padded by -1 ensuring same shape as the input.
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N)`.
Examples::
>>> loss = nn.MultiLabelMarginLoss()
>>> x = torch.FloatTensor([[0.1, 0.2, 0.4, 0.8]])
>>> # for target y, only consider labels 3 and 0, not after label -1
>>> y = torch.LongTensor([[3, 0, -1, 1]])
>>> # 0.25 * ((1-(0.1-0.2)) + (1-(0.1-0.4)) + (1-(0.8-0.2)) + (1-(0.8-0.4)))
>>> loss(x, y)
tensor(0.85...)
"""
__constants__ = ["reduction"]
def __init__(self, size_average=None, reduce=None, reduction: str = "mean") -> None:
super().__init__(size_average, reduce, reduction)
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.multilabel_margin_loss(input, target, reduction=self.reduction)
class SmoothL1Loss(_Loss):
r"""Creates a criterion that uses a squared term if the absolute
element-wise error falls below beta and an L1 term otherwise.
It is less sensitive to outliers than :class:`torch.nn.MSELoss` and in some cases
prevents exploding gradients (e.g. see the paper `Fast R-CNN`_ by Ross Girshick).
For a batch of size :math:`N`, the unreduced loss can be described as:
.. math::
\ell(x, y) = L = \{l_1, ..., l_N\}^T
with
.. math::
l_n = \begin{cases}
0.5 (x_n - y_n)^2 / beta, & \text{if } |x_n - y_n| < beta \\
|x_n - y_n| - 0.5 * beta, & \text{otherwise }
\end{cases}
If `reduction` is not `none`, then:
.. math::
\ell(x, y) =
\begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
\end{cases}
.. note::
Smooth L1 loss can be seen as exactly :class:`L1Loss`, but with the :math:`|x - y| < beta`
portion replaced with a quadratic function such that its slope is 1 at :math:`|x - y| = beta`.
The quadratic segment smooths the L1 loss near :math:`|x - y| = 0`.
.. note::
Smooth L1 loss is closely related to :class:`HuberLoss`, being
equivalent to :math:`huber(x, y) / beta` (note that Smooth L1's beta hyper-parameter is
also known as delta for Huber). This leads to the following differences:
* As beta -> 0, Smooth L1 loss converges to :class:`L1Loss`, while :class:`HuberLoss`
converges to a constant 0 loss. When beta is 0, Smooth L1 loss is equivalent to L1 loss.
* As beta -> :math:`+\infty`, Smooth L1 loss converges to a constant 0 loss, while
:class:`HuberLoss` converges to :class:`MSELoss`.
* For Smooth L1 loss, as beta varies, the L1 segment of the loss has a constant slope of 1.
For :class:`HuberLoss`, the slope of the L1 segment is beta.
.. _`Fast R-CNN`: https://arxiv.org/abs/1504.08083
Args:
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when :attr:`reduce` is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
beta (float, optional): Specifies the threshold at which to change between L1 and L2 loss.
The value must be non-negative. Default: 1.0
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Target: :math:`(*)`, same shape as the input.
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(*)`, same shape as the input.
"""
__constants__ = ["reduction"]
def __init__(
self, size_average=None, reduce=None, reduction: str = "mean", beta: float = 1.0
) -> None:
super().__init__(size_average, reduce, reduction)
self.beta = beta
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.smooth_l1_loss(input, target, reduction=self.reduction, beta=self.beta)
class HuberLoss(_Loss):
r"""Creates a criterion that uses a squared term if the absolute
element-wise error falls below delta and a delta-scaled L1 term otherwise.
This loss combines advantages of both :class:`L1Loss` and :class:`MSELoss`; the
delta-scaled L1 region makes the loss less sensitive to outliers than :class:`MSELoss`,
while the L2 region provides smoothness over :class:`L1Loss` near 0. See
`Huber loss <https://en.wikipedia.org/wiki/Huber_loss>`_ for more information.
For a batch of size :math:`N`, the unreduced loss can be described as:
.. math::
\ell(x, y) = L = \{l_1, ..., l_N\}^T
with
.. math::
l_n = \begin{cases}
0.5 (x_n - y_n)^2, & \text{if } |x_n - y_n| < delta \\
delta * (|x_n - y_n| - 0.5 * delta), & \text{otherwise }
\end{cases}
If `reduction` is not `none`, then:
.. math::
\ell(x, y) =
\begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
\end{cases}
.. note::
When delta is set to 1, this loss is equivalent to :class:`SmoothL1Loss`.
In general, this loss differs from :class:`SmoothL1Loss` by a factor of delta (AKA beta
in Smooth L1).
See :class:`SmoothL1Loss` for additional discussion on the differences in behavior
between the two losses.
Args:
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Default: ``'mean'``
delta (float, optional): Specifies the threshold at which to change between delta-scaled L1 and L2 loss.
The value must be positive. Default: 1.0
Shape:
- Input: :math:`(*)` where :math:`*` means any number of dimensions.
- Target: :math:`(*)`, same shape as the input.
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(*)`, same shape as the input.
"""
__constants__ = ["reduction", "delta"]
def __init__(self, reduction: str = "mean", delta: float = 1.0) -> None:
super().__init__(reduction=reduction)
self.delta = delta
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.huber_loss(input, target, reduction=self.reduction, delta=self.delta)
class SoftMarginLoss(_Loss):
r"""Creates a criterion that optimizes a two-class classification
logistic loss between input tensor :math:`x` and target tensor :math:`y`
(containing 1 or -1).
.. math::
\text{loss}(x, y) = \sum_i \frac{\log(1 + \exp(-y[i]*x[i]))}{\text{x.nelement}()}
Args:
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when :attr:`reduce` is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
- Target: :math:`(*)`, same shape as the input.
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(*)`, same
shape as input.
"""
__constants__ = ["reduction"]
def __init__(self, size_average=None, reduce=None, reduction: str = "mean") -> None:
super().__init__(size_average, reduce, reduction)
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.soft_margin_loss(input, target, reduction=self.reduction)
class CrossEntropyLoss(_WeightedLoss):
r"""This criterion computes the cross entropy loss between input logits
and target.
It is useful when training a classification problem with `C` classes.
If provided, the optional argument :attr:`weight` should be a 1D `Tensor`
assigning weight to each of the classes.
This is particularly useful when you have an unbalanced training set.
The `input` is expected to contain the unnormalized logits for each class (which do `not` need
to be positive or sum to 1, in general).
`input` has to be a Tensor of size :math:`(C)` for unbatched input,
:math:`(minibatch, C)` or :math:`(minibatch, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1` for the
`K`-dimensional case. The last being useful for higher dimension inputs, such
as computing cross entropy loss per-pixel for 2D images.
The `target` that this criterion expects should contain either:
- Class indices in the range :math:`[0, C)` where :math:`C` is the number of classes; if
`ignore_index` is specified, this loss also accepts this class index (this index
may not necessarily be in the class range). The unreduced (i.e. with :attr:`reduction`
set to ``'none'``) loss for this case can be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = - w_{y_n} \log \frac{\exp(x_{n,y_n})}{\sum_{c=1}^C \exp(x_{n,c})}
\cdot \mathbb{1}\{y_n \not= \text{ignore\_index}\}
where :math:`x` is the input, :math:`y` is the target, :math:`w` is the weight,
:math:`C` is the number of classes, and :math:`N` spans the minibatch dimension as well as
:math:`d_1, ..., d_k` for the `K`-dimensional case. If
:attr:`reduction` is not ``'none'`` (default ``'mean'``), then
.. math::
\ell(x, y) = \begin{cases}
\sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n} \cdot \mathbb{1}\{y_n \not= \text{ignore\_index}\}} l_n, &
\text{if reduction} = \text{`mean';}\\
\sum_{n=1}^N l_n, &
\text{if reduction} = \text{`sum'.}
\end{cases}
Note that this case is equivalent to applying :class:`~torch.nn.LogSoftmax`
on an input, followed by :class:`~torch.nn.NLLLoss`.
- Probabilities for each class; useful when labels beyond a single class per minibatch item
are required, such as for blended labels, label smoothing, etc. The unreduced (i.e. with
:attr:`reduction` set to ``'none'``) loss for this case can be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = - \sum_{c=1}^C w_c \log \frac{\exp(x_{n,c})}{\sum_{i=1}^C \exp(x_{n,i})} y_{n,c}
where :math:`x` is the input, :math:`y` is the target, :math:`w` is the weight,
:math:`C` is the number of classes, and :math:`N` spans the minibatch dimension as well as
:math:`d_1, ..., d_k` for the `K`-dimensional case. If
:attr:`reduction` is not ``'none'`` (default ``'mean'``), then
.. math::
\ell(x, y) = \begin{cases}
\frac{\sum_{n=1}^N l_n}{N}, &
\text{if reduction} = \text{`mean';}\\
\sum_{n=1}^N l_n, &
\text{if reduction} = \text{`sum'.}
\end{cases}
.. note::
The performance of this criterion is generally better when `target` contains class
indices, as this allows for optimized computation. Consider providing `target` as
class probabilities only when a single class label per minibatch item is too restrictive.
Args:
weight (Tensor, optional): a manual rescaling weight given to each class.
If given, has to be a Tensor of size `C` and floating point dtype
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when :attr:`reduce` is ``False``. Default: ``True``
ignore_index (int, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. When :attr:`size_average` is
``True``, the loss is averaged over non-ignored targets. Note that
:attr:`ignore_index` is only applicable when the target contains class indices.
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will
be applied, ``'mean'``: the weighted mean of the output is taken,
``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in
the meantime, specifying either of those two args will override
:attr:`reduction`. Default: ``'mean'``
label_smoothing (float, optional): A float in [0.0, 1.0]. Specifies the amount
of smoothing when computing the loss, where 0.0 means no smoothing. The targets
become a mixture of the original ground truth and a uniform distribution as described in
`Rethinking the Inception Architecture for Computer Vision <https://arxiv.org/abs/1512.00567>`__. Default: :math:`0.0`.
Shape:
- Input: Shape :math:`(C)`, :math:`(N, C)` or :math:`(N, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1`
in the case of `K`-dimensional loss.
- Target: If containing class indices, shape :math:`()`, :math:`(N)` or :math:`(N, d_1, d_2, ..., d_K)` with
:math:`K \geq 1` in the case of K-dimensional loss where each value should be between :math:`[0, C)`. The
target data type is required to be long when using class indices. If containing class probabilities, the
target must be the same shape input, and each value should be between :math:`[0, 1]`. This means the target
data type is required to be float when using class probabilities.
- Output: If reduction is 'none', shape :math:`()`, :math:`(N)` or :math:`(N, d_1, d_2, ..., d_K)` with :math:`K \geq 1`
in the case of K-dimensional loss, depending on the shape of the input. Otherwise, scalar.
where:
.. math::
\begin{aligned}
C ={} & \text{number of classes} \\
N ={} & \text{batch size} \\
\end{aligned}
Examples::
>>> # Example of target with class indices
>>> loss = nn.CrossEntropyLoss()
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.empty(3, dtype=torch.long).random_(5)
>>> output = loss(input, target)
>>> output.backward()
>>>
>>> # Example of target with class probabilities
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.randn(3, 5).softmax(dim=1)
>>> output = loss(input, target)
>>> output.backward()
"""
__constants__ = ["ignore_index", "reduction", "label_smoothing"]
ignore_index: int
label_smoothing: float
def __init__(
self,
weight: Optional[Tensor] = None,
size_average=None,
ignore_index: int = -100,
reduce=None,
reduction: str = "mean",
label_smoothing: float = 0.0,
) -> None:
super().__init__(weight, size_average, reduce, reduction)
self.ignore_index = ignore_index
self.label_smoothing = label_smoothing
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.cross_entropy(
input,
target,
weight=self.weight,
ignore_index=self.ignore_index,
reduction=self.reduction,
label_smoothing=self.label_smoothing,
)
class MultiLabelSoftMarginLoss(_WeightedLoss):
r"""Creates a criterion that optimizes a multi-label one-versus-all
loss based on max-entropy, between input :math:`x` and target :math:`y` of size
:math:`(N, C)`.
For each sample in the minibatch:
.. math::
loss(x, y) = - \frac{1}{C} * \sum_i y[i] * \log((1 + \exp(-x[i]))^{-1})
+ (1-y[i]) * \log\left(\frac{\exp(-x[i])}{(1 + \exp(-x[i]))}\right)
where :math:`i \in \left\{0, \; \cdots , \; \text{x.nElement}() - 1\right\}`,
:math:`y[i] \in \left\{0, \; 1\right\}`.
Args:
weight (Tensor, optional): a manual rescaling weight given to each
class. If given, it has to be a Tensor of size `C`. Otherwise, it is
treated as if having all ones.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when :attr:`reduce` is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(N, C)` where `N` is the batch size and `C` is the number of classes.
- Target: :math:`(N, C)`, label targets must have the same shape as the input.
- Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N)`.
"""
__constants__ = ["reduction"]
def __init__(
self,
weight: Optional[Tensor] = None,
size_average=None,
reduce=None,
reduction: str = "mean",
) -> None:
super().__init__(weight, size_average, reduce, reduction)
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.multilabel_soft_margin_loss(
input, target, weight=self.weight, reduction=self.reduction
)
class CosineEmbeddingLoss(_Loss):
r"""Creates a criterion that measures the loss given input tensors
:math:`x_1`, :math:`x_2` and a `Tensor` label :math:`y` with values 1 or -1.
Use (:math:`y=1`) to maximize the cosine similarity of two inputs, and (:math:`y=-1`) otherwise.
This is typically used for learning nonlinear
embeddings or semi-supervised learning.
The loss function for each sample is:
.. math::
\text{loss}(x, y) =
\begin{cases}
1 - \cos(x_1, x_2), & \text{if } y = 1 \\
\max(0, \cos(x_1, x_2) - \text{margin}), & \text{if } y = -1
\end{cases}
Args:
margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
:math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
default value is :math:`0`.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when :attr:`reduce` is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input1: :math:`(N, D)` or :math:`(D)`, where `N` is the batch size and `D` is the embedding dimension.
- Input2: :math:`(N, D)` or :math:`(D)`, same shape as Input1.
- Target: :math:`(N)` or :math:`()`.
- Output: If :attr:`reduction` is ``'none'``, then :math:`(N)`, otherwise scalar.
Examples::
>>> loss = nn.CosineEmbeddingLoss()
>>> input1 = torch.randn(3, 5, requires_grad=True)
>>> input2 = torch.randn(3, 5, requires_grad=True)
>>> target = torch.ones(3)
>>> output = loss(input1, input2, target)
>>> output.backward()
"""
__constants__ = ["margin", "reduction"]
margin: float
def __init__(
self,
margin: float = 0.0,
size_average=None,
reduce=None,
reduction: str = "mean",
) -> None:
super().__init__(size_average, reduce, reduction)
self.margin = margin
def forward(self, input1: Tensor, input2: Tensor, target: Tensor) -> Tensor:
return F.cosine_embedding_loss(
input1, input2, target, margin=self.margin, reduction=self.reduction
)
class MarginRankingLoss(_Loss):
r"""Creates a criterion that measures the loss given
inputs :math:`x1`, :math:`x2`, two 1D mini-batch or 0D `Tensors`,
and a label 1D mini-batch or 0D `Tensor` :math:`y` (containing 1 or -1).
If :math:`y = 1` then it assumed the first input should be ranked higher
(have a larger value) than the second input, and vice-versa for :math:`y = -1`.
The loss function for each pair of samples in the mini-batch is:
.. math::
\text{loss}(x1, x2, y) = \max(0, -y * (x1 - x2) + \text{margin})
Args:
margin (float, optional): Has a default value of :math:`0`.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when :attr:`reduce` is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input1: :math:`(N)` or :math:`()` where `N` is the batch size.
- Input2: :math:`(N)` or :math:`()`, same shape as the Input1.
- Target: :math:`(N)` or :math:`()`, same shape as the inputs.
- Output: scalar. If :attr:`reduction` is ``'none'`` and Input size is not :math:`()`, then :math:`(N)`.
Examples::
>>> loss = nn.MarginRankingLoss()
>>> input1 = torch.randn(3, requires_grad=True)
>>> input2 = torch.randn(3, requires_grad=True)
>>> target = torch.randn(3).sign()
>>> output = loss(input1, input2, target)
>>> output.backward()
"""
__constants__ = ["margin", "reduction"]
margin: float
def __init__(
self,
margin: float = 0.0,
size_average=None,
reduce=None,
reduction: str = "mean",
) -> None:
super().__init__(size_average, reduce, reduction)
self.margin = margin
def forward(self, input1: Tensor, input2: Tensor, target: Tensor) -> Tensor:
return F.margin_ranking_loss(
input1, input2, target, margin=self.margin, reduction=self.reduction
)
class MultiMarginLoss(_WeightedLoss):
r"""Creates a criterion that optimizes a multi-class classification hinge
loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`) and
output :math:`y` (which is a 1D tensor of target class indices,
:math:`0 \leq y \leq \text{x.size}(1)-1`):
For each mini-batch sample, the loss in terms of the 1D input :math:`x` and scalar
output :math:`y` is:
.. math::
\text{loss}(x, y) = \frac{\sum_i \max(0, \text{margin} - x[y] + x[i])^p}{\text{x.size}(0)}
where :math:`i \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`
and :math:`i \neq y`.
Optionally, you can give non-equal weighting on the classes by passing
a 1D :attr:`weight` tensor into the constructor.
The loss function then becomes:
.. math::
\text{loss}(x, y) = \frac{\sum_i w[y] * \max(0, \text{margin} - x[y] + x[i])^p}{\text{x.size}(0)}
Args:
p (int, optional): Has a default value of :math:`1`. :math:`1` and :math:`2`
are the only supported values.
margin (float, optional): Has a default value of :math:`1`.
weight (Tensor, optional): a manual rescaling weight given to each
class. If given, it has to be a Tensor of size `C`. Otherwise, it is
treated as if having all ones.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when :attr:`reduce` is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(N, C)` or :math:`(C)`, where :math:`N` is the batch size and :math:`C` is the number of classes.
- Target: :math:`(N)` or :math:`()`, where each value is :math:`0 \leq \text{targets}[i] \leq C-1`.
- Output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the target.
Examples::
>>> loss = nn.MultiMarginLoss()
>>> x = torch.tensor([[0.1, 0.2, 0.4, 0.8]])
>>> y = torch.tensor([3])
>>> # 0.25 * ((1-(0.8-0.1)) + (1-(0.8-0.2)) + (1-(0.8-0.4)))
>>> loss(x, y)
tensor(0.32...)
"""
__constants__ = ["p", "margin", "reduction"]
margin: float
p: int
def __init__(
self,
p: int = 1,
margin: float = 1.0,
weight: Optional[Tensor] = None,
size_average=None,
reduce=None,
reduction: str = "mean",
) -> None:
super().__init__(weight, size_average, reduce, reduction)
if p != 1 and p != 2:
raise ValueError("only p == 1 and p == 2 supported")
if weight is not None and weight.dim() != 1:
raise ValueError(
f"MultiMarginLoss: expected weight to be None or 1D tensor, got {weight.dim()}D instead"
)
self.p = p
self.margin = margin
def forward(self, input: Tensor, target: Tensor) -> Tensor:
return F.multi_margin_loss(
input,
target,
p=self.p,
margin=self.margin,
weight=self.weight,
reduction=self.reduction,
)
class TripletMarginLoss(_Loss):
r"""Creates a criterion that measures the triplet loss given an input
tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
This is used for measuring a relative similarity between samples. A triplet
is composed by `a`, `p` and `n` (i.e., `anchor`, `positive examples` and `negative
examples` respectively). The shapes of all input tensors should be
:math:`(N, D)`.
The distance swap is described in detail in the paper `Learning shallow
convolutional feature descriptors with triplet losses`_ by
V. Balntas, E. Riba et al.
The loss function for each sample in the mini-batch is:
.. math::
L(a, p, n) = \max \{d(a_i, p_i) - d(a_i, n_i) + {\rm margin}, 0\}
where
.. math::
d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p
The norm is calculated using the specified p value and a small constant :math:`\varepsilon` is
added for numerical stability.
See also :class:`~torch.nn.TripletMarginWithDistanceLoss`, which computes the
triplet margin loss for input tensors using a custom distance function.
Args:
margin (float, optional): Default: :math:`1`.
p (int, optional): The norm degree for pairwise distance. Default: :math:`2`.
eps (float, optional): Small constant for numerical stability. Default: :math:`1e-6`.
swap (bool, optional): The distance swap is described in detail in the paper
`Learning shallow convolutional feature descriptors with triplet losses` by
V. Balntas, E. Riba et al. Default: ``False``.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there are multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when :attr:`reduce` is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Shape:
- Input: :math:`(N, D)` or :math:`(D)` where :math:`D` is the vector dimension.
- Output: A Tensor of shape :math:`(N)` if :attr:`reduction` is ``'none'`` and
input shape is :math:`(N, D)`; a scalar otherwise.
Examples::
>>> triplet_loss = nn.TripletMarginLoss(margin=1.0, p=2, eps=1e-7)
>>> anchor = torch.randn(100, 128, requires_grad=True)
>>> positive = torch.randn(100, 128, requires_grad=True)
>>> negative = torch.randn(100, 128, requires_grad=True)
>>> output = triplet_loss(anchor, positive, negative)
>>> output.backward()
.. _Learning shallow convolutional feature descriptors with triplet losses:
https://bmva-archive.org.uk/bmvc/2016/papers/paper119/index.html
"""
__constants__ = ["margin", "p", "eps", "swap", "reduction"]
margin: float
p: float
eps: float
swap: bool
def __init__(
self,
margin: float = 1.0,
p: float = 2.0,
eps: float = 1e-6,
swap: bool = False,
size_average=None,
reduce=None,
reduction: str = "mean",
):
super().__init__(size_average, reduce, reduction)
if margin <= 0:
raise ValueError(
f"TripletMarginLoss: expected margin to be greater than 0, got {margin} instead"
)
self.margin = margin
self.p = p
self.eps = eps
self.swap = swap
def forward(self, anchor: Tensor, positive: Tensor, negative: Tensor) -> Tensor:
return F.triplet_margin_loss(
anchor,
positive,
negative,
margin=self.margin,
p=self.p,
eps=self.eps,
swap=self.swap,
reduction=self.reduction,
)
class TripletMarginWithDistanceLoss(_Loss):
r"""Creates a criterion that measures the triplet loss given input
tensors :math:`a`, :math:`p`, and :math:`n` (representing anchor,
positive, and negative examples, respectively), and a nonnegative,
real-valued function ("distance function") used to compute the relationship
between the anchor and positive example ("positive distance") and the
anchor and negative example ("negative distance").
The unreduced loss (i.e., with :attr:`reduction` set to ``'none'``)
can be described as:
.. math::
\ell(a, p, n) = L = \{l_1,\dots,l_N\}^\top, \quad
l_i = \max \{d(a_i, p_i) - d(a_i, n_i) + {\rm margin}, 0\}
where :math:`N` is the batch size; :math:`d` is a nonnegative, real-valued function
quantifying the closeness of two tensors, referred to as the :attr:`distance_function`;
and :math:`margin` is a nonnegative margin representing the minimum difference
between the positive and negative distances that is required for the loss to
be 0. The input tensors have :math:`N` elements each and can be of any shape
that the distance function can handle.
If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then:
.. math::
\ell(x, y) =
\begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
\end{cases}
See also :class:`~torch.nn.TripletMarginLoss`, which computes the triplet
loss for input tensors using the :math:`l_p` distance as the distance function.
Args:
distance_function (Callable, optional): A nonnegative, real-valued function that
quantifies the closeness of two tensors. If not specified,
`nn.PairwiseDistance` will be used. Default: ``None``
margin (float, optional): A nonnegative margin representing the minimum difference
between the positive and negative distances required for the loss to be 0. Larger
margins penalize cases where the negative examples are not distant enough from the
anchors, relative to the positives. Default: :math:`1`.
swap (bool, optional): Whether to use the distance swap described in the paper
`Learning shallow convolutional feature descriptors with triplet losses` by
V. Balntas, E. Riba et al. If True, and if the positive example is closer to the
negative example than the anchor is, swaps the positive example and the anchor in
the loss computation. Default: ``False``.
reduction (str, optional): Specifies the (optional) reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Default: ``'mean'``
Shape:
- Input: :math:`(N, *)` where :math:`*` represents any number of additional dimensions
as supported by the distance function.
- Output: A Tensor of shape :math:`(N)` if :attr:`reduction` is ``'none'``, or a scalar
otherwise.
Examples::
>>> # Initialize embeddings
>>> embedding = nn.Embedding(1000, 128)
>>> anchor_ids = torch.randint(0, 1000, (1,))
>>> positive_ids = torch.randint(0, 1000, (1,))
>>> negative_ids = torch.randint(0, 1000, (1,))
>>> anchor = embedding(anchor_ids)
>>> positive = embedding(positive_ids)
>>> negative = embedding(negative_ids)
>>>
>>> # Built-in Distance Function
>>> triplet_loss = \
>>> nn.TripletMarginWithDistanceLoss(distance_function=nn.PairwiseDistance())
>>> output = triplet_loss(anchor, positive, negative)
>>> output.backward()
>>>
>>> # Custom Distance Function
>>> def l_infinity(x1, x2):
>>> return torch.max(torch.abs(x1 - x2), dim=1).values
>>>
>>> # xdoctest: +SKIP("FIXME: Would call backwards a second time")
>>> triplet_loss = (
>>> nn.TripletMarginWithDistanceLoss(distance_function=l_infinity, margin=1.5))
>>> output = triplet_loss(anchor, positive, negative)
>>> output.backward()
>>>
>>> # Custom Distance Function (Lambda)
>>> triplet_loss = (
>>> nn.TripletMarginWithDistanceLoss(
>>> distance_function=lambda x, y: 1.0 - F.cosine_similarity(x, y)))
>>> output = triplet_loss(anchor, positive, negative)
>>> output.backward()
Reference:
V. Balntas, et al.: Learning shallow convolutional feature descriptors with triplet losses:
https://bmva-archive.org.uk/bmvc/2016/papers/paper119/index.html
"""
__constants__ = ["margin", "swap", "reduction"]
margin: float
swap: bool
def __init__(
self,
*,
distance_function: Optional[Callable[[Tensor, Tensor], Tensor]] = None,
margin: float = 1.0,
swap: bool = False,
reduction: str = "mean",
):
super().__init__(size_average=None, reduce=None, reduction=reduction)
if margin <= 0:
raise ValueError(
f"TripletMarginWithDistanceLoss: expected margin to be greater than 0, got {margin} instead"
)
self.distance_function: Optional[Callable[[Tensor, Tensor], Tensor]] = (
distance_function if distance_function is not None else PairwiseDistance()
)
self.margin = margin
self.swap = swap
def forward(self, anchor: Tensor, positive: Tensor, negative: Tensor) -> Tensor:
return F.triplet_margin_with_distance_loss(
anchor,
positive,
negative,
distance_function=self.distance_function,
margin=self.margin,
swap=self.swap,
reduction=self.reduction,
)
class CTCLoss(_Loss):
r"""The Connectionist Temporal Classification loss.
Calculates loss between a continuous (unsegmented) time series and a target sequence. CTCLoss sums over the
probability of possible alignments of input to target, producing a loss value which is differentiable
with respect to each input node. The alignment of input to target is assumed to be "many-to-one", which
limits the length of the target sequence such that it must be :math:`\leq` the input length.
Args:
blank (int, optional): blank label. Default :math:`0`.
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the output losses will be divided by the target lengths and
then the mean over the batch is taken, ``'sum'``: the output losses will be summed.
Default: ``'mean'``
zero_infinity (bool, optional):
Whether to zero infinite losses and the associated gradients.
Default: ``False``
Infinite losses mainly occur when the inputs are too short
to be aligned to the targets.
Shape:
- Log_probs: Tensor of size :math:`(T, N, C)` or :math:`(T, C)`,
where :math:`T = \text{input length}`,
:math:`N = \text{batch size}`, and
:math:`C = \text{number of classes (including blank)}`.
The logarithmized probabilities of the outputs (e.g. obtained with
:func:`torch.nn.functional.log_softmax`).
- Targets: Tensor of size :math:`(N, S)` or
:math:`(\operatorname{sum}(\text{target\_lengths}))`,
where :math:`N = \text{batch size}` and
:math:`S = \text{max target length, if shape is } (N, S)`.
It represents the target sequences. Each element in the target
sequence is a class index. And the target index cannot be blank (default=0).
In the :math:`(N, S)` form, targets are padded to the
length of the longest sequence, and stacked.
In the :math:`(\operatorname{sum}(\text{target\_lengths}))` form,
the targets are assumed to be un-padded and
concatenated within 1 dimension.
- Input_lengths: Tuple or tensor of size :math:`(N)` or :math:`()`,
where :math:`N = \text{batch size}`. It represents the lengths of the
inputs (must each be :math:`\leq T`). And the lengths are specified
for each sequence to achieve masking under the assumption that sequences
are padded to equal lengths.
- Target_lengths: Tuple or tensor of size :math:`(N)` or :math:`()`,
where :math:`N = \text{batch size}`. It represents lengths of the targets.
Lengths are specified for each sequence to achieve masking under the
assumption that sequences are padded to equal lengths. If target shape is
:math:`(N,S)`, target_lengths are effectively the stop index
:math:`s_n` for each target sequence, such that ``target_n = targets[n,0:s_n]`` for
each target in a batch. Lengths must each be :math:`\leq S`
If the targets are given as a 1d tensor that is the concatenation of individual
targets, the target_lengths must add up to the total length of the tensor.
- Output: scalar if :attr:`reduction` is ``'mean'`` (default) or
``'sum'``. If :attr:`reduction` is ``'none'``, then :math:`(N)` if input is batched or
:math:`()` if input is unbatched, where :math:`N = \text{batch size}`.
Examples::
>>> # Target are to be padded
>>> T = 50 # Input sequence length
>>> C = 20 # Number of classes (including blank)
>>> N = 16 # Batch size
>>> S = 30 # Target sequence length of longest target in batch (padding length)
>>> S_min = 10 # Minimum target length, for demonstration purposes
>>>
>>> # Initialize random batch of input vectors, for *size = (T,N,C)
>>> input = torch.randn(T, N, C).log_softmax(2).detach().requires_grad_()
>>>
>>> # Initialize random batch of targets (0 = blank, 1:C = classes)
>>> target = torch.randint(low=1, high=C, size=(N, S), dtype=torch.long)
>>>
>>> input_lengths = torch.full(size=(N,), fill_value=T, dtype=torch.long)
>>> target_lengths = torch.randint(low=S_min, high=S, size=(N,), dtype=torch.long)
>>> ctc_loss = nn.CTCLoss()
>>> loss = ctc_loss(input, target, input_lengths, target_lengths)
>>> loss.backward()
>>>
>>>
>>> # Target are to be un-padded
>>> T = 50 # Input sequence length
>>> C = 20 # Number of classes (including blank)
>>> N = 16 # Batch size
>>>
>>> # Initialize random batch of input vectors, for *size = (T,N,C)
>>> input = torch.randn(T, N, C).log_softmax(2).detach().requires_grad_()
>>> input_lengths = torch.full(size=(N,), fill_value=T, dtype=torch.long)
>>>
>>> # Initialize random batch of targets (0 = blank, 1:C = classes)
>>> target_lengths = torch.randint(low=1, high=T, size=(N,), dtype=torch.long)
>>> target = torch.randint(low=1, high=C, size=(sum(target_lengths),), dtype=torch.long)
>>> ctc_loss = nn.CTCLoss()
>>> loss = ctc_loss(input, target, input_lengths, target_lengths)
>>> loss.backward()
>>>
>>>
>>> # Target are to be un-padded and unbatched (effectively N=1)
>>> T = 50 # Input sequence length
>>> C = 20 # Number of classes (including blank)
>>>
>>> # Initialize random batch of input vectors, for *size = (T,C)
>>> # xdoctest: +SKIP("FIXME: error in doctest")
>>> input = torch.randn(T, C).log_softmax(1).detach().requires_grad_()
>>> input_lengths = torch.tensor(T, dtype=torch.long)
>>>
>>> # Initialize random batch of targets (0 = blank, 1:C = classes)
>>> target_lengths = torch.randint(low=1, high=T, size=(), dtype=torch.long)
>>> target = torch.randint(low=1, high=C, size=(target_lengths,), dtype=torch.long)
>>> ctc_loss = nn.CTCLoss()
>>> loss = ctc_loss(input, target, input_lengths, target_lengths)
>>> loss.backward()
Reference:
A. Graves et al.: Connectionist Temporal Classification:
Labelling Unsegmented Sequence Data with Recurrent Neural Networks:
https://www.cs.toronto.edu/~graves/icml_2006.pdf
Note:
In order to use CuDNN, the following must be satisfied: :attr:`targets` must be
in concatenated format, all :attr:`input_lengths` must be `T`. :math:`blank=0`,
:attr:`target_lengths` :math:`\leq 256`, the integer arguments must be of
dtype :attr:`torch.int32`.
The regular implementation uses the (more common in PyTorch) `torch.long` dtype.
Note:
In some circumstances when using the CUDA backend with CuDNN, this operator
may select a nondeterministic algorithm to increase performance. If this is
undesirable, you can try to make the operation deterministic (potentially at
a performance cost) by setting ``torch.backends.cudnn.deterministic =
True``.
Please see the notes on :doc:`/notes/randomness` for background.
"""
__constants__ = ["blank", "reduction"]
blank: int
zero_infinity: bool
def __init__(
self, blank: int = 0, reduction: str = "mean", zero_infinity: bool = False
):
super().__init__(reduction=reduction)
self.blank = blank
self.zero_infinity = zero_infinity
def forward(
self,
log_probs: Tensor,
targets: Tensor,
input_lengths: Tensor,
target_lengths: Tensor,
) -> Tensor:
return F.ctc_loss(
log_probs,
targets,
input_lengths,
target_lengths,
self.blank,
self.reduction,
self.zero_infinity,
)
# TODO: L1HingeEmbeddingCriterion
# TODO: MSECriterion weight
# TODO: ClassSimplexCriterion
```
|
==================================================================================================================
SOURCE CODE FILE: module.py
LINES: 10
SIZE: 125.87 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\modules\module.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
import functools
import inspect
import itertools
import warnings
import weakref
from collections import namedtuple, OrderedDict
from collections.abc import Iterator, Mapping
from typing import Any, Callable, Optional, overload, TypeVar, Union
from typing_extensions import Self
import torch
from torch import device, dtype, Tensor
from torch._prims_common import DeviceLikeType
from torch.nn.parameter import Buffer, Parameter
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
from torch.utils.hooks import BackwardHook, RemovableHandle
__all__ = [
"register_module_forward_pre_hook",
"register_module_forward_hook",
"register_module_full_backward_pre_hook",
"register_module_backward_hook",
"register_module_full_backward_hook",
"register_module_buffer_registration_hook",
"register_module_module_registration_hook",
"register_module_parameter_registration_hook",
"Module",
]
_grad_t = Union[tuple[Tensor, ...], Tensor]
# See https://mypy.readthedocs.io/en/latest/generics.html#generic-methods-and-generic-self for the use
# of `T` to annotate `self`. Many methods of `Module` return `self` and we want those return values to be
# the type of the subclass, not the looser type of `Module`.
T = TypeVar("T", bound="Module")
class _IncompatibleKeys(
namedtuple("IncompatibleKeys", ["missing_keys", "unexpected_keys"]),
):
__slots__ = ()
def __repr__(self):
if not self.missing_keys and not self.unexpected_keys:
return "<All keys matched successfully>"
return super().__repr__()
__str__ = __repr__
def _addindent(s_, numSpaces):
s = s_.split("\n")
# don't do anything for single-line stuff
if len(s) == 1:
return s_
first = s.pop(0)
s = [(numSpaces * " ") + line for line in s]
s = "\n".join(s)
s = first + "\n" + s
return s
r"""This tracks hooks common to all modules that are executed immediately before
.registering the buffer/module/parameter"""
_global_buffer_registration_hooks: dict[int, Callable] = OrderedDict()
_global_module_registration_hooks: dict[int, Callable] = OrderedDict()
_global_parameter_registration_hooks: dict[int, Callable] = OrderedDict()
class _WrappedHook:
def __init__(self, hook: Callable, module: Optional["Module"] = None):
self.hook: Callable = hook
functools.update_wrapper(self, hook)
self.with_module: bool = False
if module is not None:
self.module: weakref.ReferenceType[Module] = weakref.ref(module)
self.with_module = True
def __call__(self, *args: Any, **kwargs: Any) -> Any:
if self.with_module:
module = self.module()
if module is None:
raise RuntimeError("You are trying to call the hook of a dead Module!")
return self.hook(module, *args, **kwargs)
return self.hook(*args, **kwargs)
def __getstate__(self) -> dict:
result = {"hook": self.hook, "with_module": self.with_module}
if self.with_module:
result["module"] = self.module()
return result
def __setstate__(self, state: dict):
self.hook = state["hook"]
self.with_module = state["with_module"]
if self.with_module:
if state["module"] is None:
raise RuntimeError(
"You are trying to revive the hook of a dead Module!"
)
self.module = weakref.ref(state["module"])
r"""This tracks hooks common to all modules that are executed before/after
calling forward and backward. This is global state used for debugging/profiling
purposes"""
_global_backward_pre_hooks: dict[int, Callable] = OrderedDict()
_global_backward_hooks: dict[int, Callable] = OrderedDict()
_global_is_full_backward_hook: Optional[bool] = None
_global_forward_pre_hooks: dict[int, Callable] = OrderedDict()
_global_forward_hooks: dict[int, Callable] = OrderedDict()
_global_forward_hooks_always_called: dict[int, bool] = OrderedDict()
_global_forward_hooks_with_kwargs: dict[int, bool] = OrderedDict()
_EXTRA_STATE_KEY_SUFFIX = "_extra_state"
def register_module_buffer_registration_hook(
hook: Callable[..., None],
) -> RemovableHandle:
r"""Register a buffer registration hook common to all modules.
.. warning ::
This adds global state to the `nn.Module` module
The hook will be called every time :func:`register_buffer` is invoked.
It should have the following signature::
hook(module, name, buffer) -> None or new buffer
The hook can modify the input or return a single modified value in the hook.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = RemovableHandle(_global_buffer_registration_hooks)
_global_buffer_registration_hooks[handle.id] = hook
return handle
def register_module_module_registration_hook(
hook: Callable[..., None],
) -> RemovableHandle:
r"""Register a module registration hook common to all modules.
.. warning ::
This adds global state to the `nn.Module` module
The hook will be called every time :func:`register_module` is invoked.
It should have the following signature::
hook(module, name, submodule) -> None or new submodule
The hook can modify the input or return a single modified value in the hook.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = RemovableHandle(_global_module_registration_hooks)
_global_module_registration_hooks[handle.id] = hook
return handle
def register_module_parameter_registration_hook(
hook: Callable[..., None],
) -> RemovableHandle:
r"""Register a parameter registration hook common to all modules.
.. warning ::
This adds global state to the `nn.Module` module
The hook will be called every time :func:`register_parameter` is invoked.
It should have the following signature::
hook(module, name, param) -> None or new parameter
The hook can modify the input or return a single modified value in the hook.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = RemovableHandle(_global_parameter_registration_hooks)
_global_parameter_registration_hooks[handle.id] = hook
return handle
def register_module_forward_pre_hook(hook: Callable[..., None]) -> RemovableHandle:
r"""Register a forward pre-hook common to all modules.
.. warning ::
This adds global state to the `nn.module` module
and it is only intended for debugging/profiling purposes.
The hook will be called every time before :func:`forward` is invoked.
It should have the following signature::
hook(module, input) -> None or modified input
The input contains only the positional arguments given to the module.
Keyword arguments won't be passed to the hooks and only to the ``forward``.
The hook can modify the input. User can either return a tuple or a
single modified value in the hook. We will wrap the value into a tuple
if a single value is returned(unless that value is already a tuple).
This hook has precedence over the specific module hooks registered with
``register_forward_pre_hook``.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = RemovableHandle(_global_forward_pre_hooks)
_global_forward_pre_hooks[handle.id] = hook
return handle
def register_module_forward_hook(
hook: Callable[..., None],
*,
with_kwargs: bool = False,
always_call: bool = False,
) -> RemovableHandle:
r"""Register a global forward hook for all the modules.
.. warning ::
This adds global state to the `nn.module` module
and it is only intended for debugging/profiling purposes.
The hook will be called every time after :func:`forward` has computed an output.
It should have the following signature::
hook(module, input, output) -> None or modified output
The input contains only the positional arguments given to the module.
Keyword arguments won't be passed to the hooks and only to the ``forward``.
You can optionally modify the output of the module by returning a new value
that will replace the output from the :func:`forward` function.
Parameters:
hook (Callable): The user defined hook to be registered.
always_call (bool): If ``True`` the ``hook`` will be run regardless of
whether an exception is raised while calling the Module.
Default: ``False``
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
This hook will be executed before specific module hooks registered with
``register_forward_hook``.
"""
handle = RemovableHandle(
_global_forward_hooks, extra_dict=_global_forward_hooks_always_called
)
_global_forward_hooks[handle.id] = hook
if with_kwargs:
_global_forward_hooks_with_kwargs[handle.id] = True
if always_call:
_global_forward_hooks_always_called[handle.id] = True
return handle
def register_module_backward_hook(
hook: Callable[["Module", _grad_t, _grad_t], Union[None, _grad_t]],
) -> RemovableHandle:
r"""Register a backward hook common to all the modules.
This function is deprecated in favor of
:func:`torch.nn.modules.module.register_module_full_backward_hook`
and the behavior of this function will change in future versions.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
global _global_is_full_backward_hook
if _global_is_full_backward_hook is True:
raise RuntimeError(
"Cannot use both regular backward hooks and full backward hooks as a "
"global Module hook. Please use only one of them."
)
_global_is_full_backward_hook = False
handle = RemovableHandle(_global_backward_hooks)
_global_backward_hooks[handle.id] = hook
return handle
def register_module_full_backward_pre_hook(
hook: Callable[["Module", _grad_t], Union[None, _grad_t]],
) -> RemovableHandle:
r"""Register a backward pre-hook common to all the modules.
.. warning ::
This adds global state to the `nn.module` module
and it is only intended for debugging/profiling purposes.
Hooks registered using this function behave in the same way as those
registered by :meth:`torch.nn.Module.register_full_backward_pre_hook`.
Refer to its documentation for more details.
Hooks registered using this function will be called before hooks registered
using :meth:`torch.nn.Module.register_full_backward_pre_hook`.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = RemovableHandle(_global_backward_pre_hooks)
_global_backward_pre_hooks[handle.id] = hook
return handle
def register_module_full_backward_hook(
hook: Callable[["Module", _grad_t, _grad_t], Union[None, _grad_t]],
) -> RemovableHandle:
r"""Register a backward hook common to all the modules.
.. warning ::
This adds global state to the `nn.module` module
and it is only intended for debugging/profiling purposes.
Hooks registered using this function behave in the same way as those
registered by :meth:`torch.nn.Module.register_full_backward_hook`.
Refer to its documentation for more details.
Hooks registered using this function will be called before hooks registered
using :meth:`torch.nn.Module.register_full_backward_hook`.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
global _global_is_full_backward_hook
if _global_is_full_backward_hook is False:
raise RuntimeError(
"Cannot use both regular backward hooks and full backward hooks as a "
"global Module hook. Please use only one of them."
)
_global_is_full_backward_hook = True
handle = RemovableHandle(_global_backward_hooks)
_global_backward_hooks[handle.id] = hook
return handle
# Trick mypy into not applying contravariance rules to inputs by defining
# forward as a value, rather than a function. See also
# https://github.com/python/mypy/issues/8795
def _forward_unimplemented(self, *input: Any) -> None:
r"""Define the computation performed at every call.
Should be overridden by all subclasses.
.. note::
Although the recipe for forward pass needs to be defined within
this function, one should call the :class:`Module` instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.
"""
raise NotImplementedError(
f'Module [{type(self).__name__}] is missing the required "forward" function'
)
class Module:
r"""Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing them to be nested in
a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(1, 20, 5)
self.conv2 = nn.Conv2d(20, 20, 5)
def forward(self, x):
x = F.relu(self.conv1(x))
return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will also have their
parameters converted when you call :meth:`to`, etc.
.. note::
As per the example above, an ``__init__()`` call to the parent class
must be made before assignment on the child.
:ivar training: Boolean represents whether this module is in training or
evaluation mode.
:vartype training: bool
"""
dump_patches: bool = False
_version: int = 1
r"""This allows better BC support for :meth:`load_state_dict`. In
:meth:`state_dict`, the version number will be saved as in the attribute
`_metadata` of the returned state dict, and thus pickled. `_metadata` is a
dictionary with keys that follow the naming convention of state dict. See
``_load_from_state_dict`` on how to use this information in loading.
If new parameters/buffers are added/removed from a module, this number shall
be bumped, and the module's `_load_from_state_dict` method can compare the
version number and do appropriate changes if the state dict is from before
the change."""
training: bool
_parameters: dict[str, Optional[Parameter]]
_buffers: dict[str, Optional[Tensor]]
_non_persistent_buffers_set: set[str]
_backward_pre_hooks: dict[int, Callable]
_backward_hooks: dict[int, Callable]
_is_full_backward_hook: Optional[bool]
_forward_hooks: dict[int, Callable]
# Marks whether the corresponding _forward_hooks accept kwargs or not.
# As JIT does not support set[int], this dict is used as a set, where all
# hooks represented in this dict accept kwargs.
_forward_hooks_with_kwargs: dict[int, bool]
# forward hooks that should always be called even if an exception is raised
_forward_hooks_always_called: dict[int, bool]
_forward_pre_hooks: dict[int, Callable]
# Marks whether the corresponding _forward_hooks accept kwargs or not.
# As JIT does not support set[int], this dict is used as a set, where all
# hooks represented in this dict accept kwargs.
_forward_pre_hooks_with_kwargs: dict[int, bool]
_state_dict_hooks: dict[int, Callable]
_load_state_dict_pre_hooks: dict[int, Callable]
_state_dict_pre_hooks: dict[int, Callable]
_load_state_dict_post_hooks: dict[int, Callable]
_modules: dict[str, Optional["Module"]]
call_super_init: bool = False
_compiled_call_impl: Optional[Callable] = None
def __init__(self, *args, **kwargs) -> None:
"""Initialize internal Module state, shared by both nn.Module and ScriptModule."""
torch._C._log_api_usage_once("python.nn_module")
# Backward compatibility: no args used to be allowed when call_super_init=False
if self.call_super_init is False and bool(kwargs):
raise TypeError(
f"{type(self).__name__}.__init__() got an unexpected keyword argument '{next(iter(kwargs))}'"
""
)
if self.call_super_init is False and bool(args):
raise TypeError(
f"{type(self).__name__}.__init__() takes 1 positional argument but {len(args) + 1} were"
" given"
)
"""
Calls super().__setattr__('a', a) instead of the typical self.a = a
to avoid Module.__setattr__ overhead. Module's __setattr__ has special
handling for parameters, submodules, and buffers but simply calls into
super().__setattr__ for all other attributes.
"""
super().__setattr__("training", True)
super().__setattr__("_parameters", {})
super().__setattr__("_buffers", {})
super().__setattr__("_non_persistent_buffers_set", set())
super().__setattr__("_backward_pre_hooks", OrderedDict())
super().__setattr__("_backward_hooks", OrderedDict())
super().__setattr__("_is_full_backward_hook", None)
super().__setattr__("_forward_hooks", OrderedDict())
super().__setattr__("_forward_hooks_with_kwargs", OrderedDict())
super().__setattr__("_forward_hooks_always_called", OrderedDict())
super().__setattr__("_forward_pre_hooks", OrderedDict())
super().__setattr__("_forward_pre_hooks_with_kwargs", OrderedDict())
super().__setattr__("_state_dict_hooks", OrderedDict())
super().__setattr__("_state_dict_pre_hooks", OrderedDict())
super().__setattr__("_load_state_dict_pre_hooks", OrderedDict())
super().__setattr__("_load_state_dict_post_hooks", OrderedDict())
super().__setattr__("_modules", {})
if self.call_super_init:
super().__init__(*args, **kwargs)
forward: Callable[..., Any] = _forward_unimplemented
def register_buffer(
self, name: str, tensor: Optional[Tensor], persistent: bool = True
) -> None:
r"""Add a buffer to the module.
This is typically used to register a buffer that should not to be
considered a model parameter. For example, BatchNorm's ``running_mean``
is not a parameter, but is part of the module's state. Buffers, by
default, are persistent and will be saved alongside parameters. This
behavior can be changed by setting :attr:`persistent` to ``False``. The
only difference between a persistent buffer and a non-persistent buffer
is that the latter will not be a part of this module's
:attr:`state_dict`.
Buffers can be accessed as attributes using given names.
Args:
name (str): name of the buffer. The buffer can be accessed
from this module using the given name
tensor (Tensor or None): buffer to be registered. If ``None``, then operations
that run on buffers, such as :attr:`cuda`, are ignored. If ``None``,
the buffer is **not** included in the module's :attr:`state_dict`.
persistent (bool): whether the buffer is part of this module's
:attr:`state_dict`.
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> self.register_buffer('running_mean', torch.zeros(num_features))
"""
if persistent is False and isinstance(self, torch.jit.ScriptModule):
raise RuntimeError("ScriptModule does not support non-persistent buffers")
if "_buffers" not in self.__dict__:
raise AttributeError("cannot assign buffer before Module.__init__() call")
elif not isinstance(name, str):
raise TypeError(
f"buffer name should be a string. Got {torch.typename(name)}"
)
elif "." in name:
raise KeyError('buffer name can\'t contain "."')
elif name == "":
raise KeyError('buffer name can\'t be empty string ""')
elif hasattr(self, name) and name not in self._buffers:
raise KeyError(f"attribute '{name}' already exists")
elif tensor is not None and not isinstance(tensor, torch.Tensor):
raise TypeError(
f"cannot assign '{torch.typename(tensor)}' object to buffer '{name}' "
"(torch Tensor or None required)"
)
else:
for hook in _global_buffer_registration_hooks.values():
output = hook(self, name, tensor)
if output is not None:
tensor = output
self._buffers[name] = tensor
if persistent:
self._non_persistent_buffers_set.discard(name)
else:
self._non_persistent_buffers_set.add(name)
def register_parameter(self, name: str, param: Optional[Parameter]) -> None:
r"""Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args:
name (str): name of the parameter. The parameter can be accessed
from this module using the given name
param (Parameter or None): parameter to be added to the module. If
``None``, then operations that run on parameters, such as :attr:`cuda`,
are ignored. If ``None``, the parameter is **not** included in the
module's :attr:`state_dict`.
"""
if "_parameters" not in self.__dict__:
raise AttributeError(
"cannot assign parameter before Module.__init__() call"
)
elif not isinstance(name, str):
raise TypeError(
f"parameter name should be a string. Got {torch.typename(name)}"
)
elif "." in name:
raise KeyError('parameter name can\'t contain "."')
elif name == "":
raise KeyError('parameter name can\'t be empty string ""')
elif hasattr(self, name) and name not in self._parameters:
raise KeyError(f"attribute '{name}' already exists")
if param is None:
self._parameters[name] = None
elif not isinstance(param, Parameter):
raise TypeError(
f"cannot assign '{torch.typename(param)}' object to parameter '{name}' "
"(torch.nn.Parameter or None required)"
)
elif param.grad_fn:
raise ValueError(
f"Cannot assign non-leaf Tensor to parameter '{name}'. Model "
f"parameters must be created explicitly. To express '{name}' "
"as a function of another Tensor, compute the value in "
"the forward() method."
)
else:
for hook in _global_parameter_registration_hooks.values():
output = hook(self, name, param)
if output is not None:
param = output
self._parameters[name] = param
def add_module(self, name: str, module: Optional["Module"]) -> None:
r"""Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args:
name (str): name of the child module. The child module can be
accessed from this module using the given name
module (Module): child module to be added to the module.
"""
if not isinstance(module, Module) and module is not None:
raise TypeError(f"{torch.typename(module)} is not a Module subclass")
elif not isinstance(name, str):
raise TypeError(
f"module name should be a string. Got {torch.typename(name)}"
)
elif hasattr(self, name) and name not in self._modules:
raise KeyError(f"attribute '{name}' already exists")
elif "." in name:
raise KeyError(f'module name can\'t contain ".", got: {name}')
elif name == "":
raise KeyError('module name can\'t be empty string ""')
for hook in _global_module_registration_hooks.values():
output = hook(self, name, module)
if output is not None:
module = output
self._modules[name] = module
def register_module(self, name: str, module: Optional["Module"]) -> None:
r"""Alias for :func:`add_module`."""
self.add_module(name, module)
def get_submodule(self, target: str) -> "Module":
"""Return the submodule given by ``target`` if it exists, otherwise throw an error.
For example, let's say you have an ``nn.Module`` ``A`` that
looks like this:
.. code-block:: text
A(
(net_b): Module(
(net_c): Module(
(conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))
)
(linear): Linear(in_features=100, out_features=200, bias=True)
)
)
(The diagram shows an ``nn.Module`` ``A``. ``A`` which has a nested
submodule ``net_b``, which itself has two submodules ``net_c``
and ``linear``. ``net_c`` then has a submodule ``conv``.)
To check whether or not we have the ``linear`` submodule, we
would call ``get_submodule("net_b.linear")``. To check whether
we have the ``conv`` submodule, we would call
``get_submodule("net_b.net_c.conv")``.
The runtime of ``get_submodule`` is bounded by the degree
of module nesting in ``target``. A query against
``named_modules`` achieves the same result, but it is O(N) in
the number of transitive modules. So, for a simple check to see
if some submodule exists, ``get_submodule`` should always be
used.
Args:
target: The fully-qualified string name of the submodule
to look for. (See above example for how to specify a
fully-qualified string.)
Returns:
torch.nn.Module: The submodule referenced by ``target``
Raises:
AttributeError: If at any point along the path resulting from
the target string the (sub)path resolves to a non-existent
attribute name or an object that is not an instance of ``nn.Module``.
"""
if target == "":
return self
atoms: list[str] = target.split(".")
mod: torch.nn.Module = self
for item in atoms:
if not hasattr(mod, item):
raise AttributeError(
mod._get_name() + " has no attribute `" + item + "`"
)
mod = getattr(mod, item)
if not isinstance(mod, torch.nn.Module):
raise AttributeError("`" + item + "` is not an nn.Module")
return mod
def set_submodule(
self, target: str, module: "Module", strict: bool = False
) -> None:
"""
Set the submodule given by ``target`` if it exists, otherwise throw an error.
.. note::
If ``strict`` is set to ``False`` (default), the method will replace an existing submodule
or create a new submodule if the parent module exists. If ``strict`` is set to ``True``,
the method will only attempt to replace an existing submodule and throw an error if
the submodule does not exist.
For example, let's say you have an ``nn.Module`` ``A`` that
looks like this:
.. code-block:: text
A(
(net_b): Module(
(net_c): Module(
(conv): Conv2d(3, 3, 3)
)
(linear): Linear(3, 3)
)
)
(The diagram shows an ``nn.Module`` ``A``. ``A`` has a nested
submodule ``net_b``, which itself has two submodules ``net_c``
and ``linear``. ``net_c`` then has a submodule ``conv``.)
To override the ``Conv2d`` with a new submodule ``Linear``, you
could call ``set_submodule("net_b.net_c.conv", nn.Linear(1, 1))``
where ``strict`` could be ``True`` or ``False``
To add a new submodule ``Conv2d`` to the existing ``net_b`` module,
you would call ``set_submodule("net_b.conv", nn.Conv2d(1, 1, 1))``.
In the above if you set ``strict=True`` and call
``set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True)``, an AttributeError
will be raised because ``net_b`` does not have a submodule named ``conv``.
Args:
target: The fully-qualified string name of the submodule
to look for. (See above example for how to specify a
fully-qualified string.)
module: The module to set the submodule to.
strict: If ``False``, the method will replace an existing submodule
or create a new submodule if the parent module exists. If ``True``,
the method will only attempt to replace an existing submodule and throw an error
if the submodule doesn't already exist.
Raises:
ValueError: If the ``target`` string is empty or if ``module`` is not an instance of ``nn.Module``.
AttributeError: If at any point along the path resulting from
the ``target`` string the (sub)path resolves to a non-existent
attribute name or an object that is not an instance of ``nn.Module``.
"""
if target == "":
raise ValueError("Cannot set the submodule without a target name!")
atoms: list[str] = target.split(".")
if not isinstance(module, torch.nn.Module):
raise ValueError(
"`" + "module" + f"` is not an nn.Module, found {type(module)}"
)
if len(atoms) == 1:
parent: torch.nn.Module = self
else:
parent_key = ".".join(atoms[:-1])
parent = self.get_submodule(parent_key)
if strict and not hasattr(parent, atoms[-1]):
raise AttributeError(
parent._get_name() + " has no attribute `" + atoms[-1] + "`"
)
if hasattr(parent, atoms[-1]):
mod = getattr(parent, atoms[-1])
if not isinstance(mod, torch.nn.Module):
raise AttributeError("`" + atoms[-1] + "` is not an nn.Module")
setattr(parent, atoms[-1], module)
def get_parameter(self, target: str) -> "Parameter":
"""Return the parameter given by ``target`` if it exists, otherwise throw an error.
See the docstring for ``get_submodule`` for a more detailed
explanation of this method's functionality as well as how to
correctly specify ``target``.
Args:
target: The fully-qualified string name of the Parameter
to look for. (See ``get_submodule`` for how to specify a
fully-qualified string.)
Returns:
torch.nn.Parameter: The Parameter referenced by ``target``
Raises:
AttributeError: If the target string references an invalid
path or resolves to something that is not an
``nn.Parameter``
"""
module_path, _, param_name = target.rpartition(".")
mod: torch.nn.Module = self.get_submodule(module_path)
if not hasattr(mod, param_name):
raise AttributeError(
mod._get_name() + " has no attribute `" + param_name + "`"
)
param: torch.nn.Parameter = getattr(mod, param_name)
if not isinstance(param, torch.nn.Parameter):
raise AttributeError("`" + param_name + "` is not an nn.Parameter")
return param
def get_buffer(self, target: str) -> "Tensor":
"""Return the buffer given by ``target`` if it exists, otherwise throw an error.
See the docstring for ``get_submodule`` for a more detailed
explanation of this method's functionality as well as how to
correctly specify ``target``.
Args:
target: The fully-qualified string name of the buffer
to look for. (See ``get_submodule`` for how to specify a
fully-qualified string.)
Returns:
torch.Tensor: The buffer referenced by ``target``
Raises:
AttributeError: If the target string references an invalid
path or resolves to something that is not a
buffer
"""
module_path, _, buffer_name = target.rpartition(".")
mod: torch.nn.Module = self.get_submodule(module_path)
if not hasattr(mod, buffer_name):
raise AttributeError(
mod._get_name() + " has no attribute `" + buffer_name + "`"
)
buffer: torch.Tensor = getattr(mod, buffer_name)
if buffer_name not in mod._buffers:
raise AttributeError("`" + buffer_name + "` is not a buffer")
return buffer
def get_extra_state(self) -> Any:
"""Return any extra state to include in the module's state_dict.
Implement this and a corresponding :func:`set_extra_state` for your module
if you need to store extra state. This function is called when building the
module's `state_dict()`.
Note that extra state should be picklable to ensure working serialization
of the state_dict. We only provide backwards compatibility guarantees
for serializing Tensors; other objects may break backwards compatibility if
their serialized pickled form changes.
Returns:
object: Any extra state to store in the module's state_dict
"""
raise RuntimeError(
"Reached a code path in Module.get_extra_state() that should never be called. "
"Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml "
"to report this bug."
)
def set_extra_state(self, state: Any) -> None:
"""Set extra state contained in the loaded `state_dict`.
This function is called from :func:`load_state_dict` to handle any extra state
found within the `state_dict`. Implement this function and a corresponding
:func:`get_extra_state` for your module if you need to store extra state within its
`state_dict`.
Args:
state (dict): Extra state from the `state_dict`
"""
raise RuntimeError(
"Reached a code path in Module.set_extra_state() that should never be called. "
"Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml "
"to report this bug."
)
def _apply(self, fn, recurse=True):
if recurse:
for module in self.children():
module._apply(fn)
def compute_should_use_set_data(tensor, tensor_applied):
if torch._has_compatible_shallow_copy_type(tensor, tensor_applied):
# If the new tensor has compatible tensor type as the existing tensor,
# the current behavior is to change the tensor in-place using `.data =`,
# and the future behavior is to overwrite the existing tensor. However,
# changing the current behavior is a BC-breaking change, and we want it
# to happen in future releases. So for now we introduce the
# `torch.__future__.get_overwrite_module_params_on_conversion()`
# global flag to let the user control whether they want the future
# behavior of overwriting the existing tensor or not.
return not torch.__future__.get_overwrite_module_params_on_conversion()
else:
return False
should_use_swap_tensors = (
torch.__future__.get_swap_module_params_on_conversion()
)
for key, param in self._parameters.items():
if param is None:
continue
# Tensors stored in modules are graph leaves, and we don't want to
# track autograd history of `param_applied`, so we have to use
# `with torch.no_grad():`
with torch.no_grad():
param_applied = fn(param)
p_should_use_set_data = compute_should_use_set_data(param, param_applied)
# subclasses may have multiple child tensors so we need to use swap_tensors
p_should_use_swap_tensors = (
should_use_swap_tensors or is_traceable_wrapper_subclass(param_applied)
)
param_grad = param.grad
if p_should_use_swap_tensors:
try:
if param_grad is not None:
# Accessing param.grad makes its at::Tensor's use_count 2, which will prevent swapping.
# Decrement use count of the gradient by setting to None
param.grad = None
param_applied = torch.nn.Parameter(
param_applied, requires_grad=param.requires_grad
)
torch.utils.swap_tensors(param, param_applied)
except Exception as e:
if param_grad is not None:
param.grad = param_grad
raise RuntimeError(
f"_apply(): Couldn't swap {self._get_name()}.{key}"
) from e
out_param = param
elif p_should_use_set_data:
param.data = param_applied
out_param = param
else:
assert isinstance(param, Parameter)
assert param.is_leaf
out_param = Parameter(param_applied, param.requires_grad)
self._parameters[key] = out_param
if param_grad is not None:
with torch.no_grad():
grad_applied = fn(param_grad)
g_should_use_set_data = compute_should_use_set_data(
param_grad, grad_applied
)
if p_should_use_swap_tensors:
grad_applied.requires_grad_(param_grad.requires_grad)
try:
torch.utils.swap_tensors(param_grad, grad_applied)
except Exception as e:
raise RuntimeError(
f"_apply(): Couldn't swap {self._get_name()}.{key}.grad"
) from e
out_param.grad = param_grad
elif g_should_use_set_data:
assert out_param.grad is not None
out_param.grad.data = grad_applied
else:
assert param_grad.is_leaf
out_param.grad = grad_applied.requires_grad_(
param_grad.requires_grad
)
for key, buf in self._buffers.items():
if buf is not None:
self._buffers[key] = fn(buf)
return self
def apply(self: T, fn: Callable[["Module"], None]) -> T:
r"""Apply ``fn`` recursively to every submodule (as returned by ``.children()``) as well as self.
Typical use includes initializing the parameters of a model
(see also :ref:`nn-init-doc`).
Args:
fn (:class:`Module` -> None): function to be applied to each submodule
Returns:
Module: self
Example::
>>> @torch.no_grad()
>>> def init_weights(m):
>>> print(m)
>>> if type(m) == nn.Linear:
>>> m.weight.fill_(1.0)
>>> print(m.weight)
>>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
>>> net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
"""
for module in self.children():
module.apply(fn)
fn(self)
return self
def cuda(self: T, device: Optional[Union[int, device]] = None) -> T:
r"""Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So
it should be called before constructing the optimizer if the module will
live on GPU while being optimized.
.. note::
This method modifies the module in-place.
Args:
device (int, optional): if specified, all parameters will be
copied to that device
Returns:
Module: self
"""
return self._apply(lambda t: t.cuda(device))
def ipu(self: T, device: Optional[Union[int, device]] = None) -> T:
r"""Move all model parameters and buffers to the IPU.
This also makes associated parameters and buffers different objects. So
it should be called before constructing the optimizer if the module will
live on IPU while being optimized.
.. note::
This method modifies the module in-place.
Arguments:
device (int, optional): if specified, all parameters will be
copied to that device
Returns:
Module: self
"""
return self._apply(lambda t: t.ipu(device))
def xpu(self: T, device: Optional[Union[int, device]] = None) -> T:
r"""Move all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So
it should be called before constructing optimizer if the module will
live on XPU while being optimized.
.. note::
This method modifies the module in-place.
Arguments:
device (int, optional): if specified, all parameters will be
copied to that device
Returns:
Module: self
"""
return self._apply(lambda t: t.xpu(device))
def mtia(self: T, device: Optional[Union[int, device]] = None) -> T:
r"""Move all model parameters and buffers to the MTIA.
This also makes associated parameters and buffers different objects. So
it should be called before constructing the optimizer if the module will
live on MTIA while being optimized.
.. note::
This method modifies the module in-place.
Arguments:
device (int, optional): if specified, all parameters will be
copied to that device
Returns:
Module: self
"""
return self._apply(lambda t: t.mtia(device))
def cpu(self: T) -> T:
r"""Move all model parameters and buffers to the CPU.
.. note::
This method modifies the module in-place.
Returns:
Module: self
"""
return self._apply(lambda t: t.cpu())
def type(self: T, dst_type: Union[dtype, str]) -> T:
r"""Casts all parameters and buffers to :attr:`dst_type`.
.. note::
This method modifies the module in-place.
Args:
dst_type (type or string): the desired type
Returns:
Module: self
"""
return self._apply(lambda t: t.type(dst_type))
def float(self: T) -> T:
r"""Casts all floating point parameters and buffers to ``float`` datatype.
.. note::
This method modifies the module in-place.
Returns:
Module: self
"""
return self._apply(lambda t: t.float() if t.is_floating_point() else t)
def double(self: T) -> T:
r"""Casts all floating point parameters and buffers to ``double`` datatype.
.. note::
This method modifies the module in-place.
Returns:
Module: self
"""
return self._apply(lambda t: t.double() if t.is_floating_point() else t)
def half(self: T) -> T:
r"""Casts all floating point parameters and buffers to ``half`` datatype.
.. note::
This method modifies the module in-place.
Returns:
Module: self
"""
return self._apply(lambda t: t.half() if t.is_floating_point() else t)
def bfloat16(self: T) -> T:
r"""Casts all floating point parameters and buffers to ``bfloat16`` datatype.
.. note::
This method modifies the module in-place.
Returns:
Module: self
"""
return self._apply(lambda t: t.bfloat16() if t.is_floating_point() else t)
def to_empty(
self: T, *, device: Optional[DeviceLikeType], recurse: bool = True
) -> T:
r"""Move the parameters and buffers to the specified device without copying storage.
Args:
device (:class:`torch.device`): The desired device of the parameters
and buffers in this module.
recurse (bool): Whether parameters and buffers of submodules should
be recursively moved to the specified device.
Returns:
Module: self
"""
return self._apply(
lambda t: torch.empty_like(t, device=device), recurse=recurse
)
@overload
def to(
self,
device: Optional[DeviceLikeType] = ...,
dtype: Optional[dtype] = ...,
non_blocking: bool = ...,
) -> Self:
...
@overload
def to(self, dtype: dtype, non_blocking: bool = ...) -> Self:
...
@overload
def to(self, tensor: Tensor, non_blocking: bool = ...) -> Self:
...
def to(self, *args, **kwargs):
r"""Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False)
:noindex:
.. function:: to(dtype, non_blocking=False)
:noindex:
.. function:: to(tensor, non_blocking=False)
:noindex:
.. function:: to(memory_format=torch.channels_last)
:noindex:
Its signature is similar to :meth:`torch.Tensor.to`, but only accepts
floating point or complex :attr:`dtype`\ s. In addition, this method will
only cast the floating point or complex parameters and buffers to :attr:`dtype`
(if given). The integral parameters and buffers will be moved
:attr:`device`, if that is given, but with dtypes unchanged. When
:attr:`non_blocking` is set, it tries to convert/move asynchronously
with respect to the host if possible, e.g., moving CPU Tensors with
pinned memory to CUDA devices.
See below for examples.
.. note::
This method modifies the module in-place.
Args:
device (:class:`torch.device`): the desired device of the parameters
and buffers in this module
dtype (:class:`torch.dtype`): the desired floating point or complex dtype of
the parameters and buffers in this module
tensor (torch.Tensor): Tensor whose dtype and device are the desired
dtype and device for all parameters and buffers in this module
memory_format (:class:`torch.memory_format`): the desired memory
format for 4D parameters and buffers in this module (keyword
only argument)
Returns:
Module: self
Examples::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> linear = nn.Linear(2, 2)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
>>> linear.to(torch.double)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=torch.float64)
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1)
>>> gpu1 = torch.device("cuda:1")
>>> linear.to(gpu1, dtype=torch.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')
>>> cpu = torch.device("cpu")
>>> linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=torch.float16)
>>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble)
>>> linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128)
>>> linear(torch.ones(3, 2, dtype=torch.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
"""
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
*args, **kwargs
)
if dtype is not None:
if not (dtype.is_floating_point or dtype.is_complex):
raise TypeError(
"nn.Module.to only accepts floating point or complex "
f"dtypes, but got desired dtype={dtype}"
)
if dtype.is_complex:
warnings.warn(
"Complex modules are a new feature under active development whose design may change, "
"and some modules might not work as expected when using complex tensors as parameters or buffers. "
"Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml "
"if a complex module does not work as expected."
)
def convert(t):
try:
if convert_to_format is not None and t.dim() in (4, 5):
return t.to(
device,
dtype if t.is_floating_point() or t.is_complex() else None,
non_blocking,
memory_format=convert_to_format,
)
return t.to(
device,
dtype if t.is_floating_point() or t.is_complex() else None,
non_blocking,
)
except NotImplementedError as e:
if str(e) == "Cannot copy out of meta tensor; no data!":
raise NotImplementedError(
f"{e} Please use torch.nn.Module.to_empty() instead of torch.nn.Module.to() "
f"when moving module from meta to a different device."
) from None
else:
raise
return self._apply(convert)
def register_full_backward_pre_hook(
self,
hook: Callable[["Module", _grad_t], Union[None, _grad_t]],
prepend: bool = False,
) -> RemovableHandle:
r"""Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed.
The hook should have the following signature::
hook(module, grad_output) -> tuple[Tensor] or None
The :attr:`grad_output` is a tuple. The hook should
not modify its arguments, but it can optionally return a new gradient with
respect to the output that will be used in place of :attr:`grad_output` in
subsequent computations. Entries in :attr:`grad_output` will be ``None`` for
all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will
receive a view of each Tensor passed to the Module. Similarly the caller will receive a view
of each Tensor returned by the Module's forward function.
.. warning ::
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.
Args:
hook (Callable): The user-defined hook to be registered.
prepend (bool): If true, the provided ``hook`` will be fired before
all existing ``backward_pre`` hooks on this
:class:`torch.nn.Module`. Otherwise, the provided
``hook`` will be fired after all existing ``backward_pre`` hooks
on this :class:`torch.nn.Module`. Note that global
``backward_pre`` hooks registered with
:func:`register_module_full_backward_pre_hook` will fire before
all hooks registered by this method.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = RemovableHandle(self._backward_pre_hooks)
self._backward_pre_hooks[handle.id] = hook
if prepend:
self._backward_pre_hooks.move_to_end(handle.id, last=False) # type: ignore[attr-defined]
return handle
def register_backward_hook(
self, hook: Callable[["Module", _grad_t, _grad_t], Union[None, _grad_t]]
) -> RemovableHandle:
r"""Register a backward hook on the module.
This function is deprecated in favor of :meth:`~torch.nn.Module.register_full_backward_hook` and
the behavior of this function will change in future versions.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
if self._is_full_backward_hook is True:
raise RuntimeError(
"Cannot use both regular backward hooks and full backward hooks on a "
"single Module. Please use only one of them."
)
self._is_full_backward_hook = False
handle = RemovableHandle(self._backward_hooks)
self._backward_hooks[handle.id] = hook
return handle
def register_full_backward_hook(
self,
hook: Callable[["Module", _grad_t, _grad_t], Union[None, _grad_t]],
prepend: bool = False,
) -> RemovableHandle:
r"""Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module
are computed, i.e. the hook will execute if and only if the gradients with
respect to module outputs are computed. The hook should have the following
signature::
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The :attr:`grad_input` and :attr:`grad_output` are tuples that contain the gradients
with respect to the inputs and outputs respectively. The hook should
not modify its arguments, but it can optionally return a new gradient with
respect to the input that will be used in place of :attr:`grad_input` in
subsequent computations. :attr:`grad_input` will only correspond to the inputs given
as positional arguments and all kwarg arguments are ignored. Entries
in :attr:`grad_input` and :attr:`grad_output` will be ``None`` for all non-Tensor
arguments.
For technical reasons, when this hook is applied to a Module, its forward function will
receive a view of each Tensor passed to the Module. Similarly the caller will receive a view
of each Tensor returned by the Module's forward function.
.. warning ::
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.
Args:
hook (Callable): The user-defined hook to be registered.
prepend (bool): If true, the provided ``hook`` will be fired before
all existing ``backward`` hooks on this
:class:`torch.nn.Module`. Otherwise, the provided
``hook`` will be fired after all existing ``backward`` hooks on
this :class:`torch.nn.Module`. Note that global
``backward`` hooks registered with
:func:`register_module_full_backward_hook` will fire before
all hooks registered by this method.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
if self._is_full_backward_hook is False:
raise RuntimeError(
"Cannot use both regular backward hooks and full backward hooks on a "
"single Module. Please use only one of them."
)
self._is_full_backward_hook = True
handle = RemovableHandle(self._backward_hooks)
self._backward_hooks[handle.id] = hook
if prepend:
self._backward_hooks.move_to_end(handle.id, last=False) # type: ignore[attr-defined]
return handle
def _get_backward_hooks(self):
r"""Return the backward hooks for use in the call function.
It returns two lists, one with the full backward hooks and one with the non-full
backward hooks.
"""
full_backward_hooks: list[Callable] = []
if _global_is_full_backward_hook is True:
full_backward_hooks += _global_backward_hooks.values()
if self._is_full_backward_hook is True:
full_backward_hooks += self._backward_hooks.values()
non_full_backward_hooks: list[Callable] = []
if _global_is_full_backward_hook is False:
non_full_backward_hooks += _global_backward_hooks.values()
if self._is_full_backward_hook is False:
non_full_backward_hooks += self._backward_hooks.values()
return full_backward_hooks, non_full_backward_hooks
def _get_backward_pre_hooks(self):
backward_pre_hooks: list[Callable] = []
backward_pre_hooks += _global_backward_pre_hooks.values()
backward_pre_hooks += self._backward_pre_hooks.values()
return backward_pre_hooks
def _maybe_warn_non_full_backward_hook(self, inputs, result, grad_fn):
if not isinstance(result, torch.Tensor):
if not (
isinstance(result, tuple)
and all(isinstance(r, torch.Tensor) for r in result)
):
warnings.warn(
"Using non-full backward hooks on a Module that does not return a "
"single Tensor or a tuple of Tensors is deprecated and will be removed "
"in future versions. This hook will be missing some of the grad_output. "
"Please use register_full_backward_hook to get the documented behavior.",
FutureWarning,
stacklevel=2,
)
return
else:
result = (result,)
if not isinstance(inputs, torch.Tensor):
if not (
isinstance(inputs, tuple)
and all(isinstance(i, torch.Tensor) for i in inputs)
):
warnings.warn(
"Using non-full backward hooks on a Module that does not take as input a "
"single Tensor or a tuple of Tensors is deprecated and will be removed "
"in future versions. This hook will be missing some of the grad_input. "
"Please use register_full_backward_hook to get the documented behavior.",
FutureWarning,
stacklevel=2,
)
return
else:
inputs = (inputs,)
# At this point we are sure that inputs and result are tuple of Tensors
out_grad_fn = {r.grad_fn for r in result if r.grad_fn is not None}
if len(out_grad_fn) == 0 or (
len(out_grad_fn) == 1 and grad_fn not in out_grad_fn
):
warnings.warn(
"Using a non-full backward hook when outputs are nested in python data structure "
"is deprecated and will be removed in future versions. This hook will be missing "
"some grad_output.",
FutureWarning,
stacklevel=2,
)
elif len(out_grad_fn) > 1:
warnings.warn(
"Using a non-full backward hook when outputs are generated by different autograd Nodes "
"is deprecated and will be removed in future versions. This hook will be missing "
"some grad_output. Please use register_full_backward_hook to get the documented behavior.",
FutureWarning,
stacklevel=2,
)
else:
# At this point the grad_output part of the hook will most likely be correct
inputs_grad_fn = {i.grad_fn for i in inputs if i.grad_fn is not None}
next_functions = {n[0] for n in grad_fn.next_functions}
if inputs_grad_fn != next_functions:
warnings.warn(
"Using a non-full backward hook when the forward contains multiple autograd Nodes "
"is deprecated and will be removed in future versions. This hook will be missing "
"some grad_input. Please use register_full_backward_hook to get the documented "
"behavior.",
FutureWarning,
stacklevel=2,
)
def register_forward_pre_hook(
self,
hook: Union[
Callable[[T, tuple[Any, ...]], Optional[Any]],
Callable[
[T, tuple[Any, ...], dict[str, Any]],
Optional[tuple[Any, dict[str, Any]]],
],
],
*,
prepend: bool = False,
with_kwargs: bool = False,
) -> RemovableHandle:
r"""Register a forward pre-hook on the module.
The hook will be called every time before :func:`forward` is invoked.
If ``with_kwargs`` is false or not specified, the input contains only
the positional arguments given to the module. Keyword arguments won't be
passed to the hooks and only to the ``forward``. The hook can modify the
input. User can either return a tuple or a single modified value in the
hook. We will wrap the value into a tuple if a single value is returned
(unless that value is already a tuple). The hook should have the
following signature::
hook(module, args) -> None or modified input
If ``with_kwargs`` is true, the forward pre-hook will be passed the
kwargs given to the forward function. And if the hook modifies the
input, both the args and kwargs should be returned. The hook should have
the following signature::
hook(module, args, kwargs) -> None or a tuple of modified input and kwargs
Args:
hook (Callable): The user defined hook to be registered.
prepend (bool): If true, the provided ``hook`` will be fired before
all existing ``forward_pre`` hooks on this
:class:`torch.nn.Module`. Otherwise, the provided
``hook`` will be fired after all existing ``forward_pre`` hooks
on this :class:`torch.nn.Module`. Note that global
``forward_pre`` hooks registered with
:func:`register_module_forward_pre_hook` will fire before all
hooks registered by this method.
Default: ``False``
with_kwargs (bool): If true, the ``hook`` will be passed the kwargs
given to the forward function.
Default: ``False``
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = RemovableHandle(
self._forward_pre_hooks, extra_dict=self._forward_pre_hooks_with_kwargs
)
self._forward_pre_hooks[handle.id] = hook
if with_kwargs:
self._forward_pre_hooks_with_kwargs[handle.id] = True
if prepend:
self._forward_pre_hooks.move_to_end(handle.id, last=False) # type: ignore[attr-defined]
return handle
def register_forward_hook(
self,
hook: Union[
Callable[[T, tuple[Any, ...], Any], Optional[Any]],
Callable[[T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]],
],
*,
prepend: bool = False,
with_kwargs: bool = False,
always_call: bool = False,
) -> RemovableHandle:
r"""Register a forward hook on the module.
The hook will be called every time after :func:`forward` has computed an output.
If ``with_kwargs`` is ``False`` or not specified, the input contains only
the positional arguments given to the module. Keyword arguments won't be
passed to the hooks and only to the ``forward``. The hook can modify the
output. It can modify the input inplace but it will not have effect on
forward since this is called after :func:`forward` is called. The hook
should have the following signature::
hook(module, args, output) -> None or modified output
If ``with_kwargs`` is ``True``, the forward hook will be passed the
``kwargs`` given to the forward function and be expected to return the
output possibly modified. The hook should have the following signature::
hook(module, args, kwargs, output) -> None or modified output
Args:
hook (Callable): The user defined hook to be registered.
prepend (bool): If ``True``, the provided ``hook`` will be fired
before all existing ``forward`` hooks on this
:class:`torch.nn.Module`. Otherwise, the provided
``hook`` will be fired after all existing ``forward`` hooks on
this :class:`torch.nn.Module`. Note that global
``forward`` hooks registered with
:func:`register_module_forward_hook` will fire before all hooks
registered by this method.
Default: ``False``
with_kwargs (bool): If ``True``, the ``hook`` will be passed the
kwargs given to the forward function.
Default: ``False``
always_call (bool): If ``True`` the ``hook`` will be run regardless of
whether an exception is raised while calling the Module.
Default: ``False``
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = RemovableHandle(
self._forward_hooks,
extra_dict=[
self._forward_hooks_with_kwargs,
self._forward_hooks_always_called,
],
)
self._forward_hooks[handle.id] = hook
if with_kwargs:
self._forward_hooks_with_kwargs[handle.id] = True
if always_call:
self._forward_hooks_always_called[handle.id] = True
if prepend:
self._forward_hooks.move_to_end(handle.id, last=False) # type: ignore[attr-defined]
return handle
def _slow_forward(self, *input, **kwargs):
tracing_state = torch._C._get_tracing_state()
if not tracing_state or isinstance(self.forward, torch._C.ScriptMethod):
return self.forward(*input, **kwargs)
recording_scopes = torch.jit._trace._trace_module_map is not None
if recording_scopes:
# type ignore was added because at this point one knows that
# torch.jit._trace._trace_module_map is not Optional and has type Dict[Any, Any]
name = torch.jit._trace._trace_module_map[self] if self in torch.jit._trace._trace_module_map else None # type: ignore[index, operator] # noqa: B950
if name:
tracing_state.push_scope(name)
else:
recording_scopes = False
try:
result = self.forward(*input, **kwargs)
finally:
if recording_scopes:
tracing_state.pop_scope()
return result
def _wrapped_call_impl(self, *args, **kwargs):
if self._compiled_call_impl is not None:
return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc]
else:
return self._call_impl(*args, **kwargs)
# torchrec tests the code consistency with the following code
# fmt: off
def _call_impl(self, *args, **kwargs):
forward_call = (self._slow_forward if torch._C._get_tracing_state() else self.forward)
# If we don't have any hooks, we want to skip the rest of the logic in
# this function, and just call forward.
if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
or _global_backward_pre_hooks or _global_backward_hooks
or _global_forward_hooks or _global_forward_pre_hooks):
return forward_call(*args, **kwargs)
result = None
called_always_called_hooks = set()
def inner():
nonlocal result, args, kwargs
full_backward_hooks, non_full_backward_hooks = [], []
backward_pre_hooks = []
if self._backward_pre_hooks or _global_backward_pre_hooks:
backward_pre_hooks = self._get_backward_pre_hooks()
if self._backward_hooks or _global_backward_hooks:
full_backward_hooks, non_full_backward_hooks = self._get_backward_hooks()
if _global_forward_pre_hooks or self._forward_pre_hooks:
for hook_id, hook in (
*_global_forward_pre_hooks.items(),
*self._forward_pre_hooks.items(),
):
if hook_id in self._forward_pre_hooks_with_kwargs:
args_kwargs_result = hook(self, args, kwargs) # type: ignore[misc]
if args_kwargs_result is not None:
if isinstance(args_kwargs_result, tuple) and len(args_kwargs_result) == 2:
args, kwargs = args_kwargs_result
else:
raise RuntimeError(
"forward pre-hook must return None or a tuple "
f"of (new_args, new_kwargs), but got {args_kwargs_result}."
)
else:
args_result = hook(self, args)
if args_result is not None:
if not isinstance(args_result, tuple):
args_result = (args_result,)
args = args_result
bw_hook = None
if full_backward_hooks or backward_pre_hooks:
bw_hook = BackwardHook(self, full_backward_hooks, backward_pre_hooks)
args = bw_hook.setup_input_hook(args)
result = forward_call(*args, **kwargs)
if _global_forward_hooks or self._forward_hooks:
for hook_id, hook in (
*_global_forward_hooks.items(),
*self._forward_hooks.items(),
):
# mark that always called hook is run
if hook_id in self._forward_hooks_always_called or hook_id in _global_forward_hooks_always_called:
called_always_called_hooks.add(hook_id)
if hook_id in self._forward_hooks_with_kwargs or hook_id in _global_forward_hooks_with_kwargs:
hook_result = hook(self, args, kwargs, result)
else:
hook_result = hook(self, args, result)
if hook_result is not None:
result = hook_result
if bw_hook:
if not isinstance(result, (torch.Tensor, tuple)):
warnings.warn("For backward hooks to be called,"
" module output should be a Tensor or a tuple of Tensors"
f" but received {type(result)}")
result = bw_hook.setup_output_hook(result)
# Handle the non-full backward hooks
if non_full_backward_hooks:
var = result
while not isinstance(var, torch.Tensor):
if isinstance(var, dict):
var = next(v for v in var.values() if isinstance(v, torch.Tensor))
else:
var = var[0]
grad_fn = var.grad_fn
if grad_fn is not None:
for hook in non_full_backward_hooks:
grad_fn.register_hook(_WrappedHook(hook, self))
self._maybe_warn_non_full_backward_hook(args, result, grad_fn)
return result
# This is technically not behavior equivalent when compiling, but it's
# incredibly unlikely we will ever support throwing an exception in NN
# module, and then catching it here, and then reraising it, and then
# catching it again, and expecting the resulting frame to be compiled.
# The reraise here just gunks up our exception handling for no good
# reason. Don't try to run the always called hooks in event of
# exception.
if torch.compiler.is_compiling():
return inner()
try:
return inner()
except Exception:
# run always called hooks if they have not already been run
# For now only forward hooks have the always_call option but perhaps
# this functionality should be added to full backward hooks as well.
for hook_id, hook in _global_forward_hooks.items():
if hook_id in _global_forward_hooks_always_called and hook_id not in called_always_called_hooks: # type: ignore[possibly-undefined]
try:
hook_result = hook(self, args, result) # type: ignore[possibly-undefined]
if hook_result is not None:
result = hook_result
except Exception as e:
warnings.warn("global module forward hook with ``always_call=True`` raised an exception "
f"that was silenced as another error was raised in forward: {str(e)}")
continue
for hook_id, hook in self._forward_hooks.items():
if hook_id in self._forward_hooks_always_called and hook_id not in called_always_called_hooks: # type: ignore[possibly-undefined]
try:
if hook_id in self._forward_hooks_with_kwargs:
hook_result = hook(self, args, kwargs, result) # type: ignore[possibly-undefined]
else:
hook_result = hook(self, args, result) # type: ignore[possibly-undefined]
if hook_result is not None:
result = hook_result
except Exception as e:
warnings.warn("module forward hook with ``always_call=True`` raised an exception "
f"that was silenced as another error was raised in forward: {str(e)}")
continue
# raise exception raised in try block
raise
# fmt: on
__call__: Callable[..., Any] = _wrapped_call_impl
def __getstate__(self):
state = self.__dict__.copy()
state.pop("_compiled_call_impl", None)
return state
def __setstate__(self, state):
self.__dict__.update(state)
# Support loading old checkpoints that don't have the following attrs:
if "_forward_pre_hooks" not in self.__dict__:
self._forward_pre_hooks = OrderedDict()
if "_forward_pre_hooks_with_kwargs" not in self.__dict__:
self._forward_pre_hooks_with_kwargs = OrderedDict()
if "_forward_hooks_with_kwargs" not in self.__dict__:
self._forward_hooks_with_kwargs = OrderedDict()
if "_forward_hooks_always_called" not in self.__dict__:
self._forward_hooks_always_called = OrderedDict()
if "_state_dict_hooks" not in self.__dict__:
self._state_dict_hooks = OrderedDict()
if "_state_dict_pre_hooks" not in self.__dict__:
self._state_dict_pre_hooks = OrderedDict()
if "_load_state_dict_pre_hooks" not in self.__dict__:
self._load_state_dict_pre_hooks = OrderedDict()
if "_load_state_dict_post_hooks" not in self.__dict__:
self._load_state_dict_post_hooks = OrderedDict()
if "_non_persistent_buffers_set" not in self.__dict__:
self._non_persistent_buffers_set = set()
if "_is_full_backward_hook" not in self.__dict__:
self._is_full_backward_hook = None
if "_backward_pre_hooks" not in self.__dict__:
self._backward_pre_hooks = OrderedDict()
# It is crucial that the return type is not annotated as `Any`, otherwise type checking
# on `torch.nn.Module` and all its subclasses is largely disabled as a result. See:
# https://github.com/pytorch/pytorch/pull/115074
def __getattr__(self, name: str) -> Union[Tensor, "Module"]:
if "_parameters" in self.__dict__:
_parameters = self.__dict__["_parameters"]
if name in _parameters:
return _parameters[name]
if "_buffers" in self.__dict__:
_buffers = self.__dict__["_buffers"]
if name in _buffers:
return _buffers[name]
if "_modules" in self.__dict__:
modules = self.__dict__["_modules"]
if name in modules:
return modules[name]
raise AttributeError(
f"'{type(self).__name__}' object has no attribute '{name}'"
)
def __setattr__(self, name: str, value: Union[Tensor, "Module"]) -> None:
def remove_from(*dicts_or_sets):
for d in dicts_or_sets:
if name in d:
if isinstance(d, dict):
del d[name]
else:
d.discard(name)
params = self.__dict__.get("_parameters")
if isinstance(value, Parameter):
if params is None:
raise AttributeError(
"cannot assign parameters before Module.__init__() call"
)
remove_from(
self.__dict__,
self._buffers,
self._modules,
self._non_persistent_buffers_set,
)
self.register_parameter(name, value)
elif params is not None and name in params:
if value is not None:
raise TypeError(
f"cannot assign '{torch.typename(value)}' as parameter '{name}' "
"(torch.nn.Parameter or None expected)"
)
self.register_parameter(name, value)
else:
modules = self.__dict__.get("_modules")
if isinstance(value, Module):
if modules is None:
raise AttributeError(
"cannot assign module before Module.__init__() call"
)
remove_from(
self.__dict__,
self._parameters,
self._buffers,
self._non_persistent_buffers_set,
)
for hook in _global_module_registration_hooks.values():
output = hook(self, name, value)
if output is not None:
value = output
modules[name] = value
elif modules is not None and name in modules:
if value is not None:
raise TypeError(
f"cannot assign '{torch.typename(value)}' as child module '{name}' "
"(torch.nn.Module or None expected)"
)
for hook in _global_module_registration_hooks.values():
output = hook(self, name, value)
if output is not None:
value = output
modules[name] = value
else:
buffers = self.__dict__.get("_buffers")
if isinstance(value, Buffer) or buffers is not None and name in buffers:
if value is not None and not isinstance(value, torch.Tensor):
raise TypeError(
f"cannot assign '{torch.typename(value)}' as buffer '{name}' "
"(torch.nn.Buffer, torch.Tensor or None expected)"
)
if isinstance(value, Buffer):
persistent = value.persistent
else:
persistent = name not in self._non_persistent_buffers_set
# === HACK ===
# This whole block below should just be:
# self.register_buffer(name, value, persistent)
# But to support subclasses of nn.Module that (wrongfully) implement a
# register_buffer() method that doesn't have the "persistent"
# argument. Only pass it in if it is accepted otherwise assume
# it is always true
if self.register_buffer is torch.nn.Module.register_buffer:
self.register_buffer(name, value, persistent)
else:
sign = inspect.signature(self.register_buffer)
if "persistent" in sign.parameters:
self.register_buffer(name, value, persistent)
else:
if not persistent:
raise RuntimeError(
"Registering a non-persistent buffer "
"on a Module subclass that implements "
"register_buffer() without the persistent "
"argument is not allowed."
)
# Assume that the implementation without the argument has the
# behavior from before the argument was added: persistent=True
self.register_buffer(name, value)
# === HACK END ===
else:
super().__setattr__(name, value)
def __delattr__(self, name):
if name in self._parameters:
del self._parameters[name]
elif name in self._buffers:
del self._buffers[name]
self._non_persistent_buffers_set.discard(name)
elif name in self._modules:
del self._modules[name]
else:
super().__delattr__(name)
def _register_state_dict_hook(self, hook):
r"""Register a post-hook for the :meth:`~torch.nn.Module.state_dict` method.
It should have the following signature::
hook(module, state_dict, prefix, local_metadata) -> None or state_dict
The registered hooks can modify the ``state_dict`` inplace or return a new one.
If a new ``state_dict`` is returned, it will only be respected if it is the root
module that :meth:`~nn.Module.state_dict` is called from.
"""
if getattr(hook, "_from_public_api", False):
raise RuntimeError(
"Cannot register the same function as the state dict post hook that was "
"previously registered via register_state_dict_post_hook"
)
handle = RemovableHandle(self._state_dict_hooks)
self._state_dict_hooks[handle.id] = hook
return handle
def register_state_dict_post_hook(self, hook):
r"""Register a post-hook for the :meth:`~torch.nn.Module.state_dict` method.
It should have the following signature::
hook(module, state_dict, prefix, local_metadata) -> None
The registered hooks can modify the ``state_dict`` inplace.
"""
# In _register_state_dict_hook there was a bug described in
# https://github.com/pytorch/pytorch/issues/117437 where the return value
# was only respected for the root module but not child submodules.
# We fix this in this public version by only allowing inplace modifications on
# the state_dict by the hook. However, since hooks registered via both these
# APIs will be added to `_state_dict_hooks` and the type of `_state_dict_hooks`
# cannot be changed due to many dependencies on it, we mark a hook
# as being registered via the public API by setting `_from_public_api` on it.
# In the implementation of `state_dict`, if the callable does not have this
# flag, the old behavior of respecting the return value will be preserved
# for the root module, otherwise, we ensure that the hook returns None.
hook._from_public_api = True
handle = RemovableHandle(self._state_dict_hooks)
self._state_dict_hooks[handle.id] = hook
return handle
def register_state_dict_pre_hook(self, hook):
r"""Register a pre-hook for the :meth:`~torch.nn.Module.state_dict` method.
It should have the following signature::
hook(module, prefix, keep_vars) -> None
The registered hooks can be used to perform pre-processing before the ``state_dict``
call is made.
"""
handle = RemovableHandle(self._state_dict_pre_hooks)
self._state_dict_pre_hooks[handle.id] = hook
return handle
def _save_to_state_dict(self, destination, prefix, keep_vars):
r"""Save module state to the `destination` dictionary.
The `destination` dictionary will contain the state
of the module, but not its descendants. This is called on every
submodule in :meth:`~torch.nn.Module.state_dict`.
In rare cases, subclasses can achieve class-specific behavior by
overriding this method with custom logic.
Args:
destination (dict): a dict where state will be stored
prefix (str): the prefix for parameters and buffers used in this
module
"""
for name, param in self._parameters.items():
if param is not None:
destination[prefix + name] = param if keep_vars else param.detach()
for name, buf in self._buffers.items():
if buf is not None and name not in self._non_persistent_buffers_set:
destination[prefix + name] = buf if keep_vars else buf.detach()
extra_state_key = prefix + _EXTRA_STATE_KEY_SUFFIX
if (
getattr(self.__class__, "get_extra_state", Module.get_extra_state)
is not Module.get_extra_state
):
destination[extra_state_key] = self.get_extra_state()
# The user can pass an optional arbitrary mappable object to `state_dict`, in which case `state_dict` returns
# back that same object. But if they pass nothing, an `OrderedDict` is created and returned.
T_destination = TypeVar("T_destination", bound=dict[str, Any])
@overload
def state_dict(
self, *, destination: T_destination, prefix: str = ..., keep_vars: bool = ...
) -> T_destination:
...
@overload
def state_dict(self, *, prefix: str = ..., keep_vars: bool = ...) -> dict[str, Any]:
...
# TODO: Change `*args` to `*` and remove the corresponding warning in docs when BC allows.
# Also remove the logic for arg parsing together.
def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
r"""Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are
included. Keys are corresponding parameter and buffer names.
Parameters and buffers set to ``None`` are not included.
.. note::
The returned object is a shallow copy. It contains references
to the module's parameters and buffers.
.. warning::
Currently ``state_dict()`` also accepts positional arguments for
``destination``, ``prefix`` and ``keep_vars`` in order. However,
this is being deprecated and keyword arguments will be enforced in
future releases.
.. warning::
Please avoid the use of argument ``destination`` as it is not
designed for end-users.
Args:
destination (dict, optional): If provided, the state of module will
be updated into the dict and the same object is returned.
Otherwise, an ``OrderedDict`` will be created and returned.
Default: ``None``.
prefix (str, optional): a prefix added to parameter and buffer
names to compose the keys in state_dict. Default: ``''``.
keep_vars (bool, optional): by default the :class:`~torch.Tensor` s
returned in the state dict are detached from autograd. If it's
set to ``True``, detaching will not be performed.
Default: ``False``.
Returns:
dict:
a dictionary containing a whole state of the module
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> module.state_dict().keys()
['bias', 'weight']
"""
# TODO: Remove `args` and the parsing logic when BC allows.
if len(args) > 0:
# DeprecationWarning is ignored by default
warnings.warn(
"Positional args are being deprecated, use kwargs instead. Refer to "
"https://pytorch.org/docs/main/generated/torch.nn.Module.html#torch.nn.Module.state_dict"
" for details.",
FutureWarning,
stacklevel=2,
)
if destination is None:
destination = args[0]
if len(args) > 1 and prefix == "":
prefix = args[1]
if len(args) > 2 and keep_vars is False:
keep_vars = args[2]
if destination is None:
destination = OrderedDict()
destination._metadata = OrderedDict()
local_metadata = dict(version=self._version)
if hasattr(destination, "_metadata"):
destination._metadata[prefix[:-1]] = local_metadata
for hook in self._state_dict_pre_hooks.values():
hook(self, prefix, keep_vars)
self._save_to_state_dict(destination, prefix, keep_vars)
for name, module in self._modules.items():
if module is not None:
module.state_dict(
destination=destination,
prefix=prefix + name + ".",
keep_vars=keep_vars,
)
for hook in self._state_dict_hooks.values():
hook_result = hook(self, destination, prefix, local_metadata)
if not getattr(hook, "_from_public_api", False):
if hook_result is not None:
destination = hook_result
else:
if hook_result is not None:
raise RuntimeError("state_dict post-hook must return None")
return destination
def _register_load_state_dict_pre_hook(self, hook, with_module=False):
r"""See :meth:`~torch.nn.Module.register_load_state_dict_pre_hook` for details.
A subtle difference is that if ``with_module`` is set to ``False``, then the
hook will not take the ``module`` as the first argument whereas
:meth:`~torch.nn.Module.register_load_state_dict_pre_hook` always takes the
``module`` as the first argument.
Arguments:
hook (Callable): Callable hook that will be invoked before
loading the state dict.
with_module (bool, optional): Whether or not to pass the module
instance to the hook as the first parameter.
"""
handle = RemovableHandle(self._load_state_dict_pre_hooks)
self._load_state_dict_pre_hooks[handle.id] = _WrappedHook(
hook, self if with_module else None
)
return handle
def register_load_state_dict_pre_hook(self, hook):
r"""Register a pre-hook to be run before module's :meth:`~nn.Module.load_state_dict` is called.
It should have the following signature::
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950
Arguments:
hook (Callable): Callable hook that will be invoked before
loading the state dict.
"""
return self._register_load_state_dict_pre_hook(hook, with_module=True)
def register_load_state_dict_post_hook(self, hook):
r"""Register a post-hook to be run after module's :meth:`~nn.Module.load_state_dict` is called.
It should have the following signature::
hook(module, incompatible_keys) -> None
The ``module`` argument is the current module that this hook is registered
on, and the ``incompatible_keys`` argument is a ``NamedTuple`` consisting
of attributes ``missing_keys`` and ``unexpected_keys``. ``missing_keys``
is a ``list`` of ``str`` containing the missing keys and
``unexpected_keys`` is a ``list`` of ``str`` containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling :func:`load_state_dict` with
``strict=True`` are affected by modifications the hook makes to
``missing_keys`` or ``unexpected_keys``, as expected. Additions to either
set of keys will result in an error being thrown when ``strict=True``, and
clearing out both missing and unexpected keys will avoid an error.
Returns:
:class:`torch.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
"""
handle = RemovableHandle(self._load_state_dict_post_hooks)
self._load_state_dict_post_hooks[handle.id] = hook
return handle
def _load_from_state_dict(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
r"""Copy parameters and buffers from :attr:`state_dict` into only this module, but not its descendants.
This is called on every submodule
in :meth:`~torch.nn.Module.load_state_dict`. Metadata saved for this
module in input :attr:`state_dict` is provided as :attr:`local_metadata`.
For state dicts without metadata, :attr:`local_metadata` is empty.
Subclasses can achieve class-specific backward compatible loading using
the version number at `local_metadata.get("version", None)`.
Additionally, :attr:`local_metadata` can also contain the key
`assign_to_params_buffers` that indicates whether keys should be
assigned their corresponding tensor in the state_dict.
.. note::
:attr:`state_dict` is not the same object as the input
:attr:`state_dict` to :meth:`~torch.nn.Module.load_state_dict`. So
it can be modified.
Args:
state_dict (dict): a dict containing parameters and
persistent buffers.
prefix (str): the prefix for parameters and buffers used in this
module
local_metadata (dict): a dict containing the metadata for this module.
See
strict (bool): whether to strictly enforce that the keys in
:attr:`state_dict` with :attr:`prefix` match the names of
parameters and buffers in this module
missing_keys (list of str): if ``strict=True``, add missing keys to
this list
unexpected_keys (list of str): if ``strict=True``, add unexpected
keys to this list
error_msgs (list of str): error messages should be added to this
list, and will be reported together in
:meth:`~torch.nn.Module.load_state_dict`
"""
for hook in self._load_state_dict_pre_hooks.values():
hook(
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
)
persistent_buffers = {
k: v
for k, v in self._buffers.items()
if k not in self._non_persistent_buffers_set
}
local_name_params = itertools.chain(
self._parameters.items(), persistent_buffers.items()
)
local_state = {k: v for k, v in local_name_params if v is not None}
assign_to_params_buffers = local_metadata.get("assign_to_params_buffers", False)
use_swap_tensors = torch.__future__.get_swap_module_params_on_conversion()
for name, param in local_state.items():
key = prefix + name
if key in state_dict:
input_param = state_dict[key]
if not torch.overrides.is_tensor_like(input_param):
error_msgs.append(
f'While copying the parameter named "{key}", '
"expected torch.Tensor or Tensor-like object from checkpoint but "
f"received {type(input_param)}"
)
continue
# This is used to avoid copying uninitialized parameters into
# non-lazy modules, since they dont have the hook to do the checks
# in such case, it will error when accessing the .shape attribute.
is_param_lazy = torch.nn.parameter.is_lazy(param)
# Backward compatibility: loading 1-dim tensor from 0.3.* to version 0.4+
if (
not is_param_lazy
and len(param.shape) == 0
and len(input_param.shape) == 1
):
input_param = input_param[0]
if not is_param_lazy and input_param.shape != param.shape:
# local shape should match the one in checkpoint
error_msgs.append(
f"size mismatch for {key}: copying a param with shape {input_param.shape} from checkpoint, "
f"the shape in current model is {param.shape}."
)
continue
if (
param.is_meta
and not input_param.is_meta
and not assign_to_params_buffers
):
warnings.warn(
f"for {key}: copying from a non-meta parameter in the checkpoint to a meta "
"parameter in the current model, which is a no-op. (Did you mean to "
"pass `assign=True` to assign items in the state dictionary to their "
"corresponding key in the module instead of copying them in place?)"
)
try:
with torch.no_grad():
if use_swap_tensors:
new_input_param = param.module_load(
input_param, assign=assign_to_params_buffers
)
if id(new_input_param) == id(input_param) or id(
new_input_param
) == id(param):
raise RuntimeError(
"module_load returned one of self or other, please .detach() "
"the result if returning one of the inputs in module_load"
)
if isinstance(param, torch.nn.Parameter):
if not isinstance(new_input_param, torch.nn.Parameter):
new_input_param = torch.nn.Parameter(
new_input_param,
requires_grad=param.requires_grad,
)
else:
new_input_param.requires_grad_(param.requires_grad)
torch.utils.swap_tensors(param, new_input_param)
del new_input_param
elif assign_to_params_buffers:
# Shape checks are already done above
if isinstance(param, torch.nn.Parameter):
if not isinstance(input_param, torch.nn.Parameter):
input_param = torch.nn.Parameter(
input_param, requires_grad=param.requires_grad
)
else:
input_param.requires_grad_(param.requires_grad)
setattr(self, name, input_param)
else:
param.copy_(input_param)
except Exception as ex:
action = "swapping" if use_swap_tensors else "copying"
error_msgs.append(
f'While {action} the parameter named "{key}", '
f"whose dimensions in the model are {param.size()} and "
f"whose dimensions in the checkpoint are {input_param.size()}, "
f"an exception occurred : {ex.args}."
)
elif strict:
missing_keys.append(key)
extra_state_key = prefix + _EXTRA_STATE_KEY_SUFFIX
if (
getattr(self.__class__, "set_extra_state", Module.set_extra_state)
is not Module.set_extra_state
):
if extra_state_key in state_dict:
self.set_extra_state(state_dict[extra_state_key])
elif strict:
missing_keys.append(extra_state_key)
elif strict and (extra_state_key in state_dict):
unexpected_keys.append(extra_state_key)
if strict:
for key in state_dict.keys():
if key.startswith(prefix) and key != extra_state_key:
input_name = key[len(prefix) :].split(".", 1)
# Must be Module if it have attributes
if len(input_name) > 1:
if input_name[0] not in self._modules:
unexpected_keys.append(key)
elif input_name[0] not in local_state:
unexpected_keys.append(key)
def load_state_dict(
self, state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False
):
r"""Copy parameters and buffers from :attr:`state_dict` into this module and its descendants.
If :attr:`strict` is ``True``, then
the keys of :attr:`state_dict` must exactly match the keys returned
by this module's :meth:`~torch.nn.Module.state_dict` function.
.. warning::
If :attr:`assign` is ``True`` the optimizer must be created after
the call to :attr:`load_state_dict` unless
:func:`~torch.__future__.get_swap_module_params_on_conversion` is ``True``.
Args:
state_dict (dict): a dict containing parameters and
persistent buffers.
strict (bool, optional): whether to strictly enforce that the keys
in :attr:`state_dict` match the keys returned by this module's
:meth:`~torch.nn.Module.state_dict` function. Default: ``True``
assign (bool, optional): When set to ``False``, the properties of the tensors
in the current module are preserved whereas setting it to ``True`` preserves
properties of the Tensors in the state dict. The only
exception is the ``requires_grad`` field of :class:`~torch.nn.Parameter`s
for which the value from the module is preserved.
Default: ``False``
Returns:
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* **missing_keys** is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* **unexpected_keys** is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note:
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in :attr:`state_dict`, :meth:`load_state_dict` will raise a
``RuntimeError``.
"""
if not isinstance(state_dict, Mapping):
raise TypeError(
f"Expected state_dict to be dict-like, got {type(state_dict)}."
)
missing_keys: list[str] = []
unexpected_keys: list[str] = []
error_msgs: list[str] = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, "_metadata", None)
state_dict = OrderedDict(state_dict)
if metadata is not None:
# mypy isn't aware that "_metadata" exists in state_dict
state_dict._metadata = metadata # type: ignore[attr-defined]
def load(module, local_state_dict, prefix=""):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
if assign:
local_metadata["assign_to_params_buffers"] = assign
module._load_from_state_dict(
local_state_dict,
prefix,
local_metadata,
True,
missing_keys,
unexpected_keys,
error_msgs,
)
for name, child in module._modules.items():
if child is not None:
child_prefix = prefix + name + "."
child_state_dict = {
k: v
for k, v in local_state_dict.items()
if k.startswith(child_prefix)
}
load(child, child_state_dict, child_prefix) # noqa: F821
# Note that the hook can modify missing_keys and unexpected_keys.
incompatible_keys = _IncompatibleKeys(missing_keys, unexpected_keys)
for hook in module._load_state_dict_post_hooks.values():
out = hook(module, incompatible_keys)
assert out is None, (
"Hooks registered with ``register_load_state_dict_post_hook`` are not"
"expected to return new values, if incompatible_keys need to be modified,"
"it should be done inplace."
)
load(self, state_dict)
del load
if strict:
if len(unexpected_keys) > 0:
error_msgs.insert(
0,
"Unexpected key(s) in state_dict: {}. ".format(
", ".join(f'"{k}"' for k in unexpected_keys)
),
)
if len(missing_keys) > 0:
error_msgs.insert(
0,
"Missing key(s) in state_dict: {}. ".format(
", ".join(f'"{k}"' for k in missing_keys)
),
)
if len(error_msgs) > 0:
raise RuntimeError(
"Error(s) in loading state_dict for {}:\n\t{}".format(
self.__class__.__name__, "\n\t".join(error_msgs)
)
)
return _IncompatibleKeys(missing_keys, unexpected_keys)
def _named_members(
self, get_members_fn, prefix="", recurse=True, remove_duplicate: bool = True
):
r"""Help yield various names + members of modules."""
memo = set()
modules = (
self.named_modules(prefix=prefix, remove_duplicate=remove_duplicate)
if recurse
else [(prefix, self)]
)
for module_prefix, module in modules:
members = get_members_fn(module)
for k, v in members:
if v is None or v in memo:
continue
if remove_duplicate:
memo.add(v)
name = module_prefix + ("." if module_prefix else "") + k
yield name, v
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
r"""Return an iterator over module parameters.
This is typically passed to an optimizer.
Args:
recurse (bool): if True, then yields parameters of this module
and all submodules. Otherwise, yields only parameters that
are direct members of this module.
Yields:
Parameter: module parameter
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> for param in model.parameters():
>>> print(type(param), param.size())
<class 'torch.Tensor'> (20L,)
<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
"""
for _name, param in self.named_parameters(recurse=recurse):
yield param
def named_parameters(
self, prefix: str = "", recurse: bool = True, remove_duplicate: bool = True
) -> Iterator[tuple[str, Parameter]]:
r"""Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args:
prefix (str): prefix to prepend to all parameter names.
recurse (bool): if True, then yields parameters of this module
and all submodules. Otherwise, yields only parameters that
are direct members of this module.
remove_duplicate (bool, optional): whether to remove the duplicated
parameters in the result. Defaults to True.
Yields:
(str, Parameter): Tuple containing the name and parameter
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> for name, param in self.named_parameters():
>>> if name in ['bias']:
>>> print(param.size())
"""
gen = self._named_members(
lambda module: module._parameters.items(),
prefix=prefix,
recurse=recurse,
remove_duplicate=remove_duplicate,
)
yield from gen
def buffers(self, recurse: bool = True) -> Iterator[Tensor]:
r"""Return an iterator over module buffers.
Args:
recurse (bool): if True, then yields buffers of this module
and all submodules. Otherwise, yields only buffers that
are direct members of this module.
Yields:
torch.Tensor: module buffer
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> for buf in model.buffers():
>>> print(type(buf), buf.size())
<class 'torch.Tensor'> (20L,)
<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
"""
for _, buf in self.named_buffers(recurse=recurse):
yield buf
def named_buffers(
self, prefix: str = "", recurse: bool = True, remove_duplicate: bool = True
) -> Iterator[tuple[str, Tensor]]:
r"""Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args:
prefix (str): prefix to prepend to all buffer names.
recurse (bool, optional): if True, then yields buffers of this module
and all submodules. Otherwise, yields only buffers that
are direct members of this module. Defaults to True.
remove_duplicate (bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields:
(str, torch.Tensor): Tuple containing the name and buffer
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> for name, buf in self.named_buffers():
>>> if name in ['running_var']:
>>> print(buf.size())
"""
gen = self._named_members(
lambda module: module._buffers.items(),
prefix=prefix,
recurse=recurse,
remove_duplicate=remove_duplicate,
)
yield from gen
def children(self) -> Iterator["Module"]:
r"""Return an iterator over immediate children modules.
Yields:
Module: a child module
"""
for _name, module in self.named_children():
yield module
def named_children(self) -> Iterator[tuple[str, "Module"]]:
r"""Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields:
(str, Module): Tuple containing a name and child module
Example::
>>> # xdoctest: +SKIP("undefined vars")
>>> for name, module in model.named_children():
>>> if name in ['conv4', 'conv5']:
>>> print(module)
"""
memo = set()
for name, module in self._modules.items():
if module is not None and module not in memo:
memo.add(module)
yield name, module
def modules(self) -> Iterator["Module"]:
r"""Return an iterator over all modules in the network.
Yields:
Module: a module in the network
Note:
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example::
>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.modules()):
... print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)
"""
for _, module in self.named_modules():
yield module
def named_modules(
self,
memo: Optional[set["Module"]] = None,
prefix: str = "",
remove_duplicate: bool = True,
):
r"""Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args:
memo: a memo to store the set of modules already added to the result
prefix: a prefix that will be added to the name of the module
remove_duplicate: whether to remove the duplicated module instances in the result
or not
Yields:
(str, Module): Tuple of name and module
Note:
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example::
>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.named_modules()):
... print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
"""
if memo is None:
memo = set()
if self not in memo:
if remove_duplicate:
memo.add(self)
yield prefix, self
for name, module in self._modules.items():
if module is None:
continue
submodule_prefix = prefix + ("." if prefix else "") + name
yield from module.named_modules(
memo, submodule_prefix, remove_duplicate
)
def train(self: T, mode: bool = True) -> T:
r"""Set the module in training mode.
This has an effect only on certain modules. See the documentation of
particular modules for details of their behaviors in training/evaluation
mode, i.e., whether they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
etc.
Args:
mode (bool): whether to set training mode (``True``) or evaluation
mode (``False``). Default: ``True``.
Returns:
Module: self
"""
if not isinstance(mode, bool):
raise ValueError("training mode is expected to be boolean")
self.training = mode
for module in self.children():
module.train(mode)
return self
def eval(self: T) -> T:
r"""Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of
particular modules for details of their behaviors in training/evaluation
mode, i.e. whether they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
etc.
This is equivalent with :meth:`self.train(False) <torch.nn.Module.train>`.
See :ref:`locally-disable-grad-doc` for a comparison between
`.eval()` and several similar mechanisms that may be confused with it.
Returns:
Module: self
"""
return self.train(False)
def requires_grad_(self: T, requires_grad: bool = True) -> T:
r"""Change if autograd should record operations on parameters in this module.
This method sets the parameters' :attr:`requires_grad` attributes
in-place.
This method is helpful for freezing part of the module for finetuning
or training parts of a model individually (e.g., GAN training).
See :ref:`locally-disable-grad-doc` for a comparison between
`.requires_grad_()` and several similar mechanisms that may be confused with it.
Args:
requires_grad (bool): whether autograd should record operations on
parameters in this module. Default: ``True``.
Returns:
Module: self
"""
for p in self.parameters():
p.requires_grad_(requires_grad)
return self
def zero_grad(self, set_to_none: bool = True) -> None:
r"""Reset gradients of all model parameters.
See similar function under :class:`torch.optim.Optimizer` for more context.
Args:
set_to_none (bool): instead of setting to zero, set the grads to None.
See :meth:`torch.optim.Optimizer.zero_grad` for details.
"""
if getattr(self, "_is_replica", False):
warnings.warn(
"Calling .zero_grad() from a module created with nn.DataParallel() has no effect. "
"The parameters are copied (in a differentiable manner) from the original module. "
"This means they are not leaf nodes in autograd and so don't accumulate gradients. "
"If you need gradients in your forward method, consider using autograd.grad instead."
)
for p in self.parameters():
if p.grad is not None:
if set_to_none:
p.grad = None
else:
if p.grad.grad_fn is not None:
p.grad.detach_()
else:
p.grad.requires_grad_(False)
p.grad.zero_()
def share_memory(self: T) -> T:
r"""See :meth:`torch.Tensor.share_memory_`."""
return self._apply(lambda t: t.share_memory_())
def _get_name(self):
return self.__class__.__name__
def extra_repr(self) -> str:
r"""Return the extra representation of the module.
To print customized extra information, you should re-implement
this method in your own modules. Both single-line and multi-line
strings are acceptable.
"""
return ""
def __repr__(self):
# We treat the extra repr like the sub-module, one item per line
extra_lines = []
extra_repr = self.extra_repr()
# empty string will be split into list ['']
if extra_repr:
extra_lines = extra_repr.split("\n")
child_lines = []
for key, module in self._modules.items():
mod_str = repr(module)
mod_str = _addindent(mod_str, 2)
child_lines.append("(" + key + "): " + mod_str)
lines = extra_lines + child_lines
main_str = self._get_name() + "("
if lines:
# simple one-liner info, which most builtin Modules will use
if len(extra_lines) == 1 and not child_lines:
main_str += extra_lines[0]
else:
main_str += "\n " + "\n ".join(lines) + "\n"
main_str += ")"
return main_str
def __dir__(self):
module_attrs = dir(self.__class__)
attrs = list(self.__dict__.keys())
parameters = list(self._parameters.keys())
modules = list(self._modules.keys())
buffers = list(self._buffers.keys())
keys = module_attrs + attrs + parameters + modules + buffers
# Eliminate attrs that are not legal Python variable names
keys = [key for key in keys if not key[0].isdigit()]
return sorted(keys)
def _replicate_for_data_parallel(self):
replica = self.__new__(type(self))
replica.__dict__ = self.__dict__.copy()
# replicas do not have parameters themselves, the replicas reference the original
# module.
replica._parameters = {}
replica._buffers = replica._buffers.copy()
replica._modules = replica._modules.copy()
replica._is_replica = True # type: ignore[assignment]
return replica
def compile(self, *args, **kwargs):
"""
Compile this Module's forward using :func:`torch.compile`.
This Module's `__call__` method is compiled and all arguments are passed as-is
to :func:`torch.compile`.
See :func:`torch.compile` for details on the arguments for this function.
"""
self._compiled_call_impl = torch.compile(self._call_impl, *args, **kwargs)
```
|
=========================================================================================================================
SOURCE CODE FILE: normalization.py
LINES: 1
SIZE: 15.01 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\modules\normalization.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
import numbers
from typing import Optional, Union
import torch
from torch import Size, Tensor
from torch.nn import functional as F, init
from torch.nn.parameter import Parameter
from ._functions import CrossMapLRN2d as _cross_map_lrn2d
from .module import Module
__all__ = ["LocalResponseNorm", "CrossMapLRN2d", "LayerNorm", "GroupNorm", "RMSNorm"]
class LocalResponseNorm(Module):
r"""Applies local response normalization over an input signal.
The input signal is composed of several input planes, where channels occupy the second dimension.
Applies normalization across channels.
.. math::
b_{c} = a_{c}\left(k + \frac{\alpha}{n}
\sum_{c'=\max(0, c-n/2)}^{\min(N-1,c+n/2)}a_{c'}^2\right)^{-\beta}
Args:
size: amount of neighbouring channels used for normalization
alpha: multiplicative factor. Default: 0.0001
beta: exponent. Default: 0.75
k: additive factor. Default: 1
Shape:
- Input: :math:`(N, C, *)`
- Output: :math:`(N, C, *)` (same shape as input)
Examples::
>>> lrn = nn.LocalResponseNorm(2)
>>> signal_2d = torch.randn(32, 5, 24, 24)
>>> signal_4d = torch.randn(16, 5, 7, 7, 7, 7)
>>> output_2d = lrn(signal_2d)
>>> output_4d = lrn(signal_4d)
"""
__constants__ = ["size", "alpha", "beta", "k"]
size: int
alpha: float
beta: float
k: float
def __init__(
self, size: int, alpha: float = 1e-4, beta: float = 0.75, k: float = 1.0
) -> None:
super().__init__()
self.size = size
self.alpha = alpha
self.beta = beta
self.k = k
def forward(self, input: Tensor) -> Tensor:
return F.local_response_norm(input, self.size, self.alpha, self.beta, self.k)
def extra_repr(self):
return "{size}, alpha={alpha}, beta={beta}, k={k}".format(**self.__dict__)
class CrossMapLRN2d(Module):
size: int
alpha: float
beta: float
k: float
def __init__(
self, size: int, alpha: float = 1e-4, beta: float = 0.75, k: float = 1
) -> None:
super().__init__()
self.size = size
self.alpha = alpha
self.beta = beta
self.k = k
def forward(self, input: Tensor) -> Tensor:
return _cross_map_lrn2d.apply(input, self.size, self.alpha, self.beta, self.k)
def extra_repr(self) -> str:
return "{size}, alpha={alpha}, beta={beta}, k={k}".format(**self.__dict__)
_shape_t = Union[int, list[int], Size]
class LayerNorm(Module):
r"""Applies Layer Normalization over a mini-batch of inputs.
This layer implements the operation as described in
the paper `Layer Normalization <https://arxiv.org/abs/1607.06450>`__
.. math::
y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
The mean and standard-deviation are calculated over the last `D` dimensions, where `D`
is the dimension of :attr:`normalized_shape`. For example, if :attr:`normalized_shape`
is ``(3, 5)`` (a 2-dimensional shape), the mean and standard-deviation are computed over
the last 2 dimensions of the input (i.e. ``input.mean((-2, -1))``).
:math:`\gamma` and :math:`\beta` are learnable affine transform parameters of
:attr:`normalized_shape` if :attr:`elementwise_affine` is ``True``.
The variance is calculated via the biased estimator, equivalent to
`torch.var(input, unbiased=False)`.
.. note::
Unlike Batch Normalization and Instance Normalization, which applies
scalar scale and bias for each entire channel/plane with the
:attr:`affine` option, Layer Normalization applies per-element scale and
bias with :attr:`elementwise_affine`.
This layer uses statistics computed from input data in both training and
evaluation modes.
Args:
normalized_shape (int or list or torch.Size): input shape from an expected input
of size
.. math::
[* \times \text{normalized\_shape}[0] \times \text{normalized\_shape}[1]
\times \ldots \times \text{normalized\_shape}[-1]]
If a single integer is used, it is treated as a singleton list, and this module will
normalize over the last dimension which is expected to be of that specific size.
eps: a value added to the denominator for numerical stability. Default: 1e-5
elementwise_affine: a boolean value that when set to ``True``, this module
has learnable per-element affine parameters initialized to ones (for weights)
and zeros (for biases). Default: ``True``.
bias: If set to ``False``, the layer will not learn an additive bias (only relevant if
:attr:`elementwise_affine` is ``True``). Default: ``True``.
Attributes:
weight: the learnable weights of the module of shape
:math:`\text{normalized\_shape}` when :attr:`elementwise_affine` is set to ``True``.
The values are initialized to 1.
bias: the learnable bias of the module of shape
:math:`\text{normalized\_shape}` when :attr:`elementwise_affine` is set to ``True``.
The values are initialized to 0.
Shape:
- Input: :math:`(N, *)`
- Output: :math:`(N, *)` (same shape as input)
Examples::
>>> # NLP Example
>>> batch, sentence_length, embedding_dim = 20, 5, 10
>>> embedding = torch.randn(batch, sentence_length, embedding_dim)
>>> layer_norm = nn.LayerNorm(embedding_dim)
>>> # Activate module
>>> layer_norm(embedding)
>>>
>>> # Image Example
>>> N, C, H, W = 20, 5, 10, 10
>>> input = torch.randn(N, C, H, W)
>>> # Normalize over the last three dimensions (i.e. the channel and spatial dimensions)
>>> # as shown in the image below
>>> layer_norm = nn.LayerNorm([C, H, W])
>>> output = layer_norm(input)
.. image:: ../_static/img/nn/layer_norm.jpg
:scale: 50 %
"""
__constants__ = ["normalized_shape", "eps", "elementwise_affine"]
normalized_shape: tuple[int, ...]
eps: float
elementwise_affine: bool
def __init__(
self,
normalized_shape: _shape_t,
eps: float = 1e-5,
elementwise_affine: bool = True,
bias: bool = True,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
if isinstance(normalized_shape, numbers.Integral):
# mypy error: incompatible types in assignment
normalized_shape = (normalized_shape,) # type: ignore[assignment]
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = Parameter(
torch.empty(self.normalized_shape, **factory_kwargs)
)
if bias:
self.bias = Parameter(
torch.empty(self.normalized_shape, **factory_kwargs)
)
else:
self.register_parameter("bias", None)
else:
self.register_parameter("weight", None)
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self) -> None:
if self.elementwise_affine:
init.ones_(self.weight)
if self.bias is not None:
init.zeros_(self.bias)
def forward(self, input: Tensor) -> Tensor:
return F.layer_norm(
input, self.normalized_shape, self.weight, self.bias, self.eps
)
def extra_repr(self) -> str:
return (
"{normalized_shape}, eps={eps}, "
"elementwise_affine={elementwise_affine}".format(**self.__dict__)
)
class GroupNorm(Module):
r"""Applies Group Normalization over a mini-batch of inputs.
This layer implements the operation as described in
the paper `Group Normalization <https://arxiv.org/abs/1803.08494>`__
.. math::
y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
The input channels are separated into :attr:`num_groups` groups, each containing
``num_channels / num_groups`` channels. :attr:`num_channels` must be divisible by
:attr:`num_groups`. The mean and standard-deviation are calculated
separately over the each group. :math:`\gamma` and :math:`\beta` are learnable
per-channel affine transform parameter vectors of size :attr:`num_channels` if
:attr:`affine` is ``True``.
The variance is calculated via the biased estimator, equivalent to
`torch.var(input, unbiased=False)`.
This layer uses statistics computed from input data in both training and
evaluation modes.
Args:
num_groups (int): number of groups to separate the channels into
num_channels (int): number of channels expected in input
eps: a value added to the denominator for numerical stability. Default: 1e-5
affine: a boolean value that when set to ``True``, this module
has learnable per-channel affine parameters initialized to ones (for weights)
and zeros (for biases). Default: ``True``.
Shape:
- Input: :math:`(N, C, *)` where :math:`C=\text{num\_channels}`
- Output: :math:`(N, C, *)` (same shape as input)
Examples::
>>> input = torch.randn(20, 6, 10, 10)
>>> # Separate 6 channels into 3 groups
>>> m = nn.GroupNorm(3, 6)
>>> # Separate 6 channels into 6 groups (equivalent with InstanceNorm)
>>> m = nn.GroupNorm(6, 6)
>>> # Put all 6 channels into a single group (equivalent with LayerNorm)
>>> m = nn.GroupNorm(1, 6)
>>> # Activating the module
>>> output = m(input)
"""
__constants__ = ["num_groups", "num_channels", "eps", "affine"]
num_groups: int
num_channels: int
eps: float
affine: bool
def __init__(
self,
num_groups: int,
num_channels: int,
eps: float = 1e-5,
affine: bool = True,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
if num_channels % num_groups != 0:
raise ValueError("num_channels must be divisible by num_groups")
self.num_groups = num_groups
self.num_channels = num_channels
self.eps = eps
self.affine = affine
if self.affine:
self.weight = Parameter(torch.empty(num_channels, **factory_kwargs))
self.bias = Parameter(torch.empty(num_channels, **factory_kwargs))
else:
self.register_parameter("weight", None)
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self) -> None:
if self.affine:
init.ones_(self.weight)
init.zeros_(self.bias)
def forward(self, input: Tensor) -> Tensor:
return F.group_norm(input, self.num_groups, self.weight, self.bias, self.eps)
def extra_repr(self) -> str:
return "{num_groups}, {num_channels}, eps={eps}, affine={affine}".format(
**self.__dict__
)
class RMSNorm(Module):
r"""Applies Root Mean Square Layer Normalization over a mini-batch of inputs.
This layer implements the operation as described in
the paper `Root Mean Square Layer Normalization <https://arxiv.org/pdf/1910.07467.pdf>`__
.. math::
y_i = \frac{x_i}{\mathrm{RMS}(x)} * \gamma_i, \quad
\text{where} \quad \text{RMS}(x) = \sqrt{\epsilon + \frac{1}{n} \sum_{i=1}^{n} x_i^2}
The RMS is taken over the last ``D`` dimensions, where ``D``
is the dimension of :attr:`normalized_shape`. For example, if :attr:`normalized_shape`
is ``(3, 5)`` (a 2-dimensional shape), the RMS is computed over
the last 2 dimensions of the input.
Args:
normalized_shape (int or list or torch.Size): input shape from an expected input
of size
.. math::
[* \times \text{normalized\_shape}[0] \times \text{normalized\_shape}[1]
\times \ldots \times \text{normalized\_shape}[-1]]
If a single integer is used, it is treated as a singleton list, and this module will
normalize over the last dimension which is expected to be of that specific size.
eps: a value added to the denominator for numerical stability. Default: :func:`torch.finfo(x.dtype).eps`
elementwise_affine: a boolean value that when set to ``True``, this module
has learnable per-element affine parameters initialized to ones (for weights). Default: ``True``.
Shape:
- Input: :math:`(N, *)`
- Output: :math:`(N, *)` (same shape as input)
Examples::
>>> rms_norm = nn.RMSNorm([2, 3])
>>> input = torch.randn(2, 2, 3)
>>> rms_norm(input)
"""
__constants__ = ["normalized_shape", "eps", "elementwise_affine"]
normalized_shape: tuple[int, ...]
eps: Optional[float]
elementwise_affine: bool
def __init__(
self,
normalized_shape: _shape_t,
eps: Optional[float] = None,
elementwise_affine: bool = True,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
if isinstance(normalized_shape, numbers.Integral):
# mypy error: incompatible types in assignment
normalized_shape = (normalized_shape,) # type: ignore[assignment]
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = Parameter(
torch.empty(self.normalized_shape, **factory_kwargs)
)
else:
self.register_parameter("weight", None)
self.reset_parameters()
def reset_parameters(self) -> None:
"""
Resets parameters based on their initialization used in __init__.
"""
if self.elementwise_affine:
init.ones_(self.weight)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Runs forward pass.
"""
return F.rms_norm(x, self.normalized_shape, self.weight, self.eps)
def extra_repr(self) -> str:
"""
Extra information about the module.
"""
return (
"{normalized_shape}, eps={eps}, "
"elementwise_affine={elementwise_affine}".format(**self.__dict__)
)
# TODO: ContrastiveNorm2d
# TODO: DivisiveNorm2d
# TODO: SubtractiveNorm2d
```
|
===================================================================================================================
SOURCE CODE FILE: padding.py
LINES: 1
SIZE: 30.35 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\modules\padding.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
from collections.abc import Sequence
import torch.nn.functional as F
from torch import Tensor
from torch.nn.common_types import _size_2_t, _size_4_t, _size_6_t
from .module import Module
from .utils import _ntuple, _pair, _quadruple
# TODO: grad_output size asserts in THNN
__all__ = [
"CircularPad1d",
"CircularPad2d",
"CircularPad3d",
"ConstantPad1d",
"ConstantPad2d",
"ConstantPad3d",
"ReflectionPad1d",
"ReflectionPad2d",
"ReflectionPad3d",
"ReplicationPad1d",
"ReplicationPad2d",
"ReplicationPad3d",
"ZeroPad1d",
"ZeroPad2d",
"ZeroPad3d",
]
class _CircularPadNd(Module):
__constants__ = ["padding"]
padding: Sequence[int]
def _check_input_dim(self, input):
raise NotImplementedError
def forward(self, input: Tensor) -> Tensor:
self._check_input_dim(input)
return F.pad(input, self.padding, "circular")
def extra_repr(self) -> str:
return f"{self.padding}"
class CircularPad1d(_CircularPadNd):
r"""Pads the input tensor using circular padding of the input boundary.
Tensor values at the beginning of the dimension are used to pad the end,
and values at the end are used to pad the beginning. If negative padding is
applied then the ends of the tensor get removed.
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
Args:
padding (int, tuple): the size of the padding. If is `int`, uses the same
padding in all boundaries. If a 2-`tuple`, uses
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
Shape:
- Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
- Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
Examples::
>>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this")
>>> m = nn.CircularPad1d(2)
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4)
>>> input
tensor([[[0., 1., 2., 3.],
[4., 5., 6., 7.]]])
>>> m(input)
tensor([[[2., 3., 0., 1., 2., 3., 0., 1.],
[6., 7., 4., 5., 6., 7., 4., 5.]]])
>>> # using different paddings for different sides
>>> m = nn.CircularPad1d((3, 1))
>>> m(input)
tensor([[[1., 2., 3., 0., 1., 2., 3., 0.],
[5., 6., 7., 4., 5., 6., 7., 4.]]])
"""
padding: tuple[int, int]
def __init__(self, padding: _size_2_t) -> None:
super().__init__()
self.padding = _pair(padding)
def _check_input_dim(self, input):
if input.dim() != 2 and input.dim() != 3:
raise ValueError(f"expected 2D or 3D input (got {input.dim()}D input)")
class CircularPad2d(_CircularPadNd):
r"""Pads the input tensor using circular padding of the input boundary.
Tensor values at the beginning of the dimension are used to pad the end,
and values at the end are used to pad the beginning. If negative padding is
applied then the ends of the tensor get removed.
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
Args:
padding (int, tuple): the size of the padding. If is `int`, uses the same
padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
:math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
Shape:
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
Examples::
>>> m = nn.CircularPad2d(2)
>>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)
>>> input
tensor([[[[0., 1., 2.],
[3., 4., 5.],
[6., 7., 8.]]]])
>>> m(input)
tensor([[[[4., 5., 3., 4., 5., 3., 4.],
[7., 8., 6., 7., 8., 6., 7.],
[1., 2., 0., 1., 2., 0., 1.],
[4., 5., 3., 4., 5., 3., 4.],
[7., 8., 6., 7., 8., 6., 7.],
[1., 2., 0., 1., 2., 0., 1.],
[4., 5., 3., 4., 5., 3., 4.]]]])
>>> # using different paddings for different sides
>>> m = nn.CircularPad2d((1, 1, 2, 0))
>>> m(input)
tensor([[[[5., 3., 4., 5., 3.],
[8., 6., 7., 8., 6.],
[2., 0., 1., 2., 0.],
[5., 3., 4., 5., 3.],
[8., 6., 7., 8., 6.]]]])
"""
padding: tuple[int, int, int, int]
def __init__(self, padding: _size_4_t) -> None:
super().__init__()
self.padding = _quadruple(padding)
def _check_input_dim(self, input):
if input.dim() != 3 and input.dim() != 4:
raise ValueError(f"expected 3D or 4D input (got {input.dim()}D input)")
class CircularPad3d(_CircularPadNd):
r"""Pads the input tensor using circular padding of the input boundary.
Tensor values at the beginning of the dimension are used to pad the end,
and values at the end are used to pad the beginning. If negative padding is
applied then the ends of the tensor get removed.
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
Args:
padding (int, tuple): the size of the padding. If is `int`, uses the same
padding in all boundaries. If a 6-`tuple`, uses
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
:math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
:math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
Shape:
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`,
where
:math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
Examples::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> m = nn.CircularPad3d(3)
>>> input = torch.randn(16, 3, 8, 320, 480)
>>> output = m(input)
>>> # using different paddings for different sides
>>> m = nn.CircularPad3d((3, 3, 6, 6, 1, 1))
>>> output = m(input)
"""
padding: tuple[int, int, int, int, int, int]
def __init__(self, padding: _size_6_t) -> None:
super().__init__()
self.padding = _ntuple(6)(padding)
def _check_input_dim(self, input):
if input.dim() != 4 and input.dim() != 5:
raise ValueError(f"expected 4D or 5D input (got {input.dim()}D input)")
class _ConstantPadNd(Module):
__constants__ = ["padding", "value"]
value: float
padding: Sequence[int]
def __init__(self, value: float) -> None:
super().__init__()
self.value = value
def forward(self, input: Tensor) -> Tensor:
return F.pad(input, self.padding, "constant", self.value)
def extra_repr(self) -> str:
return f"padding={self.padding}, value={self.value}"
class ConstantPad1d(_ConstantPadNd):
r"""Pads the input tensor boundaries with a constant value.
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
Args:
padding (int, tuple): the size of the padding. If is `int`, uses the same
padding in both boundaries. If a 2-`tuple`, uses
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
Shape:
- Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
- Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
Examples::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> m = nn.ConstantPad1d(2, 3.5)
>>> input = torch.randn(1, 2, 4)
>>> input
tensor([[[-1.0491, -0.7152, -0.0749, 0.8530],
[-1.3287, 1.8966, 0.1466, -0.2771]]])
>>> m(input)
tensor([[[ 3.5000, 3.5000, -1.0491, -0.7152, -0.0749, 0.8530, 3.5000,
3.5000],
[ 3.5000, 3.5000, -1.3287, 1.8966, 0.1466, -0.2771, 3.5000,
3.5000]]])
>>> m = nn.ConstantPad1d(2, 3.5)
>>> input = torch.randn(1, 2, 3)
>>> input
tensor([[[ 1.6616, 1.4523, -1.1255],
[-3.6372, 0.1182, -1.8652]]])
>>> m(input)
tensor([[[ 3.5000, 3.5000, 1.6616, 1.4523, -1.1255, 3.5000, 3.5000],
[ 3.5000, 3.5000, -3.6372, 0.1182, -1.8652, 3.5000, 3.5000]]])
>>> # using different paddings for different sides
>>> m = nn.ConstantPad1d((3, 1), 3.5)
>>> m(input)
tensor([[[ 3.5000, 3.5000, 3.5000, 1.6616, 1.4523, -1.1255, 3.5000],
[ 3.5000, 3.5000, 3.5000, -3.6372, 0.1182, -1.8652, 3.5000]]])
"""
padding: tuple[int, int]
def __init__(self, padding: _size_2_t, value: float):
super().__init__(value)
self.padding = _pair(padding)
class ConstantPad2d(_ConstantPadNd):
r"""Pads the input tensor boundaries with a constant value.
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
Args:
padding (int, tuple): the size of the padding. If is `int`, uses the same
padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
:math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
Shape:
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
Examples::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> m = nn.ConstantPad2d(2, 3.5)
>>> input = torch.randn(1, 2, 2)
>>> input
tensor([[[ 1.6585, 0.4320],
[-0.8701, -0.4649]]])
>>> m(input)
tensor([[[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
[ 3.5000, 3.5000, 1.6585, 0.4320, 3.5000, 3.5000],
[ 3.5000, 3.5000, -0.8701, -0.4649, 3.5000, 3.5000],
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000]]])
>>> # using different paddings for different sides
>>> m = nn.ConstantPad2d((3, 0, 2, 1), 3.5)
>>> m(input)
tensor([[[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
[ 3.5000, 3.5000, 3.5000, 1.6585, 0.4320],
[ 3.5000, 3.5000, 3.5000, -0.8701, -0.4649],
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000]]])
"""
__constants__ = ["padding", "value"]
padding: tuple[int, int, int, int]
def __init__(self, padding: _size_4_t, value: float) -> None:
super().__init__(value)
self.padding = _quadruple(padding)
class ConstantPad3d(_ConstantPadNd):
r"""Pads the input tensor boundaries with a constant value.
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
Args:
padding (int, tuple): the size of the padding. If is `int`, uses the same
padding in all boundaries. If a 6-`tuple`, uses
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
:math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
:math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
Shape:
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or
:math:`(C, D_{out}, H_{out}, W_{out})`, where
:math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
Examples::
>>> m = nn.ConstantPad3d(3, 3.5)
>>> input = torch.randn(16, 3, 10, 20, 30)
>>> output = m(input)
>>> # using different paddings for different sides
>>> m = nn.ConstantPad3d((3, 3, 6, 6, 0, 1), 3.5)
>>> output = m(input)
"""
padding: tuple[int, int, int, int, int, int]
def __init__(self, padding: _size_6_t, value: float) -> None:
super().__init__(value)
self.padding = _ntuple(6)(padding)
class _ReflectionPadNd(Module):
__constants__ = ["padding"]
padding: Sequence[int]
def forward(self, input: Tensor) -> Tensor:
return F.pad(input, self.padding, "reflect")
def extra_repr(self) -> str:
return f"{self.padding}"
class ReflectionPad1d(_ReflectionPadNd):
r"""Pads the input tensor using the reflection of the input boundary.
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
Args:
padding (int, tuple): the size of the padding. If is `int`, uses the same
padding in all boundaries. If a 2-`tuple`, uses
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
Shape:
- Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
- Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
Examples::
>>> m = nn.ReflectionPad1d(2)
>>> # xdoctest: +IGNORE_WANT("other tests seem to modify printing styles")
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4)
>>> input
tensor([[[0., 1., 2., 3.],
[4., 5., 6., 7.]]])
>>> m(input)
tensor([[[2., 1., 0., 1., 2., 3., 2., 1.],
[6., 5., 4., 5., 6., 7., 6., 5.]]])
>>> # using different paddings for different sides
>>> m = nn.ReflectionPad1d((3, 1))
>>> m(input)
tensor([[[3., 2., 1., 0., 1., 2., 3., 2.],
[7., 6., 5., 4., 5., 6., 7., 6.]]])
"""
padding: tuple[int, int]
def __init__(self, padding: _size_2_t) -> None:
super().__init__()
self.padding = _pair(padding)
class ReflectionPad2d(_ReflectionPadNd):
r"""Pads the input tensor using the reflection of the input boundary.
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
Args:
padding (int, tuple): the size of the padding. If is `int`, uses the same
padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
:math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
Note that padding size should be less than the corresponding input dimension.
Shape:
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})` where
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
Examples::
>>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this")
>>> m = nn.ReflectionPad2d(2)
>>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)
>>> input
tensor([[[[0., 1., 2.],
[3., 4., 5.],
[6., 7., 8.]]]])
>>> m(input)
tensor([[[[8., 7., 6., 7., 8., 7., 6.],
[5., 4., 3., 4., 5., 4., 3.],
[2., 1., 0., 1., 2., 1., 0.],
[5., 4., 3., 4., 5., 4., 3.],
[8., 7., 6., 7., 8., 7., 6.],
[5., 4., 3., 4., 5., 4., 3.],
[2., 1., 0., 1., 2., 1., 0.]]]])
>>> # using different paddings for different sides
>>> m = nn.ReflectionPad2d((1, 1, 2, 0))
>>> m(input)
tensor([[[[7., 6., 7., 8., 7.],
[4., 3., 4., 5., 4.],
[1., 0., 1., 2., 1.],
[4., 3., 4., 5., 4.],
[7., 6., 7., 8., 7.]]]])
"""
padding: tuple[int, int, int, int]
def __init__(self, padding: _size_4_t) -> None:
super().__init__()
self.padding = _quadruple(padding)
class ReflectionPad3d(_ReflectionPadNd):
r"""Pads the input tensor using the reflection of the input boundary.
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
Args:
padding (int, tuple): the size of the padding. If is `int`, uses the same
padding in all boundaries. If a 6-`tuple`, uses
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
:math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
:math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
Shape:
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`,
where
:math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
Examples::
>>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this")
>>> m = nn.ReflectionPad3d(1)
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 1, 2, 2, 2)
>>> m(input)
tensor([[[[[7., 6., 7., 6.],
[5., 4., 5., 4.],
[7., 6., 7., 6.],
[5., 4., 5., 4.]],
[[3., 2., 3., 2.],
[1., 0., 1., 0.],
[3., 2., 3., 2.],
[1., 0., 1., 0.]],
[[7., 6., 7., 6.],
[5., 4., 5., 4.],
[7., 6., 7., 6.],
[5., 4., 5., 4.]],
[[3., 2., 3., 2.],
[1., 0., 1., 0.],
[3., 2., 3., 2.],
[1., 0., 1., 0.]]]]])
"""
padding: tuple[int, int, int, int, int, int]
def __init__(self, padding: _size_6_t) -> None:
super().__init__()
self.padding = _ntuple(6)(padding)
class _ReplicationPadNd(Module):
__constants__ = ["padding"]
padding: Sequence[int]
def forward(self, input: Tensor) -> Tensor:
return F.pad(input, self.padding, "replicate")
def extra_repr(self) -> str:
return f"{self.padding}"
class ReplicationPad1d(_ReplicationPadNd):
r"""Pads the input tensor using replication of the input boundary.
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
Args:
padding (int, tuple): the size of the padding. If is `int`, uses the same
padding in all boundaries. If a 2-`tuple`, uses
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
Shape:
- Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
- Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
Examples::
>>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this")
>>> m = nn.ReplicationPad1d(2)
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4)
>>> input
tensor([[[0., 1., 2., 3.],
[4., 5., 6., 7.]]])
>>> m(input)
tensor([[[0., 0., 0., 1., 2., 3., 3., 3.],
[4., 4., 4., 5., 6., 7., 7., 7.]]])
>>> # using different paddings for different sides
>>> m = nn.ReplicationPad1d((3, 1))
>>> m(input)
tensor([[[0., 0., 0., 0., 1., 2., 3., 3.],
[4., 4., 4., 4., 5., 6., 7., 7.]]])
"""
padding: tuple[int, int]
def __init__(self, padding: _size_2_t) -> None:
super().__init__()
self.padding = _pair(padding)
class ReplicationPad2d(_ReplicationPadNd):
r"""Pads the input tensor using replication of the input boundary.
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
Args:
padding (int, tuple): the size of the padding. If is `int`, uses the same
padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
:math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
Shape:
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
Examples::
>>> m = nn.ReplicationPad2d(2)
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)
>>> input
tensor([[[[0., 1., 2.],
[3., 4., 5.],
[6., 7., 8.]]]])
>>> m(input)
tensor([[[[0., 0., 0., 1., 2., 2., 2.],
[0., 0., 0., 1., 2., 2., 2.],
[0., 0., 0., 1., 2., 2., 2.],
[3., 3., 3., 4., 5., 5., 5.],
[6., 6., 6., 7., 8., 8., 8.],
[6., 6., 6., 7., 8., 8., 8.],
[6., 6., 6., 7., 8., 8., 8.]]]])
>>> # using different paddings for different sides
>>> m = nn.ReplicationPad2d((1, 1, 2, 0))
>>> m(input)
tensor([[[[0., 0., 1., 2., 2.],
[0., 0., 1., 2., 2.],
[0., 0., 1., 2., 2.],
[3., 3., 4., 5., 5.],
[6., 6., 7., 8., 8.]]]])
"""
padding: tuple[int, int, int, int]
def __init__(self, padding: _size_4_t) -> None:
super().__init__()
self.padding = _quadruple(padding)
class ReplicationPad3d(_ReplicationPadNd):
r"""Pads the input tensor using replication of the input boundary.
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
Args:
padding (int, tuple): the size of the padding. If is `int`, uses the same
padding in all boundaries. If a 6-`tuple`, uses
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
:math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
:math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
Shape:
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`,
where
:math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
Examples::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> m = nn.ReplicationPad3d(3)
>>> input = torch.randn(16, 3, 8, 320, 480)
>>> output = m(input)
>>> # using different paddings for different sides
>>> m = nn.ReplicationPad3d((3, 3, 6, 6, 1, 1))
>>> output = m(input)
"""
padding: tuple[int, int, int, int, int, int]
def __init__(self, padding: _size_6_t) -> None:
super().__init__()
self.padding = _ntuple(6)(padding)
class ZeroPad1d(ConstantPad1d):
r"""Pads the input tensor boundaries with zero.
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
Args:
padding (int, tuple): the size of the padding. If is `int`, uses the same
padding in both boundaries. If a 2-`tuple`, uses
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
Shape:
- Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
- Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
Examples::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> m = nn.ZeroPad1d(2)
>>> input = torch.randn(1, 2, 4)
>>> input
tensor([[[-1.0491, -0.7152, -0.0749, 0.8530],
[-1.3287, 1.8966, 0.1466, -0.2771]]])
>>> m(input)
tensor([[[ 0.0000, 0.0000, -1.0491, -0.7152, -0.0749, 0.8530, 0.0000,
0.0000],
[ 0.0000, 0.0000, -1.3287, 1.8966, 0.1466, -0.2771, 0.0000,
0.0000]]])
>>> m = nn.ZeroPad1d(2)
>>> input = torch.randn(1, 2, 3)
>>> input
tensor([[[ 1.6616, 1.4523, -1.1255],
[-3.6372, 0.1182, -1.8652]]])
>>> m(input)
tensor([[[ 0.0000, 0.0000, 1.6616, 1.4523, -1.1255, 0.0000, 0.0000],
[ 0.0000, 0.0000, -3.6372, 0.1182, -1.8652, 0.0000, 0.0000]]])
>>> # using different paddings for different sides
>>> m = nn.ZeroPad1d((3, 1))
>>> m(input)
tensor([[[ 0.0000, 0.0000, 0.0000, 1.6616, 1.4523, -1.1255, 0.0000],
[ 0.0000, 0.0000, 0.0000, -3.6372, 0.1182, -1.8652, 0.0000]]])
"""
padding: tuple[int, int]
def __init__(self, padding: _size_2_t) -> None:
super().__init__(padding, 0.0)
def extra_repr(self) -> str:
return f"{self.padding}"
class ZeroPad2d(ConstantPad2d):
r"""Pads the input tensor boundaries with zero.
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
Args:
padding (int, tuple): the size of the padding. If is `int`, uses the same
padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
:math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
Shape:
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
Examples::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> m = nn.ZeroPad2d(2)
>>> input = torch.randn(1, 1, 3, 3)
>>> input
tensor([[[[-0.1678, -0.4418, 1.9466],
[ 0.9604, -0.4219, -0.5241],
[-0.9162, -0.5436, -0.6446]]]])
>>> m(input)
tensor([[[[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, -0.1678, -0.4418, 1.9466, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.9604, -0.4219, -0.5241, 0.0000, 0.0000],
[ 0.0000, 0.0000, -0.9162, -0.5436, -0.6446, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]])
>>> # using different paddings for different sides
>>> m = nn.ZeroPad2d((1, 1, 2, 0))
>>> m(input)
tensor([[[[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[ 0.0000, -0.1678, -0.4418, 1.9466, 0.0000],
[ 0.0000, 0.9604, -0.4219, -0.5241, 0.0000],
[ 0.0000, -0.9162, -0.5436, -0.6446, 0.0000]]]])
"""
padding: tuple[int, int, int, int]
def __init__(self, padding: _size_4_t) -> None:
super().__init__(padding, 0.0)
def extra_repr(self) -> str:
return f"{self.padding}"
class ZeroPad3d(ConstantPad3d):
r"""Pads the input tensor boundaries with zero.
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
Args:
padding (int, tuple): the size of the padding. If is `int`, uses the same
padding in all boundaries. If a 6-`tuple`, uses
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
:math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
:math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
Shape:
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or
:math:`(C, D_{out}, H_{out}, W_{out})`, where
:math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
Examples::
>>> m = nn.ZeroPad3d(3)
>>> input = torch.randn(16, 3, 10, 20, 30)
>>> output = m(input)
>>> # using different paddings for different sides
>>> m = nn.ZeroPad3d((3, 3, 6, 6, 0, 1))
>>> output = m(input)
"""
padding: tuple[int, int, int, int, int, int]
def __init__(self, padding: _size_6_t) -> None:
super().__init__(padding, 0.0)
def extra_repr(self) -> str:
return f"{self.padding}"
```
|
========================================================================================================================
SOURCE CODE FILE: pixelshuffle.py
LINES: 1
SIZE: 3.71 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\modules\pixelshuffle.py
ENCODING: utf-8
```py
import torch.nn.functional as F
from torch import Tensor
from .module import Module
__all__ = ["PixelShuffle", "PixelUnshuffle"]
class PixelShuffle(Module):
r"""Rearrange elements in a tensor according to an upscaling factor.
Rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)`
to a tensor of shape :math:`(*, C, H \times r, W \times r)`, where r is an upscale factor.
This is useful for implementing efficient sub-pixel convolution
with a stride of :math:`1/r`.
See the paper:
`Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network`_
by Shi et al. (2016) for more details.
Args:
upscale_factor (int): factor to increase spatial resolution by
Shape:
- Input: :math:`(*, C_{in}, H_{in}, W_{in})`, where * is zero or more batch dimensions
- Output: :math:`(*, C_{out}, H_{out}, W_{out})`, where
.. math::
C_{out} = C_{in} \div \text{upscale\_factor}^2
.. math::
H_{out} = H_{in} \times \text{upscale\_factor}
.. math::
W_{out} = W_{in} \times \text{upscale\_factor}
Examples::
>>> pixel_shuffle = nn.PixelShuffle(3)
>>> input = torch.randn(1, 9, 4, 4)
>>> output = pixel_shuffle(input)
>>> print(output.size())
torch.Size([1, 1, 12, 12])
.. _Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network:
https://arxiv.org/abs/1609.05158
"""
__constants__ = ["upscale_factor"]
upscale_factor: int
def __init__(self, upscale_factor: int) -> None:
super().__init__()
self.upscale_factor = upscale_factor
def forward(self, input: Tensor) -> Tensor:
return F.pixel_shuffle(input, self.upscale_factor)
def extra_repr(self) -> str:
return f"upscale_factor={self.upscale_factor}"
class PixelUnshuffle(Module):
r"""Reverse the PixelShuffle operation.
Reverses the :class:`~torch.nn.PixelShuffle` operation by rearranging elements
in a tensor of shape :math:`(*, C, H \times r, W \times r)` to a tensor of shape
:math:`(*, C \times r^2, H, W)`, where r is a downscale factor.
See the paper:
`Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network`_
by Shi et al. (2016) for more details.
Args:
downscale_factor (int): factor to decrease spatial resolution by
Shape:
- Input: :math:`(*, C_{in}, H_{in}, W_{in})`, where * is zero or more batch dimensions
- Output: :math:`(*, C_{out}, H_{out}, W_{out})`, where
.. math::
C_{out} = C_{in} \times \text{downscale\_factor}^2
.. math::
H_{out} = H_{in} \div \text{downscale\_factor}
.. math::
W_{out} = W_{in} \div \text{downscale\_factor}
Examples::
>>> pixel_unshuffle = nn.PixelUnshuffle(3)
>>> input = torch.randn(1, 1, 12, 12)
>>> output = pixel_unshuffle(input)
>>> print(output.size())
torch.Size([1, 9, 4, 4])
.. _Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network:
https://arxiv.org/abs/1609.05158
"""
__constants__ = ["downscale_factor"]
downscale_factor: int
def __init__(self, downscale_factor: int) -> None:
super().__init__()
self.downscale_factor = downscale_factor
def forward(self, input: Tensor) -> Tensor:
return F.pixel_unshuffle(input, self.downscale_factor)
def extra_repr(self) -> str:
return f"downscale_factor={self.downscale_factor}"
```
|
===================================================================================================================
SOURCE CODE FILE: pooling.py
LINES: 1
SIZE: 58.89 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\modules\pooling.py
ENCODING: utf-8
```py
from typing import Optional
import torch.nn.functional as F
from torch import Tensor
from torch.nn.common_types import (
_ratio_2_t,
_ratio_3_t,
_size_1_t,
_size_2_opt_t,
_size_2_t,
_size_3_opt_t,
_size_3_t,
_size_any_opt_t,
_size_any_t,
)
from .module import Module
from .utils import _pair, _single, _triple
__all__ = [
"MaxPool1d",
"MaxPool2d",
"MaxPool3d",
"MaxUnpool1d",
"MaxUnpool2d",
"MaxUnpool3d",
"AvgPool1d",
"AvgPool2d",
"AvgPool3d",
"FractionalMaxPool2d",
"FractionalMaxPool3d",
"LPPool1d",
"LPPool2d",
"LPPool3d",
"AdaptiveMaxPool1d",
"AdaptiveMaxPool2d",
"AdaptiveMaxPool3d",
"AdaptiveAvgPool1d",
"AdaptiveAvgPool2d",
"AdaptiveAvgPool3d",
]
class _MaxPoolNd(Module):
__constants__ = [
"kernel_size",
"stride",
"padding",
"dilation",
"return_indices",
"ceil_mode",
]
return_indices: bool
ceil_mode: bool
def __init__(
self,
kernel_size: _size_any_t,
stride: Optional[_size_any_t] = None,
padding: _size_any_t = 0,
dilation: _size_any_t = 1,
return_indices: bool = False,
ceil_mode: bool = False,
) -> None:
super().__init__()
self.kernel_size = kernel_size
self.stride = stride if (stride is not None) else kernel_size
self.padding = padding
self.dilation = dilation
self.return_indices = return_indices
self.ceil_mode = ceil_mode
def extra_repr(self) -> str:
return (
"kernel_size={kernel_size}, stride={stride}, padding={padding}"
", dilation={dilation}, ceil_mode={ceil_mode}".format(**self.__dict__)
)
class MaxPool1d(_MaxPoolNd):
r"""Applies a 1D max pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size :math:`(N, C, L)`
and output :math:`(N, C, L_{out})` can be precisely described as:
.. math::
out(N_i, C_j, k) = \max_{m=0, \ldots, \text{kernel\_size} - 1}
input(N_i, C_j, stride \times k + m)
If :attr:`padding` is non-zero, then the input is implicitly padded with negative infinity on both sides
for :attr:`padding` number of points. :attr:`dilation` is the stride between the elements within the
sliding window. This `link`_ has a nice visualization of the pooling parameters.
Note:
When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding
or the input. Sliding windows that would start in the right padded region are ignored.
Args:
kernel_size: The size of the sliding window, must be > 0.
stride: The stride of the sliding window, must be > 0. Default value is :attr:`kernel_size`.
padding: Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2.
dilation: The stride between elements within a sliding window, must be > 0.
return_indices: If ``True``, will return the argmax along with the max values.
Useful for :class:`torch.nn.MaxUnpool1d` later
ceil_mode: If ``True``, will use `ceil` instead of `floor` to compute the output shape. This
ensures that every element in the input tensor is covered by a sliding window.
Shape:
- Input: :math:`(N, C, L_{in})` or :math:`(C, L_{in})`.
- Output: :math:`(N, C, L_{out})` or :math:`(C, L_{out})`, where
.. math::
L_{out} = \left\lfloor \frac{L_{in} + 2 \times \text{padding} - \text{dilation}
\times (\text{kernel\_size} - 1) - 1}{\text{stride}} + 1\right\rfloor
Examples::
>>> # pool of size=3, stride=2
>>> m = nn.MaxPool1d(3, stride=2)
>>> input = torch.randn(20, 16, 50)
>>> output = m(input)
.. _link:
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
"""
kernel_size: _size_1_t
stride: _size_1_t
padding: _size_1_t
dilation: _size_1_t
def forward(self, input: Tensor):
return F.max_pool1d(
input,
self.kernel_size,
self.stride,
self.padding,
self.dilation,
ceil_mode=self.ceil_mode,
return_indices=self.return_indices,
)
class MaxPool2d(_MaxPoolNd):
r"""Applies a 2D max pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size :math:`(N, C, H, W)`,
output :math:`(N, C, H_{out}, W_{out})` and :attr:`kernel_size` :math:`(kH, kW)`
can be precisely described as:
.. math::
\begin{aligned}
out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1} \\
& \text{input}(N_i, C_j, \text{stride[0]} \times h + m,
\text{stride[1]} \times w + n)
\end{aligned}
If :attr:`padding` is non-zero, then the input is implicitly padded with negative infinity on both sides
for :attr:`padding` number of points. :attr:`dilation` controls the spacing between the kernel points.
It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does.
Note:
When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding
or the input. Sliding windows that would start in the right padded region are ignored.
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be:
- a single ``int`` -- in which case the same value is used for the height and width dimension
- a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,
and the second `int` for the width dimension
Args:
kernel_size: the size of the window to take a max over
stride: the stride of the window. Default value is :attr:`kernel_size`
padding: Implicit negative infinity padding to be added on both sides
dilation: a parameter that controls the stride of elements in the window
return_indices: if ``True``, will return the max indices along with the outputs.
Useful for :class:`torch.nn.MaxUnpool2d` later
ceil_mode: when True, will use `ceil` instead of `floor` to compute the output shape
Shape:
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
.. math::
H_{out} = \left\lfloor\frac{H_{in} + 2 * \text{padding[0]} - \text{dilation[0]}
\times (\text{kernel\_size[0]} - 1) - 1}{\text{stride[0]}} + 1\right\rfloor
.. math::
W_{out} = \left\lfloor\frac{W_{in} + 2 * \text{padding[1]} - \text{dilation[1]}
\times (\text{kernel\_size[1]} - 1) - 1}{\text{stride[1]}} + 1\right\rfloor
Examples::
>>> # pool of square window of size=3, stride=2
>>> m = nn.MaxPool2d(3, stride=2)
>>> # pool of non-square window
>>> m = nn.MaxPool2d((3, 2), stride=(2, 1))
>>> input = torch.randn(20, 16, 50, 32)
>>> output = m(input)
.. _link:
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
"""
kernel_size: _size_2_t
stride: _size_2_t
padding: _size_2_t
dilation: _size_2_t
def forward(self, input: Tensor):
return F.max_pool2d(
input,
self.kernel_size,
self.stride,
self.padding,
self.dilation,
ceil_mode=self.ceil_mode,
return_indices=self.return_indices,
)
class MaxPool3d(_MaxPoolNd):
r"""Applies a 3D max pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size :math:`(N, C, D, H, W)`,
output :math:`(N, C, D_{out}, H_{out}, W_{out})` and :attr:`kernel_size` :math:`(kD, kH, kW)`
can be precisely described as:
.. math::
\begin{aligned}
\text{out}(N_i, C_j, d, h, w) ={} & \max_{k=0, \ldots, kD-1} \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1} \\
& \text{input}(N_i, C_j, \text{stride[0]} \times d + k,
\text{stride[1]} \times h + m, \text{stride[2]} \times w + n)
\end{aligned}
If :attr:`padding` is non-zero, then the input is implicitly padded with negative infinity on both sides
for :attr:`padding` number of points. :attr:`dilation` controls the spacing between the kernel points.
It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does.
Note:
When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding
or the input. Sliding windows that would start in the right padded region are ignored.
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be:
- a single ``int`` -- in which case the same value is used for the depth, height and width dimension
- a ``tuple`` of three ints -- in which case, the first `int` is used for the depth dimension,
the second `int` for the height dimension and the third `int` for the width dimension
Args:
kernel_size: the size of the window to take a max over
stride: the stride of the window. Default value is :attr:`kernel_size`
padding: Implicit negative infinity padding to be added on all three sides
dilation: a parameter that controls the stride of elements in the window
return_indices: if ``True``, will return the max indices along with the outputs.
Useful for :class:`torch.nn.MaxUnpool3d` later
ceil_mode: when True, will use `ceil` instead of `floor` to compute the output shape
Shape:
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`, where
.. math::
D_{out} = \left\lfloor\frac{D_{in} + 2 \times \text{padding}[0] - \text{dilation}[0] \times
(\text{kernel\_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor
.. math::
H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[1] - \text{dilation}[1] \times
(\text{kernel\_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor
.. math::
W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[2] - \text{dilation}[2] \times
(\text{kernel\_size}[2] - 1) - 1}{\text{stride}[2]} + 1\right\rfloor
Examples::
>>> # pool of square window of size=3, stride=2
>>> m = nn.MaxPool3d(3, stride=2)
>>> # pool of non-square window
>>> m = nn.MaxPool3d((3, 2, 2), stride=(2, 1, 2))
>>> input = torch.randn(20, 16, 50, 44, 31)
>>> output = m(input)
.. _link:
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
""" # noqa: E501
kernel_size: _size_3_t
stride: _size_3_t
padding: _size_3_t
dilation: _size_3_t
def forward(self, input: Tensor):
return F.max_pool3d(
input,
self.kernel_size,
self.stride,
self.padding,
self.dilation,
ceil_mode=self.ceil_mode,
return_indices=self.return_indices,
)
class _MaxUnpoolNd(Module):
def extra_repr(self) -> str:
return f"kernel_size={self.kernel_size}, stride={self.stride}, padding={self.padding}"
class MaxUnpool1d(_MaxUnpoolNd):
r"""Computes a partial inverse of :class:`MaxPool1d`.
:class:`MaxPool1d` is not fully invertible, since the non-maximal values are lost.
:class:`MaxUnpool1d` takes in as input the output of :class:`MaxPool1d`
including the indices of the maximal values and computes a partial inverse
in which all non-maximal values are set to zero.
Note:
This operation may behave nondeterministically when the input indices has repeat values.
See https://github.com/pytorch/pytorch/issues/80827 and :doc:`/notes/randomness` for more information.
.. note:: :class:`MaxPool1d` can map several input sizes to the same output
sizes. Hence, the inversion process can get ambiguous.
To accommodate this, you can provide the needed output size
as an additional argument :attr:`output_size` in the forward call.
See the Inputs and Example below.
Args:
kernel_size (int or tuple): Size of the max pooling window.
stride (int or tuple): Stride of the max pooling window.
It is set to :attr:`kernel_size` by default.
padding (int or tuple): Padding that was added to the input
Inputs:
- `input`: the input Tensor to invert
- `indices`: the indices given out by :class:`~torch.nn.MaxPool1d`
- `output_size` (optional): the targeted output size
Shape:
- Input: :math:`(N, C, H_{in})` or :math:`(C, H_{in})`.
- Output: :math:`(N, C, H_{out})` or :math:`(C, H_{out})`, where
.. math::
H_{out} = (H_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{kernel\_size}[0]
or as given by :attr:`output_size` in the call operator
Example::
>>> # xdoctest: +IGNORE_WANT("do other tests modify the global state?")
>>> pool = nn.MaxPool1d(2, stride=2, return_indices=True)
>>> unpool = nn.MaxUnpool1d(2, stride=2)
>>> input = torch.tensor([[[1., 2, 3, 4, 5, 6, 7, 8]]])
>>> output, indices = pool(input)
>>> unpool(output, indices)
tensor([[[ 0., 2., 0., 4., 0., 6., 0., 8.]]])
>>> # Example showcasing the use of output_size
>>> input = torch.tensor([[[1., 2, 3, 4, 5, 6, 7, 8, 9]]])
>>> output, indices = pool(input)
>>> unpool(output, indices, output_size=input.size())
tensor([[[ 0., 2., 0., 4., 0., 6., 0., 8., 0.]]])
>>> unpool(output, indices)
tensor([[[ 0., 2., 0., 4., 0., 6., 0., 8.]]])
"""
kernel_size: _size_1_t
stride: _size_1_t
padding: _size_1_t
def __init__(
self,
kernel_size: _size_1_t,
stride: Optional[_size_1_t] = None,
padding: _size_1_t = 0,
) -> None:
super().__init__()
self.kernel_size = _single(kernel_size)
self.stride = _single(stride if (stride is not None) else kernel_size)
self.padding = _single(padding)
def forward(
self, input: Tensor, indices: Tensor, output_size: Optional[list[int]] = None
) -> Tensor:
return F.max_unpool1d(
input, indices, self.kernel_size, self.stride, self.padding, output_size
)
class MaxUnpool2d(_MaxUnpoolNd):
r"""Computes a partial inverse of :class:`MaxPool2d`.
:class:`MaxPool2d` is not fully invertible, since the non-maximal values are lost.
:class:`MaxUnpool2d` takes in as input the output of :class:`MaxPool2d`
including the indices of the maximal values and computes a partial inverse
in which all non-maximal values are set to zero.
Note:
This operation may behave nondeterministically when the input indices has repeat values.
See https://github.com/pytorch/pytorch/issues/80827 and :doc:`/notes/randomness` for more information.
.. note:: :class:`MaxPool2d` can map several input sizes to the same output
sizes. Hence, the inversion process can get ambiguous.
To accommodate this, you can provide the needed output size
as an additional argument :attr:`output_size` in the forward call.
See the Inputs and Example below.
Args:
kernel_size (int or tuple): Size of the max pooling window.
stride (int or tuple): Stride of the max pooling window.
It is set to :attr:`kernel_size` by default.
padding (int or tuple): Padding that was added to the input
Inputs:
- `input`: the input Tensor to invert
- `indices`: the indices given out by :class:`~torch.nn.MaxPool2d`
- `output_size` (optional): the targeted output size
Shape:
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
.. math::
H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}
.. math::
W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}
or as given by :attr:`output_size` in the call operator
Example::
>>> pool = nn.MaxPool2d(2, stride=2, return_indices=True)
>>> unpool = nn.MaxUnpool2d(2, stride=2)
>>> input = torch.tensor([[[[ 1., 2., 3., 4.],
[ 5., 6., 7., 8.],
[ 9., 10., 11., 12.],
[13., 14., 15., 16.]]]])
>>> output, indices = pool(input)
>>> unpool(output, indices)
tensor([[[[ 0., 0., 0., 0.],
[ 0., 6., 0., 8.],
[ 0., 0., 0., 0.],
[ 0., 14., 0., 16.]]]])
>>> # Now using output_size to resolve an ambiguous size for the inverse
>>> input = torch.tensor([[[[ 1., 2., 3., 4., 5.],
[ 6., 7., 8., 9., 10.],
[11., 12., 13., 14., 15.],
[16., 17., 18., 19., 20.]]]])
>>> output, indices = pool(input)
>>> # This call will not work without specifying output_size
>>> unpool(output, indices, output_size=input.size())
tensor([[[[ 0., 0., 0., 0., 0.],
[ 0., 7., 0., 9., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 17., 0., 19., 0.]]]])
"""
kernel_size: _size_2_t
stride: _size_2_t
padding: _size_2_t
def __init__(
self,
kernel_size: _size_2_t,
stride: Optional[_size_2_t] = None,
padding: _size_2_t = 0,
) -> None:
super().__init__()
self.kernel_size = _pair(kernel_size)
self.stride = _pair(stride if (stride is not None) else kernel_size)
self.padding = _pair(padding)
def forward(
self, input: Tensor, indices: Tensor, output_size: Optional[list[int]] = None
) -> Tensor:
return F.max_unpool2d(
input, indices, self.kernel_size, self.stride, self.padding, output_size
)
class MaxUnpool3d(_MaxUnpoolNd):
r"""Computes a partial inverse of :class:`MaxPool3d`.
:class:`MaxPool3d` is not fully invertible, since the non-maximal values are lost.
:class:`MaxUnpool3d` takes in as input the output of :class:`MaxPool3d`
including the indices of the maximal values and computes a partial inverse
in which all non-maximal values are set to zero.
Note:
This operation may behave nondeterministically when the input indices has repeat values.
See https://github.com/pytorch/pytorch/issues/80827 and :doc:`/notes/randomness` for more information.
.. note:: :class:`MaxPool3d` can map several input sizes to the same output
sizes. Hence, the inversion process can get ambiguous.
To accommodate this, you can provide the needed output size
as an additional argument :attr:`output_size` in the forward call.
See the Inputs section below.
Args:
kernel_size (int or tuple): Size of the max pooling window.
stride (int or tuple): Stride of the max pooling window.
It is set to :attr:`kernel_size` by default.
padding (int or tuple): Padding that was added to the input
Inputs:
- `input`: the input Tensor to invert
- `indices`: the indices given out by :class:`~torch.nn.MaxPool3d`
- `output_size` (optional): the targeted output size
Shape:
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`, where
.. math::
D_{out} = (D_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}
.. math::
H_{out} = (H_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}
.. math::
W_{out} = (W_{in} - 1) \times \text{stride[2]} - 2 \times \text{padding[2]} + \text{kernel\_size[2]}
or as given by :attr:`output_size` in the call operator
Example::
>>> # pool of square window of size=3, stride=2
>>> pool = nn.MaxPool3d(3, stride=2, return_indices=True)
>>> unpool = nn.MaxUnpool3d(3, stride=2)
>>> output, indices = pool(torch.randn(20, 16, 51, 33, 15))
>>> unpooled_output = unpool(output, indices)
>>> unpooled_output.size()
torch.Size([20, 16, 51, 33, 15])
"""
kernel_size: _size_3_t
stride: _size_3_t
padding: _size_3_t
def __init__(
self,
kernel_size: _size_3_t,
stride: Optional[_size_3_t] = None,
padding: _size_3_t = 0,
) -> None:
super().__init__()
self.kernel_size = _triple(kernel_size)
self.stride = _triple(stride if (stride is not None) else kernel_size)
self.padding = _triple(padding)
def forward(
self, input: Tensor, indices: Tensor, output_size: Optional[list[int]] = None
) -> Tensor:
return F.max_unpool3d(
input, indices, self.kernel_size, self.stride, self.padding, output_size
)
class _AvgPoolNd(Module):
__constants__ = [
"kernel_size",
"stride",
"padding",
"ceil_mode",
"count_include_pad",
]
def extra_repr(self) -> str:
return f"kernel_size={self.kernel_size}, stride={self.stride}, padding={self.padding}"
class AvgPool1d(_AvgPoolNd):
r"""Applies a 1D average pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size :math:`(N, C, L)`,
output :math:`(N, C, L_{out})` and :attr:`kernel_size` :math:`k`
can be precisely described as:
.. math::
\text{out}(N_i, C_j, l) = \frac{1}{k} \sum_{m=0}^{k-1}
\text{input}(N_i, C_j, \text{stride} \times l + m)
If :attr:`padding` is non-zero, then the input is implicitly zero-padded on both sides
for :attr:`padding` number of points.
Note:
When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding
or the input. Sliding windows that would start in the right padded region are ignored.
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding` can each be
an ``int`` or a one-element tuple.
Args:
kernel_size: the size of the window
stride: the stride of the window. Default value is :attr:`kernel_size`
padding: implicit zero padding to be added on both sides
ceil_mode: when True, will use `ceil` instead of `floor` to compute the output shape
count_include_pad: when True, will include the zero-padding in the averaging calculation
Shape:
- Input: :math:`(N, C, L_{in})` or :math:`(C, L_{in})`.
- Output: :math:`(N, C, L_{out})` or :math:`(C, L_{out})`, where
.. math::
L_{out} = \left\lfloor \frac{L_{in} +
2 \times \text{padding} - \text{kernel\_size}}{\text{stride}} + 1\right\rfloor
Per the note above, if ``ceil_mode`` is True and :math:`(L_{out} - 1) \times \text{stride} \geq L_{in}
+ \text{padding}`, we skip the last window as it would start in the right padded region, resulting in
:math:`L_{out}` being reduced by one.
Examples::
>>> # pool with window of size=3, stride=2
>>> m = nn.AvgPool1d(3, stride=2)
>>> m(torch.tensor([[[1., 2, 3, 4, 5, 6, 7]]]))
tensor([[[2., 4., 6.]]])
"""
kernel_size: _size_1_t
stride: _size_1_t
padding: _size_1_t
ceil_mode: bool
count_include_pad: bool
def __init__(
self,
kernel_size: _size_1_t,
stride: _size_1_t = None,
padding: _size_1_t = 0,
ceil_mode: bool = False,
count_include_pad: bool = True,
) -> None:
super().__init__()
self.kernel_size = _single(kernel_size)
self.stride = _single(stride if stride is not None else kernel_size)
self.padding = _single(padding)
self.ceil_mode = ceil_mode
self.count_include_pad = count_include_pad
def forward(self, input: Tensor) -> Tensor:
return F.avg_pool1d(
input,
self.kernel_size,
self.stride,
self.padding,
self.ceil_mode,
self.count_include_pad,
)
class AvgPool2d(_AvgPoolNd):
r"""Applies a 2D average pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size :math:`(N, C, H, W)`,
output :math:`(N, C, H_{out}, W_{out})` and :attr:`kernel_size` :math:`(kH, kW)`
can be precisely described as:
.. math::
out(N_i, C_j, h, w) = \frac{1}{kH * kW} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1}
input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)
If :attr:`padding` is non-zero, then the input is implicitly zero-padded on both sides
for :attr:`padding` number of points.
Note:
When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding
or the input. Sliding windows that would start in the right padded region are ignored.
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding` can either be:
- a single ``int`` -- in which case the same value is used for the height and width dimension
- a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,
and the second `int` for the width dimension
Args:
kernel_size: the size of the window
stride: the stride of the window. Default value is :attr:`kernel_size`
padding: implicit zero padding to be added on both sides
ceil_mode: when True, will use `ceil` instead of `floor` to compute the output shape
count_include_pad: when True, will include the zero-padding in the averaging calculation
divisor_override: if specified, it will be used as divisor, otherwise size of the pooling region will be used.
Shape:
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
.. math::
H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[0] -
\text{kernel\_size}[0]}{\text{stride}[0]} + 1\right\rfloor
.. math::
W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[1] -
\text{kernel\_size}[1]}{\text{stride}[1]} + 1\right\rfloor
Per the note above, if ``ceil_mode`` is True and :math:`(H_{out} - 1)\times \text{stride}[0]\geq H_{in}
+ \text{padding}[0]`, we skip the last window as it would start in the bottom padded region,
resulting in :math:`H_{out}` being reduced by one.
The same applies for :math:`W_{out}`.
Examples::
>>> # pool of square window of size=3, stride=2
>>> m = nn.AvgPool2d(3, stride=2)
>>> # pool of non-square window
>>> m = nn.AvgPool2d((3, 2), stride=(2, 1))
>>> input = torch.randn(20, 16, 50, 32)
>>> output = m(input)
"""
__constants__ = [
"kernel_size",
"stride",
"padding",
"ceil_mode",
"count_include_pad",
"divisor_override",
]
kernel_size: _size_2_t
stride: _size_2_t
padding: _size_2_t
ceil_mode: bool
count_include_pad: bool
def __init__(
self,
kernel_size: _size_2_t,
stride: Optional[_size_2_t] = None,
padding: _size_2_t = 0,
ceil_mode: bool = False,
count_include_pad: bool = True,
divisor_override: Optional[int] = None,
) -> None:
super().__init__()
self.kernel_size = kernel_size
self.stride = stride if (stride is not None) else kernel_size
self.padding = padding
self.ceil_mode = ceil_mode
self.count_include_pad = count_include_pad
self.divisor_override = divisor_override
def forward(self, input: Tensor) -> Tensor:
return F.avg_pool2d(
input,
self.kernel_size,
self.stride,
self.padding,
self.ceil_mode,
self.count_include_pad,
self.divisor_override,
)
class AvgPool3d(_AvgPoolNd):
r"""Applies a 3D average pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size :math:`(N, C, D, H, W)`,
output :math:`(N, C, D_{out}, H_{out}, W_{out})` and :attr:`kernel_size` :math:`(kD, kH, kW)`
can be precisely described as:
.. math::
\begin{aligned}
\text{out}(N_i, C_j, d, h, w) ={} & \sum_{k=0}^{kD-1} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1} \\
& \frac{\text{input}(N_i, C_j, \text{stride}[0] \times d + k,
\text{stride}[1] \times h + m, \text{stride}[2] \times w + n)}
{kD \times kH \times kW}
\end{aligned}
If :attr:`padding` is non-zero, then the input is implicitly zero-padded on all three sides
for :attr:`padding` number of points.
Note:
When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding
or the input. Sliding windows that would start in the right padded region are ignored.
The parameters :attr:`kernel_size`, :attr:`stride` can either be:
- a single ``int`` -- in which case the same value is used for the depth, height and width dimension
- a ``tuple`` of three ints -- in which case, the first `int` is used for the depth dimension,
the second `int` for the height dimension and the third `int` for the width dimension
Args:
kernel_size: the size of the window
stride: the stride of the window. Default value is :attr:`kernel_size`
padding: implicit zero padding to be added on all three sides
ceil_mode: when True, will use `ceil` instead of `floor` to compute the output shape
count_include_pad: when True, will include the zero-padding in the averaging calculation
divisor_override: if specified, it will be used as divisor, otherwise :attr:`kernel_size` will be used
Shape:
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or
:math:`(C, D_{out}, H_{out}, W_{out})`, where
.. math::
D_{out} = \left\lfloor\frac{D_{in} + 2 \times \text{padding}[0] -
\text{kernel\_size}[0]}{\text{stride}[0]} + 1\right\rfloor
.. math::
H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[1] -
\text{kernel\_size}[1]}{\text{stride}[1]} + 1\right\rfloor
.. math::
W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[2] -
\text{kernel\_size}[2]}{\text{stride}[2]} + 1\right\rfloor
Per the note above, if ``ceil_mode`` is True and :math:`(D_{out} - 1)\times \text{stride}[0]\geq D_{in}
+ \text{padding}[0]`, we skip the last window as it would start in the padded region,
resulting in :math:`D_{out}` being reduced by one.
The same applies for :math:`W_{out}` and :math:`H_{out}`.
Examples::
>>> # pool of square window of size=3, stride=2
>>> m = nn.AvgPool3d(3, stride=2)
>>> # pool of non-square window
>>> m = nn.AvgPool3d((3, 2, 2), stride=(2, 1, 2))
>>> input = torch.randn(20, 16, 50, 44, 31)
>>> output = m(input)
"""
__constants__ = [
"kernel_size",
"stride",
"padding",
"ceil_mode",
"count_include_pad",
"divisor_override",
]
kernel_size: _size_3_t
stride: _size_3_t
padding: _size_3_t
ceil_mode: bool
count_include_pad: bool
def __init__(
self,
kernel_size: _size_3_t,
stride: Optional[_size_3_t] = None,
padding: _size_3_t = 0,
ceil_mode: bool = False,
count_include_pad: bool = True,
divisor_override: Optional[int] = None,
) -> None:
super().__init__()
self.kernel_size = kernel_size
self.stride = stride if (stride is not None) else kernel_size
self.padding = padding
self.ceil_mode = ceil_mode
self.count_include_pad = count_include_pad
self.divisor_override = divisor_override
def forward(self, input: Tensor) -> Tensor:
return F.avg_pool3d(
input,
self.kernel_size,
self.stride,
self.padding,
self.ceil_mode,
self.count_include_pad,
self.divisor_override,
)
def __setstate__(self, d):
super().__setstate__(d)
self.__dict__.setdefault("padding", 0)
self.__dict__.setdefault("ceil_mode", False)
self.__dict__.setdefault("count_include_pad", True)
class FractionalMaxPool2d(Module):
r"""Applies a 2D fractional max pooling over an input signal composed of several input planes.
Fractional MaxPooling is described in detail in the paper `Fractional MaxPooling`_ by Ben Graham
The max-pooling operation is applied in :math:`kH \times kW` regions by a stochastic
step size determined by the target output size.
The number of output features is equal to the number of input planes.
.. note:: Exactly one of ``output_size`` or ``output_ratio`` must be defined.
Args:
kernel_size: the size of the window to take a max over.
Can be a single number k (for a square kernel of k x k) or a tuple `(kh, kw)`
output_size: the target output size of the image of the form `oH x oW`.
Can be a tuple `(oH, oW)` or a single number oH for a square image `oH x oH`.
Note that we must have :math:`kH + oH - 1 <= H_{in}` and :math:`kW + oW - 1 <= W_{in}`
output_ratio: If one wants to have an output size as a ratio of the input size, this option can be given.
This has to be a number or tuple in the range (0, 1).
Note that we must have :math:`kH + (output\_ratio\_H * H_{in}) - 1 <= H_{in}`
and :math:`kW + (output\_ratio\_W * W_{in}) - 1 <= W_{in}`
return_indices: if ``True``, will return the indices along with the outputs.
Useful to pass to :meth:`nn.MaxUnpool2d`. Default: ``False``
Shape:
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
:math:`(H_{out}, W_{out})=\text{output\_size}` or
:math:`(H_{out}, W_{out})=\text{output\_ratio} \times (H_{in}, W_{in})`.
Examples:
>>> # pool of square window of size=3, and target output size 13x12
>>> m = nn.FractionalMaxPool2d(3, output_size=(13, 12))
>>> # pool of square window and target output size being half of input image size
>>> m = nn.FractionalMaxPool2d(3, output_ratio=(0.5, 0.5))
>>> input = torch.randn(20, 16, 50, 32)
>>> output = m(input)
.. _Fractional MaxPooling:
https://arxiv.org/abs/1412.6071
"""
__constants__ = ["kernel_size", "return_indices", "output_size", "output_ratio"]
kernel_size: _size_2_t
return_indices: bool
output_size: _size_2_t
output_ratio: _ratio_2_t
def __init__(
self,
kernel_size: _size_2_t,
output_size: Optional[_size_2_t] = None,
output_ratio: Optional[_ratio_2_t] = None,
return_indices: bool = False,
_random_samples=None,
) -> None:
super().__init__()
self.kernel_size = _pair(kernel_size)
self.return_indices = return_indices
self.register_buffer("_random_samples", _random_samples)
self.output_size = _pair(output_size) if output_size is not None else None
self.output_ratio = _pair(output_ratio) if output_ratio is not None else None
if output_size is None and output_ratio is None:
raise ValueError(
"FractionalMaxPool2d requires specifying either "
"an output size, or a pooling ratio"
)
if output_size is not None and output_ratio is not None:
raise ValueError(
"only one of output_size and output_ratio may be specified"
)
if self.output_ratio is not None:
if not (0 < self.output_ratio[0] < 1 and 0 < self.output_ratio[1] < 1):
raise ValueError(
f"output_ratio must be between 0 and 1 (got {output_ratio})"
)
def forward(self, input: Tensor):
return F.fractional_max_pool2d(
input,
self.kernel_size,
self.output_size,
self.output_ratio,
self.return_indices,
_random_samples=self._random_samples,
)
class FractionalMaxPool3d(Module):
r"""Applies a 3D fractional max pooling over an input signal composed of several input planes.
Fractional MaxPooling is described in detail in the paper `Fractional MaxPooling`_ by Ben Graham
The max-pooling operation is applied in :math:`kT \times kH \times kW` regions by a stochastic
step size determined by the target output size.
The number of output features is equal to the number of input planes.
.. note:: Exactly one of ``output_size`` or ``output_ratio`` must be defined.
Args:
kernel_size: the size of the window to take a max over.
Can be a single number k (for a square kernel of k x k x k) or a tuple `(kt x kh x kw)`
output_size: the target output size of the image of the form `oT x oH x oW`.
Can be a tuple `(oT, oH, oW)` or a single number oH for a square image `oH x oH x oH`
output_ratio: If one wants to have an output size as a ratio of the input size, this option can be given.
This has to be a number or tuple in the range (0, 1)
return_indices: if ``True``, will return the indices along with the outputs.
Useful to pass to :meth:`nn.MaxUnpool3d`. Default: ``False``
Shape:
- Input: :math:`(N, C, T_{in}, H_{in}, W_{in})` or :math:`(C, T_{in}, H_{in}, W_{in})`.
- Output: :math:`(N, C, T_{out}, H_{out}, W_{out})` or :math:`(C, T_{out}, H_{out}, W_{out})`, where
:math:`(T_{out}, H_{out}, W_{out})=\text{output\_size}` or
:math:`(T_{out}, H_{out}, W_{out})=\text{output\_ratio} \times (T_{in}, H_{in}, W_{in})`
Examples:
>>> # pool of cubic window of size=3, and target output size 13x12x11
>>> m = nn.FractionalMaxPool3d(3, output_size=(13, 12, 11))
>>> # pool of cubic window and target output size being half of input size
>>> m = nn.FractionalMaxPool3d(3, output_ratio=(0.5, 0.5, 0.5))
>>> input = torch.randn(20, 16, 50, 32, 16)
>>> output = m(input)
.. _Fractional MaxPooling:
https://arxiv.org/abs/1412.6071
"""
__constants__ = ["kernel_size", "return_indices", "output_size", "output_ratio"]
kernel_size: _size_3_t
return_indices: bool
output_size: _size_3_t
output_ratio: _ratio_3_t
def __init__(
self,
kernel_size: _size_3_t,
output_size: Optional[_size_3_t] = None,
output_ratio: Optional[_ratio_3_t] = None,
return_indices: bool = False,
_random_samples=None,
) -> None:
super().__init__()
self.kernel_size = _triple(kernel_size)
self.return_indices = return_indices
self.register_buffer("_random_samples", _random_samples)
self.output_size = _triple(output_size) if output_size is not None else None
self.output_ratio = _triple(output_ratio) if output_ratio is not None else None
if output_size is None and output_ratio is None:
raise ValueError(
"FractionalMaxPool3d requires specifying either "
"an output size, or a pooling ratio"
)
if output_size is not None and output_ratio is not None:
raise ValueError(
"only one of output_size and output_ratio may be specified"
)
if self.output_ratio is not None:
if not (
0 < self.output_ratio[0] < 1
and 0 < self.output_ratio[1] < 1
and 0 < self.output_ratio[2] < 1
):
raise ValueError(
f"output_ratio must be between 0 and 1 (got {output_ratio})"
)
def forward(self, input: Tensor):
return F.fractional_max_pool3d(
input,
self.kernel_size,
self.output_size,
self.output_ratio,
self.return_indices,
_random_samples=self._random_samples,
)
class _LPPoolNd(Module):
__constants__ = ["norm_type", "kernel_size", "stride", "ceil_mode"]
norm_type: float
ceil_mode: bool
def __init__(
self,
norm_type: float,
kernel_size: _size_any_t,
stride: Optional[_size_any_t] = None,
ceil_mode: bool = False,
) -> None:
super().__init__()
self.norm_type = norm_type
self.kernel_size = kernel_size
self.stride = stride
self.ceil_mode = ceil_mode
def extra_repr(self) -> str:
return (
"norm_type={norm_type}, kernel_size={kernel_size}, stride={stride}, "
"ceil_mode={ceil_mode}".format(**self.__dict__)
)
class LPPool1d(_LPPoolNd):
r"""Applies a 1D power-average pooling over an input signal composed of several input planes.
On each window, the function computed is:
.. math::
f(X) = \sqrt[p]{\sum_{x \in X} x^{p}}
- At p = :math:`\infty`, one gets Max Pooling
- At p = 1, one gets Sum Pooling (which is proportional to Average Pooling)
.. note:: If the sum to the power of `p` is zero, the gradient of this function is
not defined. This implementation will set the gradient to zero in this case.
Args:
kernel_size: a single int, the size of the window
stride: a single int, the stride of the window. Default value is :attr:`kernel_size`
ceil_mode: when True, will use `ceil` instead of `floor` to compute the output shape
Shape:
- Input: :math:`(N, C, L_{in})` or :math:`(C, L_{in})`.
- Output: :math:`(N, C, L_{out})` or :math:`(C, L_{out})`, where
.. math::
L_{out} = \left\lfloor\frac{L_{in} - \text{kernel\_size}}{\text{stride}} + 1\right\rfloor
Examples::
>>> # power-2 pool of window of length 3, with stride 2.
>>> m = nn.LPPool1d(2, 3, stride=2)
>>> input = torch.randn(20, 16, 50)
>>> output = m(input)
"""
kernel_size: _size_1_t
stride: _size_1_t
def forward(self, input: Tensor) -> Tensor:
return F.lp_pool1d(
input, float(self.norm_type), self.kernel_size, self.stride, self.ceil_mode
)
class LPPool2d(_LPPoolNd):
r"""Applies a 2D power-average pooling over an input signal composed of several input planes.
On each window, the function computed is:
.. math::
f(X) = \sqrt[p]{\sum_{x \in X} x^{p}}
- At p = :math:`\infty`, one gets Max Pooling
- At p = 1, one gets Sum Pooling (which is proportional to average pooling)
The parameters :attr:`kernel_size`, :attr:`stride` can either be:
- a single ``int`` -- in which case the same value is used for the height and width dimension
- a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,
and the second `int` for the width dimension
.. note:: If the sum to the power of `p` is zero, the gradient of this function is
not defined. This implementation will set the gradient to zero in this case.
Args:
kernel_size: the size of the window
stride: the stride of the window. Default value is :attr:`kernel_size`
ceil_mode: when True, will use `ceil` instead of `floor` to compute the output shape
Shape:
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
.. math::
H_{out} = \left\lfloor\frac{H_{in} - \text{kernel\_size}[0]}{\text{stride}[0]} + 1\right\rfloor
.. math::
W_{out} = \left\lfloor\frac{W_{in} - \text{kernel\_size}[1]}{\text{stride}[1]} + 1\right\rfloor
Examples::
>>> # power-2 pool of square window of size=3, stride=2
>>> m = nn.LPPool2d(2, 3, stride=2)
>>> # pool of non-square window of power 1.2
>>> m = nn.LPPool2d(1.2, (3, 2), stride=(2, 1))
>>> input = torch.randn(20, 16, 50, 32)
>>> output = m(input)
"""
kernel_size: _size_2_t
stride: _size_2_t
def forward(self, input: Tensor) -> Tensor:
return F.lp_pool2d(
input, float(self.norm_type), self.kernel_size, self.stride, self.ceil_mode
)
class LPPool3d(_LPPoolNd):
r"""Applies a 3D power-average pooling over an input signal composed of several input planes.
On each window, the function computed is:
.. math::
f(X) = \sqrt[p]{\sum_{x \in X} x^{p}}
- At p = :math:`\infty`, one gets Max Pooling
- At p = 1, one gets Sum Pooling (which is proportional to average pooling)
The parameters :attr:`kernel_size`, :attr:`stride` can either be:
- a single ``int`` -- in which case the same value is used for the height, width and depth dimension
- a ``tuple`` of three ints -- in which case, the first `int` is used for the depth dimension,
the second `int` for the height dimension and the third `int` for the width dimension
.. note:: If the sum to the power of `p` is zero, the gradient of this function is
not defined. This implementation will set the gradient to zero in this case.
Args:
kernel_size: the size of the window
stride: the stride of the window. Default value is :attr:`kernel_size`
ceil_mode: when True, will use `ceil` instead of `floor` to compute the output shape
Shape:
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or
:math:`(C, D_{out}, H_{out}, W_{out})`, where
.. math::
D_{out} = \left\lfloor\frac{D_{in} - \text{kernel\_size}[0]}{\text{stride}[0]} + 1\right\rfloor
.. math::
H_{out} = \left\lfloor\frac{H_{in} - \text{kernel\_size}[1]}{\text{stride}[1]} + 1\right\rfloor
.. math::
W_{out} = \left\lfloor\frac{W_{in} - \text{kernel\_size}[2]}{\text{stride}[2]} + 1\right\rfloor
Examples::
>>> # power-2 pool of square window of size=3, stride=2
>>> m = nn.LPPool3d(2, 3, stride=2)
>>> # pool of non-square window of power 1.2
>>> m = nn.LPPool3d(1.2, (3, 2, 2), stride=(2, 1, 2))
>>> input = torch.randn(20, 16, 50, 44, 31)
>>> output = m(input)
"""
kernel_size: _size_3_t
stride: _size_3_t
def forward(self, input: Tensor) -> Tensor:
return F.lp_pool3d(
input, float(self.norm_type), self.kernel_size, self.stride, self.ceil_mode
)
class _AdaptiveMaxPoolNd(Module):
__constants__ = ["output_size", "return_indices"]
return_indices: bool
def __init__(
self, output_size: _size_any_opt_t, return_indices: bool = False
) -> None:
super().__init__()
self.output_size = output_size
self.return_indices = return_indices
def extra_repr(self) -> str:
return f"output_size={self.output_size}"
# FIXME (by @ssnl): Improve adaptive pooling docs: specify what the input and
# output shapes are, and how the operation computes output.
class AdaptiveMaxPool1d(_AdaptiveMaxPoolNd):
r"""Applies a 1D adaptive max pooling over an input signal composed of several input planes.
The output size is :math:`L_{out}`, for any input size.
The number of output features is equal to the number of input planes.
Args:
output_size: the target output size :math:`L_{out}`.
return_indices: if ``True``, will return the indices along with the outputs.
Useful to pass to nn.MaxUnpool1d. Default: ``False``
Shape:
- Input: :math:`(N, C, L_{in})` or :math:`(C, L_{in})`.
- Output: :math:`(N, C, L_{out})` or :math:`(C, L_{out})`, where
:math:`L_{out}=\text{output\_size}`.
Examples:
>>> # target output size of 5
>>> m = nn.AdaptiveMaxPool1d(5)
>>> input = torch.randn(1, 64, 8)
>>> output = m(input)
"""
output_size: _size_1_t
def forward(self, input: Tensor):
return F.adaptive_max_pool1d(input, self.output_size, self.return_indices)
class AdaptiveMaxPool2d(_AdaptiveMaxPoolNd):
r"""Applies a 2D adaptive max pooling over an input signal composed of several input planes.
The output is of size :math:`H_{out} \times W_{out}`, for any input size.
The number of output features is equal to the number of input planes.
Args:
output_size: the target output size of the image of the form :math:`H_{out} \times W_{out}`.
Can be a tuple :math:`(H_{out}, W_{out})` or a single :math:`H_{out}` for a
square image :math:`H_{out} \times H_{out}`. :math:`H_{out}` and :math:`W_{out}`
can be either a ``int``, or ``None`` which means the size will be the same as that
of the input.
return_indices: if ``True``, will return the indices along with the outputs.
Useful to pass to nn.MaxUnpool2d. Default: ``False``
Shape:
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
:math:`(H_{out}, W_{out})=\text{output\_size}`.
Examples:
>>> # target output size of 5x7
>>> m = nn.AdaptiveMaxPool2d((5, 7))
>>> input = torch.randn(1, 64, 8, 9)
>>> output = m(input)
>>> # target output size of 7x7 (square)
>>> m = nn.AdaptiveMaxPool2d(7)
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)
>>> # target output size of 10x7
>>> m = nn.AdaptiveMaxPool2d((None, 7))
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)
"""
output_size: _size_2_opt_t
def forward(self, input: Tensor):
return F.adaptive_max_pool2d(input, self.output_size, self.return_indices)
class AdaptiveMaxPool3d(_AdaptiveMaxPoolNd):
r"""Applies a 3D adaptive max pooling over an input signal composed of several input planes.
The output is of size :math:`D_{out} \times H_{out} \times W_{out}`, for any input size.
The number of output features is equal to the number of input planes.
Args:
output_size: the target output size of the image of the form :math:`D_{out} \times H_{out} \times W_{out}`.
Can be a tuple :math:`(D_{out}, H_{out}, W_{out})` or a single
:math:`D_{out}` for a cube :math:`D_{out} \times D_{out} \times D_{out}`.
:math:`D_{out}`, :math:`H_{out}` and :math:`W_{out}` can be either a
``int``, or ``None`` which means the size will be the same as that of the input.
return_indices: if ``True``, will return the indices along with the outputs.
Useful to pass to nn.MaxUnpool3d. Default: ``False``
Shape:
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`,
where :math:`(D_{out}, H_{out}, W_{out})=\text{output\_size}`.
Examples:
>>> # target output size of 5x7x9
>>> m = nn.AdaptiveMaxPool3d((5, 7, 9))
>>> input = torch.randn(1, 64, 8, 9, 10)
>>> output = m(input)
>>> # target output size of 7x7x7 (cube)
>>> m = nn.AdaptiveMaxPool3d(7)
>>> input = torch.randn(1, 64, 10, 9, 8)
>>> output = m(input)
>>> # target output size of 7x9x8
>>> m = nn.AdaptiveMaxPool3d((7, None, None))
>>> input = torch.randn(1, 64, 10, 9, 8)
>>> output = m(input)
"""
output_size: _size_3_opt_t
def forward(self, input: Tensor):
return F.adaptive_max_pool3d(input, self.output_size, self.return_indices)
class _AdaptiveAvgPoolNd(Module):
__constants__ = ["output_size"]
def __init__(self, output_size: _size_any_opt_t) -> None:
super().__init__()
self.output_size = output_size
def extra_repr(self) -> str:
return f"output_size={self.output_size}"
class AdaptiveAvgPool1d(_AdaptiveAvgPoolNd):
r"""Applies a 1D adaptive average pooling over an input signal composed of several input planes.
The output size is :math:`L_{out}`, for any input size.
The number of output features is equal to the number of input planes.
Args:
output_size: the target output size :math:`L_{out}`.
Shape:
- Input: :math:`(N, C, L_{in})` or :math:`(C, L_{in})`.
- Output: :math:`(N, C, L_{out})` or :math:`(C, L_{out})`, where
:math:`L_{out}=\text{output\_size}`.
Examples:
>>> # target output size of 5
>>> m = nn.AdaptiveAvgPool1d(5)
>>> input = torch.randn(1, 64, 8)
>>> output = m(input)
"""
output_size: _size_1_t
def forward(self, input: Tensor) -> Tensor:
return F.adaptive_avg_pool1d(input, self.output_size)
class AdaptiveAvgPool2d(_AdaptiveAvgPoolNd):
r"""Applies a 2D adaptive average pooling over an input signal composed of several input planes.
The output is of size H x W, for any input size.
The number of output features is equal to the number of input planes.
Args:
output_size: the target output size of the image of the form H x W.
Can be a tuple (H, W) or a single H for a square image H x H.
H and W can be either a ``int``, or ``None`` which means the size will
be the same as that of the input.
Shape:
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
- Output: :math:`(N, C, S_{0}, S_{1})` or :math:`(C, S_{0}, S_{1})`, where
:math:`S=\text{output\_size}`.
Examples:
>>> # target output size of 5x7
>>> m = nn.AdaptiveAvgPool2d((5, 7))
>>> input = torch.randn(1, 64, 8, 9)
>>> output = m(input)
>>> # target output size of 7x7 (square)
>>> m = nn.AdaptiveAvgPool2d(7)
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)
>>> # target output size of 10x7
>>> m = nn.AdaptiveAvgPool2d((None, 7))
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)
"""
output_size: _size_2_opt_t
def forward(self, input: Tensor) -> Tensor:
return F.adaptive_avg_pool2d(input, self.output_size)
class AdaptiveAvgPool3d(_AdaptiveAvgPoolNd):
r"""Applies a 3D adaptive average pooling over an input signal composed of several input planes.
The output is of size D x H x W, for any input size.
The number of output features is equal to the number of input planes.
Args:
output_size: the target output size of the form D x H x W.
Can be a tuple (D, H, W) or a single number D for a cube D x D x D.
D, H and W can be either a ``int``, or ``None`` which means the size will
be the same as that of the input.
Shape:
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
- Output: :math:`(N, C, S_{0}, S_{1}, S_{2})` or :math:`(C, S_{0}, S_{1}, S_{2})`,
where :math:`S=\text{output\_size}`.
Examples:
>>> # target output size of 5x7x9
>>> m = nn.AdaptiveAvgPool3d((5, 7, 9))
>>> input = torch.randn(1, 64, 8, 9, 10)
>>> output = m(input)
>>> # target output size of 7x7x7 (cube)
>>> m = nn.AdaptiveAvgPool3d(7)
>>> input = torch.randn(1, 64, 10, 9, 8)
>>> output = m(input)
>>> # target output size of 7x9x8
>>> m = nn.AdaptiveAvgPool3d((7, None, None))
>>> input = torch.randn(1, 64, 10, 9, 8)
>>> output = m(input)
"""
output_size: _size_3_opt_t
def forward(self, input: Tensor) -> Tensor:
return F.adaptive_avg_pool3d(input, self.output_size)
```
|
===============================================================================================================
SOURCE CODE FILE: rnn.py
LINES: 1
SIZE: 74.30 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\modules\rnn.py
ENCODING: utf-8
```py
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
import math
import numbers
import warnings
import weakref
from typing import Optional, overload
from typing_extensions import deprecated
import torch
from torch import _VF, Tensor
from torch.nn import init
from torch.nn.parameter import Parameter
from torch.nn.utils.rnn import PackedSequence
from .module import Module
__all__ = [
"RNNBase",
"RNN",
"LSTM",
"GRU",
"RNNCellBase",
"RNNCell",
"LSTMCell",
"GRUCell",
]
_rnn_impls = {
"RNN_TANH": _VF.rnn_tanh,
"RNN_RELU": _VF.rnn_relu,
}
def _apply_permutation(tensor: Tensor, permutation: Tensor, dim: int = 1) -> Tensor:
return tensor.index_select(dim, permutation)
@deprecated(
"`apply_permutation` is deprecated, please use `tensor.index_select(dim, permutation)` instead",
category=FutureWarning,
)
def apply_permutation(tensor: Tensor, permutation: Tensor, dim: int = 1) -> Tensor:
return _apply_permutation(tensor, permutation, dim)
class RNNBase(Module):
r"""Base class for RNN modules (RNN, LSTM, GRU).
Implements aspects of RNNs shared by the RNN, LSTM, and GRU classes, such as module initialization
and utility methods for parameter storage management.
.. note::
The forward method is not implemented by the RNNBase class.
.. note::
LSTM and GRU classes override some methods implemented by RNNBase.
"""
__constants__ = [
"mode",
"input_size",
"hidden_size",
"num_layers",
"bias",
"batch_first",
"dropout",
"bidirectional",
"proj_size",
]
__jit_unused_properties__ = ["all_weights"]
mode: str
input_size: int
hidden_size: int
num_layers: int
bias: bool
batch_first: bool
dropout: float
bidirectional: bool
proj_size: int
def __init__(
self,
mode: str,
input_size: int,
hidden_size: int,
num_layers: int = 1,
bias: bool = True,
batch_first: bool = False,
dropout: float = 0.0,
bidirectional: bool = False,
proj_size: int = 0,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.mode = mode
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bias = bias
self.batch_first = batch_first
self.dropout = float(dropout)
self.bidirectional = bidirectional
self.proj_size = proj_size
self._flat_weight_refs: list[Optional[weakref.ReferenceType[Parameter]]] = []
num_directions = 2 if bidirectional else 1
if (
not isinstance(dropout, numbers.Number)
or not 0 <= dropout <= 1
or isinstance(dropout, bool)
):
raise ValueError(
"dropout should be a number in range [0, 1] "
"representing the probability of an element being "
"zeroed"
)
if dropout > 0 and num_layers == 1:
warnings.warn(
"dropout option adds dropout after all but last "
"recurrent layer, so non-zero dropout expects "
f"num_layers greater than 1, but got dropout={dropout} and "
f"num_layers={num_layers}"
)
if not isinstance(hidden_size, int):
raise TypeError(
f"hidden_size should be of type int, got: {type(hidden_size).__name__}"
)
if hidden_size <= 0:
raise ValueError("hidden_size must be greater than zero")
if num_layers <= 0:
raise ValueError("num_layers must be greater than zero")
if proj_size < 0:
raise ValueError(
"proj_size should be a positive integer or zero to disable projections"
)
if proj_size >= hidden_size:
raise ValueError("proj_size has to be smaller than hidden_size")
if mode == "LSTM":
gate_size = 4 * hidden_size
elif mode == "GRU":
gate_size = 3 * hidden_size
elif mode == "RNN_TANH":
gate_size = hidden_size
elif mode == "RNN_RELU":
gate_size = hidden_size
else:
raise ValueError("Unrecognized RNN mode: " + mode)
self._flat_weights_names = []
self._all_weights = []
for layer in range(num_layers):
for direction in range(num_directions):
real_hidden_size = proj_size if proj_size > 0 else hidden_size
layer_input_size = (
input_size if layer == 0 else real_hidden_size * num_directions
)
w_ih = Parameter(
torch.empty((gate_size, layer_input_size), **factory_kwargs)
)
w_hh = Parameter(
torch.empty((gate_size, real_hidden_size), **factory_kwargs)
)
b_ih = Parameter(torch.empty(gate_size, **factory_kwargs))
# Second bias vector included for CuDNN compatibility. Only one
# bias vector is needed in standard definition.
b_hh = Parameter(torch.empty(gate_size, **factory_kwargs))
layer_params: tuple[Tensor, ...] = ()
if self.proj_size == 0:
if bias:
layer_params = (w_ih, w_hh, b_ih, b_hh)
else:
layer_params = (w_ih, w_hh)
else:
w_hr = Parameter(
torch.empty((proj_size, hidden_size), **factory_kwargs)
)
if bias:
layer_params = (w_ih, w_hh, b_ih, b_hh, w_hr)
else:
layer_params = (w_ih, w_hh, w_hr)
suffix = "_reverse" if direction == 1 else ""
param_names = ["weight_ih_l{}{}", "weight_hh_l{}{}"]
if bias:
param_names += ["bias_ih_l{}{}", "bias_hh_l{}{}"]
if self.proj_size > 0:
param_names += ["weight_hr_l{}{}"]
param_names = [x.format(layer, suffix) for x in param_names]
for name, param in zip(param_names, layer_params):
setattr(self, name, param)
self._flat_weights_names.extend(param_names)
self._all_weights.append(param_names)
self._init_flat_weights()
self.reset_parameters()
def _init_flat_weights(self):
self._flat_weights = [
getattr(self, wn) if hasattr(self, wn) else None
for wn in self._flat_weights_names
]
self._flat_weight_refs = [
weakref.ref(w) if w is not None else None for w in self._flat_weights
]
self.flatten_parameters()
def __setattr__(self, attr, value):
if hasattr(self, "_flat_weights_names") and attr in self._flat_weights_names:
# keep self._flat_weights up to date if you do self.weight = ...
idx = self._flat_weights_names.index(attr)
self._flat_weights[idx] = value
super().__setattr__(attr, value)
def flatten_parameters(self) -> None:
"""Reset parameter data pointer so that they can use faster code paths.
Right now, this works only if the module is on the GPU and cuDNN is enabled.
Otherwise, it's a no-op.
"""
# Short-circuits if _flat_weights is only partially instantiated
if len(self._flat_weights) != len(self._flat_weights_names):
return
for w in self._flat_weights:
if not isinstance(w, Tensor):
return
# Short-circuits if any tensor in self._flat_weights is not acceptable to cuDNN
# or the tensors in _flat_weights are of different dtypes
first_fw = self._flat_weights[0] # type: ignore[union-attr]
dtype = first_fw.dtype # type: ignore[union-attr]
for fw in self._flat_weights:
if (
not isinstance(fw, Tensor)
or not (fw.dtype == dtype)
or not fw.is_cuda
or not torch.backends.cudnn.is_acceptable(fw)
):
return
# If any parameters alias, we fall back to the slower, copying code path. This is
# a sufficient check, because overlapping parameter buffers that don't completely
# alias would break the assumptions of the uniqueness check in
# Module.named_parameters().
unique_data_ptrs = {
p.data_ptr() for p in self._flat_weights # type: ignore[union-attr]
}
if len(unique_data_ptrs) != len(self._flat_weights):
return
with torch.cuda.device_of(first_fw):
import torch.backends.cudnn.rnn as rnn
# Note: no_grad() is necessary since _cudnn_rnn_flatten_weight is
# an inplace operation on self._flat_weights
with torch.no_grad():
if torch._use_cudnn_rnn_flatten_weight():
num_weights = 4 if self.bias else 2
if self.proj_size > 0:
num_weights += 1
torch._cudnn_rnn_flatten_weight(
self._flat_weights, # type: ignore[arg-type]
num_weights,
self.input_size,
rnn.get_cudnn_mode(self.mode),
self.hidden_size,
self.proj_size,
self.num_layers,
self.batch_first,
bool(self.bidirectional),
)
def _apply(self, fn, recurse=True):
self._flat_weight_refs = []
ret = super()._apply(fn, recurse)
# Resets _flat_weights
# Note: be v. careful before removing this, as 3rd party device types
# likely rely on this behavior to properly .to() modules like LSTM.
self._init_flat_weights()
return ret
def reset_parameters(self) -> None:
stdv = 1.0 / math.sqrt(self.hidden_size) if self.hidden_size > 0 else 0
for weight in self.parameters():
init.uniform_(weight, -stdv, stdv)
def check_input(self, input: Tensor, batch_sizes: Optional[Tensor]) -> None:
if not torch.jit.is_scripting():
if (
input.dtype != self._flat_weights[0].dtype # type: ignore[union-attr]
and not torch._C._is_any_autocast_enabled()
):
raise ValueError(
f"input must have the type {self._flat_weights[0].dtype}, got type {input.dtype}" # type: ignore[union-attr]
)
expected_input_dim = 2 if batch_sizes is not None else 3
if input.dim() != expected_input_dim:
raise RuntimeError(
f"input must have {expected_input_dim} dimensions, got {input.dim()}"
)
if self.input_size != input.size(-1):
raise RuntimeError(
f"input.size(-1) must be equal to input_size. Expected {self.input_size}, got {input.size(-1)}"
)
def get_expected_hidden_size(
self, input: Tensor, batch_sizes: Optional[Tensor]
) -> tuple[int, int, int]:
if batch_sizes is not None:
mini_batch = int(batch_sizes[0])
else:
mini_batch = input.size(0) if self.batch_first else input.size(1)
num_directions = 2 if self.bidirectional else 1
if self.proj_size > 0:
expected_hidden_size = (
self.num_layers * num_directions,
mini_batch,
self.proj_size,
)
else:
expected_hidden_size = (
self.num_layers * num_directions,
mini_batch,
self.hidden_size,
)
return expected_hidden_size
def check_hidden_size(
self,
hx: Tensor,
expected_hidden_size: tuple[int, int, int],
msg: str = "Expected hidden size {}, got {}",
) -> None:
if hx.size() != expected_hidden_size:
raise RuntimeError(msg.format(expected_hidden_size, list(hx.size())))
def _weights_have_changed(self):
# Returns True if the weight tensors have changed since the last forward pass.
# This is the case when used with torch.func.functional_call(), for example.
weights_changed = False
for ref, name in zip(self._flat_weight_refs, self._flat_weights_names):
weight = getattr(self, name) if hasattr(self, name) else None
if weight is not None and ref is not None and ref() is not weight:
weights_changed = True
break
return weights_changed
def check_forward_args(
self, input: Tensor, hidden: Tensor, batch_sizes: Optional[Tensor]
):
self.check_input(input, batch_sizes)
expected_hidden_size = self.get_expected_hidden_size(input, batch_sizes)
self.check_hidden_size(hidden, expected_hidden_size)
def permute_hidden(self, hx: Tensor, permutation: Optional[Tensor]):
if permutation is None:
return hx
return _apply_permutation(hx, permutation)
def extra_repr(self) -> str:
s = "{input_size}, {hidden_size}"
if self.proj_size != 0:
s += ", proj_size={proj_size}"
if self.num_layers != 1:
s += ", num_layers={num_layers}"
if self.bias is not True:
s += ", bias={bias}"
if self.batch_first is not False:
s += ", batch_first={batch_first}"
if self.dropout != 0:
s += ", dropout={dropout}"
if self.bidirectional is not False:
s += ", bidirectional={bidirectional}"
return s.format(**self.__dict__)
def _update_flat_weights(self):
if not torch.jit.is_scripting():
if self._weights_have_changed():
self._init_flat_weights()
def __getstate__(self):
# If weights have been changed, update the _flat_weights in __getstate__ here.
self._update_flat_weights()
# Don't serialize the weight references.
state = self.__dict__.copy()
del state["_flat_weight_refs"]
return state
def __setstate__(self, d):
super().__setstate__(d)
if "all_weights" in d:
self._all_weights = d["all_weights"]
# In PyTorch 1.8 we added a proj_size member variable to LSTM.
# LSTMs that were serialized via torch.save(module) before PyTorch 1.8
# don't have it, so to preserve compatibility we set proj_size here.
if "proj_size" not in d:
self.proj_size = 0
if not isinstance(self._all_weights[0][0], str):
num_layers = self.num_layers
num_directions = 2 if self.bidirectional else 1
self._flat_weights_names = []
self._all_weights = []
for layer in range(num_layers):
for direction in range(num_directions):
suffix = "_reverse" if direction == 1 else ""
weights = [
"weight_ih_l{}{}",
"weight_hh_l{}{}",
"bias_ih_l{}{}",
"bias_hh_l{}{}",
"weight_hr_l{}{}",
]
weights = [x.format(layer, suffix) for x in weights]
if self.bias:
if self.proj_size > 0:
self._all_weights += [weights]
self._flat_weights_names.extend(weights)
else:
self._all_weights += [weights[:4]]
self._flat_weights_names.extend(weights[:4])
else:
if self.proj_size > 0:
self._all_weights += [weights[:2]] + [weights[-1:]]
self._flat_weights_names.extend(
weights[:2] + [weights[-1:]]
)
else:
self._all_weights += [weights[:2]]
self._flat_weights_names.extend(weights[:2])
self._flat_weights = [
getattr(self, wn) if hasattr(self, wn) else None
for wn in self._flat_weights_names
]
self._flat_weight_refs = [
weakref.ref(w) if w is not None else None for w in self._flat_weights
]
@property
def all_weights(self) -> list[list[Parameter]]:
return [
[getattr(self, weight) for weight in weights]
for weights in self._all_weights
]
def _replicate_for_data_parallel(self):
replica = super()._replicate_for_data_parallel()
# Need to copy these caches, otherwise the replica will share the same
# flat weights list.
replica._flat_weights = replica._flat_weights[:]
replica._flat_weights_names = replica._flat_weights_names[:]
return replica
class RNN(RNNBase):
r"""__init__(input_size,hidden_size,num_layers=1,nonlinearity='tanh',bias=True,batch_first=False,dropout=0.0,bidirectional=False,device=None,dtype=None)
Apply a multi-layer Elman RNN with :math:`\tanh` or :math:`\text{ReLU}`
non-linearity to an input sequence. For each element in the input sequence,
each layer computes the following function:
.. math::
h_t = \tanh(x_t W_{ih}^T + b_{ih} + h_{t-1}W_{hh}^T + b_{hh})
where :math:`h_t` is the hidden state at time `t`, :math:`x_t` is
the input at time `t`, and :math:`h_{(t-1)}` is the hidden state of the
previous layer at time `t-1` or the initial hidden state at time `0`.
If :attr:`nonlinearity` is ``'relu'``, then :math:`\text{ReLU}` is used instead of :math:`\tanh`.
.. code-block:: python
# Efficient implementation equivalent to the following with bidirectional=False
def forward(x, hx=None):
if batch_first:
x = x.transpose(0, 1)
seq_len, batch_size, _ = x.size()
if hx is None:
hx = torch.zeros(num_layers, batch_size, hidden_size)
h_t_minus_1 = hx
h_t = hx
output = []
for t in range(seq_len):
for layer in range(num_layers):
h_t[layer] = torch.tanh(
x[t] @ weight_ih[layer].T
+ bias_ih[layer]
+ h_t_minus_1[layer] @ weight_hh[layer].T
+ bias_hh[layer]
)
output.append(h_t[-1])
h_t_minus_1 = h_t
output = torch.stack(output)
if batch_first:
output = output.transpose(0, 1)
return output, h_t
Args:
input_size: The number of expected features in the input `x`
hidden_size: The number of features in the hidden state `h`
num_layers: Number of recurrent layers. E.g., setting ``num_layers=2``
would mean stacking two RNNs together to form a `stacked RNN`,
with the second RNN taking in outputs of the first RNN and
computing the final results. Default: 1
nonlinearity: The non-linearity to use. Can be either ``'tanh'`` or ``'relu'``. Default: ``'tanh'``
bias: If ``False``, then the layer does not use bias weights `b_ih` and `b_hh`.
Default: ``True``
batch_first: If ``True``, then the input and output tensors are provided
as `(batch, seq, feature)` instead of `(seq, batch, feature)`.
Note that this does not apply to hidden or cell states. See the
Inputs/Outputs sections below for details. Default: ``False``
dropout: If non-zero, introduces a `Dropout` layer on the outputs of each
RNN layer except the last layer, with dropout probability equal to
:attr:`dropout`. Default: 0
bidirectional: If ``True``, becomes a bidirectional RNN. Default: ``False``
Inputs: input, hx
* **input**: tensor of shape :math:`(L, H_{in})` for unbatched input,
:math:`(L, N, H_{in})` when ``batch_first=False`` or
:math:`(N, L, H_{in})` when ``batch_first=True`` containing the features of
the input sequence. The input can also be a packed variable length sequence.
See :func:`torch.nn.utils.rnn.pack_padded_sequence` or
:func:`torch.nn.utils.rnn.pack_sequence` for details.
* **hx**: tensor of shape :math:`(D * \text{num\_layers}, H_{out})` for unbatched input or
:math:`(D * \text{num\_layers}, N, H_{out})` containing the initial hidden
state for the input sequence batch. Defaults to zeros if not provided.
where:
.. math::
\begin{aligned}
N ={} & \text{batch size} \\
L ={} & \text{sequence length} \\
D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\
H_{in} ={} & \text{input\_size} \\
H_{out} ={} & \text{hidden\_size}
\end{aligned}
Outputs: output, h_n
* **output**: tensor of shape :math:`(L, D * H_{out})` for unbatched input,
:math:`(L, N, D * H_{out})` when ``batch_first=False`` or
:math:`(N, L, D * H_{out})` when ``batch_first=True`` containing the output features
`(h_t)` from the last layer of the RNN, for each `t`. If a
:class:`torch.nn.utils.rnn.PackedSequence` has been given as the input, the output
will also be a packed sequence.
* **h_n**: tensor of shape :math:`(D * \text{num\_layers}, H_{out})` for unbatched input or
:math:`(D * \text{num\_layers}, N, H_{out})` containing the final hidden state
for each element in the batch.
Attributes:
weight_ih_l[k]: the learnable input-hidden weights of the k-th layer,
of shape `(hidden_size, input_size)` for `k = 0`. Otherwise, the shape is
`(hidden_size, num_directions * hidden_size)`
weight_hh_l[k]: the learnable hidden-hidden weights of the k-th layer,
of shape `(hidden_size, hidden_size)`
bias_ih_l[k]: the learnable input-hidden bias of the k-th layer,
of shape `(hidden_size)`
bias_hh_l[k]: the learnable hidden-hidden bias of the k-th layer,
of shape `(hidden_size)`
.. note::
All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`
where :math:`k = \frac{1}{\text{hidden\_size}}`
.. note::
For bidirectional RNNs, forward and backward are directions 0 and 1 respectively.
Example of splitting the output layers when ``batch_first=False``:
``output.view(seq_len, batch, num_directions, hidden_size)``.
.. note::
``batch_first`` argument is ignored for unbatched inputs.
.. include:: ../cudnn_rnn_determinism.rst
.. include:: ../cudnn_persistent_rnn.rst
Examples::
>>> rnn = nn.RNN(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> output, hn = rnn(input, h0)
"""
@overload
def __init__(
self,
input_size: int,
hidden_size: int,
num_layers: int = 1,
nonlinearity: str = "tanh",
bias: bool = True,
batch_first: bool = False,
dropout: float = 0.0,
bidirectional: bool = False,
device=None,
dtype=None,
) -> None:
...
@overload
def __init__(self, *args, **kwargs):
...
def __init__(self, *args, **kwargs):
if "proj_size" in kwargs:
raise ValueError(
"proj_size argument is only supported for LSTM, not RNN or GRU"
)
if len(args) > 3:
self.nonlinearity = args[3]
args = args[:3] + args[4:]
else:
self.nonlinearity = kwargs.pop("nonlinearity", "tanh")
if self.nonlinearity == "tanh":
mode = "RNN_TANH"
elif self.nonlinearity == "relu":
mode = "RNN_RELU"
else:
raise ValueError(
f"Unknown nonlinearity '{self.nonlinearity}'. Select from 'tanh' or 'relu'."
)
super().__init__(mode, *args, **kwargs)
@overload
@torch._jit_internal._overload_method # noqa: F811
def forward(
self, input: Tensor, hx: Optional[Tensor] = None
) -> tuple[Tensor, Tensor]:
pass
@overload
@torch._jit_internal._overload_method # noqa: F811
def forward(
self, input: PackedSequence, hx: Optional[Tensor] = None
) -> tuple[PackedSequence, Tensor]:
pass
def forward(self, input, hx=None): # noqa: F811
self._update_flat_weights()
num_directions = 2 if self.bidirectional else 1
orig_input = input
if isinstance(orig_input, PackedSequence):
input, batch_sizes, sorted_indices, unsorted_indices = input
max_batch_size = batch_sizes[0]
# script() is unhappy when max_batch_size is different type in cond branches, so we duplicate
if hx is None:
hx = torch.zeros(
self.num_layers * num_directions,
max_batch_size,
self.hidden_size,
dtype=input.dtype,
device=input.device,
)
else:
# Each batch of the hidden state should match the input sequence that
# the user believes he/she is passing in.
hx = self.permute_hidden(hx, sorted_indices)
else:
batch_sizes = None
if input.dim() not in (2, 3):
raise ValueError(
f"RNN: Expected input to be 2D or 3D, got {input.dim()}D tensor instead"
)
is_batched = input.dim() == 3
batch_dim = 0 if self.batch_first else 1
if not is_batched:
input = input.unsqueeze(batch_dim)
if hx is not None:
if hx.dim() != 2:
raise RuntimeError(
f"For unbatched 2-D input, hx should also be 2-D but got {hx.dim()}-D tensor"
)
hx = hx.unsqueeze(1)
else:
if hx is not None and hx.dim() != 3:
raise RuntimeError(
f"For batched 3-D input, hx should also be 3-D but got {hx.dim()}-D tensor"
)
max_batch_size = input.size(0) if self.batch_first else input.size(1)
sorted_indices = None
unsorted_indices = None
if hx is None:
hx = torch.zeros(
self.num_layers * num_directions,
max_batch_size,
self.hidden_size,
dtype=input.dtype,
device=input.device,
)
else:
# Each batch of the hidden state should match the input sequence that
# the user believes he/she is passing in.
hx = self.permute_hidden(hx, sorted_indices)
assert hx is not None
self.check_forward_args(input, hx, batch_sizes)
assert self.mode == "RNN_TANH" or self.mode == "RNN_RELU"
if batch_sizes is None:
if self.mode == "RNN_TANH":
result = _VF.rnn_tanh(
input,
hx,
self._flat_weights, # type: ignore[arg-type]
self.bias,
self.num_layers,
self.dropout,
self.training,
self.bidirectional,
self.batch_first,
)
else:
result = _VF.rnn_relu(
input,
hx,
self._flat_weights, # type: ignore[arg-type]
self.bias,
self.num_layers,
self.dropout,
self.training,
self.bidirectional,
self.batch_first,
)
else:
if self.mode == "RNN_TANH":
result = _VF.rnn_tanh(
input,
batch_sizes,
hx,
self._flat_weights, # type: ignore[arg-type]
self.bias,
self.num_layers,
self.dropout,
self.training,
self.bidirectional,
)
else:
result = _VF.rnn_relu(
input,
batch_sizes,
hx,
self._flat_weights, # type: ignore[arg-type]
self.bias,
self.num_layers,
self.dropout,
self.training,
self.bidirectional,
)
output = result[0]
hidden = result[1]
if isinstance(orig_input, PackedSequence):
output_packed = PackedSequence(
output, batch_sizes, sorted_indices, unsorted_indices
)
return output_packed, self.permute_hidden(hidden, unsorted_indices)
if not is_batched: # type: ignore[possibly-undefined]
output = output.squeeze(batch_dim) # type: ignore[possibly-undefined]
hidden = hidden.squeeze(1)
return output, self.permute_hidden(hidden, unsorted_indices)
# XXX: LSTM and GRU implementation is different from RNNBase, this is because:
# 1. we want to support nn.LSTM and nn.GRU in TorchScript and TorchScript in
# its current state could not support the python Union Type or Any Type
# 2. TorchScript static typing does not allow a Function or Callable type in
# Dict values, so we have to separately call _VF instead of using _rnn_impls
# 3. This is temporary only and in the transition state that we want to make it
# on time for the release
#
# More discussion details in https://github.com/pytorch/pytorch/pull/23266
#
# TODO: remove the overriding implementations for LSTM and GRU when TorchScript
# support expressing these two modules generally.
class LSTM(RNNBase):
r"""__init__(input_size,hidden_size,num_layers=1,bias=True,batch_first=False,dropout=0.0,bidirectional=False,proj_size=0,device=None,dtype=None)
Apply a multi-layer long short-term memory (LSTM) RNN to an input sequence.
For each element in the input sequence, each layer computes the following
function:
.. math::
\begin{array}{ll} \\
i_t = \sigma(W_{ii} x_t + b_{ii} + W_{hi} h_{t-1} + b_{hi}) \\
f_t = \sigma(W_{if} x_t + b_{if} + W_{hf} h_{t-1} + b_{hf}) \\
g_t = \tanh(W_{ig} x_t + b_{ig} + W_{hg} h_{t-1} + b_{hg}) \\
o_t = \sigma(W_{io} x_t + b_{io} + W_{ho} h_{t-1} + b_{ho}) \\
c_t = f_t \odot c_{t-1} + i_t \odot g_t \\
h_t = o_t \odot \tanh(c_t) \\
\end{array}
where :math:`h_t` is the hidden state at time `t`, :math:`c_t` is the cell
state at time `t`, :math:`x_t` is the input at time `t`, :math:`h_{t-1}`
is the hidden state of the layer at time `t-1` or the initial hidden
state at time `0`, and :math:`i_t`, :math:`f_t`, :math:`g_t`,
:math:`o_t` are the input, forget, cell, and output gates, respectively.
:math:`\sigma` is the sigmoid function, and :math:`\odot` is the Hadamard product.
In a multilayer LSTM, the input :math:`x^{(l)}_t` of the :math:`l` -th layer
(:math:`l \ge 2`) is the hidden state :math:`h^{(l-1)}_t` of the previous layer multiplied by
dropout :math:`\delta^{(l-1)}_t` where each :math:`\delta^{(l-1)}_t` is a Bernoulli random
variable which is :math:`0` with probability :attr:`dropout`.
If ``proj_size > 0`` is specified, LSTM with projections will be used. This changes
the LSTM cell in the following way. First, the dimension of :math:`h_t` will be changed from
``hidden_size`` to ``proj_size`` (dimensions of :math:`W_{hi}` will be changed accordingly).
Second, the output hidden state of each layer will be multiplied by a learnable projection
matrix: :math:`h_t = W_{hr}h_t`. Note that as a consequence of this, the output
of LSTM network will be of different shape as well. See Inputs/Outputs sections below for exact
dimensions of all variables. You can find more details in https://arxiv.org/abs/1402.1128.
Args:
input_size: The number of expected features in the input `x`
hidden_size: The number of features in the hidden state `h`
num_layers: Number of recurrent layers. E.g., setting ``num_layers=2``
would mean stacking two LSTMs together to form a `stacked LSTM`,
with the second LSTM taking in outputs of the first LSTM and
computing the final results. Default: 1
bias: If ``False``, then the layer does not use bias weights `b_ih` and `b_hh`.
Default: ``True``
batch_first: If ``True``, then the input and output tensors are provided
as `(batch, seq, feature)` instead of `(seq, batch, feature)`.
Note that this does not apply to hidden or cell states. See the
Inputs/Outputs sections below for details. Default: ``False``
dropout: If non-zero, introduces a `Dropout` layer on the outputs of each
LSTM layer except the last layer, with dropout probability equal to
:attr:`dropout`. Default: 0
bidirectional: If ``True``, becomes a bidirectional LSTM. Default: ``False``
proj_size: If ``> 0``, will use LSTM with projections of corresponding size. Default: 0
Inputs: input, (h_0, c_0)
* **input**: tensor of shape :math:`(L, H_{in})` for unbatched input,
:math:`(L, N, H_{in})` when ``batch_first=False`` or
:math:`(N, L, H_{in})` when ``batch_first=True`` containing the features of
the input sequence. The input can also be a packed variable length sequence.
See :func:`torch.nn.utils.rnn.pack_padded_sequence` or
:func:`torch.nn.utils.rnn.pack_sequence` for details.
* **h_0**: tensor of shape :math:`(D * \text{num\_layers}, H_{out})` for unbatched input or
:math:`(D * \text{num\_layers}, N, H_{out})` containing the
initial hidden state for each element in the input sequence.
Defaults to zeros if (h_0, c_0) is not provided.
* **c_0**: tensor of shape :math:`(D * \text{num\_layers}, H_{cell})` for unbatched input or
:math:`(D * \text{num\_layers}, N, H_{cell})` containing the
initial cell state for each element in the input sequence.
Defaults to zeros if (h_0, c_0) is not provided.
where:
.. math::
\begin{aligned}
N ={} & \text{batch size} \\
L ={} & \text{sequence length} \\
D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\
H_{in} ={} & \text{input\_size} \\
H_{cell} ={} & \text{hidden\_size} \\
H_{out} ={} & \text{proj\_size if } \text{proj\_size}>0 \text{ otherwise hidden\_size} \\
\end{aligned}
Outputs: output, (h_n, c_n)
* **output**: tensor of shape :math:`(L, D * H_{out})` for unbatched input,
:math:`(L, N, D * H_{out})` when ``batch_first=False`` or
:math:`(N, L, D * H_{out})` when ``batch_first=True`` containing the output features
`(h_t)` from the last layer of the LSTM, for each `t`. If a
:class:`torch.nn.utils.rnn.PackedSequence` has been given as the input, the output
will also be a packed sequence. When ``bidirectional=True``, `output` will contain
a concatenation of the forward and reverse hidden states at each time step in the sequence.
* **h_n**: tensor of shape :math:`(D * \text{num\_layers}, H_{out})` for unbatched input or
:math:`(D * \text{num\_layers}, N, H_{out})` containing the
final hidden state for each element in the sequence. When ``bidirectional=True``,
`h_n` will contain a concatenation of the final forward and reverse hidden states, respectively.
* **c_n**: tensor of shape :math:`(D * \text{num\_layers}, H_{cell})` for unbatched input or
:math:`(D * \text{num\_layers}, N, H_{cell})` containing the
final cell state for each element in the sequence. When ``bidirectional=True``,
`c_n` will contain a concatenation of the final forward and reverse cell states, respectively.
Attributes:
weight_ih_l[k] : the learnable input-hidden weights of the :math:`\text{k}^{th}` layer
`(W_ii|W_if|W_ig|W_io)`, of shape `(4*hidden_size, input_size)` for `k = 0`.
Otherwise, the shape is `(4*hidden_size, num_directions * hidden_size)`. If
``proj_size > 0`` was specified, the shape will be
`(4*hidden_size, num_directions * proj_size)` for `k > 0`
weight_hh_l[k] : the learnable hidden-hidden weights of the :math:`\text{k}^{th}` layer
`(W_hi|W_hf|W_hg|W_ho)`, of shape `(4*hidden_size, hidden_size)`. If ``proj_size > 0``
was specified, the shape will be `(4*hidden_size, proj_size)`.
bias_ih_l[k] : the learnable input-hidden bias of the :math:`\text{k}^{th}` layer
`(b_ii|b_if|b_ig|b_io)`, of shape `(4*hidden_size)`
bias_hh_l[k] : the learnable hidden-hidden bias of the :math:`\text{k}^{th}` layer
`(b_hi|b_hf|b_hg|b_ho)`, of shape `(4*hidden_size)`
weight_hr_l[k] : the learnable projection weights of the :math:`\text{k}^{th}` layer
of shape `(proj_size, hidden_size)`. Only present when ``proj_size > 0`` was
specified.
weight_ih_l[k]_reverse: Analogous to `weight_ih_l[k]` for the reverse direction.
Only present when ``bidirectional=True``.
weight_hh_l[k]_reverse: Analogous to `weight_hh_l[k]` for the reverse direction.
Only present when ``bidirectional=True``.
bias_ih_l[k]_reverse: Analogous to `bias_ih_l[k]` for the reverse direction.
Only present when ``bidirectional=True``.
bias_hh_l[k]_reverse: Analogous to `bias_hh_l[k]` for the reverse direction.
Only present when ``bidirectional=True``.
weight_hr_l[k]_reverse: Analogous to `weight_hr_l[k]` for the reverse direction.
Only present when ``bidirectional=True`` and ``proj_size > 0`` was specified.
.. note::
All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`
where :math:`k = \frac{1}{\text{hidden\_size}}`
.. note::
For bidirectional LSTMs, forward and backward are directions 0 and 1 respectively.
Example of splitting the output layers when ``batch_first=False``:
``output.view(seq_len, batch, num_directions, hidden_size)``.
.. note::
For bidirectional LSTMs, `h_n` is not equivalent to the last element of `output`; the
former contains the final forward and reverse hidden states, while the latter contains the
final forward hidden state and the initial reverse hidden state.
.. note::
``batch_first`` argument is ignored for unbatched inputs.
.. note::
``proj_size`` should be smaller than ``hidden_size``.
.. include:: ../cudnn_rnn_determinism.rst
.. include:: ../cudnn_persistent_rnn.rst
Examples::
>>> rnn = nn.LSTM(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> c0 = torch.randn(2, 3, 20)
>>> output, (hn, cn) = rnn(input, (h0, c0))
"""
@overload
def __init__(
self,
input_size: int,
hidden_size: int,
num_layers: int = 1,
bias: bool = True,
batch_first: bool = False,
dropout: float = 0.0,
bidirectional: bool = False,
proj_size: int = 0,
device=None,
dtype=None,
) -> None:
...
@overload
def __init__(self, *args, **kwargs):
...
def __init__(self, *args, **kwargs):
super().__init__("LSTM", *args, **kwargs)
def get_expected_cell_size(
self, input: Tensor, batch_sizes: Optional[Tensor]
) -> tuple[int, int, int]:
if batch_sizes is not None:
mini_batch = int(batch_sizes[0])
else:
mini_batch = input.size(0) if self.batch_first else input.size(1)
num_directions = 2 if self.bidirectional else 1
expected_hidden_size = (
self.num_layers * num_directions,
mini_batch,
self.hidden_size,
)
return expected_hidden_size
# In the future, we should prevent mypy from applying contravariance rules here.
# See torch/nn/modules/module.py::_forward_unimplemented
def check_forward_args(
self,
input: Tensor,
hidden: tuple[Tensor, Tensor], # type: ignore[override]
batch_sizes: Optional[Tensor],
):
self.check_input(input, batch_sizes)
self.check_hidden_size(
hidden[0],
self.get_expected_hidden_size(input, batch_sizes),
"Expected hidden[0] size {}, got {}",
)
self.check_hidden_size(
hidden[1],
self.get_expected_cell_size(input, batch_sizes),
"Expected hidden[1] size {}, got {}",
)
# Same as above, see torch/nn/modules/module.py::_forward_unimplemented
def permute_hidden( # type: ignore[override]
self,
hx: tuple[Tensor, Tensor],
permutation: Optional[Tensor],
) -> tuple[Tensor, Tensor]:
if permutation is None:
return hx
return _apply_permutation(hx[0], permutation), _apply_permutation(
hx[1], permutation
)
# Same as above, see torch/nn/modules/module.py::_forward_unimplemented
@overload # type: ignore[override]
@torch._jit_internal._overload_method # noqa: F811
def forward(
self, input: Tensor, hx: Optional[tuple[Tensor, Tensor]] = None
) -> tuple[Tensor, tuple[Tensor, Tensor]]: # noqa: F811
pass
# Same as above, see torch/nn/modules/module.py::_forward_unimplemented
@overload
@torch._jit_internal._overload_method # noqa: F811
def forward(
self, input: PackedSequence, hx: Optional[tuple[Tensor, Tensor]] = None
) -> tuple[PackedSequence, tuple[Tensor, Tensor]]: # noqa: F811
pass
def forward(self, input, hx=None): # noqa: F811
self._update_flat_weights()
orig_input = input
# xxx: isinstance check needs to be in conditional for TorchScript to compile
batch_sizes = None
num_directions = 2 if self.bidirectional else 1
real_hidden_size = self.proj_size if self.proj_size > 0 else self.hidden_size
if isinstance(orig_input, PackedSequence):
input, batch_sizes, sorted_indices, unsorted_indices = input
max_batch_size = batch_sizes[0]
if hx is None:
h_zeros = torch.zeros(
self.num_layers * num_directions,
max_batch_size,
real_hidden_size,
dtype=input.dtype,
device=input.device,
)
c_zeros = torch.zeros(
self.num_layers * num_directions,
max_batch_size,
self.hidden_size,
dtype=input.dtype,
device=input.device,
)
hx = (h_zeros, c_zeros)
else:
# Each batch of the hidden state should match the input sequence that
# the user believes he/she is passing in.
hx = self.permute_hidden(hx, sorted_indices)
else:
if input.dim() not in (2, 3):
raise ValueError(
f"LSTM: Expected input to be 2D or 3D, got {input.dim()}D instead"
)
is_batched = input.dim() == 3
batch_dim = 0 if self.batch_first else 1
if not is_batched:
input = input.unsqueeze(batch_dim)
max_batch_size = input.size(0) if self.batch_first else input.size(1)
sorted_indices = None
unsorted_indices = None
if hx is None:
h_zeros = torch.zeros(
self.num_layers * num_directions,
max_batch_size,
real_hidden_size,
dtype=input.dtype,
device=input.device,
)
c_zeros = torch.zeros(
self.num_layers * num_directions,
max_batch_size,
self.hidden_size,
dtype=input.dtype,
device=input.device,
)
hx = (h_zeros, c_zeros)
self.check_forward_args(input, hx, batch_sizes)
else:
if is_batched:
if hx[0].dim() != 3 or hx[1].dim() != 3:
msg = (
"For batched 3-D input, hx and cx should "
f"also be 3-D but got ({hx[0].dim()}-D, {hx[1].dim()}-D) tensors"
)
raise RuntimeError(msg)
else:
if hx[0].dim() != 2 or hx[1].dim() != 2:
msg = (
"For unbatched 2-D input, hx and cx should "
f"also be 2-D but got ({hx[0].dim()}-D, {hx[1].dim()}-D) tensors"
)
raise RuntimeError(msg)
hx = (hx[0].unsqueeze(1), hx[1].unsqueeze(1))
# Each batch of the hidden state should match the input sequence that
# the user believes he/she is passing in.
self.check_forward_args(input, hx, batch_sizes)
hx = self.permute_hidden(hx, sorted_indices)
if batch_sizes is None:
result = _VF.lstm(
input,
hx,
self._flat_weights, # type: ignore[arg-type]
self.bias,
self.num_layers,
self.dropout,
self.training,
self.bidirectional,
self.batch_first,
)
else:
result = _VF.lstm(
input,
batch_sizes,
hx,
self._flat_weights, # type: ignore[arg-type]
self.bias,
self.num_layers,
self.dropout,
self.training,
self.bidirectional,
)
output = result[0]
hidden = result[1:]
# xxx: isinstance check needs to be in conditional for TorchScript to compile
if isinstance(orig_input, PackedSequence):
output_packed = PackedSequence(
output, batch_sizes, sorted_indices, unsorted_indices
)
return output_packed, self.permute_hidden(hidden, unsorted_indices)
else:
if not is_batched: # type: ignore[possibly-undefined]
output = output.squeeze(batch_dim) # type: ignore[possibly-undefined]
hidden = (hidden[0].squeeze(1), hidden[1].squeeze(1))
return output, self.permute_hidden(hidden, unsorted_indices)
class GRU(RNNBase):
r"""__init__(input_size,hidden_size,num_layers=1,bias=True,batch_first=False,dropout=0.0,bidirectional=False,device=None,dtype=None)
Apply a multi-layer gated recurrent unit (GRU) RNN to an input sequence.
For each element in the input sequence, each layer computes the following
function:
.. math::
\begin{array}{ll}
r_t = \sigma(W_{ir} x_t + b_{ir} + W_{hr} h_{(t-1)} + b_{hr}) \\
z_t = \sigma(W_{iz} x_t + b_{iz} + W_{hz} h_{(t-1)} + b_{hz}) \\
n_t = \tanh(W_{in} x_t + b_{in} + r_t \odot (W_{hn} h_{(t-1)}+ b_{hn})) \\
h_t = (1 - z_t) \odot n_t + z_t \odot h_{(t-1)}
\end{array}
where :math:`h_t` is the hidden state at time `t`, :math:`x_t` is the input
at time `t`, :math:`h_{(t-1)}` is the hidden state of the layer
at time `t-1` or the initial hidden state at time `0`, and :math:`r_t`,
:math:`z_t`, :math:`n_t` are the reset, update, and new gates, respectively.
:math:`\sigma` is the sigmoid function, and :math:`\odot` is the Hadamard product.
In a multilayer GRU, the input :math:`x^{(l)}_t` of the :math:`l` -th layer
(:math:`l \ge 2`) is the hidden state :math:`h^{(l-1)}_t` of the previous layer multiplied by
dropout :math:`\delta^{(l-1)}_t` where each :math:`\delta^{(l-1)}_t` is a Bernoulli random
variable which is :math:`0` with probability :attr:`dropout`.
Args:
input_size: The number of expected features in the input `x`
hidden_size: The number of features in the hidden state `h`
num_layers: Number of recurrent layers. E.g., setting ``num_layers=2``
would mean stacking two GRUs together to form a `stacked GRU`,
with the second GRU taking in outputs of the first GRU and
computing the final results. Default: 1
bias: If ``False``, then the layer does not use bias weights `b_ih` and `b_hh`.
Default: ``True``
batch_first: If ``True``, then the input and output tensors are provided
as `(batch, seq, feature)` instead of `(seq, batch, feature)`.
Note that this does not apply to hidden or cell states. See the
Inputs/Outputs sections below for details. Default: ``False``
dropout: If non-zero, introduces a `Dropout` layer on the outputs of each
GRU layer except the last layer, with dropout probability equal to
:attr:`dropout`. Default: 0
bidirectional: If ``True``, becomes a bidirectional GRU. Default: ``False``
Inputs: input, h_0
* **input**: tensor of shape :math:`(L, H_{in})` for unbatched input,
:math:`(L, N, H_{in})` when ``batch_first=False`` or
:math:`(N, L, H_{in})` when ``batch_first=True`` containing the features of
the input sequence. The input can also be a packed variable length sequence.
See :func:`torch.nn.utils.rnn.pack_padded_sequence` or
:func:`torch.nn.utils.rnn.pack_sequence` for details.
* **h_0**: tensor of shape :math:`(D * \text{num\_layers}, H_{out})` or
:math:`(D * \text{num\_layers}, N, H_{out})`
containing the initial hidden state for the input sequence. Defaults to zeros if not provided.
where:
.. math::
\begin{aligned}
N ={} & \text{batch size} \\
L ={} & \text{sequence length} \\
D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\
H_{in} ={} & \text{input\_size} \\
H_{out} ={} & \text{hidden\_size}
\end{aligned}
Outputs: output, h_n
* **output**: tensor of shape :math:`(L, D * H_{out})` for unbatched input,
:math:`(L, N, D * H_{out})` when ``batch_first=False`` or
:math:`(N, L, D * H_{out})` when ``batch_first=True`` containing the output features
`(h_t)` from the last layer of the GRU, for each `t`. If a
:class:`torch.nn.utils.rnn.PackedSequence` has been given as the input, the output
will also be a packed sequence.
* **h_n**: tensor of shape :math:`(D * \text{num\_layers}, H_{out})` or
:math:`(D * \text{num\_layers}, N, H_{out})` containing the final hidden state
for the input sequence.
Attributes:
weight_ih_l[k] : the learnable input-hidden weights of the :math:`\text{k}^{th}` layer
(W_ir|W_iz|W_in), of shape `(3*hidden_size, input_size)` for `k = 0`.
Otherwise, the shape is `(3*hidden_size, num_directions * hidden_size)`
weight_hh_l[k] : the learnable hidden-hidden weights of the :math:`\text{k}^{th}` layer
(W_hr|W_hz|W_hn), of shape `(3*hidden_size, hidden_size)`
bias_ih_l[k] : the learnable input-hidden bias of the :math:`\text{k}^{th}` layer
(b_ir|b_iz|b_in), of shape `(3*hidden_size)`
bias_hh_l[k] : the learnable hidden-hidden bias of the :math:`\text{k}^{th}` layer
(b_hr|b_hz|b_hn), of shape `(3*hidden_size)`
.. note::
All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`
where :math:`k = \frac{1}{\text{hidden\_size}}`
.. note::
For bidirectional GRUs, forward and backward are directions 0 and 1 respectively.
Example of splitting the output layers when ``batch_first=False``:
``output.view(seq_len, batch, num_directions, hidden_size)``.
.. note::
``batch_first`` argument is ignored for unbatched inputs.
.. note::
The calculation of new gate :math:`n_t` subtly differs from the original paper and other frameworks.
In the original implementation, the Hadamard product :math:`(\odot)` between :math:`r_t` and the
previous hidden state :math:`h_{(t-1)}` is done before the multiplication with the weight matrix
`W` and addition of bias:
.. math::
\begin{aligned}
n_t = \tanh(W_{in} x_t + b_{in} + W_{hn} ( r_t \odot h_{(t-1)} ) + b_{hn})
\end{aligned}
This is in contrast to PyTorch implementation, which is done after :math:`W_{hn} h_{(t-1)}`
.. math::
\begin{aligned}
n_t = \tanh(W_{in} x_t + b_{in} + r_t \odot (W_{hn} h_{(t-1)}+ b_{hn}))
\end{aligned}
This implementation differs on purpose for efficiency.
.. include:: ../cudnn_persistent_rnn.rst
Examples::
>>> rnn = nn.GRU(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> output, hn = rnn(input, h0)
"""
@overload
def __init__(
self,
input_size: int,
hidden_size: int,
num_layers: int = 1,
bias: bool = True,
batch_first: bool = False,
dropout: float = 0.0,
bidirectional: bool = False,
device=None,
dtype=None,
) -> None:
...
@overload
def __init__(self, *args, **kwargs):
...
def __init__(self, *args, **kwargs):
if "proj_size" in kwargs:
raise ValueError(
"proj_size argument is only supported for LSTM, not RNN or GRU"
)
super().__init__("GRU", *args, **kwargs)
@overload # type: ignore[override]
@torch._jit_internal._overload_method # noqa: F811
def forward(
self, input: Tensor, hx: Optional[Tensor] = None
) -> tuple[Tensor, Tensor]: # noqa: F811
pass
@overload
@torch._jit_internal._overload_method # noqa: F811
def forward(
self, input: PackedSequence, hx: Optional[Tensor] = None
) -> tuple[PackedSequence, Tensor]: # noqa: F811
pass
def forward(self, input, hx=None): # noqa: F811
self._update_flat_weights()
orig_input = input
# xxx: isinstance check needs to be in conditional for TorchScript to compile
if isinstance(orig_input, PackedSequence):
input, batch_sizes, sorted_indices, unsorted_indices = input
max_batch_size = batch_sizes[0]
if hx is None:
num_directions = 2 if self.bidirectional else 1
hx = torch.zeros(
self.num_layers * num_directions,
max_batch_size,
self.hidden_size,
dtype=input.dtype,
device=input.device,
)
else:
# Each batch of the hidden state should match the input sequence that
# the user believes he/she is passing in.
hx = self.permute_hidden(hx, sorted_indices)
else:
batch_sizes = None
if input.dim() not in (2, 3):
raise ValueError(
f"GRU: Expected input to be 2D or 3D, got {input.dim()}D instead"
)
is_batched = input.dim() == 3
batch_dim = 0 if self.batch_first else 1
if not is_batched:
input = input.unsqueeze(batch_dim)
if hx is not None:
if hx.dim() != 2:
raise RuntimeError(
f"For unbatched 2-D input, hx should also be 2-D but got {hx.dim()}-D tensor"
)
hx = hx.unsqueeze(1)
else:
if hx is not None and hx.dim() != 3:
raise RuntimeError(
f"For batched 3-D input, hx should also be 3-D but got {hx.dim()}-D tensor"
)
max_batch_size = input.size(0) if self.batch_first else input.size(1)
sorted_indices = None
unsorted_indices = None
if hx is None:
num_directions = 2 if self.bidirectional else 1
hx = torch.zeros(
self.num_layers * num_directions,
max_batch_size,
self.hidden_size,
dtype=input.dtype,
device=input.device,
)
else:
# Each batch of the hidden state should match the input sequence that
# the user believes he/she is passing in.
hx = self.permute_hidden(hx, sorted_indices)
self.check_forward_args(input, hx, batch_sizes)
if batch_sizes is None:
result = _VF.gru(
input,
hx,
self._flat_weights, # type: ignore[arg-type]
self.bias,
self.num_layers,
self.dropout,
self.training,
self.bidirectional,
self.batch_first,
)
else:
result = _VF.gru(
input,
batch_sizes,
hx,
self._flat_weights, # type: ignore[arg-type]
self.bias,
self.num_layers,
self.dropout,
self.training,
self.bidirectional,
)
output = result[0]
hidden = result[1]
# xxx: isinstance check needs to be in conditional for TorchScript to compile
if isinstance(orig_input, PackedSequence):
output_packed = PackedSequence(
output, batch_sizes, sorted_indices, unsorted_indices
)
return output_packed, self.permute_hidden(hidden, unsorted_indices)
else:
if not is_batched: # type: ignore[possibly-undefined]
output = output.squeeze(batch_dim) # type: ignore[possibly-undefined]
hidden = hidden.squeeze(1)
return output, self.permute_hidden(hidden, unsorted_indices)
class RNNCellBase(Module):
__constants__ = ["input_size", "hidden_size", "bias"]
input_size: int
hidden_size: int
bias: bool
weight_ih: Tensor
weight_hh: Tensor
# WARNING: bias_ih and bias_hh purposely not defined here.
# See https://github.com/pytorch/pytorch/issues/39670
def __init__(
self,
input_size: int,
hidden_size: int,
bias: bool,
num_chunks: int,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.bias = bias
self.weight_ih = Parameter(
torch.empty((num_chunks * hidden_size, input_size), **factory_kwargs)
)
self.weight_hh = Parameter(
torch.empty((num_chunks * hidden_size, hidden_size), **factory_kwargs)
)
if bias:
self.bias_ih = Parameter(
torch.empty(num_chunks * hidden_size, **factory_kwargs)
)
self.bias_hh = Parameter(
torch.empty(num_chunks * hidden_size, **factory_kwargs)
)
else:
self.register_parameter("bias_ih", None)
self.register_parameter("bias_hh", None)
self.reset_parameters()
def extra_repr(self) -> str:
s = "{input_size}, {hidden_size}"
if "bias" in self.__dict__ and self.bias is not True:
s += ", bias={bias}"
if "nonlinearity" in self.__dict__ and self.nonlinearity != "tanh":
s += ", nonlinearity={nonlinearity}"
return s.format(**self.__dict__)
def reset_parameters(self) -> None:
stdv = 1.0 / math.sqrt(self.hidden_size) if self.hidden_size > 0 else 0
for weight in self.parameters():
init.uniform_(weight, -stdv, stdv)
class RNNCell(RNNCellBase):
r"""An Elman RNN cell with tanh or ReLU non-linearity.
.. math::
h' = \tanh(W_{ih} x + b_{ih} + W_{hh} h + b_{hh})
If :attr:`nonlinearity` is `'relu'`, then ReLU is used in place of tanh.
Args:
input_size: The number of expected features in the input `x`
hidden_size: The number of features in the hidden state `h`
bias: If ``False``, then the layer does not use bias weights `b_ih` and `b_hh`.
Default: ``True``
nonlinearity: The non-linearity to use. Can be either ``'tanh'`` or ``'relu'``. Default: ``'tanh'``
Inputs: input, hidden
- **input**: tensor containing input features
- **hidden**: tensor containing the initial hidden state
Defaults to zero if not provided.
Outputs: h'
- **h'** of shape `(batch, hidden_size)`: tensor containing the next hidden state
for each element in the batch
Shape:
- input: :math:`(N, H_{in})` or :math:`(H_{in})` tensor containing input features where
:math:`H_{in}` = `input_size`.
- hidden: :math:`(N, H_{out})` or :math:`(H_{out})` tensor containing the initial hidden
state where :math:`H_{out}` = `hidden_size`. Defaults to zero if not provided.
- output: :math:`(N, H_{out})` or :math:`(H_{out})` tensor containing the next hidden state.
Attributes:
weight_ih: the learnable input-hidden weights, of shape
`(hidden_size, input_size)`
weight_hh: the learnable hidden-hidden weights, of shape
`(hidden_size, hidden_size)`
bias_ih: the learnable input-hidden bias, of shape `(hidden_size)`
bias_hh: the learnable hidden-hidden bias, of shape `(hidden_size)`
.. note::
All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`
where :math:`k = \frac{1}{\text{hidden\_size}}`
Examples::
>>> rnn = nn.RNNCell(10, 20)
>>> input = torch.randn(6, 3, 10)
>>> hx = torch.randn(3, 20)
>>> output = []
>>> for i in range(6):
... hx = rnn(input[i], hx)
... output.append(hx)
"""
__constants__ = ["input_size", "hidden_size", "bias", "nonlinearity"]
nonlinearity: str
def __init__(
self,
input_size: int,
hidden_size: int,
bias: bool = True,
nonlinearity: str = "tanh",
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__(input_size, hidden_size, bias, num_chunks=1, **factory_kwargs)
self.nonlinearity = nonlinearity
def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tensor:
if input.dim() not in (1, 2):
raise ValueError(
f"RNNCell: Expected input to be 1D or 2D, got {input.dim()}D instead"
)
if hx is not None and hx.dim() not in (1, 2):
raise ValueError(
f"RNNCell: Expected hidden to be 1D or 2D, got {hx.dim()}D instead"
)
is_batched = input.dim() == 2
if not is_batched:
input = input.unsqueeze(0)
if hx is None:
hx = torch.zeros(
input.size(0), self.hidden_size, dtype=input.dtype, device=input.device
)
else:
hx = hx.unsqueeze(0) if not is_batched else hx
if self.nonlinearity == "tanh":
ret = _VF.rnn_tanh_cell(
input,
hx,
self.weight_ih,
self.weight_hh,
self.bias_ih,
self.bias_hh,
)
elif self.nonlinearity == "relu":
ret = _VF.rnn_relu_cell(
input,
hx,
self.weight_ih,
self.weight_hh,
self.bias_ih,
self.bias_hh,
)
else:
ret = input # TODO: remove when jit supports exception flow
raise RuntimeError(f"Unknown nonlinearity: {self.nonlinearity}")
if not is_batched:
ret = ret.squeeze(0)
return ret
class LSTMCell(RNNCellBase):
r"""A long short-term memory (LSTM) cell.
.. math::
\begin{array}{ll}
i = \sigma(W_{ii} x + b_{ii} + W_{hi} h + b_{hi}) \\
f = \sigma(W_{if} x + b_{if} + W_{hf} h + b_{hf}) \\
g = \tanh(W_{ig} x + b_{ig} + W_{hg} h + b_{hg}) \\
o = \sigma(W_{io} x + b_{io} + W_{ho} h + b_{ho}) \\
c' = f \odot c + i \odot g \\
h' = o \odot \tanh(c') \\
\end{array}
where :math:`\sigma` is the sigmoid function, and :math:`\odot` is the Hadamard product.
Args:
input_size: The number of expected features in the input `x`
hidden_size: The number of features in the hidden state `h`
bias: If ``False``, then the layer does not use bias weights `b_ih` and
`b_hh`. Default: ``True``
Inputs: input, (h_0, c_0)
- **input** of shape `(batch, input_size)` or `(input_size)`: tensor containing input features
- **h_0** of shape `(batch, hidden_size)` or `(hidden_size)`: tensor containing the initial hidden state
- **c_0** of shape `(batch, hidden_size)` or `(hidden_size)`: tensor containing the initial cell state
If `(h_0, c_0)` is not provided, both **h_0** and **c_0** default to zero.
Outputs: (h_1, c_1)
- **h_1** of shape `(batch, hidden_size)` or `(hidden_size)`: tensor containing the next hidden state
- **c_1** of shape `(batch, hidden_size)` or `(hidden_size)`: tensor containing the next cell state
Attributes:
weight_ih: the learnable input-hidden weights, of shape
`(4*hidden_size, input_size)`
weight_hh: the learnable hidden-hidden weights, of shape
`(4*hidden_size, hidden_size)`
bias_ih: the learnable input-hidden bias, of shape `(4*hidden_size)`
bias_hh: the learnable hidden-hidden bias, of shape `(4*hidden_size)`
.. note::
All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`
where :math:`k = \frac{1}{\text{hidden\_size}}`
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
Examples::
>>> rnn = nn.LSTMCell(10, 20) # (input_size, hidden_size)
>>> input = torch.randn(2, 3, 10) # (time_steps, batch, input_size)
>>> hx = torch.randn(3, 20) # (batch, hidden_size)
>>> cx = torch.randn(3, 20)
>>> output = []
>>> for i in range(input.size()[0]):
... hx, cx = rnn(input[i], (hx, cx))
... output.append(hx)
>>> output = torch.stack(output, dim=0)
"""
def __init__(
self,
input_size: int,
hidden_size: int,
bias: bool = True,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__(input_size, hidden_size, bias, num_chunks=4, **factory_kwargs)
def forward(
self, input: Tensor, hx: Optional[tuple[Tensor, Tensor]] = None
) -> tuple[Tensor, Tensor]:
if input.dim() not in (1, 2):
raise ValueError(
f"LSTMCell: Expected input to be 1D or 2D, got {input.dim()}D instead"
)
if hx is not None:
for idx, value in enumerate(hx):
if value.dim() not in (1, 2):
raise ValueError(
f"LSTMCell: Expected hx[{idx}] to be 1D or 2D, got {value.dim()}D instead"
)
is_batched = input.dim() == 2
if not is_batched:
input = input.unsqueeze(0)
if hx is None:
zeros = torch.zeros(
input.size(0), self.hidden_size, dtype=input.dtype, device=input.device
)
hx = (zeros, zeros)
else:
hx = (hx[0].unsqueeze(0), hx[1].unsqueeze(0)) if not is_batched else hx
ret = _VF.lstm_cell(
input,
hx,
self.weight_ih,
self.weight_hh,
self.bias_ih,
self.bias_hh,
)
if not is_batched:
ret = (ret[0].squeeze(0), ret[1].squeeze(0))
return ret
class GRUCell(RNNCellBase):
r"""A gated recurrent unit (GRU) cell.
.. math::
\begin{array}{ll}
r = \sigma(W_{ir} x + b_{ir} + W_{hr} h + b_{hr}) \\
z = \sigma(W_{iz} x + b_{iz} + W_{hz} h + b_{hz}) \\
n = \tanh(W_{in} x + b_{in} + r \odot (W_{hn} h + b_{hn})) \\
h' = (1 - z) \odot n + z \odot h
\end{array}
where :math:`\sigma` is the sigmoid function, and :math:`\odot` is the Hadamard product.
Args:
input_size: The number of expected features in the input `x`
hidden_size: The number of features in the hidden state `h`
bias: If ``False``, then the layer does not use bias weights `b_ih` and
`b_hh`. Default: ``True``
Inputs: input, hidden
- **input** : tensor containing input features
- **hidden** : tensor containing the initial hidden
state for each element in the batch.
Defaults to zero if not provided.
Outputs: h'
- **h'** : tensor containing the next hidden state
for each element in the batch
Shape:
- input: :math:`(N, H_{in})` or :math:`(H_{in})` tensor containing input features where
:math:`H_{in}` = `input_size`.
- hidden: :math:`(N, H_{out})` or :math:`(H_{out})` tensor containing the initial hidden
state where :math:`H_{out}` = `hidden_size`. Defaults to zero if not provided.
- output: :math:`(N, H_{out})` or :math:`(H_{out})` tensor containing the next hidden state.
Attributes:
weight_ih: the learnable input-hidden weights, of shape
`(3*hidden_size, input_size)`
weight_hh: the learnable hidden-hidden weights, of shape
`(3*hidden_size, hidden_size)`
bias_ih: the learnable input-hidden bias, of shape `(3*hidden_size)`
bias_hh: the learnable hidden-hidden bias, of shape `(3*hidden_size)`
.. note::
All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`
where :math:`k = \frac{1}{\text{hidden\_size}}`
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
Examples::
>>> rnn = nn.GRUCell(10, 20)
>>> input = torch.randn(6, 3, 10)
>>> hx = torch.randn(3, 20)
>>> output = []
>>> for i in range(6):
... hx = rnn(input[i], hx)
... output.append(hx)
"""
def __init__(
self,
input_size: int,
hidden_size: int,
bias: bool = True,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__(input_size, hidden_size, bias, num_chunks=3, **factory_kwargs)
def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tensor:
if input.dim() not in (1, 2):
raise ValueError(
f"GRUCell: Expected input to be 1D or 2D, got {input.dim()}D instead"
)
if hx is not None and hx.dim() not in (1, 2):
raise ValueError(
f"GRUCell: Expected hidden to be 1D or 2D, got {hx.dim()}D instead"
)
is_batched = input.dim() == 2
if not is_batched:
input = input.unsqueeze(0)
if hx is None:
hx = torch.zeros(
input.size(0), self.hidden_size, dtype=input.dtype, device=input.device
)
else:
hx = hx.unsqueeze(0) if not is_batched else hx
ret = _VF.gru_cell(
input,
hx,
self.weight_ih,
self.weight_hh,
self.bias_ih,
self.bias_hh,
)
if not is_batched:
ret = ret.squeeze(0)
return ret
```
|
==================================================================================================================
SOURCE CODE FILE: sparse.py
LINES: 1
SIZE: 24.02 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\modules\sparse.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
from typing import Optional
import torch
from torch import Tensor
from torch.nn import functional as F, init
from torch.nn.parameter import Parameter
from .module import Module
__all__ = ["Embedding", "EmbeddingBag"]
class Embedding(Module):
r"""A simple lookup table that stores embeddings of a fixed dictionary and size.
This module is often used to store word embeddings and retrieve them using indices.
The input to the module is a list of indices, and the output is the corresponding
word embeddings.
Args:
num_embeddings (int): size of the dictionary of embeddings
embedding_dim (int): the size of each embedding vector
padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient;
therefore, the embedding vector at :attr:`padding_idx` is not updated during training,
i.e. it remains as a fixed "pad". For a newly constructed Embedding,
the embedding vector at :attr:`padding_idx` will default to all zeros,
but can be updated to another value to be used as the padding vector.
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
is renormalized to have norm :attr:`max_norm`.
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of
the words in the mini-batch. Default ``False``.
sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor.
See Notes for more details regarding sparse gradients.
Attributes:
weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim)
initialized from :math:`\mathcal{N}(0, 1)`
Shape:
- Input: :math:`(*)`, IntTensor or LongTensor of arbitrary shape containing the indices to extract
- Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}`
.. note::
Keep in mind that only a limited number of optimizers support
sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`),
:class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`)
.. note::
When :attr:`max_norm` is not ``None``, :class:`Embedding`'s forward method will modify the
:attr:`weight` tensor in-place. Since tensors needed for gradient computations cannot be
modified in-place, performing a differentiable operation on ``Embedding.weight`` before
calling :class:`Embedding`'s forward method requires cloning ``Embedding.weight`` when
:attr:`max_norm` is not ``None``. For example::
n, d, m = 3, 5, 7
embedding = nn.Embedding(n, d, max_norm=1.0)
W = torch.randn((m, d), requires_grad=True)
idx = torch.tensor([1, 2])
a = embedding.weight.clone() @ W.t() # weight must be cloned for this to be differentiable
b = embedding(idx) @ W.t() # modifies weight in-place
out = (a.unsqueeze(0) + b.unsqueeze(1))
loss = out.sigmoid().prod()
loss.backward()
Examples::
>>> # an Embedding module containing 10 tensors of size 3
>>> embedding = nn.Embedding(10, 3)
>>> # a batch of 2 samples of 4 indices each
>>> input = torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]])
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> embedding(input)
tensor([[[-0.0251, -1.6902, 0.7172],
[-0.6431, 0.0748, 0.6969],
[ 1.4970, 1.3448, -0.9685],
[-0.3677, -2.7265, -0.1685]],
[[ 1.4970, 1.3448, -0.9685],
[ 0.4362, -0.4004, 0.9400],
[-0.6431, 0.0748, 0.6969],
[ 0.9124, -2.3616, 1.1151]]])
>>> # example with padding_idx
>>> embedding = nn.Embedding(10, 3, padding_idx=0)
>>> input = torch.LongTensor([[0, 2, 0, 5]])
>>> embedding(input)
tensor([[[ 0.0000, 0.0000, 0.0000],
[ 0.1535, -2.0309, 0.9315],
[ 0.0000, 0.0000, 0.0000],
[-0.1655, 0.9897, 0.0635]]])
>>> # example of changing `pad` vector
>>> padding_idx = 0
>>> embedding = nn.Embedding(3, 3, padding_idx=padding_idx)
>>> embedding.weight
Parameter containing:
tensor([[ 0.0000, 0.0000, 0.0000],
[-0.7895, -0.7089, -0.0364],
[ 0.6778, 0.5803, 0.2678]], requires_grad=True)
>>> with torch.no_grad():
... embedding.weight[padding_idx] = torch.ones(3)
>>> embedding.weight
Parameter containing:
tensor([[ 1.0000, 1.0000, 1.0000],
[-0.7895, -0.7089, -0.0364],
[ 0.6778, 0.5803, 0.2678]], requires_grad=True)
"""
__constants__ = [
"num_embeddings",
"embedding_dim",
"padding_idx",
"max_norm",
"norm_type",
"scale_grad_by_freq",
"sparse",
]
num_embeddings: int
embedding_dim: int
padding_idx: Optional[int]
max_norm: Optional[float]
norm_type: float
scale_grad_by_freq: bool
weight: Tensor
freeze: bool
sparse: bool
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
_freeze: bool = False,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
if padding_idx is not None:
if padding_idx > 0:
assert (
padding_idx < self.num_embeddings
), "Padding_idx must be within num_embeddings"
elif padding_idx < 0:
assert (
padding_idx >= -self.num_embeddings
), "Padding_idx must be within num_embeddings"
padding_idx = self.num_embeddings + padding_idx
self.padding_idx = padding_idx
self.max_norm = max_norm
self.norm_type = norm_type
self.scale_grad_by_freq = scale_grad_by_freq
if _weight is None:
self.weight = Parameter(
torch.empty((num_embeddings, embedding_dim), **factory_kwargs),
requires_grad=not _freeze,
)
self.reset_parameters()
else:
assert list(_weight.shape) == [
num_embeddings,
embedding_dim,
], "Shape of weight does not match num_embeddings and embedding_dim"
self.weight = Parameter(_weight, requires_grad=not _freeze)
self.sparse = sparse
def reset_parameters(self) -> None:
init.normal_(self.weight)
self._fill_padding_idx_with_zero()
def _fill_padding_idx_with_zero(self) -> None:
if self.padding_idx is not None:
with torch.no_grad():
self.weight[self.padding_idx].fill_(0)
def forward(self, input: Tensor) -> Tensor:
return F.embedding(
input,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
def extra_repr(self) -> str:
s = "{num_embeddings}, {embedding_dim}"
if self.padding_idx is not None:
s += ", padding_idx={padding_idx}"
if self.max_norm is not None:
s += ", max_norm={max_norm}"
if self.norm_type != 2:
s += ", norm_type={norm_type}"
if self.scale_grad_by_freq is not False:
s += ", scale_grad_by_freq={scale_grad_by_freq}"
if self.sparse is not False:
s += ", sparse=True"
return s.format(**self.__dict__)
@classmethod
def from_pretrained(
cls,
embeddings,
freeze=True,
padding_idx=None,
max_norm=None,
norm_type=2.0,
scale_grad_by_freq=False,
sparse=False,
):
r"""Create Embedding instance from given 2-dimensional FloatTensor.
Args:
embeddings (Tensor): FloatTensor containing weights for the Embedding.
First dimension is being passed to Embedding as ``num_embeddings``, second as ``embedding_dim``.
freeze (bool, optional): If ``True``, the tensor does not get updated in the learning process.
Equivalent to ``embedding.weight.requires_grad = False``. Default: ``True``
padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient;
therefore, the embedding vector at :attr:`padding_idx` is not updated during training,
i.e. it remains as a fixed "pad".
max_norm (float, optional): See module initialization documentation.
norm_type (float, optional): See module initialization documentation. Default ``2``.
scale_grad_by_freq (bool, optional): See module initialization documentation. Default ``False``.
sparse (bool, optional): See module initialization documentation.
Examples::
>>> # FloatTensor containing pretrained weights
>>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])
>>> embedding = nn.Embedding.from_pretrained(weight)
>>> # Get embeddings for index 1
>>> input = torch.LongTensor([1])
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> embedding(input)
tensor([[ 4.0000, 5.1000, 6.3000]])
"""
assert (
embeddings.dim() == 2
), "Embeddings parameter is expected to be 2-dimensional"
rows, cols = embeddings.shape
embedding = cls(
num_embeddings=rows,
embedding_dim=cols,
_weight=embeddings,
_freeze=freeze,
padding_idx=padding_idx,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse,
)
return embedding
class EmbeddingBag(Module):
r"""Compute sums or means of 'bags' of embeddings, without instantiating the intermediate embeddings.
For bags of constant length, no :attr:`per_sample_weights`, no indices equal to :attr:`padding_idx`,
and with 2D inputs, this class
* with ``mode="sum"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.sum(dim=1)``,
* with ``mode="mean"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.mean(dim=1)``,
* with ``mode="max"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.max(dim=1)``.
However, :class:`~torch.nn.EmbeddingBag` is much more time and memory efficient than using a chain of these
operations.
EmbeddingBag also supports per-sample weights as an argument to the forward
pass. This scales the output of the Embedding before performing a weighted
reduction as specified by ``mode``. If :attr:`per_sample_weights` is passed, the
only supported ``mode`` is ``"sum"``, which computes a weighted sum according to
:attr:`per_sample_weights`.
Args:
num_embeddings (int): size of the dictionary of embeddings
embedding_dim (int): the size of each embedding vector
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
is renormalized to have norm :attr:`max_norm`.
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
scale_grad_by_freq (bool, optional): if given, this will scale gradients by the inverse of frequency of
the words in the mini-batch. Default ``False``.
Note: this option is not supported when ``mode="max"``.
mode (str, optional): ``"sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag.
``"sum"`` computes the weighted sum, taking :attr:`per_sample_weights`
into consideration. ``"mean"`` computes the average of the values
in the bag, ``"max"`` computes the max value over each bag.
Default: ``"mean"``
sparse (bool, optional): if ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor. See
Notes for more details regarding sparse gradients. Note: this option is not
supported when ``mode="max"``.
include_last_offset (bool, optional): if ``True``, :attr:`offsets` has one additional element, where the last element
is equivalent to the size of `indices`. This matches the CSR format.
padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the
gradient; therefore, the embedding vector at :attr:`padding_idx` is not updated
during training, i.e. it remains as a fixed "pad". For a newly constructed
EmbeddingBag, the embedding vector at :attr:`padding_idx` will default to all
zeros, but can be updated to another value to be used as the padding vector.
Note that the embedding vector at :attr:`padding_idx` is excluded from the
reduction.
Attributes:
weight (Tensor): the learnable weights of the module of shape `(num_embeddings, embedding_dim)`
initialized from :math:`\mathcal{N}(0, 1)`.
Examples::
>>> # an EmbeddingBag module containing 10 tensors of size 3
>>> embedding_sum = nn.EmbeddingBag(10, 3, mode='sum')
>>> # a batch of 2 samples of 4 indices each
>>> input = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9], dtype=torch.long)
>>> offsets = torch.tensor([0, 4], dtype=torch.long)
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> embedding_sum(input, offsets)
tensor([[-0.8861, -5.4350, -0.0523],
[ 1.1306, -2.5798, -1.0044]])
>>> # Example with padding_idx
>>> embedding_sum = nn.EmbeddingBag(10, 3, mode='sum', padding_idx=2)
>>> input = torch.tensor([2, 2, 2, 2, 4, 3, 2, 9], dtype=torch.long)
>>> offsets = torch.tensor([0, 4], dtype=torch.long)
>>> embedding_sum(input, offsets)
tensor([[ 0.0000, 0.0000, 0.0000],
[-0.7082, 3.2145, -2.6251]])
>>> # An EmbeddingBag can be loaded from an Embedding like so
>>> embedding = nn.Embedding(10, 3, padding_idx=2)
>>> embedding_sum = nn.EmbeddingBag.from_pretrained(
embedding.weight,
padding_idx=embedding.padding_idx,
mode='sum')
"""
__constants__ = [
"num_embeddings",
"embedding_dim",
"max_norm",
"norm_type",
"scale_grad_by_freq",
"mode",
"sparse",
"include_last_offset",
"padding_idx",
]
num_embeddings: int
embedding_dim: int
max_norm: Optional[float]
norm_type: float
scale_grad_by_freq: bool
weight: Tensor
mode: str
sparse: bool
include_last_offset: bool
padding_idx: Optional[int]
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
mode: str = "mean",
sparse: bool = False,
_weight: Optional[Tensor] = None,
include_last_offset: bool = False,
padding_idx: Optional[int] = None,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
self.max_norm = max_norm
self.norm_type = norm_type
self.scale_grad_by_freq = scale_grad_by_freq
if padding_idx is not None:
if padding_idx > 0:
assert (
padding_idx < self.num_embeddings
), "padding_idx must be within num_embeddings"
elif padding_idx < 0:
assert (
padding_idx >= -self.num_embeddings
), "padding_idx must be within num_embeddings"
padding_idx = self.num_embeddings + padding_idx
self.padding_idx = padding_idx
if _weight is None:
self.weight = Parameter(
torch.empty((num_embeddings, embedding_dim), **factory_kwargs)
)
self.reset_parameters()
else:
assert list(_weight.shape) == [
num_embeddings,
embedding_dim,
], "Shape of weight does not match num_embeddings and embedding_dim"
self.weight = Parameter(_weight)
self.mode = mode
self.sparse = sparse
self.include_last_offset = include_last_offset
def reset_parameters(self) -> None:
init.normal_(self.weight)
self._fill_padding_idx_with_zero()
def _fill_padding_idx_with_zero(self) -> None:
if self.padding_idx is not None:
with torch.no_grad():
self.weight[self.padding_idx].fill_(0)
def forward(
self,
input: Tensor,
offsets: Optional[Tensor] = None,
per_sample_weights: Optional[Tensor] = None,
) -> Tensor:
"""Forward pass of EmbeddingBag.
Args:
input (Tensor): Tensor containing bags of indices into the embedding matrix.
offsets (Tensor, optional): Only used when :attr:`input` is 1D. :attr:`offsets` determines
the starting index position of each bag (sequence) in :attr:`input`.
per_sample_weights (Tensor, optional): a tensor of float / double weights, or None
to indicate all weights should be taken to be ``1``. If specified, :attr:`per_sample_weights`
must have exactly the same shape as input and is treated as having the same
:attr:`offsets`, if those are not ``None``. Only supported for ``mode='sum'``.
Returns:
Tensor output shape of `(B, embedding_dim)`.
.. note::
A few notes about ``input`` and ``offsets``:
- :attr:`input` and :attr:`offsets` have to be of the same type, either int or long
- If :attr:`input` is 2D of shape `(B, N)`, it will be treated as ``B`` bags (sequences)
each of fixed length ``N``, and this will return ``B`` values aggregated in a way
depending on the :attr:`mode`. :attr:`offsets` is ignored and required to be ``None`` in this case.
- If :attr:`input` is 1D of shape `(N)`, it will be treated as a concatenation of
multiple bags (sequences). :attr:`offsets` is required to be a 1D tensor containing the
starting index positions of each bag in :attr:`input`. Therefore, for :attr:`offsets` of shape `(B)`,
:attr:`input` will be viewed as having ``B`` bags. Empty bags (i.e., having 0-length) will have
returned vectors filled by zeros.
"""
return F.embedding_bag(
input,
self.weight,
offsets,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.mode,
self.sparse,
per_sample_weights,
self.include_last_offset,
self.padding_idx,
)
def extra_repr(self) -> str:
s = "{num_embeddings}, {embedding_dim}"
if self.max_norm is not None:
s += ", max_norm={max_norm}"
if self.norm_type != 2:
s += ", norm_type={norm_type}"
if self.scale_grad_by_freq is not False:
s += ", scale_grad_by_freq={scale_grad_by_freq}"
s += ", mode={mode}"
if self.padding_idx is not None:
s += ", padding_idx={padding_idx}"
return s.format(**{k: repr(v) for k, v in self.__dict__.items()})
@classmethod
def from_pretrained(
cls,
embeddings: Tensor,
freeze: bool = True,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
mode: str = "mean",
sparse: bool = False,
include_last_offset: bool = False,
padding_idx: Optional[int] = None,
) -> "EmbeddingBag":
r"""Create EmbeddingBag instance from given 2-dimensional FloatTensor.
Args:
embeddings (Tensor): FloatTensor containing weights for the EmbeddingBag.
First dimension is being passed to EmbeddingBag as 'num_embeddings', second as 'embedding_dim'.
freeze (bool, optional): If ``True``, the tensor does not get updated in the learning process.
Equivalent to ``embeddingbag.weight.requires_grad = False``. Default: ``True``
max_norm (float, optional): See module initialization documentation. Default: ``None``
norm_type (float, optional): See module initialization documentation. Default ``2``.
scale_grad_by_freq (bool, optional): See module initialization documentation. Default ``False``.
mode (str, optional): See module initialization documentation. Default: ``"mean"``
sparse (bool, optional): See module initialization documentation. Default: ``False``.
include_last_offset (bool, optional): See module initialization documentation. Default: ``False``.
padding_idx (int, optional): See module initialization documentation. Default: ``None``.
Examples::
>>> # FloatTensor containing pretrained weights
>>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])
>>> embeddingbag = nn.EmbeddingBag.from_pretrained(weight)
>>> # Get embeddings for index 1
>>> input = torch.LongTensor([[1, 0]])
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> embeddingbag(input)
tensor([[ 2.5000, 3.7000, 4.6500]])
"""
assert (
embeddings.dim() == 2
), "Embeddings parameter is expected to be 2-dimensional"
rows, cols = embeddings.shape
embeddingbag = cls(
num_embeddings=rows,
embedding_dim=cols,
_weight=embeddings,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
mode=mode,
sparse=sparse,
include_last_offset=include_last_offset,
padding_idx=padding_idx,
)
embeddingbag.weight.requires_grad = not freeze
return embeddingbag
```
|
=======================================================================================================================
SOURCE CODE FILE: transformer.py
LINES: 1
SIZE: 49.75 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\modules\transformer.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
import copy
import warnings
from typing import Any, Callable, Optional, Union
import torch
import torch.nn.functional as F
from torch import Tensor
from torch.nn.init import xavier_uniform_
from .activation import MultiheadAttention
from .container import ModuleList
from .dropout import Dropout
from .linear import Linear
from .module import Module
from .normalization import LayerNorm
__all__ = [
"Transformer",
"TransformerEncoder",
"TransformerDecoder",
"TransformerEncoderLayer",
"TransformerDecoderLayer",
]
def _generate_square_subsequent_mask(
sz: int,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> Tensor:
r"""Generate a square causal mask for the sequence.
The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0).
"""
return torch.triu(
torch.full((sz, sz), float("-inf"), dtype=dtype, device=device),
diagonal=1,
)
def _get_seq_len(src: Tensor, batch_first: bool) -> Optional[int]:
if src.is_nested:
return None
else:
src_size = src.size()
if len(src_size) == 2:
# unbatched: S, E
return src_size[0]
else:
# batched: B, S, E if batch_first else S, B, E
seq_len_pos = 1 if batch_first else 0
return src_size[seq_len_pos]
class Transformer(Module):
r"""A transformer model.
.. note::
See `this tutorial <https://pytorch.org/tutorials/intermediate/transformer_building_blocks.html>`_
for an in depth discussion of the performant building blocks PyTorch offers for building your own
transformer layers.
User is able to modify the attributes as needed. The architecture
is based on the paper `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
Args:
d_model: the number of expected features in the encoder/decoder inputs (default=512).
nhead: the number of heads in the multiheadattention models (default=8).
num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
activation: the activation function of encoder/decoder intermediate layer, can be a string
("relu" or "gelu") or a unary callable. Default: relu
custom_encoder: custom encoder (default=None).
custom_decoder: custom decoder (default=None).
layer_norm_eps: the eps value in layer normalization components (default=1e-5).
batch_first: If ``True``, then the input and output tensors are provided
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
norm_first: if ``True``, encoder and decoder layers will perform LayerNorms before
other attention and feedforward operations, otherwise after. Default: ``False`` (after).
bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive
bias. Default: ``True``.
Examples::
>>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
>>> src = torch.rand((10, 32, 512))
>>> tgt = torch.rand((20, 32, 512))
>>> out = transformer_model(src, tgt)
Note: A full example to apply nn.Transformer module for the word language model is available in
https://github.com/pytorch/examples/tree/master/word_language_model
"""
def __init__(
self,
d_model: int = 512,
nhead: int = 8,
num_encoder_layers: int = 6,
num_decoder_layers: int = 6,
dim_feedforward: int = 2048,
dropout: float = 0.1,
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
custom_encoder: Optional[Any] = None,
custom_decoder: Optional[Any] = None,
layer_norm_eps: float = 1e-5,
batch_first: bool = False,
norm_first: bool = False,
bias: bool = True,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}")
if custom_encoder is not None:
self.encoder = custom_encoder
else:
encoder_layer = TransformerEncoderLayer(
d_model,
nhead,
dim_feedforward,
dropout,
activation,
layer_norm_eps,
batch_first,
norm_first,
bias,
**factory_kwargs,
)
encoder_norm = LayerNorm(
d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs
)
self.encoder = TransformerEncoder(
encoder_layer, num_encoder_layers, encoder_norm
)
if custom_decoder is not None:
self.decoder = custom_decoder
else:
decoder_layer = TransformerDecoderLayer(
d_model,
nhead,
dim_feedforward,
dropout,
activation,
layer_norm_eps,
batch_first,
norm_first,
bias,
**factory_kwargs,
)
decoder_norm = LayerNorm(
d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs
)
self.decoder = TransformerDecoder(
decoder_layer, num_decoder_layers, decoder_norm
)
self._reset_parameters()
self.d_model = d_model
self.nhead = nhead
self.batch_first = batch_first
def forward(
self,
src: Tensor,
tgt: Tensor,
src_mask: Optional[Tensor] = None,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
src_is_causal: Optional[bool] = None,
tgt_is_causal: Optional[bool] = None,
memory_is_causal: bool = False,
) -> Tensor:
r"""Take in and process masked source/target sequences.
.. note::
If a boolean tensor is provided for any of the [src/tgt/memory]_mask arguments, positions with a ``True`` value are
not allowed to participate in the attention,
which is the opposite of the definition for :attr:`attn_mask`
in :func:`torch.nn.functional.scaled_dot_product_attention`.
Args:
src: the sequence to the encoder (required).
tgt: the sequence to the decoder (required).
src_mask: the additive mask for the src sequence (optional).
tgt_mask: the additive mask for the tgt sequence (optional).
memory_mask: the additive mask for the encoder output (optional).
src_key_padding_mask: the Tensor mask for src keys per batch (optional).
tgt_key_padding_mask: the Tensor mask for tgt keys per batch (optional).
memory_key_padding_mask: the Tensor mask for memory keys per batch (optional).
src_is_causal: If specified, applies a causal mask as ``src_mask``.
Default: ``None``; try to detect a causal mask.
Warning:
``src_is_causal`` provides a hint that ``src_mask`` is
the causal mask. Providing incorrect hints can result in
incorrect execution, including forward and backward
compatibility.
tgt_is_causal: If specified, applies a causal mask as ``tgt_mask``.
Default: ``None``; try to detect a causal mask.
Warning:
``tgt_is_causal`` provides a hint that ``tgt_mask`` is
the causal mask. Providing incorrect hints can result in
incorrect execution, including forward and backward
compatibility.
memory_is_causal: If specified, applies a causal mask as
``memory_mask``.
Default: ``False``.
Warning:
``memory_is_causal`` provides a hint that
``memory_mask`` is the causal mask. Providing incorrect
hints can result in incorrect execution, including
forward and backward compatibility.
Shape:
- src: :math:`(S, E)` for unbatched input, :math:`(S, N, E)` if `batch_first=False` or
`(N, S, E)` if `batch_first=True`.
- tgt: :math:`(T, E)` for unbatched input, :math:`(T, N, E)` if `batch_first=False` or
`(N, T, E)` if `batch_first=True`.
- src_mask: :math:`(S, S)` or :math:`(N\cdot\text{num\_heads}, S, S)`.
- tgt_mask: :math:`(T, T)` or :math:`(N\cdot\text{num\_heads}, T, T)`.
- memory_mask: :math:`(T, S)`.
- src_key_padding_mask: :math:`(S)` for unbatched input otherwise :math:`(N, S)`.
- tgt_key_padding_mask: :math:`(T)` for unbatched input otherwise :math:`(N, T)`.
- memory_key_padding_mask: :math:`(S)` for unbatched input otherwise :math:`(N, S)`.
Note: [src/tgt/memory]_mask ensures that position :math:`i` is allowed to attend the unmasked
positions. If a BoolTensor is provided, positions with ``True``
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
is provided, it will be added to the attention weight.
[src/tgt/memory]_key_padding_mask provides specified elements in the key to be ignored by
the attention. If a BoolTensor is provided, the positions with the
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
- output: :math:`(T, E)` for unbatched input, :math:`(T, N, E)` if `batch_first=False` or
`(N, T, E)` if `batch_first=True`.
Note: Due to the multi-head attention architecture in the transformer model,
the output sequence length of a transformer is same as the input sequence
(i.e. target) length of the decoder.
where :math:`S` is the source sequence length, :math:`T` is the target sequence length, :math:`N` is the
batch size, :math:`E` is the feature number
Examples:
>>> # xdoctest: +SKIP
>>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask)
"""
is_batched = src.dim() == 3
if not self.batch_first and src.size(1) != tgt.size(1) and is_batched:
raise RuntimeError("the batch number of src and tgt must be equal")
elif self.batch_first and src.size(0) != tgt.size(0) and is_batched:
raise RuntimeError("the batch number of src and tgt must be equal")
if src.size(-1) != self.d_model or tgt.size(-1) != self.d_model:
raise RuntimeError(
"the feature number of src and tgt must be equal to d_model"
)
memory = self.encoder(
src,
mask=src_mask,
src_key_padding_mask=src_key_padding_mask,
is_causal=src_is_causal,
)
output = self.decoder(
tgt,
memory,
tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
tgt_is_causal=tgt_is_causal,
memory_is_causal=memory_is_causal,
)
return output
@staticmethod
def generate_square_subsequent_mask(
sz: int,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> Tensor:
r"""Generate a square causal mask for the sequence.
The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0).
"""
return _generate_square_subsequent_mask(sz, dtype=dtype, device=device)
def _reset_parameters(self):
r"""Initiate parameters in the transformer model."""
for p in self.parameters():
if p.dim() > 1:
xavier_uniform_(p)
class TransformerEncoder(Module):
r"""TransformerEncoder is a stack of N encoder layers.
.. note::
See `this tutorial <https://pytorch.org/tutorials/intermediate/transformer_building_blocks.html>`_
for an in depth discussion of the performant building blocks PyTorch offers for building your own
transformer layers.
Users can build the BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
Args:
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
num_layers: the number of sub-encoder-layers in the encoder (required).
norm: the layer normalization component (optional).
enable_nested_tensor: if True, input will automatically convert to nested tensor
(and convert back on output). This will improve the overall performance of
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
Examples::
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
>>> src = torch.rand(10, 32, 512)
>>> out = transformer_encoder(src)
"""
__constants__ = ["norm"]
def __init__(
self,
encoder_layer: "TransformerEncoderLayer",
num_layers: int,
norm: Optional[Module] = None,
enable_nested_tensor: bool = True,
mask_check: bool = True,
) -> None:
super().__init__()
torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}")
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
# this attribute saves the value providedat object construction
self.enable_nested_tensor = enable_nested_tensor
# this attribute controls whether nested tensors are used
self.use_nested_tensor = enable_nested_tensor
self.mask_check = mask_check
enc_layer = "encoder_layer"
why_not_sparsity_fast_path = ""
if not isinstance(encoder_layer, torch.nn.TransformerEncoderLayer):
why_not_sparsity_fast_path = f"{enc_layer} was not TransformerEncoderLayer"
elif encoder_layer.norm_first:
why_not_sparsity_fast_path = f"{enc_layer}.norm_first was True"
elif not encoder_layer.self_attn.batch_first:
why_not_sparsity_fast_path = (
f"{enc_layer}.self_attn.batch_first was not True"
+ "(use batch_first for better inference performance)"
)
elif not encoder_layer.self_attn._qkv_same_embed_dim:
why_not_sparsity_fast_path = (
f"{enc_layer}.self_attn._qkv_same_embed_dim was not True"
)
elif encoder_layer.self_attn.in_proj_bias is None:
why_not_sparsity_fast_path = f"{enc_layer}.self_attn was passed bias=False"
elif not encoder_layer.activation_relu_or_gelu:
why_not_sparsity_fast_path = (
f"{enc_layer}.activation_relu_or_gelu was not True"
)
elif not (encoder_layer.norm1.eps == encoder_layer.norm2.eps):
why_not_sparsity_fast_path = (
f"{enc_layer}.norm1.eps was not equal to {enc_layer}.norm2.eps"
)
elif encoder_layer.self_attn.num_heads % 2 == 1:
why_not_sparsity_fast_path = f"{enc_layer}.self_attn.num_heads is odd"
if enable_nested_tensor and why_not_sparsity_fast_path:
warnings.warn(
f"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}"
)
self.use_nested_tensor = False
def forward(
self,
src: Tensor,
mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
is_causal: Optional[bool] = None,
) -> Tensor:
r"""Pass the input through the encoder layers in turn.
Args:
src: the sequence to the encoder (required).
mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
is_causal: If specified, applies a causal mask as ``mask``.
Default: ``None``; try to detect a causal mask.
Warning:
``is_causal`` provides a hint that ``mask`` is the
causal mask. Providing incorrect hints can result in
incorrect execution, including forward and backward
compatibility.
Shape:
see the docs in :class:`~torch.nn.Transformer`.
"""
src_key_padding_mask = F._canonical_mask(
mask=src_key_padding_mask,
mask_name="src_key_padding_mask",
other_type=F._none_or_dtype(mask),
other_name="mask",
target_type=src.dtype,
)
mask = F._canonical_mask(
mask=mask,
mask_name="mask",
other_type=None,
other_name="",
target_type=src.dtype,
check_other=False,
)
output = src
convert_to_nested = False
first_layer = self.layers[0]
src_key_padding_mask_for_layers = src_key_padding_mask
why_not_sparsity_fast_path = ""
str_first_layer = "self.layers[0]"
batch_first = first_layer.self_attn.batch_first
is_fastpath_enabled = torch.backends.mha.get_fastpath_enabled()
if not is_fastpath_enabled:
why_not_sparsity_fast_path = (
"torch.backends.mha.get_fastpath_enabled() was not True"
)
elif not hasattr(self, "use_nested_tensor"):
why_not_sparsity_fast_path = "use_nested_tensor attribute not present"
elif not self.use_nested_tensor:
why_not_sparsity_fast_path = (
"self.use_nested_tensor (set in init) was not True"
)
elif first_layer.training:
why_not_sparsity_fast_path = f"{str_first_layer} was in training mode"
elif not src.dim() == 3:
why_not_sparsity_fast_path = (
f"input not batched; expected src.dim() of 3 but got {src.dim()}"
)
elif src_key_padding_mask is None:
why_not_sparsity_fast_path = "src_key_padding_mask was None"
elif (
(not hasattr(self, "mask_check")) or self.mask_check
) and not torch._nested_tensor_from_mask_left_aligned(
src, src_key_padding_mask.logical_not()
):
why_not_sparsity_fast_path = "mask_check enabled, and src and src_key_padding_mask was not left aligned"
elif output.is_nested:
why_not_sparsity_fast_path = "NestedTensor input is not supported"
elif mask is not None:
why_not_sparsity_fast_path = (
"src_key_padding_mask and mask were both supplied"
)
elif torch.is_autocast_enabled():
why_not_sparsity_fast_path = "autocast is enabled"
if not why_not_sparsity_fast_path:
tensor_args = (
src,
first_layer.self_attn.in_proj_weight,
first_layer.self_attn.in_proj_bias,
first_layer.self_attn.out_proj.weight,
first_layer.self_attn.out_proj.bias,
first_layer.norm1.weight,
first_layer.norm1.bias,
first_layer.norm2.weight,
first_layer.norm2.bias,
first_layer.linear1.weight,
first_layer.linear1.bias,
first_layer.linear2.weight,
first_layer.linear2.bias,
)
_supported_device_type = [
"cpu",
"cuda",
torch.utils.backend_registration._privateuse1_backend_name,
]
if torch.overrides.has_torch_function(tensor_args):
why_not_sparsity_fast_path = "some Tensor argument has_torch_function"
elif src.device.type not in _supported_device_type:
why_not_sparsity_fast_path = (
f"src device is neither one of {_supported_device_type}"
)
elif torch.is_grad_enabled() and any(x.requires_grad for x in tensor_args):
why_not_sparsity_fast_path = (
"grad is enabled and at least one of query or the "
"input/output projection weights or biases requires_grad"
)
if (not why_not_sparsity_fast_path) and (src_key_padding_mask is not None):
convert_to_nested = True
output = torch._nested_tensor_from_mask(
output, src_key_padding_mask.logical_not(), mask_check=False
)
src_key_padding_mask_for_layers = None
seq_len = _get_seq_len(src, batch_first)
is_causal = _detect_is_causal_mask(mask, is_causal, seq_len)
for mod in self.layers:
output = mod(
output,
src_mask=mask,
is_causal=is_causal,
src_key_padding_mask=src_key_padding_mask_for_layers,
)
if convert_to_nested:
output = output.to_padded_tensor(0.0, src.size())
if self.norm is not None:
output = self.norm(output)
return output
class TransformerDecoder(Module):
r"""TransformerDecoder is a stack of N decoder layers.
.. note::
See `this tutorial <https://pytorch.org/tutorials/intermediate/transformer_building_blocks.html>`_
for an in depth discussion of the performant building blocks PyTorch offers for building your own
transformer layers.
Args:
decoder_layer: an instance of the TransformerDecoderLayer() class (required).
num_layers: the number of sub-decoder-layers in the decoder (required).
norm: the layer normalization component (optional).
Examples::
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
>>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
>>> memory = torch.rand(10, 32, 512)
>>> tgt = torch.rand(20, 32, 512)
>>> out = transformer_decoder(tgt, memory)
"""
__constants__ = ["norm"]
def __init__(
self,
decoder_layer: "TransformerDecoderLayer",
num_layers: int,
norm: Optional[Module] = None,
) -> None:
super().__init__()
torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}")
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
def forward(
self,
tgt: Tensor,
memory: Tensor,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
tgt_is_causal: Optional[bool] = None,
memory_is_causal: bool = False,
) -> Tensor:
r"""Pass the inputs (and mask) through the decoder layer in turn.
Args:
tgt: the sequence to the decoder (required).
memory: the sequence from the last layer of the encoder (required).
tgt_mask: the mask for the tgt sequence (optional).
memory_mask: the mask for the memory sequence (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
tgt_is_causal: If specified, applies a causal mask as ``tgt mask``.
Default: ``None``; try to detect a causal mask.
Warning:
``tgt_is_causal`` provides a hint that ``tgt_mask`` is
the causal mask. Providing incorrect hints can result in
incorrect execution, including forward and backward
compatibility.
memory_is_causal: If specified, applies a causal mask as
``memory mask``.
Default: ``False``.
Warning:
``memory_is_causal`` provides a hint that
``memory_mask`` is the causal mask. Providing incorrect
hints can result in incorrect execution, including
forward and backward compatibility.
Shape:
see the docs in :class:`~torch.nn.Transformer`.
"""
output = tgt
seq_len = _get_seq_len(tgt, self.layers[0].self_attn.batch_first)
tgt_is_causal = _detect_is_causal_mask(tgt_mask, tgt_is_causal, seq_len)
for mod in self.layers:
output = mod(
output,
memory,
tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
tgt_is_causal=tgt_is_causal,
memory_is_causal=memory_is_causal,
)
if self.norm is not None:
output = self.norm(output)
return output
class TransformerEncoderLayer(Module):
r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
.. note::
See `this tutorial <https://pytorch.org/tutorials/intermediate/transformer_building_blocks.html>`_
for an in depth discussion of the performant building blocks PyTorch offers for building your own
transformer layers.
This standard encoder layer is based on the paper `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
Users may modify or implement in a different way during application.
TransformerEncoderLayer can handle either traditional torch.tensor inputs,
or Nested Tensor inputs. Derived classes are expected to similarly accept
both input formats. (Not all combinations of inputs are currently
supported by TransformerEncoderLayer while Nested Tensor is in prototype
state.)
If you are implementing a custom layer, you may derive it either from
the Module or TransformerEncoderLayer class. If your custom layer
supports both torch.Tensors and Nested Tensors inputs, make its
implementation a derived class of TransformerEncoderLayer. If your custom
Layer supports only torch.Tensor inputs, derive its implementation from
Module.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
activation: the activation function of the intermediate layer, can be a string
("relu" or "gelu") or a unary callable. Default: relu
layer_norm_eps: the eps value in layer normalization components (default=1e-5).
batch_first: If ``True``, then the input and output tensors are provided
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
norm_first: if ``True``, layer norm is done prior to attention and feedforward
operations, respectively. Otherwise it's done after. Default: ``False`` (after).
bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive
bias. Default: ``True``.
Examples::
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
>>> src = torch.rand(10, 32, 512)
>>> out = encoder_layer(src)
Alternatively, when ``batch_first`` is ``True``:
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True)
>>> src = torch.rand(32, 10, 512)
>>> out = encoder_layer(src)
Fast path:
forward() will use a special optimized implementation described in
`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`_ if all of the following
conditions are met:
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor
argument ``requires_grad``
- training is disabled (using ``.eval()``)
- batch_first is ``True`` and the input is batched (i.e., ``src.dim() == 3``)
- activation is one of: ``"relu"``, ``"gelu"``, ``torch.functional.relu``, or ``torch.functional.gelu``
- at most one of ``src_mask`` and ``src_key_padding_mask`` is passed
- if src is a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_, neither ``src_mask``
nor ``src_key_padding_mask`` is passed
- the two ``LayerNorm`` instances have a consistent ``eps`` value (this will naturally be the case
unless the caller has manually modified one without modifying the other)
If the optimized implementation is in use, a
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be
passed for ``src`` to represent padding more efficiently than using a padding
mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ will be
returned, and an additional speedup proportional to the fraction of the input that
is padding can be expected.
.. _`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`:
https://arxiv.org/abs/2205.14135
"""
__constants__ = ["norm_first"]
def __init__(
self,
d_model: int,
nhead: int,
dim_feedforward: int = 2048,
dropout: float = 0.1,
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
layer_norm_eps: float = 1e-5,
batch_first: bool = False,
norm_first: bool = False,
bias: bool = True,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.self_attn = MultiheadAttention(
d_model,
nhead,
dropout=dropout,
bias=bias,
batch_first=batch_first,
**factory_kwargs,
)
# Implementation of Feedforward model
self.linear1 = Linear(d_model, dim_feedforward, bias=bias, **factory_kwargs)
self.dropout = Dropout(dropout)
self.linear2 = Linear(dim_feedforward, d_model, bias=bias, **factory_kwargs)
self.norm_first = norm_first
self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
self.dropout1 = Dropout(dropout)
self.dropout2 = Dropout(dropout)
# Legacy string support for activation function.
if isinstance(activation, str):
activation = _get_activation_fn(activation)
# We can't test self.activation in forward() in TorchScript,
# so stash some information about it instead.
if activation is F.relu or isinstance(activation, torch.nn.ReLU):
self.activation_relu_or_gelu = 1
elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
self.activation_relu_or_gelu = 2
else:
self.activation_relu_or_gelu = 0
self.activation = activation
def __setstate__(self, state):
super().__setstate__(state)
if not hasattr(self, "activation"):
self.activation = F.relu
def forward(
self,
src: Tensor,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
is_causal: bool = False,
) -> Tensor:
r"""Pass the input through the encoder layer.
Args:
src: the sequence to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
is_causal: If specified, applies a causal mask as ``src mask``.
Default: ``False``.
Warning:
``is_causal`` provides a hint that ``src_mask`` is the
causal mask. Providing incorrect hints can result in
incorrect execution, including forward and backward
compatibility.
Shape:
see the docs in :class:`~torch.nn.Transformer`.
"""
src_key_padding_mask = F._canonical_mask(
mask=src_key_padding_mask,
mask_name="src_key_padding_mask",
other_type=F._none_or_dtype(src_mask),
other_name="src_mask",
target_type=src.dtype,
)
src_mask = F._canonical_mask(
mask=src_mask,
mask_name="src_mask",
other_type=None,
other_name="",
target_type=src.dtype,
check_other=False,
)
is_fastpath_enabled = torch.backends.mha.get_fastpath_enabled()
why_not_sparsity_fast_path = ""
if not is_fastpath_enabled:
why_not_sparsity_fast_path = (
"torch.backends.mha.get_fastpath_enabled() was not True"
)
elif not src.dim() == 3:
why_not_sparsity_fast_path = (
f"input not batched; expected src.dim() of 3 but got {src.dim()}"
)
elif self.training:
why_not_sparsity_fast_path = "training is enabled"
elif not self.self_attn.batch_first:
why_not_sparsity_fast_path = "self_attn.batch_first was not True"
elif self.self_attn.in_proj_bias is None:
why_not_sparsity_fast_path = "self_attn was passed bias=False"
elif not self.self_attn._qkv_same_embed_dim:
why_not_sparsity_fast_path = "self_attn._qkv_same_embed_dim was not True"
elif not self.activation_relu_or_gelu:
why_not_sparsity_fast_path = "activation_relu_or_gelu was not True"
elif not (self.norm1.eps == self.norm2.eps):
why_not_sparsity_fast_path = "norm1.eps is not equal to norm2.eps"
elif src.is_nested and (
src_key_padding_mask is not None or src_mask is not None
):
why_not_sparsity_fast_path = "neither src_key_padding_mask nor src_mask are not supported with NestedTensor input"
elif self.self_attn.num_heads % 2 == 1:
why_not_sparsity_fast_path = "num_head is odd"
elif torch.is_autocast_enabled():
why_not_sparsity_fast_path = "autocast is enabled"
elif any(
len(getattr(m, "_forward_hooks", {}))
+ len(getattr(m, "_forward_pre_hooks", {}))
for m in self.modules()
):
why_not_sparsity_fast_path = "forward pre-/hooks are attached to the module"
if not why_not_sparsity_fast_path:
tensor_args = (
src,
self.self_attn.in_proj_weight,
self.self_attn.in_proj_bias,
self.self_attn.out_proj.weight,
self.self_attn.out_proj.bias,
self.norm1.weight,
self.norm1.bias,
self.norm2.weight,
self.norm2.bias,
self.linear1.weight,
self.linear1.bias,
self.linear2.weight,
self.linear2.bias,
)
# We have to use list comprehensions below because TorchScript does not support
# generator expressions.
_supported_device_type = [
"cpu",
"cuda",
torch.utils.backend_registration._privateuse1_backend_name,
]
if torch.overrides.has_torch_function(tensor_args):
why_not_sparsity_fast_path = "some Tensor argument has_torch_function"
elif not all(
(x.device.type in _supported_device_type) for x in tensor_args
):
why_not_sparsity_fast_path = (
"some Tensor argument's device is neither one of "
f"{_supported_device_type}"
)
elif torch.is_grad_enabled() and any(x.requires_grad for x in tensor_args):
why_not_sparsity_fast_path = (
"grad is enabled and at least one of query or the "
"input/output projection weights or biases requires_grad"
)
if not why_not_sparsity_fast_path:
merged_mask, mask_type = self.self_attn.merge_masks(
src_mask, src_key_padding_mask, src
)
return torch._transformer_encoder_layer_fwd(
src,
self.self_attn.embed_dim,
self.self_attn.num_heads,
self.self_attn.in_proj_weight,
self.self_attn.in_proj_bias,
self.self_attn.out_proj.weight,
self.self_attn.out_proj.bias,
self.activation_relu_or_gelu == 2,
self.norm_first,
self.norm1.eps,
self.norm1.weight,
self.norm1.bias,
self.norm2.weight,
self.norm2.bias,
self.linear1.weight,
self.linear1.bias,
self.linear2.weight,
self.linear2.bias,
merged_mask,
mask_type,
)
# see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf
x = src
if self.norm_first:
x = x + self._sa_block(
self.norm1(x), src_mask, src_key_padding_mask, is_causal=is_causal
)
x = x + self._ff_block(self.norm2(x))
else:
x = self.norm1(
x
+ self._sa_block(x, src_mask, src_key_padding_mask, is_causal=is_causal)
)
x = self.norm2(x + self._ff_block(x))
return x
# self-attention block
def _sa_block(
self,
x: Tensor,
attn_mask: Optional[Tensor],
key_padding_mask: Optional[Tensor],
is_causal: bool = False,
) -> Tensor:
x = self.self_attn(
x,
x,
x,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
need_weights=False,
is_causal=is_causal,
)[0]
return self.dropout1(x)
# feed forward block
def _ff_block(self, x: Tensor) -> Tensor:
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
return self.dropout2(x)
class TransformerDecoderLayer(Module):
r"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
.. note::
See `this tutorial <https://pytorch.org/tutorials/intermediate/transformer_building_blocks.html>`_
for an in depth discussion of the performant building blocks PyTorch offers for building your own
transformer layers.
This standard decoder layer is based on the paper `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
Users may modify or implement in a different way during application.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
activation: the activation function of the intermediate layer, can be a string
("relu" or "gelu") or a unary callable. Default: relu
layer_norm_eps: the eps value in layer normalization components (default=1e-5).
batch_first: If ``True``, then the input and output tensors are provided
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
norm_first: if ``True``, layer norm is done prior to self attention, multihead
attention and feedforward operations, respectively. Otherwise it's done after.
Default: ``False`` (after).
bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive
bias. Default: ``True``.
Examples::
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
>>> memory = torch.rand(10, 32, 512)
>>> tgt = torch.rand(20, 32, 512)
>>> out = decoder_layer(tgt, memory)
Alternatively, when ``batch_first`` is ``True``:
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8, batch_first=True)
>>> memory = torch.rand(32, 10, 512)
>>> tgt = torch.rand(32, 20, 512)
>>> out = decoder_layer(tgt, memory)
"""
__constants__ = ["norm_first"]
def __init__(
self,
d_model: int,
nhead: int,
dim_feedforward: int = 2048,
dropout: float = 0.1,
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
layer_norm_eps: float = 1e-5,
batch_first: bool = False,
norm_first: bool = False,
bias: bool = True,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.self_attn = MultiheadAttention(
d_model,
nhead,
dropout=dropout,
batch_first=batch_first,
bias=bias,
**factory_kwargs,
)
self.multihead_attn = MultiheadAttention(
d_model,
nhead,
dropout=dropout,
batch_first=batch_first,
bias=bias,
**factory_kwargs,
)
# Implementation of Feedforward model
self.linear1 = Linear(d_model, dim_feedforward, bias=bias, **factory_kwargs)
self.dropout = Dropout(dropout)
self.linear2 = Linear(dim_feedforward, d_model, bias=bias, **factory_kwargs)
self.norm_first = norm_first
self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
self.norm3 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
self.dropout1 = Dropout(dropout)
self.dropout2 = Dropout(dropout)
self.dropout3 = Dropout(dropout)
# Legacy string support for activation function.
if isinstance(activation, str):
self.activation = _get_activation_fn(activation)
else:
self.activation = activation
def __setstate__(self, state):
if "activation" not in state:
state["activation"] = F.relu
super().__setstate__(state)
def forward(
self,
tgt: Tensor,
memory: Tensor,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
tgt_is_causal: bool = False,
memory_is_causal: bool = False,
) -> Tensor:
r"""Pass the inputs (and mask) through the decoder layer.
Args:
tgt: the sequence to the decoder layer (required).
memory: the sequence from the last layer of the encoder (required).
tgt_mask: the mask for the tgt sequence (optional).
memory_mask: the mask for the memory sequence (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
tgt_is_causal: If specified, applies a causal mask as ``tgt mask``.
Default: ``False``.
Warning:
``tgt_is_causal`` provides a hint that ``tgt_mask`` is
the causal mask. Providing incorrect hints can result in
incorrect execution, including forward and backward
compatibility.
memory_is_causal: If specified, applies a causal mask as
``memory mask``.
Default: ``False``.
Warning:
``memory_is_causal`` provides a hint that
``memory_mask`` is the causal mask. Providing incorrect
hints can result in incorrect execution, including
forward and backward compatibility.
Shape:
see the docs in :class:`~torch.nn.Transformer`.
"""
# see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf
x = tgt
if self.norm_first:
x = x + self._sa_block(
self.norm1(x), tgt_mask, tgt_key_padding_mask, tgt_is_causal
)
x = x + self._mha_block(
self.norm2(x),
memory,
memory_mask,
memory_key_padding_mask,
memory_is_causal,
)
x = x + self._ff_block(self.norm3(x))
else:
x = self.norm1(
x + self._sa_block(x, tgt_mask, tgt_key_padding_mask, tgt_is_causal)
)
x = self.norm2(
x
+ self._mha_block(
x, memory, memory_mask, memory_key_padding_mask, memory_is_causal
)
)
x = self.norm3(x + self._ff_block(x))
return x
# self-attention block
def _sa_block(
self,
x: Tensor,
attn_mask: Optional[Tensor],
key_padding_mask: Optional[Tensor],
is_causal: bool = False,
) -> Tensor:
x = self.self_attn(
x,
x,
x,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
is_causal=is_causal,
need_weights=False,
)[0]
return self.dropout1(x)
# multihead attention block
def _mha_block(
self,
x: Tensor,
mem: Tensor,
attn_mask: Optional[Tensor],
key_padding_mask: Optional[Tensor],
is_causal: bool = False,
) -> Tensor:
x = self.multihead_attn(
x,
mem,
mem,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
is_causal=is_causal,
need_weights=False,
)[0]
return self.dropout2(x)
# feed forward block
def _ff_block(self, x: Tensor) -> Tensor:
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
return self.dropout3(x)
def _get_clones(module, N):
# FIXME: copy.deepcopy() is not defined on nn.module
return ModuleList([copy.deepcopy(module) for i in range(N)])
def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]:
if activation == "relu":
return F.relu
elif activation == "gelu":
return F.gelu
raise RuntimeError(f"activation should be relu/gelu, not {activation}")
def _detect_is_causal_mask(
mask: Optional[Tensor],
is_causal: Optional[bool] = None,
size: Optional[int] = None,
) -> bool:
"""Return whether the given attention mask is causal.
Warning:
If ``is_causal`` is not ``None``, its value will be returned as is. If a
user supplies an incorrect ``is_causal`` hint,
``is_causal=False`` when the mask is in fact a causal attention.mask
may lead to reduced performance relative to what would be achievable
with ``is_causal=True``;
``is_causal=True`` when the mask is in fact not a causal attention.mask
may lead to incorrect and unpredictable execution - in some scenarios,
a causal mask may be applied based on the hint, in other execution
scenarios the specified mask may be used. The choice may not appear
to be deterministic, in that a number of factors like alignment,
hardware SKU, etc influence the decision whether to use a mask or
rely on the hint.
``size`` if not None, check whether the mask is a causal mask of the provided size
Otherwise, checks for any causal mask.
"""
# Prevent type refinement
make_causal = is_causal is True
if is_causal is None and mask is not None:
sz = size if size is not None else mask.size(-2)
causal_comparison = _generate_square_subsequent_mask(
sz, device=mask.device, dtype=mask.dtype
)
# Do not use `torch.equal` so we handle batched masks by
# broadcasting the comparison.
if mask.size() == causal_comparison.size():
make_causal = bool((mask == causal_comparison).all())
else:
make_causal = False
return make_causal
```
|
======================================================================================================================
SOURCE CODE FILE: upsampling.py
LINES: 1
SIZE: 11.56 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\modules\upsampling.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
from typing import Optional
import torch.nn.functional as F
from torch import Tensor
from torch.nn.common_types import _ratio_2_t, _ratio_any_t, _size_2_t, _size_any_t
from .module import Module
__all__ = ["Upsample", "UpsamplingNearest2d", "UpsamplingBilinear2d"]
class Upsample(Module):
r"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data.
The input data is assumed to be of the form
`minibatch x channels x [optional depth] x [optional height] x width`.
Hence, for spatial inputs, we expect a 4D Tensor and for volumetric inputs, we expect a 5D Tensor.
The algorithms available for upsampling are nearest neighbor and linear,
bilinear, bicubic and trilinear for 3D, 4D and 5D input Tensor,
respectively.
One can either give a :attr:`scale_factor` or the target output :attr:`size` to
calculate the output size. (You cannot give both, as it is ambiguous)
Args:
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int], optional):
output spatial sizes
scale_factor (float or Tuple[float] or Tuple[float, float] or Tuple[float, float, float], optional):
multiplier for spatial size. Has to match input size if it is a tuple.
mode (str, optional): the upsampling algorithm: one of ``'nearest'``,
``'linear'``, ``'bilinear'``, ``'bicubic'`` and ``'trilinear'``.
Default: ``'nearest'``
align_corners (bool, optional): if ``True``, the corner pixels of the input
and output tensors are aligned, and thus preserving the values at
those pixels. This only has effect when :attr:`mode` is
``'linear'``, ``'bilinear'``, ``'bicubic'``, or ``'trilinear'``.
Default: ``False``
recompute_scale_factor (bool, optional): recompute the scale_factor for use in the
interpolation calculation. If `recompute_scale_factor` is ``True``, then
`scale_factor` must be passed in and `scale_factor` is used to compute the
output `size`. The computed output `size` will be used to infer new scales for
the interpolation. Note that when `scale_factor` is floating-point, it may differ
from the recomputed `scale_factor` due to rounding and precision issues.
If `recompute_scale_factor` is ``False``, then `size` or `scale_factor` will
be used directly for interpolation.
Shape:
- Input: :math:`(N, C, W_{in})`, :math:`(N, C, H_{in}, W_{in})` or :math:`(N, C, D_{in}, H_{in}, W_{in})`
- Output: :math:`(N, C, W_{out})`, :math:`(N, C, H_{out}, W_{out})`
or :math:`(N, C, D_{out}, H_{out}, W_{out})`, where
.. math::
D_{out} = \left\lfloor D_{in} \times \text{scale\_factor} \right\rfloor
.. math::
H_{out} = \left\lfloor H_{in} \times \text{scale\_factor} \right\rfloor
.. math::
W_{out} = \left\lfloor W_{in} \times \text{scale\_factor} \right\rfloor
.. warning::
With ``align_corners = True``, the linearly interpolating modes
(`linear`, `bilinear`, `bicubic`, and `trilinear`) don't proportionally
align the output and input pixels, and thus the output values can depend
on the input size. This was the default behavior for these modes up to
version 0.3.1. Since then, the default behavior is
``align_corners = False``. See below for concrete examples on how this
affects the outputs.
.. note::
If you want downsampling/general resizing, you should use :func:`~nn.functional.interpolate`.
Examples::
>>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2)
>>> input
tensor([[[[1., 2.],
[3., 4.]]]])
>>> m = nn.Upsample(scale_factor=2, mode='nearest')
>>> m(input)
tensor([[[[1., 1., 2., 2.],
[1., 1., 2., 2.],
[3., 3., 4., 4.],
[3., 3., 4., 4.]]]])
>>> # xdoctest: +IGNORE_WANT("other tests seem to modify printing styles")
>>> m = nn.Upsample(scale_factor=2, mode='bilinear') # align_corners=False
>>> m(input)
tensor([[[[1.0000, 1.2500, 1.7500, 2.0000],
[1.5000, 1.7500, 2.2500, 2.5000],
[2.5000, 2.7500, 3.2500, 3.5000],
[3.0000, 3.2500, 3.7500, 4.0000]]]])
>>> m = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
>>> m(input)
tensor([[[[1.0000, 1.3333, 1.6667, 2.0000],
[1.6667, 2.0000, 2.3333, 2.6667],
[2.3333, 2.6667, 3.0000, 3.3333],
[3.0000, 3.3333, 3.6667, 4.0000]]]])
>>> # Try scaling the same data in a larger tensor
>>> input_3x3 = torch.zeros(3, 3).view(1, 1, 3, 3)
>>> input_3x3[:, :, :2, :2].copy_(input)
tensor([[[[1., 2.],
[3., 4.]]]])
>>> input_3x3
tensor([[[[1., 2., 0.],
[3., 4., 0.],
[0., 0., 0.]]]])
>>> # xdoctest: +IGNORE_WANT("seems to fail when other tests are run in the same session")
>>> m = nn.Upsample(scale_factor=2, mode='bilinear') # align_corners=False
>>> # Notice that values in top left corner are the same with the small input (except at boundary)
>>> m(input_3x3)
tensor([[[[1.0000, 1.2500, 1.7500, 1.5000, 0.5000, 0.0000],
[1.5000, 1.7500, 2.2500, 1.8750, 0.6250, 0.0000],
[2.5000, 2.7500, 3.2500, 2.6250, 0.8750, 0.0000],
[2.2500, 2.4375, 2.8125, 2.2500, 0.7500, 0.0000],
[0.7500, 0.8125, 0.9375, 0.7500, 0.2500, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]])
>>> m = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
>>> # Notice that values in top left corner are now changed
>>> m(input_3x3)
tensor([[[[1.0000, 1.4000, 1.8000, 1.6000, 0.8000, 0.0000],
[1.8000, 2.2000, 2.6000, 2.2400, 1.1200, 0.0000],
[2.6000, 3.0000, 3.4000, 2.8800, 1.4400, 0.0000],
[2.4000, 2.7200, 3.0400, 2.5600, 1.2800, 0.0000],
[1.2000, 1.3600, 1.5200, 1.2800, 0.6400, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]])
"""
__constants__ = [
"size",
"scale_factor",
"mode",
"align_corners",
"name",
"recompute_scale_factor",
]
name: str
size: Optional[_size_any_t]
scale_factor: Optional[_ratio_any_t]
mode: str
align_corners: Optional[bool]
recompute_scale_factor: Optional[bool]
def __init__(
self,
size: Optional[_size_any_t] = None,
scale_factor: Optional[_ratio_any_t] = None,
mode: str = "nearest",
align_corners: Optional[bool] = None,
recompute_scale_factor: Optional[bool] = None,
) -> None:
super().__init__()
self.name = type(self).__name__
self.size = size
if isinstance(scale_factor, tuple):
self.scale_factor = tuple(float(factor) for factor in scale_factor)
else:
self.scale_factor = float(scale_factor) if scale_factor else None
self.mode = mode
self.align_corners = align_corners
self.recompute_scale_factor = recompute_scale_factor
def forward(self, input: Tensor) -> Tensor:
return F.interpolate(
input,
self.size,
self.scale_factor,
self.mode,
self.align_corners,
recompute_scale_factor=self.recompute_scale_factor,
)
def __setstate__(self, state):
if "recompute_scale_factor" not in state:
state["recompute_scale_factor"] = True
super().__setstate__(state)
def extra_repr(self) -> str:
if self.scale_factor is not None:
info = "scale_factor=" + repr(self.scale_factor)
else:
info = "size=" + repr(self.size)
info += ", mode=" + repr(self.mode)
return info
class UpsamplingNearest2d(Upsample):
r"""Applies a 2D nearest neighbor upsampling to an input signal composed of several input channels.
To specify the scale, it takes either the :attr:`size` or the :attr:`scale_factor`
as it's constructor argument.
When :attr:`size` is given, it is the output size of the image `(h, w)`.
Args:
size (int or Tuple[int, int], optional): output spatial sizes
scale_factor (float or Tuple[float, float], optional): multiplier for
spatial size.
.. warning::
This class is deprecated in favor of :func:`~nn.functional.interpolate`.
Shape:
- Input: :math:`(N, C, H_{in}, W_{in})`
- Output: :math:`(N, C, H_{out}, W_{out})` where
.. math::
H_{out} = \left\lfloor H_{in} \times \text{scale\_factor} \right\rfloor
.. math::
W_{out} = \left\lfloor W_{in} \times \text{scale\_factor} \right\rfloor
Examples::
>>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2)
>>> input
tensor([[[[1., 2.],
[3., 4.]]]])
>>> m = nn.UpsamplingNearest2d(scale_factor=2)
>>> m(input)
tensor([[[[1., 1., 2., 2.],
[1., 1., 2., 2.],
[3., 3., 4., 4.],
[3., 3., 4., 4.]]]])
"""
def __init__(
self,
size: Optional[_size_2_t] = None,
scale_factor: Optional[_ratio_2_t] = None,
) -> None:
super().__init__(size, scale_factor, mode="nearest")
class UpsamplingBilinear2d(Upsample):
r"""Applies a 2D bilinear upsampling to an input signal composed of several input channels.
To specify the scale, it takes either the :attr:`size` or the :attr:`scale_factor`
as it's constructor argument.
When :attr:`size` is given, it is the output size of the image `(h, w)`.
Args:
size (int or Tuple[int, int], optional): output spatial sizes
scale_factor (float or Tuple[float, float], optional): multiplier for
spatial size.
.. warning::
This class is deprecated in favor of :func:`~nn.functional.interpolate`. It is
equivalent to ``nn.functional.interpolate(..., mode='bilinear', align_corners=True)``.
Shape:
- Input: :math:`(N, C, H_{in}, W_{in})`
- Output: :math:`(N, C, H_{out}, W_{out})` where
.. math::
H_{out} = \left\lfloor H_{in} \times \text{scale\_factor} \right\rfloor
.. math::
W_{out} = \left\lfloor W_{in} \times \text{scale\_factor} \right\rfloor
Examples::
>>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2)
>>> input
tensor([[[[1., 2.],
[3., 4.]]]])
>>> # xdoctest: +IGNORE_WANT("do other tests modify the global state?")
>>> m = nn.UpsamplingBilinear2d(scale_factor=2)
>>> m(input)
tensor([[[[1.0000, 1.3333, 1.6667, 2.0000],
[1.6667, 2.0000, 2.3333, 2.6667],
[2.3333, 2.6667, 3.0000, 3.3333],
[3.0000, 3.3333, 3.6667, 4.0000]]]])
"""
def __init__(
self,
size: Optional[_size_2_t] = None,
scale_factor: Optional[_ratio_2_t] = None,
) -> None:
super().__init__(size, scale_factor, mode="bilinear", align_corners=True)
```
|
=================================================================================================================
SOURCE CODE FILE: utils.py
LINES: 1
SIZE: 2.60 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\modules\utils.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
import collections
from itertools import repeat
from typing import Any
__all__ = ["consume_prefix_in_state_dict_if_present"]
def _ntuple(n, name="parse"):
def parse(x):
if isinstance(x, collections.abc.Iterable):
return tuple(x)
return tuple(repeat(x, n))
parse.__name__ = name
return parse
_single = _ntuple(1, "_single")
_pair = _ntuple(2, "_pair")
_triple = _ntuple(3, "_triple")
_quadruple = _ntuple(4, "_quadruple")
def _reverse_repeat_tuple(t, n):
r"""Reverse the order of `t` and repeat each element for `n` times.
This can be used to translate padding arg used by Conv and Pooling modules
to the ones used by `F.pad`.
"""
return tuple(x for x in reversed(t) for _ in range(n))
def _list_with_default(out_size: list[int], defaults: list[int]) -> list[int]:
import torch
if isinstance(out_size, (int, torch.SymInt)):
return out_size
if len(defaults) <= len(out_size):
raise ValueError(f"Input dimension should be at least {len(out_size) + 1}")
return [
v if v is not None else d for v, d in zip(out_size, defaults[-len(out_size) :])
]
def consume_prefix_in_state_dict_if_present(
state_dict: dict[str, Any],
prefix: str,
) -> None:
r"""Strip the prefix in state_dict in place, if any.
.. note::
Given a `state_dict` from a DP/DDP model, a local model can load it by applying
`consume_prefix_in_state_dict_if_present(state_dict, "module.")` before calling
:meth:`torch.nn.Module.load_state_dict`.
Args:
state_dict (OrderedDict): a state-dict to be loaded to the model.
prefix (str): prefix.
"""
keys = list(state_dict.keys())
for key in keys:
if key.startswith(prefix):
newkey = key[len(prefix) :]
state_dict[newkey] = state_dict.pop(key)
# also strip the prefix in metadata if any.
if hasattr(state_dict, "_metadata"):
keys = list(state_dict._metadata.keys())
for key in keys:
# for the metadata dict, the key can be:
# '': for the DDP module, which we want to remove.
# 'module': for the actual model.
# 'module.xx.xx': for the rest.
if len(key) == 0:
continue
# handling both, 'module' case and 'module.' cases
if key == prefix.replace(".", "") or key.startswith(prefix):
newkey = key[len(prefix) :]
state_dict._metadata[newkey] = state_dict._metadata.pop(key)
```
|
=====================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.77 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\parallel\__init__.py
ENCODING: utf-8
```py
from typing_extensions import deprecated
from torch.nn.parallel.data_parallel import data_parallel, DataParallel
from torch.nn.parallel.distributed import DistributedDataParallel
from torch.nn.parallel.parallel_apply import parallel_apply
from torch.nn.parallel.replicate import replicate
from torch.nn.parallel.scatter_gather import gather, scatter
__all__ = [
"replicate",
"scatter",
"parallel_apply",
"gather",
"data_parallel",
"DataParallel",
"DistributedDataParallel",
]
@deprecated(
"`torch.nn.parallel.DistributedDataParallelCPU` is deprecated, "
"please use `torch.nn.parallel.DistributedDataParallel` instead.",
category=FutureWarning,
)
class DistributedDataParallelCPU(DistributedDataParallel):
pass
```
|
=======================================================================================================================
SOURCE CODE FILE: _functions.py
LINES: 1
SIZE: 4.96 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\parallel\_functions.py
ENCODING: utf-8
```py
import warnings
from itertools import chain
from typing import Optional
import torch
from torch._utils import _get_device_index
from torch.autograd import Function
from torch.nn.parallel import comm
class Broadcast(Function):
@staticmethod
def forward(ctx, target_gpus, *inputs):
assert all(
i.device.type != "cpu" for i in inputs
), "Broadcast function not implemented for CPU tensors"
target_gpus = [_get_device_index(x, True) for x in target_gpus]
ctx.target_gpus = target_gpus
if len(inputs) == 0:
return ()
ctx.num_inputs = len(inputs)
ctx.input_device = inputs[0].get_device()
outputs = comm.broadcast_coalesced(inputs, ctx.target_gpus)
non_differentiables = []
for idx, input_requires_grad in enumerate(ctx.needs_input_grad[1:]):
if not input_requires_grad:
non_differentiables.extend(output[idx] for output in outputs)
ctx.mark_non_differentiable(*non_differentiables)
return tuple(chain.from_iterable(outputs))
@staticmethod
def backward(ctx, *grad_outputs):
return (None,) + ReduceAddCoalesced.apply(
ctx.input_device, ctx.num_inputs, *grad_outputs
)
class ReduceAddCoalesced(Function):
@staticmethod
def forward(ctx, destination, num_inputs, *grads):
ctx.target_gpus = [
grads[i].get_device() for i in range(0, len(grads), num_inputs)
]
grads_ = [grads[i : i + num_inputs] for i in range(0, len(grads), num_inputs)]
return comm.reduce_add_coalesced(grads_, destination)
@staticmethod
def backward(ctx, *grad_outputs):
return (
None,
None,
) + Broadcast.apply(ctx.target_gpus, *grad_outputs)
class Gather(Function):
@staticmethod
def forward(ctx, target_device, dim, *inputs):
assert all(
i.device.type != "cpu" for i in inputs
), "Gather function not implemented for CPU tensors"
if target_device == "cpu":
ctx.target_device = "cpu"
else:
target_device = _get_device_index(target_device, True)
ctx.target_device = target_device
ctx.dim = dim
ctx.input_gpus = tuple(i.get_device() for i in inputs)
if all(t.dim() == 0 for t in inputs) and dim == 0:
inputs = tuple(t.view(1) for t in inputs)
warnings.warn(
"Was asked to gather along dimension 0, but all "
"input tensors were scalars; will instead unsqueeze "
"and return a vector."
)
ctx.unsqueezed_scalar = True
else:
ctx.unsqueezed_scalar = False
ctx.input_sizes = tuple(i.size(ctx.dim) for i in inputs)
return comm.gather(inputs, ctx.dim, ctx.target_device)
@staticmethod
def backward(ctx, grad_output):
scattered_grads = Scatter.apply(
ctx.input_gpus, ctx.input_sizes, ctx.dim, grad_output
)
if ctx.unsqueezed_scalar:
scattered_grads = tuple(g[0] for g in scattered_grads)
return (None, None) + scattered_grads
class Scatter(Function):
@staticmethod
def forward(ctx, target_gpus, chunk_sizes, dim, input):
target_gpus = [_get_device_index(x, True) for x in target_gpus]
ctx.dim = dim
ctx.input_device = input.get_device() if input.device.type != "cpu" else -1
streams = None
if torch.cuda.is_available() and ctx.input_device == -1:
# Perform CPU to GPU copies in a background stream
streams = [
_get_stream(torch.device("cuda", device)) for device in target_gpus
]
outputs = comm.scatter(input, target_gpus, chunk_sizes, ctx.dim, streams)
# Synchronize with the copy stream
if streams is not None:
for i, output in enumerate(outputs):
with torch.cuda.device(target_gpus[i]):
main_stream = torch.cuda.current_stream()
main_stream.wait_stream(streams[i])
output.record_stream(main_stream)
return outputs
@staticmethod
def backward(ctx, *grad_output):
return None, None, None, Gather.apply(ctx.input_device, ctx.dim, *grad_output)
# background streams used for copying
_streams: Optional[list[Optional[torch.Stream]]] = None
def _get_stream(device: torch.device):
"""Get a background stream for copying between CPU and target device."""
global _streams
if device.type == "cpu":
return None
device_mod = getattr(torch, device.type, None)
if device_mod is None:
return None
if _streams is None:
_streams = [None] * device_mod.device_count()
if _streams[device.index] is None:
_streams[device.index] = device_mod.Stream(device.index)
return _streams[device.index]
```
|
=================================================================================================================
SOURCE CODE FILE: comm.py
LINES: 1
SIZE: 10.89 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\parallel\comm.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
import warnings
import torch
from torch._utils import (
_flatten_dense_tensors,
_get_device_index,
_handle_complex,
_reorder_tensors_as,
_take_tensors,
_unflatten_dense_tensors,
)
from torch.cuda import nccl
def broadcast(tensor, devices=None, *, out=None):
r"""Broadcasts a tensor to specified GPU devices.
Args:
tensor (Tensor): tensor to broadcast. Can be on CPU or GPU.
devices (Iterable[torch.device, str or int], optional): an iterable of
GPU devices, among which to broadcast.
out (Sequence[Tensor], optional, keyword-only): the GPU tensors to
store output results.
.. note::
Exactly one of :attr:`devices` and :attr:`out` must be specified.
Returns:
- If :attr:`devices` is specified,
a tuple containing copies of :attr:`tensor`, placed on
:attr:`devices`.
- If :attr:`out` is specified,
a tuple containing :attr:`out` tensors, each containing a copy of
:attr:`tensor`.
"""
tensor = _handle_complex(tensor)
if not ((devices is None) ^ (out is None)):
raise RuntimeError(
f"Exactly one of 'devices' and 'out' must be specified, but got devices={devices} and out={out}"
)
if devices is not None:
devices = [_get_device_index(d) for d in devices]
return torch._C._broadcast(tensor, devices)
else:
return torch._C._broadcast_out(tensor, out)
def broadcast_coalesced(tensors, devices, buffer_size=10485760):
"""Broadcast a sequence of tensors to the specified GPUs.
Small tensors are first coalesced into a buffer to reduce the number of synchronizations.
Args:
tensors (sequence): tensors to broadcast. Must be on the same device,
either CPU or GPU.
devices (Iterable[torch.device, str or int]): an iterable of GPU
devices, among which to broadcast.
buffer_size (int): maximum size of the buffer used for coalescing
Returns:
A tuple containing copies of :attr:`tensor`, placed on :attr:`devices`.
"""
devices = [_get_device_index(d) for d in devices]
tensors = [_handle_complex(t) for t in tensors]
return torch._C._broadcast_coalesced(tensors, devices, buffer_size)
def reduce_add(inputs, destination=None):
"""Sum tensors from multiple GPUs.
All inputs should have matching shapes, dtype, and layout. The output tensor
will be of the same shape, dtype, and layout.
Args:
inputs (Iterable[Tensor]): an iterable of tensors to add.
destination (int, optional): a device on which the output will be
placed (default: current device).
Returns:
A tensor containing an elementwise sum of all inputs, placed on the
:attr:`destination` device.
"""
destination = _get_device_index(destination, optional=True)
input_size = inputs[0].size()
root_index = None # index of input tensor that already is on the correct device
for i, inp in enumerate(inputs):
assert inp.device.type != "cpu", "reduce_add expects all inputs to be on GPUs"
if inp.get_device() == destination:
root_index = i
if inp.size() != input_size:
got = "x".join(str(x) for x in inp.size())
expected = "x".join(str(x) for x in input_size)
raise ValueError(
f"input {i} has invalid size: got {got}, but expected {expected}"
)
if root_index is None:
raise RuntimeError(
"reduce_add expects destination to be on the same GPU with one of the tensors"
)
if len(inputs) == 1:
return inputs[0]
if nccl.is_available(inputs):
result = torch.empty_like(inputs[root_index])
nccl.reduce(inputs, output=result, root=root_index)
else:
destination_device = torch.device(inputs[root_index].device.type, destination)
nonroot = [t for i, t in enumerate(inputs) if i != root_index]
# make a new tensor w/o clone
result = inputs[root_index] + nonroot[0].to(
device=destination_device, non_blocking=True
)
for other in nonroot[1:]:
result.add_(other.to(device=destination_device, non_blocking=True))
return result
def reduce_add_coalesced(inputs, destination=None, buffer_size=10485760):
"""Sum tensors from multiple GPUs.
Small tensors are first coalesced into a buffer to reduce the number
of synchronizations.
Args:
inputs (Iterable[Iterable[Tensor]]): iterable of iterables that
contain tensors from a single device.
destination (int, optional): a device on which the output will be
placed (default: current device).
buffer_size (int): maximum size of the buffer used for coalescing
Returns:
A tuple of tensors containing an elementwise sum of each group of
inputs, placed on the ``destination`` device.
"""
# TODO: When `len(inputs) == 1` and all inputs are on `destination`, just
# return `inputs`.
dense_tensors: list[list] = [[] for _ in inputs] # shape (num_gpus, num_tensors)
output = []
ref_order = []
# process sparse ones first since they may have different sizes on different gpus
for tensor_at_gpus in zip(*inputs):
if all(t.is_sparse for t in tensor_at_gpus):
result = reduce_add(tensor_at_gpus, destination) # this will be sparse too
output.append(result)
ref_order.append(tensor_at_gpus[0])
else:
for coll, t in zip(dense_tensors, tensor_at_gpus):
coll.append(t.to_dense() if t.is_sparse else t)
ref_order.append(dense_tensors[0][-1])
itrs = [_take_tensors(tensors, buffer_size) for tensors in dense_tensors]
# now the dense ones, which have consistent sizes
for chunks in zip(*itrs):
flat_tensors = [
_flatten_dense_tensors(chunk) for chunk in chunks
] # (num_gpus,)
flat_result = reduce_add(flat_tensors, destination)
for t in _unflatten_dense_tensors(flat_result, chunks[0]):
# The unflattened tensors do not share storage, and we don't expose
# base flat tensor anyways, so give them different version counters.
# See NOTE [ Version Counter in comm.*_coalesced ]
output.append(t.data)
return tuple(_reorder_tensors_as(output, ref_order))
def scatter(tensor, devices=None, chunk_sizes=None, dim=0, streams=None, *, out=None):
"""Scatters tensor across multiple GPUs.
Args:
tensor (Tensor): tensor to scatter. Can be on CPU or GPU.
devices (Iterable[torch.device, str or int], optional): an iterable of
GPU devices, among which to scatter.
chunk_sizes (Iterable[int], optional): sizes of chunks to be placed on
each device. It should match :attr:`devices` in length and sums to
``tensor.size(dim)``. If not specified, :attr:`tensor` will be divided
into equal chunks.
dim (int, optional): A dimension along which to chunk :attr:`tensor`.
Default: ``0``.
streams (Iterable[torch.cuda.Stream], optional): an iterable of Streams, among
which to execute the scatter. If not specified, the default stream will
be utilized.
out (Sequence[Tensor], optional, keyword-only): the GPU tensors to
store output results. Sizes of these tensors must match that of
:attr:`tensor`, except for :attr:`dim`, where the total size must
sum to ``tensor.size(dim)``.
.. note::
Exactly one of :attr:`devices` and :attr:`out` must be specified. When
:attr:`out` is specified, :attr:`chunk_sizes` must not be specified and
will be inferred from sizes of :attr:`out`.
Returns:
- If :attr:`devices` is specified,
a tuple containing chunks of :attr:`tensor`, placed on
:attr:`devices`.
- If :attr:`out` is specified,
a tuple containing :attr:`out` tensors, each containing a chunk of
:attr:`tensor`.
"""
tensor = _handle_complex(tensor)
if out is None:
devices = [_get_device_index(d) for d in devices]
return tuple(torch._C._scatter(tensor, devices, chunk_sizes, dim, streams))
else:
if devices is not None:
raise RuntimeError(
f"'devices' must not be specified when 'out' is specified, but got devices={devices}"
)
if chunk_sizes is not None:
raise RuntimeError(
f"'chunk_sizes' must not be specified when 'out' is specified, but got chunk_sizes={chunk_sizes}"
)
return tuple(torch._C._scatter_out(tensor, out, dim, streams))
def gather(tensors, dim=0, destination=None, *, out=None):
r"""Gathers tensors from multiple GPU devices.
Args:
tensors (Iterable[Tensor]): an iterable of tensors to gather.
Tensor sizes in all dimensions other than :attr:`dim` have to match.
dim (int, optional): a dimension along which the tensors will be
concatenated. Default: ``0``.
destination (torch.device, str, or int, optional): the output device.
Can be CPU or CUDA. Default: the current CUDA device.
out (Tensor, optional, keyword-only): the tensor to store gather result.
Its sizes must match those of :attr:`tensors`, except for :attr:`dim`,
where the size must equal ``sum(tensor.size(dim) for tensor in tensors)``.
Can be on CPU or CUDA.
.. note::
:attr:`destination` must not be specified when :attr:`out` is specified.
Returns:
- If :attr:`destination` is specified,
a tensor located on :attr:`destination` device, that is a result of
concatenating :attr:`tensors` along :attr:`dim`.
- If :attr:`out` is specified,
the :attr:`out` tensor, now containing results of concatenating
:attr:`tensors` along :attr:`dim`.
"""
tensors = [_handle_complex(t) for t in tensors]
if out is None:
if destination == -1:
warnings.warn(
"Using -1 to represent CPU tensor is deprecated. Please use a "
'device object or string instead, e.g., "cpu".',
FutureWarning,
stacklevel=2,
)
destination = _get_device_index(destination, allow_cpu=True, optional=True)
return torch._C._gather(tensors, dim, destination)
else:
if destination is not None:
raise RuntimeError(
f"'destination' must not be specified when 'out' is specified, but got destination={destination}"
)
return torch._C._gather_out(tensors, out, dim)
```
|
==========================================================================================================================
SOURCE CODE FILE: data_parallel.py
LINES: 1
SIZE: 11.76 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\parallel\data_parallel.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
import operator
import warnings
from collections.abc import Sequence
from itertools import chain
from typing import Any, Generic, Optional, TypeVar, Union
import torch
from torch._utils import (
_get_all_device_indices,
_get_available_device_type,
_get_device_index,
_get_devices_properties,
)
from torch.nn.modules import Module
from torch.nn.parallel.parallel_apply import parallel_apply
from torch.nn.parallel.replicate import replicate
from torch.nn.parallel.scatter_gather import gather, scatter_kwargs
__all__ = ["DataParallel", "data_parallel"]
def _check_balance(device_ids: Sequence[Union[int, torch.device]]) -> None:
imbalance_warn = """
There is an imbalance between your GPUs. You may want to exclude GPU {} which
has less than 75% of the memory or cores of GPU {}. You can do so by setting
the device_ids argument to DataParallel, or by setting the CUDA_VISIBLE_DEVICES
environment variable."""
device_ids = [_get_device_index(x, True) for x in device_ids]
dev_props = _get_devices_properties(device_ids)
def warn_imbalance(get_prop):
values = [get_prop(props) for props in dev_props]
min_pos, min_val = min(enumerate(values), key=operator.itemgetter(1))
max_pos, max_val = max(enumerate(values), key=operator.itemgetter(1))
if min_val / max_val < 0.75:
warnings.warn(
imbalance_warn.format(device_ids[min_pos], device_ids[max_pos])
)
return True
return False
if warn_imbalance(lambda props: props.total_memory):
return
if warn_imbalance(lambda props: props.multi_processor_count):
return
T = TypeVar("T", bound=Module)
class DataParallel(Module, Generic[T]):
r"""Implements data parallelism at the module level.
This container parallelizes the application of the given :attr:`module` by
splitting the input across the specified devices by chunking in the batch
dimension (other objects will be copied once per device). In the forward
pass, the module is replicated on each device, and each replica handles a
portion of the input. During the backwards pass, gradients from each replica
are summed into the original module.
The batch size should be larger than the number of GPUs used.
.. warning::
It is recommended to use :class:`~torch.nn.parallel.DistributedDataParallel`,
instead of this class, to do multi-GPU training, even if there is only a single
node. See: :ref:`cuda-nn-ddp-instead` and :ref:`ddp`.
Arbitrary positional and keyword inputs are allowed to be passed into
DataParallel but some types are specially handled. tensors will be
**scattered** on dim specified (default 0). tuple, list and dict types will
be shallow copied. The other types will be shared among different threads
and can be corrupted if written to in the model's forward pass.
The parallelized :attr:`module` must have its parameters and buffers on
``device_ids[0]`` before running this :class:`~torch.nn.DataParallel`
module.
.. warning::
In each forward, :attr:`module` is **replicated** on each device, so any
updates to the running module in ``forward`` will be lost. For example,
if :attr:`module` has a counter attribute that is incremented in each
``forward``, it will always stay at the initial value because the update
is done on the replicas which are destroyed after ``forward``. However,
:class:`~torch.nn.DataParallel` guarantees that the replica on
``device[0]`` will have its parameters and buffers sharing storage with
the base parallelized :attr:`module`. So **in-place** updates to the
parameters or buffers on ``device[0]`` will be recorded. E.g.,
:class:`~torch.nn.BatchNorm2d` and :func:`~torch.nn.utils.spectral_norm`
rely on this behavior to update the buffers.
.. warning::
Forward and backward hooks defined on :attr:`module` and its submodules
will be invoked ``len(device_ids)`` times, each with inputs located on
a particular device. Particularly, the hooks are only guaranteed to be
executed in correct order with respect to operations on corresponding
devices. For example, it is not guaranteed that hooks set via
:meth:`~torch.nn.Module.register_forward_pre_hook` be executed before
`all` ``len(device_ids)`` :meth:`~torch.nn.Module.forward` calls, but
that each such hook be executed before the corresponding
:meth:`~torch.nn.Module.forward` call of that device.
.. warning::
When :attr:`module` returns a scalar (i.e., 0-dimensional tensor) in
:func:`forward`, this wrapper will return a vector of length equal to
number of devices used in data parallelism, containing the result from
each device.
.. note::
There is a subtlety in using the
``pack sequence -> recurrent network -> unpack sequence`` pattern in a
:class:`~torch.nn.Module` wrapped in :class:`~torch.nn.DataParallel`.
See :ref:`pack-rnn-unpack-with-data-parallelism` section in FAQ for
details.
Args:
module (Module): module to be parallelized
device_ids (list of int or torch.device): CUDA devices (default: all devices)
output_device (int or torch.device): device location of output (default: device_ids[0])
Attributes:
module (Module): the module to be parallelized
Example::
>>> # xdoctest: +SKIP
>>> net = torch.nn.DataParallel(model, device_ids=[0, 1, 2])
>>> output = net(input_var) # input_var can be on any device, including CPU
"""
# TODO: update notes/cuda.rst when this class handles 8+ GPUs well
def __init__(
self,
module: T,
device_ids: Optional[Sequence[Union[int, torch.device]]] = None,
output_device: Optional[Union[int, torch.device]] = None,
dim: int = 0,
) -> None:
super().__init__()
torch._C._log_api_usage_once("torch.nn.parallel.DataParallel")
device_type = _get_available_device_type()
if device_type is None or device_type == "mps":
self.module = module
self.device_ids = []
return
if device_ids is None:
device_ids = _get_all_device_indices()
if device_ids is None:
raise RuntimeError("no available devices were found")
if output_device is None:
output_device = device_ids[0]
self.dim = dim
self.module = module
self.device_ids = [_get_device_index(x, True) for x in device_ids]
self.output_device = _get_device_index(output_device, True)
self.src_device_obj = torch.device(device_type, self.device_ids[0])
if device_type == "cuda":
_check_balance(self.device_ids)
if len(self.device_ids) == 1:
self.module.to(self.src_device_obj)
def forward(self, *inputs: Any, **kwargs: Any) -> Any:
with torch.autograd.profiler.record_function("DataParallel.forward"):
if not self.device_ids:
return self.module(*inputs, **kwargs)
for t in chain(self.module.parameters(), self.module.buffers()):
if t.device != self.src_device_obj:
raise RuntimeError(
"module must have its parameters and buffers "
f"on device {self.src_device_obj} (device_ids[0]) but found one of "
f"them on device: {t.device}"
)
inputs, module_kwargs = self.scatter(inputs, kwargs, self.device_ids)
# for forward function without any inputs, empty list and dict will be created
# so the module can be executed on one device which is the first one in device_ids
if not inputs and not module_kwargs:
inputs = ((),)
module_kwargs = ({},)
if len(self.device_ids) == 1:
return self.module(*inputs[0], **module_kwargs[0])
replicas = self.replicate(self.module, self.device_ids[: len(inputs)])
outputs = self.parallel_apply(replicas, inputs, module_kwargs)
return self.gather(outputs, self.output_device)
def replicate(
self, module: T, device_ids: Sequence[Union[int, torch.device]]
) -> list[T]:
return replicate(module, device_ids, not torch.is_grad_enabled())
def scatter(
self,
inputs: tuple[Any, ...],
kwargs: Optional[dict[str, Any]],
device_ids: Sequence[Union[int, torch.device]],
) -> Any:
return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)
def parallel_apply(
self, replicas: Sequence[T], inputs: Sequence[Any], kwargs: Any
) -> list[Any]:
return parallel_apply(
replicas, inputs, kwargs, self.device_ids[: len(replicas)]
)
def gather(self, outputs: Any, output_device: Union[int, torch.device]) -> Any:
return gather(outputs, output_device, dim=self.dim)
def data_parallel(
module: Module,
inputs: Any,
device_ids: Optional[Sequence[Union[int, torch.device]]] = None,
output_device: Optional[Union[int, torch.device]] = None,
dim: int = 0,
module_kwargs: Optional[Any] = None,
) -> torch.Tensor:
r"""Evaluate module(input) in parallel across the GPUs given in device_ids.
This is the functional version of the DataParallel module.
Args:
module (Module): the module to evaluate in parallel
inputs (Tensor): inputs to the module
device_ids (list of int or torch.device): GPU ids on which to replicate module
output_device (list of int or torch.device): GPU location of the output Use -1 to indicate the CPU.
(default: device_ids[0])
Returns:
a Tensor containing the result of module(input) located on
output_device
"""
if not isinstance(inputs, tuple):
inputs = (inputs,) if inputs is not None else ()
device_type = _get_available_device_type()
if device_type is None:
raise RuntimeError("device type could not be determined")
if device_ids is None:
device_ids = _get_all_device_indices()
if device_ids is None:
raise RuntimeError("no available devices were found")
if output_device is None:
output_device = device_ids[0]
device_ids = [_get_device_index(x, True) for x in device_ids]
output_device = _get_device_index(output_device, True)
src_device_obj = torch.device(device_type, device_ids[0])
for t in chain(module.parameters(), module.buffers()):
if t.device != src_device_obj:
raise RuntimeError(
"module must have its parameters and buffers "
f"on device {src_device_obj} (device_ids[0]) but found one of "
f"them on device: {t.device}"
)
inputs, module_kwargs = scatter_kwargs(inputs, module_kwargs, device_ids, dim)
# for module without any inputs, empty list and dict will be created
# so the module can be executed on one device which is the first one in device_ids
if not inputs and not module_kwargs:
inputs = ((),)
module_kwargs = ({},)
assert module_kwargs is not None
if len(device_ids) == 1:
return module(*inputs[0], **module_kwargs[0])
used_device_ids = device_ids[: len(inputs)]
replicas = replicate(module, used_device_ids)
outputs = parallel_apply(replicas, inputs, module_kwargs, used_device_ids)
return gather(outputs, output_device, dim)
```
|
========================================================================================================================
SOURCE CODE FILE: distributed.py
LINES: 2
SIZE: 108.35 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\parallel\distributed.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
import copy
import functools
import inspect
import itertools
import logging
import os
import sys
import warnings
import weakref
from collections import defaultdict, deque
from contextlib import contextmanager
from dataclasses import dataclass, fields, is_dataclass
from enum import auto, Enum
from typing import Any, Callable, Optional, TYPE_CHECKING
import torch
import torch.distributed as dist
from torch._utils import _get_device_index
from torch.autograd import Function, Variable
from torch.distributed.algorithms.join import Join, Joinable, JoinHook
from torch.nn.modules import Module
from torch.nn.parallel.scatter_gather import gather, scatter_kwargs
from torch.utils._pytree import tree_flatten, tree_unflatten
RPC_AVAILABLE = False
if dist.is_available():
from torch.distributed.distributed_c10d import (
_get_default_group,
_rank_not_in_group,
ReduceOp,
)
from torch.distributed.utils import (
_alloc_storage,
_cast_forward_inputs,
_free_storage,
_sync_module_states,
_to_kwargs,
_verify_param_shape_across_processes,
)
if dist.rpc.is_available():
RPC_AVAILABLE = True
from torch.distributed.rpc import RRef
if TYPE_CHECKING:
from torch.utils.hooks import RemovableHandle
__all__ = ["DistributedDataParallel"]
logger = logging.getLogger(__name__)
@dataclass
class _MixedPrecision:
"""
This configures DDP-native mixed precision training.
Attributes:
param_dtype (torch.dtype): This specifies the dtype for model
parameters, inputs (when ``cast_forward_inputs`` is set to
``True``), and therefore the dtype for computation.
However, outside the forward and backward passes, parameters are in
full precision. Model checkpointing always happens in full
precision.
reduce_dtype (torch.dtype): This specifies the dtype for gradient
reduction, which is permitted to differ from ``param_dtype``.
buffer_dtype (torch.dtype): This specifies the dtype for buffers.
.. note:: This API is experimental and subject to change.
.. note:: Only floating point tensors are cast to their specified dtypes.
.. note:: ``state_dict`` checkpoints parameters and buffers in full
precision.
.. note:: Each low precision dtype must be specified explicitly. For
example, ``_MixedPrecision(reduce_dtype=torch.float16)`` only specifies
the reduction dtype to be low precision, and DDP will not cast
parameters or buffers.
.. note:: If a ``reduce_dtype`` is not specified, then gradient reduction
happens in ``param_dtype`` if specified or the original parameter dtype
otherwise. For example, ``_MixedPrecision(param_dtype=torch.float16)``
would result in communication occurring in fp16.
"""
param_dtype: Optional[torch.dtype] = None
reduce_dtype: Optional[torch.dtype] = None
buffer_dtype: Optional[torch.dtype] = None
# TODO (rohan-varma): keep_low_precision_grads: bool = False
# TODO (rohan-varma): APIs to allow users to run batchnorm and layernorm
# in full precision. For DDP, this can be implemented by not performing the
# parameter cast for BN and LN units.
def _cast_buffers(mixed_precision_config, root_module):
"""Casts buffers to the given ``buffer_dtype``."""
for buf in root_module.buffers():
if hasattr(buf, "_ddp_ignored") and buf._ddp_ignored:
continue
buf.data = buf.to(dtype=mixed_precision_config.buffer_dtype)
def _setup_mixed_precision_params(mixed_precision_config, root_module):
"""Create and free storage for the mixed precision parameters."""
for param in root_module.parameters():
# Do not setup mixed precision for DDP ignored parameters.
if hasattr(param, "_ddp_ignored") and param._ddp_ignored:
continue
if not hasattr(param, "_mp_param"):
param._mp_param = torch.zeros_like(
param,
device=param.device,
dtype=mixed_precision_config.param_dtype,
requires_grad=param.requires_grad,
)
_free_storage(param._mp_param)
# _fp_param will point to the full precision param so it can be switched
# back to at the end of forward / backward.
param._fp_param = param.data
def _tree_flatten_with_rref(output):
output_is_rref = RPC_AVAILABLE and isinstance(output, RRef)
if output_is_rref:
output_tensor_list, treespec = tree_flatten(output.local_value())
else:
output_tensor_list, treespec = tree_flatten(output)
# Need to return flattened tensors, spec to re-pack them, as well
# as if the return type was actually an RRef to reconstruct.
return output_tensor_list, treespec, output_is_rref
def _tree_unflatten_with_rref(output, treespec, output_is_rref):
output = tree_unflatten(output, treespec)
if output_is_rref:
output = RRef(output)
return output
def _find_tensors(obj):
r"""Recursively find all tensors contained in the specified object."""
if RPC_AVAILABLE and isinstance(obj, RRef):
# If the current node is the owner of the RRef, unwrap it and try to
# find Tensors.
# TODO: Expand to remote RRefs.
if obj.is_owner():
return _find_tensors(obj.local_value())
if isinstance(obj, torch.Tensor):
return [obj]
if isinstance(obj, (list, tuple)):
return itertools.chain.from_iterable(map(_find_tensors, obj))
if isinstance(obj, dict):
return itertools.chain.from_iterable(map(_find_tensors, obj.values()))
if is_dataclass(obj):
return itertools.chain.from_iterable(
map(_find_tensors, (getattr(obj, f.name) for f in fields(obj)))
)
return []
def _dump_DDP_relevant_env_vars():
relevant_env_vars = [
"RANK",
"LOCAL_RANK",
"WORLD_SIZE",
"MASTER_PORT",
"MASTER_ADDR",
"CUDA_VISIBLE_DEVICES",
"GLOO_SOCKET_IFNAME",
"GLOO_DEVICE_TRANSPORT",
"NCCL_SOCKET_IFNAME",
"TORCH_NCCL_BLOCKING_WAIT",
"NCCL_DEBUG",
"NCCL_DEBUG_SUBSYS",
"NCCL_IB_DISABLE",
# More NCCL env vars:
"NCCL_P2P_DISABLE",
"NCCL_P2P_LEVEL",
"NCCL_SHM_DISABLE",
"NCCL_SOCKET_NTHREADS",
"NCCL_NSOCKS_PERTHREAD",
"NCCL_BUFFSIZE",
"NCCL_NTHREADS",
"NCCL_RINGS",
"NCCL_MAX_NCHANNELS",
"NCCL_MIN_NCHANNELS",
"NCCL_CHECKS_DISABLE",
"NCCL_CHECK_POINTERS",
"NCCL_LAUNCH_MODE",
"NCCL_IB_HCA",
"NCCL_IB_TIMEOUT",
"NCCL_IB_RETRY_CNT",
"NCCL_IB_GID_INDEX",
"NCCL_IB_SL",
"NCCL_IB_TC",
"NCCL_IB_AR_THRESHOLD",
"NCCL_IB_CUDA_SUPPORT",
"NCCL_NET_GDR_LEVEL",
"NCCL_NET_GDR_READ",
"NCCL_SINGLE_RING_THRESHOLD",
"NCCL_LL_THRESHOLD",
"NCCL_TREE_THRESHOLD",
"NCCL_ALGO",
"NCCL_PROTO",
"NCCL_IGNORE_CPU_AFFINITY",
"NCCL_DEBUG_FILE",
"NCCL_COLLNET_ENABLE",
"NCCL_TOPO_FILE",
"NCCL_TOPO_DUMP_FILE",
"TORCH_NCCL_ASYNC_ERROR_HANDLING",
]
formatted_output = ""
for var in relevant_env_vars:
value = os.environ[var] if var in os.environ else "N/A"
formatted_output += f"env:{var}={value}\n"
print(formatted_output)
class _BufferCommHookLocation(Enum):
PRE_FORWARD = auto()
POST_FORWARD = auto()
@dataclass
class _BufferCommHook:
buffer_comm_hook: Callable
buffer_comm_hook_state: Any
buffer_comm_hook_location: _BufferCommHookLocation
# Add a DDPSink to run various functions when backwards starts, such as
# queueing call back of out-most backward/graph task,
# this helps call back is fired after all gradients' calculation
# is completed.
class _DDPSink(Function):
@staticmethod
def forward(ctx, ddp_weakref, *inputs):
# set_materialize_grads(False) will ensure that None gradients stay as
# None and are not filled with zeros.
ctx.set_materialize_grads(False)
ctx.ddp_weakref = ddp_weakref
ret = inputs
if ddp_weakref()._ddp_sink_clone:
ret = tuple(
inp.clone() if isinstance(inp, torch.Tensor) else inp for inp in inputs
)
return ret
@staticmethod
def backward(ctx, *grad_outputs):
# Enqueue delay allreduce for static graph training on the first
# iteration.
ddp_weakref = ctx.ddp_weakref()
reducer = ddp_weakref.reducer
static_graph = ddp_weakref.static_graph
delay_ar_enqueued = (
static_graph and ddp_weakref._static_graph_delay_allreduce_enqueued
)
if static_graph and not delay_ar_enqueued:
Variable._execution_engine.queue_callback( # type: ignore[call-arg,misc]
reducer._delay_all_reduce
)
ddp_weakref._static_graph_delay_allreduce_enqueued = True
return (None, *grad_outputs)
class _DDPJoinHook(JoinHook):
def __init__(self, ddp, divide_by_initial_world_size):
"""Set config variables for internal usage."""
assert isinstance(ddp, DistributedDataParallel), (
"DDP join hook requires passing in a DistributedDataParallel "
"instance as the state"
)
assert ddp.logger is not None
ddp.logger._set_uneven_input_join()
self.ddp = ddp
self.ddp._divide_by_initial_world_size = divide_by_initial_world_size
super().__init__()
def main_hook(self):
"""Shadow the DDP collective communication operations in the forward and backward passes."""
ddp = self.ddp
# Buckets are rebuilt only once during a training period
ddp.reducer._rebuild_buckets()
# Schedule a broadcast if we are syncing module buffers in the
# forward pass
# TODO: make DDP uneven inputs context manager support buffer
# comm hook (https://github.com/pytorch/pytorch/issues/65436)
ddp._check_and_sync_module_buffers()
# Check if need to sync in the backward pass
should_sync_backwards = ddp._check_global_requires_backward_grad_sync(
is_joined_rank=True
)
# Forward parameter sync is disabled in the next iteration if we
# are skipping gradient sync this iteration, so set
# `require_forward_param_sync` accordingly
ddp.require_forward_param_sync = should_sync_backwards
if not should_sync_backwards:
return
# Schedule one allreduce per gradient bucket to match the backward
# pass allreduce
ddp._match_all_reduce_for_bwd_pass()
# Check if we need to allreduce locally unused parameters
if ddp.find_unused_parameters:
ddp._match_unused_params_allreduce()
# Rebuilt parameters are pushed only once during a training period
ddp.reducer._push_all_rebuilt_params()
def post_hook(self, is_last_joiner: bool):
"""Sync the final model to ensure that the model is the same across all processes."""
self.ddp._sync_final_model(is_last_joiner)
class DistributedDataParallel(Module, Joinable):
r"""Implement distributed data parallelism based on ``torch.distributed`` at module level.
This container provides data parallelism by synchronizing gradients
across each model replica. The devices to synchronize across are
specified by the input ``process_group``, which is the entire world
by default. Note that ``DistributedDataParallel`` does not chunk or
otherwise shard the input across participating GPUs; the user is
responsible for defining how to do so, for example through the use
of a :class:`DistributedSampler`.
See also: :ref:`distributed-basics` and :ref:`cuda-nn-ddp-instead`.
The same constraints on input as in :class:`torch.nn.DataParallel` apply.
Creation of this class requires that ``torch.distributed`` to be already
initialized, by calling :func:`torch.distributed.init_process_group`.
``DistributedDataParallel`` is proven to be significantly faster than
:class:`torch.nn.DataParallel` for single-node multi-GPU data
parallel training.
To use ``DistributedDataParallel`` on a host with N GPUs, you should spawn
up ``N`` processes, ensuring that each process exclusively works on a single
GPU from 0 to N-1. This can be done by either setting
``CUDA_VISIBLE_DEVICES`` for every process or by calling:
>>> # xdoctest: +SKIP("undefined variables")
>>> torch.cuda.set_device(i)
where i is from 0 to N-1. In each process, you should refer the following
to construct this module:
>>> # xdoctest: +SKIP("undefined variables")
>>> torch.distributed.init_process_group(
>>> backend='nccl', world_size=N, init_method='...'
>>> )
>>> model = DistributedDataParallel(model, device_ids=[i], output_device=i)
In order to spawn up multiple processes per node, you can use either
``torch.distributed.launch`` or ``torch.multiprocessing.spawn``.
.. note::
Please refer to `PyTorch Distributed Overview <https://pytorch.org/tutorials/beginner/dist_overview.html>`__
for a brief introduction to all features related to distributed training.
.. note::
``DistributedDataParallel`` can be used in conjunction with
:class:`torch.distributed.optim.ZeroRedundancyOptimizer` to reduce
per-rank optimizer states memory footprint. Please refer to
`ZeroRedundancyOptimizer recipe <https://pytorch.org/tutorials/recipes/zero_redundancy_optimizer.html>`__
for more details.
.. note:: ``nccl`` backend is currently the fastest and highly recommended
backend when using GPUs. This applies to both single-node and
multi-node distributed training.
.. note:: This module also supports mixed-precision distributed training.
This means that your model can have different types of parameters such
as mixed types of ``fp16`` and ``fp32``, the gradient reduction on these
mixed types of parameters will just work fine.
.. note:: If you use ``torch.save`` on one process to checkpoint the module,
and ``torch.load`` on some other processes to recover it, make sure that
``map_location`` is configured properly for every process. Without
``map_location``, ``torch.load`` would recover the module to devices
where the module was saved from.
.. note:: When a model is trained on ``M`` nodes with ``batch=N``, the
gradient will be ``M`` times smaller when compared to the same model
trained on a single node with ``batch=M*N`` if the loss is summed (NOT
averaged as usual) across instances in a batch (because the gradients
between different nodes are averaged). You should take this into
consideration when you want to obtain a mathematically equivalent
training process compared to the local training counterpart. But in most
cases, you can just treat a DistributedDataParallel wrapped model, a
DataParallel wrapped model and an ordinary model on a single GPU as the
same (E.g. using the same learning rate for equivalent batch size).
.. note::
Parameters are never broadcast between processes. The module performs
an all-reduce step on gradients and assumes that they will be modified
by the optimizer in all processes in the same way. Buffers
(e.g. BatchNorm stats) are broadcast from the module in process of rank
0, to all other replicas in the system in every iteration.
.. note::
If you are using DistributedDataParallel in conjunction with the
:ref:`distributed-rpc-framework`, you should always use
:meth:`torch.distributed.autograd.backward` to compute gradients and
:class:`torch.distributed.optim.DistributedOptimizer` for optimizing
parameters.
Example::
>>> # xdoctest: +SKIP("undefined variables")
>>> import torch.distributed.autograd as dist_autograd
>>> from torch.nn.parallel import DistributedDataParallel as DDP
>>> import torch
>>> from torch import optim
>>> from torch.distributed.optim import DistributedOptimizer
>>> import torch.distributed.rpc as rpc
>>> from torch.distributed.rpc import RRef
>>>
>>> t1 = torch.rand((3, 3), requires_grad=True)
>>> t2 = torch.rand((3, 3), requires_grad=True)
>>> rref = rpc.remote("worker1", torch.add, args=(t1, t2))
>>> ddp_model = DDP(my_model)
>>>
>>> # Setup optimizer
>>> optimizer_params = [rref]
>>> for param in ddp_model.parameters():
>>> optimizer_params.append(RRef(param))
>>>
>>> dist_optim = DistributedOptimizer(
>>> optim.SGD,
>>> optimizer_params,
>>> lr=0.05,
>>> )
>>>
>>> with dist_autograd.context() as context_id:
>>> pred = ddp_model(rref.to_here())
>>> loss = loss_func(pred, target)
>>> dist_autograd.backward(context_id, [loss])
>>> dist_optim.step(context_id)
.. note::
DistributedDataParallel currently offers limited support for gradient
checkpointing with :meth:`torch.utils.checkpoint`.
If the checkpoint is done with use_reentrant=False (recommended), DDP
will work as expected without any limitations.
If, however, the checkpoint is done with use_reentrant=True (the default),
DDP will work as expected when there are no unused parameters in the model
and each layer is checkpointed at most once (make sure you are not passing
`find_unused_parameters=True` to DDP). We currently do not support the
case where a layer is checkpointed multiple times, or when there unused
parameters in the checkpointed model.
.. note::
To let a non-DDP model load a state dict from a DDP model,
:meth:`~torch.nn.modules.utils.consume_prefix_in_state_dict_if_present`
needs to be applied to strip the prefix "module." in the DDP state dict before loading.
.. warning::
Constructor, forward method, and differentiation of the output (or a
function of the output of this module) are distributed synchronization
points. Take that into account in case different processes might be
executing different code.
.. warning::
This module assumes all parameters are registered in the model by the
time it is created. No parameters should be added nor removed later.
Same applies to buffers.
.. warning::
This module assumes all parameters are registered in the model of each
distributed processes are in the same order. The module itself will
conduct gradient ``allreduce`` following the reverse order of the
registered parameters of the model. In other words, it is users'
responsibility to ensure that each distributed process has the exact
same model and thus the exact same parameter registration order.
.. warning::
This module allows parameters with non-rowmajor-contiguous strides.
For example, your model may contain some parameters whose
:class:`torch.memory_format` is ``torch.contiguous_format``
and others whose format is ``torch.channels_last``. However,
corresponding parameters in different processes must have the
same strides.
.. warning::
This module doesn't work with :func:`torch.autograd.grad` (i.e. it will
only work if gradients are to be accumulated in ``.grad`` attributes of
parameters).
.. warning::
If you plan on using this module with a ``nccl`` backend or a ``gloo``
backend (that uses Infiniband), together with a DataLoader that uses
multiple workers, please change the multiprocessing start method to
``forkserver`` (Python 3 only) or ``spawn``. Unfortunately
Gloo (that uses Infiniband) and NCCL2 are not fork safe, and you will
likely experience deadlocks if you don't change this setting.
.. warning::
You should never try to change your model's parameters after wrapping
up your model with ``DistributedDataParallel``. Because, when
wrapping up your model with ``DistributedDataParallel``, the constructor
of ``DistributedDataParallel`` will register the additional gradient
reduction functions on all the parameters of the model itself at the
time of construction. If you change the model's parameters afterwards,
gradient reduction functions no longer match the correct set of
parameters.
.. warning::
Using ``DistributedDataParallel`` in conjunction with the
:ref:`distributed-rpc-framework` is experimental and subject to change.
Args:
module (Module): module to be parallelized
device_ids (list of int or torch.device): CUDA devices.
1) For single-device modules, ``device_ids`` can
contain exactly one device id, which represents the only
CUDA device where the input module corresponding to this process resides.
Alternatively, ``device_ids`` can also be ``None``.
2) For multi-device modules and CPU modules,
``device_ids`` must be ``None``.
When ``device_ids`` is ``None`` for both cases,
both the input data for the forward pass and the actual module
must be placed on the correct device.
(default: ``None``)
output_device (int or torch.device): Device location of output for
single-device CUDA modules. For multi-device modules and
CPU modules, it must be ``None``, and the module itself
dictates the output location. (default: ``device_ids[0]``
for single-device modules)
broadcast_buffers (bool): Flag that enables syncing (broadcasting)
buffers of the module at beginning of the ``forward``
function. (default: ``True``)
init_sync (bool): Whether to sync during initialization to verify param
shapes and broadcast parameters and buffers.
WARNING: if this is set to False the user is required
to ensure themselves that the weights are the same on
all ranks.
(default: ``True``)
process_group: The process group to be used for distributed data
all-reduction. If ``None``, the default process group, which
is created by :func:`torch.distributed.init_process_group`,
will be used. (default: ``None``)
bucket_cap_mb: ``DistributedDataParallel`` will bucket parameters into
multiple buckets so that gradient reduction of each
bucket can potentially overlap with backward computation.
:attr:`bucket_cap_mb` controls the bucket size in
MebiBytes (MiB). If ``None``, a default size of 25 MiB
will be used. (default: ``None``)
find_unused_parameters (bool): Traverse the autograd graph from all
tensors contained in the return value of the
wrapped module's ``forward`` function. Parameters
that don't receive gradients as part of this
graph are preemptively marked as being ready to
be reduced. In addition, parameters that may have
been used in the wrapped module's ``forward``
function but were not part of loss computation and
thus would also not receive gradients are
preemptively marked as ready to be reduced.
(default: ``False``)
check_reduction: This argument is deprecated.
gradient_as_bucket_view (bool): When set to ``True``, gradients will be views
pointing to different offsets of ``allreduce`` communication
buckets. This can reduce peak memory usage, where the
saved memory size will be equal to the total gradients
size. Moreover, it avoids the overhead of copying between
gradients and ``allreduce`` communication buckets. When
gradients are views, ``detach_()`` cannot be called on the
gradients. If hitting such errors, please fix it by
referring to the :meth:`~torch.optim.Optimizer.zero_grad`
function in ``torch/optim/optimizer.py`` as a solution.
Note that gradients will be views after first iteration, so
the peak memory saving should be checked after first iteration.
static_graph (bool): When set to ``True``, DDP knows the trained graph is
static. Static graph means 1) The set of used and unused
parameters will not change during the whole training loop; in
this case, it does not matter whether users set
``find_unused_parameters = True`` or not. 2) How the graph is trained
will not change during the whole training loop (meaning there is
no control flow depending on iterations).
When static_graph is set to be ``True``, DDP will support cases that
can not be supported in the past:
1) Reentrant backwards.
2) Activation checkpointing multiple times.
3) Activation checkpointing when model has unused parameters.
4) There are model parameters that are outside of forward function.
5) Potentially improve performance when there are unused parameters,
as DDP will not search graph in each iteration to detect unused
parameters when static_graph is set to be ``True``.
To check whether you can set static_graph to be ``True``, one way is to
check ddp logging data at the end of your previous model training,
if ``ddp_logging_data.get("can_set_static_graph") == True``, mostly you
can set ``static_graph = True`` as well.
Example::
>>> # xdoctest: +SKIP("undefined variables")
>>> model_DDP = torch.nn.parallel.DistributedDataParallel(model)
>>> # Training loop
>>> ...
>>> ddp_logging_data = model_DDP._get_ddp_logging_data()
>>> static_graph = ddp_logging_data.get("can_set_static_graph")
delay_all_reduce_named_params (list of tuple of str and torch.nn.Parameter): a list
of named parameters whose all reduce will be delayed when the gradient of
the parameter specified in ``param_to_hook_all_reduce`` is ready. Other
arguments of DDP do not apply to named params specified in this argument
as these named params will be ignored by DDP reducer.
param_to_hook_all_reduce (torch.nn.Parameter): a parameter to hook delayed all reduce
of parameters specified in ``delay_all_reduce_named_params``.
Attributes:
module (Module): the module to be parallelized.
Example::
>>> # xdoctest: +SKIP("undefined variables")
>>> torch.distributed.init_process_group(backend='nccl', world_size=4, init_method='...')
>>> net = torch.nn.parallel.DistributedDataParallel(model)
"""
# used to track whether the given thread is inside ddp forward for torchdynamo purposes
_active_ddp_module: Optional["DistributedDataParallel"] = None
def __init__(
self,
module,
device_ids=None,
output_device=None,
dim=0,
broadcast_buffers=True,
init_sync=True,
process_group=None,
bucket_cap_mb=None,
find_unused_parameters=False,
check_reduction=False,
gradient_as_bucket_view=False,
static_graph=False,
delay_all_reduce_named_params=None,
param_to_hook_all_reduce=None,
mixed_precision: Optional[_MixedPrecision] = None,
device_mesh=None,
):
super().__init__()
Joinable.__init__(self)
self.logger: Optional[dist.Logger] = None
if bool(delay_all_reduce_named_params is not None) != bool(
param_to_hook_all_reduce is not None
):
self._log_and_throw(
ValueError,
"delay_all_reduce_named_params and param_to_hook_all_reduce "
"need to be set at the same time.",
)
if process_group and device_mesh is not None:
raise RuntimeError(
"Cannot specify both process_group and device_mesh arguments."
)
elif process_group is None and device_mesh is None:
self.process_group = _get_default_group()
elif device_mesh is None:
self.process_group = process_group
else:
if device_mesh.ndim != 1:
raise RuntimeError(
f"Only 1D device mesh is supported, but got {device_mesh}."
)
self.device_mesh = device_mesh
self.process_group = device_mesh.get_group(mesh_dim=0)
from torch.distributed.device_mesh import _mesh_resources
root_mesh = _mesh_resources.get_root_mesh(device_mesh)
# if a root mesh is not the same as device_mesh,
# meaning the device_mesh is sliced out from the root mesh.
if root_mesh != device_mesh:
# TODO: This is a temporary work around to enable DDP + TP.
# We should do the logic in DDP so that the 2D implementation is
# sound and the state_dict works out of the box.
# This has to be done before check UninitializedParameter.
from torch.distributed.tensor.parallel.ddp import (
_pre_dp_module_transform,
)
_pre_dp_module_transform(module)
self._delay_all_reduce_params = []
if hasattr(module, "_ddp_params_and_buffers_to_ignore"):
self.parameters_to_ignore = set(module._ddp_params_and_buffers_to_ignore)
else:
self.parameters_to_ignore = set()
if delay_all_reduce_named_params is not None:
for name, param in delay_all_reduce_named_params:
self.parameters_to_ignore.add(name)
self._delay_all_reduce_params.append(param)
self._module_parameters = [
p
for n, p in module.named_parameters()
if n not in self.parameters_to_ignore
]
if not any(p.requires_grad for p in self._module_parameters):
if len(self._delay_all_reduce_params):
logger.info("Delay the AllReduce of all parameters.")
else:
self._log_and_throw(
RuntimeError,
"DistributedDataParallel is not needed when a module "
"doesn't have any parameter that requires a gradient.",
)
if device_ids is not None and len(device_ids) > 1:
self._log_and_throw(
ValueError,
"device_ids can only be None or contain a single element.",
)
self.is_multi_device_module = (
len({p.device for p in self._module_parameters}) > 1
)
distinct_device_types = {
p.device.type for p in self._module_parameters if p.device is not None
}
if len(distinct_device_types) != 1:
self._log_and_throw(
ValueError,
"DistributedDataParallel's input module must be on "
f"the same type of devices, but input module parameters locate in {distinct_device_types}.",
)
self.device_type = next(iter(distinct_device_types))
if (
device_ids is None
or len(device_ids) == 0 # For backward compatibility.
or self.device_type == "cpu"
or self.is_multi_device_module
):
if device_ids or output_device:
self._log_and_throw(
ValueError,
"DistributedDataParallel device_ids and output_device arguments "
"only work with single-device/multiple-device GPU modules or CPU modules, "
f"but got device_ids {device_ids}, output_device {output_device}, "
f"and module parameters {({p.device for p in self._module_parameters})}.",
)
self.device_ids = None
self.output_device = None
else:
self.device_ids = [_get_device_index(x, True) for x in device_ids]
if output_device is None:
output_device = device_ids[0]
self.output_device = _get_device_index(output_device, True)
self.static_graph = False
self.dim = dim
self.module = module
self.device = next(iter(self._module_parameters)).device
self.broadcast_buffers = broadcast_buffers
self.find_unused_parameters = find_unused_parameters
self.require_backward_grad_sync = True
self.require_forward_param_sync = True
self.gradient_as_bucket_view = gradient_as_bucket_view
self.mixed_precision = mixed_precision
if self.mixed_precision is not None:
logger.warning("Received mixed precision config %s", self.mixed_precision)
if check_reduction:
# This argument is no longer used since the reducer
# will ensure reduction completes even if some parameters
# do not receive gradients.
warnings.warn(
"The `check_reduction` argument in `DistributedDataParallel` "
"module is deprecated. Please avoid using it.",
FutureWarning,
stacklevel=2,
)
# Check that a module does not have Uninitialized parameters
for param in self._module_parameters:
if isinstance(param, torch.nn.parameter.UninitializedParameter):
self._log_and_throw(
RuntimeError,
"Modules with uninitialized parameters can't be used with `DistributedDataParallel`. "
"Run a dummy forward pass to correctly initialize the modules",
)
# used for intra-node param sync and inter-node sync as well
self.broadcast_bucket_size = int(250 * 1024 * 1024)
# reduction bucket size
if bucket_cap_mb is None:
# default case (bucket cap is 25 MiB)
bucket_cap_mb = 25
self.bucket_bytes_cap_default = True
else:
self.bucket_bytes_cap_default = False
self.bucket_bytes_cap = int(bucket_cap_mb * 1024 * 1024)
# Whether to perform input tensor CPU to GPU copies on a side-stream
self.use_side_stream_for_tensor_copies = (
os.environ.get("PYTORCH_DDP_USE_SIDE_STREAM", "1") == "1"
)
# Initialize gradient buffers and register all reduce hook
self._delay_grad_buffer: Optional[torch.Tensor] = None
self._delay_grad_views: list[torch.Tensor] = []
self._delay_all_reduce_all_params = False
if len(self._delay_all_reduce_params) != 0:
self._register_delay_all_reduce_hook(
bucket_cap_mb=bucket_cap_mb,
param_to_hook_all_reduce=param_to_hook_all_reduce,
device_ids=device_ids,
)
if self._delay_all_reduce_all_params:
return
# Build parameters for reducer.
parameters, expect_sparse_gradient = self._build_params_for_reducer()
# All collectives during initialization are gated by this flag.
if init_sync:
# Verify model equivalence.
_verify_param_shape_across_processes(self.process_group, parameters)
# Sync params and buffers. Ensures all DDP models start off at the same value.
_sync_module_states(
module=self.module,
process_group=self.process_group,
broadcast_bucket_size=self.broadcast_bucket_size,
src=0,
params_and_buffers_to_ignore=self.parameters_to_ignore,
broadcast_buffers=self.broadcast_buffers,
)
# In debug mode, build a mapping of parameter index -> parameter.
param_to_name_mapping = self._build_debug_param_to_name_mapping(parameters)
# Builds reducer.
self._ddp_init_helper(
parameters,
expect_sparse_gradient,
param_to_name_mapping,
static_graph,
)
self._comm_hooks: list[tuple[Callable, object]] = []
if self.mixed_precision is not None:
_setup_mixed_precision_params(self.mixed_precision, self.module)
_cast_buffers(self.mixed_precision, self.module)
# Stream used for async low precision copies.
self._mp_stream = torch.Stream()
self._submodule_to_event = defaultdict(deque) # type: ignore[var-annotated]
# Add forward pre-hook to root module to kick off copies to lower
# precision.
self.module.register_forward_pre_hook(
self._root_copy_hook, prepend=False, with_kwargs=True
)
# Add forward pre hook to all submodules to wait for copy events
# before running computation.
for module in self.module.modules():
module.register_forward_pre_hook(
self._module_wait_for_copy_hook,
prepend=False,
with_kwargs=True,
)
# Set up callbacks in backward to upcast and use full precision
# params. TODO (rohan-varma): Make this compose with general
# comm hooks and apply_optimizer_in_backward. Importing inline to
# avoid circular import issue.
from torch.distributed.algorithms.ddp_comm_hooks.mixed_precision_hooks import (
_AllreduceUpcastHookState,
_reducer_allreduce_and_upcast_hook,
)
upcast_hook_state = _AllreduceUpcastHookState(
ddp_weakref=weakref.ref(self),
upcast_stream=torch.Stream(),
)
self.register_comm_hook(
upcast_hook_state,
_reducer_allreduce_and_upcast_hook,
)
# Inform reducer of reduced precision param dtype for correctness
# of type checks between gradient and bucket.
self.reducer._set_mixed_precision_param_dtype( # type: ignore[attr-defined]
self.mixed_precision.param_dtype
)
self._has_rebuilt_buckets = False
if static_graph:
self._set_static_graph()
self._lazy_init_ran = False
# Register the AccumulateGrad post hooks if optimize_ddp is
# True. The hooks will be deregistered if compiled_autograd is not
# enabled.
self._accum_grad_hooks: list[RemovableHandle] = []
optimize_ddp = torch._dynamo.utils.get_optimize_ddp_mode()
self._use_python_reducer = optimize_ddp == "python_reducer"
if self._use_python_reducer:
torch._inductor.config._fuse_ddp_communication = True
torch._inductor.config._fuse_ddp_bucket_size = bucket_cap_mb
# Directly adding this to the trace rule will disturb the users
# who are using DDPOptimizer.
torch._dynamo.trace_rules.LEGACY_MOD_INLINELIST.add(
"torch.nn.parallel.distributed"
)
torch._dynamo.trace_rules.get_legacy_mod_inlinelist.cache_clear()
# NOTE: we should init these lazily
self._register_accum_grad_hook()
# Whether or not DDPSink performs a clone.
self._ddp_sink_clone = True
def _register_accum_grad_hook(self):
import torch.distributed._functional_collectives as fcol
def compiled_accum_grad_hook(
param,
*,
param_index: int,
):
if not self.require_backward_grad_sync:
return
if param.grad is None:
return
if self._comm_hooks:
for hook, state in self._comm_hooks:
hook(state, (param.grad, param))
else:
gradient = param.grad / self.process_group.size()
gradient = fcol.all_reduce(gradient, "sum", self.process_group)
param.grad.copy_(gradient)
for index, param in enumerate(self._module_parameters):
if not param.requires_grad:
continue
self._accum_grad_hooks.append(
param.register_post_accumulate_grad_hook(
functools.partial(
compiled_accum_grad_hook,
param_index=index,
)
)
)
def _delayed_all_reduce_hook(self, grad):
world_size = dist.get_world_size(self.process_group)
self._delay_grad_buffer.div_(world_size) # type: ignore[union-attr]
_ = dist.all_reduce(
self._delay_grad_buffer, group=self.process_group, async_op=True
)
return grad
def _register_delay_all_reduce_hook(
self,
bucket_cap_mb,
param_to_hook_all_reduce,
device_ids,
):
# 1. Create gradient buffer
device = torch.device("cpu") if device_ids is None else device_ids[0]
self._delay_grad_buffer = torch.zeros(
sum(p.numel() for p in self._delay_all_reduce_params),
device=device,
)
# 2. Broadcast the parameters
detached_params = [p.detach() for p in self._delay_all_reduce_params]
dist._broadcast_coalesced(self.process_group, detached_params, bucket_cap_mb, 0)
# 3. Hook all reduce to the specified parameter
param_to_hook_all_reduce.register_hook(self._delayed_all_reduce_hook)
# 4. Build tensor views for gradients
offset = 0
for param in self._delay_all_reduce_params:
grad_view = self._delay_grad_buffer[offset : (offset + param.numel())].view(
param.shape
)
self._delay_grad_views.append(grad_view)
offset = offset + param.numel()
# 5. Check whether the all reduce of all params requiring grad is delayed.
for module_name, module in self.module.named_modules():
for param_name, param in module.named_parameters(recurse=False):
if param.requires_grad:
full_name = f"{module_name}.{param_name}"
if full_name not in self.parameters_to_ignore:
# There is at least a param whose all reduce will not be delayed.
# In this case, we should not set self._delay_all_reduce_all_params
# to True.
return
self._delay_all_reduce_all_params = True
def _setup_in_backward_optimizers(self):
# Check if user has used apply_optim_in_backward to overlap optimizer
# step + DDP backward. Current constraints:
# 1. Only allreduce is supported at the moment, no custom communication.
# 2. For DDP-managed parameters that have their optimizer run in
# backward, their gradients are set to ``None``. If your use case
# requires DDP parameters grad not to be set to ``None`` after their
# in-backward optimizer runs, please ping
# https://github.com/pytorch/pytorch/issues/90052.
# NOTE: we use self._module_parameters instead of .parameters() since
# the former excludes ignored (non-DDP managed) parameters.
if any(hasattr(p, "_in_backward_optimizers") for p in self._module_parameters):
torch._C._log_api_usage_once("ddp.optimizer_in_backward")
# Remove hooks that apply_optim_in_backward had registered because
# DDP customizes how optimizer is overlapped with backward due to
# the allreduce.
param_to_handle_map = (
dist.optim.apply_optimizer_in_backward.param_to_optim_hook_handle_map
)
for p in self._module_parameters:
for handle in param_to_handle_map.get(p, []):
handle.remove()
# Need a weakref to DDP instance to run all_reduce (from reducer)
# and get managed DDP parameters.
ddp_weakref = weakref.ref(self)
# Note: importing in function, otherwise this will cause a circular
# import.
from torch.distributed.algorithms.ddp_comm_hooks.optimizer_overlap_hooks import (
_apply_optim_in_backward_hook,
)
self.register_comm_hook(
ddp_weakref,
_apply_optim_in_backward_hook(
gradient_is_bucket_view=self.gradient_as_bucket_view
),
)
self.reducer._set_optimizer_in_backward() # type: ignore[attr-defined]
def _fire_reducer_autograd_hook(self, idx, *unused):
"""
Fire the reducer's autograd hook to allreduce params in a Reducer bucket.
Note that this is only used during mixed precision training as the
Reducer's hooks installed during construction time would not be called
as we're working in the low precision parameter setting.
"""
self.reducer._autograd_hook(idx) # type: ignore[attr-defined]
def _root_copy_hook(self, *args: Any, **kwargs: Any) -> None:
"""
For DDP mixed precision, put low precision copies on separate stream and create events to wait for them.
When training with DDP mixed precision, this root pre-forward hook kicks
off low precision copies on a separate stream and creates respective
events to wait for them.
"""
# Clear out previous iteration submodule to event. This is because we
# may have populated some events for modules that didn't end up being
# used.
self._submodule_to_event = defaultdict(deque) # type: ignore[var-annotated]
with self._mp_stream:
for submodule in self.module.modules():
for param in submodule.parameters(recurse=False):
# Do not cast DDP ignored parameters.
if hasattr(param, "_ddp_ignored") and param._ddp_ignored:
continue
_alloc_storage(param._mp_param, param.size())
# copy() implicitly casts to low precision
with torch.no_grad():
param._mp_param.copy_(param.data)
# TODO: when zero_grad(set_to_none=False) or in grad
# accumulation case, accumulated grads can be in fp32
# which can cause errors when running DDP backwards due
# to mismatched incoming and accumulated gradient types.
# So we manually cast the accumulated grad down for now,
# in the future we may shift to FSDP style gradient
# accumulation management where the accumulated gradient
# is saved and .grad field is set to None, bypassing
# this issue.
if param.grad is not None:
param.grad.data = param.grad.to(
self.mixed_precision.param_dtype # type: ignore[union-attr]
)
param.data = param._mp_param
copy_event = torch.Event()
copy_event.record()
self._submodule_to_event[submodule].append(copy_event)
def _module_wait_for_copy_hook(
self,
module,
*args: Any,
**kwargs: Any,
) -> None:
"""Before carrying out computation, wait on the appropriate event to ensure low precision copies have finished."""
try:
event = self._submodule_to_event[module].popleft()
except IndexError:
# copy event has already been waited on
return
event.wait(stream=torch.accelerator.current_stream())
for p in module.parameters(recurse=False):
# Don't register hooks if param does not require grad
if not p.requires_grad or (hasattr(p, "_ddp_ignored") and p._ddp_ignored):
continue
# We need to register autograd hook here instead of DDP's ctor
# since we're working with the low precision param. Register them
# via obtaining the gradient accumulator.
tmp = p.expand_as(p)
grad_acc = tmp.grad_fn.next_functions[0][0]
hook = grad_acc.register_hook(
functools.partial(self._fire_reducer_autograd_hook, p._idx)
)
p._ddp_mp_hook_state = (grad_acc, hook)
def _log_and_throw(self, err_type, err_msg):
if self.logger is not None:
self.logger.set_error_and_log(f"{str(err_type)}: {err_msg}")
raise err_type(err_msg)
def _ddp_init_helper(
self,
parameters,
expect_sparse_gradient,
param_to_name_mapping,
static_graph,
):
"""
DDP init helper function to manage parameters, grad hooks, logging, and SyncBatchNorm.
Initialization helper function that does the following:
(1) bucketing the parameters for reductions
(2) resetting the bucketing states
(3) registering the grad hooks
(4) Logging construction-time DDP logging data
(5) passing a handle of DDP to SyncBatchNorm Layer
"""
# Notice, the parameters order is not in the order in which they are used,
# especially in models with control flow.
#
# Alongside parameters are not presented in the real execution order,
# if a certain model happens to also
# 1) have other collectives comm ops in its backward graph.
# 2) have unused parameter in subset ranks of the whole world.
# bucketing could insert ALL-REDUCE comm op too early on the rank with unused parameter,
# matching up with other collectives comm ops on other ranks unexpectedly.
#
# In order to handle this corner case, when the parameters are not in the real execution order,
# we don't do bucketing, thus only one ALL-REDUCE is inserted after all the gradients
# of the whole graph are computed.
#
# Notice, here we only disable bucketing for the first iteration.
# After the first iteration, it's OK to rebuild buckets,
# because "bucket rebuild" bucketizes parameters based on its real execution order in backward graph.
# Can remove this branching once #73732 is landed.
if static_graph is True or self.find_unused_parameters is False:
bucket_size_limits = [sys.maxsize]
else:
if self.bucket_bytes_cap_default:
bucket_size_limits = [
dist._DEFAULT_FIRST_BUCKET_BYTES,
self.bucket_bytes_cap,
]
else:
bucket_size_limits = [self.bucket_bytes_cap]
(
bucket_indices,
per_bucket_size_limits,
) = dist._compute_bucket_assignment_by_size(
parameters,
bucket_size_limits,
expect_sparse_gradient,
)
# Remember index for parameters if we are in mixed precision, as we
# need to pass in index to Reducer's autograd hook via python.
if self.mixed_precision is not None:
for i, p in enumerate(parameters):
p._idx = i
# Note: reverse list of buckets because we want to approximate the
# order in which their gradients are produced, and assume they
# are used in the forward pass in the order they are defined.
self.reducer = dist.Reducer(
parameters,
list(reversed(bucket_indices)),
list(reversed(per_bucket_size_limits)),
self.process_group,
expect_sparse_gradient,
# The bucket size limit is specified in the constructor.
# Additionally, we allow for a single small bucket for parameters
# that are defined first, such that their gradients don't spill into
# a much larger bucket, adding unnecessary latency after gradient
# computation finishes. Experiments showed 1MB is a reasonable value.
self.bucket_bytes_cap,
self.find_unused_parameters,
self.gradient_as_bucket_view,
param_to_name_mapping,
# User can set dist._DEFAULT_FIRST_BUCKET_BYTES to tune DDP first
# bucket.
(
dist._DEFAULT_FIRST_BUCKET_BYTES
if self.bucket_bytes_cap_default
else self.bucket_bytes_cap
),
)
self.logger = dist.Logger(self.reducer)
# Set as a weak reference to avoid reference cycle between
# logger and reducer.
self.reducer.set_logger(self.logger)
has_sync_bn = False
for submodule in self.module.modules():
if isinstance(submodule, torch.nn.SyncBatchNorm):
has_sync_bn = True
break
# Set logging data that can be got during construction time.
self.logger.set_construction_data_and_log(
self.module.__class__.__name__,
[] if self.device_ids is None else self.device_ids,
-1 if self.output_device is None else self.output_device,
self.broadcast_buffers,
has_sync_bn,
static_graph,
)
# passing a handle to torch.nn.SyncBatchNorm layer
self._passing_sync_batchnorm_handle(self.module)
def __getstate__(self):
self._check_default_group()
attrs = copy.copy(self.__dict__)
del attrs["process_group"]
del attrs["reducer"]
del attrs["logger"]
return attrs
def __setstate__(self, state):
# If serializable, then the process group should be the default one
self.process_group = _get_default_group()
super().__setstate__(state)
self.__dict__.setdefault("require_forward_param_sync", True)
self.__dict__.setdefault("require_backward_grad_sync", True)
parameters, expect_sparse_gradient = self._build_params_for_reducer()
# In debug mode, build a mapping of parameter index -> parameter.
param_to_name_mapping = self._build_debug_param_to_name_mapping(parameters)
# Builds reducer.
self._ddp_init_helper(
parameters,
expect_sparse_gradient,
param_to_name_mapping,
self.static_graph,
)
if self.static_graph:
self.reducer._set_static_graph()
assert self.logger is not None
self.logger._set_static_graph()
def _build_params_for_reducer(self):
# Build tuple of (module, parameter) for all parameters that require grads.
modules_and_parameters = [
(module, parameter)
for module_name, module in self.module.named_modules()
for parameter in [
param
# Note that we access module.named_parameters instead of
# parameters(module). parameters(module) is only needed in the
# single-process multi device case, where it accesses replicated
# parameters through _former_parameters.
for param_name, param in module.named_parameters(recurse=False)
if param.requires_grad
and f"{module_name}.{param_name}" not in self.parameters_to_ignore
]
]
# Deduplicate any parameters that might be shared across child modules.
memo = set()
modules_and_parameters = [
# "p not in memo" is the deduplication check.
# "not memo.add(p)" is always True, and it's only there to cause "add(p)" if needed.
(m, p)
for m, p in modules_and_parameters
if p not in memo and not memo.add(p) # type: ignore[func-returns-value]
]
# Build list of parameters.
parameters = [parameter for _, parameter in modules_and_parameters]
# Checks if a module will produce a sparse gradient.
def produces_sparse_gradient(module):
if isinstance(module, (torch.nn.Embedding, torch.nn.EmbeddingBag)):
return module.sparse
return False
# Build list of booleans indicating whether or not to expect sparse
# gradients for the corresponding parameters.
expect_sparse_gradient = [
produces_sparse_gradient(module) for module, _ in modules_and_parameters
]
self._assign_modules_buffers()
return parameters, expect_sparse_gradient
def _assign_modules_buffers(self):
"""
Assign self.module.named_buffers to self.modules_buffers.
Assigns module buffers to self.modules_buffers which are then used to
broadcast across ranks when broadcast_buffers=True. Note that this
must be called every time buffers need to be synced because buffers can
be reassigned by user module,
see https://github.com/pytorch/pytorch/issues/63916.
"""
# Collect buffers for modules, filtering out buffers that should be ignored.
named_module_buffers = [
(buffer, buffer_name)
for buffer_name, buffer in self.module.named_buffers()
if buffer_name not in self.parameters_to_ignore
]
self.modules_buffers = [
buffer for (buffer, buffer_name) in named_module_buffers
]
# Dict[str, tensor] representing module buffers not ignored by DDP.
self.named_module_buffers = {
buffer_name: buffer for (buffer, buffer_name) in named_module_buffers
}
def _build_debug_param_to_name_mapping(self, parameters):
param_to_param_index = {parameters[i]: i for i in range(len(parameters))}
param_set = set(parameters)
param_index_to_param_fqn = {}
for module_name, module in self.module.named_modules():
for param_name, param in module.named_parameters(recurse=False):
fqn = f"{module_name}.{param_name}"
# Bypass ignored parameters since those are not reduced by DDP
# to begin with.
if fqn not in self.parameters_to_ignore and param.requires_grad:
if param not in param_set:
self._log_and_throw(
ValueError,
f"Param with name {fqn} found in module parameters, but not DDP parameters."
" This indicates a bug in DDP, please report an issue to PyTorch.",
)
param_index = param_to_param_index[param]
param_index_to_param_fqn[param_index] = fqn
# Ensure we covered all parameters
if len(param_set) != len(param_index_to_param_fqn):
self._log_and_throw(
ValueError,
(
"Expected param to name mapping to cover all parameters, but"
f" got conflicting lengths: {len(param_set)} vs "
f"{len(param_index_to_param_fqn)}. This indicates a bug in DDP"
", please report an issue to PyTorch."
),
)
return param_index_to_param_fqn
def _get_parameters(self, m, recurse=True):
"""Return a generator of module parameters."""
def model_parameters(m):
ps = (
m._former_parameters.values()
if hasattr(m, "_former_parameters")
else m.parameters(recurse=False)
)
yield from ps
for mod in m.modules() if recurse else [m]:
yield from model_parameters(mod)
def _check_default_group(self):
pickle_not_supported = False
try:
if self.process_group != _get_default_group():
pickle_not_supported = True
except RuntimeError:
pickle_not_supported = True
if pickle_not_supported:
self._log_and_throw(
RuntimeError,
"DDP Pickling/Unpickling are only supported "
"when using DDP with the default process "
"group. That is, when you have called "
"init_process_group and have not passed "
"process_group argument to DDP constructor",
)
@contextmanager
def no_sync(self):
r"""
Context manager to disable gradient synchronizations across DDP processes.
Within this context, gradients will be accumulated on module
variables, which will later be synchronized in the first
forward-backward pass exiting the context.
Example::
>>> # xdoctest: +SKIP("undefined variables")
>>> ddp = torch.nn.parallel.DistributedDataParallel(model, pg)
>>> with ddp.no_sync():
>>> for input in inputs:
>>> ddp(input).backward() # no synchronization, accumulate grads
>>> ddp(another_input).backward() # synchronize grads
.. warning::
The forward pass should be included inside the context manager, or
else gradients will still be synchronized.
"""
old_require_backward_grad_sync = self.require_backward_grad_sync
self.require_backward_grad_sync = False
try:
yield
finally:
self.require_backward_grad_sync = old_require_backward_grad_sync
@classmethod
def _get_active_ddp_module(cls):
"""`TorchDynamo` requires DDP's status and module for cooperative optimization."""
return cls._active_ddp_module
# note, this ctxmgr function is marked 'skip' in torchdynamo, so dynamo only kicks in
# for the 'module_to_run' underneath
# see torch._dynamo/eval_frame.py TorchPatcher.patch for more details
@contextmanager
@torch._disable_dynamo(recursive=False)
def _inside_ddp_forward(self):
DistributedDataParallel._active_ddp_module = self
try:
yield
finally:
DistributedDataParallel._active_ddp_module = None
def _run_ddp_forward(self, *inputs, **kwargs):
if self._use_python_reducer:
return self.module(*inputs, **kwargs) # type: ignore[index]
else:
with self._inside_ddp_forward():
return self.module(*inputs, **kwargs) # type: ignore[index]
def _clear_grad_buffer(self):
# Making param.grad points to the grad buffers before backward is based on the
# assumption that the grad accumulation is done in place in autograd engine,
# for some edge cases, if the grad accumulation in autograd engine is not in
# place, then the param.grad and grad buffers are detached.
if self._delay_grad_buffer is not None:
# We batch zero_grad for all params by resetting the whole grad
# buffer when the grad of all params is set to None.
all_param_grad_none = all(
param.grad is None for param in self._delay_all_reduce_params
)
for index, param in enumerate(self._delay_all_reduce_params):
if param.grad is None:
param.grad = self._delay_grad_views[index]
if not all_param_grad_none:
param.grad.zero_()
if all_param_grad_none:
self._delay_grad_buffer.zero_()
def _lazy_init(self):
# Initialization for DDP that occurs after construction, but lazily
# before the first forward pass.
self._setup_in_backward_optimizers()
self._lazy_init_ran = True
def _pre_forward(self, *inputs, **kwargs):
if self._use_python_reducer:
return inputs, kwargs
if not self._lazy_init_ran and not torch.compiler.is_compiling():
self._lazy_init()
if self._delay_all_reduce_all_params:
return inputs, kwargs
if torch.is_grad_enabled() and self.require_backward_grad_sync:
assert self.logger is not None
self.logger.set_runtime_stats_and_log()
self.reducer.prepare_for_forward()
# Notify the join context that this process has not joined, if
# needed
work = Join.notify_join_context(self)
if work:
self.reducer._set_forward_pass_work_handle(
work, self._divide_by_initial_world_size # type: ignore[arg-type]
)
# Calling _rebuild_buckets before forward computation,
# It may allocate new buckets before deallocating old buckets
# inside _rebuild_buckets. To save peak memory usage,
# call _rebuild_buckets before the peak memory usage increases
# during forward computation.
# This should be called only once during whole training period.
if torch.is_grad_enabled() and self.reducer._rebuild_buckets():
logger.info("Reducer buckets have been rebuilt in this iteration.")
self._has_rebuilt_buckets = True
# sync params according to location (before/after forward) user
# specified as part of hook, if hook was specified.
if self._check_sync_bufs_pre_fwd():
self._sync_buffers()
if self._join_config.enable:
# Notify joined ranks whether they should sync in backwards pass or not.
self._check_global_requires_backward_grad_sync(is_joined_rank=False)
if self.device_ids:
moved_inputs, moved_kwargs = _to_kwargs(
inputs,
kwargs,
torch.device(self.device_type, self.device_ids[0]),
self.use_side_stream_for_tensor_copies,
)
args, kwargs = moved_inputs[0], moved_kwargs[0]
# Cast inputs to reduced precision if needed.
if self.mixed_precision is not None:
args, kwargs = _cast_forward_inputs(
self.mixed_precision.param_dtype,
*args,
**kwargs,
)
return args, kwargs
else:
# Cast inputs to reduced precision if needed.
# TODO (rohan-varma) test this codepath.
if self.mixed_precision is not None:
inputs, kwargs = _cast_forward_inputs(
self.mixed_precision.param_dtype,
*inputs,
**kwargs,
)
return inputs, kwargs
def _post_forward(self, output):
if self._use_python_reducer:
return output
if self._delay_all_reduce_all_params:
self._clear_grad_buffer()
return output
# sync params according to location (before/after forward) user
# specified as part of hook, if hook was specified.
if self._check_sync_bufs_post_fwd():
self._sync_buffers()
if torch.is_grad_enabled() and self.require_backward_grad_sync:
self.require_forward_param_sync = True
# We'll return the output object verbatim since it is a freeform
# object. We need to find any tensors in this object, though,
# because we need to figure out which parameters were used during
# this forward pass, to ensure we short circuit reduction for any
# unused parameters. Only if `find_unused_parameters` is set.
if self.find_unused_parameters and not self.static_graph:
# Do not need to populate this for static graph.
self.reducer.prepare_for_backward(list(_find_tensors(output)))
else:
self.reducer.prepare_for_backward([])
else:
self.require_forward_param_sync = False
# TODO: DDPSink is currently enabled for unused parameter detection and
# static graph training for first iteration.
if (self.find_unused_parameters and not self.static_graph) or (
self.static_graph and not self._static_graph_delay_allreduce_enqueued
):
(
output_tensor_list,
treespec,
output_is_rref,
) = _tree_flatten_with_rref(output)
output_placeholders: list[Optional[torch.Tensor]] = [
None for _ in range(len(output_tensor_list))
]
# Do not touch tensors that have no grad_fn, which can cause issues
# such as https://github.com/pytorch/pytorch/issues/60733
for i, output in enumerate(output_tensor_list):
if torch.is_tensor(output) and output.grad_fn is None:
output_placeholders[i] = output
# When find_unused_parameters=True, makes tensors which require grad
# run through the DDPSink backward pass. When not all outputs are
# used in loss, this makes those corresponding tensors receive
# undefined gradient which the reducer then handles to ensure
# param.grad field is not touched and we don't error out.
passthrough_tensor_list = _DDPSink.apply(
weakref.ref(self),
*output_tensor_list,
)
for i in range(len(output_placeholders)):
if output_placeholders[i] is None:
output_placeholders[i] = passthrough_tensor_list[i]
# Reconstruct output data structure.
output = _tree_unflatten_with_rref(
output_placeholders, treespec, output_is_rref
)
# At the end of the forward pass, reset the grad buffer and grad views
self._clear_grad_buffer()
return output
def forward(self, *inputs, **kwargs):
with torch.autograd.profiler.record_function("DistributedDataParallel.forward"):
inputs, kwargs = self._pre_forward(*inputs, **kwargs)
output = (
self.module.forward(*inputs, **kwargs)
if self._delay_all_reduce_all_params
else self._run_ddp_forward(*inputs, **kwargs)
)
return self._post_forward(output)
def scatter(self, inputs, kwargs, device_ids):
return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)
def to_kwargs(self, inputs, kwargs, device_id):
# Kept for BC
return _to_kwargs(
inputs,
kwargs,
torch.device(self.device_type, device_id),
self.use_side_stream_for_tensor_copies,
)
def gather(self, outputs, output_device):
return gather(outputs, output_device, dim=self.dim)
def train(self, mode=True):
super().train(mode)
return self
# When running in join mode, schedules an allreduce to notify joined ranks
# of whether backwards pass synchronization will run this iteration or not.
def _check_global_requires_backward_grad_sync(self, is_joined_rank):
if not is_joined_rank and self.require_backward_grad_sync:
requires_sync_tensor = torch.ones(1, device=self.device)
else:
requires_sync_tensor = torch.zeros(1, device=self.device)
work = dist.all_reduce(
requires_sync_tensor, group=self.process_group, async_op=True
)
# (kwen2501) This if condition is a plain translation of previous
# behavior, i.e. in the `is_joined_rank=False` case, `work.wait()`
# is not called and it doesn't care about the result. I am guessing
# that it just wants to fire a matching all-reduce and does not want
# the main stream to wait.
if is_joined_rank:
work.wait()
should_sync_backwards = requires_sync_tensor.item() != 0
return should_sync_backwards
else:
return None # Return value is not/should not be used.
# When running in join mode, checks and performs sync of module buffers if
# the models have buffers that should be synchronized in the forward pass.
def _check_and_sync_module_buffers(self):
if self._check_sync_bufs_pre_fwd():
authoritative_rank = self._find_common_rank(self._distributed_rank, False)
self._sync_module_buffers(authoritative_rank)
# When running in join model, agrees upon a common rank and broadcast model
# parameters to all other ranks.
def _sync_final_model(self, is_last_joiner):
# Agree upon the process that will be the authoritative model copy.
# The current rank is a candidate for being the authoritative copy if
# is_last_joiner=True. We break ties via picking the larger rank.
self._authoritative_rank = self._find_common_rank(
self._distributed_rank, is_last_joiner
)
_sync_module_states(
module=self.module,
process_group=self.process_group,
broadcast_bucket_size=self.broadcast_bucket_size,
src=self._authoritative_rank,
params_and_buffers_to_ignore=self.parameters_to_ignore,
broadcast_buffers=self.broadcast_buffers,
)
# Schedule comm ops to match those scheduled in the reducer's backward
# pass.
def _match_all_reduce_for_bwd_pass(self):
comm_work = []
# Schedule comm in the same order as Reducer schedules them, i.e.
# the order of the buckets. Retrieving the bucket order from the reducer
# ensures that we keep the same order in join mode, such as when bucket
# order is rebuilt dynamically.
# Returns grad_buckets in order, but real tensors are substituted with
# zero tensors of the same shape.
grad_buckets = self.reducer._get_zeros_like_grad_buckets()
for grad_bucket in grad_buckets:
# Joined processes contribute zero gradient. In the case that
# divide_by_initial_world_size=True, we divide grads by the static
# world size, if not, the dividing factor is reduced by the number
# of joined processes.
work = self.reducer._run_comm_hook(grad_bucket)
comm_work.append(work)
for work in comm_work:
work.wait()
# Allreduces the used parameter mapping across ranks.
def _match_unused_params_allreduce(self):
locally_used_param_map = self.reducer._get_local_used_map()
self.process_group.allreduce(locally_used_param_map)
def join(
self,
divide_by_initial_world_size: bool = True,
enable: bool = True,
throw_on_early_termination: bool = False,
):
r"""
Context manager for training with uneven inputs across processes in DDP.
This context manager will keep track of already-joined DDP processes,
and "shadow" the forward and backward passes by inserting collective
communication operations to match with the ones created by non-joined
DDP processes. This will ensure each collective call has a corresponding
call by already-joined DDP processes, preventing hangs or errors that
would otherwise happen when training with uneven inputs across
processes. Alternatively, if the flag ``throw_on_early_termination`` is
specified to be ``True``, all trainers will throw an error once one rank
runs out of inputs, allowing these errors to be caught and handled
according to application logic.
Once all DDP processes have joined, the context manager will broadcast
the model corresponding to the last joined process to all processes to
ensure the model is the same across all processes
(which is guaranteed by DDP).
To use this to enable training with uneven inputs across processes,
simply wrap this context manager around your training loop. No further
modifications to the model or data loading is required.
.. warning::
If the model or training loop this context manager is wrapped around
has additional distributed collective operations, such as
``SyncBatchNorm`` in the model's forward pass, then the flag
``throw_on_early_termination`` must be enabled. This is because this
context manager is not aware of non-DDP collective communication.
This flag will cause all ranks to throw when any one rank
exhausts inputs, allowing these errors to be caught and recovered
from across all ranks.
Args:
divide_by_initial_world_size (bool): If ``True``, will divide
gradients by the initial ``world_size`` DDP training was launched
with. If ``False``, will compute the effective world size
(number of ranks that have not depleted their inputs yet) and
divide gradients by that during allreduce. Set
``divide_by_initial_world_size=True`` to ensure every input
sample including the uneven inputs have equal weight in terms of
how much they contribute to the global gradient. This is
achieved by always dividing the gradient by the initial
``world_size`` even when we encounter uneven inputs. If you set
this to ``False``, we divide the gradient by the remaining
number of nodes. This ensures parity with training on a smaller
``world_size`` although it also means the uneven inputs would
contribute more towards the global gradient. Typically, you
would want to set this to ``True`` for cases where the last few
inputs of your training job are uneven. In extreme cases, where
there is a large discrepancy in the number of inputs, setting
this to ``False`` might provide better results.
enable (bool): Whether to enable uneven input detection or not. Pass
in ``enable=False`` to disable in cases where you know that
inputs are even across participating processes. Default is
``True``.
throw_on_early_termination (bool): Whether to throw an error
or continue training when at least one rank has exhausted
inputs. If ``True``, will throw upon the first rank reaching end
of data. If ``False``, will continue training with a smaller
effective world size until all ranks are joined. Note that if
this flag is specified, then the flag
``divide_by_initial_world_size`` would be ignored. Default
is ``False``.
Example::
>>> # xdoctest: +SKIP("Distributed")
>>> import torch
>>> import torch.distributed as dist
>>> import os
>>> import torch.multiprocessing as mp
>>> import torch.nn as nn
>>> # On each spawned worker
>>> def worker(rank):
>>> dist.init_process_group("nccl", rank=rank, world_size=2)
>>> torch.cuda.set_device(rank)
>>> model = nn.Linear(1, 1, bias=False).to(rank)
>>> model = torch.nn.parallel.DistributedDataParallel(
>>> model, device_ids=[rank], output_device=rank
>>> )
>>> # Rank 1 gets one more input than rank 0.
>>> inputs = [torch.tensor([1]).float() for _ in range(10 + rank)]
>>> with model.join():
>>> for _ in range(5):
>>> for inp in inputs:
>>> loss = model(inp).sum()
>>> loss.backward()
>>> # Without the join() API, the below synchronization will hang
>>> # blocking for rank 1's allreduce to complete.
>>> torch.cuda.synchronize(device=rank)
"""
return Join(
[self],
enable,
throw_on_early_termination,
divide_by_initial_world_size=divide_by_initial_world_size,
)
def join_hook(
self,
**kwargs,
):
r"""
DDP join hook enables training on uneven inputs by mirroring communications in forward and backward passes.
Arguments:
kwargs (dict): a :class:`dict` containing any keyword arguments
to modify the behavior of the join hook at run time; all
:class:`Joinable` instances sharing the same join context
manager are forwarded the same value for ``kwargs``.
The hook supports the following keyword arguments:
divide_by_initial_world_size (bool, optional):
If ``True``, then gradients are divided by the initial world
size that DDP was launched with.
If ``False``, then gradients are divided by the effective world
size (i.e. the number of non-joined processes), meaning that
the uneven inputs contribute more toward the global gradient.
Typically, this should be set to ``True`` if the degree of
unevenness is small but can be set to ``False`` in extreme
cases for possibly better results.
Default is ``True``.
"""
divide_by_initial_world_size = kwargs.get("divide_by_initial_world_size", True)
return _DDPJoinHook(
self, divide_by_initial_world_size=divide_by_initial_world_size
)
@property
def join_device(self):
return self.device
@property
def join_process_group(self):
return self.process_group
def _register_buffer_comm_hook(
self,
state,
hook: Callable,
comm_hook_location=_BufferCommHookLocation.POST_FORWARD,
):
r"""
Allow custom registration of hooks that define how buffer are synchronized across ranks.
The hook takes in an optional state and is passed in a Dict[str, Tensor]
corresponding to buffer names and the buffers, and can run arbitrary reductions
on buffers as opposed to DDP's default broadcast from rank 0. This is useful for
example if a counter needs to be summed or averaged across ranks every iteration.
Args:
state (Any): Optional state that is passed to the hook.
hook (Callable): Callable with the following signature:
``hook(state: object, bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]``
comm_hook_location (_BufferCommHookLocation): Enum value indicating
where to run the hook.
_BufferCommHookLocation.PRE_FORWARD means that the
hook will run _before_ the forward pass, and
_BufferCommHookLocation.POST_FORWARD means that the
hook will run _after_ the forward pass.
NOTE: To maximize performance, users can return a
List[torch.futures.Future] from their hook, and DDP will
install and await these hooks appropriately at the end of
the backward pass. This will ensure all buffers are
synchronized by the end of the backward pass. If this
setting is used, it is recommended to pass
comm_hook_location=_BufferCommHookLocation.POST_FORWARD,
which will trigger the hook after the forward pass.
If _BufferCommHookLocation.PRE_FORWARD is used, users must
ensure appropriate synchronization when manipulating GPU
buffers in the forward pass.
"""
assert callable(hook)
self.buffer_hook = _BufferCommHook(
buffer_comm_hook=hook,
buffer_comm_hook_state=state,
buffer_comm_hook_location=comm_hook_location,
)
def register_comm_hook(self, state: object, hook: Callable):
r"""
Register communication hook for user-defined DDP aggregation of gradients across multiple workers.
This hook would be very useful for researchers to try out new ideas. For
example, this hook can be used to implement several algorithms like GossipGrad
and gradient compression which involve different communication strategies for
parameter syncs while running Distributed DataParallel training.
Args:
state (object): Passed to the hook to maintain any state information during the training process.
Examples include error feedback in gradient compression,
peers to communicate with next in GossipGrad, etc.
It is locally stored by each worker
and shared by all the gradient tensors on the worker.
hook (Callable): Callable with the following signature:
``hook(state: object, bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]``:
This function is called once the bucket is ready. The
hook can perform whatever processing is needed and return
a Future indicating completion of any async work (ex: allreduce).
If the hook doesn't perform any communication, it still
must return a completed Future. The Future should hold the
new value of grad bucket's tensors. Once a bucket is ready,
c10d reducer would call this hook and use the tensors returned
by the Future and copy grads to individual parameters.
Note that the future's return type must be a single tensor.
We also provide an API called ``get_future`` to retrieve a
Future associated with the completion of ``c10d.ProcessGroup.Work``.
``get_future`` is currently supported for NCCL and also supported for most
operations on GLOO and MPI, except for peer to peer operations (send/recv).
.. warning ::
Grad bucket's tensors will not be predivided by world_size. User is responsible
to divide by the world_size in case of operations like allreduce.
.. warning ::
DDP communication hook can only be registered once and should be registered
before calling backward.
.. warning ::
The Future object that hook returns should contain a single tensor
that has the same shape with the tensors inside grad bucket.
.. warning ::
``get_future`` API supports NCCL, and partially GLOO and MPI backends (no support
for peer-to-peer operations like send/recv) and will return a ``torch.futures.Future``.
Example::
Below is an example of a noop hook that returns the same tensor.
>>> # xdoctest: +SKIP('undefined name')
>>> def noop(state: object, bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]:
>>> fut = torch.futures.Future()
>>> fut.set_result(bucket.buffer())
>>> return fut
>>> ddp.register_comm_hook(state=None, hook=noop)
Example::
Below is an example of a Parallel SGD algorithm where gradients are encoded before
allreduce, and then decoded after allreduce.
>>> # xdoctest: +SKIP('undefined name')
>>> def encode_and_decode(state: object, bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]:
>>> encoded_tensor = encode(bucket.buffer()) # encode gradients
>>> fut = torch.distributed.all_reduce(encoded_tensor).get_future()
>>> # Define the then callback to decode.
>>> def decode(fut):
>>> decoded_tensor = decode(fut.value()[0]) # decode gradients
>>> return decoded_tensor
>>> return fut.then(decode)
>>> ddp.register_comm_hook(state=None, hook=encode_and_decode)
"""
self._check_comm_hook(hook)
assert self.logger is not None
self.logger._set_comm_hook_name(hook.__qualname__)
self._comm_hooks.append((hook, state))
dist._register_comm_hook(self.reducer, state, hook)
def _register_builtin_comm_hook(self, comm_hook_type):
r"""
Register a built-in communication hook that specifies how DDP aggregates gradients across multiple workers.
The built-in hooks aim to provide efficient C++ implementations for certain hooks,
which might not be as efficient if implemented in Python using a Python communication hook.
Args:
comm_hook_type (dist.BuiltinCommHookType): type of communication hook, such as ALLREDUCE, FP16_COMPRESS, etc.
.. warning ::
DDP communication hook can only be registered once and should be registered
before calling backward.
Example::
Below is an example of a FP16 compression where gradients are
compressed into 16-bit floating-point numbers before allreduce, and
then decompressed after allreduce.
>>> # xdoctest: +SKIP('undefined name')
>>> ddp._register_builtin_comm_hook(dist.BuiltinCommHookType.FP16_COMPRESS)
"""
assert self.logger is not None
self.logger._set_comm_hook_name(str(comm_hook_type))
dist._register_builtin_comm_hook(self.reducer, comm_hook_type)
def _register_fused_optim(self, optim: type, *args, optim_params=None, **kwargs):
r"""
Register an optimizer in DDP to optimize parameter immediately after its gradient reduction.
Registers an optimizer with DDP such that the optimization for a
parameter will run immediately when that parameter's gradient is
finished with reduction, instead of waiting for all parameters'
gradients to finish reduction. This can result in a training speedup
depending on your workload since the optimizer can run while gradient
reduction for other parameters are still ongoing. In addition, this has
the potential to reduce peak memory consumption during training, as it
only needs to load the per-parameter optimizer states of a single
parameter at a time, instead of loading all per-parameter optimizer
states at once.
Args:
optim (Type): a ``torch.optim.Optimizer`` class to be registered
as a fused optimizer.
*args (Sequence[Any]): Arguments to forward to `optim`.
optim_params (Optional[Iterable[torch.Tensor]]): Set of parameters
to optimize, similar to `params` argument of traditional `torch.optim`
Optimizers. If this is omitted, all DDP model parameters will be
optimized.
**kwargs: (Dict[str, Any]): Keyword arguments to forward to `optim`.
.. warning ::
_register_fused_optim should only be called once on a DDP instance,
and registering multiple fused optimizers for the same DDP model
is not currently supported. Please ping
https://github.com/pytorch/pytorch/issues/71595 if this is necessary
for your use case.
.. warning ::
_register_fused_optim and register_comm_hook currently do not
compose together, meaning that custom DDP communication hooks are
not supported with overlapped optimizers. Please ping
https://github.com/pytorch/pytorch/issues/71595 if this is necessary
for your use case.
.. warning ::
Gradient accumulation and DDP `no_sync` are currently not supported
with overlapped optimizer. Please ping
https://github.com/pytorch/pytorch/issues/71595 if this is necessary
for your use case.
Example::
>>> # xdoctest: +SKIP("No rendezvous handler")
>>> torch.distributed.init_process_group(backend='nccl', world_size=4, init_method='...')
>>> net = torch.nn.parallel.DistributedDataParallel(model, pg)
>>> lr = 1e-2
>>> betas = (0.9, 0.99)
>>> eps = 1e-6
>>> net._register_fused_optim(torch.optim.Adam, lr, betas=betas, eps=eps)
>>> # Example with subset of parameters
>>> params_to_opt = [list(net.parameters())[0]]
>>> net._register_fused_optim(
... torch.optim.Adam, lr, optim_params=params_to_opt, betas=betas, eps=eps
... )
"""
# Note: importing in function, otherwise this will cause a circular
# import as optimizer_overlap module needs to import DistributedDataParallel.
from torch.distributed.algorithms._optimizer_overlap import _as_overlapped_optim
overlapped_optim = _as_overlapped_optim(optim, optim_params, *args, **kwargs)
try:
overlapped_optim.register_ddp(self)
except NotImplementedError as e:
raise RuntimeError(
f"{optim} does not support overlapped DDP. Please file an issue to PyTorch or the respective owner of {optim}."
) from e
def _distributed_broadcast_coalesced(
self, tensors, buffer_size, authoritative_rank=0
):
dist._broadcast_coalesced(
self.process_group, tensors, buffer_size, authoritative_rank
)
def _check_sync_bufs_post_fwd(self):
return (
self.will_sync_module_buffers()
and hasattr(self, "buffer_hook")
and self.buffer_hook.buffer_comm_hook_location
== _BufferCommHookLocation.POST_FORWARD
)
def _check_sync_bufs_pre_fwd(self):
return self.will_sync_module_buffers() and (
not hasattr(self, "buffer_hook")
or self.buffer_hook.buffer_comm_hook_location
== _BufferCommHookLocation.PRE_FORWARD
)
def will_sync_module_buffers(self):
return (
self.require_forward_param_sync
and self.broadcast_buffers
and len(self.modules_buffers) > 0
)
def _find_common_rank(self, input_rank, rank_cond):
# -1 indicates that this rank is not under consideration to be the
# common_rank
rank_to_use = torch.tensor(
[input_rank if rank_cond else -1],
device=self.device,
)
dist.all_reduce(rank_to_use, op=ReduceOp.MAX, group=self.process_group)
if rank_to_use.item() == -1:
self._log_and_throw(
ValueError,
"BUG! Expected rank_cond to be true for at least one process."
" This indicates a bug in PyTorch, please report an issue.",
)
return rank_to_use.item()
def _sync_buffers(self):
with torch.no_grad():
# module buffer sync
# Synchronize buffers across processes.
# If we are running DDP with the join manager, we have to agree
# upon a rank to sync module buffers from, since rank 0 may
# already have been joined and have stale module buffers.
if self._join_config.enable:
authoritative_rank = self._find_common_rank(
self._distributed_rank, True
)
else:
# The process with rank 0 is considered the authoritative copy.
authoritative_rank = 0
# Update self.modules_buffers incase any buffers were
# reassigned.
self._assign_modules_buffers()
self._sync_module_buffers(authoritative_rank)
def _sync_module_buffers(self, authoritative_rank):
if not hasattr(self, "buffer_hook"):
self._default_broadcast_coalesced(authoritative_rank=authoritative_rank)
else:
hook = self.buffer_hook.buffer_comm_hook
state = self.buffer_hook.buffer_comm_hook_state
futs = hook(state, self.named_module_buffers)
if futs is not None:
self.reducer._install_post_backward_futures(futs)
def _default_broadcast_coalesced(
self, bufs=None, bucket_size=None, authoritative_rank=0
):
"""
Broadcasts buffers from rank 0 to rest of workers.
If bufs, bucket_size are None, default values self.modules_buffers
and self.broadcast_bucket_size are used instead.
"""
if bufs is None:
bufs = self.modules_buffers
if bucket_size is None:
bucket_size = self.broadcast_bucket_size
self._distributed_broadcast_coalesced(bufs, bucket_size, authoritative_rank)
def _passing_sync_batchnorm_handle(self, module):
for layer in module.modules():
if isinstance(layer, torch.nn.modules.SyncBatchNorm):
if self.device_type == "cpu":
self._log_and_throw(
ValueError,
"SyncBatchNorm layers only work with GPU modules",
)
def _check_comm_hook(self, hook):
if not callable(hook):
self._log_and_throw(TypeError, "Communication hook must be callable.")
sig = inspect.signature(hook)
if (
sig.parameters["bucket"].annotation != inspect._empty
and sig.parameters["bucket"].annotation != dist.GradBucket
):
self._log_and_throw(
ValueError,
"Communication hook: bucket annotation should be dist.GradBucket.",
)
if (
sig.return_annotation != inspect._empty
and sig.return_annotation != torch.futures.Future[torch.Tensor]
):
self._log_and_throw(
ValueError,
"Communication hook: return annotation should be torch.futures.Future[torch.Tensor].",
)
if hook.__name__ in ["bf16_compress_hook", "bf16_compress_wrapper_hook"]:
cuda_supported = (
torch.version.cuda is not None
) or torch.version.hip is not None
nccl_supported = (
dist.is_available()
and dist.is_nccl_available()
and torch.cuda.nccl.version() >= (2, 10)
)
xpu_xccl_supported = (
dist.is_available()
and dist.is_xccl_available()
and torch.xpu.is_available()
)
if not ((cuda_supported and nccl_supported) or xpu_xccl_supported):
self._log_and_throw(
TypeError,
"BF16 all reduce communication hook required CUDA 11+ and NCCL 2.10+ or XPU and XCCL",
)
@property
def _distributed_rank(self):
return dist.get_rank(self.process_group)
@staticmethod
def _get_data_parallel_params(module, named_params=False):
"""Return a generator of parameters managed by a given DDP unit."""
for param in (
module.parameters() if not named_params else module.named_parameters()
):
if not hasattr(param, "_ddp_ignored"):
yield param
@staticmethod
def _set_params_and_buffers_to_ignore_for_model(
module, params_and_buffers_to_ignore
):
"""
Set parameters and buffers to be ignored by DDP.
Expected format for parameters is the fully qualified name: {module_name}.{param_name}, and
similarly, {module_name}.{buffer_name} for buffers. For example:
params_to_ignore = []
# NB: model here is vanilla PyTorch module, not yet wrapped with DDP.
for module_name, module in model.named_modules():
for param_name, param in module.named_parameters(recurse=False):
if should_ignore(param):
# Create expected format
fqn = f"{module_name}.{param_name}"
params_to_ignore.append(fqn)
torch.nn.parallel.DistributedDataParallel._set_params_and_buffers_to_ignore_for_model(
model,
params_to_ignore
)
"""
# This is a workaround to set parameters and buffers DDP should ignore
# during synchronization. It will be removed when the API is finalized
# as part of addressing https://github.com/pytorch/pytorch/issues/43690.
module._ddp_params_and_buffers_to_ignore = params_and_buffers_to_ignore
for name, param in module.named_parameters():
if name in params_and_buffers_to_ignore:
param._ddp_ignored = True
for name, buffer in module.named_buffers():
if name in params_and_buffers_to_ignore:
buffer._ddp_ignored = True
def _get_ddp_logging_data(self):
r"""
Return a dictionary of logging data for debugging and analysis.
This interface can be called after DistributedDataParallel() is
constructed. It returns a dictionary of logging data. It could help
for debugging and analysis. The logging data includes DistributedDataParallel
constructor input parameters, some internal states of DistributedDataParallel
and performance metrics. Simply print the dictionary and see what
these metrics are.
This is a prototype interface and subject to change in the future.
"""
assert self.logger is not None
ddp_logging_data = self.logger._get_ddp_logging_data()
return {**ddp_logging_data.strs_map, **ddp_logging_data.ints_map}
def _set_ddp_runtime_logging_sample_rate(self, sample_rate):
r"""
Set sample_rate of collecting runtime stats.
This interface allows users to set sample_rate of collecting
runtime stats. The runtime stats will be recorded for the
first 10 iterations, after 10 iterations runtime stats will be
recorded once every "sample_rate" training iterations. In
default, runtime stats are recorded for the first 10 iterations,
after 10 iterations runtime stats are recorded once every
"kDDPRuntimeLoggingSampleRate=100" training iterations.
This is a prototype interface and subject to change in the future.
"""
if sample_rate < 1:
self._log_and_throw(
ValueError,
"DDP runtime logging sample rate should be equal or greater than 1",
)
self.reducer._set_ddp_runtime_logging_sample_rate(sample_rate)
def _set_static_graph(self):
"""
Set static graph for DDP.
It is recommended to set static graph in the DDP constructor, which will
call this private API internally.
"""
# If self.static_graph has been set, no need to set it again
if self.static_graph:
warnings.warn(
"You've set static_graph to be True, no need to set it again."
)
return
self.static_graph = True
self._static_graph_delay_allreduce_enqueued = False
self.reducer._set_static_graph()
assert self.logger is not None
self.logger._set_static_graph()
if self.find_unused_parameters:
warnings.warn(
"You passed find_unused_parameters=true to DistributedDataParallel, "
"`_set_static_graph` will detect unused parameters automatically, so "
"you do not need to set find_unused_parameters=true, just be sure these "
"unused parameters will not change during training loop while calling "
"`_set_static_graph`."
)
def _remove_autograd_hooks(self):
"""Remove autograd hooks registered by the reducer on the model parameters."""
self.reducer._remove_autograd_hooks()
def _check_reducer_finalized(self):
"""
Check if the reducer has processed all buckets and finalized the backward appropriately.
It is useful to call this method after calling .backward() in your training loop
in order to avoid subsequent hard to debug errors down the road due to the
reducer not finalizing backward.
"""
self.reducer._check_reducer_finalized()
def _set_sparse_metadata(self, global_unique_ids):
self.reducer._set_sparse_metadata(global_unique_ids)
def _update_process_group(self, new_process_group):
"""
Dynamically updates the process group for DDP so that we can shrink/expand DDP
world size without having to reinitialize DDP.
NOTE: If you are using custom communications hooks via, register_comm_hook,
you need to update the process groups for those hooks separately.
"""
# Force a rebuild of buckets for a new process group. This ensures all ranks
# are synchronized in terms of when they will rebuild buckets and also
# re-evaluates previous assumptions of buckets given the world size might have
# changed.
self._has_rebuilt_buckets = False
self.reducer._reset_state()
if not _rank_not_in_group(new_process_group):
self.process_group = new_process_group
self.reducer._update_process_group(new_process_group)
def _set_ddp_sink_clone(self, val: bool):
"""
Sets whether or not DDPSink should clone the output tensors or not.
The default is True since if the loss is modified in place we run
into the view is modified in-place error.
Although, cloning the tensors can add significant memory and
performance hit if the number and size of tensors are large. As
a result, this can be set to False if you are not modifying the
loss in place.
"""
self._ddp_sink_clone = val
```
|
===========================================================================================================================
SOURCE CODE FILE: parallel_apply.py
LINES: 1
SIZE: 4.45 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\parallel\parallel_apply.py
ENCODING: utf-8
```py
import threading
from collections.abc import Sequence
from typing import Any, cast, Optional, Union
import torch
from torch._utils import ExceptionWrapper
from torch.cuda._utils import _get_device_index
from torch.nn.modules import Module
__all__ = ["get_a_var", "parallel_apply"]
def get_a_var(
obj: Union[torch.Tensor, list[Any], tuple[Any, ...], dict[Any, Any]],
) -> Optional[torch.Tensor]:
if isinstance(obj, torch.Tensor):
return obj
if isinstance(obj, (list, tuple)):
for result in map(get_a_var, obj):
if isinstance(result, torch.Tensor):
return result
if isinstance(obj, dict):
for result in map(get_a_var, obj.items()):
if isinstance(result, torch.Tensor):
return result
return None
def parallel_apply(
modules: Sequence[Module],
inputs: Sequence[Any],
kwargs_tup: Optional[Sequence[dict[str, Any]]] = None,
devices: Optional[Sequence[Optional[Union[int, torch.device]]]] = None,
) -> list[Any]:
r"""Apply each `module` in :attr:`modules` in parallel on each of :attr:`devices`.
Args:
modules (Module): modules to be parallelized
inputs (tensor): inputs to the modules
devices (list of int or torch.device): CUDA devices
:attr:`modules`, :attr:`inputs`, :attr:`kwargs_tup` (if given), and
:attr:`devices` (if given) should all have same length. Moreover, each
element of :attr:`inputs` can either be a single object as the only argument
to a module, or a collection of positional arguments.
"""
assert len(modules) == len(
inputs
), f"The number of modules {len(modules)} is not equal to the number of inputs {len(inputs)}"
if kwargs_tup is not None:
assert len(modules) == len(kwargs_tup)
else:
kwargs_tup = (cast(dict[str, Any], {}),) * len(modules)
if devices is not None:
assert len(modules) == len(devices)
else:
devices = [None] * len(modules)
devices = [_get_device_index(x, True) for x in devices]
streams = [torch.cuda.current_stream(x) for x in devices]
lock = threading.Lock()
results = {}
grad_enabled, autocast_enabled = (
torch.is_grad_enabled(),
torch.is_autocast_enabled(),
)
def _worker(
i: int,
module: Module,
input: Any,
kwargs: dict[str, Any],
device: Optional[Union[int, torch.device]] = None,
stream: Optional[torch.cuda.Stream] = None,
) -> None:
torch.set_grad_enabled(grad_enabled)
if device is None:
t = get_a_var(input)
if t is None:
with lock:
results[i] = ExceptionWrapper(
where=f"in replica {i}, no device was provided and no tensor input was found; "
"device cannot be resolved"
)
return
device = t.get_device()
if stream is None:
stream = torch.cuda.current_stream(device)
try:
with torch.cuda.device(device), torch.cuda.stream(
stream
), torch.amp.autocast("cuda", enabled=autocast_enabled):
# this also avoids accidental slicing of `input` if it is a Tensor
if not isinstance(input, (list, tuple)):
input = (input,)
output = module(*input, **kwargs)
with lock:
results[i] = output
except Exception:
with lock:
results[i] = ExceptionWrapper(
where=f"in replica {i} on device {device}"
)
if len(modules) > 1:
threads = [
threading.Thread(
target=_worker, args=(i, module, input, kwargs, device, stream)
)
for i, (module, input, kwargs, device, stream) in enumerate(
zip(modules, inputs, kwargs_tup, devices, streams)
)
]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
else:
_worker(0, modules[0], inputs[0], kwargs_tup[0], devices[0], streams[0])
outputs = []
for i in range(len(inputs)):
output = results[i]
if isinstance(output, ExceptionWrapper):
output.reraise()
outputs.append(output)
return outputs
```
|
======================================================================================================================
SOURCE CODE FILE: replicate.py
LINES: 1
SIZE: 7.02 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\parallel\replicate.py
ENCODING: utf-8
```py
from collections import OrderedDict
from collections.abc import Iterator, Sequence
from typing import cast, Optional, TYPE_CHECKING, TypeVar, Union
from typing_extensions import TypeIs
import torch
from torch._utils import _get_device_index
from torch.nn.modules import Module
from torch.nn.parallel import comm
if TYPE_CHECKING:
from torch._C import ScriptMethod
from torch.jit import ScriptModule
from torch.jit._state import EnabledProxy
__all__ = ["replicate"]
def _is_script_module(module: Module) -> TypeIs["ScriptModule"]:
import torch.jit
return isinstance(module, torch.jit.ScriptModule)
def _is_script_method(module: object) -> TypeIs["ScriptMethod"]:
import torch.jit
return isinstance(module, torch._C.ScriptMethod)
def _init_script_module() -> "ScriptModule":
import torch.jit
return torch.jit.ScriptModule()
def _is_jit_enabled() -> "EnabledProxy":
import torch.jit._state
return torch.jit._state._enabled
# Check if we can safely replicate the module.
# there are two types of module:
# 1. python modules
# 2. ScriptModule
#
# currently a module cannot be replicated properly if the descendants of
# any ScriptModule contains python module (type 1 above)
def _replicatable_module(module: Module, memo: Optional[set[Module]] = None) -> bool:
# module.modules() contains module itself as the first element
def descendant_modules(module: Module) -> Iterator[Module]:
gen = module.modules()
next(gen)
return gen
if not _is_jit_enabled():
return True
if memo is None:
memo = set()
# memoize visited modules
memo.add(module)
if _is_script_module(module):
memo.update(descendant_modules(module))
return all(
_is_script_module(descendant) for descendant in descendant_modules(module)
)
for child in module.children():
# since any unreplicatable module will cause the check to return
# False early, visited modules here can be safely ignored.
if child in memo:
continue
if not _replicatable_module(child, memo):
return False
return True
def _broadcast_coalesced_reshape(
tensors: Sequence[torch.Tensor],
devices: Sequence[Union[int, torch.device]],
detach: bool = False,
) -> list[list[torch.Tensor]]:
from torch.nn.parallel._functions import Broadcast
if detach:
return comm.broadcast_coalesced(tensors, devices)
else:
# Use the autograd function to broadcast if not detach
if len(tensors) > 0:
tensor_copies = Broadcast.apply(devices, *tensors)
return [
tensor_copies[i : i + len(tensors)]
for i in range(0, len(tensor_copies), len(tensors))
]
else:
return []
T = TypeVar("T", bound=Module)
def replicate(
network: T,
devices: Sequence[Union[int, torch.device]],
detach: bool = False,
) -> list[T]:
if not _replicatable_module(network):
raise RuntimeError(
"Cannot replicate network where python modules are "
"childrens of ScriptModule"
)
if not devices:
return []
devices = [_get_device_index(x, True) for x in devices]
num_replicas = len(devices)
params = list(network.parameters())
param_indices = {param: idx for idx, param in enumerate(params)}
param_copies = _broadcast_coalesced_reshape(params, devices, detach)
buffers = list(network.buffers())
buffers_rg: list[torch.Tensor] = []
buffers_not_rg: list[torch.Tensor] = []
for buf in buffers:
if buf.requires_grad and not detach:
buffers_rg.append(buf)
else:
buffers_not_rg.append(buf)
buffer_indices_rg = {buf: idx for idx, buf in enumerate(buffers_rg)}
buffer_indices_not_rg = {buf: idx for idx, buf in enumerate(buffers_not_rg)}
buffer_copies_rg = _broadcast_coalesced_reshape(buffers_rg, devices, detach=detach)
buffer_copies_not_rg = _broadcast_coalesced_reshape(
buffers_not_rg, devices, detach=True
)
modules = list(network.modules())
module_copies: list[list[Module]] = [[] for _ in devices]
module_indices: dict[Module, int] = {}
for i, module in enumerate(modules):
module_indices[module] = i
for j in range(num_replicas):
replica = module._replicate_for_data_parallel()
# This is a temporary fix for DDP. DDP needs to access the
# replicated model parameters. It used to do so through
# `mode.parameters()`. The fix added in #33907 for DP stops the
# `parameters()` API from exposing the replicated parameters.
# Hence, we add a `_former_parameters` dict here to support DDP.
replica._former_parameters = OrderedDict()
module_copies[j].append(replica)
for i, module in enumerate(modules):
for key, child in module._modules.items():
if child is None:
for j in range(num_replicas):
replica = module_copies[j][i]
replica._modules[key] = None
else:
module_idx = module_indices[child]
for j in range(num_replicas):
replica = module_copies[j][i]
setattr(replica, key, module_copies[j][module_idx])
for key, param in module._parameters.items():
if param is None:
for j in range(num_replicas):
replica = module_copies[j][i]
replica._parameters[key] = None
else:
param_idx = param_indices[param]
for j in range(num_replicas):
replica = module_copies[j][i]
param_copy = param_copies[j][param_idx]
# parameters in replicas are no longer leaves,
# so setattr them as non-parameter attributes
setattr(replica, key, param_copy)
# expose the parameter for DDP
replica._former_parameters[key] = param_copy
for key, buf in module._buffers.items(): # type: ignore[assignment]
if buf is None:
for j in range(num_replicas):
replica = module_copies[j][i]
replica._buffers[key] = None
else:
if buf.requires_grad and not detach:
buffer_copies = buffer_copies_rg
buffer_idx = buffer_indices_rg[buf]
else:
buffer_copies = buffer_copies_not_rg
buffer_idx = buffer_indices_not_rg[buf]
for j in range(num_replicas):
replica = module_copies[j][i]
setattr(replica, key, buffer_copies[j][buffer_idx])
return [cast(T, module_copies[j][0]) for j in range(num_replicas)]
```
|
===========================================================================================================================
SOURCE CODE FILE: scatter_gather.py
LINES: 1
SIZE: 5.01 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\parallel\scatter_gather.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
from collections.abc import Sequence
from typing import Any, Optional, overload, TypeVar, Union
from typing_extensions import deprecated
import torch
from torch.nn.parallel._functions import Gather, Scatter
__all__ = ["scatter", "scatter_kwargs", "gather"]
@deprecated(
"`is_namedtuple` is deprecated, please use the python checks instead",
category=FutureWarning,
)
def is_namedtuple(obj: Any) -> bool:
# Check if type was created from collections.namedtuple or a typing.NamedTuple.
return _is_namedtuple(obj)
def _is_namedtuple(obj: Any) -> bool:
# Check if type was created from collections.namedtuple or a typing.NamedTuple.
return (
isinstance(obj, tuple) and hasattr(obj, "_asdict") and hasattr(obj, "_fields")
)
T = TypeVar("T", dict, list, tuple)
# For some reason, 'scatter' returns a tuple when given a single Tensor input but a list otherwise.
@overload
def scatter(
inputs: torch.Tensor,
target_gpus: Sequence[Union[int, torch.device]],
dim: int = ...,
) -> tuple[torch.Tensor, ...]:
...
@overload
def scatter(
inputs: T,
target_gpus: Sequence[Union[int, torch.device]],
dim: int = ...,
) -> list[T]:
...
def scatter(inputs, target_gpus, dim=0):
r"""Slice tensors into approximately equal chunks and distributes them across given GPUs.
Duplicates references to objects that are not tensors.
"""
def scatter_map(obj):
if isinstance(obj, torch.Tensor):
return Scatter.apply(target_gpus, None, dim, obj)
if _is_namedtuple(obj):
return [type(obj)(*args) for args in zip(*map(scatter_map, obj))]
if isinstance(obj, tuple) and len(obj) > 0:
return list(zip(*map(scatter_map, obj)))
if isinstance(obj, list) and len(obj) > 0:
return [list(i) for i in zip(*map(scatter_map, obj))]
if isinstance(obj, dict) and len(obj) > 0:
return [type(obj)(i) for i in zip(*map(scatter_map, obj.items()))]
return [obj for _ in target_gpus]
# After scatter_map is called, a scatter_map cell will exist. This cell
# has a reference to the actual function scatter_map, which has references
# to a closure that has a reference to the scatter_map cell (because the
# fn is recursive). To avoid this reference cycle, we set the function to
# None, clearing the cell
try:
res = scatter_map(inputs)
finally:
scatter_map = None # type: ignore[assignment]
return res
def scatter_kwargs(
inputs: tuple[Any, ...],
kwargs: Optional[dict[str, Any]],
target_gpus: Sequence[Union[int, torch.device]],
dim: int = 0,
) -> tuple[tuple[Any, ...], tuple[dict[str, Any], ...]]:
r"""Scatter with support for kwargs dictionary."""
scattered_inputs = scatter(inputs, target_gpus, dim) if inputs else []
scattered_kwargs = scatter(kwargs, target_gpus, dim) if kwargs else []
if len(scattered_inputs) < len(scattered_kwargs):
scattered_inputs.extend(
() for _ in range(len(scattered_kwargs) - len(scattered_inputs))
)
elif len(scattered_kwargs) < len(inputs):
scattered_kwargs.extend(
{} for _ in range(len(scattered_inputs) - len(scattered_kwargs))
)
return tuple(scattered_inputs), tuple(scattered_kwargs)
def gather(outputs: Any, target_device: Union[int, torch.device], dim: int = 0) -> Any:
r"""Gather tensors from different GPUs on a specified device.
This function is useful for gathering the results of a distributed computation.
It takes a sequence of objects, one for each GPU, and returns a single object
on the specified device.
Args:
outputs (Any): A sequence of objects (potentially tensors) to gather.
target_device (Union[int, torch.device]): The device to gather the tensors to.
Use 'cpu' for CPU to avoid a deprecation warning.
dim (int, optional): The dimension along which to gather. Default: 0.
Returns:
Any: A gathered object (potentially tensor) on the specified device.
"""
def gather_map(outputs):
out = outputs[0]
if isinstance(out, torch.Tensor):
return Gather.apply(target_device, dim, *outputs)
if out is None:
return None
if isinstance(out, dict):
if not all(len(out) == len(d) for d in outputs):
raise ValueError("All dicts must have the same number of keys")
return type(out)((k, gather_map([d[k] for d in outputs])) for k in out)
if _is_namedtuple(out):
return type(out)._make(map(gather_map, zip(*outputs)))
return type(out)(map(gather_map, zip(*outputs)))
# Recursive function calls like this create reference cycles.
# Setting the function to None clears the refcycle.
try:
res = gather_map(outputs)
finally:
gather_map = None # type: ignore[assignment]
return res
```
|
=============================================================================================================
SOURCE CODE FILE: parameter.py
LINES: 2
SIZE: 11.38 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\parameter.py
ENCODING: utf-8
```py
from collections import OrderedDict
import torch
from torch._C import _disabled_torch_function_impl
# Metaclass to combine _TensorMeta and the instance check override for Parameter.
class _ParameterMeta(torch._C._TensorMeta):
# Make `isinstance(t, Parameter)` return True for custom tensor instances that have the _is_param flag.
def __instancecheck__(self, instance):
if self is Parameter:
if isinstance(instance, torch.Tensor) and getattr(
instance, "_is_param", False
):
return True
return super().__instancecheck__(instance)
class Parameter(torch.Tensor, metaclass=_ParameterMeta):
r"""A kind of Tensor that is to be considered a module parameter.
Parameters are :class:`~torch.Tensor` subclasses, that have a
very special property when used with :class:`Module` s - when they're
assigned as Module attributes they are automatically added to the list of
its parameters, and will appear e.g. in :meth:`~Module.parameters` iterator.
Assigning a Tensor doesn't have such effect. This is because one might
want to cache some temporary state, like last hidden state of the RNN, in
the model. If there was no such class as :class:`Parameter`, these
temporaries would get registered too.
Args:
data (Tensor): parameter tensor.
requires_grad (bool, optional): if the parameter requires gradient. Note that
the torch.no_grad() context does NOT affect the default behavior of
Parameter creation--the Parameter will still have `requires_grad=True` in
:class:`~no_grad` mode. See :ref:`locally-disable-grad-doc` for more
details. Default: `True`
"""
def __new__(cls, data=None, requires_grad=True):
if data is None:
data = torch.empty(0)
if type(data) is torch.Tensor or type(data) is Parameter:
# For ease of BC maintenance, keep this path for standard Tensor.
# Eventually (tm), we should change the behavior for standard Tensor to match.
return torch.Tensor._make_subclass(cls, data, requires_grad)
# Path for custom tensors: set a flag on the instance to indicate parameter-ness.
t = data.detach().requires_grad_(requires_grad)
if type(t) is not type(data):
raise RuntimeError(
f"Creating a Parameter from an instance of type {type(data).__name__} "
"requires that detach() returns an instance of the same type, but return "
f"type {type(t).__name__} was found instead. To use the type as a "
"Parameter, please correct the detach() semantics defined by "
"its __torch_dispatch__() implementation."
)
t._is_param = True
return t
# Note: the 3 methods below only apply to standard Tensor. Parameters of custom tensor types
# are still considered that custom tensor type and these methods will not be called for them.
def __deepcopy__(self, memo):
if id(self) in memo:
return memo[id(self)]
else:
result = type(self)(
self.data.clone(memory_format=torch.preserve_format), self.requires_grad
)
memo[id(self)] = result
return result
def __repr__(self):
return "Parameter containing:\n" + super().__repr__()
def __reduce_ex__(self, proto):
state = torch._utils._get_obj_state(self)
# See Note [Don't serialize hooks]
hooks = OrderedDict()
if not state:
return (
torch._utils._rebuild_parameter,
(self.data, self.requires_grad, hooks),
)
return (
torch._utils._rebuild_parameter_with_state,
(self.data, self.requires_grad, hooks, state),
)
__torch_function__ = _disabled_torch_function_impl
class UninitializedTensorMixin:
_allowed_methods = [
torch.Tensor.__hash__,
torch.Tensor.size,
torch.Tensor.copy_,
torch.Tensor.is_complex,
torch.Tensor.is_floating_point,
torch.Tensor.half,
torch.Tensor.float,
torch.Tensor.double,
torch.Tensor.char,
torch.Tensor.short,
torch.Tensor.int,
torch.Tensor.long,
torch.Tensor.cuda,
torch.Tensor.cpu,
torch.Tensor.to,
torch.Tensor.get_device,
torch._has_compatible_shallow_copy_type,
]
def materialize(self, shape, device=None, dtype=None):
r"""Create a Parameter or Tensor with the same properties of the uninitialized one.
Given a shape, it materializes a parameter in the same device
and with the same `dtype` as the current one or the specified ones in the
arguments.
Args:
shape : (tuple): the shape for the materialized tensor.
device (:class:`torch.device`): the desired device of the parameters
and buffers in this module. Optional.
dtype (:class:`torch.dtype`): the desired floating point type of
the floating point parameters and buffers in this module. Optional.
"""
if device is None:
device = self.data.device
if dtype is None:
dtype = self.data.dtype
self.data = torch.empty(shape, device=device, dtype=dtype)
self.__class__ = self.cls_to_become
@property
def shape(self):
raise RuntimeError(
"Can't access the shape of an uninitialized parameter or buffer. "
"This error usually happens in `load_state_dict` when trying to load "
"an uninitialized parameter into an initialized one. "
"Call `forward` to initialize the parameters before accessing their attributes."
)
def share_memory_(self):
raise RuntimeError(
"Can't share memory on an uninitialized parameter or buffer. "
"Call `forward` to initialize the parameters before calling "
"`module.share_memory()`."
)
def __repr__(self):
return f"<{self.__class__.__name__}>"
def __reduce_ex__(self, proto):
# See Note [Don't serialize hooks]
return (self.__class__, (self.requires_grad,))
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
# method-wrapper is to detect access to Tensor properties that are
# wrapped in descriptors
if func in cls._allowed_methods or func.__class__.__name__ == "method-wrapper":
if kwargs is None:
kwargs = {}
return super().__torch_function__(func, types, args, kwargs)
raise ValueError(
f"Attempted to use an uninitialized parameter in {func}. "
"This error happens when you are using a `LazyModule` or "
f"explicitly manipulating `torch.nn.parameter.{cls.__name__}` "
"objects. When using LazyModules Call `forward` with a dummy batch "
"to initialize the parameters before calling torch functions"
)
def is_lazy(param):
return isinstance(param, UninitializedTensorMixin)
class UninitializedParameter(UninitializedTensorMixin, Parameter):
r"""A parameter that is not initialized.
Uninitialized Parameters are a special case of :class:`torch.nn.Parameter`
where the shape of the data is still unknown.
Unlike a :class:`torch.nn.Parameter`, uninitialized parameters
hold no data and attempting to access some properties, like their shape,
will throw a runtime error. The only operations that can be performed on a uninitialized
parameter are changing its datatype, moving it to a different device and
converting it to a regular :class:`torch.nn.Parameter`.
The default device or dtype to use when the parameter is materialized can be set
during construction using e.g. ``device='cuda'``.
"""
cls_to_become = Parameter
def __new__(cls, requires_grad=True, device=None, dtype=None) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
data = torch.empty(0, **factory_kwargs)
return torch.Tensor._make_subclass(cls, data, requires_grad)
def __deepcopy__(self, memo):
if id(self) in memo:
return memo[id(self)]
else:
result = type(self)(self.requires_grad, self.data.device, self.data.dtype)
memo[id(self)] = result
return result
# Metaclass to combine _TensorMeta and the instance check override for Buffer.
class _BufferMeta(torch._C._TensorMeta):
# Make `isinstance(t, Buffer)` return True for custom tensor instances that have the _is_buffer flag.
def __instancecheck__(self, instance):
if self is Buffer:
if isinstance(instance, torch.Tensor) and getattr(
instance, "_is_buffer", False
):
return True
return super().__instancecheck__(instance)
class Buffer(torch.Tensor, metaclass=_BufferMeta):
r"""A kind of Tensor that should not be considered a model
parameter. For example, BatchNorm's ``running_mean`` is not a parameter, but is part of the module's state.
Buffers are :class:`~torch.Tensor` subclasses, that have a
very special property when used with :class:`Module` s -- when they're
assigned as Module attributes they are automatically added to the list of
its buffers, and will appear e.g. in :meth:`~torch.nn.Module.buffers` iterator.
Assigning a Tensor doesn't have such effect. One can still assign a Tensor as explicitly by using
the :meth:`~torch.nn.Module.register_buffer` function.
Args:
data (Tensor): buffer tensor.
persistent (bool, optional): whether the buffer is part of the module's
:attr:`state_dict`. Default: ``True``
"""
def __new__(cls, data=None, *, persistent=True):
if data is None:
data = torch.empty(0)
t = data.detach().requires_grad_(data.requires_grad)
t.persistent = persistent
t._is_buffer = True
return t
__torch_function__ = _disabled_torch_function_impl
class UninitializedBuffer(UninitializedTensorMixin, torch.Tensor):
r"""A buffer that is not initialized.
Uninitialized Buffer is a a special case of :class:`torch.Tensor`
where the shape of the data is still unknown.
Unlike a :class:`torch.Tensor`, uninitialized parameters
hold no data and attempting to access some properties, like their shape,
will throw a runtime error. The only operations that can be performed on a uninitialized
parameter are changing its datatype, moving it to a different device and
converting it to a regular :class:`torch.Tensor`.
The default device or dtype to use when the buffer is materialized can be set
during construction using e.g. ``device='cuda'``.
"""
cls_to_become = torch.Tensor
def __new__(
cls, requires_grad=False, device=None, dtype=None, persistent=True
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
data = torch.empty(0, **factory_kwargs)
ret = torch.Tensor._make_subclass(cls, data, requires_grad)
ret.persistent = persistent
ret._is_buffer = True
return ret
```
|
================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.37 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\qat\__init__.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""QAT Dynamic Modules.
This package is in the process of being deprecated.
Please, use `torch.ao.nn.qat.dynamic` instead.
"""
from torch.nn.qat import dynamic, modules # noqa: F403
from torch.nn.qat.modules import * # noqa: F403
__all__ = [
"Linear",
"Conv1d",
"Conv2d",
"Conv3d",
"Embedding",
"EmbeddingBag",
]
```
|
========================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.21 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\qat\dynamic\__init__.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""QAT Dynamic Modules.
This package is in the process of being deprecated.
Please, use `torch.ao.nn.qat.dynamic` instead.
"""
from torch.nn.qat.dynamic.modules import * # noqa: F403
```
|
================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.08 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\qat\dynamic\modules\__init__.py
ENCODING: utf-8
```py
from torch.nn.qat.dynamic.modules.linear import Linear
__all__ = ["Linear"]
```
|
==============================================================================================================================
SOURCE CODE FILE: linear.py
LINES: 1
SIZE: 0.42 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\qat\dynamic\modules\linear.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""QAT Modules.
This file is in the process of migration to `torch/ao/nn/qat/dynamic`, and
is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/qat/dynamic/modules`,
while adding an import statement here.
"""
from torch.ao.nn.qat.dynamic.modules.linear import Linear
```
|
========================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.51 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\qat\modules\__init__.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""QAT Modules.
This package is in the process of being deprecated.
Please, use `torch.ao.nn.qat.modules` instead.
"""
from torch.ao.nn.qat.modules.conv import Conv1d, Conv2d, Conv3d
from torch.ao.nn.qat.modules.embedding_ops import Embedding, EmbeddingBag
from torch.ao.nn.qat.modules.linear import Linear
from torch.nn.qat.modules import conv, embedding_ops, linear
__all__ = [
"Linear",
"Conv1d",
"Conv2d",
"Conv3d",
"Embedding",
"EmbeddingBag",
]
```
|
====================================================================================================================
SOURCE CODE FILE: conv.py
LINES: 1
SIZE: 0.41 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\qat\modules\conv.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""QAT Modules.
This file is in the process of migration to `torch/ao/nn/qat`, and
is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/qat/modules`,
while adding an import statement here.
"""
from torch.ao.nn.qat.modules.conv import Conv1d, Conv2d, Conv3d
```
|
=============================================================================================================================
SOURCE CODE FILE: embedding_ops.py
LINES: 1
SIZE: 0.46 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\qat\modules\embedding_ops.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""QAT Modules.
This file is in the process of migration to `torch/ao/nn/qat`, and
is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/qat/modules`,
while adding an import statement here.
"""
from torch.ao.nn.qat.modules.embedding_ops import Embedding, EmbeddingBag
__all__ = ["Embedding", "EmbeddingBag"]
```
|
======================================================================================================================
SOURCE CODE FILE: linear.py
LINES: 1
SIZE: 0.39 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\qat\modules\linear.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""QAT Modules.
This file is in the process of migration to `torch/ao/nn/qat`, and
is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/qat/modules`,
while adding an import statement here.
"""
from torch.ao.nn.qat.modules.linear import Linear
```
|
========================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.06 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantizable\__init__.py
ENCODING: utf-8
```py
from torch.nn.quantizable.modules import * # noqa: F403
```
|
================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.21 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantizable\modules\__init__.py
ENCODING: utf-8
```py
from torch.ao.nn.quantizable.modules.activation import MultiheadAttention
from torch.ao.nn.quantizable.modules.rnn import LSTM, LSTMCell
__all__ = [
"LSTM",
"LSTMCell",
"MultiheadAttention",
]
```
|
==================================================================================================================================
SOURCE CODE FILE: activation.py
LINES: 1
SIZE: 0.44 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantizable\modules\activation.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantizable Modules.
This file is in the process of migration to `torch/ao/nn/quantizable`, and
is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantizable/modules`,
while adding an import statement here.
"""
from torch.ao.nn.quantizable.modules.activation import MultiheadAttention
```
|
===========================================================================================================================
SOURCE CODE FILE: rnn.py
LINES: 1
SIZE: 0.43 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantizable\modules\rnn.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantizable Modules.
This file is in the process of migration to `torch/ao/nn/quantizable`, and
is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantizable/modules`,
while adding an import statement here.
"""
from torch.ao.nn.quantizable.modules.rnn import LSTM, LSTMCell
```
|
======================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.79 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\__init__.py
ENCODING: utf-8
```py
from torch.nn.quantized import dynamic, functional, modules # noqa: F403
from torch.nn.quantized.modules import * # noqa: F403
from torch.nn.quantized.modules import MaxPool2d
__all__ = [
"BatchNorm2d",
"BatchNorm3d",
"Conv1d",
"Conv2d",
"Conv3d",
"ConvTranspose1d",
"ConvTranspose2d",
"ConvTranspose3d",
"DeQuantize",
"Dropout",
"ELU",
"Embedding",
"EmbeddingBag",
"GroupNorm",
"Hardswish",
"InstanceNorm1d",
"InstanceNorm2d",
"InstanceNorm3d",
"LayerNorm",
"LeakyReLU",
"Linear",
"LSTM",
"MultiheadAttention",
"PReLU",
"Quantize",
"ReLU6",
"Sigmoid",
"Softmax",
# Wrapper modules
"FloatFunctional",
"FXFloatFunctional",
"QFunctional",
]
```
|
=================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.07 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\_reference\__init__.py
ENCODING: utf-8
```py
from torch.nn.quantized._reference.modules import * # noqa: F403
```
|
=========================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.03 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\_reference\modules\__init__.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Reference Modules.
This module is in the process of migration to
`torch/ao/nn/quantized/reference`, and is kept here for
compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/reference`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.reference.modules.conv import (
Conv1d,
Conv2d,
Conv3d,
ConvTranspose1d,
ConvTranspose2d,
ConvTranspose3d,
)
from torch.ao.nn.quantized.reference.modules.linear import Linear
from torch.ao.nn.quantized.reference.modules.rnn import GRUCell, LSTM, LSTMCell, RNNCell
from torch.ao.nn.quantized.reference.modules.sparse import Embedding, EmbeddingBag
__all__ = [
"Linear",
"Conv1d",
"Conv2d",
"Conv3d",
"ConvTranspose1d",
"ConvTranspose2d",
"ConvTranspose3d",
"RNNCell",
"LSTMCell",
"GRUCell",
"LSTM",
"Embedding",
"EmbeddingBag",
]
```
|
=====================================================================================================================================
SOURCE CODE FILE: conv.py
LINES: 1
SIZE: 0.59 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\_reference\modules\conv.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Reference Modules.
This module is in the process of migration to
`torch/ao/nn/quantized/reference`, and is kept here for
compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/reference`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.reference.modules.conv import (
_ConvNd,
_ConvTransposeNd,
Conv1d,
Conv2d,
Conv3d,
ConvTranspose1d,
ConvTranspose2d,
ConvTranspose3d,
)
```
|
=======================================================================================================================================
SOURCE CODE FILE: linear.py
LINES: 1
SIZE: 0.45 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\_reference\modules\linear.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Reference Modules.
This module is in the process of migration to
`torch/ao/nn/quantized/reference`, and is kept here for
compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/reference`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.reference.modules.linear import Linear
```
|
====================================================================================================================================
SOURCE CODE FILE: rnn.py
LINES: 1
SIZE: 0.53 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\_reference\modules\rnn.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Reference Modules.
This module is in the process of migration to
`torch/ao/nn/quantized/reference`, and is kept here for
compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/reference`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.reference.modules.rnn import (
GRUCell,
LSTM,
LSTMCell,
RNNBase,
RNNCell,
RNNCellBase,
)
```
|
=======================================================================================================================================
SOURCE CODE FILE: sparse.py
LINES: 1
SIZE: 0.47 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\_reference\modules\sparse.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Reference Modules.
This module is in the process of migration to
`torch/ao/nn/quantized/reference`, and is kept here for
compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/reference`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.reference.modules.sparse import Embedding, EmbeddingBag
```
|
======================================================================================================================================
SOURCE CODE FILE: utils.py
LINES: 1
SIZE: 0.59 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\_reference\modules\utils.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Reference Modules.
This module is in the process of migration to
`torch/ao/nn/quantized/reference`, and is kept here for
compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/reference`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.reference.modules.utils import (
_get_weight_qparam_keys,
_quantize_and_dequantize_weight,
_quantize_weight,
_save_weight_qparams,
ReferenceQuantizedModule,
)
```
|
==============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.06 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\dynamic\__init__.py
ENCODING: utf-8
```py
from torch.ao.nn.quantized.dynamic import * # noqa: F403
```
|
======================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.01 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\dynamic\modules\__init__.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Dynamic Modules.
This file is in the process of migration to `torch/ao/nn/quantized/dynamic`,
and is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/dynamic`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.dynamic.modules import conv, linear, rnn
from torch.ao.nn.quantized.dynamic.modules.conv import (
Conv1d,
Conv2d,
Conv3d,
ConvTranspose1d,
ConvTranspose2d,
ConvTranspose3d,
)
from torch.ao.nn.quantized.dynamic.modules.linear import Linear
from torch.ao.nn.quantized.dynamic.modules.rnn import (
GRU,
GRUCell,
LSTM,
LSTMCell,
RNNCell,
)
__all__ = [
"Linear",
"LSTM",
"GRU",
"LSTMCell",
"RNNCell",
"GRUCell",
"Conv1d",
"Conv2d",
"Conv3d",
"ConvTranspose1d",
"ConvTranspose2d",
"ConvTranspose3d",
]
```
|
==================================================================================================================================
SOURCE CODE FILE: conv.py
LINES: 1
SIZE: 0.68 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\dynamic\modules\conv.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Dynamic Modules.
This file is in the process of migration to `torch/ao/nn/quantized/dynamic`,
and is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/dynamic/modules`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.dynamic.modules.conv import (
Conv1d,
Conv2d,
Conv3d,
ConvTranspose1d,
ConvTranspose2d,
ConvTranspose3d,
)
__all__ = [
"Conv1d",
"Conv2d",
"Conv3d",
"ConvTranspose1d",
"ConvTranspose2d",
"ConvTranspose3d",
]
```
|
====================================================================================================================================
SOURCE CODE FILE: linear.py
LINES: 1
SIZE: 0.45 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\dynamic\modules\linear.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Dynamic Modules.
This file is in the process of migration to `torch/ao/nn/quantized/dynamic`,
and is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/dynamic/modules`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.dynamic.modules.linear import Linear
```
|
=================================================================================================================================
SOURCE CODE FILE: rnn.py
LINES: 1
SIZE: 0.76 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\dynamic\modules\rnn.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Dynamic Modules.
This file is in the process of migration to `torch/ao/nn/quantized/dynamic`,
and is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/dynamic/modules`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.dynamic.modules.rnn import (
GRU,
GRUCell,
LSTM,
LSTMCell,
pack_weight_bias,
PackedParameter,
RNNBase,
RNNCell,
RNNCellBase,
)
__all__ = [
"pack_weight_bias",
"PackedParameter",
"RNNBase",
"LSTM",
"GRU",
"RNNCellBase",
"RNNCell",
"LSTMCell",
"GRUCell",
]
```
|
========================================================================================================================
SOURCE CODE FILE: functional.py
LINES: 1
SIZE: 0.28 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\functional.py
ENCODING: utf-8
```py
r"""nn.quantized.functional.
Quantized equivalents of the `nn.functional`.
Note::
This location is in the process of being deprecated.
Please, use the `torch.ao.nn.quantized.functional` instead.
"""
from torch.ao.nn.quantized.functional import * # noqa: F401,F403
```
|
==============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 2.15 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\modules\__init__.py
ENCODING: utf-8
```py
r"""Quantized Modules.
Note::
The `torch.nn.quantized` namespace is in the process of being deprecated.
Please, use `torch.ao.nn.quantized` instead.
"""
# The following imports are needed in case the user decides
# to import the files directly,
# s.a. `from torch.nn.quantized.modules.conv import ...`.
# No need to add them to the `__all__`.
from torch.ao.nn.quantized.modules import (
activation,
batchnorm,
conv,
DeQuantize,
dropout,
embedding_ops,
functional_modules,
linear,
MaxPool2d,
normalization,
Quantize,
rnn,
utils,
)
from torch.ao.nn.quantized.modules.activation import (
ELU,
Hardswish,
LeakyReLU,
MultiheadAttention,
PReLU,
ReLU6,
Sigmoid,
Softmax,
)
from torch.ao.nn.quantized.modules.batchnorm import BatchNorm2d, BatchNorm3d
from torch.ao.nn.quantized.modules.conv import (
Conv1d,
Conv2d,
Conv3d,
ConvTranspose1d,
ConvTranspose2d,
ConvTranspose3d,
)
from torch.ao.nn.quantized.modules.dropout import Dropout
from torch.ao.nn.quantized.modules.embedding_ops import Embedding, EmbeddingBag
from torch.ao.nn.quantized.modules.functional_modules import (
FloatFunctional,
FXFloatFunctional,
QFunctional,
)
from torch.ao.nn.quantized.modules.linear import Linear
from torch.ao.nn.quantized.modules.normalization import (
GroupNorm,
InstanceNorm1d,
InstanceNorm2d,
InstanceNorm3d,
LayerNorm,
)
from torch.ao.nn.quantized.modules.rnn import LSTM
__all__ = [
"BatchNorm2d",
"BatchNorm3d",
"Conv1d",
"Conv2d",
"Conv3d",
"ConvTranspose1d",
"ConvTranspose2d",
"ConvTranspose3d",
"DeQuantize",
"ELU",
"Embedding",
"EmbeddingBag",
"GroupNorm",
"Hardswish",
"InstanceNorm1d",
"InstanceNorm2d",
"InstanceNorm3d",
"LayerNorm",
"LeakyReLU",
"Linear",
"LSTM",
"MultiheadAttention",
"Quantize",
"ReLU6",
"Sigmoid",
"Softmax",
"Dropout",
"PReLU",
# Wrapper modules
"FloatFunctional",
"FXFloatFunctional",
"QFunctional",
]
```
|
================================================================================================================================
SOURCE CODE FILE: activation.py
LINES: 1
SIZE: 0.54 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\modules\activation.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Modules.
This file is in the process of migration to `torch/ao/nn/quantized`, and
is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/modules`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.modules.activation import (
ELU,
Hardswish,
LeakyReLU,
MultiheadAttention,
PReLU,
ReLU6,
Sigmoid,
Softmax,
)
```
|
===============================================================================================================================
SOURCE CODE FILE: batchnorm.py
LINES: 1
SIZE: 0.44 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\modules\batchnorm.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Modules.
This file is in the process of migration to `torch/ao/nn/quantized`, and
is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/modules`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.modules.batchnorm import BatchNorm2d, BatchNorm3d
```
|
==========================================================================================================================
SOURCE CODE FILE: conv.py
LINES: 1
SIZE: 0.68 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\modules\conv.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Modules.
This file is in the process of migration to `torch/ao/nn/quantized`, and
is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/modules`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.modules.conv import (
_reverse_repeat_padding,
Conv1d,
Conv2d,
Conv3d,
ConvTranspose1d,
ConvTranspose2d,
ConvTranspose3d,
)
__all__ = [
"Conv1d",
"Conv2d",
"Conv3d",
"ConvTranspose1d",
"ConvTranspose2d",
"ConvTranspose3d",
]
```
|
=============================================================================================================================
SOURCE CODE FILE: dropout.py
LINES: 1
SIZE: 0.45 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\modules\dropout.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Modules.
This file is in the process of migration to `torch/ao/nn/quantized`, and
is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/modules`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.modules.dropout import Dropout
__all__ = ["Dropout"]
```
|
===================================================================================================================================
SOURCE CODE FILE: embedding_ops.py
LINES: 1
SIZE: 0.55 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\modules\embedding_ops.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Modules.
This file is in the process of migration to `torch/ao/nn/quantized`, and
is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/modules`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.modules.embedding_ops import (
Embedding,
EmbeddingBag,
EmbeddingPackedParams,
)
__all__ = ["EmbeddingPackedParams", "Embedding", "EmbeddingBag"]
```
|
========================================================================================================================================
SOURCE CODE FILE: functional_modules.py
LINES: 1
SIZE: 0.56 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\modules\functional_modules.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Modules.
This file is in the process of migration to `torch/ao/nn/quantized`, and
is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/modules`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.modules.functional_modules import (
FloatFunctional,
FXFloatFunctional,
QFunctional,
)
__all__ = ["FloatFunctional", "FXFloatFunctional", "QFunctional"]
```
|
============================================================================================================================
SOURCE CODE FILE: linear.py
LINES: 1
SIZE: 0.48 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\modules\linear.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Modules.
This file is in the process of migration to `torch/ao/nn/quantized`, and
is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/modules`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.modules.linear import Linear, LinearPackedParams
__all__ = ["LinearPackedParams", "Linear"]
```
|
===================================================================================================================================
SOURCE CODE FILE: normalization.py
LINES: 1
SIZE: 0.64 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\modules\normalization.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Modules.
This file is in the process of migration to `torch/ao/nn/quantized`, and
is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/modules`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.modules.normalization import (
GroupNorm,
InstanceNorm1d,
InstanceNorm2d,
InstanceNorm3d,
LayerNorm,
)
__all__ = [
"LayerNorm",
"GroupNorm",
"InstanceNorm1d",
"InstanceNorm2d",
"InstanceNorm3d",
]
```
|
=========================================================================================================================
SOURCE CODE FILE: rnn.py
LINES: 1
SIZE: 0.41 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\modules\rnn.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Modules.
This file is in the process of migration to `torch/ao/nn/quantized`, and
is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/modules`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.modules.rnn import LSTM
```
|
===========================================================================================================================
SOURCE CODE FILE: utils.py
LINES: 1
SIZE: 0.54 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\quantized\modules\utils.py
ENCODING: utf-8
```py
# flake8: noqa: F401
r"""Quantized Modules.
This file is in the process of migration to `torch/ao/nn/quantized`, and
is kept here for compatibility while the migration process is ongoing.
If you are adding a new entry/functionality, please, add it to the
appropriate file under the `torch/ao/nn/quantized/modules`,
while adding an import statement here.
"""
from torch.ao.nn.quantized.modules.utils import (
_hide_packed_params_repr,
_ntuple_from_first,
_pair_from_first,
_quantize_weight,
WeightedQuantizedModule,
)
```
|
==================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.26 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\__init__.py
ENCODING: utf-8
```py
from . import parametrizations, rnn, stateless
from .clip_grad import (
_clip_grads_with_norm_ as clip_grads_with_norm_,
_get_total_norm as get_total_norm,
clip_grad_norm,
clip_grad_norm_,
clip_grad_value_,
)
from .convert_parameters import parameters_to_vector, vector_to_parameters
from .fusion import (
fuse_conv_bn_eval,
fuse_conv_bn_weights,
fuse_linear_bn_eval,
fuse_linear_bn_weights,
)
from .init import skip_init
from .memory_format import (
convert_conv2d_weight_memory_format,
convert_conv3d_weight_memory_format,
)
from .spectral_norm import remove_spectral_norm, spectral_norm
from .weight_norm import remove_weight_norm, weight_norm
__all__ = [
"clip_grad_norm",
"clip_grad_norm_",
"clip_grads_with_norm_",
"clip_grad_value_",
"convert_conv2d_weight_memory_format",
"convert_conv3d_weight_memory_format",
"fuse_conv_bn_eval",
"fuse_conv_bn_weights",
"fuse_linear_bn_eval",
"fuse_linear_bn_weights",
"get_total_norm",
"parameters_to_vector",
"parametrizations",
"remove_spectral_norm",
"remove_weight_norm",
"rnn",
"skip_init",
"spectral_norm",
"stateless",
"vector_to_parameters",
"weight_norm",
]
```
|
============================================================================================================================
SOURCE CODE FILE: _deprecation_utils.py
LINES: 1
SIZE: 1.69 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\_deprecation_utils.py
ENCODING: utf-8
```py
import importlib
import warnings
from typing import Callable
_MESSAGE_TEMPLATE = (
r"Usage of '{old_location}' is deprecated; please use '{new_location}' instead."
)
def lazy_deprecated_import(
all: list[str],
old_module: str,
new_module: str,
) -> Callable:
r"""Import utility to lazily import deprecated packages / modules / functional.
The old_module and new_module are also used in the deprecation warning defined
by the `_MESSAGE_TEMPLATE`.
Args:
all: The list of the functions that are imported. Generally, the module's
__all__ list of the module.
old_module: Old module location
new_module: New module location / Migrated location
Returns:
Callable to assign to the `__getattr__`
Usage:
# In the `torch/nn/quantized/functional.py`
from torch.nn.utils._deprecation_utils import lazy_deprecated_import
_MIGRATED_TO = "torch.ao.nn.quantized.functional"
__getattr__ = lazy_deprecated_import(
all=__all__,
old_module=__name__,
new_module=_MIGRATED_TO)
"""
warning_message = _MESSAGE_TEMPLATE.format(
old_location=old_module, new_location=new_module
)
def getattr_dunder(name: str) -> None:
if name in all:
# We are using the "RuntimeWarning" to make sure it is not
# ignored by default.
warnings.warn(warning_message, RuntimeWarning)
package = importlib.import_module(new_module)
return getattr(package, name)
raise AttributeError(f"Module {new_module!r} has no attribute {name!r}.")
return getattr_dunder
```
|
====================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.45 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\_expanded_weights\__init__.py
ENCODING: utf-8
```py
from .conv_expanded_weights import ConvPerSampleGrad
from .embedding_expanded_weights import EmbeddingPerSampleGrad
from .expanded_weights_impl import ExpandedWeight
from .group_norm_expanded_weights import GroupNormPerSampleGrad
from .instance_norm_expanded_weights import InstanceNormPerSampleGrad
from .layer_norm_expanded_weights import LayerNormPerSampleGrad
from .linear_expanded_weights import LinearPerSampleGrad
__all__ = ["ExpandedWeight"]
```
|
=================================================================================================================================================
SOURCE CODE FILE: conv_expanded_weights.py
LINES: 1
SIZE: 2.61 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\_expanded_weights\conv_expanded_weights.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
import torch
import torch.nn.functional as F
from .conv_utils import (
conv_args_and_kwargs,
conv_backward,
conv_input_for_string_padding,
conv_picker,
)
from .expanded_weights_impl import ExpandedWeight, implements_per_sample_grads
from .expanded_weights_utils import forward_helper
@implements_per_sample_grads(F.conv1d)
@implements_per_sample_grads(F.conv2d)
@implements_per_sample_grads(F.conv3d)
class ConvPerSampleGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, kwarg_names, conv_fn, *expanded_args_and_kwargs):
expanded_args, expanded_kwargs = conv_args_and_kwargs(
kwarg_names, expanded_args_and_kwargs
)
orig_input = expanded_args[0]
was_same_padding = expanded_kwargs["padding"] == "same"
if isinstance(expanded_kwargs["padding"], str):
# if padding is a string, we'll do the necessary padding (slowly) using F.pad
kernel_size = expanded_args[1].shape[2:]
padding, dilation = expanded_kwargs["padding"], expanded_kwargs["dilation"]
input = conv_input_for_string_padding(
conv_fn, padding, expanded_args[0], dilation, kernel_size
)
expanded_args = (input, expanded_args[1])
# since we've already done the padding, don't need any more
expanded_kwargs["padding"] = 0
output = forward_helper(conv_fn, expanded_args, expanded_kwargs)
input, weight = expanded_args
batched_dim_size = conv_picker(conv_fn, 3, 4, 5)
if input.dim() != batched_dim_size:
raise RuntimeError(
f"Expanded Weights only support convolution with batched input, got {conv_fn} with an"
f"unbatched input of dim {input.dim()}, expected input of dim {batched_dim_size}"
)
ctx.conv_fn = conv_fn
ctx.batch_size = orig_input.shape[0]
ctx.input_required_grad = orig_input.requires_grad
ctx.orig_input_shape = orig_input.shape
ctx.was_same_padding = was_same_padding
ctx.stride, ctx.padding = expanded_kwargs["stride"], expanded_kwargs["padding"]
ctx.dilation, ctx.groups = (
expanded_kwargs["dilation"],
expanded_kwargs["groups"],
)
if isinstance(weight, ExpandedWeight):
ctx.input = input
ctx.weight = weight
ctx.bias = expanded_kwargs["bias"]
return output
@staticmethod
def backward(ctx, grad_output):
return conv_backward(ctx.conv_fn, ctx, grad_output)
```
|
======================================================================================================================================
SOURCE CODE FILE: conv_utils.py
LINES: 1
SIZE: 10.79 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\_expanded_weights\conv_utils.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
from typing import Optional
import numpy as np
import torch
import torch.nn.functional as F
from .expanded_weights_utils import (
set_grad_sample_if_exists,
unpack_expanded_weight_or_tensor,
)
THRESHOLD = 32
def conv_picker(func, conv1dOpt, conv2dOpt, conv3dOpt):
if func == F.conv1d:
return conv1dOpt
if func == F.conv2d:
return conv2dOpt
else:
assert func == F.conv3d
return conv3dOpt
def conv_args_and_kwargs(kwarg_names, expanded_args_and_kwargs):
args = expanded_args_and_kwargs[: len(expanded_args_and_kwargs) - len(kwarg_names)]
kwargs = expanded_args_and_kwargs[
len(expanded_args_and_kwargs) - len(kwarg_names) :
]
kwargs = dict(zip(kwarg_names, kwargs))
return conv_normalizer(*args, **kwargs)
def conv_normalizer(
input,
weight,
bias=None,
stride=1,
padding=0,
dilation=1,
groups=1,
):
return (input, weight), {
"bias": bias,
"stride": stride,
"padding": padding,
"dilation": dilation,
"groups": groups,
}
def conv_input_for_string_padding(func, padding_style, input, dilation, kernel_size):
if padding_style == "valid":
return input
else:
padding = int_padding_for_string_padding(
func, padding_style, dilation, kernel_size
)
return F.pad(input, padding)
def int_padding_for_string_padding(func, padding_style, dilation, kernel_size):
def get_dilation(i):
return dilation[i] if isinstance(dilation, tuple) else dilation
if padding_style == "same":
padding: list[int] = []
# F.pad needs the padding in reverse order from what conv expects
for i in range(conv_picker(func, 0, 1, 2), -1, -1):
padding += conv_padding_for_same(get_dilation(i), kernel_size[i])
return padding
elif padding_style == "valid":
return conv_picker(func, 2, 4, 6) * (0,)
else:
raise RuntimeError(
f"got padding type of {padding_style}, only accept 'same' or 'valid'"
)
def conv_padding_for_same(dilation, kernel_size):
total_pad = dilation * (kernel_size - 1)
left_pad = total_pad // 2
right_pad = total_pad - left_pad
return left_pad, right_pad
def conv_backward(func, ctx, grad_output):
def weight_grad_sample(weight):
if batch_size < THRESHOLD and groups == 1:
return conv_group_weight_grad_sample(
ctx.input,
grad_output,
weight_shape,
stride,
padding,
dilation,
batch_size,
func,
)
else:
return conv_unfold_weight_grad_sample(
ctx.input,
grad_output,
weight_shape,
kernel_size,
stride,
padding,
dilation,
groups,
func,
)
def expand(param):
if isinstance(param, int):
return conv_picker(func, (param,), (param, param), (param, param, param))
else:
return param
def calc_total_padding(func, was_same, padding, dilation, kernel_size):
if was_same:
all_padding = int_padding_for_string_padding(
func, "same", dilation, kernel_size
)
# F.pad needs the padding in reverse order from what conv expects
total_padding = tuple(
all_padding[i] + all_padding[i - 1]
for i in range(len(all_padding) - 1, -1, -2)
)
return total_padding
else:
return tuple(2 * pad for pad in padding)
weight_shape = ctx.weight.shape
stride, padding, dilation, groups = (
expand(ctx.stride),
expand(ctx.padding),
expand(ctx.dilation),
ctx.groups,
)
kernel_size = [weight_shape[i] for i in range(2, conv_picker(func, 3, 4, 5))]
batch_size = ctx.batch_size
results: list[Optional[torch.Tensor]] = []
results.append(None) # for kwarg names
results.append(None) # for op reference
# "same" padding may give uneven padding on either side so we need to separate the "padding" attr and total padding
total_padding = calc_total_padding(
func, ctx.was_same_padding, padding, dilation, kernel_size
)
if ctx.input_required_grad:
output_padding = []
input_dims = conv_picker(func, 1, 2, 3)
for i in range(input_dims):
input_dim = ctx.orig_input_shape[2 + i]
output_padding.append(
(
total_padding[i]
+ input_dim
- (kernel_size[i] * dilation[i] - dilation[i] + 1)
)
% stride[i]
)
weight_ = unpack_expanded_weight_or_tensor(ctx.weight)
transpose_func = conv_picker(
func, F.conv_transpose1d, F.conv_transpose2d, F.conv_transpose3d
)
out = transpose_func(
grad_output,
weight_,
None,
stride,
padding,
tuple(output_padding),
groups,
dilation,
)
if ctx.was_same_padding:
for i in range(len(total_padding)):
out = torch.narrow(
out, 2 + i, total_padding[i] // 2, ctx.orig_input_shape[2 + i]
)
results.append(out)
else:
results.append(None)
# weight and bias don't compute batched gradients; no other arguments are differentiable
results = results + [None] * 6
# set grad_sample field for weight and bias with per sample gradients
set_grad_sample_if_exists(ctx.weight, weight_grad_sample)
set_grad_sample_if_exists(
ctx.bias, lambda _: grad_output.reshape(*grad_output.shape[:2], -1).sum(dim=2)
)
return tuple(results)
def conv_unfold_weight_grad_sample(
input,
grad_output,
weight_shape,
kernel_size,
stride,
padding,
dilation,
groups,
func,
):
n = input.shape[0]
in_channels = input.shape[1]
unfold_func = conv_picker(
func,
lambda: F.unfold(
input.unsqueeze(-2),
kernel_size=(1, kernel_size[0]),
dilation=(1, dilation[0]),
padding=(0, padding[0]),
stride=(1, stride[0]),
),
lambda: F.unfold(
input, kernel_size, dilation=dilation, padding=padding, stride=stride
),
lambda: unfold3d(input, kernel_size, padding, stride, dilation),
)
input = unfold_func()
grad_output = grad_output.reshape(n, -1, input.shape[-1])
# n=batch_sz; o=num_out_channels; p=(num_in_channels/groups)*kernel_sz
weight_grad_sample = torch.einsum("noq,npq->nop", grad_output, input)
# rearrange the above tensor and extract diagonals.
weight_grad_sample = weight_grad_sample.view(
n,
groups,
-1,
groups,
int(in_channels / groups),
np.prod(kernel_size),
)
weight_grad_sample = torch.einsum(
"ngrg...->ngr...", weight_grad_sample
).contiguous()
shape = [n] + list(weight_shape)
weight_grad_sample = weight_grad_sample.view(shape)
return weight_grad_sample
def conv_group_weight_grad_sample(
input,
grad_output,
weight_shape,
stride,
padding,
dilation,
batch_size,
func,
):
I = input.shape[1]
O = grad_output.shape[1]
input_ = input.transpose(0, 1)
grad_output_ = grad_output.view(
grad_output.shape[0] * grad_output.shape[1], 1, *grad_output.shape[2:]
)
weight_grad_sample = func(
input_,
grad_output_,
None,
stride=dilation,
padding=padding,
dilation=stride,
groups=batch_size,
)
input_dims = conv_picker(func, 3, 4, 5)
for i in range(2, input_dims):
weight_grad_sample = weight_grad_sample.narrow(i, 0, weight_shape[i])
weight_grad_sample = weight_grad_sample.view(
I, batch_size, O, *weight_grad_sample.shape[2:]
)
weight_grad_sample = weight_grad_sample.movedim(0, 2)
return weight_grad_sample
def unfold3d(
tensor,
kernel_size,
padding,
stride,
dilation,
):
r"""
Extract sliding local blocks from an batched input tensor.
:class:`torch.nn.Unfold` only supports 4D inputs (batched image-like tensors).
This method implements the same action for 5D inputs
Args:
tensor: An input tensor of shape ``(B, C, D, H, W)``.
kernel_size: the size of the sliding blocks
padding: implicit zero padding to be added on both sides of input
stride: the stride of the sliding blocks in the input spatial dimensions
dilation: the spacing between the kernel points.
Returns:
A tensor of shape ``(B, C * np.prod(kernel_size), L)``, where L - output spatial dimensions.
See :class:`torch.nn.Unfold` for more details
Example:
>>> # xdoctest: +SKIP
>>> B, C, D, H, W = 3, 4, 5, 6, 7
>>> tensor = torch.arange(1, B * C * D * H * W + 1.).view(B, C, D, H, W)
>>> unfold3d(tensor, kernel_size=2, padding=0, stride=1).shape
torch.Size([3, 32, 120])
"""
if len(tensor.shape) != 5:
raise ValueError(
f"Input tensor must be of the shape [B, C, D, H, W]. Got{tensor.shape}"
)
if dilation != (1, 1, 1):
raise NotImplementedError(f"dilation={dilation} not supported.")
batch_size, channels, _, _, _ = tensor.shape
# Input shape: (B, C, D, H, W)
tensor = F.pad(
tensor, (padding[2], padding[2], padding[1], padding[1], padding[0], padding[0])
)
# Output shape: (B, C, D+2*padding[2], H+2*padding[1], W+2*padding[0])
tensor = tensor.unfold(dimension=2, size=kernel_size[0], step=stride[0])
tensor = tensor.unfold(dimension=3, size=kernel_size[1], step=stride[1])
tensor = tensor.unfold(dimension=4, size=kernel_size[2], step=stride[2])
# Output shape: (B, C, D_out, H_out, W_out, kernel_size[0], kernel_size[1], kernel_size[2])
# For D_out, H_out, W_out definitions see :class:`torch.nn.Unfold`
tensor = tensor.permute(0, 2, 3, 4, 1, 5, 6, 7)
# Output shape: (B, D_out, H_out, W_out, C, kernel_size[0], kernel_size[1], kernel_size[2])
tensor = tensor.reshape(batch_size, -1, channels * np.prod(kernel_size)).transpose(
1, 2
)
# Output shape: (B, D_out * H_out * W_out, C * kernel_size[0] * kernel_size[1] * kernel_size[2]
return tensor
```
|
======================================================================================================================================================
SOURCE CODE FILE: embedding_expanded_weights.py
LINES: 1
SIZE: 2.86 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\_expanded_weights\embedding_expanded_weights.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
from typing import Optional
import torch
import torch.nn.functional as F
from .expanded_weights_impl import implements_per_sample_grads
from .expanded_weights_utils import (
forward_helper,
set_grad_sample_if_exists,
standard_kwargs,
)
@implements_per_sample_grads(F.embedding)
class EmbeddingPerSampleGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, kwarg_names, _, *expanded_args_and_kwargs):
expanded_args, expanded_kwargs = standard_kwargs(
kwarg_names, expanded_args_and_kwargs
)
if len(expanded_args[0].shape) == 1:
raise RuntimeError(
f"Expanded Weights needs an input with a batch size, got a 1D tensor, {expanded_args[0]}"
)
output = forward_helper(F.embedding, expanded_args, expanded_kwargs)
ctx.input, ctx.weight = expanded_args
ctx.padding_idx, ctx.scale_grad_by_freq = (
expanded_kwargs["padding_idx"],
expanded_kwargs["scale_grad_by_freq"],
)
ctx.sparse = expanded_kwargs["sparse"]
return output
@staticmethod
def backward(ctx, grad_output):
input, weight = ctx.input, ctx.weight
padding_idx, scale_grad_by_freq, sparse = (
ctx.padding_idx,
ctx.scale_grad_by_freq,
ctx.sparse,
)
def weight_per_sample_grad(weight):
batch_size = input.shape[0]
embedding_dim = weight.shape[1]
index = (
input.unsqueeze(-1)
.expand(*input.shape, embedding_dim)
.reshape(batch_size, -1, embedding_dim)
)
grad_sample = torch.zeros(
batch_size, *weight.shape, device=weight.device, dtype=grad_output.dtype
)
return grad_sample.scatter_add_(
1, index, grad_output.reshape(batch_size, -1, embedding_dim)
)
results: list[Optional[torch.Tensor]] = []
results.append(None) # for kwarg names
results.append(None) # for op reference
if input.requires_grad:
bw_fn = torch.ops.aten.embedding_backward
results.append(
bw_fn(
grad_output,
input,
weight.shape[0],
padding_idx,
scale_grad_by_freq,
sparse,
)
)
else:
results.append(None)
# weight doesn't compute batched gradients; no other arguments are differentiable (2 not saved from forward)
results = results + [None] * 6
# set grad_sample field for weight with per sample gradients
set_grad_sample_if_exists(weight, weight_per_sample_grad)
return tuple(results)
```
|
=================================================================================================================================================
SOURCE CODE FILE: expanded_weights_impl.py
LINES: 1
SIZE: 6.17 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\_expanded_weights\expanded_weights_impl.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
import functools
from contextlib import contextmanager
from typing import Callable
import torch
from torch._decomp import decomposition_table
from torch.utils._pytree import tree_map_only
HANDLED_FUNCTIONS: dict[Callable, torch.autograd.Function] = {}
aten = torch._ops.ops.aten
# __torch_function__ runs before the pydispatcher so we need to manually use the same
# decompositions indexed by their torch equivalent
expanded_weights_rnn_decomps = {
# func: (input_decomp, data_decomp)
torch.rnn_relu: (
decomposition_table[aten.rnn_relu.input],
decomposition_table[aten.rnn_relu.data],
),
torch.rnn_tanh: (
decomposition_table[aten.rnn_tanh.input],
decomposition_table[aten.rnn_tanh.data],
),
torch.lstm: (
decomposition_table[aten.lstm.input],
decomposition_table[aten.lstm.data],
),
torch.gru: (
decomposition_table[aten.gru.input],
decomposition_table[aten.gru.data],
),
}
# all of the RNN decomps run linear with the batch dimension second, even if batch_first was set
@contextmanager
def batch_second(args, kwargs):
def set_batch_second(ew):
ew.set_batch_first(False)
def reset_batch_first(ew):
ew.set_batch_first(True)
tree_map_only(ExpandedWeight, set_batch_second, args)
tree_map_only(ExpandedWeight, set_batch_second, kwargs)
try:
yield
finally:
tree_map_only(ExpandedWeight, reset_batch_first, args)
tree_map_only(ExpandedWeight, reset_batch_first, kwargs)
# to support packed sequences, we need to allow for smaller batches. Expanded weights represents the largest batch
@contextmanager
def allow_smaller_batches(args, kwargs):
def allow(ew):
ew.set_allow_smaller_batches(True)
def reset(ew):
ew.set_allow_smaller_batches(False)
tree_map_only(ExpandedWeight, allow, args)
tree_map_only(ExpandedWeight, allow, kwargs)
try:
yield
finally:
tree_map_only(ExpandedWeight, reset, args)
tree_map_only(ExpandedWeight, reset, kwargs)
@contextmanager
def setup_rnn(use_input_variant, args, kwargs):
with batch_second(args, kwargs) if use_input_variant else allow_smaller_batches(
args, kwargs
):
yield
def implements_per_sample_grads(torch_function):
@functools.wraps(torch_function)
def decorator(autograd_func):
HANDLED_FUNCTIONS[torch_function] = autograd_func
return autograd_func
return decorator
# ExpandedWeight represents a weight (parameter) Tensor that has an expanded
# batch dimension. Operations on the ExpandedWeight Tensor act exactly like
# those without an expanded batch dimension but a call to .backward() populates
# the original (unexpanded) tensor with per-sample-gradients for in the grad_sample field
#
# ExpandedWeight has a fallback that always fails since we cannot know what the batch
# dimension of the input tensor is and therefore cannot know if this is a valid call
#
# This is a __torch_function__ object but it could have also been a Tensor Extension
# with a dispatch key.
#
# Needs to be a tensor subclass to allow reparamaterization
class ExpandedWeight(torch.Tensor):
def __init__(self, orig_weight, batch_size, loss_reduction):
self.batch_size = batch_size
self.batch_first = True
self.allow_smaller_batches = False
self.orig_weight = orig_weight
self.loss_reduction = loss_reduction
handled_functions = HANDLED_FUNCTIONS
def __new__(cls, orig_weight, batch_size, loss_reduction):
if not isinstance(orig_weight, torch.Tensor):
raise RuntimeError(
f"Can only make Expanded Weights of Tensors, got {type(orig_weight).__name__}"
)
if not orig_weight.requires_grad:
raise RuntimeError(
"Can only build ExpandedWeights objects of tensors that require_grad"
)
ret = torch.Tensor._make_subclass(cls, orig_weight, True)
return ret
@classmethod
def __torch_function__(cls, func, _, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
if func in expanded_weights_rnn_decomps:
# in aten, choosing the input or data variants is done by parsing logic. This mimics some of that
decomp_opts = expanded_weights_rnn_decomps[func]
use_input_variant = isinstance(
args[2], list
) # data variant uses a list here
decomp = decomp_opts[0] if use_input_variant else decomp_opts[1]
if decomp is not None:
with setup_rnn(use_input_variant, args, kwargs):
return decomp(*args, **kwargs)
if func == torch._cudnn_rnn_flatten_weight:
# since we aren't using the fused cuda kernels for RNNs, don't do this
return
if func in cls.handled_functions:
return cls.handled_functions[func].apply(
tuple(kwargs.keys()), func, *(args + tuple(kwargs.values()))
)
# We cannot use a fallback here because we do not know the batch dimension for any regular tensor inputs,
# i.e. torch.add(torch.Tensor, ExpandedWeight)
raise RuntimeError(
f"Expanded Weights encountered but cannot handle function {func.__name__}"
)
@property
def dtype(self):
return self.orig_weight.dtype
@property
def data(self):
return self.orig_weight.data
@property
def shape(self):
return self.orig_weight.shape
@property
def device(self):
return self.orig_weight.device
@property
def is_cuda(self):
return self.orig_weight.is_cuda
def data_ptr(self):
return self.orig_weight.data_ptr()
def get_device(self):
return self.orig_weight.get_device()
def set_allow_smaller_batches(self, is_allow_smaller_batches):
self.allow_smaller_batches = is_allow_smaller_batches
def set_batch_first(self, is_batch_first=True):
self.batch_first = is_batch_first
```
|
==================================================================================================================================================
SOURCE CODE FILE: expanded_weights_utils.py
LINES: 1
SIZE: 7.59 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\_expanded_weights\expanded_weights_utils.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
from typing import Optional
import torch
from .expanded_weights_impl import ExpandedWeight
def is_batch_first(expanded_args_and_kwargs):
batch_first = None
for arg in expanded_args_and_kwargs:
if not isinstance(arg, ExpandedWeight):
continue
if not batch_first:
batch_first = arg.batch_first
elif arg.batch_first != batch_first:
raise RuntimeError(
"Got conflicting batch_first arguments in the same layer"
)
return batch_first
def standard_kwargs(kwarg_names, expanded_args):
r"""Separate args and kwargs from `__torch_function__`s that standardize kwargs.
Most `__torch_function__`s standardize the kwargs that they give, so this will separate
the args and kwargs they pass. Functions that don't are linear and convND.
"""
kwarg_values = expanded_args[len(expanded_args) - len(kwarg_names) :]
expanded_args_without_kwargs = expanded_args[
: len(expanded_args) - len(kwarg_names)
]
expanded_kwargs = dict(zip(kwarg_names, kwarg_values))
return expanded_args_without_kwargs, expanded_kwargs
def forward_helper(func, expanded_args, expanded_kwargs):
r"""Compute the forward pass for a function that has expanded weight(s) passed to it.
It will run the forward pass where all ExpandedWeights are their original
weight. It runs checks on the given arguments and detaches the outputs.
.. note:: First argument in :attr:`expanded_args` must be the input with the batch
dimension as the first element of the shape
.. note:: :attr:`func` must return a Tensor or tuple of Tensors
Args:
func: The function to be called
expanded_args: Arguments to be passed to :attr:`func`. Will include arguments
that need to be unpacked because they are ExpandedWeights
expanded_kwargs: Keyword arguments to be passed to :attr:`func`.
Similar to :attr:`expanded_args`.
"""
unexpanded_args, unexpanded_kwargs = _check_and_unexpand_args(
func, expanded_args, expanded_kwargs
)
return func(*unexpanded_args, **unexpanded_kwargs)
def _check_and_unexpand_args(func, expanded_args, expanded_kwargs):
# input must be the first argument passed
input = expanded_args[0]
if isinstance(input, ExpandedWeight):
raise RuntimeError(
"Expanded Weights do not support inputs that are also ExpandedWeights. "
f"Input must be a Tensor, got {type(input).__name__} in function {func.__name__}"
)
if not isinstance(input, torch.Tensor):
raise RuntimeError(
"Expanded Weights requires a Tensor as the first input to get the batch dimension, "
f"got {type(input).__name__} in function {func.__name__}"
)
if len(input.shape) == 0:
raise RuntimeError(
f"Expanded Weights requires a batch dimension but got an input of size 0 in function {func.__name__}"
)
if input.shape[0] == 0:
raise RuntimeError(
"0 is not a valid batch size for Expanded Weights but got input tensor of "
f"{input} in function {func.__name__}"
)
for arg in expanded_args + tuple(expanded_kwargs.values()):
if not isinstance(arg, ExpandedWeight):
continue
batch_size = input.shape[0] if arg.batch_first else input.shape[1]
if (arg.allow_smaller_batches and batch_size > arg.batch_size) or (
not arg.allow_smaller_batches and arg.batch_size != batch_size
):
raise RuntimeError(
"Expected ExpandedWeights to have batch size matching input but got "
f"input batch size of {batch_size} with ExpandedWeight of batch size {arg.batch_size}"
)
loss_reduction: Optional[str] = None
for arg in expanded_args + tuple(expanded_kwargs.values()):
if isinstance(arg, ExpandedWeight):
if loss_reduction is None:
loss_reduction = arg.loss_reduction
elif loss_reduction != arg.loss_reduction:
raise RuntimeError(
"Expected ExpandedWeights to all have the same loss_reduction argument but got one"
f"with {loss_reduction} and one with {arg.loss_reduction}"
)
unexpanded_args = tuple(
arg.orig_weight if isinstance(arg, ExpandedWeight) else arg
for arg in expanded_args
)
unexpanded_kwargs = {
name: arg.orig_weight if isinstance(arg, ExpandedWeight) else arg
for (name, arg) in expanded_kwargs.items()
}
return unexpanded_args, unexpanded_kwargs
def maybe_scale_by_batch_size(grad_sample, expanded_weight):
if expanded_weight.loss_reduction == "mean":
return grad_sample * expanded_weight.batch_size
else:
return grad_sample
def set_grad_sample_if_exists(maybe_expanded_weight, per_sample_grad_fn):
unpacked = unpack_expanded_weight_or_tensor(maybe_expanded_weight)
if isinstance(maybe_expanded_weight, ExpandedWeight):
grad_sample_contribution = maybe_scale_by_batch_size(
per_sample_grad_fn(unpacked), maybe_expanded_weight
)
if maybe_expanded_weight.batch_size > grad_sample_contribution.shape[0]:
# this only passes the other checks if the arg allows smaller batch sizes
intermediate = torch.zeros(
maybe_expanded_weight.batch_size,
*grad_sample_contribution.shape[1:],
dtype=grad_sample_contribution.dtype,
device=grad_sample_contribution.device,
)
intermediate[: grad_sample_contribution.shape[0]] = grad_sample_contribution
grad_sample_contribution = intermediate
if hasattr(unpacked, "grad_sample") and unpacked.grad_sample is not None:
unpacked.grad_sample = unpacked.grad_sample + grad_sample_contribution
else:
unpacked.grad_sample = grad_sample_contribution
def unpack_expanded_weight_or_tensor(maybe_expanded_weight, func=lambda x: x):
if isinstance(maybe_expanded_weight, ExpandedWeight):
orig_weight = maybe_expanded_weight.orig_weight
return func(orig_weight)
elif (
isinstance(maybe_expanded_weight, torch.Tensor)
and not maybe_expanded_weight.requires_grad
):
return func(maybe_expanded_weight)
elif isinstance(maybe_expanded_weight, torch.Tensor):
raise RuntimeError(
"ExpandedWeights currently does not support a mixture of ExpandedWeight parameters "
"and normal Parameters. Please file and issue with pytorch/pytorch"
)
def sum_over_all_but_batch_and_last_n(
tensor: torch.Tensor,
n_dims: int,
) -> torch.Tensor:
r"""
Calculate the sum over all dimensions, except the first (batch dimension), and excluding the last n_dims.
This function will ignore the first dimension and it will
not aggregate over the last n_dims dimensions.
Args:
tensor: An input tensor of shape ``(B, ..., X[n_dims-1])``.
n_dims: Number of dimensions to keep.
Example:
>>> tensor = torch.ones(1, 2, 3, 4, 5)
>>> sum_over_all_but_batch_and_last_n(tensor, n_dims=2).shape
torch.Size([1, 4, 5])
Returns:
A tensor of shape ``(B, ..., X[n_dims-1])``
"""
if tensor.dim() == n_dims + 1:
return tensor
else:
dims = list(range(1, tensor.dim() - n_dims))
return tensor.sum(dim=dims)
```
|
=======================================================================================================================================================
SOURCE CODE FILE: group_norm_expanded_weights.py
LINES: 1
SIZE: 3.47 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\_expanded_weights\group_norm_expanded_weights.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
import operator
from functools import reduce
from typing import Optional
import torch
import torch.nn.functional as F
from .expanded_weights_impl import ExpandedWeight, implements_per_sample_grads
from .expanded_weights_utils import (
forward_helper,
set_grad_sample_if_exists,
standard_kwargs,
unpack_expanded_weight_or_tensor,
)
@implements_per_sample_grads(F.group_norm)
class GroupNormPerSampleGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, kwarg_names, _, *expanded_args_and_kwargs):
expanded_args, expanded_kwargs = standard_kwargs(
kwarg_names, expanded_args_and_kwargs
)
input, num_groups = expanded_args
N = input.shape[0]
C = input.shape[1]
HxW = reduce(operator.mul, input.shape[2:], 1)
weight, bias, eps = (
expanded_kwargs["weight"],
expanded_kwargs["bias"],
expanded_kwargs["eps"],
)
output, mean, rstd = forward_helper(
torch.native_group_norm,
(input, weight, bias, N, C, HxW, num_groups, eps),
{},
)
ctx.input, ctx.num_groups = input, num_groups
ctx.weight, ctx.eps = weight, eps
ctx.mean, ctx.rstd = mean, rstd
if isinstance(bias, ExpandedWeight):
ctx.bias = bias
if input.requires_grad and isinstance(weight, ExpandedWeight):
ctx.weight = weight
return output
@staticmethod
def backward(ctx, grad_output):
input, num_groups = ctx.input, ctx.num_groups
weight, bias, eps = ctx.weight, ctx.bias, ctx.eps
mean, rstd = ctx.mean, ctx.rstd
results: list[Optional[torch.Tensor]] = []
results.append(None) # for kwarg names
results.append(None) # for op reference
if input.requires_grad:
weight_c = unpack_expanded_weight_or_tensor(
weight, lambda t: t.contiguous()
)
input_c = input.contiguous()
grad_output_c = (
grad_output.contiguous() if grad_output is not None else None
)
N = input.shape[0]
C = input.shape[1]
HxW = 1
for s in input.shape[2:]:
HxW *= s
bw_fn = torch.ops.aten.native_group_norm_backward
results.append(
bw_fn(
grad_output_c,
input_c,
mean,
rstd,
weight_c,
N,
C,
HxW,
num_groups,
(True, False, False),
)[0]
)
else:
results.append(None)
# weight and bias don't compute batched gradients; no other arguments are differentiable
results = results + [None] * 4
# set grad_sample field for weight and bias with per sample gradients
if hasattr(ctx, "weight"):
set_grad_sample_if_exists(
weight,
lambda _: torch.einsum(
"ni...->ni", F.group_norm(input, num_groups, eps=eps) * grad_output
),
)
if hasattr(ctx, "bias"):
set_grad_sample_if_exists(
bias, lambda _: torch.einsum("ni...->ni", grad_output)
)
return tuple(results)
```
|
==========================================================================================================================================================
SOURCE CODE FILE: instance_norm_expanded_weights.py
LINES: 1
SIZE: 3.74 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\_expanded_weights\instance_norm_expanded_weights.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
from functools import partial
from typing import Optional
import torch
import torch.nn.functional as F
from .expanded_weights_impl import implements_per_sample_grads
from .expanded_weights_utils import (
forward_helper,
set_grad_sample_if_exists,
standard_kwargs,
unpack_expanded_weight_or_tensor,
)
@implements_per_sample_grads(F.instance_norm)
class InstanceNormPerSampleGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, kwarg_names, _, *expanded_args_and_kwargs):
instance_norm = partial(torch.instance_norm, cudnn_enabled=True)
expanded_args, expanded_kwargs = standard_kwargs(
kwarg_names, expanded_args_and_kwargs
)
output = forward_helper(instance_norm, expanded_args, expanded_kwargs)
ctx.input = expanded_args[0]
ctx.running_mean, ctx.running_var = (
expanded_kwargs["running_mean"],
expanded_kwargs["running_var"],
)
ctx.weight, ctx.bias, ctx.eps = (
expanded_kwargs["weight"],
expanded_kwargs["bias"],
expanded_kwargs["eps"],
)
return output
@staticmethod
def backward(ctx, grad_output):
input, running_mean, running_var = ctx.input, ctx.running_mean, ctx.running_var
weight, bias, eps = ctx.weight, ctx.bias, ctx.eps
results: list[Optional[torch.Tensor]] = []
results.append(None) # for kwarg names
results.append(None) # for op reference
if input.requires_grad:
b = input.shape[0]
c = input.shape[1]
new_shape = (1, b * c, *input.shape[2:])
weight_ = unpack_expanded_weight_or_tensor(
weight, lambda orig_weight: orig_weight.repeat(b)
)
running_mean_ = running_mean.repeat(b) if running_mean is not None else None
running_var_ = running_var.repeat(b) if running_var is not None else None
input_reshaped = input.contiguous().view(new_shape)
grad_output_reshaped = grad_output.contiguous().view(new_shape)
mean = torch.mean(
input_reshaped, (0,) + tuple(range(2, input.dim())), False
)
var = torch.var(
input_reshaped,
(0,) + tuple(range(2, input.dim())),
keepdim=False,
unbiased=False,
)
rstd = 1 / torch.sqrt(var + eps)
# must use native batch norm since it supports all inputs. This may have used cuda or openmi during the forward but
# it didn't save the metadata, so we don't know during the backward
res = torch.ops.aten.native_batch_norm_backward(
grad_output_reshaped,
input_reshaped,
weight_,
running_mean_,
running_var_,
mean,
rstd,
True,
eps,
(True, False, False),
)
results.append(res[0].reshape(input.shape))
else:
results.append(None)
# weight and bias don't compute batched gradients; no other arguments are differentiable (2 are not saved from the forward)
results = results + [None] * 7
# set grad_sample field for weight and bias with per sample gradients
set_grad_sample_if_exists(
weight,
lambda _: torch.einsum(
"ni...->ni", F.instance_norm(input, eps=eps) * grad_output
),
)
set_grad_sample_if_exists(
bias, lambda _: torch.einsum("ni...->ni", grad_output)
)
return tuple(results)
```
|
=======================================================================================================================================================
SOURCE CODE FILE: layer_norm_expanded_weights.py
LINES: 1
SIZE: 3.25 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\_expanded_weights\layer_norm_expanded_weights.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
from typing import Optional
import torch
import torch.nn.functional as F
from .expanded_weights_impl import ExpandedWeight, implements_per_sample_grads
from .expanded_weights_utils import (
forward_helper,
set_grad_sample_if_exists,
standard_kwargs,
sum_over_all_but_batch_and_last_n,
unpack_expanded_weight_or_tensor,
)
@implements_per_sample_grads(F.layer_norm)
class LayerNormPerSampleGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, kwarg_names, _, *expanded_args_and_kwargs):
expanded_args, expanded_kwargs = standard_kwargs(
kwarg_names, expanded_args_and_kwargs
)
input = expanded_args[0]
normalized_shape = expanded_args[1]
if len(input.shape) <= len(normalized_shape):
raise RuntimeError(
"Expanded Weights: Layer norm should not normalize over batch dimension for per sample gradient"
f"computations but got that normalized shape, {normalized_shape}, matched input shape."
)
output, mean, rstd = forward_helper(
torch.native_layer_norm, expanded_args, expanded_kwargs
)
ctx.args = expanded_args
if input.requires_grad or isinstance(expanded_kwargs["weight"], ExpandedWeight):
ctx.weight = expanded_kwargs["weight"]
if input.requires_grad or isinstance(expanded_kwargs["bias"], ExpandedWeight):
ctx.bias = expanded_kwargs["bias"]
ctx.eps = expanded_kwargs["eps"]
ctx.mean, ctx.rstd = mean, rstd
return output
@staticmethod
def backward(ctx, grad_output):
def weight_per_sample_grad(weight):
return sum_over_all_but_batch_and_last_n(
F.layer_norm(input, normalized_shape, eps=ctx.eps) * grad_output,
weight.dim(),
)
input, normalized_shape = ctx.args
mean, rstd = ctx.mean, ctx.rstd
results: list[Optional[torch.Tensor]] = []
results.append(None) # for kwarg names
results.append(None) # for op reference
if input.requires_grad:
weight_ = unpack_expanded_weight_or_tensor(ctx.weight)
bias_ = unpack_expanded_weight_or_tensor(ctx.bias)
results.append(
torch.ops.aten.native_layer_norm_backward(
grad_output,
input,
normalized_shape,
mean,
rstd,
weight_,
bias_,
(True, False, False),
)[0]
)
else:
results.append(None)
# weight and bias don't compute batched gradients; no other arguments are differentiable
results = results + [None] * 4
# set grad_sample field for weight and bias with per sample gradients
if hasattr(ctx, "weight"):
set_grad_sample_if_exists(ctx.weight, weight_per_sample_grad)
if hasattr(ctx, "bias"):
set_grad_sample_if_exists(
ctx.bias,
lambda bias: sum_over_all_but_batch_and_last_n(grad_output, bias.dim()),
)
return tuple(results)
```
|
===================================================================================================================================================
SOURCE CODE FILE: linear_expanded_weights.py
LINES: 1
SIZE: 2.22 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\_expanded_weights\linear_expanded_weights.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
from typing import Optional
import torch
import torch.nn.functional as F
from .expanded_weights_impl import implements_per_sample_grads
from .expanded_weights_utils import (
forward_helper,
is_batch_first,
set_grad_sample_if_exists,
unpack_expanded_weight_or_tensor,
)
@implements_per_sample_grads(F.linear)
class LinearPerSampleGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, _, __, *expanded_args_and_kwargs):
if len(expanded_args_and_kwargs[0].shape) <= 1:
raise RuntimeError(
"Input does not have a batch dimension. Expanded Weights expected input "
f"of at least rank 2, got of rank {len(expanded_args_and_kwargs[0].shape)}"
)
expanded_kwargs = {
"bias": expanded_args_and_kwargs[2]
if len(expanded_args_and_kwargs) == 3
else None
}
expanded_args = expanded_args_and_kwargs[:2]
ctx.batch_first = is_batch_first(expanded_args_and_kwargs)
output = forward_helper(F.linear, expanded_args, expanded_kwargs)
ctx.args = expanded_args
ctx.kwargs = expanded_kwargs
return output
@staticmethod
def backward(ctx, grad_output):
input, weight = ctx.args
bias = ctx.kwargs["bias"]
results: list[Optional[torch.Tensor]] = []
results.append(None) # for kwarg_names
results.append(None) # for op reference
if input.requires_grad:
results.append(grad_output.matmul(unpack_expanded_weight_or_tensor(weight)))
else:
results.append(None)
results.extend([None] * 2) # weight and bias don't compute batched gradients
if not ctx.batch_first:
grad_output = grad_output.transpose(0, 1)
input = input.transpose(0, 1)
# weight and bias get their grad_sample fields set directly if they exist
set_grad_sample_if_exists(
weight, lambda _: torch.einsum("n...i,n...j->nij", grad_output, input)
)
set_grad_sample_if_exists(
bias, lambda _: torch.einsum("n...k->nk", grad_output)
)
return tuple(results)
```
|
================================================================================================================================
SOURCE CODE FILE: _named_member_accessor.py
LINES: 1
SIZE: 14.19 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\_named_member_accessor.py
ENCODING: utf-8
```py
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from collections.abc import Iterable
import torch
_MISSING: torch.Tensor = object() # type: ignore[assignment]
def set_tensor(module: "torch.nn.Module", name: str, tensor: torch.Tensor) -> None:
if not isinstance(module, torch.nn.Module):
raise TypeError(f"{module} is not an instance of torch.nn.Module")
if not isinstance(tensor, torch.Tensor) and tensor is not None:
raise TypeError(f"{tensor} is not an instance of torch.Tensor")
if "." in name:
raise KeyError('tensor name can\'t contain "."')
if name == "":
raise KeyError('tensor name can\'t be empty string ""')
if name in module._parameters:
module._parameters[name] = tensor # type: ignore[assignment]
elif name in module._buffers:
module._buffers[name] = tensor
else:
setattr(module, name, tensor)
def swap_tensor(
module: "torch.nn.Module",
name: str,
tensor: torch.Tensor,
allow_missing: bool = False,
) -> torch.Tensor:
if not isinstance(module, torch.nn.Module):
raise TypeError(f"{module} is not an instance of torch.nn.Module")
if (
tensor is not _MISSING
and not isinstance(tensor, torch.Tensor)
and tensor is not None
):
raise TypeError(f"{tensor} is not an instance of torch.Tensor")
if "." in name:
raise KeyError('tensor name can\'t contain "."')
if name == "":
raise KeyError('tensor name can\'t be empty string ""')
orig_tensor: torch.Tensor
if name in module._parameters:
orig_tensor = module._parameters[name] # type: ignore[assignment]
if tensor is not _MISSING:
module._parameters[name] = tensor # type: ignore[assignment]
else:
del module._parameters[name]
elif name in module._buffers:
orig_tensor = module._buffers[name] # type: ignore[assignment]
if tensor is not _MISSING:
module._buffers[name] = tensor
else:
del module._buffers[name]
else:
if hasattr(module, name):
orig_tensor = getattr(module, name)
else:
if not allow_missing:
raise AttributeError(f"{module._get_name()} has no attribute `{name}`")
orig_tensor = _MISSING
if (
orig_tensor is not _MISSING
and not isinstance(orig_tensor, torch.Tensor)
and orig_tensor is not None
):
raise TypeError(
f"attribute `{name}`: {orig_tensor} is not an instance of torch.Tensor"
)
if tensor is not _MISSING:
setattr(module, name, tensor)
elif hasattr(module, name):
delattr(module, name)
return orig_tensor
def swap_submodule(
module: "torch.nn.Module",
name: str,
submodule: "torch.nn.Module",
) -> "torch.nn.Module":
if not isinstance(module, torch.nn.Module):
raise TypeError(f"{module} is not an instance of torch.nn.Module")
if not isinstance(submodule, torch.nn.Module):
raise TypeError(f"{submodule} is not an instance of torch.nn.Module")
if "." in name:
raise KeyError('submodule name can\'t contain "."')
if name == "":
raise KeyError('submodule name can\'t be empty string ""')
if name not in module._modules:
raise KeyError(f"submodule {name} does not exist")
orig_submodule = module._modules[name]
if not isinstance(orig_submodule, torch.nn.Module):
raise TypeError(f"{name} attribute is not an instance of torch.nn.Module")
module._modules[name] = submodule
return orig_submodule
class NamedMemberAccessor:
"""
A class that provides a way to access the submodules and parameters/buffers of a module.
It provides caching mechanism to speed up submodule lookups.
This is useful for functional programming to manipulate the module state.
"""
def __init__(self, module: "torch.nn.Module") -> None:
self.module = module
self.memo: dict[str, torch.nn.Module] = {}
# Nested attribute access
def get_submodule(self, name: str) -> "torch.nn.Module":
"""
Return the submodule specified by the given path.
For example, to get the submodule mod.layer1.conv1,
use accessor.get_submodule("layer1.conv1")
Compare to mod.get_submodule("layer1.conv1"), this method will cache the
intermediate submodule access to speed up future lookups.
"""
if not name:
return self.module
if name in self.memo:
return self.memo[name]
else:
prefix, dot, attr = name.rpartition(".")
if dot:
module = self.get_submodule(prefix)
else:
module = self.module
try:
submodule = getattr(module, attr)
except AttributeError as ex:
raise AttributeError(
f"{module._get_name()} has no attribute `{attr}`"
) from ex
if not isinstance(submodule, torch.nn.Module):
raise TypeError( # noqa: B904
f"submodule `{name}`: {submodule} is not an instance of torch.nn.Module"
)
self.memo[name] = submodule
return submodule
def swap_submodule(self, path: str, value: "torch.nn.Module") -> "torch.nn.Module":
"""
Swap the submodule specified by the given ``path`` to ``value``.
For example, to swap the attribute mod.layer1.conv1 use
``accessor.swap_submodule("layer1.conv1", conv2)``.
"""
prefix, _, attr = path.rpartition(".")
return swap_submodule(self.get_submodule(prefix), attr, value)
def get_tensor(self, name: str) -> torch.Tensor:
"""
Get the tensor specified by the given path to value.
For example, to get the attribute mod.layer1.conv1.weight,
use accessor.get_tensor('layer1.conv1.weight')
Compare to mod.get_parameter("layer1.conv1.weight"), this method will
cache the intermediate submodule access to speed up future lookups.
"""
prefix, _, attr = name.rpartition(".")
submodule = self.get_submodule(prefix)
try:
tensor = getattr(submodule, attr)
except AttributeError as ex:
raise AttributeError(
f"{submodule._get_name()} has no attribute `{name}`"
) from ex
if not isinstance(tensor, torch.Tensor) and tensor is not None:
raise TypeError(f"{tensor} is not an instance of torch.Tensor")
return tensor # type: ignore[return-value]
def set_tensor(self, name: str, value: torch.Tensor) -> None:
"""
Set the attribute specified by the given path to value.
For example, to set the attribute mod.layer1.conv1.weight,
use accessor.set_tensor("layer1.conv1.weight", value)
"""
prefix, _, attr = name.rpartition(".")
set_tensor(self.get_submodule(prefix), attr, value)
def del_tensor(self, name: str) -> None:
"""
Delete the attribute specified by the given path.
For example, to delete the attribute mod.layer1.conv1.weight,
use accessor.del_tensor("layer1.conv1.weight")
"""
prefix, _, attr = name.rpartition(".")
submodule = self.get_submodule(prefix)
try:
delattr(submodule, attr)
except AttributeError as ex:
raise AttributeError(
f"{submodule._get_name()} has no attribute `{name}`"
) from ex
def swap_tensor(
self, name: str, value: torch.Tensor, allow_missing: bool = False
) -> torch.Tensor:
"""
Swap the attribute specified by the given path to value.
For example, to swap the attribute mod.layer1.conv1.weight,
use accessor.swap_tensor("layer1.conv1.weight", value)
"""
prefix, _, attr = name.rpartition(".")
return swap_tensor(
self.get_submodule(prefix), attr, value, allow_missing=allow_missing
)
# Batched operations
def get_tensors(self, names: Iterable[str]) -> list[torch.Tensor]:
"""
Get the tensors specified by the given paths.
For example, to get the attributes mod.layer1.conv1.weight and
mod.layer1.conv1.bias, use accessor.get_tensors(["layer1.conv1.weight",
"layer1.conv1.bias"])
"""
return [self.get_tensor(name) for name in names]
def set_tensors(self, names: Iterable[str], values: Iterable[torch.Tensor]) -> None:
"""
Set the attributes specified by the given paths to values.
For example, to set the attributes mod.layer1.conv1.weight and
mod.layer1.conv1.bias, use accessor.set_tensors(["layer1.conv1.weight",
"layer1.conv1.bias"], [weight, bias])
"""
if not isinstance(names, (list, tuple)):
names = list(names)
if not isinstance(values, (list, tuple)):
values = list(values)
assert len(names) == len(values), "names and values must have the same length"
for name, value in zip(names, values):
self.set_tensor(name, value)
def set_tensors_dict(self, named_tensors: dict[str, torch.Tensor]) -> None:
"""
Set the attributes specified by the given paths to values.
For example, to set the attributes mod.layer1.conv1.weight and
mod.layer1.conv1.bias, use accessor.set_tensors_dict({
"layer1.conv1.weight": weight,
"layer1.conv1.bias": bias,
})
"""
for name, value in named_tensors.items():
self.set_tensor(name, value)
def del_tensors(self, names: Iterable[str]) -> None:
"""
Delete the attributes specified by the given paths.
For example, to delete the attributes mod.layer1.conv1.weight and
mod.layer1.conv1.bias, use accessor.del_tensors(["layer1.conv1.weight",
"layer1.conv1.bias"])
"""
for name in names:
self.del_tensor(name)
def swap_tensors(
self,
names: Iterable[str],
values: Iterable[torch.Tensor],
allow_missing: bool = False,
) -> list[torch.Tensor]:
"""
Swap the attributes specified by the given paths to values.
For example, to swap the attributes mod.layer1.conv1.weight and
mod.layer1.conv1.bias, use accessor.swap_tensors(["layer1.conv1.weight",
"layer1.conv1.bias"], [weight, bias])
"""
if not isinstance(names, (list, tuple)):
names = list(names)
if not isinstance(values, (list, tuple)):
values = list(values)
assert len(names) == len(values), "names and values must have the same length"
return [
self.swap_tensor(name, value, allow_missing=allow_missing)
for name, value in zip(names, values)
]
def swap_tensors_dict(
self, named_tensors: dict[str, torch.Tensor], allow_missing: bool = False
) -> tuple[dict[str, torch.Tensor], list[str]]:
"""
Swap the attributes specified by the given paths to values.
For example, to swap the attributes mod.layer1.conv1.weight and
mod.layer1.conv1.bias, use accessor.swap_tensors_dict({
"layer1.conv1.weight": weight,
"layer1.conv1.bias": bias,
})
"""
orig_named_tensors = {}
missing_keys = []
try:
for name, tensor in named_tensors.items():
orig_tensor = self.swap_tensor(name, tensor, allow_missing=True)
if orig_tensor is _MISSING:
missing_keys.append(name)
orig_named_tensors[name] = orig_tensor
except Exception:
# Swap back if any exception occurs
for name, orig_tensor in orig_named_tensors.items():
self.swap_tensor(name, orig_tensor, allow_missing=True)
raise
if missing_keys and not allow_missing:
# Swap back if any key is missing when allow_missing is False
for name, orig_tensor in orig_named_tensors.items():
self.swap_tensor(name, orig_tensor, allow_missing=True)
raise RuntimeError(f"Missing key(s): {', '.join(map(repr, missing_keys))}.")
return orig_named_tensors, missing_keys
def check_keys(self, keys: Iterable[str]) -> tuple[list[str], list[str]]:
"""Check that the given keys are valid."""
keys = set(keys)
valid_keys = {name for name, _ in self.named_tensors(remove_duplicate=False)}
missing_keys = valid_keys - keys
unexpected_keys = keys - valid_keys
return sorted(missing_keys), sorted(unexpected_keys)
# Shortcut methods
def named_parameters(
self,
remove_duplicate: bool = True,
) -> Iterable[tuple[str, torch.Tensor]]:
"""Iterate over all the parameters in the module."""
yield from self.module.named_parameters(remove_duplicate=remove_duplicate)
def named_buffers(
self,
remove_duplicate: bool = True,
) -> Iterable[tuple[str, torch.Tensor]]:
"""Iterate over all the buffers in the module."""
yield from self.module.named_buffers(remove_duplicate=remove_duplicate)
def named_tensors(
self,
remove_duplicate: bool = True,
) -> Iterable[tuple[str, torch.Tensor]]:
"""Iterate over all the tensors in the module."""
yield from self.module.named_parameters(remove_duplicate=remove_duplicate)
yield from self.module.named_buffers(remove_duplicate=remove_duplicate)
def named_modules(
self,
remove_duplicate: bool = True,
) -> Iterable[tuple[str, "torch.nn.Module"]]:
"""Iterate over all the modules in the module."""
yield from self.module.named_modules(remove_duplicate=remove_duplicate)
```
|
==========================================================================================================================
SOURCE CODE FILE: _per_sample_grad.py
LINES: 1
SIZE: 5.73 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\_per_sample_grad.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
import functools
import torch
from torch.nn.utils._expanded_weights.expanded_weights_impl import ExpandedWeight
from torch.utils import _pytree as pytree
# dependency on `functional_call` means that this can't be exposed in utils
# without creating circular dependency
def call_for_per_sample_grads(
module,
*,
batch_size=None,
loss_reduction="sum",
batch_first=True,
):
r"""
Return a forward function for a module, populating grad_sample with per sample gradients on backward invocation.
Args:
module: The ``nn.Module`` to get per sample gradients with respect to. All trainable
parameters will compute per sample gradients, located in a ``grad_sample``
field when ``backward`` is invoked
batch_size: The batch size of the input. If None is passed, all tensor arguments in args and kwargs must have
the same batch size, which is the size of the first dimension. Otherwise, it must be passed manually.
Default: None
loss_reduction: Indicates if the loss reduction (for aggregating the gradients) is a sum or a mean operation. If
"mean", per sample gradients will be scaled by the batch size to offset the crossbatch interaction from
running mean across a batch. Must be "mean" or "sum". Default: "sum"
batch_first: Indicates if the batch dimension is the first dimension. If True, the batch dimension is the first
dimension. If False, it's the second dimension. Default: True.
Examples::
>>> # xdoctest: +SKIP
>>> model = nn.Linear(4, 3)
>>> batched_input = torch.randn(5, 4) # batch size of 5
>>> res = call_for_per_sample_grads(model)(batched_input).sum()
>>> res.backward()
>>> assert model.weight.shape == (3, 4)
>>> assert model.weight.grad_sample.shape == (5, 3, 4)
>>> assert model.weight.grad is None
>>> assert model.bias.shape == (3,)
>>> assert model.bias.grad_sample.shape == (5, 3)
>>> assert model.bias.grad is None
An example using "mean" loss reduction. The grad_sample fields will be scaled by batch_size from what they would be
if we ran the same code with loss_reduction="sum". This is because the mean at the end will scale all
grad_outputs by 1 / batch_size from cross batch interaction.
>>> model = nn.Linear(4, 3)
>>> batched_input = torch.randn(5, 4) # batch size of 5
>>> res = call_for_per_sample_grads(model, 5, loss_reduction="mean")(batched_input).mean()
>>> res.backward()
Note::
Does not work with any `nn.RNN`, including `nn.GRU` or `nn.LSTM`. Please use custom
rewrites that wrap an `nn.Linear` module. See Opacus for an example
"""
def maybe_build_expanded_weight(og_tensor, batch_size):
if og_tensor.requires_grad:
return ExpandedWeight(og_tensor, batch_size, loss_reduction)
else:
return og_tensor
def compute_batch_size(*args, **kwargs):
args_and_kwargs = pytree.arg_tree_leaves(*args, **kwargs)
batch_size = None
for arg in args_and_kwargs:
if not isinstance(arg, torch.Tensor):
continue
arg_batch_size = arg.shape[0] if batch_first else arg.shape[1]
if batch_size is not None and batch_size != arg_batch_size:
raise RuntimeError(
"When computing batch size, found at least one input with batch size "
f"{batch_size} and one with batch size {arg_batch_size}. Please specify it "
"explicitly using the batch size kwarg in call_for_per_sample_grads"
)
batch_size = arg_batch_size
if batch_size is None:
raise RuntimeError(
"Unable to find a tensor in the passed args and kwargs. They may not be pytree-able "
"and so ExpandedWeights cannot compute the batch size from the inputs. Please specify "
"it explicitly"
)
return batch_size
if loss_reduction not in ["sum", "mean"]:
raise RuntimeError(
f"Expected loss_reduction argument to be sum or mean, got {loss_reduction}"
)
if not isinstance(module, torch.nn.Module):
raise RuntimeError(
f"Module passed must be nn.Module, got {type(module).__name__}"
)
if not (batch_size is None or isinstance(batch_size, int)):
raise RuntimeError(
f"Batch size passed must be None or an integer, got {type(batch_size).__name__}"
)
if batch_size is not None and batch_size < 1:
raise RuntimeError(f"Batch size must be positive, got {batch_size}")
for weight in module.parameters():
if hasattr(weight, "grad_sample") and weight.grad_sample is not None: # type: ignore[attr-defined]
raise RuntimeError(
"Current Expanded Weights accumulates the gradients, which will be incorrect for multiple "
f"calls without clearing gradients. Please clear out the grad_sample parameter of {weight} or "
"post an issue to pytorch/pytorch to prioritize correct behavior"
)
@functools.wraps(module.forward)
def wrapper(*args, **kwargs):
wrapper_batch_size = batch_size
if wrapper_batch_size is None:
wrapper_batch_size = compute_batch_size(*args, **kwargs)
params = {
name: maybe_build_expanded_weight(value, wrapper_batch_size)
for (name, value) in module.named_parameters()
}
return torch.func.functional_call(module, params, args, kwargs)
return wrapper
```
|
===================================================================================================================
SOURCE CODE FILE: clip_grad.py
LINES: 1
SIZE: 10.79 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\clip_grad.py
ENCODING: utf-8
```py
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
import functools
import typing
from typing import cast, Optional, Union
from typing_extensions import deprecated
import torch
from torch import Tensor
from torch.utils._foreach_utils import (
_device_has_foreach_support,
_group_tensors_by_device_and_dtype,
_has_foreach_support,
)
__all__ = [
"clip_grad_norm_",
"clip_grad_norm",
"clip_grad_value_",
]
_tensor_or_tensors = Union[
torch.Tensor,
typing.Iterable[torch.Tensor], # noqa: UP006 - needed until XLA's patch is updated
]
def _no_grad(func):
"""
This wrapper is needed to avoid a circular import when using @torch.no_grad on the exposed functions
clip_grad_norm_ and clip_grad_value_ themselves.
"""
def _no_grad_wrapper(*args, **kwargs):
with torch.no_grad():
return func(*args, **kwargs)
functools.update_wrapper(_no_grad_wrapper, func)
return _no_grad_wrapper
@_no_grad
def _get_total_norm(
tensors: _tensor_or_tensors,
norm_type: float = 2.0,
error_if_nonfinite: bool = False,
foreach: Optional[bool] = None,
) -> torch.Tensor:
r"""Compute the norm of an iterable of tensors.
The norm is computed over the norms of the individual tensors, as if the norms of
the individual tensors were concatenated into a single vector.
Args:
tensors (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will be normalized
norm_type (float): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
error_if_nonfinite (bool): if True, an error is thrown if the total
norm of :attr:`tensors` is ``nan``, ``inf``, or ``-inf``.
Default: ``False``
foreach (bool): use the faster foreach-based implementation.
If ``None``, use the foreach implementation for CUDA and CPU native tensors and silently
fall back to the slow implementation for other device types.
Default: ``None``
Returns:
Total norm of the tensors (viewed as a single vector).
"""
if isinstance(tensors, torch.Tensor):
tensors = [tensors]
else:
tensors = list(tensors)
norm_type = float(norm_type)
if len(tensors) == 0:
return torch.tensor(0.0)
first_device = tensors[0].device
grouped_tensors: dict[
tuple[torch.device, torch.dtype], tuple[list[list[Tensor]], list[int]]
] = _group_tensors_by_device_and_dtype(
[tensors] # type: ignore[list-item]
) # type: ignore[assignment]
norms: list[Tensor] = []
for (device, _), ([device_tensors], _) in grouped_tensors.items():
if (foreach is None and _has_foreach_support(device_tensors, device)) or (
foreach and _device_has_foreach_support(device)
):
norms.extend(torch._foreach_norm(device_tensors, norm_type))
elif foreach:
raise RuntimeError(
f"foreach=True was passed, but can't use the foreach API on {device.type} tensors"
)
else:
norms.extend(
[torch.linalg.vector_norm(g, norm_type) for g in device_tensors]
)
total_norm = torch.linalg.vector_norm(
torch.stack([norm.to(first_device) for norm in norms]), norm_type
)
if error_if_nonfinite and torch.logical_or(total_norm.isnan(), total_norm.isinf()):
raise RuntimeError(
f"The total norm of order {norm_type} for gradients from "
"`parameters` is non-finite, so it cannot be clipped. To disable "
"this error and scale the gradients by the non-finite norm anyway, "
"set `error_if_nonfinite=False`"
)
return total_norm
@_no_grad
def _clip_grads_with_norm_(
parameters: _tensor_or_tensors,
max_norm: float,
total_norm: torch.Tensor,
foreach: Optional[bool] = None,
) -> None:
r"""Scale the gradients of an iterable of parameters given a pre-calculated total norm and desired max norm.
The gradients will be scaled by the following calculation
.. math::
grad = grad * \frac{max\_norm}{total\_norm + 1e-6}
Gradients are modified in-place.
This function is equivalent to :func:`torch.nn.utils.clip_grad_norm_` with a pre-calculated
total norm.
Args:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
max_norm (float): max norm of the gradients
total_norm (Tensor): total norm of the gradients to use for clipping
foreach (bool): use the faster foreach-based implementation.
If ``None``, use the foreach implementation for CUDA and CPU native tensors and silently
fall back to the slow implementation for other device types.
Default: ``None``
Returns:
None
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
grads = [p.grad for p in parameters if p.grad is not None]
max_norm = float(max_norm)
if len(grads) == 0:
return
grouped_grads: dict[
tuple[torch.device, torch.dtype], tuple[list[list[Tensor]], list[int]]
] = _group_tensors_by_device_and_dtype(
[grads]
) # type: ignore[assignment]
clip_coef = max_norm / (total_norm + 1e-6)
# Note: multiplying by the clamped coef is redundant when the coef is clamped to 1, but doing so
# avoids a `if clip_coef < 1:` conditional which can require a CPU <=> device synchronization
# when the gradients do not reside in CPU memory.
clip_coef_clamped = torch.clamp(clip_coef, max=1.0)
for (device, _), ([device_grads], _) in grouped_grads.items():
if (foreach is None and _has_foreach_support(device_grads, device)) or (
foreach and _device_has_foreach_support(device)
):
torch._foreach_mul_(device_grads, clip_coef_clamped.to(device))
elif foreach:
raise RuntimeError(
f"foreach=True was passed, but can't use the foreach API on {device.type} tensors"
)
else:
clip_coef_clamped_device = clip_coef_clamped.to(device)
for g in device_grads:
g.mul_(clip_coef_clamped_device)
@_no_grad
def clip_grad_norm_(
parameters: _tensor_or_tensors,
max_norm: float,
norm_type: float = 2.0,
error_if_nonfinite: bool = False,
foreach: Optional[bool] = None,
) -> torch.Tensor:
r"""Clip the gradient norm of an iterable of parameters.
The norm is computed over the norms of the individual gradients of all parameters,
as if the norms of the individual gradients were concatenated into a single vector.
Gradients are modified in-place.
This function is equivalent to :func:`torch.nn.utils.get_total_norm` followed by
:func:`torch.nn.utils.clip_grads_with_norm_` with the ``total_norm`` returned by ``get_total_norm``.
Args:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
max_norm (float): max norm of the gradients
norm_type (float): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
error_if_nonfinite (bool): if True, an error is thrown if the total
norm of the gradients from :attr:`parameters` is ``nan``,
``inf``, or ``-inf``. Default: False (will switch to True in the future)
foreach (bool): use the faster foreach-based implementation.
If ``None``, use the foreach implementation for CUDA and CPU native tensors and silently
fall back to the slow implementation for other device types.
Default: ``None``
Returns:
Total norm of the parameter gradients (viewed as a single vector).
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
else:
# prevent generators from being exhausted
parameters = list(parameters)
grads = [p.grad for p in parameters if p.grad is not None]
total_norm = _get_total_norm(grads, norm_type, error_if_nonfinite, foreach)
_clip_grads_with_norm_(parameters, max_norm, total_norm, foreach)
return total_norm
@deprecated(
"`torch.nn.utils.clip_grad_norm` is now deprecated "
"in favor of `torch.nn.utils.clip_grad_norm_`.",
category=FutureWarning,
)
def clip_grad_norm(
parameters: _tensor_or_tensors,
max_norm: float,
norm_type: float = 2.0,
error_if_nonfinite: bool = False,
foreach: Optional[bool] = None,
) -> torch.Tensor:
r"""Clip the gradient norm of an iterable of parameters.
.. warning::
This method is now deprecated in favor of
:func:`torch.nn.utils.clip_grad_norm_`.
"""
return clip_grad_norm_(parameters, max_norm, norm_type, error_if_nonfinite, foreach)
@_no_grad
def clip_grad_value_(
parameters: _tensor_or_tensors,
clip_value: float,
foreach: Optional[bool] = None,
) -> None:
r"""Clip the gradients of an iterable of parameters at specified value.
Gradients are modified in-place.
Args:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
clip_value (float): maximum allowed value of the gradients.
The gradients are clipped in the range
:math:`\left[\text{-clip\_value}, \text{clip\_value}\right]`
foreach (bool): use the faster foreach-based implementation
If ``None``, use the foreach implementation for CUDA and CPU native tensors and
silently fall back to the slow implementation for other device types.
Default: ``None``
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
clip_value = float(clip_value)
grads = [p.grad for p in parameters if p.grad is not None]
grouped_grads = _group_tensors_by_device_and_dtype([grads])
for (device, _), ([grads], _) in grouped_grads.items():
if (
foreach is None
and _has_foreach_support(cast(list[Tensor], grads), device=device)
) or (foreach and _device_has_foreach_support(device)):
torch._foreach_clamp_min_(cast(list[Tensor], grads), -clip_value)
torch._foreach_clamp_max_(cast(list[Tensor], grads), clip_value)
elif foreach:
raise RuntimeError(
f"foreach=True was passed, but can't use the foreach API on {device.type} tensors"
)
else:
for grad in grads:
cast(Tensor, grad).clamp_(min=-clip_value, max=clip_value)
```
|
============================================================================================================================
SOURCE CODE FILE: convert_parameters.py
LINES: 1
SIZE: 3.26 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\convert_parameters.py
ENCODING: utf-8
```py
from collections.abc import Iterable
from typing import Optional
import torch
def parameters_to_vector(parameters: Iterable[torch.Tensor]) -> torch.Tensor:
r"""Flatten an iterable of parameters into a single vector.
Args:
parameters (Iterable[Tensor]): an iterable of Tensors that are the
parameters of a model.
Returns:
The parameters represented by a single vector
"""
# Flag for the device where the parameter is located
param_device = None
vec = []
for param in parameters:
# Ensure the parameters are located in the same device
param_device = _check_param_device(param, param_device)
vec.append(param.view(-1))
return torch.cat(vec)
def vector_to_parameters(vec: torch.Tensor, parameters: Iterable[torch.Tensor]) -> None:
r"""Copy slices of a vector into an iterable of parameters.
Args:
vec (Tensor): a single vector representing the parameters of a model.
parameters (Iterable[Tensor]): an iterable of Tensors that are the
parameters of a model.
"""
# Ensure vec of type Tensor
if not isinstance(vec, torch.Tensor):
raise TypeError(f"expected torch.Tensor, but got: {torch.typename(vec)}")
# Flag for the device where the parameter is located
param_device = None
# Pointer for slicing the vector for each parameter
pointer = 0
for param in parameters:
# Ensure the parameters are located in the same device
param_device = _check_param_device(param, param_device)
# The length of the parameter
num_param = param.numel()
# Slice the vector, reshape it, and replace the old data of the parameter
param.data = vec[pointer : pointer + num_param].view_as(param).data
# Increment the pointer
pointer += num_param
def _check_param_device(param: torch.Tensor, old_param_device: Optional[int]) -> int:
r"""Check if the parameters are located on the same device.
Currently, the conversion between model parameters and single vector form is not supported
for multiple allocations, e.g. parameters in different GPUs/PrivateUse1s, or mixture of CPU/GPU/PrivateUse1.
Args:
param ([Tensor]): a Tensor of a parameter of a model
old_param_device (int): the device where the first parameter of a
model is allocated.
Returns:
old_param_device (int): report device for the first time
"""
# Meet the first parameter
support_device_types = ["cuda", torch._C._get_privateuse1_backend_name()]
if old_param_device is None:
old_param_device = (
param.get_device() if param.device.type in support_device_types else -1
)
else:
warn = False
if (
param.device.type in support_device_types
): # Check if in same GPU/PrivateUse1
warn = param.get_device() != old_param_device
else: # Check if in CPU
warn = old_param_device != -1
if warn:
raise TypeError(
"Found two parameters on different devices, "
"this is currently not supported."
)
return old_param_device
```
|
================================================================================================================
SOURCE CODE FILE: fusion.py
LINES: 1
SIZE: 6.47 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\fusion.py
ENCODING: utf-8
```py
from __future__ import annotations
import copy
from typing import TypeVar
import torch
__all__ = [
"fuse_conv_bn_eval",
"fuse_conv_bn_weights",
"fuse_linear_bn_eval",
"fuse_linear_bn_weights",
]
ConvT = TypeVar("ConvT", bound="torch.nn.modules.conv._ConvNd")
LinearT = TypeVar("LinearT", bound="torch.nn.Linear")
def fuse_conv_bn_eval(
conv: ConvT,
bn: torch.nn.modules.batchnorm._BatchNorm,
transpose: bool = False,
) -> ConvT:
r"""Fuse a convolutional module and a BatchNorm module into a single, new convolutional module.
Args:
conv (torch.nn.modules.conv._ConvNd): A convolutional module.
bn (torch.nn.modules.batchnorm._BatchNorm): A BatchNorm module.
transpose (bool, optional): If True, transpose the convolutional weight. Defaults to False.
Returns:
torch.nn.modules.conv._ConvNd: The fused convolutional module.
.. note::
Both ``conv`` and ``bn`` must be in eval mode, and ``bn`` must have its running buffers computed.
"""
assert not (conv.training or bn.training), "Fusion only for eval!"
fused_conv = copy.deepcopy(conv)
assert bn.running_mean is not None and bn.running_var is not None
fused_conv.weight, fused_conv.bias = fuse_conv_bn_weights(
fused_conv.weight,
fused_conv.bias,
bn.running_mean,
bn.running_var,
bn.eps,
bn.weight,
bn.bias,
transpose,
)
return fused_conv
def fuse_conv_bn_weights(
conv_w: torch.Tensor,
conv_b: torch.Tensor | None,
bn_rm: torch.Tensor,
bn_rv: torch.Tensor,
bn_eps: float,
bn_w: torch.Tensor | None,
bn_b: torch.Tensor | None,
transpose: bool = False,
) -> tuple[torch.nn.Parameter, torch.nn.Parameter]:
r"""Fuse convolutional module parameters and BatchNorm module parameters into new convolutional module parameters.
Args:
conv_w (torch.Tensor): Convolutional weight.
conv_b (Optional[torch.Tensor]): Convolutional bias.
bn_rm (torch.Tensor): BatchNorm running mean.
bn_rv (torch.Tensor): BatchNorm running variance.
bn_eps (float): BatchNorm epsilon.
bn_w (Optional[torch.Tensor]): BatchNorm weight.
bn_b (Optional[torch.Tensor]): BatchNorm bias.
transpose (bool, optional): If True, transpose the conv weight. Defaults to False.
Returns:
Tuple[torch.nn.Parameter, torch.nn.Parameter]: Fused convolutional weight and bias.
"""
conv_weight_dtype = conv_w.dtype
conv_bias_dtype = conv_b.dtype if conv_b is not None else conv_weight_dtype
if conv_b is None:
conv_b = torch.zeros_like(bn_rm)
if bn_w is None:
bn_w = torch.ones_like(bn_rm)
if bn_b is None:
bn_b = torch.zeros_like(bn_rm)
bn_var_rsqrt = torch.rsqrt(bn_rv + bn_eps)
if transpose:
shape = [1, -1] + [1] * (len(conv_w.shape) - 2)
else:
shape = [-1, 1] + [1] * (len(conv_w.shape) - 2)
fused_conv_w = (conv_w * (bn_w * bn_var_rsqrt).reshape(shape)).to(
dtype=conv_weight_dtype
)
fused_conv_b = ((conv_b - bn_rm) * bn_var_rsqrt * bn_w + bn_b).to(
dtype=conv_bias_dtype
)
return (
torch.nn.Parameter(fused_conv_w, conv_w.requires_grad),
torch.nn.Parameter(fused_conv_b, conv_b.requires_grad),
)
def fuse_linear_bn_eval(
linear: LinearT,
bn: torch.nn.modules.batchnorm._BatchNorm,
) -> LinearT:
r"""Fuse a linear module and a BatchNorm module into a single, new linear module.
Args:
linear (torch.nn.Linear): A Linear module.
bn (torch.nn.modules.batchnorm._BatchNorm): A BatchNorm module.
Returns:
torch.nn.Linear: The fused linear module.
.. note::
Both ``linear`` and ``bn`` must be in eval mode, and ``bn`` must have its running buffers computed.
"""
assert not (linear.training or bn.training), "Fusion only for eval!"
fused_linear = copy.deepcopy(linear)
"""
Linear-BN needs to be fused while preserving the shapes of linear weight/bias.
To preserve the shapes of linear weight/bias, the channel dim of bn needs to be broadcastable with the last dim of linear,
because bn operates over the channel dim, (N, C_in, H, W) while linear operates over the last dim, (*, H_in).
To be broadcastable, the number of features in bn and
the number of output features from linear must satisfy the following condition:
1. they are equal, or
2. the number of features in bn is 1
Otherwise, skip the folding path
"""
assert (
linear.out_features == bn.num_features or bn.num_features == 1
), "To fuse, linear.out_features == bn.num_features or bn.num_features == 1"
assert bn.running_mean is not None and bn.running_var is not None
fused_linear.weight, fused_linear.bias = fuse_linear_bn_weights(
fused_linear.weight,
fused_linear.bias,
bn.running_mean,
bn.running_var,
bn.eps,
bn.weight,
bn.bias,
)
return fused_linear
def fuse_linear_bn_weights(
linear_w: torch.Tensor,
linear_b: torch.Tensor | None,
bn_rm: torch.Tensor,
bn_rv: torch.Tensor,
bn_eps: float,
bn_w: torch.Tensor,
bn_b: torch.Tensor,
) -> tuple[torch.nn.Parameter, torch.nn.Parameter]:
r"""Fuse linear module parameters and BatchNorm module parameters into new linear module parameters.
Args:
linear_w (torch.Tensor): Linear weight.
linear_b (Optional[torch.Tensor]): Linear bias.
bn_rm (torch.Tensor): BatchNorm running mean.
bn_rv (torch.Tensor): BatchNorm running variance.
bn_eps (float): BatchNorm epsilon.
bn_w (torch.Tensor): BatchNorm weight.
bn_b (torch.Tensor): BatchNorm bias.
Returns:
Tuple[torch.nn.Parameter, torch.nn.Parameter]: Fused linear weight and bias.
"""
linear_weight_dtype = linear_w.dtype
linear_bias_dtype = linear_b.dtype if linear_b is not None else linear_weight_dtype
if linear_b is None:
linear_b = torch.zeros_like(bn_rm)
bn_scale = bn_w * torch.rsqrt(bn_rv + bn_eps)
fused_w = linear_w * bn_scale.unsqueeze(-1).to(dtype=linear_weight_dtype)
fused_b = ((linear_b - bn_rm) * bn_scale + bn_b).to(dtype=linear_bias_dtype)
return torch.nn.Parameter(fused_w, linear_w.requires_grad), torch.nn.Parameter(
fused_b, linear_b.requires_grad
)
```
|
==============================================================================================================
SOURCE CODE FILE: init.py
LINES: 1
SIZE: 2.25 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\init.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
import inspect
import torch
def skip_init(module_cls, *args, **kwargs):
r"""
Given a module class object and args / kwargs, instantiate the module without initializing parameters / buffers.
This can be useful if initialization is slow or if custom initialization will
be performed, making the default initialization unnecessary. There are some caveats to this, due to
the way this function is implemented:
1. The module must accept a `device` arg in its constructor that is passed to any parameters
or buffers created during construction.
2. The module must not perform any computation on parameters in its constructor except
initialization (i.e. functions from :mod:`torch.nn.init`).
If these conditions are satisfied, the module can be instantiated with parameter / buffer values
uninitialized, as if having been created using :func:`torch.empty`.
Args:
module_cls: Class object; should be a subclass of :class:`torch.nn.Module`
args: args to pass to the module's constructor
kwargs: kwargs to pass to the module's constructor
Returns:
Instantiated module with uninitialized parameters / buffers
Example::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> import torch
>>> m = torch.nn.utils.skip_init(torch.nn.Linear, 5, 1)
>>> m.weight
Parameter containing:
tensor([[0.0000e+00, 1.5846e+29, 7.8307e+00, 2.5250e-29, 1.1210e-44]],
requires_grad=True)
>>> m2 = torch.nn.utils.skip_init(torch.nn.Linear, in_features=6, out_features=1)
>>> m2.weight
Parameter containing:
tensor([[-1.4677e+24, 4.5915e-41, 1.4013e-45, 0.0000e+00, -1.4677e+24,
4.5915e-41]], requires_grad=True)
"""
if not issubclass(module_cls, torch.nn.Module):
raise RuntimeError(f"Expected a Module; got {module_cls}")
if "device" not in inspect.signature(module_cls).parameters:
raise RuntimeError("Module must support a 'device' arg to skip initialization")
final_device = kwargs.pop("device", "cpu")
kwargs["device"] = "meta"
return module_cls(*args, **kwargs).to_empty(device=final_device)
```
|
=======================================================================================================================
SOURCE CODE FILE: memory_format.py
LINES: 1
SIZE: 7.86 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\memory_format.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
import torch
def convert_conv2d_weight_memory_format(module, memory_format):
r"""Convert ``memory_format`` of ``nn.Conv2d.weight`` to ``memory_format``.
The conversion recursively applies to nested ``nn.Module``, including ``module``.
Note that it only changes the memory_format, but not the semantics of each dimensions.
This function is used to facilitate the computation to adopt NHWC kernels, which
provides considerable speed up for fp16 data on CUDA devices with compute capability >= 7.0
.. note::
Calling ``model.to(memory_format=torch.channels_last)`` is more aggressive
than the utility function ``convert_conv2d_weight_memory_format``. Any
layer with 4d weight will be affected by ``model.to``, which does not
necessarily benefit from conversion to specified ``memory_format``.
One place we are confident in is that NHWC(channels_last) conversion for
convolution in cuDNN, as it is beneficial to run convolution in NHWC,
even in cases where we have to apply permutation to input tensors.
Hence our strategy here is to convert only the weight of convolution to
channels_last. This ensures that;
1. Fast convolution kernels will be used, the benefit of which could
outweigh overhead of permutation (if input is not in the same format).
2. No unnecessary permutations are applied on layers that do not benefit
from memory_format conversion.
The optimal case is that, layers between convolution layers are channels
last compatible. Input tensor would be permuted to channels last when it
encounters the first convolution layer and stay in that memory format.
Hence following convolutions will not need to permute its input tensor.
In case where a channels last incompatible layer is between convolution
layers, we need to permute the input tensor back to contiguous format
for that layer. The input tensor will go through the remaining layers in
contiguous format and be permuted to channels last when it encounters
another convolution layer. There's no point in propagating that
permutation to an earlier layer, as most layers are quite agnostic to
``memory_format``.
This claim might change when PyTorch supports fusion of permutation, as
there might have been a better spot to fuse the permutation other than
immediately before a convolution.
Args:
module (nn.Module): ``nn.Conv2d`` & ``nn.ConvTranspose2d`` or container
``nn.Module``
memory_format: user specified ``memory_format``,
e.g. ``torch.channels_last`` or ``torch.contiguous_format``
Returns:
The original module with updated ``nn.Conv2d``
Example:
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
>>> # xdoctest: +REQUIRES(env:CUBLAS_WORKSPACE_CONFIG)
>>> input = torch.randint(1, 10, (2, 8, 4, 4), dtype=torch.float16, device="cuda")
>>> model = nn.Sequential(
>>> nn.Conv2d(8, 4, 3)).cuda().half()
>>> # This is identical to:
>>> # nn.utils.convert_conv2d_weight_memory_format(model, torch.channels_last)
>>> model = nn.utils.convert_conv2d_weight_memory_format(model, torch.channels_last)
>>> out = model(input)
"""
# TODO: expand this to `_ConvNd` when channels_last support is extended
# beyond only 4d tensors.
if isinstance(module, (torch.nn.Conv2d, torch.nn.ConvTranspose2d)):
weight_data = (
module.weight.detach().clone().contiguous(memory_format=memory_format)
)
module.weight.data = weight_data.resize_(
weight_data.size(), memory_format=memory_format
)
for child in module.children():
convert_conv2d_weight_memory_format(child, memory_format)
return module
def convert_conv3d_weight_memory_format(module, memory_format):
r"""Convert ``memory_format`` of ``nn.Conv3d.weight`` to ``memory_format``
The conversion recursively applies to nested ``nn.Module``, including ``module``.
Note that it only changes the memory_format, but not the semantics of each dimensions.
This function is used to facilitate the computation to adopt NHWC kernels, which
provides considerable speed up for fp16 data on CUDA devices with compute capability >= 7.0
.. note::
Calling ``model.to(memory_format=torch.channels_last_3d)`` is more aggressive
than the utility function ``convert_conv3d_weight_memory_format``. Any
layer with 4d weight will be affected by ``model.to``, which does not
necessarily benefit from conversion to specified ``memory_format``.
One place we are confident in is that NDHWC(channels_last_3d) conversion for
convolution in cuDNN, as it is beneficial to run convolution in NDHWC,
even in cases where we have to apply permutation to input tensors.
Hence our strategy here is to convert only the weight of convolution to
channels_last_3d. This ensures that;
1. Fast convolution kernels will be used, the benefit of which could
outweigh overhead of permutation (if input is not in the same format).
2. No unnecessary permutations are applied on layers that do not benefit
from memory_format conversion.
The optimal case is that, layers between convolution layers are channels
last compatible. Input tensor would be permuted to channels last when it
encounters the first convolution layer and stay in that memory format.
Hence following convolutions will not need to permute its input tensor.
In case where a channels last incompatible layer is between convolution
layers, we need to permute the input tensor back to contiguous format
for that layer. The input tensor will go through the remaining layers in
contiguous format and be permuted to channels last when it encounters
another convolution layer. There's no point in propagating that
permutation to an earlier layer, as most layers are quite agnostic to
``memory_format``.
This claim might change when PyTorch supports fusion of permutation, as
there might have been a better spot to fuse the permutation other than
immediately before a convolution.
Args:
module (nn.Module): ``nn.Conv3d`` & ``nn.ConvTranspose3d`` or container
``nn.Module``
memory_format: user specified ``memory_format``,
e.g. ``torch.channels_last`` or ``torch.contiguous_format``
Returns:
The original module with updated ``nn.Conv3d``
Example:
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
>>> # xdoctest: +REQUIRES(env:CUBLAS_WORKSPACE_CONFIG)
>>> input = torch.randint(1, 10, (2, 8, 4, 4, 4), dtype=torch.float16, device="cuda")
>>> model = nn.Sequential(
>>> nn.Conv3d(8, 4, 3)).cuda().half()
>>> # This is identical to:
>>> # nn.utils.convert_conv3d_weight_memory_format(model, torch.channels_last_3d)
>>> model = nn.utils.convert_conv3d_weight_memory_format(model, torch.channels_last_3d)
>>> out = model(input)
"""
# TODO: expand this to `_ConvNd` when channels_last support is extended
# beyond only 4d tensors.
if isinstance(module, (torch.nn.Conv3d, torch.nn.ConvTranspose3d)):
weight_data = (
module.weight.detach().clone().contiguous(memory_format=memory_format)
)
module.weight.data = weight_data.resize_(
weight_data.size(), memory_format=memory_format
)
for child in module.children():
convert_conv3d_weight_memory_format(child, memory_format)
return module
```
|
==========================================================================================================================
SOURCE CODE FILE: parametrizations.py
LINES: 2
SIZE: 25.68 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\parametrizations.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
from enum import auto, Enum
from typing import Optional
import torch
import torch.nn.functional as F
from torch import Tensor
from torch.nn.modules import Module
from torch.nn.utils import parametrize
__all__ = ["orthogonal", "spectral_norm", "weight_norm"]
def _is_orthogonal(Q, eps=None):
n, k = Q.size(-2), Q.size(-1)
Id = torch.eye(k, dtype=Q.dtype, device=Q.device)
# A reasonable eps, but not too large
eps = 10.0 * n * torch.finfo(Q.dtype).eps
return torch.allclose(Q.mH @ Q, Id, atol=eps)
def _make_orthogonal(A):
"""Assume that A is a tall matrix.
Compute the Q factor s.t. A = QR (A may be complex) and diag(R) is real and non-negative.
"""
X, tau = torch.geqrf(A)
Q = torch.linalg.householder_product(X, tau)
# The diagonal of X is the diagonal of R (which is always real) so we normalise by its signs
Q *= X.diagonal(dim1=-2, dim2=-1).sgn().unsqueeze(-2)
return Q
class _OrthMaps(Enum):
matrix_exp = auto()
cayley = auto()
householder = auto()
class _Orthogonal(Module):
base: Tensor
def __init__(
self, weight, orthogonal_map: _OrthMaps, *, use_trivialization=True
) -> None:
super().__init__()
# Note [Householder complex]
# For complex tensors, it is not possible to compute the tensor `tau` necessary for
# linalg.householder_product from the reflectors.
# To see this, note that the reflectors have a shape like:
# 0 0 0
# * 0 0
# * * 0
# which, for complex matrices, give n(n-1) (real) parameters. Now, you need n^2 parameters
# to parametrize the unitary matrices. Saving tau on its own does not work either, because
# not every combination of `(A, tau)` gives a unitary matrix, meaning that if we optimise
# them as independent tensors we would not maintain the constraint
# An equivalent reasoning holds for rectangular matrices
if weight.is_complex() and orthogonal_map == _OrthMaps.householder:
raise ValueError(
"The householder parametrization does not support complex tensors."
)
self.shape = weight.shape
self.orthogonal_map = orthogonal_map
if use_trivialization:
self.register_buffer("base", None)
def forward(self, X: torch.Tensor) -> torch.Tensor:
n, k = X.size(-2), X.size(-1)
transposed = n < k
if transposed:
X = X.mT
n, k = k, n
# Here n > k and X is a tall matrix
if (
self.orthogonal_map == _OrthMaps.matrix_exp
or self.orthogonal_map == _OrthMaps.cayley
):
# We just need n x k - k(k-1)/2 parameters
X = X.tril()
if n != k:
# Embed into a square matrix
X = torch.cat(
[X, X.new_zeros(n, n - k).expand(*X.shape[:-2], -1, -1)], dim=-1
)
A = X - X.mH
# A is skew-symmetric (or skew-hermitian)
if self.orthogonal_map == _OrthMaps.matrix_exp:
Q = torch.matrix_exp(A)
elif self.orthogonal_map == _OrthMaps.cayley:
# Computes the Cayley retraction (I+A/2)(I-A/2)^{-1}
Id = torch.eye(n, dtype=A.dtype, device=A.device)
Q = torch.linalg.solve(
torch.add(Id, A, alpha=-0.5), torch.add(Id, A, alpha=0.5)
)
# Q is now orthogonal (or unitary) of size (..., n, n)
if n != k:
Q = Q[..., :k]
# Q is now the size of the X (albeit perhaps transposed)
else:
# X is real here, as we do not support householder with complex numbers
A = X.tril(diagonal=-1)
tau = 2.0 / (1.0 + (A * A).sum(dim=-2))
Q = torch.linalg.householder_product(A, tau)
# The diagonal of X is 1's and -1's
# We do not want to differentiate through this or update the diagonal of X hence the casting
Q = Q * X.diagonal(dim1=-2, dim2=-1).int().unsqueeze(-2)
if hasattr(self, "base"):
Q = self.base @ Q
if transposed:
Q = Q.mT
return Q # type: ignore[possibly-undefined]
@torch.autograd.no_grad()
def right_inverse(self, Q: torch.Tensor) -> torch.Tensor:
if Q.shape != self.shape:
raise ValueError(
f"Expected a matrix or batch of matrices of shape {self.shape}. "
f"Got a tensor of shape {Q.shape}."
)
Q_init = Q
n, k = Q.size(-2), Q.size(-1)
transpose = n < k
if transpose:
Q = Q.mT
n, k = k, n
# We always make sure to always copy Q in every path
if not hasattr(self, "base"):
# Note [right_inverse expm cayley]
# If we do not have use_trivialization=True, we just implement the inverse of the forward
# map for the Householder. To see why, think that for the Cayley map,
# we would need to find the matrix X \in R^{n x k} such that:
# Y = torch.cat([X.tril(), X.new_zeros(n, n - k).expand(*X.shape[:-2], -1, -1)], dim=-1)
# A = Y - Y.mH
# cayley(A)[:, :k]
# gives the original tensor. It is not clear how to do this.
# Perhaps via some algebraic manipulation involving the QR like that of
# Corollary 2.2 in Edelman, Arias and Smith?
if (
self.orthogonal_map == _OrthMaps.cayley
or self.orthogonal_map == _OrthMaps.matrix_exp
):
raise NotImplementedError(
"It is not possible to assign to the matrix exponential "
"or the Cayley parametrizations when use_trivialization=False."
)
# If parametrization == _OrthMaps.householder, make Q orthogonal via the QR decomposition.
# Here Q is always real because we do not support householder and complex matrices.
# See note [Householder complex]
A, tau = torch.geqrf(Q)
# We want to have a decomposition X = QR with diag(R) > 0, as otherwise we could
# decompose an orthogonal matrix Q as Q = (-Q)@(-Id), which is a valid QR decomposition
# The diagonal of Q is the diagonal of R from the qr decomposition
A.diagonal(dim1=-2, dim2=-1).sign_()
# Equality with zero is ok because LAPACK returns exactly zero when it does not want
# to use a particular reflection
A.diagonal(dim1=-2, dim2=-1)[tau == 0.0] *= -1
return A.mT if transpose else A
else:
if n == k:
# We check whether Q is orthogonal
if not _is_orthogonal(Q):
Q = _make_orthogonal(Q)
else: # Is orthogonal
Q = Q.clone()
else:
# Complete Q into a full n x n orthogonal matrix
N = torch.randn(
*(Q.size()[:-2] + (n, n - k)), dtype=Q.dtype, device=Q.device
)
Q = torch.cat([Q, N], dim=-1)
Q = _make_orthogonal(Q)
self.base = Q
# It is necessary to return the -Id, as we use the diagonal for the
# Householder parametrization. Using -Id makes:
# householder(torch.zeros(m,n)) == torch.eye(m,n)
# Poor man's version of eye_like
neg_Id = torch.zeros_like(Q_init)
neg_Id.diagonal(dim1=-2, dim2=-1).fill_(-1.0)
return neg_Id
def orthogonal(
module: Module,
name: str = "weight",
orthogonal_map: Optional[str] = None,
*,
use_trivialization: bool = True,
) -> Module:
r"""Apply an orthogonal or unitary parametrization to a matrix or a batch of matrices.
Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, the parametrized
matrix :math:`Q \in \mathbb{K}^{m \times n}` is **orthogonal** as
.. math::
\begin{align*}
Q^{\text{H}}Q &= \mathrm{I}_n \mathrlap{\qquad \text{if }m \geq n}\\
QQ^{\text{H}} &= \mathrm{I}_m \mathrlap{\qquad \text{if }m < n}
\end{align*}
where :math:`Q^{\text{H}}` is the conjugate transpose when :math:`Q` is complex
and the transpose when :math:`Q` is real-valued, and
:math:`\mathrm{I}_n` is the `n`-dimensional identity matrix.
In plain words, :math:`Q` will have orthonormal columns whenever :math:`m \geq n`
and orthonormal rows otherwise.
If the tensor has more than two dimensions, we consider it as a batch of matrices of shape `(..., m, n)`.
The matrix :math:`Q` may be parametrized via three different ``orthogonal_map`` in terms of the original tensor:
- ``"matrix_exp"``/``"cayley"``:
the :func:`~torch.matrix_exp` :math:`Q = \exp(A)` and the `Cayley map`_
:math:`Q = (\mathrm{I}_n + A/2)(\mathrm{I}_n - A/2)^{-1}` are applied to a skew-symmetric
:math:`A` to give an orthogonal matrix.
- ``"householder"``: computes a product of Householder reflectors
(:func:`~torch.linalg.householder_product`).
``"matrix_exp"``/``"cayley"`` often make the parametrized weight converge faster than
``"householder"``, but they are slower to compute for very thin or very wide matrices.
If ``use_trivialization=True`` (default), the parametrization implements the "Dynamic Trivialization Framework",
where an extra matrix :math:`B \in \mathbb{K}^{n \times n}` is stored under
``module.parametrizations.weight[0].base``. This helps the
convergence of the parametrized layer at the expense of some extra memory use.
See `Trivializations for Gradient-Based Optimization on Manifolds`_ .
Initial value of :math:`Q`:
If the original tensor is not parametrized and ``use_trivialization=True`` (default), the initial value
of :math:`Q` is that of the original tensor if it is orthogonal (or unitary in the complex case)
and it is orthogonalized via the QR decomposition otherwise (see :func:`torch.linalg.qr`).
Same happens when it is not parametrized and ``orthogonal_map="householder"`` even when ``use_trivialization=False``.
Otherwise, the initial value is the result of the composition of all the registered
parametrizations applied to the original tensor.
.. note::
This function is implemented using the parametrization functionality
in :func:`~torch.nn.utils.parametrize.register_parametrization`.
.. _`Cayley map`: https://en.wikipedia.org/wiki/Cayley_transform#Matrix_map
.. _`Trivializations for Gradient-Based Optimization on Manifolds`: https://arxiv.org/abs/1909.09501
Args:
module (nn.Module): module on which to register the parametrization.
name (str, optional): name of the tensor to make orthogonal. Default: ``"weight"``.
orthogonal_map (str, optional): One of the following: ``"matrix_exp"``, ``"cayley"``, ``"householder"``.
Default: ``"matrix_exp"`` if the matrix is square or complex, ``"householder"`` otherwise.
use_trivialization (bool, optional): whether to use the dynamic trivialization framework.
Default: ``True``.
Returns:
The original module with an orthogonal parametrization registered to the specified
weight
Example::
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK)
>>> orth_linear = orthogonal(nn.Linear(20, 40))
>>> orth_linear
ParametrizedLinear(
in_features=20, out_features=40, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): _Orthogonal()
)
)
)
>>> # xdoctest: +IGNORE_WANT
>>> Q = orth_linear.weight
>>> torch.dist(Q.T @ Q, torch.eye(20))
tensor(4.9332e-07)
"""
weight = getattr(module, name, None)
if not isinstance(weight, Tensor):
raise ValueError(
f"Module '{module}' has no parameter or buffer with name '{name}'"
)
# We could implement this for 1-dim tensors as the maps on the sphere
# but I believe it'd bite more people than it'd help
if weight.ndim < 2:
raise ValueError(
"Expected a matrix or batch of matrices. "
f"Got a tensor of {weight.ndim} dimensions."
)
if orthogonal_map is None:
orthogonal_map = (
"matrix_exp"
if weight.size(-2) == weight.size(-1) or weight.is_complex()
else "householder"
)
orth_enum = getattr(_OrthMaps, orthogonal_map, None)
if orth_enum is None:
raise ValueError(
'orthogonal_map has to be one of "matrix_exp", "cayley", "householder". '
f"Got: {orthogonal_map}"
)
orth = _Orthogonal(weight, orth_enum, use_trivialization=use_trivialization)
parametrize.register_parametrization(module, name, orth, unsafe=True)
return module
class _WeightNorm(Module):
def __init__(
self,
dim: Optional[int] = 0,
) -> None:
super().__init__()
if dim is None:
dim = -1
self.dim = dim
def forward(self, weight_g, weight_v):
return torch._weight_norm(weight_v, weight_g, self.dim)
def right_inverse(self, weight):
weight_g = torch.norm_except_dim(weight, 2, self.dim)
weight_v = weight
return weight_g, weight_v
def weight_norm(module: Module, name: str = "weight", dim: int = 0):
r"""Apply weight normalization to a parameter in the given module.
.. math::
\mathbf{w} = g \dfrac{\mathbf{v}}{\|\mathbf{v}\|}
Weight normalization is a reparameterization that decouples the magnitude
of a weight tensor from its direction. This replaces the parameter specified
by :attr:`name` with two parameters: one specifying the magnitude
and one specifying the direction.
By default, with ``dim=0``, the norm is computed independently per output
channel/plane. To compute a norm over the entire weight tensor, use
``dim=None``.
See https://arxiv.org/abs/1602.07868
Args:
module (Module): containing module
name (str, optional): name of weight parameter
dim (int, optional): dimension over which to compute the norm
Returns:
The original module with the weight norm hook
Example::
>>> m = weight_norm(nn.Linear(20, 40), name='weight')
>>> m
ParametrizedLinear(
in_features=20, out_features=40, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): _WeightNorm()
)
)
)
>>> m.parametrizations.weight.original0.size()
torch.Size([40, 1])
>>> m.parametrizations.weight.original1.size()
torch.Size([40, 20])
"""
_weight_norm = _WeightNorm(dim)
parametrize.register_parametrization(module, name, _weight_norm, unsafe=True)
def _weight_norm_compat_hook(
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
g_key = f"{prefix}{name}_g"
v_key = f"{prefix}{name}_v"
if g_key in state_dict and v_key in state_dict:
original0 = state_dict.pop(g_key)
original1 = state_dict.pop(v_key)
state_dict[f"{prefix}parametrizations.{name}.original0"] = original0
state_dict[f"{prefix}parametrizations.{name}.original1"] = original1
module._register_load_state_dict_pre_hook(_weight_norm_compat_hook)
return module
class _SpectralNorm(Module):
def __init__(
self,
weight: torch.Tensor,
n_power_iterations: int = 1,
dim: int = 0,
eps: float = 1e-12,
) -> None:
super().__init__()
ndim = weight.ndim
if dim >= ndim or dim < -ndim:
raise IndexError(
"Dimension out of range (expected to be in range of "
f"[-{ndim}, {ndim - 1}] but got {dim})"
)
if n_power_iterations <= 0:
raise ValueError(
"Expected n_power_iterations to be positive, but "
f"got n_power_iterations={n_power_iterations}"
)
self.dim = dim if dim >= 0 else dim + ndim
self.eps = eps
if ndim > 1:
# For ndim == 1 we do not need to approximate anything (see _SpectralNorm.forward)
self.n_power_iterations = n_power_iterations
weight_mat = self._reshape_weight_to_matrix(weight)
h, w = weight_mat.size()
u = weight_mat.new_empty(h).normal_(0, 1)
v = weight_mat.new_empty(w).normal_(0, 1)
self.register_buffer("_u", F.normalize(u, dim=0, eps=self.eps))
self.register_buffer("_v", F.normalize(v, dim=0, eps=self.eps))
# Start with u, v initialized to some reasonable values by performing a number
# of iterations of the power method
self._power_method(weight_mat, 15)
def _reshape_weight_to_matrix(self, weight: torch.Tensor) -> torch.Tensor:
# Precondition
assert weight.ndim > 1
if self.dim != 0:
# permute dim to front
weight = weight.permute(
self.dim, *(d for d in range(weight.dim()) if d != self.dim)
)
return weight.flatten(1)
@torch.autograd.no_grad()
def _power_method(self, weight_mat: torch.Tensor, n_power_iterations: int) -> None:
# See original note at torch/nn/utils/spectral_norm.py
# NB: If `do_power_iteration` is set, the `u` and `v` vectors are
# updated in power iteration **in-place**. This is very important
# because in `DataParallel` forward, the vectors (being buffers) are
# broadcast from the parallelized module to each module replica,
# which is a new module object created on the fly. And each replica
# runs its own spectral norm power iteration. So simply assigning
# the updated vectors to the module this function runs on will cause
# the update to be lost forever. And the next time the parallelized
# module is replicated, the same randomly initialized vectors are
# broadcast and used!
#
# Therefore, to make the change propagate back, we rely on two
# important behaviors (also enforced via tests):
# 1. `DataParallel` doesn't clone storage if the broadcast tensor
# is already on correct device; and it makes sure that the
# parallelized module is already on `device[0]`.
# 2. If the out tensor in `out=` kwarg has correct shape, it will
# just fill in the values.
# Therefore, since the same power iteration is performed on all
# devices, simply updating the tensors in-place will make sure that
# the module replica on `device[0]` will update the _u vector on the
# parallelized module (by shared storage).
#
# However, after we update `u` and `v` in-place, we need to **clone**
# them before using them to normalize the weight. This is to support
# backproping through two forward passes, e.g., the common pattern in
# GAN training: loss = D(real) - D(fake). Otherwise, engine will
# complain that variables needed to do backward for the first forward
# (i.e., the `u` and `v` vectors) are changed in the second forward.
# Precondition
assert weight_mat.ndim > 1
for _ in range(n_power_iterations):
# Spectral norm of weight equals to `u^T W v`, where `u` and `v`
# are the first left and right singular vectors.
# This power iteration produces approximations of `u` and `v`.
self._u = F.normalize(
torch.mv(weight_mat, self._v), # type: ignore[has-type]
dim=0,
eps=self.eps,
out=self._u, # type: ignore[has-type]
)
self._v = F.normalize(
torch.mv(weight_mat.H, self._u), # type: ignore[has-type]
dim=0,
eps=self.eps,
out=self._v, # type: ignore[has-type]
)
def forward(self, weight: torch.Tensor) -> torch.Tensor:
if weight.ndim == 1:
# Faster and more exact path, no need to approximate anything
return F.normalize(weight, dim=0, eps=self.eps)
else:
weight_mat = self._reshape_weight_to_matrix(weight)
if self.training:
self._power_method(weight_mat, self.n_power_iterations)
# See above on why we need to clone
u = self._u.clone(memory_format=torch.contiguous_format)
v = self._v.clone(memory_format=torch.contiguous_format)
# The proper way of computing this should be through F.bilinear, but
# it seems to have some efficiency issues:
# https://github.com/pytorch/pytorch/issues/58093
sigma = torch.vdot(u, torch.mv(weight_mat, v))
return weight / sigma
def right_inverse(self, value: torch.Tensor) -> torch.Tensor:
# we may want to assert here that the passed value already
# satisfies constraints
return value
def spectral_norm(
module: Module,
name: str = "weight",
n_power_iterations: int = 1,
eps: float = 1e-12,
dim: Optional[int] = None,
) -> Module:
r"""Apply spectral normalization to a parameter in the given module.
.. math::
\mathbf{W}_{SN} = \dfrac{\mathbf{W}}{\sigma(\mathbf{W})},
\sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \dfrac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2}
When applied on a vector, it simplifies to
.. math::
\mathbf{x}_{SN} = \dfrac{\mathbf{x}}{\|\mathbf{x}\|_2}
Spectral normalization stabilizes the training of discriminators (critics)
in Generative Adversarial Networks (GANs) by reducing the Lipschitz constant
of the model. :math:`\sigma` is approximated performing one iteration of the
`power method`_ every time the weight is accessed. If the dimension of the
weight tensor is greater than 2, it is reshaped to 2D in power iteration
method to get spectral norm.
See `Spectral Normalization for Generative Adversarial Networks`_ .
.. _`power method`: https://en.wikipedia.org/wiki/Power_iteration
.. _`Spectral Normalization for Generative Adversarial Networks`: https://arxiv.org/abs/1802.05957
.. note::
This function is implemented using the parametrization functionality
in :func:`~torch.nn.utils.parametrize.register_parametrization`. It is a
reimplementation of :func:`torch.nn.utils.spectral_norm`.
.. note::
When this constraint is registered, the singular vectors associated to the largest
singular value are estimated rather than sampled at random. These are then updated
performing :attr:`n_power_iterations` of the `power method`_ whenever the tensor
is accessed with the module on `training` mode.
.. note::
If the `_SpectralNorm` module, i.e., `module.parametrization.weight[idx]`,
is in training mode on removal, it will perform another power iteration.
If you'd like to avoid this iteration, set the module to eval mode
before its removal.
Args:
module (nn.Module): containing module
name (str, optional): name of weight parameter. Default: ``"weight"``.
n_power_iterations (int, optional): number of power iterations to
calculate spectral norm. Default: ``1``.
eps (float, optional): epsilon for numerical stability in
calculating norms. Default: ``1e-12``.
dim (int, optional): dimension corresponding to number of outputs.
Default: ``0``, except for modules that are instances of
ConvTranspose{1,2,3}d, when it is ``1``
Returns:
The original module with a new parametrization registered to the specified
weight
Example::
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK)
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> snm = spectral_norm(nn.Linear(20, 40))
>>> snm
ParametrizedLinear(
in_features=20, out_features=40, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): _SpectralNorm()
)
)
)
>>> torch.linalg.matrix_norm(snm.weight, 2)
tensor(1.0081, grad_fn=<AmaxBackward0>)
"""
weight = getattr(module, name, None)
if not isinstance(weight, Tensor):
raise ValueError(
f"Module '{module}' has no parameter or buffer with name '{name}'"
)
if dim is None:
if isinstance(
module,
(
torch.nn.ConvTranspose1d,
torch.nn.ConvTranspose2d,
torch.nn.ConvTranspose3d,
),
):
dim = 1
else:
dim = 0
parametrize.register_parametrization(
module, name, _SpectralNorm(weight, n_power_iterations, dim, eps)
)
return module
```
|
=====================================================================================================================
SOURCE CODE FILE: parametrize.py
LINES: 16
SIZE: 35.99 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\parametrize.py
ENCODING: utf-8
```py
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
import collections
import copyreg
from collections.abc import Sequence
from contextlib import contextmanager
from copy import deepcopy
from typing import Optional, Union
import torch
from torch import Tensor
from torch.__future__ import get_swap_module_params_on_conversion
from torch.nn.modules.container import Module, ModuleDict, ModuleList
from torch.nn.parameter import Parameter
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
__all__ = [
"cached",
"ParametrizationList",
"register_parametrization",
"is_parametrized",
"remove_parametrizations",
"type_before_parametrizations",
"transfer_parametrizations_and_params",
]
_cache_enabled = 0
_cache: dict[tuple[int, str], Optional[Tensor]] = {}
@contextmanager
def cached():
r"""Context manager that enables the caching system within parametrizations registered with :func:`register_parametrization`.
The value of the parametrized objects is computed and cached the first time
they are required when this context manager is active. The cached values are
discarded when leaving the context manager.
This is useful when using a parametrized parameter more than once in the forward pass.
An example of this is when parametrizing the recurrent kernel of an RNN or when
sharing weights.
The simplest way to activate the cache is by wrapping the forward pass of the neural network
.. code-block:: python
import torch.nn.utils.parametrize as P
...
with P.cached():
output = model(inputs)
in training and evaluation. One may also wrap the parts of the modules that use
several times the parametrized tensors. For example, the loop of an RNN with a
parametrized recurrent kernel:
.. code-block:: python
with P.cached():
for x in xs:
out_rnn = self.rnn_cell(x, out_rnn)
"""
global _cache
global _cache_enabled
_cache_enabled += 1
try:
yield
finally:
_cache_enabled -= 1
if not _cache_enabled:
_cache = {}
def _register_parameter_or_buffer(module, name, X):
if isinstance(X, Parameter):
module.register_parameter(name, X)
else:
module.register_buffer(name, X)
def _maybe_set(dest: Tensor, src: Tensor) -> None:
should_swap = (
get_swap_module_params_on_conversion() or is_traceable_wrapper_subclass(dest)
)
if should_swap:
if isinstance(dest, Parameter) and not isinstance(src, Parameter):
src = Parameter(src, requires_grad=dest.requires_grad)
torch.utils.swap_tensors(dest, src)
else:
dest.set_(src) # type: ignore[call-overload]
class ParametrizationList(ModuleList):
r"""A sequential container that holds and manages the original parameters or buffers of a parametrized :class:`torch.nn.Module`.
It is the type of ``module.parametrizations[tensor_name]`` when ``module[tensor_name]``
has been parametrized with :func:`register_parametrization`.
If the first registered parametrization has a ``right_inverse`` that returns one tensor or
does not have a ``right_inverse`` (in which case we assume that ``right_inverse`` is the identity),
it will hold the tensor under the name ``original``.
If it has a ``right_inverse`` that returns more than one tensor, these will be registered as
``original0``, ``original1``, ...
.. warning::
This class is used internally by :func:`register_parametrization`. It is documented
here for completeness. It shall not be instantiated by the user.
Args:
modules (sequence): sequence of modules representing the parametrizations
original (Parameter or Tensor): parameter or buffer that is parametrized
unsafe (bool): a boolean flag that denotes whether the parametrization
may change the dtype and shape of the tensor. Default: `False`
Warning: the parametrization is not checked for consistency upon registration.
Enable this flag at your own risk.
"""
original: Tensor
unsafe: bool
def __init__(
self,
modules: Sequence[Module],
original: Union[Tensor, Parameter],
unsafe: bool = False,
) -> None:
# We require this because we need to treat differently the first parametrization
# This should never throw, unless this class is used from the outside
if len(modules) == 0:
raise ValueError("ParametrizationList requires one or more modules.")
super().__init__(modules)
self.unsafe = unsafe
# In plain words:
# module.weight must keep its dtype and shape.
# Furthermore, if there is no right_inverse or the right_inverse returns a tensor,
# this should be of the same dtype as the original tensor
#
# We check that the following invariants hold:
# X = module.weight
# Y = param.right_inverse(X)
# assert isinstance(Y, Tensor) or
# (isinstance(Y, collections.abc.Sequence) and all(isinstance(t, Tensor) for t in Y))
# Z = param(Y) if isinstance(Y, Tensor) else param(*Y)
# # Consistency checks
# assert X.dtype == Z.dtype and X.shape == Z.shape
# # If it has one input, this allows to be able to use set_ to be able to
# # move data to/from the original tensor without changing its id (which is what the
# # optimizer uses to track parameters)
# if isinstance(Y, Tensor)
# assert X.dtype == Y.dtype
# Below we use original = X, new = Y
original_shape = original.shape
original_dtype = original.dtype
# Compute new
with torch.no_grad():
new = original
for module in reversed(self): # type: ignore[call-overload]
if hasattr(module, "right_inverse"):
try:
new = module.right_inverse(new) # type: ignore[operator]
except NotImplementedError:
pass
# else, or if it throws, we assume that right_inverse is the identity
if not isinstance(new, Tensor) and not isinstance(new, Sequence):
raise ValueError(
"'right_inverse' must return a Tensor or a Sequence of tensors (list, tuple...). "
f"Got {type(new).__name__}"
)
# Set the number of original tensors
self.is_tensor = isinstance(new, Tensor)
self.ntensors = 1 if self.is_tensor else len(new)
# Register the tensor(s)
if self.is_tensor:
if original.dtype != new.dtype:
raise ValueError(
"When `right_inverse` outputs one tensor, it may not change the dtype.\n"
f"original.dtype: {original.dtype}\n"
f"right_inverse(original).dtype: {new.dtype}"
)
# Set the original to original so that the user does not need to re-register the parameter
# manually in the optimiser
with torch.no_grad():
_maybe_set(original, new)
_register_parameter_or_buffer(self, "original", original)
else:
for i, originali in enumerate(new):
if not isinstance(originali, Tensor):
raise ValueError(
"'right_inverse' must return a Tensor or a Sequence of tensors "
"(list, tuple...). "
f"Got element {i} of the sequence with type {type(originali).__name__}."
)
# If the original tensor was a Parameter that required grad, we expect the user to
# add the new parameters to the optimizer after registering the parametrization
# (this is documented)
if isinstance(original, Parameter):
originali = Parameter(originali, original.requires_grad)
originali.requires_grad_(original.requires_grad)
_register_parameter_or_buffer(self, f"original{i}", originali)
if not self.unsafe:
# Consistency checks:
# Since f : A -> B, right_inverse : B -> A, Z and original should live in B
# Z = forward(right_inverse(original))
Z = self()
if not isinstance(Z, Tensor):
raise ValueError(
f"A parametrization must return a tensor. Got {type(Z).__name__}."
)
if Z.dtype != original_dtype:
raise ValueError(
"Registering a parametrization may not change the dtype of the tensor, unless `unsafe` flag is enabled.\n"
f"unparametrized dtype: {original_dtype}\n"
f"parametrized dtype: {Z.dtype}"
)
if Z.shape != original_shape:
raise ValueError(
"Registering a parametrization may not change the shape of the tensor, unless `unsafe` flag is enabled.\n"
f"unparametrized shape: {original_shape}\n"
f"parametrized shape: {Z.shape}"
)
def right_inverse(self, value: Tensor) -> None:
r"""Call the ``right_inverse`` methods of the parametrizations in the inverse registration order.
Then, it stores the result in ``self.original`` if ``right_inverse`` outputs one tensor
or in ``self.original0``, ``self.original1``, ... if it outputs several.
Args:
value (Tensor): Value to which initialize the module
"""
# All the exceptions in this function should almost never throw.
# They could throw if, for example, right_inverse function returns a different
# dtype when given a different input, which should most likely be caused by a
# bug in the user's code
with torch.no_grad():
# See https://github.com/pytorch/pytorch/issues/53103
for module in reversed(self): # type: ignore[call-overload]
if hasattr(module, "right_inverse"):
value = module.right_inverse(value) # type: ignore[operator]
else:
raise RuntimeError(
f"parametrization {type(module).__name__} does not implement "
"right_inverse."
)
if self.is_tensor:
# These exceptions should only throw when a right_inverse function does not
# return the same dtype for every input, which should most likely be caused by a bug
if not isinstance(value, Tensor):
raise ValueError(
f"`right_inverse` should return a tensor. Got {type(value).__name__}"
)
if value.dtype != self.original.dtype:
raise ValueError(
f"The tensor returned by `right_inverse` has dtype {value.dtype} "
f"while `original` has dtype {self.original.dtype}"
)
# We know that the result is going to have the same dtype
_maybe_set(self.original, value)
else:
if not isinstance(value, collections.abc.Sequence):
raise ValueError(
"'right_inverse' must return a sequence of tensors. "
f"Got {type(value).__name__}."
)
if len(value) != self.ntensors:
raise ValueError(
"'right_inverse' must return a sequence of tensors of length "
f"{self.ntensors}. Got a sequence of length {len(value)}."
)
for i, tensor in enumerate(value):
original_i = getattr(self, f"original{i}")
if not isinstance(tensor, Tensor):
raise ValueError(
f"`right_inverse` must return a sequence of tensors. "
f"Got element {i} of type {type(tensor).__name__}"
)
if original_i.dtype != tensor.dtype:
raise ValueError(
f"Tensor {i} returned by `right_inverse` has dtype {tensor.dtype} "
f"while `original{i}` has dtype {original_i.dtype}"
)
_maybe_set(original_i, tensor)
def forward(self) -> Tensor:
if torch.jit.is_scripting():
raise RuntimeError("Parametrization is not working with scripting.")
# Unpack the originals for the first parametrization
if self.is_tensor:
x = self[0](self.original)
else:
originals = (getattr(self, f"original{i}") for i in range(self.ntensors))
x = self[0](*originals)
# It's not possible to call self[1:] here, so we have to be a bit more cryptic
# Also we want to skip all non-integer keys
curr_idx = 1
while hasattr(self, str(curr_idx)):
x = self[curr_idx](x)
curr_idx += 1
return x
def _inject_new_class(module: Module) -> None:
r"""Set up a module to be parametrized.
This works by substituting the class of the module by a class
that extends it to be able to inject a property
Args:
module (nn.Module): module into which to inject the property
"""
cls = module.__class__
def default_deepcopy(self, memo):
# Just emulate a standard deepcopy procedure when __deepcopy__ doesn't exist in the current class.
obj = memo.get(id(self), None)
if obj is not None:
return obj
replica = self.__new__(self.__class__)
memo[id(self)] = replica
replica.__dict__ = deepcopy(self.__dict__, memo)
# Also save all slots if they exist.
slots_to_save = copyreg._slotnames(self.__class__) # type: ignore[attr-defined]
for slot in slots_to_save:
if hasattr(self, slot):
setattr(replica, slot, deepcopy(getattr(self, slot), memo))
return replica
def getstate(self):
raise RuntimeError(
"Serialization of parametrized modules is only "
"supported through state_dict(). See:\n"
"https://pytorch.org/tutorials/beginner/saving_loading_models.html"
"#saving-loading-a-general-checkpoint-for-inference-and-or-resuming-training"
)
dct = {"__getstate__": getstate}
# We don't allow serialization of parametrized modules but should still allow deepcopying.
# Default 'deepcopy' function invokes __deepcopy__ method instead of __getstate__ when it exists.
if not hasattr(cls, "__deepcopy__"):
dct["__deepcopy__"] = default_deepcopy # type: ignore[assignment]
param_cls = type(
f"Parametrized{cls.__name__}",
(cls,),
dct,
)
module.__class__ = param_cls
def _inject_property(module: Module, tensor_name: str) -> None:
r"""Injects a property into module[tensor_name].
It assumes that the class in the module has already been modified from its
original one using _inject_new_class and that the tensor under :attr:`tensor_name`
has already been moved out
Args:
module (nn.Module): module into which to inject the property
tensor_name (str): name of the name of the property to create
"""
# We check the precondition.
# This should never fire if register_parametrization is correctly implemented
assert not hasattr(module, tensor_name)
@torch.jit.unused
def get_cached_parametrization(parametrization) -> Tensor:
global _cache
key = (id(module), tensor_name)
tensor = _cache.get(key)
if tensor is None:
tensor = parametrization()
_cache[key] = tensor
return tensor
def get_parametrized(self) -> Tensor:
if torch.jit.is_scripting():
raise RuntimeError("Parametrization is not working with scripting.")
parametrization = self.parametrizations[tensor_name]
if _cache_enabled:
if torch.jit.is_scripting():
# Scripting
raise RuntimeError(
"Caching is not implemented for scripting. "
"Either disable caching or avoid scripting."
)
elif torch._C._get_tracing_state() is not None:
# Tracing
raise RuntimeError(
"Cannot trace a model while caching parametrizations."
)
else:
return get_cached_parametrization(parametrization)
else:
# If caching is not active, this function just evaluates the parametrization
return parametrization()
def set_original(self, value: Tensor) -> None:
if torch.jit.is_scripting():
raise RuntimeError("Parametrization is not working with scripting.")
self.parametrizations[tensor_name].right_inverse(value)
setattr(module.__class__, tensor_name, property(get_parametrized, set_original))
def register_parametrization(
module: Module,
tensor_name: str,
parametrization: Module,
*,
unsafe: bool = False,
) -> Module:
r"""Register a parametrization to a tensor in a module.
Assume that ``tensor_name="weight"`` for simplicity. When accessing ``module.weight``,
the module will return the parametrized version ``parametrization(module.weight)``.
If the original tensor requires a gradient, the backward pass will differentiate
through :attr:`parametrization`, and the optimizer will update the tensor accordingly.
The first time that a module registers a parametrization, this function will add an attribute
``parametrizations`` to the module of type :class:`~ParametrizationList`.
The list of parametrizations on the tensor ``weight`` will be accessible under
``module.parametrizations.weight``.
The original tensor will be accessible under
``module.parametrizations.weight.original``.
Parametrizations may be concatenated by registering several parametrizations
on the same attribute.
The training mode of a registered parametrization is updated on registration
to match the training mode of the host module
Parametrized parameters and buffers have an inbuilt caching system that can be activated
using the context manager :func:`cached`.
A :attr:`parametrization` may optionally implement a method with signature
.. code-block:: python
def right_inverse(self, X: Tensor) -> Union[Tensor, Sequence[Tensor]]
This method is called on the unparametrized tensor when the first parametrization
is registered to compute the initial value of the original tensor.
If this method is not implemented, the original tensor will be just the unparametrized tensor.
If all the parametrizations registered on a tensor implement `right_inverse` it is possible
to initialize a parametrized tensor by assigning to it, as shown in the example below.
It is possible for the first parametrization to depend on several inputs.
This may be implemented returning a tuple of tensors from ``right_inverse``
(see the example implementation of a ``RankOne`` parametrization below).
In this case, the unconstrained tensors are also located under ``module.parametrizations.weight``
with names ``original0``, ``original1``,...
.. note::
If unsafe=False (default) both the forward and right_inverse methods will be called
once to perform a number of consistency checks.
If unsafe=True, then right_inverse will be called if the tensor is not parametrized,
and nothing will be called otherwise.
.. note::
In most situations, ``right_inverse`` will be a function such that
``forward(right_inverse(X)) == X`` (see
`right inverse <https://en.wikipedia.org/wiki/Inverse_function#Right_inverses>`_).
Sometimes, when the parametrization is not surjective, it may be reasonable
to relax this.
.. warning::
If a parametrization depends on several inputs, :func:`~register_parametrization`
will register a number of new parameters. If such parametrization is registered
after the optimizer is created, these new parameters will need to be added manually
to the optimizer. See :meth:`torch.Optimizer.add_param_group`.
Args:
module (nn.Module): module on which to register the parametrization
tensor_name (str): name of the parameter or buffer on which to register
the parametrization
parametrization (nn.Module): the parametrization to register
Keyword args:
unsafe (bool): a boolean flag that denotes whether the parametrization
may change the dtype and shape of the tensor. Default: `False`
Warning: the parametrization is not checked for consistency upon registration.
Enable this flag at your own risk.
Raises:
ValueError: if the module does not have a parameter or a buffer named :attr:`tensor_name`
Examples:
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK)
>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.utils.parametrize as P
>>>
>>> class Symmetric(nn.Module):
>>> def forward(self, X):
>>> return X.triu() + X.triu(1).T # Return a symmetric matrix
>>>
>>> def right_inverse(self, A):
>>> return A.triu()
>>>
>>> m = nn.Linear(5, 5)
>>> P.register_parametrization(m, "weight", Symmetric())
>>> print(torch.allclose(m.weight, m.weight.T)) # m.weight is now symmetric
True
>>> A = torch.rand(5, 5)
>>> A = A + A.T # A is now symmetric
>>> m.weight = A # Initialize the weight to be the symmetric matrix A
>>> print(torch.allclose(m.weight, A))
True
>>> class RankOne(nn.Module):
>>> def forward(self, x, y):
>>> # Form a rank 1 matrix multiplying two vectors
>>> return x.unsqueeze(-1) @ y.unsqueeze(-2)
>>>
>>> def right_inverse(self, Z):
>>> # Project Z onto the rank 1 matrices
>>> U, S, Vh = torch.linalg.svd(Z, full_matrices=False)
>>> # Return rescaled singular vectors
>>> s0_sqrt = S[0].sqrt().unsqueeze(-1)
>>> return U[..., :, 0] * s0_sqrt, Vh[..., 0, :] * s0_sqrt
>>>
>>> linear_rank_one = P.register_parametrization(nn.Linear(4, 4), "weight", RankOne())
>>> print(torch.linalg.matrix_rank(linear_rank_one.weight).item())
1
"""
parametrization.train(module.training)
if is_parametrized(module, tensor_name):
# Correctness checks.
# If A is the space of tensors with shape and dtype equal to module.weight
# we check that parametrization.forward and parametrization.right_inverse are
# functions from A to A
if not unsafe:
Y = getattr(module, tensor_name)
X = parametrization(Y)
if not isinstance(X, Tensor):
raise ValueError(
f"A parametrization must return a tensor. Got {type(X).__name__}."
)
if X.dtype != Y.dtype:
raise ValueError(
"Registering a parametrization may not change the dtype of the tensor, unless the `unsafe` flag is enabled.\n"
f"module.{tensor_name}.dtype: {Y.dtype}\n"
f"parametrization(module.{tensor_name}).dtype: {X.dtype}"
)
if X.shape != Y.shape:
raise ValueError(
"Registering a parametrization may not change the shape of the tensor, unless the `unsafe` flag is enabled.\n"
f"module.{tensor_name}.shape: {Y.shape}\n"
f"parametrization(module.{tensor_name}).shape: {X.shape}"
)
if hasattr(parametrization, "right_inverse"):
try:
Z = parametrization.right_inverse(X) # type: ignore[operator]
except NotImplementedError:
pass
else:
if not isinstance(Z, Tensor):
raise ValueError(
f"parametrization.right_inverse must return a tensor. Got: {type(Z).__name__}"
)
if Z.dtype != Y.dtype:
raise ValueError(
"The tensor returned by parametrization.right_inverse must have the same dtype "
f"as module.{tensor_name}, unless the `unsafe` flag is enabled.\n"
f"module.{tensor_name}.dtype: {Y.dtype}\n"
f"returned dtype: {Z.dtype}"
)
if Z.shape != Y.shape:
raise ValueError(
"The tensor returned by parametrization.right_inverse must have the same shape "
f"as module.{tensor_name}, unless the `unsafe` flag is enabled.\n"
f"module.{tensor_name}.shape: {Y.shape}\n"
f"returned shape: {Z.shape}"
)
# else right_inverse is assumed to be the identity
# add the new parametrization to the parametrization list
assert isinstance(module.parametrizations, ModuleDict) # Make mypy happy
module.parametrizations[tensor_name].append(parametrization)
# If unsafe was True in previous parametrization, keep it enabled
module.parametrizations[tensor_name].unsafe |= unsafe # type: ignore[index, union-attr]
elif tensor_name in module._buffers or tensor_name in module._parameters:
# Set the parametrization mechanism
# Fetch the original buffer or parameter
original = getattr(module, tensor_name)
# We create this early to check for possible errors
parametrizations = ParametrizationList(
[parametrization], original, unsafe=unsafe
)
# Delete the previous parameter or buffer
delattr(module, tensor_name)
# If this is the first parametrization registered on the module,
# we prepare the module to inject the property
if not is_parametrized(module):
# Change the class
_inject_new_class(module)
# Inject a ``ModuleDict`` into the instance under module.parametrizations
module.parametrizations = ModuleDict()
# Add a property into the class
_inject_property(module, tensor_name)
# Add a ParametrizationList
assert isinstance(module.parametrizations, ModuleDict) # Make mypy happy
module.parametrizations[tensor_name] = parametrizations
else:
raise ValueError(
f"Module '{module}' does not have a parameter, a buffer, or a "
f"parametrized element with name '{tensor_name}'"
)
return module
def is_parametrized(module: Module, tensor_name: Optional[str] = None) -> bool:
r"""Determine if a module has a parametrization.
Args:
module (nn.Module): module to query
tensor_name (str, optional): name of the parameter in the module
Default: ``None``
Returns:
``True`` if :attr:`module` has a parametrization for the parameter named :attr:`tensor_name`,
or if it has any parametrization when :attr:`tensor_name` is ``None``;
otherwise ``False``
"""
parametrizations = getattr(module, "parametrizations", None)
if parametrizations is None or not isinstance(parametrizations, ModuleDict):
return False
if tensor_name is None:
# Check that there is at least one parametrized buffer or Parameter
return len(parametrizations) > 0
else:
return tensor_name in parametrizations
def remove_parametrizations(
module: Module,
tensor_name: str,
leave_parametrized: bool = True,
) -> Module:
r"""Remove the parametrizations on a tensor in a module.
- If ``leave_parametrized=True``, ``module[tensor_name]`` will be set to
its current output. In this case, the parametrization shall not change the ``dtype``
of the tensor.
- If ``leave_parametrized=False``, ``module[tensor_name]`` will be set to
the unparametrised tensor in ``module.parametrizations[tensor_name].original``.
This is only possible when the parametrization depends on just one tensor.
Args:
module (nn.Module): module from which remove the parametrization
tensor_name (str): name of the parametrization to be removed
leave_parametrized (bool, optional): leave the attribute :attr:`tensor_name` parametrized.
Default: ``True``
Returns:
Module: module
Raises:
ValueError: if ``module[tensor_name]`` is not parametrized
ValueError: if ``leave_parametrized=False`` and the parametrization depends on several tensors
"""
if not is_parametrized(module, tensor_name):
raise ValueError(
f"Module {module} does not have a parametrization on {tensor_name}"
)
# Fetch the original tensor
assert isinstance(module.parametrizations, ModuleDict) # Make mypy happy
parametrizations = module.parametrizations[tensor_name]
if parametrizations.is_tensor:
original = parametrizations.original
if leave_parametrized:
with torch.no_grad():
t = getattr(module, tensor_name)
# We know they have the same dtype because we have checked this when registering the
# parametrizations. As such, we can use set_
# We do this so that the parameter does not to change the id()
# This way the user does not need to update the optimizer
with torch.no_grad():
if type(original) is torch.Tensor:
_maybe_set(original, t)
else:
try:
_maybe_set(original, t)
except RuntimeError as e:
# TODO: Fix this for tensor subclasses that are parameters:
# RuntimeError: set_storage is not allowed on a Tensor created from .data or .detach().
raise RuntimeError(
"Calling remove_parametrizations() with leave_parametrized=True "
"for a parameter that is an instance of a tensor subclass requires "
"set_() to be implemented correctly for the tensor subclass."
"Alternatively, one can opt into the swap_tensors path"
"Either set leave_parametrized=False or provide a working implementation"
"for set_() in the tensor subclass or set "
"torch.__future__.set_swap_module_params_on_conversion(True)."
) from e
else:
if leave_parametrized:
# We cannot use no_grad because we need to know whether one or more
# original tensors required grad
t = getattr(module, tensor_name)
# We'll have to trust the user to add it to the optimizer
original = Parameter(t) if t.requires_grad else t
else:
raise ValueError(
"Cannot leave unparametrized (`leave_parametrized=False`) a tensor "
"that is parametrized in terms of a sequence of tensors."
)
# Delete the property that manages the parametrization
delattr(module.__class__, tensor_name)
# Delete the ParametrizationList
del module.parametrizations[tensor_name]
# Restore the parameter / buffer into the main class
_register_parameter_or_buffer(module, tensor_name, original)
# Roll back the parametrized class if no other buffer or parameter
# is currently parametrized in this class
if not is_parametrized(module):
delattr(module, "parametrizations")
# Restore class
orig_cls = module.__class__.__bases__[0]
module.__class__ = orig_cls
return module
def type_before_parametrizations(module: Module) -> type:
r"""Return the module type before parametrizations were applied and if not, then it returns the module type.
Args:
module (nn.Module): module to get type of
"""
if is_parametrized(module):
return module.__class__.__bases__[0]
else:
return type(module)
def transfer_parametrizations_and_params(
from_module: Module,
to_module: Module,
tensor_name: Optional[str] = None,
) -> Module:
r"""Transfer parametrizations and the parameters they parametrize from :attr:`from_module` to :attr:`to_module`.
If :attr:`tensor_name` is specified, only transfers the specified parameter, otherwise
transfers all parametrized parameters. If those parameters do not exist in to_module, it will create them.
Does nothing if from_module is not parametrized.
Args:
from_module (nn.Module): module to transfer from
to_module (nn.Module): module to transfer to
tensor_name (str, optional): parameter to transfer
Returns:
Module: to_module
"""
if is_parametrized(from_module):
assert isinstance(from_module.parametrizations, ModuleDict) # for mypy
# get list of all params or the single param to transfer
parameters_to_transfer: Union[list, ModuleDict] = (
from_module.parametrizations if tensor_name is None else [tensor_name]
)
assert hasattr(parameters_to_transfer, "__iter__") # for mypy
for parameter_name in parameters_to_transfer:
# initialize the to-be-transferred param in to_module if it doesn't exist already
if not hasattr(to_module, parameter_name):
setattr(
to_module,
parameter_name,
Parameter(getattr(from_module, parameter_name)),
)
# apply the params's parametrizations to to_module
for param_func in from_module.parametrizations[parameter_name]:
register_parametrization(to_module, parameter_name, param_func)
assert isinstance(to_module.parametrizations, ModuleDict) # for mypy
# make values match, original values can be stored in either original or
# original0, original1..., need to check both cases
if hasattr(from_module.parametrizations[parameter_name], "original"):
to_module.parametrizations[
parameter_name
].original = from_module.parametrizations[parameter_name].original
else:
num = 0
orig_num = "original" + str(num)
# loop through each original# until all values have been set
while hasattr(from_module.parametrizations[parameter_name], orig_num):
setattr(
to_module.parametrizations[parameter_name],
orig_num,
getattr(from_module.parametrizations[parameter_name], orig_num),
)
num = num + 1
orig_num = "original" + str(num)
return to_module
```
|
===============================================================================================================
SOURCE CODE FILE: prune.py
LINES: 1
SIZE: 57.73 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\prune.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
r"""Pruning methods."""
import numbers
from abc import ABC, abstractmethod
from collections.abc import Iterable
import torch
class BasePruningMethod(ABC):
r"""Abstract base class for creation of new pruning techniques.
Provides a skeleton for customization requiring the overriding of methods
such as :meth:`compute_mask` and :meth:`apply`.
"""
_tensor_name: str
def __call__(self, module, inputs):
r"""Multiply the mask into original tensor and store the result.
Multiplies the mask (stored in ``module[name + '_mask']``)
into the original tensor (stored in ``module[name + '_orig']``)
and stores the result into ``module[name]`` by using :meth:`apply_mask`.
Args:
module (nn.Module): module containing the tensor to prune
inputs: not used.
"""
setattr(module, self._tensor_name, self.apply_mask(module))
@abstractmethod
def compute_mask(self, t, default_mask):
r"""Compute and returns a mask for the input tensor ``t``.
Starting from a base ``default_mask`` (which should be a mask of ones
if the tensor has not been pruned yet), generate a random mask to
apply on top of the ``default_mask`` according to the specific pruning
method recipe.
Args:
t (torch.Tensor): tensor representing the importance scores of the
parameter to prune.
default_mask (torch.Tensor): Base mask from previous pruning
iterations, that need to be respected after the new mask is
applied. Same dims as ``t``.
Returns:
mask (torch.Tensor): mask to apply to ``t``, of same dims as ``t``
"""
def apply_mask(self, module):
r"""Simply handles the multiplication between the parameter being pruned and the generated mask.
Fetches the mask and the original tensor from the module
and returns the pruned version of the tensor.
Args:
module (nn.Module): module containing the tensor to prune
Returns:
pruned_tensor (torch.Tensor): pruned version of the input tensor
"""
# to carry out the multiplication, the mask needs to have been computed,
# so the pruning method must know what tensor it's operating on
assert (
self._tensor_name is not None
), f"Module {module} has to be pruned" # this gets set in apply()
mask = getattr(module, self._tensor_name + "_mask")
orig = getattr(module, self._tensor_name + "_orig")
pruned_tensor = mask.to(dtype=orig.dtype) * orig
return pruned_tensor
@classmethod
def apply(cls, module, name, *args, importance_scores=None, **kwargs):
r"""Add pruning on the fly and reparametrization of a tensor.
Adds the forward pre-hook that enables pruning on the fly and
the reparametrization of a tensor in terms of the original tensor
and the pruning mask.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
args: arguments passed on to a subclass of
:class:`BasePruningMethod`
importance_scores (torch.Tensor): tensor of importance scores (of
same shape as module parameter) used to compute mask for pruning.
The values in this tensor indicate the importance of the
corresponding elements in the parameter being pruned.
If unspecified or None, the parameter will be used in its place.
kwargs: keyword arguments passed on to a subclass of a
:class:`BasePruningMethod`
"""
def _get_composite_method(cls, module, name, *args, **kwargs):
# Check if a pruning method has already been applied to
# `module[name]`. If so, store that in `old_method`.
old_method = None
found = 0
# there should technically be only 1 hook with hook.name == name
# assert this using `found`
hooks_to_remove = []
for k, hook in module._forward_pre_hooks.items():
# if it exists, take existing thing, remove hook, then
# go through normal thing
if isinstance(hook, BasePruningMethod) and hook._tensor_name == name:
old_method = hook
hooks_to_remove.append(k)
found += 1
assert (
found <= 1
), f"Avoid adding multiple pruning hooks to the\
same tensor {name} of module {module}. Use a PruningContainer."
for k in hooks_to_remove:
del module._forward_pre_hooks[k]
# Apply the new pruning method, either from scratch or on top of
# the previous one.
method = cls(*args, **kwargs) # new pruning
# Have the pruning method remember what tensor it's been applied to
method._tensor_name = name
# combine `methods` with `old_method`, if `old_method` exists
if old_method is not None: # meaning that there was a hook
# if the hook is already a pruning container, just add the
# new pruning method to the container
if isinstance(old_method, PruningContainer):
old_method.add_pruning_method(method)
method = old_method # rename old_method --> method
# if the hook is simply a single pruning method, create a
# container, add the old pruning method and the new one
elif isinstance(old_method, BasePruningMethod):
container = PruningContainer(old_method)
# Have the pruning method remember the name of its tensor
# setattr(container, '_tensor_name', name)
container.add_pruning_method(method)
method = container # rename container --> method
return method
method = _get_composite_method(cls, module, name, *args, **kwargs)
# at this point we have no forward_pre_hooks but we could have an
# active reparametrization of the tensor if another pruning method
# had been applied (in which case `method` would be a PruningContainer
# and not a simple pruning method).
# Pruning is to be applied to the module's tensor named `name`,
# starting from the state it is found in prior to this iteration of
# pruning. The pruning mask is calculated based on importances scores.
orig = getattr(module, name)
if importance_scores is not None:
assert (
importance_scores.shape == orig.shape
), f"importance_scores should have the same shape as parameter {name} of {module}"
else:
importance_scores = orig
# If this is the first time pruning is applied, take care of moving
# the original tensor to a new parameter called name + '_orig' and
# and deleting the original parameter
if not isinstance(method, PruningContainer):
# copy `module[name]` to `module[name + '_orig']`
module.register_parameter(name + "_orig", orig)
# temporarily delete `module[name]`
del module._parameters[name]
default_mask = torch.ones_like(orig) # temp
# If this is not the first time pruning is applied, all of the above
# has been done before in a previous pruning iteration, so we're good
# to go
else:
default_mask = (
getattr(module, name + "_mask")
.detach()
.clone(memory_format=torch.contiguous_format)
)
# Use try/except because if anything goes wrong with the mask
# computation etc., you'd want to roll back.
try:
# get the final mask, computed according to the specific method
mask = method.compute_mask(importance_scores, default_mask=default_mask)
# reparameterize by saving mask to `module[name + '_mask']`...
module.register_buffer(name + "_mask", mask)
# ... and the new pruned tensor to `module[name]`
setattr(module, name, method.apply_mask(module))
# associate the pruning method to the module via a hook to
# compute the function before every forward() (compile by run)
module.register_forward_pre_hook(method)
except Exception as e:
if not isinstance(method, PruningContainer):
orig = getattr(module, name + "_orig")
module.register_parameter(name, orig)
del module._parameters[name + "_orig"]
raise e
return method
def prune(self, t, default_mask=None, importance_scores=None):
r"""Compute and returns a pruned version of input tensor ``t``.
According to the pruning rule specified in :meth:`compute_mask`.
Args:
t (torch.Tensor): tensor to prune (of same dimensions as
``default_mask``).
importance_scores (torch.Tensor): tensor of importance scores (of
same shape as ``t``) used to compute mask for pruning ``t``.
The values in this tensor indicate the importance of the
corresponding elements in the ``t`` that is being pruned.
If unspecified or None, the tensor ``t`` will be used in its place.
default_mask (torch.Tensor, optional): mask from previous pruning
iteration, if any. To be considered when determining what
portion of the tensor that pruning should act on. If None,
default to a mask of ones.
Returns:
pruned version of tensor ``t``.
"""
if importance_scores is not None:
assert (
importance_scores.shape == t.shape
), "importance_scores should have the same shape as tensor t"
else:
importance_scores = t
default_mask = default_mask if default_mask is not None else torch.ones_like(t)
return t * self.compute_mask(importance_scores, default_mask=default_mask)
def remove(self, module):
r"""Remove the pruning reparameterization from a module.
The pruned parameter named ``name`` remains permanently pruned,
and the parameter named ``name+'_orig'`` is removed from the parameter list.
Similarly, the buffer named ``name+'_mask'`` is removed from the buffers.
Note:
Pruning itself is NOT undone or reversed!
"""
# before removing pruning from a tensor, it has to have been applied
assert (
self._tensor_name is not None
), f"Module {module} has to be pruned before pruning can be removed" # this gets set in apply()
# to update module[name] to latest trained weights
weight = self.apply_mask(module) # masked weights
# delete and reset
if hasattr(module, self._tensor_name):
delattr(module, self._tensor_name)
orig = module._parameters[self._tensor_name + "_orig"]
orig.data = weight.data
del module._parameters[self._tensor_name + "_orig"]
del module._buffers[self._tensor_name + "_mask"]
setattr(module, self._tensor_name, orig)
class PruningContainer(BasePruningMethod):
"""Container holding a sequence of pruning methods for iterative pruning.
Keeps track of the order in which pruning methods are applied and handles
combining successive pruning calls.
Accepts as argument an instance of a BasePruningMethod or an iterable of
them.
"""
def __init__(self, *args):
self._pruning_methods: tuple[BasePruningMethod, ...] = ()
if not isinstance(args, Iterable): # only 1 item
self._tensor_name = args._tensor_name
self.add_pruning_method(args)
elif len(args) == 1: # only 1 item in a tuple
self._tensor_name = args[0]._tensor_name
self.add_pruning_method(args[0])
else: # manual construction from list or other iterable (or no args)
for method in args:
self.add_pruning_method(method)
def add_pruning_method(self, method):
r"""Add a child pruning ``method`` to the container.
Args:
method (subclass of BasePruningMethod): child pruning method
to be added to the container.
"""
# check that we're adding a pruning method to the container
if not isinstance(method, BasePruningMethod) and method is not None:
raise TypeError(f"{type(method)} is not a BasePruningMethod subclass")
elif method is not None and self._tensor_name != method._tensor_name:
raise ValueError(
"Can only add pruning methods acting on "
f"the parameter named '{self._tensor_name}' to PruningContainer {self}."
+ f" Found '{method._tensor_name}'"
)
# if all checks passed, add to _pruning_methods tuple
self._pruning_methods += (method,) # type: ignore[operator]
def __len__(self):
return len(self._pruning_methods)
def __iter__(self):
return iter(self._pruning_methods)
def __getitem__(self, idx):
return self._pruning_methods[idx]
def compute_mask(self, t, default_mask):
r"""Apply the latest ``method`` by computing the new partial masks and returning its combination with the ``default_mask``.
The new partial mask should be computed on the entries or channels
that were not zeroed out by the ``default_mask``.
Which portions of the tensor ``t`` the new mask will be calculated from
depends on the ``PRUNING_TYPE`` (handled by the type handler):
* for 'unstructured', the mask will be computed from the raveled
list of nonmasked entries;
* for 'structured', the mask will be computed from the nonmasked
channels in the tensor;
* for 'global', the mask will be computed across all entries.
Args:
t (torch.Tensor): tensor representing the parameter to prune
(of same dimensions as ``default_mask``).
default_mask (torch.Tensor): mask from previous pruning iteration.
Returns:
mask (torch.Tensor): new mask that combines the effects
of the ``default_mask`` and the new mask from the current
pruning ``method`` (of same dimensions as ``default_mask`` and
``t``).
"""
def _combine_masks(method, t, mask):
r"""Combine the masks from all pruning methods and returns a new mask.
Args:
method (a BasePruningMethod subclass): pruning method
currently being applied.
t (torch.Tensor): tensor representing the parameter to prune
(of same dimensions as mask).
mask (torch.Tensor): mask from previous pruning iteration
Returns:
new_mask (torch.Tensor): new mask that combines the effects
of the old mask and the new mask from the current
pruning method (of same dimensions as mask and t).
"""
new_mask = mask # start off from existing mask
new_mask = new_mask.to(dtype=t.dtype)
# compute a slice of t onto which the new pruning method will operate
if method.PRUNING_TYPE == "unstructured":
# prune entries of t where the mask is 1
slc = mask == 1
# for struct pruning, exclude channels that have already been
# entirely pruned
elif method.PRUNING_TYPE == "structured":
if not hasattr(method, "dim"):
raise AttributeError(
"Pruning methods of PRUNING_TYPE "
'"structured" need to have the attribute `dim` defined.'
)
# find the channels to keep by removing the ones that have been
# zeroed out already (i.e. where sum(entries) == 0)
n_dims = t.dim() # "is this a 2D tensor? 3D? ..."
dim = method.dim
# convert negative indexing
if dim < 0:
dim = n_dims + dim
# if dim is still negative after subtracting it from n_dims
if dim < 0:
raise IndexError(
f"Index is out of bounds for tensor with dimensions {n_dims}"
)
# find channels along dim = dim that aren't already tots 0ed out
keep_channel = mask.sum(dim=[d for d in range(n_dims) if d != dim]) != 0
# create slice to identify what to prune
slc = [slice(None)] * n_dims
slc[dim] = keep_channel
elif method.PRUNING_TYPE == "global":
n_dims = len(t.shape) # "is this a 2D tensor? 3D? ..."
slc = [slice(None)] * n_dims
else:
raise ValueError(f"Unrecognized PRUNING_TYPE {method.PRUNING_TYPE}")
# compute the new mask on the unpruned slice of the tensor t
partial_mask = method.compute_mask(t[slc], default_mask=mask[slc])
new_mask[slc] = partial_mask.to(dtype=new_mask.dtype)
return new_mask
method = self._pruning_methods[-1]
mask = _combine_masks(method, t, default_mask)
return mask
class Identity(BasePruningMethod):
r"""Utility pruning method that does not prune any units but generates the pruning parametrization with a mask of ones."""
PRUNING_TYPE = "unstructured"
def compute_mask(self, t, default_mask):
mask = default_mask
return mask
@classmethod
def apply(cls, module, name):
r"""Add pruning on the fly and reparametrization of a tensor.
Adds the forward pre-hook that enables pruning on the fly and
the reparametrization of a tensor in terms of the original tensor
and the pruning mask.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
"""
return super().apply(module, name)
class RandomUnstructured(BasePruningMethod):
r"""Prune (currently unpruned) units in a tensor at random.
Args:
name (str): parameter name within ``module`` on which pruning
will act.
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
"""
PRUNING_TYPE = "unstructured"
def __init__(self, amount):
# Check range of validity of pruning amount
_validate_pruning_amount_init(amount)
self.amount = amount
def compute_mask(self, t, default_mask):
# Check that the amount of units to prune is not > than the number of
# parameters in t
tensor_size = t.nelement()
# Compute number of units to prune: amount if int,
# else amount * tensor_size
nparams_toprune = _compute_nparams_toprune(self.amount, tensor_size)
# This should raise an error if the number of units to prune is larger
# than the number of units in the tensor
_validate_pruning_amount(nparams_toprune, tensor_size)
mask = default_mask.clone(memory_format=torch.contiguous_format)
if nparams_toprune != 0: # k=0 not supported by torch.kthvalue
prob = torch.rand_like(t)
topk = torch.topk(prob.view(-1), k=nparams_toprune)
mask.view(-1)[topk.indices] = 0
return mask
@classmethod
def apply(cls, module, name, amount):
r"""Add pruning on the fly and reparametrization of a tensor.
Adds the forward pre-hook that enables pruning on the fly and
the reparametrization of a tensor in terms of the original tensor
and the pruning mask.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
"""
return super().apply(module, name, amount=amount)
class L1Unstructured(BasePruningMethod):
r"""Prune (currently unpruned) units in a tensor by zeroing out the ones with the lowest L1-norm.
Args:
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
"""
PRUNING_TYPE = "unstructured"
def __init__(self, amount):
# Check range of validity of pruning amount
_validate_pruning_amount_init(amount)
self.amount = amount
def compute_mask(self, t, default_mask):
# Check that the amount of units to prune is not > than the number of
# parameters in t
tensor_size = t.nelement()
# Compute number of units to prune: amount if int,
# else amount * tensor_size
nparams_toprune = _compute_nparams_toprune(self.amount, tensor_size)
# This should raise an error if the number of units to prune is larger
# than the number of units in the tensor
_validate_pruning_amount(nparams_toprune, tensor_size)
mask = default_mask.clone(memory_format=torch.contiguous_format)
if nparams_toprune != 0: # k=0 not supported by torch.kthvalue
# largest=True --> top k; largest=False --> bottom k
# Prune the smallest k
topk = torch.topk(torch.abs(t).view(-1), k=nparams_toprune, largest=False)
# topk will have .indices and .values
mask.view(-1)[topk.indices] = 0
return mask
@classmethod
def apply(cls, module, name, amount, importance_scores=None):
r"""Add pruning on the fly and reparametrization of a tensor.
Adds the forward pre-hook that enables pruning on the fly and
the reparametrization of a tensor in terms of the original tensor
and the pruning mask.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
importance_scores (torch.Tensor): tensor of importance scores (of same
shape as module parameter) used to compute mask for pruning.
The values in this tensor indicate the importance of the corresponding
elements in the parameter being pruned.
If unspecified or None, the module parameter will be used in its place.
"""
return super().apply(
module, name, amount=amount, importance_scores=importance_scores
)
class RandomStructured(BasePruningMethod):
r"""Prune entire (currently unpruned) channels in a tensor at random.
Args:
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
dim (int, optional): index of the dim along which we define
channels to prune. Default: -1.
"""
PRUNING_TYPE = "structured"
def __init__(self, amount, dim=-1):
# Check range of validity of amount
_validate_pruning_amount_init(amount)
self.amount = amount
self.dim = dim
def compute_mask(self, t, default_mask):
r"""Compute and returns a mask for the input tensor ``t``.
Starting from a base ``default_mask`` (which should be a mask of ones
if the tensor has not been pruned yet), generate a random mask to
apply on top of the ``default_mask`` by randomly zeroing out channels
along the specified dim of the tensor.
Args:
t (torch.Tensor): tensor representing the parameter to prune
default_mask (torch.Tensor): Base mask from previous pruning
iterations, that need to be respected after the new mask is
applied. Same dims as ``t``.
Returns:
mask (torch.Tensor): mask to apply to ``t``, of same dims as ``t``
Raises:
IndexError: if ``self.dim >= len(t.shape)``
"""
# Check that tensor has structure (i.e. more than 1 dimension) such
# that the concept of "channels" makes sense
_validate_structured_pruning(t)
# Check that self.dim is a valid dim to index t, else raise IndexError
_validate_pruning_dim(t, self.dim)
# Check that the amount of channels to prune is not > than the number of
# channels in t along the dim to prune
tensor_size = t.shape[self.dim]
# Compute number of units to prune: amount if int,
# else amount * tensor_size
nparams_toprune = _compute_nparams_toprune(self.amount, tensor_size)
# This should raise an error if the number of units to prune is larger
# than the number of units in the tensor
_validate_pruning_amount(nparams_toprune, tensor_size)
# Compute binary mask by initializing it to all 0s and then filling in
# 1s wherever topk.indices indicates, along self.dim.
# mask has the same shape as tensor t
def make_mask(t, dim, nchannels, nchannels_toprune):
# generate a random number in [0, 1] to associate to each channel
prob = torch.rand(nchannels)
# generate mask for each channel by 0ing out the channels that
# got assigned the k = nchannels_toprune lowest values in prob
threshold = torch.kthvalue(prob, k=nchannels_toprune).values
channel_mask = prob > threshold
mask = torch.zeros_like(t)
slc = [slice(None)] * len(t.shape)
slc[dim] = channel_mask
mask[slc] = 1
return mask
if nparams_toprune == 0: # k=0 not supported by torch.kthvalue
mask = default_mask
else:
# apply the new structured mask on top of prior (potentially
# unstructured) mask
mask = make_mask(t, self.dim, tensor_size, nparams_toprune)
mask *= default_mask.to(dtype=mask.dtype)
return mask
@classmethod
def apply(cls, module, name, amount, dim=-1):
r"""Add pruning on the fly and reparametrization of a tensor.
Adds the forward pre-hook that enables pruning on the fly and
the reparametrization of a tensor in terms of the original tensor
and the pruning mask.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
dim (int, optional): index of the dim along which we define
channels to prune. Default: -1.
"""
return super().apply(module, name, amount=amount, dim=dim)
class LnStructured(BasePruningMethod):
r"""Prune entire (currently unpruned) channels in a tensor based on their L\ ``n``-norm.
Args:
amount (int or float): quantity of channels to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
n (int, float, inf, -inf, 'fro', 'nuc'): See documentation of valid
entries for argument ``p`` in :func:`torch.norm`.
dim (int, optional): index of the dim along which we define
channels to prune. Default: -1.
"""
PRUNING_TYPE = "structured"
def __init__(self, amount, n, dim=-1):
# Check range of validity of amount
_validate_pruning_amount_init(amount)
self.amount = amount
self.n = n
self.dim = dim
def compute_mask(self, t, default_mask):
r"""Compute and returns a mask for the input tensor ``t``.
Starting from a base ``default_mask`` (which should be a mask of ones
if the tensor has not been pruned yet), generate a mask to apply on
top of the ``default_mask`` by zeroing out the channels along the
specified dim with the lowest L\ ``n``-norm.
Args:
t (torch.Tensor): tensor representing the parameter to prune
default_mask (torch.Tensor): Base mask from previous pruning
iterations, that need to be respected after the new mask is
applied. Same dims as ``t``.
Returns:
mask (torch.Tensor): mask to apply to ``t``, of same dims as ``t``
Raises:
IndexError: if ``self.dim >= len(t.shape)``
"""
# Check that tensor has structure (i.e. more than 1 dimension) such
# that the concept of "channels" makes sense
_validate_structured_pruning(t)
# Check that self.dim is a valid dim to index t, else raise IndexError
_validate_pruning_dim(t, self.dim)
# Check that the amount of channels to prune is not > than the number of
# channels in t along the dim to prune
tensor_size = t.shape[self.dim]
# Compute number of units to prune: amount if int,
# else amount * tensor_size
nparams_toprune = _compute_nparams_toprune(self.amount, tensor_size)
nparams_tokeep = tensor_size - nparams_toprune
# This should raise an error if the number of units to prune is larger
# than the number of units in the tensor
_validate_pruning_amount(nparams_toprune, tensor_size)
# Structured pruning prunes entire channels so we need to know the
# L_n norm along each channel to then find the topk based on this
# metric
norm = _compute_norm(t, self.n, self.dim)
# largest=True --> top k; largest=False --> bottom k
# Keep the largest k channels along dim=self.dim
topk = torch.topk(norm, k=nparams_tokeep, largest=True)
# topk will have .indices and .values
# Compute binary mask by initializing it to all 0s and then filling in
# 1s wherever topk.indices indicates, along self.dim.
# mask has the same shape as tensor t
def make_mask(t, dim, indices):
# init mask to 0
mask = torch.zeros_like(t)
# e.g.: slc = [None, None, None], if len(t.shape) = 3
slc = [slice(None)] * len(t.shape)
# replace a None at position=dim with indices
# e.g.: slc = [None, None, [0, 2, 3]] if dim=2 & indices=[0,2,3]
slc[dim] = indices
# use slc to slice mask and replace all its entries with 1s
# e.g.: mask[:, :, [0, 2, 3]] = 1
mask[slc] = 1
return mask
if nparams_toprune == 0: # k=0 not supported by torch.kthvalue
mask = default_mask
else:
mask = make_mask(t, self.dim, topk.indices)
mask *= default_mask.to(dtype=mask.dtype)
return mask
@classmethod
def apply(cls, module, name, amount, n, dim, importance_scores=None):
r"""Add pruning on the fly and reparametrization of a tensor.
Adds the forward pre-hook that enables pruning on the fly and
the reparametrization of a tensor in terms of the original tensor
and the pruning mask.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
n (int, float, inf, -inf, 'fro', 'nuc'): See documentation of valid
entries for argument ``p`` in :func:`torch.norm`.
dim (int): index of the dim along which we define channels to
prune.
importance_scores (torch.Tensor): tensor of importance scores (of same
shape as module parameter) used to compute mask for pruning.
The values in this tensor indicate the importance of the corresponding
elements in the parameter being pruned.
If unspecified or None, the module parameter will be used in its place.
"""
return super().apply(
module,
name,
amount=amount,
n=n,
dim=dim,
importance_scores=importance_scores,
)
class CustomFromMask(BasePruningMethod):
PRUNING_TYPE = "global"
def __init__(self, mask):
self.mask = mask
def compute_mask(self, t, default_mask):
assert default_mask.shape == self.mask.shape
mask = default_mask * self.mask.to(dtype=default_mask.dtype)
return mask
@classmethod
def apply(cls, module, name, mask):
r"""Add pruning on the fly and reparametrization of a tensor.
Adds the forward pre-hook that enables pruning on the fly and
the reparametrization of a tensor in terms of the original tensor
and the pruning mask.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
"""
return super().apply(module, name, mask=mask)
def identity(module, name):
r"""Apply pruning reparametrization without pruning any units.
Applies pruning reparametrization to the tensor corresponding to the
parameter called ``name`` in ``module`` without actually pruning any
units. Modifies module in place (and also return the modified module)
by:
1) adding a named buffer called ``name+'_mask'`` corresponding to the
binary mask applied to the parameter ``name`` by the pruning method.
2) replacing the parameter ``name`` by its pruned version, while the
original (unpruned) parameter is stored in a new parameter named
``name+'_orig'``.
Note:
The mask is a tensor of ones.
Args:
module (nn.Module): module containing the tensor to prune.
name (str): parameter name within ``module`` on which pruning
will act.
Returns:
module (nn.Module): modified (i.e. pruned) version of the input module
Examples:
>>> # xdoctest: +SKIP
>>> m = prune.identity(nn.Linear(2, 3), 'bias')
>>> print(m.bias_mask)
tensor([1., 1., 1.])
"""
Identity.apply(module, name)
return module
def random_unstructured(module, name, amount):
r"""Prune tensor by removing random (currently unpruned) units.
Prunes tensor corresponding to parameter called ``name`` in ``module``
by removing the specified ``amount`` of (currently unpruned) units
selected at random.
Modifies module in place (and also return the modified module) by:
1) adding a named buffer called ``name+'_mask'`` corresponding to the
binary mask applied to the parameter ``name`` by the pruning method.
2) replacing the parameter ``name`` by its pruned version, while the
original (unpruned) parameter is stored in a new parameter named
``name+'_orig'``.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
Returns:
module (nn.Module): modified (i.e. pruned) version of the input module
Examples:
>>> # xdoctest: +SKIP
>>> m = prune.random_unstructured(nn.Linear(2, 3), 'weight', amount=1)
>>> torch.sum(m.weight_mask == 0)
tensor(1)
"""
RandomUnstructured.apply(module, name, amount)
return module
def l1_unstructured(module, name, amount, importance_scores=None):
r"""Prune tensor by removing units with the lowest L1-norm.
Prunes tensor corresponding to parameter called ``name`` in ``module``
by removing the specified `amount` of (currently unpruned) units with the
lowest L1-norm.
Modifies module in place (and also return the modified module)
by:
1) adding a named buffer called ``name+'_mask'`` corresponding to the
binary mask applied to the parameter ``name`` by the pruning method.
2) replacing the parameter ``name`` by its pruned version, while the
original (unpruned) parameter is stored in a new parameter named
``name+'_orig'``.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
importance_scores (torch.Tensor): tensor of importance scores (of same
shape as module parameter) used to compute mask for pruning.
The values in this tensor indicate the importance of the corresponding
elements in the parameter being pruned.
If unspecified or None, the module parameter will be used in its place.
Returns:
module (nn.Module): modified (i.e. pruned) version of the input module
Examples:
>>> # xdoctest: +SKIP
>>> m = prune.l1_unstructured(nn.Linear(2, 3), 'weight', amount=0.2)
>>> m.state_dict().keys()
odict_keys(['bias', 'weight_orig', 'weight_mask'])
"""
L1Unstructured.apply(
module, name, amount=amount, importance_scores=importance_scores
)
return module
def random_structured(module, name, amount, dim):
r"""Prune tensor by removing random channels along the specified dimension.
Prunes tensor corresponding to parameter called ``name`` in ``module``
by removing the specified ``amount`` of (currently unpruned) channels
along the specified ``dim`` selected at random.
Modifies module in place (and also return the modified module)
by:
1) adding a named buffer called ``name+'_mask'`` corresponding to the
binary mask applied to the parameter ``name`` by the pruning method.
2) replacing the parameter ``name`` by its pruned version, while the
original (unpruned) parameter is stored in a new parameter named
``name+'_orig'``.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
dim (int): index of the dim along which we define channels to prune.
Returns:
module (nn.Module): modified (i.e. pruned) version of the input module
Examples:
>>> # xdoctest: +SKIP
>>> m = prune.random_structured(
... nn.Linear(5, 3), 'weight', amount=3, dim=1
... )
>>> columns_pruned = int(sum(torch.sum(m.weight, dim=0) == 0))
>>> print(columns_pruned)
3
"""
RandomStructured.apply(module, name, amount, dim)
return module
def ln_structured(module, name, amount, n, dim, importance_scores=None):
r"""Prune tensor by removing channels with the lowest L\ ``n``-norm along the specified dimension.
Prunes tensor corresponding to parameter called ``name`` in ``module``
by removing the specified ``amount`` of (currently unpruned) channels
along the specified ``dim`` with the lowest L\ ``n``-norm.
Modifies module in place (and also return the modified module)
by:
1) adding a named buffer called ``name+'_mask'`` corresponding to the
binary mask applied to the parameter ``name`` by the pruning method.
2) replacing the parameter ``name`` by its pruned version, while the
original (unpruned) parameter is stored in a new parameter named
``name+'_orig'``.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
amount (int or float): quantity of parameters to prune.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
n (int, float, inf, -inf, 'fro', 'nuc'): See documentation of valid
entries for argument ``p`` in :func:`torch.norm`.
dim (int): index of the dim along which we define channels to prune.
importance_scores (torch.Tensor): tensor of importance scores (of same
shape as module parameter) used to compute mask for pruning.
The values in this tensor indicate the importance of the corresponding
elements in the parameter being pruned.
If unspecified or None, the module parameter will be used in its place.
Returns:
module (nn.Module): modified (i.e. pruned) version of the input module
Examples:
>>> from torch.nn.utils import prune
>>> m = prune.ln_structured(
... nn.Conv2d(5, 3, 2), 'weight', amount=0.3, dim=1, n=float('-inf')
... )
"""
LnStructured.apply(
module, name, amount, n, dim, importance_scores=importance_scores
)
return module
def global_unstructured(parameters, pruning_method, importance_scores=None, **kwargs):
r"""
Globally prunes tensors corresponding to all parameters in ``parameters`` by applying the specified ``pruning_method``.
Modifies modules in place by:
1) adding a named buffer called ``name+'_mask'`` corresponding to the
binary mask applied to the parameter ``name`` by the pruning method.
2) replacing the parameter ``name`` by its pruned version, while the
original (unpruned) parameter is stored in a new parameter named
``name+'_orig'``.
Args:
parameters (Iterable of (module, name) tuples): parameters of
the model to prune in a global fashion, i.e. by aggregating all
weights prior to deciding which ones to prune. module must be of
type :class:`nn.Module`, and name must be a string.
pruning_method (function): a valid pruning function from this module,
or a custom one implemented by the user that satisfies the
implementation guidelines and has ``PRUNING_TYPE='unstructured'``.
importance_scores (dict): a dictionary mapping (module, name) tuples to
the corresponding parameter's importance scores tensor. The tensor
should be the same shape as the parameter, and is used for computing
mask for pruning.
If unspecified or None, the parameter will be used in place of its
importance scores.
kwargs: other keyword arguments such as:
amount (int or float): quantity of parameters to prune across the
specified parameters.
If ``float``, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If ``int``, it represents the
absolute number of parameters to prune.
Raises:
TypeError: if ``PRUNING_TYPE != 'unstructured'``
Note:
Since global structured pruning doesn't make much sense unless the
norm is normalized by the size of the parameter, we now limit the
scope of global pruning to unstructured methods.
Examples:
>>> from torch.nn.utils import prune
>>> from collections import OrderedDict
>>> net = nn.Sequential(OrderedDict([
... ('first', nn.Linear(10, 4)),
... ('second', nn.Linear(4, 1)),
... ]))
>>> parameters_to_prune = (
... (net.first, 'weight'),
... (net.second, 'weight'),
... )
>>> prune.global_unstructured(
... parameters_to_prune,
... pruning_method=prune.L1Unstructured,
... amount=10,
... )
>>> print(sum(torch.nn.utils.parameters_to_vector(net.buffers()) == 0))
tensor(10)
"""
# ensure parameters is a list or generator of tuples
if not isinstance(parameters, Iterable):
raise TypeError("global_unstructured(): parameters is not an Iterable")
importance_scores = importance_scores if importance_scores is not None else {}
if not isinstance(importance_scores, dict):
raise TypeError("global_unstructured(): importance_scores must be of type dict")
# flatten importance scores to consider them all at once in global pruning
relevant_importance_scores = torch.nn.utils.parameters_to_vector(
[
importance_scores.get((module, name), getattr(module, name))
for (module, name) in parameters
]
)
# similarly, flatten the masks (if they exist), or use a flattened vector
# of 1s of the same dimensions as t
default_mask = torch.nn.utils.parameters_to_vector(
[
getattr(module, name + "_mask", torch.ones_like(getattr(module, name)))
for (module, name) in parameters
]
)
# use the canonical pruning methods to compute the new mask, even if the
# parameter is now a flattened out version of `parameters`
container = PruningContainer()
container._tensor_name = "temp" # to make it match that of `method`
method = pruning_method(**kwargs)
method._tensor_name = "temp" # to make it match that of `container`
if method.PRUNING_TYPE != "unstructured":
raise TypeError(
'Only "unstructured" PRUNING_TYPE supported for '
f"the `pruning_method`. Found method {pruning_method} of type {method.PRUNING_TYPE}"
)
container.add_pruning_method(method)
# use the `compute_mask` method from `PruningContainer` to combine the
# mask computed by the new method with the pre-existing mask
final_mask = container.compute_mask(relevant_importance_scores, default_mask)
# Pointer for slicing the mask to match the shape of each parameter
pointer = 0
for module, name in parameters:
param = getattr(module, name)
# The length of the parameter
num_param = param.numel()
# Slice the mask, reshape it
param_mask = final_mask[pointer : pointer + num_param].view_as(param)
# Assign the correct pre-computed mask to each parameter and add it
# to the forward_pre_hooks like any other pruning method
custom_from_mask(module, name, mask=param_mask)
# Increment the pointer to continue slicing the final_mask
pointer += num_param
def custom_from_mask(module, name, mask):
r"""Prune tensor corresponding to parameter called ``name`` in ``module`` by applying the pre-computed mask in ``mask``.
Modifies module in place (and also return the modified module) by:
1) adding a named buffer called ``name+'_mask'`` corresponding to the
binary mask applied to the parameter ``name`` by the pruning method.
2) replacing the parameter ``name`` by its pruned version, while the
original (unpruned) parameter is stored in a new parameter named
``name+'_orig'``.
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
mask (Tensor): binary mask to be applied to the parameter.
Returns:
module (nn.Module): modified (i.e. pruned) version of the input module
Examples:
>>> from torch.nn.utils import prune
>>> m = prune.custom_from_mask(
... nn.Linear(5, 3), name='bias', mask=torch.tensor([0, 1, 0])
... )
>>> print(m.bias_mask)
tensor([0., 1., 0.])
"""
CustomFromMask.apply(module, name, mask)
return module
def remove(module, name):
r"""Remove the pruning reparameterization from a module and the pruning method from the forward hook.
The pruned parameter named ``name`` remains permanently pruned, and the parameter
named ``name+'_orig'`` is removed from the parameter list. Similarly,
the buffer named ``name+'_mask'`` is removed from the buffers.
Note:
Pruning itself is NOT undone or reversed!
Args:
module (nn.Module): module containing the tensor to prune
name (str): parameter name within ``module`` on which pruning
will act.
Examples:
>>> m = random_unstructured(nn.Linear(5, 7), name='weight', amount=0.2)
>>> m = remove(m, name='weight')
"""
for k, hook in module._forward_pre_hooks.items():
if isinstance(hook, BasePruningMethod) and hook._tensor_name == name:
hook.remove(module)
del module._forward_pre_hooks[k]
return module
raise ValueError(
f"Parameter '{name}' of module {module} has to be pruned before pruning can be removed"
)
def is_pruned(module):
r"""Check if a module is pruned by looking for pruning pre-hooks.
Check whether ``module`` is pruned by looking for
``forward_pre_hooks`` in its modules that inherit from the
:class:`BasePruningMethod`.
Args:
module (nn.Module): object that is either pruned or unpruned
Returns:
binary answer to whether ``module`` is pruned.
Examples:
>>> from torch.nn.utils import prune
>>> m = nn.Linear(5, 7)
>>> print(prune.is_pruned(m))
False
>>> prune.random_unstructured(m, name='weight', amount=0.2)
>>> print(prune.is_pruned(m))
True
"""
for _, submodule in module.named_modules():
for hook in submodule._forward_pre_hooks.values():
if isinstance(hook, BasePruningMethod):
return True
return False
def _validate_pruning_amount_init(amount):
r"""Validate helper to check the range of amount at init.
Args:
amount (int or float): quantity of parameters to prune.
If float, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If int, it represents the
absolute number of parameters to prune.
Raises:
ValueError: if amount is a float not in [0, 1], or if it's a negative
integer.
TypeError: if amount is neither a float nor an integer.
Note:
This does not take into account the number of parameters in the
tensor to be pruned, which is known only at prune.
"""
if not isinstance(amount, numbers.Real):
raise TypeError(f"Invalid type for amount: {amount}. Must be int or float.")
if (isinstance(amount, numbers.Integral) and amount < 0) or (
not isinstance(amount, numbers.Integral) # so it's a float
and (float(amount) > 1.0 or float(amount) < 0.0)
):
raise ValueError(
f"amount={amount} should either be a float in the range [0, 1] or a non-negative integer"
)
def _validate_pruning_amount(amount, tensor_size):
r"""Validate that the pruning amount is meaningful wrt to the size of the data.
Validation helper to check that the amount of parameters to prune
is meaningful wrt to the size of the data (`tensor_size`).
Args:
amount (int or float): quantity of parameters to prune.
If float, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If int, it represents the
absolute number of parameters to prune.
tensor_size (int): absolute number of parameters in the tensor
to prune.
"""
# TODO: consider removing this check and allowing users to specify
# a number of units to prune that is greater than the number of units
# left to prune. In this case, the tensor will just be fully pruned.
if isinstance(amount, numbers.Integral) and amount > tensor_size:
raise ValueError(
f"amount={amount} should be smaller than the number of parameters to prune={tensor_size}"
)
def _validate_structured_pruning(t):
r"""Validate that the tensor to be pruned is at least 2-Dimensional.
Validation helper to check that the tensor to be pruned is multi-
dimensional, such that the concept of "channels" is well-defined.
Args:
t (torch.Tensor): tensor representing the parameter to prune
Raises:
ValueError: if the tensor `t` is not at least 2D.
"""
shape = t.shape
if len(shape) <= 1:
raise ValueError(
"Structured pruning can only be applied to "
"multidimensional tensors. Found tensor of shape "
f"{shape} with {len(shape)} dims"
)
def _compute_nparams_toprune(amount, tensor_size):
r"""Convert the pruning amount from a percentage to absolute value.
Since amount can be expressed either in absolute value or as a
percentage of the number of units/channels in a tensor, this utility
function converts the percentage to absolute value to standardize
the handling of pruning.
Args:
amount (int or float): quantity of parameters to prune.
If float, should be between 0.0 and 1.0 and represent the
fraction of parameters to prune. If int, it represents the
absolute number of parameters to prune.
tensor_size (int): absolute number of parameters in the tensor
to prune.
Returns:
int: the number of units to prune in the tensor
"""
# incorrect type already checked in _validate_pruning_amount_init
if isinstance(amount, numbers.Integral):
return amount
else:
return round(amount * tensor_size)
def _validate_pruning_dim(t, dim):
r"""Validate that the pruning dimension is within the bounds of the tensor dimension.
Args:
t (torch.Tensor): tensor representing the parameter to prune
dim (int): index of the dim along which we define channels to prune
"""
if dim >= t.dim():
raise IndexError(f"Invalid index {dim} for tensor of size {t.shape}")
def _compute_norm(t, n, dim):
r"""Compute the L_n-norm of a tensor along all dimensions except for the specified dimension.
The L_n-norm will be computed across all entries in tensor `t` along all dimension
except for the one identified by dim.
Example: if `t` is of shape, say, 3x2x4 and dim=2 (the last dim),
then norm will have Size [4], and each entry will represent the
`L_n`-norm computed using the 3x2=6 entries for each of the 4 channels.
Args:
t (torch.Tensor): tensor representing the parameter to prune
n (int, float, inf, -inf, 'fro', 'nuc'): See documentation of valid
entries for argument p in torch.norm
dim (int): dim identifying the channels to prune
Returns:
norm (torch.Tensor): L_n norm computed across all dimensions except
for `dim`. By construction, `norm.shape = t.shape[-1]`.
"""
# dims = all axes, except for the one identified by `dim`
dims = list(range(t.dim()))
# convert negative indexing
if dim < 0:
dim = dims[dim]
dims.remove(dim)
norm = torch.norm(t, p=n, dim=dims)
return norm
```
|
=============================================================================================================
SOURCE CODE FILE: rnn.py
LINES: 1
SIZE: 23.21 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\rnn.py
ENCODING: utf-8
```py
import warnings
from collections.abc import Iterable
from typing import Any, Callable, NamedTuple, Optional, overload, TypeVar, Union
from typing_extensions import Self
import torch
from torch import _VF, Tensor
__all__ = [
"PackedSequence",
"invert_permutation",
"pack_padded_sequence",
"pad_packed_sequence",
"pad_sequence",
"unpad_sequence",
"pack_sequence",
"unpack_sequence",
]
_T = TypeVar("_T")
_R = TypeVar("_R")
class PackedSequence_(NamedTuple):
data: torch.Tensor
batch_sizes: torch.Tensor
sorted_indices: Optional[torch.Tensor]
unsorted_indices: Optional[torch.Tensor]
def bind(optional: Optional[_T], fn: Callable[[_T], _R]) -> Optional[_R]:
if optional is None:
return None
return fn(optional)
class PackedSequence(PackedSequence_):
r"""Holds the data and list of :attr:`batch_sizes` of a packed sequence.
All RNN modules accept packed sequences as inputs.
Note:
Instances of this class should never be created manually. They are meant
to be instantiated by functions like :func:`pack_padded_sequence`.
Batch sizes represent the number elements at each sequence step in
the batch, not the varying sequence lengths passed to
:func:`pack_padded_sequence`. For instance, given data ``abc`` and ``x``
the :class:`PackedSequence` would contain data ``axbc`` with
``batch_sizes=[2,1,1]``.
Attributes:
data (Tensor): Tensor containing packed sequence
batch_sizes (Tensor): Tensor of integers holding
information about the batch size at each sequence step
sorted_indices (Tensor, optional): Tensor of integers holding how this
:class:`PackedSequence` is constructed from sequences.
unsorted_indices (Tensor, optional): Tensor of integers holding how this
to recover the original sequences with correct order.
.. note::
:attr:`data` can be on arbitrary device and of arbitrary dtype.
:attr:`sorted_indices` and :attr:`unsorted_indices` must be ``torch.int64``
tensors on the same device as :attr:`data`.
However, :attr:`batch_sizes` should always be a CPU ``torch.int64`` tensor.
This invariant is maintained throughout :class:`PackedSequence` class,
and all functions that construct a :class:`PackedSequence` in PyTorch
(i.e., they only pass in tensors conforming to this constraint).
"""
def __new__(
cls,
data: Tensor,
batch_sizes: Optional[Tensor] = None,
sorted_indices: Optional[Tensor] = None,
unsorted_indices: Optional[Tensor] = None,
) -> Self:
return super().__new__(
cls,
*_packed_sequence_init_args(
data, batch_sizes, sorted_indices, unsorted_indices
),
)
# NOTE [ device and dtype of a PackedSequence ]
#
# See the note above in doc string (starting with ":attr:`data` can be on
# arbitrary device...").
def pin_memory(self) -> Self:
# Why not convert `batch_sizes`?
# See NOTE [ device and dtype of a PackedSequence ]
return type(self)(
self.data.pin_memory(),
self.batch_sizes,
bind(self.sorted_indices, lambda t: t.pin_memory()),
bind(self.unsorted_indices, lambda t: t.pin_memory()),
)
@overload
def to(
self,
dtype: torch.dtype,
non_blocking: bool = ...,
copy: bool = ...,
) -> Self:
...
@overload
def to(
self,
device: Optional[Union[str, torch.device, int]] = ...,
dtype: Optional[torch.dtype] = ...,
non_blocking: bool = ...,
copy: bool = ...,
) -> Self:
...
@overload
def to(
self,
other: Tensor,
non_blocking: bool = ...,
copy: bool = ...,
) -> Self:
...
def to(self, *args: Any, **kwargs: Any) -> Self:
r"""Perform dtype and/or device conversion on `self.data`.
It has similar signature as :meth:`torch.Tensor.to`, except optional
arguments like `non_blocking` and `copy` should be passed as kwargs,
not args, or they will not apply to the index tensors.
.. note::
If the ``self.data`` Tensor already has the correct :class:`torch.dtype`
and :class:`torch.device`, then ``self`` is returned.
Otherwise, returns a copy with the desired configuration.
"""
# Why not convert `batch_sizes`?
# See NOTE [ device and dtype of a PackedSequence ]
data = self.data.to(*args, **kwargs)
if data is self.data:
return self
else:
# Does not forward device or dtype arg/kwargs, device is set from data.device
kwargs = dict(
filter(lambda t: t[0] != "device" and t[0] != "dtype", kwargs.items())
)
sorted_indices = bind(
self.sorted_indices, lambda t: t.to(data.device, **kwargs)
)
unsorted_indices = bind(
self.unsorted_indices, lambda t: t.to(data.device, **kwargs)
)
return type(self)(data, self.batch_sizes, sorted_indices, unsorted_indices)
def cuda(self, *args: Any, **kwargs: Any) -> Self:
# Tests to see if 'cuda' should be added to kwargs
ex = torch.tensor((), dtype=self.data.dtype, device=self.data.device).to(
*args, **kwargs
)
if ex.is_cuda:
return self.to(*args, **kwargs)
kwargs["device"] = "cuda"
return self.to(*args, **kwargs)
def cpu(self, *args: Any, **kwargs: Any) -> Self:
ex = torch.tensor((), dtype=self.data.dtype, device=self.data.device).to(
*args, **kwargs
)
if ex.device.type == "cpu":
return self.to(*args, **kwargs)
kwargs["device"] = "cpu"
return self.to(*args, **kwargs)
def double(self) -> Self:
return self.to(dtype=torch.double)
def float(self) -> Self:
return self.to(dtype=torch.float)
def half(self) -> Self:
return self.to(dtype=torch.half)
def long(self) -> Self:
return self.to(dtype=torch.long)
def int(self) -> Self:
return self.to(dtype=torch.int)
def short(self) -> Self:
return self.to(dtype=torch.short)
def char(self) -> Self:
return self.to(dtype=torch.int8)
def byte(self) -> Self:
return self.to(dtype=torch.uint8)
@property
def is_cuda(self) -> bool:
r"""Return true if `self.data` stored on a gpu."""
return self.data.is_cuda
def is_pinned(self) -> bool:
r"""Return true if `self.data` stored on in pinned memory."""
return self.data.is_pinned()
# TorchScript doesn't support constructors on named tuples, so we use this helper
# method to construct PackedSequence
def _packed_sequence_init_args(
data: Tensor,
batch_sizes: Optional[Tensor] = None,
sorted_indices: Optional[Tensor] = None,
unsorted_indices: Optional[Tensor] = None,
) -> tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]:
# NB: if unsorted_indices is provided, it should be the inverse permutation
# to sorted_indices. Don't assert it here because the PackedSequence ctor
# should only be used internally.
if unsorted_indices is None:
unsorted_indices = invert_permutation(sorted_indices)
# support being called as `PackedSequence(data, batch_sizes, sorted_indices)`
if batch_sizes is not None:
# TODO: Re-enable this check (.type isn't supported in TorchScript)
if batch_sizes.device.type != "cpu":
raise ValueError(
"batch_sizes should always be on CPU. "
"Instances of PackedSequence should never be created manually. "
"They should be instantiated by functions like pack_sequence "
"and pack_padded_sequences in nn.utils.rnn. "
"https://pytorch.org/docs/stable/nn.html#torch.nn.utils.rnn.pack_sequence"
)
return data, batch_sizes, sorted_indices, unsorted_indices
# support being called as `PackedSequence((data, batch_sizes), *, sorted_indices)`
else:
assert isinstance(data, (list, tuple)) and len(data) == 2
return data[0], data[1], sorted_indices, unsorted_indices
def _packed_sequence_init(
data: Tensor,
batch_sizes: Optional[Tensor] = None,
sorted_indices: Optional[Tensor] = None,
unsorted_indices: Optional[Tensor] = None,
) -> PackedSequence:
data, batch_sizes, sorted_indices, unsorted_indices = _packed_sequence_init_args(
data, batch_sizes, sorted_indices, unsorted_indices
)
return PackedSequence(data, batch_sizes, sorted_indices, unsorted_indices)
def invert_permutation(permutation: Optional[Tensor]) -> Optional[Tensor]:
if permutation is None:
return None
output = torch.empty_like(permutation, memory_format=torch.legacy_contiguous_format)
output.scatter_(
0, permutation, torch.arange(0, permutation.numel(), device=permutation.device)
)
return output
def pack_padded_sequence(
input: Tensor,
lengths: Union[Tensor, list[int]],
batch_first: bool = False,
enforce_sorted: bool = True,
) -> PackedSequence:
r"""Packs a Tensor containing padded sequences of variable length.
:attr:`input` can be of size ``T x B x *`` (if :attr:`batch_first` is ``False``)
or ``B x T x *`` (if :attr:`batch_first` is ``True``) where ``T`` is the length
of the longest sequence, ``B`` is the batch size, and ``*`` is any number of dimensions
(including 0).
For unsorted sequences, use `enforce_sorted = False`. If :attr:`enforce_sorted` is
``True``, the sequences should be sorted by length in a decreasing order, i.e.
``input[:,0]`` should be the longest sequence, and ``input[:,B-1]`` the shortest
one. `enforce_sorted = True` is only necessary for ONNX export.
It is an inverse operation to :func:`pad_packed_sequence`, and hence :func:`pad_packed_sequence`
can be used to recover the underlying tensor packed in :class:`PackedSequence`.
Note:
This function accepts any input that has at least two dimensions. You
can apply it to pack the labels, and use the output of the RNN with
them to compute the loss directly. A Tensor can be retrieved from
a :class:`PackedSequence` object by accessing its ``.data`` attribute.
Args:
input (Tensor): padded batch of variable length sequences.
lengths (Tensor or list(int)): list of sequence lengths of each batch
element (must be on the CPU if provided as a tensor).
batch_first (bool, optional): if ``True``, the input is expected in ``B x T x *``
format, ``T x B x *`` otherwise. Default: ``False``.
enforce_sorted (bool, optional): if ``True``, the input is expected to
contain sequences sorted by length in a decreasing order. If
``False``, the input will get sorted unconditionally. Default: ``True``.
.. warning::
The dim of ``input`` tensor will be truncated if its length larger than
correspond value in ``length``.
Returns:
a :class:`PackedSequence` object
"""
if not isinstance(lengths, torch.Tensor):
if torch._C._get_tracing_state():
warnings.warn(
"pack_padded_sequence has been called with a Python list of "
"sequence lengths. The tracer cannot track the data flow of Python "
"values, and it will treat them as constants, likely rendering "
"the trace incorrect for any other combination of lengths.",
stacklevel=2,
)
lengths = torch.as_tensor(lengths, dtype=torch.int64, device="cpu")
else:
lengths = lengths.to(dtype=torch.int64)
if enforce_sorted:
sorted_indices = None
else:
lengths, sorted_indices = torch.sort(lengths, descending=True)
sorted_indices = sorted_indices.to(input.device)
batch_dim = 0 if batch_first else 1
input = input.index_select(batch_dim, sorted_indices)
data, batch_sizes = _VF._pack_padded_sequence(input, lengths, batch_first)
return _packed_sequence_init(data, batch_sizes, sorted_indices, None)
def pad_packed_sequence(
sequence: PackedSequence,
batch_first: bool = False,
padding_value: float = 0.0,
total_length: Optional[int] = None,
) -> tuple[Tensor, Tensor]:
r"""Pad a packed batch of variable length sequences.
It is an inverse operation to :func:`pack_padded_sequence`.
The returned Tensor's data will be of size ``T x B x *`` (if :attr:`batch_first` is ``False``)
or ``B x T x *`` (if :attr:`batch_first` is ``True``) , where ``T`` is the length of the longest
sequence and ``B`` is the batch size.
Example:
>>> from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
>>> seq = torch.tensor([[1, 2, 0], [3, 0, 0], [4, 5, 6]])
>>> lens = [2, 1, 3]
>>> packed = pack_padded_sequence(seq, lens, batch_first=True, enforce_sorted=False)
>>> packed
PackedSequence(data=tensor([4, 1, 3, 5, 2, 6]), batch_sizes=tensor([3, 2, 1]),
sorted_indices=tensor([2, 0, 1]), unsorted_indices=tensor([1, 2, 0]))
>>> seq_unpacked, lens_unpacked = pad_packed_sequence(packed, batch_first=True)
>>> seq_unpacked
tensor([[1, 2, 0],
[3, 0, 0],
[4, 5, 6]])
>>> lens_unpacked
tensor([2, 1, 3])
.. note::
:attr:`total_length` is useful to implement the
``pack sequence -> recurrent network -> unpack sequence`` pattern in a
:class:`~torch.nn.Module` wrapped in :class:`~torch.nn.DataParallel`.
See :ref:`this FAQ section <pack-rnn-unpack-with-data-parallelism>` for
details.
Args:
sequence (PackedSequence): batch to pad
batch_first (bool, optional): if ``True``, the output will be in ``B x T x *``
format, ``T x B x *`` otherwise.
padding_value (float, optional): values for padded elements.
total_length (int, optional): if not ``None``, the output will be padded to
have length :attr:`total_length`. This method will throw :class:`ValueError`
if :attr:`total_length` is less than the max sequence length in
:attr:`sequence`.
Returns:
Tuple of Tensor containing the padded sequence, and a Tensor
containing the list of lengths of each sequence in the batch.
Batch elements will be re-ordered as they were ordered originally when
the batch was passed to ``pack_padded_sequence`` or ``pack_sequence``.
"""
max_seq_length = sequence.batch_sizes.size(0)
if total_length is not None:
if total_length < max_seq_length:
raise ValueError(
"Expected total_length to be at least the length "
"of the longest sequence in input, but got "
f"total_length={total_length} and max sequence length being {max_seq_length}"
)
max_seq_length = total_length
padded_output, lengths = _VF._pad_packed_sequence(
sequence.data, sequence.batch_sizes, batch_first, padding_value, max_seq_length
)
unsorted_indices = sequence.unsorted_indices
if unsorted_indices is not None:
batch_dim = 0 if batch_first else 1
return (
padded_output.index_select(batch_dim, unsorted_indices),
lengths[unsorted_indices.cpu()],
)
return padded_output, lengths
# NOTE: for JIT-compatibility, we need to be more restrictive here and use specific types instead of Iterable.
def pad_sequence(
sequences: Union[Tensor, list[Tensor]],
batch_first: bool = False,
padding_value: float = 0.0,
padding_side: str = "right",
) -> Tensor:
r"""Pad a list of variable length Tensors with :attr:`padding_value`.
``pad_sequence`` stacks a list of Tensors along a new dimension, and pads them
to equal length. :attr:`sequences` can be list of sequences with size ``L x *``,
where `L` is length of the sequence and ``*`` is any number of dimensions
(including ``0``). If :attr:`batch_first` is ``False``, the output is of size
``T x B x *``, and ``B x T x *`` otherwise, where ``B`` is the batch size
(the number of elements in :attr:`sequences`), ``T`` is the length of the longest
sequence.
Example:
>>> from torch.nn.utils.rnn import pad_sequence
>>> a = torch.ones(25, 300)
>>> b = torch.ones(22, 300)
>>> c = torch.ones(15, 300)
>>> pad_sequence([a, b, c]).size()
torch.Size([25, 3, 300])
Note:
This function returns a Tensor of size ``T x B x *`` or ``B x T x *``
where `T` is the length of the longest sequence. This function assumes
trailing dimensions and type of all the Tensors in sequences are same.
Args:
sequences (list[Tensor]): list of variable length sequences.
batch_first (bool, optional): if ``True``, the output will be in ``B x T x *``
format, ``T x B x *`` otherwise.
padding_value (float, optional): value for padded elements. Default: ``0``.
padding_side (str, optional): the side to pad the sequences on.
Default: ``'right'``.
Returns:
Tensor of size ``T x B x *`` if :attr:`batch_first` is ``False``.
Tensor of size ``B x T x *`` otherwise
"""
if not (torch.jit.is_tracing() or torch.jit.is_scripting()):
# JIT doesn't support `Iterable`
if not isinstance(sequences, Iterable):
msg = (
"pad_sequence: Expected iterable for input sequences, but got arg of type: "
f"{type(sequences)}"
)
raise RuntimeError(msg)
# In JIT context this leads to,
# RuntimeError: cannot statically infer the expected size of a list in this context
sequences = tuple(sequences) # type: ignore[assignment]
else:
# For JIT, we only support Union[Tensor, Tuple[Tensor]]
if isinstance(sequences, torch.Tensor):
sequences = sequences.unbind(0) # type: ignore[assignment]
# assuming trailing dimensions and type of all the Tensors
# in sequences are same and fetching those from sequences[0]
return torch._C._nn.pad_sequence(
sequences, batch_first, padding_value, padding_side # type: ignore[arg-type]
)
def unpad_sequence(
padded_sequences: Tensor,
lengths: Tensor,
batch_first: bool = False,
) -> list[Tensor]:
r"""Unpad padded Tensor into a list of variable length Tensors.
``unpad_sequence`` unstacks padded Tensor into a list of variable length Tensors.
Example:
>>> from torch.nn.utils.rnn import pad_sequence, unpad_sequence
>>> a = torch.ones(25, 300)
>>> b = torch.ones(22, 300)
>>> c = torch.ones(15, 300)
>>> sequences = [a, b, c]
>>> padded_sequences = pad_sequence(sequences)
>>> lengths = torch.as_tensor([v.size(0) for v in sequences])
>>> unpadded_sequences = unpad_sequence(padded_sequences, lengths)
>>> torch.allclose(sequences[0], unpadded_sequences[0])
True
>>> torch.allclose(sequences[1], unpadded_sequences[1])
True
>>> torch.allclose(sequences[2], unpadded_sequences[2])
True
Args:
padded_sequences (Tensor): padded sequences.
lengths (Tensor): length of original (unpadded) sequences.
batch_first (bool, optional): whether batch dimension first or not. Default: ``False``.
Returns:
a list of :class:`Tensor` objects
"""
unpadded_sequences = []
if not batch_first:
padded_sequences.transpose_(0, 1)
max_length = padded_sequences.shape[1]
idx = torch.arange(max_length, device=lengths.device)
for seq, length in zip(padded_sequences, lengths):
mask = idx < length
unpacked_seq = seq[mask]
unpadded_sequences.append(unpacked_seq)
return unpadded_sequences
def pack_sequence(
sequences: list[Tensor],
enforce_sorted: bool = True,
) -> PackedSequence:
r"""Packs a list of variable length Tensors.
Consecutive call of the next functions: ``pad_sequence``, ``pack_padded_sequence``.
``sequences`` should be a list of Tensors of size ``L x *``, where `L` is
the length of a sequence and `*` is any number of trailing dimensions,
including ``0``.
For unsorted sequences, use `enforce_sorted = False`. If ``enforce_sorted``
is ``True``, the sequences should be sorted in the order of decreasing length.
``enforce_sorted = True`` is only necessary for ONNX export.
Example:
>>> from torch.nn.utils.rnn import pack_sequence
>>> a = torch.tensor([1, 2, 3])
>>> b = torch.tensor([4, 5])
>>> c = torch.tensor([6])
>>> pack_sequence([a, b, c])
PackedSequence(data=tensor([1, 4, 6, 2, 5, 3]), batch_sizes=tensor([3, 2, 1]), sorted_indices=None, unsorted_indices=None)
Args:
sequences (list[Tensor]): A list of sequences of decreasing length.
enforce_sorted (bool, optional): if ``True``, checks that the input
contains sequences sorted by length in a decreasing order. If
``False``, this condition is not checked. Default: ``True``.
Returns:
a :class:`PackedSequence` object
"""
lengths = torch.as_tensor([v.size(0) for v in sequences])
return pack_padded_sequence(
pad_sequence(sequences), lengths, enforce_sorted=enforce_sorted
)
def unpack_sequence(packed_sequences: PackedSequence) -> list[Tensor]:
r"""Unpack PackedSequence into a list of variable length Tensors.
``packed_sequences`` should be a PackedSequence object.
Example:
>>> from torch.nn.utils.rnn import pack_sequence, unpack_sequence
>>> a = torch.tensor([1, 2, 3])
>>> b = torch.tensor([4, 5])
>>> c = torch.tensor([6])
>>> sequences = [a, b, c]
>>> print(sequences)
[tensor([1, 2, 3]), tensor([4, 5]), tensor([6])]
>>> packed_sequences = pack_sequence(sequences)
>>> print(packed_sequences)
PackedSequence(data=tensor([1, 4, 6, 2, 5, 3]), batch_sizes=tensor([3, 2, 1]), sorted_indices=None, unsorted_indices=None)
>>> unpacked_sequences = unpack_sequence(packed_sequences)
>>> print(unpacked_sequences)
[tensor([1, 2, 3]), tensor([4, 5]), tensor([6])]
Args:
packed_sequences (PackedSequence): A PackedSequence object.
Returns:
a list of :class:`Tensor` objects
"""
padded_sequences, lengths = pad_packed_sequence(packed_sequences, batch_first=True)
unpacked_sequences = unpad_sequence(padded_sequences, lengths, batch_first=True)
return unpacked_sequences
```
|
=======================================================================================================================
SOURCE CODE FILE: spectral_norm.py
LINES: 2
SIZE: 14.92 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\spectral_norm.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
"""Spectral Normalization from https://arxiv.org/abs/1802.05957."""
from typing import Any, Optional, TypeVar
import torch
import torch.nn.functional as F
from torch.nn.modules import Module
__all__ = [
"SpectralNorm",
"SpectralNormLoadStateDictPreHook",
"SpectralNormStateDictHook",
"spectral_norm",
"remove_spectral_norm",
]
class SpectralNorm:
# Invariant before and after each forward call:
# u = F.normalize(W @ v)
# NB: At initialization, this invariant is not enforced
_version: int = 1
# At version 1:
# made `W` not a buffer,
# added `v` as a buffer, and
# made eval mode use `W = u @ W_orig @ v` rather than the stored `W`.
name: str
dim: int
n_power_iterations: int
eps: float
def __init__(
self,
name: str = "weight",
n_power_iterations: int = 1,
dim: int = 0,
eps: float = 1e-12,
) -> None:
self.name = name
self.dim = dim
if n_power_iterations <= 0:
raise ValueError(
"Expected n_power_iterations to be positive, but "
f"got n_power_iterations={n_power_iterations}"
)
self.n_power_iterations = n_power_iterations
self.eps = eps
def reshape_weight_to_matrix(self, weight: torch.Tensor) -> torch.Tensor:
weight_mat = weight
if self.dim != 0:
# permute dim to front
weight_mat = weight_mat.permute(
self.dim, *[d for d in range(weight_mat.dim()) if d != self.dim]
)
height = weight_mat.size(0)
return weight_mat.reshape(height, -1)
def compute_weight(self, module: Module, do_power_iteration: bool) -> torch.Tensor:
# NB: If `do_power_iteration` is set, the `u` and `v` vectors are
# updated in power iteration **in-place**. This is very important
# because in `DataParallel` forward, the vectors (being buffers) are
# broadcast from the parallelized module to each module replica,
# which is a new module object created on the fly. And each replica
# runs its own spectral norm power iteration. So simply assigning
# the updated vectors to the module this function runs on will cause
# the update to be lost forever. And the next time the parallelized
# module is replicated, the same randomly initialized vectors are
# broadcast and used!
#
# Therefore, to make the change propagate back, we rely on two
# important behaviors (also enforced via tests):
# 1. `DataParallel` doesn't clone storage if the broadcast tensor
# is already on correct device; and it makes sure that the
# parallelized module is already on `device[0]`.
# 2. If the out tensor in `out=` kwarg has correct shape, it will
# just fill in the values.
# Therefore, since the same power iteration is performed on all
# devices, simply updating the tensors in-place will make sure that
# the module replica on `device[0]` will update the _u vector on the
# parallelized module (by shared storage).
#
# However, after we update `u` and `v` in-place, we need to **clone**
# them before using them to normalize the weight. This is to support
# backproping through two forward passes, e.g., the common pattern in
# GAN training: loss = D(real) - D(fake). Otherwise, engine will
# complain that variables needed to do backward for the first forward
# (i.e., the `u` and `v` vectors) are changed in the second forward.
weight = getattr(module, self.name + "_orig")
u = getattr(module, self.name + "_u")
v = getattr(module, self.name + "_v")
weight_mat = self.reshape_weight_to_matrix(weight)
if do_power_iteration:
with torch.no_grad():
for _ in range(self.n_power_iterations):
# Spectral norm of weight equals to `u^T W v`, where `u` and `v`
# are the first left and right singular vectors.
# This power iteration produces approximations of `u` and `v`.
v = F.normalize(
torch.mv(weight_mat.t(), u), dim=0, eps=self.eps, out=v
)
u = F.normalize(torch.mv(weight_mat, v), dim=0, eps=self.eps, out=u)
if self.n_power_iterations > 0:
# See above on why we need to clone
u = u.clone(memory_format=torch.contiguous_format)
v = v.clone(memory_format=torch.contiguous_format)
sigma = torch.dot(u, torch.mv(weight_mat, v))
weight = weight / sigma
return weight
def remove(self, module: Module) -> None:
with torch.no_grad():
weight = self.compute_weight(module, do_power_iteration=False)
delattr(module, self.name)
delattr(module, self.name + "_u")
delattr(module, self.name + "_v")
delattr(module, self.name + "_orig")
module.register_parameter(self.name, torch.nn.Parameter(weight.detach()))
def __call__(self, module: Module, inputs: Any) -> None:
setattr(
module,
self.name,
self.compute_weight(module, do_power_iteration=module.training),
)
def _solve_v_and_rescale(self, weight_mat, u, target_sigma):
# Tries to returns a vector `v` s.t. `u = F.normalize(W @ v)`
# (the invariant at top of this class) and `u @ W @ v = sigma`.
# This uses pinverse in case W^T W is not invertible.
v = torch.linalg.multi_dot(
[weight_mat.t().mm(weight_mat).pinverse(), weight_mat.t(), u.unsqueeze(1)]
).squeeze(1)
return v.mul_(target_sigma / torch.dot(u, torch.mv(weight_mat, v)))
@staticmethod
def apply(
module: Module, name: str, n_power_iterations: int, dim: int, eps: float
) -> "SpectralNorm":
for hook in module._forward_pre_hooks.values():
if isinstance(hook, SpectralNorm) and hook.name == name:
raise RuntimeError(
f"Cannot register two spectral_norm hooks on the same parameter {name}"
)
fn = SpectralNorm(name, n_power_iterations, dim, eps)
weight = module._parameters[name]
if weight is None:
raise ValueError(
f"`SpectralNorm` cannot be applied as parameter `{name}` is None"
)
if isinstance(weight, torch.nn.parameter.UninitializedParameter):
raise ValueError(
"The module passed to `SpectralNorm` can't have uninitialized parameters. "
"Make sure to run the dummy forward before applying spectral normalization"
)
with torch.no_grad():
weight_mat = fn.reshape_weight_to_matrix(weight)
h, w = weight_mat.size()
# randomly initialize `u` and `v`
u = F.normalize(weight.new_empty(h).normal_(0, 1), dim=0, eps=fn.eps)
v = F.normalize(weight.new_empty(w).normal_(0, 1), dim=0, eps=fn.eps)
delattr(module, fn.name)
module.register_parameter(fn.name + "_orig", weight)
# We still need to assign weight back as fn.name because all sorts of
# things may assume that it exists, e.g., when initializing weights.
# However, we can't directly assign as it could be an nn.Parameter and
# gets added as a parameter. Instead, we register weight.data as a plain
# attribute.
setattr(module, fn.name, weight.data)
module.register_buffer(fn.name + "_u", u)
module.register_buffer(fn.name + "_v", v)
module.register_forward_pre_hook(fn)
module._register_state_dict_hook(SpectralNormStateDictHook(fn))
module._register_load_state_dict_pre_hook(SpectralNormLoadStateDictPreHook(fn))
return fn
# This is a top level class because Py2 pickle doesn't like inner class nor an
# instancemethod.
class SpectralNormLoadStateDictPreHook:
# See docstring of SpectralNorm._version on the changes to spectral_norm.
def __init__(self, fn) -> None:
self.fn = fn
# For state_dict with version None, (assuming that it has gone through at
# least one training forward), we have
#
# u = F.normalize(W_orig @ v)
# W = W_orig / sigma, where sigma = u @ W_orig @ v
#
# To compute `v`, we solve `W_orig @ x = u`, and let
# v = x / (u @ W_orig @ x) * (W / W_orig).
def __call__(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
) -> None:
fn = self.fn
version = local_metadata.get("spectral_norm", {}).get(
fn.name + ".version", None
)
if version is None or version < 1:
weight_key = prefix + fn.name
if (
version is None
and all(weight_key + s in state_dict for s in ("_orig", "_u", "_v"))
and weight_key not in state_dict
):
# Detect if it is the updated state dict and just missing metadata.
# This could happen if the users are crafting a state dict themselves,
# so we just pretend that this is the newest.
return
has_missing_keys = False
for suffix in ("_orig", "", "_u"):
key = weight_key + suffix
if key not in state_dict:
has_missing_keys = True
if strict:
missing_keys.append(key)
if has_missing_keys:
return
with torch.no_grad():
weight_orig = state_dict[weight_key + "_orig"]
weight = state_dict.pop(weight_key)
sigma = (weight_orig / weight).mean()
weight_mat = fn.reshape_weight_to_matrix(weight_orig)
u = state_dict[weight_key + "_u"]
v = fn._solve_v_and_rescale(weight_mat, u, sigma)
state_dict[weight_key + "_v"] = v
# This is a top level class because Py2 pickle doesn't like inner class nor an
# instancemethod.
class SpectralNormStateDictHook:
# See docstring of SpectralNorm._version on the changes to spectral_norm.
def __init__(self, fn) -> None:
self.fn = fn
def __call__(self, module, state_dict, prefix, local_metadata) -> None:
if "spectral_norm" not in local_metadata:
local_metadata["spectral_norm"] = {}
key = self.fn.name + ".version"
if key in local_metadata["spectral_norm"]:
raise RuntimeError(f"Unexpected key in metadata['spectral_norm']: {key}")
local_metadata["spectral_norm"][key] = self.fn._version
T_module = TypeVar("T_module", bound=Module)
def spectral_norm(
module: T_module,
name: str = "weight",
n_power_iterations: int = 1,
eps: float = 1e-12,
dim: Optional[int] = None,
) -> T_module:
r"""Apply spectral normalization to a parameter in the given module.
.. math::
\mathbf{W}_{SN} = \dfrac{\mathbf{W}}{\sigma(\mathbf{W})},
\sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \dfrac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2}
Spectral normalization stabilizes the training of discriminators (critics)
in Generative Adversarial Networks (GANs) by rescaling the weight tensor
with spectral norm :math:`\sigma` of the weight matrix calculated using
power iteration method. If the dimension of the weight tensor is greater
than 2, it is reshaped to 2D in power iteration method to get spectral
norm. This is implemented via a hook that calculates spectral norm and
rescales weight before every :meth:`~Module.forward` call.
See `Spectral Normalization for Generative Adversarial Networks`_ .
.. _`Spectral Normalization for Generative Adversarial Networks`: https://arxiv.org/abs/1802.05957
Args:
module (nn.Module): containing module
name (str, optional): name of weight parameter
n_power_iterations (int, optional): number of power iterations to
calculate spectral norm
eps (float, optional): epsilon for numerical stability in
calculating norms
dim (int, optional): dimension corresponding to number of outputs,
the default is ``0``, except for modules that are instances of
ConvTranspose{1,2,3}d, when it is ``1``
Returns:
The original module with the spectral norm hook
.. note::
This function has been reimplemented as
:func:`torch.nn.utils.parametrizations.spectral_norm` using the new
parametrization functionality in
:func:`torch.nn.utils.parametrize.register_parametrization`. Please use
the newer version. This function will be deprecated in a future version
of PyTorch.
Example::
>>> m = spectral_norm(nn.Linear(20, 40))
>>> m
Linear(in_features=20, out_features=40, bias=True)
>>> m.weight_u.size()
torch.Size([40])
"""
if dim is None:
if isinstance(
module,
(
torch.nn.ConvTranspose1d,
torch.nn.ConvTranspose2d,
torch.nn.ConvTranspose3d,
),
):
dim = 1
else:
dim = 0
SpectralNorm.apply(module, name, n_power_iterations, dim, eps)
return module
def remove_spectral_norm(module: T_module, name: str = "weight") -> T_module:
r"""Remove the spectral normalization reparameterization from a module.
Args:
module (Module): containing module
name (str, optional): name of weight parameter
Example:
>>> m = spectral_norm(nn.Linear(40, 10))
>>> remove_spectral_norm(m)
"""
for k, hook in module._forward_pre_hooks.items():
if isinstance(hook, SpectralNorm) and hook.name == name:
hook.remove(module)
del module._forward_pre_hooks[k]
break
else:
raise ValueError(f"spectral_norm of '{name}' not found in {module}")
for k, hook in module._state_dict_hooks.items():
if isinstance(hook, SpectralNormStateDictHook) and hook.fn.name == name:
del module._state_dict_hooks[k]
break
for k, hook in module._load_state_dict_pre_hooks.items():
if isinstance(hook, SpectralNormLoadStateDictPreHook) and hook.fn.name == name:
del module._load_state_dict_pre_hooks[k]
break
return module
```
|
===================================================================================================================
SOURCE CODE FILE: stateless.py
LINES: 3
SIZE: 11.70 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\stateless.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
import contextlib
from typing import Any, Optional, Union
from typing_extensions import deprecated
import torch
from torch import Tensor
from torch.nn.utils._named_member_accessor import NamedMemberAccessor
__all__ = ["functional_call"]
def _untie_named_tensors_map(
module: "torch.nn.Module",
parameters_and_buffers: dict[str, Tensor],
) -> dict[str, Tensor]:
"""
Unties all tied tensors in the module to parameters_and_buffers.
This function returns a new untied_parameters_and_buffers dictionary and leave the original
untied_parameters_and_buffers dictionary unchanged. It adds new (missing) keys for tied tensors
in the module to untied_parameters_and_buffers. The value of the new key is the user-given value
in the original parameters_and_buffers dictionary.
If there are more than one user-given values for the same tied tensor, it will raise an error.
For example, if the module has two tied weights self.foo and self.tied_foo and the user passes
{'foo': foo_value, ...}, this will return {'foo': foo_value, 'tied_foo': foo_value, ...}. If the
user passes {'foo': foo_value, 'tied_foo': tied_foo_value, ...}, it will raise an error. If the
user passes {'foo': foo_value, 'tied_foo': foo_value, ...}, it will not raise an error.
Args:
module (torch.nn.Module): the module to determine which tensors are tied.
parameters_and_buffers (Dict[str, Tensor]): a map of {name: tensor} for reparamaterizing the module.
Returns:
A new untied version of the parameters_and_buffers dictionary.
Raises:
ValueError: if there are more than one user-given values for the same tied tensor.
"""
# A map of {name: tensor} for all tensors (including tied ones) in the module.
all_named_tensors: dict[str, Tensor] = {}
all_named_tensors.update(module.named_parameters(remove_duplicate=False))
all_named_tensors.update(module.named_buffers(remove_duplicate=False))
# A map of {tensor: set(all_tied_names)} for all tensor names in the module.
tensor_to_tied_names_map: dict[Tensor, set[str]] = {}
for name, tensor in all_named_tensors.items():
if tensor not in tensor_to_tied_names_map:
tensor_to_tied_names_map[tensor] = set()
tensor_to_tied_names_map[tensor].add(name)
# A map of {tied_name: set(all_tied_names)} for all tensor names in the module.
# If a name is not tied, it will not be in this map.
tied_names_map: dict[str, set[str]] = {}
for tied_names in tensor_to_tied_names_map.values():
if len(tied_names) > 1:
for tied_name in tied_names:
tied_names_map[tied_name] = tied_names
# Make sure the user didn't pass multiple values for the same tied tensor.
given_names = set(parameters_and_buffers.keys())
# same as given_names.intersection(tied_names_map.keys()) but dynamo can't
# handle that
given_names_for_tied_tensors: set[str] = set()
for name in given_names:
if name in tied_names_map:
given_names_for_tied_tensors.add(name)
for given_name in given_names_for_tied_tensors:
tied_names = tied_names_map[given_name]
if (
# Detect if there are multiple keys present for the same tied tensor.
len(tied_names.intersection(given_names_for_tied_tensors)) > 1
# Only raise an error if the user passed multiple values for the same tied tensor.
# If all given values are the same, don't raise.
and len({parameters_and_buffers[tied_name] for tied_name in tied_names})
!= 1
):
raise ValueError(
f"functional_call got multiple values for keys {sorted(tied_names)}, "
f"which are tied. Consider using tie_weights=False"
)
# Untie the given named tensor map
# Make a copy for not modifying the original dict
untied_parameters_and_buffers = parameters_and_buffers.copy()
for given_name in given_names_for_tied_tensors:
for tied_name in tied_names_map[given_name]:
untied_parameters_and_buffers[tied_name] = parameters_and_buffers[
given_name
]
return untied_parameters_and_buffers
@contextlib.contextmanager
def _reparametrize_module(
module: "torch.nn.Module",
parameters_and_buffers: dict[str, Tensor],
tie_weights: bool = False,
strict: bool = False,
stack_weights: bool = False,
):
parameters_and_buffers = parameters_and_buffers
stack_weights = stack_weights
if tie_weights:
untied_parameters_and_buffers = _untie_named_tensors_map(
module, parameters_and_buffers
)
else:
untied_parameters_and_buffers = parameters_and_buffers
accessor = NamedMemberAccessor(module)
if strict:
missing_keys, unexpected_keys = accessor.check_keys(
untied_parameters_and_buffers
)
error_msgs = []
if len(unexpected_keys) > 0:
error_msgs.append(
f"Unexpected key(s): {', '.join(map(repr, unexpected_keys))}."
)
if len(missing_keys) > 0:
error_msgs.append(f"Missing key(s): {', '.join(map(repr, missing_keys))}.")
if len(error_msgs) > 0:
raise RuntimeError(
"Error(s) in reparametrizing for {}:\n\t{}".format(
module._get_name(), "\n\t".join(error_msgs)
)
)
orig_parameters_and_buffers: dict[str, Tensor] = {}
try:
orig_parameters_and_buffers, _ = accessor.swap_tensors_dict(
untied_parameters_and_buffers, allow_missing=True
)
yield
finally:
if stack_weights:
# When stacking is enabled, we will restore the weights in LIFO order.
orig_parameters_and_buffers = dict(
reversed(orig_parameters_and_buffers.items())
)
new_parameters_and_buffers, _ = accessor.swap_tensors_dict(
orig_parameters_and_buffers, allow_missing=True
)
# Sometimes the module is not completely stateless and has some in-place modifications on
# the _parameters and _buffers dictionaries.
# Write the changed parameters and buffers back to the original dict.
parameters_and_buffers.update(
{
k: new_parameters_and_buffers[k]
for k in parameters_and_buffers
if k in new_parameters_and_buffers
}
)
@deprecated(
"`torch.nn.utils.stateless.functional_call` is deprecated as of PyTorch 2.0 "
"and will be removed in a future version of PyTorch. "
"Please use `torch.func.functional_call` instead which is a drop-in replacement.",
category=FutureWarning,
)
def functional_call(
module: "torch.nn.Module",
parameters_and_buffers: dict[str, Tensor],
args: Optional[Union[Any, tuple]] = None,
kwargs: Optional[dict[str, Any]] = None,
*,
tie_weights: bool = True,
strict: bool = False,
):
r"""Perform a functional call on the module by replacing the module parameters and buffers with the provided ones.
.. warning::
This API is deprecated as of PyTorch 2.0 and will be removed in a future
version of PyTorch. Please use :func:`torch.func.functional_call` instead,
which is a drop-in replacement for this API.
.. note:: If the module has active parametrizations, passing a value in the
:attr:`parameters_and_buffers` argument with the name set to the regular parameter
name will completely disable the parametrization.
If you want to apply the parametrization function to the value passed
please set the key as ``{submodule_name}.parametrizations.{parameter_name}.original``.
.. note:: If the module performs in-place operations on parameters/buffers, these will be reflected
in the `parameters_and_buffers` input.
Example::
>>> a = {'foo': torch.zeros(())}
>>> # xdoctest: +SKIP
>>> mod = Foo() # does self.foo = self.foo + 1
>>> print(mod.foo) # tensor(0.)
>>> functional_call(mod, a, torch.ones(()))
>>> print(mod.foo) # tensor(0.)
>>> print(a['foo']) # tensor(1.)
.. note:: If the module has tied weights, whether or not functional_call respects the tying is determined by the
tie_weights flag.
Example::
>>> a = {'foo': torch.zeros(())}
>>> # xdoctest: +SKIP
>>> mod = Foo() # has both self.foo and self.foo_tied which are tied. Returns x + self.foo + self.foo_tied
>>> print(mod.foo) # tensor(1.)
>>> mod(torch.zeros(())) # tensor(2.)
>>> functional_call(mod, a, torch.zeros(())) # tensor(0.) since it will change self.foo_tied too
>>> functional_call(mod, a, torch.zeros(()), tie_weights=False) # tensor(1.)--self.foo_tied is not updated
>>> new_a = {'foo': torch.zeros(()), 'foo_tied': torch.zeros(())}
>>> functional_call(mod, new_a, torch.zeros()) # tensor(0.)
Args:
module (torch.nn.Module): the module to call
parameters_and_buffers (dict of str and Tensor): the parameters that will be used in
the module call.
args (Any or tuple): arguments to be passed to the module call. If not a tuple, considered a single argument.
kwargs (dict): keyword arguments to be passed to the module call
tie_weights (bool, optional): If True, then parameters and buffers tied in the original model will be treated as
tied in the reparamaterized version. Therefore, if True and different values are passed for the tied
parameters and buffers, it will error. If False, it will not respect the originally tied parameters and
buffers unless the values passed for both weights are the same. Default: True.
strict (bool, optional): If True, then the parameters and buffers passed in must match the parameters and
buffers in the original module. Therefore, if True and there are any missing or unexpected keys, it will
error. Default: False.
Returns:
Any: the result of calling ``module``.
"""
return _functional_call(
module,
parameters_and_buffers,
args,
kwargs,
tie_weights=tie_weights,
strict=strict,
)
def _functional_call(
module: "torch.nn.Module",
parameters_and_buffers: dict[str, Tensor],
args: Optional[Union[Any, tuple]] = None,
kwargs: Optional[dict[str, Any]] = None,
*,
tie_weights: bool = True,
strict: bool = False,
):
# TODO allow kwargs such as unsafe and others for parametrization
if (
torch.jit.is_tracing()
or torch.jit.is_scripting()
or isinstance(
module,
(
torch.jit.RecursiveScriptModule,
torch.jit.ScriptModule,
torch.jit.ScriptFunction,
),
)
):
raise RuntimeError("The stateless API can't be used with Jitted modules")
if isinstance(module, torch.nn.DataParallel):
raise RuntimeError(
"The stateless API can't be used with nn.DataParallel module"
)
if kwargs is None:
kwargs = {}
if args is None:
args = ()
elif not isinstance(args, tuple):
args = (args,)
with _reparametrize_module(
module, parameters_and_buffers, tie_weights=tie_weights, strict=strict
):
return module(*args, **kwargs)
```
|
=====================================================================================================================
SOURCE CODE FILE: weight_norm.py
LINES: 1
SIZE: 5.90 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\nn\utils\weight_norm.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
r"""Weight Normalization from https://arxiv.org/abs/1602.07868."""
from typing import Any, TypeVar
from typing_extensions import deprecated
from torch import _weight_norm, norm_except_dim
from torch.nn.modules import Module
from torch.nn.parameter import Parameter, UninitializedParameter
__all__ = ["WeightNorm", "weight_norm", "remove_weight_norm"]
class WeightNorm:
name: str
dim: int
def __init__(self, name: str, dim: int) -> None:
if dim is None:
dim = -1
self.name = name
self.dim = dim
# TODO Make return type more specific
def compute_weight(self, module: Module) -> Any:
g = getattr(module, self.name + "_g")
v = getattr(module, self.name + "_v")
return _weight_norm(v, g, self.dim)
@staticmethod
@deprecated(
"`torch.nn.utils.weight_norm` is deprecated "
"in favor of `torch.nn.utils.parametrizations.weight_norm`.",
category=FutureWarning,
)
def apply(module, name: str, dim: int) -> "WeightNorm":
for hook in module._forward_pre_hooks.values():
if isinstance(hook, WeightNorm) and hook.name == name:
raise RuntimeError(
f"Cannot register two weight_norm hooks on the same parameter {name}"
)
if dim is None:
dim = -1
fn = WeightNorm(name, dim)
weight = getattr(module, name)
if isinstance(weight, UninitializedParameter):
raise ValueError(
"The module passed to `WeightNorm` can't have uninitialized parameters. "
"Make sure to run the dummy forward before applying weight normalization"
)
# remove w from parameter list
del module._parameters[name]
# add g and v as new parameters and express w as g/||v|| * v
module.register_parameter(
name + "_g", Parameter(norm_except_dim(weight, 2, dim).data)
)
module.register_parameter(name + "_v", Parameter(weight.data))
setattr(module, name, fn.compute_weight(module))
# recompute weight before every forward()
module.register_forward_pre_hook(fn)
return fn
def remove(self, module: Module) -> None:
weight = self.compute_weight(module)
delattr(module, self.name)
del module._parameters[self.name + "_g"]
del module._parameters[self.name + "_v"]
setattr(module, self.name, Parameter(weight.data))
def __call__(self, module: Module, inputs: Any) -> None:
setattr(module, self.name, self.compute_weight(module))
T_module = TypeVar("T_module", bound=Module)
def weight_norm(module: T_module, name: str = "weight", dim: int = 0) -> T_module:
r"""Apply weight normalization to a parameter in the given module.
.. math::
\mathbf{w} = g \dfrac{\mathbf{v}}{\|\mathbf{v}\|}
Weight normalization is a reparameterization that decouples the magnitude
of a weight tensor from its direction. This replaces the parameter specified
by :attr:`name` (e.g. ``'weight'``) with two parameters: one specifying the magnitude
(e.g. ``'weight_g'``) and one specifying the direction (e.g. ``'weight_v'``).
Weight normalization is implemented via a hook that recomputes the weight
tensor from the magnitude and direction before every :meth:`~Module.forward`
call.
By default, with ``dim=0``, the norm is computed independently per output
channel/plane. To compute a norm over the entire weight tensor, use
``dim=None``.
See https://arxiv.org/abs/1602.07868
.. warning::
This function is deprecated. Use :func:`torch.nn.utils.parametrizations.weight_norm`
which uses the modern parametrization API. The new ``weight_norm`` is compatible
with ``state_dict`` generated from old ``weight_norm``.
Migration guide:
* The magnitude (``weight_g``) and direction (``weight_v``) are now expressed
as ``parametrizations.weight.original0`` and ``parametrizations.weight.original1``
respectively. If this is bothering you, please comment on
https://github.com/pytorch/pytorch/issues/102999
* To remove the weight normalization reparametrization, use
:func:`torch.nn.utils.parametrize.remove_parametrizations`.
* The weight is no longer recomputed once at module forward; instead, it will
be recomputed on every access. To restore the old behavior, use
:func:`torch.nn.utils.parametrize.cached` before invoking the module
in question.
Args:
module (Module): containing module
name (str, optional): name of weight parameter
dim (int, optional): dimension over which to compute the norm
Returns:
The original module with the weight norm hook
Example::
>>> m = weight_norm(nn.Linear(20, 40), name='weight')
>>> m
Linear(in_features=20, out_features=40, bias=True)
>>> m.weight_g.size()
torch.Size([40, 1])
>>> m.weight_v.size()
torch.Size([40, 20])
"""
WeightNorm.apply(module, name, dim)
return module
def remove_weight_norm(module: T_module, name: str = "weight") -> T_module:
r"""Remove the weight normalization reparameterization from a module.
Args:
module (Module): containing module
name (str, optional): name of weight parameter
Example:
>>> m = weight_norm(nn.Linear(20, 40))
>>> remove_weight_norm(m)
"""
for k, hook in module._forward_pre_hooks.items():
if isinstance(hook, WeightNorm) and hook.name == name:
hook.remove(module)
del module._forward_pre_hooks[k]
return module
raise ValueError(f"weight_norm of '{name}' not found in {module}")
```
|
==============================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 19.45 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\onnx\__init__.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
from __future__ import annotations
__all__ = [
# Modules
"symbolic_helper",
"utils",
"errors",
# All opsets
"symbolic_caffe2",
"symbolic_opset7",
"symbolic_opset8",
"symbolic_opset9",
"symbolic_opset10",
"symbolic_opset11",
"symbolic_opset12",
"symbolic_opset13",
"symbolic_opset14",
"symbolic_opset15",
"symbolic_opset16",
"symbolic_opset17",
"symbolic_opset18",
"symbolic_opset19",
"symbolic_opset20",
# Enums
"OperatorExportTypes",
"TrainingMode",
"TensorProtoDataType",
"JitScalarType",
# Public functions
"export",
"is_in_onnx_export",
"select_model_mode_for_export",
"register_custom_op_symbolic",
"unregister_custom_op_symbolic",
# Base error
"OnnxExporterError",
# Dynamo Exporter
"DiagnosticOptions",
"ExportOptions",
"ONNXProgram",
"ONNXRuntimeOptions",
"OnnxRegistry",
"dynamo_export",
"enable_fake_mode",
# DORT / torch.compile
"is_onnxrt_backend_supported",
]
from typing import Any, Callable, TYPE_CHECKING
from typing_extensions import deprecated
import torch
from torch import _C
from torch._C import _onnx as _C_onnx
from torch._C._onnx import OperatorExportTypes, TensorProtoDataType, TrainingMode
from ._internal.exporter._onnx_program import ONNXProgram
from ._internal.onnxruntime import (
is_onnxrt_backend_supported,
OrtBackend as _OrtBackend,
OrtBackendOptions as _OrtBackendOptions,
OrtExecutionProvider as _OrtExecutionProvider,
)
from ._type_utils import JitScalarType
from .errors import OnnxExporterError
from .utils import (
_run_symbolic_function,
_run_symbolic_method,
is_in_onnx_export,
register_custom_op_symbolic,
select_model_mode_for_export,
unregister_custom_op_symbolic,
)
from . import ( # usort: skip. Keep the order instead of sorting lexicographically
errors,
symbolic_caffe2,
symbolic_helper,
symbolic_opset7,
symbolic_opset8,
symbolic_opset9,
symbolic_opset10,
symbolic_opset11,
symbolic_opset12,
symbolic_opset13,
symbolic_opset14,
symbolic_opset15,
symbolic_opset16,
symbolic_opset17,
symbolic_opset18,
symbolic_opset19,
symbolic_opset20,
utils,
)
from ._internal._exporter_legacy import ( # usort: skip. needs to be last to avoid circular import
DiagnosticOptions,
ExportOptions,
ONNXRuntimeOptions,
OnnxRegistry,
enable_fake_mode,
)
if TYPE_CHECKING:
import os
from collections.abc import Collection, Mapping, Sequence
# Set namespace for exposed private names
DiagnosticOptions.__module__ = "torch.onnx"
ExportOptions.__module__ = "torch.onnx"
JitScalarType.__module__ = "torch.onnx"
ONNXProgram.__module__ = "torch.onnx"
ONNXRuntimeOptions.__module__ = "torch.onnx"
OnnxExporterError.__module__ = "torch.onnx"
OnnxRegistry.__module__ = "torch.onnx"
_OrtBackend.__module__ = "torch.onnx"
_OrtBackendOptions.__module__ = "torch.onnx"
_OrtExecutionProvider.__module__ = "torch.onnx"
enable_fake_mode.__module__ = "torch.onnx"
is_onnxrt_backend_supported.__module__ = "torch.onnx"
producer_name = "pytorch"
producer_version = _C_onnx.PRODUCER_VERSION
def export(
model: torch.nn.Module
| torch.export.ExportedProgram
| torch.jit.ScriptModule
| torch.jit.ScriptFunction,
args: tuple[Any, ...] = (),
f: str | os.PathLike | None = None,
*,
kwargs: dict[str, Any] | None = None,
export_params: bool = True,
verbose: bool | None = None,
input_names: Sequence[str] | None = None,
output_names: Sequence[str] | None = None,
opset_version: int | None = None,
dynamic_axes: Mapping[str, Mapping[int, str]]
| Mapping[str, Sequence[int]]
| None = None,
keep_initializers_as_inputs: bool = False,
dynamo: bool = False,
# Dynamo only options
external_data: bool = True,
dynamic_shapes: dict[str, Any] | tuple[Any, ...] | list[Any] | None = None,
custom_translation_table: dict[Callable, Callable | Sequence[Callable]]
| None = None,
report: bool = False,
optimize: bool = True,
verify: bool = False,
profile: bool = False,
dump_exported_program: bool = False,
artifacts_dir: str | os.PathLike = ".",
fallback: bool = False,
# Deprecated options
training: _C_onnx.TrainingMode = _C_onnx.TrainingMode.EVAL,
operator_export_type: _C_onnx.OperatorExportTypes = _C_onnx.OperatorExportTypes.ONNX,
do_constant_folding: bool = True,
custom_opsets: Mapping[str, int] | None = None,
export_modules_as_functions: bool | Collection[type[torch.nn.Module]] = False,
autograd_inlining: bool = True,
) -> ONNXProgram | None:
r"""Exports a model into ONNX format.
Args:
model: The model to be exported.
args: Example positional inputs. Any non-Tensor arguments will be hard-coded into the
exported model; any Tensor arguments will become inputs of the exported model,
in the order they occur in the tuple.
f: Path to the output ONNX model file. E.g. "model.onnx".
kwargs: Optional example keyword inputs.
export_params: If false, parameters (weights) will not be exported.
verbose: Whether to enable verbose logging.
input_names: names to assign to the input nodes of the graph, in order.
output_names: names to assign to the output nodes of the graph, in order.
opset_version: The version of the
`default (ai.onnx) opset <https://github.com/onnx/onnx/blob/master/docs/Operators.md>`_
to target. Must be >= 7.
dynamic_axes:
By default the exported model will have the shapes of all input and output tensors
set to exactly match those given in ``args``. To specify axes of tensors as
dynamic (i.e. known only at run-time), set ``dynamic_axes`` to a dict with schema:
* KEY (str): an input or output name. Each name must also be provided in ``input_names`` or
``output_names``.
* VALUE (dict or list): If a dict, keys are axis indices and values are axis names. If a
list, each element is an axis index.
For example::
class SumModule(torch.nn.Module):
def forward(self, x):
return torch.sum(x, dim=1)
torch.onnx.export(
SumModule(),
(torch.ones(2, 2),),
"onnx.pb",
input_names=["x"],
output_names=["sum"],
)
Produces::
input {
name: "x"
...
shape {
dim {
dim_value: 2 # axis 0
}
dim {
dim_value: 2 # axis 1
...
output {
name: "sum"
...
shape {
dim {
dim_value: 2 # axis 0
...
While::
torch.onnx.export(
SumModule(),
(torch.ones(2, 2),),
"onnx.pb",
input_names=["x"],
output_names=["sum"],
dynamic_axes={
# dict value: manually named axes
"x": {0: "my_custom_axis_name"},
# list value: automatic names
"sum": [0],
},
)
Produces::
input {
name: "x"
...
shape {
dim {
dim_param: "my_custom_axis_name" # axis 0
}
dim {
dim_value: 2 # axis 1
...
output {
name: "sum"
...
shape {
dim {
dim_param: "sum_dynamic_axes_1" # axis 0
...
keep_initializers_as_inputs: If True, all the
initializers (typically corresponding to model weights) in the
exported graph will also be added as inputs to the graph. If False,
then initializers are not added as inputs to the graph, and only
the user inputs are added as inputs.
Set this to True if you intend to supply model weights at runtime.
Set it to False if the weights are static to allow for better optimizations
(e.g. constant folding) by backends/runtimes.
dynamo: Whether to export the model with ``torch.export`` ExportedProgram instead of TorchScript.
external_data: Whether to save the model weights as an external data file.
This is required for models with large weights that exceed the ONNX file size limit (2GB).
When False, the weights are saved in the ONNX file with the model architecture.
dynamic_shapes: A dictionary or a tuple of dynamic shapes for the model inputs. Refer to
:func:`torch.export.export` for more details. This is only used (and preferred) when dynamo is True.
Note that dynamic_shapes is designed to be used when the model is exported with dynamo=True, while
dynamic_axes is used when dynamo=False.
custom_translation_table: A dictionary of custom decompositions for operators in the model.
The dictionary should have the callable target in the fx Node as the key (e.g. ``torch.ops.aten.stft.default``),
and the value should be a function that builds that graph using ONNX Script. This option
is only valid when dynamo is True.
report: Whether to generate a markdown report for the export process. This option
is only valid when dynamo is True.
optimize: Whether to optimize the exported model. This option
is only valid when dynamo is True. Default is True.
verify: Whether to verify the exported model using ONNX Runtime. This option
is only valid when dynamo is True.
profile: Whether to profile the export process. This option
is only valid when dynamo is True.
dump_exported_program: Whether to dump the :class:`torch.export.ExportedProgram` to a file.
This is useful for debugging the exporter. This option is only valid when dynamo is True.
artifacts_dir: The directory to save the debugging artifacts like the report and the serialized
exported program. This option is only valid when dynamo is True.
fallback: Whether to fallback to the TorchScript exporter if the dynamo exporter fails.
This option is only valid when dynamo is True. When fallback is enabled, It is
recommended to set dynamic_axes even when dynamic_shapes is provided.
training: Deprecated option. Instead, set the training mode of the model before exporting.
operator_export_type: Deprecated option. Only ONNX is supported.
do_constant_folding: Deprecated option.
custom_opsets: Deprecated.
A dictionary:
* KEY (str): opset domain name
* VALUE (int): opset version
If a custom opset is referenced by ``model`` but not mentioned in this dictionary,
the opset version is set to 1. Only custom opset domain name and version should be
indicated through this argument.
export_modules_as_functions: Deprecated option.
Flag to enable
exporting all ``nn.Module`` forward calls as local functions in ONNX. Or a set to indicate the
particular types of modules to export as local functions in ONNX.
This feature requires ``opset_version`` >= 15, otherwise the export will fail. This is because
``opset_version`` < 15 implies IR version < 8, which means no local function support.
Module variables will be exported as function attributes. There are two categories of function
attributes.
1. Annotated attributes: class variables that have type annotations via
`PEP 526-style <https://www.python.org/dev/peps/pep-0526/#class-and-instance-variable-annotations>`_
will be exported as attributes.
Annotated attributes are not used inside the subgraph of ONNX local function because
they are not created by PyTorch JIT tracing, but they may be used by consumers
to determine whether or not to replace the function with a particular fused kernel.
2. Inferred attributes: variables that are used by operators inside the module. Attribute names
will have prefix "inferred::". This is to differentiate from predefined attributes retrieved from
python module annotations. Inferred attributes are used inside the subgraph of ONNX local function.
* ``False`` (default): export ``nn.Module`` forward calls as fine grained nodes.
* ``True``: export all ``nn.Module`` forward calls as local function nodes.
* Set of type of nn.Module: export ``nn.Module`` forward calls as local function nodes,
only if the type of the ``nn.Module`` is found in the set.
autograd_inlining: Deprecated.
Flag used to control whether to inline autograd functions.
Refer to https://github.com/pytorch/pytorch/pull/74765 for more details.
Returns:
:class:`torch.onnx.ONNXProgram` if dynamo is True, otherwise None.
.. versionchanged:: 2.6
*training* is now deprecated. Instead, set the training mode of the model before exporting.
*operator_export_type* is now deprecated. Only ONNX is supported.
*do_constant_folding* is now deprecated. It is always enabled.
*export_modules_as_functions* is now deprecated.
*autograd_inlining* is now deprecated.
.. versionchanged:: 2.7
*optimize* is now True by default.
"""
if dynamo is True or isinstance(model, torch.export.ExportedProgram):
from torch.onnx._internal.exporter import _compat
if isinstance(args, torch.Tensor):
args = (args,)
return _compat.export_compat(
model,
args,
f,
kwargs=kwargs,
export_params=export_params,
verbose=verbose,
input_names=input_names,
output_names=output_names,
opset_version=opset_version,
custom_translation_table=custom_translation_table,
dynamic_axes=dynamic_axes,
keep_initializers_as_inputs=keep_initializers_as_inputs,
external_data=external_data,
dynamic_shapes=dynamic_shapes,
report=report,
optimize=optimize,
verify=verify,
profile=profile,
dump_exported_program=dump_exported_program,
artifacts_dir=artifacts_dir,
fallback=fallback,
)
else:
from torch.onnx.utils import export
if dynamic_shapes:
raise ValueError(
"The exporter only supports dynamic shapes "
"through parameter dynamic_axes when dynamo=False."
)
export(
model,
args,
f, # type: ignore[arg-type]
kwargs=kwargs,
export_params=export_params,
verbose=verbose is True,
input_names=input_names,
output_names=output_names,
opset_version=opset_version,
dynamic_axes=dynamic_axes,
keep_initializers_as_inputs=keep_initializers_as_inputs,
training=training,
operator_export_type=operator_export_type,
do_constant_folding=do_constant_folding,
custom_opsets=custom_opsets,
export_modules_as_functions=export_modules_as_functions,
autograd_inlining=autograd_inlining,
)
return None
@deprecated(
"torch.onnx.dynamo_export is deprecated since 2.6.0. Please use torch.onnx.export(..., dynamo=True) instead."
)
def dynamo_export(
model: torch.nn.Module | Callable | torch.export.ExportedProgram, # type: ignore[name-defined]
/,
*model_args,
export_options: ExportOptions | None = None,
**model_kwargs,
) -> ONNXProgram:
"""Export a torch.nn.Module to an ONNX graph.
.. deprecated:: 2.7
Please use ``torch.onnx.export(..., dynamo=True)`` instead.
Args:
model: The PyTorch model to be exported to ONNX.
model_args: Positional inputs to ``model``.
model_kwargs: Keyword inputs to ``model``.
export_options: Options to influence the export to ONNX.
Returns:
An in-memory representation of the exported ONNX model.
"""
import warnings
from torch.onnx import _flags
from torch.onnx._internal.exporter import _compat
from torch.utils import _pytree
if isinstance(model, torch.export.ExportedProgram):
return _compat.export_compat(
model, # type: ignore[arg-type]
model_args,
f=None,
kwargs=model_kwargs,
opset_version=18,
external_data=True,
export_params=True,
fallback=True,
)
elif _flags.USE_EXPERIMENTAL_LOGIC:
if export_options is not None:
warnings.warn(
"You are using an experimental ONNX export logic, which currently only supports dynamic shapes. "
"For a more comprehensive set of export options, including advanced features, please consider using "
"`torch.onnx.export(..., dynamo=True)`. ",
category=DeprecationWarning,
)
if export_options is not None and export_options.dynamic_shapes:
# Make all shapes dynamic if it's possible
def _to_dynamic_shape(x):
if isinstance(x, torch.Tensor):
rank = len(x.shape)
dynamic_shape = {}
for i in range(rank):
dynamic_shape[i] = torch.export.Dim.AUTO # type: ignore[attr-defined]
return dynamic_shape
else:
return None
# model_args could be nested
dynamic_shapes = _pytree.tree_map(
_to_dynamic_shape,
model_args,
)
else:
dynamic_shapes = None
return _compat.export_compat(
model, # type: ignore[arg-type]
model_args,
f=None,
kwargs=model_kwargs,
dynamic_shapes=dynamic_shapes,
opset_version=18,
external_data=True,
export_params=True,
fallback=True,
)
else:
from torch.onnx._internal._exporter_legacy import dynamo_export
return dynamo_export(
model, *model_args, export_options=export_options, **model_kwargs
)
```
|
================================================================================================================
SOURCE CODE FILE: _constants.py
LINES: 1
SIZE: 0.62 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\onnx\_constants.py
ENCODING: utf-8
```py
"""Constant values used in ONNX."""
ONNX_ARCHIVE_MODEL_PROTO_NAME = "__MODEL_PROTO"
ONNX_BASE_OPSET = 9
ONNX_MIN_OPSET = 7
ONNX_MAX_OPSET = 20
ONNX_TORCHSCRIPT_EXPORTER_MAX_OPSET = 20
# ONNX_DEFAULT_OPSET generated by tools/onnx/update_default_opset_version.py
ONNX_DEFAULT_OPSET = 17
ONNX_CONSTANT_FOLDING_MIN_OPSET = 9
PYTORCH_GITHUB_ISSUES_URL = "https://github.com/pytorch/pytorch/issues"
INT64_MAX = 9223372036854775807
INT32_MAX = 2147483647
INT16_MAX = 32767
INT8_MAX = 127
UINT8_MAX = 255
INT64_MIN = -9223372036854775808
INT32_MIN = -2147483648
INT16_MIN = -32768
INT8_MIN = -128
UINT8_MIN = 0
```
|
===================================================================================================================
SOURCE CODE FILE: _experimental.py
LINES: 1
SIZE: 1.04 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\onnx\_experimental.py
ENCODING: utf-8
```py
"""Experimental classes and functions used by ONNX export."""
import dataclasses
from collections.abc import Mapping, Sequence
from typing import Optional, Union
import torch
import torch._C._onnx as _C_onnx
@dataclasses.dataclass
class ExportOptions:
"""Arguments used by :func:`torch.onnx.export`."""
# TODO(justinchuby): Deprecate and remove this class.
export_params: bool = True
verbose: bool = False
training: _C_onnx.TrainingMode = _C_onnx.TrainingMode.EVAL
input_names: Optional[Sequence[str]] = None
output_names: Optional[Sequence[str]] = None
operator_export_type: _C_onnx.OperatorExportTypes = _C_onnx.OperatorExportTypes.ONNX
opset_version: Optional[int] = None
do_constant_folding: bool = True
dynamic_axes: Optional[Mapping[str, Union[Mapping[int, str], Sequence[int]]]] = None
keep_initializers_as_inputs: Optional[bool] = None
custom_opsets: Optional[Mapping[str, int]] = None
export_modules_as_functions: Union[bool, set[type[torch.nn.Module]]] = False
```
|
============================================================================================================
SOURCE CODE FILE: _flags.py
LINES: 1
SIZE: 1.32 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\onnx\_flags.py
ENCODING: utf-8
```py
"""Internal feature flags for torch.onnx.
NOTE: These flags are experimental only. Any flag here can be removed at any
time without notice.
"""
import logging
import os
logger = logging.getLogger(__name__)
def _load_boolean_flag(
name: str,
*,
this_will: str,
deprecated: bool = False,
default: bool = False,
) -> bool:
"""Load a boolean flag from environment variable.
Args:
name: The name of the environment variable.
this_will: A string that describes what this flag will do.
deprecated: Whether this flag is deprecated.
default: The default value if envvar not defined.
"""
undefined = os.getenv(name) is None
state = os.getenv(name) == "1"
if state:
if deprecated:
logger.error(
"Experimental flag %s is deprecated. Please remove it from your environment.",
name,
)
else:
logger.warning(
"Experimental flag %s is enabled. This will %s.", name, this_will
)
if undefined:
state = default
return state
USE_EXPERIMENTAL_LOGIC: bool = _load_boolean_flag(
"TORCH_ONNX_USE_EXPERIMENTAL_LOGIC",
this_will="use ExportedProgram and the new torch.onnx export logic",
default=True,
)
```
|
==============================================================================================================
SOURCE CODE FILE: _globals.py
LINES: 1
SIZE: 3.02 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\onnx\_globals.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
"""Globals used internally by the ONNX exporter.
Do not use this module outside of `torch.onnx` and its tests.
Be very judicious when adding any new global variables. Do not create new global
variables unless they are absolutely necessary.
"""
import torch._C._onnx as _C_onnx
# This module should only depend on _constants and nothing else in torch.onnx to keep
# dependency direction clean.
from torch.onnx import _constants
class _InternalGlobals:
"""Globals used internally by ONNX exporter.
NOTE: Be very judicious when adding any new variables. Do not create new
global variables unless they are absolutely necessary.
"""
def __init__(self) -> None:
self._export_onnx_opset_version = _constants.ONNX_DEFAULT_OPSET
self._training_mode: _C_onnx.TrainingMode = _C_onnx.TrainingMode.EVAL
self._in_onnx_export: bool = False
# Whether the user's model is training during export
self.export_training: bool = False
self.operator_export_type: _C_onnx.OperatorExportTypes = (
_C_onnx.OperatorExportTypes.ONNX
)
self.onnx_shape_inference: bool = True
self._autograd_inlining: bool = True
@property
def training_mode(self):
"""The training mode for the exporter."""
return self._training_mode
@training_mode.setter
def training_mode(self, training_mode: _C_onnx.TrainingMode):
if not isinstance(training_mode, _C_onnx.TrainingMode):
raise TypeError(
"training_mode must be of type 'torch.onnx.TrainingMode'. This is "
"likely a bug in torch.onnx."
)
self._training_mode = training_mode
@property
def export_onnx_opset_version(self) -> int:
"""Opset version used during export."""
return self._export_onnx_opset_version
@export_onnx_opset_version.setter
def export_onnx_opset_version(self, value: int):
supported_versions = range(
_constants.ONNX_MIN_OPSET, _constants.ONNX_MAX_OPSET + 1
)
if value not in supported_versions:
raise ValueError(f"Unsupported ONNX opset version: {value}")
self._export_onnx_opset_version = value
@property
def in_onnx_export(self) -> bool:
"""Whether it is in the middle of ONNX export."""
return self._in_onnx_export
@in_onnx_export.setter
def in_onnx_export(self, value: bool):
if type(value) is not bool:
raise TypeError("in_onnx_export must be a boolean")
self._in_onnx_export = value
@property
def autograd_inlining(self) -> bool:
"""Whether Autograd must be inlined."""
return self._autograd_inlining
@autograd_inlining.setter
def autograd_inlining(self, value: bool):
if type(value) is not bool:
raise TypeError("autograd_inlining must be a boolean")
self._autograd_inlining = value
GLOBALS = _InternalGlobals()
```
|
========================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.00 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\onnx\_internal\__init__.py
ENCODING: utf-8
```py
```
|
================================================================================================================================
SOURCE CODE FILE: _exporter_legacy.py
LINES: 6
SIZE: 35.24 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\onnx\_internal\_exporter_legacy.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
from __future__ import annotations
__all__ = [
"DiagnosticOptions",
"ExportOptions",
"ONNXRuntimeOptions",
"InvalidExportOptionsError",
"OnnxRegistry",
"UnsatisfiedDependencyError",
"dynamo_export",
"enable_fake_mode",
]
import abc
import contextlib
import dataclasses
import logging
import warnings
from collections import defaultdict
from typing import Any, Callable, TYPE_CHECKING, TypeVar
from typing_extensions import deprecated
import torch
import torch._ops
import torch.utils._pytree as pytree
from torch.onnx import errors
from torch.onnx._internal import io_adapter
from torch.onnx._internal._lazy_import import onnxscript_apis, onnxscript_ir as ir
from torch.onnx._internal.diagnostics import infra
from torch.onnx._internal.exporter import _constants, _onnx_program
from torch.onnx._internal.fx import (
decomposition_table,
patcher as patcher,
registration,
)
# We can only import onnx from this module in a type-checking context to ensure that
# 'import torch.onnx' continues to work without having 'onnx' installed. We fully
# 'import onnx' inside of dynamo_export (by way of _assert_dependencies).
if TYPE_CHECKING:
import io
from collections.abc import Mapping, Sequence
import onnxruntime
import onnxscript
from torch._subclasses import fake_tensor
from torch.onnx._internal.fx import diagnostics
_PYTORCH_GITHUB_ISSUES_URL = "https://github.com/pytorch/pytorch/issues"
"""The URL to the PyTorch GitHub issues page."""
_DEFAULT_FAILED_EXPORT_SARIF_LOG_PATH = "report_dynamo_export.sarif"
"""The default path to write the SARIF log to if the export fails."""
log = logging.getLogger(__name__)
DiagnosticOptions = infra.DiagnosticOptions
@dataclasses.dataclass
class ONNXFakeContext:
"""A dataclass used to store context for model export using FakeTensor.
This dataclass stores the FakeTensorMode instance used to convert
real tensors and model parameters into fake tensors. This :attr:`ONNXFakeContext.fake_mode` is
reused internally during tracing of a :class:`torch.nn.Module` into a FX :class:`GraphModule`.
"""
fake_mode: fake_tensor.FakeTensorMode
"""The fake tensor mode used for tracing model using fake tensors and parameters."""
state_dict_paths: tuple[str | io.BytesIO | dict[str, Any]] | None = None
"""List of paths of files that contain the model :meth:`state_dict`"""
@deprecated(
"torch.onnx.dynamo_export is deprecated since 2.7.0. Please use torch.onnx.export(..., dynamo=True) instead.",
)
class OnnxRegistry:
"""Registry for ONNX functions.
.. deprecated:: 2.7
Please use ``torch.onnx.export(..., dynamo=True)`` instead.
The registry maintains a mapping from qualified names to symbolic functions under a
fixed opset version. It supports registering custom onnx-script functions and for
dispatcher to dispatch calls to the appropriate function.
"""
def __init__(self) -> None:
"""Initializes the registry"""
# NOTE: _registry is the registry maps OpNameto a list of ONNXFunctions. It is important
# not to directly modify this variable. Instead, access to it should be done through
# the public methods: register_custom_op, get_ops, and is_registered_op.
self._registry: dict[registration.OpName, list[registration.ONNXFunction]] = (
defaultdict(list)
)
self._opset_version = _constants.TORCHLIB_OPSET
warnings.warn(
f"torch.onnx.dynamo_export only implements opset version {self._opset_version} for now. If you need to use a "
"different opset version, please register them with register_custom_op."
)
self._initiate_registry_from_torchlib()
@property
def opset_version(self) -> int:
"""The ONNX opset version the exporter should target."""
return self._opset_version
def _initiate_registry_from_torchlib(self) -> None:
"""Populates the registry with ATen functions from torchlib.
Args:
torchlib_registry: The torchlib registry to use for populating the registry.
"""
for meta in onnxscript_apis.get_torchlib_ops():
internal_name_instance = registration.OpName.from_qualified_name(
meta.qualified_name
)
symbolic_function = registration.ONNXFunction(
onnx_function=meta.function, # type: ignore[arg-type]
op_full_name=internal_name_instance.qualified_name(),
is_custom=False,
is_complex=meta.is_complex,
)
self._register(internal_name_instance, symbolic_function)
def _register(
self,
internal_qualified_name: registration.OpName,
symbolic_function: registration.ONNXFunction,
) -> None:
"""Registers a ONNXFunction to an operator.
Args:
internal_qualified_name: The qualified name of the operator to register: OpName.
symbolic_function: The ONNXFunction to register.
"""
self._registry[internal_qualified_name].append(symbolic_function)
def register_op(
self,
function: onnxscript.OnnxFunction | onnxscript.TracedOnnxFunction,
namespace: str,
op_name: str,
overload: str | None = None,
is_complex: bool = False,
) -> None:
"""Registers a custom operator: torch.ops.<namespace>.<op_name>.<overload>.
Args:
function: The onnx-sctip function to register.
namespace: The namespace of the operator to register.
op_name: The name of the operator to register.
overload: The overload of the operator to register. If it's default overload,
leave it to None.
is_complex: Whether the function is a function that handles complex valued inputs.
Raises:
ValueError: If the name is not in the form of 'namespace::op'.
"""
internal_name_instance = registration.OpName.from_name_parts(
namespace=namespace, op_name=op_name, overload=overload
)
symbolic_function = registration.ONNXFunction(
onnx_function=function,
op_full_name=internal_name_instance.qualified_name(),
is_custom=True,
is_complex=is_complex,
)
self._register(internal_name_instance, symbolic_function)
def get_op_functions(
self, namespace: str, op_name: str, overload: str | None = None
) -> list[registration.ONNXFunction] | None:
"""Returns a list of ONNXFunctions for the given op: torch.ops.<namespace>.<op_name>.<overload>.
The list is ordered by the time of registration. The custom operators should be
in the second half of the list.
Args:
namespace: The namespace of the operator to get.
op_name: The name of the operator to get.
overload: The overload of the operator to get. If it's default overload,
leave it to None.
Returns:
A list of ONNXFunctions corresponding to the given name, or None if
the name is not in the registry.
"""
internal_name_instance = registration.OpName.from_name_parts(
namespace=namespace, op_name=op_name, overload=overload
)
return self._registry.get(internal_name_instance)
def is_registered_op(
self, namespace: str, op_name: str, overload: str | None = None
) -> bool:
"""Returns whether the given op is registered: torch.ops.<namespace>.<op_name>.<overload>.
Args:
namespace: The namespace of the operator to check.
op_name: The name of the operator to check.
overload: The overload of the operator to check. If it's default overload,
leave it to None.
Returns:
True if the given op is registered, otherwise False.
"""
functions = self.get_op_functions(
namespace=namespace, op_name=op_name, overload=overload
)
return functions is not None
def _all_registered_ops(self) -> set[str]:
"""Returns the set of all registered function names."""
return {
op_name_class.qualified_name() for op_name_class in self._registry.keys()
}
@deprecated(
"torch.onnx.dynamo_export is deprecated since 2.7.0. Please use torch.onnx.export(..., dynamo=True) instead.",
category=None,
)
class ExportOptions:
"""Options to influence the TorchDynamo ONNX exporter.
.. deprecated:: 2.7
Please use ``torch.onnx.export(..., dynamo=True)`` instead.
Attributes:
dynamic_shapes: Shape information hint for input/output tensors.
When ``None``, the exporter determines the most compatible setting.
When ``True``, all input shapes are considered dynamic.
When ``False``, all input shapes are considered static.
diagnostic_options: The diagnostic options for the exporter.
fake_context: The fake context used for symbolic tracing.
onnx_registry: The ONNX registry used to register ATen operators to ONNX functions.
"""
dynamic_shapes: bool | None = None
"""Shape information hint for input/output tensors.
- ``None``: the exporter determines the most compatible setting.
- ``True``: all input shapes are considered dynamic.
- ``False``: all input shapes are considered static.
"""
diagnostic_options: DiagnosticOptions
"""The diagnostic options for the exporter."""
fake_context: ONNXFakeContext | None = None
"""The fake context used for symbolic tracing."""
onnx_registry: OnnxRegistry | None = None
"""The ONNX registry used to register ATen operators to ONNX functions."""
def __init__(
self,
*,
dynamic_shapes: bool | None = None,
fake_context: ONNXFakeContext | None = None,
onnx_registry: OnnxRegistry | None = None,
diagnostic_options: DiagnosticOptions | None = None,
):
self.dynamic_shapes = dynamic_shapes
self.fake_context = fake_context
self.onnx_registry = onnx_registry
self.diagnostic_options = diagnostic_options or DiagnosticOptions()
@deprecated(
"torch.onnx.dynamo_export is deprecated since 2.7.0. Please use torch.onnx.export(..., dynamo=True) instead.",
category=None,
)
class ResolvedExportOptions(ExportOptions):
"""Consolidates :class:`ExportOptions` with default values.
All unspecified options from :class:`ExportOptions` are assigned a default value.
This is an internal class and its API may be changed at any time without notice.
"""
# Public attributes MUST be redefined below without ``Optional[]`` from ``ExportOptions``
dynamic_shapes: bool
diagnostic_options: DiagnosticOptions
fake_context: ONNXFakeContext
onnx_registry: OnnxRegistry
# Private only attributes
decomposition_table: dict[torch._ops.OpOverload, Callable]
"""A dictionary that maps operators to their decomposition functions."""
onnxfunction_dispatcher: (
torch.onnx._internal.fx.onnxfunction_dispatcher.OnnxFunctionDispatcher
)
"""The ONNX dispatcher used to dispatch ATen operators to ONNX functions."""
fx_tracer: FXGraphExtractor
"""The FXGraphExtractor instance used to extract the FX graph from the model."""
diagnostic_context: diagnostics.DiagnosticContext
"""The diagnostics context for the export. Responsible for recording diagnostics,
logging diagnostics, and generating the SARIF log."""
def __init__(
self,
options: ExportOptions | ResolvedExportOptions,
model: torch.nn.Module | Callable | None = None, # type: ignore[name-defined]
):
from torch.onnx._internal.fx import ( # TODO: Prevent circular dep
diagnostics,
dynamo_graph_extractor,
)
if isinstance(options, ResolvedExportOptions):
self.dynamic_shapes = options.dynamic_shapes
self.diagnostic_options = options.diagnostic_options
self.fake_context = options.fake_context
self.fx_tracer = options.fx_tracer
self.onnx_registry = options.onnx_registry
self.onnxfunction_dispatcher = options.onnxfunction_dispatcher
self.decomposition_table = options.decomposition_table
self.diagnostic_context = options.diagnostic_context
else:
T = TypeVar("T")
def resolve(value: T | None, fallback: T | Callable[[], T]) -> T:
if value is not None:
return value
if callable(fallback):
return fallback()
return fallback
self.dynamic_shapes = resolve(options.dynamic_shapes, False)
self.diagnostic_options = resolve(
options.diagnostic_options, DiagnosticOptions()
)
self.fx_tracer = dynamo_graph_extractor.DynamoExport()
self.fake_context = resolve(options.fake_context, None) # type: ignore[arg-type]
self.diagnostic_context = diagnostics.DiagnosticContext(
"torch.onnx.dynamo_export",
torch.__version__,
self.diagnostic_options,
)
self.onnx_registry = resolve(options.onnx_registry, OnnxRegistry())
self.decomposition_table = (
decomposition_table.create_onnx_friendly_decomposition_table( # type: ignore[assignment]
self.onnx_registry
)
)
from torch.onnx._internal.fx import onnxfunction_dispatcher
self.onnxfunction_dispatcher = (
onnxfunction_dispatcher.OnnxFunctionDispatcher(
self.onnx_registry,
self.diagnostic_context,
)
)
for key in dir(options):
if not key.startswith("_"): # skip private attributes
assert hasattr(self, key), f"Unresolved option '{key}'"
@contextlib.contextmanager
def enable_fake_mode():
"""Enable fake mode for the duration of the context.
Internally it instantiates a :class:`torch._subclasses.fake_tensor.FakeTensorMode` context manager
that converts user input and model parameters into :class:`torch._subclasses.fake_tensor.FakeTensor`.
A :class:`torch._subclasses.fake_tensor.FakeTensor`
is a :class:`torch.Tensor` with the ability to run PyTorch code without having to
actually do computation through tensors allocated on a ``meta`` device. Because
there is no actual data being allocated on the device, this API allows for
initializing and exporting large models without the actual memory footprint needed for executing it.
It is highly recommended to initialize the model in fake mode when exporting models that
are too large to fit into memory.
.. note::
This function does not support torch.onnx.export(..., dynamo=True, optimize=True).
Please call ONNXProgram.optimize() outside of the function after the model is exported.
Example::
# xdoctest: +REQUIRES(env:TORCH_DOCTEST_ONNX)
>>> import torch
>>> class MyModel(torch.nn.Module): # Model with a parameter
... def __init__(self) -> None:
... super().__init__()
... self.weight = torch.nn.Parameter(torch.tensor(42.0))
... def forward(self, x):
... return self.weight + x
>>> with torch.onnx.enable_fake_mode():
... # When initialized in fake mode, the model's parameters are fake tensors
... # They do not take up memory so we can initialize large models
... my_nn_module = MyModel()
... arg1 = torch.randn(2, 2, 2)
>>> onnx_program = torch.onnx.export(my_nn_module, (arg1,), dynamo=True, optimize=False)
>>> # Saving model WITHOUT initializers (only the architecture)
>>> onnx_program.save(
... "my_model_without_initializers.onnx",
... include_initializers=False,
... keep_initializers_as_inputs=True,
... )
>>> # Saving model WITH initializers after applying concrete weights
>>> onnx_program.apply_weights({"weight": torch.tensor(42.0)})
>>> onnx_program.save("my_model_with_initializers.onnx")
.. warning::
This API is experimental and is *NOT* backward-compatible.
"""
from torch._subclasses import fake_tensor
from torch.fx.experimental.symbolic_shapes import ShapeEnv
# This overrides the internal `FakeTensorMode` instance created by `torch._dynamo.export`[1].
# It is a good idea to keep them in sync (constructor args) to maintain the same default behavior
# [1] `torch/_dynamo/output_graph.py::InstructionTranslator::OutputGraph.__init__`
# Mixed fake/real tensors are only allowed when `torch.onnx.dynamo_export` is not called within `FakeTensorMode`
# This is needed because models can create new parameters during `forward(self, *args, **kwargs)` run
fake_mode = fake_tensor.FakeTensorMode(
allow_non_fake_inputs=not torch._guards.detect_fake_mode(),
shape_env=ShapeEnv(
allow_scalar_outputs=False, allow_dynamic_output_shape_ops=False
),
)
# The patcher is needed for when user calls `fake_model.load_state_dict(...)` within fake mode
patcher_context = patcher.ONNXTorchPatcher()
fake_context = ONNXFakeContext(fake_mode=fake_mode)
with fake_mode, patcher_context:
yield fake_context
fake_context.state_dict_paths = tuple(
patcher_context.paths,
) # type: ignore[assignment]
@deprecated(
"torch.onnx.dynamo_export is deprecated since 2.7.0. Please use torch.onnx.export(..., dynamo=True) instead.",
)
class ONNXRuntimeOptions:
"""Options to influence the execution of the ONNX model through ONNX Runtime.
.. deprecated:: 2.7
Please use ``torch.onnx.export(..., dynamo=True)`` instead.
Attributes:
session_options: ONNX Runtime session options.
execution_providers: ONNX Runtime execution providers to use during model execution.
execution_provider_options: ONNX Runtime execution provider options.
"""
session_options: Sequence[onnxruntime.SessionOptions] | None = None
"""ONNX Runtime session options."""
execution_providers: Sequence[str | tuple[str, dict[Any, Any]]] | None = None
"""ONNX Runtime execution providers to use during model execution."""
execution_provider_options: Sequence[dict[Any, Any]] | None = None
"""ONNX Runtime execution provider options."""
def __init__(
self,
*,
session_options: Sequence[onnxruntime.SessionOptions] | None = None,
execution_providers: Sequence[str | tuple[str, dict[Any, Any]]] | None = None,
execution_provider_options: Sequence[dict[Any, Any]] | None = None,
):
self.session_options = session_options
self.execution_providers = execution_providers
self.execution_provider_options = execution_provider_options
class FXGraphExtractor(abc.ABC):
"""Abstract interface for FX graph extractor engines.
This class isolates FX extraction logic from the rest of the export logic.
That allows a single ONNX exporter that can leverage different FX graphs."""
def __init__(self) -> None:
super().__init__()
self.input_adapter: io_adapter.InputAdapter = io_adapter.InputAdapter()
self.output_adapter: io_adapter.OutputAdapter = io_adapter.OutputAdapter()
@abc.abstractmethod
def generate_fx(
self,
options: ResolvedExportOptions,
model: torch.nn.Module | Callable,
model_args: Sequence[Any],
model_kwargs: Mapping[str, Any],
) -> torch.fx.GraphModule:
"""Analyzes user ``model`` and generates a FX graph.
Args:
options: The export options.
model: The user model.
model_args: The model's positional input arguments.
model_kwargs: The model's keyword input arguments.
Returns:
The generated FX Graph.
"""
...
# TODO: Design the passes API
@abc.abstractmethod
def pre_export_passes(
self,
options: ResolvedExportOptions,
original_model: torch.nn.Module | Callable,
fx_module: torch.fx.GraphModule,
fx_module_args: Sequence[Any],
):
"""Applies pre-export passes to the FX graph.
Pre-export passes are FX-to-FX graph transformations that make the graph
more palatable for the FX-to-ONNX conversion.
For example, it can be used to flatten model input/output, add explicit
casts to the graph, replace/decompose operators, functionalize the graph, etc.
"""
...
class Exporter:
def __init__(
self,
options: ResolvedExportOptions,
model: torch.nn.Module | Callable,
model_args: Sequence[Any],
model_kwargs: Mapping[str, Any],
):
self.options = options
assert self.options is not None
self.model = model
self.model_args = model_args
self.model_kwargs = model_kwargs
# TODO: https://github.com/pytorch/pytorch/issues/107714
# NOTE: FXSymbolicTracer would fail in this assert, as it does not use `enable_fake_mode`
from torch.onnx._internal.fx import fx_symbolic_graph_extractor
if not isinstance(
self.options.fx_tracer, fx_symbolic_graph_extractor.FXSymbolicTracer
):
self._assert_fake_tensor_mode()
def export(self) -> _onnx_program.ONNXProgram:
from torch.export._trace import ( # TODO: Prevent circular dependency
DEFAULT_EXPORT_DYNAMO_CONFIG,
)
# TODO: Defer `import onnxscript` out of `import torch` path
# https://github.com/pytorch/pytorch/issues/103764
from torch.onnx._internal.fx import decomposition_skip
with (
self.options.diagnostic_context,
decomposition_skip.enable_decomposition_skips(self.options),
torch._dynamo.config.patch(
dataclasses.asdict(DEFAULT_EXPORT_DYNAMO_CONFIG)
),
):
graph_module = self.options.fx_tracer.generate_fx(
self.options, self.model, self.model_args, self.model_kwargs
)
# TODO: Defer `import onnxscript` out of `import torch` path
# https://github.com/pytorch/pytorch/issues/103764
from torch.onnx._internal.fx import fx_onnx_interpreter
fx_interpreter = fx_onnx_interpreter.FxOnnxInterpreter(
diagnostic_context=self.options.diagnostic_context
)
onnxscript_graph = fx_interpreter.run(
fx_graph_module=graph_module,
onnxfunction_dispatcher=self.options.onnxfunction_dispatcher,
)
# NOTE: Filter out the initializers with fake tensors when it's fake_mode exporting.
# Otherwise, the ONNX exporter will fail: RuntimeError: basic_string::_M_construct null
# not valid.
# Concrete data is expected to be filled for those initializers later during `ONNXProgram.save`.
if self.options.fake_context is not None:
initializers_with_real_tensors: dict[str, torch.Tensor] = {}
for (
initializer_name,
initializer,
) in onnxscript_graph.initializers.items():
if not isinstance(initializer, torch._subclasses.FakeTensor):
initializers_with_real_tensors[initializer_name] = initializer
onnxscript_graph.initializers = initializers_with_real_tensors
# Export TorchScript graph to ONNX ModelProto.
onnx_model = onnxscript_graph.to_model_proto(
self.options.onnx_registry.opset_version,
)
ir_model = ir.serde.deserialize_model(onnx_model)
try:
ir_model = onnxscript_apis.optimize(ir_model)
except Exception as e:
warnings.warn(
"ONNXScript optimizer failed. Skipping optimization. "
"\n\nPLEASE REPORT A BUG AT https://github.com/microsoft/onnxscript/issues "
f"\n\nDetail:\n{e}"
)
return _onnx_program.ONNXProgram(ir_model, None)
def _assert_fake_tensor_mode(self):
"""Asserts that the model and its input do not contain fake tensors."""
# Case 1: Model with fake inputs/weights and without enabling fake mode
has_any_fake_tensor = pytree.tree_any(
lambda x: isinstance(x, torch._subclasses.FakeTensor),
(self.model_args, self.model_kwargs),
)
has_any_fake_param_or_buffer = False
if isinstance(self.model, torch.nn.Module):
has_any_fake_param_or_buffer = pytree.tree_any(
lambda x: isinstance(x, torch._subclasses.FakeTensor),
(self.model.parameters(), self.model.buffers()),
)
if (
has_any_fake_tensor or has_any_fake_param_or_buffer
) and not self.options.fake_context:
raise RuntimeError(
"Cannot export a model with fake inputs/weights without enabling fake mode.",
)
# Case 2: Model with non fake inputs/weights and enabled fake mode
has_any_non_fake_tensors = pytree.tree_any(
lambda x: isinstance(x, torch.Tensor)
and not isinstance(x, torch._subclasses.FakeTensor),
(self.model_args, self.model_kwargs),
)
has_any_non_fake_param_or_buffer = False
if isinstance(self.model, torch.nn.Module):
has_any_non_fake_param_or_buffer = pytree.tree_any(
lambda x: isinstance(x, torch.Tensor)
and not isinstance(x, torch._subclasses.FakeTensor),
(self.model.parameters(), self.model.buffers()),
)
if (
has_any_non_fake_tensors or has_any_non_fake_param_or_buffer
) and self.options.fake_context:
raise RuntimeError(
"Cannot export a model with non fake inputs/weights and enabled fake mode.",
)
class UnsatisfiedDependencyError(RuntimeError):
"""Raised when an ONNX exporter dependency cannot be satisfied."""
def __init__(self, package_name: str, message: str):
super().__init__(message)
self.package_name = package_name
class InvalidExportOptionsError(RuntimeError):
"""Raised when user specified an invalid value for the :class:`ExportOptions`."""
def _assert_dependencies(export_options: ResolvedExportOptions):
opset_version = export_options.onnx_registry.opset_version
def missing_package(package_name: str, exc_info: logging._ExcInfoType):
message = (
f"Please install the `{package_name}` package "
f"(e.g. `python -m pip install {package_name}`)."
)
log.fatal(message, exc_info=exc_info)
return UnsatisfiedDependencyError(package_name, message)
def missing_opset(package_name: str):
message = (
f"The installed `{package_name}` does not support the specified ONNX opset "
f"version {opset_version}. Install a newer `{package_name}` package or "
f"specify an older opset version."
)
log.fatal(message)
return UnsatisfiedDependencyError(package_name, message)
try:
import onnx
except ImportError as e:
raise missing_package("onnx", e) from e
if onnx.defs.onnx_opset_version() < opset_version:
raise missing_opset("onnx")
try:
# PyTorch runs lintrunner in CI without onnxscript installed
import onnxscript # type: ignore[import]
except ImportError as e:
raise missing_package("onnxscript", e) from e
if not isinstance(
onnxscript.onnx_opset.all_opsets[("", opset_version)],
onnxscript.values.Opset,
):
raise missing_opset("onnxscript")
def dynamo_export(
model: torch.nn.Module | Callable,
/,
*model_args,
export_options: ExportOptions | None = None,
**model_kwargs,
) -> _onnx_program.ONNXProgram:
"""Export a torch.nn.Module to an ONNX graph.
.. deprecated:: 2.7
Please use ``torch.onnx.export(..., dynamo=True)`` instead.
Args:
model: The PyTorch model to be exported to ONNX.
model_args: Positional inputs to ``model``.
model_kwargs: Keyword inputs to ``model``.
export_options: Options to influence the export to ONNX.
Returns:
An in-memory representation of the exported ONNX model.
**Example 1 - Simplest export**
::
class MyModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(2, 2)
def forward(self, x, bias=None):
out = self.linear(x)
out = out + bias
return out
model = MyModel()
kwargs = {"bias": 3.0}
args = (torch.randn(2, 2, 2),)
onnx_program = torch.onnx.dynamo_export(model, *args, **kwargs).save(
"my_simple_model.onnx"
)
**Example 2 - Exporting with dynamic shapes**
::
# The previous model can be exported with dynamic shapes
export_options = torch.onnx.ExportOptions(dynamic_shapes=True)
onnx_program = torch.onnx.dynamo_export(
model, *args, **kwargs, export_options=export_options
)
onnx_program.save("my_dynamic_model.onnx")
By printing input dynamic dimensions we can see the input shape is no longer (2,2,2)
::
>>> print(onnx_program.model_proto.graph.input[0])
name: "arg0"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_param: "arg0_dim_0"
}
dim {
dim_param: "arg0_dim_1"
}
dim {
dim_param: "arg0_dim_2"
}
}
}
}
"""
if export_options is not None:
resolved_export_options = (
export_options
if isinstance(export_options, ResolvedExportOptions)
else ResolvedExportOptions(export_options, model=model)
)
else:
resolved_export_options = ResolvedExportOptions(ExportOptions(), model=model)
_assert_dependencies(resolved_export_options)
try:
from torch._dynamo import config as _dynamo_config
with _dynamo_config.patch(do_not_emit_runtime_asserts=True):
return Exporter(
options=resolved_export_options,
model=model,
model_args=model_args,
model_kwargs=model_kwargs,
).export()
except Exception as e:
sarif_report_path = _DEFAULT_FAILED_EXPORT_SARIF_LOG_PATH
resolved_export_options.diagnostic_context.dump(sarif_report_path)
message = (
f"Failed to export the model to ONNX. Generating SARIF report at '{sarif_report_path}'. "
"SARIF is a standard format for the output of static analysis tools. "
"SARIF logs can be loaded in VS Code SARIF viewer extension, "
"or SARIF web viewer (https://microsoft.github.io/sarif-web-component/). "
f"Please report a bug on PyTorch Github: {_PYTORCH_GITHUB_ISSUES_URL}"
)
raise errors.OnnxExporterError(message) from e
def common_pre_export_passes(
options: ResolvedExportOptions,
original_model: torch.nn.Module | Callable,
fx_module: torch.fx.GraphModule,
fx_module_args: Sequence[Any],
):
# TODO: Import here to prevent circular dependency
from torch.onnx._internal.fx import analysis, passes
diagnostic_context = options.diagnostic_context
# Apply decomposition table to the input graph.
module = passes.Decompose(
diagnostic_context,
fx_module,
options.decomposition_table,
enable_dynamic_axes=options.dynamic_shapes,
allow_fake_constant=options.fake_context is not None,
).run(*fx_module_args)
# ONNX does not support views and mutations.
# Functionalize to get a semantically equivalent graph without mutations.
module = passes.Functionalize(
diagnostic_context,
module,
enable_dynamic_axes=options.dynamic_shapes,
allow_fake_constant=options.fake_context is not None,
).run(*fx_module_args)
# Input mutations are detected and distilled after `Functionalize` pass.
# Remove them since ONNX inference does not need them.
module = passes.RemoveInputMutation(diagnostic_context, module).run(*fx_module_args)
# ONNX does not support concept of (implicit) type promotion.
# Insert type casts explicitly where needed.
module = passes.InsertTypePromotion(diagnostic_context, module).run()
analysis.UnsupportedFxNodesAnalysis(
diagnostic_context, module, options.onnxfunction_dispatcher
).analyze(infra.levels.ERROR)
if isinstance(original_model, torch.nn.Module):
module = passes.RestoreParameterAndBufferNames(
diagnostic_context, module, original_model
).run()
# This operation should be invoked as the last pre export pass.
# See [NOTE: Modularize pass ordering]
module = passes.Modularize(diagnostic_context, module).run()
# ONNX does not support None inputs. During graph building, all None inputs
# are removed. Here we register this step to input adapter.
options.fx_tracer.input_adapter.append_step(io_adapter.RemoveNoneInputStep())
# NOTE: temp workaround for https://github.com/pytorch/pytorch/issues/99534
# Dynamo doesn't support non-tensor inputs.
options.fx_tracer.input_adapter.append_step(io_adapter.RemoveNonTensorInputStep())
# ONNX does not support complex inputs. During graph building, all complex inputs
# are converted to real representation inputs. Here we register this step to
# input/output adapter.
options.fx_tracer.input_adapter.append_step(
io_adapter.ConvertComplexToRealRepresentationInputStep()
)
# ONNX can't represent collection types (e.g., dictionary, tuple of tuple of
# tensor, etc), we flatten the collection and register each element as output.
options.fx_tracer.output_adapter.append_step(io_adapter.FlattenOutputStep())
# Output post-processing steps should happen after `FlattenOutputStep`.
options.fx_tracer.output_adapter.append_step(
io_adapter.ConvertComplexToRealRepresentationOutputStep()
)
return module
```
|
============================================================================================================================
SOURCE CODE FILE: _lazy_import.py
LINES: 1
SIZE: 1.20 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\onnx\_internal\_lazy_import.py
ENCODING: utf-8
```py
"""Utility to lazily import modules."""
from __future__ import annotations
import importlib
from typing import Any, TYPE_CHECKING
class _LazyModule:
"""Lazily import a module."""
def __init__(self, module_name: str) -> None:
self._name = module_name
self._module: Any = None
def __repr__(self) -> str:
return f"<lazy module '{self._name}'>"
def __getattr__(self, attr: str) -> object:
if self._module is None:
self._module = importlib.import_module(".", self._name)
return getattr(self._module, attr)
# Import the following modules during type checking to enable code intelligence features,
# such as auto-completion in tools like pylance, even when these modules are not explicitly
# imported in user code.
# NOTE: Add additional used imports here.
if TYPE_CHECKING:
import onnx
import onnxscript
import onnxscript._framework_apis.torch_2_7 as onnxscript_apis
onnxscript_ir = onnxscript.ir
else:
onnx = _LazyModule("onnx")
onnxscript = _LazyModule("onnxscript")
onnxscript_ir = _LazyModule("onnxscript.ir")
onnxscript_apis = _LazyModule("onnxscript._framework_apis.torch_2_7")
```
|
====================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.45 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\onnx\_internal\diagnostics\__init__.py
ENCODING: utf-8
```py
from ._diagnostic import (
create_export_diagnostic_context,
diagnose,
engine,
export_context,
ExportDiagnosticEngine,
TorchScriptOnnxExportDiagnostic,
)
from ._rules import rules
from .infra import levels
__all__ = [
"TorchScriptOnnxExportDiagnostic",
"ExportDiagnosticEngine",
"rules",
"levels",
"engine",
"export_context",
"create_export_diagnostic_context",
"diagnose",
]
```
|
=======================================================================================================================================
SOURCE CODE FILE: _diagnostic.py
LINES: 2
SIZE: 7.02 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\onnx\_internal\diagnostics\_diagnostic.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
"""Diagnostic components for TorchScript based ONNX export, i.e. `torch.onnx.export`."""
from __future__ import annotations
import contextlib
import gzip
from typing import TYPE_CHECKING
import torch
from torch.onnx._internal.diagnostics import infra
from torch.onnx._internal.diagnostics.infra import formatter, sarif
from torch.onnx._internal.diagnostics.infra.sarif import version as sarif_version
from torch.utils import cpp_backtrace
if TYPE_CHECKING:
from collections.abc import Generator
def _cpp_call_stack(frames_to_skip: int = 0, frames_to_log: int = 32) -> infra.Stack:
"""Returns the current C++ call stack.
This function utilizes `torch.utils.cpp_backtrace` to get the current C++ call stack.
The returned C++ call stack is a concatenated string of the C++ call stack frames.
Each frame is separated by a newline character, in the same format of
r"frame #[0-9]+: (?P<frame_info>.*)". More info at `c10/util/Backtrace.cpp`.
"""
frames = cpp_backtrace.get_cpp_backtrace(frames_to_skip, frames_to_log).split("\n")
frame_messages = []
for frame in frames:
segments = frame.split(":", 1)
if len(segments) == 2:
frame_messages.append(segments[1].strip())
else:
frame_messages.append("<unknown frame>")
return infra.Stack(
frames=[
infra.StackFrame(location=infra.Location(message=message))
for message in frame_messages
]
)
class TorchScriptOnnxExportDiagnostic(infra.Diagnostic):
"""Base class for all export diagnostics.
This class is used to represent all export diagnostics. It is a subclass of
infra.Diagnostic, and adds additional methods to add more information to the
diagnostic.
"""
python_call_stack: infra.Stack | None = None
cpp_call_stack: infra.Stack | None = None
def __init__(
self,
*args,
frames_to_skip: int = 1,
cpp_stack: bool = False,
**kwargs,
) -> None:
super().__init__(*args, **kwargs)
self.python_call_stack = self.record_python_call_stack(
frames_to_skip=frames_to_skip
)
if cpp_stack:
self.cpp_call_stack = self.record_cpp_call_stack(
frames_to_skip=frames_to_skip
)
def record_cpp_call_stack(self, frames_to_skip: int) -> infra.Stack:
"""Records the current C++ call stack in the diagnostic."""
stack = _cpp_call_stack(frames_to_skip=frames_to_skip)
stack.message = "C++ call stack"
self.with_stack(stack)
return stack
class ExportDiagnosticEngine:
"""PyTorch ONNX Export diagnostic engine.
The only purpose of creating this class instead of using `DiagnosticContext` directly
is to provide a background context for `diagnose` calls inside exporter.
By design, one `torch.onnx.export` call should initialize one diagnostic context.
All `diagnose` calls inside exporter should be made in the context of that export.
However, since diagnostic context is currently being accessed via a global variable,
there is no guarantee that the context is properly initialized. Therefore, we need
to provide a default background context to fallback to, otherwise any invocation of
exporter internals, e.g. unit tests, will fail due to missing diagnostic context.
This can be removed once the pipeline for context to flow through the exporter is
established.
"""
contexts: list[infra.DiagnosticContext]
_background_context: infra.DiagnosticContext
def __init__(self) -> None:
self.contexts = []
self._background_context = infra.DiagnosticContext(
name="torch.onnx",
version=torch.__version__,
)
@property
def background_context(self) -> infra.DiagnosticContext:
return self._background_context
def create_diagnostic_context(
self,
name: str,
version: str,
options: infra.DiagnosticOptions | None = None,
) -> infra.DiagnosticContext:
"""Creates a new diagnostic context.
Args:
name: The subject name for the diagnostic context.
version: The subject version for the diagnostic context.
options: The options for the diagnostic context.
Returns:
A new diagnostic context.
"""
if options is None:
options = infra.DiagnosticOptions()
context: infra.DiagnosticContext[infra.Diagnostic] = infra.DiagnosticContext(
name, version, options
)
self.contexts.append(context)
return context
def clear(self):
"""Clears all diagnostic contexts."""
self.contexts.clear()
self._background_context.diagnostics.clear()
def to_json(self) -> str:
return formatter.sarif_to_json(self.sarif_log())
def dump(self, file_path: str, compress: bool = False) -> None:
"""Dumps the SARIF log to a file."""
if compress:
with gzip.open(file_path, "wt") as f:
f.write(self.to_json())
else:
with open(file_path, "w") as f:
f.write(self.to_json())
def sarif_log(self):
log = sarif.SarifLog(
version=sarif_version.SARIF_VERSION,
schema_uri=sarif_version.SARIF_SCHEMA_LINK,
runs=[context.sarif() for context in self.contexts],
)
log.runs.append(self._background_context.sarif())
return log
engine = ExportDiagnosticEngine()
_context = engine.background_context
@contextlib.contextmanager
def create_export_diagnostic_context() -> Generator[
infra.DiagnosticContext, None, None
]:
"""Create a diagnostic context for export.
This is a workaround for code robustness since diagnostic context is accessed by
export internals via global variable. See `ExportDiagnosticEngine` for more details.
"""
global _context
assert _context == engine.background_context, (
"Export context is already set. Nested export is not supported."
)
_context = engine.create_diagnostic_context(
"torch.onnx.export",
torch.__version__,
)
try:
yield _context
finally:
_context = engine.background_context
def diagnose(
rule: infra.Rule,
level: infra.Level,
message: str | None = None,
frames_to_skip: int = 2,
**kwargs,
) -> TorchScriptOnnxExportDiagnostic:
"""Creates a diagnostic and record it in the global diagnostic context.
This is a wrapper around `context.log` that uses the global diagnostic
context.
"""
diagnostic = TorchScriptOnnxExportDiagnostic(
rule, level, message, frames_to_skip=frames_to_skip, **kwargs
)
export_context().log(diagnostic)
return diagnostic
def export_context() -> infra.DiagnosticContext:
global _context
return _context
```
|
==================================================================================================================================
SOURCE CODE FILE: _rules.py
LINES: 155
SIZE: 36.93 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\onnx\_internal\diagnostics\_rules.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
"""
GENERATED CODE - DO NOT EDIT DIRECTLY
This file is generated by gen_diagnostics.py.
See tools/onnx/gen_diagnostics.py for more information.
Diagnostic rules for PyTorch ONNX export.
"""
import dataclasses
from typing import Tuple
# flake8: noqa
from torch.onnx._internal.diagnostics import infra
"""
GENERATED CODE - DO NOT EDIT DIRECTLY
The purpose of generating a class for each rule is to override the `format_message`
method to provide more details in the signature about the format arguments.
"""
class _NodeMissingOnnxShapeInference(infra.Rule):
"""Node is missing ONNX shape inference."""
def format_message(self, op_name) -> str: # type: ignore[override]
"""Returns the formatted default message of this Rule.
Message template: 'The shape inference of {op_name} type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.'
"""
return self.message_default_template.format(op_name=op_name)
def format( # type: ignore[override]
self, level: infra.Level, op_name
) -> Tuple[infra.Rule, infra.Level, str]:
"""Returns a tuple of (Rule, Level, message) for this Rule.
Message template: 'The shape inference of {op_name} type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function.'
"""
return self, level, self.format_message(op_name=op_name)
class _MissingCustomSymbolicFunction(infra.Rule):
"""Missing symbolic function for custom PyTorch operator, cannot translate node to ONNX."""
def format_message(self, op_name) -> str: # type: ignore[override]
"""Returns the formatted default message of this Rule.
Message template: 'ONNX export failed on an operator with unrecognized namespace {op_name}. If you are trying to export a custom operator, make sure you registered it with the right domain and version.'
"""
return self.message_default_template.format(op_name=op_name)
def format( # type: ignore[override]
self, level: infra.Level, op_name
) -> Tuple[infra.Rule, infra.Level, str]:
"""Returns a tuple of (Rule, Level, message) for this Rule.
Message template: 'ONNX export failed on an operator with unrecognized namespace {op_name}. If you are trying to export a custom operator, make sure you registered it with the right domain and version.'
"""
return self, level, self.format_message(op_name=op_name)
class _MissingStandardSymbolicFunction(infra.Rule):
"""Missing symbolic function for standard PyTorch operator, cannot translate node to ONNX."""
def format_message( # type: ignore[override]
self, op_name, opset_version, issue_url
) -> str:
"""Returns the formatted default message of this Rule.
Message template: "Exporting the operator '{op_name}' to ONNX opset version {opset_version} is not supported. Please feel free to request support or submit a pull request on PyTorch GitHub: {issue_url}."
"""
return self.message_default_template.format(
op_name=op_name, opset_version=opset_version, issue_url=issue_url
)
def format( # type: ignore[override]
self, level: infra.Level, op_name, opset_version, issue_url
) -> Tuple[infra.Rule, infra.Level, str]:
"""Returns a tuple of (Rule, Level, message) for this Rule.
Message template: "Exporting the operator '{op_name}' to ONNX opset version {opset_version} is not supported. Please feel free to request support or submit a pull request on PyTorch GitHub: {issue_url}."
"""
return (
self,
level,
self.format_message(
op_name=op_name, opset_version=opset_version, issue_url=issue_url
),
)
class _OperatorSupportedInNewerOpsetVersion(infra.Rule):
"""Operator is supported in newer opset version."""
def format_message( # type: ignore[override]
self, op_name, opset_version, supported_opset_version
) -> str:
"""Returns the formatted default message of this Rule.
Message template: "Exporting the operator '{op_name}' to ONNX opset version {opset_version} is not supported. Support for this operator was added in version {supported_opset_version}, try exporting with this version."
"""
return self.message_default_template.format(
op_name=op_name,
opset_version=opset_version,
supported_opset_version=supported_opset_version,
)
def format( # type: ignore[override]
self, level: infra.Level, op_name, opset_version, supported_opset_version
) -> Tuple[infra.Rule, infra.Level, str]:
"""Returns a tuple of (Rule, Level, message) for this Rule.
Message template: "Exporting the operator '{op_name}' to ONNX opset version {opset_version} is not supported. Support for this operator was added in version {supported_opset_version}, try exporting with this version."
"""
return (
self,
level,
self.format_message(
op_name=op_name,
opset_version=opset_version,
supported_opset_version=supported_opset_version,
),
)
class _FxGraphToOnnx(infra.Rule):
"""Transforms graph from FX IR to ONNX IR."""
def format_message(self, graph_name) -> str: # type: ignore[override]
"""Returns the formatted default message of this Rule.
Message template: 'Transforming FX graph {graph_name} to ONNX graph.'
"""
return self.message_default_template.format(graph_name=graph_name)
def format( # type: ignore[override]
self, level: infra.Level, graph_name
) -> Tuple[infra.Rule, infra.Level, str]:
"""Returns a tuple of (Rule, Level, message) for this Rule.
Message template: 'Transforming FX graph {graph_name} to ONNX graph.'
"""
return self, level, self.format_message(graph_name=graph_name)
class _FxNodeToOnnx(infra.Rule):
"""Transforms an FX node to an ONNX node."""
def format_message(self, node_repr) -> str: # type: ignore[override]
"""Returns the formatted default message of this Rule.
Message template: 'Transforming FX node {node_repr} to ONNX node.'
"""
return self.message_default_template.format(node_repr=node_repr)
def format( # type: ignore[override]
self, level: infra.Level, node_repr
) -> Tuple[infra.Rule, infra.Level, str]:
"""Returns a tuple of (Rule, Level, message) for this Rule.
Message template: 'Transforming FX node {node_repr} to ONNX node.'
"""
return self, level, self.format_message(node_repr=node_repr)
class _FxPass(infra.Rule):
"""FX graph transformation during ONNX export before converting from FX IR to ONNX IR."""
def format_message(self, pass_name) -> str: # type: ignore[override]
"""Returns the formatted default message of this Rule.
Message template: 'Running {pass_name} pass.'
"""
return self.message_default_template.format(pass_name=pass_name)
def format( # type: ignore[override]
self, level: infra.Level, pass_name
) -> Tuple[infra.Rule, infra.Level, str]:
"""Returns a tuple of (Rule, Level, message) for this Rule.
Message template: 'Running {pass_name} pass.'
"""
return self, level, self.format_message(pass_name=pass_name)
class _NoSymbolicFunctionForCallFunction(infra.Rule):
"""Cannot find symbolic function to convert the "call_function" FX node to ONNX."""
def format_message(self, target) -> str: # type: ignore[override]
"""Returns the formatted default message of this Rule.
Message template: 'No symbolic function to convert the "call_function" node {target} to ONNX. '
"""
return self.message_default_template.format(target=target)
def format( # type: ignore[override]
self, level: infra.Level, target
) -> Tuple[infra.Rule, infra.Level, str]:
"""Returns a tuple of (Rule, Level, message) for this Rule.
Message template: 'No symbolic function to convert the "call_function" node {target} to ONNX. '
"""
return self, level, self.format_message(target=target)
class _UnsupportedFxNodeAnalysis(infra.Rule):
"""Result from FX graph analysis to reveal unsupported FX nodes."""
def format_message( # type: ignore[override]
self, node_op_to_target_mapping
) -> str:
"""Returns the formatted default message of this Rule.
Message template: 'Unsupported FX nodes: {node_op_to_target_mapping}. '
"""
return self.message_default_template.format(
node_op_to_target_mapping=node_op_to_target_mapping
)
def format( # type: ignore[override]
self, level: infra.Level, node_op_to_target_mapping
) -> Tuple[infra.Rule, infra.Level, str]:
"""Returns a tuple of (Rule, Level, message) for this Rule.
Message template: 'Unsupported FX nodes: {node_op_to_target_mapping}. '
"""
return (
self,
level,
self.format_message(node_op_to_target_mapping=node_op_to_target_mapping),
)
class _OpLevelDebugging(infra.Rule):
"""Report any op level validation failure in warnings."""
def format_message(self, node, symbolic_fn) -> str: # type: ignore[override]
"""Returns the formatted default message of this Rule.
Message template: 'FX node: {node} and its onnx function: {symbolic_fn} fails on op level validation.'
"""
return self.message_default_template.format(node=node, symbolic_fn=symbolic_fn)
def format( # type: ignore[override]
self, level: infra.Level, node, symbolic_fn
) -> Tuple[infra.Rule, infra.Level, str]:
"""Returns a tuple of (Rule, Level, message) for this Rule.
Message template: 'FX node: {node} and its onnx function: {symbolic_fn} fails on op level validation.'
"""
return self, level, self.format_message(node=node, symbolic_fn=symbolic_fn)
class _FindOpschemaMatchedSymbolicFunction(infra.Rule):
"""Find the OnnxFunction that matches the input/attribute dtypes by comparing them with their opschemas."""
def format_message(self, symbolic_fn, node) -> str: # type: ignore[override]
"""Returns the formatted default message of this Rule.
Message template: 'The OnnxFunction: {symbolic_fn} is the nearest match of the node {node}.'
"""
return self.message_default_template.format(symbolic_fn=symbolic_fn, node=node)
def format( # type: ignore[override]
self, level: infra.Level, symbolic_fn, node
) -> Tuple[infra.Rule, infra.Level, str]:
"""Returns a tuple of (Rule, Level, message) for this Rule.
Message template: 'The OnnxFunction: {symbolic_fn} is the nearest match of the node {node}.'
"""
return self, level, self.format_message(symbolic_fn=symbolic_fn, node=node)
class _FxNodeInsertTypePromotion(infra.Rule):
"""Determine if type promotion is required for the FX node. Insert cast nodes if needed."""
def format_message(self, target) -> str: # type: ignore[override]
"""Returns the formatted default message of this Rule.
Message template: 'Performing explicit type promotion for node {target}. '
"""
return self.message_default_template.format(target=target)
def format( # type: ignore[override]
self, level: infra.Level, target
) -> Tuple[infra.Rule, infra.Level, str]:
"""Returns a tuple of (Rule, Level, message) for this Rule.
Message template: 'Performing explicit type promotion for node {target}. '
"""
return self, level, self.format_message(target=target)
class _FindOperatorOverloadsInOnnxRegistry(infra.Rule):
"""Find the list of OnnxFunction of the PyTorch operator in onnx registry."""
def format_message(self, node) -> str: # type: ignore[override]
"""Returns the formatted default message of this Rule.
Message template: 'Checking if the FX node: {node} is supported in onnx registry.'
"""
return self.message_default_template.format(node=node)
def format( # type: ignore[override]
self, level: infra.Level, node
) -> Tuple[infra.Rule, infra.Level, str]:
"""Returns a tuple of (Rule, Level, message) for this Rule.
Message template: 'Checking if the FX node: {node} is supported in onnx registry.'
"""
return self, level, self.format_message(node=node)
@dataclasses.dataclass
class _POERules(infra.RuleCollection):
node_missing_onnx_shape_inference: _NodeMissingOnnxShapeInference = dataclasses.field(
default=_NodeMissingOnnxShapeInference.from_sarif(
**{
"id": "POE0001",
"name": "node-missing-onnx-shape-inference",
"short_description": {"text": "Node is missing ONNX shape inference."},
"full_description": {
"text": "Node is missing ONNX shape inference. This usually happens when the node is not valid under standard ONNX operator spec.",
"markdown": "Node is missing ONNX shape inference.\nThis usually happens when the node is not valid under standard ONNX operator spec.\n",
},
"message_strings": {
"default": {
"text": "The shape inference of {op_name} type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function."
}
},
"help_uri": None,
"properties": {"deprecated": False, "tags": []},
}
),
init=False,
)
"""Node is missing ONNX shape inference."""
missing_custom_symbolic_function: _MissingCustomSymbolicFunction = dataclasses.field(
default=_MissingCustomSymbolicFunction.from_sarif(
**{
"id": "POE0002",
"name": "missing-custom-symbolic-function",
"short_description": {
"text": "Missing symbolic function for custom PyTorch operator, cannot translate node to ONNX."
},
"full_description": {
"text": "Missing symbolic function for custom PyTorch operator, cannot translate node to ONNX.",
"markdown": "Missing symbolic function for custom PyTorch operator, cannot translate node to ONNX.\n",
},
"message_strings": {
"default": {
"text": "ONNX export failed on an operator with unrecognized namespace {op_name}. If you are trying to export a custom operator, make sure you registered it with the right domain and version."
}
},
"help_uri": None,
"properties": {"deprecated": False, "tags": []},
}
),
init=False,
)
"""Missing symbolic function for custom PyTorch operator, cannot translate node to ONNX."""
missing_standard_symbolic_function: _MissingStandardSymbolicFunction = dataclasses.field(
default=_MissingStandardSymbolicFunction.from_sarif(
**{
"id": "POE0003",
"name": "missing-standard-symbolic-function",
"short_description": {
"text": "Missing symbolic function for standard PyTorch operator, cannot translate node to ONNX."
},
"full_description": {
"text": "Missing symbolic function for standard PyTorch operator, cannot translate node to ONNX.",
"markdown": "Missing symbolic function for standard PyTorch operator, cannot translate node to ONNX.\n",
},
"message_strings": {
"default": {
"text": "Exporting the operator '{op_name}' to ONNX opset version {opset_version} is not supported. Please feel free to request support or submit a pull request on PyTorch GitHub: {issue_url}."
}
},
"help_uri": None,
"properties": {"deprecated": False, "tags": []},
}
),
init=False,
)
"""Missing symbolic function for standard PyTorch operator, cannot translate node to ONNX."""
operator_supported_in_newer_opset_version: _OperatorSupportedInNewerOpsetVersion = dataclasses.field(
default=_OperatorSupportedInNewerOpsetVersion.from_sarif(
**{
"id": "POE0004",
"name": "operator-supported-in-newer-opset-version",
"short_description": {
"text": "Operator is supported in newer opset version."
},
"full_description": {
"text": "Operator is supported in newer opset version.",
"markdown": "Operator is supported in newer opset version.\n\nExample:\n```python\ntorch.onnx.export(model, args, ..., opset_version=9)\n```\n",
},
"message_strings": {
"default": {
"text": "Exporting the operator '{op_name}' to ONNX opset version {opset_version} is not supported. Support for this operator was added in version {supported_opset_version}, try exporting with this version."
}
},
"help_uri": None,
"properties": {"deprecated": False, "tags": []},
}
),
init=False,
)
"""Operator is supported in newer opset version."""
fx_graph_to_onnx: _FxGraphToOnnx = dataclasses.field(
default=_FxGraphToOnnx.from_sarif(
**{
"id": "FXE0007",
"name": "fx-graph-to-onnx",
"short_description": {
"text": "Transforms graph from FX IR to ONNX IR."
},
"full_description": {
"text": "Transforms graph from FX IR to ONNX IR.",
"markdown": "This diagnostic tracks the transformation process from an FX Graph (in FX IR) to an ONNX Graph (in ONNX IR).\n\n## Key Representations:\n\n- **FX Graph**: The graph in FX IR produced by dynamo or symbolic tracing.\n- **ONNX Graph**: The graph in ONNX IR and [operators](https://onnx.ai/onnx/operators/).\n\n## Additional Notes:\n\n- Prior to this transformation step, the FX graph undergoes preprocessing through multiple FX passes.\n To gain insight into these transformations, refer to diagnostic `FXE0010`.\n- To enable a detailed view of the graph transformation in progress within this diagnostic, switch to the DEBUG mode.\n\n - Set DiagnosticOptions.verbosity_level to logging.DEBUG.\n - Activate the environment variable TORCH_LOGS='onnx_diagnostics'.\n\n- For specific information related to node-level FX to ONNX transformations, explore the diagnostic `FXE0008`.\n",
},
"message_strings": {
"default": {
"text": "Transforming FX graph {graph_name} to ONNX graph."
}
},
"help_uri": None,
"properties": {"deprecated": False, "tags": []},
}
),
init=False,
)
"""Transforms graph from FX IR to ONNX IR."""
fx_node_to_onnx: _FxNodeToOnnx = dataclasses.field(
default=_FxNodeToOnnx.from_sarif(
**{
"id": "FXE0008",
"name": "fx-node-to-onnx",
"short_description": {"text": "Transforms an FX node to an ONNX node."},
"full_description": {
"text": "Transforms an FX node to an ONNX node.",
"markdown": "This diagnostic tracks the transformation process from an FX Node to ONNX [Operators](https://onnx.ai/onnx/operators/).\n\nThe process of converting FX Node to ONNX Node involves dealing with six distinct node types:\n 1. `placeholder`: Represents a module input, maps to an ONNX graph input.\n 2. `call_module`: Symbolizes a call to a submodule, maps to an ONNX\n 3. `call_method`: Symbolizes a method call. Not yet implemented.\n 4. `call_function`: Symbolizes a function call. [Core ATen](https://pytorch.org/docs/stable/ir.html#core-aten-ir) is expected\n as the function call target. The mapping from ATen to ONNX is implemented by [ONNXScript torchlib](https://github.com/microsoft/onnxscript/tree/main/onnxscript/function_libs/torch_lib/ops).\n This [guide](https://pytorch.org/docs/stable/onnx.html#onnx-script-functions) shows how to write and register a custom symbolic function for call_function FX node.\n 5. `get_attr`: Indicates an attribute access within the current module. Maps to an ONNX graph initializer.\n 6. `output`: Represents the module's output. Maps to an ONNX graph output.\n\nFor a granular understanding of how each node type is transformed, refer to the implementation details in `FxOnnxInterpreter`.\n",
},
"message_strings": {
"default": {
"text": "Transforming FX node {node_repr} to ONNX node."
}
},
"help_uri": None,
"properties": {"deprecated": False, "tags": []},
}
),
init=False,
)
"""Transforms an FX node to an ONNX node."""
fx_pass: _FxPass = dataclasses.field(
default=_FxPass.from_sarif(
**{
"id": "FXE0010",
"name": "fx-pass",
"short_description": {
"text": "FX graph transformation during ONNX export before converting from FX IR to ONNX IR."
},
"full_description": {
"text": "FX graph transformation during ONNX export before converting from FX IR to ONNX IR.",
"markdown": "This diagnostic tracks the FX passes executed during the ONNX export process prior\nto converting from FX IR (Intermediate Representation) to ONNX IR.\n\nUnder the scope of ONNX export, an FX pass refers to a specific transformation applied to the FX GraphModule.\nThe primary aim of these passes is to streamline the graph into a format that aligns more with the ONNX IR.\nMoreover, these passes work to substitute unsupported FX IR features with those recognized and endorsed by\nONNX IR. Common transformations include, but aren't limited to, decomposition, functionalization and\ntype promotion.\n\nFor those who are interested in a comprehensive log detailing the modifications made during these passes,\nthere are a couple of options:\n\n- Set DiagnosticOptions.verbosity_level to logging.DEBUG.\n- Activate the environment variable TORCH_LOGS='onnx_diagnostics'.\n\nHowever, it's noteworthy that by default, such detailed logging is turned off. The primary reason being\nits considerable impact on performance.\n\nFor an in-depth understanding of each specific pass, please refer to the directory: torch/onnx/_internal/fx/passes.\n",
},
"message_strings": {"default": {"text": "Running {pass_name} pass."}},
"help_uri": None,
"properties": {"deprecated": False, "tags": []},
}
),
init=False,
)
"""FX graph transformation during ONNX export before converting from FX IR to ONNX IR."""
no_symbolic_function_for_call_function: _NoSymbolicFunctionForCallFunction = dataclasses.field(
default=_NoSymbolicFunctionForCallFunction.from_sarif(
**{
"id": "FXE0011",
"name": "no-symbolic-function-for-call-function",
"short_description": {
"text": 'Cannot find symbolic function to convert the "call_function" FX node to ONNX.'
},
"full_description": {
"text": 'Cannot find symbolic function to convert the "call_function" FX node to ONNX. ',
"markdown": 'This error occurs when the ONNX converter is unable to find a corresponding symbolic function\nto convert a "call_function" node in the input graph to its equivalence in ONNX. The "call_function"\nnode represents a normalized function call in PyTorch, such as "torch.aten.ops.add".\n\nTo resolve this error, you can try one of the following:\n\n- If exists, apply the auto-fix suggested by the diagnostic. TODO: this part is not available yet.\n- Rewrite the model using only supported PyTorch operators or functions.\n- Follow this [guide](https://pytorch.org/tutorials/beginner/onnx/onnx_registry_tutorial.html#overview) to write and\n register a custom symbolic function for the unsupported call_function FX node.\n',
},
"message_strings": {
"default": {
"text": 'No symbolic function to convert the "call_function" node {target} to ONNX. '
}
},
"help_uri": None,
"properties": {"deprecated": False, "tags": []},
}
),
init=False,
)
"""Cannot find symbolic function to convert the "call_function" FX node to ONNX."""
unsupported_fx_node_analysis: _UnsupportedFxNodeAnalysis = dataclasses.field(
default=_UnsupportedFxNodeAnalysis.from_sarif(
**{
"id": "FXE0012",
"name": "unsupported-fx-node-analysis",
"short_description": {
"text": "Result from FX graph analysis to reveal unsupported FX nodes."
},
"full_description": {
"text": "Result from FX graph analysis to reveal unsupported FX nodes.",
"markdown": "This error indicates that an FX graph contains one or more unsupported nodes. The error message\nis typically accompanied by a list of the unsupported nodes found during analysis.\n\nTo resolve this error, you can try resolving each individual unsupported node error by following\nthe suggestions by its diagnostic. Typically, options include:\n\n- If exists, apply the auto-fix suggested by the diagnostic. TODO: this part is not available yet.\n- Rewrite the model using only supported PyTorch operators or functions.\n- Follow this [guide](https://pytorch.org/docs/stable/onnx.html#onnx-script-functions) to write and\n register a custom symbolic function for the unsupported call_function FX node.\n",
},
"message_strings": {
"default": {
"text": "Unsupported FX nodes: {node_op_to_target_mapping}. "
}
},
"help_uri": None,
"properties": {"deprecated": False, "tags": []},
}
),
init=False,
)
"""Result from FX graph analysis to reveal unsupported FX nodes."""
op_level_debugging: _OpLevelDebugging = dataclasses.field(
default=_OpLevelDebugging.from_sarif(
**{
"id": "FXE0013",
"name": "op-level-debugging",
"short_description": {
"text": "Report any op level validation failure in warnings."
},
"full_description": {
"text": "Report any op level validation failure in warnings.",
"markdown": "This warning message indicates that during op level debugging, certain symbolic functions\nhave failed to match the results of torch ops when using real tensors generated from fake\ntensors. It is important to note that the symbolic functions may not necessarily be\nincorrect, as the validation process is non-deterministic and should only be used as a\nreference.\n\nThere are two categories of warnings that can be triggered:\n\n1. Non-validated operators:\n If the warnings are caused by the following errors, they can be disregarded by users,\n as these errors occur due to the non-deterministic nature of the validation. However,\n it is important to be aware that the operators have not been validated.\n\n - IndexError: Unsupported input arguments of randomized dimensions/indices(INT64).\n - RuntimeError: Unsupported input arguments for torch ops are generated.\n - ValueError: Arguments/keyword arguments do not match the signature of the symbolic function.\n\n2. Potentially wrong torchlib operators:\n If the warnings are triggered by the following error, users should be aware that the symbolic functions\n may be incorrect in dispatching or implementation. In such cases, it is recommended to report\n the issue to the PyTorch-ONNX team, or create/register a custom symbolic function to replace the default one.\n\n - AssertionError: The symbolic function is potentially wrong as the results do not match the results of torch ops.\n - TypeError: The symbolic function is potentially wrong as the opschema doesn't match inputs.\n",
},
"message_strings": {
"default": {
"text": "FX node: {node} and its onnx function: {symbolic_fn} fails on op level validation."
}
},
"help_uri": None,
"properties": {"deprecated": False, "tags": []},
}
),
init=False,
)
"""Report any op level validation failure in warnings."""
find_opschema_matched_symbolic_function: _FindOpschemaMatchedSymbolicFunction = dataclasses.field(
default=_FindOpschemaMatchedSymbolicFunction.from_sarif(
**{
"id": "FXE0014",
"name": "find-opschema-matched-symbolic-function",
"short_description": {
"text": "Find the OnnxFunction that matches the input/attribute dtypes by comparing them with their opschemas."
},
"full_description": {
"text": "Find the OnnxFunction that matches the input dtypes by comparing them with their opschemas. A warning will be issued if the matched OnnxFunction is not an exact match.",
"markdown": "When an ATen/Custom operator is registered and needs to be dispatched to an OnnxFunction, the input/attribute\ndtypes of the ATen/Custom operator are compared with the input/attribute dtypes of the OnnxFunction opschemas\nto find a match. However, if a perfect/exact match is not found, the dispatcher will attempt to find\nthe nearest match with the highest number of input/attribute dtypes matching the OnnxFunction opschemas, while\nissuing a warning.\n\nThere are two types of level that can be triggered in this rule:\n\n1. NOTE: A perfect match is found, and no warning is issued.\n2. WARNING: The matched OnnxFunction is not a perfect/exact match.\n\nHere are some suggestions based on the WARNING situation:\n\n1. If there are NO errors or mismatches in the results, it is safe to disregard this warning,\n as the definition of OnnxFunction schema is usually more stringent.\n2. If there are errors or mismatches in the results, it is recommended to:\n (a) Enable op_level_debugging to determine if the OnnxFunction might be incorrect.\n (b) Report the issue to the PyTorch-ONNX team.\n (c) Create/register a custom symbolic function to replace the default one.\n",
},
"message_strings": {
"default": {
"text": "The OnnxFunction: {symbolic_fn} is the nearest match of the node {node}."
}
},
"help_uri": None,
"properties": {"deprecated": False, "tags": []},
}
),
init=False,
)
"""Find the OnnxFunction that matches the input/attribute dtypes by comparing them with their opschemas."""
fx_node_insert_type_promotion: _FxNodeInsertTypePromotion = dataclasses.field(
default=_FxNodeInsertTypePromotion.from_sarif(
**{
"id": "FXE0015",
"name": "fx-node-insert-type-promotion",
"short_description": {
"text": "Determine if type promotion is required for the FX node. Insert cast nodes if needed."
},
"full_description": {
"text": "Determine if type promotion is required for the FX node. Insert cast nodes if needed.",
"markdown": "This diagnostic monitors the node-level type promotion insertion process. In PyTorch, there is an automatic process called implicit type promotion,\nwhere the input types of an operator are promoted to a common type. The determination of the common type is based on the type promotion rule specific to each operator.\nTo learn more about PyTorch's type promotion rules, refer to the [elementwise_dtypes doc](https://github.com/pytorch/pytorch/blob/f044613f78df713fb57f70c608483c9f10ad332e/torch/_prims_common/__init__.py#L1252-L1335)\nand [torch._refs ops](https://github.com/pytorch/pytorch/blob/a475ea4542dfe961c9d097e33ab5041f61c8c17f/torch/_refs/__init__.py#L484).\n\nHowever, implicit type promotion is not supported in ONNX. Therefore, to replicate the PyTorch behavior, we need to explicitly insert cast nodes.\nThis diagnostic tracks the process of node-level type promotion insertion.\n\nThe type promotion rules used by this process can be found in `torch/onnx/_internal/fx/passes/type_promotion.py.`\nTo update or add new type promotion rules, please refer to the [Note: Update type promotion rule] section.\n",
},
"message_strings": {
"default": {
"text": "Performing explicit type promotion for node {target}. "
}
},
"help_uri": None,
"properties": {"deprecated": False, "tags": []},
}
),
init=False,
)
"""Determine if type promotion is required for the FX node. Insert cast nodes if needed."""
find_operator_overloads_in_onnx_registry: _FindOperatorOverloadsInOnnxRegistry = dataclasses.field(
default=_FindOperatorOverloadsInOnnxRegistry.from_sarif(
**{
"id": "FXE0016",
"name": "find-operator-overloads-in-onnx-registry",
"short_description": {
"text": "Find the list of OnnxFunction of the PyTorch operator in onnx registry."
},
"full_description": {
"text": "This rule involves finding the list of OnnxFunction for the PyTorch operator overload in the ONNX registry. If the operator overload is not supported but its default overload is, a warning will be issued. If both the operator overload and its default overload are not supported, an error will be issued.",
"markdown": "The operator overload name serves the purpose of verifying whether a PyTorch operator is registered in the ONNX registry.\nIf it's not found, the dispatcher takes a fallback approach and tries to locate the default overload of the PyTorch\noperator in the registry. If even the default overload is absent, it signifies that the operator is officially unsupported.\n\nThere are three types of level that can be triggered in this rule:\n\n1. NOTE: The op overload is supported.\n2. WARNING: The op overload is not supported, but it's default overload is supported.\n3. ERROR: The op overload is not supported, and it's default overload is also not supported.\n\nHere are some suggestions based on the WARNING situation:\n\n1. If there are NO errors or mismatches in the results, it is safe to disregard this warning.\n2. If there are errors or mismatches in the results, it is recommended to:\n (a) Enable op_level_debugging to determine if the OnnxFunction might be incorrect.\n (b) Report the unsupported overload to the PyTorch-ONNX team.\n (c) Create/register a custom symbolic function to replace the default one.\n\nHere are some suggestions based on the ERROR situation:\n\n1. Report the unsupported operator to the PyTorch-ONNX team.\n2. Create/register a custom symbolic function to replace the default one.\n",
},
"message_strings": {
"default": {
"text": "Checking if the FX node: {node} is supported in onnx registry."
}
},
"help_uri": None,
"properties": {"deprecated": False, "tags": []},
}
),
init=False,
)
"""Find the list of OnnxFunction of the PyTorch operator in onnx registry."""
rules = _POERules()
```
|
==========================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.59 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\onnx\_internal\diagnostics\infra\__init__.py
ENCODING: utf-8
```py
from ._infra import (
DiagnosticOptions,
Graph,
Invocation,
Level,
levels,
Location,
Rule,
RuleCollection,
Stack,
StackFrame,
Tag,
ThreadFlowLocation,
)
from .context import Diagnostic, DiagnosticContext, RuntimeErrorWithDiagnostic
__all__ = [
"Diagnostic",
"DiagnosticContext",
"DiagnosticOptions",
"Graph",
"Invocation",
"Level",
"levels",
"Location",
"Rule",
"RuleCollection",
"RuntimeErrorWithDiagnostic",
"Stack",
"StackFrame",
"Tag",
"ThreadFlowLocation",
]
```
|
========================================================================================================================================
SOURCE CODE FILE: _infra.py
LINES: 1
SIZE: 9.83 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\onnx\_internal\diagnostics\infra\_infra.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
"""This file defines an additional layer of abstraction on top of the SARIF OM."""
from __future__ import annotations
import dataclasses
import enum
import logging
from typing import TYPE_CHECKING
from torch.onnx._internal.diagnostics.infra import formatter, sarif
if TYPE_CHECKING:
from collections.abc import Mapping, Sequence
class Level(enum.IntEnum):
"""The level of a diagnostic.
This class is used to represent the level of a diagnostic. The levels are defined
by the SARIF specification, and are not modifiable. For alternative categories,
please use infra.Tag instead. When selecting a level, please consider the following
guidelines:
- NONE: Informational result that does not indicate the presence of a problem.
- NOTE: An opportunity for improvement was found.
- WARNING: A potential problem was found.
- ERROR: A serious problem was found.
This level is a subclass of enum.IntEnum, and can be used as an integer. Its integer
value maps to the logging levels in Python's logging module. The mapping is as
follows:
Level.NONE = logging.DEBUG = 10
Level.NOTE = logging.INFO = 20
Level.WARNING = logging.WARNING = 30
Level.ERROR = logging.ERROR = 40
"""
NONE = 10
NOTE = 20
WARNING = 30
ERROR = 40
levels = Level
class Tag(enum.Enum):
"""The tag of a diagnostic. This class can be inherited to define custom tags."""
class PatchedPropertyBag(sarif.PropertyBag):
"""Key/value pairs that provide additional information about the object.
The definition of PropertyBag via SARIF spec is "A property bag is an object (section 3.6)
containing an unordered set of properties with arbitrary names." However it is not
reflected in the json file, and therefore not captured by the python representation.
This patch adds additional **kwargs to the `__init__` method to allow recording
arbitrary key/value pairs.
"""
def __init__(self, tags: list[str] | None = None, **kwargs):
super().__init__(tags=tags)
self.__dict__.update(kwargs)
@dataclasses.dataclass(frozen=True)
class Rule:
id: str
name: str
message_default_template: str
short_description: str | None = None
full_description: str | None = None
full_description_markdown: str | None = None
help_uri: str | None = None
@classmethod
def from_sarif(cls, **kwargs):
"""Returns a rule from the SARIF reporting descriptor."""
short_description = kwargs.get("short_description", {}).get("text")
full_description = kwargs.get("full_description", {}).get("text")
full_description_markdown = kwargs.get("full_description", {}).get("markdown")
help_uri = kwargs.get("help_uri")
rule = cls(
id=kwargs["id"],
name=kwargs["name"],
message_default_template=kwargs["message_strings"]["default"]["text"],
short_description=short_description,
full_description=full_description,
full_description_markdown=full_description_markdown,
help_uri=help_uri,
)
return rule
def sarif(self) -> sarif.ReportingDescriptor:
"""Returns a SARIF reporting descriptor of this Rule."""
short_description = (
sarif.MultiformatMessageString(text=self.short_description)
if self.short_description is not None
else None
)
full_description = (
sarif.MultiformatMessageString(
text=self.full_description, markdown=self.full_description_markdown
)
if self.full_description is not None
else None
)
return sarif.ReportingDescriptor(
id=self.id,
name=self.name,
short_description=short_description,
full_description=full_description,
help_uri=self.help_uri,
)
def format(self, level: Level, *args, **kwargs) -> tuple[Rule, Level, str]:
"""Returns a tuple of (rule, level, message) for a diagnostic.
This method is used to format the message of a diagnostic. The message is
formatted using the default template of this rule, and the arguments passed in
as `*args` and `**kwargs`. The level is used to override the default level of
this rule.
"""
return (self, level, self.format_message(*args, **kwargs))
def format_message(self, *args, **kwargs) -> str:
"""Returns the formatted default message of this Rule.
This method should be overridden (with code generation) by subclasses to reflect
the exact arguments needed by the message template. This is a helper method to
create the default message for a diagnostic.
"""
return self.message_default_template.format(*args, **kwargs)
@dataclasses.dataclass
class Location:
uri: str | None = None
line: int | None = None
message: str | None = None
start_column: int | None = None
end_column: int | None = None
snippet: str | None = None
function: str | None = None
def sarif(self) -> sarif.Location:
"""Returns the SARIF representation of this location."""
return sarif.Location(
physical_location=sarif.PhysicalLocation(
artifact_location=sarif.ArtifactLocation(uri=self.uri),
region=sarif.Region(
start_line=self.line,
start_column=self.start_column,
end_column=self.end_column,
snippet=sarif.ArtifactContent(text=self.snippet),
),
),
message=sarif.Message(text=self.message)
if self.message is not None
else None,
)
@dataclasses.dataclass
class StackFrame:
location: Location
def sarif(self) -> sarif.StackFrame:
"""Returns the SARIF representation of this stack frame."""
return sarif.StackFrame(location=self.location.sarif())
@dataclasses.dataclass
class Stack:
"""Records a stack trace. The frames are in order from newest to oldest stack frame."""
frames: list[StackFrame] = dataclasses.field(default_factory=list)
message: str | None = None
def sarif(self) -> sarif.Stack:
"""Returns the SARIF representation of this stack."""
return sarif.Stack(
frames=[frame.sarif() for frame in self.frames],
message=sarif.Message(text=self.message)
if self.message is not None
else None,
)
@dataclasses.dataclass
class ThreadFlowLocation:
"""Records code location and the initial state."""
location: Location
state: Mapping[str, str]
index: int
stack: Stack | None = None
def sarif(self) -> sarif.ThreadFlowLocation:
"""Returns the SARIF representation of this thread flow location."""
return sarif.ThreadFlowLocation(
location=self.location.sarif(),
state=self.state,
stack=self.stack.sarif() if self.stack is not None else None,
)
@dataclasses.dataclass
class Graph:
"""A graph of diagnostics.
This class stores the string representation of a model graph.
The `nodes` and `edges` fields are unused in the current implementation.
"""
graph: str
name: str
description: str | None = None
def sarif(self) -> sarif.Graph:
"""Returns the SARIF representation of this graph."""
return sarif.Graph(
description=sarif.Message(text=self.graph),
properties=PatchedPropertyBag(name=self.name, description=self.description),
)
@dataclasses.dataclass
class RuleCollection:
_rule_id_name_set: frozenset[tuple[str, str]] = dataclasses.field(init=False)
def __post_init__(self) -> None:
self._rule_id_name_set = frozenset(
{
(field.default.id, field.default.name)
for field in dataclasses.fields(self)
if isinstance(field.default, Rule)
}
)
def __contains__(self, rule: Rule) -> bool:
"""Checks if the rule is in the collection."""
return (rule.id, rule.name) in self._rule_id_name_set
@classmethod
def custom_collection_from_list(
cls, new_collection_class_name: str, rules: Sequence[Rule]
) -> RuleCollection:
"""Creates a custom class inherited from RuleCollection with the list of rules."""
return dataclasses.make_dataclass(
new_collection_class_name,
[
(
formatter.kebab_case_to_snake_case(rule.name),
type(rule),
dataclasses.field(default=rule),
)
for rule in rules
],
bases=(cls,),
)()
class Invocation:
# TODO: Implement this.
# Tracks top level call arguments and diagnostic options.
def __init__(self) -> None:
raise NotImplementedError
@dataclasses.dataclass
class DiagnosticOptions:
"""Options for diagnostic context.
Attributes:
verbosity_level: Set the amount of information logged for each diagnostics,
equivalent to the 'level' in Python logging module.
warnings_as_errors: When True, warning diagnostics are treated as error diagnostics.
"""
verbosity_level: int = dataclasses.field(default=logging.INFO)
"""Set the amount of information logged for each diagnostics, equivalent to the 'level' in Python logging module."""
warnings_as_errors: bool = dataclasses.field(default=False)
"""If True, warning diagnostics are treated as error diagnostics."""
```
|
=========================================================================================================================================
SOURCE CODE FILE: context.py
LINES: 6
SIZE: 16.40 KB
PATH: scripts\freecad_env\Lib\site-packages\torch\onnx\_internal\diagnostics\infra\context.py
ENCODING: utf-8
```py
# mypy: allow-untyped-defs
"""A diagnostic context based on SARIF."""
from __future__ import annotations
import contextlib
import dataclasses
import gzip
import logging
from typing import Callable, Generic, Literal, TYPE_CHECKING, TypeVar
from typing_extensions import Self
from torch.onnx._internal.diagnostics import infra
from torch.onnx._internal.diagnostics.infra import formatter, sarif, utils
from torch.onnx._internal.diagnostics.infra.sarif import version as sarif_version
if TYPE_CHECKING:
from collections.abc import Generator, Mapping
# This is a workaround for mypy not supporting Self from typing_extensions.
_Diagnostic = TypeVar("_Diagnostic", bound="Diagnostic")
diagnostic_logger: logging.Logger = logging.getLogger(__name__)
@dataclasses.dataclass
class Diagnostic:
rule: infra.Rule
level: infra.Level
message: str | None = None
locations: list[infra.Location] = dataclasses.field(default_factory=list)
stacks: list[infra.Stack] = dataclasses.field(default_factory=list)
graphs: list[infra.Graph] = dataclasses.field(default_factory=list)
thread_flow_locations: list[infra.ThreadFlowLocation] = dataclasses.field(
default_factory=list
)
additional_messages: list[str] = dataclasses.field(default_factory=list)
tags: list[infra.Tag] = dataclasses.field(default_factory=list)
source_exception: Exception | None = None
"""The exception that caused this diagnostic to be created."""
logger: logging.Logger = dataclasses.field(init=False, default=diagnostic_logger)
"""The logger for this diagnostic. Defaults to 'diagnostic_logger' which has the same
log level setting with `DiagnosticOptions.verbosity_level`."""
_current_log_section_depth: int = 0
def __post_init__(self) -> None:
pass
def sarif(self) -> sarif.Result:
"""Returns the SARIF Result representation of this diagnostic."""
message = self.message or self.rule.message_default_template
if self.additional_messages:
additional_message = "\n".join(self.additional_messages)
message_markdown = (
f"{message}\n\n## Additional Message:\n\n{additional_message}"
)
else:
message_markdown = message
kind: Literal["informational", "fail"] = (
"informational" if self.level == infra.Level.NONE else "fail"
)
sarif_result = sarif.Result(
message=sarif.Message(text=message, markdown=message_markdown),
level=self.level.name.lower(), # type: ignore[arg-type]
rule_id=self.rule.id,
kind=kind,
)
sarif_result.locations = [location.sarif() for location in self.locations]
sarif_result.stacks = [stack.sarif() for stack in self.stacks]
sarif_result.graphs = [graph.sarif() for graph in self.graphs]
sarif_result.code_flows = [
sarif.CodeFlow(
thread_flows=[
sarif.ThreadFlow(
locations=[loc.sarif() for loc in self.thread_flow_locations]
)
]
)
]
sarif_result.properties = sarif.PropertyBag(
tags=[tag.value for tag in self.tags]
)
return sarif_result
def with_location(self: Self, location: infra.Location) -> Self:
"""Adds a location to the diagnostic."""
self.locations.append(location)
return self
def with_thread_flow_location(
self: Self, location: infra.ThreadFlowLocation
) -> Self:
"""Adds a thread flow location to the diagnostic."""
self.thread_flow_locations.append(location)
return self
def with_stack(self: Self, stack: infra.Stack) -> Self:
"""Adds a stack to the diagnostic."""
self.stacks.append(stack)
return self
def with_graph(self: Self, graph: infra.Graph) -> Self:
"""Adds a graph to the diagnostic."""
self.graphs.append(graph)
return self
@contextlib.contextmanager
def log_section(
self, level: int, message: str, *args, **kwargs
) -> Generator[None, None, None]:
"""
Context manager for a section of log messages, denoted by a title message and increased indentation.
Same api as `logging.Logger.log`.
This context manager logs the given title at the specified log level, increases the current
section depth for subsequent log messages, and ensures that the section depth is decreased
again when exiting the context.
Args:
level: The log level.
message: The title message to log.
*args: The arguments to the message. Use `LazyString` to defer the
expensive evaluation of the arguments until the message is actually logged.
**kwargs: The keyword arguments for `logging.Logger.log`.
Yields:
None: This context manager does not yield any value.
Example:
>>> with DiagnosticContext("DummyContext", "1.0"):
... rule = infra.Rule("RuleID", "DummyRule", "Rule message")
... diagnostic = Diagnostic(rule, infra.Level.WARNING)
... with diagnostic.log_section(logging.INFO, "My Section"):
... diagnostic.log(logging.INFO, "My Message")
... with diagnostic.log_section(logging.INFO, "My Subsection"):
... diagnostic.log(logging.INFO, "My Submessage")
... diagnostic.additional_messages
['## My Section', 'My Message', '### My Subsection', 'My Submessage']
"""
if self.logger.isEnabledFor(level):
indented_format_message = (
f"##{'#' * self._current_log_section_depth} {message}"
)
self.log(
level,
indented_format_message,
*args,
**kwargs,
)
self._current_log_section_depth += 1
try:
yield
finally:
self._current_log_section_depth -= 1
def log(self, level: int, message: str, *args, **kwargs) -> None:
"""Logs a message within the diagnostic. Same api as `logging.Logger.log`.
If logger is not enabled for the given level, the message will not be logged.
Otherwise, the message will be logged and also added to the diagnostic's additional_messages.
The default setting for `DiagnosticOptions.verbosity_level` is `logging.INFO`. Based on this default,
the log level recommendations are as follows. If you've set a different default verbosity level in your
application, please adjust accordingly:
- logging.ERROR: Log any events leading to application failure.
- logging.WARNING: Log events that might result in application issues or failures, although not guaranteed.
- logging.INFO: Log general useful information, ensuring minimal performance overhead.
- logging.DEBUG: Log detailed debug information, which might affect performance when logged.
Args:
level: The log level.
message: The message to log.
*args: The arguments to the message. Use `LazyString` to defer the
expensive evaluation of the arguments until the message is actually logged.
**kwargs: The keyword arguments for `logging.Logger.log`.
"""
if self.logger.isEnabledFor(level):
formatted_message = message % args
self.logger.log(level, formatted_message, **kwargs)
self.additional_messages.append(formatted_message)
def debug(self, message: str, *args, **kwargs) -> None:
"""Logs a debug message within the diagnostic. Same api as logging.Logger.debug.
Checkout `log` for more details.
"""
self.log(logging.DEBUG, message, *args, **kwargs)
def info(self, message: str, *args, **kwargs) -> None:
"""Logs an info message within the diagnostic. Same api as logging.Logger.info.
Checkout `log` for more details.
"""
self.log(logging.INFO, message, *args, **kwargs)
def warning(self, message: str, *args, **kwargs) -> None:
"""Logs a warning message within the diagnostic. Same api as logging.Logger.warning.
Checkout `log` for more details.
"""
self.log(logging.WARNING, message, *args, **kwargs)
def error(self, message: str, *args, **kwargs) -> None:
"""Logs an error message within the diagnostic. Same api as logging.Logger.error.
Checkout `log` for more details.
"""
self.log(logging.ERROR, message, *args, **kwargs)
def log_source_exception(self, level: int, exception: Exception) -> None:
"""Logs a source exception within the diagnostic.
Invokes `log_section` and `log` to log the exception in markdown section format.
"""
self.source_exception = exception
with self.log_section(level, "Exception log"):
self.log(level, "%s", formatter.lazy_format_exception(exception))
def record_python_call_stack(self, frames_to_skip: int) -> infra.Stack:
"""Records the current Python call stack."""
frames_to_skip += 1 # Skip this function.
stack = utils.python_call_stack(frames_to_skip=frames_to_skip)
self.with_stack(stack)
if len(stack.frames) > 0:
self.with_location(stack.frames[0].location)
return stack
def record_python_call(
self,
fn: Callable,
state: Mapping[str, str],
message: str | None = None,
frames_to_skip: int = 0,
) -> infra.ThreadFlowLocation:
"""Records a python call as one thread flow step."""
frames_to_skip += 1 # Skip this function.
stack = utils.python_call_stack(frames_to_skip=frames_to_skip, frames_to_log=5)
location = utils.function_location(fn)
location.message = message
# Add function location to the top of the stack.
stack.frames.insert(0, infra.StackFrame(location=location))
thread_flow_location = infra.ThreadFlowLocation(
location=location,
state=state,
index=len(self.thread_flow_locations),
stack=stack,
)
self.with_thread_flow_location(thread_flow_location)
return thread_flow_location
class RuntimeErrorWithDiagnostic(RuntimeError):
"""Runtime error with enclosed diagnostic information."""
def __init__(self, diagnostic: Diagnostic):
super().__init__(diagnostic.message)
self.diagnostic = diagnostic
@dataclasses.dataclass
class DiagnosticContext(Generic[_Diagnostic]):
name: str
version: str
options: infra.DiagnosticOptions = dataclasses.field(
default_factory=infra.DiagnosticOptions
)
diagnostics: list[_Diagnostic] = dataclasses.field(init=False, default_factory=list)
# TODO(bowbao): Implement this.
# _invocation: infra.Invocation = dataclasses.field(init=False)
_inflight_diagnostics: list[_Diagnostic] = dataclasses.field(
init=False, default_factory=list
)
_previous_log_level: int = dataclasses.field(init=False, default=logging.WARNING)
logger: logging.Logger = dataclasses.field(init=False, default=diagnostic_logger)
_bound_diagnostic_type: type = dataclasses.field(init=False, default=Diagnostic)
def __enter__(self):
self._previous_log_level = self.logger.level
self.logger.setLevel(self.options.verbosity_level)
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.logger.setLevel(self._previous_log_level)
return None
def sarif(self) -> sarif.Run:
"""Returns the SARIF Run object."""
unique_rules = {diagnostic.rule for diagnostic in self.diagnostics}
return sarif.Run(
sarif.Tool(
driver=sarif.ToolComponent(
name=self.name,
version=self.version,
rules=[rule.sarif() for rule in unique_rules],
)
),
results=[diagnostic.sarif() for diagnostic in self.diagnostics],
)
def sarif_log(self) -> sarif.SarifLog: # type: ignore[name-defined]
"""Returns the SARIF Log object."""
return sarif.SarifLog(
version=sarif_version.SARIF_VERSION,
schema_uri=sarif_version.SARIF_SCHEMA_LINK,
runs=[self.sarif()],
)
def to_json(self) -> str:
return formatter.sarif_to_json(self.sarif_log())
def dump(self, file_path: str, compress: bool = False) -> None:
"""Dumps the SARIF log to a file."""
if compress:
with gzip.open(file_path, "wt") as f:
f.write(self.to_json())
else:
with open(file_path, "w") as f:
f.write(self.to_json())
def log(self, diagnostic: _Diagnostic) -> None:
"""Logs a diagnostic.
This method should be used only after all the necessary information for the diagnostic
has been collected.
Args:
diagnostic: The diagnostic to add.
"""
if not isinstance(diagnostic, self._bound_diagnostic_type):
raise TypeError(
f"Expected diagnostic of type {self._bound_diagnostic_type}, got {type(diagnostic)}"
)
if self.options.warnings_as_errors and diagnostic.level == infra.Level.WARNING: # type: ignore[attr-defined]
diagnostic.level = infra.Level.ERROR # type: ignore[attr-defined]
self.diagnostics.append(diagnostic) # type: ignore[arg-type]
def log_and_raise_if_error(self, diagnostic: _Diagnostic) -> None:
"""Logs a diagnostic and raises an exception if it is an error.
Use this method for logging non inflight diagnostics where diagnostic level is not known or
lower than ERROR. If it is always expected raise, use `log` and explicit
`raise` instead. Otherwise there is no way to convey the message that it always
raises to Python intellisense and type checking tools.
This method should be used only after all the necessary information for the diagnostic
has been collected.
Args:
diagnostic: The diagnostic to add.
"""
self.log(diagnostic)
if diagnostic.level == infra.Level.ERROR:
if diagnostic.source_exception is not None:
raise diagnostic.source_exception
raise RuntimeErrorWithDiagnostic(diagnostic)
@contextlib.contextmanager
def add_inflight_diagnostic(
self, diagnostic: _Diagnostic
) -> Generator[_Diagnostic, None, None]:
"""Adds a diagnostic to the context.
Use this method to add diagnostics that are not created by the context.
Args:
diagnostic: The diagnostic to add.
"""
self._inflight_diagnostics.append(diagnostic)
try:
yield diagnostic
finally:
self._inflight_diagnostics.pop()
def push_inflight_diagnostic(self, diagnostic: _Diagnostic) -> None:
"""Pushes a diagnostic to the inflight diagnostics stack.
Args:
diagnostic: The diagnostic to push.
Raises:
ValueError: If the rule is not supported by the tool.
"""
self._inflight_diagnostics.append(diagnostic)
def pop_inflight_diagnostic(self) -> _Diagnostic:
"""Pops the last diagnostic from the inflight diagnostics stack.
Returns:
The popped diagnostic.
"""
return self._inflight_diagnostics.pop()
def inflight_diagnostic(self, rule: infra.Rule | None = None) -> _Diagnostic:
if rule is None:
# TODO(bowbao): Create builtin-rules and create diagnostic using that.
if len(self._inflight_diagnostics) <= 0:
raise AssertionError("No inflight diagnostics")
return self._inflight_diagnostics[-1]
else:
for diagnostic in reversed(self._inflight_diagnostics):
if diagnostic.rule == rule:
return diagnostic
raise AssertionError(f"No inflight diagnostic for rule {rule.name}")
```
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.