text
stringlengths 145
7.65M
|
---|
===============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.01 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\altclip\__init__.py
ENCODING: utf-8
```py
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_altclip import *
from .modeling_altclip import *
from .processing_altclip import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
============================================================================================================================================
SOURCE CODE FILE: configuration_altclip.py
LINES: 1
SIZE: 18.54 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\altclip\configuration_altclip.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 WenXiang ZhongzhiCheng LedellWu LiuGuang BoWenZhang and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""AltCLIP model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class AltCLIPTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`AltCLIPTextModel`]. It is used to instantiate a
AltCLIP text model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the AltCLIP
[BAAI/AltCLIP](https://huggingface.co/BAAI/AltCLIP) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 250002):
Vocabulary size of the AltCLIP model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`AltCLIPTextModel`].
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 514):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 1):
The vocabulary size of the `token_type_ids` passed when calling [`AltCLIPTextModel`]
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 0.02):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
pad_token_id (`int`, *optional*, defaults to 1): The id of the *padding* token.
bos_token_id (`int`, *optional*, defaults to 0): The id of the *beginning-of-sequence* token.
eos_token_id (`Union[int, List[int]]`, *optional*, defaults to 2):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
project_dim (`int`, *optional*, defaults to 768):
The dimensions of the teacher model before the mapping layer.
Examples:
```python
>>> from transformers import AltCLIPTextModel, AltCLIPTextConfig
>>> # Initializing a AltCLIPTextConfig with BAAI/AltCLIP style configuration
>>> configuration = AltCLIPTextConfig()
>>> # Initializing a AltCLIPTextModel (with random weights) from the BAAI/AltCLIP style configuration
>>> model = AltCLIPTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "altclip_text_model"
def __init__(
self,
vocab_size=250002,
hidden_size=1024,
num_hidden_layers=24,
num_attention_heads=16,
intermediate_size=4096,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=514,
type_vocab_size=1,
initializer_range=0.02,
initializer_factor=0.02,
layer_norm_eps=1e-05,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
position_embedding_type="absolute",
use_cache=True,
project_dim=768,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.project_dim = project_dim
class AltCLIPVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`AltCLIPModel`]. It is used to instantiate an
AltCLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the AltCLIP
[BAAI/AltCLIP](https://huggingface.co/BAAI/AltCLIP) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
projection_dim (`int`, *optional*, defaults to 512):
Dimensionality of text and vision projection layers.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 32):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
Example:
```python
>>> from transformers import AltCLIPVisionConfig, AltCLIPVisionModel
>>> # Initializing a AltCLIPVisionConfig with BAAI/AltCLIP style configuration
>>> configuration = AltCLIPVisionConfig()
>>> # Initializing a AltCLIPVisionModel (with random weights) from the BAAI/AltCLIP style configuration
>>> model = AltCLIPVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "altclip_vision_model"
base_config_key = "vision_config"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
projection_dim=512,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=224,
patch_size=32,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
class AltCLIPConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`AltCLIPModel`]. It is used to instantiate an
AltCLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the AltCLIP
[BAAI/AltCLIP](https://huggingface.co/BAAI/AltCLIP) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`AltCLIPTextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`AltCLIPVisionConfig`].
projection_dim (`int`, *optional*, defaults to 768):
Dimensionality of text and vision projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The initial value of the *logit_scale* parameter. Default is used as per the original CLIP implementation.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import AltCLIPConfig, AltCLIPModel
>>> # Initializing a AltCLIPConfig with BAAI/AltCLIP style configuration
>>> configuration = AltCLIPConfig()
>>> # Initializing a AltCLIPModel (with random weights) from the BAAI/AltCLIP style configuration
>>> model = AltCLIPModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a AltCLIPConfig from a AltCLIPTextConfig and a AltCLIPVisionConfig
>>> # Initializing a AltCLIPText and AltCLIPVision configuration
>>> config_text = AltCLIPTextConfig()
>>> config_vision = AltCLIPVisionConfig()
>>> config = AltCLIPConfig.from_text_vision_configs(config_text, config_vision)
```"""
model_type = "altclip"
sub_configs = {"text_config": AltCLIPTextConfig, "vision_config": AltCLIPVisionConfig}
def __init__(
self, text_config=None, vision_config=None, projection_dim=768, logit_scale_init_value=2.6592, **kwargs
):
# If `_config_dict` exist, we use them for the backward compatibility.
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
# of confusion!).
text_config_dict = kwargs.pop("text_config_dict", None)
vision_config_dict = kwargs.pop("vision_config_dict", None)
super().__init__(**kwargs)
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
text_config = {}
# This is the complete result when using `text_config_dict`.
_text_config_dict = AltCLIPTextConfig(**text_config_dict).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
message = (
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
f'The value `text_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The "
f'value `text_config["{key}"]` will be overridden.'
)
logger.info(message)
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict)
if vision_config_dict is not None:
if vision_config is None:
vision_config = {}
# This is the complete result when using `vision_config_dict`.
_vision_config_dict = AltCLIPVisionConfig(**vision_config_dict).to_dict()
# convert keys to string instead of integer
if "id2label" in _vision_config_dict:
_vision_config_dict["id2label"] = {
str(key): value for key, value in _vision_config_dict["id2label"].items()
}
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
for key, value in _vision_config_dict.items():
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
# If specified in `vision_config_dict`
if key in vision_config_dict:
message = (
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
f'values. The value `vision_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. "
f'The value `vision_config["{key}"]` will be overridden.'
)
logger.info(message)
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
vision_config.update(_vision_config_dict)
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.")
if vision_config is None:
vision_config = {}
logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.")
self.text_config = AltCLIPTextConfig(**text_config)
self.vision_config = AltCLIPVisionConfig(**vision_config)
self.projection_dim = projection_dim
self.logit_scale_init_value = logit_scale_init_value
self.initializer_factor = 1.0
@classmethod
def from_text_vision_configs(cls, text_config: AltCLIPTextConfig, vision_config: AltCLIPVisionConfig, **kwargs):
r"""
Instantiate a [`AltCLIPConfig`] (or a derived class) from altclip text model configuration and altclip vision
model configuration.
Returns:
[`AltCLIPConfig`]: An instance of a configuration object
"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
__all__ = ["AltCLIPTextConfig", "AltCLIPVisionConfig", "AltCLIPConfig"]
```
|
=======================================================================================================================================
SOURCE CODE FILE: modeling_altclip.py
LINES: 1
SIZE: 79.15 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\altclip\modeling_altclip.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The BAAI Teams Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch AltCLIP model."""
import math
from dataclasses import dataclass
from typing import Any, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPooling,
BaseModelOutputWithPoolingAndCrossAttentions,
BaseModelOutputWithPoolingAndProjection,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import ModelOutput, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, torch_int
from .configuration_altclip import AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "BAAI/AltCLIP"
_CONFIG_FOR_DOC = "AltCLIPConfig"
ALTCLIP_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ALTCLIP_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
ALTCLIP_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
interpolate_pos_encoding (`bool`, *optional*, defaults `False`):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
ALTCLIP_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
interpolate_pos_encoding (`bool`, *optional*, defaults `False`):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# contrastive loss function, adapted from
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
caption_loss = contrastive_loss(similarity)
image_loss = contrastive_loss(similarity.t())
return (caption_loss + image_loss) / 2.0
@dataclass
# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->AltCLIP
class AltCLIPOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of [`AltCLIPTextModel`].
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
The image embeddings obtained by applying the projection layer to the pooled output of [`AltCLIPVisionModel`].
text_model_output (`BaseModelOutputWithPooling`):
The output of the [`AltCLIPTextModel`].
vision_model_output (`BaseModelOutputWithPooling`):
The output of the [`AltCLIPVisionModel`].
"""
loss: Optional[torch.FloatTensor] = None
logits_per_image: Optional[torch.FloatTensor] = None
logits_per_text: Optional[torch.FloatTensor] = None
text_embeds: Optional[torch.FloatTensor] = None
image_embeds: Optional[torch.FloatTensor] = None
text_model_output: BaseModelOutputWithPooling = None
vision_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->AltRoberta
class AltRobertaEmbeddings(nn.Module):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
# End copy
self.padding_idx = config.pad_token_id
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
)
def forward(
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape)
# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->AltRoberta
class AltRobertaSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in AltRobertaModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfOutput
class AltRobertaSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
ALT_ROBERTA_SELF_ATTENTION_CLASSES = {
"eager": AltRobertaSelfAttention,
}
# Copied from transformers.models.roberta.modeling_roberta.RobertaAttention with Roberta->AltRoberta,ROBERTA->ALT_ROBERTA
class AltRobertaAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = ALT_ROBERTA_SELF_ATTENTION_CLASSES[config._attn_implementation](
config, position_embedding_type=position_embedding_type
)
self.output = AltRobertaSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.roberta.modeling_roberta.RobertaIntermediate with Roberta->AltRoberta
class AltRobertaIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.roberta.modeling_roberta.RobertaOutput
class AltRobertaOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.roberta.modeling_roberta.RobertaLayer with Roberta->AltRoberta
class AltRobertaLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = AltRobertaAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = AltRobertaAttention(config, position_embedding_type="absolute")
self.intermediate = AltRobertaIntermediate(config)
self.output = AltRobertaOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
# Copied from transformers.models.roberta.modeling_roberta.RobertaEncoder with Roberta->AltRoberta
class AltRobertaEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([AltRobertaLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaPooler
class AltRobertaPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->AltCLIP
class AltCLIPAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {causal_attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->AltCLIP
class AltCLIPMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class AltCLIPEncoderLayer(nn.Module):
def __init__(self, config: AltCLIPConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = AltCLIPAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = AltCLIPMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class AltCLIPEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`AltCLIPEncoderLayer`].
Args:
config: AltCLIPConfig
"""
def __init__(self, config: AltCLIPConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([AltCLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->AltCLIP
class AltCLIPVisionEmbeddings(nn.Module):
def __init__(self, config: AltCLIPVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
bias=False,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1] - 1
position_embedding = self.position_embedding.weight.unsqueeze(0)
num_positions = position_embedding.shape[1] - 1
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embedding(self.position_ids)
class_pos_embed = position_embedding[:, :1]
patch_pos_embed = position_embedding[:, 1:]
dim = embeddings.shape[-1]
new_height = height // self.patch_size
new_width = width // self.patch_size
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=False) -> torch.Tensor:
batch_size, _, height, width = pixel_values.shape
if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size):
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model ({self.image_size}*{self.image_size})."
)
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
class AltCLIPPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = AltCLIPConfig
base_model_prefix = "altclip"
supports_gradient_checkpointing = True
_no_split_module = []
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor
if isinstance(module, AltCLIPVisionEmbeddings):
factor = self.config.initializer_factor
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
elif isinstance(module, AltCLIPAttention):
factor = self.config.initializer_factor
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
out_proj_std = (module.embed_dim**-0.5) * factor
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
elif isinstance(module, AltCLIPMLP):
factor = self.config.initializer_factor
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
nn.init.normal_(module.fc1.weight, std=fc_std)
nn.init.normal_(module.fc2.weight, std=in_proj_std)
elif isinstance(module, AltCLIPModel):
nn.init.normal_(
module.text_projection.weight,
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
)
module.text_projection._is_hf_initialized = True
nn.init.normal_(
module.visual_projection.weight,
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
)
module.visual_projection._is_hf_initialized = True
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_factor)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_factor)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class AltCLIPVisionTransformer(nn.Module):
def __init__(self, config: AltCLIPVisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = AltCLIPVisionEmbeddings(config)
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.encoder = AltCLIPEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
@add_start_docstrings_to_model_forward(ALTCLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=AltCLIPVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = False,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class AltCLIPVisionModel(AltCLIPPreTrainedModel):
config_class = AltCLIPVisionConfig
main_input_name = "pixel_values"
def __init__(self, config: AltCLIPVisionConfig):
super().__init__(config)
self.vision_model = AltCLIPVisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
@add_start_docstrings_to_model_forward(ALTCLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=AltCLIPVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AltCLIPVisionModel
>>> model = AltCLIPVisionModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
class AltRobertaModel(AltCLIPPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in *Attention is
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
"""
config_class = AltCLIPTextConfig
# Copied from transformers.models.clap.modeling_clap.ClapTextModel.__init__ with ClapText->AltRoberta
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = AltRobertaEmbeddings(config)
self.encoder = AltRobertaEncoder(config)
self.pooler = AltRobertaPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
# Copied from transformers.models.clap.modeling_clap.ClapTextModel.forward
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
class AltCLIPTextModel(AltCLIPPreTrainedModel):
config_class = AltCLIPTextConfig
def __init__(self, config):
super().__init__(config)
self.roberta = AltRobertaModel(config, add_pooling_layer=False)
self.transformation = nn.Linear(config.hidden_size, config.project_dim)
self.pre_LN = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.roberta.embeddings.word_embeddings
def set_input_embeddings(self, value: nn.Embedding) -> None:
self.roberta.embeddings.word_embeddings = value
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding:
return super().resize_token_embeddings(new_num_tokens)
@add_start_docstrings_to_model_forward(ALTCLIP_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndProjection, config_class=AltCLIPTextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPoolingAndProjection]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoProcessor, AltCLIPTextModel
>>> model = AltCLIPTextModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
>>> texts = ["it's a cat", "it's a dog"]
>>> inputs = processor(text=texts, padding=True, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# last module outputs
sequence_output = outputs[0]
# project every module
sequence_output = self.pre_LN(sequence_output)
# pooler
projection_state = self.transformation(sequence_output)
pooler_output = projection_state[:, 0]
if not return_dict:
return (projection_state, pooler_output) + outputs[2:4]
return BaseModelOutputWithPoolingAndProjection(
last_hidden_state=projection_state,
pooler_output=pooler_output,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class AltCLIPModel(AltCLIPPreTrainedModel):
config_class = AltCLIPConfig
def __init__(self, config: AltCLIPConfig):
super().__init__(config)
if not isinstance(config.vision_config, AltCLIPVisionConfig):
raise TypeError(
"config.vision_config is expected to be of type AltCLIPVisionConfig but is of type"
f" {type(config.vision_config)}."
)
if not isinstance(config.text_config, AltCLIPTextConfig):
raise TypeError(
"config.text_config is expected to be of type AltCLIPTextConfig but is of type"
f" {type(config.text_config)}."
)
text_config = config.text_config
vision_config = config.vision_config
self.projection_dim = config.projection_dim
self.text_embed_dim = text_config.project_dim
self.vision_embed_dim = vision_config.hidden_size
self.text_model = AltCLIPTextModel(text_config)
self.vision_model = AltCLIPVisionTransformer(vision_config)
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ALTCLIP_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
token_type_ids=None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`AltCLIPTextModel`].
Examples:
```python
>>> from transformers import AutoProcessor, AltCLIPModel
>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
```"""
# Use AltCLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = text_outputs[1]
text_features = self.text_projection(pooled_output)
return text_features
@add_start_docstrings_to_model_forward(ALTCLIP_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of [`AltCLIPVisionModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AltCLIPModel
>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
```"""
# Use AltCLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
pooled_output = vision_outputs[1] # pooled_output
image_features = self.visual_projection(pooled_output)
return image_features
@add_start_docstrings_to_model_forward(ALTCLIP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=AltCLIPOutput, config_class=AltCLIPConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, AltCLIPOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AltCLIPModel
>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
```"""
# Use AltCLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
image_embeds = vision_outputs[1]
image_embeds = self.visual_projection(image_embeds)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(text_embeds)
# normalized features
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
logits_per_image = logits_per_text.T
loss = None
if return_loss:
loss = clip_loss(logits_per_text)
if not return_dict:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return AltCLIPOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
__all__ = ["AltCLIPPreTrainedModel", "AltCLIPVisionModel", "AltCLIPTextModel", "AltCLIPModel"]
```
|
=========================================================================================================================================
SOURCE CODE FILE: processing_altclip.py
LINES: 1
SIZE: 6.77 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\altclip\processing_altclip.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 WenXiang ZhongzhiCheng LedellWu LiuGuang BoWenZhang The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for AltCLIP
"""
from typing import List, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils_base import BatchEncoding, PreTokenizedInput, TextInput
from ...utils.deprecation import deprecate_kwarg
class AltClipProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {}
class AltCLIPProcessor(ProcessorMixin):
r"""
Constructs a AltCLIP processor which wraps a CLIP image processor and a XLM-Roberta tokenizer into a single
processor.
[`AltCLIPProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`XLMRobertaTokenizerFast`]. See
the [`~AltCLIPProcessor.__call__`] and [`~AltCLIPProcessor.decode`] for more information.
Args:
image_processor ([`CLIPImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`XLMRobertaTokenizerFast`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = ("CLIPImageProcessor", "CLIPImageProcessorFast")
tokenizer_class = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")
@deprecate_kwarg(old_name="feature_extractor", version="5.0.0", new_name="image_processor")
def __init__(self, image_processor=None, tokenizer=None):
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(image_processor, tokenizer)
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[AltClipProcessorKwargs],
) -> BatchEncoding:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to XLMRobertaTokenizerFast's [`~XLMRobertaTokenizerFast.__call__`] if `text` is not
`None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
of the above two methods for more information.
Args:
images (`ImageInput`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if text is None and images is None:
raise ValueError("You must specify either text or images.")
if text is None and images is None:
raise ValueError("You must specify either text or images.")
output_kwargs = self._merge_kwargs(
AltClipProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if text is not None:
encoding = self.tokenizer(text, **output_kwargs["text_kwargs"])
if images is not None:
image_features = self.image_processor(images, **output_kwargs["images_kwargs"])
# BC for explicit return_tensors
if "return_tensors" in output_kwargs["common_kwargs"]:
return_tensors = output_kwargs["common_kwargs"].pop("return_tensors", None)
if text is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to XLMRobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
Please refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to XLMRobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
__all__ = ["AltCLIPProcessor"]
```
|
============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.04 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\aria\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_aria import *
from .image_processing_aria import *
from .modeling_aria import *
from .processing_aria import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
======================================================================================================================================
SOURCE CODE FILE: configuration_aria.py
LINES: 1
SIZE: 15.95 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\aria\configuration_aria.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/aria/modular_aria.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_aria.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 The Rhymes-AI Teams Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
from ..auto import CONFIG_MAPPING, AutoConfig
class AriaTextConfig(PretrainedConfig):
r"""
This class handles the configuration for the text component of the Aria model.
Instantiating a configuration with the defaults will yield a similar configuration to that of the model of the Aria
[rhymes-ai/Aria](https://huggingface.co/rhymes-ai/Aria) architecture.
This class extends the LlamaConfig to include additional parameters specific to the Mixture of Experts (MoE) architecture.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`LlamaModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 4096):
The size of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
Llama 2 up to 4096, CodeLlama up to 16384.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 2):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
pretraining_tp (`int`, *optional*, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
head_dim (`int`, *optional*):
The attention head dimension. If None, it will default to hidden_size // num_heads
moe_num_experts (`int`, *optional*, defaults to 8):
The number of experts in the MoE layer.
moe_topk (`int`, *optional*, defaults to 2):
The number of top experts to route to for each token.
moe_num_shared_experts (`int`, *optional*, defaults to 2):
The number of shared experts.
"""
model_type = "aria_text"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `AriaTextModel`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
base_config_key = "text_config"
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size: int = 4096,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=2,
bos_token_id=1,
eos_token_id=2,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
head_dim=None,
moe_num_experts: int = 8,
moe_topk: int = 2,
moe_num_shared_experts: int = 2,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.mlp_bias = mlp_bias
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, copy it it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
self.moe_num_experts = moe_num_experts
self.moe_topk = moe_topk
self.moe_num_shared_experts = moe_num_shared_experts
class AriaConfig(PretrainedConfig):
r"""
This class handles the configuration for both vision and text components of the Aria model,
as well as additional parameters for image token handling and projector mapping.
Instantiating a configuration with the defaults will yield a similar configuration to that of the model of the Aria
[rhymes-ai/Aria](https://huggingface.co/rhymes-ai/Aria) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`AriaVisionConfig` or `dict`, *optional*):
Configuration for the vision component.
vision_feature_layer (`int`, *optional*, defaults to -1):
The index of the layer to select the vision feature.
text_config (`AriaTextConfig` or `dict`, *optional*):
Configuration for the text component.
projector_patch_to_query_dict (`dict`, *optional*):
Mapping of patch sizes to query dimensions.
image_token_index (`int`, *optional*, defaults to 9):
Index used to represent image tokens.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated normal initializer for initializing all weight matrices.
Attributes:
model_type (`str`):
Type of the model, set to `"aria"`.
image_token_index (`int`):
Index used to represent image tokens.
projector_patch_to_query_dict (`dict`):
Mapping of patch sizes to query dimensions.
vision_config (`AriaVisionConfig`):
Configuration for the vision component.
text_config (`AriaTextConfig`):
Configuration for the text component.
"""
model_type = "aria"
sub_configs = {"text_config": AriaTextConfig, "vision_config": AutoConfig}
def __init__(
self,
vision_config=None,
vision_feature_layer: int = -1,
text_config: AriaTextConfig = None,
projector_patch_to_query_dict: Dict = None,
image_token_index: int = 9,
initializer_range: float = 0.02,
**kwargs,
):
self.image_token_index = image_token_index
# Convert the keys and values of projector_patch_to_query_dict to integers
# This ensures consistency even if they were provided as strings
if projector_patch_to_query_dict is None:
projector_patch_to_query_dict = {
1225: 128,
4900: 256,
}
self.projector_patch_to_query_dict = {int(k): int(v) for k, v in projector_patch_to_query_dict.items()}
self.max_value_projector_patch_to_query_dict = max(self.projector_patch_to_query_dict.values())
self.vision_feature_layer = vision_feature_layer
if isinstance(vision_config, dict):
vision_config["model_type"] = "idefics3_vision"
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
elif vision_config is None:
vision_config = CONFIG_MAPPING["idefics3_vision"]()
self.vision_config = vision_config
self.initializer_range = initializer_range
if isinstance(text_config, dict) and "model_type" in text_config:
text_config = AriaTextConfig(**text_config)
elif text_config is None:
text_config = AriaTextConfig()
self.text_config = text_config
super().__init__(**kwargs)
__all__ = ["AriaConfig", "AriaTextConfig"]
```
|
=========================================================================================================================================
SOURCE CODE FILE: image_processing_aria.py
LINES: 1
SIZE: 21.75 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\aria\image_processing_aria.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/aria/modular_aria.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_aria.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 The Rhymes-AI Teams Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, select_best_resolution
from ...image_transforms import PaddingMode, convert_to_rgb, pad, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
make_flat_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import TensorType
def divide_to_patches(image: np.array, patch_size: int, input_data_format) -> List[np.array]:
"""
Divides an image into patches of a specified size.
Args:
image (`np.array`):
The input image.
patch_size (`int`):
The size of each patch.
input_data_format (`ChannelDimension` or `str`):
The channel dimension format of the input image.
Returns:
list: A list of np.array representing the patches.
"""
patches = []
height, width = get_image_size(image, channel_dim=input_data_format)
for i in range(0, height, patch_size):
for j in range(0, width, patch_size):
if input_data_format == ChannelDimension.LAST:
patch = image[i : i + patch_size, j : j + patch_size]
else:
patch = image[:, i : i + patch_size, j : j + patch_size]
patches.append(patch)
return patches
def _get_patch_output_size(image, target_resolution, input_data_format):
original_height, original_width = get_image_size(image, channel_dim=input_data_format)
target_height, target_width = target_resolution
scale_w = target_width / original_width
scale_h = target_height / original_height
if scale_w < scale_h:
new_width = target_width
new_height = min(math.ceil(original_height * scale_w), target_height)
else:
new_height = target_height
new_width = min(math.ceil(original_width * scale_h), target_width)
return new_height, new_width
class AriaImageProcessor(BaseImageProcessor):
"""
A vision processor for the Aria model that handles image preprocessing.
Initialize the AriaImageProcessor.
Args:
image_mean (`list`, *optional*, defaults to [0.5, 0.5, 0.5]):
Mean values for normalization.
image_std (`list`, *optional*, defaults to [0.5, 0.5, 0.5]):
Standard deviation values for normalization.
max_image_size (`int`, *optional*, defaults to 980):
Maximum image size.
min_image_size (`int`, *optional*, defaults to 336):
Minimum image size.
split_resolutions (`list`, *optional*, defaults to a list of optimal,resolutions as tuples):
The optimal resolutions for splitting the image.
split_image (`bool`, *optional*, defaults to `False`):
Whether to split the image.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image.
resample (PILImageResampling, *optional*, defaults to `BICUBIC`):
The resampling filter to use if resizing the image.
"""
model_input_names = ["pixel_values", "pixel_mask", "num_crops"]
def __init__(
self,
image_mean: List[float] = None,
image_std: List[float] = None,
max_image_size: int = 980,
min_image_size: int = 336,
split_resolutions: Optional[List[Tuple[int, int]]] = None,
split_image: Optional[bool] = False,
do_convert_rgb: Optional[bool] = True,
do_normalize: Optional[bool] = True,
resample: PILImageResampling = PILImageResampling.BICUBIC,
**kwargs,
):
super().__init__(**kwargs)
if image_mean is None:
image_mean = [0.5, 0.5, 0.5]
if image_std is None:
image_std = [0.5, 0.5, 0.5]
self.max_image_size = max_image_size
self.min_image_size = min_image_size
self.image_mean = image_mean
self.image_std = image_std
self.split_image = split_image
if split_resolutions is None:
split_resolutions = [(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (2, 4), (2, 3), (2, 2), (2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (6, 1), (7, 1), (8, 1)] # fmt: skip
split_resolutions = [(el[0] * 490, el[1] * 490) for el in split_resolutions]
self.split_resolutions = split_resolutions
self.do_convert_rgb = do_convert_rgb
self.do_normalize = do_normalize
self.resample = resample
def preprocess(
self,
images: Union[ImageInput, List[ImageInput]],
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
max_image_size: Optional[int] = None,
min_image_size: Optional[int] = None,
split_image: Optional[bool] = None,
do_convert_rgb: Optional[bool] = None,
do_normalize: Optional[bool] = None,
resample: PILImageResampling = None,
return_tensors: Optional[Union[str, TensorType]] = "pt",
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Process a list of images.
Args:
images (ImageInput or list of ImageInput):
The input image or a list of images.
image_mean (`list`, *optional*, defaults to [0.5, 0.5, 0.5]):
Mean values for normalization.
image_std (`list`, *optional*, defaults to [0.5, 0.5, 0.5]):
Standard deviation values for normalization.
max_image_size (`int`, *optional*, defaults to `self.max_image_size` (980)):
Maximum image size.
min_image_size (`int`, *optional*, defaults to `self.min_image_size` (336)):
Minimum image size.
split_image (`bool`, *optional*, defaults to `self.split_image` (False)):
Whether to split the image.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb` (True)):
Whether to convert the image to RGB.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize` (True)):
Whether to normalize the image.
resample (PILImageResampling, *optional*, defaults to `self.resample` (BICUBIC)):
The resampling filter to use if resizing the image.
return_tensors (`str` or `TensorType`, *optional*, defaults to "pt"):
The type of tensor to return.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`:
image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`:
image in (height, width, num_channels) format.
If unset, will use same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`:
image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`:
image in (height, width, num_channels) format.
If unset, will use the inferred format of the input image.
Returns:
BatchFeature:
A BatchFeature object containing:
- 'pixel_values':
Tensor of processed image pixel values.
- 'pixel_mask':
Boolean pixel mask. This mask is a 2D tensor of shape (max_image_size, max_image_size) where:
- True (1) values indicate pixels that belong to the original resized image.
- False (0) values indicate pixels that are part of the padding.
The mask helps distinguish between actual image content and padded areas in subsequent processing steps.
- 'num_crops':
The maximum number of crops across all images.
"""
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
max_image_size = max_image_size if max_image_size is not None else self.max_image_size
min_image_size = min_image_size if min_image_size is not None else self.min_image_size
split_image = split_image if split_image is not None else self.split_image
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
resample = resample if resample is not None else self.resample
if max_image_size not in [490, 980]:
raise ValueError("max_image_size must be either 490 or 980")
images = make_flat_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
resample=resample,
)
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
pixel_values = []
pixel_masks = []
num_crops = None
for image in images:
if split_image:
crop_images = self.get_image_patches(
image,
self.split_resolutions,
max_image_size,
resample,
data_format=input_data_format,
input_data_format=input_data_format,
)
else:
crop_images = [image]
if num_crops is None or len(crop_images) > num_crops:
num_crops = len(crop_images)
for crop_image in crop_images:
# At this point the scale is the rescaling factor that would bring the image to max_size in its larger dimension
h, w = get_image_size(crop_image)
scale = max_image_size / max(h, w)
if w >= h:
new_size = (max(int(h * scale), min_image_size), max_image_size) # h, w
else:
new_size = (max_image_size, max(int(w * scale), min_image_size)) # h, w
crop_image_resized = resize(
crop_image,
new_size,
resample=resample,
data_format=input_data_format,
input_data_format=input_data_format,
)
padding_bottom, padding_right = max_image_size - new_size[0], max_image_size - new_size[1]
crop_image_padded = pad(
crop_image_resized,
((0, padding_bottom), (0, padding_right)),
data_format=input_data_format,
input_data_format=input_data_format,
)
# Create a pixel mask
pixel_mask = np.zeros((max_image_size, max_image_size), dtype=bool)
pixel_mask[: new_size[0], : new_size[1]] = 1
pixel_masks.append(pixel_mask)
if do_normalize:
crop_image_padded = self.normalize(
crop_image_padded / 255.0,
self.image_mean,
self.image_std,
data_format=input_data_format,
input_data_format=input_data_format,
)
crop_image_padded = (
to_channel_dimension_format(crop_image_padded, data_format, input_data_format)
if data_format is not None
else crop_image_padded
)
pixel_values.append(crop_image_padded)
return BatchFeature(
data={
"pixel_values": np.stack(pixel_values, axis=0),
"pixel_mask": np.stack(pixel_masks, axis=0),
"num_crops": num_crops,
},
tensor_type=return_tensors,
)
def _resize_for_patching(
self, image: np.array, target_resolution: tuple, resample, input_data_format: ChannelDimension
) -> np.array:
"""
Resizes an image to a target resolution while maintaining aspect ratio.
Args:
image (np.array):
The input image.
target_resolution (tuple):
The target resolution (height, width) of the image.
resample (`PILImageResampling`):
Resampling filter to use if resizing the image.
input_data_format (`ChannelDimension` or `str`):
The channel dimension format of the input image.
Returns:
np.array: The resized and padded image.
"""
new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format)
# Resize the image
resized_image = resize(image, (new_height, new_width), resample=resample, input_data_format=input_data_format)
return resized_image
def _pad_for_patching(
self, image: np.array, target_resolution: tuple, input_data_format: ChannelDimension
) -> np.array:
"""
Pad an image to a target resolution while maintaining aspect ratio.
"""
target_height, target_width = target_resolution
new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format)
paste_x = (target_width - new_width) // 2
paste_y = (target_height - new_height) // 2
padded_image = self.pad(image, padding=((paste_y, paste_y), (paste_x, paste_x)))
return padded_image
def pad(
self,
image: np.ndarray,
padding: Union[int, Tuple[int, int], Iterable[Tuple[int, int]]],
mode: PaddingMode = PaddingMode.CONSTANT,
constant_values: Union[float, Iterable[float]] = 0.0,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pads the `image` with the specified `padding` and `mode`. Padding can be in the (`height`, `width`)
dimension of in the (`num_patches`) dimension. In the second case an iterable if tuples is expected
as input.
Args:
image (`np.ndarray`):
The image to pad.
padding (`int` or `Tuple[int, int]` or `Iterable[Tuple[int, int]]`):
Padding to apply to the edges of the height, width axes. Can be one of three formats:
- `((before_height, after_height), (before_width, after_width))` unique pad widths for each axis.
- `((before, after),)` yields same before and after pad for height and width.
- `(pad,)` or int is a shortcut for before = after = pad width for all axes.
mode (`PaddingMode`):
The padding mode to use. Can be one of:
- `"constant"`: pads with a constant value.
- `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the
vector along each axis.
- `"replicate"`: pads with the replication of the last value on the edge of the array along each axis.
- `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array.
constant_values (`float` or `Iterable[float]`, *optional*):
The value to use for the padding if `mode` is `"constant"`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use the inferred format of the input image.
Returns:
`np.ndarray`: The padded image.
"""
# call the general `pad` if padding on `height/width`, otherwise it's the `num_patched` dim
if isinstance(padding, int) or len(padding) != 4:
return pad(image, padding, mode, constant_values, data_format, input_data_format)
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
padding_mode_mapping = {
PaddingMode.CONSTANT: "constant",
PaddingMode.REFLECT: "reflect",
PaddingMode.REPLICATE: "edge",
PaddingMode.SYMMETRIC: "symmetric",
}
image = np.pad(image, padding, mode=padding_mode_mapping[mode], constant_values=constant_values)
image = (
to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
)
return image
def get_image_patches(
self,
image: np.array,
grid_pinpoints: List[Tuple[int, int]],
patch_size: int,
resample: PILImageResampling,
data_format: ChannelDimension,
input_data_format: ChannelDimension,
) -> List[np.array]:
"""
Process an image with variable resolutions by dividing it into patches.
Args:
image (`np.array`):
The input image to be processed.
grid_pinpoints (List[Tuple[int, int]]):
A list of possible resolutions as tuples.
patch_size (`int`):
Size of the patches to divide the image into.
resample (`PILImageResampling`):
Resampling filter to use if resizing the image.
data_format (`ChannelDimension` or `str`):
The channel dimension format for the output image.
input_data_format (`ChannelDimension` or `str`):
The channel dimension format of the input image.
Returns:
`List[np.array]`: A list of NumPy arrays containing the processed image patches.
"""
if not isinstance(grid_pinpoints, list):
raise TypeError("grid_pinpoints must be a list of possible resolutions.")
possible_resolutions = grid_pinpoints
image_size = get_image_size(image, channel_dim=input_data_format)
best_resolution = select_best_resolution(image_size, possible_resolutions)
resized_image = self._resize_for_patching(
image, best_resolution, resample=resample, input_data_format=input_data_format
)
padded_image = self._pad_for_patching(resized_image, best_resolution, input_data_format=input_data_format)
patches = divide_to_patches(padded_image, patch_size=patch_size, input_data_format=input_data_format)
# make sure that all patches are in the input data format
patches = [
to_channel_dimension_format(patch, channel_dim=data_format, input_channel_dim=input_data_format)
for patch in patches
]
return patches
__all__ = ["AriaImageProcessor"]
```
|
=================================================================================================================================
SOURCE CODE FILE: modeling_aria.py
LINES: 2
SIZE: 68.06 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\aria\modeling_aria.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/aria/modular_aria.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_aria.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 The Rhymes-AI Teams Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from functools import partial
from typing import Callable, List, Optional, Tuple, Union
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, ModelOutput
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
LossKwargs,
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
is_torch_flex_attn_available,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from ...utils.import_utils import is_torch_available
from ..auto import AutoModel, AutoModelForCausalLM
from .configuration_aria import AriaConfig, AriaTextConfig
if is_torch_available():
import torch
from torch import nn
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "AriaTextConfig"
class AriaTextRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
AriaTextRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class AriaProjectorMLP(nn.Module):
"""
Feed-Forward Network module for the Aria Projector.
Args:
in_features (`int`):
Input embedding dimension.
hidden_features (`int`):
Hidden dimension of the feed-forward network.
output_dim (`int`):
Output dimension.
"""
def __init__(self, in_features, hidden_features, output_dim):
super().__init__()
self.linear_in = nn.Linear(in_features, hidden_features, bias=False)
self.linear_out = nn.Linear(hidden_features, output_dim, bias=False)
self.act = ACT2FN["gelu_new"]
def forward(self, hidden_states):
hidden_states = self.act(self.linear_in(hidden_states))
hidden_states = self.linear_out(hidden_states)
return hidden_states
class AriaCrossAttention(nn.Module):
"""
Aria Cross-Attention module.
Args:
config (`AriaConfig`):
The configuration to use.
"""
def __init__(self, config: AriaConfig, dropout_rate: float = 0):
super().__init__()
hidden_size = config.vision_config.hidden_size
num_heads = config.vision_config.num_attention_heads
self.num_heads = num_heads
self.q_proj = nn.Linear(hidden_size, hidden_size, bias=False)
self.k_proj = nn.Linear(hidden_size, hidden_size, bias=False)
self.v_proj = nn.Linear(hidden_size, hidden_size, bias=False)
# Original code here: https://github.com/rhymes-ai/Aria/blob/719ff4e52b727443cba3793b0e27fe64e0244fe1/aria/model/projector.py#L48
self.multihead_attn = nn.MultiheadAttention(hidden_size, num_heads, batch_first=True)
self.linear = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(dropout_rate)
self.layer_norm = nn.LayerNorm(hidden_size)
self.layer_norm_kv = nn.LayerNorm(hidden_size)
def forward(self, key_value_states, hidden_states, attn_mask=None):
"""
Forward pass of the AriaCrossAttention module.
Args:
key_value_states (`torch.Tensor`):
Input tensor for key and value.
hidden_states (`torch.Tensor`):
Input tensor for query.
attn_mask (`torch.Tensor`, *optional*, defaults to None):
Attention mask.
Returns:
torch.Tensor:
Output tensor after cross-attention.
"""
query = self.q_proj(self.layer_norm(hidden_states))
key_value_states = self.layer_norm_kv(key_value_states)
key = self.k_proj(key_value_states)
value = self.v_proj(key_value_states)
attn_output, _ = self.multihead_attn(query, key, value, attn_mask=attn_mask)
attn_output = self.dropout(self.linear(attn_output))
return attn_output
class AriaProjector(nn.Module):
"""
Aria Projector module.
This module projects vision features into the language model's embedding space, enabling interaction between vision and language components.
Args:
config (`AriaConfig`):
Configuration object for the model.
"""
def __init__(
self,
config: AriaConfig,
):
super().__init__()
self.patch_to_query_dict = config.projector_patch_to_query_dict
self.in_features = config.vision_config.hidden_size
self.num_heads = config.vision_config.num_attention_heads
self.kv_dim = config.vision_config.hidden_size
self.hidden_features = config.text_config.hidden_size
self.output_dim = config.text_config.hidden_size
self.query = nn.Parameter(torch.zeros(config.max_value_projector_patch_to_query_dict, self.in_features))
self.cross_attn = AriaCrossAttention(config)
self.layer_norm = nn.LayerNorm(self.in_features)
self.feed_forward = AriaProjectorMLP(self.in_features, self.hidden_features, self.output_dim)
def forward(self, key_value_states: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
"""
Forward pass of the Projector module.
Args:
key_value_states (`torch.Tensor`):
Input tensor of shape (batch_size, num_patches, kv_dim).
attn_mask (`torch.Tensor`, *optional*, default is None):
Attention mask.
Returns:
`torch.Tensor`: Output tensor of shape (batch_size, query_number, output_dim).
"""
batch_size, num_patches = key_value_states.shape[0], key_value_states.shape[1]
if num_patches not in self.patch_to_query_dict.keys():
raise KeyError(
f"Number of patches {num_patches} not found in patch_to_query_dict amongst possible values {self.patch_to_query_dict.keys()}."
)
query_num = self.patch_to_query_dict[num_patches]
queries = self.query[:query_num].unsqueeze(0).repeat(batch_size, 1, 1)
if attn_mask is not None:
attn_mask = attn_mask.repeat_interleave(self.num_heads, 0)
attn_mask = attn_mask.unsqueeze(1).expand(-1, queries.size(1), -1)
attention_out = self.cross_attn(key_value_states, queries, attn_mask=attn_mask)
out = self.feed_forward(self.layer_norm(attention_out))
return out
class AriaSharedExpertsMLP(nn.Module):
"""
Shared Expert MLP for shared experts.
Unlike routed experts, shared experts process all tokens without routing.
This class reconfigures the intermediate size in comparison to the LlamaMLP.
Args:
config (`AriaTextConfig`): Configuration object for the Aria language model.
"""
def __init__(self, config: AriaTextConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size * config.moe_num_shared_experts
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def sequential_experts_gemm(token_states, expert_weights, tokens_per_expert):
"""
Compute the matrix multiplication (GEMM) for each expert sequentially. This approach is computationally inefficient, especially when dealing with a large number of experts.
Args:
token_states (torch.Tensor): Input tensor of shape (num_tokens, in_features).
expert_weights (torch.Tensor): Weight tensor of shape (num_experts, in_features, out_features).
tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert.
Returns:
torch.Tensor: Output tensor of shape (num_tokens, out_features).
"""
num_tokens = token_states.shape[0]
out_features = expert_weights.shape[-1]
output = torch.zeros(num_tokens, out_features, dtype=token_states.dtype, device=token_states.device)
cumsum_num_tokens = torch.cumsum(tokens_per_expert, dim=0)
# Insert zero at the beginning for offset index's convenience
zero_tensor = torch.zeros(1, dtype=torch.long, device=cumsum_num_tokens.device)
cumsum_num_tokens = torch.cat((zero_tensor, cumsum_num_tokens))
for expert_num in range(expert_weights.shape[0]):
start = cumsum_num_tokens[expert_num]
end = cumsum_num_tokens[expert_num + 1]
tokens = token_states[start:end]
out = torch.matmul(tokens, expert_weights[expert_num])
output[start:end] = out
return output
class AriaGroupedExpertsGemm(nn.Module):
"""
Grouped GEMM (General Matrix Multiplication) module for efficient expert computation.
This module utilizes the grouped_gemm library (https://github.com/fanshiqing/grouped_gemm)
for optimized performance. If the grouped_gemm library is not installed, it gracefully
falls back to a sequential GEMM implementation, which may be slower but ensures
functionality.
Args:
in_features (`int`):
Number of input features.
out_features (`int`):
Number of output features.
groups (`int`):
Number of expert groups.
"""
def __init__(self, in_features, out_features, groups):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.groups = groups
self.weight = nn.Parameter(torch.empty(groups, in_features, out_features))
def forward(self, input, tokens_per_expert):
"""
Perform grouped matrix multiplication.
Args:
input (`torch.Tensor`):
Input tensor of shape (num_tokens, in_features).
tokens_per_expert (`torch.Tensor`):
Number of tokens assigned to each expert.
Returns:
torch.Tensor: Output tensor of shape (num_tokens, out_features).
"""
return sequential_experts_gemm(
input,
self.weight,
tokens_per_expert.cpu(),
)
class AriaGroupedExpertsMLP(nn.Module):
"""
Grouped MLP module for Mixture of Experts.
Args:
config (`AriaTextConfig`):
Configuration object for the model.
"""
def __init__(self, config: AriaTextConfig) -> None:
super().__init__()
self.config = config
self.fc1 = AriaGroupedExpertsGemm(config.hidden_size, config.intermediate_size * 2, config.moe_num_experts)
self.fc2 = AriaGroupedExpertsGemm(config.intermediate_size, config.hidden_size, config.moe_num_experts)
def forward(self, permuted_tokens, tokens_per_expert):
"""
Forward pass of the Grouped MLP.
Args:
permuted_tokens (torch.Tensor): Permuted input tokens.
tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert.
Returns:
torch.Tensor: Output tensor after passing through the MLP.
"""
fc1_output = self.fc1(permuted_tokens, tokens_per_expert)
projection, gate = torch.chunk(fc1_output, 2, dim=-1)
fc1_output = nn.functional.silu(projection) * gate
fc2_output = self.fc2(fc1_output, tokens_per_expert)
return fc2_output
# Token permutation adapted from https://github.com/NVIDIA/Megatron-LM/blob/54f1f78529cbc2b9cddad313e7f9d96ac0420a27/megatron/core/transformer/moe/token_dispatcher.py#L291-L587
class AriaTextMoELayer(nn.Module):
"""
Aria Text Mixture of Experts (MoE) Layer.
This layer applies a gating mechanism to route input tokens to different experts.
Args:
config (`AriaTextConfig`):
Configuration object for the text component of the model.
"""
def __init__(self, config: AriaTextConfig):
super().__init__()
self.router = nn.Linear(config.hidden_size, config.moe_num_experts, bias=False)
self.experts = AriaGroupedExpertsMLP(config)
self.shared_experts = AriaSharedExpertsMLP(config)
self.config = config
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the MoE Layer.
Args:
hidden_states (`torch.Tensor`):
Input tensor of shape (batch_size, sequence_length, hidden_size).
Returns:
torch.Tensor: Output tensor after passing through the MoE layer.
Process:
1. Route tokens to experts using the router.
2. Permute tokens based on routing decisions.
3. Process tokens through experts.
4. Unpermute and combine expert outputs.
5. Add shared expert output to the final result.
"""
original_shape = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_states.size(-1))
# Top K Routing
logits = self.router(hidden_states)
top_logits, top_indices = torch.topk(logits, k=self.config.moe_topk, dim=1)
scores = nn.functional.softmax(top_logits, dim=-1)
original_dtype = top_indices.dtype
tokens_per_expert = torch.histc(
top_indices.flatten().to(torch.float32),
bins=self.config.moe_num_experts,
min=0,
max=self.config.moe_num_experts - 1,
).to(original_dtype)
indices = top_indices
# Token permutation
flatten_indices = indices.view(-1)
sorted_indices = torch.argsort(flatten_indices)
permuted_tokens = hidden_states.index_select(0, sorted_indices // self.config.moe_topk)
# Process through experts
expert_output = self.experts(permuted_tokens, tokens_per_expert)
# Token unpermutation
unpermuted_tokens = torch.zeros(
(scores.shape[0] * self.config.moe_topk, expert_output.size(1)),
dtype=expert_output.dtype,
device=expert_output.device,
)
unpermuted_tokens.index_copy_(0, sorted_indices, expert_output)
unpermuted_tokens = unpermuted_tokens.view(-1, self.config.moe_topk, expert_output.size(1))
output = (unpermuted_tokens * scores.unsqueeze(-1)).sum(dim=1).view(original_shape)
# Add shared expert output
shared_expert_output = self.shared_experts(hidden_states.view(original_shape))
return output + shared_expert_output
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class AriaTextAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: AriaTextConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class AriaTextDecoderLayer(nn.Module):
"""
Aria Text Decoder Layer.
This class defines a single decoder layer in the language model, incorporating self-attention and Mixture of Experts (MoE) feed-forward network.
Args:
config (`AriaTextConfig`):
Configuration object for the text component of the model.
layer_idx (`int`):
Index of the layer.
"""
def __init__(self, config: AriaTextConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = AriaTextAttention(config=config, layer_idx=layer_idx)
self.mlp = AriaTextMoELayer(config)
self.input_layernorm = AriaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = AriaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class AriaTextPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
"""
config_class = AriaConfig
base_model_prefix = "model"
_no_split_modules = ["AriaTextDecoderLayer", "AriaGroupedExpertsGemm"]
supports_gradient_checkpointing = True
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = False
_supports_sdpa = True
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, AriaGroupedExpertsGemm):
module.weight.data.normal_(mean=0.0, std=std)
elif isinstance(module, nn.Conv2d):
module.weight.data.normal_(mean=0.0, std=std)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.zero_()
ARIA_TEXT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`AriaTextConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Aria Model outputting raw hidden-states without any specific head on top.",
ARIA_TEXT_START_DOCSTRING,
)
class AriaPreTrainedModel(PreTrainedModel):
config_class = AriaTextConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["AriaDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = False # MoE models don't work with torch.compile (dynamic slicing)
_supports_attention_backend = False
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, AriaProjector):
nn.init.trunc_normal_(module.query, std=std)
class AriaTextRotaryEmbedding(nn.Module):
def __init__(self, config: AriaTextConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
ARIA_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare AriaText Model outputting raw hidden-states without any specific head on top.",
ARIA_TEXT_START_DOCSTRING,
)
class AriaTextModel(AriaTextPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`AriaTextDecoderLayer`]
Args:
config: AriaTextConfig
"""
def __init__(self, config: AriaTextConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[AriaTextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = AriaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = AriaTextRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(ARIA_TEXT_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
if not isinstance(past_key_values, (type(None), Cache)):
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
partial(decoder_layer.__call__, **flash_attn_kwargs),
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
if isinstance(attention_mask, BlockMask):
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class AriaTextForCausalLM(AriaTextPreTrainedModel, GenerationMixin):
"""
Aria model for causal language modeling tasks.
This class extends `LlamaForCausalLM` to incorporate the Mixture of Experts (MoE) approach,
allowing for more efficient and scalable language modeling.
Args:
config (`AriaTextConfig`):
Configuration object for the model.
"""
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
config_class = AriaTextConfig
def __init__(self, config: AriaTextConfig):
super().__init__(config)
self.model = AriaTextModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(ARIA_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, AriaTextForCausalLM
>>> model = AriaTextForCausalLM.from_pretrained("meta-aria_text/AriaText-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-aria_text/AriaText-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@dataclass
class AriaCausalLMOutputWithPast(ModelOutput):
"""
Base class for Aria causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size (batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[torch.FloatTensor] = None
ARIA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor`, *optional*):
Input token IDs.
pixel_values (`torch.FloatTensor`, *optional*):
Pixel values of the images.
pixel_mask (`torch.LongTensor`, *optional*):
Mask for the pixel values.
attention_mask (`torch.Tensor`, *optional*):
Attention mask.
position_ids (`torch.LongTensor`, *optional*):
Position IDs.
past_key_values (`List[torch.FloatTensor]`, *optional*):
Past key values for efficient processing.
inputs_embeds (`torch.FloatTensor`, *optional*):
Input embeddings.
labels (`torch.LongTensor`, *optional*):
Labels for computing the language modeling loss.
use_cache (`bool`, *optional*):
Whether to use the model's cache mechanism.
output_attentions (`bool`, *optional*):
Whether to output attention weights.
output_hidden_states (`bool`, *optional*):
Whether to output hidden states.
return_dict (`bool`, *optional*):
Whether to return a `ModelOutput` object.
logits_to_keep (`int` or `torch.Tensor`, *optional*, defaults to 0):
If an `int`, calculate logits for the last `logits_to_keep` tokens, or all `input_ids` if `0`.
Otherwise, slice according to the 1D tensor in the sequence length dimension
cache_position (`torch.LongTensor`, *optional*):
Cache positions.
**loss_kwargs:
Additional keyword arguments for loss calculation.
"""
ARIA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config (`AriaConfig`):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"""Aria model for conditional generation tasks.
This model combines a vision tower, a multi-modal projector, and a language model
to perform tasks that involve both image and text inputs.""",
ARIA_START_DOCSTRING,
)
class AriaForConditionalGeneration(AriaPreTrainedModel, GenerationMixin):
config_class = AriaConfig
_supports_flash_attn_2 = False
_supports_flex_attn = False
_supports_sdpa = False
_tied_weights_keys = ["language_model.lm_head.weight"]
def __init__(self, config: AriaConfig):
super().__init__(config)
self.vision_tower = AutoModel.from_config(config.vision_config)
self.multi_modal_projector = AriaProjector(config)
self.vocab_size = config.text_config.vocab_size
self.language_model = AutoModelForCausalLM.from_config(config.text_config)
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
self._use_flash_attention_2 = config.text_config._attn_implementation == "flash_attention_2"
self.post_init()
def _create_patch_attention_mask(self, pixel_mask):
if pixel_mask is None:
return None
patches_subgrid = pixel_mask.unfold(
dimension=1,
size=self.vision_tower.config.patch_size,
step=self.vision_tower.config.patch_size,
)
patches_subgrid = patches_subgrid.unfold(
dimension=2,
size=self.vision_tower.config.patch_size,
step=self.vision_tower.config.patch_size,
)
return (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def get_image_features(
self,
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.FloatTensor] = None,
vision_feature_layer: int = -1,
):
patch_attention_mask = self._create_patch_attention_mask(pixel_mask)
image_outputs = self.vision_tower(
pixel_values, patch_attention_mask=patch_attention_mask, output_hidden_states=True
)
image_attn_mask = None
if patch_attention_mask is not None:
flattened_mask = patch_attention_mask.flatten(1)
image_attn_mask = torch.logical_not(flattened_mask)
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
image_features = self.multi_modal_projector(selected_image_feature, attn_mask=image_attn_mask)
return image_features
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(ARIA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=AriaCausalLMOutputWithPast, config_class=AriaConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
pixel_mask: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
cache_position: Optional[torch.LongTensor] = None,
**loss_kwargs,
) -> AriaCausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or `model.image_token_id` (where `model` is your instance of `Idefics3ForConditionalGeneration`).
Tokens with indices set to `model.image_token_id` are ignored (masked), the loss is only
computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> import requests
>>> import torch
>>> from PIL import Image
>>> from io import BytesIO
>>> from transformers import AutoProcessor, AutoModel
>>> from transformers.image_utils import load_image
>>> # Note that passing the image urls (instead of the actual pil images) to the processor is also possible
>>> image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
>>> image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg")
>>> image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg")
>>> processor = AutoProcessor.from_pretrained("Rhymes-AI/Aria")
>>> model = AutoModel.from_pretrained("Rhymes-AI/Aria", torch_dtype=torch.bfloat16, device_map="auto")
>>> # Create inputs
>>> messages = [
... {
... "role": "user",
... "content": [
... {"type": "image"},
... {"type": "text", "text": "In this image, we can see the city of New York, and more specifically the Statue of Liberty."},
... {"type": "image"},
... {"type": "text", "text": "What can we see in this image?"},
... ]
... },
... {
... "role": "user",
... "content": [
... {"type": "image"},
... {"type": "text", "text": "In which city is that bridge located?"},
... ]
... }
... ]
>>> prompts = [processor.apply_chat_template([message], add_generation_prompt=True) for message in messages]
>>> images = [[image1, image2], [image3]]
>>> inputs = processor(text=prompts, images=images, padding=True, return_tensors="pt").to(model.device)
>>> # Generate
>>> generated_ids = model.generate(**inputs, max_new_tokens=256)
>>> generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
>>> print(generated_texts[0])
Assistant: There are buildings, trees, lights, and water visible in this image.
>>> print(generated_texts[1])
Assistant: The bridge is in San Francisco.
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
# 2. Merge text and images
if pixel_values is not None and inputs_embeds.shape[1] != 1:
if input_ids is None:
special_image_mask = inputs_embeds == self.get_input_embeddings()(
torch.tensor(self.config.image_token_index, dtype=torch.long, device=inputs_embeds.device)
)
n_image_tokens = (special_image_mask).sum(dim=1).sum(dim=0)[0]
else:
image_embeds = input_ids == self.config.image_token_index
special_image_mask = image_embeds.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
n_image_tokens = (image_embeds).sum(dim=1).sum(dim=0)
image_features = self.get_image_features(
pixel_values=pixel_values,
pixel_mask=pixel_mask,
vision_feature_layer=self.config.vision_feature_layer,
)
n_images, n_features_per_image = image_features.shape[0], image_features.shape[1]
n_image_features = n_images * n_features_per_image
if n_image_tokens != n_image_features:
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
outputs: CausalLMOutputWithPast = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
logits_to_keep=logits_to_keep,
cache_position=cache_position,
)
logits = outputs.logits
loss = None
if labels is not None:
loss = self.loss_function(
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **loss_kwargs
)
return AriaCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
pixel_values=None,
pixel_mask=None,
attention_mask=None,
cache_position=None,
logits_to_keep=None,
**kwargs,
):
model_inputs = self.language_model.prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**kwargs,
)
if cache_position[0] == 0:
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
# Otherwise we need pixel values to be passed to model
model_inputs["pixel_values"] = pixel_values
model_inputs["pixel_mask"] = pixel_mask
return model_inputs
__all__ = [
"AriaForConditionalGeneration",
"AriaPreTrainedModel",
"AriaTextPreTrainedModel",
"AriaTextModel",
"AriaTextForCausalLM",
]
```
|
================================================================================================================================
SOURCE CODE FILE: modular_aria.py
LINES: 1
SIZE: 68.62 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\aria\modular_aria.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 The Rhymes-AI Teams Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...activations import ACT2FN
from ...configuration_utils import PretrainedConfig
from ...generation import GenerationMixin
from ...image_processing_utils import BaseImageProcessor, BatchFeature, select_best_resolution
from ...image_transforms import PaddingMode, convert_to_rgb, pad, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
make_flat_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...modeling_outputs import CausalLMOutputWithPast
from ...modeling_utils import PreTrainedModel
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils import (
PreTokenizedInput,
TextInput,
)
from ...utils import (
TensorType,
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from ...utils.import_utils import is_torch_available
from ..auto import CONFIG_MAPPING, AutoConfig, AutoModel, AutoModelForCausalLM, AutoTokenizer
from ..llama.configuration_llama import LlamaConfig
from ..llama.modeling_llama import (
LlamaDecoderLayer,
LlamaForCausalLM,
LlamaMLP,
LlamaModel,
LlamaPreTrainedModel,
LlamaRMSNorm,
)
from ..llava.modeling_llava import LlavaCausalLMOutputWithPast
from ..llava_next.image_processing_llava_next import divide_to_patches
logger = logging.get_logger(__name__)
if is_torch_available():
import torch
from torch import nn
def sequential_experts_gemm(token_states, expert_weights, tokens_per_expert):
"""
Compute the matrix multiplication (GEMM) for each expert sequentially. This approach is computationally inefficient, especially when dealing with a large number of experts.
Args:
token_states (torch.Tensor): Input tensor of shape (num_tokens, in_features).
expert_weights (torch.Tensor): Weight tensor of shape (num_experts, in_features, out_features).
tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert.
Returns:
torch.Tensor: Output tensor of shape (num_tokens, out_features).
"""
num_tokens = token_states.shape[0]
out_features = expert_weights.shape[-1]
output = torch.zeros(num_tokens, out_features, dtype=token_states.dtype, device=token_states.device)
cumsum_num_tokens = torch.cumsum(tokens_per_expert, dim=0)
# Insert zero at the beginning for offset index's convenience
zero_tensor = torch.zeros(1, dtype=torch.long, device=cumsum_num_tokens.device)
cumsum_num_tokens = torch.cat((zero_tensor, cumsum_num_tokens))
for expert_num in range(expert_weights.shape[0]):
start = cumsum_num_tokens[expert_num]
end = cumsum_num_tokens[expert_num + 1]
tokens = token_states[start:end]
out = torch.matmul(tokens, expert_weights[expert_num])
output[start:end] = out
return output
class AriaTextConfig(LlamaConfig):
r"""
This class handles the configuration for the text component of the Aria model.
Instantiating a configuration with the defaults will yield a similar configuration to that of the model of the Aria
[rhymes-ai/Aria](https://huggingface.co/rhymes-ai/Aria) architecture.
This class extends the LlamaConfig to include additional parameters specific to the Mixture of Experts (MoE) architecture.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`LlamaModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 4096):
The size of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
Llama 2 up to 4096, CodeLlama up to 16384.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 2):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
pretraining_tp (`int`, *optional*, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
head_dim (`int`, *optional*):
The attention head dimension. If None, it will default to hidden_size // num_heads
moe_num_experts (`int`, *optional*, defaults to 8):
The number of experts in the MoE layer.
moe_topk (`int`, *optional*, defaults to 2):
The number of top experts to route to for each token.
moe_num_shared_experts (`int`, *optional*, defaults to 2):
The number of shared experts.
"""
model_type = "aria_text"
base_config_key = "text_config"
def __init__(
self,
intermediate_size: int = 4096,
moe_num_experts: int = 8,
moe_topk: int = 2,
moe_num_shared_experts: int = 2,
pad_token_id=2,
**super_kwargs,
):
super().__init__(pad_token_id=pad_token_id, **super_kwargs)
self.intermediate_size = intermediate_size
self.moe_num_experts = moe_num_experts
self.moe_topk = moe_topk
self.moe_num_shared_experts = moe_num_shared_experts
class AriaConfig(PretrainedConfig):
r"""
This class handles the configuration for both vision and text components of the Aria model,
as well as additional parameters for image token handling and projector mapping.
Instantiating a configuration with the defaults will yield a similar configuration to that of the model of the Aria
[rhymes-ai/Aria](https://huggingface.co/rhymes-ai/Aria) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`AriaVisionConfig` or `dict`, *optional*):
Configuration for the vision component.
vision_feature_layer (`int`, *optional*, defaults to -1):
The index of the layer to select the vision feature.
text_config (`AriaTextConfig` or `dict`, *optional*):
Configuration for the text component.
projector_patch_to_query_dict (`dict`, *optional*):
Mapping of patch sizes to query dimensions.
image_token_index (`int`, *optional*, defaults to 9):
Index used to represent image tokens.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated normal initializer for initializing all weight matrices.
Attributes:
model_type (`str`):
Type of the model, set to `"aria"`.
image_token_index (`int`):
Index used to represent image tokens.
projector_patch_to_query_dict (`dict`):
Mapping of patch sizes to query dimensions.
vision_config (`AriaVisionConfig`):
Configuration for the vision component.
text_config (`AriaTextConfig`):
Configuration for the text component.
"""
model_type = "aria"
sub_configs = {"text_config": AriaTextConfig, "vision_config": AutoConfig}
def __init__(
self,
vision_config=None,
vision_feature_layer: int = -1,
text_config: AriaTextConfig = None,
projector_patch_to_query_dict: Dict = None,
image_token_index: int = 9,
initializer_range: float = 0.02,
**kwargs,
):
self.image_token_index = image_token_index
# Convert the keys and values of projector_patch_to_query_dict to integers
# This ensures consistency even if they were provided as strings
if projector_patch_to_query_dict is None:
projector_patch_to_query_dict = {
1225: 128,
4900: 256,
}
self.projector_patch_to_query_dict = {int(k): int(v) for k, v in projector_patch_to_query_dict.items()}
self.max_value_projector_patch_to_query_dict = max(self.projector_patch_to_query_dict.values())
self.vision_feature_layer = vision_feature_layer
if isinstance(vision_config, dict):
vision_config["model_type"] = "idefics3_vision"
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
elif vision_config is None:
vision_config = CONFIG_MAPPING["idefics3_vision"]()
self.vision_config = vision_config
self.initializer_range = initializer_range
if isinstance(text_config, dict) and "model_type" in text_config:
text_config = AriaTextConfig(**text_config)
elif text_config is None:
text_config = AriaTextConfig()
self.text_config = text_config
super().__init__(**kwargs)
class AriaTextRMSNorm(LlamaRMSNorm):
pass
class AriaProjectorMLP(nn.Module):
"""
Feed-Forward Network module for the Aria Projector.
Args:
in_features (`int`):
Input embedding dimension.
hidden_features (`int`):
Hidden dimension of the feed-forward network.
output_dim (`int`):
Output dimension.
"""
def __init__(self, in_features, hidden_features, output_dim):
super().__init__()
self.linear_in = nn.Linear(in_features, hidden_features, bias=False)
self.linear_out = nn.Linear(hidden_features, output_dim, bias=False)
self.act = ACT2FN["gelu_new"]
def forward(self, hidden_states):
hidden_states = self.act(self.linear_in(hidden_states))
hidden_states = self.linear_out(hidden_states)
return hidden_states
class AriaCrossAttention(nn.Module):
"""
Aria Cross-Attention module.
Args:
config (`AriaConfig`):
The configuration to use.
"""
def __init__(self, config: AriaConfig, dropout_rate: float = 0):
super().__init__()
hidden_size = config.vision_config.hidden_size
num_heads = config.vision_config.num_attention_heads
self.num_heads = num_heads
self.q_proj = nn.Linear(hidden_size, hidden_size, bias=False)
self.k_proj = nn.Linear(hidden_size, hidden_size, bias=False)
self.v_proj = nn.Linear(hidden_size, hidden_size, bias=False)
# Original code here: https://github.com/rhymes-ai/Aria/blob/719ff4e52b727443cba3793b0e27fe64e0244fe1/aria/model/projector.py#L48
self.multihead_attn = nn.MultiheadAttention(hidden_size, num_heads, batch_first=True)
self.linear = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(dropout_rate)
self.layer_norm = nn.LayerNorm(hidden_size)
self.layer_norm_kv = nn.LayerNorm(hidden_size)
def forward(self, key_value_states, hidden_states, attn_mask=None):
"""
Forward pass of the AriaCrossAttention module.
Args:
key_value_states (`torch.Tensor`):
Input tensor for key and value.
hidden_states (`torch.Tensor`):
Input tensor for query.
attn_mask (`torch.Tensor`, *optional*, defaults to None):
Attention mask.
Returns:
torch.Tensor:
Output tensor after cross-attention.
"""
query = self.q_proj(self.layer_norm(hidden_states))
key_value_states = self.layer_norm_kv(key_value_states)
key = self.k_proj(key_value_states)
value = self.v_proj(key_value_states)
attn_output, _ = self.multihead_attn(query, key, value, attn_mask=attn_mask)
attn_output = self.dropout(self.linear(attn_output))
return attn_output
class AriaProjector(nn.Module):
"""
Aria Projector module.
This module projects vision features into the language model's embedding space, enabling interaction between vision and language components.
Args:
config (`AriaConfig`):
Configuration object for the model.
"""
def __init__(
self,
config: AriaConfig,
):
super().__init__()
self.patch_to_query_dict = config.projector_patch_to_query_dict
self.in_features = config.vision_config.hidden_size
self.num_heads = config.vision_config.num_attention_heads
self.kv_dim = config.vision_config.hidden_size
self.hidden_features = config.text_config.hidden_size
self.output_dim = config.text_config.hidden_size
self.query = nn.Parameter(torch.zeros(config.max_value_projector_patch_to_query_dict, self.in_features))
self.cross_attn = AriaCrossAttention(config)
self.layer_norm = nn.LayerNorm(self.in_features)
self.feed_forward = AriaProjectorMLP(self.in_features, self.hidden_features, self.output_dim)
def forward(self, key_value_states: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
"""
Forward pass of the Projector module.
Args:
key_value_states (`torch.Tensor`):
Input tensor of shape (batch_size, num_patches, kv_dim).
attn_mask (`torch.Tensor`, *optional*, default is None):
Attention mask.
Returns:
`torch.Tensor`: Output tensor of shape (batch_size, query_number, output_dim).
"""
batch_size, num_patches = key_value_states.shape[0], key_value_states.shape[1]
if num_patches not in self.patch_to_query_dict.keys():
raise KeyError(
f"Number of patches {num_patches} not found in patch_to_query_dict amongst possible values {self.patch_to_query_dict.keys()}."
)
query_num = self.patch_to_query_dict[num_patches]
queries = self.query[:query_num].unsqueeze(0).repeat(batch_size, 1, 1)
if attn_mask is not None:
attn_mask = attn_mask.repeat_interleave(self.num_heads, 0)
attn_mask = attn_mask.unsqueeze(1).expand(-1, queries.size(1), -1)
attention_out = self.cross_attn(key_value_states, queries, attn_mask=attn_mask)
out = self.feed_forward(self.layer_norm(attention_out))
return out
def _get_patch_output_size(image, target_resolution, input_data_format):
original_height, original_width = get_image_size(image, channel_dim=input_data_format)
target_height, target_width = target_resolution
scale_w = target_width / original_width
scale_h = target_height / original_height
if scale_w < scale_h:
new_width = target_width
new_height = min(math.ceil(original_height * scale_w), target_height)
else:
new_height = target_height
new_width = min(math.ceil(original_width * scale_h), target_width)
return new_height, new_width
class AriaImageProcessor(BaseImageProcessor):
"""
A vision processor for the Aria model that handles image preprocessing.
Initialize the AriaImageProcessor.
Args:
image_mean (`list`, *optional*, defaults to [0.5, 0.5, 0.5]):
Mean values for normalization.
image_std (`list`, *optional*, defaults to [0.5, 0.5, 0.5]):
Standard deviation values for normalization.
max_image_size (`int`, *optional*, defaults to 980):
Maximum image size.
min_image_size (`int`, *optional*, defaults to 336):
Minimum image size.
split_resolutions (`list`, *optional*, defaults to a list of optimal,resolutions as tuples):
The optimal resolutions for splitting the image.
split_image (`bool`, *optional*, defaults to `False`):
Whether to split the image.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image.
resample (PILImageResampling, *optional*, defaults to `BICUBIC`):
The resampling filter to use if resizing the image.
"""
model_input_names = ["pixel_values", "pixel_mask", "num_crops"]
def __init__(
self,
image_mean: List[float] = None,
image_std: List[float] = None,
max_image_size: int = 980,
min_image_size: int = 336,
split_resolutions: Optional[List[Tuple[int, int]]] = None,
split_image: Optional[bool] = False,
do_convert_rgb: Optional[bool] = True,
do_normalize: Optional[bool] = True,
resample: PILImageResampling = PILImageResampling.BICUBIC,
**kwargs,
):
super().__init__(**kwargs)
if image_mean is None:
image_mean = [0.5, 0.5, 0.5]
if image_std is None:
image_std = [0.5, 0.5, 0.5]
self.max_image_size = max_image_size
self.min_image_size = min_image_size
self.image_mean = image_mean
self.image_std = image_std
self.split_image = split_image
if split_resolutions is None:
split_resolutions = [(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (2, 4), (2, 3), (2, 2), (2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (6, 1), (7, 1), (8, 1)] # fmt: skip
split_resolutions = [(el[0] * 490, el[1] * 490) for el in split_resolutions]
self.split_resolutions = split_resolutions
self.do_convert_rgb = do_convert_rgb
self.do_normalize = do_normalize
self.resample = resample
def preprocess(
self,
images: Union[ImageInput, List[ImageInput]],
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
max_image_size: Optional[int] = None,
min_image_size: Optional[int] = None,
split_image: Optional[bool] = None,
do_convert_rgb: Optional[bool] = None,
do_normalize: Optional[bool] = None,
resample: PILImageResampling = None,
return_tensors: Optional[Union[str, TensorType]] = "pt",
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Process a list of images.
Args:
images (ImageInput or list of ImageInput):
The input image or a list of images.
image_mean (`list`, *optional*, defaults to [0.5, 0.5, 0.5]):
Mean values for normalization.
image_std (`list`, *optional*, defaults to [0.5, 0.5, 0.5]):
Standard deviation values for normalization.
max_image_size (`int`, *optional*, defaults to `self.max_image_size` (980)):
Maximum image size.
min_image_size (`int`, *optional*, defaults to `self.min_image_size` (336)):
Minimum image size.
split_image (`bool`, *optional*, defaults to `self.split_image` (False)):
Whether to split the image.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb` (True)):
Whether to convert the image to RGB.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize` (True)):
Whether to normalize the image.
resample (PILImageResampling, *optional*, defaults to `self.resample` (BICUBIC)):
The resampling filter to use if resizing the image.
return_tensors (`str` or `TensorType`, *optional*, defaults to "pt"):
The type of tensor to return.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`:
image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`:
image in (height, width, num_channels) format.
If unset, will use same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`:
image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`:
image in (height, width, num_channels) format.
If unset, will use the inferred format of the input image.
Returns:
BatchFeature:
A BatchFeature object containing:
- 'pixel_values':
Tensor of processed image pixel values.
- 'pixel_mask':
Boolean pixel mask. This mask is a 2D tensor of shape (max_image_size, max_image_size) where:
- True (1) values indicate pixels that belong to the original resized image.
- False (0) values indicate pixels that are part of the padding.
The mask helps distinguish between actual image content and padded areas in subsequent processing steps.
- 'num_crops':
The maximum number of crops across all images.
"""
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
max_image_size = max_image_size if max_image_size is not None else self.max_image_size
min_image_size = min_image_size if min_image_size is not None else self.min_image_size
split_image = split_image if split_image is not None else self.split_image
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
resample = resample if resample is not None else self.resample
if max_image_size not in [490, 980]:
raise ValueError("max_image_size must be either 490 or 980")
images = make_flat_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
resample=resample,
)
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
pixel_values = []
pixel_masks = []
num_crops = None
for image in images:
if split_image:
crop_images = self.get_image_patches(
image,
self.split_resolutions,
max_image_size,
resample,
data_format=input_data_format,
input_data_format=input_data_format,
)
else:
crop_images = [image]
if num_crops is None or len(crop_images) > num_crops:
num_crops = len(crop_images)
for crop_image in crop_images:
# At this point the scale is the rescaling factor that would bring the image to max_size in its larger dimension
h, w = get_image_size(crop_image)
scale = max_image_size / max(h, w)
if w >= h:
new_size = (max(int(h * scale), min_image_size), max_image_size) # h, w
else:
new_size = (max_image_size, max(int(w * scale), min_image_size)) # h, w
crop_image_resized = resize(
crop_image,
new_size,
resample=resample,
data_format=input_data_format,
input_data_format=input_data_format,
)
padding_bottom, padding_right = max_image_size - new_size[0], max_image_size - new_size[1]
crop_image_padded = pad(
crop_image_resized,
((0, padding_bottom), (0, padding_right)),
data_format=input_data_format,
input_data_format=input_data_format,
)
# Create a pixel mask
pixel_mask = np.zeros((max_image_size, max_image_size), dtype=bool)
pixel_mask[: new_size[0], : new_size[1]] = 1
pixel_masks.append(pixel_mask)
if do_normalize:
crop_image_padded = self.normalize(
crop_image_padded / 255.0,
self.image_mean,
self.image_std,
data_format=input_data_format,
input_data_format=input_data_format,
)
crop_image_padded = (
to_channel_dimension_format(crop_image_padded, data_format, input_data_format)
if data_format is not None
else crop_image_padded
)
pixel_values.append(crop_image_padded)
return BatchFeature(
data={
"pixel_values": np.stack(pixel_values, axis=0),
"pixel_mask": np.stack(pixel_masks, axis=0),
"num_crops": num_crops,
},
tensor_type=return_tensors,
)
def _resize_for_patching(
self, image: np.array, target_resolution: tuple, resample, input_data_format: ChannelDimension
) -> np.array:
"""
Resizes an image to a target resolution while maintaining aspect ratio.
Args:
image (np.array):
The input image.
target_resolution (tuple):
The target resolution (height, width) of the image.
resample (`PILImageResampling`):
Resampling filter to use if resizing the image.
input_data_format (`ChannelDimension` or `str`):
The channel dimension format of the input image.
Returns:
np.array: The resized and padded image.
"""
new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format)
# Resize the image
resized_image = resize(image, (new_height, new_width), resample=resample, input_data_format=input_data_format)
return resized_image
def _pad_for_patching(
self, image: np.array, target_resolution: tuple, input_data_format: ChannelDimension
) -> np.array:
"""
Pad an image to a target resolution while maintaining aspect ratio.
"""
target_height, target_width = target_resolution
new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format)
paste_x = (target_width - new_width) // 2
paste_y = (target_height - new_height) // 2
padded_image = self.pad(image, padding=((paste_y, paste_y), (paste_x, paste_x)))
return padded_image
def pad(
self,
image: np.ndarray,
padding: Union[int, Tuple[int, int], Iterable[Tuple[int, int]]],
mode: PaddingMode = PaddingMode.CONSTANT,
constant_values: Union[float, Iterable[float]] = 0.0,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pads the `image` with the specified `padding` and `mode`. Padding can be in the (`height`, `width`)
dimension of in the (`num_patches`) dimension. In the second case an iterable if tuples is expected
as input.
Args:
image (`np.ndarray`):
The image to pad.
padding (`int` or `Tuple[int, int]` or `Iterable[Tuple[int, int]]`):
Padding to apply to the edges of the height, width axes. Can be one of three formats:
- `((before_height, after_height), (before_width, after_width))` unique pad widths for each axis.
- `((before, after),)` yields same before and after pad for height and width.
- `(pad,)` or int is a shortcut for before = after = pad width for all axes.
mode (`PaddingMode`):
The padding mode to use. Can be one of:
- `"constant"`: pads with a constant value.
- `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the
vector along each axis.
- `"replicate"`: pads with the replication of the last value on the edge of the array along each axis.
- `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array.
constant_values (`float` or `Iterable[float]`, *optional*):
The value to use for the padding if `mode` is `"constant"`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use the inferred format of the input image.
Returns:
`np.ndarray`: The padded image.
"""
# call the general `pad` if padding on `height/width`, otherwise it's the `num_patched` dim
if isinstance(padding, int) or len(padding) != 4:
return pad(image, padding, mode, constant_values, data_format, input_data_format)
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
padding_mode_mapping = {
PaddingMode.CONSTANT: "constant",
PaddingMode.REFLECT: "reflect",
PaddingMode.REPLICATE: "edge",
PaddingMode.SYMMETRIC: "symmetric",
}
image = np.pad(image, padding, mode=padding_mode_mapping[mode], constant_values=constant_values)
image = (
to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
)
return image
def get_image_patches(
self,
image: np.array,
grid_pinpoints: List[Tuple[int, int]],
patch_size: int,
resample: PILImageResampling,
data_format: ChannelDimension,
input_data_format: ChannelDimension,
) -> List[np.array]:
"""
Process an image with variable resolutions by dividing it into patches.
Args:
image (`np.array`):
The input image to be processed.
grid_pinpoints (List[Tuple[int, int]]):
A list of possible resolutions as tuples.
patch_size (`int`):
Size of the patches to divide the image into.
resample (`PILImageResampling`):
Resampling filter to use if resizing the image.
data_format (`ChannelDimension` or `str`):
The channel dimension format for the output image.
input_data_format (`ChannelDimension` or `str`):
The channel dimension format of the input image.
Returns:
`List[np.array]`: A list of NumPy arrays containing the processed image patches.
"""
if not isinstance(grid_pinpoints, list):
raise TypeError("grid_pinpoints must be a list of possible resolutions.")
possible_resolutions = grid_pinpoints
image_size = get_image_size(image, channel_dim=input_data_format)
best_resolution = select_best_resolution(image_size, possible_resolutions)
resized_image = self._resize_for_patching(
image, best_resolution, resample=resample, input_data_format=input_data_format
)
padded_image = self._pad_for_patching(resized_image, best_resolution, input_data_format=input_data_format)
patches = divide_to_patches(padded_image, patch_size=patch_size, input_data_format=input_data_format)
# make sure that all patches are in the input data format
patches = [
to_channel_dimension_format(patch, channel_dim=data_format, input_channel_dim=input_data_format)
for patch in patches
]
return patches
class AriaProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
},
"images_kwargs": {
"max_image_size": 980,
"split_image": False,
},
"return_tensors": TensorType.PYTORCH,
}
class AriaProcessor(ProcessorMixin):
"""
AriaProcessor is a processor for the Aria model which wraps the Aria image preprocessor and the LLama slow tokenizer.
Args:
image_processor (`AriaImageProcessor`, *optional*):
The AriaImageProcessor to use for image preprocessing.
tokenizer (`PreTrainedTokenizerBase`, *optional*):
An instance of [`PreTrainedTokenizerBase`]. This should correspond with the model's text model. The tokenizer is a required input.
chat_template (`str`, *optional*):
A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string.
size_conversion (`Dict`, *optional*):
A dictionary indicating size conversions for images.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template", "size_conversion"]
image_processor_class = "AriaImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,
tokenizer: Union[AutoTokenizer, str] = None,
chat_template: Optional[str] = None,
size_conversion: Optional[Dict[Union[float, int], int]] = None,
):
if size_conversion is None:
size_conversion = {490: 128, 980: 256}
self.size_conversion = {int(k): v for k, v in size_conversion.items()}
if tokenizer is not None and tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.unk_token
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
images: Optional[ImageInput] = None,
audio=None,
videos=None,
**kwargs: Unpack[AriaProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s).
Args:
text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`ImageInput`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **pixel_mask** -- Pixel mask to be fed to a model. Returned when `images` is not `None`.
"""
output_kwargs = self._merge_kwargs(
AriaProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
if images is not None:
image_inputs = self.image_processor(
images,
**output_kwargs["images_kwargs"],
)
# expand the image_token according to the num_crops and tokens per image
tokens_per_image = self.size_conversion[image_inputs.pixel_values.shape[2]]
prompt_strings = []
num_crops = image_inputs.pop("num_crops") * tokens_per_image
for sample in text:
sample = sample.replace(self.tokenizer.image_token, self.tokenizer.image_token * num_crops)
prompt_strings.append(sample)
else:
image_inputs = {}
prompt_strings = text
text_inputs = self.tokenizer(
prompt_strings,
**output_kwargs["text_kwargs"],
)
return BatchFeature(data={**text_inputs, **image_inputs})
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
# Remove `num_crops`, it is popped and used only when processing. Make a copy of list when remocing
# otherwise `self.image_processor.model_input_names` is also modified
image_processor_input_names = [name for name in image_processor_input_names if name != "num_crops"]
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
class AriaSharedExpertsMLP(LlamaMLP):
"""
Shared Expert MLP for shared experts.
Unlike routed experts, shared experts process all tokens without routing.
This class reconfigures the intermediate size in comparison to the LlamaMLP.
Args:
config (`AriaTextConfig`): Configuration object for the Aria language model.
"""
def __init__(self, config: AriaTextConfig):
super().__init__(self)
self.intermediate_size = config.intermediate_size * config.moe_num_shared_experts
class AriaGroupedExpertsGemm(nn.Module):
"""
Grouped GEMM (General Matrix Multiplication) module for efficient expert computation.
This module utilizes the grouped_gemm library (https://github.com/fanshiqing/grouped_gemm)
for optimized performance. If the grouped_gemm library is not installed, it gracefully
falls back to a sequential GEMM implementation, which may be slower but ensures
functionality.
Args:
in_features (`int`):
Number of input features.
out_features (`int`):
Number of output features.
groups (`int`):
Number of expert groups.
"""
def __init__(self, in_features, out_features, groups):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.groups = groups
self.weight = nn.Parameter(torch.empty(groups, in_features, out_features))
def forward(self, input, tokens_per_expert):
"""
Perform grouped matrix multiplication.
Args:
input (`torch.Tensor`):
Input tensor of shape (num_tokens, in_features).
tokens_per_expert (`torch.Tensor`):
Number of tokens assigned to each expert.
Returns:
torch.Tensor: Output tensor of shape (num_tokens, out_features).
"""
return sequential_experts_gemm(
input,
self.weight,
tokens_per_expert.cpu(),
)
class AriaGroupedExpertsMLP(nn.Module):
"""
Grouped MLP module for Mixture of Experts.
Args:
config (`AriaTextConfig`):
Configuration object for the model.
"""
def __init__(self, config: AriaTextConfig) -> None:
super().__init__()
self.config = config
self.fc1 = AriaGroupedExpertsGemm(config.hidden_size, config.intermediate_size * 2, config.moe_num_experts)
self.fc2 = AriaGroupedExpertsGemm(config.intermediate_size, config.hidden_size, config.moe_num_experts)
def forward(self, permuted_tokens, tokens_per_expert):
"""
Forward pass of the Grouped MLP.
Args:
permuted_tokens (torch.Tensor): Permuted input tokens.
tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert.
Returns:
torch.Tensor: Output tensor after passing through the MLP.
"""
fc1_output = self.fc1(permuted_tokens, tokens_per_expert)
projection, gate = torch.chunk(fc1_output, 2, dim=-1)
fc1_output = nn.functional.silu(projection) * gate
fc2_output = self.fc2(fc1_output, tokens_per_expert)
return fc2_output
# Token permutation adapted from https://github.com/NVIDIA/Megatron-LM/blob/54f1f78529cbc2b9cddad313e7f9d96ac0420a27/megatron/core/transformer/moe/token_dispatcher.py#L291-L587
class AriaTextMoELayer(nn.Module):
"""
Aria Text Mixture of Experts (MoE) Layer.
This layer applies a gating mechanism to route input tokens to different experts.
Args:
config (`AriaTextConfig`):
Configuration object for the text component of the model.
"""
def __init__(self, config: AriaTextConfig):
super().__init__()
self.router = nn.Linear(config.hidden_size, config.moe_num_experts, bias=False)
self.experts = AriaGroupedExpertsMLP(config)
self.shared_experts = AriaSharedExpertsMLP(config)
self.config = config
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the MoE Layer.
Args:
hidden_states (`torch.Tensor`):
Input tensor of shape (batch_size, sequence_length, hidden_size).
Returns:
torch.Tensor: Output tensor after passing through the MoE layer.
Process:
1. Route tokens to experts using the router.
2. Permute tokens based on routing decisions.
3. Process tokens through experts.
4. Unpermute and combine expert outputs.
5. Add shared expert output to the final result.
"""
original_shape = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_states.size(-1))
# Top K Routing
logits = self.router(hidden_states)
top_logits, top_indices = torch.topk(logits, k=self.config.moe_topk, dim=1)
scores = nn.functional.softmax(top_logits, dim=-1)
original_dtype = top_indices.dtype
tokens_per_expert = torch.histc(
top_indices.flatten().to(torch.float32),
bins=self.config.moe_num_experts,
min=0,
max=self.config.moe_num_experts - 1,
).to(original_dtype)
indices = top_indices
# Token permutation
flatten_indices = indices.view(-1)
sorted_indices = torch.argsort(flatten_indices)
permuted_tokens = hidden_states.index_select(0, sorted_indices // self.config.moe_topk)
# Process through experts
expert_output = self.experts(permuted_tokens, tokens_per_expert)
# Token unpermutation
unpermuted_tokens = torch.zeros(
(scores.shape[0] * self.config.moe_topk, expert_output.size(1)),
dtype=expert_output.dtype,
device=expert_output.device,
)
unpermuted_tokens.index_copy_(0, sorted_indices, expert_output)
unpermuted_tokens = unpermuted_tokens.view(-1, self.config.moe_topk, expert_output.size(1))
output = (unpermuted_tokens * scores.unsqueeze(-1)).sum(dim=1).view(original_shape)
# Add shared expert output
shared_expert_output = self.shared_experts(hidden_states.view(original_shape))
return output + shared_expert_output
class AriaTextDecoderLayer(LlamaDecoderLayer):
"""
Aria Text Decoder Layer.
This class defines a single decoder layer in the language model, incorporating self-attention and Mixture of Experts (MoE) feed-forward network.
Args:
config (`AriaTextConfig`):
Configuration object for the text component of the model.
layer_idx (`int`):
Index of the layer.
"""
def __init__(self, config: AriaTextConfig, layer_idx: int):
super().__init__(self)
self.mlp = AriaTextMoELayer(config)
class AriaTextPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
"""
config_class = AriaConfig
base_model_prefix = "model"
_no_split_modules = ["AriaTextDecoderLayer", "AriaGroupedExpertsGemm"]
supports_gradient_checkpointing = True
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = False
_supports_sdpa = True
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, AriaGroupedExpertsGemm):
module.weight.data.normal_(mean=0.0, std=std)
elif isinstance(module, nn.Conv2d):
module.weight.data.normal_(mean=0.0, std=std)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.zero_()
class AriaPreTrainedModel(LlamaPreTrainedModel):
_supports_static_cache = False # MoE models don't work with torch.compile (dynamic slicing)
_supports_attention_backend = False
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, AriaProjector):
nn.init.trunc_normal_(module.query, std=std)
class AriaTextModel(LlamaModel):
def __init__(self, config: AriaTextConfig):
super().__init__(config)
self.layers = nn.ModuleList(
[AriaTextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.gradient_checkpointing = False
self.post_init()
class AriaTextForCausalLM(AriaTextPreTrainedModel, LlamaForCausalLM):
"""
Aria model for causal language modeling tasks.
This class extends `LlamaForCausalLM` to incorporate the Mixture of Experts (MoE) approach,
allowing for more efficient and scalable language modeling.
Args:
config (`AriaTextConfig`):
Configuration object for the model.
"""
_tied_weights_keys = ["lm_head.weight"]
config_class = AriaTextConfig
def __init__(self, config: AriaTextConfig):
super().__init__(config)
self.model = AriaTextModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
class AriaCausalLMOutputWithPast(LlavaCausalLMOutputWithPast):
pass
ARIA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor`, *optional*):
Input token IDs.
pixel_values (`torch.FloatTensor`, *optional*):
Pixel values of the images.
pixel_mask (`torch.LongTensor`, *optional*):
Mask for the pixel values.
attention_mask (`torch.Tensor`, *optional*):
Attention mask.
position_ids (`torch.LongTensor`, *optional*):
Position IDs.
past_key_values (`List[torch.FloatTensor]`, *optional*):
Past key values for efficient processing.
inputs_embeds (`torch.FloatTensor`, *optional*):
Input embeddings.
labels (`torch.LongTensor`, *optional*):
Labels for computing the language modeling loss.
use_cache (`bool`, *optional*):
Whether to use the model's cache mechanism.
output_attentions (`bool`, *optional*):
Whether to output attention weights.
output_hidden_states (`bool`, *optional*):
Whether to output hidden states.
return_dict (`bool`, *optional*):
Whether to return a `ModelOutput` object.
logits_to_keep (`int` or `torch.Tensor`, *optional*, defaults to 0):
If an `int`, calculate logits for the last `logits_to_keep` tokens, or all `input_ids` if `0`.
Otherwise, slice according to the 1D tensor in the sequence length dimension
cache_position (`torch.LongTensor`, *optional*):
Cache positions.
**loss_kwargs:
Additional keyword arguments for loss calculation.
"""
ARIA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config (`AriaConfig`):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"""Aria model for conditional generation tasks.
This model combines a vision tower, a multi-modal projector, and a language model
to perform tasks that involve both image and text inputs.""",
ARIA_START_DOCSTRING,
)
class AriaForConditionalGeneration(AriaPreTrainedModel, GenerationMixin):
config_class = AriaConfig
_supports_flash_attn_2 = False
_supports_flex_attn = False
_supports_sdpa = False
_tied_weights_keys = ["language_model.lm_head.weight"]
def __init__(self, config: AriaConfig):
super().__init__(config)
self.vision_tower = AutoModel.from_config(config.vision_config)
self.multi_modal_projector = AriaProjector(config)
self.vocab_size = config.text_config.vocab_size
self.language_model = AutoModelForCausalLM.from_config(config.text_config)
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
self._use_flash_attention_2 = config.text_config._attn_implementation == "flash_attention_2"
self.post_init()
def _create_patch_attention_mask(self, pixel_mask):
if pixel_mask is None:
return None
patches_subgrid = pixel_mask.unfold(
dimension=1,
size=self.vision_tower.config.patch_size,
step=self.vision_tower.config.patch_size,
)
patches_subgrid = patches_subgrid.unfold(
dimension=2,
size=self.vision_tower.config.patch_size,
step=self.vision_tower.config.patch_size,
)
return (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def get_image_features(
self,
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.FloatTensor] = None,
vision_feature_layer: int = -1,
):
patch_attention_mask = self._create_patch_attention_mask(pixel_mask)
image_outputs = self.vision_tower(
pixel_values, patch_attention_mask=patch_attention_mask, output_hidden_states=True
)
image_attn_mask = None
if patch_attention_mask is not None:
flattened_mask = patch_attention_mask.flatten(1)
image_attn_mask = torch.logical_not(flattened_mask)
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
image_features = self.multi_modal_projector(selected_image_feature, attn_mask=image_attn_mask)
return image_features
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(ARIA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=AriaCausalLMOutputWithPast, config_class=AriaConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
pixel_mask: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
cache_position: Optional[torch.LongTensor] = None,
**loss_kwargs,
) -> AriaCausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or `model.image_token_id` (where `model` is your instance of `Idefics3ForConditionalGeneration`).
Tokens with indices set to `model.image_token_id` are ignored (masked), the loss is only
computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> import requests
>>> import torch
>>> from PIL import Image
>>> from io import BytesIO
>>> from transformers import AutoProcessor, AutoModel
>>> from transformers.image_utils import load_image
>>> # Note that passing the image urls (instead of the actual pil images) to the processor is also possible
>>> image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
>>> image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg")
>>> image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg")
>>> processor = AutoProcessor.from_pretrained("Rhymes-AI/Aria")
>>> model = AutoModel.from_pretrained("Rhymes-AI/Aria", torch_dtype=torch.bfloat16, device_map="auto")
>>> # Create inputs
>>> messages = [
... {
... "role": "user",
... "content": [
... {"type": "image"},
... {"type": "text", "text": "In this image, we can see the city of New York, and more specifically the Statue of Liberty."},
... {"type": "image"},
... {"type": "text", "text": "What can we see in this image?"},
... ]
... },
... {
... "role": "user",
... "content": [
... {"type": "image"},
... {"type": "text", "text": "In which city is that bridge located?"},
... ]
... }
... ]
>>> prompts = [processor.apply_chat_template([message], add_generation_prompt=True) for message in messages]
>>> images = [[image1, image2], [image3]]
>>> inputs = processor(text=prompts, images=images, padding=True, return_tensors="pt").to(model.device)
>>> # Generate
>>> generated_ids = model.generate(**inputs, max_new_tokens=256)
>>> generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
>>> print(generated_texts[0])
Assistant: There are buildings, trees, lights, and water visible in this image.
>>> print(generated_texts[1])
Assistant: The bridge is in San Francisco.
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
# 2. Merge text and images
if pixel_values is not None and inputs_embeds.shape[1] != 1:
if input_ids is None:
special_image_mask = inputs_embeds == self.get_input_embeddings()(
torch.tensor(self.config.image_token_index, dtype=torch.long, device=inputs_embeds.device)
)
n_image_tokens = (special_image_mask).sum(dim=1).sum(dim=0)[0]
else:
image_embeds = input_ids == self.config.image_token_index
special_image_mask = image_embeds.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
n_image_tokens = (image_embeds).sum(dim=1).sum(dim=0)
image_features = self.get_image_features(
pixel_values=pixel_values,
pixel_mask=pixel_mask,
vision_feature_layer=self.config.vision_feature_layer,
)
n_images, n_features_per_image = image_features.shape[0], image_features.shape[1]
n_image_features = n_images * n_features_per_image
if n_image_tokens != n_image_features:
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
outputs: CausalLMOutputWithPast = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
logits_to_keep=logits_to_keep,
cache_position=cache_position,
)
logits = outputs.logits
loss = None
if labels is not None:
loss = self.loss_function(
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **loss_kwargs
)
return AriaCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
pixel_values=None,
pixel_mask=None,
attention_mask=None,
cache_position=None,
logits_to_keep=None,
**kwargs,
):
model_inputs = self.language_model.prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**kwargs,
)
if cache_position[0] == 0:
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
# Otherwise we need pixel values to be passed to model
model_inputs["pixel_values"] = pixel_values
model_inputs["pixel_mask"] = pixel_mask
return model_inputs
__all__ = [
"AriaConfig",
"AriaTextConfig",
"AriaImageProcessor",
"AriaProcessor",
"AriaForConditionalGeneration",
"AriaPreTrainedModel",
"AriaTextPreTrainedModel",
"AriaTextModel",
"AriaTextForCausalLM",
]
```
|
===================================================================================================================================
SOURCE CODE FILE: processing_aria.py
LINES: 1
SIZE: 7.77 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\aria\processing_aria.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/aria/modular_aria.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_aria.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 The Rhymes-AI Teams Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils import PreTokenizedInput, TextInput
from ...utils import TensorType
from ..auto import AutoTokenizer
class AriaProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
},
"images_kwargs": {
"max_image_size": 980,
"split_image": False,
},
"return_tensors": TensorType.PYTORCH,
}
class AriaProcessor(ProcessorMixin):
"""
AriaProcessor is a processor for the Aria model which wraps the Aria image preprocessor and the LLama slow tokenizer.
Args:
image_processor (`AriaImageProcessor`, *optional*):
The AriaImageProcessor to use for image preprocessing.
tokenizer (`PreTrainedTokenizerBase`, *optional*):
An instance of [`PreTrainedTokenizerBase`]. This should correspond with the model's text model. The tokenizer is a required input.
chat_template (`str`, *optional*):
A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string.
size_conversion (`Dict`, *optional*):
A dictionary indicating size conversions for images.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template", "size_conversion"]
image_processor_class = "AriaImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,
tokenizer: Union[AutoTokenizer, str] = None,
chat_template: Optional[str] = None,
size_conversion: Optional[Dict[Union[float, int], int]] = None,
):
if size_conversion is None:
size_conversion = {490: 128, 980: 256}
self.size_conversion = {int(k): v for k, v in size_conversion.items()}
if tokenizer is not None and tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.unk_token
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
images: Optional[ImageInput] = None,
audio=None,
videos=None,
**kwargs: Unpack[AriaProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s).
Args:
text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`ImageInput`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **pixel_mask** -- Pixel mask to be fed to a model. Returned when `images` is not `None`.
"""
output_kwargs = self._merge_kwargs(
AriaProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
if images is not None:
image_inputs = self.image_processor(
images,
**output_kwargs["images_kwargs"],
)
# expand the image_token according to the num_crops and tokens per image
tokens_per_image = self.size_conversion[image_inputs.pixel_values.shape[2]]
prompt_strings = []
num_crops = image_inputs.pop("num_crops") * tokens_per_image
for sample in text:
sample = sample.replace(self.tokenizer.image_token, self.tokenizer.image_token * num_crops)
prompt_strings.append(sample)
else:
image_inputs = {}
prompt_strings = text
text_inputs = self.tokenizer(
prompt_strings,
**output_kwargs["text_kwargs"],
)
return BatchFeature(data={**text_inputs, **image_inputs})
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
# Remove `num_crops`, it is popped and used only when processing. Make a copy of list when remocing
# otherwise `self.image_processor.model_input_names` is also modified
image_processor_input_names = [name for name in image_processor_input_names if name != "num_crops"]
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
__all__ = ["AriaProcessor"]
```
|
=====================================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.08 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\audio_spectrogram_transformer\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import *
from .feature_extraction_audio_spectrogram_transformer import *
from .modeling_audio_spectrogram_transformer import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
========================================================================================================================================================================================
SOURCE CODE FILE: configuration_audio_spectrogram_transformer.py
LINES: 1
SIZE: 5.77 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\audio_spectrogram_transformer\configuration_audio_spectrogram_transformer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 Google AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Audio Spectogram Transformer (AST) model configuration"""
from typing import Any, Dict
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class ASTConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ASTModel`]. It is used to instantiate an AST
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the AST
[MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
frequency_stride (`int`, *optional*, defaults to 10):
Frequency stride to use when patchifying the spectrograms.
time_stride (`int`, *optional*, defaults to 10):
Temporal stride to use when patchifying the spectrograms.
max_length (`int`, *optional*, defaults to 1024):
Temporal dimension of the spectrograms.
num_mel_bins (`int`, *optional*, defaults to 128):
Frequency dimension of the spectrograms (number of Mel-frequency bins).
Example:
```python
>>> from transformers import ASTConfig, ASTModel
>>> # Initializing a AST MIT/ast-finetuned-audioset-10-10-0.4593 style configuration
>>> configuration = ASTConfig()
>>> # Initializing a model (with random weights) from the MIT/ast-finetuned-audioset-10-10-0.4593 style configuration
>>> model = ASTModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "audio-spectrogram-transformer"
def __init__(
self,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-12,
patch_size=16,
qkv_bias=True,
frequency_stride=10,
time_stride=10,
max_length=1024,
num_mel_bins=128,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.patch_size = patch_size
self.qkv_bias = qkv_bias
self.frequency_stride = frequency_stride
self.time_stride = time_stride
self.max_length = max_length
self.num_mel_bins = num_mel_bins
# Overwritten from the parent class: AST is not compatible with `generate`, but has a config parameter sharing the
# same name (`max_length`). Sharing the same name triggers checks regarding the config -> generation_config
# generative parameters deprecation cycle, overwriting this function prevents this from happening.
def _get_non_default_generation_parameters(self) -> Dict[str, Any]:
return {}
__all__ = ["ASTConfig"]
```
|
=============================================================================================================================================================================================
SOURCE CODE FILE: feature_extraction_audio_spectrogram_transformer.py
LINES: 1
SIZE: 9.70 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\audio_spectrogram_transformer\feature_extraction_audio_spectrogram_transformer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Feature extractor class for Audio Spectrogram Transformer.
"""
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, is_speech_available, is_torch_available, logging
if is_speech_available():
import torchaudio.compliance.kaldi as ta_kaldi
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class ASTFeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs a Audio Spectrogram Transformer (AST) feature extractor.
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
most of the main methods. Users should refer to this superclass for more information regarding those methods.
This class extracts mel-filter bank features from raw speech using TorchAudio if installed or using numpy
otherwise, pads/truncates them to a fixed length and normalizes them using a mean and standard deviation.
Args:
feature_size (`int`, *optional*, defaults to 1):
The feature dimension of the extracted features.
sampling_rate (`int`, *optional*, defaults to 16000):
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
num_mel_bins (`int`, *optional*, defaults to 128):
Number of Mel-frequency bins.
max_length (`int`, *optional*, defaults to 1024):
Maximum length to which to pad/truncate the extracted features.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the log-Mel features using `mean` and `std`.
mean (`float`, *optional*, defaults to -4.2677393):
The mean value used to normalize the log-Mel features. Uses the AudioSet mean by default.
std (`float`, *optional*, defaults to 4.5689974):
The standard deviation value used to normalize the log-Mel features. Uses the AudioSet standard deviation
by default.
return_attention_mask (`bool`, *optional*, defaults to `False`):
Whether or not [`~ASTFeatureExtractor.__call__`] should return `attention_mask`.
"""
model_input_names = ["input_values", "attention_mask"]
def __init__(
self,
feature_size=1,
sampling_rate=16000,
num_mel_bins=128,
max_length=1024,
padding_value=0.0,
do_normalize=True,
mean=-4.2677393,
std=4.5689974,
return_attention_mask=False,
**kwargs,
):
super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
self.num_mel_bins = num_mel_bins
self.max_length = max_length
self.do_normalize = do_normalize
self.mean = mean
self.std = std
self.return_attention_mask = return_attention_mask
if not is_speech_available():
mel_filters = mel_filter_bank(
num_frequency_bins=257,
num_mel_filters=self.num_mel_bins,
min_frequency=20,
max_frequency=sampling_rate // 2,
sampling_rate=sampling_rate,
norm=None,
mel_scale="kaldi",
triangularize_in_mel_space=True,
)
self.mel_filters = mel_filters
self.window = window_function(400, "hann", periodic=False)
def _extract_fbank_features(
self,
waveform: np.ndarray,
max_length: int,
) -> np.ndarray:
"""
Get mel-filter bank features using TorchAudio. Note that TorchAudio requires 16-bit signed integers as inputs
and hence the waveform should not be normalized before feature extraction.
"""
# waveform = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
if is_speech_available():
waveform = torch.from_numpy(waveform).unsqueeze(0)
fbank = ta_kaldi.fbank(
waveform,
sample_frequency=self.sampling_rate,
window_type="hanning",
num_mel_bins=self.num_mel_bins,
)
else:
waveform = np.squeeze(waveform)
fbank = spectrogram(
waveform,
self.window,
frame_length=400,
hop_length=160,
fft_length=512,
power=2.0,
center=False,
preemphasis=0.97,
mel_filters=self.mel_filters,
log_mel="log",
mel_floor=1.192092955078125e-07,
remove_dc_offset=True,
).T
fbank = torch.from_numpy(fbank)
n_frames = fbank.shape[0]
difference = max_length - n_frames
# pad or truncate, depending on difference
if difference > 0:
pad_module = torch.nn.ZeroPad2d((0, 0, 0, difference))
fbank = pad_module(fbank)
elif difference < 0:
fbank = fbank[0:max_length, :]
fbank = fbank.numpy()
return fbank
def normalize(self, input_values: np.ndarray) -> np.ndarray:
return (input_values - (self.mean)) / (self.std * 2)
def __call__(
self,
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
sampling_rate: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> BatchFeature:
"""
Main method to featurize and prepare for the model one or several sequence(s).
Args:
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
stereo, i.e. single float per timestep.
sampling_rate (`int`, *optional*):
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
f" {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
f"It is strongly recommended to pass the `sampling_rate` argument to `{self.__class__.__name__}()`. "
"Failing to do so can result in silent errors that might be hard to debug."
)
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
is_batched = is_batched_numpy or (
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
)
if is_batched:
raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech]
elif not is_batched and not isinstance(raw_speech, np.ndarray):
raw_speech = np.asarray(raw_speech, dtype=np.float32)
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
raw_speech = raw_speech.astype(np.float32)
# always return batch
if not is_batched:
raw_speech = [raw_speech]
# extract fbank features and pad/truncate to max_length
features = [self._extract_fbank_features(waveform, max_length=self.max_length) for waveform in raw_speech]
# convert into BatchFeature
padded_inputs = BatchFeature({"input_values": features})
# make sure list is in array format
input_values = padded_inputs.get("input_values")
if isinstance(input_values[0], list):
padded_inputs["input_values"] = [np.asarray(feature, dtype=np.float32) for feature in input_values]
# normalization
if self.do_normalize:
padded_inputs["input_values"] = [self.normalize(feature) for feature in input_values]
if return_tensors is not None:
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
return padded_inputs
__all__ = ["ASTFeatureExtractor"]
```
|
===================================================================================================================================================================================
SOURCE CODE FILE: modeling_audio_spectrogram_transformer.py
LINES: 1
SIZE: 26.73 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\audio_spectrogram_transformer\modeling_audio_spectrogram_transformer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 MIT and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Audio Spectrogram Transformer (AST) model."""
from typing import Callable, Dict, List, Optional, Set, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, SequenceClassifierOutput
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_audio_spectrogram_transformer import ASTConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "ASTConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "MIT/ast-finetuned-audioset-10-10-0.4593"
_EXPECTED_OUTPUT_SHAPE = [1, 1214, 768]
# Audio classification docstring
_SEQ_CLASS_CHECKPOINT = "MIT/ast-finetuned-audioset-10-10-0.4593"
_SEQ_CLASS_EXPECTED_OUTPUT = "'Speech'"
_SEQ_CLASS_EXPECTED_LOSS = 0.17
class ASTEmbeddings(nn.Module):
"""
Construct the CLS token, position and patch embeddings.
"""
def __init__(self, config: ASTConfig) -> None:
super().__init__()
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.distillation_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.patch_embeddings = ASTPatchEmbeddings(config)
frequency_out_dimension, time_out_dimension = self.get_shape(config)
num_patches = frequency_out_dimension * time_out_dimension
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 2, config.hidden_size))
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.config = config
def get_shape(self, config):
# see Karpathy's cs231n blog on how to calculate the output dimensions
# https://cs231n.github.io/convolutional-networks/#conv
frequency_out_dimension = (config.num_mel_bins - config.patch_size) // config.frequency_stride + 1
time_out_dimension = (config.max_length - config.patch_size) // config.time_stride + 1
return frequency_out_dimension, time_out_dimension
def forward(self, input_values: torch.Tensor) -> torch.Tensor:
batch_size = input_values.shape[0]
embeddings = self.patch_embeddings(input_values)
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
distillation_tokens = self.distillation_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, distillation_tokens, embeddings), dim=1)
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings)
return embeddings
class ASTPatchEmbeddings(nn.Module):
"""
This class turns `input_values` into the initial `hidden_states` (patch embeddings) of shape `(batch_size,
seq_length, hidden_size)` to be consumed by a Transformer.
"""
def __init__(self, config):
super().__init__()
patch_size = config.patch_size
frequency_stride = config.frequency_stride
time_stride = config.time_stride
self.projection = nn.Conv2d(
1, config.hidden_size, kernel_size=(patch_size, patch_size), stride=(frequency_stride, time_stride)
)
def forward(self, input_values: torch.Tensor) -> torch.Tensor:
input_values = input_values.unsqueeze(1)
input_values = input_values.transpose(2, 3)
embeddings = self.projection(input_values).flatten(2).transpose(1, 2)
return embeddings
# Copied from transformers.models.vit.modeling_vit.eager_attention_forward
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
# Take the dot product between "query" and "key" to get the raw attention scores.
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling
# Normalize the attention scores to probabilities.
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
# Mask heads if we want to
if attention_mask is not None:
attn_weights = attn_weights * attention_mask
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->AST
class ASTSelfAttention(nn.Module):
def __init__(self, config: ASTConfig) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.config = config
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.dropout_prob = config.attention_probs_dropout_prob
self.scaling = self.attention_head_size**-0.5
self.is_causal = False
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(self.query(hidden_states))
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and output_attentions:
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
context_layer, attention_probs = attention_interface(
self,
query_layer,
key_layer,
value_layer,
head_mask,
is_causal=self.is_causal,
scaling=self.scaling,
dropout=0.0 if not self.training else self.dropout_prob,
)
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.reshape(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->AST
class ASTSelfOutput(nn.Module):
"""
The residual connection is defined in ASTLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: ASTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->AST
class ASTAttention(nn.Module):
def __init__(self, config: ASTConfig) -> None:
super().__init__()
self.attention = ASTSelfAttention(config)
self.output = ASTSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads: Set[int]) -> None:
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->AST
class ASTIntermediate(nn.Module):
def __init__(self, config: ASTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->AST
class ASTOutput(nn.Module):
def __init__(self, config: ASTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
# Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->AST,VIT->AST
class ASTLayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: ASTConfig) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = ASTAttention(config)
self.intermediate = ASTIntermediate(config)
self.output = ASTOutput(config)
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in AST, layernorm is applied before self-attention
head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection
hidden_states = attention_output + hidden_states
# in AST, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
# second residual connection is done here
layer_output = self.output(layer_output, hidden_states)
outputs = (layer_output,) + outputs
return outputs
# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->AST
class ASTEncoder(nn.Module):
def __init__(self, config: ASTConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([ASTLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class ASTPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ASTConfig
base_model_prefix = "audio_spectrogram_transformer"
main_input_name = "input_values"
supports_gradient_checkpointing = True
_supports_sdpa = True
_supports_flash_attn_2 = True
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# `trunc_normal_cpu` not implemented in `half` issues
module.weight.data = nn.init.trunc_normal_(
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
).to(module.weight.dtype)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, ASTEmbeddings):
module.cls_token.data.zero_()
module.position_embeddings.data.zero_()
module.distillation_token.data.zero_()
AUDIO_SPECTROGRAM_TRANSFORMER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`ASTConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
AUDIO_SPECTROGRAM_TRANSFORMER_INPUTS_DOCSTRING = r"""
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, max_length, num_mel_bins)`):
Float values mel features extracted from the raw audio waveform. Raw audio waveform can be obtained by
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
tensor of type `torch.FloatTensor`. See [`~ASTFeatureExtractor.__call__`]
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare AST Model transformer outputting raw hidden-states without any specific head on top.",
AUDIO_SPECTROGRAM_TRANSFORMER_START_DOCSTRING,
)
class ASTModel(ASTPreTrainedModel):
def __init__(self, config: ASTConfig) -> None:
super().__init__(config)
self.config = config
self.embeddings = ASTEmbeddings(config)
self.encoder = ASTEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> ASTPatchEmbeddings:
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(AUDIO_SPECTROGRAM_TRANSFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_values is None:
raise ValueError("You have to specify input_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(input_values)
encoder_outputs = self.encoder(
embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = (sequence_output[:, 0] + sequence_output[:, 1]) / 2
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class ASTMLPHead(nn.Module):
def __init__(self, config: ASTConfig):
super().__init__()
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dense = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
def forward(self, hidden_state):
hidden_state = self.layernorm(hidden_state)
hidden_state = self.dense(hidden_state)
return hidden_state
@add_start_docstrings(
"""
Audio Spectrogram Transformer model with an audio classification head on top (a linear layer on top of the pooled
output) e.g. for datasets like AudioSet, Speech Commands v2.
""",
AUDIO_SPECTROGRAM_TRANSFORMER_START_DOCSTRING,
)
class ASTForAudioClassification(ASTPreTrainedModel):
def __init__(self, config: ASTConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.audio_spectrogram_transformer = ASTModel(config)
# Classifier head
self.classifier = ASTMLPHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(AUDIO_SPECTROGRAM_TRANSFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_SEQ_CLASS_CHECKPOINT,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
)
def forward(
self,
input_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the audio classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.audio_spectrogram_transformer(
input_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = ["ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel"]
```
|
============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 16.63 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\auto\__init__.py
ENCODING: utf-8
```py
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_import_structure = {
"auto_factory": ["get_values"],
"configuration_auto": ["CONFIG_MAPPING", "MODEL_NAMES_MAPPING", "AutoConfig"],
"feature_extraction_auto": ["FEATURE_EXTRACTOR_MAPPING", "AutoFeatureExtractor"],
"image_processing_auto": ["IMAGE_PROCESSOR_MAPPING", "AutoImageProcessor"],
"processing_auto": ["PROCESSOR_MAPPING", "AutoProcessor"],
"tokenization_auto": ["TOKENIZER_MAPPING", "AutoTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_auto"] = [
"MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING",
"MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING",
"MODEL_FOR_AUDIO_XVECTOR_MAPPING",
"MODEL_FOR_BACKBONE_MAPPING",
"MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING",
"MODEL_FOR_CAUSAL_LM_MAPPING",
"MODEL_FOR_CTC_MAPPING",
"MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING",
"MODEL_FOR_DEPTH_ESTIMATION_MAPPING",
"MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING",
"MODEL_FOR_IMAGE_MAPPING",
"MODEL_FOR_IMAGE_SEGMENTATION_MAPPING",
"MODEL_FOR_IMAGE_TO_IMAGE_MAPPING",
"MODEL_FOR_KEYPOINT_DETECTION_MAPPING",
"MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING",
"MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING",
"MODEL_FOR_MASKED_LM_MAPPING",
"MODEL_FOR_MASK_GENERATION_MAPPING",
"MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
"MODEL_FOR_OBJECT_DETECTION_MAPPING",
"MODEL_FOR_PRETRAINING_MAPPING",
"MODEL_FOR_QUESTION_ANSWERING_MAPPING",
"MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING",
"MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
"MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
"MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING",
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING",
"MODEL_FOR_TEXT_ENCODING_MAPPING",
"MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING",
"MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING",
"MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
"MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING",
"MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING",
"MODEL_FOR_VISION_2_SEQ_MAPPING",
"MODEL_FOR_RETRIEVAL_MAPPING",
"MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING",
"MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING",
"MODEL_MAPPING",
"MODEL_WITH_LM_HEAD_MAPPING",
"MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING",
"MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING",
"MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING",
"MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING",
"AutoModel",
"AutoBackbone",
"AutoModelForAudioClassification",
"AutoModelForAudioFrameClassification",
"AutoModelForAudioXVector",
"AutoModelForCausalLM",
"AutoModelForCTC",
"AutoModelForDepthEstimation",
"AutoModelForImageClassification",
"AutoModelForImageSegmentation",
"AutoModelForImageToImage",
"AutoModelForInstanceSegmentation",
"AutoModelForKeypointDetection",
"AutoModelForMaskGeneration",
"AutoModelForTextEncoding",
"AutoModelForMaskedImageModeling",
"AutoModelForMaskedLM",
"AutoModelForMultipleChoice",
"AutoModelForNextSentencePrediction",
"AutoModelForObjectDetection",
"AutoModelForPreTraining",
"AutoModelForQuestionAnswering",
"AutoModelForSemanticSegmentation",
"AutoModelForSeq2SeqLM",
"AutoModelForSequenceClassification",
"AutoModelForSpeechSeq2Seq",
"AutoModelForTableQuestionAnswering",
"AutoModelForTextToSpectrogram",
"AutoModelForTextToWaveform",
"AutoModelForTokenClassification",
"AutoModelForUniversalSegmentation",
"AutoModelForVideoClassification",
"AutoModelForVision2Seq",
"AutoModelForVisualQuestionAnswering",
"AutoModelForDocumentQuestionAnswering",
"AutoModelWithLMHead",
"AutoModelForZeroShotImageClassification",
"AutoModelForZeroShotObjectDetection",
"AutoModelForImageTextToText",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_auto"] = [
"TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING",
"TF_MODEL_FOR_CAUSAL_LM_MAPPING",
"TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING",
"TF_MODEL_FOR_MASK_GENERATION_MAPPING",
"TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING",
"TF_MODEL_FOR_MASKED_LM_MAPPING",
"TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
"TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
"TF_MODEL_FOR_PRETRAINING_MAPPING",
"TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING",
"TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING",
"TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING",
"TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
"TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
"TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING",
"TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING",
"TF_MODEL_FOR_TEXT_ENCODING_MAPPING",
"TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
"TF_MODEL_FOR_VISION_2_SEQ_MAPPING",
"TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING",
"TF_MODEL_MAPPING",
"TF_MODEL_WITH_LM_HEAD_MAPPING",
"TFAutoModel",
"TFAutoModelForAudioClassification",
"TFAutoModelForCausalLM",
"TFAutoModelForImageClassification",
"TFAutoModelForMaskedImageModeling",
"TFAutoModelForMaskedLM",
"TFAutoModelForMaskGeneration",
"TFAutoModelForMultipleChoice",
"TFAutoModelForNextSentencePrediction",
"TFAutoModelForPreTraining",
"TFAutoModelForDocumentQuestionAnswering",
"TFAutoModelForQuestionAnswering",
"TFAutoModelForSemanticSegmentation",
"TFAutoModelForSeq2SeqLM",
"TFAutoModelForSequenceClassification",
"TFAutoModelForSpeechSeq2Seq",
"TFAutoModelForTableQuestionAnswering",
"TFAutoModelForTextEncoding",
"TFAutoModelForTokenClassification",
"TFAutoModelForVision2Seq",
"TFAutoModelForZeroShotImageClassification",
"TFAutoModelWithLMHead",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_auto"] = [
"FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING",
"FLAX_MODEL_FOR_CAUSAL_LM_MAPPING",
"FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING",
"FLAX_MODEL_FOR_MASKED_LM_MAPPING",
"FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
"FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
"FLAX_MODEL_FOR_PRETRAINING_MAPPING",
"FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING",
"FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
"FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING",
"FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING",
"FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
"FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING",
"FLAX_MODEL_MAPPING",
"FlaxAutoModel",
"FlaxAutoModelForCausalLM",
"FlaxAutoModelForImageClassification",
"FlaxAutoModelForMaskedLM",
"FlaxAutoModelForMultipleChoice",
"FlaxAutoModelForNextSentencePrediction",
"FlaxAutoModelForPreTraining",
"FlaxAutoModelForQuestionAnswering",
"FlaxAutoModelForSeq2SeqLM",
"FlaxAutoModelForSequenceClassification",
"FlaxAutoModelForSpeechSeq2Seq",
"FlaxAutoModelForTokenClassification",
"FlaxAutoModelForVision2Seq",
]
if TYPE_CHECKING:
from .auto_factory import get_values
from .configuration_auto import CONFIG_MAPPING, MODEL_NAMES_MAPPING, AutoConfig
from .feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING, AutoFeatureExtractor
from .image_processing_auto import IMAGE_PROCESSOR_MAPPING, AutoImageProcessor
from .processing_auto import PROCESSOR_MAPPING, AutoProcessor
from .tokenization_auto import TOKENIZER_MAPPING, AutoTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_auto import (
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING,
MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING,
MODEL_FOR_AUDIO_XVECTOR_MAPPING,
MODEL_FOR_BACKBONE_MAPPING,
MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING,
MODEL_FOR_CTC_MAPPING,
MODEL_FOR_DEPTH_ESTIMATION_MAPPING,
MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_IMAGE_MAPPING,
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING,
MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING,
MODEL_FOR_IMAGE_TO_IMAGE_MAPPING,
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING,
MODEL_FOR_KEYPOINT_DETECTION_MAPPING,
MODEL_FOR_MASK_GENERATION_MAPPING,
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
MODEL_FOR_OBJECT_DETECTION_MAPPING,
MODEL_FOR_PRETRAINING_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_RETRIEVAL_MAPPING,
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_TEXT_ENCODING_MAPPING,
MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING,
MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING,
MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING,
MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING,
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
MODEL_FOR_VISION_2_SEQ_MAPPING,
MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING,
MODEL_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoBackbone,
AutoModel,
AutoModelForAudioClassification,
AutoModelForAudioFrameClassification,
AutoModelForAudioXVector,
AutoModelForCausalLM,
AutoModelForCTC,
AutoModelForDepthEstimation,
AutoModelForDocumentQuestionAnswering,
AutoModelForImageClassification,
AutoModelForImageSegmentation,
AutoModelForImageTextToText,
AutoModelForImageToImage,
AutoModelForInstanceSegmentation,
AutoModelForKeypointDetection,
AutoModelForMaskedImageModeling,
AutoModelForMaskedLM,
AutoModelForMaskGeneration,
AutoModelForMultipleChoice,
AutoModelForNextSentencePrediction,
AutoModelForObjectDetection,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSemanticSegmentation,
AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification,
AutoModelForSpeechSeq2Seq,
AutoModelForTableQuestionAnswering,
AutoModelForTextEncoding,
AutoModelForTextToSpectrogram,
AutoModelForTextToWaveform,
AutoModelForTokenClassification,
AutoModelForUniversalSegmentation,
AutoModelForVideoClassification,
AutoModelForVision2Seq,
AutoModelForVisualQuestionAnswering,
AutoModelForZeroShotImageClassification,
AutoModelForZeroShotObjectDetection,
AutoModelWithLMHead,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_auto import (
TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_TEXT_ENCODING_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_VISION_2_SEQ_MAPPING,
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING,
TF_MODEL_WITH_LM_HEAD_MAPPING,
TFAutoModel,
TFAutoModelForAudioClassification,
TFAutoModelForCausalLM,
TFAutoModelForDocumentQuestionAnswering,
TFAutoModelForImageClassification,
TFAutoModelForMaskedImageModeling,
TFAutoModelForMaskedLM,
TFAutoModelForMaskGeneration,
TFAutoModelForMultipleChoice,
TFAutoModelForNextSentencePrediction,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSemanticSegmentation,
TFAutoModelForSeq2SeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelForSpeechSeq2Seq,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTextEncoding,
TFAutoModelForTokenClassification,
TFAutoModelForVision2Seq,
TFAutoModelForZeroShotImageClassification,
TFAutoModelWithLMHead,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_auto import (
FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING,
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING,
FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
FLAX_MODEL_FOR_MASKED_LM_MAPPING,
FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
FLAX_MODEL_FOR_PRETRAINING_MAPPING,
FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING,
FLAX_MODEL_MAPPING,
FlaxAutoModel,
FlaxAutoModelForCausalLM,
FlaxAutoModelForImageClassification,
FlaxAutoModelForMaskedLM,
FlaxAutoModelForMultipleChoice,
FlaxAutoModelForNextSentencePrediction,
FlaxAutoModelForPreTraining,
FlaxAutoModelForQuestionAnswering,
FlaxAutoModelForSeq2SeqLM,
FlaxAutoModelForSequenceClassification,
FlaxAutoModelForSpeechSeq2Seq,
FlaxAutoModelForTokenClassification,
FlaxAutoModelForVision2Seq,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
```
|
================================================================================================================================
SOURCE CODE FILE: auto_factory.py
LINES: 3
SIZE: 43.88 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\auto\auto_factory.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Factory function to build auto-model classes."""
import copy
import importlib
import json
import warnings
from collections import OrderedDict
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...utils import (
CONFIG_NAME,
cached_file,
copy_func,
extract_commit_hash,
find_adapter_config_file,
is_peft_available,
is_torch_available,
logging,
requires_backends,
)
from .configuration_auto import AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings
if is_torch_available():
from ...generation import GenerationMixin
logger = logging.get_logger(__name__)
CLASS_DOCSTRING = """
This is a generic model class that will be instantiated as one of the model classes of the library when created
with the [`~BaseAutoModelClass.from_pretrained`] class method or the [`~BaseAutoModelClass.from_config`] class
method.
This class cannot be instantiated directly using `__init__()` (throws an error).
"""
FROM_CONFIG_DOCSTRING = """
Instantiates one of the model classes of the library from a configuration.
Note:
Loading a model from its configuration file does **not** load the model weights. It only affects the
model's configuration. Use [`~BaseAutoModelClass.from_pretrained`] to load the model weights.
Args:
config ([`PretrainedConfig`]):
The model class to instantiate is selected based on the configuration class:
List options
attn_implementation (`str`, *optional*):
The attention implementation to use in the model (if relevant). Can be any of `"eager"` (manual implementation of the attention), `"sdpa"` (using [`F.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html)), or `"flash_attention_2"` (using [Dao-AILab/flash-attention](https://github.com/Dao-AILab/flash-attention)). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual `"eager"` implementation.
Examples:
```python
>>> from transformers import AutoConfig, BaseAutoModelClass
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained("checkpoint_placeholder")
>>> model = BaseAutoModelClass.from_config(config)
```
"""
FROM_PRETRAINED_TORCH_DOCSTRING = """
Instantiate one of the model classes of the library from a pretrained model.
The model class to instantiate is selected based on the `model_type` property of the config object (either
passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by
falling back to using pattern matching on `pretrained_model_name_or_path`:
List options
The model is set in evaluation mode by default using `model.eval()` (so for instance, dropout modules are
deactivated). To train the model, you should first set it back in training mode with `model.train()`
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
this case, `from_tf` should be set to `True` and a configuration object should be provided as
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args (additional positional arguments, *optional*):
Will be passed along to the underlying model `__init__()` method.
config ([`PretrainedConfig`], *optional*):
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the *model id* string of a pretrained
model).
- The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
save directory.
- The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
configuration JSON file named *config.json* is found in the directory.
state_dict (*Dict[str, torch.Tensor]*, *optional*):
A state dictionary to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own
weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and
[`~PreTrainedModel.from_pretrained`] is not a simpler option.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
from_tf (`bool`, *optional*, defaults to `False`):
Load the model weights from a TensorFlow checkpoint save file (see docstring of
`pretrained_model_name_or_path` argument).
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only(`bool`, *optional*, defaults to `False`):
Whether or not to only look at local files (e.g., not try downloading the model).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
code_revision (`str`, *optional*, defaults to `"main"`):
The specific revision to use for the code on the Hub, if the code leaves in a different repository than
the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based
system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier
allowed by git.
kwargs (additional keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`). Behaves differently depending on whether a `config` is provided or
automatically loaded:
- If a configuration is provided with `config`, `**kwargs` will be directly passed to the
underlying model's `__init__` method (we assume all relevant updates to the configuration have
already been done)
- If a configuration is not provided, `kwargs` will be first passed to the configuration class
initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
corresponds to a configuration attribute will be used to override said attribute with the
supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
will be passed to the underlying model's `__init__` function.
Examples:
```python
>>> from transformers import AutoConfig, BaseAutoModelClass
>>> # Download model and configuration from huggingface.co and cache.
>>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder")
>>> # Update configuration during loading
>>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
>>> config = AutoConfig.from_pretrained("./tf_model/shortcut_placeholder_tf_model_config.json")
>>> model = BaseAutoModelClass.from_pretrained(
... "./tf_model/shortcut_placeholder_tf_checkpoint.ckpt.index", from_tf=True, config=config
... )
```
"""
FROM_PRETRAINED_TF_DOCSTRING = """
Instantiate one of the model classes of the library from a pretrained model.
The model class to instantiate is selected based on the `model_type` property of the config object (either
passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by
falling back to using pattern matching on `pretrained_model_name_or_path`:
List options
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *PyTorch state_dict save file* (e.g, `./pt_model/pytorch_model.bin`). In this
case, `from_pt` should be set to `True` and a configuration object should be provided as `config`
argument. This loading path is slower than converting the PyTorch model in a TensorFlow model
using the provided conversion scripts and loading the TensorFlow model afterwards.
model_args (additional positional arguments, *optional*):
Will be passed along to the underlying model `__init__()` method.
config ([`PretrainedConfig`], *optional*):
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the *model id* string of a pretrained
model).
- The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
save directory.
- The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
configuration JSON file named *config.json* is found in the directory.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
from_pt (`bool`, *optional*, defaults to `False`):
Load the model weights from a PyTorch checkpoint save file (see docstring of
`pretrained_model_name_or_path` argument).
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only(`bool`, *optional*, defaults to `False`):
Whether or not to only look at local files (e.g., not try downloading the model).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
code_revision (`str`, *optional*, defaults to `"main"`):
The specific revision to use for the code on the Hub, if the code leaves in a different repository than
the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based
system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier
allowed by git.
kwargs (additional keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`). Behaves differently depending on whether a `config` is provided or
automatically loaded:
- If a configuration is provided with `config`, `**kwargs` will be directly passed to the
underlying model's `__init__` method (we assume all relevant updates to the configuration have
already been done)
- If a configuration is not provided, `kwargs` will be first passed to the configuration class
initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
corresponds to a configuration attribute will be used to override said attribute with the
supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
will be passed to the underlying model's `__init__` function.
Examples:
```python
>>> from transformers import AutoConfig, BaseAutoModelClass
>>> # Download model and configuration from huggingface.co and cache.
>>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder")
>>> # Update configuration during loading
>>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/shortcut_placeholder_pt_model_config.json")
>>> model = BaseAutoModelClass.from_pretrained(
... "./pt_model/shortcut_placeholder_pytorch_model.bin", from_pt=True, config=config
... )
```
"""
FROM_PRETRAINED_FLAX_DOCSTRING = """
Instantiate one of the model classes of the library from a pretrained model.
The model class to instantiate is selected based on the `model_type` property of the config object (either
passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by
falling back to using pattern matching on `pretrained_model_name_or_path`:
List options
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *PyTorch state_dict save file* (e.g, `./pt_model/pytorch_model.bin`). In this
case, `from_pt` should be set to `True` and a configuration object should be provided as `config`
argument. This loading path is slower than converting the PyTorch model in a TensorFlow model
using the provided conversion scripts and loading the TensorFlow model afterwards.
model_args (additional positional arguments, *optional*):
Will be passed along to the underlying model `__init__()` method.
config ([`PretrainedConfig`], *optional*):
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the *model id* string of a pretrained
model).
- The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
save directory.
- The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
configuration JSON file named *config.json* is found in the directory.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
from_pt (`bool`, *optional*, defaults to `False`):
Load the model weights from a PyTorch checkpoint save file (see docstring of
`pretrained_model_name_or_path` argument).
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only(`bool`, *optional*, defaults to `False`):
Whether or not to only look at local files (e.g., not try downloading the model).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
code_revision (`str`, *optional*, defaults to `"main"`):
The specific revision to use for the code on the Hub, if the code leaves in a different repository than
the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based
system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier
allowed by git.
kwargs (additional keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`). Behaves differently depending on whether a `config` is provided or
automatically loaded:
- If a configuration is provided with `config`, `**kwargs` will be directly passed to the
underlying model's `__init__` method (we assume all relevant updates to the configuration have
already been done)
- If a configuration is not provided, `kwargs` will be first passed to the configuration class
initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
corresponds to a configuration attribute will be used to override said attribute with the
supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
will be passed to the underlying model's `__init__` function.
Examples:
```python
>>> from transformers import AutoConfig, BaseAutoModelClass
>>> # Download model and configuration from huggingface.co and cache.
>>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder")
>>> # Update configuration during loading
>>> model = BaseAutoModelClass.from_pretrained("checkpoint_placeholder", output_attentions=True)
>>> model.config.output_attentions
True
>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/shortcut_placeholder_pt_model_config.json")
>>> model = BaseAutoModelClass.from_pretrained(
... "./pt_model/shortcut_placeholder_pytorch_model.bin", from_pt=True, config=config
... )
```
"""
def _get_model_class(config, model_mapping):
supported_models = model_mapping[type(config)]
if not isinstance(supported_models, (list, tuple)):
return supported_models
name_to_model = {model.__name__: model for model in supported_models}
architectures = getattr(config, "architectures", [])
for arch in architectures:
if arch in name_to_model:
return name_to_model[arch]
elif f"TF{arch}" in name_to_model:
return name_to_model[f"TF{arch}"]
elif f"Flax{arch}" in name_to_model:
return name_to_model[f"Flax{arch}"]
# If not architecture is set in the config or match the supported models, the first element of the tuple is the
# defaults.
return supported_models[0]
class _BaseAutoModelClass:
# Base class for auto models.
_model_mapping = None
def __init__(self, *args, **kwargs):
raise EnvironmentError(
f"{self.__class__.__name__} is designed to be instantiated "
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
f"`{self.__class__.__name__}.from_config(config)` methods."
)
@classmethod
def from_config(cls, config, **kwargs):
trust_remote_code = kwargs.pop("trust_remote_code", None)
has_remote_code = hasattr(config, "auto_map") and cls.__name__ in config.auto_map
has_local_code = type(config) in cls._model_mapping.keys()
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, config._name_or_path, has_local_code, has_remote_code
)
if has_remote_code and trust_remote_code:
class_ref = config.auto_map[cls.__name__]
if "--" in class_ref:
repo_id, class_ref = class_ref.split("--")
else:
repo_id = config.name_or_path
model_class = get_class_from_dynamic_module(class_ref, repo_id, **kwargs)
cls.register(config.__class__, model_class, exist_ok=True)
_ = kwargs.pop("code_revision", None)
model_class = add_generation_mixin_to_remote_model(model_class)
return model_class._from_config(config, **kwargs)
elif type(config) in cls._model_mapping.keys():
model_class = _get_model_class(config, cls._model_mapping)
return model_class._from_config(config, **kwargs)
raise ValueError(
f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n"
f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}."
)
@classmethod
def _prepare_config_for_auto_class(cls, config: PretrainedConfig) -> PretrainedConfig:
"""Additional autoclass-specific config post-loading manipulation. May be overridden in subclasses."""
return config
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
config = kwargs.pop("config", None)
trust_remote_code = kwargs.pop("trust_remote_code", None)
kwargs["_from_auto"] = True
hub_kwargs_names = [
"cache_dir",
"force_download",
"local_files_only",
"proxies",
"resume_download",
"revision",
"subfolder",
"use_auth_token",
"token",
]
hub_kwargs = {name: kwargs.pop(name) for name in hub_kwargs_names if name in kwargs}
code_revision = kwargs.pop("code_revision", None)
commit_hash = kwargs.pop("_commit_hash", None)
adapter_kwargs = kwargs.pop("adapter_kwargs", None)
token = hub_kwargs.pop("token", None)
use_auth_token = hub_kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
token = use_auth_token
if token is not None:
hub_kwargs["token"] = token
if commit_hash is None:
if not isinstance(config, PretrainedConfig):
# We make a call to the config file first (which may be absent) to get the commit hash as soon as possible
resolved_config_file = cached_file(
pretrained_model_name_or_path,
CONFIG_NAME,
_raise_exceptions_for_gated_repo=False,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
**hub_kwargs,
)
commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
else:
commit_hash = getattr(config, "_commit_hash", None)
if is_peft_available():
if adapter_kwargs is None:
adapter_kwargs = {}
if token is not None:
adapter_kwargs["token"] = token
maybe_adapter_path = find_adapter_config_file(
pretrained_model_name_or_path, _commit_hash=commit_hash, **adapter_kwargs
)
if maybe_adapter_path is not None:
with open(maybe_adapter_path, "r", encoding="utf-8") as f:
adapter_config = json.load(f)
adapter_kwargs["_adapter_model_path"] = pretrained_model_name_or_path
pretrained_model_name_or_path = adapter_config["base_model_name_or_path"]
if not isinstance(config, PretrainedConfig):
kwargs_orig = copy.deepcopy(kwargs)
# ensure not to pollute the config object with torch_dtype="auto" - since it's
# meaningless in the context of the config object - torch.dtype values are acceptable
if kwargs.get("torch_dtype", None) == "auto":
_ = kwargs.pop("torch_dtype")
# to not overwrite the quantization_config if config has a quantization_config
if kwargs.get("quantization_config", None) is not None:
_ = kwargs.pop("quantization_config")
config, kwargs = AutoConfig.from_pretrained(
pretrained_model_name_or_path,
return_unused_kwargs=True,
trust_remote_code=trust_remote_code,
code_revision=code_revision,
_commit_hash=commit_hash,
**hub_kwargs,
**kwargs,
)
# if torch_dtype=auto was passed here, ensure to pass it on
if kwargs_orig.get("torch_dtype", None) == "auto":
kwargs["torch_dtype"] = "auto"
if kwargs_orig.get("quantization_config", None) is not None:
kwargs["quantization_config"] = kwargs_orig["quantization_config"]
has_remote_code = hasattr(config, "auto_map") and cls.__name__ in config.auto_map
has_local_code = type(config) in cls._model_mapping.keys()
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
)
# Set the adapter kwargs
kwargs["adapter_kwargs"] = adapter_kwargs
if has_remote_code and trust_remote_code:
class_ref = config.auto_map[cls.__name__]
model_class = get_class_from_dynamic_module(
class_ref, pretrained_model_name_or_path, code_revision=code_revision, **hub_kwargs, **kwargs
)
_ = hub_kwargs.pop("code_revision", None)
cls.register(config.__class__, model_class, exist_ok=True)
model_class = add_generation_mixin_to_remote_model(model_class)
return model_class.from_pretrained(
pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs
)
elif type(config) in cls._model_mapping.keys():
model_class = _get_model_class(config, cls._model_mapping)
if model_class.config_class == config.sub_configs.get("text_config", None):
config = config.get_text_config()
return model_class.from_pretrained(
pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs
)
raise ValueError(
f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n"
f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}."
)
@classmethod
def register(cls, config_class, model_class, exist_ok=False):
"""
Register a new model for this class.
Args:
config_class ([`PretrainedConfig`]):
The configuration corresponding to the model to register.
model_class ([`PreTrainedModel`]):
The model to register.
"""
if hasattr(model_class, "config_class") and model_class.config_class.__name__ != config_class.__name__:
raise ValueError(
"The model class you are passing has a `config_class` attribute that is not consistent with the "
f"config class you passed (model has {model_class.config_class} and you passed {config_class}. Fix "
"one of those so they match!"
)
cls._model_mapping.register(config_class, model_class, exist_ok=exist_ok)
class _BaseAutoBackboneClass(_BaseAutoModelClass):
# Base class for auto backbone models.
_model_mapping = None
@classmethod
def _load_timm_backbone_from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
requires_backends(cls, ["vision", "timm"])
from ...models.timm_backbone import TimmBackboneConfig
config = kwargs.pop("config", TimmBackboneConfig())
if kwargs.get("out_features", None) is not None:
raise ValueError("Cannot specify `out_features` for timm backbones")
if kwargs.get("output_loading_info", False):
raise ValueError("Cannot specify `output_loading_info=True` when loading from timm")
num_channels = kwargs.pop("num_channels", config.num_channels)
features_only = kwargs.pop("features_only", config.features_only)
use_pretrained_backbone = kwargs.pop("use_pretrained_backbone", config.use_pretrained_backbone)
out_indices = kwargs.pop("out_indices", config.out_indices)
config = TimmBackboneConfig(
backbone=pretrained_model_name_or_path,
num_channels=num_channels,
features_only=features_only,
use_pretrained_backbone=use_pretrained_backbone,
out_indices=out_indices,
)
return super().from_config(config, **kwargs)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
use_timm_backbone = kwargs.pop("use_timm_backbone", False)
if use_timm_backbone:
return cls._load_timm_backbone_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
def insert_head_doc(docstring, head_doc=""):
if len(head_doc) > 0:
return docstring.replace(
"one of the model classes of the library ",
f"one of the model classes of the library (with a {head_doc} head) ",
)
return docstring.replace(
"one of the model classes of the library ", "one of the base model classes of the library "
)
def auto_class_update(cls, checkpoint_for_example="google-bert/bert-base-cased", head_doc=""):
# Create a new class with the right name from the base class
model_mapping = cls._model_mapping
name = cls.__name__
class_docstring = insert_head_doc(CLASS_DOCSTRING, head_doc=head_doc)
cls.__doc__ = class_docstring.replace("BaseAutoModelClass", name)
# Now we need to copy and re-register `from_config` and `from_pretrained` as class methods otherwise we can't
# have a specific docstrings for them.
from_config = copy_func(_BaseAutoModelClass.from_config)
from_config_docstring = insert_head_doc(FROM_CONFIG_DOCSTRING, head_doc=head_doc)
from_config_docstring = from_config_docstring.replace("BaseAutoModelClass", name)
from_config_docstring = from_config_docstring.replace("checkpoint_placeholder", checkpoint_for_example)
from_config.__doc__ = from_config_docstring
from_config = replace_list_option_in_docstrings(model_mapping._model_mapping, use_model_types=False)(from_config)
cls.from_config = classmethod(from_config)
if name.startswith("TF"):
from_pretrained_docstring = FROM_PRETRAINED_TF_DOCSTRING
elif name.startswith("Flax"):
from_pretrained_docstring = FROM_PRETRAINED_FLAX_DOCSTRING
else:
from_pretrained_docstring = FROM_PRETRAINED_TORCH_DOCSTRING
from_pretrained = copy_func(_BaseAutoModelClass.from_pretrained)
from_pretrained_docstring = insert_head_doc(from_pretrained_docstring, head_doc=head_doc)
from_pretrained_docstring = from_pretrained_docstring.replace("BaseAutoModelClass", name)
from_pretrained_docstring = from_pretrained_docstring.replace("checkpoint_placeholder", checkpoint_for_example)
shortcut = checkpoint_for_example.split("/")[-1].split("-")[0]
from_pretrained_docstring = from_pretrained_docstring.replace("shortcut_placeholder", shortcut)
from_pretrained.__doc__ = from_pretrained_docstring
from_pretrained = replace_list_option_in_docstrings(model_mapping._model_mapping)(from_pretrained)
cls.from_pretrained = classmethod(from_pretrained)
return cls
def get_values(model_mapping):
result = []
for model in model_mapping.values():
if isinstance(model, (list, tuple)):
result += list(model)
else:
result.append(model)
return result
def getattribute_from_module(module, attr):
if attr is None:
return None
if isinstance(attr, tuple):
return tuple(getattribute_from_module(module, a) for a in attr)
if hasattr(module, attr):
return getattr(module, attr)
# Some of the mappings have entries model_type -> object of another model type. In that case we try to grab the
# object at the top level.
transformers_module = importlib.import_module("transformers")
if module != transformers_module:
try:
return getattribute_from_module(transformers_module, attr)
except ValueError:
raise ValueError(f"Could not find {attr} neither in {module} nor in {transformers_module}!")
else:
raise ValueError(f"Could not find {attr} in {transformers_module}!")
def add_generation_mixin_to_remote_model(model_class):
"""
Adds `GenerationMixin` to the inheritance of `model_class`, if `model_class` is a PyTorch model.
This function is used for backwards compatibility purposes: in v4.45, we've started a deprecation cycle to make
`PreTrainedModel` stop inheriting from `GenerationMixin`. Without this function, older models dynamically loaded
from the Hub may not have the `generate` method after we remove the inheritance.
"""
# 1. If it is not a PT model (i.e. doesn't inherit Module), do nothing
if "torch.nn.modules.module.Module" not in str(model_class.__mro__):
return model_class
# 2. If it already **directly** inherits from GenerationMixin, do nothing
if "GenerationMixin" in str(model_class.__bases__):
return model_class
# 3. Prior to v4.45, we could detect whether a model was `generate`-compatible if it had its own `generate` and/or
# `prepare_inputs_for_generation` method.
has_custom_generate = "GenerationMixin" not in str(getattr(model_class, "generate"))
has_custom_prepare_inputs = "GenerationMixin" not in str(getattr(model_class, "prepare_inputs_for_generation"))
if has_custom_generate or has_custom_prepare_inputs:
model_class_with_generation_mixin = type(
model_class.__name__, (model_class, GenerationMixin), {**model_class.__dict__}
)
return model_class_with_generation_mixin
return model_class
class _LazyAutoMapping(OrderedDict):
"""
" A mapping config to object (model or tokenizer for instance) that will load keys and values when it is accessed.
Args:
- config_mapping: The map model type to config class
- model_mapping: The map model type to model (or tokenizer) class
"""
def __init__(self, config_mapping, model_mapping):
self._config_mapping = config_mapping
self._reverse_config_mapping = {v: k for k, v in config_mapping.items()}
self._model_mapping = model_mapping
self._model_mapping._model_mapping = self
self._extra_content = {}
self._modules = {}
def __len__(self):
common_keys = set(self._config_mapping.keys()).intersection(self._model_mapping.keys())
return len(common_keys) + len(self._extra_content)
def __getitem__(self, key):
if key in self._extra_content:
return self._extra_content[key]
model_type = self._reverse_config_mapping[key.__name__]
if model_type in self._model_mapping:
model_name = self._model_mapping[model_type]
return self._load_attr_from_module(model_type, model_name)
# Maybe there was several model types associated with this config.
model_types = [k for k, v in self._config_mapping.items() if v == key.__name__]
for mtype in model_types:
if mtype in self._model_mapping:
model_name = self._model_mapping[mtype]
return self._load_attr_from_module(mtype, model_name)
raise KeyError(key)
def _load_attr_from_module(self, model_type, attr):
module_name = model_type_to_module_name(model_type)
if module_name not in self._modules:
self._modules[module_name] = importlib.import_module(f".{module_name}", "transformers.models")
return getattribute_from_module(self._modules[module_name], attr)
def keys(self):
mapping_keys = [
self._load_attr_from_module(key, name)
for key, name in self._config_mapping.items()
if key in self._model_mapping.keys()
]
return mapping_keys + list(self._extra_content.keys())
def get(self, key, default):
try:
return self.__getitem__(key)
except KeyError:
return default
def __bool__(self):
return bool(self.keys())
def values(self):
mapping_values = [
self._load_attr_from_module(key, name)
for key, name in self._model_mapping.items()
if key in self._config_mapping.keys()
]
return mapping_values + list(self._extra_content.values())
def items(self):
mapping_items = [
(
self._load_attr_from_module(key, self._config_mapping[key]),
self._load_attr_from_module(key, self._model_mapping[key]),
)
for key in self._model_mapping.keys()
if key in self._config_mapping.keys()
]
return mapping_items + list(self._extra_content.items())
def __iter__(self):
return iter(self.keys())
def __contains__(self, item):
if item in self._extra_content:
return True
if not hasattr(item, "__name__") or item.__name__ not in self._reverse_config_mapping:
return False
model_type = self._reverse_config_mapping[item.__name__]
return model_type in self._model_mapping
def register(self, key, value, exist_ok=False):
"""
Register a new model in this mapping.
"""
if hasattr(key, "__name__") and key.__name__ in self._reverse_config_mapping:
model_type = self._reverse_config_mapping[key.__name__]
if model_type in self._model_mapping.keys() and not exist_ok:
raise ValueError(f"'{key}' is already used by a Transformers model.")
self._extra_content[key] = value
```
|
======================================================================================================================================
SOURCE CODE FILE: configuration_auto.py
LINES: 7
SIZE: 44.56 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\auto\configuration_auto.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Auto Config class."""
import importlib
import os
import re
import warnings
from collections import OrderedDict
from typing import List, Union
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...utils import CONFIG_NAME, logging
logger = logging.get_logger(__name__)
CONFIG_MAPPING_NAMES = OrderedDict(
[
# Add configs here
("albert", "AlbertConfig"),
("align", "AlignConfig"),
("altclip", "AltCLIPConfig"),
("aria", "AriaConfig"),
("aria_text", "AriaTextConfig"),
("audio-spectrogram-transformer", "ASTConfig"),
("autoformer", "AutoformerConfig"),
("aya_vision", "AyaVisionConfig"),
("bamba", "BambaConfig"),
("bark", "BarkConfig"),
("bart", "BartConfig"),
("beit", "BeitConfig"),
("bert", "BertConfig"),
("bert-generation", "BertGenerationConfig"),
("big_bird", "BigBirdConfig"),
("bigbird_pegasus", "BigBirdPegasusConfig"),
("biogpt", "BioGptConfig"),
("bit", "BitConfig"),
("blenderbot", "BlenderbotConfig"),
("blenderbot-small", "BlenderbotSmallConfig"),
("blip", "BlipConfig"),
("blip-2", "Blip2Config"),
("bloom", "BloomConfig"),
("bridgetower", "BridgeTowerConfig"),
("bros", "BrosConfig"),
("camembert", "CamembertConfig"),
("canine", "CanineConfig"),
("chameleon", "ChameleonConfig"),
("chinese_clip", "ChineseCLIPConfig"),
("chinese_clip_vision_model", "ChineseCLIPVisionConfig"),
("clap", "ClapConfig"),
("clip", "CLIPConfig"),
("clip_text_model", "CLIPTextConfig"),
("clip_vision_model", "CLIPVisionConfig"),
("clipseg", "CLIPSegConfig"),
("clvp", "ClvpConfig"),
("code_llama", "LlamaConfig"),
("codegen", "CodeGenConfig"),
("cohere", "CohereConfig"),
("cohere2", "Cohere2Config"),
("colpali", "ColPaliConfig"),
("conditional_detr", "ConditionalDetrConfig"),
("convbert", "ConvBertConfig"),
("convnext", "ConvNextConfig"),
("convnextv2", "ConvNextV2Config"),
("cpmant", "CpmAntConfig"),
("ctrl", "CTRLConfig"),
("cvt", "CvtConfig"),
("dab-detr", "DabDetrConfig"),
("dac", "DacConfig"),
("data2vec-audio", "Data2VecAudioConfig"),
("data2vec-text", "Data2VecTextConfig"),
("data2vec-vision", "Data2VecVisionConfig"),
("dbrx", "DbrxConfig"),
("deberta", "DebertaConfig"),
("deberta-v2", "DebertaV2Config"),
("decision_transformer", "DecisionTransformerConfig"),
("deepseek_v3", "DeepseekV3Config"),
("deformable_detr", "DeformableDetrConfig"),
("deit", "DeiTConfig"),
("depth_anything", "DepthAnythingConfig"),
("depth_pro", "DepthProConfig"),
("deta", "DetaConfig"),
("detr", "DetrConfig"),
("diffllama", "DiffLlamaConfig"),
("dinat", "DinatConfig"),
("dinov2", "Dinov2Config"),
("dinov2_with_registers", "Dinov2WithRegistersConfig"),
("distilbert", "DistilBertConfig"),
("donut-swin", "DonutSwinConfig"),
("dpr", "DPRConfig"),
("dpt", "DPTConfig"),
("efficientformer", "EfficientFormerConfig"),
("efficientnet", "EfficientNetConfig"),
("electra", "ElectraConfig"),
("emu3", "Emu3Config"),
("encodec", "EncodecConfig"),
("encoder-decoder", "EncoderDecoderConfig"),
("ernie", "ErnieConfig"),
("ernie_m", "ErnieMConfig"),
("esm", "EsmConfig"),
("falcon", "FalconConfig"),
("falcon_mamba", "FalconMambaConfig"),
("fastspeech2_conformer", "FastSpeech2ConformerConfig"),
("flaubert", "FlaubertConfig"),
("flava", "FlavaConfig"),
("fnet", "FNetConfig"),
("focalnet", "FocalNetConfig"),
("fsmt", "FSMTConfig"),
("funnel", "FunnelConfig"),
("fuyu", "FuyuConfig"),
("gemma", "GemmaConfig"),
("gemma2", "Gemma2Config"),
("gemma3", "Gemma3Config"),
("gemma3_text", "Gemma3TextConfig"),
("git", "GitConfig"),
("glm", "GlmConfig"),
("glm4", "Glm4Config"),
("glpn", "GLPNConfig"),
("got_ocr2", "GotOcr2Config"),
("gpt-sw3", "GPT2Config"),
("gpt2", "GPT2Config"),
("gpt_bigcode", "GPTBigCodeConfig"),
("gpt_neo", "GPTNeoConfig"),
("gpt_neox", "GPTNeoXConfig"),
("gpt_neox_japanese", "GPTNeoXJapaneseConfig"),
("gptj", "GPTJConfig"),
("gptsan-japanese", "GPTSanJapaneseConfig"),
("granite", "GraniteConfig"),
("granitemoe", "GraniteMoeConfig"),
("granitemoeshared", "GraniteMoeSharedConfig"),
("granitevision", "LlavaNextConfig"),
("graphormer", "GraphormerConfig"),
("grounding-dino", "GroundingDinoConfig"),
("groupvit", "GroupViTConfig"),
("helium", "HeliumConfig"),
("hiera", "HieraConfig"),
("hubert", "HubertConfig"),
("ibert", "IBertConfig"),
("idefics", "IdeficsConfig"),
("idefics2", "Idefics2Config"),
("idefics3", "Idefics3Config"),
("idefics3_vision", "Idefics3VisionConfig"),
("ijepa", "IJepaConfig"),
("imagegpt", "ImageGPTConfig"),
("informer", "InformerConfig"),
("instructblip", "InstructBlipConfig"),
("instructblipvideo", "InstructBlipVideoConfig"),
("jamba", "JambaConfig"),
("jetmoe", "JetMoeConfig"),
("jukebox", "JukeboxConfig"),
("kosmos-2", "Kosmos2Config"),
("layoutlm", "LayoutLMConfig"),
("layoutlmv2", "LayoutLMv2Config"),
("layoutlmv3", "LayoutLMv3Config"),
("led", "LEDConfig"),
("levit", "LevitConfig"),
("lilt", "LiltConfig"),
("llama", "LlamaConfig"),
("llama4", "Llama4Config"),
("llama4_text", "Llama4TextConfig"),
("llava", "LlavaConfig"),
("llava_next", "LlavaNextConfig"),
("llava_next_video", "LlavaNextVideoConfig"),
("llava_onevision", "LlavaOnevisionConfig"),
("longformer", "LongformerConfig"),
("longt5", "LongT5Config"),
("luke", "LukeConfig"),
("lxmert", "LxmertConfig"),
("m2m_100", "M2M100Config"),
("mamba", "MambaConfig"),
("mamba2", "Mamba2Config"),
("marian", "MarianConfig"),
("markuplm", "MarkupLMConfig"),
("mask2former", "Mask2FormerConfig"),
("maskformer", "MaskFormerConfig"),
("maskformer-swin", "MaskFormerSwinConfig"),
("mbart", "MBartConfig"),
("mctct", "MCTCTConfig"),
("mega", "MegaConfig"),
("megatron-bert", "MegatronBertConfig"),
("mgp-str", "MgpstrConfig"),
("mimi", "MimiConfig"),
("mistral", "MistralConfig"),
("mistral3", "Mistral3Config"),
("mixtral", "MixtralConfig"),
("mllama", "MllamaConfig"),
("mobilebert", "MobileBertConfig"),
("mobilenet_v1", "MobileNetV1Config"),
("mobilenet_v2", "MobileNetV2Config"),
("mobilevit", "MobileViTConfig"),
("mobilevitv2", "MobileViTV2Config"),
("modernbert", "ModernBertConfig"),
("moonshine", "MoonshineConfig"),
("moshi", "MoshiConfig"),
("mpnet", "MPNetConfig"),
("mpt", "MptConfig"),
("mra", "MraConfig"),
("mt5", "MT5Config"),
("musicgen", "MusicgenConfig"),
("musicgen_melody", "MusicgenMelodyConfig"),
("mvp", "MvpConfig"),
("nat", "NatConfig"),
("nemotron", "NemotronConfig"),
("nezha", "NezhaConfig"),
("nllb-moe", "NllbMoeConfig"),
("nougat", "VisionEncoderDecoderConfig"),
("nystromformer", "NystromformerConfig"),
("olmo", "OlmoConfig"),
("olmo2", "Olmo2Config"),
("olmoe", "OlmoeConfig"),
("omdet-turbo", "OmDetTurboConfig"),
("oneformer", "OneFormerConfig"),
("open-llama", "OpenLlamaConfig"),
("openai-gpt", "OpenAIGPTConfig"),
("opt", "OPTConfig"),
("owlv2", "Owlv2Config"),
("owlvit", "OwlViTConfig"),
("paligemma", "PaliGemmaConfig"),
("patchtsmixer", "PatchTSMixerConfig"),
("patchtst", "PatchTSTConfig"),
("pegasus", "PegasusConfig"),
("pegasus_x", "PegasusXConfig"),
("perceiver", "PerceiverConfig"),
("persimmon", "PersimmonConfig"),
("phi", "PhiConfig"),
("phi3", "Phi3Config"),
("phi4_multimodal", "Phi4MultimodalConfig"),
("phimoe", "PhimoeConfig"),
("pix2struct", "Pix2StructConfig"),
("pixtral", "PixtralVisionConfig"),
("plbart", "PLBartConfig"),
("poolformer", "PoolFormerConfig"),
("pop2piano", "Pop2PianoConfig"),
("prompt_depth_anything", "PromptDepthAnythingConfig"),
("prophetnet", "ProphetNetConfig"),
("pvt", "PvtConfig"),
("pvt_v2", "PvtV2Config"),
("qdqbert", "QDQBertConfig"),
("qwen2", "Qwen2Config"),
("qwen2_5_vl", "Qwen2_5_VLConfig"),
("qwen2_audio", "Qwen2AudioConfig"),
("qwen2_audio_encoder", "Qwen2AudioEncoderConfig"),
("qwen2_moe", "Qwen2MoeConfig"),
("qwen2_vl", "Qwen2VLConfig"),
("qwen3", "Qwen3Config"),
("qwen3_moe", "Qwen3MoeConfig"),
("rag", "RagConfig"),
("realm", "RealmConfig"),
("recurrent_gemma", "RecurrentGemmaConfig"),
("reformer", "ReformerConfig"),
("regnet", "RegNetConfig"),
("rembert", "RemBertConfig"),
("resnet", "ResNetConfig"),
("retribert", "RetriBertConfig"),
("roberta", "RobertaConfig"),
("roberta-prelayernorm", "RobertaPreLayerNormConfig"),
("roc_bert", "RoCBertConfig"),
("roformer", "RoFormerConfig"),
("rt_detr", "RTDetrConfig"),
("rt_detr_resnet", "RTDetrResNetConfig"),
("rt_detr_v2", "RTDetrV2Config"),
("rwkv", "RwkvConfig"),
("sam", "SamConfig"),
("sam_vision_model", "SamVisionConfig"),
("seamless_m4t", "SeamlessM4TConfig"),
("seamless_m4t_v2", "SeamlessM4Tv2Config"),
("segformer", "SegformerConfig"),
("seggpt", "SegGptConfig"),
("sew", "SEWConfig"),
("sew-d", "SEWDConfig"),
("shieldgemma2", "ShieldGemma2Config"),
("siglip", "SiglipConfig"),
("siglip2", "Siglip2Config"),
("siglip_vision_model", "SiglipVisionConfig"),
("smolvlm", "SmolVLMConfig"),
("smolvlm_vision", "SmolVLMVisionConfig"),
("speech-encoder-decoder", "SpeechEncoderDecoderConfig"),
("speech_to_text", "Speech2TextConfig"),
("speech_to_text_2", "Speech2Text2Config"),
("speecht5", "SpeechT5Config"),
("splinter", "SplinterConfig"),
("squeezebert", "SqueezeBertConfig"),
("stablelm", "StableLmConfig"),
("starcoder2", "Starcoder2Config"),
("superglue", "SuperGlueConfig"),
("superpoint", "SuperPointConfig"),
("swiftformer", "SwiftFormerConfig"),
("swin", "SwinConfig"),
("swin2sr", "Swin2SRConfig"),
("swinv2", "Swinv2Config"),
("switch_transformers", "SwitchTransformersConfig"),
("t5", "T5Config"),
("table-transformer", "TableTransformerConfig"),
("tapas", "TapasConfig"),
("textnet", "TextNetConfig"),
("time_series_transformer", "TimeSeriesTransformerConfig"),
("timesformer", "TimesformerConfig"),
("timm_backbone", "TimmBackboneConfig"),
("timm_wrapper", "TimmWrapperConfig"),
("trajectory_transformer", "TrajectoryTransformerConfig"),
("transfo-xl", "TransfoXLConfig"),
("trocr", "TrOCRConfig"),
("tvlt", "TvltConfig"),
("tvp", "TvpConfig"),
("udop", "UdopConfig"),
("umt5", "UMT5Config"),
("unispeech", "UniSpeechConfig"),
("unispeech-sat", "UniSpeechSatConfig"),
("univnet", "UnivNetConfig"),
("upernet", "UperNetConfig"),
("van", "VanConfig"),
("video_llava", "VideoLlavaConfig"),
("videomae", "VideoMAEConfig"),
("vilt", "ViltConfig"),
("vipllava", "VipLlavaConfig"),
("vision-encoder-decoder", "VisionEncoderDecoderConfig"),
("vision-text-dual-encoder", "VisionTextDualEncoderConfig"),
("visual_bert", "VisualBertConfig"),
("vit", "ViTConfig"),
("vit_hybrid", "ViTHybridConfig"),
("vit_mae", "ViTMAEConfig"),
("vit_msn", "ViTMSNConfig"),
("vitdet", "VitDetConfig"),
("vitmatte", "VitMatteConfig"),
("vitpose", "VitPoseConfig"),
("vitpose_backbone", "VitPoseBackboneConfig"),
("vits", "VitsConfig"),
("vivit", "VivitConfig"),
("wav2vec2", "Wav2Vec2Config"),
("wav2vec2-bert", "Wav2Vec2BertConfig"),
("wav2vec2-conformer", "Wav2Vec2ConformerConfig"),
("wavlm", "WavLMConfig"),
("whisper", "WhisperConfig"),
("xclip", "XCLIPConfig"),
("xglm", "XGLMConfig"),
("xlm", "XLMConfig"),
("xlm-prophetnet", "XLMProphetNetConfig"),
("xlm-roberta", "XLMRobertaConfig"),
("xlm-roberta-xl", "XLMRobertaXLConfig"),
("xlnet", "XLNetConfig"),
("xmod", "XmodConfig"),
("yolos", "YolosConfig"),
("yoso", "YosoConfig"),
("zamba", "ZambaConfig"),
("zamba2", "Zamba2Config"),
("zoedepth", "ZoeDepthConfig"),
]
)
MODEL_NAMES_MAPPING = OrderedDict(
[
# Add full (and cased) model names here
("albert", "ALBERT"),
("align", "ALIGN"),
("altclip", "AltCLIP"),
("aria", "Aria"),
("aria_text", "AriaText"),
("audio-spectrogram-transformer", "Audio Spectrogram Transformer"),
("autoformer", "Autoformer"),
("aya_vision", "AyaVision"),
("bamba", "Bamba"),
("bark", "Bark"),
("bart", "BART"),
("barthez", "BARThez"),
("bartpho", "BARTpho"),
("beit", "BEiT"),
("bert", "BERT"),
("bert-generation", "Bert Generation"),
("bert-japanese", "BertJapanese"),
("bertweet", "BERTweet"),
("big_bird", "BigBird"),
("bigbird_pegasus", "BigBird-Pegasus"),
("biogpt", "BioGpt"),
("bit", "BiT"),
("blenderbot", "Blenderbot"),
("blenderbot-small", "BlenderbotSmall"),
("blip", "BLIP"),
("blip-2", "BLIP-2"),
("bloom", "BLOOM"),
("bort", "BORT"),
("bridgetower", "BridgeTower"),
("bros", "BROS"),
("byt5", "ByT5"),
("camembert", "CamemBERT"),
("canine", "CANINE"),
("chameleon", "Chameleon"),
("chinese_clip", "Chinese-CLIP"),
("chinese_clip_vision_model", "ChineseCLIPVisionModel"),
("clap", "CLAP"),
("clip", "CLIP"),
("clip_text_model", "CLIPTextModel"),
("clip_vision_model", "CLIPVisionModel"),
("clipseg", "CLIPSeg"),
("clvp", "CLVP"),
("code_llama", "CodeLlama"),
("codegen", "CodeGen"),
("cohere", "Cohere"),
("cohere2", "Cohere2"),
("colpali", "ColPali"),
("conditional_detr", "Conditional DETR"),
("convbert", "ConvBERT"),
("convnext", "ConvNeXT"),
("convnextv2", "ConvNeXTV2"),
("cpm", "CPM"),
("cpmant", "CPM-Ant"),
("ctrl", "CTRL"),
("cvt", "CvT"),
("dab-detr", "DAB-DETR"),
("dac", "DAC"),
("data2vec-audio", "Data2VecAudio"),
("data2vec-text", "Data2VecText"),
("data2vec-vision", "Data2VecVision"),
("dbrx", "DBRX"),
("deberta", "DeBERTa"),
("deberta-v2", "DeBERTa-v2"),
("decision_transformer", "Decision Transformer"),
("deepseek_v3", "DeepSeek-V3"),
("deformable_detr", "Deformable DETR"),
("deit", "DeiT"),
("deplot", "DePlot"),
("depth_anything", "Depth Anything"),
("depth_anything_v2", "Depth Anything V2"),
("depth_pro", "DepthPro"),
("deta", "DETA"),
("detr", "DETR"),
("dialogpt", "DialoGPT"),
("diffllama", "DiffLlama"),
("dinat", "DiNAT"),
("dinov2", "DINOv2"),
("dinov2_with_registers", "DINOv2 with Registers"),
("distilbert", "DistilBERT"),
("dit", "DiT"),
("donut-swin", "DonutSwin"),
("dpr", "DPR"),
("dpt", "DPT"),
("efficientformer", "EfficientFormer"),
("efficientnet", "EfficientNet"),
("electra", "ELECTRA"),
("emu3", "Emu3"),
("encodec", "EnCodec"),
("encoder-decoder", "Encoder decoder"),
("ernie", "ERNIE"),
("ernie_m", "ErnieM"),
("esm", "ESM"),
("falcon", "Falcon"),
("falcon3", "Falcon3"),
("falcon_mamba", "FalconMamba"),
("fastspeech2_conformer", "FastSpeech2Conformer"),
("flan-t5", "FLAN-T5"),
("flan-ul2", "FLAN-UL2"),
("flaubert", "FlauBERT"),
("flava", "FLAVA"),
("fnet", "FNet"),
("focalnet", "FocalNet"),
("fsmt", "FairSeq Machine-Translation"),
("funnel", "Funnel Transformer"),
("fuyu", "Fuyu"),
("gemma", "Gemma"),
("gemma2", "Gemma2"),
("gemma3", "Gemma3ForConditionalGeneration"),
("gemma3_text", "Gemma3ForCausalLM"),
("git", "GIT"),
("glm", "GLM"),
("glm4", "glm4"),
("glpn", "GLPN"),
("got_ocr2", "GOT-OCR2"),
("gpt-sw3", "GPT-Sw3"),
("gpt2", "OpenAI GPT-2"),
("gpt_bigcode", "GPTBigCode"),
("gpt_neo", "GPT Neo"),
("gpt_neox", "GPT NeoX"),
("gpt_neox_japanese", "GPT NeoX Japanese"),
("gptj", "GPT-J"),
("gptsan-japanese", "GPTSAN-japanese"),
("granite", "Granite"),
("granitemoe", "GraniteMoeMoe"),
("granitemoeshared", "GraniteMoeSharedMoe"),
("granitevision", "LLaVA-NeXT"),
("graphormer", "Graphormer"),
("grounding-dino", "Grounding DINO"),
("groupvit", "GroupViT"),
("helium", "Helium"),
("herbert", "HerBERT"),
("hiera", "Hiera"),
("hubert", "Hubert"),
("ibert", "I-BERT"),
("idefics", "IDEFICS"),
("idefics2", "Idefics2"),
("idefics3", "Idefics3"),
("idefics3_vision", "Idefics3VisionTransformer"),
("ijepa", "I-JEPA"),
("imagegpt", "ImageGPT"),
("informer", "Informer"),
("instructblip", "InstructBLIP"),
("instructblipvideo", "InstructBlipVideo"),
("jamba", "Jamba"),
("jetmoe", "JetMoe"),
("jukebox", "Jukebox"),
("kosmos-2", "KOSMOS-2"),
("layoutlm", "LayoutLM"),
("layoutlmv2", "LayoutLMv2"),
("layoutlmv3", "LayoutLMv3"),
("layoutxlm", "LayoutXLM"),
("led", "LED"),
("levit", "LeViT"),
("lilt", "LiLT"),
("llama", "LLaMA"),
("llama2", "Llama2"),
("llama3", "Llama3"),
("llama4", "Llama4"),
("llama4_text", "Llama4ForCausalLM"),
("llava", "LLaVa"),
("llava_next", "LLaVA-NeXT"),
("llava_next_video", "LLaVa-NeXT-Video"),
("llava_onevision", "LLaVA-Onevision"),
("longformer", "Longformer"),
("longt5", "LongT5"),
("luke", "LUKE"),
("lxmert", "LXMERT"),
("m2m_100", "M2M100"),
("madlad-400", "MADLAD-400"),
("mamba", "Mamba"),
("mamba2", "mamba2"),
("marian", "Marian"),
("markuplm", "MarkupLM"),
("mask2former", "Mask2Former"),
("maskformer", "MaskFormer"),
("maskformer-swin", "MaskFormerSwin"),
("matcha", "MatCha"),
("mbart", "mBART"),
("mbart50", "mBART-50"),
("mctct", "M-CTC-T"),
("mega", "MEGA"),
("megatron-bert", "Megatron-BERT"),
("megatron_gpt2", "Megatron-GPT2"),
("mgp-str", "MGP-STR"),
("mimi", "Mimi"),
("mistral", "Mistral"),
("mistral3", "Mistral3"),
("mixtral", "Mixtral"),
("mllama", "Mllama"),
("mluke", "mLUKE"),
("mms", "MMS"),
("mobilebert", "MobileBERT"),
("mobilenet_v1", "MobileNetV1"),
("mobilenet_v2", "MobileNetV2"),
("mobilevit", "MobileViT"),
("mobilevitv2", "MobileViTV2"),
("modernbert", "ModernBERT"),
("moonshine", "Moonshine"),
("moshi", "Moshi"),
("mpnet", "MPNet"),
("mpt", "MPT"),
("mra", "MRA"),
("mt5", "MT5"),
("musicgen", "MusicGen"),
("musicgen_melody", "MusicGen Melody"),
("mvp", "MVP"),
("myt5", "myt5"),
("nat", "NAT"),
("nemotron", "Nemotron"),
("nezha", "Nezha"),
("nllb", "NLLB"),
("nllb-moe", "NLLB-MOE"),
("nougat", "Nougat"),
("nystromformer", "Nyströmformer"),
("olmo", "OLMo"),
("olmo2", "OLMo2"),
("olmoe", "OLMoE"),
("omdet-turbo", "OmDet-Turbo"),
("oneformer", "OneFormer"),
("open-llama", "OpenLlama"),
("openai-gpt", "OpenAI GPT"),
("opt", "OPT"),
("owlv2", "OWLv2"),
("owlvit", "OWL-ViT"),
("paligemma", "PaliGemma"),
("patchtsmixer", "PatchTSMixer"),
("patchtst", "PatchTST"),
("pegasus", "Pegasus"),
("pegasus_x", "PEGASUS-X"),
("perceiver", "Perceiver"),
("persimmon", "Persimmon"),
("phi", "Phi"),
("phi3", "Phi3"),
("phi4_multimodal", "Phi4Multimodal"),
("phimoe", "Phimoe"),
("phobert", "PhoBERT"),
("pix2struct", "Pix2Struct"),
("pixtral", "Pixtral"),
("plbart", "PLBart"),
("poolformer", "PoolFormer"),
("pop2piano", "Pop2Piano"),
("prompt_depth_anything", "PromptDepthAnything"),
("prophetnet", "ProphetNet"),
("pvt", "PVT"),
("pvt_v2", "PVTv2"),
("qdqbert", "QDQBert"),
("qwen2", "Qwen2"),
("qwen2_5_vl", "Qwen2_5_VL"),
("qwen2_audio", "Qwen2Audio"),
("qwen2_audio_encoder", "Qwen2AudioEncoder"),
("qwen2_moe", "Qwen2MoE"),
("qwen2_vl", "Qwen2VL"),
("qwen3", "Qwen3"),
("qwen3_moe", "Qwen3MoE"),
("rag", "RAG"),
("realm", "REALM"),
("recurrent_gemma", "RecurrentGemma"),
("reformer", "Reformer"),
("regnet", "RegNet"),
("rembert", "RemBERT"),
("resnet", "ResNet"),
("retribert", "RetriBERT"),
("roberta", "RoBERTa"),
("roberta-prelayernorm", "RoBERTa-PreLayerNorm"),
("roc_bert", "RoCBert"),
("roformer", "RoFormer"),
("rt_detr", "RT-DETR"),
("rt_detr_resnet", "RT-DETR-ResNet"),
("rt_detr_v2", "RT-DETRv2"),
("rwkv", "RWKV"),
("sam", "SAM"),
("sam_vision_model", "SamVisionModel"),
("seamless_m4t", "SeamlessM4T"),
("seamless_m4t_v2", "SeamlessM4Tv2"),
("segformer", "SegFormer"),
("seggpt", "SegGPT"),
("sew", "SEW"),
("sew-d", "SEW-D"),
("shieldgemma2", "Shieldgemma2"),
("siglip", "SigLIP"),
("siglip2", "SigLIP2"),
("siglip2_vision_model", "Siglip2VisionModel"),
("siglip_vision_model", "SiglipVisionModel"),
("smolvlm", "SmolVLM"),
("smolvlm_vision", "SmolVLMVisionTransformer"),
("speech-encoder-decoder", "Speech Encoder decoder"),
("speech_to_text", "Speech2Text"),
("speech_to_text_2", "Speech2Text2"),
("speecht5", "SpeechT5"),
("splinter", "Splinter"),
("squeezebert", "SqueezeBERT"),
("stablelm", "StableLm"),
("starcoder2", "Starcoder2"),
("superglue", "SuperGlue"),
("superpoint", "SuperPoint"),
("swiftformer", "SwiftFormer"),
("swin", "Swin Transformer"),
("swin2sr", "Swin2SR"),
("swinv2", "Swin Transformer V2"),
("switch_transformers", "SwitchTransformers"),
("t5", "T5"),
("t5v1.1", "T5v1.1"),
("table-transformer", "Table Transformer"),
("tapas", "TAPAS"),
("tapex", "TAPEX"),
("textnet", "TextNet"),
("time_series_transformer", "Time Series Transformer"),
("timesformer", "TimeSformer"),
("timm_backbone", "TimmBackbone"),
("timm_wrapper", "TimmWrapperModel"),
("trajectory_transformer", "Trajectory Transformer"),
("transfo-xl", "Transformer-XL"),
("trocr", "TrOCR"),
("tvlt", "TVLT"),
("tvp", "TVP"),
("udop", "UDOP"),
("ul2", "UL2"),
("umt5", "UMT5"),
("unispeech", "UniSpeech"),
("unispeech-sat", "UniSpeechSat"),
("univnet", "UnivNet"),
("upernet", "UPerNet"),
("van", "VAN"),
("video_llava", "VideoLlava"),
("videomae", "VideoMAE"),
("vilt", "ViLT"),
("vipllava", "VipLlava"),
("vision-encoder-decoder", "Vision Encoder decoder"),
("vision-text-dual-encoder", "VisionTextDualEncoder"),
("visual_bert", "VisualBERT"),
("vit", "ViT"),
("vit_hybrid", "ViT Hybrid"),
("vit_mae", "ViTMAE"),
("vit_msn", "ViTMSN"),
("vitdet", "VitDet"),
("vitmatte", "ViTMatte"),
("vitpose", "ViTPose"),
("vitpose_backbone", "ViTPoseBackbone"),
("vits", "VITS"),
("vivit", "ViViT"),
("wav2vec2", "Wav2Vec2"),
("wav2vec2-bert", "Wav2Vec2-BERT"),
("wav2vec2-conformer", "Wav2Vec2-Conformer"),
("wav2vec2_phoneme", "Wav2Vec2Phoneme"),
("wavlm", "WavLM"),
("whisper", "Whisper"),
("xclip", "X-CLIP"),
("xglm", "XGLM"),
("xlm", "XLM"),
("xlm-prophetnet", "XLM-ProphetNet"),
("xlm-roberta", "XLM-RoBERTa"),
("xlm-roberta-xl", "XLM-RoBERTa-XL"),
("xlm-v", "XLM-V"),
("xlnet", "XLNet"),
("xls_r", "XLS-R"),
("xlsr_wav2vec2", "XLSR-Wav2Vec2"),
("xmod", "X-MOD"),
("yolos", "YOLOS"),
("yoso", "YOSO"),
("zamba", "Zamba"),
("zamba2", "Zamba2"),
("zoedepth", "ZoeDepth"),
]
)
# This is tied to the processing `-` -> `_` in `model_type_to_module_name`. For example, instead of putting
# `transfo-xl` (as in `CONFIG_MAPPING_NAMES`), we should use `transfo_xl`.
DEPRECATED_MODELS = [
"bort",
"deta",
"efficientformer",
"ernie_m",
"gptsan_japanese",
"graphormer",
"jukebox",
"mctct",
"mega",
"mmbt",
"nat",
"nezha",
"open_llama",
"qdqbert",
"realm",
"retribert",
"speech_to_text_2",
"tapex",
"trajectory_transformer",
"transfo_xl",
"tvlt",
"van",
"vit_hybrid",
"xlm_prophetnet",
]
SPECIAL_MODEL_TYPE_TO_MODULE_NAME = OrderedDict(
[
("openai-gpt", "openai"),
("data2vec-audio", "data2vec"),
("data2vec-text", "data2vec"),
("data2vec-vision", "data2vec"),
("donut-swin", "donut"),
("kosmos-2", "kosmos2"),
("maskformer-swin", "maskformer"),
("xclip", "x_clip"),
("clip_vision_model", "clip"),
("qwen2_audio_encoder", "qwen2_audio"),
("clip_text_model", "clip"),
("aria_text", "aria"),
("gemma3_text", "gemma3"),
("idefics3_vision", "idefics3"),
("siglip_vision_model", "siglip"),
("smolvlm_vision", "smolvlm"),
("chinese_clip_vision_model", "chinese_clip"),
("rt_detr_resnet", "rt_detr"),
("granitevision", "llava_next"),
("sam_vision_model", "sam"),
("llama4_text", "llama4"),
]
)
def model_type_to_module_name(key):
"""Converts a config key to the corresponding module."""
# Special treatment
if key in SPECIAL_MODEL_TYPE_TO_MODULE_NAME:
key = SPECIAL_MODEL_TYPE_TO_MODULE_NAME[key]
if key in DEPRECATED_MODELS:
key = f"deprecated.{key}"
return key
key = key.replace("-", "_")
if key in DEPRECATED_MODELS:
key = f"deprecated.{key}"
return key
def config_class_to_model_type(config):
"""Converts a config class name to the corresponding model type"""
for key, cls in CONFIG_MAPPING_NAMES.items():
if cls == config:
return key
# if key not found check in extra content
for key, cls in CONFIG_MAPPING._extra_content.items():
if cls.__name__ == config:
return key
return None
class _LazyConfigMapping(OrderedDict):
"""
A dictionary that lazily load its values when they are requested.
"""
def __init__(self, mapping):
self._mapping = mapping
self._extra_content = {}
self._modules = {}
def __getitem__(self, key):
if key in self._extra_content:
return self._extra_content[key]
if key not in self._mapping:
raise KeyError(key)
value = self._mapping[key]
module_name = model_type_to_module_name(key)
if module_name not in self._modules:
self._modules[module_name] = importlib.import_module(f".{module_name}", "transformers.models")
if hasattr(self._modules[module_name], value):
return getattr(self._modules[module_name], value)
# Some of the mappings have entries model_type -> config of another model type. In that case we try to grab the
# object at the top level.
transformers_module = importlib.import_module("transformers")
return getattr(transformers_module, value)
def keys(self):
return list(self._mapping.keys()) + list(self._extra_content.keys())
def values(self):
return [self[k] for k in self._mapping.keys()] + list(self._extra_content.values())
def items(self):
return [(k, self[k]) for k in self._mapping.keys()] + list(self._extra_content.items())
def __iter__(self):
return iter(list(self._mapping.keys()) + list(self._extra_content.keys()))
def __contains__(self, item):
return item in self._mapping or item in self._extra_content
def register(self, key, value, exist_ok=False):
"""
Register a new configuration in this mapping.
"""
if key in self._mapping.keys() and not exist_ok:
raise ValueError(f"'{key}' is already used by a Transformers config, pick another name.")
self._extra_content[key] = value
CONFIG_MAPPING = _LazyConfigMapping(CONFIG_MAPPING_NAMES)
class _LazyLoadAllMappings(OrderedDict):
"""
A mapping that will load all pairs of key values at the first access (either by indexing, requestions keys, values,
etc.)
Args:
mapping: The mapping to load.
"""
def __init__(self, mapping):
self._mapping = mapping
self._initialized = False
self._data = {}
def _initialize(self):
if self._initialized:
return
for model_type, map_name in self._mapping.items():
module_name = model_type_to_module_name(model_type)
module = importlib.import_module(f".{module_name}", "transformers.models")
mapping = getattr(module, map_name)
self._data.update(mapping)
self._initialized = True
def __getitem__(self, key):
self._initialize()
return self._data[key]
def keys(self):
self._initialize()
return self._data.keys()
def values(self):
self._initialize()
return self._data.values()
def items(self):
self._initialize()
return self._data.keys()
def __iter__(self):
self._initialize()
return iter(self._data)
def __contains__(self, item):
self._initialize()
return item in self._data
def _get_class_name(model_class: Union[str, List[str]]):
if isinstance(model_class, (list, tuple)):
return " or ".join([f"[`{c}`]" for c in model_class if c is not None])
return f"[`{model_class}`]"
def _list_model_options(indent, config_to_class=None, use_model_types=True):
if config_to_class is None and not use_model_types:
raise ValueError("Using `use_model_types=False` requires a `config_to_class` dictionary.")
if use_model_types:
if config_to_class is None:
model_type_to_name = {model_type: f"[`{config}`]" for model_type, config in CONFIG_MAPPING_NAMES.items()}
else:
model_type_to_name = {
model_type: _get_class_name(model_class)
for model_type, model_class in config_to_class.items()
if model_type in MODEL_NAMES_MAPPING
}
lines = [
f"{indent}- **{model_type}** -- {model_type_to_name[model_type]} ({MODEL_NAMES_MAPPING[model_type]} model)"
for model_type in sorted(model_type_to_name.keys())
]
else:
config_to_name = {
CONFIG_MAPPING_NAMES[config]: _get_class_name(clas)
for config, clas in config_to_class.items()
if config in CONFIG_MAPPING_NAMES
}
config_to_model_name = {
config: MODEL_NAMES_MAPPING[model_type] for model_type, config in CONFIG_MAPPING_NAMES.items()
}
lines = [
f"{indent}- [`{config_name}`] configuration class:"
f" {config_to_name[config_name]} ({config_to_model_name[config_name]} model)"
for config_name in sorted(config_to_name.keys())
]
return "\n".join(lines)
def replace_list_option_in_docstrings(config_to_class=None, use_model_types=True):
def docstring_decorator(fn):
docstrings = fn.__doc__
if docstrings is None:
# Example: -OO
return fn
lines = docstrings.split("\n")
i = 0
while i < len(lines) and re.search(r"^(\s*)List options\s*$", lines[i]) is None:
i += 1
if i < len(lines):
indent = re.search(r"^(\s*)List options\s*$", lines[i]).groups()[0]
if use_model_types:
indent = f"{indent} "
lines[i] = _list_model_options(indent, config_to_class=config_to_class, use_model_types=use_model_types)
docstrings = "\n".join(lines)
else:
raise ValueError(
f"The function {fn} should have an empty 'List options' in its docstring as placeholder, current"
f" docstring is:\n{docstrings}"
)
fn.__doc__ = docstrings
return fn
return docstring_decorator
class AutoConfig:
r"""
This is a generic configuration class that will be instantiated as one of the configuration classes of the library
when created with the [`~AutoConfig.from_pretrained`] class method.
This class cannot be instantiated directly using `__init__()` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoConfig is designed to be instantiated "
"using the `AutoConfig.from_pretrained(pretrained_model_name_or_path)` method."
)
@classmethod
def for_model(cls, model_type: str, *args, **kwargs):
if model_type in CONFIG_MAPPING:
config_class = CONFIG_MAPPING[model_type]
return config_class(*args, **kwargs)
raise ValueError(
f"Unrecognized model identifier: {model_type}. Should contain one of {', '.join(CONFIG_MAPPING.keys())}"
)
@classmethod
@replace_list_option_in_docstrings()
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
r"""
Instantiate one of the configuration classes of the library from a pretrained model configuration.
The configuration class to instantiate is selected based on the `model_type` property of the config object that
is loaded, or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`:
List options
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
Can be either:
- A string, the *model id* of a pretrained model configuration hosted inside a model repo on
huggingface.co.
- A path to a *directory* containing a configuration file saved using the
[`~PretrainedConfig.save_pretrained`] method, or the [`~PreTrainedModel.save_pretrained`] method,
e.g., `./my_model_directory/`.
- A path or url to a saved configuration JSON *file*, e.g.,
`./my_model_directory/configuration.json`.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download the model weights and configuration files and override the
cached versions if they exist.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
If `False`, then this function returns just the final configuration object.
If `True`, then this functions returns a `Tuple(config, unused_kwargs)` where *unused_kwargs* is a
dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the
part of `kwargs` which has not been used to update `config` and is otherwise ignored.
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
kwargs(additional keyword arguments, *optional*):
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
by the `return_unused_kwargs` keyword parameter.
Examples:
```python
>>> from transformers import AutoConfig
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained("google-bert/bert-base-uncased")
>>> # Download configuration from huggingface.co (user-uploaded) and cache.
>>> config = AutoConfig.from_pretrained("dbmdz/bert-base-german-cased")
>>> # If configuration file is in a directory (e.g., was saved using *save_pretrained('./test/saved_model/')*).
>>> config = AutoConfig.from_pretrained("./test/bert_saved_model/")
>>> # Load a specific configuration file.
>>> config = AutoConfig.from_pretrained("./test/bert_saved_model/my_configuration.json")
>>> # Change some config attributes when loading a pretrained config.
>>> config = AutoConfig.from_pretrained("google-bert/bert-base-uncased", output_attentions=True, foo=False)
>>> config.output_attentions
True
>>> config, unused_kwargs = AutoConfig.from_pretrained(
... "google-bert/bert-base-uncased", output_attentions=True, foo=False, return_unused_kwargs=True
... )
>>> config.output_attentions
True
>>> unused_kwargs
{'foo': False}
```"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if kwargs.get("token", None) is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
kwargs["token"] = use_auth_token
kwargs["_from_auto"] = True
kwargs["name_or_path"] = pretrained_model_name_or_path
trust_remote_code = kwargs.pop("trust_remote_code", None)
code_revision = kwargs.pop("code_revision", None)
config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
has_remote_code = "auto_map" in config_dict and "AutoConfig" in config_dict["auto_map"]
has_local_code = "model_type" in config_dict and config_dict["model_type"] in CONFIG_MAPPING
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
)
if has_remote_code and trust_remote_code:
class_ref = config_dict["auto_map"]["AutoConfig"]
config_class = get_class_from_dynamic_module(
class_ref, pretrained_model_name_or_path, code_revision=code_revision, **kwargs
)
if os.path.isdir(pretrained_model_name_or_path):
config_class.register_for_auto_class()
return config_class.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif "model_type" in config_dict:
try:
config_class = CONFIG_MAPPING[config_dict["model_type"]]
except KeyError:
raise ValueError(
f"The checkpoint you are trying to load has model type `{config_dict['model_type']}` "
"but Transformers does not recognize this architecture. This could be because of an "
"issue with the checkpoint, or because your version of Transformers is out of date.\n\n"
"You can update Transformers with the command `pip install --upgrade transformers`. If this "
"does not work, and the checkpoint is very new, then there may not be a release version "
"that supports this model yet. In this case, you can get the most up-to-date code by installing "
"Transformers from source with the command "
"`pip install git+https://github.com/huggingface/transformers.git`"
)
return config_class.from_dict(config_dict, **unused_kwargs)
else:
# Fallback: use pattern matching on the string.
# We go from longer names to shorter names to catch roberta before bert (for instance)
for pattern in sorted(CONFIG_MAPPING.keys(), key=len, reverse=True):
if pattern in str(pretrained_model_name_or_path):
return CONFIG_MAPPING[pattern].from_dict(config_dict, **unused_kwargs)
raise ValueError(
f"Unrecognized model in {pretrained_model_name_or_path}. "
f"Should have a `model_type` key in its {CONFIG_NAME}, or contain one of the following strings "
f"in its name: {', '.join(CONFIG_MAPPING.keys())}"
)
@staticmethod
def register(model_type, config, exist_ok=False):
"""
Register a new configuration for this class.
Args:
model_type (`str`): The model type like "bert" or "gpt".
config ([`PretrainedConfig`]): The config to register.
"""
if issubclass(config, PretrainedConfig) and config.model_type != model_type:
raise ValueError(
"The config you are passing has a `model_type` attribute that is not consistent with the model type "
f"you passed (config has {config.model_type} and you passed {model_type}. Fix one of those so they "
"match!"
)
CONFIG_MAPPING.register(model_type, config, exist_ok=exist_ok)
```
|
===========================================================================================================================================
SOURCE CODE FILE: feature_extraction_auto.py
LINES: 1
SIZE: 19.46 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\auto\feature_extraction_auto.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""AutoFeatureExtractor class."""
import importlib
import json
import os
import warnings
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, cached_file, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
logger = logging.get_logger(__name__)
FEATURE_EXTRACTOR_MAPPING_NAMES = OrderedDict(
[
("audio-spectrogram-transformer", "ASTFeatureExtractor"),
("beit", "BeitFeatureExtractor"),
("chinese_clip", "ChineseCLIPFeatureExtractor"),
("clap", "ClapFeatureExtractor"),
("clip", "CLIPFeatureExtractor"),
("clipseg", "ViTFeatureExtractor"),
("clvp", "ClvpFeatureExtractor"),
("conditional_detr", "ConditionalDetrFeatureExtractor"),
("convnext", "ConvNextFeatureExtractor"),
("cvt", "ConvNextFeatureExtractor"),
("dac", "DacFeatureExtractor"),
("data2vec-audio", "Wav2Vec2FeatureExtractor"),
("data2vec-vision", "BeitFeatureExtractor"),
("deformable_detr", "DeformableDetrFeatureExtractor"),
("deit", "DeiTFeatureExtractor"),
("detr", "DetrFeatureExtractor"),
("dinat", "ViTFeatureExtractor"),
("donut-swin", "DonutFeatureExtractor"),
("dpt", "DPTFeatureExtractor"),
("encodec", "EncodecFeatureExtractor"),
("flava", "FlavaFeatureExtractor"),
("glpn", "GLPNFeatureExtractor"),
("groupvit", "CLIPFeatureExtractor"),
("hubert", "Wav2Vec2FeatureExtractor"),
("imagegpt", "ImageGPTFeatureExtractor"),
("layoutlmv2", "LayoutLMv2FeatureExtractor"),
("layoutlmv3", "LayoutLMv3FeatureExtractor"),
("levit", "LevitFeatureExtractor"),
("maskformer", "MaskFormerFeatureExtractor"),
("mctct", "MCTCTFeatureExtractor"),
("mimi", "EncodecFeatureExtractor"),
("mobilenet_v1", "MobileNetV1FeatureExtractor"),
("mobilenet_v2", "MobileNetV2FeatureExtractor"),
("mobilevit", "MobileViTFeatureExtractor"),
("moonshine", "Wav2Vec2FeatureExtractor"),
("moshi", "EncodecFeatureExtractor"),
("nat", "ViTFeatureExtractor"),
("owlvit", "OwlViTFeatureExtractor"),
("perceiver", "PerceiverFeatureExtractor"),
("phi4_multimodal", "Phi4MultimodalFeatureExtractor"),
("poolformer", "PoolFormerFeatureExtractor"),
("pop2piano", "Pop2PianoFeatureExtractor"),
("regnet", "ConvNextFeatureExtractor"),
("resnet", "ConvNextFeatureExtractor"),
("seamless_m4t", "SeamlessM4TFeatureExtractor"),
("seamless_m4t_v2", "SeamlessM4TFeatureExtractor"),
("segformer", "SegformerFeatureExtractor"),
("sew", "Wav2Vec2FeatureExtractor"),
("sew-d", "Wav2Vec2FeatureExtractor"),
("speech_to_text", "Speech2TextFeatureExtractor"),
("speecht5", "SpeechT5FeatureExtractor"),
("swiftformer", "ViTFeatureExtractor"),
("swin", "ViTFeatureExtractor"),
("swinv2", "ViTFeatureExtractor"),
("table-transformer", "DetrFeatureExtractor"),
("timesformer", "VideoMAEFeatureExtractor"),
("tvlt", "TvltFeatureExtractor"),
("unispeech", "Wav2Vec2FeatureExtractor"),
("unispeech-sat", "Wav2Vec2FeatureExtractor"),
("univnet", "UnivNetFeatureExtractor"),
("van", "ConvNextFeatureExtractor"),
("videomae", "VideoMAEFeatureExtractor"),
("vilt", "ViltFeatureExtractor"),
("vit", "ViTFeatureExtractor"),
("vit_mae", "ViTFeatureExtractor"),
("vit_msn", "ViTFeatureExtractor"),
("wav2vec2", "Wav2Vec2FeatureExtractor"),
("wav2vec2-bert", "Wav2Vec2FeatureExtractor"),
("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"),
("wavlm", "Wav2Vec2FeatureExtractor"),
("whisper", "WhisperFeatureExtractor"),
("xclip", "CLIPFeatureExtractor"),
("yolos", "YolosFeatureExtractor"),
]
)
FEATURE_EXTRACTOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def feature_extractor_class_from_name(class_name: str):
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
module_name = model_type_to_module_name(module_name)
module = importlib.import_module(f".{module_name}", "transformers.models")
try:
return getattr(module, class_name)
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(extractor, "__name__", None) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
main_module = importlib.import_module("transformers")
if hasattr(main_module, class_name):
return getattr(main_module, class_name)
return None
def get_feature_extractor_config(
pretrained_model_name_or_path: Union[str, os.PathLike],
cache_dir: Optional[Union[str, os.PathLike]] = None,
force_download: bool = False,
resume_download: Optional[bool] = None,
proxies: Optional[Dict[str, str]] = None,
token: Optional[Union[bool, str]] = None,
revision: Optional[str] = None,
local_files_only: bool = False,
**kwargs,
):
"""
Loads the tokenizer configuration from a pretrained model tokenizer configuration.
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
huggingface.co.
- a path to a *directory* containing a configuration file saved using the
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the configuration files and override the cached versions if they
exist.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, will only try to load the tokenizer configuration from local files.
<Tip>
Passing `token=True` is required when you want to use a private model.
</Tip>
Returns:
`Dict`: The configuration of the tokenizer.
Examples:
```python
# Download configuration from huggingface.co and cache.
tokenizer_config = get_tokenizer_config("google-bert/bert-base-uncased")
# This model does not have a tokenizer config so the result will be an empty dict.
tokenizer_config = get_tokenizer_config("FacebookAI/xlm-roberta-base")
# Save a pretrained tokenizer locally and you can reload its config
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
tokenizer.save_pretrained("tokenizer-test")
tokenizer_config = get_tokenizer_config("tokenizer-test")
```"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
token = use_auth_token
resolved_config_file = cached_file(
pretrained_model_name_or_path,
FEATURE_EXTRACTOR_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
token=token,
revision=revision,
local_files_only=local_files_only,
_raise_exceptions_for_gated_repo=False,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
)
if resolved_config_file is None:
logger.info(
"Could not locate the feature extractor configuration file, will try to use the model config instead."
)
return {}
with open(resolved_config_file, encoding="utf-8") as reader:
return json.load(reader)
class AutoFeatureExtractor:
r"""
This is a generic feature extractor class that will be instantiated as one of the feature extractor classes of the
library when created with the [`AutoFeatureExtractor.from_pretrained`] class method.
This class cannot be instantiated directly using `__init__()` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoFeatureExtractor is designed to be instantiated "
"using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method."
)
@classmethod
@replace_list_option_in_docstrings(FEATURE_EXTRACTOR_MAPPING_NAMES)
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
r"""
Instantiate one of the feature extractor classes of the library from a pretrained model vocabulary.
The feature extractor class to instantiate is selected based on the `model_type` property of the config object
(either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's
missing, by falling back to using pattern matching on `pretrained_model_name_or_path`:
List options
Params:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on
huggingface.co.
- a path to a *directory* containing a feature extractor file saved using the
[`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] method, e.g.,
`./my_model_directory/`.
- a path or url to a saved feature extractor JSON *file*, e.g.,
`./my_model_directory/preprocessor_config.json`.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model feature extractor should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the feature extractor files and override the cached versions
if they exist.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
If `False`, then this function returns just the final feature extractor object. If `True`, then this
functions returns a `Tuple(feature_extractor, unused_kwargs)` where *unused_kwargs* is a dictionary
consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of
`kwargs` which has not been used to update `feature_extractor` and is otherwise ignored.
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
kwargs (`Dict[str, Any]`, *optional*):
The values in kwargs of any keys which are feature extractor attributes will be used to override the
loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is
controlled by the `return_unused_kwargs` keyword parameter.
<Tip>
Passing `token=True` is required when you want to use a private model.
</Tip>
Examples:
```python
>>> from transformers import AutoFeatureExtractor
>>> # Download feature extractor from huggingface.co and cache.
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
>>> # If feature extractor files are in a directory (e.g. feature extractor was saved using *save_pretrained('./test/saved_model/')*)
>>> # feature_extractor = AutoFeatureExtractor.from_pretrained("./test/saved_model/")
```"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if kwargs.get("token", None) is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
kwargs["token"] = use_auth_token
config = kwargs.pop("config", None)
trust_remote_code = kwargs.pop("trust_remote_code", None)
kwargs["_from_auto"] = True
config_dict, _ = FeatureExtractionMixin.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs)
feature_extractor_class = config_dict.get("feature_extractor_type", None)
feature_extractor_auto_map = None
if "AutoFeatureExtractor" in config_dict.get("auto_map", {}):
feature_extractor_auto_map = config_dict["auto_map"]["AutoFeatureExtractor"]
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(config, PretrainedConfig):
config = AutoConfig.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
)
# It could be in `config.feature_extractor_type``
feature_extractor_class = getattr(config, "feature_extractor_type", None)
if hasattr(config, "auto_map") and "AutoFeatureExtractor" in config.auto_map:
feature_extractor_auto_map = config.auto_map["AutoFeatureExtractor"]
if feature_extractor_class is not None:
feature_extractor_class = feature_extractor_class_from_name(feature_extractor_class)
has_remote_code = feature_extractor_auto_map is not None
has_local_code = feature_extractor_class is not None or type(config) in FEATURE_EXTRACTOR_MAPPING
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
)
if has_remote_code and trust_remote_code:
feature_extractor_class = get_class_from_dynamic_module(
feature_extractor_auto_map, pretrained_model_name_or_path, **kwargs
)
_ = kwargs.pop("code_revision", None)
if os.path.isdir(pretrained_model_name_or_path):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(config_dict, **kwargs)
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(config_dict, **kwargs)
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(config) in FEATURE_EXTRACTOR_MAPPING:
feature_extractor_class = FEATURE_EXTRACTOR_MAPPING[type(config)]
return feature_extractor_class.from_dict(config_dict, **kwargs)
raise ValueError(
f"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a "
f"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following "
f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}"
)
@staticmethod
def register(config_class, feature_extractor_class, exist_ok=False):
"""
Register a new feature extractor for this class.
Args:
config_class ([`PretrainedConfig`]):
The configuration corresponding to the model to register.
feature_extractor_class ([`FeatureExtractorMixin`]): The feature extractor to register.
"""
FEATURE_EXTRACTOR_MAPPING.register(config_class, feature_extractor_class, exist_ok=exist_ok)
```
|
=========================================================================================================================================
SOURCE CODE FILE: image_processing_auto.py
LINES: 1
SIZE: 33.58 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\auto\image_processing_auto.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""AutoImageProcessor class."""
import importlib
import json
import os
import warnings
from collections import OrderedDict
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
# Build the list of all image processors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...image_processing_utils import ImageProcessingMixin
from ...image_processing_utils_fast import BaseImageProcessorFast
from ...utils import (
CONFIG_NAME,
IMAGE_PROCESSOR_NAME,
cached_file,
is_timm_config_dict,
is_timm_local_checkpoint,
is_torchvision_available,
is_vision_available,
logging,
)
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
logger = logging.get_logger(__name__)
if TYPE_CHECKING:
# This significantly improves completion suggestion performance when
# the transformers package is used with Microsoft's Pylance language server.
IMAGE_PROCESSOR_MAPPING_NAMES: OrderedDict[str, Tuple[Optional[str], Optional[str]]] = OrderedDict()
else:
IMAGE_PROCESSOR_MAPPING_NAMES = OrderedDict(
[
("align", ("EfficientNetImageProcessor",)),
("aria", ("AriaImageProcessor",)),
("beit", ("BeitImageProcessor",)),
("bit", ("BitImageProcessor",)),
("blip", ("BlipImageProcessor", "BlipImageProcessorFast")),
("blip-2", ("BlipImageProcessor", "BlipImageProcessorFast")),
("bridgetower", ("BridgeTowerImageProcessor",)),
("chameleon", ("ChameleonImageProcessor",)),
("chinese_clip", ("ChineseCLIPImageProcessor",)),
("clip", ("CLIPImageProcessor", "CLIPImageProcessorFast")),
("clipseg", ("ViTImageProcessor", "ViTImageProcessorFast")),
("conditional_detr", ("ConditionalDetrImageProcessor",)),
("convnext", ("ConvNextImageProcessor", "ConvNextImageProcessorFast")),
("convnextv2", ("ConvNextImageProcessor", "ConvNextImageProcessorFast")),
("cvt", ("ConvNextImageProcessor", "ConvNextImageProcessorFast")),
("data2vec-vision", ("BeitImageProcessor",)),
("deformable_detr", ("DeformableDetrImageProcessor", "DeformableDetrImageProcessorFast")),
("deit", ("DeiTImageProcessor", "DeiTImageProcessorFast")),
("depth_anything", ("DPTImageProcessor",)),
("depth_pro", ("DepthProImageProcessor", "DepthProImageProcessorFast")),
("deta", ("DetaImageProcessor",)),
("detr", ("DetrImageProcessor", "DetrImageProcessorFast")),
("dinat", ("ViTImageProcessor", "ViTImageProcessorFast")),
("dinov2", ("BitImageProcessor",)),
("donut-swin", ("DonutImageProcessor",)),
("dpt", ("DPTImageProcessor",)),
("efficientformer", ("EfficientFormerImageProcessor",)),
("efficientnet", ("EfficientNetImageProcessor",)),
("flava", ("FlavaImageProcessor",)),
("focalnet", ("BitImageProcessor",)),
("fuyu", ("FuyuImageProcessor",)),
("gemma3", ("Gemma3ImageProcessor", "Gemma3ImageProcessorFast")),
("git", ("CLIPImageProcessor", "CLIPImageProcessorFast")),
("glpn", ("GLPNImageProcessor",)),
("got_ocr2", ("GotOcr2ImageProcessor", "GotOcr2ImageProcessorFast")),
("grounding-dino", ("GroundingDinoImageProcessor",)),
("groupvit", ("CLIPImageProcessor", "CLIPImageProcessorFast")),
("hiera", ("BitImageProcessor",)),
("idefics", ("IdeficsImageProcessor",)),
("idefics2", ("Idefics2ImageProcessor",)),
("idefics3", ("Idefics3ImageProcessor",)),
("ijepa", ("ViTImageProcessor", "ViTImageProcessorFast")),
("imagegpt", ("ImageGPTImageProcessor",)),
("instructblip", ("BlipImageProcessor", "BlipImageProcessorFast")),
("instructblipvideo", ("InstructBlipVideoImageProcessor",)),
("kosmos-2", ("CLIPImageProcessor", "CLIPImageProcessorFast")),
("layoutlmv2", ("LayoutLMv2ImageProcessor",)),
("layoutlmv3", ("LayoutLMv3ImageProcessor",)),
("levit", ("LevitImageProcessor",)),
("llama4", ("Llama4ImageProcessor", "Llama4ImageProcessorFast")),
("llava", ("LlavaImageProcessor", "LlavaImageProcessorFast")),
("llava_next", ("LlavaNextImageProcessor", "LlavaNextImageProcessorFast")),
("llava_next_video", ("LlavaNextVideoImageProcessor",)),
("llava_onevision", ("LlavaOnevisionImageProcessor", "LlavaOnevisionImageProcessorFast")),
("mask2former", ("Mask2FormerImageProcessor",)),
("maskformer", ("MaskFormerImageProcessor",)),
("mgp-str", ("ViTImageProcessor", "ViTImageProcessorFast")),
("mistral3", ("PixtralImageProcessor", "PixtralImageProcessorFast")),
("mllama", ("MllamaImageProcessor",)),
("mobilenet_v1", ("MobileNetV1ImageProcessor",)),
("mobilenet_v2", ("MobileNetV2ImageProcessor",)),
("mobilevit", ("MobileViTImageProcessor",)),
("mobilevitv2", ("MobileViTImageProcessor",)),
("nat", ("ViTImageProcessor", "ViTImageProcessorFast")),
("nougat", ("NougatImageProcessor",)),
("oneformer", ("OneFormerImageProcessor",)),
("owlv2", ("Owlv2ImageProcessor",)),
("owlvit", ("OwlViTImageProcessor",)),
("paligemma", ("SiglipImageProcessor", "SiglipImageProcessorFast")),
("perceiver", ("PerceiverImageProcessor",)),
("phi4_multimodal", "Phi4MultimodalImageProcessorFast"),
("pix2struct", ("Pix2StructImageProcessor",)),
("pixtral", ("PixtralImageProcessor", "PixtralImageProcessorFast")),
("poolformer", ("PoolFormerImageProcessor",)),
("prompt_depth_anything", ("PromptDepthAnythingImageProcessor",)),
("pvt", ("PvtImageProcessor",)),
("pvt_v2", ("PvtImageProcessor",)),
("qwen2_5_vl", ("Qwen2VLImageProcessor", "Qwen2VLImageProcessorFast")),
("qwen2_vl", ("Qwen2VLImageProcessor", "Qwen2VLImageProcessorFast")),
("regnet", ("ConvNextImageProcessor", "ConvNextImageProcessorFast")),
("resnet", ("ConvNextImageProcessor", "ConvNextImageProcessorFast")),
("rt_detr", ("RTDetrImageProcessor", "RTDetrImageProcessorFast")),
("sam", ("SamImageProcessor",)),
("segformer", ("SegformerImageProcessor",)),
("seggpt", ("SegGptImageProcessor",)),
("shieldgemma2", ("Gemma3ImageProcessor", "Gemma3ImageProcessorFast")),
("siglip", ("SiglipImageProcessor", "SiglipImageProcessorFast")),
("siglip2", ("Siglip2ImageProcessor", "Siglip2ImageProcessorFast")),
("superglue", ("SuperGlueImageProcessor",)),
("swiftformer", ("ViTImageProcessor", "ViTImageProcessorFast")),
("swin", ("ViTImageProcessor", "ViTImageProcessorFast")),
("swin2sr", ("Swin2SRImageProcessor",)),
("swinv2", ("ViTImageProcessor", "ViTImageProcessorFast")),
("table-transformer", ("DetrImageProcessor",)),
("timesformer", ("VideoMAEImageProcessor",)),
("timm_wrapper", ("TimmWrapperImageProcessor",)),
("tvlt", ("TvltImageProcessor",)),
("tvp", ("TvpImageProcessor",)),
("udop", ("LayoutLMv3ImageProcessor",)),
("upernet", ("SegformerImageProcessor",)),
("van", ("ConvNextImageProcessor", "ConvNextImageProcessorFast")),
("videomae", ("VideoMAEImageProcessor",)),
("vilt", ("ViltImageProcessor",)),
("vipllava", ("CLIPImageProcessor", "CLIPImageProcessorFast")),
("vit", ("ViTImageProcessor", "ViTImageProcessorFast")),
("vit_hybrid", ("ViTHybridImageProcessor",)),
("vit_mae", ("ViTImageProcessor", "ViTImageProcessorFast")),
("vit_msn", ("ViTImageProcessor", "ViTImageProcessorFast")),
("vitmatte", ("VitMatteImageProcessor",)),
("xclip", ("CLIPImageProcessor", "CLIPImageProcessorFast")),
("yolos", ("YolosImageProcessor",)),
("zoedepth", ("ZoeDepthImageProcessor",)),
]
)
for model_type, image_processors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
slow_image_processor_class, *fast_image_processor_class = image_processors
if not is_vision_available():
slow_image_processor_class = None
# If the fast image processor is not defined, or torchvision is not available, we set it to None
if not fast_image_processor_class or fast_image_processor_class[0] is None or not is_torchvision_available():
fast_image_processor_class = None
else:
fast_image_processor_class = fast_image_processor_class[0]
IMAGE_PROCESSOR_MAPPING_NAMES[model_type] = (slow_image_processor_class, fast_image_processor_class)
IMAGE_PROCESSOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES)
def get_image_processor_class_from_name(class_name: str):
if class_name == "BaseImageProcessorFast":
return BaseImageProcessorFast
for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
if class_name in extractors:
module_name = model_type_to_module_name(module_name)
module = importlib.import_module(f".{module_name}", "transformers.models")
try:
return getattr(module, class_name)
except AttributeError:
continue
for _, extractors in IMAGE_PROCESSOR_MAPPING._extra_content.items():
for extractor in extractors:
if getattr(extractor, "__name__", None) == class_name:
return extractor
# We did not find the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
main_module = importlib.import_module("transformers")
if hasattr(main_module, class_name):
return getattr(main_module, class_name)
return None
def get_image_processor_config(
pretrained_model_name_or_path: Union[str, os.PathLike],
cache_dir: Optional[Union[str, os.PathLike]] = None,
force_download: bool = False,
resume_download: Optional[bool] = None,
proxies: Optional[Dict[str, str]] = None,
token: Optional[Union[bool, str]] = None,
revision: Optional[str] = None,
local_files_only: bool = False,
**kwargs,
):
"""
Loads the image processor configuration from a pretrained model image processor configuration.
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
huggingface.co.
- a path to a *directory* containing a configuration file saved using the
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the configuration files and override the cached versions if they
exist.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, will only try to load the image processor configuration from local files.
<Tip>
Passing `token=True` is required when you want to use a private model.
</Tip>
Returns:
`Dict`: The configuration of the image processor.
Examples:
```python
# Download configuration from huggingface.co and cache.
image_processor_config = get_image_processor_config("google-bert/bert-base-uncased")
# This model does not have a image processor config so the result will be an empty dict.
image_processor_config = get_image_processor_config("FacebookAI/xlm-roberta-base")
# Save a pretrained image processor locally and you can reload its config
from transformers import AutoTokenizer
image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
image_processor.save_pretrained("image-processor-test")
image_processor_config = get_image_processor_config("image-processor-test")
```"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
token = use_auth_token
resolved_config_file = cached_file(
pretrained_model_name_or_path,
IMAGE_PROCESSOR_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
token=token,
revision=revision,
local_files_only=local_files_only,
_raise_exceptions_for_gated_repo=False,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
)
if resolved_config_file is None:
logger.info(
"Could not locate the image processor configuration file, will try to use the model config instead."
)
return {}
with open(resolved_config_file, encoding="utf-8") as reader:
return json.load(reader)
def _warning_fast_image_processor_available(fast_class):
logger.warning(
f"Fast image processor class {fast_class} is available for this model. "
"Using slow image processor class. To use the fast image processor class set `use_fast=True`."
)
class AutoImageProcessor:
r"""
This is a generic image processor class that will be instantiated as one of the image processor classes of the
library when created with the [`AutoImageProcessor.from_pretrained`] class method.
This class cannot be instantiated directly using `__init__()` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoImageProcessor is designed to be instantiated "
"using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method."
)
@classmethod
@replace_list_option_in_docstrings(IMAGE_PROCESSOR_MAPPING_NAMES)
def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
r"""
Instantiate one of the image processor classes of the library from a pretrained model vocabulary.
The image processor class to instantiate is selected based on the `model_type` property of the config object
(either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's
missing, by falling back to using pattern matching on `pretrained_model_name_or_path`:
List options
Params:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained image_processor hosted inside a model repo on
huggingface.co.
- a path to a *directory* containing a image processor file saved using the
[`~image_processing_utils.ImageProcessingMixin.save_pretrained`] method, e.g.,
`./my_model_directory/`.
- a path or url to a saved image processor JSON *file*, e.g.,
`./my_model_directory/preprocessor_config.json`.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model image processor should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the image processor files and override the cached versions if
they exist.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
use_fast (`bool`, *optional*, defaults to `False`):
Use a fast torchvision-base image processor if it is supported for a given model.
If a fast image processor is not available for a given model, a normal numpy-based image processor
is returned instead.
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
If `False`, then this function returns just the final image processor object. If `True`, then this
functions returns a `Tuple(image_processor, unused_kwargs)` where *unused_kwargs* is a dictionary
consisting of the key/value pairs whose keys are not image processor attributes: i.e., the part of
`kwargs` which has not been used to update `image_processor` and is otherwise ignored.
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
image_processor_filename (`str`, *optional*, defaults to `"config.json"`):
The name of the file in the model directory to use for the image processor config.
kwargs (`Dict[str, Any]`, *optional*):
The values in kwargs of any keys which are image processor attributes will be used to override the
loaded values. Behavior concerning key/value pairs whose keys are *not* image processor attributes is
controlled by the `return_unused_kwargs` keyword parameter.
<Tip>
Passing `token=True` is required when you want to use a private model.
</Tip>
Examples:
```python
>>> from transformers import AutoImageProcessor
>>> # Download image processor from huggingface.co and cache.
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
>>> # If image processor files are in a directory (e.g. image processor was saved using *save_pretrained('./test/saved_model/')*)
>>> # image_processor = AutoImageProcessor.from_pretrained("./test/saved_model/")
```"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if kwargs.get("token", None) is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
kwargs["token"] = use_auth_token
config = kwargs.pop("config", None)
# TODO: @yoni, change in v4.48 (use_fast set to True by default)
use_fast = kwargs.pop("use_fast", None)
trust_remote_code = kwargs.pop("trust_remote_code", None)
kwargs["_from_auto"] = True
# Resolve the image processor config filename
if "image_processor_filename" in kwargs:
image_processor_filename = kwargs.pop("image_processor_filename")
elif is_timm_local_checkpoint(pretrained_model_name_or_path):
image_processor_filename = CONFIG_NAME
else:
image_processor_filename = IMAGE_PROCESSOR_NAME
# Load the image processor config
try:
# Main path for all transformers models and local TimmWrapper checkpoints
config_dict, _ = ImageProcessingMixin.get_image_processor_dict(
pretrained_model_name_or_path, image_processor_filename=image_processor_filename, **kwargs
)
except Exception as initial_exception:
# Fallback path for Hub TimmWrapper checkpoints. Timm models' image processing is saved in `config.json`
# instead of `preprocessor_config.json`. Because this is an Auto class and we don't have any information
# except the model name, the only way to check if a remote checkpoint is a timm model is to try to
# load `config.json` and if it fails with some error, we raise the initial exception.
try:
config_dict, _ = ImageProcessingMixin.get_image_processor_dict(
pretrained_model_name_or_path, image_processor_filename=CONFIG_NAME, **kwargs
)
except Exception:
raise initial_exception
# In case we have a config_dict, but it's not a timm config dict, we raise the initial exception,
# because only timm models have image processing in `config.json`.
if not is_timm_config_dict(config_dict):
raise initial_exception
image_processor_type = config_dict.get("image_processor_type", None)
image_processor_auto_map = None
if "AutoImageProcessor" in config_dict.get("auto_map", {}):
image_processor_auto_map = config_dict["auto_map"]["AutoImageProcessor"]
# If we still don't have the image processor class, check if we're loading from a previous feature extractor config
# and if so, infer the image processor class from there.
if image_processor_type is None and image_processor_auto_map is None:
feature_extractor_class = config_dict.pop("feature_extractor_type", None)
if feature_extractor_class is not None:
image_processor_type = feature_extractor_class.replace("FeatureExtractor", "ImageProcessor")
if "AutoFeatureExtractor" in config_dict.get("auto_map", {}):
feature_extractor_auto_map = config_dict["auto_map"]["AutoFeatureExtractor"]
image_processor_auto_map = feature_extractor_auto_map.replace("FeatureExtractor", "ImageProcessor")
# If we don't find the image processor class in the image processor config, let's try the model config.
if image_processor_type is None and image_processor_auto_map is None:
if not isinstance(config, PretrainedConfig):
config = AutoConfig.from_pretrained(
pretrained_model_name_or_path,
trust_remote_code=trust_remote_code,
**kwargs,
)
# It could be in `config.image_processor_type``
image_processor_type = getattr(config, "image_processor_type", None)
if hasattr(config, "auto_map") and "AutoImageProcessor" in config.auto_map:
image_processor_auto_map = config.auto_map["AutoImageProcessor"]
image_processor_class = None
# TODO: @yoni, change logic in v4.52 (when use_fast set to True by default)
if image_processor_type is not None:
# if use_fast is not set and the processor was saved with a fast processor, we use it, otherwise we use the slow processor.
if use_fast is None:
use_fast = image_processor_type.endswith("Fast")
if not use_fast:
logger.warning_once(
"Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. "
"`use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. "
"This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`."
)
# Update class name to reflect the use_fast option. If class is not found, we fall back to the slow version.
if use_fast and not is_torchvision_available():
logger.warning_once(
"Using `use_fast=True` but `torchvision` is not available. Falling back to the slow image processor."
)
use_fast = False
if use_fast:
if not image_processor_type.endswith("Fast"):
image_processor_type += "Fast"
for _, image_processors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
if image_processor_type in image_processors:
break
else:
image_processor_type = image_processor_type[:-4]
use_fast = False
logger.warning_once(
"`use_fast` is set to `True` but the image processor class does not have a fast version. "
" Falling back to the slow version."
)
image_processor_class = get_image_processor_class_from_name(image_processor_type)
else:
image_processor_type = (
image_processor_type[:-4] if image_processor_type.endswith("Fast") else image_processor_type
)
image_processor_class = get_image_processor_class_from_name(image_processor_type)
has_remote_code = image_processor_auto_map is not None
has_local_code = image_processor_class is not None or type(config) in IMAGE_PROCESSOR_MAPPING
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
)
if image_processor_auto_map is not None and not isinstance(image_processor_auto_map, tuple):
# In some configs, only the slow image processor class is stored
image_processor_auto_map = (image_processor_auto_map, None)
if has_remote_code and trust_remote_code:
if not use_fast and image_processor_auto_map[1] is not None:
_warning_fast_image_processor_available(image_processor_auto_map[1])
if use_fast and image_processor_auto_map[1] is not None:
class_ref = image_processor_auto_map[1]
else:
class_ref = image_processor_auto_map[0]
image_processor_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs)
_ = kwargs.pop("code_revision", None)
if os.path.isdir(pretrained_model_name_or_path):
image_processor_class.register_for_auto_class()
return image_processor_class.from_dict(config_dict, **kwargs)
elif image_processor_class is not None:
return image_processor_class.from_dict(config_dict, **kwargs)
# Last try: we use the IMAGE_PROCESSOR_MAPPING.
elif type(config) in IMAGE_PROCESSOR_MAPPING:
image_processor_tuple = IMAGE_PROCESSOR_MAPPING[type(config)]
image_processor_class_py, image_processor_class_fast = image_processor_tuple
if not use_fast and image_processor_class_fast is not None:
_warning_fast_image_processor_available(image_processor_class_fast)
if image_processor_class_fast and (use_fast or image_processor_class_py is None):
return image_processor_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
else:
if image_processor_class_py is not None:
return image_processor_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
else:
raise ValueError(
"This image processor cannot be instantiated. Please make sure you have `Pillow` installed."
)
raise ValueError(
f"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a "
f"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following "
f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys())}"
)
@staticmethod
def register(
config_class,
image_processor_class=None,
slow_image_processor_class=None,
fast_image_processor_class=None,
exist_ok=False,
):
"""
Register a new image processor for this class.
Args:
config_class ([`PretrainedConfig`]):
The configuration corresponding to the model to register.
image_processor_class ([`ImageProcessingMixin`]): The image processor to register.
"""
if image_processor_class is not None:
if slow_image_processor_class is not None:
raise ValueError("Cannot specify both image_processor_class and slow_image_processor_class")
warnings.warn(
"The image_processor_class argument is deprecated and will be removed in v4.42. Please use `slow_image_processor_class`, or `fast_image_processor_class` instead",
FutureWarning,
)
slow_image_processor_class = image_processor_class
if slow_image_processor_class is None and fast_image_processor_class is None:
raise ValueError("You need to specify either slow_image_processor_class or fast_image_processor_class")
if slow_image_processor_class is not None and issubclass(slow_image_processor_class, BaseImageProcessorFast):
raise ValueError("You passed a fast image processor in as the `slow_image_processor_class`.")
if fast_image_processor_class is not None and not issubclass(
fast_image_processor_class, BaseImageProcessorFast
):
raise ValueError("The `fast_image_processor_class` should inherit from `BaseImageProcessorFast`.")
if (
slow_image_processor_class is not None
and fast_image_processor_class is not None
and issubclass(fast_image_processor_class, BaseImageProcessorFast)
and fast_image_processor_class.slow_image_processor_class != slow_image_processor_class
):
raise ValueError(
"The fast processor class you are passing has a `slow_image_processor_class` attribute that is not "
"consistent with the slow processor class you passed (fast tokenizer has "
f"{fast_image_processor_class.slow_image_processor_class} and you passed {slow_image_processor_class}. Fix one of those "
"so they match!"
)
# Avoid resetting a set slow/fast image processor if we are passing just the other ones.
if config_class in IMAGE_PROCESSOR_MAPPING._extra_content:
existing_slow, existing_fast = IMAGE_PROCESSOR_MAPPING[config_class]
if slow_image_processor_class is None:
slow_image_processor_class = existing_slow
if fast_image_processor_class is None:
fast_image_processor_class = existing_fast
IMAGE_PROCESSOR_MAPPING.register(
config_class, (slow_image_processor_class, fast_image_processor_class), exist_ok=exist_ok
)
```
|
=================================================================================================================================
SOURCE CODE FILE: modeling_auto.py
LINES: 1
SIZE: 78.43 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\auto\modeling_auto.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Auto Model class."""
import warnings
from collections import OrderedDict
from ...utils import logging
from .auto_factory import (
_BaseAutoBackboneClass,
_BaseAutoModelClass,
_LazyAutoMapping,
auto_class_update,
)
from .configuration_auto import CONFIG_MAPPING_NAMES
logger = logging.get_logger(__name__)
MODEL_MAPPING_NAMES = OrderedDict(
[
# Base model mapping
("albert", "AlbertModel"),
("align", "AlignModel"),
("altclip", "AltCLIPModel"),
("aria", "AriaForConditionalGeneration"),
("aria_text", "AriaTextModel"),
("audio-spectrogram-transformer", "ASTModel"),
("autoformer", "AutoformerModel"),
("bamba", "BambaModel"),
("bark", "BarkModel"),
("bart", "BartModel"),
("beit", "BeitModel"),
("bert", "BertModel"),
("bert-generation", "BertGenerationEncoder"),
("big_bird", "BigBirdModel"),
("bigbird_pegasus", "BigBirdPegasusModel"),
("biogpt", "BioGptModel"),
("bit", "BitModel"),
("blenderbot", "BlenderbotModel"),
("blenderbot-small", "BlenderbotSmallModel"),
("blip", "BlipModel"),
("blip-2", "Blip2Model"),
("bloom", "BloomModel"),
("bridgetower", "BridgeTowerModel"),
("bros", "BrosModel"),
("camembert", "CamembertModel"),
("canine", "CanineModel"),
("chameleon", "ChameleonModel"),
("chinese_clip", "ChineseCLIPModel"),
("chinese_clip_vision_model", "ChineseCLIPVisionModel"),
("clap", "ClapModel"),
("clip", "CLIPModel"),
("clip_text_model", "CLIPTextModel"),
("clip_vision_model", "CLIPVisionModel"),
("clipseg", "CLIPSegModel"),
("clvp", "ClvpModelForConditionalGeneration"),
("code_llama", "LlamaModel"),
("codegen", "CodeGenModel"),
("cohere", "CohereModel"),
("cohere2", "Cohere2Model"),
("conditional_detr", "ConditionalDetrModel"),
("convbert", "ConvBertModel"),
("convnext", "ConvNextModel"),
("convnextv2", "ConvNextV2Model"),
("cpmant", "CpmAntModel"),
("ctrl", "CTRLModel"),
("cvt", "CvtModel"),
("dab-detr", "DabDetrModel"),
("dac", "DacModel"),
("data2vec-audio", "Data2VecAudioModel"),
("data2vec-text", "Data2VecTextModel"),
("data2vec-vision", "Data2VecVisionModel"),
("dbrx", "DbrxModel"),
("deberta", "DebertaModel"),
("deberta-v2", "DebertaV2Model"),
("decision_transformer", "DecisionTransformerModel"),
("deepseek_v3", "DeepseekV3Model"),
("deformable_detr", "DeformableDetrModel"),
("deit", "DeiTModel"),
("depth_pro", "DepthProModel"),
("deta", "DetaModel"),
("detr", "DetrModel"),
("diffllama", "DiffLlamaModel"),
("dinat", "DinatModel"),
("dinov2", "Dinov2Model"),
("dinov2_with_registers", "Dinov2WithRegistersModel"),
("distilbert", "DistilBertModel"),
("donut-swin", "DonutSwinModel"),
("dpr", "DPRQuestionEncoder"),
("dpt", "DPTModel"),
("efficientformer", "EfficientFormerModel"),
("efficientnet", "EfficientNetModel"),
("electra", "ElectraModel"),
("encodec", "EncodecModel"),
("ernie", "ErnieModel"),
("ernie_m", "ErnieMModel"),
("esm", "EsmModel"),
("falcon", "FalconModel"),
("falcon_mamba", "FalconMambaModel"),
("fastspeech2_conformer", "FastSpeech2ConformerModel"),
("flaubert", "FlaubertModel"),
("flava", "FlavaModel"),
("fnet", "FNetModel"),
("focalnet", "FocalNetModel"),
("fsmt", "FSMTModel"),
("funnel", ("FunnelModel", "FunnelBaseModel")),
("gemma", "GemmaModel"),
("gemma2", "Gemma2Model"),
("gemma3_text", "Gemma3TextModel"),
("git", "GitModel"),
("glm", "GlmModel"),
("glm4", "Glm4Model"),
("glpn", "GLPNModel"),
("got_ocr2", "GotOcr2ForConditionalGeneration"),
("gpt-sw3", "GPT2Model"),
("gpt2", "GPT2Model"),
("gpt_bigcode", "GPTBigCodeModel"),
("gpt_neo", "GPTNeoModel"),
("gpt_neox", "GPTNeoXModel"),
("gpt_neox_japanese", "GPTNeoXJapaneseModel"),
("gptj", "GPTJModel"),
("gptsan-japanese", "GPTSanJapaneseForConditionalGeneration"),
("granite", "GraniteModel"),
("granitemoe", "GraniteMoeModel"),
("granitemoeshared", "GraniteMoeSharedModel"),
("graphormer", "GraphormerModel"),
("grounding-dino", "GroundingDinoModel"),
("groupvit", "GroupViTModel"),
("helium", "HeliumModel"),
("hiera", "HieraModel"),
("hubert", "HubertModel"),
("ibert", "IBertModel"),
("idefics", "IdeficsModel"),
("idefics2", "Idefics2Model"),
("idefics3", "Idefics3Model"),
("idefics3_vision", "Idefics3VisionTransformer"),
("ijepa", "IJepaModel"),
("imagegpt", "ImageGPTModel"),
("informer", "InformerModel"),
("jamba", "JambaModel"),
("jetmoe", "JetMoeModel"),
("jukebox", "JukeboxModel"),
("kosmos-2", "Kosmos2Model"),
("layoutlm", "LayoutLMModel"),
("layoutlmv2", "LayoutLMv2Model"),
("layoutlmv3", "LayoutLMv3Model"),
("led", "LEDModel"),
("levit", "LevitModel"),
("lilt", "LiltModel"),
("llama", "LlamaModel"),
("llama4", "Llama4ForConditionalGeneration"),
("longformer", "LongformerModel"),
("longt5", "LongT5Model"),
("luke", "LukeModel"),
("lxmert", "LxmertModel"),
("m2m_100", "M2M100Model"),
("mamba", "MambaModel"),
("mamba2", "Mamba2Model"),
("marian", "MarianModel"),
("markuplm", "MarkupLMModel"),
("mask2former", "Mask2FormerModel"),
("maskformer", "MaskFormerModel"),
("maskformer-swin", "MaskFormerSwinModel"),
("mbart", "MBartModel"),
("mctct", "MCTCTModel"),
("mega", "MegaModel"),
("megatron-bert", "MegatronBertModel"),
("mgp-str", "MgpstrForSceneTextRecognition"),
("mimi", "MimiModel"),
("mistral", "MistralModel"),
("mixtral", "MixtralModel"),
("mobilebert", "MobileBertModel"),
("mobilenet_v1", "MobileNetV1Model"),
("mobilenet_v2", "MobileNetV2Model"),
("mobilevit", "MobileViTModel"),
("mobilevitv2", "MobileViTV2Model"),
("modernbert", "ModernBertModel"),
("moonshine", "MoonshineModel"),
("moshi", "MoshiModel"),
("mpnet", "MPNetModel"),
("mpt", "MptModel"),
("mra", "MraModel"),
("mt5", "MT5Model"),
("musicgen", "MusicgenModel"),
("musicgen_melody", "MusicgenMelodyModel"),
("mvp", "MvpModel"),
("nat", "NatModel"),
("nemotron", "NemotronModel"),
("nezha", "NezhaModel"),
("nllb-moe", "NllbMoeModel"),
("nystromformer", "NystromformerModel"),
("olmo", "OlmoModel"),
("olmo2", "Olmo2Model"),
("olmoe", "OlmoeModel"),
("omdet-turbo", "OmDetTurboForObjectDetection"),
("oneformer", "OneFormerModel"),
("open-llama", "OpenLlamaModel"),
("openai-gpt", "OpenAIGPTModel"),
("opt", "OPTModel"),
("owlv2", "Owlv2Model"),
("owlvit", "OwlViTModel"),
("patchtsmixer", "PatchTSMixerModel"),
("patchtst", "PatchTSTModel"),
("pegasus", "PegasusModel"),
("pegasus_x", "PegasusXModel"),
("perceiver", "PerceiverModel"),
("persimmon", "PersimmonModel"),
("phi", "PhiModel"),
("phi3", "Phi3Model"),
("phi4_multimodal", "Phi4MultimodalModel"),
("phimoe", "PhimoeModel"),
("pixtral", "PixtralVisionModel"),
("plbart", "PLBartModel"),
("poolformer", "PoolFormerModel"),
("prophetnet", "ProphetNetModel"),
("pvt", "PvtModel"),
("pvt_v2", "PvtV2Model"),
("qdqbert", "QDQBertModel"),
("qwen2", "Qwen2Model"),
("qwen2_5_vl", "Qwen2_5_VLModel"),
("qwen2_audio_encoder", "Qwen2AudioEncoder"),
("qwen2_moe", "Qwen2MoeModel"),
("qwen2_vl", "Qwen2VLModel"),
("qwen3", "Qwen3Model"),
("qwen3_moe", "Qwen3MoeModel"),
("recurrent_gemma", "RecurrentGemmaModel"),
("reformer", "ReformerModel"),
("regnet", "RegNetModel"),
("rembert", "RemBertModel"),
("resnet", "ResNetModel"),
("retribert", "RetriBertModel"),
("roberta", "RobertaModel"),
("roberta-prelayernorm", "RobertaPreLayerNormModel"),
("roc_bert", "RoCBertModel"),
("roformer", "RoFormerModel"),
("rt_detr", "RTDetrModel"),
("rt_detr_v2", "RTDetrV2Model"),
("rwkv", "RwkvModel"),
("sam", "SamModel"),
("sam_vision_model", "SamVisionModel"),
("seamless_m4t", "SeamlessM4TModel"),
("seamless_m4t_v2", "SeamlessM4Tv2Model"),
("segformer", "SegformerModel"),
("seggpt", "SegGptModel"),
("sew", "SEWModel"),
("sew-d", "SEWDModel"),
("siglip", "SiglipModel"),
("siglip2", "Siglip2Model"),
("siglip_vision_model", "SiglipVisionModel"),
("smolvlm", "SmolVLMModel"),
("smolvlm_vision", "SmolVLMVisionTransformer"),
("speech_to_text", "Speech2TextModel"),
("speecht5", "SpeechT5Model"),
("splinter", "SplinterModel"),
("squeezebert", "SqueezeBertModel"),
("stablelm", "StableLmModel"),
("starcoder2", "Starcoder2Model"),
("superglue", "SuperGlueForKeypointMatching"),
("swiftformer", "SwiftFormerModel"),
("swin", "SwinModel"),
("swin2sr", "Swin2SRModel"),
("swinv2", "Swinv2Model"),
("switch_transformers", "SwitchTransformersModel"),
("t5", "T5Model"),
("table-transformer", "TableTransformerModel"),
("tapas", "TapasModel"),
("textnet", "TextNetModel"),
("time_series_transformer", "TimeSeriesTransformerModel"),
("timesformer", "TimesformerModel"),
("timm_backbone", "TimmBackbone"),
("timm_wrapper", "TimmWrapperModel"),
("trajectory_transformer", "TrajectoryTransformerModel"),
("transfo-xl", "TransfoXLModel"),
("tvlt", "TvltModel"),
("tvp", "TvpModel"),
("udop", "UdopModel"),
("umt5", "UMT5Model"),
("unispeech", "UniSpeechModel"),
("unispeech-sat", "UniSpeechSatModel"),
("univnet", "UnivNetModel"),
("van", "VanModel"),
("videomae", "VideoMAEModel"),
("vilt", "ViltModel"),
("vision-text-dual-encoder", "VisionTextDualEncoderModel"),
("visual_bert", "VisualBertModel"),
("vit", "ViTModel"),
("vit_hybrid", "ViTHybridModel"),
("vit_mae", "ViTMAEModel"),
("vit_msn", "ViTMSNModel"),
("vitdet", "VitDetModel"),
("vits", "VitsModel"),
("vivit", "VivitModel"),
("wav2vec2", "Wav2Vec2Model"),
("wav2vec2-bert", "Wav2Vec2BertModel"),
("wav2vec2-conformer", "Wav2Vec2ConformerModel"),
("wavlm", "WavLMModel"),
("whisper", "WhisperModel"),
("xclip", "XCLIPModel"),
("xglm", "XGLMModel"),
("xlm", "XLMModel"),
("xlm-prophetnet", "XLMProphetNetModel"),
("xlm-roberta", "XLMRobertaModel"),
("xlm-roberta-xl", "XLMRobertaXLModel"),
("xlnet", "XLNetModel"),
("xmod", "XmodModel"),
("yolos", "YolosModel"),
("yoso", "YosoModel"),
("zamba", "ZambaModel"),
("zamba2", "Zamba2Model"),
]
)
MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict(
[
# Model for pre-training mapping
("albert", "AlbertForPreTraining"),
("bart", "BartForConditionalGeneration"),
("bert", "BertForPreTraining"),
("big_bird", "BigBirdForPreTraining"),
("bloom", "BloomForCausalLM"),
("camembert", "CamembertForMaskedLM"),
("colpali", "ColPaliForRetrieval"),
("ctrl", "CTRLLMHeadModel"),
("data2vec-text", "Data2VecTextForMaskedLM"),
("deberta", "DebertaForMaskedLM"),
("deberta-v2", "DebertaV2ForMaskedLM"),
("distilbert", "DistilBertForMaskedLM"),
("electra", "ElectraForPreTraining"),
("ernie", "ErnieForPreTraining"),
("falcon_mamba", "FalconMambaForCausalLM"),
("flaubert", "FlaubertWithLMHeadModel"),
("flava", "FlavaForPreTraining"),
("fnet", "FNetForPreTraining"),
("fsmt", "FSMTForConditionalGeneration"),
("funnel", "FunnelForPreTraining"),
("gemma3", "Gemma3ForConditionalGeneration"),
("gpt-sw3", "GPT2LMHeadModel"),
("gpt2", "GPT2LMHeadModel"),
("gpt_bigcode", "GPTBigCodeForCausalLM"),
("gptsan-japanese", "GPTSanJapaneseForConditionalGeneration"),
("hiera", "HieraForPreTraining"),
("ibert", "IBertForMaskedLM"),
("idefics", "IdeficsForVisionText2Text"),
("idefics2", "Idefics2ForConditionalGeneration"),
("idefics3", "Idefics3ForConditionalGeneration"),
("layoutlm", "LayoutLMForMaskedLM"),
("llava", "LlavaForConditionalGeneration"),
("llava_next", "LlavaNextForConditionalGeneration"),
("llava_next_video", "LlavaNextVideoForConditionalGeneration"),
("llava_onevision", "LlavaOnevisionForConditionalGeneration"),
("longformer", "LongformerForMaskedLM"),
("luke", "LukeForMaskedLM"),
("lxmert", "LxmertForPreTraining"),
("mamba", "MambaForCausalLM"),
("mamba2", "Mamba2ForCausalLM"),
("mega", "MegaForMaskedLM"),
("megatron-bert", "MegatronBertForPreTraining"),
("mistral3", "Mistral3ForConditionalGeneration"),
("mllama", "MllamaForConditionalGeneration"),
("mobilebert", "MobileBertForPreTraining"),
("mpnet", "MPNetForMaskedLM"),
("mpt", "MptForCausalLM"),
("mra", "MraForMaskedLM"),
("mvp", "MvpForConditionalGeneration"),
("nezha", "NezhaForPreTraining"),
("nllb-moe", "NllbMoeForConditionalGeneration"),
("openai-gpt", "OpenAIGPTLMHeadModel"),
("paligemma", "PaliGemmaForConditionalGeneration"),
("qwen2_audio", "Qwen2AudioForConditionalGeneration"),
("retribert", "RetriBertModel"),
("roberta", "RobertaForMaskedLM"),
("roberta-prelayernorm", "RobertaPreLayerNormForMaskedLM"),
("roc_bert", "RoCBertForPreTraining"),
("rwkv", "RwkvForCausalLM"),
("splinter", "SplinterForPreTraining"),
("squeezebert", "SqueezeBertForMaskedLM"),
("switch_transformers", "SwitchTransformersForConditionalGeneration"),
("t5", "T5ForConditionalGeneration"),
("tapas", "TapasForMaskedLM"),
("transfo-xl", "TransfoXLLMHeadModel"),
("tvlt", "TvltForPreTraining"),
("unispeech", "UniSpeechForPreTraining"),
("unispeech-sat", "UniSpeechSatForPreTraining"),
("video_llava", "VideoLlavaForConditionalGeneration"),
("videomae", "VideoMAEForPreTraining"),
("vipllava", "VipLlavaForConditionalGeneration"),
("visual_bert", "VisualBertForPreTraining"),
("vit_mae", "ViTMAEForPreTraining"),
("wav2vec2", "Wav2Vec2ForPreTraining"),
("wav2vec2-conformer", "Wav2Vec2ConformerForPreTraining"),
("xlm", "XLMWithLMHeadModel"),
("xlm-roberta", "XLMRobertaForMaskedLM"),
("xlm-roberta-xl", "XLMRobertaXLForMaskedLM"),
("xlnet", "XLNetLMHeadModel"),
("xmod", "XmodForMaskedLM"),
]
)
MODEL_WITH_LM_HEAD_MAPPING_NAMES = OrderedDict(
[
# Model with LM heads mapping
("albert", "AlbertForMaskedLM"),
("bart", "BartForConditionalGeneration"),
("bert", "BertForMaskedLM"),
("big_bird", "BigBirdForMaskedLM"),
("bigbird_pegasus", "BigBirdPegasusForConditionalGeneration"),
("blenderbot-small", "BlenderbotSmallForConditionalGeneration"),
("bloom", "BloomForCausalLM"),
("camembert", "CamembertForMaskedLM"),
("codegen", "CodeGenForCausalLM"),
("convbert", "ConvBertForMaskedLM"),
("cpmant", "CpmAntForCausalLM"),
("ctrl", "CTRLLMHeadModel"),
("data2vec-text", "Data2VecTextForMaskedLM"),
("deberta", "DebertaForMaskedLM"),
("deberta-v2", "DebertaV2ForMaskedLM"),
("distilbert", "DistilBertForMaskedLM"),
("electra", "ElectraForMaskedLM"),
("encoder-decoder", "EncoderDecoderModel"),
("ernie", "ErnieForMaskedLM"),
("esm", "EsmForMaskedLM"),
("falcon_mamba", "FalconMambaForCausalLM"),
("flaubert", "FlaubertWithLMHeadModel"),
("fnet", "FNetForMaskedLM"),
("fsmt", "FSMTForConditionalGeneration"),
("funnel", "FunnelForMaskedLM"),
("git", "GitForCausalLM"),
("gpt-sw3", "GPT2LMHeadModel"),
("gpt2", "GPT2LMHeadModel"),
("gpt_bigcode", "GPTBigCodeForCausalLM"),
("gpt_neo", "GPTNeoForCausalLM"),
("gpt_neox", "GPTNeoXForCausalLM"),
("gpt_neox_japanese", "GPTNeoXJapaneseForCausalLM"),
("gptj", "GPTJForCausalLM"),
("gptsan-japanese", "GPTSanJapaneseForConditionalGeneration"),
("ibert", "IBertForMaskedLM"),
("layoutlm", "LayoutLMForMaskedLM"),
("led", "LEDForConditionalGeneration"),
("longformer", "LongformerForMaskedLM"),
("longt5", "LongT5ForConditionalGeneration"),
("luke", "LukeForMaskedLM"),
("m2m_100", "M2M100ForConditionalGeneration"),
("mamba", "MambaForCausalLM"),
("mamba2", "Mamba2ForCausalLM"),
("marian", "MarianMTModel"),
("mega", "MegaForMaskedLM"),
("megatron-bert", "MegatronBertForCausalLM"),
("mobilebert", "MobileBertForMaskedLM"),
("moonshine", "MoonshineForConditionalGeneration"),
("mpnet", "MPNetForMaskedLM"),
("mpt", "MptForCausalLM"),
("mra", "MraForMaskedLM"),
("mvp", "MvpForConditionalGeneration"),
("nezha", "NezhaForMaskedLM"),
("nllb-moe", "NllbMoeForConditionalGeneration"),
("nystromformer", "NystromformerForMaskedLM"),
("openai-gpt", "OpenAIGPTLMHeadModel"),
("pegasus_x", "PegasusXForConditionalGeneration"),
("plbart", "PLBartForConditionalGeneration"),
("pop2piano", "Pop2PianoForConditionalGeneration"),
("qdqbert", "QDQBertForMaskedLM"),
("reformer", "ReformerModelWithLMHead"),
("rembert", "RemBertForMaskedLM"),
("roberta", "RobertaForMaskedLM"),
("roberta-prelayernorm", "RobertaPreLayerNormForMaskedLM"),
("roc_bert", "RoCBertForMaskedLM"),
("roformer", "RoFormerForMaskedLM"),
("rwkv", "RwkvForCausalLM"),
("speech_to_text", "Speech2TextForConditionalGeneration"),
("squeezebert", "SqueezeBertForMaskedLM"),
("switch_transformers", "SwitchTransformersForConditionalGeneration"),
("t5", "T5ForConditionalGeneration"),
("tapas", "TapasForMaskedLM"),
("transfo-xl", "TransfoXLLMHeadModel"),
("wav2vec2", "Wav2Vec2ForMaskedLM"),
("whisper", "WhisperForConditionalGeneration"),
("xlm", "XLMWithLMHeadModel"),
("xlm-roberta", "XLMRobertaForMaskedLM"),
("xlm-roberta-xl", "XLMRobertaXLForMaskedLM"),
("xlnet", "XLNetLMHeadModel"),
("xmod", "XmodForMaskedLM"),
("yoso", "YosoForMaskedLM"),
]
)
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
[
# Model for Causal LM mapping
("aria_text", "AriaTextForCausalLM"),
("bamba", "BambaForCausalLM"),
("bart", "BartForCausalLM"),
("bert", "BertLMHeadModel"),
("bert-generation", "BertGenerationDecoder"),
("big_bird", "BigBirdForCausalLM"),
("bigbird_pegasus", "BigBirdPegasusForCausalLM"),
("biogpt", "BioGptForCausalLM"),
("blenderbot", "BlenderbotForCausalLM"),
("blenderbot-small", "BlenderbotSmallForCausalLM"),
("bloom", "BloomForCausalLM"),
("camembert", "CamembertForCausalLM"),
("code_llama", "LlamaForCausalLM"),
("codegen", "CodeGenForCausalLM"),
("cohere", "CohereForCausalLM"),
("cohere2", "Cohere2ForCausalLM"),
("cpmant", "CpmAntForCausalLM"),
("ctrl", "CTRLLMHeadModel"),
("data2vec-text", "Data2VecTextForCausalLM"),
("dbrx", "DbrxForCausalLM"),
("deepseek_v3", "DeepseekV3ForCausalLM"),
("diffllama", "DiffLlamaForCausalLM"),
("electra", "ElectraForCausalLM"),
("emu3", "Emu3ForCausalLM"),
("ernie", "ErnieForCausalLM"),
("falcon", "FalconForCausalLM"),
("falcon_mamba", "FalconMambaForCausalLM"),
("fuyu", "FuyuForCausalLM"),
("gemma", "GemmaForCausalLM"),
("gemma2", "Gemma2ForCausalLM"),
("gemma3", "Gemma3ForConditionalGeneration"),
("gemma3_text", "Gemma3ForCausalLM"),
("git", "GitForCausalLM"),
("glm", "GlmForCausalLM"),
("glm4", "Glm4ForCausalLM"),
("got_ocr2", "GotOcr2ForConditionalGeneration"),
("gpt-sw3", "GPT2LMHeadModel"),
("gpt2", "GPT2LMHeadModel"),
("gpt_bigcode", "GPTBigCodeForCausalLM"),
("gpt_neo", "GPTNeoForCausalLM"),
("gpt_neox", "GPTNeoXForCausalLM"),
("gpt_neox_japanese", "GPTNeoXJapaneseForCausalLM"),
("gptj", "GPTJForCausalLM"),
("granite", "GraniteForCausalLM"),
("granitemoe", "GraniteMoeForCausalLM"),
("granitemoeshared", "GraniteMoeSharedForCausalLM"),
("helium", "HeliumForCausalLM"),
("jamba", "JambaForCausalLM"),
("jetmoe", "JetMoeForCausalLM"),
("llama", "LlamaForCausalLM"),
("llama4", "Llama4ForCausalLM"),
("llama4_text", "Llama4ForCausalLM"),
("mamba", "MambaForCausalLM"),
("mamba2", "Mamba2ForCausalLM"),
("marian", "MarianForCausalLM"),
("mbart", "MBartForCausalLM"),
("mega", "MegaForCausalLM"),
("megatron-bert", "MegatronBertForCausalLM"),
("mistral", "MistralForCausalLM"),
("mixtral", "MixtralForCausalLM"),
("mllama", "MllamaForCausalLM"),
("moshi", "MoshiForCausalLM"),
("mpt", "MptForCausalLM"),
("musicgen", "MusicgenForCausalLM"),
("musicgen_melody", "MusicgenMelodyForCausalLM"),
("mvp", "MvpForCausalLM"),
("nemotron", "NemotronForCausalLM"),
("olmo", "OlmoForCausalLM"),
("olmo2", "Olmo2ForCausalLM"),
("olmoe", "OlmoeForCausalLM"),
("open-llama", "OpenLlamaForCausalLM"),
("openai-gpt", "OpenAIGPTLMHeadModel"),
("opt", "OPTForCausalLM"),
("pegasus", "PegasusForCausalLM"),
("persimmon", "PersimmonForCausalLM"),
("phi", "PhiForCausalLM"),
("phi3", "Phi3ForCausalLM"),
("phi4_multimodal", "Phi4MultimodalForCausalLM"),
("phimoe", "PhimoeForCausalLM"),
("plbart", "PLBartForCausalLM"),
("prophetnet", "ProphetNetForCausalLM"),
("qdqbert", "QDQBertLMHeadModel"),
("qwen2", "Qwen2ForCausalLM"),
("qwen2_moe", "Qwen2MoeForCausalLM"),
("qwen3", "Qwen3ForCausalLM"),
("qwen3_moe", "Qwen3MoeForCausalLM"),
("recurrent_gemma", "RecurrentGemmaForCausalLM"),
("reformer", "ReformerModelWithLMHead"),
("rembert", "RemBertForCausalLM"),
("roberta", "RobertaForCausalLM"),
("roberta-prelayernorm", "RobertaPreLayerNormForCausalLM"),
("roc_bert", "RoCBertForCausalLM"),
("roformer", "RoFormerForCausalLM"),
("rwkv", "RwkvForCausalLM"),
("speech_to_text_2", "Speech2Text2ForCausalLM"),
("stablelm", "StableLmForCausalLM"),
("starcoder2", "Starcoder2ForCausalLM"),
("transfo-xl", "TransfoXLLMHeadModel"),
("trocr", "TrOCRForCausalLM"),
("whisper", "WhisperForCausalLM"),
("xglm", "XGLMForCausalLM"),
("xlm", "XLMWithLMHeadModel"),
("xlm-prophetnet", "XLMProphetNetForCausalLM"),
("xlm-roberta", "XLMRobertaForCausalLM"),
("xlm-roberta-xl", "XLMRobertaXLForCausalLM"),
("xlnet", "XLNetLMHeadModel"),
("xmod", "XmodForCausalLM"),
("zamba", "ZambaForCausalLM"),
("zamba2", "Zamba2ForCausalLM"),
]
)
MODEL_FOR_IMAGE_MAPPING_NAMES = OrderedDict(
[
# Model for Image mapping
("beit", "BeitModel"),
("bit", "BitModel"),
("conditional_detr", "ConditionalDetrModel"),
("convnext", "ConvNextModel"),
("convnextv2", "ConvNextV2Model"),
("dab-detr", "DabDetrModel"),
("data2vec-vision", "Data2VecVisionModel"),
("deformable_detr", "DeformableDetrModel"),
("deit", "DeiTModel"),
("depth_pro", "DepthProModel"),
("deta", "DetaModel"),
("detr", "DetrModel"),
("dinat", "DinatModel"),
("dinov2", "Dinov2Model"),
("dinov2_with_registers", "Dinov2WithRegistersModel"),
("dpt", "DPTModel"),
("efficientformer", "EfficientFormerModel"),
("efficientnet", "EfficientNetModel"),
("focalnet", "FocalNetModel"),
("glpn", "GLPNModel"),
("hiera", "HieraModel"),
("ijepa", "IJepaModel"),
("imagegpt", "ImageGPTModel"),
("levit", "LevitModel"),
("llama4", "Llama4VisionModel"),
("mllama", "MllamaVisionModel"),
("mobilenet_v1", "MobileNetV1Model"),
("mobilenet_v2", "MobileNetV2Model"),
("mobilevit", "MobileViTModel"),
("mobilevitv2", "MobileViTV2Model"),
("nat", "NatModel"),
("poolformer", "PoolFormerModel"),
("pvt", "PvtModel"),
("regnet", "RegNetModel"),
("resnet", "ResNetModel"),
("segformer", "SegformerModel"),
("siglip_vision_model", "SiglipVisionModel"),
("swiftformer", "SwiftFormerModel"),
("swin", "SwinModel"),
("swin2sr", "Swin2SRModel"),
("swinv2", "Swinv2Model"),
("table-transformer", "TableTransformerModel"),
("timesformer", "TimesformerModel"),
("timm_backbone", "TimmBackbone"),
("timm_wrapper", "TimmWrapperModel"),
("van", "VanModel"),
("videomae", "VideoMAEModel"),
("vit", "ViTModel"),
("vit_hybrid", "ViTHybridModel"),
("vit_mae", "ViTMAEModel"),
("vit_msn", "ViTMSNModel"),
("vitdet", "VitDetModel"),
("vivit", "VivitModel"),
("yolos", "YolosModel"),
]
)
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES = OrderedDict(
[
("deit", "DeiTForMaskedImageModeling"),
("focalnet", "FocalNetForMaskedImageModeling"),
("swin", "SwinForMaskedImageModeling"),
("swinv2", "Swinv2ForMaskedImageModeling"),
("vit", "ViTForMaskedImageModeling"),
]
)
MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES = OrderedDict(
# Model for Causal Image Modeling mapping
[
("imagegpt", "ImageGPTForCausalImageModeling"),
]
)
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Image Classification mapping
("beit", "BeitForImageClassification"),
("bit", "BitForImageClassification"),
("clip", "CLIPForImageClassification"),
("convnext", "ConvNextForImageClassification"),
("convnextv2", "ConvNextV2ForImageClassification"),
("cvt", "CvtForImageClassification"),
("data2vec-vision", "Data2VecVisionForImageClassification"),
(
"deit",
("DeiTForImageClassification", "DeiTForImageClassificationWithTeacher"),
),
("dinat", "DinatForImageClassification"),
("dinov2", "Dinov2ForImageClassification"),
("dinov2_with_registers", "Dinov2WithRegistersForImageClassification"),
(
"efficientformer",
(
"EfficientFormerForImageClassification",
"EfficientFormerForImageClassificationWithTeacher",
),
),
("efficientnet", "EfficientNetForImageClassification"),
("focalnet", "FocalNetForImageClassification"),
("hiera", "HieraForImageClassification"),
("ijepa", "IJepaForImageClassification"),
("imagegpt", "ImageGPTForImageClassification"),
(
"levit",
("LevitForImageClassification", "LevitForImageClassificationWithTeacher"),
),
("mobilenet_v1", "MobileNetV1ForImageClassification"),
("mobilenet_v2", "MobileNetV2ForImageClassification"),
("mobilevit", "MobileViTForImageClassification"),
("mobilevitv2", "MobileViTV2ForImageClassification"),
("nat", "NatForImageClassification"),
(
"perceiver",
(
"PerceiverForImageClassificationLearned",
"PerceiverForImageClassificationFourier",
"PerceiverForImageClassificationConvProcessing",
),
),
("poolformer", "PoolFormerForImageClassification"),
("pvt", "PvtForImageClassification"),
("pvt_v2", "PvtV2ForImageClassification"),
("regnet", "RegNetForImageClassification"),
("resnet", "ResNetForImageClassification"),
("segformer", "SegformerForImageClassification"),
("shieldgemma2", "ShieldGemma2ForImageClassification"),
("siglip", "SiglipForImageClassification"),
("siglip2", "Siglip2ForImageClassification"),
("swiftformer", "SwiftFormerForImageClassification"),
("swin", "SwinForImageClassification"),
("swinv2", "Swinv2ForImageClassification"),
("textnet", "TextNetForImageClassification"),
("timm_wrapper", "TimmWrapperForImageClassification"),
("van", "VanForImageClassification"),
("vit", "ViTForImageClassification"),
("vit_hybrid", "ViTHybridForImageClassification"),
("vit_msn", "ViTMSNForImageClassification"),
]
)
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES = OrderedDict(
[
# Do not add new models here, this class will be deprecated in the future.
# Model for Image Segmentation mapping
("detr", "DetrForSegmentation"),
]
)
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES = OrderedDict(
[
# Model for Semantic Segmentation mapping
("beit", "BeitForSemanticSegmentation"),
("data2vec-vision", "Data2VecVisionForSemanticSegmentation"),
("dpt", "DPTForSemanticSegmentation"),
("mobilenet_v2", "MobileNetV2ForSemanticSegmentation"),
("mobilevit", "MobileViTForSemanticSegmentation"),
("mobilevitv2", "MobileViTV2ForSemanticSegmentation"),
("segformer", "SegformerForSemanticSegmentation"),
("upernet", "UperNetForSemanticSegmentation"),
]
)
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES = OrderedDict(
[
# Model for Instance Segmentation mapping
# MaskFormerForInstanceSegmentation can be removed from this mapping in v5
("maskformer", "MaskFormerForInstanceSegmentation"),
]
)
MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING_NAMES = OrderedDict(
[
# Model for Universal Segmentation mapping
("detr", "DetrForSegmentation"),
("mask2former", "Mask2FormerForUniversalSegmentation"),
("maskformer", "MaskFormerForInstanceSegmentation"),
("oneformer", "OneFormerForUniversalSegmentation"),
]
)
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
("timesformer", "TimesformerForVideoClassification"),
("videomae", "VideoMAEForVideoClassification"),
("vivit", "VivitForVideoClassification"),
]
)
MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES = OrderedDict(
[
("blip", "BlipForConditionalGeneration"),
("blip-2", "Blip2ForConditionalGeneration"),
("chameleon", "ChameleonForConditionalGeneration"),
("git", "GitForCausalLM"),
("idefics2", "Idefics2ForConditionalGeneration"),
("idefics3", "Idefics3ForConditionalGeneration"),
("instructblip", "InstructBlipForConditionalGeneration"),
("instructblipvideo", "InstructBlipVideoForConditionalGeneration"),
("kosmos-2", "Kosmos2ForConditionalGeneration"),
("llava", "LlavaForConditionalGeneration"),
("llava_next", "LlavaNextForConditionalGeneration"),
("llava_next_video", "LlavaNextVideoForConditionalGeneration"),
("llava_onevision", "LlavaOnevisionForConditionalGeneration"),
("mistral3", "Mistral3ForConditionalGeneration"),
("mllama", "MllamaForConditionalGeneration"),
("paligemma", "PaliGemmaForConditionalGeneration"),
("pix2struct", "Pix2StructForConditionalGeneration"),
("qwen2_5_vl", "Qwen2_5_VLForConditionalGeneration"),
("qwen2_vl", "Qwen2VLForConditionalGeneration"),
("video_llava", "VideoLlavaForConditionalGeneration"),
("vipllava", "VipLlavaForConditionalGeneration"),
("vision-encoder-decoder", "VisionEncoderDecoderModel"),
]
)
MODEL_FOR_RETRIEVAL_MAPPING_NAMES = OrderedDict(
[
("colpali", "ColPaliForRetrieval"),
]
)
MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES = OrderedDict(
[
("aria", "AriaForConditionalGeneration"),
("aya_vision", "AyaVisionForConditionalGeneration"),
("blip", "BlipForConditionalGeneration"),
("blip-2", "Blip2ForConditionalGeneration"),
("chameleon", "ChameleonForConditionalGeneration"),
("emu3", "Emu3ForConditionalGeneration"),
("fuyu", "FuyuForCausalLM"),
("gemma3", "Gemma3ForConditionalGeneration"),
("git", "GitForCausalLM"),
("got_ocr2", "GotOcr2ForConditionalGeneration"),
("idefics", "IdeficsForVisionText2Text"),
("idefics2", "Idefics2ForConditionalGeneration"),
("idefics3", "Idefics3ForConditionalGeneration"),
("instructblip", "InstructBlipForConditionalGeneration"),
("kosmos-2", "Kosmos2ForConditionalGeneration"),
("llama4", "Llama4ForConditionalGeneration"),
("llava", "LlavaForConditionalGeneration"),
("llava_next", "LlavaNextForConditionalGeneration"),
("llava_onevision", "LlavaOnevisionForConditionalGeneration"),
("mistral3", "Mistral3ForConditionalGeneration"),
("mllama", "MllamaForConditionalGeneration"),
("paligemma", "PaliGemmaForConditionalGeneration"),
("pix2struct", "Pix2StructForConditionalGeneration"),
("pixtral", "LlavaForConditionalGeneration"),
("qwen2_5_vl", "Qwen2_5_VLForConditionalGeneration"),
("qwen2_vl", "Qwen2VLForConditionalGeneration"),
("shieldgemma2", "Gemma3ForConditionalGeneration"),
("smolvlm", "SmolVLMForConditionalGeneration"),
("udop", "UdopForConditionalGeneration"),
("vipllava", "VipLlavaForConditionalGeneration"),
("vision-encoder-decoder", "VisionEncoderDecoderModel"),
]
)
MODEL_FOR_MASKED_LM_MAPPING_NAMES = OrderedDict(
[
# Model for Masked LM mapping
("albert", "AlbertForMaskedLM"),
("bart", "BartForConditionalGeneration"),
("bert", "BertForMaskedLM"),
("big_bird", "BigBirdForMaskedLM"),
("camembert", "CamembertForMaskedLM"),
("convbert", "ConvBertForMaskedLM"),
("data2vec-text", "Data2VecTextForMaskedLM"),
("deberta", "DebertaForMaskedLM"),
("deberta-v2", "DebertaV2ForMaskedLM"),
("distilbert", "DistilBertForMaskedLM"),
("electra", "ElectraForMaskedLM"),
("ernie", "ErnieForMaskedLM"),
("esm", "EsmForMaskedLM"),
("flaubert", "FlaubertWithLMHeadModel"),
("fnet", "FNetForMaskedLM"),
("funnel", "FunnelForMaskedLM"),
("ibert", "IBertForMaskedLM"),
("layoutlm", "LayoutLMForMaskedLM"),
("longformer", "LongformerForMaskedLM"),
("luke", "LukeForMaskedLM"),
("mbart", "MBartForConditionalGeneration"),
("mega", "MegaForMaskedLM"),
("megatron-bert", "MegatronBertForMaskedLM"),
("mobilebert", "MobileBertForMaskedLM"),
("modernbert", "ModernBertForMaskedLM"),
("mpnet", "MPNetForMaskedLM"),
("mra", "MraForMaskedLM"),
("mvp", "MvpForConditionalGeneration"),
("nezha", "NezhaForMaskedLM"),
("nystromformer", "NystromformerForMaskedLM"),
("perceiver", "PerceiverForMaskedLM"),
("qdqbert", "QDQBertForMaskedLM"),
("reformer", "ReformerForMaskedLM"),
("rembert", "RemBertForMaskedLM"),
("roberta", "RobertaForMaskedLM"),
("roberta-prelayernorm", "RobertaPreLayerNormForMaskedLM"),
("roc_bert", "RoCBertForMaskedLM"),
("roformer", "RoFormerForMaskedLM"),
("squeezebert", "SqueezeBertForMaskedLM"),
("tapas", "TapasForMaskedLM"),
("wav2vec2", "Wav2Vec2ForMaskedLM"),
("xlm", "XLMWithLMHeadModel"),
("xlm-roberta", "XLMRobertaForMaskedLM"),
("xlm-roberta-xl", "XLMRobertaXLForMaskedLM"),
("xmod", "XmodForMaskedLM"),
("yoso", "YosoForMaskedLM"),
]
)
MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES = OrderedDict(
[
# Model for Object Detection mapping
("conditional_detr", "ConditionalDetrForObjectDetection"),
("dab-detr", "DabDetrForObjectDetection"),
("deformable_detr", "DeformableDetrForObjectDetection"),
("deta", "DetaForObjectDetection"),
("detr", "DetrForObjectDetection"),
("rt_detr", "RTDetrForObjectDetection"),
("rt_detr_v2", "RTDetrV2ForObjectDetection"),
("table-transformer", "TableTransformerForObjectDetection"),
("yolos", "YolosForObjectDetection"),
]
)
MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES = OrderedDict(
[
# Model for Zero Shot Object Detection mapping
("grounding-dino", "GroundingDinoForObjectDetection"),
("omdet-turbo", "OmDetTurboForObjectDetection"),
("owlv2", "Owlv2ForObjectDetection"),
("owlvit", "OwlViTForObjectDetection"),
]
)
MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES = OrderedDict(
[
# Model for depth estimation mapping
("depth_anything", "DepthAnythingForDepthEstimation"),
("depth_pro", "DepthProForDepthEstimation"),
("dpt", "DPTForDepthEstimation"),
("glpn", "GLPNForDepthEstimation"),
("prompt_depth_anything", "PromptDepthAnythingForDepthEstimation"),
("zoedepth", "ZoeDepthForDepthEstimation"),
]
)
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
("bart", "BartForConditionalGeneration"),
("bigbird_pegasus", "BigBirdPegasusForConditionalGeneration"),
("blenderbot", "BlenderbotForConditionalGeneration"),
("blenderbot-small", "BlenderbotSmallForConditionalGeneration"),
("encoder-decoder", "EncoderDecoderModel"),
("fsmt", "FSMTForConditionalGeneration"),
("gptsan-japanese", "GPTSanJapaneseForConditionalGeneration"),
("led", "LEDForConditionalGeneration"),
("longt5", "LongT5ForConditionalGeneration"),
("m2m_100", "M2M100ForConditionalGeneration"),
("marian", "MarianMTModel"),
("mbart", "MBartForConditionalGeneration"),
("mt5", "MT5ForConditionalGeneration"),
("mvp", "MvpForConditionalGeneration"),
("nllb-moe", "NllbMoeForConditionalGeneration"),
("pegasus", "PegasusForConditionalGeneration"),
("pegasus_x", "PegasusXForConditionalGeneration"),
("plbart", "PLBartForConditionalGeneration"),
("prophetnet", "ProphetNetForConditionalGeneration"),
("qwen2_audio", "Qwen2AudioForConditionalGeneration"),
("seamless_m4t", "SeamlessM4TForTextToText"),
("seamless_m4t_v2", "SeamlessM4Tv2ForTextToText"),
("switch_transformers", "SwitchTransformersForConditionalGeneration"),
("t5", "T5ForConditionalGeneration"),
("umt5", "UMT5ForConditionalGeneration"),
("xlm-prophetnet", "XLMProphetNetForConditionalGeneration"),
]
)
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES = OrderedDict(
[
("moonshine", "MoonshineForConditionalGeneration"),
("pop2piano", "Pop2PianoForConditionalGeneration"),
("seamless_m4t", "SeamlessM4TForSpeechToText"),
("seamless_m4t_v2", "SeamlessM4Tv2ForSpeechToText"),
("speech-encoder-decoder", "SpeechEncoderDecoderModel"),
("speech_to_text", "Speech2TextForConditionalGeneration"),
("speecht5", "SpeechT5ForSpeechToText"),
("whisper", "WhisperForConditionalGeneration"),
]
)
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Sequence Classification mapping
("albert", "AlbertForSequenceClassification"),
("bart", "BartForSequenceClassification"),
("bert", "BertForSequenceClassification"),
("big_bird", "BigBirdForSequenceClassification"),
("bigbird_pegasus", "BigBirdPegasusForSequenceClassification"),
("biogpt", "BioGptForSequenceClassification"),
("bloom", "BloomForSequenceClassification"),
("camembert", "CamembertForSequenceClassification"),
("canine", "CanineForSequenceClassification"),
("code_llama", "LlamaForSequenceClassification"),
("convbert", "ConvBertForSequenceClassification"),
("ctrl", "CTRLForSequenceClassification"),
("data2vec-text", "Data2VecTextForSequenceClassification"),
("deberta", "DebertaForSequenceClassification"),
("deberta-v2", "DebertaV2ForSequenceClassification"),
("diffllama", "DiffLlamaForSequenceClassification"),
("distilbert", "DistilBertForSequenceClassification"),
("electra", "ElectraForSequenceClassification"),
("ernie", "ErnieForSequenceClassification"),
("ernie_m", "ErnieMForSequenceClassification"),
("esm", "EsmForSequenceClassification"),
("falcon", "FalconForSequenceClassification"),
("flaubert", "FlaubertForSequenceClassification"),
("fnet", "FNetForSequenceClassification"),
("funnel", "FunnelForSequenceClassification"),
("gemma", "GemmaForSequenceClassification"),
("gemma2", "Gemma2ForSequenceClassification"),
("glm", "GlmForSequenceClassification"),
("glm4", "Glm4ForSequenceClassification"),
("gpt-sw3", "GPT2ForSequenceClassification"),
("gpt2", "GPT2ForSequenceClassification"),
("gpt_bigcode", "GPTBigCodeForSequenceClassification"),
("gpt_neo", "GPTNeoForSequenceClassification"),
("gpt_neox", "GPTNeoXForSequenceClassification"),
("gptj", "GPTJForSequenceClassification"),
("helium", "HeliumForSequenceClassification"),
("ibert", "IBertForSequenceClassification"),
("jamba", "JambaForSequenceClassification"),
("jetmoe", "JetMoeForSequenceClassification"),
("layoutlm", "LayoutLMForSequenceClassification"),
("layoutlmv2", "LayoutLMv2ForSequenceClassification"),
("layoutlmv3", "LayoutLMv3ForSequenceClassification"),
("led", "LEDForSequenceClassification"),
("lilt", "LiltForSequenceClassification"),
("llama", "LlamaForSequenceClassification"),
("longformer", "LongformerForSequenceClassification"),
("luke", "LukeForSequenceClassification"),
("markuplm", "MarkupLMForSequenceClassification"),
("mbart", "MBartForSequenceClassification"),
("mega", "MegaForSequenceClassification"),
("megatron-bert", "MegatronBertForSequenceClassification"),
("mistral", "MistralForSequenceClassification"),
("mixtral", "MixtralForSequenceClassification"),
("mobilebert", "MobileBertForSequenceClassification"),
("modernbert", "ModernBertForSequenceClassification"),
("mpnet", "MPNetForSequenceClassification"),
("mpt", "MptForSequenceClassification"),
("mra", "MraForSequenceClassification"),
("mt5", "MT5ForSequenceClassification"),
("mvp", "MvpForSequenceClassification"),
("nemotron", "NemotronForSequenceClassification"),
("nezha", "NezhaForSequenceClassification"),
("nystromformer", "NystromformerForSequenceClassification"),
("open-llama", "OpenLlamaForSequenceClassification"),
("openai-gpt", "OpenAIGPTForSequenceClassification"),
("opt", "OPTForSequenceClassification"),
("perceiver", "PerceiverForSequenceClassification"),
("persimmon", "PersimmonForSequenceClassification"),
("phi", "PhiForSequenceClassification"),
("phi3", "Phi3ForSequenceClassification"),
("phimoe", "PhimoeForSequenceClassification"),
("plbart", "PLBartForSequenceClassification"),
("qdqbert", "QDQBertForSequenceClassification"),
("qwen2", "Qwen2ForSequenceClassification"),
("qwen2_moe", "Qwen2MoeForSequenceClassification"),
("qwen3", "Qwen3ForSequenceClassification"),
("qwen3_moe", "Qwen3MoeForSequenceClassification"),
("reformer", "ReformerForSequenceClassification"),
("rembert", "RemBertForSequenceClassification"),
("roberta", "RobertaForSequenceClassification"),
("roberta-prelayernorm", "RobertaPreLayerNormForSequenceClassification"),
("roc_bert", "RoCBertForSequenceClassification"),
("roformer", "RoFormerForSequenceClassification"),
("squeezebert", "SqueezeBertForSequenceClassification"),
("stablelm", "StableLmForSequenceClassification"),
("starcoder2", "Starcoder2ForSequenceClassification"),
("t5", "T5ForSequenceClassification"),
("tapas", "TapasForSequenceClassification"),
("transfo-xl", "TransfoXLForSequenceClassification"),
("umt5", "UMT5ForSequenceClassification"),
("xlm", "XLMForSequenceClassification"),
("xlm-roberta", "XLMRobertaForSequenceClassification"),
("xlm-roberta-xl", "XLMRobertaXLForSequenceClassification"),
("xlnet", "XLNetForSequenceClassification"),
("xmod", "XmodForSequenceClassification"),
("yoso", "YosoForSequenceClassification"),
("zamba", "ZambaForSequenceClassification"),
("zamba2", "Zamba2ForSequenceClassification"),
]
)
MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
[
# Model for Question Answering mapping
("albert", "AlbertForQuestionAnswering"),
("bart", "BartForQuestionAnswering"),
("bert", "BertForQuestionAnswering"),
("big_bird", "BigBirdForQuestionAnswering"),
("bigbird_pegasus", "BigBirdPegasusForQuestionAnswering"),
("bloom", "BloomForQuestionAnswering"),
("camembert", "CamembertForQuestionAnswering"),
("canine", "CanineForQuestionAnswering"),
("convbert", "ConvBertForQuestionAnswering"),
("data2vec-text", "Data2VecTextForQuestionAnswering"),
("deberta", "DebertaForQuestionAnswering"),
("deberta-v2", "DebertaV2ForQuestionAnswering"),
("diffllama", "DiffLlamaForQuestionAnswering"),
("distilbert", "DistilBertForQuestionAnswering"),
("electra", "ElectraForQuestionAnswering"),
("ernie", "ErnieForQuestionAnswering"),
("ernie_m", "ErnieMForQuestionAnswering"),
("falcon", "FalconForQuestionAnswering"),
("flaubert", "FlaubertForQuestionAnsweringSimple"),
("fnet", "FNetForQuestionAnswering"),
("funnel", "FunnelForQuestionAnswering"),
("gpt2", "GPT2ForQuestionAnswering"),
("gpt_neo", "GPTNeoForQuestionAnswering"),
("gpt_neox", "GPTNeoXForQuestionAnswering"),
("gptj", "GPTJForQuestionAnswering"),
("ibert", "IBertForQuestionAnswering"),
("layoutlmv2", "LayoutLMv2ForQuestionAnswering"),
("layoutlmv3", "LayoutLMv3ForQuestionAnswering"),
("led", "LEDForQuestionAnswering"),
("lilt", "LiltForQuestionAnswering"),
("llama", "LlamaForQuestionAnswering"),
("longformer", "LongformerForQuestionAnswering"),
("luke", "LukeForQuestionAnswering"),
("lxmert", "LxmertForQuestionAnswering"),
("markuplm", "MarkupLMForQuestionAnswering"),
("mbart", "MBartForQuestionAnswering"),
("mega", "MegaForQuestionAnswering"),
("megatron-bert", "MegatronBertForQuestionAnswering"),
("mistral", "MistralForQuestionAnswering"),
("mixtral", "MixtralForQuestionAnswering"),
("mobilebert", "MobileBertForQuestionAnswering"),
("modernbert", "ModernBertForQuestionAnswering"),
("mpnet", "MPNetForQuestionAnswering"),
("mpt", "MptForQuestionAnswering"),
("mra", "MraForQuestionAnswering"),
("mt5", "MT5ForQuestionAnswering"),
("mvp", "MvpForQuestionAnswering"),
("nemotron", "NemotronForQuestionAnswering"),
("nezha", "NezhaForQuestionAnswering"),
("nystromformer", "NystromformerForQuestionAnswering"),
("opt", "OPTForQuestionAnswering"),
("qdqbert", "QDQBertForQuestionAnswering"),
("qwen2", "Qwen2ForQuestionAnswering"),
("qwen2_moe", "Qwen2MoeForQuestionAnswering"),
("qwen3", "Qwen3ForQuestionAnswering"),
("qwen3_moe", "Qwen3MoeForQuestionAnswering"),
("reformer", "ReformerForQuestionAnswering"),
("rembert", "RemBertForQuestionAnswering"),
("roberta", "RobertaForQuestionAnswering"),
("roberta-prelayernorm", "RobertaPreLayerNormForQuestionAnswering"),
("roc_bert", "RoCBertForQuestionAnswering"),
("roformer", "RoFormerForQuestionAnswering"),
("splinter", "SplinterForQuestionAnswering"),
("squeezebert", "SqueezeBertForQuestionAnswering"),
("t5", "T5ForQuestionAnswering"),
("umt5", "UMT5ForQuestionAnswering"),
("xlm", "XLMForQuestionAnsweringSimple"),
("xlm-roberta", "XLMRobertaForQuestionAnswering"),
("xlm-roberta-xl", "XLMRobertaXLForQuestionAnswering"),
("xlnet", "XLNetForQuestionAnsweringSimple"),
("xmod", "XmodForQuestionAnswering"),
("yoso", "YosoForQuestionAnswering"),
]
)
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
[
# Model for Table Question Answering mapping
("tapas", "TapasForQuestionAnswering"),
]
)
MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
[
("blip", "BlipForQuestionAnswering"),
("blip-2", "Blip2ForConditionalGeneration"),
("vilt", "ViltForQuestionAnswering"),
]
)
MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
[
("layoutlm", "LayoutLMForQuestionAnswering"),
("layoutlmv2", "LayoutLMv2ForQuestionAnswering"),
("layoutlmv3", "LayoutLMv3ForQuestionAnswering"),
]
)
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Token Classification mapping
("albert", "AlbertForTokenClassification"),
("bert", "BertForTokenClassification"),
("big_bird", "BigBirdForTokenClassification"),
("biogpt", "BioGptForTokenClassification"),
("bloom", "BloomForTokenClassification"),
("bros", "BrosForTokenClassification"),
("camembert", "CamembertForTokenClassification"),
("canine", "CanineForTokenClassification"),
("convbert", "ConvBertForTokenClassification"),
("data2vec-text", "Data2VecTextForTokenClassification"),
("deberta", "DebertaForTokenClassification"),
("deberta-v2", "DebertaV2ForTokenClassification"),
("diffllama", "DiffLlamaForTokenClassification"),
("distilbert", "DistilBertForTokenClassification"),
("electra", "ElectraForTokenClassification"),
("ernie", "ErnieForTokenClassification"),
("ernie_m", "ErnieMForTokenClassification"),
("esm", "EsmForTokenClassification"),
("falcon", "FalconForTokenClassification"),
("flaubert", "FlaubertForTokenClassification"),
("fnet", "FNetForTokenClassification"),
("funnel", "FunnelForTokenClassification"),
("gemma", "GemmaForTokenClassification"),
("gemma2", "Gemma2ForTokenClassification"),
("glm", "GlmForTokenClassification"),
("glm4", "Glm4ForTokenClassification"),
("gpt-sw3", "GPT2ForTokenClassification"),
("gpt2", "GPT2ForTokenClassification"),
("gpt_bigcode", "GPTBigCodeForTokenClassification"),
("gpt_neo", "GPTNeoForTokenClassification"),
("gpt_neox", "GPTNeoXForTokenClassification"),
("helium", "HeliumForTokenClassification"),
("ibert", "IBertForTokenClassification"),
("layoutlm", "LayoutLMForTokenClassification"),
("layoutlmv2", "LayoutLMv2ForTokenClassification"),
("layoutlmv3", "LayoutLMv3ForTokenClassification"),
("lilt", "LiltForTokenClassification"),
("llama", "LlamaForTokenClassification"),
("longformer", "LongformerForTokenClassification"),
("luke", "LukeForTokenClassification"),
("markuplm", "MarkupLMForTokenClassification"),
("mega", "MegaForTokenClassification"),
("megatron-bert", "MegatronBertForTokenClassification"),
("mistral", "MistralForTokenClassification"),
("mixtral", "MixtralForTokenClassification"),
("mobilebert", "MobileBertForTokenClassification"),
("modernbert", "ModernBertForTokenClassification"),
("mpnet", "MPNetForTokenClassification"),
("mpt", "MptForTokenClassification"),
("mra", "MraForTokenClassification"),
("mt5", "MT5ForTokenClassification"),
("nemotron", "NemotronForTokenClassification"),
("nezha", "NezhaForTokenClassification"),
("nystromformer", "NystromformerForTokenClassification"),
("persimmon", "PersimmonForTokenClassification"),
("phi", "PhiForTokenClassification"),
("phi3", "Phi3ForTokenClassification"),
("qdqbert", "QDQBertForTokenClassification"),
("qwen2", "Qwen2ForTokenClassification"),
("qwen2_moe", "Qwen2MoeForTokenClassification"),
("qwen3", "Qwen3ForTokenClassification"),
("qwen3_moe", "Qwen3MoeForTokenClassification"),
("rembert", "RemBertForTokenClassification"),
("roberta", "RobertaForTokenClassification"),
("roberta-prelayernorm", "RobertaPreLayerNormForTokenClassification"),
("roc_bert", "RoCBertForTokenClassification"),
("roformer", "RoFormerForTokenClassification"),
("squeezebert", "SqueezeBertForTokenClassification"),
("stablelm", "StableLmForTokenClassification"),
("starcoder2", "Starcoder2ForTokenClassification"),
("t5", "T5ForTokenClassification"),
("umt5", "UMT5ForTokenClassification"),
("xlm", "XLMForTokenClassification"),
("xlm-roberta", "XLMRobertaForTokenClassification"),
("xlm-roberta-xl", "XLMRobertaXLForTokenClassification"),
("xlnet", "XLNetForTokenClassification"),
("xmod", "XmodForTokenClassification"),
("yoso", "YosoForTokenClassification"),
]
)
MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES = OrderedDict(
[
# Model for Multiple Choice mapping
("albert", "AlbertForMultipleChoice"),
("bert", "BertForMultipleChoice"),
("big_bird", "BigBirdForMultipleChoice"),
("camembert", "CamembertForMultipleChoice"),
("canine", "CanineForMultipleChoice"),
("convbert", "ConvBertForMultipleChoice"),
("data2vec-text", "Data2VecTextForMultipleChoice"),
("deberta-v2", "DebertaV2ForMultipleChoice"),
("distilbert", "DistilBertForMultipleChoice"),
("electra", "ElectraForMultipleChoice"),
("ernie", "ErnieForMultipleChoice"),
("ernie_m", "ErnieMForMultipleChoice"),
("flaubert", "FlaubertForMultipleChoice"),
("fnet", "FNetForMultipleChoice"),
("funnel", "FunnelForMultipleChoice"),
("ibert", "IBertForMultipleChoice"),
("longformer", "LongformerForMultipleChoice"),
("luke", "LukeForMultipleChoice"),
("mega", "MegaForMultipleChoice"),
("megatron-bert", "MegatronBertForMultipleChoice"),
("mobilebert", "MobileBertForMultipleChoice"),
("mpnet", "MPNetForMultipleChoice"),
("mra", "MraForMultipleChoice"),
("nezha", "NezhaForMultipleChoice"),
("nystromformer", "NystromformerForMultipleChoice"),
("qdqbert", "QDQBertForMultipleChoice"),
("rembert", "RemBertForMultipleChoice"),
("roberta", "RobertaForMultipleChoice"),
("roberta-prelayernorm", "RobertaPreLayerNormForMultipleChoice"),
("roc_bert", "RoCBertForMultipleChoice"),
("roformer", "RoFormerForMultipleChoice"),
("squeezebert", "SqueezeBertForMultipleChoice"),
("xlm", "XLMForMultipleChoice"),
("xlm-roberta", "XLMRobertaForMultipleChoice"),
("xlm-roberta-xl", "XLMRobertaXLForMultipleChoice"),
("xlnet", "XLNetForMultipleChoice"),
("xmod", "XmodForMultipleChoice"),
("yoso", "YosoForMultipleChoice"),
]
)
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES = OrderedDict(
[
("bert", "BertForNextSentencePrediction"),
("ernie", "ErnieForNextSentencePrediction"),
("fnet", "FNetForNextSentencePrediction"),
("megatron-bert", "MegatronBertForNextSentencePrediction"),
("mobilebert", "MobileBertForNextSentencePrediction"),
("nezha", "NezhaForNextSentencePrediction"),
("qdqbert", "QDQBertForNextSentencePrediction"),
]
)
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Audio Classification mapping
("audio-spectrogram-transformer", "ASTForAudioClassification"),
("data2vec-audio", "Data2VecAudioForSequenceClassification"),
("hubert", "HubertForSequenceClassification"),
("sew", "SEWForSequenceClassification"),
("sew-d", "SEWDForSequenceClassification"),
("unispeech", "UniSpeechForSequenceClassification"),
("unispeech-sat", "UniSpeechSatForSequenceClassification"),
("wav2vec2", "Wav2Vec2ForSequenceClassification"),
("wav2vec2-bert", "Wav2Vec2BertForSequenceClassification"),
("wav2vec2-conformer", "Wav2Vec2ConformerForSequenceClassification"),
("wavlm", "WavLMForSequenceClassification"),
("whisper", "WhisperForAudioClassification"),
]
)
MODEL_FOR_CTC_MAPPING_NAMES = OrderedDict(
[
# Model for Connectionist temporal classification (CTC) mapping
("data2vec-audio", "Data2VecAudioForCTC"),
("hubert", "HubertForCTC"),
("mctct", "MCTCTForCTC"),
("sew", "SEWForCTC"),
("sew-d", "SEWDForCTC"),
("unispeech", "UniSpeechForCTC"),
("unispeech-sat", "UniSpeechSatForCTC"),
("wav2vec2", "Wav2Vec2ForCTC"),
("wav2vec2-bert", "Wav2Vec2BertForCTC"),
("wav2vec2-conformer", "Wav2Vec2ConformerForCTC"),
("wavlm", "WavLMForCTC"),
]
)
MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Audio Classification mapping
("data2vec-audio", "Data2VecAudioForAudioFrameClassification"),
("unispeech-sat", "UniSpeechSatForAudioFrameClassification"),
("wav2vec2", "Wav2Vec2ForAudioFrameClassification"),
("wav2vec2-bert", "Wav2Vec2BertForAudioFrameClassification"),
("wav2vec2-conformer", "Wav2Vec2ConformerForAudioFrameClassification"),
("wavlm", "WavLMForAudioFrameClassification"),
]
)
MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES = OrderedDict(
[
# Model for Audio Classification mapping
("data2vec-audio", "Data2VecAudioForXVector"),
("unispeech-sat", "UniSpeechSatForXVector"),
("wav2vec2", "Wav2Vec2ForXVector"),
("wav2vec2-bert", "Wav2Vec2BertForXVector"),
("wav2vec2-conformer", "Wav2Vec2ConformerForXVector"),
("wavlm", "WavLMForXVector"),
]
)
MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING_NAMES = OrderedDict(
[
# Model for Text-To-Spectrogram mapping
("fastspeech2_conformer", "FastSpeech2ConformerModel"),
("speecht5", "SpeechT5ForTextToSpeech"),
]
)
MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING_NAMES = OrderedDict(
[
# Model for Text-To-Waveform mapping
("bark", "BarkModel"),
("fastspeech2_conformer", "FastSpeech2ConformerWithHifiGan"),
("musicgen", "MusicgenForConditionalGeneration"),
("musicgen_melody", "MusicgenMelodyForConditionalGeneration"),
("seamless_m4t", "SeamlessM4TForTextToSpeech"),
("seamless_m4t_v2", "SeamlessM4Tv2ForTextToSpeech"),
("vits", "VitsModel"),
]
)
MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Zero Shot Image Classification mapping
("align", "AlignModel"),
("altclip", "AltCLIPModel"),
("blip", "BlipModel"),
("blip-2", "Blip2ForImageTextRetrieval"),
("chinese_clip", "ChineseCLIPModel"),
("clip", "CLIPModel"),
("clipseg", "CLIPSegModel"),
("siglip", "SiglipModel"),
("siglip2", "Siglip2Model"),
]
)
MODEL_FOR_BACKBONE_MAPPING_NAMES = OrderedDict(
[
# Backbone mapping
("beit", "BeitBackbone"),
("bit", "BitBackbone"),
("convnext", "ConvNextBackbone"),
("convnextv2", "ConvNextV2Backbone"),
("dinat", "DinatBackbone"),
("dinov2", "Dinov2Backbone"),
("dinov2_with_registers", "Dinov2WithRegistersBackbone"),
("focalnet", "FocalNetBackbone"),
("hiera", "HieraBackbone"),
("maskformer-swin", "MaskFormerSwinBackbone"),
("nat", "NatBackbone"),
("pvt_v2", "PvtV2Backbone"),
("resnet", "ResNetBackbone"),
("rt_detr_resnet", "RTDetrResNetBackbone"),
("swin", "SwinBackbone"),
("swinv2", "Swinv2Backbone"),
("textnet", "TextNetBackbone"),
("timm_backbone", "TimmBackbone"),
("vitdet", "VitDetBackbone"),
("vitpose_backbone", "VitPoseBackbone"),
]
)
MODEL_FOR_MASK_GENERATION_MAPPING_NAMES = OrderedDict(
[
("sam", "SamModel"),
]
)
MODEL_FOR_KEYPOINT_DETECTION_MAPPING_NAMES = OrderedDict(
[
("superpoint", "SuperPointForKeypointDetection"),
]
)
MODEL_FOR_TEXT_ENCODING_MAPPING_NAMES = OrderedDict(
[
("albert", "AlbertModel"),
("bert", "BertModel"),
("big_bird", "BigBirdModel"),
("clip_text_model", "CLIPTextModel"),
("data2vec-text", "Data2VecTextModel"),
("deberta", "DebertaModel"),
("deberta-v2", "DebertaV2Model"),
("distilbert", "DistilBertModel"),
("electra", "ElectraModel"),
("emu3", "Emu3TextModel"),
("flaubert", "FlaubertModel"),
("ibert", "IBertModel"),
("llama4", "Llama4TextModel"),
("longformer", "LongformerModel"),
("mllama", "MllamaTextModel"),
("mobilebert", "MobileBertModel"),
("mt5", "MT5EncoderModel"),
("nystromformer", "NystromformerModel"),
("reformer", "ReformerModel"),
("rembert", "RemBertModel"),
("roberta", "RobertaModel"),
("roberta-prelayernorm", "RobertaPreLayerNormModel"),
("roc_bert", "RoCBertModel"),
("roformer", "RoFormerModel"),
("squeezebert", "SqueezeBertModel"),
("t5", "T5EncoderModel"),
("umt5", "UMT5EncoderModel"),
("xlm", "XLMModel"),
("xlm-roberta", "XLMRobertaModel"),
("xlm-roberta-xl", "XLMRobertaXLModel"),
]
)
MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
("patchtsmixer", "PatchTSMixerForTimeSeriesClassification"),
("patchtst", "PatchTSTForClassification"),
]
)
MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING_NAMES = OrderedDict(
[
("patchtsmixer", "PatchTSMixerForRegression"),
("patchtst", "PatchTSTForRegression"),
]
)
MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES = OrderedDict(
[
("swin2sr", "Swin2SRForImageSuperResolution"),
]
)
MODEL_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_MAPPING_NAMES)
MODEL_FOR_PRETRAINING_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_PRETRAINING_MAPPING_NAMES)
MODEL_WITH_LM_HEAD_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_WITH_LM_HEAD_MAPPING_NAMES)
MODEL_FOR_CAUSAL_LM_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES
)
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES
)
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES
)
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES
)
MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING_NAMES
)
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES
)
MODEL_FOR_VISION_2_SEQ_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES
)
MODEL_FOR_RETRIEVAL_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_RETRIEVAL_MAPPING_NAMES)
MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES
)
MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES
)
MODEL_FOR_MASKED_LM_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_MASKED_LM_MAPPING_NAMES)
MODEL_FOR_IMAGE_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_IMAGE_MAPPING_NAMES)
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES
)
MODEL_FOR_OBJECT_DETECTION_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES)
MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES
)
MODEL_FOR_DEPTH_ESTIMATION_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES)
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
MODEL_FOR_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES
)
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
MODEL_FOR_MULTIPLE_CHOICE_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES)
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
MODEL_FOR_CTC_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_CTC_MAPPING_NAMES)
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES)
MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES
)
MODEL_FOR_AUDIO_XVECTOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES)
MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING_NAMES
)
MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING_NAMES)
MODEL_FOR_BACKBONE_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_BACKBONE_MAPPING_NAMES)
MODEL_FOR_MASK_GENERATION_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_MASK_GENERATION_MAPPING_NAMES)
MODEL_FOR_KEYPOINT_DETECTION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_KEYPOINT_DETECTION_MAPPING_NAMES
)
MODEL_FOR_TEXT_ENCODING_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_TEXT_ENCODING_MAPPING_NAMES)
MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING_NAMES
)
MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING_NAMES
)
MODEL_FOR_IMAGE_TO_IMAGE_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES)
class AutoModelForMaskGeneration(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_MASK_GENERATION_MAPPING
class AutoModelForKeypointDetection(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_KEYPOINT_DETECTION_MAPPING
class AutoModelForTextEncoding(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_TEXT_ENCODING_MAPPING
class AutoModelForImageToImage(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_IMAGE_TO_IMAGE_MAPPING
class AutoModel(_BaseAutoModelClass):
_model_mapping = MODEL_MAPPING
AutoModel = auto_class_update(AutoModel)
class AutoModelForPreTraining(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_PRETRAINING_MAPPING
AutoModelForPreTraining = auto_class_update(AutoModelForPreTraining, head_doc="pretraining")
# Private on purpose, the public class will add the deprecation warnings.
class _AutoModelWithLMHead(_BaseAutoModelClass):
_model_mapping = MODEL_WITH_LM_HEAD_MAPPING
_AutoModelWithLMHead = auto_class_update(_AutoModelWithLMHead, head_doc="language modeling")
class AutoModelForCausalLM(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING
AutoModelForCausalLM = auto_class_update(AutoModelForCausalLM, head_doc="causal language modeling")
class AutoModelForMaskedLM(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_MASKED_LM_MAPPING
AutoModelForMaskedLM = auto_class_update(AutoModelForMaskedLM, head_doc="masked language modeling")
class AutoModelForSeq2SeqLM(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
AutoModelForSeq2SeqLM = auto_class_update(
AutoModelForSeq2SeqLM,
head_doc="sequence-to-sequence language modeling",
checkpoint_for_example="google-t5/t5-base",
)
class AutoModelForSequenceClassification(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
AutoModelForSequenceClassification = auto_class_update(
AutoModelForSequenceClassification, head_doc="sequence classification"
)
class AutoModelForQuestionAnswering(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_QUESTION_ANSWERING_MAPPING
AutoModelForQuestionAnswering = auto_class_update(AutoModelForQuestionAnswering, head_doc="question answering")
class AutoModelForTableQuestionAnswering(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING
AutoModelForTableQuestionAnswering = auto_class_update(
AutoModelForTableQuestionAnswering,
head_doc="table question answering",
checkpoint_for_example="google/tapas-base-finetuned-wtq",
)
class AutoModelForVisualQuestionAnswering(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
AutoModelForVisualQuestionAnswering = auto_class_update(
AutoModelForVisualQuestionAnswering,
head_doc="visual question answering",
checkpoint_for_example="dandelin/vilt-b32-finetuned-vqa",
)
class AutoModelForDocumentQuestionAnswering(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
AutoModelForDocumentQuestionAnswering = auto_class_update(
AutoModelForDocumentQuestionAnswering,
head_doc="document question answering",
checkpoint_for_example='impira/layoutlm-document-qa", revision="52e01b3',
)
class AutoModelForTokenClassification(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
AutoModelForTokenClassification = auto_class_update(AutoModelForTokenClassification, head_doc="token classification")
class AutoModelForMultipleChoice(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_MULTIPLE_CHOICE_MAPPING
AutoModelForMultipleChoice = auto_class_update(AutoModelForMultipleChoice, head_doc="multiple choice")
class AutoModelForNextSentencePrediction(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
AutoModelForNextSentencePrediction = auto_class_update(
AutoModelForNextSentencePrediction, head_doc="next sentence prediction"
)
class AutoModelForImageClassification(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
AutoModelForImageClassification = auto_class_update(AutoModelForImageClassification, head_doc="image classification")
class AutoModelForZeroShotImageClassification(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
AutoModelForZeroShotImageClassification = auto_class_update(
AutoModelForZeroShotImageClassification, head_doc="zero-shot image classification"
)
class AutoModelForImageSegmentation(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_IMAGE_SEGMENTATION_MAPPING
AutoModelForImageSegmentation = auto_class_update(AutoModelForImageSegmentation, head_doc="image segmentation")
class AutoModelForSemanticSegmentation(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING
AutoModelForSemanticSegmentation = auto_class_update(
AutoModelForSemanticSegmentation, head_doc="semantic segmentation"
)
class AutoModelForUniversalSegmentation(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING
AutoModelForUniversalSegmentation = auto_class_update(
AutoModelForUniversalSegmentation, head_doc="universal image segmentation"
)
class AutoModelForInstanceSegmentation(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING
AutoModelForInstanceSegmentation = auto_class_update(
AutoModelForInstanceSegmentation, head_doc="instance segmentation"
)
class AutoModelForObjectDetection(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_OBJECT_DETECTION_MAPPING
AutoModelForObjectDetection = auto_class_update(AutoModelForObjectDetection, head_doc="object detection")
class AutoModelForZeroShotObjectDetection(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
AutoModelForZeroShotObjectDetection = auto_class_update(
AutoModelForZeroShotObjectDetection, head_doc="zero-shot object detection"
)
class AutoModelForDepthEstimation(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_DEPTH_ESTIMATION_MAPPING
AutoModelForDepthEstimation = auto_class_update(AutoModelForDepthEstimation, head_doc="depth estimation")
class AutoModelForVideoClassification(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
AutoModelForVideoClassification = auto_class_update(AutoModelForVideoClassification, head_doc="video classification")
class AutoModelForVision2Seq(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_VISION_2_SEQ_MAPPING
AutoModelForVision2Seq = auto_class_update(AutoModelForVision2Seq, head_doc="vision-to-text modeling")
class AutoModelForImageTextToText(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING
AutoModelForImageTextToText = auto_class_update(AutoModelForImageTextToText, head_doc="image-text-to-text modeling")
class AutoModelForAudioClassification(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
AutoModelForAudioClassification = auto_class_update(AutoModelForAudioClassification, head_doc="audio classification")
class AutoModelForCTC(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_CTC_MAPPING
AutoModelForCTC = auto_class_update(AutoModelForCTC, head_doc="connectionist temporal classification")
class AutoModelForSpeechSeq2Seq(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
AutoModelForSpeechSeq2Seq = auto_class_update(
AutoModelForSpeechSeq2Seq, head_doc="sequence-to-sequence speech-to-text modeling"
)
class AutoModelForAudioFrameClassification(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING
AutoModelForAudioFrameClassification = auto_class_update(
AutoModelForAudioFrameClassification, head_doc="audio frame (token) classification"
)
class AutoModelForAudioXVector(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_AUDIO_XVECTOR_MAPPING
class AutoModelForTextToSpectrogram(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING
class AutoModelForTextToWaveform(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING
class AutoBackbone(_BaseAutoBackboneClass):
_model_mapping = MODEL_FOR_BACKBONE_MAPPING
AutoModelForAudioXVector = auto_class_update(AutoModelForAudioXVector, head_doc="audio retrieval via x-vector")
class AutoModelForMaskedImageModeling(_BaseAutoModelClass):
_model_mapping = MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING
AutoModelForMaskedImageModeling = auto_class_update(AutoModelForMaskedImageModeling, head_doc="masked image modeling")
class AutoModelWithLMHead(_AutoModelWithLMHead):
@classmethod
def from_config(cls, config):
warnings.warn(
"The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use "
"`AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and "
"`AutoModelForSeq2SeqLM` for encoder-decoder models.",
FutureWarning,
)
return super().from_config(config)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
warnings.warn(
"The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use "
"`AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and "
"`AutoModelForSeq2SeqLM` for encoder-decoder models.",
FutureWarning,
)
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
```
|
======================================================================================================================================
SOURCE CODE FILE: modeling_flax_auto.py
LINES: 1
SIZE: 14.23 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\auto\modeling_flax_auto.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The Google Flax Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Auto Model class."""
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
logger = logging.get_logger(__name__)
FLAX_MODEL_MAPPING_NAMES = OrderedDict(
[
# Base model mapping
("albert", "FlaxAlbertModel"),
("bart", "FlaxBartModel"),
("beit", "FlaxBeitModel"),
("bert", "FlaxBertModel"),
("big_bird", "FlaxBigBirdModel"),
("blenderbot", "FlaxBlenderbotModel"),
("blenderbot-small", "FlaxBlenderbotSmallModel"),
("bloom", "FlaxBloomModel"),
("clip", "FlaxCLIPModel"),
("dinov2", "FlaxDinov2Model"),
("distilbert", "FlaxDistilBertModel"),
("electra", "FlaxElectraModel"),
("gemma", "FlaxGemmaModel"),
("gpt-sw3", "FlaxGPT2Model"),
("gpt2", "FlaxGPT2Model"),
("gpt_neo", "FlaxGPTNeoModel"),
("gptj", "FlaxGPTJModel"),
("llama", "FlaxLlamaModel"),
("longt5", "FlaxLongT5Model"),
("marian", "FlaxMarianModel"),
("mbart", "FlaxMBartModel"),
("mistral", "FlaxMistralModel"),
("mt5", "FlaxMT5Model"),
("opt", "FlaxOPTModel"),
("pegasus", "FlaxPegasusModel"),
("regnet", "FlaxRegNetModel"),
("resnet", "FlaxResNetModel"),
("roberta", "FlaxRobertaModel"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"),
("roformer", "FlaxRoFormerModel"),
("t5", "FlaxT5Model"),
("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"),
("vit", "FlaxViTModel"),
("wav2vec2", "FlaxWav2Vec2Model"),
("whisper", "FlaxWhisperModel"),
("xglm", "FlaxXGLMModel"),
("xlm-roberta", "FlaxXLMRobertaModel"),
]
)
FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict(
[
# Model for pre-training mapping
("albert", "FlaxAlbertForPreTraining"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForPreTraining"),
("big_bird", "FlaxBigBirdForPreTraining"),
("electra", "FlaxElectraForPreTraining"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("t5", "FlaxT5ForConditionalGeneration"),
("wav2vec2", "FlaxWav2Vec2ForPreTraining"),
("whisper", "FlaxWhisperForConditionalGeneration"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES = OrderedDict(
[
# Model for Masked LM mapping
("albert", "FlaxAlbertForMaskedLM"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForMaskedLM"),
("big_bird", "FlaxBigBirdForMaskedLM"),
("distilbert", "FlaxDistilBertForMaskedLM"),
("electra", "FlaxElectraForMaskedLM"),
("mbart", "FlaxMBartForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
("bart", "FlaxBartForConditionalGeneration"),
("blenderbot", "FlaxBlenderbotForConditionalGeneration"),
("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"),
("encoder-decoder", "FlaxEncoderDecoderModel"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("marian", "FlaxMarianMTModel"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("pegasus", "FlaxPegasusForConditionalGeneration"),
("t5", "FlaxT5ForConditionalGeneration"),
]
)
FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Image-classification
("beit", "FlaxBeitForImageClassification"),
("dinov2", "FlaxDinov2ForImageClassification"),
("regnet", "FlaxRegNetForImageClassification"),
("resnet", "FlaxResNetForImageClassification"),
("vit", "FlaxViTForImageClassification"),
]
)
FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES = OrderedDict(
[
("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"),
]
)
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
[
# Model for Causal LM mapping
("bart", "FlaxBartForCausalLM"),
("bert", "FlaxBertForCausalLM"),
("big_bird", "FlaxBigBirdForCausalLM"),
("bloom", "FlaxBloomForCausalLM"),
("electra", "FlaxElectraForCausalLM"),
("gemma", "FlaxGemmaForCausalLM"),
("gpt-sw3", "FlaxGPT2LMHeadModel"),
("gpt2", "FlaxGPT2LMHeadModel"),
("gpt_neo", "FlaxGPTNeoForCausalLM"),
("gptj", "FlaxGPTJForCausalLM"),
("llama", "FlaxLlamaForCausalLM"),
("mistral", "FlaxMistralForCausalLM"),
("opt", "FlaxOPTForCausalLM"),
("roberta", "FlaxRobertaForCausalLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"),
("xglm", "FlaxXGLMForCausalLM"),
("xlm-roberta", "FlaxXLMRobertaForCausalLM"),
]
)
FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Sequence Classification mapping
("albert", "FlaxAlbertForSequenceClassification"),
("bart", "FlaxBartForSequenceClassification"),
("bert", "FlaxBertForSequenceClassification"),
("big_bird", "FlaxBigBirdForSequenceClassification"),
("distilbert", "FlaxDistilBertForSequenceClassification"),
("electra", "FlaxElectraForSequenceClassification"),
("mbart", "FlaxMBartForSequenceClassification"),
("roberta", "FlaxRobertaForSequenceClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"),
("roformer", "FlaxRoFormerForSequenceClassification"),
("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"),
]
)
FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
[
# Model for Question Answering mapping
("albert", "FlaxAlbertForQuestionAnswering"),
("bart", "FlaxBartForQuestionAnswering"),
("bert", "FlaxBertForQuestionAnswering"),
("big_bird", "FlaxBigBirdForQuestionAnswering"),
("distilbert", "FlaxDistilBertForQuestionAnswering"),
("electra", "FlaxElectraForQuestionAnswering"),
("mbart", "FlaxMBartForQuestionAnswering"),
("roberta", "FlaxRobertaForQuestionAnswering"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"),
("roformer", "FlaxRoFormerForQuestionAnswering"),
("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"),
]
)
FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Token Classification mapping
("albert", "FlaxAlbertForTokenClassification"),
("bert", "FlaxBertForTokenClassification"),
("big_bird", "FlaxBigBirdForTokenClassification"),
("distilbert", "FlaxDistilBertForTokenClassification"),
("electra", "FlaxElectraForTokenClassification"),
("roberta", "FlaxRobertaForTokenClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"),
("roformer", "FlaxRoFormerForTokenClassification"),
("xlm-roberta", "FlaxXLMRobertaForTokenClassification"),
]
)
FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES = OrderedDict(
[
# Model for Multiple Choice mapping
("albert", "FlaxAlbertForMultipleChoice"),
("bert", "FlaxBertForMultipleChoice"),
("big_bird", "FlaxBigBirdForMultipleChoice"),
("distilbert", "FlaxDistilBertForMultipleChoice"),
("electra", "FlaxElectraForMultipleChoice"),
("roberta", "FlaxRobertaForMultipleChoice"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"),
("roformer", "FlaxRoFormerForMultipleChoice"),
("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"),
]
)
FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES = OrderedDict(
[
("bert", "FlaxBertForNextSentencePrediction"),
]
)
FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES = OrderedDict(
[
("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"),
("whisper", "FlaxWhisperForConditionalGeneration"),
]
)
FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
("whisper", "FlaxWhisperForAudioClassification"),
]
)
FLAX_MODEL_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
FLAX_MODEL_FOR_PRETRAINING_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
FLAX_MODEL_FOR_MASKED_LM_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class FlaxAutoModel(_BaseAutoModelClass):
_model_mapping = FLAX_MODEL_MAPPING
FlaxAutoModel = auto_class_update(FlaxAutoModel)
class FlaxAutoModelForPreTraining(_BaseAutoModelClass):
_model_mapping = FLAX_MODEL_FOR_PRETRAINING_MAPPING
FlaxAutoModelForPreTraining = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining")
class FlaxAutoModelForCausalLM(_BaseAutoModelClass):
_model_mapping = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
FlaxAutoModelForCausalLM = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling")
class FlaxAutoModelForMaskedLM(_BaseAutoModelClass):
_model_mapping = FLAX_MODEL_FOR_MASKED_LM_MAPPING
FlaxAutoModelForMaskedLM = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling")
class FlaxAutoModelForSeq2SeqLM(_BaseAutoModelClass):
_model_mapping = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
FlaxAutoModelForSeq2SeqLM = auto_class_update(
FlaxAutoModelForSeq2SeqLM,
head_doc="sequence-to-sequence language modeling",
checkpoint_for_example="google-t5/t5-base",
)
class FlaxAutoModelForSequenceClassification(_BaseAutoModelClass):
_model_mapping = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
FlaxAutoModelForSequenceClassification = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc="sequence classification"
)
class FlaxAutoModelForQuestionAnswering(_BaseAutoModelClass):
_model_mapping = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
FlaxAutoModelForQuestionAnswering = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering")
class FlaxAutoModelForTokenClassification(_BaseAutoModelClass):
_model_mapping = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
FlaxAutoModelForTokenClassification = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc="token classification"
)
class FlaxAutoModelForMultipleChoice(_BaseAutoModelClass):
_model_mapping = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
FlaxAutoModelForMultipleChoice = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice")
class FlaxAutoModelForNextSentencePrediction(_BaseAutoModelClass):
_model_mapping = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
FlaxAutoModelForNextSentencePrediction = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction"
)
class FlaxAutoModelForImageClassification(_BaseAutoModelClass):
_model_mapping = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
FlaxAutoModelForImageClassification = auto_class_update(
FlaxAutoModelForImageClassification, head_doc="image classification"
)
class FlaxAutoModelForVision2Seq(_BaseAutoModelClass):
_model_mapping = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
FlaxAutoModelForVision2Seq = auto_class_update(FlaxAutoModelForVision2Seq, head_doc="vision-to-text modeling")
class FlaxAutoModelForSpeechSeq2Seq(_BaseAutoModelClass):
_model_mapping = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
FlaxAutoModelForSpeechSeq2Seq = auto_class_update(
FlaxAutoModelForSpeechSeq2Seq, head_doc="sequence-to-sequence speech-to-text modeling"
)
```
|
====================================================================================================================================
SOURCE CODE FILE: modeling_tf_auto.py
LINES: 1
SIZE: 27.80 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\auto\modeling_tf_auto.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Auto Model class."""
import warnings
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
logger = logging.get_logger(__name__)
TF_MODEL_MAPPING_NAMES = OrderedDict(
[
# Base model mapping
("albert", "TFAlbertModel"),
("bart", "TFBartModel"),
("bert", "TFBertModel"),
("blenderbot", "TFBlenderbotModel"),
("blenderbot-small", "TFBlenderbotSmallModel"),
("blip", "TFBlipModel"),
("camembert", "TFCamembertModel"),
("clip", "TFCLIPModel"),
("convbert", "TFConvBertModel"),
("convnext", "TFConvNextModel"),
("convnextv2", "TFConvNextV2Model"),
("ctrl", "TFCTRLModel"),
("cvt", "TFCvtModel"),
("data2vec-vision", "TFData2VecVisionModel"),
("deberta", "TFDebertaModel"),
("deberta-v2", "TFDebertaV2Model"),
("deit", "TFDeiTModel"),
("distilbert", "TFDistilBertModel"),
("dpr", "TFDPRQuestionEncoder"),
("efficientformer", "TFEfficientFormerModel"),
("electra", "TFElectraModel"),
("esm", "TFEsmModel"),
("flaubert", "TFFlaubertModel"),
("funnel", ("TFFunnelModel", "TFFunnelBaseModel")),
("gpt-sw3", "TFGPT2Model"),
("gpt2", "TFGPT2Model"),
("gptj", "TFGPTJModel"),
("groupvit", "TFGroupViTModel"),
("hubert", "TFHubertModel"),
("idefics", "TFIdeficsModel"),
("layoutlm", "TFLayoutLMModel"),
("layoutlmv3", "TFLayoutLMv3Model"),
("led", "TFLEDModel"),
("longformer", "TFLongformerModel"),
("lxmert", "TFLxmertModel"),
("marian", "TFMarianModel"),
("mbart", "TFMBartModel"),
("mistral", "TFMistralModel"),
("mobilebert", "TFMobileBertModel"),
("mobilevit", "TFMobileViTModel"),
("mpnet", "TFMPNetModel"),
("mt5", "TFMT5Model"),
("openai-gpt", "TFOpenAIGPTModel"),
("opt", "TFOPTModel"),
("pegasus", "TFPegasusModel"),
("regnet", "TFRegNetModel"),
("rembert", "TFRemBertModel"),
("resnet", "TFResNetModel"),
("roberta", "TFRobertaModel"),
("roberta-prelayernorm", "TFRobertaPreLayerNormModel"),
("roformer", "TFRoFormerModel"),
("sam", "TFSamModel"),
("sam_vision_model", "TFSamVisionModel"),
("segformer", "TFSegformerModel"),
("speech_to_text", "TFSpeech2TextModel"),
("swiftformer", "TFSwiftFormerModel"),
("swin", "TFSwinModel"),
("t5", "TFT5Model"),
("tapas", "TFTapasModel"),
("transfo-xl", "TFTransfoXLModel"),
("vision-text-dual-encoder", "TFVisionTextDualEncoderModel"),
("vit", "TFViTModel"),
("vit_mae", "TFViTMAEModel"),
("wav2vec2", "TFWav2Vec2Model"),
("whisper", "TFWhisperModel"),
("xglm", "TFXGLMModel"),
("xlm", "TFXLMModel"),
("xlm-roberta", "TFXLMRobertaModel"),
("xlnet", "TFXLNetModel"),
]
)
TF_MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict(
[
# Model for pre-training mapping
("albert", "TFAlbertForPreTraining"),
("bart", "TFBartForConditionalGeneration"),
("bert", "TFBertForPreTraining"),
("camembert", "TFCamembertForMaskedLM"),
("ctrl", "TFCTRLLMHeadModel"),
("distilbert", "TFDistilBertForMaskedLM"),
("electra", "TFElectraForPreTraining"),
("flaubert", "TFFlaubertWithLMHeadModel"),
("funnel", "TFFunnelForPreTraining"),
("gpt-sw3", "TFGPT2LMHeadModel"),
("gpt2", "TFGPT2LMHeadModel"),
("idefics", "TFIdeficsForVisionText2Text"),
("layoutlm", "TFLayoutLMForMaskedLM"),
("lxmert", "TFLxmertForPreTraining"),
("mobilebert", "TFMobileBertForPreTraining"),
("mpnet", "TFMPNetForMaskedLM"),
("openai-gpt", "TFOpenAIGPTLMHeadModel"),
("roberta", "TFRobertaForMaskedLM"),
("roberta-prelayernorm", "TFRobertaPreLayerNormForMaskedLM"),
("t5", "TFT5ForConditionalGeneration"),
("tapas", "TFTapasForMaskedLM"),
("transfo-xl", "TFTransfoXLLMHeadModel"),
("vit_mae", "TFViTMAEForPreTraining"),
("xlm", "TFXLMWithLMHeadModel"),
("xlm-roberta", "TFXLMRobertaForMaskedLM"),
("xlnet", "TFXLNetLMHeadModel"),
]
)
TF_MODEL_WITH_LM_HEAD_MAPPING_NAMES = OrderedDict(
[
# Model with LM heads mapping
("albert", "TFAlbertForMaskedLM"),
("bart", "TFBartForConditionalGeneration"),
("bert", "TFBertForMaskedLM"),
("camembert", "TFCamembertForMaskedLM"),
("convbert", "TFConvBertForMaskedLM"),
("ctrl", "TFCTRLLMHeadModel"),
("distilbert", "TFDistilBertForMaskedLM"),
("electra", "TFElectraForMaskedLM"),
("esm", "TFEsmForMaskedLM"),
("flaubert", "TFFlaubertWithLMHeadModel"),
("funnel", "TFFunnelForMaskedLM"),
("gpt-sw3", "TFGPT2LMHeadModel"),
("gpt2", "TFGPT2LMHeadModel"),
("gptj", "TFGPTJForCausalLM"),
("layoutlm", "TFLayoutLMForMaskedLM"),
("led", "TFLEDForConditionalGeneration"),
("longformer", "TFLongformerForMaskedLM"),
("marian", "TFMarianMTModel"),
("mobilebert", "TFMobileBertForMaskedLM"),
("mpnet", "TFMPNetForMaskedLM"),
("openai-gpt", "TFOpenAIGPTLMHeadModel"),
("rembert", "TFRemBertForMaskedLM"),
("roberta", "TFRobertaForMaskedLM"),
("roberta-prelayernorm", "TFRobertaPreLayerNormForMaskedLM"),
("roformer", "TFRoFormerForMaskedLM"),
("speech_to_text", "TFSpeech2TextForConditionalGeneration"),
("t5", "TFT5ForConditionalGeneration"),
("tapas", "TFTapasForMaskedLM"),
("transfo-xl", "TFTransfoXLLMHeadModel"),
("whisper", "TFWhisperForConditionalGeneration"),
("xlm", "TFXLMWithLMHeadModel"),
("xlm-roberta", "TFXLMRobertaForMaskedLM"),
("xlnet", "TFXLNetLMHeadModel"),
]
)
TF_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
[
# Model for Causal LM mapping
("bert", "TFBertLMHeadModel"),
("camembert", "TFCamembertForCausalLM"),
("ctrl", "TFCTRLLMHeadModel"),
("gpt-sw3", "TFGPT2LMHeadModel"),
("gpt2", "TFGPT2LMHeadModel"),
("gptj", "TFGPTJForCausalLM"),
("mistral", "TFMistralForCausalLM"),
("openai-gpt", "TFOpenAIGPTLMHeadModel"),
("opt", "TFOPTForCausalLM"),
("rembert", "TFRemBertForCausalLM"),
("roberta", "TFRobertaForCausalLM"),
("roberta-prelayernorm", "TFRobertaPreLayerNormForCausalLM"),
("roformer", "TFRoFormerForCausalLM"),
("transfo-xl", "TFTransfoXLLMHeadModel"),
("xglm", "TFXGLMForCausalLM"),
("xlm", "TFXLMWithLMHeadModel"),
("xlm-roberta", "TFXLMRobertaForCausalLM"),
("xlnet", "TFXLNetLMHeadModel"),
]
)
TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES = OrderedDict(
[
("deit", "TFDeiTForMaskedImageModeling"),
("swin", "TFSwinForMaskedImageModeling"),
]
)
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Image-classsification
("convnext", "TFConvNextForImageClassification"),
("convnextv2", "TFConvNextV2ForImageClassification"),
("cvt", "TFCvtForImageClassification"),
("data2vec-vision", "TFData2VecVisionForImageClassification"),
("deit", ("TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher")),
(
"efficientformer",
("TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher"),
),
("mobilevit", "TFMobileViTForImageClassification"),
("regnet", "TFRegNetForImageClassification"),
("resnet", "TFResNetForImageClassification"),
("segformer", "TFSegformerForImageClassification"),
("swiftformer", "TFSwiftFormerForImageClassification"),
("swin", "TFSwinForImageClassification"),
("vit", "TFViTForImageClassification"),
]
)
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Zero Shot Image Classification mapping
("blip", "TFBlipModel"),
("clip", "TFCLIPModel"),
]
)
TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES = OrderedDict(
[
# Model for Semantic Segmentation mapping
("data2vec-vision", "TFData2VecVisionForSemanticSegmentation"),
("mobilevit", "TFMobileViTForSemanticSegmentation"),
("segformer", "TFSegformerForSemanticSegmentation"),
]
)
TF_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES = OrderedDict(
[
("blip", "TFBlipForConditionalGeneration"),
("vision-encoder-decoder", "TFVisionEncoderDecoderModel"),
]
)
TF_MODEL_FOR_MASKED_LM_MAPPING_NAMES = OrderedDict(
[
# Model for Masked LM mapping
("albert", "TFAlbertForMaskedLM"),
("bert", "TFBertForMaskedLM"),
("camembert", "TFCamembertForMaskedLM"),
("convbert", "TFConvBertForMaskedLM"),
("deberta", "TFDebertaForMaskedLM"),
("deberta-v2", "TFDebertaV2ForMaskedLM"),
("distilbert", "TFDistilBertForMaskedLM"),
("electra", "TFElectraForMaskedLM"),
("esm", "TFEsmForMaskedLM"),
("flaubert", "TFFlaubertWithLMHeadModel"),
("funnel", "TFFunnelForMaskedLM"),
("layoutlm", "TFLayoutLMForMaskedLM"),
("longformer", "TFLongformerForMaskedLM"),
("mobilebert", "TFMobileBertForMaskedLM"),
("mpnet", "TFMPNetForMaskedLM"),
("rembert", "TFRemBertForMaskedLM"),
("roberta", "TFRobertaForMaskedLM"),
("roberta-prelayernorm", "TFRobertaPreLayerNormForMaskedLM"),
("roformer", "TFRoFormerForMaskedLM"),
("tapas", "TFTapasForMaskedLM"),
("xlm", "TFXLMWithLMHeadModel"),
("xlm-roberta", "TFXLMRobertaForMaskedLM"),
]
)
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
("bart", "TFBartForConditionalGeneration"),
("blenderbot", "TFBlenderbotForConditionalGeneration"),
("blenderbot-small", "TFBlenderbotSmallForConditionalGeneration"),
("encoder-decoder", "TFEncoderDecoderModel"),
("led", "TFLEDForConditionalGeneration"),
("marian", "TFMarianMTModel"),
("mbart", "TFMBartForConditionalGeneration"),
("mt5", "TFMT5ForConditionalGeneration"),
("pegasus", "TFPegasusForConditionalGeneration"),
("t5", "TFT5ForConditionalGeneration"),
]
)
TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES = OrderedDict(
[
("speech_to_text", "TFSpeech2TextForConditionalGeneration"),
("whisper", "TFWhisperForConditionalGeneration"),
]
)
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Sequence Classification mapping
("albert", "TFAlbertForSequenceClassification"),
("bart", "TFBartForSequenceClassification"),
("bert", "TFBertForSequenceClassification"),
("camembert", "TFCamembertForSequenceClassification"),
("convbert", "TFConvBertForSequenceClassification"),
("ctrl", "TFCTRLForSequenceClassification"),
("deberta", "TFDebertaForSequenceClassification"),
("deberta-v2", "TFDebertaV2ForSequenceClassification"),
("distilbert", "TFDistilBertForSequenceClassification"),
("electra", "TFElectraForSequenceClassification"),
("esm", "TFEsmForSequenceClassification"),
("flaubert", "TFFlaubertForSequenceClassification"),
("funnel", "TFFunnelForSequenceClassification"),
("gpt-sw3", "TFGPT2ForSequenceClassification"),
("gpt2", "TFGPT2ForSequenceClassification"),
("gptj", "TFGPTJForSequenceClassification"),
("layoutlm", "TFLayoutLMForSequenceClassification"),
("layoutlmv3", "TFLayoutLMv3ForSequenceClassification"),
("longformer", "TFLongformerForSequenceClassification"),
("mistral", "TFMistralForSequenceClassification"),
("mobilebert", "TFMobileBertForSequenceClassification"),
("mpnet", "TFMPNetForSequenceClassification"),
("openai-gpt", "TFOpenAIGPTForSequenceClassification"),
("rembert", "TFRemBertForSequenceClassification"),
("roberta", "TFRobertaForSequenceClassification"),
("roberta-prelayernorm", "TFRobertaPreLayerNormForSequenceClassification"),
("roformer", "TFRoFormerForSequenceClassification"),
("tapas", "TFTapasForSequenceClassification"),
("transfo-xl", "TFTransfoXLForSequenceClassification"),
("xlm", "TFXLMForSequenceClassification"),
("xlm-roberta", "TFXLMRobertaForSequenceClassification"),
("xlnet", "TFXLNetForSequenceClassification"),
]
)
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
[
# Model for Question Answering mapping
("albert", "TFAlbertForQuestionAnswering"),
("bert", "TFBertForQuestionAnswering"),
("camembert", "TFCamembertForQuestionAnswering"),
("convbert", "TFConvBertForQuestionAnswering"),
("deberta", "TFDebertaForQuestionAnswering"),
("deberta-v2", "TFDebertaV2ForQuestionAnswering"),
("distilbert", "TFDistilBertForQuestionAnswering"),
("electra", "TFElectraForQuestionAnswering"),
("flaubert", "TFFlaubertForQuestionAnsweringSimple"),
("funnel", "TFFunnelForQuestionAnswering"),
("gptj", "TFGPTJForQuestionAnswering"),
("layoutlmv3", "TFLayoutLMv3ForQuestionAnswering"),
("longformer", "TFLongformerForQuestionAnswering"),
("mobilebert", "TFMobileBertForQuestionAnswering"),
("mpnet", "TFMPNetForQuestionAnswering"),
("rembert", "TFRemBertForQuestionAnswering"),
("roberta", "TFRobertaForQuestionAnswering"),
("roberta-prelayernorm", "TFRobertaPreLayerNormForQuestionAnswering"),
("roformer", "TFRoFormerForQuestionAnswering"),
("xlm", "TFXLMForQuestionAnsweringSimple"),
("xlm-roberta", "TFXLMRobertaForQuestionAnswering"),
("xlnet", "TFXLNetForQuestionAnsweringSimple"),
]
)
TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES = OrderedDict([("wav2vec2", "TFWav2Vec2ForSequenceClassification")])
TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
[
("layoutlm", "TFLayoutLMForQuestionAnswering"),
("layoutlmv3", "TFLayoutLMv3ForQuestionAnswering"),
]
)
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
[
# Model for Table Question Answering mapping
("tapas", "TFTapasForQuestionAnswering"),
]
)
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Token Classification mapping
("albert", "TFAlbertForTokenClassification"),
("bert", "TFBertForTokenClassification"),
("camembert", "TFCamembertForTokenClassification"),
("convbert", "TFConvBertForTokenClassification"),
("deberta", "TFDebertaForTokenClassification"),
("deberta-v2", "TFDebertaV2ForTokenClassification"),
("distilbert", "TFDistilBertForTokenClassification"),
("electra", "TFElectraForTokenClassification"),
("esm", "TFEsmForTokenClassification"),
("flaubert", "TFFlaubertForTokenClassification"),
("funnel", "TFFunnelForTokenClassification"),
("layoutlm", "TFLayoutLMForTokenClassification"),
("layoutlmv3", "TFLayoutLMv3ForTokenClassification"),
("longformer", "TFLongformerForTokenClassification"),
("mobilebert", "TFMobileBertForTokenClassification"),
("mpnet", "TFMPNetForTokenClassification"),
("rembert", "TFRemBertForTokenClassification"),
("roberta", "TFRobertaForTokenClassification"),
("roberta-prelayernorm", "TFRobertaPreLayerNormForTokenClassification"),
("roformer", "TFRoFormerForTokenClassification"),
("xlm", "TFXLMForTokenClassification"),
("xlm-roberta", "TFXLMRobertaForTokenClassification"),
("xlnet", "TFXLNetForTokenClassification"),
]
)
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES = OrderedDict(
[
# Model for Multiple Choice mapping
("albert", "TFAlbertForMultipleChoice"),
("bert", "TFBertForMultipleChoice"),
("camembert", "TFCamembertForMultipleChoice"),
("convbert", "TFConvBertForMultipleChoice"),
("deberta-v2", "TFDebertaV2ForMultipleChoice"),
("distilbert", "TFDistilBertForMultipleChoice"),
("electra", "TFElectraForMultipleChoice"),
("flaubert", "TFFlaubertForMultipleChoice"),
("funnel", "TFFunnelForMultipleChoice"),
("longformer", "TFLongformerForMultipleChoice"),
("mobilebert", "TFMobileBertForMultipleChoice"),
("mpnet", "TFMPNetForMultipleChoice"),
("rembert", "TFRemBertForMultipleChoice"),
("roberta", "TFRobertaForMultipleChoice"),
("roberta-prelayernorm", "TFRobertaPreLayerNormForMultipleChoice"),
("roformer", "TFRoFormerForMultipleChoice"),
("xlm", "TFXLMForMultipleChoice"),
("xlm-roberta", "TFXLMRobertaForMultipleChoice"),
("xlnet", "TFXLNetForMultipleChoice"),
]
)
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES = OrderedDict(
[
("bert", "TFBertForNextSentencePrediction"),
("mobilebert", "TFMobileBertForNextSentencePrediction"),
]
)
TF_MODEL_FOR_MASK_GENERATION_MAPPING_NAMES = OrderedDict(
[
("sam", "TFSamModel"),
]
)
TF_MODEL_FOR_TEXT_ENCODING_MAPPING_NAMES = OrderedDict(
[
("albert", "TFAlbertModel"),
("bert", "TFBertModel"),
("convbert", "TFConvBertModel"),
("deberta", "TFDebertaModel"),
("deberta-v2", "TFDebertaV2Model"),
("distilbert", "TFDistilBertModel"),
("electra", "TFElectraModel"),
("flaubert", "TFFlaubertModel"),
("longformer", "TFLongformerModel"),
("mobilebert", "TFMobileBertModel"),
("mt5", "TFMT5EncoderModel"),
("rembert", "TFRemBertModel"),
("roberta", "TFRobertaModel"),
("roberta-prelayernorm", "TFRobertaPreLayerNormModel"),
("roformer", "TFRoFormerModel"),
("t5", "TFT5EncoderModel"),
("xlm", "TFXLMModel"),
("xlm-roberta", "TFXLMRobertaModel"),
]
)
TF_MODEL_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_MAPPING_NAMES)
TF_MODEL_FOR_PRETRAINING_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
TF_MODEL_WITH_LM_HEAD_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_WITH_LM_HEAD_MAPPING_NAMES)
TF_MODEL_FOR_CAUSAL_LM_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES
)
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES
)
TF_MODEL_FOR_VISION_2_SEQ_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
TF_MODEL_FOR_MASKED_LM_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES
)
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES
)
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
TF_MODEL_FOR_MASK_GENERATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_MASK_GENERATION_MAPPING_NAMES
)
TF_MODEL_FOR_TEXT_ENCODING_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_FOR_TEXT_ENCODING_MAPPING_NAMES)
class TFAutoModelForMaskGeneration(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_MASK_GENERATION_MAPPING
class TFAutoModelForTextEncoding(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_TEXT_ENCODING_MAPPING
class TFAutoModel(_BaseAutoModelClass):
_model_mapping = TF_MODEL_MAPPING
TFAutoModel = auto_class_update(TFAutoModel)
class TFAutoModelForAudioClassification(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
TFAutoModelForAudioClassification = auto_class_update(
TFAutoModelForAudioClassification, head_doc="audio classification"
)
class TFAutoModelForPreTraining(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_PRETRAINING_MAPPING
TFAutoModelForPreTraining = auto_class_update(TFAutoModelForPreTraining, head_doc="pretraining")
# Private on purpose, the public class will add the deprecation warnings.
class _TFAutoModelWithLMHead(_BaseAutoModelClass):
_model_mapping = TF_MODEL_WITH_LM_HEAD_MAPPING
_TFAutoModelWithLMHead = auto_class_update(_TFAutoModelWithLMHead, head_doc="language modeling")
class TFAutoModelForCausalLM(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING
TFAutoModelForCausalLM = auto_class_update(TFAutoModelForCausalLM, head_doc="causal language modeling")
class TFAutoModelForMaskedImageModeling(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING
TFAutoModelForMaskedImageModeling = auto_class_update(
TFAutoModelForMaskedImageModeling, head_doc="masked image modeling"
)
class TFAutoModelForImageClassification(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
TFAutoModelForImageClassification = auto_class_update(
TFAutoModelForImageClassification, head_doc="image classification"
)
class TFAutoModelForZeroShotImageClassification(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
TFAutoModelForZeroShotImageClassification = auto_class_update(
TFAutoModelForZeroShotImageClassification, head_doc="zero-shot image classification"
)
class TFAutoModelForSemanticSegmentation(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING
TFAutoModelForSemanticSegmentation = auto_class_update(
TFAutoModelForSemanticSegmentation, head_doc="semantic segmentation"
)
class TFAutoModelForVision2Seq(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_VISION_2_SEQ_MAPPING
TFAutoModelForVision2Seq = auto_class_update(TFAutoModelForVision2Seq, head_doc="vision-to-text modeling")
class TFAutoModelForMaskedLM(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_MASKED_LM_MAPPING
TFAutoModelForMaskedLM = auto_class_update(TFAutoModelForMaskedLM, head_doc="masked language modeling")
class TFAutoModelForSeq2SeqLM(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
TFAutoModelForSeq2SeqLM = auto_class_update(
TFAutoModelForSeq2SeqLM,
head_doc="sequence-to-sequence language modeling",
checkpoint_for_example="google-t5/t5-base",
)
class TFAutoModelForSequenceClassification(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
TFAutoModelForSequenceClassification = auto_class_update(
TFAutoModelForSequenceClassification, head_doc="sequence classification"
)
class TFAutoModelForQuestionAnswering(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING
TFAutoModelForQuestionAnswering = auto_class_update(TFAutoModelForQuestionAnswering, head_doc="question answering")
class TFAutoModelForDocumentQuestionAnswering(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
TFAutoModelForDocumentQuestionAnswering = auto_class_update(
TFAutoModelForDocumentQuestionAnswering,
head_doc="document question answering",
checkpoint_for_example='impira/layoutlm-document-qa", revision="52e01b3',
)
class TFAutoModelForTableQuestionAnswering(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING
TFAutoModelForTableQuestionAnswering = auto_class_update(
TFAutoModelForTableQuestionAnswering,
head_doc="table question answering",
checkpoint_for_example="google/tapas-base-finetuned-wtq",
)
class TFAutoModelForTokenClassification(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
TFAutoModelForTokenClassification = auto_class_update(
TFAutoModelForTokenClassification, head_doc="token classification"
)
class TFAutoModelForMultipleChoice(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
TFAutoModelForMultipleChoice = auto_class_update(TFAutoModelForMultipleChoice, head_doc="multiple choice")
class TFAutoModelForNextSentencePrediction(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
TFAutoModelForNextSentencePrediction = auto_class_update(
TFAutoModelForNextSentencePrediction, head_doc="next sentence prediction"
)
class TFAutoModelForSpeechSeq2Seq(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
TFAutoModelForSpeechSeq2Seq = auto_class_update(
TFAutoModelForSpeechSeq2Seq, head_doc="sequence-to-sequence speech-to-text modeling"
)
class TFAutoModelWithLMHead(_TFAutoModelWithLMHead):
@classmethod
def from_config(cls, config):
warnings.warn(
"The class `TFAutoModelWithLMHead` is deprecated and will be removed in a future version. Please use"
" `TFAutoModelForCausalLM` for causal language models, `TFAutoModelForMaskedLM` for masked language models"
" and `TFAutoModelForSeq2SeqLM` for encoder-decoder models.",
FutureWarning,
)
return super().from_config(config)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
warnings.warn(
"The class `TFAutoModelWithLMHead` is deprecated and will be removed in a future version. Please use"
" `TFAutoModelForCausalLM` for causal language models, `TFAutoModelForMaskedLM` for masked language models"
" and `TFAutoModelForSeq2SeqLM` for encoder-decoder models.",
FutureWarning,
)
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
```
|
===================================================================================================================================
SOURCE CODE FILE: processing_auto.py
LINES: 1
SIZE: 17.96 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\auto\processing_auto.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""AutoProcessor class."""
import importlib
import inspect
import json
import os
import warnings
from collections import OrderedDict
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...image_processing_utils import ImageProcessingMixin
from ...processing_utils import ProcessorMixin
from ...tokenization_utils import TOKENIZER_CONFIG_FILE
from ...utils import FEATURE_EXTRACTOR_NAME, PROCESSOR_NAME, cached_file, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
from .feature_extraction_auto import AutoFeatureExtractor
from .image_processing_auto import AutoImageProcessor
from .tokenization_auto import AutoTokenizer
logger = logging.get_logger(__name__)
PROCESSOR_MAPPING_NAMES = OrderedDict(
[
("align", "AlignProcessor"),
("altclip", "AltCLIPProcessor"),
("aria", "AriaProcessor"),
("aya_vision", "AyaVisionProcessor"),
("bark", "BarkProcessor"),
("blip", "BlipProcessor"),
("blip-2", "Blip2Processor"),
("bridgetower", "BridgeTowerProcessor"),
("chameleon", "ChameleonProcessor"),
("chinese_clip", "ChineseCLIPProcessor"),
("clap", "ClapProcessor"),
("clip", "CLIPProcessor"),
("clipseg", "CLIPSegProcessor"),
("clvp", "ClvpProcessor"),
("colpali", "ColPaliProcessor"),
("emu3", "Emu3Processor"),
("flava", "FlavaProcessor"),
("fuyu", "FuyuProcessor"),
("gemma3", "Gemma3Processor"),
("git", "GitProcessor"),
("got_ocr2", "GotOcr2Processor"),
("grounding-dino", "GroundingDinoProcessor"),
("groupvit", "CLIPProcessor"),
("hubert", "Wav2Vec2Processor"),
("idefics", "IdeficsProcessor"),
("idefics2", "Idefics2Processor"),
("idefics3", "Idefics3Processor"),
("instructblip", "InstructBlipProcessor"),
("instructblipvideo", "InstructBlipVideoProcessor"),
("kosmos-2", "Kosmos2Processor"),
("layoutlmv2", "LayoutLMv2Processor"),
("layoutlmv3", "LayoutLMv3Processor"),
("llama4", "Llama4Processor"),
("llava", "LlavaProcessor"),
("llava_next", "LlavaNextProcessor"),
("llava_next_video", "LlavaNextVideoProcessor"),
("llava_onevision", "LlavaOnevisionProcessor"),
("markuplm", "MarkupLMProcessor"),
("mctct", "MCTCTProcessor"),
("mgp-str", "MgpstrProcessor"),
("mistral3", "PixtralProcessor"),
("mllama", "MllamaProcessor"),
("moonshine", "Wav2Vec2Processor"),
("oneformer", "OneFormerProcessor"),
("owlv2", "Owlv2Processor"),
("owlvit", "OwlViTProcessor"),
("paligemma", "PaliGemmaProcessor"),
("phi4_multimodal", "Phi4MultimodalProcessor"),
("pix2struct", "Pix2StructProcessor"),
("pixtral", "PixtralProcessor"),
("pop2piano", "Pop2PianoProcessor"),
("qwen2_5_vl", "Qwen2_5_VLProcessor"),
("qwen2_audio", "Qwen2AudioProcessor"),
("qwen2_vl", "Qwen2VLProcessor"),
("sam", "SamProcessor"),
("seamless_m4t", "SeamlessM4TProcessor"),
("sew", "Wav2Vec2Processor"),
("sew-d", "Wav2Vec2Processor"),
("shieldgemma2", "ShieldGemma2Processor"),
("siglip", "SiglipProcessor"),
("siglip2", "Siglip2Processor"),
("speech_to_text", "Speech2TextProcessor"),
("speech_to_text_2", "Speech2Text2Processor"),
("speecht5", "SpeechT5Processor"),
("trocr", "TrOCRProcessor"),
("tvlt", "TvltProcessor"),
("tvp", "TvpProcessor"),
("udop", "UdopProcessor"),
("unispeech", "Wav2Vec2Processor"),
("unispeech-sat", "Wav2Vec2Processor"),
("video_llava", "VideoLlavaProcessor"),
("vilt", "ViltProcessor"),
("vipllava", "LlavaProcessor"),
("vision-text-dual-encoder", "VisionTextDualEncoderProcessor"),
("wav2vec2", "Wav2Vec2Processor"),
("wav2vec2-bert", "Wav2Vec2Processor"),
("wav2vec2-conformer", "Wav2Vec2Processor"),
("wavlm", "Wav2Vec2Processor"),
("whisper", "WhisperProcessor"),
("xclip", "XCLIPProcessor"),
]
)
PROCESSOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, PROCESSOR_MAPPING_NAMES)
def processor_class_from_name(class_name: str):
for module_name, processors in PROCESSOR_MAPPING_NAMES.items():
if class_name in processors:
module_name = model_type_to_module_name(module_name)
module = importlib.import_module(f".{module_name}", "transformers.models")
try:
return getattr(module, class_name)
except AttributeError:
continue
for processor in PROCESSOR_MAPPING._extra_content.values():
if getattr(processor, "__name__", None) == class_name:
return processor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
main_module = importlib.import_module("transformers")
if hasattr(main_module, class_name):
return getattr(main_module, class_name)
return None
class AutoProcessor:
r"""
This is a generic processor class that will be instantiated as one of the processor classes of the library when
created with the [`AutoProcessor.from_pretrained`] class method.
This class cannot be instantiated directly using `__init__()` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoProcessor is designed to be instantiated "
"using the `AutoProcessor.from_pretrained(pretrained_model_name_or_path)` method."
)
@classmethod
@replace_list_option_in_docstrings(PROCESSOR_MAPPING_NAMES)
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
r"""
Instantiate one of the processor classes of the library from a pretrained model vocabulary.
The processor class to instantiate is selected based on the `model_type` property of the config object (either
passed as an argument or loaded from `pretrained_model_name_or_path` if possible):
List options
Params:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on
huggingface.co.
- a path to a *directory* containing a processor files saved using the `save_pretrained()` method,
e.g., `./my_model_directory/`.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model feature extractor should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the feature extractor files and override the cached versions
if they exist.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
If `False`, then this function returns just the final feature extractor object. If `True`, then this
functions returns a `Tuple(feature_extractor, unused_kwargs)` where *unused_kwargs* is a dictionary
consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of
`kwargs` which has not been used to update `feature_extractor` and is otherwise ignored.
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
kwargs (`Dict[str, Any]`, *optional*):
The values in kwargs of any keys which are feature extractor attributes will be used to override the
loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is
controlled by the `return_unused_kwargs` keyword parameter.
<Tip>
Passing `token=True` is required when you want to use a private model.
</Tip>
Examples:
```python
>>> from transformers import AutoProcessor
>>> # Download processor from huggingface.co and cache.
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
>>> # If processor files are in a directory (e.g. processor was saved using *save_pretrained('./test/saved_model/')*)
>>> # processor = AutoProcessor.from_pretrained("./test/saved_model/")
```"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if kwargs.get("token", None) is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
kwargs["token"] = use_auth_token
config = kwargs.pop("config", None)
trust_remote_code = kwargs.pop("trust_remote_code", None)
kwargs["_from_auto"] = True
processor_class = None
processor_auto_map = None
# First, let's see if we have a processor or preprocessor config.
# Filter the kwargs for `cached_file`.
cached_file_kwargs = {
key: kwargs[key] for key in inspect.signature(cached_file).parameters.keys() if key in kwargs
}
# We don't want to raise
cached_file_kwargs.update(
{
"_raise_exceptions_for_gated_repo": False,
"_raise_exceptions_for_missing_entries": False,
"_raise_exceptions_for_connection_errors": False,
}
)
# Let's start by checking whether the processor class is saved in a processor config
processor_config_file = cached_file(pretrained_model_name_or_path, PROCESSOR_NAME, **cached_file_kwargs)
if processor_config_file is not None:
config_dict, _ = ProcessorMixin.get_processor_dict(pretrained_model_name_or_path, **kwargs)
processor_class = config_dict.get("processor_class", None)
if "AutoProcessor" in config_dict.get("auto_map", {}):
processor_auto_map = config_dict["auto_map"]["AutoProcessor"]
if processor_class is None:
# If not found, let's check whether the processor class is saved in an image processor config
preprocessor_config_file = cached_file(
pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME, **cached_file_kwargs
)
if preprocessor_config_file is not None:
config_dict, _ = ImageProcessingMixin.get_image_processor_dict(pretrained_model_name_or_path, **kwargs)
processor_class = config_dict.get("processor_class", None)
if "AutoProcessor" in config_dict.get("auto_map", {}):
processor_auto_map = config_dict["auto_map"]["AutoProcessor"]
# If not found, let's check whether the processor class is saved in a feature extractor config
if preprocessor_config_file is not None and processor_class is None:
config_dict, _ = FeatureExtractionMixin.get_feature_extractor_dict(
pretrained_model_name_or_path, **kwargs
)
processor_class = config_dict.get("processor_class", None)
if "AutoProcessor" in config_dict.get("auto_map", {}):
processor_auto_map = config_dict["auto_map"]["AutoProcessor"]
if processor_class is None:
# Next, let's check whether the processor class is saved in a tokenizer
tokenizer_config_file = cached_file(
pretrained_model_name_or_path, TOKENIZER_CONFIG_FILE, **cached_file_kwargs
)
if tokenizer_config_file is not None:
with open(tokenizer_config_file, encoding="utf-8") as reader:
config_dict = json.load(reader)
processor_class = config_dict.get("processor_class", None)
if "AutoProcessor" in config_dict.get("auto_map", {}):
processor_auto_map = config_dict["auto_map"]["AutoProcessor"]
if processor_class is None:
# Otherwise, load config, if it can be loaded.
if not isinstance(config, PretrainedConfig):
config = AutoConfig.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
)
# And check if the config contains the processor class.
processor_class = getattr(config, "processor_class", None)
if hasattr(config, "auto_map") and "AutoProcessor" in config.auto_map:
processor_auto_map = config.auto_map["AutoProcessor"]
if processor_class is not None:
processor_class = processor_class_from_name(processor_class)
has_remote_code = processor_auto_map is not None
has_local_code = processor_class is not None or type(config) in PROCESSOR_MAPPING
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
)
if has_remote_code and trust_remote_code:
processor_class = get_class_from_dynamic_module(
processor_auto_map, pretrained_model_name_or_path, **kwargs
)
_ = kwargs.pop("code_revision", None)
if os.path.isdir(pretrained_model_name_or_path):
processor_class.register_for_auto_class()
return processor_class.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
)
elif processor_class is not None:
return processor_class.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
)
# Last try: we use the PROCESSOR_MAPPING.
elif type(config) in PROCESSOR_MAPPING:
return PROCESSOR_MAPPING[type(config)].from_pretrained(pretrained_model_name_or_path, **kwargs)
# At this stage, there doesn't seem to be a `Processor` class available for this model, so let's try a
# tokenizer.
try:
return AutoTokenizer.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
)
except Exception:
try:
return AutoImageProcessor.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
)
except Exception:
pass
try:
return AutoFeatureExtractor.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
)
except Exception:
pass
raise ValueError(
f"Unrecognized processing class in {pretrained_model_name_or_path}. Can't instantiate a processor, a "
"tokenizer, an image processor or a feature extractor for this model. Make sure the repository contains "
"the files of at least one of those processing classes."
)
@staticmethod
def register(config_class, processor_class, exist_ok=False):
"""
Register a new processor for this class.
Args:
config_class ([`PretrainedConfig`]):
The configuration corresponding to the model to register.
processor_class ([`ProcessorMixin`]): The processor to register.
"""
PROCESSOR_MAPPING.register(config_class, processor_class, exist_ok=exist_ok)
```
|
=====================================================================================================================================
SOURCE CODE FILE: tokenization_auto.py
LINES: 2
SIZE: 52.92 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\auto\tokenization_auto.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Auto Tokenizer class."""
import importlib
import json
import os
import warnings
from collections import OrderedDict
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...modeling_gguf_pytorch_utils import load_gguf_checkpoint
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import TOKENIZER_CONFIG_FILE
from ...utils import (
cached_file,
extract_commit_hash,
is_g2p_en_available,
is_sentencepiece_available,
is_tokenizers_available,
logging,
)
from ..encoder_decoder import EncoderDecoderConfig
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
config_class_to_model_type,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
if is_tokenizers_available():
from ...tokenization_utils_fast import PreTrainedTokenizerFast
else:
PreTrainedTokenizerFast = None
logger = logging.get_logger(__name__)
if TYPE_CHECKING:
# This significantly improves completion suggestion performance when
# the transformers package is used with Microsoft's Pylance language server.
TOKENIZER_MAPPING_NAMES: OrderedDict[str, Tuple[Optional[str], Optional[str]]] = OrderedDict()
else:
TOKENIZER_MAPPING_NAMES = OrderedDict(
[
(
"albert",
(
"AlbertTokenizer" if is_sentencepiece_available() else None,
"AlbertTokenizerFast" if is_tokenizers_available() else None,
),
),
("align", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("aria", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("aya_vision", (None, "CohereTokenizerFast" if is_tokenizers_available() else None)),
("bark", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("bart", ("BartTokenizer", "BartTokenizerFast")),
(
"barthez",
(
"BarthezTokenizer" if is_sentencepiece_available() else None,
"BarthezTokenizerFast" if is_tokenizers_available() else None,
),
),
("bartpho", ("BartphoTokenizer", None)),
("bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("bert-generation", ("BertGenerationTokenizer" if is_sentencepiece_available() else None, None)),
("bert-japanese", ("BertJapaneseTokenizer", None)),
("bertweet", ("BertweetTokenizer", None)),
(
"big_bird",
(
"BigBirdTokenizer" if is_sentencepiece_available() else None,
"BigBirdTokenizerFast" if is_tokenizers_available() else None,
),
),
("bigbird_pegasus", ("PegasusTokenizer", "PegasusTokenizerFast" if is_tokenizers_available() else None)),
("biogpt", ("BioGptTokenizer", None)),
("blenderbot", ("BlenderbotTokenizer", "BlenderbotTokenizerFast")),
("blenderbot-small", ("BlenderbotSmallTokenizer", None)),
("blip", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("blip-2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("bloom", (None, "BloomTokenizerFast" if is_tokenizers_available() else None)),
("bridgetower", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
("bros", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("byt5", ("ByT5Tokenizer", None)),
(
"camembert",
(
"CamembertTokenizer" if is_sentencepiece_available() else None,
"CamembertTokenizerFast" if is_tokenizers_available() else None,
),
),
("canine", ("CanineTokenizer", None)),
(
"chameleon",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
("chinese_clip", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
(
"clap",
(
"RobertaTokenizer",
"RobertaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"clip",
(
"CLIPTokenizer",
"CLIPTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"clipseg",
(
"CLIPTokenizer",
"CLIPTokenizerFast" if is_tokenizers_available() else None,
),
),
("clvp", ("ClvpTokenizer", None)),
(
"code_llama",
(
"CodeLlamaTokenizer" if is_sentencepiece_available() else None,
"CodeLlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
("codegen", ("CodeGenTokenizer", "CodeGenTokenizerFast" if is_tokenizers_available() else None)),
("cohere", (None, "CohereTokenizerFast" if is_tokenizers_available() else None)),
("cohere2", (None, "CohereTokenizerFast" if is_tokenizers_available() else None)),
("colpali", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("convbert", ("ConvBertTokenizer", "ConvBertTokenizerFast" if is_tokenizers_available() else None)),
(
"cpm",
(
"CpmTokenizer" if is_sentencepiece_available() else None,
"CpmTokenizerFast" if is_tokenizers_available() else None,
),
),
("cpmant", ("CpmAntTokenizer", None)),
("ctrl", ("CTRLTokenizer", None)),
("data2vec-audio", ("Wav2Vec2CTCTokenizer", None)),
("data2vec-text", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
("dbrx", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("deberta", ("DebertaTokenizer", "DebertaTokenizerFast" if is_tokenizers_available() else None)),
(
"deberta-v2",
(
"DebertaV2Tokenizer" if is_sentencepiece_available() else None,
"DebertaV2TokenizerFast" if is_tokenizers_available() else None,
),
),
(
"deepseek_v3",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"diffllama",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
("distilbert", ("DistilBertTokenizer", "DistilBertTokenizerFast" if is_tokenizers_available() else None)),
(
"dpr",
(
"DPRQuestionEncoderTokenizer",
"DPRQuestionEncoderTokenizerFast" if is_tokenizers_available() else None,
),
),
("electra", ("ElectraTokenizer", "ElectraTokenizerFast" if is_tokenizers_available() else None)),
("emu3", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("ernie", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("ernie_m", ("ErnieMTokenizer" if is_sentencepiece_available() else None, None)),
("esm", ("EsmTokenizer", None)),
("falcon", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("falcon_mamba", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
(
"fastspeech2_conformer",
("FastSpeech2ConformerTokenizer" if is_g2p_en_available() else None, None),
),
("flaubert", ("FlaubertTokenizer", None)),
("fnet", ("FNetTokenizer", "FNetTokenizerFast" if is_tokenizers_available() else None)),
("fsmt", ("FSMTTokenizer", None)),
("funnel", ("FunnelTokenizer", "FunnelTokenizerFast" if is_tokenizers_available() else None)),
(
"gemma",
(
"GemmaTokenizer" if is_sentencepiece_available() else None,
"GemmaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"gemma2",
(
"GemmaTokenizer" if is_sentencepiece_available() else None,
"GemmaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"gemma3",
(
"GemmaTokenizer" if is_sentencepiece_available() else None,
"GemmaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"gemma3_text",
(
"GemmaTokenizer" if is_sentencepiece_available() else None,
"GemmaTokenizerFast" if is_tokenizers_available() else None,
),
),
("git", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("glm", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("glm4", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("gpt-sw3", ("GPTSw3Tokenizer" if is_sentencepiece_available() else None, None)),
("gpt2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("gpt_bigcode", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("gpt_neo", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("gpt_neox", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
("gpt_neox_japanese", ("GPTNeoXJapaneseTokenizer", None)),
("gptj", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("gptsan-japanese", ("GPTSanJapaneseTokenizer", None)),
("grounding-dino", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("groupvit", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)),
("helium", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("herbert", ("HerbertTokenizer", "HerbertTokenizerFast" if is_tokenizers_available() else None)),
("hubert", ("Wav2Vec2CTCTokenizer", None)),
("ibert", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
("idefics", (None, "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("idefics2", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("idefics3", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("instructblip", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("instructblipvideo", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
(
"jamba",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"jetmoe",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
("jukebox", ("JukeboxTokenizer", None)),
(
"kosmos-2",
(
"XLMRobertaTokenizer" if is_sentencepiece_available() else None,
"XLMRobertaTokenizerFast" if is_tokenizers_available() else None,
),
),
("layoutlm", ("LayoutLMTokenizer", "LayoutLMTokenizerFast" if is_tokenizers_available() else None)),
("layoutlmv2", ("LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast" if is_tokenizers_available() else None)),
("layoutlmv3", ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" if is_tokenizers_available() else None)),
("layoutxlm", ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast" if is_tokenizers_available() else None)),
("led", ("LEDTokenizer", "LEDTokenizerFast" if is_tokenizers_available() else None)),
("lilt", ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" if is_tokenizers_available() else None)),
(
"llama",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"llama4",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"llama4_text",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
("llava", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("llava_next", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("llava_next_video", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("llava_onevision", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("longformer", ("LongformerTokenizer", "LongformerTokenizerFast" if is_tokenizers_available() else None)),
(
"longt5",
(
"T5Tokenizer" if is_sentencepiece_available() else None,
"T5TokenizerFast" if is_tokenizers_available() else None,
),
),
("luke", ("LukeTokenizer", None)),
("lxmert", ("LxmertTokenizer", "LxmertTokenizerFast" if is_tokenizers_available() else None)),
("m2m_100", ("M2M100Tokenizer" if is_sentencepiece_available() else None, None)),
("mamba", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
("mamba2", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
("marian", ("MarianTokenizer" if is_sentencepiece_available() else None, None)),
(
"mbart",
(
"MBartTokenizer" if is_sentencepiece_available() else None,
"MBartTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"mbart50",
(
"MBart50Tokenizer" if is_sentencepiece_available() else None,
"MBart50TokenizerFast" if is_tokenizers_available() else None,
),
),
("mega", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
("megatron-bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("mgp-str", ("MgpstrTokenizer", None)),
(
"mistral",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"mixtral",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
("mllama", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("mluke", ("MLukeTokenizer" if is_sentencepiece_available() else None, None)),
("mobilebert", ("MobileBertTokenizer", "MobileBertTokenizerFast" if is_tokenizers_available() else None)),
("modernbert", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("moonshine", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("moshi", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("mpnet", ("MPNetTokenizer", "MPNetTokenizerFast" if is_tokenizers_available() else None)),
("mpt", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
("mra", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
(
"mt5",
(
"MT5Tokenizer" if is_sentencepiece_available() else None,
"MT5TokenizerFast" if is_tokenizers_available() else None,
),
),
("musicgen", ("T5Tokenizer", "T5TokenizerFast" if is_tokenizers_available() else None)),
("musicgen_melody", ("T5Tokenizer", "T5TokenizerFast" if is_tokenizers_available() else None)),
("mvp", ("MvpTokenizer", "MvpTokenizerFast" if is_tokenizers_available() else None)),
("myt5", ("MyT5Tokenizer", None)),
("nemotron", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("nezha", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
(
"nllb",
(
"NllbTokenizer" if is_sentencepiece_available() else None,
"NllbTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"nllb-moe",
(
"NllbTokenizer" if is_sentencepiece_available() else None,
"NllbTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"nystromformer",
(
"AlbertTokenizer" if is_sentencepiece_available() else None,
"AlbertTokenizerFast" if is_tokenizers_available() else None,
),
),
("olmo", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
("olmo2", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
("olmoe", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
(
"omdet-turbo",
("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None),
),
("oneformer", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)),
(
"openai-gpt",
("OpenAIGPTTokenizer", "OpenAIGPTTokenizerFast" if is_tokenizers_available() else None),
),
("opt", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("owlv2", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)),
("owlvit", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)),
("paligemma", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
(
"pegasus",
(
"PegasusTokenizer" if is_sentencepiece_available() else None,
"PegasusTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"pegasus_x",
(
"PegasusTokenizer" if is_sentencepiece_available() else None,
"PegasusTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"perceiver",
(
"PerceiverTokenizer",
None,
),
),
(
"persimmon",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
("phi", ("CodeGenTokenizer", "CodeGenTokenizerFast" if is_tokenizers_available() else None)),
("phi3", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("phimoe", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("phobert", ("PhobertTokenizer", None)),
("pix2struct", ("T5Tokenizer", "T5TokenizerFast" if is_tokenizers_available() else None)),
("pixtral", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("plbart", ("PLBartTokenizer" if is_sentencepiece_available() else None, None)),
("prophetnet", ("ProphetNetTokenizer", None)),
("qdqbert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
(
"qwen2",
(
"Qwen2Tokenizer",
"Qwen2TokenizerFast" if is_tokenizers_available() else None,
),
),
("qwen2_5_vl", ("Qwen2Tokenizer", "Qwen2TokenizerFast" if is_tokenizers_available() else None)),
("qwen2_audio", ("Qwen2Tokenizer", "Qwen2TokenizerFast" if is_tokenizers_available() else None)),
(
"qwen2_moe",
(
"Qwen2Tokenizer",
"Qwen2TokenizerFast" if is_tokenizers_available() else None,
),
),
("qwen2_vl", ("Qwen2Tokenizer", "Qwen2TokenizerFast" if is_tokenizers_available() else None)),
(
"qwen3",
(
"Qwen2Tokenizer",
"Qwen2TokenizerFast" if is_tokenizers_available() else None,
),
),
(
"qwen3_moe",
(
"Qwen2Tokenizer",
"Qwen2TokenizerFast" if is_tokenizers_available() else None,
),
),
("rag", ("RagTokenizer", None)),
("realm", ("RealmTokenizer", "RealmTokenizerFast" if is_tokenizers_available() else None)),
(
"recurrent_gemma",
(
"GemmaTokenizer" if is_sentencepiece_available() else None,
"GemmaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"reformer",
(
"ReformerTokenizer" if is_sentencepiece_available() else None,
"ReformerTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"rembert",
(
"RemBertTokenizer" if is_sentencepiece_available() else None,
"RemBertTokenizerFast" if is_tokenizers_available() else None,
),
),
("retribert", ("RetriBertTokenizer", "RetriBertTokenizerFast" if is_tokenizers_available() else None)),
("roberta", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
(
"roberta-prelayernorm",
("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None),
),
("roc_bert", ("RoCBertTokenizer", None)),
("roformer", ("RoFormerTokenizer", "RoFormerTokenizerFast" if is_tokenizers_available() else None)),
("rwkv", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
(
"seamless_m4t",
(
"SeamlessM4TTokenizer" if is_sentencepiece_available() else None,
"SeamlessM4TTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"seamless_m4t_v2",
(
"SeamlessM4TTokenizer" if is_sentencepiece_available() else None,
"SeamlessM4TTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"shieldgemma2",
(
"GemmaTokenizer" if is_sentencepiece_available() else None,
"GemmaTokenizerFast" if is_tokenizers_available() else None,
),
),
("siglip", ("SiglipTokenizer" if is_sentencepiece_available() else None, None)),
(
"siglip2",
(
"GemmaTokenizer" if is_sentencepiece_available() else None,
"GemmaTokenizerFast" if is_tokenizers_available() else None,
),
),
("speech_to_text", ("Speech2TextTokenizer" if is_sentencepiece_available() else None, None)),
("speech_to_text_2", ("Speech2Text2Tokenizer", None)),
("speecht5", ("SpeechT5Tokenizer" if is_sentencepiece_available() else None, None)),
("splinter", ("SplinterTokenizer", "SplinterTokenizerFast")),
(
"squeezebert",
("SqueezeBertTokenizer", "SqueezeBertTokenizerFast" if is_tokenizers_available() else None),
),
("stablelm", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
("starcoder2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
(
"switch_transformers",
(
"T5Tokenizer" if is_sentencepiece_available() else None,
"T5TokenizerFast" if is_tokenizers_available() else None,
),
),
(
"t5",
(
"T5Tokenizer" if is_sentencepiece_available() else None,
"T5TokenizerFast" if is_tokenizers_available() else None,
),
),
("tapas", ("TapasTokenizer", None)),
("tapex", ("TapexTokenizer", None)),
("transfo-xl", ("TransfoXLTokenizer", None)),
("tvp", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
(
"udop",
(
"UdopTokenizer" if is_sentencepiece_available() else None,
"UdopTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"umt5",
(
"T5Tokenizer" if is_sentencepiece_available() else None,
"T5TokenizerFast" if is_tokenizers_available() else None,
),
),
("video_llava", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("vilt", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("vipllava", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("visual_bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("vits", ("VitsTokenizer", None)),
("wav2vec2", ("Wav2Vec2CTCTokenizer", None)),
("wav2vec2-bert", ("Wav2Vec2CTCTokenizer", None)),
("wav2vec2-conformer", ("Wav2Vec2CTCTokenizer", None)),
("wav2vec2_phoneme", ("Wav2Vec2PhonemeCTCTokenizer", None)),
("whisper", ("WhisperTokenizer", "WhisperTokenizerFast" if is_tokenizers_available() else None)),
("xclip", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)),
(
"xglm",
(
"XGLMTokenizer" if is_sentencepiece_available() else None,
"XGLMTokenizerFast" if is_tokenizers_available() else None,
),
),
("xlm", ("XLMTokenizer", None)),
("xlm-prophetnet", ("XLMProphetNetTokenizer" if is_sentencepiece_available() else None, None)),
(
"xlm-roberta",
(
"XLMRobertaTokenizer" if is_sentencepiece_available() else None,
"XLMRobertaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"xlm-roberta-xl",
(
"XLMRobertaTokenizer" if is_sentencepiece_available() else None,
"XLMRobertaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"xlnet",
(
"XLNetTokenizer" if is_sentencepiece_available() else None,
"XLNetTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"xmod",
(
"XLMRobertaTokenizer" if is_sentencepiece_available() else None,
"XLMRobertaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"yoso",
(
"AlbertTokenizer" if is_sentencepiece_available() else None,
"AlbertTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"zamba",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
(
"zamba2",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
]
)
TOKENIZER_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TOKENIZER_MAPPING_NAMES)
CONFIG_TO_TYPE = {v: k for k, v in CONFIG_MAPPING_NAMES.items()}
def tokenizer_class_from_name(class_name: str):
if class_name == "PreTrainedTokenizerFast":
return PreTrainedTokenizerFast
for module_name, tokenizers in TOKENIZER_MAPPING_NAMES.items():
if class_name in tokenizers:
module_name = model_type_to_module_name(module_name)
module = importlib.import_module(f".{module_name}", "transformers.models")
try:
return getattr(module, class_name)
except AttributeError:
continue
for config, tokenizers in TOKENIZER_MAPPING._extra_content.items():
for tokenizer in tokenizers:
if getattr(tokenizer, "__name__", None) == class_name:
return tokenizer
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
main_module = importlib.import_module("transformers")
if hasattr(main_module, class_name):
return getattr(main_module, class_name)
return None
def get_tokenizer_config(
pretrained_model_name_or_path: Union[str, os.PathLike],
cache_dir: Optional[Union[str, os.PathLike]] = None,
force_download: bool = False,
resume_download: Optional[bool] = None,
proxies: Optional[Dict[str, str]] = None,
token: Optional[Union[bool, str]] = None,
revision: Optional[str] = None,
local_files_only: bool = False,
subfolder: str = "",
**kwargs,
):
"""
Loads the tokenizer configuration from a pretrained model tokenizer configuration.
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
huggingface.co.
- a path to a *directory* containing a configuration file saved using the
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the configuration files and override the cached versions if they
exist.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, will only try to load the tokenizer configuration from local files.
subfolder (`str`, *optional*, defaults to `""`):
In case the tokenizer config is located inside a subfolder of the model repo on huggingface.co, you can
specify the folder name here.
<Tip>
Passing `token=True` is required when you want to use a private model.
</Tip>
Returns:
`Dict`: The configuration of the tokenizer.
Examples:
```python
# Download configuration from huggingface.co and cache.
tokenizer_config = get_tokenizer_config("google-bert/bert-base-uncased")
# This model does not have a tokenizer config so the result will be an empty dict.
tokenizer_config = get_tokenizer_config("FacebookAI/xlm-roberta-base")
# Save a pretrained tokenizer locally and you can reload its config
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
tokenizer.save_pretrained("tokenizer-test")
tokenizer_config = get_tokenizer_config("tokenizer-test")
```"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
token = use_auth_token
commit_hash = kwargs.get("_commit_hash", None)
resolved_config_file = cached_file(
pretrained_model_name_or_path,
TOKENIZER_CONFIG_FILE,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
token=token,
revision=revision,
local_files_only=local_files_only,
subfolder=subfolder,
_raise_exceptions_for_gated_repo=False,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
_commit_hash=commit_hash,
)
if resolved_config_file is None:
logger.info("Could not locate the tokenizer configuration file, will try to use the model config instead.")
return {}
commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
with open(resolved_config_file, encoding="utf-8") as reader:
result = json.load(reader)
result["_commit_hash"] = commit_hash
return result
class AutoTokenizer:
r"""
This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when
created with the [`AutoTokenizer.from_pretrained`] class method.
This class cannot be instantiated directly using `__init__()` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoTokenizer is designed to be instantiated "
"using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method."
)
@classmethod
@replace_list_option_in_docstrings(TOKENIZER_MAPPING_NAMES)
def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
r"""
Instantiate one of the tokenizer classes of the library from a pretrained model vocabulary.
The tokenizer class to instantiate is selected based on the `model_type` property of the config object (either
passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by
falling back to using pattern matching on `pretrained_model_name_or_path`:
List options
Params:
pretrained_model_name_or_path (`str` or `os.PathLike`):
Can be either:
- A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co.
- A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved
using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
- A path or url to a single saved vocabulary file if and only if the tokenizer only requires a
single vocabulary file (like Bert or XLNet), e.g.: `./my_model_directory/vocab.txt`. (Not
applicable to all derived classes)
inputs (additional positional arguments, *optional*):
Will be passed along to the Tokenizer `__init__()` method.
config ([`PretrainedConfig`], *optional*)
The configuration object used to determine the tokenizer class to instantiate.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download the model weights and configuration files and override the
cached versions if they exist.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
subfolder (`str`, *optional*):
In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for
facebook/rag-token-base), specify it here.
use_fast (`bool`, *optional*, defaults to `True`):
Use a [fast Rust-based tokenizer](https://huggingface.co/docs/tokenizers/index) if it is supported for
a given model. If a fast tokenizer is not available for a given model, a normal Python-based tokenizer
is returned instead.
tokenizer_type (`str`, *optional*):
Tokenizer type to be loaded.
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
kwargs (additional keyword arguments, *optional*):
Will be passed to the Tokenizer `__init__()` method. Can be used to set special tokens like
`bos_token`, `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`,
`additional_special_tokens`. See parameters in the `__init__()` for more details.
Examples:
```python
>>> from transformers import AutoTokenizer
>>> # Download vocabulary from huggingface.co and cache.
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> # Download vocabulary from huggingface.co (user-uploaded) and cache.
>>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased")
>>> # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*)
>>> # tokenizer = AutoTokenizer.from_pretrained("./test/bert_saved_model/")
>>> # Download vocabulary from huggingface.co and define model-specific arguments
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base", add_prefix_space=True)
```"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if kwargs.get("token", None) is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
kwargs["token"] = use_auth_token
config = kwargs.pop("config", None)
kwargs["_from_auto"] = True
use_fast = kwargs.pop("use_fast", True)
tokenizer_type = kwargs.pop("tokenizer_type", None)
trust_remote_code = kwargs.pop("trust_remote_code", None)
gguf_file = kwargs.get("gguf_file", None)
# First, let's see whether the tokenizer_type is passed so that we can leverage it
if tokenizer_type is not None:
tokenizer_class = None
tokenizer_class_tuple = TOKENIZER_MAPPING_NAMES.get(tokenizer_type, None)
if tokenizer_class_tuple is None:
raise ValueError(
f"Passed `tokenizer_type` {tokenizer_type} does not exist. `tokenizer_type` should be one of "
f"{', '.join(c for c in TOKENIZER_MAPPING_NAMES.keys())}."
)
tokenizer_class_name, tokenizer_fast_class_name = tokenizer_class_tuple
if use_fast:
if tokenizer_fast_class_name is not None:
tokenizer_class = tokenizer_class_from_name(tokenizer_fast_class_name)
else:
logger.warning(
"`use_fast` is set to `True` but the tokenizer class does not have a fast version. "
" Falling back to the slow version."
)
if tokenizer_class is None:
tokenizer_class = tokenizer_class_from_name(tokenizer_class_name)
if tokenizer_class is None:
raise ValueError(f"Tokenizer class {tokenizer_class_name} is not currently imported.")
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
# Next, let's try to use the tokenizer_config file to get the tokenizer class.
tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs)
if "_commit_hash" in tokenizer_config:
kwargs["_commit_hash"] = tokenizer_config["_commit_hash"]
config_tokenizer_class = tokenizer_config.get("tokenizer_class")
tokenizer_auto_map = None
if "auto_map" in tokenizer_config:
if isinstance(tokenizer_config["auto_map"], (tuple, list)):
# Legacy format for dynamic tokenizers
tokenizer_auto_map = tokenizer_config["auto_map"]
else:
tokenizer_auto_map = tokenizer_config["auto_map"].get("AutoTokenizer", None)
# If that did not work, let's try to use the config.
if config_tokenizer_class is None:
if not isinstance(config, PretrainedConfig):
if gguf_file:
gguf_path = cached_file(pretrained_model_name_or_path, gguf_file, **kwargs)
config_dict = load_gguf_checkpoint(gguf_path, return_tensors=False)["config"]
config = AutoConfig.for_model(**config_dict)
else:
config = AutoConfig.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
)
config_tokenizer_class = config.tokenizer_class
if hasattr(config, "auto_map") and "AutoTokenizer" in config.auto_map:
tokenizer_auto_map = config.auto_map["AutoTokenizer"]
has_remote_code = tokenizer_auto_map is not None
has_local_code = type(config) in TOKENIZER_MAPPING or (
config_tokenizer_class is not None
and (
tokenizer_class_from_name(config_tokenizer_class) is not None
or tokenizer_class_from_name(config_tokenizer_class + "Fast") is not None
)
)
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
)
if has_remote_code and trust_remote_code:
if use_fast and tokenizer_auto_map[1] is not None:
class_ref = tokenizer_auto_map[1]
else:
class_ref = tokenizer_auto_map[0]
tokenizer_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs)
_ = kwargs.pop("code_revision", None)
if os.path.isdir(pretrained_model_name_or_path):
tokenizer_class.register_for_auto_class()
return tokenizer_class.from_pretrained(
pretrained_model_name_or_path, *inputs, trust_remote_code=trust_remote_code, **kwargs
)
elif config_tokenizer_class is not None:
tokenizer_class = None
if use_fast and not config_tokenizer_class.endswith("Fast"):
tokenizer_class_candidate = f"{config_tokenizer_class}Fast"
tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)
if tokenizer_class is None:
tokenizer_class_candidate = config_tokenizer_class
tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)
if tokenizer_class is None:
raise ValueError(
f"Tokenizer class {tokenizer_class_candidate} does not exist or is not currently imported."
)
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
# Otherwise we have to be creative.
# if model is an encoder decoder, the encoder tokenizer class is used by default
if isinstance(config, EncoderDecoderConfig):
if type(config.decoder) is not type(config.encoder): # noqa: E721
logger.warning(
f"The encoder model config class: {config.encoder.__class__} is different from the decoder model "
f"config class: {config.decoder.__class__}. It is not recommended to use the "
"`AutoTokenizer.from_pretrained()` method in this case. Please use the encoder and decoder "
"specific tokenizer classes."
)
config = config.encoder
model_type = config_class_to_model_type(type(config).__name__)
if model_type is not None:
tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)]
if tokenizer_class_fast and (use_fast or tokenizer_class_py is None):
return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
else:
if tokenizer_class_py is not None:
return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
else:
raise ValueError(
"This tokenizer cannot be instantiated. Please make sure you have `sentencepiece` installed "
"in order to use this tokenizer."
)
raise ValueError(
f"Unrecognized configuration class {config.__class__} to build an AutoTokenizer.\n"
f"Model type should be one of {', '.join(c.__name__ for c in TOKENIZER_MAPPING.keys())}."
)
@staticmethod
def register(config_class, slow_tokenizer_class=None, fast_tokenizer_class=None, exist_ok=False):
"""
Register a new tokenizer in this mapping.
Args:
config_class ([`PretrainedConfig`]):
The configuration corresponding to the model to register.
slow_tokenizer_class ([`PretrainedTokenizer`], *optional*):
The slow tokenizer to register.
fast_tokenizer_class ([`PretrainedTokenizerFast`], *optional*):
The fast tokenizer to register.
"""
if slow_tokenizer_class is None and fast_tokenizer_class is None:
raise ValueError("You need to pass either a `slow_tokenizer_class` or a `fast_tokenizer_class")
if slow_tokenizer_class is not None and issubclass(slow_tokenizer_class, PreTrainedTokenizerFast):
raise ValueError("You passed a fast tokenizer in the `slow_tokenizer_class`.")
if fast_tokenizer_class is not None and issubclass(fast_tokenizer_class, PreTrainedTokenizer):
raise ValueError("You passed a slow tokenizer in the `fast_tokenizer_class`.")
if (
slow_tokenizer_class is not None
and fast_tokenizer_class is not None
and issubclass(fast_tokenizer_class, PreTrainedTokenizerFast)
and fast_tokenizer_class.slow_tokenizer_class != slow_tokenizer_class
):
raise ValueError(
"The fast tokenizer class you are passing has a `slow_tokenizer_class` attribute that is not "
"consistent with the slow tokenizer class you passed (fast tokenizer has "
f"{fast_tokenizer_class.slow_tokenizer_class} and you passed {slow_tokenizer_class}. Fix one of those "
"so they match!"
)
# Avoid resetting a set slow/fast tokenizer if we are passing just the other ones.
if config_class in TOKENIZER_MAPPING._extra_content:
existing_slow, existing_fast = TOKENIZER_MAPPING[config_class]
if slow_tokenizer_class is None:
slow_tokenizer_class = existing_slow
if fast_tokenizer_class is None:
fast_tokenizer_class = existing_fast
TOKENIZER_MAPPING.register(config_class, (slow_tokenizer_class, fast_tokenizer_class), exist_ok=exist_ok)
```
|
==================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.65 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\autoformer\__init__.py
ENCODING: utf-8
```py
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {
"configuration_autoformer": ["AutoformerConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_autoformer"] = [
"AutoformerForPrediction",
"AutoformerModel",
"AutoformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
```
|
==================================================================================================================================================
SOURCE CODE FILE: configuration_autoformer.py
LINES: 1
SIZE: 11.88 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\autoformer\configuration_autoformer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Autoformer model configuration"""
from typing import List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class AutoformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`AutoformerModel`]. It is used to instantiate an
Autoformer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Autoformer
[huggingface/autoformer-tourism-monthly](https://huggingface.co/huggingface/autoformer-tourism-monthly)
architecture.
Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
prediction_length (`int`):
The prediction length for the decoder. In other words, the prediction horizon of the model.
context_length (`int`, *optional*, defaults to `prediction_length`):
The context length for the encoder. If unset, the context length will be the same as the
`prediction_length`.
distribution_output (`string`, *optional*, defaults to `"student_t"`):
The distribution emission head for the model. Could be either "student_t", "normal" or "negative_binomial".
loss (`string`, *optional*, defaults to `"nll"`):
The loss function for the model corresponding to the `distribution_output` head. For parametric
distributions it is the negative log likelihood (nll) - which currently is the only supported one.
input_size (`int`, *optional*, defaults to 1):
The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of
multivariate targets.
lags_sequence (`list[int]`, *optional*, defaults to `[1, 2, 3, 4, 5, 6, 7]`):
The lags of the input time series as covariates often dictated by the frequency. Default is `[1, 2, 3, 4,
5, 6, 7]`.
scaling (`bool`, *optional* defaults to `True`):
Whether to scale the input targets.
num_time_features (`int`, *optional*, defaults to 0):
The number of time features in the input time series.
num_dynamic_real_features (`int`, *optional*, defaults to 0):
The number of dynamic real valued features.
num_static_categorical_features (`int`, *optional*, defaults to 0):
The number of static categorical features.
num_static_real_features (`int`, *optional*, defaults to 0):
The number of static real valued features.
cardinality (`list[int]`, *optional*):
The cardinality (number of different values) for each of the static categorical features. Should be a list
of integers, having the same length as `num_static_categorical_features`. Cannot be `None` if
`num_static_categorical_features` is > 0.
embedding_dimension (`list[int]`, *optional*):
The dimension of the embedding for each of the static categorical features. Should be a list of integers,
having the same length as `num_static_categorical_features`. Cannot be `None` if
`num_static_categorical_features` is > 0.
d_model (`int`, *optional*, defaults to 64):
Dimensionality of the transformer layers.
encoder_layers (`int`, *optional*, defaults to 2):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 2):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 2):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 2):
Number of attention heads for each attention layer in the Transformer decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 32):
Dimension of the "intermediate" (often named feed-forward) layer in encoder.
decoder_ffn_dim (`int`, *optional*, defaults to 32):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and decoder. If string, `"gelu"` and
`"relu"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the encoder, and decoder.
encoder_layerdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention and fully connected layers for each encoder layer.
decoder_layerdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention and fully connected layers for each decoder layer.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability used between the two layers of the feed-forward networks.
num_parallel_samples (`int`, *optional*, defaults to 100):
The number of samples to generate in parallel for each time step of inference.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated normal weight initialization distribution.
use_cache (`bool`, *optional*, defaults to `True`):
Whether to use the past key/values attentions (if applicable to the model) to speed up decoding.
label_length (`int`, *optional*, defaults to 10):
Start token length of the Autoformer decoder, which is used for direct multi-step prediction (i.e.
non-autoregressive generation).
moving_average (`int`, *optional*, defaults to 25):
The window size of the moving average. In practice, it's the kernel size in AvgPool1d of the Decomposition
Layer.
autocorrelation_factor (`int`, *optional*, defaults to 3):
"Attention" (i.e. AutoCorrelation mechanism) factor which is used to find top k autocorrelations delays.
It's recommended in the paper to set it to a number between 1 and 5.
Example:
```python
>>> from transformers import AutoformerConfig, AutoformerModel
>>> # Initializing a default Autoformer configuration
>>> configuration = AutoformerConfig()
>>> # Randomly initializing a model (with random weights) from the configuration
>>> model = AutoformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "autoformer"
attribute_map = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__(
self,
prediction_length: Optional[int] = None,
context_length: Optional[int] = None,
distribution_output: str = "student_t",
loss: str = "nll",
input_size: int = 1,
lags_sequence: List[int] = [1, 2, 3, 4, 5, 6, 7],
scaling: bool = True,
num_time_features: int = 0,
num_dynamic_real_features: int = 0,
num_static_categorical_features: int = 0,
num_static_real_features: int = 0,
cardinality: Optional[List[int]] = None,
embedding_dimension: Optional[List[int]] = None,
d_model: int = 64,
encoder_attention_heads: int = 2,
decoder_attention_heads: int = 2,
encoder_layers: int = 2,
decoder_layers: int = 2,
encoder_ffn_dim: int = 32,
decoder_ffn_dim: int = 32,
activation_function: str = "gelu",
dropout: float = 0.1,
encoder_layerdrop: float = 0.1,
decoder_layerdrop: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
num_parallel_samples: int = 100,
init_std: float = 0.02,
use_cache: bool = True,
is_encoder_decoder=True,
# Autoformer arguments
label_length: int = 10,
moving_average: int = 25,
autocorrelation_factor: int = 3,
**kwargs,
):
# time series specific configuration
self.prediction_length = prediction_length
self.context_length = context_length if context_length is not None else prediction_length
self.distribution_output = distribution_output
self.loss = loss
self.input_size = input_size
self.num_time_features = num_time_features
self.lags_sequence = lags_sequence
self.scaling = scaling
self.num_dynamic_real_features = num_dynamic_real_features
self.num_static_real_features = num_static_real_features
self.num_static_categorical_features = num_static_categorical_features
if cardinality is not None and num_static_categorical_features > 0:
if len(cardinality) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`"
)
self.cardinality = cardinality
else:
self.cardinality = [0]
if embedding_dimension is not None and num_static_categorical_features > 0:
if len(embedding_dimension) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`"
)
self.embedding_dimension = embedding_dimension
else:
self.embedding_dimension = [min(50, (cat + 1) // 2) for cat in self.cardinality]
self.num_parallel_samples = num_parallel_samples
# Transformer architecture configuration
self.feature_size = input_size * len(self.lags_sequence) + self._number_of_features
self.d_model = d_model
self.encoder_attention_heads = encoder_attention_heads
self.decoder_attention_heads = decoder_attention_heads
self.encoder_ffn_dim = encoder_ffn_dim
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_layers = encoder_layers
self.decoder_layers = decoder_layers
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.activation_function = activation_function
self.init_std = init_std
self.use_cache = use_cache
# Autoformer
self.label_length = label_length
self.moving_average = moving_average
self.autocorrelation_factor = autocorrelation_factor
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
@property
def _number_of_features(self) -> int:
return (
sum(self.embedding_dimension)
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
```
|
=============================================================================================================================================
SOURCE CODE FILE: modeling_autoformer.py
LINES: 1
SIZE: 106.19 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\autoformer\modeling_autoformer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright (c) 2021 THUML @ Tsinghua University
# Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Autoformer model."""
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
ModelOutput,
SampleTSPredictionOutput,
Seq2SeqTSPredictionOutput,
)
from ...modeling_utils import PreTrainedModel
from ...time_series_utils import NegativeBinomialOutput, NormalOutput, StudentTOutput
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_autoformer import AutoformerConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "AutoformerConfig"
@dataclass
class AutoFormerDecoderOutput(ModelOutput):
"""
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
hidden_size)` is output.
trend (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Trend tensor for each time series.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
trend: Optional[torch.FloatTensor] = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class AutoformerModelOutput(ModelOutput):
"""
Autoformer model output that contains the additional trend output.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
hidden_size)` is output.
trend (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Trend tensor for each time series.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
loc (`torch.FloatTensor` of shape `(batch_size,)` or `(batch_size, input_size)`, *optional*):
Shift values of each time series' context window which is used to give the model inputs of the same
magnitude and then used to shift back to the original magnitude.
scale (`torch.FloatTensor` of shape `(batch_size,)` or `(batch_size, input_size)`, *optional*):
Scaling values of each time series' context window which is used to give the model inputs of the same
magnitude and then used to rescale back to the original magnitude.
static_features: (`torch.FloatTensor` of shape `(batch_size, feature size)`, *optional*):
Static features of each time series' in a batch which are copied to the covariates at inference time.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
trend: Optional[torch.FloatTensor] = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
loc: Optional[torch.FloatTensor] = None
scale: Optional[torch.FloatTensor] = None
static_features: Optional[torch.FloatTensor] = None
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesFeatureEmbedder with TimeSeries->Autoformer
class AutoformerFeatureEmbedder(nn.Module):
"""
Embed a sequence of categorical features.
Args:
cardinalities (`list[int]`):
List of cardinalities of the categorical features.
embedding_dims (`list[int]`):
List of embedding dimensions of the categorical features.
"""
def __init__(self, cardinalities: List[int], embedding_dims: List[int]) -> None:
super().__init__()
self.num_features = len(cardinalities)
self.embedders = nn.ModuleList([nn.Embedding(c, d) for c, d in zip(cardinalities, embedding_dims)])
def forward(self, features: torch.Tensor) -> torch.Tensor:
if self.num_features > 1:
# we slice the last dimension, giving an array of length
# self.num_features with shape (N,T) or (N)
cat_feature_slices = torch.chunk(features, self.num_features, dim=-1)
else:
cat_feature_slices = [features]
return torch.cat(
[
embed(cat_feature_slice.squeeze(-1))
for embed, cat_feature_slice in zip(self.embedders, cat_feature_slices)
],
dim=-1,
)
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesStdScaler with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer
class AutoformerStdScaler(nn.Module):
"""
Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by
subtracting from the mean and dividing by the standard deviation.
"""
def __init__(self, config: AutoformerConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-5
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim)
denominator = denominator.clamp_min(1.0)
loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator
variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator
scale = torch.sqrt(variance + self.minimum_scale)
return (data - loc) / scale, loc, scale
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesMeanScaler with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer
class AutoformerMeanScaler(nn.Module):
"""
Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data
accordingly.
"""
def __init__(self, config: AutoformerConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10
self.default_scale = config.default_scale if hasattr(config, "default_scale") else None
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True)
num_observed = observed_indicator.sum(self.dim, keepdim=True)
scale = ts_sum / torch.clamp(num_observed, min=1)
# If `default_scale` is provided, we use it, otherwise we use the scale
# of the batch.
if self.default_scale is None:
batch_sum = ts_sum.sum(dim=0)
batch_observations = torch.clamp(num_observed.sum(0), min=1)
default_scale = torch.squeeze(batch_sum / batch_observations)
else:
default_scale = self.default_scale * torch.ones_like(scale)
# apply default scale where there are no observations
scale = torch.where(num_observed > 0, scale, default_scale)
# ensure the scale is at least `self.minimum_scale`
scale = torch.clamp(scale, min=self.minimum_scale)
scaled_data = data / scale
if not self.keepdim:
scale = scale.squeeze(dim=self.dim)
return scaled_data, torch.zeros_like(scale), scale
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesNOPScaler with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer
class AutoformerNOPScaler(nn.Module):
"""
Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data.
"""
def __init__(self, config: AutoformerConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
def forward(
self, data: torch.Tensor, observed_indicator: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
return data, loc, scale
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.weighted_average
def weighted_average(input_tensor: torch.Tensor, weights: Optional[torch.Tensor] = None, dim=None) -> torch.Tensor:
"""
Computes the weighted average of a given tensor across a given `dim`, masking values associated with weight zero,
meaning instead of `nan * 0 = nan` you will get `0 * 0 = 0`.
Args:
input_tensor (`torch.FloatTensor`):
Input tensor, of which the average must be computed.
weights (`torch.FloatTensor`, *optional*):
Weights tensor, of the same shape as `input_tensor`.
dim (`int`, *optional*):
The dim along which to average `input_tensor`.
Returns:
`torch.FloatTensor`: The tensor with values averaged along the specified `dim`.
"""
if weights is not None:
weighted_tensor = torch.where(weights != 0, input_tensor * weights, torch.zeros_like(input_tensor))
sum_weights = torch.clamp(weights.sum(dim=dim) if dim else weights.sum(), min=1.0)
return (weighted_tensor.sum(dim=dim) if dim else weighted_tensor.sum()) / sum_weights
else:
return input_tensor.mean(dim=dim)
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.nll
def nll(input: torch.distributions.Distribution, target: torch.Tensor) -> torch.Tensor:
"""
Computes the negative log likelihood loss from input distribution with respect to target.
"""
return -input.log_prob(target)
# Copied from transformers.models.marian.modeling_marian.MarianSinusoidalPositionalEmbedding with Marian->Autoformer
class AutoformerSinusoidalPositionalEmbedding(nn.Embedding):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None) -> None:
super().__init__(num_positions, embedding_dim)
def _init_weight(self):
"""
Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
the 2nd half of the vector. [dim // 2:]
"""
n_pos, dim = self.weight.shape
position_enc = np.array(
[[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
)
out = torch.empty(n_pos, dim, dtype=self.weight.dtype, requires_grad=False)
sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1
out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
self.weight = nn.Parameter(out, requires_grad=False)
@torch.no_grad()
def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0) -> torch.Tensor:
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids_shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
)
return super().forward(positions)
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesValueEmbedding with TimeSeries->Autoformer
class AutoformerValueEmbedding(nn.Module):
def __init__(self, feature_size, d_model):
super().__init__()
self.value_projection = nn.Linear(in_features=feature_size, out_features=d_model, bias=False)
def forward(self, x):
return self.value_projection(x)
# Class based on
# https://github.com/thuml/Autoformer/blob/c6a0694ff484753f2d986cc0bb1f99ee850fc1a8/layers/Autoformer_EncDec.py#L39
# where AutoformerSeriesDecompositionLayer is series_decomp + moving_average
class AutoformerSeriesDecompositionLayer(nn.Module):
"""
Returns the trend and the seasonal parts of the time series. Calculated as:
x_trend = AvgPool(Padding(X)) and x_seasonal = X - x_trend
"""
def __init__(self, config: AutoformerConfig):
super().__init__()
self.kernel_size = config.moving_average
self.avg = nn.AvgPool1d(kernel_size=self.kernel_size, stride=1, padding=0)
def forward(self, x):
"""Input shape: Batch x Time x EMBED_DIM"""
# padding on the both ends of time series
num_of_pads = (self.kernel_size - 1) // 2
front = x[:, 0:1, :].repeat(1, num_of_pads, 1)
end = x[:, -1:, :].repeat(1, num_of_pads, 1)
x_padded = torch.cat([front, x, end], dim=1)
# calculate the trend and seasonal part of the series
x_trend = self.avg(x_padded.permute(0, 2, 1)).permute(0, 2, 1)
x_seasonal = x - x_trend
return x_seasonal, x_trend
# Class based on
# https://github.com/thuml/Autoformer/blob/c6a0694ff484753f2d986cc0bb1f99ee850fc1a8/layers/Autoformer_EncDec.py#L6
# where AutoformerLayernorm is my_Layernorm
class AutoformerLayernorm(nn.Module):
"""
Special designed layer normalization for the seasonal part, calculated as: AutoformerLayernorm(x) = nn.LayerNorm(x)
- torch.mean(nn.LayerNorm(x))
"""
def __init__(self, config: AutoformerConfig):
super().__init__()
self.layernorm = nn.LayerNorm(config.d_model)
def forward(self, x):
x_hat = self.layernorm(x)
bias = torch.mean(x_hat, dim=1).unsqueeze(1).repeat(1, x.shape[1], 1)
return x_hat - bias
class AutoformerAttention(nn.Module):
"""
AutoCorrelation Mechanism with the following two phases:
(1) period-based dependencies discovery (2) time delay aggregation
This block replace the canonical self-attention mechanism.
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
autocorrelation_factor: int = 3,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.autocorrelation_factor = autocorrelation_factor
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
# (1) period-based dependencies discovery
# Resize (truncation or zero filling)
queries_time_length = query_states.size(1)
values_time_length = value_states.size(1)
if queries_time_length > values_time_length:
query_states = query_states[:, : (queries_time_length - values_time_length), :]
zeros = torch.zeros_like(query_states).float()
value_states = torch.cat([value_states, zeros], dim=1)
key_states = torch.cat([key_states, zeros], dim=1)
else:
value_states = value_states[:, :queries_time_length, :]
key_states = key_states[:, :queries_time_length, :]
query_states_fft = torch.fft.rfft(query_states, n=tgt_len, dim=1)
key_states_fft = torch.fft.rfft(key_states, n=tgt_len, dim=1)
attn_weights = query_states_fft * torch.conj(key_states_fft)
attn_weights = torch.fft.irfft(attn_weights, n=tgt_len, dim=1) # Autocorrelation(Q,K)
src_len = key_states.size(1)
channel = key_states.size(2)
if attn_weights.size() != (bsz * self.num_heads, tgt_len, channel):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, channel)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, channel)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, channel)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, channel)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, channel)
else:
attn_weights_reshaped = None
# time delay aggregation
time_length = value_states.size(1)
autocorrelations = attn_weights.view(bsz, self.num_heads, tgt_len, channel)
# find top k autocorrelations delays
top_k = int(self.autocorrelation_factor * math.log(time_length))
autocorrelations_mean_on_head_channel = torch.mean(autocorrelations, dim=(1, -1)) # bsz x tgt_len
if self.training:
autocorrelations_mean_on_bsz = torch.mean(autocorrelations_mean_on_head_channel, dim=0)
_, top_k_delays_index = torch.topk(autocorrelations_mean_on_bsz, top_k)
top_k_autocorrelations = torch.stack(
[autocorrelations_mean_on_head_channel[:, top_k_delays_index[i]] for i in range(top_k)], dim=-1
)
else:
top_k_autocorrelations, top_k_delays_index = torch.topk(
autocorrelations_mean_on_head_channel, top_k, dim=1
)
top_k_autocorrelations = torch.softmax(top_k_autocorrelations, dim=-1) # bsz x top_k
# compute aggregation: value_states.roll(delay) * top_k_autocorrelations(delay)
if not self.training:
# used for compute values_states.roll(delay) in inference
tmp_values = value_states.repeat(1, 2, 1)
init_index = (
torch.arange(time_length)
.view(1, -1, 1)
.repeat(bsz * self.num_heads, 1, channel)
.to(value_states.device)
)
delays_agg = torch.zeros_like(value_states).float() # bsz x time_length x channel
for i in range(top_k):
# compute value_states roll delay
if not self.training:
tmp_delay = init_index + top_k_delays_index[:, i].view(-1, 1, 1).repeat(
self.num_heads, tgt_len, channel
)
value_states_roll_delay = torch.gather(tmp_values, dim=1, index=tmp_delay)
else:
value_states_roll_delay = value_states.roll(shifts=-int(top_k_delays_index[i]), dims=1)
# aggregation
top_k_autocorrelations_at_delay = (
top_k_autocorrelations[:, i].view(-1, 1, 1).repeat(self.num_heads, tgt_len, channel)
)
delays_agg += value_states_roll_delay * top_k_autocorrelations_at_delay
attn_output = delays_agg.contiguous()
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class AutoformerEncoderLayer(nn.Module):
def __init__(self, config: AutoformerConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = AutoformerAttention(
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
autocorrelation_factor=config.autocorrelation_factor,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = AutoformerLayernorm(config)
self.decomp1 = AutoformerSeriesDecompositionLayer(config)
self.decomp2 = AutoformerSeriesDecompositionLayer(config)
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: torch.FloatTensor,
layer_head_mask: torch.FloatTensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# added layer norm here as an improvement
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, _ = self.decomp1(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states, _ = self.decomp2(hidden_states)
hidden_states = self.final_layer_norm(hidden_states)
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class AutoformerDecoderLayer(nn.Module):
def __init__(self, config: AutoformerConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = AutoformerAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
autocorrelation_factor=config.autocorrelation_factor,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = AutoformerAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
autocorrelation_factor=config.autocorrelation_factor,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = AutoformerLayernorm(config)
self.decomp1 = AutoformerSeriesDecompositionLayer(config)
self.decomp2 = AutoformerSeriesDecompositionLayer(config)
self.decomp3 = AutoformerSeriesDecompositionLayer(config)
# source: https://github.com/thuml/Autoformer/blob/e6371e24f2ae2dd53e472edefdd5814c5176f864/layers/Autoformer_EncDec.py#L128
self.trend_projection = nn.Conv1d(
in_channels=self.embed_dim,
out_channels=config.feature_size,
kernel_size=3,
stride=1,
padding=1,
padding_mode="circular",
bias=False,
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache: (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the `present_key_value` state to be used for subsequent
decoding.
"""
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states, trend1 = self.decomp1(hidden_states)
# added layer norm here as an improvement
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states, trend2 = self.decomp2(hidden_states)
# added layer norm here as an improvement
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states, trend3 = self.decomp3(hidden_states)
hidden_states = self.final_layer_norm(hidden_states)
if encoder_hidden_states is not None:
residual_trend = trend1 + trend2 + trend3
else:
residual_trend = trend1 + trend3
residual_trend = self.trend_projection(residual_trend.permute(0, 2, 1)).transpose(1, 2)
outputs = ((hidden_states, residual_trend),)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class AutoformerPreTrainedModel(PreTrainedModel):
config_class = AutoformerConfig
base_model_prefix = "model"
main_input_name = "past_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, AutoformerSinusoidalPositionalEmbedding):
module._init_weight()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
AUTOFORMER_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`AutoformerConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
AUTOFORMER_INPUTS_DOCSTRING = r"""
Args:
past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Past values of the time series, that serve as context in order to predict the future. These values may
contain lags, i.e. additional values from the past which are added in order to serve as "extra context".
The `past_values` is what the Transformer encoder gets as input (with optional additional features, such as
`static_categorical_features`, `static_real_features`, `past_time_features`).
The sequence length here is equal to `context_length` + `max(config.lags_sequence)`.
Missing values need to be replaced with zeros.
past_time_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_features)`, *optional*):
Optional time features, which the model internally will add to `past_values`. These could be things like
"month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features). These
could also be so-called "age" features, which basically help the model know "at which point in life" a
time-series is. Age features have small values for distant past time steps and increase monotonically the
more we approach the current time step.
These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where
the position encodings are learned from scratch internally as parameters of the model, the Time Series
Transformer requires to provide additional time features.
The Autoformer only learns additional embeddings for `static_categorical_features`.
past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in
`[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
static_categorical_features (`torch.LongTensor` of shape `(batch_size, number of static categorical features)`, *optional*):
Optional static categorical features for which the model will learn an embedding, which it will add to the
values of the time series.
Static categorical features are features which have the same value for all time steps (static over time).
A typical example of a static categorical feature is a time series ID.
static_real_features (`torch.FloatTensor` of shape `(batch_size, number of static real features)`, *optional*):
Optional static real features which the model will add to the values of the time series.
Static real features are features which have the same value for all time steps (static over time).
A typical example of a static real feature is promotion information.
future_values (`torch.FloatTensor` of shape `(batch_size, prediction_length)`):
Future values of the time series, that serve as labels for the model. The `future_values` is what the
Transformer needs to learn to output, given the `past_values`.
See the demo notebook and code snippets for details.
Missing values need to be replaced with zeros.
future_time_features (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_features)`, *optional*):
Optional time features, which the model internally will add to `future_values`. These could be things like
"month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features). These
could also be so-called "age" features, which basically help the model know "at which point in life" a
time-series is. Age features have small values for distant past time steps and increase monotonically the
more we approach the current time step.
These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where
the position encodings are learned from scratch internally as parameters of the model, the Time Series
Transformer requires to provide additional features.
The Autoformer only learns additional embeddings for `static_categorical_features`.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on certain token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Mask to avoid performing attention on certain token indices. By default, a causal mask will be used, to
make sure the model can only look at previous inputs in order to predict the future.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of `last_hidden_state`, `hidden_states` (*optional*) and `attentions` (*optional*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` (*optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesTransformerEncoder with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer
class AutoformerEncoder(AutoformerPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`AutoformerEncoderLayer`].
Args:
config: AutoformerConfig
"""
def __init__(self, config: AutoformerConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
if config.prediction_length is None:
raise ValueError("The `prediction_length` config needs to be specified.")
self.value_embedding = AutoformerValueEmbedding(feature_size=config.feature_size, d_model=config.d_model)
self.embed_positions = AutoformerSinusoidalPositionalEmbedding(
config.context_length + config.prediction_length, config.d_model
)
self.layers = nn.ModuleList([AutoformerEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = self.value_embedding(inputs_embeds)
embed_pos = self.embed_positions(inputs_embeds.size())
hidden_states = self.layernorm_embedding(hidden_states + embed_pos)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class AutoformerDecoder(AutoformerPreTrainedModel):
"""
Transformer decoder consisting of `config.decoder_layers` layers. Each layer is a [`AutoformerDecoderLayer`]
Args:
config: AutoformerConfig
"""
def __init__(self, config: AutoformerConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
if config.prediction_length is None:
raise ValueError("The `prediction_length` config needs to be specified.")
self.value_embedding = AutoformerValueEmbedding(feature_size=config.feature_size, d_model=config.d_model)
self.embed_positions = AutoformerSinusoidalPositionalEmbedding(
config.context_length + config.prediction_length, config.d_model
)
self.layers = nn.ModuleList([AutoformerDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.d_model)
# https://github.com/thuml/Autoformer/blob/e6371e24f2ae2dd53e472edefdd5814c5176f864/models/Autoformer.py#L74
self.seasonality_projection = nn.Linear(config.d_model, config.feature_size)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
trend: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, AutoFormerDecoderOutput]:
r"""
Args:
trend (`torch.FloatTensor` of shape `(batch_size, prediction_length, feature_size)`, *optional*):
The trend sequence to be fed to the decoder.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If `use_cache` is True, `past_key_values` key value states are returned and can be used to speed up
decoding (see `past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
input_shape = inputs_embeds.size()[:-1]
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
hidden_states = self.value_embedding(inputs_embeds)
embed_pos = self.embed_positions(
inputs_embeds.size(), past_key_values_length=self.config.context_length - self.config.label_length
)
hidden_states = self.layernorm_embedding(hidden_states + embed_pos)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
(hidden_states, residual_trend) = layer_outputs[0]
trend = trend + residual_trend
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# project seasonality representation
hidden_states = self.seasonality_projection(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, trend, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return AutoFormerDecoderOutput(
last_hidden_state=hidden_states,
trend=trend,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare Autoformer Model outputting raw hidden-states without any specific head on top.",
AUTOFORMER_START_DOCSTRING,
)
class AutoformerModel(AutoformerPreTrainedModel):
def __init__(self, config: AutoformerConfig):
super().__init__(config)
if config.scaling == "mean" or config.scaling is True:
self.scaler = AutoformerMeanScaler(config)
elif config.scaling == "std":
self.scaler = AutoformerStdScaler(config)
else:
self.scaler = AutoformerNOPScaler(config)
if config.num_static_categorical_features > 0:
self.embedder = AutoformerFeatureEmbedder(
cardinalities=config.cardinality, embedding_dims=config.embedding_dimension
)
# transformer encoder-decoder and mask initializer
self.encoder = AutoformerEncoder(config)
self.decoder = AutoformerDecoder(config)
# used for decoder seasonal and trend initialization
self.decomposition_layer = AutoformerSeriesDecompositionLayer(config)
# Initialize weights and apply final processing
self.post_init()
@property
def _past_length(self) -> int:
return self.config.context_length + max(self.config.lags_sequence)
def get_lagged_subsequences(
self, sequence: torch.Tensor, subsequences_length: int, shift: int = 0
) -> torch.Tensor:
"""
Returns lagged subsequences of a given sequence. Returns a tensor of shape (batch_size, subsequences_length,
feature_size, indices_length), containing lagged subsequences. Specifically, lagged[i, j, :, k] = sequence[i,
-indices[k]-subsequences_length+j, :].
Args:
sequence (`torch.Tensor` or shape `(batch_size, context_length,
feature_size)`): The sequence from which lagged subsequences should be extracted.
subsequences_length (`int`):
Length of the subsequences to be extracted.
shift (`int`, *optional* defaults to 0):
Shift the lags by this amount back in the time index.
"""
# calculates the indices of the lags by subtracting the shift value from the given lags_sequence
indices = [lag - shift for lag in self.config.lags_sequence]
# checks if the maximum lag plus the length of the subsequences exceeds the length of the input sequence
sequence_length = sequence.shape[1]
if max(indices) + subsequences_length > sequence_length:
raise ValueError(
f"lags cannot go further than history length, found lag {max(indices)} "
f"while history length is only {sequence_length}"
)
# extracts the lagged subsequences from the input sequence using the calculated indices
lagged_values = []
for lag_index in indices:
begin_index = -lag_index - subsequences_length
end_index = -lag_index if lag_index > 0 else None
lagged_values.append(sequence[:, begin_index:end_index, ...])
# return as stacked tensor in the feature dimension
return torch.stack(lagged_values, dim=-1)
def create_network_inputs(
self,
past_values: torch.Tensor,
past_time_features: torch.Tensor,
static_categorical_features: Optional[torch.Tensor] = None,
static_real_features: Optional[torch.Tensor] = None,
past_observed_mask: Optional[torch.Tensor] = None,
future_values: Optional[torch.Tensor] = None,
future_time_features: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Creates the inputs for the network given the past and future values, time features, and static features.
Args:
past_values (`torch.Tensor`):
A tensor of shape `(batch_size, past_length, input_size)` containing the past values.
past_time_features (`torch.Tensor`):
A tensor of shape `(batch_size, past_length, num_features)` containing the past time features.
static_categorical_features (`Optional[torch.Tensor]`):
An optional tensor of shape `(batch_size, num_categorical_features)` containing the static categorical
features.
static_real_features (`Optional[torch.Tensor]`):
An optional tensor of shape `(batch_size, num_real_features)` containing the static real features.
past_observed_mask (`Optional[torch.Tensor]`):
An optional tensor of shape `(batch_size, past_length, input_size)` containing the mask of observed
values in the past.
future_values (`Optional[torch.Tensor]`):
An optional tensor of shape `(batch_size, future_length, input_size)` containing the future values.
Returns:
A tuple containing the following tensors:
- reshaped_lagged_sequence (`torch.Tensor`): A tensor of shape `(batch_size, sequence_length, num_lags *
input_size)` containing the lagged subsequences of the inputs.
- features (`torch.Tensor`): A tensor of shape `(batch_size, sequence_length, num_features)` containing the
concatenated static and time features.
- loc (`torch.Tensor`): A tensor of shape `(batch_size, input_size)` containing the mean of the input
values.
- scale (`torch.Tensor`): A tensor of shape `(batch_size, input_size)` containing the std of the input
values.
- static_feat (`torch.Tensor`): A tensor of shape `(batch_size, num_static_features)` containing the
concatenated static features.
"""
# time feature
time_feat = (
torch.cat(
(
past_time_features[:, self._past_length - self.config.context_length :, ...],
future_time_features,
),
dim=1,
)
if future_values is not None
else past_time_features[:, self._past_length - self.config.context_length :, ...]
)
# target
if past_observed_mask is None:
past_observed_mask = torch.ones_like(past_values)
context = past_values[:, -self.config.context_length :]
observed_context = past_observed_mask[:, -self.config.context_length :]
_, loc, scale = self.scaler(context, observed_context)
inputs = (
(torch.cat((past_values, future_values), dim=1) - loc) / scale
if future_values is not None
else (past_values - loc) / scale
)
# static features
log_abs_loc = loc.abs().log1p() if self.config.input_size == 1 else loc.squeeze(1).abs().log1p()
log_scale = scale.log() if self.config.input_size == 1 else scale.squeeze(1).log()
static_feat = torch.cat((log_abs_loc, log_scale), dim=1)
if static_real_features is not None:
static_feat = torch.cat((static_real_features, static_feat), dim=1)
if static_categorical_features is not None:
embedded_cat = self.embedder(static_categorical_features)
static_feat = torch.cat((embedded_cat, static_feat), dim=1)
expanded_static_feat = static_feat.unsqueeze(1).expand(-1, time_feat.shape[1], -1)
# all features
features = torch.cat((expanded_static_feat, time_feat), dim=-1)
# lagged features
subsequences_length = (
self.config.context_length + self.config.prediction_length
if future_values is not None
else self.config.context_length
)
lagged_sequence = self.get_lagged_subsequences(sequence=inputs, subsequences_length=subsequences_length)
lags_shape = lagged_sequence.shape
reshaped_lagged_sequence = lagged_sequence.reshape(lags_shape[0], lags_shape[1], -1)
if reshaped_lagged_sequence.shape[1] != time_feat.shape[1]:
raise ValueError(
f"input length {reshaped_lagged_sequence.shape[1]} and time feature lengths {time_feat.shape[1]} does not match"
)
return reshaped_lagged_sequence, features, loc, scale, static_feat
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(AUTOFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=AutoformerModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
past_time_features: torch.Tensor,
past_observed_mask: torch.Tensor,
static_categorical_features: Optional[torch.Tensor] = None,
static_real_features: Optional[torch.Tensor] = None,
future_values: Optional[torch.Tensor] = None,
future_time_features: Optional[torch.Tensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[AutoformerModelOutput, Tuple]:
r"""
Returns:
Examples:
```python
>>> from huggingface_hub import hf_hub_download
>>> import torch
>>> from transformers import AutoformerModel
>>> file = hf_hub_download(
... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset"
... )
>>> batch = torch.load(file)
>>> model = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly")
>>> # during training, one provides both past and future values
>>> # as well as possible additional features
>>> outputs = model(
... past_values=batch["past_values"],
... past_time_features=batch["past_time_features"],
... past_observed_mask=batch["past_observed_mask"],
... static_categorical_features=batch["static_categorical_features"],
... future_values=batch["future_values"],
... future_time_features=batch["future_time_features"],
... )
>>> last_hidden_state = outputs.last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_inputs, temporal_features, loc, scale, static_feat = self.create_network_inputs(
past_values=past_values,
past_time_features=past_time_features,
past_observed_mask=past_observed_mask,
static_categorical_features=static_categorical_features,
static_real_features=static_real_features,
future_values=future_values,
future_time_features=future_time_features,
)
if encoder_outputs is None:
enc_input = torch.cat(
(
transformer_inputs[:, : self.config.context_length, ...],
temporal_features[:, : self.config.context_length, ...],
),
dim=-1,
)
encoder_outputs = self.encoder(
inputs_embeds=enc_input,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
if future_values is not None:
# Decoder inputs
# seasonality and trend from context length
seasonal_input, trend_input = self.decomposition_layer(
transformer_inputs[:, : self.config.context_length, ...]
)
mean = (
torch.mean(transformer_inputs[:, : self.config.context_length, ...], dim=1)
.unsqueeze(1)
.repeat(1, self.config.prediction_length, 1)
)
zeros = torch.zeros(
[transformer_inputs.shape[0], self.config.prediction_length, transformer_inputs.shape[2]],
device=enc_input.device,
)
decoder_input = torch.cat(
(
torch.cat((seasonal_input[:, -self.config.label_length :, ...], zeros), dim=1),
temporal_features[:, self.config.context_length - self.config.label_length :, ...],
),
dim=-1,
)
trend_init = torch.cat(
(
torch.cat((trend_input[:, -self.config.label_length :, ...], mean), dim=1),
temporal_features[:, self.config.context_length - self.config.label_length :, ...],
),
dim=-1,
)
decoder_outputs = self.decoder(
trend=trend_init,
inputs_embeds=decoder_input,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
else:
decoder_outputs = AutoFormerDecoderOutput()
if not return_dict:
return decoder_outputs + encoder_outputs + (loc, scale, static_feat)
return AutoformerModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
trend=decoder_outputs.trend,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
loc=loc,
scale=scale,
static_features=static_feat,
)
@add_start_docstrings(
"The Autoformer Model with a distribution head on top for time-series forecasting.",
AUTOFORMER_START_DOCSTRING,
)
class AutoformerForPrediction(AutoformerPreTrainedModel):
def __init__(self, config: AutoformerConfig):
super().__init__(config)
self.model = AutoformerModel(config)
if config.distribution_output == "student_t":
self.distribution_output = StudentTOutput(dim=config.input_size)
elif config.distribution_output == "normal":
self.distribution_output = NormalOutput(dim=config.input_size)
elif config.distribution_output == "negative_binomial":
self.distribution_output = NegativeBinomialOutput(dim=config.input_size)
else:
raise ValueError(f"Unknown distribution output {config.distribution_output}")
self.parameter_projection = self.distribution_output.get_parameter_projection(self.model.config.feature_size)
self.target_shape = self.distribution_output.event_shape
if config.loss == "nll":
self.loss = nll
else:
raise ValueError(f"Unknown loss function {config.loss}")
# Initialize weights of distribution_output and apply final processing
self.post_init()
def output_params(self, decoder_output):
return self.parameter_projection(decoder_output[:, -self.config.prediction_length :, :])
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
@torch.jit.ignore
def output_distribution(self, params, loc=None, scale=None, trailing_n=None) -> torch.distributions.Distribution:
sliced_params = params
if trailing_n is not None:
sliced_params = [p[:, -trailing_n:] for p in params]
return self.distribution_output.distribution(sliced_params, loc=loc, scale=scale)
@add_start_docstrings_to_model_forward(AUTOFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqTSPredictionOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
past_time_features: torch.Tensor,
past_observed_mask: torch.Tensor,
static_categorical_features: Optional[torch.Tensor] = None,
static_real_features: Optional[torch.Tensor] = None,
future_values: Optional[torch.Tensor] = None,
future_time_features: Optional[torch.Tensor] = None,
future_observed_mask: Optional[torch.Tensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Seq2SeqTSPredictionOutput, Tuple]:
r"""
Returns:
Examples:
```python
>>> from huggingface_hub import hf_hub_download
>>> import torch
>>> from transformers import AutoformerForPrediction
>>> file = hf_hub_download(
... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset"
... )
>>> batch = torch.load(file)
>>> model = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly")
>>> # during training, one provides both past and future values
>>> # as well as possible additional features
>>> outputs = model(
... past_values=batch["past_values"],
... past_time_features=batch["past_time_features"],
... past_observed_mask=batch["past_observed_mask"],
... static_categorical_features=batch["static_categorical_features"],
... future_values=batch["future_values"],
... future_time_features=batch["future_time_features"],
... )
>>> loss = outputs.loss
>>> loss.backward()
>>> # during inference, one only provides past values
>>> # as well as possible additional features
>>> # the model autoregressively generates future values
>>> outputs = model.generate(
... past_values=batch["past_values"],
... past_time_features=batch["past_time_features"],
... past_observed_mask=batch["past_observed_mask"],
... static_categorical_features=batch["static_categorical_features"],
... future_time_features=batch["future_time_features"],
... )
>>> mean_prediction = outputs.sequences.mean(dim=1)
```
<Tip>
The AutoformerForPrediction can also use static_real_features. To do so, set num_static_real_features in
AutoformerConfig based on number of such features in the dataset (in case of tourism_monthly dataset it
is equal to 1), initialize the model and call as shown below:
```
>>> from huggingface_hub import hf_hub_download
>>> import torch
>>> from transformers import AutoformerConfig, AutoformerForPrediction
>>> file = hf_hub_download(
... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset"
... )
>>> batch = torch.load(file)
>>> # check number of static real features
>>> num_static_real_features = batch["static_real_features"].shape[-1]
>>> # load configuration of pretrained model and override num_static_real_features
>>> configuration = AutoformerConfig.from_pretrained(
... "huggingface/autoformer-tourism-monthly",
... num_static_real_features=num_static_real_features,
... )
>>> # we also need to update feature_size as it is not recalculated
>>> configuration.feature_size += num_static_real_features
>>> model = AutoformerForPrediction(configuration)
>>> outputs = model(
... past_values=batch["past_values"],
... past_time_features=batch["past_time_features"],
... past_observed_mask=batch["past_observed_mask"],
... static_categorical_features=batch["static_categorical_features"],
... static_real_features=batch["static_real_features"],
... future_values=batch["future_values"],
... future_time_features=batch["future_time_features"],
... )
```
</Tip>
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if future_values is not None:
use_cache = False
outputs = self.model(
past_values=past_values,
past_time_features=past_time_features,
past_observed_mask=past_observed_mask,
static_categorical_features=static_categorical_features,
static_real_features=static_real_features,
future_values=future_values,
future_time_features=future_time_features,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
use_cache=use_cache,
return_dict=return_dict,
)
prediction_loss = None
params = None
if future_values is not None:
# outputs.last_hidden_state and trend
# loc is 4rd last and scale is 3rd last output
params = self.output_params(outputs[0] + outputs[1])
distribution = self.output_distribution(params, loc=outputs[-3], scale=outputs[-2])
loss = self.loss(distribution, future_values)
if future_observed_mask is None:
future_observed_mask = torch.ones_like(future_values)
if len(self.target_shape) == 0:
loss_weights = future_observed_mask
else:
loss_weights, _ = future_observed_mask.min(dim=-1, keepdim=False)
prediction_loss = weighted_average(loss, weights=loss_weights)
if not return_dict:
outputs = ((params,) + outputs[2:]) if params is not None else outputs[2:]
return ((prediction_loss,) + outputs) if prediction_loss is not None else outputs
return Seq2SeqTSPredictionOutput(
loss=prediction_loss,
params=params,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
loc=outputs.loc,
scale=outputs.scale,
static_features=outputs.static_features,
)
@torch.no_grad()
def generate(
self,
past_values: torch.Tensor,
past_time_features: torch.Tensor,
future_time_features: torch.Tensor,
past_observed_mask: Optional[torch.Tensor] = None,
static_categorical_features: Optional[torch.Tensor] = None,
static_real_features: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> SampleTSPredictionOutput:
r"""
Greedily generate sequences of sample predictions from a model with a probability distribution head.
Parameters:
past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`):
Past values of the time series, that serve as context in order to predict the future. The sequence size
of this tensor must be larger than the `context_length` of the model, since the model will use the
larger size to construct lag features, i.e. additional values from the past which are added in order to
serve as "extra context".
The `sequence_length` here is equal to `config.context_length` + `max(config.lags_sequence)`, which if
no `lags_sequence` is configured, is equal to `config.context_length` + 7 (as by default, the largest
look-back index in `config.lags_sequence` is 7). The property `_past_length` returns the actual length
of the past.
The `past_values` is what the Transformer encoder gets as input (with optional additional features,
such as `static_categorical_features`, `static_real_features`, `past_time_features` and lags).
Optionally, missing values need to be replaced with zeros and indicated via the `past_observed_mask`.
For multivariate time series, the `input_size` > 1 dimension is required and corresponds to the number
of variates in the time series per time step.
past_time_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_features)`):
Required time features, which the model internally will add to `past_values`. These could be things
like "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features).
These could also be so-called "age" features, which basically help the model know "at which point in
life" a time-series is. Age features have small values for distant past time steps and increase
monotonically the more we approach the current time step. Holiday features are also a good example of
time features.
These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT,
where the position encodings are learned from scratch internally as parameters of the model, the Time
Series Transformer requires to provide additional time features. The Time Series Transformer only
learns additional embeddings for `static_categorical_features`.
Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these
features must but known at prediction time.
The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`.
future_time_features (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_features)`):
Required time features for the prediction window, which the model internally will add to sampled
predictions. These could be things like "month of year", "day of the month", etc. encoded as vectors
(for instance as Fourier features). These could also be so-called "age" features, which basically help
the model know "at which point in life" a time-series is. Age features have small values for distant
past time steps and increase monotonically the more we approach the current time step. Holiday features
are also a good example of time features.
These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT,
where the position encodings are learned from scratch internally as parameters of the model, the Time
Series Transformer requires to provide additional time features. The Time Series Transformer only
learns additional embeddings for `static_categorical_features`.
Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these
features must but known at prediction time.
The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`.
past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
static_categorical_features (`torch.LongTensor` of shape `(batch_size, number of static categorical features)`, *optional*):
Optional static categorical features for which the model will learn an embedding, which it will add to
the values of the time series.
Static categorical features are features which have the same value for all time steps (static over
time).
A typical example of a static categorical feature is a time series ID.
static_real_features (`torch.FloatTensor` of shape `(batch_size, number of static real features)`, *optional*):
Optional static real features which the model will add to the values of the time series.
Static real features are features which have the same value for all time steps (static over time).
A typical example of a static real feature is promotion information.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers.
Return:
[`SampleTSPredictionOutput`] where the outputs `sequences` tensor will have shape `(batch_size, number of
samples, prediction_length)` or `(batch_size, number of samples, prediction_length, input_size)` for
multivariate predictions.
"""
outputs = self(
static_categorical_features=static_categorical_features,
static_real_features=static_real_features,
past_time_features=past_time_features,
past_values=past_values,
past_observed_mask=past_observed_mask,
future_time_features=None,
future_values=None,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
use_cache=False,
)
decoder = self.model.get_decoder()
enc_last_hidden = outputs.encoder_last_hidden_state
loc = outputs.loc
scale = outputs.scale
static_feat = outputs.static_features
num_parallel_samples = self.config.num_parallel_samples
repeated_loc = loc.repeat_interleave(repeats=num_parallel_samples, dim=0)
repeated_scale = scale.repeat_interleave(repeats=num_parallel_samples, dim=0)
repeated_past_values = (
past_values.repeat_interleave(repeats=num_parallel_samples, dim=0) - repeated_loc
) / repeated_scale
time_features = torch.cat((past_time_features, future_time_features), dim=1)
expanded_static_feat = static_feat.unsqueeze(1).expand(-1, time_features.shape[1], -1)
features = torch.cat((expanded_static_feat, time_features), dim=-1)
repeated_features = features.repeat_interleave(repeats=num_parallel_samples, dim=0)
repeated_enc_last_hidden = enc_last_hidden.repeat_interleave(repeats=num_parallel_samples, dim=0)
lagged_sequence = self.model.get_lagged_subsequences(
sequence=repeated_past_values, subsequences_length=self.config.context_length
)
lags_shape = lagged_sequence.shape
reshaped_lagged_sequence = lagged_sequence.reshape(lags_shape[0], lags_shape[1], -1)
seasonal_input, trend_input = self.model.decomposition_layer(reshaped_lagged_sequence)
mean = torch.mean(reshaped_lagged_sequence, dim=1).unsqueeze(1).repeat(1, self.config.prediction_length, 1)
zeros = torch.zeros(
[reshaped_lagged_sequence.shape[0], self.config.prediction_length, reshaped_lagged_sequence.shape[2]],
device=reshaped_lagged_sequence.device,
)
decoder_input = torch.cat(
(
torch.cat((seasonal_input[:, -self.config.label_length :, ...], zeros), dim=1),
repeated_features[:, -self.config.prediction_length - self.config.label_length :, ...],
),
dim=-1,
)
trend_init = torch.cat(
(
torch.cat((trend_input[:, -self.config.label_length :, ...], mean), dim=1),
repeated_features[:, -self.config.prediction_length - self.config.label_length :, ...],
),
dim=-1,
)
decoder_outputs = decoder(
trend=trend_init, inputs_embeds=decoder_input, encoder_hidden_states=repeated_enc_last_hidden
)
decoder_last_hidden = decoder_outputs.last_hidden_state
trend = decoder_outputs.trend
params = self.output_params(decoder_last_hidden + trend)
distr = self.output_distribution(params, loc=repeated_loc, scale=repeated_scale)
future_samples = distr.sample()
return SampleTSPredictionOutput(
sequences=future_samples.reshape(
(-1, num_parallel_samples, self.config.prediction_length) + self.target_shape,
)
)
```
|
==================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.02 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\aya_vision\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_aya_vision import *
from .modeling_aya_vision import *
from .processing_aya_vision import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==================================================================================================================================================
SOURCE CODE FILE: configuration_aya_vision.py
LINES: 1
SIZE: 4.69 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\aya_vision\configuration_aya_vision.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2025 Cohere team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""AyaVision model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING, AutoConfig
logger = logging.get_logger(__name__)
class AyaVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`AyaVisionForConditionalGeneration`]. It is used to instantiate an
AyaVision model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of AyaVision.
e.g. [CohereForAI/aya-vision-8b](https://huggingface.co/CohereForAI/aya-vision-8b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`):
The config object or dictionary of the vision backbone.
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
The config object or dictionary of the text backbone.
vision_feature_select_strategy (`str`, *optional*, defaults to `"full"`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
If `"full"`, the full vision features are used.
vision_feature_layer (`int`, *optional*, defaults to -1):
The index of the layer to select the vision feature.
downsample_factor (`int`, *optional*, defaults to 2):
The downsample factor to apply to the vision features.
adapter_layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon value used for layer normalization in the adapter.
image_token_index (`int`, *optional*, defaults to 255036):
The image token index to encode the image prompt.
"""
model_type = "aya_vision"
sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig}
def __init__(
self,
vision_config=None,
text_config=None,
vision_feature_select_strategy="full",
vision_feature_layer=-1,
downsample_factor=2,
adapter_layer_norm_eps=1e-6,
image_token_index=255036,
**kwargs,
):
self.image_token_index = image_token_index
self.downsample_factor = downsample_factor
self.adapter_layer_norm_eps = adapter_layer_norm_eps
if vision_feature_select_strategy not in ["default", "full"]:
raise ValueError(
"vision_feature_select_strategy should be one of 'default', 'full'."
f"Got: {vision_feature_select_strategy}"
)
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
if isinstance(vision_config, dict):
vision_config["model_type"] = (
vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model"
)
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
elif vision_config is None:
vision_config = CONFIG_MAPPING["siglip_vision_model"](
hidden_size=1152,
intermediate_size=4304,
patch_size=14,
image_size=384,
num_hidden_layers=26,
num_attention_heads=14,
vision_use_head=False,
)
self.vision_config = vision_config
if isinstance(text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
text_config = CONFIG_MAPPING["cohere2"]()
self.text_config = text_config
super().__init__(**kwargs)
__all__ = ["AyaVisionConfig"]
```
|
=============================================================================================================================================
SOURCE CODE FILE: modeling_aya_vision.py
LINES: 1
SIZE: 27.81 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\aya_vision\modeling_aya_vision.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/aya_vision/modular_aya_vision.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_aya_vision.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 the Cohere Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_outputs import ModelOutput
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torchdynamo_compiling,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from ..auto import AutoModel, AutoModelForCausalLM
from .configuration_aya_vision import AyaVisionConfig
_CONFIG_FOR_DOC = "AyaVisionConfig"
class AyaVisionMultiModalProjector(nn.Module):
def __init__(self, config: AyaVisionConfig):
super().__init__()
self.config = config
self.downsample_factor = config.downsample_factor
self.alignment_intermediate_size = getattr(
config, "alignment_intermediate_size", config.text_config.hidden_size
)
self.layernorm = nn.LayerNorm(
config.vision_config.hidden_size * (config.downsample_factor**2), eps=config.adapter_layer_norm_eps
)
self.linear_1 = nn.Linear(
config.vision_config.hidden_size * (config.downsample_factor**2),
self.alignment_intermediate_size,
bias=True,
)
self.act = ACT2FN["silu"] # SwiGLU uses SiLU activation
# For SwiGLU, project down to half size since we split intermediate dim
self.linear_2 = nn.Linear(self.alignment_intermediate_size // 2, config.text_config.hidden_size, bias=True)
def forward(self, image_features):
image_features = self.pixel_shuffle(image_features)
image_features = self.layernorm(image_features)
hidden_states = self.linear_1(image_features)
# Split along last dimension and apply SwiGLU
x, gate = hidden_states.chunk(2, dim=-1)
hidden_states = self.act(gate) * x
hidden_states = self.linear_2(hidden_states)
return hidden_states
def pixel_shuffle(self, image_features): # B, S, D
batch_size, seq_length, feature_dim = image_features.shape
height = width = int(seq_length**0.5)
image_features = image_features.reshape(image_features.shape[0], width, height, -1)
channels = image_features.shape[-1]
image_features = image_features.reshape(
batch_size, width, int(height / self.downsample_factor), int(channels * self.downsample_factor)
)
image_features = image_features.permute(0, 2, 1, 3)
image_features = image_features.reshape(
batch_size, int(height / self.downsample_factor), int(width / self.downsample_factor), -1
)
image_features = image_features.permute(0, 2, 1, 3)
return image_features
AYA_VISION_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`AyaVisionConfig`] or [`AyaVisionVisionConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Aya Vision Model outputting raw hidden-states without any specific head on top.",
AYA_VISION_START_DOCSTRING,
)
class AyaVisionPreTrainedModel(PreTrainedModel):
config_class = AyaVisionConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["AyaVisionVisionAttention"]
_skip_keys_device_placement = "past_key_values"
_supports_cache_class = True
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_quantized_cache = False
_supports_static_cache = False
def _init_weights(self, module):
# important: this ported version of AyaVision isn't meant for training from scratch - only
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
# https://github.com/haotian-liu/AyaVision/tree/main/aya_vision should serve for that purpose
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.text_config.initializer_range
)
if hasattr(module, "class_embedding"):
module.class_embedding.data.normal_(mean=0.0, std=std)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@dataclass
class AyaVisionCausalLMOutputWithPast(ModelOutput):
"""
Base class for AyaVision causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size (batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[torch.FloatTensor] = None
AYA_VISION_INPUTS_DOCSTRING = """
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
The tensors corresponding to the input images. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`GotOcr2ImageProcessor.__call__`] for details. [`AyaVisionProcessor`] uses
[`GotOcr2ImageProcessor`] for processing images.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
vision_feature_layer (`Union[int, List[int]], *optional*, defaults to -2`):
The index of the layer to select the vision feature. If multiple indices are provided,
the vision feature of the corresponding indices will be concatenated to form the
vision features.
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"""The AyaVision model which consists of a vision backbone and a language model.""",
AYA_VISION_START_DOCSTRING,
)
class AyaVisionForConditionalGeneration(AyaVisionPreTrainedModel, GenerationMixin):
def __init__(self, config: AyaVisionConfig):
super().__init__(config)
self.vision_tower = AutoModel.from_config(config.vision_config)
self.multi_modal_projector = AyaVisionMultiModalProjector(config)
self.vocab_size = config.text_config.vocab_size
self.language_model = AutoModelForCausalLM.from_config(config.text_config)
if self.language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys]
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def get_image_features(
self,
pixel_values: torch.FloatTensor,
vision_feature_layer: Union[int, List[int]],
vision_feature_select_strategy: str,
**kwargs,
):
"""
Obtains image last hidden states from the vision tower and apply multimodal projection.
Args:
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
The tensors corresponding to the input images.
vision_feature_layer (`Union[int, List[int]]`):
The index of the layer to select the vision feature. If multiple indices are provided,
the vision feature of the corresponding indices will be concatenated to form the
vision features.
vision_feature_select_strategy (`str`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`
Returns:
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
"""
if vision_feature_select_strategy not in ["default", "full"]:
raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}")
kwargs = {k: v for k, v in kwargs.items() if v is not None}
# this is not memory efficient at all (output_hidden_states=True) will save all the hidden states.
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True, **kwargs)
# If we have one vision feature layer, return the corresponding hidden states,
# otherwise, select the hidden states of each feature layer and concatenate them
if isinstance(vision_feature_layer, int):
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
if vision_feature_select_strategy == "default":
selected_image_feature = selected_image_feature[:, 1:]
else:
hs_pool = [image_outputs.hidden_states[layer_idx] for layer_idx in vision_feature_layer]
# For default; crop CLS from each hidden state in the hidden state pool
if vision_feature_select_strategy == "default":
hs_pool = [hs[:, 1:] for hs in hs_pool]
selected_image_feature = torch.cat(hs_pool, dim=-1)
image_features = self.multi_modal_projector(selected_image_feature)
return image_features
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(AYA_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=AyaVisionCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
vision_feature_layer: Optional[Union[int, List[int]]] = None,
vision_feature_select_strategy: Optional[str] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
image_sizes: Optional[torch.Tensor] = None,
**lm_kwargs,
) -> Union[Tuple, AyaVisionCausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoProcessor, AyaVisionForConditionalGeneration
>>> import torch
>>> torch_device = "cuda:0"
>>> processor = AutoProcessor.from_pretrained("CohereForAI/aya-vision-8b", use_fast=True)
>>> model = AyaVisionForConditionalGeneration.from_pretrained("CohereForAI/aya-vision-8b", device_map=torch_device)
>>> messages = [
... {
... "role": "user",
... "content": [
... {
... "type": "image",
... "url": "https://pbs.twimg.com/media/Fx7YvfQWYAIp6rZ?format=jpg&name=medium",
... },
... {"type": "text", "text": "चित्र में लिखा पाठ क्या कहता है?"},
... ],
... }
... ]
>>> inputs = processor.apply_chat_template(
... messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", device=torch_device
... ).to(model.device)
>>> gen_tokens = model.generate(**inputs, max_new_tokens=300, do_sample=True, temperature=0.3)
>>> processor.tokenizer.decode(gen_tokens[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_feature_layer = (
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
)
vision_feature_select_strategy = (
vision_feature_select_strategy
if vision_feature_select_strategy is not None
else self.config.vision_feature_select_strategy
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if pixel_values is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
)
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
if pixel_values is not None:
image_features = self.get_image_features(
pixel_values=pixel_values,
vision_feature_layer=vision_feature_layer,
vision_feature_select_strategy=vision_feature_select_strategy,
image_sizes=image_sizes,
)
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
n_image_tokens = (input_ids == self.config.image_token_index).sum()
n_image_features = image_features.shape[0] * image_features.shape[1]
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**lm_kwargs,
)
logits = outputs[0]
loss = None
if labels is not None:
# Shift so that tokens < n predict n
if attention_mask is not None:
# we use the input attention mask to shift the logits and labels, because it is 2D.
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device)
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
else:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return AyaVisionCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=image_features if pixel_values is not None else None,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
pixel_values=None,
attention_mask=None,
cache_position=None,
logits_to_keep=None,
**kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
model_inputs = self.language_model.prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**kwargs,
)
if cache_position[0] == 0:
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
# Otherwise we need pixel values to be passed to model
model_inputs["pixel_values"] = pixel_values
return model_inputs
def tie_weights(self):
return self.language_model.tie_weights()
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
__all__ = ["AyaVisionForConditionalGeneration", "AyaVisionPreTrainedModel"]
```
|
============================================================================================================================================
SOURCE CODE FILE: modular_aya_vision.py
LINES: 1
SIZE: 14.50 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\aya_vision\modular_aya_vision.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2025 the Cohere Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch AyaVision model."""
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from transformers.models.llava.modeling_llava import (
LlavaCausalLMOutputWithPast,
LlavaForConditionalGeneration,
LlavaPreTrainedModel,
)
from ...activations import ACT2FN
from ...utils import (
add_start_docstrings,
logging,
)
from .configuration_aya_vision import AyaVisionConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "AyaVisionConfig"
class AyaVisionMultiModalProjector(nn.Module):
def __init__(self, config: AyaVisionConfig):
super().__init__()
self.config = config
self.downsample_factor = config.downsample_factor
self.alignment_intermediate_size = getattr(
config, "alignment_intermediate_size", config.text_config.hidden_size
)
self.layernorm = nn.LayerNorm(
config.vision_config.hidden_size * (config.downsample_factor**2), eps=config.adapter_layer_norm_eps
)
self.linear_1 = nn.Linear(
config.vision_config.hidden_size * (config.downsample_factor**2),
self.alignment_intermediate_size,
bias=True,
)
self.act = ACT2FN["silu"] # SwiGLU uses SiLU activation
# For SwiGLU, project down to half size since we split intermediate dim
self.linear_2 = nn.Linear(self.alignment_intermediate_size // 2, config.text_config.hidden_size, bias=True)
def forward(self, image_features):
image_features = self.pixel_shuffle(image_features)
image_features = self.layernorm(image_features)
hidden_states = self.linear_1(image_features)
# Split along last dimension and apply SwiGLU
x, gate = hidden_states.chunk(2, dim=-1)
hidden_states = self.act(gate) * x
hidden_states = self.linear_2(hidden_states)
return hidden_states
def pixel_shuffle(self, image_features): # B, S, D
batch_size, seq_length, feature_dim = image_features.shape
height = width = int(seq_length**0.5)
image_features = image_features.reshape(image_features.shape[0], width, height, -1)
channels = image_features.shape[-1]
image_features = image_features.reshape(
batch_size, width, int(height / self.downsample_factor), int(channels * self.downsample_factor)
)
image_features = image_features.permute(0, 2, 1, 3)
image_features = image_features.reshape(
batch_size, int(height / self.downsample_factor), int(width / self.downsample_factor), -1
)
image_features = image_features.permute(0, 2, 1, 3)
return image_features
AYA_VISION_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`AyaVisionConfig`] or [`AyaVisionVisionConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Aya Vision Model outputting raw hidden-states without any specific head on top.",
AYA_VISION_START_DOCSTRING,
)
class AyaVisionPreTrainedModel(LlavaPreTrainedModel):
_supports_quantized_cache = False
_supports_static_cache = False
class AyaVisionCausalLMOutputWithPast(LlavaCausalLMOutputWithPast):
pass
AYA_VISION_INPUTS_DOCSTRING = """
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
The tensors corresponding to the input images. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`GotOcr2ImageProcessor.__call__`] for details. [`AyaVisionProcessor`] uses
[`GotOcr2ImageProcessor`] for processing images.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
vision_feature_layer (`Union[int, List[int]], *optional*, defaults to -2`):
The index of the layer to select the vision feature. If multiple indices are provided,
the vision feature of the corresponding indices will be concatenated to form the
vision features.
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"""The AyaVision model which consists of a vision backbone and a language model.""",
AYA_VISION_START_DOCSTRING,
)
class AyaVisionForConditionalGeneration(LlavaForConditionalGeneration):
def tie_weights(self):
return self.language_model.tie_weights()
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
vision_feature_layer: Optional[Union[int, List[int]]] = None,
vision_feature_select_strategy: Optional[str] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
image_sizes: Optional[torch.Tensor] = None,
**lm_kwargs,
) -> Union[Tuple, AyaVisionCausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoProcessor, AyaVisionForConditionalGeneration
>>> import torch
>>> torch_device = "cuda:0"
>>> processor = AutoProcessor.from_pretrained("CohereForAI/aya-vision-8b", use_fast=True)
>>> model = AyaVisionForConditionalGeneration.from_pretrained("CohereForAI/aya-vision-8b", device_map=torch_device)
>>> messages = [
... {
... "role": "user",
... "content": [
... {
... "type": "image",
... "url": "https://pbs.twimg.com/media/Fx7YvfQWYAIp6rZ?format=jpg&name=medium",
... },
... {"type": "text", "text": "चित्र में लिखा पाठ क्या कहता है?"},
... ],
... }
... ]
>>> inputs = processor.apply_chat_template(
... messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", device=torch_device
... ).to(model.device)
>>> gen_tokens = model.generate(**inputs, max_new_tokens=300, do_sample=True, temperature=0.3)
>>> processor.tokenizer.decode(gen_tokens[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
```"""
super().forward(
input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
vision_feature_layer=vision_feature_layer,
vision_feature_select_strategy=vision_feature_select_strategy,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
image_sizes=image_sizes,
**lm_kwargs,
)
__all__ = ["AyaVisionForConditionalGeneration", "AyaVisionPreTrainedModel"]
```
|
===============================================================================================================================================
SOURCE CODE FILE: processing_aya_vision.py
LINES: 1
SIZE: 10.65 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\aya_vision\processing_aya_vision.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2025 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Union
from transformers.processing_utils import (
ImagesKwargs,
ProcessingKwargs,
ProcessorMixin,
Unpack,
)
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from ...image_processing_utils import BatchFeature
from ...image_utils import (
ImageInput,
make_flat_list_of_images,
)
class AyaVisionImagesKwargs(ImagesKwargs, total=False):
crop_to_patches: Optional[bool]
min_patches: Optional[int]
max_patches: Optional[int]
class AyaVisionProcessorKwargs(ProcessingKwargs, total=False):
images_kwargs: AyaVisionImagesKwargs
_defaults = {
"text_kwargs": {
"padding_side": "left",
"padding": True,
},
"images_kwargs": {
"crop_to_patches": True,
},
}
class AyaVisionProcessor(ProcessorMixin):
r"""
Constructs a AyaVision processor which wraps a [`AutoImageProcessor`] and
[`PretrainedTokenizerFast`] tokenizer into a single processor that inherits both the image processor and
tokenizer functionalities. See the [`~AyaVisionProcessor.__call__`] and [`~AyaVisionProcessor.decode`] for more information.
Args:
image_processor ([`AutoImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`PreTrainedTokenizer`, `PreTrainedTokenizerFast`], *optional*):
The tokenizer is a required input.
patch_size (`int`, *optional*, defaults to 28):
The size of image patches for tokenization.
img_size (`int`, *optional*, defaults to 364):
The size of the image to be tokenized. This should correspond to the size given to the image processor.
image_token (`str`, *optional*, defaults to `"<image>"`):
The token to be used to represent an image in the text.
downsample_factor (`int`, *optional*, defaults to 1):
The factor by which to scale the patch size.
start_of_img_token (`str`, *optional*, defaults to `"<|START_OF_IMG|>"`):
The token to be used to represent the start of an image in the text.
end_of_img_token (`str`, *optional*, defaults to `"<|END_OF_IMG|>"`):
The token to be used to represent the end of an image in the text.
img_patch_token (`str`, *optional*, defaults to `"<|IMG_PATCH|>"`):
The token to be used to represent an image patch in the text.
img_line_break_token (`str`, *optional*, defaults to `"<|IMG_LINE_BREAK|>"`):
The token to be used to represent a line break in the text.
tile_token (`str`, *optional*, defaults to `"TILE"`):
The token to be used to represent an image patch in the text.
tile_global_token (`str`, *optional*, defaults to `"TILE_GLOBAL"`):
The token to be used to represent the cover image in the text.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = [
"chat_template",
"image_token",
"patch_size",
"img_size",
"downsample_factor",
"start_of_img_token",
"end_of_img_token",
"img_patch_token",
"img_line_break_token",
"tile_token",
"tile_global_token",
]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,
tokenizer=None,
patch_size: int = 28,
img_size: int = 364,
image_token="<image>", # set the default and let users change if they have peculiar special tokens in rare cases
downsample_factor: int = 1,
start_of_img_token="<|START_OF_IMG|>",
end_of_img_token="<|END_OF_IMG|>",
img_patch_token="<|IMG_PATCH|>",
img_line_break_token="<|IMG_LINE_BREAK|>",
tile_token="TILE",
tile_global_token="TILE_GLOBAL",
chat_template=None,
**kwargs,
):
super().__init__(image_processor, tokenizer, chat_template=chat_template)
self.image_token = image_token
self.patch_size = patch_size * downsample_factor
self.img_size = img_size
self.start_of_img_token = start_of_img_token
self.end_of_img_token = end_of_img_token
self.img_patch_token = img_patch_token
self.img_line_break_token = img_line_break_token
self.tile_token = tile_token
self.tile_global_token = tile_global_token
def _prompt_split_image(self, num_patches):
"""
Create a structured string representation of image tokens
Args:
num_patches: Number of patches in the image
Returns:
String with appropriate image tokens
"""
img_patches_per_tile = (self.img_size // self.patch_size) ** 2
img_string = f"{self.start_of_img_token}"
if num_patches > 1:
for idx in range(1, num_patches):
img_string += f"{self.tile_token}_{idx}" + f"{self.img_patch_token}" * img_patches_per_tile
img_string += f"{self.tile_global_token}" + f"{self.img_patch_token}" * img_patches_per_tile
img_string += f"{self.end_of_img_token}"
return img_string
def __call__(
self,
images: Optional[ImageInput] = None,
text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
audio=None,
videos=None,
**kwargs: Unpack[AyaVisionProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] to encode the text.
To prepare the vision inputs, this method forwards the `images` and `kwargs` arguments to
GotOcr2ImageProcessor's [`~GotOcr2ImageProcessor.__call__`] if `images` is not `None`.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if text is None:
raise ValueError("You have to specify text.")
output_kwargs = self._merge_kwargs(
AyaVisionProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if not isinstance(text, (list, tuple)):
text = [text]
# Process images
image_inputs = {}
if images is not None:
images = make_flat_list_of_images(images)
image_inputs = self.image_processor(images=images, **output_kwargs["images_kwargs"])
num_patches = image_inputs.pop("num_patches")
image_index = 0
processed_text = []
for prompt in text:
new_prompt = prompt
while "<image>" in new_prompt:
# Replace the image placeholder with structured image tokens
image_tokens = self._prompt_split_image(num_patches[image_index])
new_prompt = new_prompt.replace("<image>", image_tokens, 1)
image_index += 1
processed_text.append(new_prompt)
if image_index != len(images):
raise ValueError("Number of image placeholders in the prompt does not match the number of images.")
text = processed_text
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
return BatchFeature(data={**text_inputs, **image_inputs})
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(tokenizer_input_names) + list(image_processor_input_names)
__all__ = ["AyaVisionProcessor"]
```
|
=============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.02 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bamba\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 IBM and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_bamba import *
from .modeling_bamba import *
from .processing_bamba import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
========================================================================================================================================
SOURCE CODE FILE: configuration_bamba.py
LINES: 1
SIZE: 9.65 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bamba\configuration_bamba.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 IBM and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Bamba model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class BambaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BambaModel`]. It is used to instantiate a
BambaModel model according to the specified arguments, defining the model architecture. Instantiating a configuration
with defaults taken from [ibm-fms/Bamba-9.8b-2.2T-hf](https://huggingface.co/ibm-fms/Bamba-9.8b-2.2T-hf).
The BambaModel is a hybrid [mamba2](https://github.com/state-spaces/mamba) architecture with SwiGLU.
The checkpoints are jointly trained by IBM, Princeton, and UIUC.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 128000):
Vocabulary size of the Bamba model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`BambaModel`]
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
model has an output word embedding layer.
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 14336):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an
integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the
logits of the last prompt token are needed for generation. For long sequences, the logits for the entire
sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint
significantly.
pad_token_id (`int`, *optional*, defaults to 0):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the "end-of-sequence" token.
max_position_embeddings (`int`, *optional*, defaults to 262144):
Max cached sequence length for the model
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
attn_layer_indices (`list`, *optional*):
Specifies the layer indices that will have full attention. Must contain values at most num_hidden_layers.
mamba_n_heads (`int`, *optional*, defaults to 128):
The number of mamba heads used in the v2 implementation.
mamba_d_head (`int`, *optional*, defaults to `"auto"`):
Head embedding dimension size
mamba_n_groups (`int`, *optional*, defaults to 1):
The number of the mamba groups used in the v2 implementation.
mamba_d_state (`int`, *optional*, defaults to 256):
The dimension the mamba state space latents
mamba_d_conv (`int`, *optional*, defaults to 4):
The size of the mamba convolution kernel
mamba_expand (`int`, *optional*, defaults to 2):
Expanding factor (relative to hidden_size) used to determine the mamba intermediate size
mamba_chunk_size (`int`, *optional*, defaults to 256):
The chunks in which to break the sequence when doing prefill/training
mamba_conv_bias (`bool`, *optional*, defaults to `True`):
Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
mamba_proj_bias (`bool`, *optional*, defaults to `False`):
Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block
"""
model_type = "bamba"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=128000,
tie_word_embeddings=False,
hidden_size=4096,
intermediate_size=14336,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=8,
hidden_act="silu",
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
num_logits_to_keep=1,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
max_position_embeddings=262144,
attention_dropout=0.0,
attn_layer_indices=None,
mamba_n_heads=128,
mamba_d_head="auto",
mamba_n_groups=1,
mamba_d_state=256,
mamba_d_conv=4,
mamba_expand=2,
mamba_chunk_size=256,
mamba_conv_bias=True,
mamba_proj_bias=False,
**kwargs,
):
self.vocab_size = vocab_size
self.tie_word_embeddings = tie_word_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.attention_dropout = attention_dropout
self.attention_bias = False
self.mlp_bias = False
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.num_logits_to_keep = num_logits_to_keep
self.attn_layer_indices = attn_layer_indices
self.rope_theta = 10000.0
self.rope_scaling = None
self.partial_rotary_factor = 0.5
mamba_intermediate = mamba_expand * hidden_size
if mamba_intermediate % mamba_n_heads != 0:
raise ValueError("mamba_n_heads must divide mamba_expand * hidden_size")
# for the mamba_v2, must satisfy the following
if mamba_d_head == "auto":
mamba_d_head = mamba_intermediate // mamba_n_heads
if mamba_d_head * mamba_n_heads != mamba_intermediate:
raise ValueError("The dimensions for the Mamba head state do not match the model intermediate_size")
self.mamba_n_heads = mamba_n_heads
self.mamba_d_head = mamba_d_head
self.mamba_n_groups = mamba_n_groups
self.mamba_d_state = mamba_d_state
self.mamba_d_conv = mamba_d_conv
self.mamba_expand = mamba_expand
self.mamba_chunk_size = mamba_chunk_size
self.mamba_conv_bias = mamba_conv_bias
self.mamba_proj_bias = mamba_proj_bias
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
@property
def layers_block_type(self):
return [
"attention" if (self.attn_layer_indices and i in self.attn_layer_indices) else "mamba"
for i in range(self.num_hidden_layers)
]
__all__ = ["BambaConfig"]
```
|
===================================================================================================================================
SOURCE CODE FILE: modeling_bamba.py
LINES: 2
SIZE: 72.83 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bamba\modeling_bamba.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/bamba/modular_bamba.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_bamba.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 IBM and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Tuple, Union
import torch
from torch import nn
import transformers.models.jamba.modeling_jamba as modeling_jamba
from transformers.activations import ACT2FN
from ...cache_utils import Cache # we need __iter__ and __len__ of pkv
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from ...utils.import_utils import is_causal_conv1d_available, is_mamba_2_ssm_available
from .configuration_bamba import BambaConfig
if is_mamba_2_ssm_available():
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined
else:
selective_state_update = None
if is_causal_conv1d_available():
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
else:
causal_conv1d_update, causal_conv1d_fn = None, None
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "BambaConfig"
# Adapted from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache for the v2 mixer
class HybridMambaAttentionDynamicCache(modeling_jamba.HybridMambaAttentionDynamicCache):
"""
A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache
(which has a constant shape regardless of seq_len).
This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states`
and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor
For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`,
while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors).
For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors),
while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`,
and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`.
"""
def __init__(self, config: BambaConfig, batch_size, dtype=torch.float16, device=None):
super().__init__(config, batch_size, dtype, device)
self.layers_block_type = config.layers_block_type
self.has_previous_state = False # only used by mamba
conv_kernel_size = config.mamba_d_conv
ssm_state_size = config.mamba_d_state
self.conv_states = []
self.ssm_states = []
self.transformer_layers = []
for i in range(config.num_hidden_layers):
if self.layers_block_type[i] == "mamba":
self.conv_states += [
torch.zeros(
batch_size,
(config.mamba_expand * config.hidden_size + 2 * config.mamba_n_groups * ssm_state_size),
conv_kernel_size,
device=device,
dtype=dtype,
)
]
self.ssm_states += [
torch.zeros(
batch_size,
config.mamba_n_heads,
config.mamba_d_head,
ssm_state_size,
device=device,
dtype=dtype,
)
]
else:
self.conv_states += [torch.tensor([[]] * batch_size, device=device)]
self.ssm_states += [torch.tensor([[]] * batch_size, device=device)]
self.transformer_layers.append(i)
self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
class BambaRotaryEmbedding(nn.Module):
def __init__(self, config: BambaConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
# Adapted from transformers.models.glm.modular_glm.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Removes the interleaving of cos and sin from GLM
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
# Keep half or full tensor for later concatenation
rotary_dim = cos.shape[-1]
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
# Apply rotary embeddings on the first half or full tensor
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
# Concatenate back to full shape
q_embed = torch.cat([q_embed, q_pass], dim=-1)
k_embed = torch.cat([k_embed, k_pass], dim=-1)
return q_embed, k_embed
class BambaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: BambaConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class BambaRMSNormGated(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states, gate=None):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
if gate is not None:
hidden_states = hidden_states * nn.functional.silu(gate.to(torch.float32))
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
# Helper methods for segment sum computation
def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int):
"""
Padding x tensor with `pad_size` on the seq_len dim (dim=1)
Assumes that we only have tensors of either size 4 or 3
"""
pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0)
return torch.nn.functional.pad(input_tensor, pad_shape, mode="constant", value=0)
def reshape_into_chunks(input_tensor, pad_size, chunk_size):
"""
Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and
simultaneously splitting it into chunk sequences.
Assumes that we only have tensors of either size 4 or 3
"""
# [bsz, seq_len, ...] -> [bsz, seq_len multiple of chunk_size, ...]
input_tensor = pad_tensor_by_size(input_tensor, pad_size)
if len(input_tensor.shape) == 3:
# [bsz, seq_len multiple of chunk_size, num_heads] -> [bsz, -1, chunk_size, num_heads]
return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2])
else:
# [bsz, seq_len multiple of chunk_size, num_heads, head_dim or state_size] -> [bsz, -1, chunk_size, num_heads, head_dim or state_size]
return input_tensor.reshape(
input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3]
)
def segment_sum(input_tensor):
"""
More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions.
"""
chunk_size = input_tensor.size(-1)
# 1. expand input tensor to have an additional dimension and repeat along that dimension
# [..., chunk_size] -> [..., chunk_size, chunk_size]
input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size)
# 2. create a lower triangular mask with the diagonal set to 0 to 0 out elements above diag
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1)
input_tensor = input_tensor.masked_fill(~mask, 0)
# 3. compute actual cumsum
tensor_segsum = torch.cumsum(input_tensor, dim=-2)
# 4. apply mask to keep only the lower triangular part of the cumulative sum result (incl diagonal this time)
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0)
tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf)
return tensor_segsum
is_fast_path_available = all((selective_state_update, causal_conv1d_fn, causal_conv1d_update))
def apply_mask_to_padding_states(hidden_states, attention_mask):
"""
Tunes out the hidden states for padding tokens, see https://github.com/state-spaces/mamba/issues/66
"""
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
dtype = hidden_states.dtype
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
return hidden_states
# Adapted from transformers.models.mamba2.modeling_mamba2.Mamba2Mixer
class BambaMixer(nn.Module):
"""
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
and is why Mamba is called **selective** state spaces)
The are a few differences between this and Mamba2Mixer:
- The variable use_precomputed_states is slightly different due to the HybridCache structure
- There's a few non-obvious bugs fixed with batching in the slow path that exist in main
- Some extra variables that our layer doesn't need have been removed
- We ported most of the refactors in https://github.com/huggingface/transformers/pull/35154, which is (as of Dec 18, 2024) unmerged
"""
def __init__(self, config: BambaConfig, layer_idx: int):
super().__init__()
self.num_heads = config.mamba_n_heads
self.hidden_size = config.hidden_size
self.ssm_state_size = config.mamba_d_state
self.conv_kernel_size = config.mamba_d_conv
self.intermediate_size = int(config.mamba_expand * self.hidden_size)
self.layer_idx = layer_idx
self.use_conv_bias = config.mamba_conv_bias
self.activation = config.hidden_act
self.act = ACT2FN[config.hidden_act]
self.use_bias = config.mamba_proj_bias
self.layer_norm_epsilon = config.rms_norm_eps
self.n_groups = config.mamba_n_groups
self.head_dim = config.mamba_d_head
self.chunk_size = config.mamba_chunk_size
# FIXME:
self.time_step_limit = (0.0, float("inf"))
self.time_step_min = 0.001
self.time_step_max = 0.1
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size
self.conv1d = nn.Conv1d(
in_channels=self.conv_dim,
out_channels=self.conv_dim,
bias=config.mamba_conv_bias,
kernel_size=self.conv_kernel_size,
groups=self.conv_dim,
padding=self.conv_kernel_size - 1,
)
# projection of the input hidden states
projection_size = self.intermediate_size + self.conv_dim + self.num_heads
self.in_proj = nn.Linear(
self.hidden_size,
projection_size,
bias=self.use_bias,
)
# selective projection used to make dt, B and C input dependant
# time step projection (discretization)
# instantiate once and copy inv_dt in init_weights of PretrainedModel
self.dt_bias = nn.Parameter(torch.ones(self.num_heads))
# S4D real initialization. These are not discretized!
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
A = torch.arange(1, self.num_heads + 1)
self.A_log = nn.Parameter(torch.log(A))
self.A_log._no_weight_decay = True
self.norm = BambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon)
self.D = nn.Parameter(torch.ones(self.num_heads))
self.D._no_weight_decay = True
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias)
if not is_fast_path_available:
logger.warning_once(
"The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`"
" is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and"
" https://github.com/Dao-AILab/causal-conv1d"
)
else:
logger.warning_once("The fast path for Bamba will be used when running the model on a GPU")
def cuda_kernels_forward(
self,
hidden_states: torch.Tensor,
cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
):
# 1. Gated MLP's linear projection
hidden_states = apply_mask_to_padding_states(hidden_states, attention_mask)
projected_states = self.in_proj(hidden_states)
# Set up dimensions for reshapes later
batch_size, seq_len, _ = hidden_states.shape
groups_time_state_size = self.n_groups * self.ssm_state_size
use_precomputed_states = (
cache_params is not None
and cache_params.has_previous_state
and seq_len == 1
and cache_params.conv_states[self.layer_idx].shape[0]
== cache_params.ssm_states[self.layer_idx].shape[0]
== batch_size
and cache_position is not None
and cache_position[0] > 0
)
# getting projected states from cache if it exists
if use_precomputed_states:
gate, hidden_states_B_C, dt = projected_states.squeeze(1).split(
[self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
)
# 2. Convolution sequence transformation
hidden_states_B_C = causal_conv1d_update(
hidden_states_B_C,
cache_params.conv_states[self.layer_idx],
self.conv1d.weight.squeeze(1),
self.conv1d.bias,
self.activation,
)
hidden_states, B, C = torch.split(
hidden_states_B_C,
[self.intermediate_size, groups_time_state_size, groups_time_state_size],
dim=-1,
)
# 3. SSM transformation
A = -torch.exp(self.A_log.float()) # (nheads,)
A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
dt = dt[:, :, None].expand(-1, -1, self.head_dim)
dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim)
D = self.D[:, None, ...].expand(-1, self.head_dim)
B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups)
C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups)
hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim)
hidden_states = selective_state_update(
cache_params.ssm_states[self.layer_idx],
hidden_states_reshaped,
dt,
A,
B,
C,
D,
z=None,
dt_bias=dt_bias,
dt_softplus=True,
)
hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim)
hidden_states = self.norm(hidden_states, gate)
# 4. Final linear projection
out = self.out_proj(hidden_states)[:, None, ...]
# Fused calculations or step by step if no initialized cache is found
else:
A = -torch.exp(self.A_log.float()) # (num_heads) or (intermediate_size, state_size)
dt_limit_kwargs = {} if self.time_step_limit == (0.0, float("inf")) else {"dt_limit": self.time_step_limit}
# 2-4. Fused kernel for conv1d, SSM, and the final projection
if self.training and cache_params is None:
out = mamba_split_conv1d_scan_combined(
projected_states,
self.conv1d.weight.squeeze(1),
self.conv1d.bias,
self.dt_bias,
A,
D=self.D,
chunk_size=self.chunk_size,
seq_idx=None, # was seq_idx
activation=self.activation,
rmsnorm_weight=self.norm.weight,
rmsnorm_eps=self.norm.variance_epsilon,
outproj_weight=self.out_proj.weight,
outproj_bias=self.out_proj.bias,
headdim=self.head_dim,
ngroups=self.n_groups,
norm_before_gate=False,
return_final_states=False,
**dt_limit_kwargs,
)
else:
gate, hidden_states_B_C, dt = projected_states.split(
[self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
)
# 2. Convolution sequence transformation
# Init cache
if cache_params is not None:
# storing the states
# If we just take xBC[:, :, -self.d_conv :], it will error if seqlen < self.d_conv
# Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise.
hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2)
conv_states = nn.functional.pad(
hidden_states_B_C_transposed,
(self.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0),
)
cache_params.conv_states[self.layer_idx].copy_(conv_states)
if self.activation not in ["silu", "swish"]:
hidden_states_B_C = self.act(
self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2)
)
else:
hidden_states_B_C = causal_conv1d_fn(
x=hidden_states_B_C.transpose(1, 2),
weight=self.conv1d.weight.squeeze(1),
bias=self.conv1d.bias,
activation=self.activation,
).transpose(1, 2)
hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask)
hidden_states, B, C = torch.split(
hidden_states_B_C,
[self.intermediate_size, groups_time_state_size, groups_time_state_size],
dim=-1,
)
# 3. SSM transformation
scan_output, ssm_state = mamba_chunk_scan_combined(
hidden_states.view(batch_size, seq_len, -1, self.head_dim),
dt,
A,
B.view(batch_size, seq_len, self.n_groups, -1),
C.view(batch_size, seq_len, self.n_groups, -1),
chunk_size=self.chunk_size,
D=self.D,
z=None,
seq_idx=None,
return_final_states=True,
dt_bias=self.dt_bias,
dt_softplus=True,
**dt_limit_kwargs,
)
# Init cache
if ssm_state is not None and cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
scan_output = scan_output.view(batch_size, seq_len, -1)
# Multiply "gate" branch and apply extra normalization layer
scan_output = self.norm(scan_output, gate)
# 4. Final linear projection
out = self.out_proj(scan_output)
return out
# fmt: off
def torch_forward(
self,
input_states,
cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
):
batch_size, seq_len, _ = input_states.shape
dtype = input_states.dtype
# 1. Gated MLP's linear projection
input_states = apply_mask_to_padding_states(input_states, attention_mask)
projected_states = self.in_proj(input_states)
gate, hidden_states_B_C, dt = projected_states.split(
[self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
)
use_precomputed_states = (
cache_params is not None
and cache_params.has_previous_state
and seq_len == 1
and cache_params.conv_states[self.layer_idx].shape[0]
== cache_params.ssm_states[self.layer_idx].shape[0]
== batch_size
and cache_position is not None
and cache_position[0] > 0
)
# 2. Convolution sequence transformation
if use_precomputed_states:
cache_params.conv_states[self.layer_idx] = cache_params.conv_states[self.layer_idx].roll(shifts=-1, dims=-1)
cache_params.conv_states[self.layer_idx][:, :, -1] = hidden_states_B_C[:, 0, :].to(cache_params.conv_states[self.layer_idx].device)
# We need to guarantee that anything regarding the cache is on the same device
conv_states = cache_params.conv_states[self.layer_idx].to(device=self.conv1d.weight.device)
hidden_states_B_C = torch.sum(
conv_states * self.conv1d.weight.squeeze(1), dim=-1
)
if self.use_conv_bias:
hidden_states_B_C = hidden_states_B_C + self.conv1d.bias
hidden_states_B_C = self.act(hidden_states_B_C)
else:
# Init cache
if cache_params is not None:
hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2)
conv_states = nn.functional.pad(
hidden_states_B_C_transposed, (self.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0)
)
cache_params.conv_states[self.layer_idx].copy_(conv_states)
hidden_states_B_C = self.act(self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2))
hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask)
hidden_states, B, C = torch.split(
hidden_states_B_C,
[self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size],
dim=-1
)
# 3. SSM transformation
A = -torch.exp(self.A_log.float()) # [num_heads]
if use_precomputed_states:
# We need to guarantee that anything regarding the cache is on the same device
cache_device = cache_params.ssm_states[self.layer_idx].device
# Note: there is no need to pad parameter matrices here, as there is just one new token
# for batched generation
dt = dt[:, 0, :][:, None, ...]
dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim)
# [num_heads] -> [num_heads, head_dim]
dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim)
dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype))
dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1])
A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
# [bsz, num_heads, head_dim, state_size]
dA = (torch.exp(dt[..., None] * A)).to(device=cache_device)
# Discretize B
# [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] ->
# -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size]
B = B.reshape(batch_size, self.n_groups, -1)[..., None, :]
B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous()
B = B.reshape(batch_size, -1, B.shape[-1])
# [bsz, num_heads, head_dim, state_size]
dB = dt[..., None] * B[..., None, :]
# Discretize x into dB
# [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim)
dBx = (dB * hidden_states[..., None]).to(device=cache_device)
# State calculation
cache_params.ssm_states[self.layer_idx].copy_(
cache_params.ssm_states[self.layer_idx] * dA + dBx
)
# Subsequent output
# [bsz, n_groups * state_size] -> [bsz, num_heads, state_size]
C = C.reshape(batch_size, self.n_groups, -1)[..., None, :]
C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous()
C = C.reshape(batch_size, -1, C.shape[-1])
# [bsz, num_heads, head_dim]
ssm_states = cache_params.ssm_states[self.layer_idx].to(device=C.device, dtype=C.dtype) # Shape: [b, h, d, n]
# Reshape ssm_states to merge the first two dimensions
ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) # Shape: [b*h, d, n]
C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) # Shape: [b*h, n, 1]
y = torch.bmm(ssm_states_reshaped, C_reshaped)
y = y.view(batch_size, self.num_heads, self.head_dim)
# D skip connection
# [num_heads] -> [num_heads, head_dim]
D = self.D[..., None].expand(self.D.shape[0], self.head_dim)
y = (y + hidden_states * D).to(y.dtype)
# [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
y = y.reshape(batch_size, -1)[:, None, ...]
else:
# begin ssd naive implementation without einsums
dt = nn.functional.softplus(dt + self.dt_bias)
dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1])
hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float()
B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
B = B.repeat(1, 1, self.num_heads // self.n_groups, 1)
C = C.repeat(1, 1, self.num_heads // self.n_groups, 1)
pad_size = (self.chunk_size - seq_len % self.chunk_size) % self.chunk_size
D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size)
# Discretize x and A
hidden_states = hidden_states * dt[..., None]
A = A.to(hidden_states.dtype) * dt
# Rearrange into blocks/chunks
hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)]
# [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
A = A.permute(0, 3, 1, 2)
A_cumsum = torch.cumsum(A, dim=-1)
# 1. Compute the output for each intra-chunk (diagonal blocks)
# This is the analog of a causal mask
L = torch.exp(segment_sum(A))
# Contraction of C and B to get G (attention-weights like)
G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, :, :] # shape: (b, c, l, s, h, n)
G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h)
# Compute M, equivalent to applying attention mask to weights
M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None]
M = M_intermediate.sum(dim=-1)
# Compute Y_diag (apply to values)
Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(dim=3)
# 2. Compute the state for each intra-chunk
# (right term of low-rank factorization of off-diagonal blocks; B terms)
decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
B_decay = B * decay_states.permute(0, -2, -1, 1)[..., None]
states = (B_decay[..., None, :] * hidden_states[..., None]).sum(dim=2)
# 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at chunk boundaries
# (middle term of factorization of off-diag blocks; A terms)
if use_precomputed_states:
previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...].to(device=states.device)
else:
previous_states = torch.zeros_like(states[:, :1])
states = torch.cat([previous_states, states], dim=1)
decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
decay_chunk = decay_chunk.transpose(1, 3)
new_states = (decay_chunk[..., None, None] * states[:, :, None, ...]).sum(dim=1)
states, ssm_state = new_states[:, :-1], new_states[:, -1]
# 4. Compute state -> output conversion per chunk
# (left term of low-rank factorization of off-diagonal blocks; C terms)
state_decay_out = torch.exp(A_cumsum)
C_times_states = (C[..., None, :] * states[:, :, None, ...])
state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1)
Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None])
# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
y = Y_diag + Y_off
# [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
y = y.reshape(batch_size, -1, self.num_heads, self.head_dim)
y = y + D_residual
# Cutting off padded chunks
if pad_size > 0:
y = y[:, :seq_len, :, :]
y = y.reshape(batch_size, seq_len, -1)
# Init cache
if ssm_state is not None and cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
scan_output = self.norm(y, gate)
# end ssd naive
# 4. Final linear projection
contextualized_states = self.out_proj(scan_output.to(dtype)) # [batch, seq_len, hidden_size]
return contextualized_states
# fmt: on
def forward(
self,
hidden_states,
cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
):
if is_fast_path_available and "cuda" in self.in_proj.weight.device.type:
return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask)
dtype = hidden_states.dtype
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
return self.torch_forward(hidden_states, cache_params, cache_position, attention_mask)
class BambaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
class BambaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
BambaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class BambaDecoderLayer(nn.Module):
def __init__(self, config: BambaConfig, layer_idx: int, layer_type: str = "mamba"):
super().__init__()
num_experts = 1
ffn_layer_class = BambaMLP if num_experts == 1 else None
self.feed_forward = ffn_layer_class(config)
self.input_layernorm = BambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.pre_ff_layernorm = BambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.layer_type = layer_type
if layer_type == "mamba":
self.mamba = BambaMixer(config=config, layer_idx=layer_idx)
elif layer_type == "attention":
self.self_attn = BambaAttention(config, layer_idx)
else:
raise ValueError("Invalid layer_type")
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`HybridMambaAttentionDynamicCache`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# this is a hybrid decoder layer
if self.layer_type == "mamba":
hidden_states = self.mamba(
hidden_states=hidden_states,
cache_params=past_key_value,
cache_position=cache_position,
attention_mask=attention_mask,
)
self_attn_weights = None
elif self.layer_type == "attention":
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
# residual connection after attention
hidden_states = residual + hidden_states
# feed-forward
residual = hidden_states
hidden_states = self.pre_ff_layernorm(hidden_states)
hidden_states = self.feed_forward(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
BAMBA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`BambaConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare BambaModel outputting raw hidden-states without any specific head on top.",
BAMBA_START_DOCSTRING,
)
class BambaPreTrainedModel(PreTrainedModel):
config_class = BambaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["BambaDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True # Note: only supports HybridMambaAttentionDynamicCache
_is_stateful = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
BAMBA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`HybridMambaAttentionDynamicCache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
A HybridMambaAttentionDynamicCache object containing pre-computed hidden-states (keys and values in the
self-attention blocks and convolution and ssm states in the mamba blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
Key and value cache tensors have shape `(batch_size, num_heads, seq_len, head_dim)`.
Convolution and ssm states tensors have shape `(batch_size, d_inner, d_conv)` and
`(batch_size, d_inner, d_state)` respectively.
See the `HybridMambaAttentionDynamicCache` class for more details.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Bamba Model outputting raw hidden-states without any specific head on top.",
BAMBA_START_DOCSTRING,
)
# Adapted from transformers.models.jamba.modeling_jamba.JambaModel
class BambaModel(BambaPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`BambaDecoderLayer`]
Args:
config: BambaConfig
"""
def __init__(self, config: BambaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
decoder_layers = []
for i in range(config.num_hidden_layers):
decoder_layers.append(BambaDecoderLayer(config, layer_idx=i, layer_type=config.layers_block_type[i]))
self.layers = nn.ModuleList(decoder_layers)
self._attn_implementation = config._attn_implementation
self.final_layernorm = BambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = BambaRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(BAMBA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs, # NOOP kwargs, for now
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
if use_cache and past_key_values is None:
logger.warning_once(
"Bamba requires an initialized `HybridMambaAttentionDynamicCache` to return a cache. None was "
"provided, so no cache will be returned."
)
if cache_position is None:
cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
mamba_mask = self._update_mamba_mask(attention_mask, cache_position)
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers:
# Depending on the layer type we opt for 2D base attention mask (Mamba) or 4D causal mask (Attention)
layer_mask = mamba_mask if decoder_layer.layer_type == "mamba" else causal_mask
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
layer_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=layer_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if output_attentions:
if layer_outputs[1] is not None:
# append attentions only of attention layers. Mamba layers return `None` as the attention weights
all_self_attns += (layer_outputs[1],)
hidden_states = self.final_layernorm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if past_key_values and not past_key_values.has_previous_state:
past_key_values.has_previous_state = True
next_cache = None if not use_cache else past_key_values
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: HybridMambaAttentionDynamicCache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_attention_mask = (attention_mask[:, None, None, :] == attention_mask[:, None, :, None])[
:, :, -sequence_length:, :
].to(dtype)
padding_mask = causal_mask[:, :, :, :mask_length] + padding_attention_mask
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
def _update_mamba_mask(self, attention_mask, cache_position):
"""
No need for zeroing states when
1. Cached forward
2. Attending to all inputs
"""
mamba_mask = attention_mask
if cache_position[0] > 0 or (attention_mask is not None and torch.all(attention_mask == 1)):
mamba_mask = None
return mamba_mask
class BambaForCausalLM(BambaPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = BambaModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(BAMBA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs,
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, BambaForCausalLM
>>> model = BambaForCausalLM.from_pretrained("...")
>>> tokenizer = AutoTokenizer.from_pretrained("...")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
**kwargs,
):
# Overwitten -- has a unique cache type, `HybridMambaAttentionDynamicCache`
empty_past_kv = past_key_values is None
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
# Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case.
# (we can't check exception 3 while compiling)
if not empty_past_kv:
if (
inputs_embeds is not None # Exception 1
or cache_position[-1] >= input_ids.shape[1] # Exception 3
):
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
else:
past_key_values = HybridMambaAttentionDynamicCache(
self.config, input_ids.shape[0], self.dtype, device=self.device
)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if not empty_past_kv:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and empty_past_kv:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
"logits_to_keep": self.config.num_logits_to_keep,
"cache_position": cache_position,
}
)
return model_inputs
__all__ = ["BambaModel", "BambaForCausalLM", "BambaPreTrainedModel"]
```
|
==================================================================================================================================
SOURCE CODE FILE: modular_bamba.py
LINES: 2
SIZE: 58.98 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bamba\modular_bamba.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 IBM and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Bamba model."""
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
import transformers.models.jamba.modeling_jamba as modeling_jamba
from transformers.activations import ACT2FN
from transformers.models.jamba.modeling_jamba import JambaAttentionDecoderLayer
from transformers.models.llama.modeling_llama import (
LlamaAttention,
LlamaForCausalLM,
LlamaMLP,
LlamaRMSNorm,
LlamaRotaryEmbedding,
rotate_half,
)
from transformers.models.mamba2.modeling_mamba2 import (
MambaRMSNormGated,
pad_tensor_by_size,
reshape_into_chunks,
segment_sum,
)
from ...modeling_attn_mask_utils import (
AttentionMaskConverter,
)
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from ...utils.import_utils import (
is_causal_conv1d_available,
is_flash_attn_2_available,
is_mamba_2_ssm_available,
)
from .configuration_bamba import BambaConfig
if is_flash_attn_2_available():
pass
if is_mamba_2_ssm_available():
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined
else:
selective_state_update = None
if is_causal_conv1d_available():
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
else:
causal_conv1d_update, causal_conv1d_fn = None, None
is_fast_path_available = all((selective_state_update, causal_conv1d_fn, causal_conv1d_update))
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "BambaConfig"
# Adapted from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache for the v2 mixer
class HybridMambaAttentionDynamicCache(modeling_jamba.HybridMambaAttentionDynamicCache):
"""
A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache
(which has a constant shape regardless of seq_len).
This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states`
and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor
For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`,
while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors).
For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors),
while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`,
and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`.
"""
def __init__(self, config: BambaConfig, batch_size, dtype=torch.float16, device=None):
super().__init__(config, batch_size, dtype, device)
self.layers_block_type = config.layers_block_type
self.has_previous_state = False # only used by mamba
conv_kernel_size = config.mamba_d_conv
ssm_state_size = config.mamba_d_state
self.conv_states = []
self.ssm_states = []
self.transformer_layers = []
for i in range(config.num_hidden_layers):
if self.layers_block_type[i] == "mamba":
self.conv_states += [
torch.zeros(
batch_size,
(config.mamba_expand * config.hidden_size + 2 * config.mamba_n_groups * ssm_state_size),
conv_kernel_size,
device=device,
dtype=dtype,
)
]
self.ssm_states += [
torch.zeros(
batch_size,
config.mamba_n_heads,
config.mamba_d_head,
ssm_state_size,
device=device,
dtype=dtype,
)
]
else:
self.conv_states += [torch.tensor([[]] * batch_size, device=device)]
self.ssm_states += [torch.tensor([[]] * batch_size, device=device)]
self.transformer_layers.append(i)
self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
class BambaRotaryEmbedding(LlamaRotaryEmbedding):
pass
# Adapted from transformers.models.glm.modular_glm.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Removes the interleaving of cos and sin from GLM
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
# Keep half or full tensor for later concatenation
rotary_dim = cos.shape[-1]
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
# Apply rotary embeddings on the first half or full tensor
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
# Concatenate back to full shape
q_embed = torch.cat([q_embed, q_pass], dim=-1)
k_embed = torch.cat([k_embed, k_pass], dim=-1)
return q_embed, k_embed
class BambaAttention(LlamaAttention):
pass
class BambaRMSNormGated(MambaRMSNormGated):
pass
def apply_mask_to_padding_states(hidden_states, attention_mask):
"""
Tunes out the hidden states for padding tokens, see https://github.com/state-spaces/mamba/issues/66
"""
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
dtype = hidden_states.dtype
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
return hidden_states
# Adapted from transformers.models.mamba2.modeling_mamba2.Mamba2Mixer
class BambaMixer(nn.Module):
"""
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
and is why Mamba is called **selective** state spaces)
The are a few differences between this and Mamba2Mixer:
- The variable use_precomputed_states is slightly different due to the HybridCache structure
- There's a few non-obvious bugs fixed with batching in the slow path that exist in main
- Some extra variables that our layer doesn't need have been removed
- We ported most of the refactors in https://github.com/huggingface/transformers/pull/35154, which is (as of Dec 18, 2024) unmerged
"""
def __init__(self, config: BambaConfig, layer_idx: int):
super().__init__()
self.num_heads = config.mamba_n_heads
self.hidden_size = config.hidden_size
self.ssm_state_size = config.mamba_d_state
self.conv_kernel_size = config.mamba_d_conv
self.intermediate_size = int(config.mamba_expand * self.hidden_size)
self.layer_idx = layer_idx
self.use_conv_bias = config.mamba_conv_bias
self.activation = config.hidden_act
self.act = ACT2FN[config.hidden_act]
self.use_bias = config.mamba_proj_bias
self.layer_norm_epsilon = config.rms_norm_eps
self.n_groups = config.mamba_n_groups
self.head_dim = config.mamba_d_head
self.chunk_size = config.mamba_chunk_size
# FIXME:
self.time_step_limit = (0.0, float("inf"))
self.time_step_min = 0.001
self.time_step_max = 0.1
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size
self.conv1d = nn.Conv1d(
in_channels=self.conv_dim,
out_channels=self.conv_dim,
bias=config.mamba_conv_bias,
kernel_size=self.conv_kernel_size,
groups=self.conv_dim,
padding=self.conv_kernel_size - 1,
)
# projection of the input hidden states
projection_size = self.intermediate_size + self.conv_dim + self.num_heads
self.in_proj = nn.Linear(
self.hidden_size,
projection_size,
bias=self.use_bias,
)
# selective projection used to make dt, B and C input dependant
# time step projection (discretization)
# instantiate once and copy inv_dt in init_weights of PretrainedModel
self.dt_bias = nn.Parameter(torch.ones(self.num_heads))
# S4D real initialization. These are not discretized!
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
A = torch.arange(1, self.num_heads + 1)
self.A_log = nn.Parameter(torch.log(A))
self.A_log._no_weight_decay = True
self.norm = BambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon)
self.D = nn.Parameter(torch.ones(self.num_heads))
self.D._no_weight_decay = True
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias)
if not is_fast_path_available:
logger.warning_once(
"The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`"
" is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and"
" https://github.com/Dao-AILab/causal-conv1d"
)
else:
logger.warning_once("The fast path for Bamba will be used when running the model on a GPU")
def cuda_kernels_forward(
self,
hidden_states: torch.Tensor,
cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
):
# 1. Gated MLP's linear projection
hidden_states = apply_mask_to_padding_states(hidden_states, attention_mask)
projected_states = self.in_proj(hidden_states)
# Set up dimensions for reshapes later
batch_size, seq_len, _ = hidden_states.shape
groups_time_state_size = self.n_groups * self.ssm_state_size
use_precomputed_states = (
cache_params is not None
and cache_params.has_previous_state
and seq_len == 1
and cache_params.conv_states[self.layer_idx].shape[0]
== cache_params.ssm_states[self.layer_idx].shape[0]
== batch_size
and cache_position is not None
and cache_position[0] > 0
)
# getting projected states from cache if it exists
if use_precomputed_states:
gate, hidden_states_B_C, dt = projected_states.squeeze(1).split(
[self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
)
# 2. Convolution sequence transformation
hidden_states_B_C = causal_conv1d_update(
hidden_states_B_C,
cache_params.conv_states[self.layer_idx],
self.conv1d.weight.squeeze(1),
self.conv1d.bias,
self.activation,
)
hidden_states, B, C = torch.split(
hidden_states_B_C,
[self.intermediate_size, groups_time_state_size, groups_time_state_size],
dim=-1,
)
# 3. SSM transformation
A = -torch.exp(self.A_log.float()) # (nheads,)
A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
dt = dt[:, :, None].expand(-1, -1, self.head_dim)
dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim)
D = self.D[:, None, ...].expand(-1, self.head_dim)
B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups)
C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups)
hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim)
hidden_states = selective_state_update(
cache_params.ssm_states[self.layer_idx],
hidden_states_reshaped,
dt,
A,
B,
C,
D,
z=None,
dt_bias=dt_bias,
dt_softplus=True,
)
hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim)
hidden_states = self.norm(hidden_states, gate)
# 4. Final linear projection
out = self.out_proj(hidden_states)[:, None, ...]
# Fused calculations or step by step if no initialized cache is found
else:
A = -torch.exp(self.A_log.float()) # (num_heads) or (intermediate_size, state_size)
dt_limit_kwargs = {} if self.time_step_limit == (0.0, float("inf")) else {"dt_limit": self.time_step_limit}
# 2-4. Fused kernel for conv1d, SSM, and the final projection
if self.training and cache_params is None:
out = mamba_split_conv1d_scan_combined(
projected_states,
self.conv1d.weight.squeeze(1),
self.conv1d.bias,
self.dt_bias,
A,
D=self.D,
chunk_size=self.chunk_size,
seq_idx=None, # was seq_idx
activation=self.activation,
rmsnorm_weight=self.norm.weight,
rmsnorm_eps=self.norm.variance_epsilon,
outproj_weight=self.out_proj.weight,
outproj_bias=self.out_proj.bias,
headdim=self.head_dim,
ngroups=self.n_groups,
norm_before_gate=False,
return_final_states=False,
**dt_limit_kwargs,
)
else:
gate, hidden_states_B_C, dt = projected_states.split(
[self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
)
# 2. Convolution sequence transformation
# Init cache
if cache_params is not None:
# storing the states
# If we just take xBC[:, :, -self.d_conv :], it will error if seqlen < self.d_conv
# Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise.
hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2)
conv_states = nn.functional.pad(
hidden_states_B_C_transposed,
(self.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0),
)
cache_params.conv_states[self.layer_idx].copy_(conv_states)
if self.activation not in ["silu", "swish"]:
hidden_states_B_C = self.act(
self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2)
)
else:
hidden_states_B_C = causal_conv1d_fn(
x=hidden_states_B_C.transpose(1, 2),
weight=self.conv1d.weight.squeeze(1),
bias=self.conv1d.bias,
activation=self.activation,
).transpose(1, 2)
hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask)
hidden_states, B, C = torch.split(
hidden_states_B_C,
[self.intermediate_size, groups_time_state_size, groups_time_state_size],
dim=-1,
)
# 3. SSM transformation
scan_output, ssm_state = mamba_chunk_scan_combined(
hidden_states.view(batch_size, seq_len, -1, self.head_dim),
dt,
A,
B.view(batch_size, seq_len, self.n_groups, -1),
C.view(batch_size, seq_len, self.n_groups, -1),
chunk_size=self.chunk_size,
D=self.D,
z=None,
seq_idx=None,
return_final_states=True,
dt_bias=self.dt_bias,
dt_softplus=True,
**dt_limit_kwargs,
)
# Init cache
if ssm_state is not None and cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
scan_output = scan_output.view(batch_size, seq_len, -1)
# Multiply "gate" branch and apply extra normalization layer
scan_output = self.norm(scan_output, gate)
# 4. Final linear projection
out = self.out_proj(scan_output)
return out
# fmt: off
def torch_forward(
self,
input_states,
cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
):
batch_size, seq_len, _ = input_states.shape
dtype = input_states.dtype
# 1. Gated MLP's linear projection
input_states = apply_mask_to_padding_states(input_states, attention_mask)
projected_states = self.in_proj(input_states)
gate, hidden_states_B_C, dt = projected_states.split(
[self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
)
use_precomputed_states = (
cache_params is not None
and cache_params.has_previous_state
and seq_len == 1
and cache_params.conv_states[self.layer_idx].shape[0]
== cache_params.ssm_states[self.layer_idx].shape[0]
== batch_size
and cache_position is not None
and cache_position[0] > 0
)
# 2. Convolution sequence transformation
if use_precomputed_states:
cache_params.conv_states[self.layer_idx] = cache_params.conv_states[self.layer_idx].roll(shifts=-1, dims=-1)
cache_params.conv_states[self.layer_idx][:, :, -1] = hidden_states_B_C[:, 0, :].to(cache_params.conv_states[self.layer_idx].device)
# We need to guarantee that anything regarding the cache is on the same device
conv_states = cache_params.conv_states[self.layer_idx].to(device=self.conv1d.weight.device)
hidden_states_B_C = torch.sum(
conv_states * self.conv1d.weight.squeeze(1), dim=-1
)
if self.use_conv_bias:
hidden_states_B_C = hidden_states_B_C + self.conv1d.bias
hidden_states_B_C = self.act(hidden_states_B_C)
else:
# Init cache
if cache_params is not None:
hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2)
conv_states = nn.functional.pad(
hidden_states_B_C_transposed, (self.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0)
)
cache_params.conv_states[self.layer_idx].copy_(conv_states)
hidden_states_B_C = self.act(self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2))
hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask)
hidden_states, B, C = torch.split(
hidden_states_B_C,
[self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size],
dim=-1
)
# 3. SSM transformation
A = -torch.exp(self.A_log.float()) # [num_heads]
if use_precomputed_states:
# We need to guarantee that anything regarding the cache is on the same device
cache_device = cache_params.ssm_states[self.layer_idx].device
# Note: there is no need to pad parameter matrices here, as there is just one new token
# for batched generation
dt = dt[:, 0, :][:, None, ...]
dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim)
# [num_heads] -> [num_heads, head_dim]
dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim)
dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype))
dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1])
A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
# [bsz, num_heads, head_dim, state_size]
dA = (torch.exp(dt[..., None] * A)).to(device=cache_device)
# Discretize B
# [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] ->
# -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size]
B = B.reshape(batch_size, self.n_groups, -1)[..., None, :]
B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous()
B = B.reshape(batch_size, -1, B.shape[-1])
# [bsz, num_heads, head_dim, state_size]
dB = dt[..., None] * B[..., None, :]
# Discretize x into dB
# [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim)
dBx = (dB * hidden_states[..., None]).to(device=cache_device)
# State calculation
cache_params.ssm_states[self.layer_idx].copy_(
cache_params.ssm_states[self.layer_idx] * dA + dBx
)
# Subsequent output
# [bsz, n_groups * state_size] -> [bsz, num_heads, state_size]
C = C.reshape(batch_size, self.n_groups, -1)[..., None, :]
C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous()
C = C.reshape(batch_size, -1, C.shape[-1])
# [bsz, num_heads, head_dim]
ssm_states = cache_params.ssm_states[self.layer_idx].to(device=C.device, dtype=C.dtype) # Shape: [b, h, d, n]
# Reshape ssm_states to merge the first two dimensions
ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) # Shape: [b*h, d, n]
C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) # Shape: [b*h, n, 1]
y = torch.bmm(ssm_states_reshaped, C_reshaped)
y = y.view(batch_size, self.num_heads, self.head_dim)
# D skip connection
# [num_heads] -> [num_heads, head_dim]
D = self.D[..., None].expand(self.D.shape[0], self.head_dim)
y = (y + hidden_states * D).to(y.dtype)
# [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
y = y.reshape(batch_size, -1)[:, None, ...]
else:
# begin ssd naive implementation without einsums
dt = nn.functional.softplus(dt + self.dt_bias)
dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1])
hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float()
B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
B = B.repeat(1, 1, self.num_heads // self.n_groups, 1)
C = C.repeat(1, 1, self.num_heads // self.n_groups, 1)
pad_size = (self.chunk_size - seq_len % self.chunk_size) % self.chunk_size
D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size)
# Discretize x and A
hidden_states = hidden_states * dt[..., None]
A = A.to(hidden_states.dtype) * dt
# Rearrange into blocks/chunks
hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)]
# [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
A = A.permute(0, 3, 1, 2)
A_cumsum = torch.cumsum(A, dim=-1)
# 1. Compute the output for each intra-chunk (diagonal blocks)
# This is the analog of a causal mask
L = torch.exp(segment_sum(A))
# Contraction of C and B to get G (attention-weights like)
G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, :, :] # shape: (b, c, l, s, h, n)
G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h)
# Compute M, equivalent to applying attention mask to weights
M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None]
M = M_intermediate.sum(dim=-1)
# Compute Y_diag (apply to values)
Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(dim=3)
# 2. Compute the state for each intra-chunk
# (right term of low-rank factorization of off-diagonal blocks; B terms)
decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
B_decay = B * decay_states.permute(0, -2, -1, 1)[..., None]
states = (B_decay[..., None, :] * hidden_states[..., None]).sum(dim=2)
# 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at chunk boundaries
# (middle term of factorization of off-diag blocks; A terms)
if use_precomputed_states:
previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...].to(device=states.device)
else:
previous_states = torch.zeros_like(states[:, :1])
states = torch.cat([previous_states, states], dim=1)
decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
decay_chunk = decay_chunk.transpose(1, 3)
new_states = (decay_chunk[..., None, None] * states[:, :, None, ...]).sum(dim=1)
states, ssm_state = new_states[:, :-1], new_states[:, -1]
# 4. Compute state -> output conversion per chunk
# (left term of low-rank factorization of off-diagonal blocks; C terms)
state_decay_out = torch.exp(A_cumsum)
C_times_states = (C[..., None, :] * states[:, :, None, ...])
state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1)
Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None])
# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
y = Y_diag + Y_off
# [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
y = y.reshape(batch_size, -1, self.num_heads, self.head_dim)
y = y + D_residual
# Cutting off padded chunks
if pad_size > 0:
y = y[:, :seq_len, :, :]
y = y.reshape(batch_size, seq_len, -1)
# Init cache
if ssm_state is not None and cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
scan_output = self.norm(y, gate)
# end ssd naive
# 4. Final linear projection
contextualized_states = self.out_proj(scan_output.to(dtype)) # [batch, seq_len, hidden_size]
return contextualized_states
# fmt: on
def forward(
self,
hidden_states,
cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
):
if is_fast_path_available and "cuda" in self.in_proj.weight.device.type:
return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask)
dtype = hidden_states.dtype
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
return self.torch_forward(hidden_states, cache_params, cache_position, attention_mask)
class BambaMLP(LlamaMLP):
pass
class BambaRMSNorm(LlamaRMSNorm):
pass
class BambaDecoderLayer(JambaAttentionDecoderLayer):
def __init__(self, config: BambaConfig, layer_idx: int, layer_type: str = "mamba"):
super().__init__()
del self.self_attn
num_experts = 1
ffn_layer_class = BambaMLP if num_experts == 1 else None
self.feed_forward = ffn_layer_class(config)
self.layer_type = layer_type
if layer_type == "mamba":
self.mamba = BambaMixer(config=config, layer_idx=layer_idx)
elif layer_type == "attention":
self.self_attn = BambaAttention(config, layer_idx)
else:
raise ValueError("Invalid layer_type")
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`HybridMambaAttentionDynamicCache`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# this is a hybrid decoder layer
if self.layer_type == "mamba":
hidden_states = self.mamba(
hidden_states=hidden_states,
cache_params=past_key_value,
cache_position=cache_position,
attention_mask=attention_mask,
)
self_attn_weights = None
elif self.layer_type == "attention":
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
# residual connection after attention
hidden_states = residual + hidden_states
# feed-forward
residual = hidden_states
hidden_states = self.pre_ff_layernorm(hidden_states)
hidden_states = self.feed_forward(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
BAMBA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`BambaConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare BambaModel outputting raw hidden-states without any specific head on top.",
BAMBA_START_DOCSTRING,
)
class BambaPreTrainedModel(PreTrainedModel):
config_class = BambaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["BambaDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True # Note: only supports HybridMambaAttentionDynamicCache
_is_stateful = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
BAMBA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`HybridMambaAttentionDynamicCache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
A HybridMambaAttentionDynamicCache object containing pre-computed hidden-states (keys and values in the
self-attention blocks and convolution and ssm states in the mamba blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
Key and value cache tensors have shape `(batch_size, num_heads, seq_len, head_dim)`.
Convolution and ssm states tensors have shape `(batch_size, d_inner, d_conv)` and
`(batch_size, d_inner, d_state)` respectively.
See the `HybridMambaAttentionDynamicCache` class for more details.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Bamba Model outputting raw hidden-states without any specific head on top.",
BAMBA_START_DOCSTRING,
)
# Adapted from transformers.models.jamba.modeling_jamba.JambaModel
class BambaModel(BambaPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`BambaDecoderLayer`]
Args:
config: BambaConfig
"""
def __init__(self, config: BambaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
decoder_layers = []
for i in range(config.num_hidden_layers):
decoder_layers.append(BambaDecoderLayer(config, layer_idx=i, layer_type=config.layers_block_type[i]))
self.layers = nn.ModuleList(decoder_layers)
self._attn_implementation = config._attn_implementation
self.final_layernorm = BambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = BambaRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(BAMBA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs, # NOOP kwargs, for now
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
if use_cache and past_key_values is None:
logger.warning_once(
"Bamba requires an initialized `HybridMambaAttentionDynamicCache` to return a cache. None was "
"provided, so no cache will be returned."
)
if cache_position is None:
cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
mamba_mask = self._update_mamba_mask(attention_mask, cache_position)
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers:
# Depending on the layer type we opt for 2D base attention mask (Mamba) or 4D causal mask (Attention)
layer_mask = mamba_mask if decoder_layer.layer_type == "mamba" else causal_mask
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
layer_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=layer_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if output_attentions:
if layer_outputs[1] is not None:
# append attentions only of attention layers. Mamba layers return `None` as the attention weights
all_self_attns += (layer_outputs[1],)
hidden_states = self.final_layernorm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if past_key_values and not past_key_values.has_previous_state:
past_key_values.has_previous_state = True
next_cache = None if not use_cache else past_key_values
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: HybridMambaAttentionDynamicCache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_attention_mask = (attention_mask[:, None, None, :] == attention_mask[:, None, :, None])[
:, :, -sequence_length:, :
].to(dtype)
padding_mask = causal_mask[:, :, :, :mask_length] + padding_attention_mask
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
def _update_mamba_mask(self, attention_mask, cache_position):
"""
No need for zeroing states when
1. Cached forward
2. Attending to all inputs
"""
mamba_mask = attention_mask
if cache_position[0] > 0 or (attention_mask is not None and torch.all(attention_mask == 1)):
mamba_mask = None
return mamba_mask
class BambaForCausalLM(LlamaForCausalLM):
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(BAMBA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs,
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, BambaForCausalLM
>>> model = BambaForCausalLM.from_pretrained("...")
>>> tokenizer = AutoTokenizer.from_pretrained("...")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
return super().forward(
input_ids,
attention_mask,
position_ids,
past_key_values,
inputs_embeds,
labels,
use_cache,
output_attentions,
output_hidden_states,
cache_position,
logits_to_keep,
**kwargs,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
**kwargs,
):
# Overwitten -- has a unique cache type, `HybridMambaAttentionDynamicCache`
empty_past_kv = past_key_values is None
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
# Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case.
# (we can't check exception 3 while compiling)
if not empty_past_kv:
if (
inputs_embeds is not None # Exception 1
or cache_position[-1] >= input_ids.shape[1] # Exception 3
):
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
else:
past_key_values = HybridMambaAttentionDynamicCache(
self.config, input_ids.shape[0], self.dtype, device=self.device
)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if not empty_past_kv:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and empty_past_kv:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
"logits_to_keep": self.config.num_logits_to_keep,
"cache_position": cache_position,
}
)
return model_inputs
__all__ = ["BambaModel", "BambaForCausalLM", "BambaPreTrainedModel"]
```
|
============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.00 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bark\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_bark import *
from .modeling_bark import *
from .processing_bark import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
======================================================================================================================================
SOURCE CODE FILE: configuration_bark.py
LINES: 1
SIZE: 11.62 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bark\configuration_bark.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BARK model configuration"""
from typing import Dict
from ...configuration_utils import PretrainedConfig
from ...utils import add_start_docstrings, logging
from ..auto import CONFIG_MAPPING, AutoConfig
logger = logging.get_logger(__name__)
BARK_SUBMODELCONFIG_START_DOCSTRING = """
This is the configuration class to store the configuration of a [`{model}`]. It is used to instantiate the model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Bark [suno/bark](https://huggingface.co/suno/bark)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
block_size (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
input_vocab_size (`int`, *optional*, defaults to 10_048):
Vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`{model}`]. Defaults to 10_048 but should be carefully thought with
regards to the chosen sub-model.
output_vocab_size (`int`, *optional*, defaults to 10_048):
Output vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented
by the: `output_ids` when passing forward a [`{model}`]. Defaults to 10_048 but should be carefully thought
with regards to the chosen sub-model.
num_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the given sub-model.
num_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer architecture.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the "intermediate" (often named feed-forward) layer in the architecture.
dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
bias (`bool`, *optional*, defaults to `True`):
Whether or not to use bias in the linear layers and layer norm layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
"""
class BarkSubModelConfig(PretrainedConfig):
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
"vocab_size": "input_vocab_size",
"window_size": "block_size",
}
def __init__(
self,
block_size=1024,
input_vocab_size=10_048,
output_vocab_size=10_048,
num_layers=12,
num_heads=12,
hidden_size=768,
dropout=0.0,
bias=True, # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
initializer_range=0.02,
use_cache=True,
**kwargs,
):
self.block_size = block_size
self.input_vocab_size = input_vocab_size
self.output_vocab_size = output_vocab_size
self.num_layers = num_layers
self.num_heads = num_heads
self.hidden_size = hidden_size
self.dropout = dropout
self.bias = bias
self.use_cache = use_cache
self.initializer_range = initializer_range
super().__init__(**kwargs)
@add_start_docstrings(
BARK_SUBMODELCONFIG_START_DOCSTRING.format(config="BarkSemanticConfig", model="BarkSemanticModel"),
"""
Example:
```python
>>> from transformers import BarkSemanticConfig, BarkSemanticModel
>>> # Initializing a Bark sub-module style configuration
>>> configuration = BarkSemanticConfig()
>>> # Initializing a model (with random weights) from the suno/bark style configuration
>>> model = BarkSemanticModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```""",
)
class BarkSemanticConfig(BarkSubModelConfig):
model_type = "semantic"
base_config_key = "semantic_config"
@add_start_docstrings(
BARK_SUBMODELCONFIG_START_DOCSTRING.format(config="BarkCoarseConfig", model="BarkCoarseModel"),
"""
Example:
```python
>>> from transformers import BarkCoarseConfig, BarkCoarseModel
>>> # Initializing a Bark sub-module style configuration
>>> configuration = BarkCoarseConfig()
>>> # Initializing a model (with random weights) from the suno/bark style configuration
>>> model = BarkCoarseModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```""",
)
class BarkCoarseConfig(BarkSubModelConfig):
model_type = "coarse_acoustics"
base_config_key = "coarse_acoustics_config"
@add_start_docstrings(
BARK_SUBMODELCONFIG_START_DOCSTRING.format(config="BarkFineConfig", model="BarkFineModel"),
"""
n_codes_total (`int`, *optional*, defaults to 8):
The total number of audio codebooks predicted. Used in the fine acoustics sub-model.
n_codes_given (`int`, *optional*, defaults to 1):
The number of audio codebooks predicted in the coarse acoustics sub-model. Used in the acoustics
sub-models.
Example:
```python
>>> from transformers import BarkFineConfig, BarkFineModel
>>> # Initializing a Bark sub-module style configuration
>>> configuration = BarkFineConfig()
>>> # Initializing a model (with random weights) from the suno/bark style configuration
>>> model = BarkFineModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```""",
)
class BarkFineConfig(BarkSubModelConfig):
model_type = "fine_acoustics"
base_config_key = "fine_acoustics_config"
def __init__(self, tie_word_embeddings=True, n_codes_total=8, n_codes_given=1, **kwargs):
self.n_codes_total = n_codes_total
self.n_codes_given = n_codes_given
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
class BarkConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`BarkModel`]. It is used to instantiate a Bark
model according to the specified sub-models configurations, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Bark
[suno/bark](https://huggingface.co/suno/bark) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
semantic_config ([`BarkSemanticConfig`], *optional*):
Configuration of the underlying semantic sub-model.
coarse_acoustics_config ([`BarkCoarseConfig`], *optional*):
Configuration of the underlying coarse acoustics sub-model.
fine_acoustics_config ([`BarkFineConfig`], *optional*):
Configuration of the underlying fine acoustics sub-model.
codec_config ([`AutoConfig`], *optional*):
Configuration of the underlying codec sub-model.
Example:
```python
>>> from transformers import (
... BarkSemanticConfig,
... BarkCoarseConfig,
... BarkFineConfig,
... BarkModel,
... BarkConfig,
... AutoConfig,
... )
>>> # Initializing Bark sub-modules configurations.
>>> semantic_config = BarkSemanticConfig()
>>> coarse_acoustics_config = BarkCoarseConfig()
>>> fine_acoustics_config = BarkFineConfig()
>>> codec_config = AutoConfig.from_pretrained("facebook/encodec_24khz")
>>> # Initializing a Bark module style configuration
>>> configuration = BarkConfig.from_sub_model_configs(
... semantic_config, coarse_acoustics_config, fine_acoustics_config, codec_config
... )
>>> # Initializing a model (with random weights)
>>> model = BarkModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "bark"
sub_configs = {
"semantic_config": BarkSemanticConfig,
"coarse_acoustics_config": BarkCoarseConfig,
"fine_acoustics_config": BarkFineConfig,
"codec_config": AutoConfig,
}
def __init__(
self,
semantic_config: Dict = None,
coarse_acoustics_config: Dict = None,
fine_acoustics_config: Dict = None,
codec_config: Dict = None,
initializer_range=0.02,
**kwargs,
):
if semantic_config is None:
semantic_config = {}
logger.info("semantic_config is None. initializing the semantic model with default values.")
if coarse_acoustics_config is None:
coarse_acoustics_config = {}
logger.info("coarse_acoustics_config is None. initializing the coarse model with default values.")
if fine_acoustics_config is None:
fine_acoustics_config = {}
logger.info("fine_acoustics_config is None. initializing the fine model with default values.")
if codec_config is None:
codec_config = {}
logger.info("codec_config is None. initializing the codec model with default values.")
self.semantic_config = BarkSemanticConfig(**semantic_config)
self.coarse_acoustics_config = BarkCoarseConfig(**coarse_acoustics_config)
self.fine_acoustics_config = BarkFineConfig(**fine_acoustics_config)
codec_model_type = codec_config["model_type"] if "model_type" in codec_config else "encodec"
self.codec_config = CONFIG_MAPPING[codec_model_type](**codec_config)
self.initializer_range = initializer_range
super().__init__(**kwargs)
@classmethod
def from_sub_model_configs(
cls,
semantic_config: BarkSemanticConfig,
coarse_acoustics_config: BarkCoarseConfig,
fine_acoustics_config: BarkFineConfig,
codec_config: PretrainedConfig,
**kwargs,
):
r"""
Instantiate a [`BarkConfig`] (or a derived class) from bark sub-models configuration.
Returns:
[`BarkConfig`]: An instance of a configuration object
"""
return cls(
semantic_config=semantic_config.to_dict(),
coarse_acoustics_config=coarse_acoustics_config.to_dict(),
fine_acoustics_config=fine_acoustics_config.to_dict(),
codec_config=codec_config.to_dict(),
**kwargs,
)
__all__ = ["BarkCoarseConfig", "BarkConfig", "BarkFineConfig", "BarkSemanticConfig"]
```
|
=================================================================================================================================================
SOURCE CODE FILE: generation_configuration_bark.py
LINES: 1
SIZE: 14.60 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bark\generation_configuration_bark.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BARK model generation configuration"""
import copy
from typing import Dict
from ...generation.configuration_utils import GenerationConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class BarkSemanticGenerationConfig(GenerationConfig):
model_type = "semantic"
def __init__(
self,
eos_token_id=10_000,
renormalize_logits=True,
max_new_tokens=768,
output_scores=False,
return_dict_in_generate=False,
output_hidden_states=False,
output_attentions=False,
temperature=1.0,
do_sample=False,
text_encoding_offset=10_048,
text_pad_token=129_595,
semantic_infer_token=129_599,
semantic_vocab_size=10_000,
max_input_semantic_length=256,
semantic_rate_hz=49.9,
min_eos_p=None,
**kwargs,
):
"""Class that holds a generation configuration for [`BarkSemanticModel`].
This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the
documentation from [`GenerationConfig`] for more information.
Args:
eos_token_id (`int`, *optional*, defaults to 10_000):
The id of the *end-of-sequence* token.
renormalize_logits (`bool`, *optional*, defaults to `True`):
Whether to renormalize the logits after applying all the logits processors (including the
custom ones). It's highly recommended to set this flag to `True` as the search algorithms suppose the
score logits are normalized but some logit processors break the normalization.
max_new_tokens (`int`, *optional*, defaults to 768):
The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt.
output_scores (`bool`, *optional*, defaults to `False`):
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
output_hidden_states (`bool`, *optional*, defaults to `False`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more details.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more details.
temperature (`float`, *optional*, defaults to 1.0):
The value used to modulate the next token probabilities.
do_sample (`bool`, *optional*, defaults to `False`):
Whether or not to use sampling ; use greedy decoding otherwise.
text_encoding_offset (`int`, *optional*, defaults to 10_048):
Text encoding offset.
text_pad_token (`int`, *optional*, defaults to 129_595):
Text pad token.
semantic_infer_token (`int`, *optional*, defaults to 129_599):
Semantic infer token.
semantic_vocab_size (`int`, *optional*, defaults to 10_000):
Semantic vocab size.
max_input_semantic_length (`int`, *optional*, defaults to 256):
Max length of semantic input vector.
semantic_rate_hz (`float`, *optional*, defaults to 49.9):
Semantic rate in Hertz.
min_eos_p (`float`, *optional*):
Minimum threshold of the probability of the EOS token for it to be sampled. This is an early stopping
strategy to mitigate potential unwanted generations at the end of a prompt. The original implementation
suggests a default value of 0.2.
"""
super().__init__(
temperature=temperature,
do_sample=do_sample,
eos_token_id=eos_token_id,
renormalize_logits=renormalize_logits,
max_new_tokens=max_new_tokens,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
**kwargs,
)
self.text_encoding_offset = text_encoding_offset
self.text_pad_token = text_pad_token
self.semantic_pad_token = eos_token_id
self.semantic_infer_token = semantic_infer_token
self.semantic_vocab_size = semantic_vocab_size
self.max_input_semantic_length = max_input_semantic_length
self.semantic_rate_hz = semantic_rate_hz
self.min_eos_p = min_eos_p
class BarkCoarseGenerationConfig(GenerationConfig):
model_type = "coarse_acoustics"
def __init__(
self,
renormalize_logits=True,
output_scores=False,
return_dict_in_generate=False,
output_hidden_states=False,
output_attentions=False,
temperature=1.0,
do_sample=False,
coarse_semantic_pad_token=12_048,
coarse_rate_hz=75,
n_coarse_codebooks=2,
coarse_infer_token=12_050,
max_coarse_input_length=256,
max_coarse_history: int = 630,
sliding_window_len: int = 60,
**kwargs,
):
"""Class that holds a generation configuration for [`BarkCoarseModel`].
This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the
documentation from [`GenerationConfig`] for more information.
Args:
renormalize_logits (`bool`, *optional*, defaults to `True`):
Whether to renormalize the logits after applying all the logits processors (including the
custom ones). It's highly recommended to set this flag to `True` as the search algorithms suppose the
score logits are normalized but some logit processors break the normalization.
output_scores (`bool`, *optional*, defaults to `False`):
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
output_hidden_states (`bool`, *optional*, defaults to `False`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more details.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more details.
temperature (`float`, *optional*, defaults to 1.0):
The value used to modulate the next token probabilities.
do_sample (`bool`, *optional*, defaults to `False`):
Whether or not to use sampling ; use greedy decoding otherwise.
coarse_semantic_pad_token (`int`, *optional*, defaults to 12_048):
Coarse semantic pad token.
coarse_rate_hz (`int`, *optional*, defaults to 75):
Coarse rate in Hertz.
n_coarse_codebooks (`int`, *optional*, defaults to 2):
Number of coarse codebooks.
coarse_infer_token (`int`, *optional*, defaults to 12_050):
Coarse infer token.
max_coarse_input_length (`int`, *optional*, defaults to 256):
Max length of input coarse vector.
max_coarse_history (`int`, *optional*, defaults to 630):
Max length of the output of the coarse acoustics model used in the fine generation step.
sliding_window_len (`int`, *optional*, defaults to 60):
The coarse generation step uses a sliding window to generate raw audio.
"""
super().__init__(
temperature=temperature,
do_sample=do_sample,
renormalize_logits=renormalize_logits,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
**kwargs,
)
self.coarse_semantic_pad_token = coarse_semantic_pad_token
self.coarse_rate_hz = coarse_rate_hz
self.n_coarse_codebooks = n_coarse_codebooks
self.coarse_infer_token = coarse_infer_token
self.max_coarse_input_length = max_coarse_input_length
self.max_coarse_history = max_coarse_history
self.sliding_window_len = sliding_window_len
class BarkFineGenerationConfig(GenerationConfig):
model_type = "fine_acoustics"
def __init__(
self,
temperature=1.0,
max_fine_history_length=512,
max_fine_input_length=1024,
n_fine_codebooks=8,
**kwargs,
):
"""Class that holds a generation configuration for [`BarkFineModel`].
[`BarkFineModel`] is an autoencoder model, so should not usually be used for generation. However, under the
hood, it uses `temperature` when used by [`BarkModel`]
This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the
documentation from [`GenerationConfig`] for more information.
Args:
temperature (`float`, *optional*):
The value used to modulate the next token probabilities.
max_fine_history_length (`int`, *optional*, defaults to 512):
Max length of the fine history vector.
max_fine_input_length (`int`, *optional*, defaults to 1024):
Max length of fine input vector.
n_fine_codebooks (`int`, *optional*, defaults to 8):
Number of codebooks used.
"""
super().__init__(temperature=temperature)
self.max_fine_history_length = max_fine_history_length
self.max_fine_input_length = max_fine_input_length
self.n_fine_codebooks = n_fine_codebooks
def validate(self, **kwargs):
"""
Overrides GenerationConfig.validate because BarkFineGenerationConfig don't use any parameters outside
temperature.
"""
pass
class BarkGenerationConfig(GenerationConfig):
model_type = "bark"
is_composition = True
# TODO (joao): nested from_dict
def __init__(
self,
semantic_config: Dict = None,
coarse_acoustics_config: Dict = None,
fine_acoustics_config: Dict = None,
sample_rate=24_000,
codebook_size=1024,
**kwargs,
):
"""Class that holds a generation configuration for [`BarkModel`].
The [`BarkModel`] does not have a `generate` method, but uses this class to generate speeches with a nested
[`BarkGenerationConfig`] which uses [`BarkSemanticGenerationConfig`], [`BarkCoarseGenerationConfig`],
[`BarkFineGenerationConfig`].
This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the
documentation from [`GenerationConfig`] for more information.
Args:
semantic_config (`Dict`, *optional*):
Semantic generation configuration.
coarse_acoustics_config (`Dict`, *optional*):
Coarse generation configuration.
fine_acoustics_config (`Dict`, *optional*):
Fine generation configuration.
sample_rate (`int`, *optional*, defaults to 24_000):
Sample rate.
codebook_size (`int`, *optional*, defaults to 1024):
Vector length for each codebook.
"""
if semantic_config is None:
semantic_config = {}
logger.info("semantic_config is None. initializing the semantic model with default values.")
if coarse_acoustics_config is None:
coarse_acoustics_config = {}
logger.info("coarse_acoustics_config is None. initializing the coarse model with default values.")
if fine_acoustics_config is None:
fine_acoustics_config = {}
logger.info("fine_acoustics_config is None. initializing the fine model with default values.")
self.semantic_config = BarkSemanticGenerationConfig(**semantic_config)
self.coarse_acoustics_config = BarkCoarseGenerationConfig(**coarse_acoustics_config)
self.fine_acoustics_config = BarkFineGenerationConfig(**fine_acoustics_config)
self.sample_rate = sample_rate
self.codebook_size = codebook_size
@classmethod
def from_sub_model_configs(
cls,
semantic_config: BarkSemanticGenerationConfig,
coarse_acoustics_config: BarkCoarseGenerationConfig,
fine_acoustics_config: BarkFineGenerationConfig,
**kwargs,
):
r"""
Instantiate a [`BarkGenerationConfig`] (or a derived class) from bark sub-models generation configuration.
Returns:
[`BarkGenerationConfig`]: An instance of a configuration object
"""
return cls(
semantic_config=semantic_config.to_dict(),
coarse_acoustics_config=coarse_acoustics_config.to_dict(),
fine_acoustics_config=fine_acoustics_config.to_dict(),
**kwargs,
)
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["semantic_config"] = self.semantic_config.to_dict()
output["coarse_acoustics_config"] = self.coarse_acoustics_config.to_dict()
output["fine_acoustics_config"] = self.fine_acoustics_config.to_dict()
output["model_type"] = self.__class__.model_type
return output
```
|
=================================================================================================================================
SOURCE CODE FILE: modeling_bark.py
LINES: 1
SIZE: 82.13 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bark\modeling_bark.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BARK model."""
import math
from typing import Dict, Optional, Tuple, Union
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from ...generation import GenerationMixin
from ...generation.logits_process import (
AlternatingCodebooksLogitsProcessor,
BarkEosPrioritizerLogitsProcessor,
SuppressTokensLogitsProcessor,
)
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available
from ...modeling_outputs import CausalLMOutputWithPast, MaskedLMOutput
from ...modeling_utils import PreTrainedModel, get_parameter_device
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_accelerate_available,
logging,
)
from ..auto import AutoModel
from .configuration_bark import (
BarkCoarseConfig,
BarkConfig,
BarkFineConfig,
BarkSemanticConfig,
BarkSubModelConfig,
)
from .generation_configuration_bark import (
BarkCoarseGenerationConfig,
BarkFineGenerationConfig,
BarkSemanticGenerationConfig,
)
if is_flash_attn_available():
from ...modeling_flash_attention_utils import _flash_attention_forward
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "suno/bark-small"
_CONFIG_FOR_DOC = "BarkConfig"
class BarkSelfAttention(nn.Module):
# adapted from GPTNeoSelfAttention and Bark code
# BarkSelfAttention can have two attention type, i.e full attention or causal attention
def __init__(self, config, is_causal=False):
super().__init__()
# regularization
self.dropout = config.dropout
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.embed_dim = config.hidden_size
self.num_heads = config.num_heads
self.head_dim = self.embed_dim // self.num_heads
if config.hidden_size % config.num_heads != 0:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
# key, query, value projections for all heads, but in a batch
self.att_proj = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.bias)
# output projection
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=config.bias)
self.is_causal = is_causal
if is_causal:
block_size = config.block_size
bias = torch.tril(torch.ones((block_size, block_size), dtype=bool)).view(1, 1, block_size, block_size)
self.register_buffer("bias", bias)
# Copied from transformers.models.gpt_neo.modeling_gpt_neo.GPTNeoSelfAttention._split_heads
def _split_heads(self, tensor, num_heads, attn_head_size):
"""
Splits hidden_size dim into attn_head_size and num_heads
"""
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
tensor = tensor.view(new_shape)
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
def _merge_heads(self, tensor, num_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into hidden_size
"""
# re-assemble all head outputs side by side
# (batch, num_heads, seq_len, attn_head_size) -> (batch, seq_len, num_heads*attn_head_size)
tensor = tensor.transpose(1, 2).contiguous()
tensor = tensor.view(tensor.size()[:-2] + (num_heads * attn_head_size,))
return tensor
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
# unlike GPTNeo's SelfAttention, divide by the square root of the dimension of the query and the key
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * (1.0 / math.sqrt(self.head_dim))
if self.is_causal:
query_length, key_length = query.size(-2), key.size(-2)
# fill the upper left part of the attention weights with inf
attn_weights = attn_weights.masked_fill(
self.bias[:, :, key_length - query_length : key_length, :key_length] == 0,
torch.finfo(attn_weights.dtype).min,
)
if attention_mask is not None:
# Apply the attention mask
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
attn_weights = attn_weights.to(value.dtype)
attn_weights = self.attn_dropout(attn_weights)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
# (batch, num_heads, seq_len, seq_len) x (batch, num_heads, seq_len, attn_head_size)
# -> (batch, num_heads, seq_len, attn_head_size)
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
def forward(
self,
hidden_states,
attention_mask=None,
past_key_values=None,
head_mask=None,
use_cache=False,
output_attentions=False,
):
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
query, key, value = self.att_proj(hidden_states).split(self.embed_dim, dim=2)
query = self._split_heads(query, self.num_heads, self.head_dim)
key = self._split_heads(key, self.num_heads, self.head_dim)
value = self._split_heads(value, self.num_heads, self.head_dim)
if past_key_values is not None:
past_key = past_key_values[0]
past_value = past_key_values[1]
key = torch.cat((past_key, key), dim=-2)
value = torch.cat((past_value, value), dim=-2)
if use_cache is True:
present = (key, value)
else:
present = None
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
attn_output = self.out_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs
class BarkSelfFlashAttention2(BarkSelfAttention):
"""
Bark flash attention module. This module inherits from `BarkSelfAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
def _split_heads(self, tensor, num_heads, attn_head_size):
"""
Splits hidden_size dim into attn_head_size and num_heads
"""
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
tensor = tensor.view(new_shape)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim - (batch, seq_length, head, head_features)
return tensor
def _merge_heads(self, tensor, num_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into hidden_size
"""
# re-assemble all head outputs side by side
# (batch, seq_len, num_heads, attn_head_size) -> (batch, seq_len, num_heads*attn_head_size)
tensor = tensor.view(tensor.size()[:-2] + (num_heads * attn_head_size,))
return tensor
def forward(
self,
hidden_states,
attention_mask=None,
past_key_values=None,
head_mask=None,
use_cache=False,
output_attentions=False,
):
batch_size, query_len, _ = hidden_states.size()
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
query, key, value = self.att_proj(hidden_states).split(self.embed_dim, dim=2)
query = self._split_heads(query, self.num_heads, self.head_dim)
key = self._split_heads(key, self.num_heads, self.head_dim)
value = self._split_heads(value, self.num_heads, self.head_dim)
if past_key_values is not None:
# (batch, head, seq_length, head_features) -> (batch, seq_length, head, head_features)
past_key = past_key_values[0].transpose(1, 2)
past_value = past_key_values[1].transpose(1, 2)
# and merge on seq_length
key = torch.cat((past_key, key), dim=1)
value = torch.cat((past_value, value), dim=1)
if use_cache is True:
# (batch, head, seq_length, head_features)
present = (key.transpose(1, 2), value.transpose(1, 2))
else:
present = None
attn_output = _flash_attention_forward(
query,
key,
value,
attention_mask,
query_len,
dropout=self.dropout if self.training else 0.0,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
attn_output = self.out_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, present)
if output_attentions:
attn_weights = None
outputs += (attn_weights,)
return outputs
BARK_ATTENTION_CLASSES = {
"eager": BarkSelfAttention,
"flash_attention_2": BarkSelfFlashAttention2,
}
class BarkLayerNorm(nn.Module):
"""LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False."""
def __init__(self, hidden_size, bias=True):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size)) if bias else None
def forward(self, input):
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, eps=1e-5)
class BarkMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.in_proj = nn.Linear(config.hidden_size, 4 * config.hidden_size, bias=config.bias)
self.out_proj = nn.Linear(4 * config.hidden_size, config.hidden_size, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
self.gelu = nn.GELU()
def forward(self, hidden_states):
hidden_states = self.in_proj(hidden_states)
hidden_states = self.gelu(hidden_states)
hidden_states = self.out_proj(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class BarkBlock(nn.Module):
def __init__(self, config, is_causal=False):
super().__init__()
if is_causal:
# if causal, uses handmade LayerNorm, so that the layerNorm bias is optional
# this handmade layerNorm is used to stick with Bark choice of leaving optional bias in
# AutoRegressive models (corresponding to the "Text" and the "Coarse" modules)
self.layernorm_1 = BarkLayerNorm(config.hidden_size, bias=config.bias)
self.layernorm_2 = BarkLayerNorm(config.hidden_size, bias=config.bias)
else:
self.layernorm_1 = nn.LayerNorm(config.hidden_size)
self.layernorm_2 = nn.LayerNorm(config.hidden_size)
self.attn = BARK_ATTENTION_CLASSES[config._attn_implementation](config, is_causal=is_causal)
self.mlp = BarkMLP(config)
def forward(
self,
hidden_states,
past_key_values=None,
attention_mask=None,
head_mask=None,
use_cache=False,
output_attentions=False,
):
intermediary_hidden_states = self.layernorm_1(hidden_states)
attn_outputs = self.attn(
intermediary_hidden_states,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0] # output_attn: output, present_key_values, (attn_weights)
outputs = attn_outputs[1:]
intermediary_hidden_states = hidden_states + attn_output
intermediary_hidden_states = intermediary_hidden_states + self.mlp(
self.layernorm_2(intermediary_hidden_states)
)
if use_cache:
outputs = (intermediary_hidden_states,) + outputs
else:
outputs = (intermediary_hidden_states,) + outputs[1:]
return outputs # hidden_states, ((present), attentions)
class BarkPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BarkConfig
supports_gradient_checkpointing = False
_supports_flash_attn_2 = True
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear,)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
@property
def device(self) -> torch.device:
"""
`torch.device`: The device on which the module is (assuming that all the module parameters are on the same
device).
"""
# if has _hf_hook, has been offloaded so the device has to be found in the hook
if not hasattr(self, "_hf_hook"):
return get_parameter_device(self)
for module in self.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return get_parameter_device(self)
BARK_MODEL_START_DOCSTRING = """
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`{config}`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BARK_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`BarkConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BARK_FINE_INPUTS_DOCSTRING = r"""
Args:
codebook_idx (`int`):
Index of the codebook that will be predicted.
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length, number_of_codebooks)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it. Initially, indices of the first two codebooks are obtained from the `coarse` sub-model. The rest is
predicted recursively by attending the previously predicted channels. The model predicts on windows of
length 1024.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): NOT IMPLEMENTED YET.
input_embeds (`torch.FloatTensor` of shape `(batch_size, input_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. If
`past_key_values` is used, optionally only the last `input_embeds` have to be input (see
`past_key_values`). This is useful if you want more control over how to convert `input_ids` indices into
associated vectors than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
BARK_CAUSAL_MODEL_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`input_ids` of shape `(batch_size, sequence_length)`.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
input_embeds (`torch.FloatTensor` of shape `(batch_size, input_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
Here, due to `Bark` particularities, if `past_key_values` is used, `input_embeds` will be ignored and you
have to use `input_ids`. If `past_key_values` is not used and `use_cache` is set to `True`, `input_embeds`
is used in priority instead of `input_ids`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# GPT2-like autoregressive model
class BarkCausalModel(BarkPreTrainedModel, GenerationMixin):
config_class = BarkSubModelConfig
def __init__(self, config):
super().__init__(config)
self.config = config
# initialize as an autoregressive GPT-like model
self.input_embeds_layer = nn.Embedding(config.input_vocab_size, config.hidden_size)
self.position_embeds_layer = nn.Embedding(config.block_size, config.hidden_size)
self.drop = nn.Dropout(config.dropout)
self.layers = nn.ModuleList([BarkBlock(config, is_causal=True) for _ in range(config.num_layers)])
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.layernorm_final = BarkLayerNorm(config.hidden_size, bias=config.bias)
self.lm_head = nn.Linear(config.hidden_size, config.output_vocab_size, bias=False)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.input_embeds_layer
def set_input_embeddings(self, new_embeddings):
self.input_embeds_layer = new_embeddings
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
# Overwritten -- bark has a model-specific hack
input_embeds = kwargs.get("input_embeds", None)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if past_key_values is not None:
# Omit tokens covered by past_key_values
seq_len = input_ids.shape[1]
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
# input_embeds have already been used and is not required anymore
input_embeds = None
else:
if input_embeds is not None and kwargs.get("use_cache"):
seq_len = input_embeds.shape[1]
else:
seq_len = input_ids.shape[1]
# ensure that attention_mask and position_ids shapes are aligned with the weird Bark hack of reducing
# sequence length on the first forward pass
if attention_mask is not None:
attention_mask = attention_mask[:, :seq_len]
if position_ids is not None:
position_ids = position_ids[:, :seq_len]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
else:
position_ids = None
if input_embeds is not None and kwargs.get("use_cache"):
return {
"input_ids": None,
"input_embeds": input_embeds,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
}
return {
"input_ids": input_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
}
@add_start_docstrings_to_model_forward(BARK_CAUSAL_MODEL_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
input_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
loss = None
if labels is not None:
raise NotImplementedError(
"Training is not implemented yet for Bark - ensure you do not pass `labels` to the model."
)
# Verify if input_embeds already exists
# then compute embeddings.
if input_ids is not None and input_embeds is not None:
raise ValueError("You cannot specify both input_ids and input_embeds at the same time")
elif input_embeds is not None and past_key_values is None:
# we want to return the input_embeds in priority so that it is in line with a weird hack
# of Bark which concatenate two bits of the input_embeds on the first forward pass of the semantic model
pass
elif input_ids is not None:
input_embeds = self.input_embeds_layer(input_ids) # token embeddings of shape (b, t, n_embd)
elif input_embeds is not None:
pass
else:
raise ValueError("You have to specify either input_ids or input_embeds")
input_shape = input_embeds.size()[:-1]
batch_size = input_embeds.shape[0]
seq_length = input_shape[-1]
device = input_ids.device if input_ids is not None else input_embeds.device
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.layers))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0) # shape (1, seq_length)
position_embeds = self.position_embeds_layer(position_ids) # position embeddings of shape (1, t, n_embd)
# Attention mask.
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
if self._use_flash_attention_2:
attention_mask = attention_mask if 0 in attention_mask else None
else:
attention_mask = attention_mask.view(batch_size, -1)
# [bsz, to_seq_length] -> [bsz, 1, 1, to_seq_length]
# from_seq_length is 1 to easily broadcast
attention_mask = _prepare_4d_attention_mask(attention_mask, input_embeds.dtype, tgt_len=1)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x num_heads x N x N
# head_mask has shape num_layers x batch x num_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
hidden_states = self.drop(input_embeds + position_embeds)
output_shape = input_shape + (hidden_states.size(-1),)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
present_key_values = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, (block, past_layer_key_values) in enumerate(zip(self.layers, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
outputs = self._gradient_checkpointing_func(
block.__call__,
hidden_states,
None,
attention_mask,
head_mask[i],
use_cache,
output_attentions,
)
else:
outputs = block(
hidden_states,
past_key_values=past_layer_key_values,
attention_mask=attention_mask,
head_mask=head_mask[i],
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache:
present_key_values = present_key_values + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
hidden_states = self.layernorm_final(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
logits = self.lm_head(hidden_states)
if not return_dict:
return tuple(
v for v in [None, logits, present_key_values, all_hidden_states, all_self_attentions] if v is not None
)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
@staticmethod
def _reorder_cache(
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
"""
# Necessary for beam_search
return tuple(
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
for layer_past in past_key_values
)
@add_start_docstrings(
"""Bark semantic (or text) model. It shares the same architecture as the coarse model.
It is a GPT-2 like autoregressive model with a language modeling head on top.""",
BARK_MODEL_START_DOCSTRING.format(config="BarkSemanticConfig"),
)
class BarkSemanticModel(BarkCausalModel):
base_model_prefix = "semantic"
config_class = BarkSemanticConfig
def generate(
self,
input_ids: torch.Tensor,
semantic_generation_config: BarkSemanticGenerationConfig = None,
history_prompt: Optional[Dict[str, torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.LongTensor:
"""
Generates text semantic tokens from an input prompt and an additional optional `Bark` speaker prompt.
Args:
input_ids (`Optional[torch.Tensor]` of shape (batch_size, seq_len), *optional*):
Input ids, i.e tokenized input sentences. Will be truncated up to
semantic_generation_config.max_input_semantic_length tokens. Note that the output audios will be as
long as the longest generation among the batch.
semantic_generation_config (`BarkSemanticGenerationConfig`):
Generation config indicating how to generate the semantic tokens.
history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*):
Optional `Bark` speaker prompt.
attention_mask (`Optional[torch.Tensor]`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Returns:
torch.LongTensor: Output semantic tokens.
"""
if semantic_generation_config is None:
raise ValueError("`semantic_generation_config` has to be provided")
batch_size = input_ids.shape[0]
max_input_semantic_length = semantic_generation_config.max_input_semantic_length
input_ids = input_ids + semantic_generation_config.text_encoding_offset
if attention_mask is not None:
input_ids = input_ids.masked_fill((1 - attention_mask).bool(), semantic_generation_config.text_pad_token)
if history_prompt is not None:
semantic_history = history_prompt["semantic_prompt"][-max_input_semantic_length:]
semantic_history = nn.functional.pad(
semantic_history,
(0, max_input_semantic_length - len(semantic_history)),
value=semantic_generation_config.semantic_pad_token,
mode="constant",
)
else:
semantic_history = torch.tensor(
[semantic_generation_config.semantic_pad_token] * max_input_semantic_length, dtype=torch.int
).to(self.device)
semantic_history = torch.repeat_interleave(semantic_history[None], batch_size, dim=0)
infer_array = torch.tensor(
[[semantic_generation_config.semantic_infer_token]] * batch_size, dtype=torch.int
).to(self.device)
input_embeds = torch.cat(
[
self.input_embeds_layer(input_ids[:, :max_input_semantic_length])
+ self.input_embeds_layer(semantic_history[:, : max_input_semantic_length + 1]),
self.input_embeds_layer(infer_array),
],
dim=1,
)
tokens_to_suppress = list(
range(semantic_generation_config.semantic_vocab_size, semantic_generation_config.semantic_pad_token)
)
tokens_to_suppress.extend(
list(range(semantic_generation_config.semantic_pad_token + 1, self.config.output_vocab_size))
)
suppress_tokens_logits_processor = SuppressTokensLogitsProcessor(tokens_to_suppress, device=input_ids.device)
min_eos_p = kwargs.get("min_eos_p", semantic_generation_config.min_eos_p)
early_stopping_logits_processor = BarkEosPrioritizerLogitsProcessor(
eos_token_id=semantic_generation_config.eos_token_id, min_eos_p=min_eos_p, device=input_ids.device
)
# pass input_ids in order to stay consistent with the transformers generate method even though it is not used
# (except to get the input seq_len - that's why we keep the first 257 tokens)
semantic_output = super().generate(
torch.ones((batch_size, max_input_semantic_length + 1), dtype=torch.int, device=self.device),
input_embeds=input_embeds,
logits_processor=[suppress_tokens_logits_processor, early_stopping_logits_processor],
generation_config=semantic_generation_config,
**kwargs,
) # size: 10048
# take the generated semantic tokens
semantic_output = semantic_output[:, max_input_semantic_length + 1 :]
return semantic_output
@add_start_docstrings(
"""Bark coarse acoustics model.
It shares the same architecture as the semantic (or text) model. It is a GPT-2 like autoregressive model with a
language modeling head on top.""",
BARK_MODEL_START_DOCSTRING.format(config="BarkCoarseConfig"),
)
class BarkCoarseModel(BarkCausalModel):
base_model_prefix = "coarse_acoustics"
config_class = BarkCoarseConfig
def preprocess_histories(
self,
max_coarse_history: int,
semantic_to_coarse_ratio: int,
batch_size: int,
semantic_generation_config: int,
codebook_size: int,
history_prompt: Optional[Dict[str, torch.Tensor]] = None,
):
"""
Preprocess the optional `Bark` speaker prompts before `self.generate`.
Args:
max_coarse_history (`int`):
Maximum size of coarse tokens used.
semantic_to_coarse_ratio (`int`):
Ratio of semantic to coarse frequency
batch_size (`int`):
Batch size, i.e the number of samples.
semantic_generation_config (`BarkSemanticGenerationConfig`):
Generation config indicating how to generate the semantic tokens.
codebook_size (`int`):
Codebook channel size, i.e. the size of the output vocabulary per codebook channel.
history_prompt (`Optional[Dict[str,torch.Tensor]]`):
Optional `Bark` speaker prompt.
Returns: Returns:
`tuple(torch.FloatTensor)`:
- **x_semantic_history** (`torch.FloatTensor` -- Processed semantic speaker prompt.
- **x_coarse_history** (`torch.FloatTensor`) -- Processed coarse speaker prompt.
"""
if history_prompt is not None:
x_semantic_history = torch.repeat_interleave(history_prompt["semantic_prompt"][None], batch_size, dim=0)
# clone to avoid modifying history_prompt.coarse_prompt
x_coarse_history = history_prompt["coarse_prompt"].clone()
# offset x_coarse_history
if codebook_size is not None:
for n in range(1, x_coarse_history.shape[0]):
# offset
x_coarse_history[n, :] += codebook_size * n
# flatten x_coarse_history
x_coarse_history = torch.transpose(x_coarse_history, 0, 1).reshape(-1)
x_coarse_history = x_coarse_history + semantic_generation_config.semantic_vocab_size
x_coarse_history = torch.repeat_interleave(x_coarse_history[None], batch_size, dim=0)
# e.g: after SEMANTIC_VOCAB_SIZE (10000), 1024 tokens dedicated to first codebook, 1024 next tokens
# dedicated to second codebook.
max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio))
# trim histories correctly
n_semantic_hist_provided = min(
[
max_semantic_history,
x_semantic_history.shape[1] - x_semantic_history.shape[1] % 2,
int(np.floor(x_coarse_history.shape[1] / semantic_to_coarse_ratio)),
]
)
n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio))
x_semantic_history = x_semantic_history[:, -n_semantic_hist_provided:].int()
x_coarse_history = x_coarse_history[:, -n_coarse_hist_provided:].int()
# bit of a hack for time alignment (sounds better) - from Bark original implementation
x_coarse_history = x_coarse_history[:, :-2]
else:
# shape: (batch_size, 0)
x_semantic_history = torch.tensor([[]] * batch_size, dtype=torch.int, device=self.device)
x_coarse_history = torch.tensor([[]] * batch_size, dtype=torch.int, device=self.device)
return x_semantic_history, x_coarse_history
def generate(
self,
semantic_output: torch.Tensor,
semantic_generation_config: BarkSemanticGenerationConfig = None,
coarse_generation_config: BarkCoarseGenerationConfig = None,
codebook_size: int = 1024,
history_prompt: Optional[Dict[str, torch.Tensor]] = None,
return_output_lengths: Optional[bool] = None,
**kwargs,
) -> Union[torch.LongTensor, Tuple[torch.LongTensor, torch.LongTensor]]:
"""
Generates coarse acoustics tokens from input text semantic tokens and an additional optional `Bark` speaker
prompt.
Args:
semantic_output (`torch.Tensor` of shape (batch_size, seq_len), *optional*):
Input text semantic ids, i.e the output of `BarkSemanticModel.generate`.
semantic_generation_config (`BarkSemanticGenerationConfig`):
Generation config indicating how to generate the semantic tokens.
coarse_generation_config (`BarkCoarseGenerationConfig`):
Generation config indicating how to generate the coarse tokens.
codebook_size (`int`, *optional*, defaults to 1024):
Codebook channel size, i.e. the size of the output vocabulary per codebook channel.
history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*):
Optional `Bark` speaker prompt.
return_output_lengths (`bool`, *optional*):
Whether or not to return the output lengths. Useful when batching.
Returns:
By default:
torch.LongTensor: Output coarse acoustics tokens.
If `return_output_lengths=True`:
`Tuple(torch.Tensor, torch.Tensor): The output coarse acoustics tokens, and the length of each sample
of the batch.
"""
if semantic_generation_config is None:
raise ValueError("`semantic_generation_config` has to be provided")
if coarse_generation_config is None:
raise ValueError("`coarse_generation_config` has to be provided")
max_coarse_input_length = coarse_generation_config.max_coarse_input_length
max_coarse_history = coarse_generation_config.max_coarse_history
sliding_window_len = coarse_generation_config.sliding_window_len
# replace semantic_pad_token (eos_tok and pad_tok here) with coarse_semantic_pad_token i.e the pad_token
# used in the next model
semantic_output.masked_fill_(
semantic_output == semantic_generation_config.semantic_pad_token,
coarse_generation_config.coarse_semantic_pad_token,
)
semantic_to_coarse_ratio = (
coarse_generation_config.coarse_rate_hz
/ semantic_generation_config.semantic_rate_hz
* coarse_generation_config.n_coarse_codebooks
)
max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio))
output_lengths = (semantic_output != coarse_generation_config.coarse_semantic_pad_token).sum(1)
output_lengths = torch.floor(
output_lengths * semantic_to_coarse_ratio / coarse_generation_config.n_coarse_codebooks
)
output_lengths = torch.round(output_lengths * coarse_generation_config.n_coarse_codebooks).int()
max_generated_len = torch.max(output_lengths).item()
batch_size = semantic_output.shape[0]
x_semantic_history, x_coarse = self.preprocess_histories(
history_prompt=history_prompt,
max_coarse_history=max_coarse_history,
semantic_to_coarse_ratio=semantic_to_coarse_ratio,
batch_size=batch_size,
semantic_generation_config=semantic_generation_config,
codebook_size=codebook_size,
)
base_semantic_idx = x_semantic_history.shape[1]
semantic_output = torch.hstack([x_semantic_history, semantic_output])
n_window_steps = int(np.ceil(max_generated_len / sliding_window_len))
total_generated_len = 0
len_coarse_history = x_coarse.shape[1]
for _ in range(n_window_steps):
semantic_idx = base_semantic_idx + int(round(total_generated_len / semantic_to_coarse_ratio))
# pad from right side
input_coarse = semantic_output[:, np.max([0, semantic_idx - max_semantic_history]) :]
input_coarse = input_coarse[:, :max_coarse_input_length]
input_coarse = F.pad(
input_coarse,
(0, max_coarse_input_length - input_coarse.shape[-1]),
"constant",
coarse_generation_config.coarse_semantic_pad_token,
)
input_coarse = torch.hstack(
[
input_coarse,
torch.tensor([[coarse_generation_config.coarse_infer_token]] * batch_size, device=self.device),
x_coarse[:, -max_coarse_history:],
]
)
alternatingLogitsProcessor = AlternatingCodebooksLogitsProcessor(
input_coarse.shape[1],
semantic_generation_config.semantic_vocab_size,
codebook_size,
)
output_coarse = super().generate(
input_coarse,
logits_processor=[alternatingLogitsProcessor],
max_new_tokens=min(sliding_window_len, max_generated_len - total_generated_len),
generation_config=coarse_generation_config,
**kwargs,
)
input_coarse_len = input_coarse.shape[1]
x_coarse = torch.hstack([x_coarse, output_coarse[:, input_coarse_len:]])
total_generated_len = x_coarse.shape[1] - len_coarse_history
del output_coarse
coarse_output = x_coarse[:, len_coarse_history:]
if return_output_lengths:
return coarse_output, output_lengths
return coarse_output
@add_start_docstrings(
"""Bark fine acoustics model. It is a non-causal GPT-like model with `config.n_codes_total` embedding layers and
language modeling heads, one for each codebook.""",
BARK_MODEL_START_DOCSTRING.format(config="BarkFineConfig"),
)
class BarkFineModel(BarkPreTrainedModel):
base_model_prefix = "fine_acoustics"
config_class = BarkFineConfig
main_input_name = "codebook_idx"
def __init__(self, config):
# non-causal gpt-like model with one embedding layer and one lm_head for each codebook of Encodec
super().__init__(config)
self.config = config
# initialize a modified non causal GPT-like model
# note that for there is one embedding layer and one lm_head for each codebook of Encodec
self.input_embeds_layers = nn.ModuleList(
[nn.Embedding(config.input_vocab_size, config.hidden_size) for _ in range(config.n_codes_total)]
)
self.position_embeds_layer = nn.Embedding(config.block_size, config.hidden_size)
self.drop = nn.Dropout(config.dropout)
self.layers = nn.ModuleList([BarkBlock(config, is_causal=False) for _ in range(config.num_layers)])
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.layernorm_final = nn.LayerNorm(config.hidden_size)
self.lm_heads = nn.ModuleList(
[
nn.Linear(config.hidden_size, config.output_vocab_size, bias=False)
for _ in range(config.n_codes_given, config.n_codes_total)
]
)
self.gradient_checkpointing = False
self.n_codes_total = config.n_codes_total
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
# one embedding layers for each codebook
return self.input_embeds_layers
def set_input_embeddings(self, new_embeddings):
# one embedding layers for each codebook
self.input_embeds_layers = new_embeddings
def get_output_embeddings(self):
# one lm_head for each codebook
return self.lm_heads
def set_output_embeddings(self, new_output_embeddings):
# one lm_head for each codebook
self.lm_heads = new_output_embeddings
def _resize_token_embeddings(self, new_num_tokens, pad_to_multiple_of=None, mean_resizing=True):
old_embeddings_list = self.get_input_embeddings()
new_embeddings_list = nn.ModuleList(
[
self._get_resized_embeddings(old_embeddings, new_num_tokens, pad_to_multiple_of, mean_resizing)
for old_embeddings in old_embeddings_list
]
)
self.set_input_embeddings(new_embeddings_list)
new_num_tokens = new_embeddings_list[0].weight.shape[0]
# if word embeddings are not tied, make sure that lm head is resized as well
if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
old_lm_head_list = self.get_output_embeddings()
new_lm_head_list = nn.ModuleList(
[self._get_resized_lm_head(old_lm_head, new_num_tokens) for old_lm_head in old_lm_head_list]
)
self.set_output_embeddings(new_lm_head_list)
return self.get_input_embeddings()
def resize_token_embeddings(
self,
new_num_tokens: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
mean_resizing: bool = True,
) -> nn.Embedding:
"""
Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
Arguments:
new_num_tokens (`int`, *optional*):
The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
pad_to_multiple_of (`int`, *optional*):
If set will pad the embedding matrix to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
details about this, or help on choosing the correct value for resizing, refer to this guide:
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
mean_resizing (`bool`):
Whether to initialize the added embeddings from a multivariate normal distribution that has old embeddings' mean and
covariance or to initialize them with a normal distribution that has a mean of zero and std equals `config.initializer_range`.
Setting `mean_resizing` to `True` is useful when increasing the size of the embeddings of causal language models,
where the generated tokens' probabilities won't be affected by the added embeddings because initializing the new embeddings with the
old embeddings' mean will reduce the kl-divergence between the next token probability before and after adding the new embeddings.
Refer to this article for more information: https://nlp.stanford.edu/~johnhew/vocab-expansion.html
Return:
`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
"""
model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing)
if new_num_tokens is None and pad_to_multiple_of is None:
return model_embeds
# Update base model and current model config
self.config.output_vocab_size = model_embeds[0].weight.shape[0]
self.config.vocab_size = model_embeds[0].weight.shape[0]
self.output_vocab_size = model_embeds[0].weight.shape[0]
self.vocab_size = model_embeds[0].weight.shape[0]
# Tie weights again if needed
self.tie_weights()
return model_embeds
def _tie_weights(self):
if getattr(self.config, "tie_word_embeddings", True):
self._tied_weights_keys = []
output_embeddings = self.get_output_embeddings()
input_embeddings = self.get_input_embeddings()
for i in range(self.config.n_codes_total - self.config.n_codes_given):
# self.input_embeds_layers[i + 1].weight = self.lm_heads[i].weight
self._tie_or_clone_weights(output_embeddings[i], input_embeddings[i + 1])
self._tied_weights_keys.append(f"lm_heads.{i}.weight")
def tie_weights(self):
"""
Tie the weights between the input embeddings list and the output embeddings list.
If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
weights instead.
"""
if getattr(self.config, "tie_word_embeddings", True):
self._tied_weights_keys = []
output_embeddings = self.get_output_embeddings()
input_embeddings = self.get_input_embeddings()
for i in range(self.config.n_codes_total - self.config.n_codes_given):
# self.input_embeds_layers[i + 1].weight = self.lm_heads[i].weight
self._tie_or_clone_weights(output_embeddings[i], input_embeddings[i + 1])
self._tied_weights_keys.append(f"lm_heads.{i}.weight")
for module in self.modules():
if hasattr(module, "_tie_weights"):
module._tie_weights()
@add_start_docstrings_to_model_forward(BARK_FINE_INPUTS_DOCSTRING)
def forward(
self,
codebook_idx: int, # an additionnal idx corresponding to the id of the codebook that will be predicted
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
input_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
loss = None
if labels is not None:
raise NotImplementedError("Training is not implemented yet")
if codebook_idx == 0:
raise ValueError("Cannot predict 0th codebook - 0th codebook should be predicted by the coarse model")
if input_ids is not None and input_embeds is not None:
raise ValueError("You cannot specify both input_ids and input_embeds at the same time")
if input_ids is None and input_embeds is None:
raise ValueError("You have to specify either input_ids or input_embeds")
if input_ids is not None:
# the input_embeddings are the sum of the j previous codebooks embeddings before
# the current codebook_idx codebook
# forward the GPT model itself
input_embeds = [
input_embeds_layer(input_ids[:, :, i]).unsqueeze(-1)
for i, input_embeds_layer in enumerate(self.input_embeds_layers)
] # token embeddings of shape (b, t, n_embd)
input_embeds = torch.cat(input_embeds, dim=-1)
input_embeds = input_embeds[:, :, :, : codebook_idx + 1].sum(dim=-1)
input_shape = input_embeds.size()[:-1]
batch_size = input_embeds.shape[0]
seq_length = input_shape[1]
device = input_ids.device if input_ids is not None else input_embeds.device
if position_ids is None:
position_ids = torch.arange(0, seq_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0) # shape (1, seq_length)
position_embeds = self.position_embeds_layer(position_ids) # position embeddings of shape (1, t, n_embd)
# Attention mask.
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
if self._use_flash_attention_2:
attention_mask = attention_mask if 0 in attention_mask else None
else:
# [bsz, to_seq_length] -> [bsz, 1, 1, to_seq_length]
# from_seq_length is 1 to easily broadcast
attention_mask = _prepare_4d_attention_mask(attention_mask, input_embeds.dtype, tgt_len=1)
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
hidden_states = self.drop(input_embeds + position_embeds)
output_shape = input_shape + (hidden_states.size(-1),)
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, block in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = block(
hidden_states,
attention_mask=attention_mask,
head_mask=head_mask[i],
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[1],)
hidden_states = self.layernorm_final(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
logits = self.lm_heads[codebook_idx - self.config.n_codes_given](hidden_states)
if not return_dict:
return tuple(v for v in [None, logits, all_hidden_states, all_self_attentions] if v is not None)
return MaskedLMOutput(
loss=loss,
logits=logits,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
def generate(
self,
coarse_output: torch.Tensor,
semantic_generation_config: BarkSemanticGenerationConfig = None,
coarse_generation_config: BarkCoarseGenerationConfig = None,
fine_generation_config: BarkFineGenerationConfig = None,
codebook_size: int = 1024,
history_prompt: Optional[Dict[str, torch.Tensor]] = None,
**kwargs,
) -> torch.LongTensor:
"""
Generates fine acoustics tokens from input coarse acoustics tokens and an additional optional `Bark` speaker
prompt.
Args:
coarse_output (`torch.Tensor` of shape (batch_size, seq_len)):
Input coarse acoustics ids, i.e the output of `BarkCoarseModel.generate`.
semantic_generation_config (`BarkSemanticGenerationConfig`):
Generation config indicating how to generate the semantic tokens.
coarse_generation_config (`BarkCoarseGenerationConfig`):
Generation config indicating how to generate the coarse tokens.
fine_generation_config (`BarkFineGenerationConfig`):
Generation config indicating how to generate the fine tokens.
codebook_size (`int`, *optional*, defaults to 1024):
Codebook channel size, i.e. the size of the output vocabulary per codebook channel.
history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*):
Optional `Bark` speaker prompt.
Returns:
torch.LongTensor: Output fine acoustics tokens.
"""
if semantic_generation_config is None:
raise ValueError("`semantic_generation_config` has to be provided")
if coarse_generation_config is None:
raise ValueError("`coarse_generation_config` has to be provided")
if fine_generation_config is None:
raise ValueError("`fine_generation_config` has to be provided")
# since we don't really use GenerationConfig through the fine model (autoencoder)
# and since only temperature is used from the classic GenerationConfig parameters
# manually impose the kwargs priority over the generation config
temperature = kwargs.get("temperature", fine_generation_config.temperature)
max_fine_history_length = fine_generation_config.max_fine_history_length
max_fine_input_length = fine_generation_config.max_fine_input_length
# shape: (batch, n_coarse_codebooks * seq_len)
# new_shape: (batch, seq_len, n_coarse_codebooks)
coarse_output = coarse_output.view(coarse_output.shape[0], -1, coarse_generation_config.n_coarse_codebooks)
# brings ids into the range [0, codebook_size -1]
coarse_output = torch.remainder(coarse_output - semantic_generation_config.semantic_vocab_size, codebook_size)
batch_size = coarse_output.shape[0]
if history_prompt is not None:
x_fine_history = torch.repeat_interleave(history_prompt["fine_prompt"].T[None], batch_size, dim=0)
# transpose to get to shape (seq_len, n_fine_codebooks)
else:
x_fine_history = None
n_coarse = coarse_generation_config.n_coarse_codebooks
# pad the last 6th codebooks
fine_input = F.pad(
coarse_output,
(0, fine_generation_config.n_fine_codebooks - n_coarse),
"constant",
codebook_size,
)
# prepend history if available (max max_fine_history_length)
if x_fine_history is not None:
fine_input = torch.cat([x_fine_history[:, -max_fine_history_length:, :], fine_input], dim=1)
# len of the fine_history that has been added to fine_input
n_history = x_fine_history[:, -max_fine_history_length:, :].shape[1]
else:
n_history = 0
n_remove_from_end = 0
# need to pad if too short (since non-causal model)
if fine_input.shape[1] < max_fine_input_length:
n_remove_from_end = max_fine_input_length - fine_input.shape[1]
fine_input = F.pad(fine_input, (0, 0, 0, n_remove_from_end), mode="constant", value=codebook_size)
# we can be lazy about fractional loop and just keep overwriting codebooks.
# seems that coarse_output.shape[1] - (max_fine_input_length - n_history) is equal to minus n_remove_from_end
# So if we needed to pad because too short, n_loops is always 1 (because n_remove_from_end > 0)
# If not, we loop over at least twice.
n_loops = (coarse_output.shape[1] - (max_fine_input_length - n_history)) / max_fine_history_length
n_loops = int(np.ceil(n_loops))
n_loops = max(0, n_loops) + 1
for n_outer in range(n_loops):
start_idx = min([n_outer * max_fine_history_length, fine_input.shape[1] - max_fine_input_length])
start_fill_idx = min(
[n_history + n_outer * max_fine_history_length, fine_input.shape[1] - max_fine_history_length]
)
rel_start_fill_idx = start_fill_idx - start_idx
input_buffer = fine_input[:, start_idx : start_idx + max_fine_input_length, :]
for n_inner in range(n_coarse, fine_generation_config.n_fine_codebooks):
logits = self.forward(n_inner, input_buffer).logits
if temperature is None or temperature == 1.0:
relevant_logits = logits[:, rel_start_fill_idx:, :codebook_size]
codebook_preds = torch.argmax(relevant_logits, -1)
else:
relevant_logits = logits[:, :, :codebook_size] / temperature
# apply softmax
probs = F.softmax(relevant_logits, dim=-1)[:, rel_start_fill_idx:max_fine_input_length]
# reshape to 2D: (batch_size, seq_len, codebook_size) -> (batch_size*seq_len, codebook_size)
probs = probs.reshape((-1, codebook_size))
# multinomial then reshape : (batch_size*seq_len)-> (batch_size,seq_len)
codebook_preds = torch.multinomial(probs, num_samples=1).view(batch_size, -1)
codebook_preds = codebook_preds.to(torch.int32)
input_buffer[:, rel_start_fill_idx:, n_inner] = codebook_preds
del logits, codebook_preds
# transfer into fine_input
for n_inner in range(n_coarse, fine_generation_config.n_fine_codebooks):
fine_input[
:, start_fill_idx : start_fill_idx + (max_fine_input_length - rel_start_fill_idx), n_inner
] = input_buffer[:, rel_start_fill_idx:, n_inner]
del input_buffer
fine_input = fine_input.transpose(1, 2)[:, :, n_history:]
if n_remove_from_end > 0:
fine_input = fine_input[:, :, :-n_remove_from_end]
if fine_input.shape[-1] != coarse_output.shape[-2]:
raise ValueError("input and output should have the same seq_len")
return fine_input
@add_start_docstrings(
"""
The full Bark model, a text-to-speech model composed of 4 sub-models:
- [`BarkSemanticModel`] (also referred to as the 'text' model): a causal auto-regressive transformer model that
takes
as input tokenized text, and predicts semantic text tokens that capture the meaning of the text.
- [`BarkCoarseModel`] (also refered to as the 'coarse acoustics' model), also a causal autoregressive transformer,
that takes into input the results of the last model. It aims at regressing the first two audio codebooks necessary
to `encodec`.
- [`BarkFineModel`] (the 'fine acoustics' model), this time a non-causal autoencoder transformer, which iteratively
predicts the last codebooks based on the sum of the previous codebooks embeddings.
- having predicted all the codebook channels from the [`EncodecModel`], Bark uses it to decode the output audio
array.
It should be noted that each of the first three modules can support conditional speaker embeddings to condition the
output sound according to specific predefined voice.
""",
BARK_START_DOCSTRING,
)
class BarkModel(BarkPreTrainedModel):
config_class = BarkConfig
def __init__(self, config):
super().__init__(config)
self.semantic = BarkSemanticModel(config.semantic_config)
self.coarse_acoustics = BarkCoarseModel(config.coarse_acoustics_config)
self.fine_acoustics = BarkFineModel(config.fine_acoustics_config)
self.codec_model = AutoModel.from_config(config.codec_config)
self.config = config
@classmethod
def can_generate(cls) -> bool:
# Bark has a unique model structure, where the external class (`BarkModel`) doesn't need to inherit from
# `GenerationMixin` (it has a non-standard generation method), but one of the internal models do
# (`BarkSemanticModel`). This means that the base `can_generate()` will return `False`, but we need to
# override it so as to do `GenerationConfig` handling in multiple parts of the codebase.
return True
@property
def device(self) -> torch.device:
"""
`torch.device`: The device on which the module is (assuming that all the module parameters are on the same
device).
"""
# for bark_model, device must be verified on its sub-models
# if has _hf_hook, has been offloaded so the device has to be found in the hook
if not hasattr(self.semantic, "_hf_hook"):
return get_parameter_device(self)
for module in self.semantic.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
def enable_cpu_offload(self, gpu_id: Optional[int] = 0):
r"""
Offloads all sub-models to CPU using accelerate, reducing memory usage with a low impact on performance. This
method moves one whole sub-model at a time to the GPU when it is used, and the sub-model remains in GPU until
the next sub-model runs.
Args:
gpu_id (`int`, *optional*, defaults to 0):
GPU id on which the sub-models will be loaded and offloaded.
"""
if is_accelerate_available():
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate`.")
device = torch.device(f"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu")
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
# this layer is used outside the first foward pass of semantic so need to be loaded before semantic
self.semantic.input_embeds_layer, _ = cpu_offload_with_hook(self.semantic.input_embeds_layer, device)
hook = None
for cpu_offloaded_model in [
self.semantic,
self.coarse_acoustics,
self.fine_acoustics,
]:
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
self.fine_acoustics_hook = hook
_, hook = cpu_offload_with_hook(self.codec_model, device, prev_module_hook=hook)
# We'll offload the last model manually.
self.codec_model_hook = hook
def codec_decode(self, fine_output, output_lengths=None):
"""Turn quantized audio codes into audio array using encodec."""
fine_output = fine_output.transpose(0, 1)
emb = self.codec_model.quantizer.decode(fine_output)
if output_lengths is not None:
# encodec uses LSTMs which behaves differently with appended padding
# decoding with encodec takes around 0.1% of the total generation time
# to keep generation quality, we break batching
out = [sample[:, :l].unsqueeze(0) for (sample, l) in zip(emb, output_lengths)]
audio_arr = [self.codec_model.decoder(sample).squeeze() for sample in out]
else:
out = self.codec_model.decoder(emb)
audio_arr = out.squeeze(1) # squeeze the codebook dimension
return audio_arr
@torch.no_grad()
def generate(
self,
input_ids: Optional[torch.Tensor] = None,
history_prompt: Optional[Dict[str, torch.Tensor]] = None,
return_output_lengths: Optional[bool] = None,
**kwargs,
) -> torch.LongTensor:
"""
Generates audio from an input prompt and an additional optional `Bark` speaker prompt.
Args:
input_ids (`Optional[torch.Tensor]` of shape (batch_size, seq_len), *optional*):
Input ids. Will be truncated up to 256 tokens. Note that the output audios will be as long as the
longest generation among the batch.
history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*):
Optional `Bark` speaker prompt. Note that for now, this model takes only one speaker prompt per batch.
kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments are of two types:
- Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model.
- With a *semantic_*, *coarse_*, *fine_* prefix, they will be input for the `generate` method of the
semantic, coarse and fine respectively. It has the priority over the keywords without a prefix.
This means you can, for example, specify a generation strategy for all sub-models except one.
return_output_lengths (`bool`, *optional*):
Whether or not to return the waveform lengths. Useful when batching.
Returns:
By default:
- **audio_waveform** (`torch.Tensor` of shape (batch_size, seq_len)): Generated audio waveform.
When `return_output_lengths=True`:
Returns a tuple made of:
- **audio_waveform** (`torch.Tensor` of shape (batch_size, seq_len)): Generated audio waveform.
- **output_lengths** (`torch.Tensor` of shape (batch_size)): The length of each waveform in the batch
Example:
```python
>>> from transformers import AutoProcessor, BarkModel
>>> processor = AutoProcessor.from_pretrained("suno/bark-small")
>>> model = BarkModel.from_pretrained("suno/bark-small")
>>> # To add a voice preset, you can pass `voice_preset` to `BarkProcessor.__call__(...)`
>>> voice_preset = "v2/en_speaker_6"
>>> inputs = processor("Hello, my dog is cute, I need him in my life", voice_preset=voice_preset)
>>> audio_array = model.generate(**inputs, semantic_max_new_tokens=100)
>>> audio_array = audio_array.cpu().numpy().squeeze()
```
"""
# TODO (joao):workaround until nested generation config is compatible with PreTrained Model
# todo: dict
semantic_generation_config = BarkSemanticGenerationConfig(**self.generation_config.semantic_config)
coarse_generation_config = BarkCoarseGenerationConfig(**self.generation_config.coarse_acoustics_config)
fine_generation_config = BarkFineGenerationConfig(**self.generation_config.fine_acoustics_config)
kwargs_semantic = {
# if "attention_mask" is set, it should not be passed to CoarseModel and FineModel
"attention_mask": kwargs.pop("attention_mask", None),
"min_eos_p": kwargs.pop("min_eos_p", None),
}
kwargs_coarse = {}
kwargs_fine = {}
for key, value in kwargs.items():
if key.startswith("semantic_"):
key = key[len("semantic_") :]
kwargs_semantic[key] = value
elif key.startswith("coarse_"):
key = key[len("coarse_") :]
kwargs_coarse[key] = value
elif key.startswith("fine_"):
key = key[len("fine_") :]
kwargs_fine[key] = value
else:
# If the key is already in a specific config, then it's been set with a
# submodules specific value and we don't override
if key not in kwargs_semantic:
kwargs_semantic[key] = value
if key not in kwargs_coarse:
kwargs_coarse[key] = value
if key not in kwargs_fine:
kwargs_fine[key] = value
# 1. Generate from the semantic model
if "generation_config" in kwargs_semantic:
kwargs_semantic.pop("generation_config")
semantic_output = self.semantic.generate(
input_ids,
history_prompt=history_prompt,
semantic_generation_config=semantic_generation_config,
**kwargs_semantic,
)
# 2. Generate from the coarse model
if "generation_config" in kwargs_coarse:
kwargs_coarse.pop("generation_config")
coarse_output = self.coarse_acoustics.generate(
semantic_output,
history_prompt=history_prompt,
semantic_generation_config=semantic_generation_config,
coarse_generation_config=coarse_generation_config,
codebook_size=self.generation_config.codebook_size,
return_output_lengths=return_output_lengths,
**kwargs_coarse,
)
output_lengths = None
if return_output_lengths:
coarse_output, output_lengths = coarse_output
# (batch_size, seq_len*coarse_codebooks) -> (batch_size, seq_len)
output_lengths = output_lengths // coarse_generation_config.n_coarse_codebooks
# 3. "generate" from the fine model
if "generation_config" in kwargs_fine:
kwargs_fine.pop("generation_config")
output = self.fine_acoustics.generate(
coarse_output,
history_prompt=history_prompt,
semantic_generation_config=semantic_generation_config,
coarse_generation_config=coarse_generation_config,
fine_generation_config=fine_generation_config,
codebook_size=self.generation_config.codebook_size,
**kwargs_fine,
)
if getattr(self, "fine_acoustics_hook", None) is not None:
# Manually offload fine_acoustics to CPU
# and load codec_model to GPU
# since bark doesn't use codec_model forward pass
self.fine_acoustics_hook.offload()
self.codec_model = self.codec_model.to(self.device)
# 4. Decode the output and generate audio array
audio = self.codec_decode(output, output_lengths)
if getattr(self, "codec_model_hook", None) is not None:
# Offload codec_model to CPU
self.codec_model_hook.offload()
if return_output_lengths:
output_lengths = [len(sample) for sample in audio]
audio = nn.utils.rnn.pad_sequence(audio, batch_first=True, padding_value=0)
return audio, output_lengths
return audio
@classmethod
def _check_and_enable_flash_attn_2(
cls,
config,
torch_dtype: Optional[torch.dtype] = None,
device_map: Optional[Union[str, Dict[str, int]]] = None,
hard_check_only: bool = False,
check_device_map: bool = False,
):
"""
`_check_and_enable_flash_attn_2` originally don't expand flash attention enabling to the model
sub-configurations. We override the original method to make sure that Bark sub-models are using Flash Attention
if necessary.
If you don't know about Flash Attention, check out the official repository of flash attention:
https://github.com/Dao-AILab/flash-attention
For using Flash Attention 1.0 you can do it directly via the `BetterTransformer` API, have a look at this
specific section of the documentation to learn more about it:
https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#decoder-models
The method checks if the current setup is compatible with Flash Attention as it requires the model to be in
half precision and not ran on CPU.
If all checks pass and `hard_check_only` is False, the method will set the config attribute `_attn_implementation` to "flash_attention_2" so that the model
can initialize the correct attention module
"""
config = super()._check_and_enable_flash_attn_2(
config, torch_dtype, device_map, hard_check_only=hard_check_only, check_device_map=check_device_map
)
config.semantic_config._attn_implementation = config._attn_implementation
config.coarse_acoustics_config._attn_implementation = config._attn_implementation
config.fine_acoustics_config._attn_implementation = config._attn_implementation
return config
__all__ = [
"BarkFineModel",
"BarkSemanticModel",
"BarkCoarseModel",
"BarkModel",
"BarkPreTrainedModel",
"BarkCausalModel",
]
```
|
===================================================================================================================================
SOURCE CODE FILE: processing_bark.py
LINES: 1
SIZE: 13.37 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bark\processing_bark.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Bark
"""
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import cached_file
from ..auto import AutoTokenizer
logger = logging.get_logger(__name__)
class BarkProcessor(ProcessorMixin):
r"""
Constructs a Bark processor which wraps a text tokenizer and optional Bark voice presets into a single processor.
Args:
tokenizer ([`PreTrainedTokenizer`]):
An instance of [`PreTrainedTokenizer`].
speaker_embeddings (`Dict[Dict[str]]`, *optional*):
Optional nested speaker embeddings dictionary. The first level contains voice preset names (e.g
`"en_speaker_4"`). The second level contains `"semantic_prompt"`, `"coarse_prompt"` and `"fine_prompt"`
embeddings. The values correspond to the path of the corresponding `np.ndarray`. See
[here](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c) for
a list of `voice_preset_names`.
"""
tokenizer_class = "AutoTokenizer"
attributes = ["tokenizer"]
preset_shape = {
"semantic_prompt": 1,
"coarse_prompt": 2,
"fine_prompt": 2,
}
def __init__(self, tokenizer, speaker_embeddings=None):
super().__init__(tokenizer)
self.speaker_embeddings = speaker_embeddings
@classmethod
def from_pretrained(
cls, pretrained_processor_name_or_path, speaker_embeddings_dict_path="speaker_embeddings_path.json", **kwargs
):
r"""
Instantiate a Bark processor associated with a pretrained model.
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained [`BarkProcessor`] hosted inside a model repo on
huggingface.co.
- a path to a *directory* containing a processor saved using the [`~BarkProcessor.save_pretrained`]
method, e.g., `./my_model_directory/`.
speaker_embeddings_dict_path (`str`, *optional*, defaults to `"speaker_embeddings_path.json"`):
The name of the `.json` file containing the speaker_embeddings dictionary located in
`pretrained_model_name_or_path`. If `None`, no speaker_embeddings is loaded.
**kwargs
Additional keyword arguments passed along to both
[`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`].
"""
if speaker_embeddings_dict_path is not None:
speaker_embeddings_path = cached_file(
pretrained_processor_name_or_path,
speaker_embeddings_dict_path,
subfolder=kwargs.pop("subfolder", None),
cache_dir=kwargs.pop("cache_dir", None),
force_download=kwargs.pop("force_download", False),
proxies=kwargs.pop("proxies", None),
resume_download=kwargs.pop("resume_download", None),
local_files_only=kwargs.pop("local_files_only", False),
token=kwargs.pop("use_auth_token", None),
revision=kwargs.pop("revision", None),
_raise_exceptions_for_gated_repo=False,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
)
if speaker_embeddings_path is None:
logger.warning(
f"""`{os.path.join(pretrained_processor_name_or_path, speaker_embeddings_dict_path)}` does not exists
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
dictionary if wanted, otherwise set `speaker_embeddings_dict_path=None`."""
)
speaker_embeddings = None
else:
with open(speaker_embeddings_path) as speaker_embeddings_json:
speaker_embeddings = json.load(speaker_embeddings_json)
else:
speaker_embeddings = None
tokenizer = AutoTokenizer.from_pretrained(pretrained_processor_name_or_path, **kwargs)
return cls(tokenizer=tokenizer, speaker_embeddings=speaker_embeddings)
def save_pretrained(
self,
save_directory,
speaker_embeddings_dict_path="speaker_embeddings_path.json",
speaker_embeddings_directory="speaker_embeddings",
push_to_hub: bool = False,
**kwargs,
):
"""
Saves the attributes of this processor (tokenizer...) in the specified directory so that it can be reloaded
using the [`~BarkProcessor.from_pretrained`] method.
Args:
save_directory (`str` or `os.PathLike`):
Directory where the tokenizer files and the speaker embeddings will be saved (directory will be created
if it does not exist).
speaker_embeddings_dict_path (`str`, *optional*, defaults to `"speaker_embeddings_path.json"`):
The name of the `.json` file that will contains the speaker_embeddings nested path dictionary, if it
exists, and that will be located in `pretrained_model_name_or_path/speaker_embeddings_directory`.
speaker_embeddings_directory (`str`, *optional*, defaults to `"speaker_embeddings/"`):
The name of the folder in which the speaker_embeddings arrays will be saved.
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs:
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(save_directory, speaker_embeddings_directory, "v2"), exist_ok=True)
embeddings_dict = {}
embeddings_dict["repo_or_path"] = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
voice_preset = self._load_voice_preset(prompt_key)
tmp_dict = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict["repo_or_path"], speaker_embeddings_directory, f"{prompt_key}_{key}"
),
voice_preset[key],
allow_pickle=False,
)
tmp_dict[key] = os.path.join(speaker_embeddings_directory, f"{prompt_key}_{key}.npy")
embeddings_dict[prompt_key] = tmp_dict
with open(os.path.join(save_directory, speaker_embeddings_dict_path), "w") as fp:
json.dump(embeddings_dict, fp)
super().save_pretrained(save_directory, push_to_hub, **kwargs)
def _load_voice_preset(self, voice_preset: Optional[str] = None, **kwargs):
voice_preset_paths = self.speaker_embeddings[voice_preset]
voice_preset_dict = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
f"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]."
)
path = cached_file(
self.speaker_embeddings.get("repo_or_path", "/"),
voice_preset_paths[key],
subfolder=kwargs.pop("subfolder", None),
cache_dir=kwargs.pop("cache_dir", None),
force_download=kwargs.pop("force_download", False),
proxies=kwargs.pop("proxies", None),
resume_download=kwargs.pop("resume_download", None),
local_files_only=kwargs.pop("local_files_only", False),
token=kwargs.pop("use_auth_token", None),
revision=kwargs.pop("revision", None),
_raise_exceptions_for_gated_repo=False,
_raise_exceptions_for_missing_entries=False,
_raise_exceptions_for_connection_errors=False,
)
if path is None:
raise ValueError(
f"""`{os.path.join(self.speaker_embeddings.get("repo_or_path", "/"), voice_preset_paths[key])}` does not exists
, no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}
embeddings."""
)
voice_preset_dict[key] = np.load(path)
return voice_preset_dict
def _validate_voice_preset_dict(self, voice_preset: Optional[dict] = None):
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(f"Voice preset unrecognized, missing {key} as a key.")
if not isinstance(voice_preset[key], np.ndarray):
raise TypeError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.")
if len(voice_preset[key].shape) != self.preset_shape[key]:
raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.")
def __call__(
self,
text=None,
voice_preset=None,
return_tensors="pt",
max_length=256,
add_special_tokens=False,
return_attention_mask=True,
return_token_type_ids=False,
**kwargs,
):
"""
Main method to prepare for the model one or several sequences(s). This method forwards the `text` and `kwargs`
arguments to the AutoTokenizer's [`~AutoTokenizer.__call__`] to encode the text. The method also proposes a
voice preset which is a dictionary of arrays that conditions `Bark`'s output. `kwargs` arguments are forwarded
to the tokenizer and to `cached_file` method if `voice_preset` is a valid filename.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
voice_preset (`str`, `Dict[np.ndarray]`):
The voice preset, i.e the speaker embeddings. It can either be a valid voice_preset name, e.g
`"en_speaker_1"`, or directly a dictionary of `np.ndarray` embeddings for each submodel of `Bark`. Or
it can be a valid file name of a local `.npz` single voice preset.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
Returns:
Tuple([`BatchEncoding`], [`BatchFeature`]): A tuple composed of a [`BatchEncoding`], i.e the output of the
`tokenizer` and a [`BatchFeature`], i.e the voice preset with the right tensors type.
"""
if voice_preset is not None and not isinstance(voice_preset, dict):
if (
isinstance(voice_preset, str)
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
voice_preset = self._load_voice_preset(voice_preset)
else:
if isinstance(voice_preset, str) and not voice_preset.endswith(".npz"):
voice_preset = voice_preset + ".npz"
voice_preset = np.load(voice_preset)
if voice_preset is not None:
self._validate_voice_preset_dict(voice_preset, **kwargs)
voice_preset = BatchFeature(data=voice_preset, tensor_type=return_tensors)
encoded_text = self.tokenizer(
text,
return_tensors=return_tensors,
padding="max_length",
max_length=max_length,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
add_special_tokens=add_special_tokens,
**kwargs,
)
if voice_preset is not None:
encoded_text["history_prompt"] = voice_preset
return encoded_text
__all__ = ["BarkProcessor"]
```
|
============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.12 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bart\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_bart import *
from .modeling_bart import *
from .modeling_flax_bart import *
from .modeling_tf_bart import *
from .tokenization_bart import *
from .tokenization_bart_fast import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
======================================================================================================================================
SOURCE CODE FILE: configuration_bart.py
LINES: 1
SIZE: 18.39 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bart\configuration_bart.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BART model configuration"""
import warnings
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
logger = logging.get_logger(__name__)
class BartConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BartModel`]. It is used to instantiate a BART
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the BART
[facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the BART model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`BartModel`] or [`TFBartModel`].
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
scale_embedding (`bool`, *optional*, defaults to `False`):
Scale embeddings by diving by sqrt(d_model).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
num_labels (`int`, *optional*, defaults to 3):
The number of labels to use in [`BartForSequenceClassification`].
forced_eos_token_id (`int`, *optional*, defaults to 2):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
Example:
```python
>>> from transformers import BartConfig, BartModel
>>> # Initializing a BART facebook/bart-large style configuration
>>> configuration = BartConfig()
>>> # Initializing a model (with random weights) from the facebook/bart-large style configuration
>>> model = BartModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "bart"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
vocab_size=50265,
max_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
activation_function="gelu",
d_model=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
classifier_dropout=0.0,
scale_embedding=False,
use_cache=True,
num_labels=3,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
is_encoder_decoder=True,
decoder_start_token_id=2,
forced_eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.classifier_dropout = classifier_dropout
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=num_labels,
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
self.forced_bos_token_id = self.bos_token_id
warnings.warn(
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
"The config can simply be saved and uploaded again to be fixed."
)
class BartOnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
common_inputs["decoder_input_ids"] = {0: "batch"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
elif self.task == "causal-lm":
# TODO: figure this case out.
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
num_encoder_layers, _ = self.num_layers
for i in range(num_encoder_layers):
common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
else:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
]
)
return common_inputs
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
common_outputs = super().outputs
else:
common_outputs = super(OnnxConfigWithPast, self).outputs
if self.use_past:
num_encoder_layers, _ = self.num_layers
for i in range(num_encoder_layers):
common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair, framework
)
# Generate decoder inputs
decoder_seq_length = seq_length if not self.use_past else 1
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, decoder_seq_length, is_pair, framework
)
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
common_inputs = dict(**encoder_inputs, **decoder_inputs)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, encoder_seq_length = common_inputs["input_ids"].shape
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
encoder_shape = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
decoder_past_length = decoder_seq_length + 3
decoder_shape = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
common_inputs["decoder_attention_mask"] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
)
common_inputs["past_key_values"] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
num_encoder_layers, num_decoder_layers = self.num_layers
min_num_layers = min(num_encoder_layers, num_decoder_layers)
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(min_num_layers):
common_inputs["past_key_values"].append(
(
torch.zeros(decoder_shape),
torch.zeros(decoder_shape),
torch.zeros(encoder_shape),
torch.zeros(encoder_shape),
)
)
# TODO: test this.
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(min_num_layers, max_num_layers):
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
return common_inputs
def _generate_dummy_inputs_for_causal_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair, framework
)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
past_key_values_length = seqlen + 2
num_encoder_layers, _ = self.num_layers
num_encoder_attention_heads, _ = self.num_attention_heads
past_shape = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
mask_dtype = common_inputs["attention_mask"].dtype
common_inputs["attention_mask"] = torch.cat(
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
)
common_inputs["past_key_values"] = [
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers)
]
return common_inputs
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
seq_length = compute_effective_axis_dimension(
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
)
# Generate dummy inputs according to compute batch and sequence
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
return common_inputs
def generate_dummy_inputs(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
elif self.task == "causal-lm":
common_inputs = self._generate_dummy_inputs_for_causal_lm(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
else:
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
return common_inputs
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
if self.task in ["default", "seq2seq-lm"]:
flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
else:
flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
flattened_output, name, idx, t
)
__all__ = ["BartConfig", "BartOnnxConfig"]
```
|
=================================================================================================================================
SOURCE CODE FILE: modeling_bart.py
LINES: 1
SIZE: 101.06 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bart\modeling_bart.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BART model."""
import copy
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import (
_prepare_4d_attention_mask,
_prepare_4d_attention_mask_for_sdpa,
_prepare_4d_causal_attention_mask,
_prepare_4d_causal_attention_mask_for_sdpa,
)
from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Seq2SeqQuestionAnsweringModelOutput,
Seq2SeqSequenceClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_bart import BartConfig
if is_flash_attn_available():
from ...modeling_flash_attention_utils import _flash_attention_forward
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/bart-base"
_CONFIG_FOR_DOC = "BartConfig"
# Base model docstring
_EXPECTED_OUTPUT_SHAPE = [1, 8, 768]
# SequenceClassification docstring
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "valhalla/bart-large-sst2"
_SEQ_CLASS_EXPECTED_LOSS = 0.0
_SEQ_CLASS_EXPECTED_OUTPUT = "'POSITIVE'"
# QuestionAsnwering docstring
_CHECKPOINT_FOR_QA = "valhalla/bart-large-finetuned-squadv1"
_QA_EXPECTED_LOSS = 0.59
_QA_EXPECTED_OUTPUT = "' nice puppet'"
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class BartLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
"""`input_ids' shape is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids.shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
).expand(bsz, -1)
return super().forward(positions + self.offset)
class BartScaledWordEmbedding(nn.Embedding):
"""
This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
super().__init__(num_embeddings, embedding_dim, padding_idx)
self.embed_scale = embed_scale
def forward(self, input_ids: torch.Tensor):
return super().forward(input_ids) * self.embed_scale
class BartAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[BartConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class BartFlashAttention2(BartAttention):
"""
Bart flash attention module. This module inherits from `BartAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# BartFlashAttention2 attention does not support output_attentions
if output_attentions:
raise ValueError("BartFlashAttention2 attention does not support output_attentions")
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, q_len, _ = hidden_states.size()
# get query proj
query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0].transpose(1, 2)
value_states = past_key_value[1].transpose(1, 2)
elif is_cross_attention:
# cross_attentions
key_states = self._reshape(self.k_proj(key_value_states), -1, bsz)
value_states = self._reshape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1)
value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1)
else:
# self_attention
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=self.dropout if self.training else 0.0,
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class BartSdpaAttention(BartAttention):
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
if output_attentions or layer_head_mask is not None:
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"BartModel is using BartSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states,
key_value_states=key_value_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
query_states = self._shape(query_states, tgt_len, bsz)
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False
# NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
# but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.dropout if self.training else 0.0,
is_causal=is_causal,
)
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, None, past_key_value
BART_ATTENTION_CLASSES = {
"eager": BartAttention,
"sdpa": BartSdpaAttention,
"flash_attention_2": BartFlashAttention2,
}
class BartEncoderLayer(nn.Module):
def __init__(self, config: BartConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = BART_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
config=config,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: torch.FloatTensor,
layer_head_mask: torch.FloatTensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class BartDecoderLayer(nn.Module):
def __init__(self, config: BartConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = BART_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
is_causal=True,
config=config,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = BART_ATTENTION_CLASSES[config._attn_implementation](
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
config=config,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class BartClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim: int,
inner_dim: int,
num_classes: int,
pooler_dropout: float,
):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class BartPreTrainedModel(PreTrainedModel):
config_class = BartConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_keys_to_ignore_on_load_unexpected = ["encoder.version", "decoder.version"]
_no_split_modules = [r"BartEncoderLayer", r"BartDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
dummy_inputs = {
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
}
return dummy_inputs
class PretrainedBartModel(BartPreTrainedModel):
def __init_subclass__(self):
warnings.warn(
"The class `PretrainedBartModel` has been depreciated, please use `BartPreTrainedModel` instead.",
FutureWarning,
)
class BartPretrainedModel(BartPreTrainedModel):
def __init_subclass__(self):
warnings.warn(
"The class `PretrainedBartModel` has been depreciated, please use `BartPreTrainedModel` instead.",
FutureWarning,
)
BART_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`BartConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BART_GENERATION_EXAMPLE = r"""
Summarization example:
```python
>>> from transformers import AutoTokenizer, BartForConditionalGeneration
>>> model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> ARTICLE_TO_SUMMARIZE = (
... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
... )
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="pt")
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=0, max_length=20)
>>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'PG&E scheduled the blackouts in response to forecasts for high winds amid dry conditions'
```
Mask filling example:
```python
>>> from transformers import AutoTokenizer, BartForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
>>> model = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> tokenizer.decode(predictions).split()
['not', 'good', 'healthy', 'great', 'very']
```
"""
BART_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
Bart uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should read [`modeling_bart._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class BartEncoder(BartPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`BartEncoderLayer`].
Args:
config: BartConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BartConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = BartScaledWordEmbedding(
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = BartLearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
)
self.layers = nn.ModuleList([BartEncoderLayer(config) for _ in range(config.encoder_layers)])
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self._use_sdpa = config._attn_implementation == "sdpa"
self.layernorm_embedding = nn.LayerNorm(embed_dim)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_ids = input_ids.view(-1, input_ids.shape[-1])
elif inputs_embeds is not None:
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
embed_pos = self.embed_positions(input)
embed_pos = embed_pos.to(inputs_embeds.device)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
if self._use_flash_attention_2:
attention_mask = attention_mask if 0 in attention_mask else None
elif self._use_sdpa and head_mask is None and not output_attentions:
# output_attentions=True & head_mask can not be supported when using SDPA, fall back to
# the manual implementation that requires a 4D causal mask in all cases.
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype)
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class BartDecoder(BartPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BartDecoderLayer`]
Args:
config: BartConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BartConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = BartScaledWordEmbedding(
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = BartLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
)
self.layers = nn.ModuleList([BartDecoderLayer(config) for _ in range(config.decoder_layers)])
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self._use_sdpa = config._attn_implementation == "sdpa"
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.shape
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input)
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self._use_sdpa and not output_attentions and cross_attn_head_mask is None:
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
input_shape,
inputs_embeds,
past_key_values_length,
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
if self._use_flash_attention_2:
encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None
elif self._use_sdpa and cross_attn_head_mask is None and not output_attentions:
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
encoder_attention_mask,
inputs_embeds.dtype,
tgt_len=input_shape[-1],
)
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input, past_key_values_length)
positions = positions.to(inputs_embeds.device)
hidden_states = inputs_embeds + positions
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare BART Model outputting raw hidden-states without any specific head on top.",
BART_START_DOCSTRING,
)
class BartModel(BartPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: BartConfig):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.shared = BartScaledWordEmbedding(vocab_size, config.d_model, padding_idx, embed_scale=embed_scale)
self.encoder = BartEncoder(config, self.shared)
self.decoder = BartDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def _tie_weights(self):
if self.config.tie_word_embeddings:
# Some model checkpoints like "facebook/bart-large-cnn"'s embedding weight is in decoder.embed_tokens, need check here, see issue #36247
if self.shared.weight.device == torch.device(
"meta"
) and self.decoder.embed_tokens.weight.device != torch.device("meta"):
self._tie_or_clone_weights(self.encoder.embed_tokens, self.decoder.embed_tokens)
self._tie_or_clone_weights(self.shared, self.decoder.embed_tokens)
else:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqModelOutput]:
# different to other models, Bart automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
if input_ids is None:
raise ValueError(
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
"passed, `input_ids` cannot be `None`. Please pass either "
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
)
decoder_input_ids = shift_tokens_right(
input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The BART Model with a language modeling head. Can be used for summarization.", BART_START_DOCSTRING
)
class BartForConditionalGeneration(BartPreTrainedModel, GenerationMixin):
base_model_prefix = "model"
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
_keys_to_ignore_on_load_missing = ["final_logits_bias"]
def __init__(self, config: BartConfig):
super().__init__(config)
self.model = BartModel(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def resize_token_embeddings(
self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None, mean_resizing: bool = True
) -> nn.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing)
self._resize_final_logits_bias(new_embeddings.weight.shape[0])
return new_embeddings
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
old_num_tokens = self.final_logits_bias.shape[-1]
if new_num_tokens <= old_num_tokens:
new_bias = self.final_logits_bias[:, :new_num_tokens]
else:
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def _tie_weights(self):
if self.config.tie_word_embeddings:
self.model._tie_weights()
self._tie_or_clone_weights(self.lm_head, self.model.shared)
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(BART_GENERATION_EXAMPLE)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0])
lm_logits = lm_logits + self.final_logits_bias.to(lm_logits.device)
masked_lm_loss = None
if labels is not None:
labels = labels.to(lm_logits.device)
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"""
Bart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
tasks.
""",
BART_START_DOCSTRING,
)
class BartForSequenceClassification(BartPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: BartConfig, **kwargs):
super().__init__(config, **kwargs)
self.model = BartModel(config)
self.classification_head = BartClassificationHead(
config.d_model,
config.d_model,
config.num_labels,
config.classifier_dropout,
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
output_type=Seq2SeqSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
if input_ids is None and inputs_embeds is not None:
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
:, -1, :
]
logits = self.classification_head(sentence_representation)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqSequenceClassifierOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"""
BART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
BART_START_DOCSTRING,
)
class BartForQuestionAnswering(BartPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.model = BartModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_QA,
output_type=Seq2SeqQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
expected_loss=_QA_EXPECTED_LOSS,
expected_output=_QA_EXPECTED_OUTPUT,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqQuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if start_positions is not None and end_positions is not None:
use_cache = False
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (
start_logits,
end_logits,
) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return Seq2SeqQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
class BartDecoderWrapper(BartPreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = BartDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
@add_start_docstrings(
"""
BART decoder with a language modeling head on top (linear layer with weights tied to the input embeddings).
""",
BART_START_DOCSTRING,
)
class BartForCausalLM(BartPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
super().__init__(config)
self.model = BartDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, BartForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
>>> model = BartForCausalLM.from_pretrained("facebook/bart-base", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
labels = labels.to(logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
__all__ = [
"BartForCausalLM",
"BartForConditionalGeneration",
"BartForQuestionAnswering",
"BartForSequenceClassification",
"BartModel",
"BartPreTrainedModel",
"BartPretrainedModel",
"PretrainedBartModel",
]
```
|
======================================================================================================================================
SOURCE CODE FILE: modeling_flax_bart.py
LINES: 1
SIZE: 81.02 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bart\modeling_flax_bart.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flax Bart model."""
import math
import random
from functools import partial
from typing import Callable, Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from jax.random import PRNGKey
from ...modeling_flax_outputs import (
FlaxBaseModelOutput,
FlaxBaseModelOutputWithPastAndCrossAttentions,
FlaxCausalLMOutputWithCrossAttentions,
FlaxSeq2SeqLMOutput,
FlaxSeq2SeqModelOutput,
FlaxSeq2SeqQuestionAnsweringModelOutput,
FlaxSeq2SeqSequenceClassifierOutput,
)
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_call_sample_docstring,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_bart import BartConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/bart-base"
_CONFIG_FOR_DOC = "BartConfig"
BART_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`BartConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
BART_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
BART_ENCODE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
BART_DECODE_INPUTS_DOCSTRING = r"""
Args:
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
encoder_outputs (`tuple(tuple(jnp.ndarray)`):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
shifted_input_ids = jnp.zeros_like(input_ids)
shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1])
shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id)
shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)
return shifted_input_ids
class FlaxBartAttention(nn.Module):
config: BartConfig
embed_dim: int
num_heads: int
dropout: float = 0.0
causal: bool = False
bias: bool = True
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self) -> None:
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {self.num_heads})."
)
dense = partial(
nn.Dense,
self.embed_dim,
use_bias=self.bias,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
self.out_proj = dense()
self.dropout_layer = nn.Dropout(rate=self.dropout)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
@nn.compact
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slightly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states: jnp.ndarray,
key_value_states: Optional[jnp.ndarray] = None,
attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self.k_proj(key_value_states)
value_states = self.v_proj(key_value_states)
else:
# self_attention
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# handle cache prepare causal attention mask
if self.causal:
query_length, key_length = query_states.shape[1], key_states.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = self._merge_heads(attn_output)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class FlaxBartEncoderLayer(nn.Module):
config: BartConfig
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = FlaxBartAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.encoder_attention_heads,
dropout=self.config.attention_dropout,
dtype=self.dtype,
)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
self.fc1 = nn.Dense(
self.config.encoder_ffn_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: jnp.ndarray,
output_attentions: bool = True,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
residual = hidden_states
hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class FlaxBartEncoderLayerCollection(nn.Module):
config: BartConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxBartEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers)
]
self.layerdrop = self.config.encoder_layerdrop
def __call__(
self,
hidden_states,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for encoder_layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions,
deterministic,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states, all_hidden_states, all_attentions)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
class FlaxBartDecoderLayer(nn.Module):
config: BartConfig
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = FlaxBartAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
causal=True,
dtype=self.dtype,
)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.encoder_attn = FlaxBartAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
dtype=self.dtype,
)
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.fc1 = nn.Dense(
self.config.decoder_ffn_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: jnp.ndarray,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = True,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
residual = hidden_states
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
class FlaxBartDecoderLayerCollection(nn.Module):
config: BartConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxBartDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers)
]
self.layerdrop = self.config.decoder_layerdrop
def __call__(
self,
hidden_states,
attention_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if not deterministic and (dropout_probability < self.layerdrop):
layer_outputs = (None, None, None)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
class FlaxBartClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
config: BartConfig
inner_dim: int
num_classes: int
pooler_dropout: float
dtype: jnp.dtype = jnp.float32
def setup(self):
self.dense = nn.Dense(
self.inner_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.dropout = nn.Dropout(rate=self.pooler_dropout)
self.out_proj = nn.Dense(
self.num_classes,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
def __call__(self, hidden_states: jnp.ndarray, deterministic: bool):
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.dense(hidden_states)
hidden_states = jnp.tanh(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class FlaxBartEncoder(nn.Module):
config: BartConfig
embed_tokens: nn.Embed
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.max_source_positions = self.config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
self.embed_positions = nn.Embed(
self.config.max_position_embeddings + self.offset,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
dtype=self.dtype,
)
self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype)
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
input_shape = input_ids.shape
input_ids = input_ids.reshape(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(position_ids + self.offset)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
outputs = self.layers(
hidden_states,
attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return outputs
return FlaxBaseModelOutput(
last_hidden_state=outputs.last_hidden_state,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class FlaxBartDecoder(nn.Module):
config: BartConfig
embed_tokens: nn.Embed
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.max_target_positions = self.config.max_position_embeddings
self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
self.embed_positions = nn.Embed(
self.config.max_position_embeddings + self.offset,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
dtype=self.dtype,
)
self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype)
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
input_shape = input_ids.shape
input_ids = input_ids.reshape(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
# embed positions
positions = self.embed_positions(position_ids + self.offset)
hidden_states = inputs_embeds + positions
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
outputs = self.layers(
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return outputs
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=outputs.last_hidden_state,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
class FlaxBartModule(nn.Module):
config: BartConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
dtype=self.dtype,
)
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
self.decoder = FlaxBartDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
def _get_encoder_module(self):
return self.encoder
def _get_decoder_module(self):
return self.decoder
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return FlaxSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
class FlaxBartPreTrainedModel(FlaxPreTrainedModel):
config_class = BartConfig
base_model_prefix: str = "model"
module_class: nn.Module = None
def __init__(
self,
config: BartConfig,
input_shape: Tuple[int] = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
# make sure initialization pass will work for FlaxBartForSequenceClassificationModule
input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id)
attention_mask = jnp.ones_like(input_ids)
decoder_input_ids = input_ids
decoder_attention_mask = jnp.ones_like(input_ids)
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(
rngs,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length, encoder_outputs):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
`encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
`attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
cross-attention of the decoder.
"""
# init input variables to retrieve cache
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
decoder_position_ids = jnp.broadcast_to(
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape
)
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
init_variables = self.module.init(
jax.random.PRNGKey(0),
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
init_cache=True,
method=_decoder_forward, # we only need to call the decoder to init the cache
)
return unfreeze(init_variables["cache"])
@add_start_docstrings(BART_ENCODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=BartConfig)
def encode(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs):
encode_module = module._get_encoder_module()
return encode_module(input_ids, attention_mask, position_ids, **kwargs)
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
method=_encoder_forward,
)
@add_start_docstrings(BART_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=BartConfig)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
if decoder_position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxBartAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past = outputs
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past = outputs
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
decoder_input_ids: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# prepare encoder inputs
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# prepare decoder inputs
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(
input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
)
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
if decoder_position_ids is None:
batch_size, sequence_length = decoder_input_ids.shape
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
)
@add_start_docstrings(
"The bare Bart Model transformer outputting raw hidden-states without any specific head on top.",
BART_START_DOCSTRING,
)
class FlaxBartModel(FlaxBartPreTrainedModel):
config: BartConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
module_class = FlaxBartModule
append_call_sample_docstring(FlaxBartModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC)
class FlaxBartForConditionalGenerationModule(nn.Module):
config: BartConfig
dtype: jnp.dtype = jnp.float32
bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
def setup(self):
self.model = FlaxBartModule(config=self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.model.shared.num_embeddings,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings))
def _get_encoder_module(self):
return self.model.encoder
def _get_decoder_module(self):
return self.model.decoder
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
position_ids=position_ids,
decoder_position_ids=decoder_position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.model.variables["params"]["shared"]["embedding"]
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return output
return FlaxSeq2SeqLMOutput(
logits=lm_logits,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"The BART Model with a language modeling head. Can be used for summarization.", BART_START_DOCSTRING
)
class FlaxBartForConditionalGeneration(FlaxBartPreTrainedModel):
module_class = FlaxBartForConditionalGenerationModule
dtype: jnp.dtype = jnp.float32
@add_start_docstrings(BART_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=BartConfig)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
if decoder_position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxBartAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
outputs = decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = module.model.variables["params"]["shared"]["embedding"]
lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
lm_logits = module.lm_head(hidden_states)
lm_logits += module.final_logits_bias.astype(self.dtype)
return lm_logits, outputs
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
if past_key_values is None:
lm_logits, decoder_outputs = outputs
else:
(lm_logits, decoder_outputs), past = outputs
if return_dict:
outputs = FlaxCausalLMOutputWithCrossAttentions(
logits=lm_logits,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
)
else:
outputs = (lm_logits,) + decoder_outputs[1:]
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
def prepare_inputs_for_generation(
self,
decoder_input_ids,
max_length,
attention_mask: Optional[jax.Array] = None,
decoder_attention_mask: Optional[jax.Array] = None,
encoder_outputs=None,
**kwargs,
):
# initializing the cache
batch_size, seq_length = decoder_input_ids.shape
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if decoder_attention_mask is not None:
position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"encoder_attention_mask": attention_mask,
"decoder_attention_mask": extended_attention_mask,
"decoder_position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1
return model_kwargs
FLAX_BART_CONDITIONAL_GENERATION_DOCSTRING = """
Returns:
Summarization example:
```python
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np")
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"]).sequences
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
Mask filling example:
```python
>>> import jax
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> input_ids = tokenizer([TXT], return_tensors="jax")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero()[0].item()
>>> probs = jax.nn.softmax(logits[0, masked_index], axis=0)
>>> values, predictions = jax.lax.top_k(probs, k=1)
>>> tokenizer.decode(predictions).split()
```
"""
overwrite_call_docstring(
FlaxBartForConditionalGeneration, BART_INPUTS_DOCSTRING + FLAX_BART_CONDITIONAL_GENERATION_DOCSTRING
)
append_replace_return_docstrings(
FlaxBartForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
)
class FlaxBartForSequenceClassificationModule(nn.Module):
config: BartConfig
dtype: jnp.dtype = jnp.float32
num_labels: Optional[int] = None
def setup(self):
self.model = FlaxBartModule(config=self.config, dtype=self.dtype)
self.classification_head = FlaxBartClassificationHead(
config=self.config,
inner_dim=self.config.d_model,
num_classes=self.num_labels if self.num_labels is not None else self.config.num_labels,
pooler_dropout=self.config.classifier_dropout,
)
def _get_encoder_module(self):
return self.model.encoder
def _get_decoder_module(self):
return self.model.decoder
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
position_ids=position_ids,
decoder_position_ids=decoder_position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
hidden_states = outputs[0] # last hidden state
eos_mask = jnp.where(input_ids == self.config.eos_token_id, 1, 0)
# The first condition is necessary to overcome jax._src.errors.ConcretizationTypeError during JIT compilation
if not isinstance(eos_mask, jax.interpreters.partial_eval.DynamicJaxprTracer):
if len(jnp.unique(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
if any(eos_mask.sum(1) == 0):
raise ValueError("There are missing <eos> tokens in input_ids")
# Ensure to keep 1 only for the last <eos> token for each example
eos_mask_noised = eos_mask + jnp.arange(eos_mask.shape[1]) * 1e-6
eos_mask = jnp.where(eos_mask_noised == eos_mask_noised.max(1).reshape(-1, 1), 1, 0)
sentence_representation = jnp.einsum("ijk, ij -> ijk", hidden_states, eos_mask).sum(1)
logits = self.classification_head(sentence_representation, deterministic=deterministic)
if not return_dict:
output = (logits,) + outputs[1:]
return output
return FlaxSeq2SeqSequenceClassifierOutput(
logits=logits,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"""
Bart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
tasks.
""",
BART_START_DOCSTRING,
)
class FlaxBartForSequenceClassification(FlaxBartPreTrainedModel):
module_class = FlaxBartForSequenceClassificationModule
dtype = jnp.float32
append_call_sample_docstring(
FlaxBartForSequenceClassification,
_CHECKPOINT_FOR_DOC,
FlaxSeq2SeqSequenceClassifierOutput,
_CONFIG_FOR_DOC,
)
class FlaxBartForQuestionAnsweringModule(nn.Module):
config: BartConfig
dtype: jnp.dtype = jnp.float32
num_labels = 2
def setup(self):
self.model = FlaxBartModule(config=self.config, dtype=self.dtype)
self.qa_outputs = nn.Dense(
self.num_labels, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
def _get_encoder_module(self):
return self.model.encoder
def _get_decoder_module(self):
return self.model.decoder
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
position_ids=position_ids,
decoder_position_ids=decoder_position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = jnp.split(logits, logits.shape[-1], axis=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return output
return FlaxSeq2SeqQuestionAnsweringModelOutput(
start_logits=start_logits,
end_logits=end_logits,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"""
BART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
BART_START_DOCSTRING,
)
class FlaxBartForQuestionAnswering(FlaxBartPreTrainedModel):
module_class = FlaxBartForQuestionAnsweringModule
dtype = jnp.float32
append_call_sample_docstring(
FlaxBartForQuestionAnswering,
_CHECKPOINT_FOR_DOC,
FlaxSeq2SeqQuestionAnsweringModelOutput,
_CONFIG_FOR_DOC,
)
class FlaxBartDecoderPreTrainedModel(FlaxPreTrainedModel):
config_class = BartConfig
base_model_prefix: str = "model"
module_class: nn.Module = None
def __init__(
self,
config: BartConfig,
input_shape: Tuple[int] = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
config.is_decoder = True
config.is_encoder_decoder = False
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
encoder_hidden_states = jnp.zeros(input_shape + (self.config.d_model,))
encoder_attention_mask = attention_mask
module_init_outputs = self.module.init(
rngs,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states,
encoder_attention_mask,
return_dict=False,
)
return module_init_outputs["params"]
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
attention_mask = jnp.ones_like(input_ids, dtype="i4")
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
@add_start_docstrings_to_model_forward(BART_DECODE_INPUTS_DOCSTRING)
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
past_key_values: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if encoder_hidden_states is not None and encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
# prepare decoder inputs
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
# changed by FlaxBartAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
return outputs
class FlaxBartDecoderWrapper(nn.Module):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
config: BartConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
embed_dim = self.config.d_model
embed_tokens = nn.Embed(
self.config.vocab_size,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
dtype=self.dtype,
)
self.decoder = FlaxBartDecoder(config=self.config, embed_tokens=embed_tokens, dtype=self.dtype)
def __call__(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
class FlaxBartForCausalLMModule(nn.Module):
config: BartConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.model = FlaxBartDecoderWrapper(config=self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
input_ids,
attention_mask,
position_ids,
encoder_hidden_states,
encoder_attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.model.variables["params"]["decoder"]["embed_tokens"]["embedding"]
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + outputs[1:]
return FlaxCausalLMOutputWithCrossAttentions(
logits=lm_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
Bart Decoder Model with a language modeling head on top (linear layer with weights tied to the input embeddings)
e.g for autoregressive tasks.
""",
BART_START_DOCSTRING,
)
class FlaxBartForCausalLM(FlaxBartDecoderPreTrainedModel):
module_class = FlaxBartForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyway.
# Thus, we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
FlaxBartForCausalLM,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutputWithCrossAttentions,
_CONFIG_FOR_DOC,
)
__all__ = [
"FlaxBartDecoderPreTrainedModel",
"FlaxBartForCausalLM",
"FlaxBartForConditionalGeneration",
"FlaxBartForQuestionAnswering",
"FlaxBartForSequenceClassification",
"FlaxBartModel",
"FlaxBartPreTrainedModel",
]
```
|
====================================================================================================================================
SOURCE CODE FILE: modeling_tf_bart.py
LINES: 1
SIZE: 79.00 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bart\modeling_tf_bart.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF 2.0 Bart model."""
from __future__ import annotations
import random
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPastAndCrossAttentions,
TFSeq2SeqLMOutput,
TFSeq2SeqModelOutput,
TFSeq2SeqSequenceClassifierOutput,
)
# Public API
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFModelInputType,
TFPreTrainedModel,
TFSequenceClassificationLoss,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_bart import BartConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/bart-large"
_CONFIG_FOR_DOC = "BartConfig"
LARGE_NEGATIVE = -1e8
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
start_tokens = tf.fill(
(shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)
)
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids = tf.where(
shifted_input_ids == -100,
tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)),
shifted_input_ids,
)
# "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
# Make sure the assertion op is called by wrapping the result in an identity no-op
with tf.control_dependencies([assert_gte0]):
shifted_input_ids = tf.identity(shifted_input_ids)
return shifted_input_ids
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz = input_ids_shape[0]
tgt_len = input_ids_shape[1]
mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
mask_cond = tf.range(shape_list(mask)[-1])
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
if past_key_values_length > 0:
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
src_len = shape_list(mask)[1]
tgt_len = tgt_len if tgt_len is not None else src_len
one_cst = tf.constant(1.0)
mask = tf.cast(mask, dtype=one_cst.dtype)
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
return (one_cst - expanded_mask) * LARGE_NEGATIVE
class TFBartLearnedPositionalEmbedding(keras.layers.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs):
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim, **kwargs)
def call(
self,
input_shape: Optional[tf.TensorShape] = None,
past_key_values_length: int = 0,
position_ids: tf.Tensor | None = None,
):
"""Input is expected to be of size [bsz x seqlen]."""
if position_ids is None:
seq_len = input_shape[1]
position_ids = tf.range(seq_len, delta=1, name="range")
position_ids += past_key_values_length
offset_dtype = position_ids.dtype if isinstance(position_ids, tf.Tensor) else tf.int32
return super().call(position_ids + tf.constant(self.offset, dtype=offset_dtype))
class TFBartAttention(keras.layers.Layer):
"""Multi-headed attention from "Attention Is All You Need"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
def call(
self,
hidden_states: tf.Tensor,
key_value_states: tf.Tensor | None = None,
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
attention_mask: tf.Tensor | None = None,
layer_head_mask: tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor, tf.Tensor | None]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = shape_list(hidden_states)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = tf.concat([past_key_value[0], key_states], axis=2)
value_states = tf.concat([past_key_value[1], value_states], axis=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
key_states = tf.reshape(key_states, proj_shape)
value_states = tf.reshape(value_states, proj_shape)
src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
tf.debugging.assert_equal(
shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len],
message=(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {shape_list(attn_weights)}"
),
)
if attention_mask is not None:
tf.debugging.assert_equal(
shape_list(attention_mask),
[bsz, 1, tgt_len, src_len],
message=(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {shape_list(attention_mask)}"
),
)
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None:
tf.debugging.assert_equal(
shape_list(layer_head_mask),
[self.num_heads],
message=(
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
f" {shape_list(layer_head_mask)}"
),
)
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
)
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states)
tf.debugging.assert_equal(
shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim],
message=(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {shape_list(attn_output)}"
),
)
attn_output = tf.transpose(
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
)
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
attn_output = self.out_proj(attn_output)
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
return attn_output, attn_weights, past_key_value
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "k_proj", None) is not None:
with tf.name_scope(self.k_proj.name):
self.k_proj.build([None, None, self.embed_dim])
if getattr(self, "q_proj", None) is not None:
with tf.name_scope(self.q_proj.name):
self.q_proj.build([None, None, self.embed_dim])
if getattr(self, "v_proj", None) is not None:
with tf.name_scope(self.v_proj.name):
self.v_proj.build([None, None, self.embed_dim])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.embed_dim])
class TFBartEncoderLayer(keras.layers.Layer):
def __init__(self, config: BartConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFBartAttention(
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
)
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.dropout = keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
self.config = config
def call(
self,
hidden_states: tf.Tensor,
attention_mask: np.ndarray | tf.Tensor | None,
layer_head_mask: tf.Tensor | None,
training: Optional[bool] = False,
) -> tf.Tensor:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`
"""
residual = hidden_states
hidden_states, self_attn_weights, _ = self.self_attn(
hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
)
tf.debugging.assert_equal(
shape_list(hidden_states),
shape_list(residual),
message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states, self_attn_weights
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attn", None) is not None:
with tf.name_scope(self.self_attn.name):
self.self_attn.build(None)
if getattr(self, "self_attn_layer_norm", None) is not None:
with tf.name_scope(self.self_attn_layer_norm.name):
self.self_attn_layer_norm.build([None, None, self.embed_dim])
if getattr(self, "fc1", None) is not None:
with tf.name_scope(self.fc1.name):
self.fc1.build([None, None, self.embed_dim])
if getattr(self, "fc2", None) is not None:
with tf.name_scope(self.fc2.name):
self.fc2.build([None, None, self.config.encoder_ffn_dim])
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.embed_dim])
class TFBartDecoderLayer(keras.layers.Layer):
def __init__(self, config: BartConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFBartAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
name="self_attn",
is_decoder=True,
)
self.dropout = keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.encoder_attn = TFBartAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
name="encoder_attn",
is_decoder=True,
)
self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
self.config = config
def call(
self,
hidden_states: tf.Tensor,
attention_mask: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
layer_head_mask: tf.Tensor | None = None,
cross_attn_layer_head_mask: tf.Tensor | None = None,
past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`tf.Tensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
`(decoder_attention_heads,)`
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
`(decoder_attention_heads,)`
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
return (
hidden_states,
self_attn_weights,
cross_attn_weights,
present_key_value,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attn", None) is not None:
with tf.name_scope(self.self_attn.name):
self.self_attn.build(None)
if getattr(self, "self_attn_layer_norm", None) is not None:
with tf.name_scope(self.self_attn_layer_norm.name):
self.self_attn_layer_norm.build([None, None, self.embed_dim])
if getattr(self, "encoder_attn", None) is not None:
with tf.name_scope(self.encoder_attn.name):
self.encoder_attn.build(None)
if getattr(self, "encoder_attn_layer_norm", None) is not None:
with tf.name_scope(self.encoder_attn_layer_norm.name):
self.encoder_attn_layer_norm.build([None, None, self.embed_dim])
if getattr(self, "fc1", None) is not None:
with tf.name_scope(self.fc1.name):
self.fc1.build([None, None, self.embed_dim])
if getattr(self, "fc2", None) is not None:
with tf.name_scope(self.fc2.name):
self.fc2.build([None, None, self.config.decoder_ffn_dim])
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.embed_dim])
class TFBartClassificationHead(keras.layers.Layer):
"""Head for sentence-level classification tasks."""
def __init__(self, inner_dim: int, num_classes: int, pooler_dropout: float, name: str, **kwargs):
super().__init__(name=name, **kwargs)
self.dense = keras.layers.Dense(inner_dim, name="dense")
self.dropout = keras.layers.Dropout(pooler_dropout)
self.out_proj = keras.layers.Dense(num_classes, name="out_proj")
self.input_dim = inner_dim
self.inner_dim = inner_dim
def call(self, inputs):
hidden_states = self.dropout(inputs)
hidden_states = self.dense(hidden_states)
hidden_states = keras.activations.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.input_dim])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.inner_dim])
class TFBartPretrainedModel(TFPreTrainedModel):
config_class = BartConfig
base_model_prefix = "model"
@property
def dummy_inputs(self):
dummy_inputs = super().dummy_inputs
# Dummy inputs should not contain the default val of 1
# as this is the padding token and some assertions check it
dummy_inputs["input_ids"] = dummy_inputs["input_ids"] * 2
if "decoder_input_ids" in dummy_inputs:
dummy_inputs["decoder_input_ids"] = dummy_inputs["decoder_input_ids"] * 2
return dummy_inputs
def tf_to_pt_weight_rename(self, tf_weight):
if tf_weight == "model.shared.weight":
return tf_weight, "model.decoder.embed_tokens.weight"
else:
return (tf_weight,)
BART_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Args:
config ([`BartConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
BART_GENERATION_EXAMPLE = r"""
Summarization example:
```python
>>> from transformers import AutoTokenizer, TFBartForConditionalGeneration
>>> model = TFBartForConditionalGeneration.from_pretrained("facebook/bart-large")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="tf")
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5)
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
Mask filling example:
```python
>>> from transformers import AutoTokenizer, TFBartForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> model = TFBartForConditionalGeneration.from_pretrained("facebook/bart-large")
>>> input_ids = tokenizer([TXT], return_tensors="tf")["input_ids"]
>>> logits = model(input_ids).logits
>>> probs = tf.nn.softmax(logits[0])
>>> # probs[5] is associated with the mask token
```
"""
BART_INPUTS_DOCSTRING = r"""
Args:
input_ids (`tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
Bart uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tf.FloatTensor`, *optional*):
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape `(batch_size, sequence_length, hidden_size)` is a sequence of
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@keras_serializable
class TFBartEncoder(keras.layers.Layer):
config_class = BartConfig
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`TFBartEncoderLayer`].
Args:
config: BartConfig
"""
def __init__(self, config: BartConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
super().__init__(**kwargs)
self.config = config
self.dropout = keras.layers.Dropout(config.dropout)
self.layerdrop = config.encoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
self.embed_tokens = embed_tokens
self.embed_positions = TFBartLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
name="embed_positions",
)
self.layers = [TFBartEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
self.embed_dim = config.d_model
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input_shape)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
# check attention mask and invert
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask)
else:
attention_mask = None
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
tf.debugging.assert_equal(
shape_list(head_mask)[0],
len(self.layers),
message=(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {shape_list(head_mask)[0]}."
),
)
# encoder layers
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if training and (dropout_probability < self.layerdrop): # skip the layer
continue
hidden_states, attn = encoder_layer(
hidden_states,
attention_mask,
head_mask[idx] if head_mask is not None else None,
)
if output_attentions:
all_attentions += (attn,)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embed_positions", None) is not None:
with tf.name_scope(self.embed_positions.name):
self.embed_positions.build(None)
if getattr(self, "layernorm_embedding", None) is not None:
with tf.name_scope(self.layernorm_embedding.name):
self.layernorm_embedding.build([None, None, self.embed_dim])
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFBartDecoder(keras.layers.Layer):
config_class = BartConfig
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFBartDecoderLayer`]
Args:
config: BartConfig
embed_tokens: output embedding
"""
def __init__(self, config: BartConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
super().__init__(**kwargs)
self.config = config
self.padding_idx = config.pad_token_id
self.embed_tokens = embed_tokens
self.layerdrop = config.decoder_layerdrop
self.embed_positions = TFBartLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
name="embed_positions",
)
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
self.layers = [TFBartDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
self.dropout = keras.layers.Dropout(config.dropout)
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
r"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`tf.tTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
# embed positions
if position_ids is None:
positions = self.embed_positions(input_shape, past_key_values_length)
else:
positions = self.embed_positions(input_shape, position_ids=position_ids)
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
hidden_states = inputs_embeds
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
else:
combined_attention_mask = _expand_mask(
tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1]
)
if attention_mask is not None:
combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1])
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1])
hidden_states = self.layernorm_embedding(hidden_states + positions)
hidden_states = self.dropout(hidden_states, training=training)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None
present_key_values = () if use_cache else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
if attn_mask is not None:
tf.debugging.assert_equal(
shape_list(attn_mask)[0],
len(self.layers),
message=(
f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
f" {shape_list(attn_mask)[0]}."
),
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=head_mask[idx] if head_mask is not None else None,
cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
past_key_value=past_key_value,
)
if use_cache:
present_key_values += (present_key_value,)
if output_attentions:
all_self_attns += (layer_self_attn,)
if encoder_hidden_states is not None:
all_cross_attns += (layer_cross_attn,)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
else:
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attns,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embed_positions", None) is not None:
with tf.name_scope(self.embed_positions.name):
self.embed_positions.build(None)
if getattr(self, "layernorm_embedding", None) is not None:
with tf.name_scope(self.layernorm_embedding.name):
self.layernorm_embedding.build([None, None, self.config.d_model])
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFBartMainLayer(keras.layers.Layer):
config_class = BartConfig
def __init__(self, config: BartConfig, load_weight_prefix=None, **kwargs):
super().__init__(**kwargs)
self.config = config
self.shared = keras.layers.Embedding(
input_dim=config.vocab_size,
output_dim=config.d_model,
embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std),
name="model.shared",
)
# Additional attribute to specify the expected name scope of the layer (for loading/storing weights)
self.shared.load_weight_prefix = "model.shared" if load_weight_prefix is None else load_weight_prefix
self.encoder = TFBartEncoder(config, self.shared, name="encoder")
self.decoder = TFBartDecoder(config, self.shared, name="decoder")
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
decoder_position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
decoder_head_mask: np.ndarray | tf.Tensor | None = None,
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFSeq2SeqModelOutput, Tuple[tf.Tensor]]:
# different to other models, Bart automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
if input_ids is None:
raise ValueError(
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
"passed, `input_ids` cannot be `None`. Please pass either "
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
)
decoder_input_ids = shift_tokens_right(
input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput):
encoder_outputs = TFBaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
elif not return_dict and not isinstance(encoder_outputs, tuple):
encoder_outputs = encoder_outputs.to_tuple()
decoder_outputs = self.decoder(
decoder_input_ids,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return TFSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
# The shared/tied weights expect to be in the model base namespace
# Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than
# the current one.
with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"):
self.shared.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "decoder", None) is not None:
with tf.name_scope(self.decoder.name):
self.decoder.build(None)
@add_start_docstrings(
"The bare BART Model outputting raw hidden-states without any specific head on top.",
BART_START_DOCSTRING,
)
class TFBartModel(TFBartPretrainedModel):
_requires_load_weight_prefix = True
def __init__(self, config: BartConfig, load_weight_prefix=None, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.model = TFBartMainLayer(config, load_weight_prefix=load_weight_prefix, name="model")
def get_encoder(self):
return self.model.encoder
def get_decoder(self):
return self.model.decoder
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSeq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
)
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
decoder_position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
decoder_head_mask: np.ndarray | tf.Tensor | None = None,
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
return TFSeq2SeqModelOutput(
last_hidden_state=output.last_hidden_state,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "model", None) is not None:
with tf.name_scope(self.model.name):
self.model.build(None)
class BiasLayer(keras.layers.Layer):
"""
Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis,
so all weights have to be registered in a layer.
"""
def __init__(self, shape, initializer, trainable, name, **kwargs):
super().__init__(name=name, **kwargs)
# Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of
# "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see:
# https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214
self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable)
def call(self, x):
return x + self.bias
@add_start_docstrings(
"The BART Model with a language modeling head. Can be used for summarization.",
BART_START_DOCSTRING,
)
class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageModelingLoss):
_keys_to_ignore_on_load_missing = [r"final_logits_bias"]
_requires_load_weight_prefix = True
def __init__(self, config, load_weight_prefix=None, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.model = TFBartMainLayer(config, load_weight_prefix=load_weight_prefix, name="model")
self.use_cache = config.use_cache
# final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency.
self.bias_layer = BiasLayer(
name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False
)
def get_decoder(self):
return self.model.decoder
def get_encoder(self):
return self.model.encoder
def get_output_embeddings(self):
return self.get_input_embeddings()
def set_output_embeddings(self, value):
self.set_input_embeddings(value)
def get_bias(self):
return {"final_logits_bias": self.bias_layer.bias}
def set_bias(self, value):
# Replaces the existing layers containing bias for correct (de)serialization.
vocab_size = value["final_logits_bias"].shape[-1]
self.bias_layer = BiasLayer(
name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False
)
self.bias_layer.bias.assign(value["final_logits_bias"])
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(BART_GENERATION_EXAMPLE)
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
decoder_position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
decoder_head_mask: np.ndarray | tf.Tensor | None = None,
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
encoder_outputs: Optional[TFBaseModelOutput] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
if labels is not None:
labels = tf.where(
labels == self.config.pad_token_id,
tf.cast(tf.fill(shape_list(labels), -100), labels.dtype),
labels,
)
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True)
lm_logits = self.bias_layer(lm_logits)
masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return TFSeq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values, # index 1 of d outputs
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
cross_attentions=outputs.cross_attentions, # index 4 of d outputs
encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
encoder_attentions=outputs.encoder_attentions, # 2 of e out
)
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
return TFSeq2SeqLMOutput(
logits=output.logits,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past_key_values is used
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
if decoder_attention_mask is not None: # xla
decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:]
elif past_key_values is not None: # no xla + past_key_values
decoder_position_ids = past_key_values[0][0].shape[2]
else: # no xla + no past_key_values
decoder_position_ids = tf.range(decoder_input_ids.shape[1])
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"decoder_position_ids": decoder_position_ids,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "model", None) is not None:
with tf.name_scope(self.model.name):
self.model.build(None)
if getattr(self, "bias_layer", None) is not None:
with tf.name_scope(self.bias_layer.name):
self.bias_layer.build(None)
@add_start_docstrings(
"""
Bart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
tasks.
""",
BART_START_DOCSTRING,
)
class TFBartForSequenceClassification(TFBartPretrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: BartConfig, load_weight_prefix=None, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.model = TFBartMainLayer(config, load_weight_prefix=load_weight_prefix, name="model")
self.classification_head = TFBartClassificationHead(
config.d_model, config.num_labels, config.classifier_dropout, name="classification_head"
)
@add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSeq2SeqSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
decoder_position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
decoder_head_mask: np.ndarray | tf.Tensor | None = None,
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
encoder_outputs: Optional[TFBaseModelOutput] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFSeq2SeqSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
if input_ids is None and inputs_embeds is not None:
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
last_hidden_state = outputs[0]
eos_mask = tf.equal(input_ids, self.config.eos_token_id)
# out the rows with False where present. Then verify all the final
# entries are True
self_masked = tf.reshape(tf.boolean_mask(eos_mask, eos_mask), (tf.shape(input_ids)[0], -1))
tf.Assert(tf.reduce_all(self_masked[:, -1]), ["All examples must have the same number of <eos> tokens."])
masked = tf.reshape(
tf.boolean_mask(last_hidden_state, eos_mask),
(tf.shape(input_ids)[0], tf.shape(self_masked)[1], tf.shape(last_hidden_state)[-1]),
)
sentence_representation = masked[:, -1, :]
logits = self.classification_head(sentence_representation)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFSeq2SeqSequenceClassifierOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def serving_output(self, output):
logits = tf.convert_to_tensor(output.logits)
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
return TFSeq2SeqSequenceClassifierOutput(
logits=logits,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "model", None) is not None:
with tf.name_scope(self.model.name):
self.model.build(None)
if getattr(self, "classification_head", None) is not None:
with tf.name_scope(self.classification_head.name):
self.classification_head.build(None)
__all__ = ["TFBartForConditionalGeneration", "TFBartForSequenceClassification", "TFBartModel", "TFBartPretrainedModel"]
```
|
=====================================================================================================================================
SOURCE CODE FILE: tokenization_bart.py
LINES: 5
SIZE: 15.90 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bart\tokenization_bart.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all BART models at https://huggingface.co/models?filter=bart
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
characters the bpe code barfs on.
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
tables between utf-8 bytes and unicode strings.
"""
bs = (
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""
Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class BartTokenizer(PreTrainedTokenizer):
"""
Constructs a BART tokenizer, which is smilar to the ROBERTa tokenizer, using byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```python
>>> from transformers import BartTokenizer
>>> tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]
>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
</Tip>
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (BART tokenizer detect beginning of words by the preceding space).
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
merges_file,
errors="replace",
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
add_prefix_space=False,
**kwargs,
):
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
bpe_merges = merges_handle.read().split("\n")[1:-1]
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
self.add_prefix_space = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
super().__init__(
errors=errors,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
@property
def vocab_size(self):
return len(self.encoder)
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word
def _tokenize(self, text):
"""Tokenize a string."""
bpe_tokens = []
for token in re.findall(self.pat, text):
token = "".join(
self.byte_encoder[b] for b in token.encode("utf-8")
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
return bpe_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
text = "".join(tokens)
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
return text
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return vocab_file, merge_file
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BART sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. BART does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
text = " " + text
return (text, kwargs)
__all__ = ["BartTokenizer"]
```
|
==========================================================================================================================================
SOURCE CODE FILE: tokenization_bart_fast.py
LINES: 1
SIZE: 11.02 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bart\tokenization_bart_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
# See all BART models at https://huggingface.co/models?filter=bart
class BartTokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" BART tokenizer (backed by HuggingFace's *tokenizers* library), derived from the GPT-2 tokenizer,
using byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```python
>>> from transformers import BartTokenizerFast
>>> tokenizer = BartTokenizerFast.from_pretrained("facebook/bart-base")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]
>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
</Tip>
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (BART tokenizer detect beginning of words by the preceding space).
trim_offsets (`bool`, *optional*, defaults to `True`):
Whether the post processing step should trim offsets to avoid including whitespaces.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = BartTokenizer
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
errors="replace",
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
add_prefix_space=False,
trim_offsets=True,
**kwargs,
):
# we have to specify that this tokens is special otherwise adding it will reset the normalized flag to `False` in `add_special_tokens`
mask_token = (
AddedToken(mask_token, lstrip=True, normalized=True, special=True)
if isinstance(mask_token, str)
else mask_token
)
super().__init__(
vocab_file,
merges_file,
tokenizer_file=tokenizer_file,
errors=errors,
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
cls_token=cls_token,
unk_token=unk_token,
pad_token=pad_token,
mask_token=mask_token,
add_prefix_space=add_prefix_space,
trim_offsets=trim_offsets,
**kwargs,
)
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
tokenizer_component = "post_processor"
tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None)
if tokenizer_component_instance:
state = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
state["sep"] = tuple(state["sep"])
if "cls" in state:
state["cls"] = tuple(state["cls"])
changes_to_apply = False
if state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
state["add_prefix_space"] = add_prefix_space
changes_to_apply = True
if state.get("trim_offsets", trim_offsets) != trim_offsets:
state["trim_offsets"] = trim_offsets
changes_to_apply = True
if changes_to_apply:
component_class = getattr(processors, state.pop("type"))
new_value = component_class(**state)
setattr(self.backend_tokenizer, tokenizer_component, new_value)
@property
def mask_token(self) -> str:
"""
`str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not
having been set.
BART tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily
comprise the space before the *<mask>*.
"""
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet.")
return None
return str(self._mask_token)
@mask_token.setter
def mask_token(self, value):
"""
Overriding the default behavior of the mask token to have it eat the space before it.
This is needed to preserve backward compatibility with all the previously used models based on Bart.
"""
# Mask token behave like a normal word, i.e. include the space before it
# So we set lstrip to True
value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value
self._mask_token = value
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*args, **kwargs)
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*args, **kwargs)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
if token_ids_1 is None:
return output
return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. BART does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
__all__ = ["BartTokenizerFast"]
```
|
===============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.98 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\barthez\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .tokenization_barthez import *
from .tokenization_barthez_fast import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
===========================================================================================================================================
SOURCE CODE FILE: tokenization_barthez.py
LINES: 1
SIZE: 11.81 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\barthez\tokenization_barthez.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020 Ecole Polytechnique and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
"""Tokenization classes for the BARThez model."""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
SPIECE_UNDERLINE = "▁"
# TODO this class is useless. This is the most standard sentencpiece model. Let's find which one is closest and nuke this.
class BarthezTokenizer(PreTrainedTokenizer):
"""
Adapted from [`CamembertTokenizer`] and [`BartTokenizer`]. Construct a BARThez tokenizer. Based on
[SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Attributes:
sp_model (`SentencePieceProcessor`):
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
# Mask token behave like a normal word, i.e. include the space before it. Will have normalized=False by default this way
mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.vocab_file = vocab_file
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(vocab_file))
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BARThez sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
@property
def vocab_size(self):
return len(self.sp_model)
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text: str) -> List[str]:
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.PieceToId(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.sp_model.IdToPiece(index)
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
prev_is_special = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
return out_string.strip()
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
__all__ = ["BarthezTokenizer"]
```
|
================================================================================================================================================
SOURCE CODE FILE: tokenization_barthez_fast.py
LINES: 1
SIZE: 7.69 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\barthez\tokenization_barthez_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020 Ecole Polytechnique and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
"""Tokenization classes for the BARThez model."""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_barthez import BarthezTokenizer
else:
BarthezTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
SPIECE_UNDERLINE = "▁"
class BarthezTokenizerFast(PreTrainedTokenizerFast):
"""
Adapted from [`CamembertTokenizer`] and [`BartTokenizer`]. Construct a "fast" BARThez tokenizer. Based on
[SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`):
Additional special tokens used by the tokenizer.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = BarthezTokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
**kwargs,
):
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
**kwargs,
)
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BARThez sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
__all__ = ["BarthezTokenizerFast"]
```
|
===============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.94 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bartpho\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .tokenization_bartpho import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
===========================================================================================================================================
SOURCE CODE FILE: tokenization_bartpho.py
LINES: 2
SIZE: 13.24 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bartpho\tokenization_bartpho.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 VinAI Research and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
"""Tokenization classes for BARTpho-syllable model."""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
SPIECE_UNDERLINE = "▁"
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"}
class BartphoTokenizer(PreTrainedTokenizer):
"""
Adapted from [`XLMRobertaTokenizer`]. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file. This vocabulary is the pre-trained SentencePiece model available from the
multilingual XLM-RoBERTa, also used in mBART, consisting of 250K types.
monolingual_vocab_file (`str`):
Path to the monolingual vocabulary file. This monolingual vocabulary consists of Vietnamese-specialized
types extracted from the multilingual vocabulary vocab_file of 250K types.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Attributes:
sp_model (`SentencePieceProcessor`):
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
monolingual_vocab_file,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.vocab_file = vocab_file
self.monolingual_vocab_file = monolingual_vocab_file
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(vocab_file))
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
self.fairseq_tokens_to_ids = {}
cnt = 0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(token) not in self.fairseq_tokens_to_ids:
self.fairseq_tokens_to_ids[str(token)] = cnt
cnt += 1
with open(monolingual_vocab_file, "r", encoding="utf-8") as f:
for line in f.readlines():
token = line.strip().split()[0]
self.fairseq_tokens_to_ids[token] = len(self.fairseq_tokens_to_ids)
if str(mask_token) not in self.fairseq_tokens_to_ids:
self.fairseq_tokens_to_ids[str(mask_token)] = len(self.fairseq_tokens_to_ids)
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An BARTPho sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. BARTPho does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
@property
def vocab_size(self):
return len(self.fairseq_ids_to_tokens)
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text: str) -> List[str]:
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.fairseq_ids_to_tokens[index]
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
return out_string
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
out_monolingual_vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"],
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
if os.path.abspath(self.monolingual_vocab_file) != os.path.abspath(
out_monolingual_vocab_file
) and os.path.isfile(self.monolingual_vocab_file):
copyfile(self.monolingual_vocab_file, out_monolingual_vocab_file)
elif not os.path.isfile(self.monolingual_vocab_file):
with open(out_monolingual_vocab_file, "w", encoding="utf-8") as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f"{str(token)} \n")
return out_vocab_file, out_monolingual_vocab_file
__all__ = ["BartphoTokenizer"]
```
|
============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.08 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\beit\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_beit import *
from .feature_extraction_beit import *
from .image_processing_beit import *
from .modeling_beit import *
from .modeling_flax_beit import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
======================================================================================================================================
SOURCE CODE FILE: configuration_beit.py
LINES: 1
SIZE: 11.32 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\beit\configuration_beit.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BEiT model configuration"""
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
class BeitConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BeitModel`]. It is used to instantiate an BEiT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the BEiT
[microsoft/beit-base-patch16-224-pt22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k) architecture.
Args:
vocab_size (`int`, *optional*, defaults to 8192):
Vocabulary size of the BEiT model. Defines the number of different image tokens that can be used during
pre-training.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
use_mask_token (`bool`, *optional*, defaults to `False`):
Whether to use a mask token for masked image modeling.
use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`):
Whether to use BERT-style absolute position embeddings.
use_relative_position_bias (`bool`, *optional*, defaults to `False`):
Whether to use T5-style relative position embeddings in the self-attention layers.
use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`):
Whether to use the same relative position embeddings across all self-attention layers of the Transformer.
layer_scale_init_value (`float`, *optional*, defaults to 0.1):
Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale.
drop_path_rate (`float`, *optional*, defaults to 0.1):
Stochastic depth rate per sample (when applied in the main path of residual layers).
use_mean_pooling (`bool`, *optional*, defaults to `True`):
Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the
CLS token, before applying the classification head.
pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`):
Pooling scales used in Pooling Pyramid Module applied on the last feature map.
use_auxiliary_head (`bool`, *optional*, defaults to `True`):
Whether to use an auxiliary head during training.
auxiliary_loss_weight (`float`, *optional*, defaults to 0.4):
Weight of the cross-entropy loss of the auxiliary head.
auxiliary_channels (`int`, *optional*, defaults to 256):
Number of channels to use in the auxiliary head.
auxiliary_num_convs (`int`, *optional*, defaults to 1):
Number of convolutional layers to use in the auxiliary head.
auxiliary_concat_input (`bool`, *optional*, defaults to `False`):
Whether to concatenate the output of the auxiliary head with the input before the classification layer.
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
The index that is ignored by the loss function of the semantic segmentation model.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
add_fpn (`bool`, *optional*, defaults to `False`):
Whether to add a FPN as part of the backbone. Only relevant for [`BeitBackbone`].
reshape_hidden_states (`bool`, *optional*, defaults to `True`):
Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in
case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size,
seq_len, hidden_size)`. Only relevant for [`BeitBackbone`].
Example:
```python
>>> from transformers import BeitConfig, BeitModel
>>> # Initializing a BEiT beit-base-patch16-224-pt22k style configuration
>>> configuration = BeitConfig()
>>> # Initializing a model (with random weights) from the beit-base-patch16-224-pt22k style configuration
>>> model = BeitModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "beit"
def __init__(
self,
vocab_size=8192,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-12,
image_size=224,
patch_size=16,
num_channels=3,
use_mask_token=False,
use_absolute_position_embeddings=False,
use_relative_position_bias=False,
use_shared_relative_position_bias=False,
layer_scale_init_value=0.1,
drop_path_rate=0.1,
use_mean_pooling=True,
pool_scales=[1, 2, 3, 6],
use_auxiliary_head=True,
auxiliary_loss_weight=0.4,
auxiliary_channels=256,
auxiliary_num_convs=1,
auxiliary_concat_input=False,
semantic_loss_ignore_index=255,
out_features=None,
out_indices=None,
add_fpn=False,
reshape_hidden_states=True,
**kwargs,
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.use_mask_token = use_mask_token
self.use_absolute_position_embeddings = use_absolute_position_embeddings
self.use_relative_position_bias = use_relative_position_bias
self.use_shared_relative_position_bias = use_shared_relative_position_bias
self.layer_scale_init_value = layer_scale_init_value
self.drop_path_rate = drop_path_rate
self.use_mean_pooling = use_mean_pooling
# decode head attributes (semantic segmentation)
self.pool_scales = pool_scales
# auxiliary head attributes (semantic segmentation)
self.use_auxiliary_head = use_auxiliary_head
self.auxiliary_loss_weight = auxiliary_loss_weight
self.auxiliary_channels = auxiliary_channels
self.auxiliary_num_convs = auxiliary_num_convs
self.auxiliary_concat_input = auxiliary_concat_input
self.semantic_loss_ignore_index = semantic_loss_ignore_index
# handle backwards compatibility
if "segmentation_indices" in kwargs:
warnings.warn(
"The `segmentation_indices` argument is deprecated and will be removed in a future version, use `out_indices` instead.",
FutureWarning,
)
out_indices = kwargs.pop("segmentation_indices")
# backbone attributes
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, self.num_hidden_layers + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
self.add_fpn = add_fpn
self.reshape_hidden_states = reshape_hidden_states
# Copied from transformers.models.vit.configuration_vit.ViTOnnxConfig
class BeitOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
__all__ = ["BeitConfig", "BeitOnnxConfig"]
```
|
===========================================================================================================================================
SOURCE CODE FILE: feature_extraction_beit.py
LINES: 1
SIZE: 1.18 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\beit\feature_extraction_beit.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for BEiT."""
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
logger = logging.get_logger(__name__)
class BeitFeatureExtractor(BeitImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use BeitImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
__all__ = ["BeitFeatureExtractor"]
```
|
=========================================================================================================================================
SOURCE CODE FILE: image_processing_beit.py
LINES: 1
SIZE: 24.06 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\beit\image_processing_beit.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Beit."""
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import INIT_SERVICE_KWARGS, BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import (
TensorType,
filter_out_non_signature_kwargs,
is_torch_available,
is_torch_tensor,
is_vision_available,
logging,
)
from ...utils.deprecation import deprecate_kwarg
if is_vision_available():
import PIL
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class BeitImageProcessor(BaseImageProcessor):
r"""
Constructs a BEiT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`):
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the
`preprocess` method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
Can be overridden by the `crop_size` parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
The mean to use if normalizing the image. This is a float or list of floats of length of the number of
channels of the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
The standard deviation to use if normalizing the image. This is a float or list of floats of length of the
number of channels of the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
do_reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is
used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The
background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the
`preprocess` method.
"""
model_input_names = ["pixel_values"]
@deprecate_kwarg("reduce_labels", new_name="do_reduce_labels", version="4.41.0")
@filter_out_non_signature_kwargs(extra=INIT_SERVICE_KWARGS)
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
rescale_factor: Union[int, float] = 1 / 255,
do_rescale: bool = True,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_reduce_labels: bool = False,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 256, "width": 256}
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
self.do_reduce_labels = do_reduce_labels
@classmethod
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
"""
Overrides the `from_dict` method from the base class to save support of deprecated `reduce_labels` in old configs
"""
image_processor_dict = image_processor_dict.copy()
if "reduce_labels" in image_processor_dict:
image_processor_dict["do_reduce_labels"] = image_processor_dict.pop("reduce_labels")
return super().from_dict(image_processor_dict, **kwargs)
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to (size["height"], size["width"]).
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size, default_to_square=True, param_name="size")
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` argument must contain `height` and `width` keys. Got {size.keys()}")
return resize(
image,
size=(size["height"], size["width"]),
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def reduce_label(self, label: ImageInput) -> np.ndarray:
label = to_numpy_array(label)
# Avoid using underflow conversion
label[label == 0] = 255
label = label - 1
label[label == 254] = 255
return label
def _preprocess(
self,
image: ImageInput,
do_reduce_labels: Optional[bool] = None,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None,
crop_size: Dict[str, int] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
if do_reduce_labels:
image = self.reduce_label(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
if do_center_crop:
image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
return image
def _preprocess_image(
self,
image: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None,
crop_size: Dict[str, int] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if do_rescale and is_scaled_image(image):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
image = self._preprocess(
image,
do_reduce_labels=False,
do_resize=do_resize,
size=size,
resample=resample,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
input_data_format=input_data_format,
)
if data_format is not None:
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
def _preprocess_segmentation_map(
self,
segmentation_map: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None,
crop_size: Dict[str, int] = None,
do_reduce_labels: Optional[bool] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""Preprocesses a single segmentation map."""
# All transformations expect numpy arrays.
segmentation_map = to_numpy_array(segmentation_map)
# Add an axis to the segmentation maps for transformations.
if segmentation_map.ndim == 2:
segmentation_map = segmentation_map[None, ...]
added_dimension = True
input_data_format = ChannelDimension.FIRST
else:
added_dimension = False
if input_data_format is None:
input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1)
segmentation_map = self._preprocess(
image=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
resample=resample,
size=size,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_normalize=False,
do_rescale=False,
input_data_format=ChannelDimension.FIRST,
)
# Remove extra axis if added
if added_dimension:
segmentation_map = np.squeeze(segmentation_map, axis=0)
segmentation_map = segmentation_map.astype(np.int64)
return segmentation_map
def __call__(self, images, segmentation_maps=None, **kwargs):
# Overrides the `__call__` method of the `Preprocessor` class such that the images and segmentation maps can both
# be passed in as positional arguments.
return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs)
@deprecate_kwarg("reduce_labels", new_name="do_reduce_labels", version="4.41.0")
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
segmentation_maps: Optional[ImageInput] = None,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None,
crop_size: Dict[str, int] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_reduce_labels: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
segmentation_maps (`ImageInput`, *optional*)
Segmentation maps to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
padded with zeros and then cropped
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0
is used for background, and background itself is not included in all classes of a dataset (e.g.
ADE20k). The background label will be replaced by 255.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=True, param_name="size")
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels
images = make_list_of_images(images)
if segmentation_maps is not None:
segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)
if segmentation_maps is not None and not valid_images(segmentation_maps):
raise ValueError(
"Invalid segmentation_maps type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
images = [
self._preprocess_image(
image=img,
do_resize=do_resize,
do_center_crop=do_center_crop,
do_rescale=do_rescale,
do_normalize=do_normalize,
resample=resample,
size=size,
rescale_factor=rescale_factor,
crop_size=crop_size,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
input_data_format=input_data_format,
)
for img in images
]
data = {"pixel_values": images}
if segmentation_maps is not None:
segmentation_maps = [
self._preprocess_segmentation_map(
segmentation_map=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
resample=resample,
size=size,
do_center_crop=do_center_crop,
crop_size=crop_size,
)
for segmentation_map in segmentation_maps
]
data["labels"] = segmentation_maps
return BatchFeature(data=data, tensor_type=return_tensors)
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
"""
Converts the output of [`BeitForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
Args:
outputs ([`BeitForSemanticSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
List of tuples corresponding to the requested final size (height, width) of each prediction. If unset,
predictions will not be resized.
Returns:
semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
"""
# TODO: add support for other frameworks
logits = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
if is_torch_tensor(target_sizes):
target_sizes = target_sizes.numpy()
semantic_segmentation = []
for idx in range(len(logits)):
resized_logits = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = logits.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
__all__ = ["BeitImageProcessor"]
```
|
=================================================================================================================================
SOURCE CODE FILE: modeling_beit.py
LINES: 1
SIZE: 68.37 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\beit\modeling_beit.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BEiT model."""
import collections.abc
import math
import warnings
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutput,
BaseModelOutputWithPooling,
ImageClassifierOutput,
MaskedLMOutput,
SemanticSegmenterOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import compile_compatible_method_lru_cache, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
torch_int,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_beit import BeitConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "BeitConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "microsoft/beit-base-patch16-224-pt22k"
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "microsoft/beit-base-patch16-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
@dataclass
class BeitModelOutputWithPooling(BaseModelOutputWithPooling):
"""
Class for outputs of [`BeitModel`].
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
will be returned.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
class BeitDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
class BeitEmbeddings(nn.Module):
"""
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
"""
def __init__(self, config: BeitConfig) -> None:
super().__init__()
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
if config.use_mask_token:
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
else:
self.mask_token = None
self.patch_embeddings = BeitPatchEmbeddings(config)
self.patch_size = config.patch_size
self.image_size = (
config.image_size
if isinstance(config.image_size, collections.abc.Iterable)
else (config.image_size, config.image_size)
)
num_patches = self.patch_embeddings.num_patches
if config.use_absolute_position_embeddings:
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
else:
self.position_embeddings = None
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# Copied from transformers.models.vit.modeling_vit.ViTEmbeddings.interpolate_pos_encoding
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1] - 1
num_positions = self.position_embeddings.shape[1] - 1
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, :1]
patch_pos_embed = self.position_embeddings[:, 1:]
dim = embeddings.shape[-1]
new_height = height // self.patch_size
new_width = width // self.patch_size
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
def forward(
self,
pixel_values: torch.Tensor,
bool_masked_pos: Optional[torch.BoolTensor] = None,
interpolate_pos_encoding: Optional[bool] = None,
) -> torch.Tensor:
if self.position_embeddings is not None and interpolate_pos_encoding is not None:
warnings.warn(
"`interpolate_pos_encoding` argument has no effect for BEiTEmbeddings, embeddings are always "
"interpolated to the input image size. The argument will be removed in transformers v4.51.0."
)
_, _, height, width = pixel_values.shape
embeddings, (patch_height, patch_width) = self.patch_embeddings(pixel_values)
batch_size, seq_len, _ = embeddings.size()
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_tokens
w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1 - w) + mask_tokens * w
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
if self.position_embeddings is not None:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
embeddings = self.dropout(embeddings)
return embeddings, (patch_height, patch_width)
class BeitPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.patch_shape = patch_shape
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embeddings = self.projection(pixel_values)
patch_height, patch_width = embeddings.shape[2], embeddings.shape[3]
embeddings = embeddings.flatten(2).transpose(1, 2)
return embeddings, (patch_height, patch_width)
class BeitSelfAttention(nn.Module):
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
super().__init__()
self.config = config
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.has_relative_position_bias = bool(window_size)
if self.has_relative_position_bias:
self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
relative_position_bias: Optional[torch.Tensor] = None,
interpolate_pos_encoding: bool = False,
resolution: Optional[Tuple[int]] = None,
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Add relative position bias if present.
if self.has_relative_position_bias:
height, width = resolution
window_size = (height // self.config.patch_size, width // self.config.patch_size)
attention_scores = attention_scores + self.relative_position_bias(
window_size, interpolate_pos_encoding, dim_size=hidden_states.shape[1]
)
# Add shared relative position bias if provided.
if relative_position_bias is not None:
attention_scores = attention_scores + relative_position_bias
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class BeitSdpaSelfAttention(BeitSelfAttention):
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
relative_position_bias: Optional[torch.Tensor] = None,
interpolate_pos_encoding: bool = False,
resolution: Optional[Tuple[int]] = None,
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
if output_attentions or head_mask is not None:
logger.warning_once(
"`BeitSdpaSelfAttention` is used but `torch.nn.functional.scaled_dot_product_attention` does not "
"support `output_attentions=True` or `head_mask`. Falling back to the manual attention implementation, "
"but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. "
'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
head_mask=head_mask,
output_attentions=output_attentions,
relative_position_bias=relative_position_bias,
interpolate_pos_encoding=interpolate_pos_encoding,
resolution=resolution,
)
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
attn_bias = None
if self.has_relative_position_bias:
height, width = resolution
window_size = (height // self.config.patch_size, width // self.config.patch_size)
attn_bias = self.relative_position_bias(
window_size, interpolate_pos_encoding, dim_size=hidden_states.shape[1]
)
# Add shared relative position bias if provided.
if relative_position_bias is not None:
if attn_bias is None:
attn_bias = relative_position_bias
else:
attn_bias += relative_position_bias
scaling = 1 / math.sqrt(self.attention_head_size)
context_layer = torch.nn.functional.scaled_dot_product_attention(
query_layer,
key_layer,
value_layer,
attn_mask=attn_bias,
dropout_p=self.config.attention_probs_dropout_prob if self.training else 0.0,
is_causal=False,
scale=scaling,
)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer, None
class BeitSelfOutput(nn.Module):
"""
The residual connection is defined in BeitLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: BeitConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, gamma=None) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
BEIT_SELF_ATTENTION_CLASSES = {
"eager": BeitSelfAttention,
"sdpa": BeitSdpaSelfAttention,
}
class BeitAttention(nn.Module):
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
super().__init__()
self.attention = BEIT_SELF_ATTENTION_CLASSES[config._attn_implementation](config, window_size=window_size)
self.output = BeitSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
relative_position_bias: Optional[torch.Tensor] = None,
interpolate_pos_encoding: bool = False,
resolution: Optional[Tuple[int]] = None,
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
self_outputs = self.attention(
hidden_states, head_mask, output_attentions, relative_position_bias, interpolate_pos_encoding, resolution
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class BeitIntermediate(nn.Module):
def __init__(self, config: BeitConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BeitOutput(nn.Module):
def __init__(self, config: BeitConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class BeitLayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BeitAttention(config, window_size=window_size)
self.intermediate = BeitIntermediate(config)
self.output = BeitOutput(config)
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.drop_path = BeitDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
init_values = config.layer_scale_init_value
if init_values > 0:
self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True)
else:
self.lambda_1, self.lambda_2 = None, None
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
relative_position_bias: Optional[torch.Tensor] = None,
interpolate_pos_encoding: bool = False,
resolution: Optional[Tuple[int]] = None,
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in BEiT, layernorm is applied before self-attention
head_mask,
output_attentions=output_attentions,
relative_position_bias=relative_position_bias,
interpolate_pos_encoding=interpolate_pos_encoding,
resolution=resolution,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# apply lambda_1 if present
if self.lambda_1 is not None:
attention_output = self.lambda_1 * attention_output
# first residual connection
hidden_states = self.drop_path(attention_output) + hidden_states
# in BEiT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = self.output(layer_output)
if self.lambda_2 is not None:
layer_output = self.lambda_2 * layer_output
# second residual connection
layer_output = self.drop_path(layer_output) + hidden_states
outputs = (layer_output,) + outputs
return outputs
class BeitRelativePositionBias(nn.Module):
def __init__(self, config: BeitConfig, window_size: tuple) -> None:
super().__init__()
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, config.num_attention_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
@compile_compatible_method_lru_cache(maxsize=10)
def generate_relative_position_index(self, window_size: Tuple[int, int]) -> torch.Tensor:
"""
This method creates the relative position index, modified to support arbitrary window sizes,
as introduced in [MiDaS v3.1](https://arxiv.org/abs/2307.14460).
"""
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
window_area = window_size[0] * window_size[1]
grid = torch.meshgrid(torch.arange(window_size[0]), torch.arange(window_size[1]), indexing="ij")
coords = torch.stack(grid) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(size=(window_area + 1,) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = num_relative_distance - 3
relative_position_index[0:, 0] = num_relative_distance - 2
relative_position_index[0, 0] = num_relative_distance - 1
return relative_position_index
def forward(self, window_size, interpolate_pos_encoding: bool = False, dim_size=None) -> torch.Tensor:
"""
Modification of timm.models.beit.py: Attention._get_rel_pos_bias to support arbitrary window sizes.
"""
old_height = 2 * self.window_size[0] - 1
old_width = 2 * self.window_size[1] - 1
new_height = 2 * window_size[0] - 1
new_width = 2 * window_size[1] - 1
old_relative_position_bias_table = self.relative_position_bias_table
old_num_relative_distance = self.num_relative_distance
new_num_relative_distance = new_height * new_width + 3
old_sub_table = old_relative_position_bias_table[: old_num_relative_distance - 3]
old_sub_table = old_sub_table.reshape(1, old_width, old_height, -1).permute(0, 3, 1, 2)
new_sub_table = nn.functional.interpolate(
old_sub_table, size=(torch_int(new_height), torch_int(new_width)), mode="bilinear"
)
new_sub_table = new_sub_table.permute(0, 2, 3, 1).reshape(new_num_relative_distance - 3, -1)
new_relative_position_bias_table = torch.cat(
[new_sub_table, old_relative_position_bias_table[old_num_relative_distance - 3 :]]
)
relative_position_index = self.generate_relative_position_index(window_size)
relative_position_bias = new_relative_position_bias_table[relative_position_index.view(-1)]
# patch_size*num_patches_height, patch_size*num_patches_width, num_attention_heads
relative_position_bias = relative_position_bias.view(
window_size[0] * window_size[1] + 1, window_size[0] * window_size[1] + 1, -1
)
# num_attention_heads, patch_size*num_patches_width, patch_size*num_patches_height
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
if interpolate_pos_encoding:
relative_position_bias = nn.functional.interpolate(
relative_position_bias.unsqueeze(1),
size=(dim_size, dim_size),
mode="bilinear",
align_corners=False,
).squeeze(1)
return relative_position_bias.unsqueeze(0)
class BeitEncoder(nn.Module):
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
super().__init__()
self.config = config
self.has_relative_position_bias = config.use_shared_relative_position_bias
if self.has_relative_position_bias:
self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size)
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
self.layer = nn.ModuleList(
[
BeitLayer(
config,
window_size=window_size if config.use_relative_position_bias else None,
drop_path_rate=dpr[i],
)
for i in range(config.num_hidden_layers)
]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
interpolate_pos_encoding: bool = False,
resolution: Optional[Tuple[int, int]] = None,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.has_relative_position_bias:
height, width = resolution
window_size = (height // self.config.patch_size, width // self.config.patch_size)
relative_position_bias = self.relative_position_bias(
window_size, interpolate_pos_encoding=interpolate_pos_encoding, dim_size=hidden_states.shape[1]
)
else:
relative_position_bias = None
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
layer_head_mask,
output_attentions,
relative_position_bias,
interpolate_pos_encoding,
resolution,
)
else:
layer_outputs = layer_module(
hidden_states,
layer_head_mask,
output_attentions,
relative_position_bias,
interpolate_pos_encoding,
resolution,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class BeitPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BeitConfig
base_model_prefix = "beit"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_no_split_modules = ["BeitLayer"]
_keys_to_ignore_on_load_unexpected = [r".*relative_position_index.*"]
_supports_sdpa = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, BeitEmbeddings):
module.cls_token.data.zero_()
if module.mask_token is not None:
module.mask_token.data.zero_()
if module.position_embeddings is not None:
module.position_embeddings.data.zero_()
elif isinstance(module, BeitRelativePositionBias):
module.relative_position_bias_table.data.zero_()
elif isinstance(module, BeitLayer):
if module.lambda_1 is not None:
module.lambda_1.data.fill_(self.config.layer_scale_init_value)
module.lambda_2.data.fill_(self.config.layer_scale_init_value)
BEIT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`BeitConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BEIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`BeitImageProcessor.__call__`] for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Beit Model transformer outputting raw hidden-states without any specific head on top.",
BEIT_START_DOCSTRING,
)
class BeitModel(BeitPreTrainedModel):
def __init__(self, config: BeitConfig, add_pooling_layer: bool = True) -> None:
super().__init__(config)
self.config = config
self.embeddings = BeitEmbeddings(config)
self.encoder = BeitEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape)
self.layernorm = (
nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
)
self.pooler = BeitPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BeitModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: torch.Tensor,
bool_masked_pos: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[tuple, BeitModelOutputWithPooling]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output, _ = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)
resolution = pixel_values.shape[2:]
encoder_outputs = self.encoder(
embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
resolution=resolution,
return_dict=return_dict,
interpolate_pos_encoding=interpolate_pos_encoding,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
return head_outputs + encoder_outputs[1:]
return BeitModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class BeitPooler(nn.Module):
def __init__(self, config: BeitConfig) -> None:
super().__init__()
self.layernorm = (
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.layernorm is not None:
# Mean pool the final hidden states of the patch tokens
patch_tokens = hidden_states[:, 1:, :]
pooled_output = self.layernorm(patch_tokens.mean(1))
else:
# Pool by simply taking the final hidden state of the [CLS] token
pooled_output = hidden_states[:, 0]
return pooled_output
@add_start_docstrings(
"""Beit Model transformer with a 'language' modeling head on top. BEiT does masked image modeling by predicting
visual tokens of a Vector-Quantize Variational Autoencoder (VQ-VAE), whereas other vision models like ViT and DeiT
predict RGB pixel values. As a result, this class is incompatible with [`AutoModelForMaskedImageModeling`], so you
will need to use [`BeitForMaskedImageModeling`] directly if you wish to do masked image modeling with BEiT.""",
BEIT_START_DOCSTRING,
)
class BeitForMaskedImageModeling(BeitPreTrainedModel):
def __init__(self, config: BeitConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.beit = BeitModel(config, add_pooling_layer=False)
# Classifier head
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[tuple, MaskedLMOutput]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, BeitForMaskedImageModeling
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
>>> # create random boolean mask of shape (batch_size, num_patches)
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
>>> loss, logits = outputs.loss, outputs.logits
>>> list(logits.shape)
[1, 196, 8192]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.beit(
pixel_values,
bool_masked_pos=bool_masked_pos,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.layernorm(sequence_output)
prediction_scores = self.lm_head(sequence_output[:, 1:])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores[bool_masked_pos], labels)
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final
hidden states of the patch tokens) e.g. for ImageNet.
""",
BEIT_START_DOCSTRING,
)
class BeitForImageClassification(BeitPreTrainedModel):
def __init__(self, config: BeitConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.beit = BeitModel(config, add_pooling_layer=True)
# Classifier head
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.beit(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class BeitConvModule(nn.Module):
"""
A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution
layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]],
padding: Union[int, Tuple[int, int], str] = 0,
bias: bool = False,
dilation: Union[int, Tuple[int, int]] = 1,
) -> None:
super().__init__()
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
padding=padding,
bias=bias,
dilation=dilation,
)
self.bn = nn.BatchNorm2d(out_channels)
self.activation = nn.ReLU()
def forward(self, input: torch.Tensor) -> torch.Tensor:
output = self.conv(input)
output = self.bn(output)
output = self.activation(output)
return output
class BeitPyramidPoolingBlock(nn.Module):
def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None:
super().__init__()
self.layers = [
nn.AdaptiveAvgPool2d(pool_scale),
BeitConvModule(in_channels, channels, kernel_size=1),
]
for i, layer in enumerate(self.layers):
self.add_module(str(i), layer)
def forward(self, input: torch.Tensor) -> torch.Tensor:
hidden_state = input
for layer in self.layers:
hidden_state = layer(hidden_state)
return hidden_state
class BeitPyramidPoolingModule(nn.Module):
"""
Pyramid Pooling Module (PPM) used in PSPNet.
Args:
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
Module.
in_channels (int): Input channels.
channels (int): Channels after modules, before conv_seg.
align_corners (bool): align_corners argument of F.interpolate.
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None:
super().__init__()
self.pool_scales = pool_scales
self.align_corners = align_corners
self.in_channels = in_channels
self.channels = channels
self.blocks = []
for i, pool_scale in enumerate(pool_scales):
block = BeitPyramidPoolingBlock(pool_scale=pool_scale, in_channels=in_channels, channels=channels)
self.blocks.append(block)
self.add_module(str(i), block)
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
ppm_outs = []
for ppm in self.blocks:
ppm_out = ppm(x)
upsampled_ppm_out = nn.functional.interpolate(
ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners
)
ppm_outs.append(upsampled_ppm_out)
return ppm_outs
class BeitUperHead(nn.Module):
"""
Unified Perceptual Parsing for Scene Understanding. This head is the implementation of
[UPerNet](https://arxiv.org/abs/1807.10221).
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(self, config: BeitConfig) -> None:
super().__init__()
self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6)
self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768]
self.channels = config.hidden_size
self.align_corners = False
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
# PSP Module
self.psp_modules = BeitPyramidPoolingModule(
self.pool_scales,
self.in_channels[-1],
self.channels,
align_corners=self.align_corners,
)
self.bottleneck = BeitConvModule(
self.in_channels[-1] + len(self.pool_scales) * self.channels,
self.channels,
kernel_size=3,
padding=1,
)
# FPN Module
self.lateral_convs = nn.ModuleList()
self.fpn_convs = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
l_conv = BeitConvModule(in_channels, self.channels, kernel_size=1)
fpn_conv = BeitConvModule(self.channels, self.channels, kernel_size=3, padding=1)
self.lateral_convs.append(l_conv)
self.fpn_convs.append(fpn_conv)
self.fpn_bottleneck = BeitConvModule(
len(self.in_channels) * self.channels,
self.channels,
kernel_size=3,
padding=1,
)
def psp_forward(self, inputs):
x = inputs[-1]
psp_outs = [x]
psp_outs.extend(self.psp_modules(x))
psp_outs = torch.cat(psp_outs, dim=1)
output = self.bottleneck(psp_outs)
return output
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
# build laterals
laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)]
laterals.append(self.psp_forward(encoder_hidden_states))
# build top-down path
used_backbone_levels = len(laterals)
for i in range(used_backbone_levels - 1, 0, -1):
prev_shape = laterals[i - 1].shape[2:]
laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate(
laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners
)
# build outputs
fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)]
# append psp feature
fpn_outs.append(laterals[-1])
for i in range(used_backbone_levels - 1, 0, -1):
fpn_outs[i] = nn.functional.interpolate(
fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners
)
fpn_outs = torch.cat(fpn_outs, dim=1)
output = self.fpn_bottleneck(fpn_outs)
output = self.classifier(output)
return output
class BeitFCNHead(nn.Module):
"""
Fully Convolution Networks for Semantic Segmentation. This head is implemented of
[FCNNet](https://arxiv.org/abs/1411.4038>).
Args:
config (BeitConfig): Configuration.
in_channels
kernel_size (int): The kernel size for convs in the head. Default: 3.
dilation (int): The dilation rate for convs in the head. Default: 1.
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(
self, config: BeitConfig, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1
) -> None:
super().__init__()
self.in_channels = config.hidden_size
self.channels = config.auxiliary_channels
self.num_convs = config.auxiliary_num_convs
self.concat_input = config.auxiliary_concat_input
self.in_index = in_index
conv_padding = (kernel_size // 2) * dilation
convs = []
convs.append(
BeitConvModule(
self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
)
)
for i in range(self.num_convs - 1):
convs.append(
BeitConvModule(
self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation
)
)
if self.num_convs == 0:
self.convs = nn.Identity()
else:
self.convs = nn.Sequential(*convs)
if self.concat_input:
self.conv_cat = BeitConvModule(
self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2
)
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
# just take the relevant feature maps
hidden_states = encoder_hidden_states[self.in_index]
output = self.convs(hidden_states)
if self.concat_input:
output = self.conv_cat(torch.cat([hidden_states, output], dim=1))
output = self.classifier(output)
return output
@add_start_docstrings(
"""
Beit Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes.
""",
BEIT_START_DOCSTRING,
)
class BeitForSemanticSegmentation(BeitPreTrainedModel):
def __init__(self, config: BeitConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.beit = BeitModel(config, add_pooling_layer=False)
# FPNs
if len(self.config.out_indices) != 4:
raise ValueError(
"BeitForSemanticSegmentation requires config.out_indices to be a list of 4 integers, "
"specifying which features to use from the backbone. One can use [3, 5, 7, 11] in case of "
"a base-sized architecture."
)
self.fpn1 = nn.Sequential(
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
nn.BatchNorm2d(config.hidden_size),
nn.GELU(),
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
)
self.fpn2 = nn.Sequential(
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2),
)
self.fpn3 = nn.Identity()
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
# Semantic segmentation head(s)
self.decode_head = BeitUperHead(config)
self.auxiliary_head = BeitFCNHead(config) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
def compute_loss(self, logits, auxiliary_logits, labels):
# upsample logits to the images' original size
upsampled_logits = nn.functional.interpolate(
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
if auxiliary_logits is not None:
upsampled_auxiliary_logits = nn.functional.interpolate(
auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
# compute weighted loss
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
main_loss = loss_fct(upsampled_logits, labels)
loss = main_loss
if auxiliary_logits is not None:
auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels)
loss += self.config.auxiliary_loss_weight * auxiliary_loss
return loss
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[tuple, SemanticSegmenterOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, BeitForSemanticSegmentation
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
>>> model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> # logits are of shape (batch_size, num_labels, height, width)
>>> logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if labels is not None and self.config.num_labels == 1:
raise ValueError("The number of labels should be greater than one")
outputs = self.beit(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=True, # we need the intermediate hidden states
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
# only keep certain features, and reshape
# note that we do +1 as the encoder_hidden_states also includes the initial embeddings
features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices]
batch_size = pixel_values.shape[0]
patch_resolution = self.config.image_size // self.config.patch_size
features = [
x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features
]
# apply FPNs
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
for i in range(len(features)):
features[i] = ops[i](features[i])
logits = self.decode_head(features)
auxiliary_logits = None
if self.auxiliary_head is not None:
auxiliary_logits = self.auxiliary_head(features)
loss = None
if labels is not None:
loss = self.compute_loss(logits, auxiliary_logits, labels)
if not return_dict:
if output_hidden_states:
output = (logits,) + outputs[1:]
else:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
BEiT backbone, to be used with frameworks like DETR and MaskFormer.
""",
BEIT_START_DOCSTRING,
)
class BeitBackbone(BeitPreTrainedModel, BackboneMixin):
def __init__(self, config):
super().__init__(config)
super()._init_backbone(config)
self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)]
self.embeddings = BeitEmbeddings(config)
self.encoder = BeitEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape)
if config.add_fpn:
if len(self.config.out_indices) != 4:
raise ValueError(
"BeitBackbone requires config.out_indices to be a list of 4 integers, "
"specifying which features to use from the backbone. One can use [3, 5, 7, 11] in case of "
"a base-sized architecture."
)
hidden_size = config.hidden_size
self.fpn1 = nn.Sequential(
nn.ConvTranspose2d(hidden_size, hidden_size, kernel_size=2, stride=2),
nn.BatchNorm2d(hidden_size, eps=config.batch_norm_eps),
nn.GELU(),
nn.ConvTranspose2d(hidden_size, hidden_size, kernel_size=2, stride=2),
)
self.fpn2 = nn.Sequential(nn.ConvTranspose2d(hidden_size, hidden_size, kernel_size=2, stride=2))
self.fpn3 = nn.Identity()
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
# initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Tensor,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224")
>>> model = AutoBackbone.from_pretrained(
... "microsoft/beit-base-patch16-224", out_features=["stage1", "stage2", "stage3", "stage4"]
... )
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape)
[1, 768, 14, 14]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
batch_size = pixel_values.shape[0]
embedding_output, (patch_height, patch_width) = self.embeddings(pixel_values)
resolution = pixel_values.shape[2:]
outputs = self.encoder(
embedding_output,
output_hidden_states=True,
output_attentions=output_attentions,
resolution=resolution,
return_dict=return_dict,
)
hidden_states = outputs.hidden_states if return_dict else outputs[1]
feature_maps = ()
for stage, hidden_state in zip(self.stage_names, hidden_states):
if stage in self.out_features:
if self.config.reshape_hidden_states:
hidden_state = hidden_state[:, 1:, :]
hidden_state = hidden_state.permute(0, 2, 1)
hidden_state = hidden_state.reshape(batch_size, -1, patch_height, patch_width)
feature_maps += (hidden_state,)
if self.config.add_fpn:
feature_maps = [
self.fpn1(feature_maps[0]),
self.fpn2(feature_maps[1]),
self.fpn3(feature_maps[2]),
self.fpn4(feature_maps[3]),
]
feature_maps = tuple(feature_maps)
if not return_dict:
if output_hidden_states:
output = (feature_maps,) + outputs[1:]
else:
output = (feature_maps,) + outputs[2:]
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
__all__ = [
"BeitForImageClassification",
"BeitForMaskedImageModeling",
"BeitForSemanticSegmentation",
"BeitModel",
"BeitPreTrainedModel",
"BeitBackbone",
]
```
|
======================================================================================================================================
SOURCE CODE FILE: modeling_flax_beit.py
LINES: 1
SIZE: 36.27 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\beit\modeling_flax_beit.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 Microsoft Research and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, List, Optional, Tuple
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from ...modeling_flax_outputs import (
FlaxBaseModelOutput,
FlaxBaseModelOutputWithPooling,
FlaxMaskedLMOutput,
FlaxSequenceClassifierOutput,
)
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward
from .configuration_beit import BeitConfig
@flax.struct.dataclass
class FlaxBeitModelOutputWithPooling(FlaxBaseModelOutputWithPooling):
"""
Class for outputs of [`FlaxBeitModel`].
Args:
last_hidden_state (`jnp.ndarray` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`jnp.ndarray` of shape `(batch_size, hidden_size)`):
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
will be returned.
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus
the initial embedding outputs.
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
BEIT_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a
[flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`BeitConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
BEIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`AutoImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def relative_position_index_init(window_size: Tuple[int, int]) -> jnp.ndarray:
"""
get pair-wise relative position index for each token inside the window
"""
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
coords_h = np.arange(window_size[0])
coords_w = np.arange(window_size[1])
coords = np.stack(np.meshgrid(coords_h, coords_w, indexing="ij")) # 2, Wh, Ww
coords_flatten = np.reshape(coords, (2, -1))
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = np.transpose(relative_coords, (1, 2, 0)) # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = np.zeros(shape=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = num_relative_distance - 3
relative_position_index[0:, 0] = num_relative_distance - 2
relative_position_index[0, 0] = num_relative_distance - 1
return jnp.array(relative_position_index)
def ones_with_scale(key, shape, scale, dtype=jnp.float32):
return jnp.ones(shape, dtype) * scale
class FlaxBeitDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
rate: float
@nn.module.compact
def __call__(self, inputs, deterministic: Optional[bool] = True):
if self.rate == 0.0:
return inputs
keep_prob = 1.0 - self.rate
if deterministic:
return inputs
else:
shape = (inputs.shape[0],) + (1,) * (inputs.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
rng = self.make_rng("droppath")
random_tensor = keep_prob + jax.random.uniform(rng, shape=shape, dtype=inputs.dtype)
binary_tensor = jnp.floor(random_tensor)
output = inputs / keep_prob * binary_tensor
return output
class FlaxBeitPatchEmbeddings(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.num_channels = self.config.num_channels
image_size = self.config.image_size
patch_size = self.config.patch_size
num_patches = (image_size // patch_size) * (image_size // patch_size)
patch_shape = (image_size // patch_size, image_size // patch_size)
self.num_patches = num_patches
self.patch_shape = patch_shape
self.projection = nn.Conv(
self.config.hidden_size,
kernel_size=(patch_size, patch_size),
strides=(patch_size, patch_size),
padding="VALID",
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
def __call__(self, pixel_values):
num_channels = pixel_values.shape[-1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embeddings = self.projection(pixel_values)
batch_size, _, _, channels = embeddings.shape
return jnp.reshape(embeddings, (batch_size, -1, channels))
class FlaxBeitEmbeddings(nn.Module):
"""Construct the CLS token, position and patch embeddings."""
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.cls_token = self.param("cls_token", nn.initializers.zeros, (1, 1, self.config.hidden_size))
if self.config.use_mask_token:
self.mask_token = self.param("mask_token", nn.initializers.zeros, (1, 1, self.config.hidden_size))
self.patch_embeddings = FlaxBeitPatchEmbeddings(self.config, dtype=self.dtype)
num_patches = self.patch_embeddings.num_patches
if self.config.use_absolute_position_embeddings:
self.position_embeddings = self.param(
"position_embeddings", nn.initializers.zeros, (1, num_patches + 1, self.config.hidden_size)
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, pixel_values, bool_masked_pos=None, deterministic=True):
embeddings = self.patch_embeddings(pixel_values)
batch_size, seq_len, _ = embeddings.shape
cls_tokens = jnp.broadcast_to(self.cls_token, (batch_size, 1, self.config.hidden_size))
cls_tokens = cls_tokens.astype(embeddings.dtype)
if bool_masked_pos is not None:
mask_tokens = jnp.broadcast_to(self.mask_token, (batch_size, seq_len, self.config.hidden_size))
mask_tokens = mask_tokens.astype(embeddings.dtype)
# replace the masked visual tokens by mask_tokens
w = jnp.expand_dims(bool_masked_pos, axis=-1)
embeddings = embeddings * (1 - w) + mask_tokens * w
embeddings = jnp.concatenate((cls_tokens, embeddings), axis=1)
if self.config.use_absolute_position_embeddings:
embeddings = embeddings + self.position_embeddings.astype(embeddings.dtype)
embeddings = self.dropout(embeddings, deterministic=deterministic)
return embeddings
class FlaxBeitRelativePositionBias(nn.Module):
config: BeitConfig
window_size: Tuple[int, int]
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
num_relative_distance = (2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1) + 3
self.relative_position_bias_table = self.param(
"relative_position_bias_table",
nn.initializers.zeros,
(num_relative_distance, self.config.num_attention_heads),
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
self.relative_position_index = relative_position_index_init(self.window_size)
def __call__(self):
index = self.relative_position_index.reshape(-1)
shape = (self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1)
relative_position_bias = self.relative_position_bias_table[index].reshape(shape) # Wh*Ww,Wh*Ww,nH
return jnp.transpose(relative_position_bias, (2, 0, 1))
class FlaxBeitSelfAttention(nn.Module):
config: BeitConfig
window_size: Tuple[int, int]
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
if self.config.hidden_size % self.config.num_attention_heads != 0 and not hasattr(
self.config, "embedding_size"
):
raise ValueError(
f"The hidden size {self.config.hidden_size} is not a multiple of the number of attention "
f"heads {self.config.num_attention_heads}."
)
self.query = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.key = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
use_bias=False,
)
self.value = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.relative_position_bias = (
FlaxBeitRelativePositionBias(self.config, window_size=self.window_size, dtype=self.dtype)
if self.window_size
else None
)
def __call__(
self, hidden_states, relative_position_bias=None, deterministic: bool = True, output_attentions: bool = False
):
head_dim = self.config.hidden_size // self.config.num_attention_heads
query_states = self.query(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
value_states = self.value(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
key_states = self.key(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
dropout_rng = None
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
dropout_rng = self.make_rng("dropout")
attention_bias = jnp.array(0.0, dtype=self.dtype)
# Add relative position bias if present.
if self.relative_position_bias is not None:
attention_bias = jnp.expand_dims(self.relative_position_bias(), 0)
attention_bias = attention_bias.astype(query_states.dtype)
# Add shared relative position bias if provided.
if relative_position_bias is not None:
attention_bias = attention_bias + relative_position_bias.astype(attention_bias.dtype)
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_probs_dropout_prob,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
class FlaxBeitSelfOutput(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, hidden_states, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
class FlaxBeitAttention(nn.Module):
config: BeitConfig
window_size: Tuple[int, int]
dtype: jnp.dtype = jnp.float32
def setup(self):
self.attention = FlaxBeitSelfAttention(self.config, self.window_size, dtype=self.dtype)
self.output = FlaxBeitSelfOutput(self.config, dtype=self.dtype)
def __call__(
self, hidden_states, relative_position_bias=None, deterministic=True, output_attentions: bool = False
):
attn_outputs = self.attention(
hidden_states, relative_position_bias, deterministic=deterministic, output_attentions=output_attentions
)
attn_output = attn_outputs[0]
attn_output = self.output(attn_output, deterministic=deterministic)
outputs = (attn_output,)
if output_attentions:
outputs += (attn_outputs[1],)
return outputs
class FlaxBeitIntermediate(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.intermediate_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.activation = ACT2FN[self.config.hidden_act]
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
class FlaxBeitOutput(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, hidden_states, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
class FlaxBeitLayer(nn.Module):
config: BeitConfig
window_size: Tuple[int, int]
drop_path_rate: float
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.attention = FlaxBeitAttention(self.config, self.window_size, dtype=self.dtype)
self.intermediate = FlaxBeitIntermediate(self.config, dtype=self.dtype)
self.output = FlaxBeitOutput(self.config, dtype=self.dtype)
self.layernorm_before = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.drop_path = FlaxBeitDropPath(rate=self.drop_path_rate)
self.layernorm_after = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.init_values = self.config.layer_scale_init_value
if self.init_values > 0:
self.lambda_1 = self.param("lambda_1", ones_with_scale, (self.config.hidden_size), self.init_values)
self.lambda_2 = self.param("lambda_2", ones_with_scale, (self.config.hidden_size), self.init_values)
else:
self.lambda_1 = None
self.lambda_2 = None
def __call__(
self, hidden_states, relative_position_bias=None, deterministic: bool = True, output_attentions: bool = False
):
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in BEiT, layernorm is applied before self-attention
relative_position_bias,
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
# apply lambda_1 if present
if self.lambda_1 is not None:
attention_output = self.lambda_1.astype(attention_output.dtype) * attention_output
# first residual connection
hidden_states = self.drop_path(attention_output, deterministic=deterministic) + hidden_states
# in BEiT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = self.output(layer_output, deterministic=deterministic)
# apply lambda_2 if present
if self.lambda_2 is not None:
layer_output = self.lambda_2.astype(layer_output.dtype) * layer_output
# second residual connection
layer_output = self.drop_path(layer_output, deterministic=deterministic) + hidden_states
outputs = (layer_output,)
if output_attentions:
outputs += (self_attention_outputs[1],)
return outputs
class FlaxBeitLayerCollection(nn.Module):
config: BeitConfig
window_size: Tuple[int, int]
drop_path_rates: List[float]
relative_position_bias: Callable[[], jnp.ndarray]
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxBeitLayer(
self.config,
window_size=self.window_size if self.config.use_relative_position_bias else None,
drop_path_rate=self.drop_path_rates[i],
name=str(i),
dtype=self.dtype,
)
for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
relative_position_bias = self.relative_position_bias() if self.relative_position_bias is not None else None
layer_outputs = layer(
hidden_states, relative_position_bias, deterministic=deterministic, output_attentions=output_attentions
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states,)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
class FlaxBeitEncoder(nn.Module):
config: BeitConfig
window_size: Tuple[int, int]
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
if self.config.use_shared_relative_position_bias:
self.relative_position_bias = FlaxBeitRelativePositionBias(
config=self.config, window_size=self.window_size, dtype=self.dtype
)
# stochastic depth decay rule
drop_path_rates = list(np.linspace(0, self.config.drop_path_rate, self.config.num_hidden_layers))
self.layer = FlaxBeitLayerCollection(
self.config,
window_size=self.window_size,
drop_path_rates=drop_path_rates,
relative_position_bias=self.relative_position_bias
if self.config.use_shared_relative_position_bias
else None,
dtype=self.dtype,
)
def __call__(
self,
hidden_states,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return self.layer(
hidden_states,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class FlaxBeitPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BeitConfig
base_model_prefix = "beit"
main_input_name = "pixel_values"
module_class: nn.Module = None
def __init__(
self,
config: BeitConfig,
input_shape=None,
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
if input_shape is None:
input_shape = (1, config.image_size, config.image_size, config.num_channels)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
pixel_values = jnp.zeros(input_shape, dtype=self.dtype)
params_rng, dropout_rng = jax.random.split(rng)
dropout_rng, droppath_rng = jax.random.split(dropout_rng)
rngs = {"params": params_rng, "dropout": dropout_rng, "droppath": droppath_rng}
random_params = self.module.init(rngs, pixel_values, return_dict=False)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def __call__(
self,
pixel_values,
bool_masked_pos=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
dropout_rng, droppath_rng = jax.random.split(dropout_rng)
rngs["dropout"] = dropout_rng
rngs["droppath"] = droppath_rng
return self.module.apply(
{"params": params or self.params},
jnp.array(pixel_values, dtype=jnp.float32),
bool_masked_pos,
not train,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
)
class FlaxBeitPooler(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
if self.config.use_mean_pooling:
self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(self, hidden_states):
if self.config.use_mean_pooling:
# Mean pool the final hidden states of the patch tokens
patch_tokens = hidden_states[:, 1:, :]
pooled_output = self.layernorm(jnp.mean(patch_tokens, axis=1))
else:
# Pool by simply taking the final hidden state of the [CLS] token
pooled_output = hidden_states[:, 0]
return pooled_output
class FlaxBeitModule(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
add_pooling_layer: bool = True
def setup(self):
self.embeddings = FlaxBeitEmbeddings(self.config, dtype=self.dtype)
self.encoder = FlaxBeitEncoder(
self.config, window_size=self.embeddings.patch_embeddings.patch_shape, dtype=self.dtype
)
if not self.config.use_mean_pooling:
self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.pooler = FlaxBeitPooler(self.config, dtype=self.dtype) if self.add_pooling_layer else None
def __call__(
self,
pixel_values,
bool_masked_pos=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
hidden_states = self.embeddings(pixel_values, bool_masked_pos, deterministic=deterministic)
outputs = self.encoder(
hidden_states,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if not self.config.use_mean_pooling:
hidden_states = self.layernorm(hidden_states)
pooled = self.pooler(hidden_states) if self.add_pooling_layer else None
if not return_dict:
# if pooled is None, don't return it
if pooled is None:
return (hidden_states,) + outputs[1:]
return (hidden_states, pooled) + outputs[1:]
return FlaxBeitModelOutputWithPooling(
last_hidden_state=hidden_states,
pooler_output=pooled,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"The bare Beit Model transformer outputting raw hidden-states without any specific head on top.",
BEIT_START_DOCSTRING,
)
class FlaxBeitModel(FlaxBeitPreTrainedModel):
module_class = FlaxBeitModule
FLAX_BEIT_MODEL_DOCSTRING = """
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, FlaxBeitModel
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k")
>>> model = FlaxBeitModel.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
```
"""
overwrite_call_docstring(FlaxBeitModel, FLAX_BEIT_MODEL_DOCSTRING)
append_replace_return_docstrings(FlaxBeitModel, output_type=FlaxBeitModelOutputWithPooling, config_class=BeitConfig)
class FlaxBeitForMaskedImageModelingModule(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.beit = FlaxBeitModule(self.config, add_pooling_layer=False, dtype=self.dtype)
# Classifier head
self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
def __call__(
self,
pixel_values=None,
bool_masked_pos=None,
deterministic: bool = True,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.beit(
pixel_values,
bool_masked_pos,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.layernorm(sequence_output)
prediction_scores = self.lm_head(sequence_output[:, 1:])
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return output
return FlaxMaskedLMOutput(
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"Beit Model transformer with a 'language' modeling head on top (to predict visual tokens).",
BEIT_START_DOCSTRING,
)
class FlaxBeitForMaskedImageModeling(FlaxBeitPreTrainedModel):
module_class = FlaxBeitForMaskedImageModelingModule
FLAX_BEIT_MLM_DOCSTRING = """
bool_masked_pos (`numpy.ndarray` of shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, BeitForMaskedImageModeling
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
```
"""
overwrite_call_docstring(FlaxBeitForMaskedImageModeling, FLAX_BEIT_MLM_DOCSTRING)
append_replace_return_docstrings(
FlaxBeitForMaskedImageModeling, output_type=FlaxMaskedLMOutput, config_class=BeitConfig
)
class FlaxBeitForImageClassificationModule(nn.Module):
config: BeitConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.beit = FlaxBeitModule(config=self.config, dtype=self.dtype, add_pooling_layer=True)
self.classifier = nn.Dense(
self.config.num_labels,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
def __call__(
self,
pixel_values=None,
bool_masked_pos=None,
deterministic: bool = True,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.beit(
pixel_values,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
logits = self.classifier(pooled_output)
if not return_dict:
output = (logits,) + outputs[2:]
return output
return FlaxSequenceClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final
hidden states of the patch tokens) e.g. for ImageNet.
""",
BEIT_START_DOCSTRING,
)
class FlaxBeitForImageClassification(FlaxBeitPreTrainedModel):
module_class = FlaxBeitForImageClassificationModule
FLAX_BEIT_CLASSIF_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import AutoImageProcessor, FlaxBeitForImageClassification
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224")
>>> model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
```
"""
overwrite_call_docstring(FlaxBeitForImageClassification, FLAX_BEIT_CLASSIF_DOCSTRING)
append_replace_return_docstrings(
FlaxBeitForImageClassification, output_type=FlaxSequenceClassifierOutput, config_class=BeitConfig
)
__all__ = [
"FlaxBeitForImageClassification",
"FlaxBeitForMaskedImageModeling",
"FlaxBeitModel",
"FlaxBeitPreTrainedModel",
]
```
|
============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.15 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bert\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_bert import *
from .modeling_bert import *
from .modeling_flax_bert import *
from .modeling_tf_bert import *
from .tokenization_bert import *
from .tokenization_bert_fast import *
from .tokenization_bert_tf import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
======================================================================================================================================
SOURCE CODE FILE: configuration_bert.py
LINES: 1
SIZE: 7.12 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bert\configuration_bert.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT model configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class BertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BertModel`] or a [`TFBertModel`]. It is used to
instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the BERT
[google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
is_decoder (`bool`, *optional*, defaults to `False`):
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
classifier_dropout (`float`, *optional*):
The dropout ratio for the classification head.
Examples:
```python
>>> from transformers import BertConfig, BertModel
>>> # Initializing a BERT google-bert/bert-base-uncased style configuration
>>> configuration = BertConfig()
>>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration
>>> model = BertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "bert"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
position_embedding_type="absolute",
use_cache=True,
classifier_dropout=None,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.classifier_dropout = classifier_dropout
class BertOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
]
)
__all__ = ["BertConfig", "BertOnnxConfig"]
```
|
=======================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.03 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bert_generation\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_bert_generation import *
from .modeling_bert_generation import *
from .tokenization_bert_generation import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
============================================================================================================================================================
SOURCE CODE FILE: configuration_bert_generation.py
LINES: 1
SIZE: 6.23 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bert_generation\configuration_bert_generation.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BertGeneration model configuration"""
from ...configuration_utils import PretrainedConfig
class BertGenerationConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BertGenerationPreTrainedModel`]. It is used to
instantiate a BertGeneration model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the BertGeneration
[google/bert_for_seq_generation_L-24_bbc_encoder](https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50358):
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`BertGeneration`].
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often called feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
Examples:
```python
>>> from transformers import BertGenerationConfig, BertGenerationEncoder
>>> # Initializing a BertGeneration config
>>> configuration = BertGenerationConfig()
>>> # Initializing a model (with random weights) from the config
>>> model = BertGenerationEncoder(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "bert-generation"
def __init__(
self,
vocab_size=50358,
hidden_size=1024,
num_hidden_layers=24,
num_attention_heads=16,
intermediate_size=4096,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
bos_token_id=2,
eos_token_id=1,
position_embedding_type="absolute",
use_cache=True,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
__all__ = ["BertGenerationConfig"]
```
|
=======================================================================================================================================================
SOURCE CODE FILE: modeling_bert_generation.py
LINES: 1
SIZE: 46.48 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bert_generation\modeling_bert_generation.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model specific for generation."""
import math
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_bert_generation import BertGenerationConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/bert_for_seq_generation_L-24_bbc_encoder"
_CONFIG_FOR_DOC = "BertGenerationConfig"
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->BertGeneration
class BertGenerationSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->BertGeneration
class BertGenerationSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertGenerationModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
BERT_GENERATION_SELF_ATTENTION_CLASSES = {
"eager": BertGenerationSelfAttention,
}
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->BertGeneration,BERT->BERT_GENERATION
class BertGenerationAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = BERT_GENERATION_SELF_ATTENTION_CLASSES[config._attn_implementation](
config, position_embedding_type=position_embedding_type
)
self.output = BertGenerationSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->BertGeneration
class BertGenerationIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->BertGeneration
class BertGenerationOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->BertGeneration
class BertGenerationLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BertGenerationAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = BertGenerationAttention(config, position_embedding_type="absolute")
self.intermediate = BertGenerationIntermediate(config)
self.output = BertGenerationOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->BertGeneration
class BertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([BertGenerationLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
def load_tf_weights_in_bert_generation(
model, tf_hub_path, model_class, is_encoder_named_decoder=False, is_encoder=False
):
try:
import numpy as np
import tensorflow.compat.v1 as tf
import tensorflow_hub as hub
import tensorflow_text # noqa: F401
tf.disable_eager_execution()
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_model = hub.Module(tf_hub_path)
init = tf.global_variables_initializer()
with tf.Session() as sess:
init.run()
all_variables = tf_model.variable_map
keep_track_variables = all_variables.copy()
for key in list(all_variables.keys()):
if "global" in key:
logger.info(f"Skipping {key}...")
continue
if not is_encoder:
model_pointer = getattr(model, model_class)
else:
model_pointer = model
is_embedding = False
logger.info(f"Trying to match {key}...")
# remove start_string = "module/bert/"
sub_layers = key.split("/")[2:]
if is_encoder_named_decoder and sub_layers[0] == "encoder":
logger.info(f"Skipping encoder layer {key} for decoder")
continue
if is_encoder and sub_layers[0] == "decoder":
logger.info(f"Skipping decoder layer {key} for encoder")
continue
for i, sub_layer in enumerate(sub_layers):
if sub_layer == "embeddings":
is_embedding = True
elif sub_layer == "LayerNorm":
is_embedding = False
if "layer" in sub_layer:
model_pointer = model_pointer.layer[int(sub_layer.split("_")[-1])]
elif sub_layer in ["kernel", "gamma"]:
model_pointer = model_pointer.weight
elif sub_layer == "beta":
model_pointer = model_pointer.bias
elif sub_layer == "encdec":
model_pointer = model_pointer.crossattention.self
elif sub_layer == "encdec_output":
model_pointer = model_pointer.crossattention.output
elif is_encoder_named_decoder and sub_layer == "decoder":
model_pointer = model_pointer.encoder
else:
if sub_layer == "attention" and "encdec" in sub_layers[i + 1]:
continue
try:
model_pointer = getattr(model_pointer, sub_layer)
except AttributeError:
logger.info(f"Skipping to initialize {key} at {sub_layer}...")
raise AttributeError
array = np.asarray(sess.run(all_variables[key]))
if not is_embedding:
logger.info(f"Transposing numpy weight of shape {array.shape} for {key}")
array = np.transpose(array)
else:
model_pointer = model_pointer.weight
if model_pointer.shape != array.shape:
raise ValueError(f"Pointer shape {model_pointer.shape} and array shape {array.shape} mismatched")
logger.info(f"Initialize PyTorch weight {key}")
model_pointer.data = torch.from_numpy(array.astype(np.float32))
keep_track_variables.pop(key, None)
logger.info(f"Weights not copied to PyTorch model: {', '.join(keep_track_variables.keys())}")
return model
class BertGenerationEmbeddings(nn.Module):
"""Construct the embeddings from word and position embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
embeddings = inputs_embeds + position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertGenerationPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BertGenerationConfig
base_model_prefix = "bert"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, BertGenerationOnlyLMHead):
module.bias.data.zero_()
BERT_GENERATION_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`BertGenerationConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BERT_GENERATION_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare BertGeneration model transformer outputting raw hidden-states without any specific head on top.",
BERT_GENERATION_START_DOCSTRING,
)
class BertGenerationEncoder(BertGenerationPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
This model should be used when leveraging Bert or Roberta checkpoints for the [`EncoderDecoderModel`] class as
described in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461)
by Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
"""
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = BertGenerationEmbeddings(config)
self.encoder = BertEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(BERT_GENERATION_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # NOOP kwargs, for now
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: `1` for
tokens that are NOT MASKED, `0` for MASKED tokens.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=sequence_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
class BertGenerationOnlyLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.decoder.bias = self.bias
def forward(self, hidden_states):
logits = self.decoder(hidden_states)
return logits
def _tie_weights(self):
# For accelerate compatibility and to not break backward compatibility
if self.decoder.bias.device.type == "meta":
self.decoder.bias = self.bias
else:
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
self.bias = self.decoder.bias
@add_start_docstrings(
"""BertGeneration Model with a `language modeling` head on top for CLM fine-tuning.""",
BERT_GENERATION_START_DOCSTRING,
)
class BertGenerationDecoder(BertGenerationPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
def __init__(self, config):
super().__init__(config)
if not config.is_decoder:
logger.warning("If you want to use `BertGenerationDecoder` as a standalone, add `is_decoder=True.`")
self.bert = BertGenerationEncoder(config)
self.lm_head = BertGenerationOnlyLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
self.lm_head.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(BERT_GENERATION_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, BertGenerationDecoder, BertGenerationConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
>>> config = BertGenerationConfig.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
>>> config.is_decoder = True
>>> model = BertGenerationDecoder.from_pretrained(
... "google/bert_for_seq_generation_L-24_bbc_encoder", config=config
... )
>>> inputs = tokenizer("Hello, my dog is cute", return_token_type_ids=False, return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
lm_loss = None
if labels is not None:
lm_loss = self.loss_function(
prediction_scores,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
__all__ = [
"BertGenerationDecoder",
"BertGenerationEncoder",
"BertGenerationPreTrainedModel",
"load_tf_weights_in_bert_generation",
]
```
|
===========================================================================================================================================================
SOURCE CODE FILE: tokenization_bert_generation.py
LINES: 1
SIZE: 6.95 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bert_generation\tokenization_bert_generation.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for model BertGeneration."""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
class BertGenerationTokenizer(PreTrainedTokenizer):
"""
Construct a BertGeneration tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The begin of sequence token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
sep_token (`str`, *optional*, defaults to `"<::::>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
"""
vocab_files_names = VOCAB_FILES_NAMES
prefix_tokens: List[int] = []
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
bos_token="<s>",
eos_token="</s>",
unk_token="<unk>",
pad_token="<pad>",
sep_token="<::::>",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.vocab_file = vocab_file
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
# Add extra_ids to the special token list
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
sep_token=sep_token,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
@property
def vocab_size(self):
return self.sp_model.get_piece_size()
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def _tokenize(self, text: str) -> List[str]:
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.sp_model.IdToPiece(index)
return token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(current_sub_tokens) + token
current_sub_tokens = []
else:
current_sub_tokens.append(token)
out_string += self.sp_model.decode(current_sub_tokens)
return out_string.strip()
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
__all__ = ["BertGenerationTokenizer"]
```
|
=====================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.94 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bert_japanese\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .tokenization_bert_japanese import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
=======================================================================================================================================================
SOURCE CODE FILE: tokenization_bert_japanese.py
LINES: 3
SIZE: 38.17 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bert_japanese\tokenization_bert_japanese.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""
import collections
import copy
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from ...utils import is_sentencepiece_available, is_sudachi_projection_available, logging
if is_sentencepiece_available():
import sentencepiece as spm
else:
spm = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "spm_file": "spiece.model"}
SPIECE_UNDERLINE = "▁"
# Copied from transformers.models.bert.tokenization_bert.load_vocab
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class BertJapaneseTokenizer(PreTrainedTokenizer):
r"""
Construct a BERT tokenizer for Japanese text.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer
to: this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to a one-wordpiece-per-line vocabulary file.
spm_file (`str`, *optional*):
Path to [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm or .model
extension) that contains the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether to lower case the input. Only has an effect when do_basic_tokenize=True.
do_word_tokenize (`bool`, *optional*, defaults to `True`):
Whether to do word tokenization.
do_subword_tokenize (`bool`, *optional*, defaults to `True`):
Whether to do subword tokenization.
word_tokenizer_type (`str`, *optional*, defaults to `"basic"`):
Type of word tokenizer. Choose from ["basic", "mecab", "sudachi", "jumanpp"].
subword_tokenizer_type (`str`, *optional*, defaults to `"wordpiece"`):
Type of subword tokenizer. Choose from ["wordpiece", "character", "sentencepiece",].
mecab_kwargs (`dict`, *optional*):
Dictionary passed to the `MecabTokenizer` constructor.
sudachi_kwargs (`dict`, *optional*):
Dictionary passed to the `SudachiTokenizer` constructor.
jumanpp_kwargs (`dict`, *optional*):
Dictionary passed to the `JumanppTokenizer` constructor.
"""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
spm_file=None,
do_lower_case=False,
do_word_tokenize=True,
do_subword_tokenize=True,
word_tokenizer_type="basic",
subword_tokenizer_type="wordpiece",
never_split=None,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
mecab_kwargs=None,
sudachi_kwargs=None,
jumanpp_kwargs=None,
**kwargs,
):
if subword_tokenizer_type == "sentencepiece":
if not os.path.isfile(spm_file):
raise ValueError(
f"Can't find a vocabulary file at path '{spm_file}'. To load the vocabulary from a Google"
" pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.spm_file = spm_file
else:
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google"
" pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_word_tokenize = do_word_tokenize
self.word_tokenizer_type = word_tokenizer_type
self.lower_case = do_lower_case
self.never_split = never_split
self.mecab_kwargs = copy.deepcopy(mecab_kwargs)
self.sudachi_kwargs = copy.deepcopy(sudachi_kwargs)
self.jumanpp_kwargs = copy.deepcopy(jumanpp_kwargs)
if do_word_tokenize:
if word_tokenizer_type == "basic":
self.word_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=False
)
elif word_tokenizer_type == "mecab":
self.word_tokenizer = MecabTokenizer(
do_lower_case=do_lower_case, never_split=never_split, **(mecab_kwargs or {})
)
elif word_tokenizer_type == "sudachi":
self.word_tokenizer = SudachiTokenizer(
do_lower_case=do_lower_case, never_split=never_split, **(sudachi_kwargs or {})
)
elif word_tokenizer_type == "jumanpp":
self.word_tokenizer = JumanppTokenizer(
do_lower_case=do_lower_case, never_split=never_split, **(jumanpp_kwargs or {})
)
else:
raise ValueError(f"Invalid word_tokenizer_type '{word_tokenizer_type}' is specified.")
self.do_subword_tokenize = do_subword_tokenize
self.subword_tokenizer_type = subword_tokenizer_type
if do_subword_tokenize:
if subword_tokenizer_type == "wordpiece":
self.subword_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
elif subword_tokenizer_type == "character":
self.subword_tokenizer = CharacterTokenizer(vocab=self.vocab, unk_token=str(unk_token))
elif subword_tokenizer_type == "sentencepiece":
self.subword_tokenizer = SentencepieceTokenizer(vocab=self.spm_file, unk_token=str(unk_token))
else:
raise ValueError(f"Invalid subword_tokenizer_type '{subword_tokenizer_type}' is specified.")
super().__init__(
spm_file=spm_file,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
do_lower_case=do_lower_case,
do_word_tokenize=do_word_tokenize,
do_subword_tokenize=do_subword_tokenize,
word_tokenizer_type=word_tokenizer_type,
subword_tokenizer_type=subword_tokenizer_type,
never_split=never_split,
mecab_kwargs=mecab_kwargs,
sudachi_kwargs=sudachi_kwargs,
jumanpp_kwargs=jumanpp_kwargs,
**kwargs,
)
@property
def do_lower_case(self):
return self.lower_case
def __getstate__(self):
state = dict(self.__dict__)
if self.word_tokenizer_type in ["mecab", "sudachi", "jumanpp"]:
del state["word_tokenizer"]
return state
def __setstate__(self, state):
self.__dict__ = state
if self.word_tokenizer_type == "mecab":
self.word_tokenizer = MecabTokenizer(
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.mecab_kwargs or {})
)
elif self.word_tokenizer_type == "sudachi":
self.word_tokenizer = SudachiTokenizer(
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.sudachi_kwargs or {})
)
elif self.word_tokenizer_type == "jumanpp":
self.word_tokenizer = JumanppTokenizer(
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.jumanpp_kwargs or {})
)
def _tokenize(self, text):
if self.do_word_tokenize:
tokens = self.word_tokenizer.tokenize(text, never_split=self.all_special_tokens)
else:
tokens = [text]
if self.do_subword_tokenize:
split_tokens = [sub_token for token in tokens for sub_token in self.subword_tokenizer.tokenize(token)]
else:
split_tokens = tokens
return split_tokens
@property
def vocab_size(self):
if self.subword_tokenizer_type == "sentencepiece":
return len(self.subword_tokenizer.sp_model)
return len(self.vocab)
def get_vocab(self):
if self.subword_tokenizer_type == "sentencepiece":
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
return dict(self.vocab, **self.added_tokens_encoder)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
if self.subword_tokenizer_type == "sentencepiece":
return self.subword_tokenizer.sp_model.PieceToId(token)
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
if self.subword_tokenizer_type == "sentencepiece":
return self.subword_tokenizer.sp_model.IdToPiece(index)
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
if self.subword_tokenizer_type == "sentencepiece":
return self.subword_tokenizer.sp_model.decode(tokens)
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if os.path.isdir(save_directory):
if self.subword_tokenizer_type == "sentencepiece":
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["spm_file"]
)
else:
vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"],
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
if self.subword_tokenizer_type == "sentencepiece":
with open(vocab_file, "wb") as writer:
content_spiece_model = self.subword_tokenizer.sp_model.serialized_model_proto()
writer.write(content_spiece_model)
else:
with open(vocab_file, "w", encoding="utf-8") as writer:
index = 0
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
class MecabTokenizer:
"""Runs basic tokenization with MeCab morphological parser."""
def __init__(
self,
do_lower_case=False,
never_split=None,
normalize_text=True,
mecab_dic: Optional[str] = "unidic_lite",
mecab_option: Optional[str] = None,
):
"""
Constructs a MecabTokenizer.
Args:
**do_lower_case**: (*optional*) boolean (default True)
Whether to lowercase the input.
**never_split**: (*optional*) list of str
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of tokens not to split.
**normalize_text**: (*optional*) boolean (default True)
Whether to apply unicode normalization to text before tokenization.
**mecab_dic**: (*optional*) string (default "ipadic")
Name of dictionary to be used for MeCab initialization. If you are using a system-installed dictionary,
set this option to `None` and modify *mecab_option*.
**mecab_option**: (*optional*) string
String passed to MeCab constructor.
"""
self.do_lower_case = do_lower_case
self.never_split = never_split if never_split is not None else []
self.normalize_text = normalize_text
try:
import fugashi
except ModuleNotFoundError as error:
raise error.__class__(
"You need to install fugashi to use MecabTokenizer. "
"See https://pypi.org/project/fugashi/ for installation."
)
mecab_option = mecab_option or ""
if mecab_dic is not None:
if mecab_dic == "ipadic":
try:
import ipadic
except ModuleNotFoundError as error:
raise error.__class__(
"The ipadic dictionary is not installed. "
"See https://github.com/polm/ipadic-py for installation."
)
dic_dir = ipadic.DICDIR
elif mecab_dic == "unidic_lite":
try:
import unidic_lite
except ModuleNotFoundError as error:
raise error.__class__(
"The unidic_lite dictionary is not installed. "
"See https://github.com/polm/unidic-lite for installation."
)
dic_dir = unidic_lite.DICDIR
elif mecab_dic == "unidic":
try:
import unidic
except ModuleNotFoundError as error:
raise error.__class__(
"The unidic dictionary is not installed. "
"See https://github.com/polm/unidic-py for installation."
)
dic_dir = unidic.DICDIR
if not os.path.isdir(dic_dir):
raise RuntimeError(
"The unidic dictionary itself is not found. "
"See https://github.com/polm/unidic-py for installation."
)
else:
raise ValueError("Invalid mecab_dic is specified.")
mecabrc = os.path.join(dic_dir, "mecabrc")
mecab_option = f'-d "{dic_dir}" -r "{mecabrc}" ' + mecab_option
self.mecab = fugashi.GenericTagger(mecab_option)
def tokenize(self, text, never_split=None, **kwargs):
"""Tokenizes a piece of text."""
if self.normalize_text:
text = unicodedata.normalize("NFKC", text)
never_split = self.never_split + (never_split if never_split is not None else [])
tokens = []
for word in self.mecab(text):
token = word.surface
if self.do_lower_case and token not in never_split:
token = token.lower()
tokens.append(token)
return tokens
class SudachiTokenizer:
"""Runs basic tokenization with Sudachi morphological parser."""
def __init__(
self,
do_lower_case=False,
never_split=None,
normalize_text=True,
trim_whitespace=False,
sudachi_split_mode="A",
sudachi_config_path=None,
sudachi_resource_dir=None,
sudachi_dict_type="core",
sudachi_projection=None,
):
"""
Constructs a SudachiTokenizer.
Args:
**do_lower_case**: (*optional*) boolean (default True)
Whether to lowercase the input.
**never_split**: (*optional*) list of str
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of tokens not to split.
**normalize_text**: (*optional*) boolean (default True)
Whether to apply unicode normalization to text before tokenization.
**trim_whitespace**: (*optional*) boolean (default False)
Whether to trim all whitespace, tab, newline from tokens.
**sudachi_split_mode**: (*optional*) string
Split mode of sudachi, choose from `["A", "B", "C"]`.
**sudachi_config_path**: (*optional*) string
**sudachi_resource_dir**: (*optional*) string
**sudachi_dict_type**: (*optional*) string
dict type of sudachi, choose from `["small", "core", "full"]`.
**sudachi_projection**: (*optional*) string
Word projection mode of sudachi, choose from `["surface", "normalized", "reading", "dictionary", "dictionary_and_surface", "normalized_and_surface", "normalized_nouns"]`.
"""
self.do_lower_case = do_lower_case
self.never_split = never_split if never_split is not None else []
self.normalize_text = normalize_text
self.trim_whitespace = trim_whitespace
try:
from sudachipy import dictionary, tokenizer
except ImportError:
raise ImportError(
"You need to install sudachipy to use SudachiTokenizer. "
"See https://github.com/WorksApplications/SudachiPy for installation."
)
if sudachi_split_mode == "A":
self.split_mode = tokenizer.Tokenizer.SplitMode.A
elif sudachi_split_mode == "B":
self.split_mode = tokenizer.Tokenizer.SplitMode.B
elif sudachi_split_mode == "C":
self.split_mode = tokenizer.Tokenizer.SplitMode.C
else:
raise ValueError("Invalid sudachi_split_mode is specified.")
self.projection = sudachi_projection
sudachi_dictionary = dictionary.Dictionary(
config_path=sudachi_config_path, resource_dir=sudachi_resource_dir, dict=sudachi_dict_type
)
if is_sudachi_projection_available():
self.sudachi = sudachi_dictionary.create(self.split_mode, projection=self.projection)
elif self.projection is not None:
raise ImportError("You need to install sudachipy>=0.6.8 to specify `projection` field in sudachi_kwargs.")
else:
self.sudachi = sudachi_dictionary.create(self.split_mode)
def tokenize(self, text, never_split=None, **kwargs):
"""Tokenizes a piece of text."""
if self.normalize_text:
text = unicodedata.normalize("NFKC", text)
never_split = self.never_split + (never_split if never_split is not None else [])
tokens = []
for word in self.sudachi.tokenize(text):
token = word.surface()
if self.do_lower_case and token not in never_split:
token = token.lower()
if self.trim_whitespace:
if token.strip() == "":
continue
else:
token = token.strip()
tokens.append(token)
return tokens
class JumanppTokenizer:
"""Runs basic tokenization with jumanpp morphological parser."""
def __init__(
self,
do_lower_case=False,
never_split=None,
normalize_text=True,
trim_whitespace=False,
):
"""
Constructs a JumanppTokenizer.
Args:
**do_lower_case**: (*optional*) boolean (default True)
Whether to lowercase the input.
**never_split**: (*optional*) list of str
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of tokens not to split.
**normalize_text**: (*optional*) boolean (default True)
Whether to apply unicode normalization to text before tokenization.
**trim_whitespace**: (*optional*) boolean (default False)
Whether to trim all whitespace, tab, newline from tokens.
"""
self.do_lower_case = do_lower_case
self.never_split = never_split if never_split is not None else []
self.normalize_text = normalize_text
self.trim_whitespace = trim_whitespace
try:
import rhoknp
except ImportError:
raise ImportError(
"You need to install rhoknp to use JumanppTokenizer. "
"See https://github.com/ku-nlp/rhoknp for installation."
)
self.juman = rhoknp.Jumanpp()
def tokenize(self, text, never_split=None, **kwargs):
"""Tokenizes a piece of text."""
if self.normalize_text:
text = unicodedata.normalize("NFKC", text)
text = text.strip()
never_split = self.never_split + (never_split if never_split is not None else [])
tokens = []
for mrph in self.juman.apply_to_sentence(text).morphemes:
token = mrph.text
if self.do_lower_case and token not in never_split:
token = token.lower()
if self.trim_whitespace:
if token.strip() == "":
continue
else:
token = token.strip()
tokens.append(token)
return tokens
class CharacterTokenizer:
"""Runs Character tokenization."""
def __init__(self, vocab, unk_token, normalize_text=True):
"""
Constructs a CharacterTokenizer.
Args:
**vocab**:
Vocabulary object.
**unk_token**: str
A special symbol for out-of-vocabulary token.
**normalize_text**: (`optional`) boolean (default True)
Whether to apply unicode normalization to text before tokenization.
"""
self.vocab = vocab
self.unk_token = unk_token
self.normalize_text = normalize_text
def tokenize(self, text):
"""
Tokenizes a piece of text into characters.
For example, `input = "apple""` wil return as output `["a", "p", "p", "l", "e"]`.
Args:
text: A single token or whitespace separated tokens.
This should have already been passed through *BasicTokenizer*.
Returns:
A list of characters.
"""
if self.normalize_text:
text = unicodedata.normalize("NFKC", text)
output_tokens = []
for char in text:
if char not in self.vocab:
output_tokens.append(self.unk_token)
continue
output_tokens.append(char)
return output_tokens
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
class BasicTokenizer:
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
do_split_on_punc (`bool`, *optional*, defaults to `True`):
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
the full context of the words, such as contractions.
"""
def __init__(
self,
do_lower_case=True,
never_split=None,
tokenize_chinese_chars=True,
strip_accents=None,
do_split_on_punc=True,
):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
self.do_split_on_punc = do_split_on_punc
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
# prevents treating the same character with different unicode codepoints as different characters
unicode_normalized_text = unicodedata.normalize("NFC", text)
orig_tokens = whitespace_tokenize(unicode_normalized_text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if not self.do_split_on_punc or (never_split is not None and text in never_split):
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
class WordpieceTokenizer:
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
class SentencepieceTokenizer:
"""
Runs sentencepiece tokenization. Based on transformers.models.albert.tokenization_albert.AlbertTokenizer.
"""
def __init__(
self,
vocab,
unk_token,
do_lower_case=False,
remove_space=True,
keep_accents=True,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
):
self.vocab = vocab
self.unk_token = unk_token
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab)
def preprocess_text(self, inputs):
if self.remove_space:
outputs = " ".join(inputs.strip().split())
else:
outputs = inputs
outputs = outputs.replace("``", '"').replace("''", '"')
if not self.keep_accents:
outputs = unicodedata.normalize("NFKD", outputs)
outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
if self.do_lower_case:
outputs = outputs.lower()
return outputs
def tokenize(self, text):
"""
Tokenizes text by sentencepiece. Based on [SentencePiece](https://github.com/google/sentencepiece).
Tokenization needs the given vocabulary.
Args:
text: A string needs to be tokenized.
Returns:
A list of sentencepiece tokens.
"""
text = self.preprocess_text(text)
pieces = self.sp_model.encode(text, out_type=str)
new_pieces = []
for piece in pieces:
if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0]) == 1:
cur_pieces = cur_pieces[1:]
else:
cur_pieces[0] = cur_pieces[0][1:]
cur_pieces.append(piece[-1])
new_pieces.extend(cur_pieces)
else:
new_pieces.append(piece)
return new_pieces
__all__ = ["BertJapaneseTokenizer", "CharacterTokenizer", "MecabTokenizer"]
```
|
=================================================================================================================================
SOURCE CODE FILE: modeling_bert.py
LINES: 1
SIZE: 88.33 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bert\modeling_bert.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""
import math
import os
import warnings
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import (
_prepare_4d_attention_mask_for_sdpa,
_prepare_4d_causal_attention_mask_for_sdpa,
)
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
NextSentencePredictorOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
get_torch_version,
logging,
replace_return_docstrings,
)
from .configuration_bert import BertConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google-bert/bert-base-uncased"
_CONFIG_FOR_DOC = "BertConfig"
# TokenClassification docstring
_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "dbmdz/bert-large-cased-finetuned-conll03-english"
_TOKEN_CLASS_EXPECTED_OUTPUT = (
"['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] "
)
_TOKEN_CLASS_EXPECTED_LOSS = 0.01
# QuestionAnswering docstring
_CHECKPOINT_FOR_QA = "deepset/bert-base-cased-squad2"
_QA_EXPECTED_OUTPUT = "'a nice puppet'"
_QA_EXPECTED_LOSS = 7.41
_QA_TARGET_START_INDEX = 14
_QA_TARGET_END_INDEX = 15
# SequenceClassification docstring
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "textattack/bert-base-uncased-yelp-polarity"
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'"
_SEQ_CLASS_EXPECTED_LOSS = 0.01
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
name = name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
continue
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "output_weights":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier")
else:
try:
pointer = getattr(pointer, scope_names[0])
except AttributeError:
logger.info(f"Skipping {'/'.join(name)}")
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if m_name[-11:] == "_embeddings":
pointer = getattr(pointer, "weight")
elif m_name == "kernel":
array = np.transpose(array)
try:
if pointer.shape != array.shape:
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
except ValueError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array)
return model
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
class BertSdpaSelfAttention(BertSelfAttention):
def __init__(self, config, position_embedding_type=None):
super().__init__(config, position_embedding_type=position_embedding_type)
self.dropout_prob = config.attention_probs_dropout_prob
self.require_contiguous_qkv = version.parse(get_torch_version()) < version.parse("2.2.0")
# Adapted from BertSelfAttention
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
if self.position_embedding_type != "absolute" or output_attentions or head_mask is not None:
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once implemented.
logger.warning_once(
"BertSdpaSelfAttention is used but `torch.nn.functional.scaled_dot_product_attention` does not support "
"non-absolute `position_embedding_type` or `output_attentions=True` or `head_mask`. Falling back to "
"the manual attention implementation, but specifying the manual implementation will be required from "
"Transformers version v5.0.0 onwards. This warning can be removed using the argument "
'`attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
bsz, tgt_len, _ = hidden_states.size()
query_layer = self.transpose_for_scores(self.query(hidden_states))
# If this is instantiated as a cross-attention module, the keys and values come from an encoder; the attention
# mask needs to be such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
current_states = encoder_hidden_states if is_cross_attention else hidden_states
attention_mask = encoder_attention_mask if is_cross_attention else attention_mask
# Check `seq_length` of `past_key_value` == `len(current_states)` to support prefix tuning
if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]:
key_layer, value_layer = past_key_value
else:
key_layer = self.transpose_for_scores(self.key(current_states))
value_layer = self.transpose_for_scores(self.value(current_states))
if past_key_value is not None and not is_cross_attention:
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# SDPA with memory-efficient backend is broken in torch==2.1.2 when using non-contiguous inputs and a custom
# attn_mask, so we need to call `.contiguous()` here. This was fixed in torch==2.2.0.
# Reference: https://github.com/pytorch/pytorch/issues/112577
if self.require_contiguous_qkv and query_layer.device.type == "cuda" and attention_mask is not None:
query_layer = query_layer.contiguous()
key_layer = key_layer.contiguous()
value_layer = value_layer.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create
# a causal mask in case tgt_len == 1.
is_causal = (
True if self.is_decoder and not is_cross_attention and attention_mask is None and tgt_len > 1 else False
)
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_layer,
key_layer,
value_layer,
attn_mask=attention_mask,
dropout_p=self.dropout_prob if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, self.all_head_size)
outputs = (attn_output,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
class BertSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
BERT_SELF_ATTENTION_CLASSES = {
"eager": BertSelfAttention,
"sdpa": BertSdpaSelfAttention,
}
class BertAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = BERT_SELF_ATTENTION_CLASSES[config._attn_implementation](
config, position_embedding_type=position_embedding_type
)
self.output = BertSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class BertIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BertAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = BertAttention(config, position_embedding_type="absolute")
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class BertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class BertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class BertLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class BertOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BertLMPredictionHead(config)
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class BertOnlyNSPHead(nn.Module):
def __init__(self, config):
super().__init__()
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, pooled_output):
seq_relationship_score = self.seq_relationship(pooled_output)
return seq_relationship_score
class BertPreTrainingHeads(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BertLMPredictionHead(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, sequence_output, pooled_output):
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class BertPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BertConfig
load_tf_weights = load_tf_weights_in_bert
base_model_prefix = "bert"
supports_gradient_checkpointing = True
_supports_sdpa = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, BertLMPredictionHead):
module.bias.data.zero_()
@dataclass
class BertForPreTrainingOutput(ModelOutput):
"""
Output type of [`BertForPreTraining`].
Args:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
prediction_logits: Optional[torch.FloatTensor] = None
seq_relationship_logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
BERT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`BertConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`or `(batch_size, sequence_length, target_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
BERT_START_DOCSTRING,
)
class BertModel(BertPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
"""
_no_split_modules = ["BertEmbeddings", "BertLayer"]
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = BertEmbeddings(config)
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config) if add_pooling_layer else None
self.attn_implementation = config._attn_implementation
self.position_embedding_type = config.position_embedding_type
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, target_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length + past_key_values_length), device=device)
use_sdpa_attention_masks = (
self.attn_implementation == "sdpa"
and self.position_embedding_type == "absolute"
and head_mask is None
and not output_attentions
)
# Expand the attention mask
if use_sdpa_attention_masks and attention_mask.dim() == 2:
# Expand the attention mask for SDPA.
# [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
if self.config.is_decoder:
extended_attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
input_shape,
embedding_output,
past_key_values_length,
)
else:
extended_attention_mask = _prepare_4d_attention_mask_for_sdpa(
attention_mask, embedding_output.dtype, tgt_len=seq_length
)
else:
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
if use_sdpa_attention_masks and encoder_attention_mask.dim() == 2:
# Expand the attention mask for SDPA.
# [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
encoder_extended_attention_mask = _prepare_4d_attention_mask_for_sdpa(
encoder_attention_mask, embedding_output.dtype, tgt_len=seq_length
)
else:
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings(
"""
Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
sentence prediction (classification)` head.
""",
BERT_START_DOCSTRING,
)
class BertForPreTraining(BertPreTrainedModel):
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config)
self.cls = BertPreTrainingHeads(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=BertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
next_sentence_label: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BertForPreTrainingOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence
pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
- 0 indicates sequence B is a continuation of sequence A,
- 1 indicates sequence B is a random sequence.
kwargs (`Dict[str, any]`, *optional*, defaults to `{}`):
Used to hide legacy arguments that have been deprecated.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, BertForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = BertForPreTraining.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output, pooled_output = outputs[:2]
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
total_loss = None
if labels is not None and next_sentence_label is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
total_loss = masked_lm_loss + next_sentence_loss
if not return_dict:
output = (prediction_scores, seq_relationship_score) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return BertForPreTrainingOutput(
loss=total_loss,
prediction_logits=prediction_scores,
seq_relationship_logits=seq_relationship_score,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""Bert Model with a `language modeling` head on top for CLM fine-tuning.""", BERT_START_DOCSTRING
)
class BertLMHeadModel(BertPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
def __init__(self, config):
super().__init__(config)
if not config.is_decoder:
logger.warning("If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True.`")
self.bert = BertModel(config, add_pooling_layer=False)
self.cls = BertOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**loss_kwargs,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
lm_loss = None
if labels is not None:
lm_loss = self.loss_function(prediction_scores, labels, self.config.vocab_size, **loss_kwargs)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
@add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING)
class BertForMaskedLM(BertPreTrainedModel):
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.bert = BertModel(config, add_pooling_layer=False)
self.cls = BertOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="'paris'",
expected_loss=0.88,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
effective_batch_size = input_shape[0]
# add a dummy token
if self.config.pad_token_id is None:
raise ValueError("The PAD token should be defined for generation")
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
dummy_token = torch.full(
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
)
input_ids = torch.cat([input_ids, dummy_token], dim=1)
return {"input_ids": input_ids, "attention_mask": attention_mask}
@classmethod
def can_generate(cls) -> bool:
"""
Legacy correction: BertForMaskedLM can't call `generate()` from GenerationMixin.
Remove after v4.50, when we stop making `PreTrainedModel` inherit from `GenerationMixin`.
"""
return False
@add_start_docstrings(
"""Bert Model with a `next sentence prediction (classification)` head on top.""",
BERT_START_DOCSTRING,
)
class BertForNextSentencePrediction(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config)
self.cls = BertOnlyNSPHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
(see `input_ids` docstring). Indices should be in `[0, 1]`:
- 0 indicates sequence B is a continuation of sequence A,
- 1 indicates sequence B is a random sequence.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, BertForNextSentencePrediction
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = BertForNextSentencePrediction.from_pretrained("google-bert/bert-base-uncased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
```
"""
if "next_sentence_label" in kwargs:
warnings.warn(
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
" `labels` instead.",
FutureWarning,
)
labels = kwargs.pop("next_sentence_label")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
seq_relationship_scores = self.cls(pooled_output)
next_sentence_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
if not return_dict:
output = (seq_relationship_scores,) + outputs[2:]
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
return NextSentencePredictorOutput(
loss=next_sentence_loss,
logits=seq_relationship_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
BERT_START_DOCSTRING,
)
class BertForSequenceClassification(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = BertModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
BERT_START_DOCSTRING,
)
class BertForMultipleChoice(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
BERT_START_DOCSTRING,
)
class BertForTokenClassification(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT,
expected_loss=_TOKEN_CLASS_EXPECTED_LOSS,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
BERT_START_DOCSTRING,
)
class BertForQuestionAnswering(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_QA,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
qa_target_start_index=_QA_TARGET_START_INDEX,
qa_target_end_index=_QA_TARGET_END_INDEX,
expected_output=_QA_EXPECTED_OUTPUT,
expected_loss=_QA_EXPECTED_LOSS,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"BertForMaskedLM",
"BertForMultipleChoice",
"BertForNextSentencePrediction",
"BertForPreTraining",
"BertForQuestionAnswering",
"BertForSequenceClassification",
"BertForTokenClassification",
"BertLayer",
"BertLMHeadModel",
"BertModel",
"BertPreTrainedModel",
"load_tf_weights_in_bert",
]
```
|
======================================================================================================================================
SOURCE CODE FILE: modeling_flax_bert.py
LINES: 1
SIZE: 62.51 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bert\modeling_flax_bert.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Tuple
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen import partitioning as nn_partitioning
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from ...modeling_flax_outputs import (
FlaxBaseModelOutputWithPastAndCrossAttentions,
FlaxBaseModelOutputWithPooling,
FlaxBaseModelOutputWithPoolingAndCrossAttentions,
FlaxCausalLMOutputWithCrossAttentions,
FlaxMaskedLMOutput,
FlaxMultipleChoiceModelOutput,
FlaxNextSentencePredictorOutput,
FlaxQuestionAnsweringModelOutput,
FlaxSequenceClassifierOutput,
FlaxTokenClassifierOutput,
)
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_call_sample_docstring,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_bert import BertConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google-bert/bert-base-uncased"
_CONFIG_FOR_DOC = "BertConfig"
remat = nn_partitioning.remat
@flax.struct.dataclass
class FlaxBertForPreTrainingOutput(ModelOutput):
"""
Output type of [`BertForPreTraining`].
Args:
prediction_logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_logits (`jnp.ndarray` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
prediction_logits: jnp.ndarray = None
seq_relationship_logits: jnp.ndarray = None
hidden_states: Optional[Tuple[jnp.ndarray]] = None
attentions: Optional[Tuple[jnp.ndarray]] = None
BERT_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a
[flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`BertConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
BERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`numpy.ndarray` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
head_mask (`numpy.ndarray` of shape `({0})`, `optional):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class FlaxBertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
config: BertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.word_embeddings = nn.Embed(
self.config.vocab_size,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
dtype=self.dtype,
)
self.position_embeddings = nn.Embed(
self.config.max_position_embeddings,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
dtype=self.dtype,
)
self.token_type_embeddings = nn.Embed(
self.config.type_vocab_size,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
dtype=self.dtype,
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True):
# Embed
inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
position_embeds = self.position_embeddings(position_ids.astype("i4"))
token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
# Sum all embeddings
hidden_states = inputs_embeds + token_type_embeddings + position_embeds
# Layer Norm
hidden_states = self.LayerNorm(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
class FlaxBertSelfAttention(nn.Module):
config: BertConfig
causal: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.head_dim = self.config.hidden_size // self.config.num_attention_heads
if self.config.hidden_size % self.config.num_attention_heads != 0:
raise ValueError(
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
" : {self.config.num_attention_heads}"
)
self.query = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.key = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.value = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,))
@nn.compact
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slightly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
key_value_states: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic=True,
output_attentions: bool = False,
):
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
# get query proj
query_states = self.query(hidden_states)
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self.key(key_value_states)
value_states = self.value(key_value_states)
else:
# self_attention
key_states = self.key(hidden_states)
value_states = self.value(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# handle cache prepare causal attention mask
if self.causal:
query_length, key_length = query_states.shape[1], key_states.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_probs_dropout_prob,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
class FlaxBertSelfOutput(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class FlaxBertAttention(nn.Module):
config: BertConfig
causal: bool = False
dtype: jnp.dtype = jnp.float32
def setup(self):
self.self = FlaxBertSelfAttention(self.config, causal=self.causal, dtype=self.dtype)
self.output = FlaxBertSelfOutput(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
key_value_states=None,
init_cache=False,
deterministic=True,
output_attentions: bool = False,
):
# Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length)
# FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable
# with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length)
attn_outputs = self.self(
hidden_states,
attention_mask,
layer_head_mask=layer_head_mask,
key_value_states=key_value_states,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0]
hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_outputs[1],)
return outputs
class FlaxBertIntermediate(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.intermediate_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.activation = ACT2FN[self.config.hidden_act]
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
class FlaxBertOutput(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(self, hidden_states, attention_output, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.LayerNorm(hidden_states + attention_output)
return hidden_states
class FlaxBertLayer(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.attention = FlaxBertAttention(self.config, causal=self.config.is_decoder, dtype=self.dtype)
self.intermediate = FlaxBertIntermediate(self.config, dtype=self.dtype)
self.output = FlaxBertOutput(self.config, dtype=self.dtype)
if self.config.add_cross_attention:
self.crossattention = FlaxBertAttention(self.config, causal=False, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
):
# Self Attention
attention_outputs = self.attention(
hidden_states,
attention_mask,
layer_head_mask=layer_head_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = attention_outputs[0]
# Cross-Attention Block
if encoder_hidden_states is not None:
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask=encoder_attention_mask,
layer_head_mask=layer_head_mask,
key_value_states=encoder_hidden_states,
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = cross_attention_outputs[0]
hidden_states = self.intermediate(attention_output)
hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attention_outputs[1],)
if encoder_hidden_states is not None:
outputs += (cross_attention_outputs[1],)
return outputs
class FlaxBertLayerCollection(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
if self.gradient_checkpointing:
FlaxBertCheckpointLayer = remat(FlaxBertLayer, static_argnums=(5, 6, 7))
self.layers = [
FlaxBertCheckpointLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_layers)
]
else:
self.layers = [
FlaxBertLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
# Check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.shape[0] != (len(self.layers)):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for "
f" {head_mask.shape[0]}."
)
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer(
hidden_states,
attention_mask,
head_mask[i] if head_mask is not None else None,
encoder_hidden_states,
encoder_attention_mask,
init_cache,
deterministic,
output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
class FlaxBertEncoder(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
self.layer = FlaxBertLayerCollection(
self.config,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
def __call__(
self,
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return self.layer(
hidden_states,
attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class FlaxBertPooler(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
def __call__(self, hidden_states):
cls_hidden_state = hidden_states[:, 0]
cls_hidden_state = self.dense(cls_hidden_state)
return nn.tanh(cls_hidden_state)
class FlaxBertPredictionHeadTransform(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
self.activation = ACT2FN[self.config.hidden_act]
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
return self.LayerNorm(hidden_states)
class FlaxBertLMPredictionHead(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32
bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
def setup(self):
self.transform = FlaxBertPredictionHeadTransform(self.config, dtype=self.dtype)
self.decoder = nn.Dense(self.config.vocab_size, dtype=self.dtype, use_bias=False)
self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,))
def __call__(self, hidden_states, shared_embedding=None):
hidden_states = self.transform(hidden_states)
if shared_embedding is not None:
hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
hidden_states = self.decoder(hidden_states)
bias = jnp.asarray(self.bias, self.dtype)
hidden_states += bias
return hidden_states
class FlaxBertOnlyMLMHead(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.predictions = FlaxBertLMPredictionHead(self.config, dtype=self.dtype)
def __call__(self, hidden_states, shared_embedding=None):
hidden_states = self.predictions(hidden_states, shared_embedding=shared_embedding)
return hidden_states
class FlaxBertOnlyNSPHead(nn.Module):
dtype: jnp.dtype = jnp.float32
def setup(self):
self.seq_relationship = nn.Dense(2, dtype=self.dtype)
def __call__(self, pooled_output):
return self.seq_relationship(pooled_output)
class FlaxBertPreTrainingHeads(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.predictions = FlaxBertLMPredictionHead(self.config, dtype=self.dtype)
self.seq_relationship = nn.Dense(2, dtype=self.dtype)
def __call__(self, hidden_states, pooled_output, shared_embedding=None):
prediction_scores = self.predictions(hidden_states, shared_embedding=shared_embedding)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class FlaxBertPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BertConfig
base_model_prefix = "bert"
module_class: nn.Module = None
def __init__(
self,
config: BertConfig,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
gradient_checkpointing: bool = False,
**kwargs,
):
module = self.module_class(
config=config,
dtype=dtype,
gradient_checkpointing=gradient_checkpointing,
**kwargs,
)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def enable_gradient_checkpointing(self):
self._module = self.module_class(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=True,
)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
token_type_ids = jnp.zeros_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
attention_mask = jnp.ones_like(input_ids)
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
if self.config.add_cross_attention:
encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,))
encoder_attention_mask = attention_mask
module_init_outputs = self.module.init(
rngs,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
return_dict=False,
)
else:
module_init_outputs = self.module.init(
rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False
)
random_params = module_init_outputs["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
attention_mask = jnp.ones_like(input_ids, dtype="i4")
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
past_key_values: dict = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# init input tensors if not passed
if token_type_ids is None:
token_type_ids = jnp.zeros_like(input_ids)
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if head_mask is None:
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
if self.config.add_cross_attention:
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
# changed by FlaxBertAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
head_mask=jnp.array(head_mask, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
deterministic=not train,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
else:
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
head_mask=jnp.array(head_mask, dtype="i4"),
deterministic=not train,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
rngs=rngs,
)
return outputs
class FlaxBertModule(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
add_pooling_layer: bool = True
gradient_checkpointing: bool = False
def setup(self):
self.embeddings = FlaxBertEmbeddings(self.config, dtype=self.dtype)
self.encoder = FlaxBertEncoder(
self.config,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
self.pooler = FlaxBertPooler(self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
head_mask: Optional[jnp.ndarray] = None,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# make sure `token_type_ids` is correctly initialized when not passed
if token_type_ids is None:
token_type_ids = jnp.zeros_like(input_ids)
# make sure `position_ids` is correctly initialized when not passed
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
hidden_states = self.embeddings(
input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic
)
outputs = self.encoder(
hidden_states,
attention_mask,
head_mask=head_mask,
deterministic=deterministic,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
pooled = self.pooler(hidden_states) if self.add_pooling_layer else None
if not return_dict:
# if pooled is None, don't return it
if pooled is None:
return (hidden_states,) + outputs[1:]
return (hidden_states, pooled) + outputs[1:]
return FlaxBaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=hidden_states,
pooler_output=pooled,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
BERT_START_DOCSTRING,
)
class FlaxBertModel(FlaxBertPreTrainedModel):
module_class = FlaxBertModule
append_call_sample_docstring(FlaxBertModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC)
class FlaxBertForPreTrainingModule(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.bert = FlaxBertModule(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
self.cls = FlaxBertPreTrainingHeads(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.bert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.tie_word_embeddings:
shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
else:
shared_embedding = None
hidden_states = outputs[0]
pooled_output = outputs[1]
prediction_scores, seq_relationship_score = self.cls(
hidden_states, pooled_output, shared_embedding=shared_embedding
)
if not return_dict:
return (prediction_scores, seq_relationship_score) + outputs[2:]
return FlaxBertForPreTrainingOutput(
prediction_logits=prediction_scores,
seq_relationship_logits=seq_relationship_score,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
sentence prediction (classification)` head.
""",
BERT_START_DOCSTRING,
)
class FlaxBertForPreTraining(FlaxBertPreTrainedModel):
module_class = FlaxBertForPreTrainingModule
FLAX_BERT_FOR_PRETRAINING_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxBertForPreTraining
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = FlaxBertForPreTraining.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
```
"""
overwrite_call_docstring(
FlaxBertForPreTraining,
BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_BERT_FOR_PRETRAINING_DOCSTRING,
)
append_replace_return_docstrings(
FlaxBertForPreTraining, output_type=FlaxBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC
)
class FlaxBertForMaskedLMModule(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.bert = FlaxBertModule(
config=self.config,
add_pooling_layer=False,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
self.cls = FlaxBertOnlyMLMHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.bert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
else:
shared_embedding = None
# Compute the prediction scores
logits = self.cls(hidden_states, shared_embedding=shared_embedding)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxMaskedLMOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING)
class FlaxBertForMaskedLM(FlaxBertPreTrainedModel):
module_class = FlaxBertForMaskedLMModule
append_call_sample_docstring(FlaxBertForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC)
class FlaxBertForNextSentencePredictionModule(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.bert = FlaxBertModule(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
self.cls = FlaxBertOnlyNSPHead(dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return_dict = return_dict if return_dict is not None else self.config.return_dict
# Model
outputs = self.bert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
seq_relationship_scores = self.cls(pooled_output)
if not return_dict:
return (seq_relationship_scores,) + outputs[2:]
return FlaxNextSentencePredictorOutput(
logits=seq_relationship_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""Bert Model with a `next sentence prediction (classification)` head on top.""",
BERT_START_DOCSTRING,
)
class FlaxBertForNextSentencePrediction(FlaxBertPreTrainedModel):
module_class = FlaxBertForNextSentencePredictionModule
FLAX_BERT_FOR_NEXT_SENT_PRED_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxBertForNextSentencePrediction
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = FlaxBertForNextSentencePrediction.from_pretrained("google-bert/bert-base-uncased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="jax")
>>> outputs = model(**encoding)
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
```
"""
overwrite_call_docstring(
FlaxBertForNextSentencePrediction,
BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_BERT_FOR_NEXT_SENT_PRED_DOCSTRING,
)
append_replace_return_docstrings(
FlaxBertForNextSentencePrediction, output_type=FlaxNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC
)
class FlaxBertForSequenceClassificationModule(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.bert = FlaxBertModule(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
classifier_dropout = (
self.config.classifier_dropout
if self.config.classifier_dropout is not None
else self.config.hidden_dropout_prob
)
self.dropout = nn.Dropout(rate=classifier_dropout)
self.classifier = nn.Dense(
self.config.num_labels,
dtype=self.dtype,
)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.bert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
logits = self.classifier(pooled_output)
if not return_dict:
return (logits,) + outputs[2:]
return FlaxSequenceClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
BERT_START_DOCSTRING,
)
class FlaxBertForSequenceClassification(FlaxBertPreTrainedModel):
module_class = FlaxBertForSequenceClassificationModule
append_call_sample_docstring(
FlaxBertForSequenceClassification,
_CHECKPOINT_FOR_DOC,
FlaxSequenceClassifierOutput,
_CONFIG_FOR_DOC,
)
class FlaxBertForMultipleChoiceModule(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.bert = FlaxBertModule(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.classifier = nn.Dense(1, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
num_choices = input_ids.shape[1]
input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None
# Model
outputs = self.bert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
logits = self.classifier(pooled_output)
reshaped_logits = logits.reshape(-1, num_choices)
if not return_dict:
return (reshaped_logits,) + outputs[2:]
return FlaxMultipleChoiceModelOutput(
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
BERT_START_DOCSTRING,
)
class FlaxBertForMultipleChoice(FlaxBertPreTrainedModel):
module_class = FlaxBertForMultipleChoiceModule
overwrite_call_docstring(
FlaxBertForMultipleChoice, BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
append_call_sample_docstring(
FlaxBertForMultipleChoice, _CHECKPOINT_FOR_DOC, FlaxMultipleChoiceModelOutput, _CONFIG_FOR_DOC
)
class FlaxBertForTokenClassificationModule(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.bert = FlaxBertModule(
config=self.config,
dtype=self.dtype,
add_pooling_layer=False,
gradient_checkpointing=self.gradient_checkpointing,
)
classifier_dropout = (
self.config.classifier_dropout
if self.config.classifier_dropout is not None
else self.config.hidden_dropout_prob
)
self.dropout = nn.Dropout(rate=classifier_dropout)
self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.bert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
logits = self.classifier(hidden_states)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxTokenClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
BERT_START_DOCSTRING,
)
class FlaxBertForTokenClassification(FlaxBertPreTrainedModel):
module_class = FlaxBertForTokenClassificationModule
append_call_sample_docstring(
FlaxBertForTokenClassification, _CHECKPOINT_FOR_DOC, FlaxTokenClassifierOutput, _CONFIG_FOR_DOC
)
class FlaxBertForQuestionAnsweringModule(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.bert = FlaxBertModule(
config=self.config,
dtype=self.dtype,
add_pooling_layer=False,
gradient_checkpointing=self.gradient_checkpointing,
)
self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.bert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.qa_outputs(hidden_states)
start_logits, end_logits = jnp.split(logits, self.config.num_labels, axis=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if not return_dict:
return (start_logits, end_logits) + outputs[1:]
return FlaxQuestionAnsweringModelOutput(
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
BERT_START_DOCSTRING,
)
class FlaxBertForQuestionAnswering(FlaxBertPreTrainedModel):
module_class = FlaxBertForQuestionAnsweringModule
append_call_sample_docstring(
FlaxBertForQuestionAnswering,
_CHECKPOINT_FOR_DOC,
FlaxQuestionAnsweringModelOutput,
_CONFIG_FOR_DOC,
)
class FlaxBertForCausalLMModule(nn.Module):
config: BertConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.bert = FlaxBertModule(
config=self.config,
add_pooling_layer=False,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
self.cls = FlaxBertOnlyMLMHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
token_type_ids: Optional[jnp.ndarray] = None,
head_mask: Optional[jnp.ndarray] = None,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.bert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
else:
shared_embedding = None
# Compute the prediction scores
logits = self.cls(hidden_states, shared_embedding=shared_embedding)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxCausalLMOutputWithCrossAttentions(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
Bert Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for
autoregressive tasks.
""",
BERT_START_DOCSTRING,
)
class FlaxBertForCausalLM(FlaxBertPreTrainedModel):
module_class = FlaxBertForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyway.
# Thus, we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
FlaxBertForCausalLM,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutputWithCrossAttentions,
_CONFIG_FOR_DOC,
)
__all__ = [
"FlaxBertForCausalLM",
"FlaxBertForMaskedLM",
"FlaxBertForMultipleChoice",
"FlaxBertForNextSentencePrediction",
"FlaxBertForPreTraining",
"FlaxBertForQuestionAnswering",
"FlaxBertForSequenceClassification",
"FlaxBertForTokenClassification",
"FlaxBertModel",
"FlaxBertPreTrainedModel",
]
```
|
====================================================================================================================================
SOURCE CODE FILE: modeling_tf_bert.py
LINES: 1
SIZE: 92.50 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bert\modeling_tf_bert.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF 2.0 BERT model."""
from __future__ import annotations
import math
import warnings
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutputWithPastAndCrossAttentions,
TFBaseModelOutputWithPoolingAndCrossAttentions,
TFCausalLMOutputWithCrossAttentions,
TFMaskedLMOutput,
TFMultipleChoiceModelOutput,
TFNextSentencePredictorOutput,
TFQuestionAnsweringModelOutput,
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFMaskedLanguageModelingLoss,
TFModelInputType,
TFMultipleChoiceLoss,
TFNextSentencePredictionLoss,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
TFSequenceClassificationLoss,
TFTokenClassificationLoss,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_bert import BertConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google-bert/bert-base-uncased"
_CONFIG_FOR_DOC = "BertConfig"
# TokenClassification docstring
_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "dbmdz/bert-large-cased-finetuned-conll03-english"
_TOKEN_CLASS_EXPECTED_OUTPUT = (
"['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] "
)
_TOKEN_CLASS_EXPECTED_LOSS = 0.01
# QuestionAnswering docstring
_CHECKPOINT_FOR_QA = "ydshieh/bert-base-cased-squad2"
_QA_EXPECTED_OUTPUT = "'a nice puppet'"
_QA_EXPECTED_LOSS = 7.41
_QA_TARGET_START_INDEX = 14
_QA_TARGET_END_INDEX = 15
# SequenceClassification docstring
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "ydshieh/bert-base-uncased-yelp-polarity"
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'"
_SEQ_CLASS_EXPECTED_LOSS = 0.01
class TFBertPreTrainingLoss:
"""
Loss function suitable for BERT-like pretraining, that is, the task of pretraining a language model by combining
NSP + MLM. .. note:: Any label of -100 will be ignored (along with the corresponding logits) in the loss
computation.
"""
def hf_compute_loss(self, labels: tf.Tensor, logits: tf.Tensor) -> tf.Tensor:
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE)
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
unmasked_lm_losses = loss_fn(y_true=tf.nn.relu(labels["labels"]), y_pred=logits[0])
# make sure only labels that are not equal to -100
# are taken into account for the loss computation
lm_loss_mask = tf.cast(labels["labels"] != -100, dtype=unmasked_lm_losses.dtype)
masked_lm_losses = unmasked_lm_losses * lm_loss_mask
reduced_masked_lm_loss = tf.reduce_sum(masked_lm_losses) / tf.reduce_sum(lm_loss_mask)
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
unmasked_ns_loss = loss_fn(y_true=tf.nn.relu(labels["next_sentence_label"]), y_pred=logits[1])
ns_loss_mask = tf.cast(labels["next_sentence_label"] != -100, dtype=unmasked_ns_loss.dtype)
masked_ns_loss = unmasked_ns_loss * ns_loss_mask
reduced_masked_ns_loss = tf.reduce_sum(masked_ns_loss) / tf.reduce_sum(ns_loss_mask)
return tf.reshape(reduced_masked_lm_loss + reduced_masked_ns_loss, (1,))
class TFBertEmbeddings(keras.layers.Layer):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config: BertConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.hidden_size = config.hidden_size
self.max_position_embeddings = config.max_position_embeddings
self.initializer_range = config.initializer_range
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
def build(self, input_shape=None):
with tf.name_scope("word_embeddings"):
self.weight = self.add_weight(
name="weight",
shape=[self.config.vocab_size, self.hidden_size],
initializer=get_initializer(self.initializer_range),
)
with tf.name_scope("token_type_embeddings"):
self.token_type_embeddings = self.add_weight(
name="embeddings",
shape=[self.config.type_vocab_size, self.hidden_size],
initializer=get_initializer(self.initializer_range),
)
with tf.name_scope("position_embeddings"):
self.position_embeddings = self.add_weight(
name="embeddings",
shape=[self.max_position_embeddings, self.hidden_size],
initializer=get_initializer(self.initializer_range),
)
if self.built:
return
self.built = True
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
def call(
self,
input_ids: Optional[tf.Tensor] = None,
position_ids: Optional[tf.Tensor] = None,
token_type_ids: Optional[tf.Tensor] = None,
inputs_embeds: Optional[tf.Tensor] = None,
past_key_values_length=0,
training: bool = False,
) -> tf.Tensor:
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (`tf.Tensor`): output embedding tensor.
"""
if input_ids is None and inputs_embeds is None:
raise ValueError("Need to provide either `input_ids` or `input_embeds`.")
if input_ids is not None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
input_shape = shape_list(inputs_embeds)[:-1]
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape, value=0)
if position_ids is None:
position_ids = tf.expand_dims(
tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0
)
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
final_embeddings = inputs_embeds + position_embeds + token_type_embeds
final_embeddings = self.LayerNorm(inputs=final_embeddings)
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
return final_embeddings
class TFBertSelfAttention(keras.layers.Layer):
def __init__(self, config: BertConfig, **kwargs):
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
f"of attention heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
self.query = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
)
self.key = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
)
self.value = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
)
self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
self.is_decoder = config.is_decoder
self.config = config
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
return tf.transpose(tensor, perm=[0, 2, 1, 3])
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor,
encoder_attention_mask: tf.Tensor,
past_key_value: Tuple[tf.Tensor],
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
batch_size = shape_list(hidden_states)[0]
mixed_query_layer = self.query(inputs=hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size)
value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size)
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
else:
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
# (batch size, num_heads, seq_len_q, seq_len_k)
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
attention_scores = tf.divide(attention_scores, dk)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in TFBertModel call() function)
attention_scores = tf.add(attention_scores, attention_mask)
# Normalize the attention scores to probabilities.
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(inputs=attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = tf.multiply(attention_probs, head_mask)
attention_output = tf.matmul(attention_probs, value_layer)
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
# (batch_size, seq_len_q, all_head_size)
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "query", None) is not None:
with tf.name_scope(self.query.name):
self.query.build([None, None, self.config.hidden_size])
if getattr(self, "key", None) is not None:
with tf.name_scope(self.key.name):
self.key.build([None, None, self.config.hidden_size])
if getattr(self, "value", None) is not None:
with tf.name_scope(self.value.name):
self.value.build([None, None, self.config.hidden_size])
class TFBertSelfOutput(keras.layers.Layer):
def __init__(self, config: BertConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
class TFBertAttention(keras.layers.Layer):
def __init__(self, config: BertConfig, **kwargs):
super().__init__(**kwargs)
self.self_attention = TFBertSelfAttention(config, name="self")
self.dense_output = TFBertSelfOutput(config, name="output")
def prune_heads(self, heads):
raise NotImplementedError
def call(
self,
input_tensor: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor,
encoder_attention_mask: tf.Tensor,
past_key_value: Tuple[tf.Tensor],
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
self_outputs = self.self_attention(
hidden_states=input_tensor,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = self.dense_output(
hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
)
# add attentions (possibly with past_key_value) if we output them
outputs = (attention_output,) + self_outputs[1:]
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attention", None) is not None:
with tf.name_scope(self.self_attention.name):
self.self_attention.build(None)
if getattr(self, "dense_output", None) is not None:
with tf.name_scope(self.dense_output.name):
self.dense_output.build(None)
class TFBertIntermediate(keras.layers.Layer):
def __init__(self, config: BertConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
class TFBertOutput(keras.layers.Layer):
def __init__(self, config: BertConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
class TFBertLayer(keras.layers.Layer):
def __init__(self, config: BertConfig, **kwargs):
super().__init__(**kwargs)
self.attention = TFBertAttention(config, name="attention")
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = TFBertAttention(config, name="crossattention")
self.intermediate = TFBertIntermediate(config, name="intermediate")
self.bert_output = TFBertOutput(config, name="output")
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor | None,
encoder_attention_mask: tf.Tensor | None,
past_key_value: Tuple[tf.Tensor] | None,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
input_tensor=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=self_attn_past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
input_tensor=attention_output,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
intermediate_output = self.intermediate(hidden_states=attention_output)
layer_output = self.bert_output(
hidden_states=intermediate_output, input_tensor=attention_output, training=training
)
outputs = (layer_output,) + outputs # add attentions if we output them
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "bert_output", None) is not None:
with tf.name_scope(self.bert_output.name):
self.bert_output.build(None)
if getattr(self, "crossattention", None) is not None:
with tf.name_scope(self.crossattention.name):
self.crossattention.build(None)
class TFBertEncoder(keras.layers.Layer):
def __init__(self, config: BertConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.layer = [TFBertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor | None,
encoder_attention_mask: tf.Tensor | None,
past_key_values: Tuple[Tuple[tf.Tensor]] | None,
use_cache: Optional[bool],
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
past_key_value = past_key_values[i] if past_key_values is not None else None
layer_outputs = layer_module(
hidden_states=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if self.config.add_cross_attention and encoder_hidden_states is not None:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None
)
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
class TFBertPooler(keras.layers.Layer):
def __init__(self, config: BertConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(inputs=first_token_tensor)
return pooled_output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
class TFBertPredictionHeadTransform(keras.layers.Layer):
def __init__(self, config: BertConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
name="dense",
)
if isinstance(config.hidden_act, str):
self.transform_act_fn = get_tf_activation(config.hidden_act)
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(inputs=hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
class TFBertLMPredictionHead(keras.layers.Layer):
def __init__(self, config: BertConfig, input_embeddings: keras.layers.Layer, **kwargs):
super().__init__(**kwargs)
self.config = config
self.hidden_size = config.hidden_size
self.transform = TFBertPredictionHeadTransform(config, name="transform")
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.input_embeddings = input_embeddings
def build(self, input_shape=None):
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
if self.built:
return
self.built = True
if getattr(self, "transform", None) is not None:
with tf.name_scope(self.transform.name):
self.transform.build(None)
def get_output_embeddings(self) -> keras.layers.Layer:
return self.input_embeddings
def set_output_embeddings(self, value: tf.Variable):
self.input_embeddings.weight = value
self.input_embeddings.vocab_size = shape_list(value)[0]
def get_bias(self) -> Dict[str, tf.Variable]:
return {"bias": self.bias}
def set_bias(self, value: tf.Variable):
self.bias = value["bias"]
self.config.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.transform(hidden_states=hidden_states)
seq_length = shape_list(hidden_states)[1]
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
return hidden_states
class TFBertMLMHead(keras.layers.Layer):
def __init__(self, config: BertConfig, input_embeddings: keras.layers.Layer, **kwargs):
super().__init__(**kwargs)
self.predictions = TFBertLMPredictionHead(config, input_embeddings, name="predictions")
def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
prediction_scores = self.predictions(hidden_states=sequence_output)
return prediction_scores
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "predictions", None) is not None:
with tf.name_scope(self.predictions.name):
self.predictions.build(None)
class TFBertNSPHead(keras.layers.Layer):
def __init__(self, config: BertConfig, **kwargs):
super().__init__(**kwargs)
self.seq_relationship = keras.layers.Dense(
units=2,
kernel_initializer=get_initializer(config.initializer_range),
name="seq_relationship",
)
self.config = config
def call(self, pooled_output: tf.Tensor) -> tf.Tensor:
seq_relationship_score = self.seq_relationship(inputs=pooled_output)
return seq_relationship_score
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "seq_relationship", None) is not None:
with tf.name_scope(self.seq_relationship.name):
self.seq_relationship.build([None, None, self.config.hidden_size])
@keras_serializable
class TFBertMainLayer(keras.layers.Layer):
config_class = BertConfig
def __init__(self, config: BertConfig, add_pooling_layer: bool = True, **kwargs):
super().__init__(**kwargs)
self.config = config
self.is_decoder = config.is_decoder
self.embeddings = TFBertEmbeddings(config, name="embeddings")
self.encoder = TFBertEncoder(config, name="encoder")
self.pooler = TFBertPooler(config, name="pooler") if add_pooling_layer else None
def get_input_embeddings(self) -> keras.layers.Layer:
return self.embeddings
def set_input_embeddings(self, value: tf.Variable):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
if past_key_values is None:
past_key_values_length = 0
past_key_values = [None] * len(self.encoder.layer)
else:
past_key_values_length = shape_list(past_key_values[0][0])[-2]
if attention_mask is None:
attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape, value=0)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
training=training,
)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask_shape = shape_list(attention_mask)
mask_seq_length = seq_length + past_key_values_length
# Copied from `modeling_tf_t5.py`
# Provided a padding mask of dimensions [batch_size, mask_seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
if self.is_decoder:
seq_ids = tf.range(mask_seq_length)
causal_mask = tf.less_equal(
tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
seq_ids[None, :, None],
)
causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
extended_attention_mask = causal_mask * attention_mask[:, None, :]
attention_mask_shape = shape_list(extended_attention_mask)
extended_attention_mask = tf.reshape(
extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
)
if past_key_values[0] is not None:
# attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length]
extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
else:
extended_attention_mask = tf.reshape(
attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
# Copied from `modeling_tf_t5.py` with -1e9 -> -10000
if self.is_decoder and encoder_attention_mask is not None:
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
if num_dims_encoder_attention_mask == 3:
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
if num_dims_encoder_attention_mask == 2:
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
# tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.config.num_hidden_layers
encoder_outputs = self.encoder(
hidden_states=embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
if not return_dict:
return (
sequence_output,
pooled_output,
) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build(None)
class TFBertPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BertConfig
base_model_prefix = "bert"
@dataclass
class TFBertForPreTrainingOutput(ModelOutput):
"""
Output type of [`TFBertForPreTraining`].
Args:
prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_logits (`tf.Tensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: tf.Tensor | None = None
prediction_logits: Optional[tf.Tensor] = None
seq_relationship_logits: Optional[tf.Tensor] = None
hidden_states: Optional[Union[Tuple[tf.Tensor], tf.Tensor]] = None
attentions: Optional[Union[Tuple[tf.Tensor], tf.Tensor]] = None
BERT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Args:
config ([`BertConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
BERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False``):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
BERT_START_DOCSTRING,
)
class TFBertModel(TFBertPreTrainedModel):
def __init__(self, config: BertConfig, add_pooling_layer: bool = True, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.bert = TFBertMainLayer(config, add_pooling_layer, name="bert")
@unpack_inputs
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation
"""
outputs = self.bert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "bert", None) is not None:
with tf.name_scope(self.bert.name):
self.bert.build(None)
@add_start_docstrings(
"""
Bert Model with two heads on top as done during the pretraining:
a `masked language modeling` head and a `next sentence prediction (classification)` head.
""",
BERT_START_DOCSTRING,
)
class TFBertForPreTraining(TFBertPreTrainedModel, TFBertPreTrainingLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [
r"position_ids",
r"cls.predictions.decoder.weight",
r"cls.predictions.decoder.bias",
]
def __init__(self, config: BertConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.bert = TFBertMainLayer(config, name="bert")
self.nsp = TFBertNSPHead(config, name="nsp___cls")
self.mlm = TFBertMLMHead(config, input_embeddings=self.bert.embeddings, name="mlm___cls")
def get_lm_head(self) -> keras.layers.Layer:
return self.mlm.predictions
def get_prefix_bias_name(self) -> str:
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name
@unpack_inputs
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
next_sentence_label: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFBertForPreTrainingOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
next_sentence_label (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
(see `input_ids` docstring) Indices should be in `[0, 1]`:
- 0 indicates sequence B is a continuation of sequence A,
- 1 indicates sequence B is a random sequence.
kwargs (`Dict[str, any]`, *optional*, defaults to `{}`):
Used to hide legacy arguments that have been deprecated.
Return:
Examples:
```python
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFBertForPreTraining
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFBertForPreTraining.from_pretrained("google-bert/bert-base-uncased")
>>> input_ids = tokenizer("Hello, my dog is cute", add_special_tokens=True, return_tensors="tf")
>>> # Batch size 1
>>> outputs = model(input_ids)
>>> prediction_logits, seq_relationship_logits = outputs[:2]
```"""
outputs = self.bert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output, pooled_output = outputs[:2]
prediction_scores = self.mlm(sequence_output=sequence_output, training=training)
seq_relationship_score = self.nsp(pooled_output=pooled_output)
total_loss = None
if labels is not None and next_sentence_label is not None:
d_labels = {"labels": labels}
d_labels["next_sentence_label"] = next_sentence_label
total_loss = self.hf_compute_loss(labels=d_labels, logits=(prediction_scores, seq_relationship_score))
if not return_dict:
output = (prediction_scores, seq_relationship_score) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return TFBertForPreTrainingOutput(
loss=total_loss,
prediction_logits=prediction_scores,
seq_relationship_logits=seq_relationship_score,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "bert", None) is not None:
with tf.name_scope(self.bert.name):
self.bert.build(None)
if getattr(self, "nsp", None) is not None:
with tf.name_scope(self.nsp.name):
self.nsp.build(None)
if getattr(self, "mlm", None) is not None:
with tf.name_scope(self.mlm.name):
self.mlm.build(None)
@add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING)
class TFBertForMaskedLM(TFBertPreTrainedModel, TFMaskedLanguageModelingLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [
r"pooler",
r"cls.seq_relationship",
r"cls.predictions.decoder.weight",
r"nsp___cls",
]
def __init__(self, config: BertConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
if config.is_decoder:
logger.warning(
"If you want to use `TFBertForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.bert = TFBertMainLayer(config, add_pooling_layer=False, name="bert")
self.mlm = TFBertMLMHead(config, input_embeddings=self.bert.embeddings, name="mlm___cls")
def get_lm_head(self) -> keras.layers.Layer:
return self.mlm.predictions
def get_prefix_bias_name(self) -> str:
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name
@unpack_inputs
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="'paris'",
expected_loss=0.88,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
outputs = self.bert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
prediction_scores = self.mlm(sequence_output=sequence_output, training=training)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFMaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "bert", None) is not None:
with tf.name_scope(self.bert.name):
self.bert.build(None)
if getattr(self, "mlm", None) is not None:
with tf.name_scope(self.mlm.name):
self.mlm.build(None)
class TFBertLMHeadModel(TFBertPreTrainedModel, TFCausalLanguageModelingLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [
r"pooler",
r"cls.seq_relationship",
r"cls.predictions.decoder.weight",
r"nsp___cls",
]
def __init__(self, config: BertConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
if not config.is_decoder:
logger.warning("If you want to use `TFBertLMHeadModel` as a standalone, add `is_decoder=True.`")
self.bert = TFBertMainLayer(config, add_pooling_layer=False, name="bert")
self.mlm = TFBertMLMHead(config, input_embeddings=self.bert.embeddings, name="mlm___cls")
def get_lm_head(self) -> keras.layers.Layer:
return self.mlm.predictions
def get_prefix_bias_name(self) -> str:
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = tf.ones(input_shape)
# cut decoder_input_ids if past is used
if past_key_values is not None:
input_ids = input_ids[:, -1:]
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
@unpack_inputs
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFCausalLMOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
config.vocab_size - 1]`.
"""
outputs = self.bert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.mlm(sequence_output=sequence_output, training=training)
loss = None
if labels is not None:
# shift labels to the left and cut last logit token
shifted_logits = logits[:, :-1]
labels = labels[:, 1:]
loss = self.hf_compute_loss(labels=labels, logits=shifted_logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFCausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "bert", None) is not None:
with tf.name_scope(self.bert.name):
self.bert.build(None)
if getattr(self, "mlm", None) is not None:
with tf.name_scope(self.mlm.name):
self.mlm.build(None)
@add_start_docstrings(
"""Bert Model with a `next sentence prediction (classification)` head on top.""",
BERT_START_DOCSTRING,
)
class TFBertForNextSentencePrediction(TFBertPreTrainedModel, TFNextSentencePredictionLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"cls.predictions"]
def __init__(self, config: BertConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.bert = TFBertMainLayer(config, name="bert")
self.nsp = TFBertNSPHead(config, name="nsp___cls")
@unpack_inputs
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
next_sentence_label: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFNextSentencePredictorOutput, Tuple[tf.Tensor]]:
r"""
Return:
Examples:
```python
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFBertForNextSentencePrediction
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFBertForNextSentencePrediction.from_pretrained("google-bert/bert-base-uncased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="tf")
>>> logits = model(encoding["input_ids"], token_type_ids=encoding["token_type_ids"])[0]
>>> assert logits[0][0] < logits[0][1] # the next sentence was random
```"""
outputs = self.bert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs[1]
seq_relationship_scores = self.nsp(pooled_output=pooled_output)
next_sentence_loss = (
None
if next_sentence_label is None
else self.hf_compute_loss(labels=next_sentence_label, logits=seq_relationship_scores)
)
if not return_dict:
output = (seq_relationship_scores,) + outputs[2:]
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
return TFNextSentencePredictorOutput(
loss=next_sentence_loss,
logits=seq_relationship_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "bert", None) is not None:
with tf.name_scope(self.bert.name):
self.bert.build(None)
if getattr(self, "nsp", None) is not None:
with tf.name_scope(self.nsp.name):
self.nsp.build(None)
@add_start_docstrings(
"""
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
BERT_START_DOCSTRING,
)
class TFBertForSequenceClassification(TFBertPreTrainedModel, TFSequenceClassificationLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"nsp___cls", r"cls.predictions", r"cls.seq_relationship"]
_keys_to_ignore_on_load_missing = [r"dropout"]
def __init__(self, config: BertConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.bert = TFBertMainLayer(config, name="bert")
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = keras.layers.Dropout(rate=classifier_dropout)
self.classifier = keras.layers.Dense(
units=config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
name="classifier",
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs = self.bert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs[1]
pooled_output = self.dropout(inputs=pooled_output, training=training)
logits = self.classifier(inputs=pooled_output)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "bert", None) is not None:
with tf.name_scope(self.bert.name):
self.bert.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
BERT_START_DOCSTRING,
)
class TFBertForMultipleChoice(TFBertPreTrainedModel, TFMultipleChoiceLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"nsp___cls", r"cls.predictions", r"cls.seq_relationship"]
_keys_to_ignore_on_load_missing = [r"dropout"]
def __init__(self, config: BertConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.bert = TFBertMainLayer(config, name="bert")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.classifier = keras.layers.Dense(
units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
"""
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(tensor=input_ids, shape=(-1, seq_length)) if input_ids is not None else None
flat_attention_mask = (
tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None
)
flat_token_type_ids = (
tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None
)
flat_position_ids = (
tf.reshape(tensor=position_ids, shape=(-1, seq_length)) if position_ids is not None else None
)
flat_inputs_embeds = (
tf.reshape(tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3]))
if inputs_embeds is not None
else None
)
outputs = self.bert(
input_ids=flat_input_ids,
attention_mask=flat_attention_mask,
token_type_ids=flat_token_type_ids,
position_ids=flat_position_ids,
head_mask=head_mask,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs[1]
pooled_output = self.dropout(inputs=pooled_output, training=training)
logits = self.classifier(inputs=pooled_output)
reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices))
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "bert", None) is not None:
with tf.name_scope(self.bert.name):
self.bert.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
BERT_START_DOCSTRING,
)
class TFBertForTokenClassification(TFBertPreTrainedModel, TFTokenClassificationLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [
r"pooler",
r"mlm___cls",
r"nsp___cls",
r"cls.predictions",
r"cls.seq_relationship",
]
_keys_to_ignore_on_load_missing = [r"dropout"]
def __init__(self, config: BertConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.bert = TFBertMainLayer(config, add_pooling_layer=False, name="bert")
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = keras.layers.Dropout(rate=classifier_dropout)
self.classifier = keras.layers.Dense(
units=config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
name="classifier",
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION,
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT,
expected_loss=_TOKEN_CLASS_EXPECTED_LOSS,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
outputs = self.bert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
sequence_output = self.dropout(inputs=sequence_output, training=training)
logits = self.classifier(inputs=sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "bert", None) is not None:
with tf.name_scope(self.bert.name):
self.bert.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
BERT_START_DOCSTRING,
)
class TFBertForQuestionAnswering(TFBertPreTrainedModel, TFQuestionAnsweringLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [
r"pooler",
r"mlm___cls",
r"nsp___cls",
r"cls.predictions",
r"cls.seq_relationship",
]
def __init__(self, config: BertConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.bert = TFBertMainLayer(config, add_pooling_layer=False, name="bert")
self.qa_outputs = keras.layers.Dense(
units=config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
name="qa_outputs",
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_QA,
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
qa_target_start_index=_QA_TARGET_START_INDEX,
qa_target_end_index=_QA_TARGET_END_INDEX,
expected_output=_QA_EXPECTED_OUTPUT,
expected_loss=_QA_EXPECTED_LOSS,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: np.ndarray | tf.Tensor | None = None,
end_positions: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
outputs = self.bert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.qa_outputs(inputs=sequence_output)
start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1)
start_logits = tf.squeeze(input=start_logits, axis=-1)
end_logits = tf.squeeze(input=end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions}
labels["end_position"] = end_positions
loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits))
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "bert", None) is not None:
with tf.name_scope(self.bert.name):
self.bert.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.hidden_size])
__all__ = [
"TFBertEmbeddings",
"TFBertForMaskedLM",
"TFBertForMultipleChoice",
"TFBertForNextSentencePrediction",
"TFBertForPreTraining",
"TFBertForQuestionAnswering",
"TFBertForSequenceClassification",
"TFBertForTokenClassification",
"TFBertLMHeadModel",
"TFBertMainLayer",
"TFBertModel",
"TFBertPreTrainedModel",
]
```
|
=====================================================================================================================================
SOURCE CODE FILE: tokenization_bert.py
LINES: 3
SIZE: 20.42 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bert\tokenization_bert.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for Bert."""
import collections
import os
import unicodedata
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class BertTokenizer(PreTrainedTokenizer):
r"""
Construct a BERT tokenizer. Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
Whether or not to do basic tokenization before WordPiece.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
"""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
do_lower_case=True,
do_basic_tokenize=True,
never_split=None,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
tokenize_chinese_chars=True,
strip_accents=None,
clean_up_tokenization_spaces=True,
**kwargs,
):
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
@property
def do_lower_case(self):
return self.basic_tokenizer.do_lower_case
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
def _tokenize(self, text, split_special_tokens=False):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(
text, never_split=self.all_special_tokens if not split_special_tokens else None
):
# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
class BasicTokenizer:
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
do_split_on_punc (`bool`, *optional*, defaults to `True`):
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
the full context of the words, such as contractions.
"""
def __init__(
self,
do_lower_case=True,
never_split=None,
tokenize_chinese_chars=True,
strip_accents=None,
do_split_on_punc=True,
):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
self.do_split_on_punc = do_split_on_punc
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
# prevents treating the same character with different unicode codepoints as different characters
unicode_normalized_text = unicodedata.normalize("NFC", text)
orig_tokens = whitespace_tokenize(unicode_normalized_text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if not self.do_split_on_punc or (never_split is not None and text in never_split):
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
class WordpieceTokenizer:
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
__all__ = ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"]
```
|
==========================================================================================================================================
SOURCE CODE FILE: tokenization_bert_fast.py
LINES: 1
SIZE: 7.51 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bert\tokenization_bert_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fast Tokenization classes for Bert."""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
class BertTokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" BERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
clean_text (`bool`, *optional*, defaults to `True`):
Whether or not to clean the text before tokenization by removing any control characters and replacing all
whitespaces by the classic one.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
The prefix for subwords.
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = BertTokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=True,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs,
):
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
):
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
normalizer_state["lowercase"] = do_lower_case
normalizer_state["strip_accents"] = strip_accents
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
self.do_lower_case = do_lower_case
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
if token_ids_1 is not None:
output += token_ids_1 + [self.sep_token_id]
return output
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
__all__ = ["BertTokenizerFast"]
```
|
========================================================================================================================================
SOURCE CODE FILE: tokenization_bert_tf.py
LINES: 1
SIZE: 11.70 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bert\tokenization_bert_tf.py
ENCODING: utf-8
```py
import os
from typing import List, Optional, Union
import tensorflow as tf
from tensorflow_text import BertTokenizer as BertTokenizerLayer
from tensorflow_text import FastBertTokenizer, ShrinkLongestTrimmer, case_fold_utf8, combine_segments, pad_model_inputs
from ...modeling_tf_utils import keras
from .tokenization_bert import BertTokenizer
class TFBertTokenizer(keras.layers.Layer):
"""
This is an in-graph tokenizer for BERT. It should be initialized similarly to other tokenizers, using the
`from_pretrained()` method. It can also be initialized with the `from_tokenizer()` method, which imports settings
from an existing standard tokenizer object.
In-graph tokenizers, unlike other Hugging Face tokenizers, are actually Keras layers and are designed to be run
when the model is called, rather than during preprocessing. As a result, they have somewhat more limited options
than standard tokenizer classes. They are most useful when you want to create an end-to-end model that goes
straight from `tf.string` inputs to outputs.
Args:
vocab_list (`list`):
List containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
cls_token_id (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
sep_token_id (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token_id (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
padding (`str`, defaults to `"longest"`):
The type of padding to use. Can be either `"longest"`, to pad only up to the longest sample in the batch,
or `"max_length", to pad all inputs to the maximum length supported by the tokenizer.
truncation (`bool`, *optional*, defaults to `True`):
Whether to truncate the sequence to the maximum length.
max_length (`int`, *optional*, defaults to `512`):
The maximum length of the sequence, used for padding (if `padding` is "max_length") and/or truncation (if
`truncation` is `True`).
pad_to_multiple_of (`int`, *optional*, defaults to `None`):
If set, the sequence will be padded to a multiple of this value.
return_token_type_ids (`bool`, *optional*, defaults to `True`):
Whether to return token_type_ids.
return_attention_mask (`bool`, *optional*, defaults to `True`):
Whether to return the attention_mask.
use_fast_bert_tokenizer (`bool`, *optional*, defaults to `True`):
If True, will use the FastBertTokenizer class from Tensorflow Text. If False, will use the BertTokenizer
class instead. BertTokenizer supports some additional options, but is slower and cannot be exported to
TFLite.
"""
def __init__(
self,
vocab_list: List,
do_lower_case: bool,
cls_token_id: Optional[int] = None,
sep_token_id: Optional[int] = None,
pad_token_id: Optional[int] = None,
padding: str = "longest",
truncation: bool = True,
max_length: int = 512,
pad_to_multiple_of: Optional[int] = None,
return_token_type_ids: bool = True,
return_attention_mask: bool = True,
use_fast_bert_tokenizer: bool = True,
**tokenizer_kwargs,
):
super().__init__()
if use_fast_bert_tokenizer:
self.tf_tokenizer = FastBertTokenizer(
vocab_list, token_out_type=tf.int64, lower_case_nfd_strip_accents=do_lower_case, **tokenizer_kwargs
)
else:
lookup_table = tf.lookup.StaticVocabularyTable(
tf.lookup.KeyValueTensorInitializer(
keys=vocab_list,
key_dtype=tf.string,
values=tf.range(tf.size(vocab_list, out_type=tf.int64), dtype=tf.int64),
value_dtype=tf.int64,
),
num_oov_buckets=1,
)
self.tf_tokenizer = BertTokenizerLayer(
lookup_table, token_out_type=tf.int64, lower_case=do_lower_case, **tokenizer_kwargs
)
self.vocab_list = vocab_list
self.do_lower_case = do_lower_case
self.cls_token_id = vocab_list.index("[CLS]") if cls_token_id is None else cls_token_id
self.sep_token_id = vocab_list.index("[SEP]") if sep_token_id is None else sep_token_id
self.pad_token_id = vocab_list.index("[PAD]") if pad_token_id is None else pad_token_id
self.paired_trimmer = ShrinkLongestTrimmer(max_length - 3, axis=1) # Allow room for special tokens
self.max_length = max_length
self.padding = padding
self.truncation = truncation
self.pad_to_multiple_of = pad_to_multiple_of
self.return_token_type_ids = return_token_type_ids
self.return_attention_mask = return_attention_mask
@classmethod
def from_tokenizer(cls, tokenizer: "PreTrainedTokenizerBase", **kwargs): # noqa: F821
"""
Initialize a `TFBertTokenizer` from an existing `Tokenizer`.
Args:
tokenizer (`PreTrainedTokenizerBase`):
The tokenizer to use to initialize the `TFBertTokenizer`.
Examples:
```python
from transformers import AutoTokenizer, TFBertTokenizer
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
tf_tokenizer = TFBertTokenizer.from_tokenizer(tokenizer)
```
"""
do_lower_case = kwargs.pop("do_lower_case", None)
do_lower_case = tokenizer.do_lower_case if do_lower_case is None else do_lower_case
cls_token_id = kwargs.pop("cls_token_id", None)
cls_token_id = tokenizer.cls_token_id if cls_token_id is None else cls_token_id
sep_token_id = kwargs.pop("sep_token_id", None)
sep_token_id = tokenizer.sep_token_id if sep_token_id is None else sep_token_id
pad_token_id = kwargs.pop("pad_token_id", None)
pad_token_id = tokenizer.pad_token_id if pad_token_id is None else pad_token_id
vocab = tokenizer.get_vocab()
vocab = sorted(vocab.items(), key=lambda x: x[1])
vocab_list = [entry[0] for entry in vocab]
return cls(
vocab_list=vocab_list,
do_lower_case=do_lower_case,
cls_token_id=cls_token_id,
sep_token_id=sep_token_id,
pad_token_id=pad_token_id,
**kwargs,
)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], *init_inputs, **kwargs):
"""
Instantiate a `TFBertTokenizer` from a pre-trained tokenizer.
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
The name or path to the pre-trained tokenizer.
Examples:
```python
from transformers import TFBertTokenizer
tf_tokenizer = TFBertTokenizer.from_pretrained("google-bert/bert-base-uncased")
```
"""
try:
tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path, *init_inputs, **kwargs)
except: # noqa: E722
from .tokenization_bert_fast import BertTokenizerFast
tokenizer = BertTokenizerFast.from_pretrained(pretrained_model_name_or_path, *init_inputs, **kwargs)
return cls.from_tokenizer(tokenizer, **kwargs)
def unpaired_tokenize(self, texts):
if self.do_lower_case:
texts = case_fold_utf8(texts)
tokens = self.tf_tokenizer.tokenize(texts)
return tokens.merge_dims(1, -1)
def call(
self,
text,
text_pair=None,
padding=None,
truncation=None,
max_length=None,
pad_to_multiple_of=None,
return_token_type_ids=None,
return_attention_mask=None,
):
if padding is None:
padding = self.padding
if padding not in ("longest", "max_length"):
raise ValueError("Padding must be either 'longest' or 'max_length'!")
if max_length is not None and text_pair is not None:
# Because we have to instantiate a Trimmer to do it properly
raise ValueError("max_length cannot be overridden at call time when truncating paired texts!")
if max_length is None:
max_length = self.max_length
if truncation is None:
truncation = self.truncation
if pad_to_multiple_of is None:
pad_to_multiple_of = self.pad_to_multiple_of
if return_token_type_ids is None:
return_token_type_ids = self.return_token_type_ids
if return_attention_mask is None:
return_attention_mask = self.return_attention_mask
if not isinstance(text, tf.Tensor):
text = tf.convert_to_tensor(text)
if text_pair is not None and not isinstance(text_pair, tf.Tensor):
text_pair = tf.convert_to_tensor(text_pair)
if text_pair is not None:
if text.shape.rank > 1:
raise ValueError("text argument should not be multidimensional when a text pair is supplied!")
if text_pair.shape.rank > 1:
raise ValueError("text_pair should not be multidimensional!")
if text.shape.rank == 2:
text, text_pair = text[:, 0], text[:, 1]
text = self.unpaired_tokenize(text)
if text_pair is None: # Unpaired text
if truncation:
text = text[:, : max_length - 2] # Allow room for special tokens
input_ids, token_type_ids = combine_segments(
(text,), start_of_sequence_id=self.cls_token_id, end_of_segment_id=self.sep_token_id
)
else: # Paired text
text_pair = self.unpaired_tokenize(text_pair)
if truncation:
text, text_pair = self.paired_trimmer.trim([text, text_pair])
input_ids, token_type_ids = combine_segments(
(text, text_pair), start_of_sequence_id=self.cls_token_id, end_of_segment_id=self.sep_token_id
)
if padding == "longest":
pad_length = input_ids.bounding_shape(axis=1)
if pad_to_multiple_of is not None:
# No ceiling division in tensorflow, so we negate floordiv instead
pad_length = pad_to_multiple_of * (-tf.math.floordiv(-pad_length, pad_to_multiple_of))
else:
pad_length = max_length
input_ids, attention_mask = pad_model_inputs(input_ids, max_seq_length=pad_length, pad_value=self.pad_token_id)
output = {"input_ids": input_ids}
if return_attention_mask:
output["attention_mask"] = attention_mask
if return_token_type_ids:
token_type_ids, _ = pad_model_inputs(
token_type_ids, max_seq_length=pad_length, pad_value=self.pad_token_id
)
output["token_type_ids"] = token_type_ids
return output
def get_config(self):
return {
"vocab_list": self.vocab_list,
"do_lower_case": self.do_lower_case,
"cls_token_id": self.cls_token_id,
"sep_token_id": self.sep_token_id,
"pad_token_id": self.pad_token_id,
}
__all__ = ["TFBertTokenizer"]
```
|
================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.94 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bertweet\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .tokenization_bertweet import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
=============================================================================================================================================
SOURCE CODE FILE: tokenization_bertweet.py
LINES: 3
SIZE: 26.39 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bertweet\tokenization_bertweet.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team.
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for BERTweet"""
import html
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
import regex
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.txt",
"merges_file": "bpe.codes",
}
def get_pairs(word):
"""
Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
pairs = set(pairs)
return pairs
class BertweetTokenizer(PreTrainedTokenizer):
"""
Constructs a BERTweet tokenizer, using Byte-Pair-Encoding.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
normalization (`bool`, *optional*, defaults to `False`):
Whether or not to apply a normalization preprocess.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
"""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
merges_file,
normalization=False,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
**kwargs,
):
try:
from emoji import demojize
self.demojizer = demojize
except ImportError:
logger.warning(
"emoji is not installed, thus not converting emoticons or emojis into text. Install emoji: pip3"
" install emoji==0.6.0"
)
self.demojizer = None
self.vocab_file = vocab_file
self.merges_file = merges_file
self.encoder = {}
self.encoder[str(bos_token)] = 0
self.encoder[str(pad_token)] = 1
self.encoder[str(eos_token)] = 2
self.encoder[str(unk_token)] = 3
self.add_from_file(vocab_file)
self.decoder = {v: k for k, v in self.encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
merges = merges_handle.read().split("\n")[:-1]
merges = [tuple(merge.split()[:-1]) for merge in merges]
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {}
self.normalization = normalization
self.tweetPreprocessor = TweetTokenizer()
self.special_puncts = {"’": "'", "…": "..."}
super().__init__(
normalization=normalization,
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
cls_token=cls_token,
unk_token=unk_token,
pad_token=pad_token,
mask_token=mask_token,
**kwargs,
)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERTweet sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. BERTweet does
not make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
@property
def vocab_size(self):
return len(self.encoder)
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
word = tuple(list(word[:-1]) + [word[-1] + "</w>"])
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = "@@ ".join(word)
word = word[:-4]
self.cache[token] = word
return word
def _tokenize(self, text):
"""Tokenize a string."""
if self.normalization: # Perform Tweet normalization before performing BPE
text = self.normalizeTweet(text)
split_tokens = []
words = re.findall(r"\S+\n?", text)
for token in words:
split_tokens.extend(list(self.bpe(token).split(" ")))
return split_tokens
def normalizeTweet(self, tweet):
"""
Normalize a raw Tweet
"""
for punct in self.special_puncts:
tweet = tweet.replace(punct, self.special_puncts[punct])
tokens = self.tweetPreprocessor.tokenize(tweet)
normTweet = " ".join([self.normalizeToken(token) for token in tokens])
normTweet = (
normTweet.replace("cannot ", "can not ")
.replace("n't ", " n't ")
.replace("n 't ", " n't ")
.replace("ca n't", "can't")
.replace("ai n't", "ain't")
)
normTweet = (
normTweet.replace("'m ", " 'm ")
.replace("'re ", " 're ")
.replace("'s ", " 's ")
.replace("'ll ", " 'll ")
.replace("'d ", " 'd ")
.replace("'ve ", " 've ")
)
normTweet = (
normTweet.replace(" p . m .", " p.m.")
.replace(" p . m ", " p.m ")
.replace(" a . m .", " a.m.")
.replace(" a . m ", " a.m ")
)
return " ".join(normTweet.split())
def normalizeToken(self, token):
"""
Normalize tokens in a Tweet
"""
lowercased_token = token.lower()
if token.startswith("@"):
return "@USER"
elif lowercased_token.startswith("http") or lowercased_token.startswith("www"):
return "HTTPURL"
elif len(token) == 1:
if token in self.special_puncts:
return self.special_puncts[token]
if self.demojizer is not None:
return self.demojizer(token)
else:
return token
else:
return token
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace("@@ ", "").strip()
return out_string
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
out_merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
if os.path.abspath(self.merges_file) != os.path.abspath(out_merge_file):
copyfile(self.merges_file, out_merge_file)
return out_vocab_file, out_merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
def add_from_file(self, f):
"""
Loads a pre-existing dictionary from a text file and adds its symbols to this instance.
"""
if isinstance(f, str):
try:
with open(f, "r", encoding="utf-8") as fd:
self.add_from_file(fd)
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset")
return
lines = f.readlines()
for lineTmp in lines:
line = lineTmp.strip()
idx = line.rfind(" ")
if idx == -1:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'")
word = line[:idx]
self.encoder[word] = len(self.encoder)
# Natural Language Toolkit: Twitter Tokenizer
#
# Copyright (C) 2001-2020 NLTK Project
# Author: Christopher Potts <[email protected]>
# Ewan Klein <[email protected]> (modifications)
# Pierpaolo Pantone <> (modifications)
# URL: http://nltk.org/
# For license information, see LICENSE.TXT
#
"""
Twitter-aware tokenizer, designed to be flexible and easy to adapt to new domains and tasks. The basic logic is this:
1. The tuple regex_strings defines a list of regular expression strings.
2. The regex_strings strings are put, in order, into a compiled regular expression object called word_re.
3. The tokenization is done by word_re.findall(s), where s is the user-supplied string, inside the tokenize() method of
the class Tokenizer.
4. When instantiating Tokenizer objects, there is a single option: preserve_case. By default, it is set to True. If it
is set to False, then the tokenizer will lowercase everything except for emoticons.
"""
######################################################################
#
# import regex # https://github.com/nltk/nltk/issues/2409
# import html
#
######################################################################
# The following strings are components in the regular expression
# that is used for tokenizing. It's important that phone_number
# appears first in the final regex (since it can contain whitespace).
# It also could matter that tags comes after emoticons, due to the
# possibility of having text like
#
# <:| and some text >:)
#
# Most importantly, the final element should always be last, since it
# does a last ditch whitespace-based tokenization of whatever is left.
# ToDo: Update with http://en.wikipedia.org/wiki/List_of_emoticons ?
# This particular element is used in a couple ways, so we define it
# with a name:
# docstyle-ignore
EMOTICONS = r"""
(?:
[<>]?
[:;=8] # eyes
[\-o\*\']? # optional nose
[\)\]\(\[dDpP/\:\}\{@\|\\] # mouth
|
[\)\]\(\[dDpP/\:\}\{@\|\\] # mouth
[\-o\*\']? # optional nose
[:;=8] # eyes
[<>]?
|
<3 # heart
)"""
# URL pattern due to John Gruber, modified by Tom Winzig. See
# https://gist.github.com/winzig/8894715
# docstyle-ignore
URLS = r""" # Capture 1: entire matched URL
(?:
https?: # URL protocol and colon
(?:
/{1,3} # 1-3 slashes
| # or
[a-z0-9%] # Single letter or digit or '%'
# (Trying not to match e.g. "URI::Escape")
)
| # or
# looks like domain name followed by a slash:
[a-z0-9.\-]+[.]
(?:[a-z]{2,13})
/
)
(?: # One or more:
[^\s()<>{}\[\]]+ # Run of non-space, non-()<>{}[]
| # or
\([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...)
|
\([^\s]+?\) # balanced parens, non-recursive: (...)
)+
(?: # End with:
\([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...)
|
\([^\s]+?\) # balanced parens, non-recursive: (...)
| # or
[^\s`!()\[\]{};:'".,<>?«»“”‘’] # not a space or one of these punct chars
)
| # OR, the following to match naked domains:
(?:
(?<!@) # not preceded by a @, avoid matching foo@_gmail.com_
[a-z0-9]+
(?:[.\-][a-z0-9]+)*
[.]
(?:[a-z]{2,13})
\b
/?
(?!@) # not succeeded by a @,
# avoid matching "foo.na" in "[email protected]"
)
"""
# docstyle-ignore
# The components of the tokenizer:
REGEXPS = (
URLS,
# Phone numbers:
r"""
(?:
(?: # (international)
\+?[01]
[ *\-.\)]*
)?
(?: # (area code)
[\(]?
\d{3}
[ *\-.\)]*
)?
\d{3} # exchange
[ *\-.\)]*
\d{4} # base
)""",
# ASCII Emoticons
EMOTICONS,
# HTML tags:
r"""<[^>\s]+>""",
# ASCII Arrows
r"""[\-]+>|<[\-]+""",
# Twitter username:
r"""(?:@[\w_]+)""",
# Twitter hashtags:
r"""(?:\#+[\w_]+[\w\'_\-]*[\w_]+)""",
# email addresses
r"""[\w.+-]+@[\w-]+\.(?:[\w-]\.?)+[\w-]""",
# docstyle-ignore
# Remaining word types:
r"""
(?:[^\W\d_](?:[^\W\d_]|['\-_])+[^\W\d_]) # Words with apostrophes or dashes.
|
(?:[+\-]?\d+[,/.:-]\d+[+\-]?) # Numbers, including fractions, decimals.
|
(?:[\w_]+) # Words without apostrophes or dashes.
|
(?:\.(?:\s*\.){1,}) # Ellipsis dots.
|
(?:\S) # Everything else that isn't whitespace.
""",
)
######################################################################
# This is the core tokenizing regex:
WORD_RE = regex.compile(r"""(%s)""" % "|".join(REGEXPS), regex.VERBOSE | regex.I | regex.UNICODE)
# WORD_RE performs poorly on these patterns:
HANG_RE = regex.compile(r"([^a-zA-Z0-9])\1{3,}")
# The emoticon string gets its own regex so that we can preserve case for
# them as needed:
EMOTICON_RE = regex.compile(EMOTICONS, regex.VERBOSE | regex.I | regex.UNICODE)
# These are for regularizing HTML entities to Unicode:
ENT_RE = regex.compile(r"&(#?(x?))([^&;\s]+);")
######################################################################
# Functions for converting html entities
######################################################################
def _str_to_unicode(text, encoding=None, errors="strict"):
if encoding is None:
encoding = "utf-8"
if isinstance(text, bytes):
return text.decode(encoding, errors)
return text
def _replace_html_entities(text, keep=(), remove_illegal=True, encoding="utf-8"):
"""
Remove entities from text by converting them to their corresponding unicode character.
Args:
text:
A unicode string or a byte string encoded in the given *encoding* (which defaults to 'utf-8').
keep (list):
List of entity names which should not be replaced. This supports both numeric entities (`&#nnnn;` and
`&#hhhh;`) and named entities (such as ` ` or `>`).
remove_illegal (bool):
If `True`, entities that can't be converted are removed. Otherwise, entities that can't be converted are
kept "as is".
Returns: A unicode string with the entities removed.
See https://github.com/scrapy/w3lib/blob/master/w3lib/html.py
Examples:
```python
>>> from nltk.tokenize.casual import _replace_html_entities
>>> _replace_html_entities(b"Price: £100")
'Price: \\xa3100'
>>> print(_replace_html_entities(b"Price: £100"))
Price: £100
```"""
def _convert_entity(match):
entity_body = match.group(3)
if match.group(1):
try:
if match.group(2):
number = int(entity_body, 16)
else:
number = int(entity_body, 10)
# Numeric character references in the 80-9F range are typically
# interpreted by browsers as representing the characters mapped
# to bytes 80-9F in the Windows-1252 encoding. For more info
# see: https://en.wikipedia.org/wiki/ISO/IEC_8859-1#Similar_character_sets
if 0x80 <= number <= 0x9F:
return bytes((number,)).decode("cp1252")
except ValueError:
number = None
else:
if entity_body in keep:
return match.group(0)
else:
number = html.entities.name2codepoint.get(entity_body)
if number is not None:
try:
return chr(number)
except (ValueError, OverflowError):
pass
return "" if remove_illegal else match.group(0)
return ENT_RE.sub(_convert_entity, _str_to_unicode(text, encoding))
######################################################################
class TweetTokenizer:
r"""
Examples:
```python
>>> # Tokenizer for tweets.
>>> from nltk.tokenize import TweetTokenizer
>>> tknzr = TweetTokenizer()
>>> s0 = "This is a cooool #dummysmiley: :-) :-P <3 and some arrows < > -> <--"
>>> tknzr.tokenize(s0)
['This', 'is', 'a', 'cooool', '#dummysmiley', ':', ':-)', ':-P', '<3', 'and', 'some', 'arrows', '<', '>', '->', '<--']
>>> # Examples using *strip_handles* and *reduce_len parameters*:
>>> tknzr = TweetTokenizer(strip_handles=True, reduce_len=True)
>>> s1 = "@remy: This is waaaaayyyy too much for you!!!!!!"
>>> tknzr.tokenize(s1)
[':', 'This', 'is', 'waaayyy', 'too', 'much', 'for', 'you', '!', '!', '!']
```"""
def __init__(self, preserve_case=True, reduce_len=False, strip_handles=False):
self.preserve_case = preserve_case
self.reduce_len = reduce_len
self.strip_handles = strip_handles
def tokenize(self, text):
"""
Args:
text: str
Returns: list(str) A tokenized list of strings; concatenating this list returns the original string if
`preserve_case=False`
"""
# Fix HTML character entities:
text = _replace_html_entities(text)
# Remove username handles
if self.strip_handles:
text = remove_handles(text)
# Normalize word lengthening
if self.reduce_len:
text = reduce_lengthening(text)
# Shorten problematic sequences of characters
safe_text = HANG_RE.sub(r"\1\1\1", text)
# Tokenize:
words = WORD_RE.findall(safe_text)
# Possibly alter the case, but avoid changing emoticons like :D into :d:
if not self.preserve_case:
words = [x if EMOTICON_RE.search(x) else x.lower() for x in words]
return words
######################################################################
# Normalization Functions
######################################################################
def reduce_lengthening(text):
"""
Replace repeated character sequences of length 3 or greater with sequences of length 3.
"""
pattern = regex.compile(r"(.)\1{2,}")
return pattern.sub(r"\1\1\1", text)
def remove_handles(text):
"""
Remove Twitter username handles from text.
"""
pattern = regex.compile(
r"(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){20}(?!@))|(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){1,19})(?![A-Za-z0-9_]*@)"
)
# Substitute handles with ' ' to ensure that text on either side of removed handles are tokenized correctly
return pattern.sub(" ", text)
######################################################################
# Tokenization Function
######################################################################
def casual_tokenize(text, preserve_case=True, reduce_len=False, strip_handles=False):
"""
Convenience function for wrapping the tokenizer.
"""
return TweetTokenizer(preserve_case=preserve_case, reduce_len=reduce_len, strip_handles=strip_handles).tokenize(
text
)
###############################################################################
__all__ = ["BertweetTokenizer"]
```
|
================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.10 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\big_bird\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_big_bird import *
from .modeling_big_bird import *
from .modeling_flax_big_bird import *
from .tokenization_big_bird import *
from .tokenization_big_bird_fast import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==============================================================================================================================================
SOURCE CODE FILE: configuration_big_bird.py
LINES: 1
SIZE: 7.70 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\big_bird\configuration_big_bird.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BigBird model configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class BigBirdConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BigBirdModel`]. It is used to instantiate an
BigBird model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the BigBird
[google/bigbird-roberta-base](https://huggingface.co/google/bigbird-roberta-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50358):
Vocabulary size of the BigBird model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`BigBirdModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 1024 or 2048 or 4096).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`BigBirdModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
is_decoder (`bool`, *optional*, defaults to `False`):
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
attention_type (`str`, *optional*, defaults to `"block_sparse"`)
Whether to use block sparse attention (with n complexity) as introduced in paper or original attention
layer (with n^2 complexity). Possible values are `"original_full"` and `"block_sparse"`.
use_bias (`bool`, *optional*, defaults to `True`)
Whether to use bias in query, key, value.
rescale_embeddings (`bool`, *optional*, defaults to `False`)
Whether to rescale embeddings with (hidden_size ** 0.5).
block_size (`int`, *optional*, defaults to 64)
Size of each block. Useful only when `attention_type == "block_sparse"`.
num_random_blocks (`int`, *optional*, defaults to 3)
Each query is going to attend these many number of random blocks. Useful only when `attention_type ==
"block_sparse"`.
classifier_dropout (`float`, *optional*):
The dropout ratio for the classification head.
Example:
```python
>>> from transformers import BigBirdConfig, BigBirdModel
>>> # Initializing a BigBird google/bigbird-roberta-base style configuration
>>> configuration = BigBirdConfig()
>>> # Initializing a model (with random weights) from the google/bigbird-roberta-base style configuration
>>> model = BigBirdModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "big_bird"
def __init__(
self,
vocab_size=50358,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu_new",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=4096,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
use_cache=True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
sep_token_id=66,
attention_type="block_sparse",
use_bias=True,
rescale_embeddings=False,
block_size=64,
num_random_blocks=3,
classifier_dropout=None,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
sep_token_id=sep_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.rescale_embeddings = rescale_embeddings
self.attention_type = attention_type
self.use_bias = use_bias
self.block_size = block_size
self.num_random_blocks = num_random_blocks
self.classifier_dropout = classifier_dropout
class BigBirdOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
]
)
__all__ = ["BigBirdConfig", "BigBirdOnnxConfig"]
```
|
=========================================================================================================================================
SOURCE CODE FILE: modeling_big_bird.py
LINES: 1
SIZE: 138.65 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\big_bird\modeling_big_bird.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BigBird model."""
import math
import os
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_big_bird import BigBirdConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/bigbird-roberta-base"
_CONFIG_FOR_DOC = "BigBirdConfig"
_TRIVIA_QA_MAPPING = {
"big_bird_attention": "attention/self",
"output_layer_norm": "output/LayerNorm",
"attention_output": "attention/output/dense",
"output": "output/dense",
"self_attention_layer_norm": "attention/output/LayerNorm",
"intermediate": "intermediate/dense",
"word_embeddings": "bert/embeddings/word_embeddings",
"position_embedding": "bert/embeddings/position_embeddings",
"type_embeddings": "bert/embeddings/token_type_embeddings",
"embeddings": "bert/embeddings",
"layer_normalization": "output/LayerNorm",
"layer_norm": "LayerNorm",
"trivia_qa_head": "qa_classifier",
"dense": "intermediate/dense",
"dense_1": "qa_outputs",
}
def load_tf_weights_in_big_bird(model, tf_checkpoint_path, is_trivia_qa=False):
"""Load tf checkpoints in a pytorch model."""
def load_tf_weights_bert(init_vars, tf_path):
names = []
tf_weights = {}
for name, shape in init_vars:
array = tf.train.load_variable(tf_path, name)
name = name.replace("bert/encoder/LayerNorm", "bert/embeddings/LayerNorm")
logger.info(f"Loading TF weight {name} with shape {shape}")
names.append(name)
tf_weights[name] = array
return names, tf_weights
def load_tf_weights_trivia_qa(init_vars):
names = []
tf_weights = {}
for i, var in enumerate(init_vars):
name_items = var.name.split("/")
if "transformer_scaffold" in name_items[0]:
layer_name_items = name_items[0].split("_")
if len(layer_name_items) < 3:
layer_name_items += [0]
name_items[0] = f"bert/encoder/layer_{layer_name_items[2]}"
name = "/".join([_TRIVIA_QA_MAPPING[x] if x in _TRIVIA_QA_MAPPING else x for x in name_items])[
:-2
] # remove last :0 in variable
if "self/attention/output" in name:
name = name.replace("self/attention/output", "output")
if i >= len(init_vars) - 2:
name = name.replace("intermediate", "output")
logger.info(f"Loading TF weight {name} with shape {var.shape}")
array = var.value().numpy()
names.append(name)
tf_weights[name] = array
return names, tf_weights
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.saved_model.load(tf_path).variables if is_trivia_qa else tf.train.list_variables(tf_path)
if len(init_vars) <= 0:
raise ValueError("Loaded trained variables cannot be empty.")
pt_names = list(model.state_dict().keys())
if is_trivia_qa:
names, tf_weights = load_tf_weights_trivia_qa(init_vars)
else:
names, tf_weights = load_tf_weights_bert(init_vars, tf_path)
for txt_name in names:
array = tf_weights[txt_name]
name = txt_name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
continue
pointer = model
pt_name = []
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight")
pt_name.append("weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
pt_name.append("bias")
elif scope_names[0] == "output_weights":
pointer = getattr(pointer, "weight")
pt_name.append("weight")
elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier")
pt_name.append("classifier")
elif scope_names[0] == "transform":
pointer = getattr(pointer, "transform")
pt_name.append("transform")
if ("bias" in name) or ("kernel" in name):
pointer = getattr(pointer, "dense")
pt_name.append("dense")
elif ("beta" in name) or ("gamma" in name):
pointer = getattr(pointer, "LayerNorm")
pt_name.append("LayerNorm")
else:
try:
pointer = getattr(pointer, scope_names[0])
pt_name.append(f"{scope_names[0]}")
except AttributeError:
logger.info(f"Skipping {m_name}")
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
pt_name.append(f"{num}")
if m_name[-11:] == "_embeddings" or m_name == "embeddings":
pointer = getattr(pointer, "weight")
pt_name.append("weight")
elif m_name == "kernel":
array = np.transpose(array)
try:
if len(array.shape) > len(pointer.shape) and math.prod(array.shape) == math.prod(pointer.shape):
# print(txt_name, array.shape)
if (
txt_name.endswith("attention/self/key/kernel")
or txt_name.endswith("attention/self/query/kernel")
or txt_name.endswith("attention/self/value/kernel")
):
array = array.transpose(1, 0, 2).reshape(pointer.shape)
elif txt_name.endswith("attention/output/dense/kernel"):
array = array.transpose(0, 2, 1).reshape(pointer.shape)
else:
array = array.reshape(pointer.shape)
if pointer.shape != array.shape:
raise ValueError(
f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched of {txt_name}."
)
except ValueError as e:
e.args += (pointer.shape, array.shape)
raise
pt_weight_name = ".".join(pt_name)
logger.info(f"Initialize PyTorch weight {pt_weight_name} from {txt_name}.")
pointer.data = torch.from_numpy(array)
tf_weights.pop(txt_name, None)
pt_names.remove(pt_weight_name)
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.")
logger.info(f"Weights not initialized in PyTorch model: {', '.join(pt_names)}.")
return model
class BigBirdEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
# End copy
self.rescale_embeddings = config.rescale_embeddings
self.hidden_size = config.hidden_size
def forward(
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
if self.rescale_embeddings:
inputs_embeds = inputs_embeds * (self.hidden_size**0.5)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.dropout(embeddings)
embeddings = self.LayerNorm(embeddings)
return embeddings
class BigBirdSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BigBirdModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
class BigBirdBlockSparseAttention(nn.Module):
def __init__(self, config, seed=None):
super().__init__()
self.max_seqlen = config.max_position_embeddings
self.seed = seed
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size {config.hidden_size} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.num_random_blocks = config.num_random_blocks
self.block_size = config.block_size
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
band_mask=None,
from_mask=None,
to_mask=None,
from_blocked_mask=None,
to_blocked_mask=None,
output_attentions=None,
):
# Currently this `class` can't be used in decoder.
batch_size, seqlen, _ = hidden_states.size()
to_seq_length = from_seq_length = seqlen
from_block_size = to_block_size = self.block_size
if from_seq_length % from_block_size != 0:
raise ValueError("Query sided sequence length must be multiple of block size")
if to_seq_length % to_block_size != 0:
raise ValueError("Key/Value sided sequence length must be multiple of block size")
query_layer = self.transpose_for_scores(self.query(hidden_states))
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
context_layer, attention_probs = self.bigbird_block_sparse_attention(
query_layer,
key_layer,
value_layer,
band_mask,
from_mask,
to_mask,
from_blocked_mask,
to_blocked_mask,
self.num_attention_heads,
self.num_random_blocks,
self.attention_head_size,
from_block_size,
to_block_size,
batch_size,
from_seq_length,
to_seq_length,
seed=self.seed,
plan_from_length=None,
plan_num_rand_blocks=None,
output_attentions=output_attentions,
)
context_layer = context_layer.contiguous().view(batch_size, from_seq_length, -1)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
@staticmethod
def torch_bmm_nd(inp_1, inp_2, ndim=None):
"""Fast nd matrix multiplication"""
# faster replacement of torch.einsum ("bhqk,bhkd->bhqd")
return torch.bmm(inp_1.reshape((-1,) + inp_1.shape[-2:]), inp_2.reshape((-1,) + inp_2.shape[-2:])).view(
inp_1.shape[: ndim - 2] + (inp_1.shape[ndim - 2], inp_2.shape[ndim - 1])
)
@staticmethod
def torch_bmm_nd_transpose(inp_1, inp_2, ndim=None):
"""Fast nd matrix multiplication with transpose"""
# faster replacement of torch.einsum (bhqd,bhkd->bhqk)
return torch.bmm(
inp_1.reshape((-1,) + inp_1.shape[-2:]), inp_2.reshape((-1,) + inp_2.shape[-2:]).transpose(1, 2)
).view(inp_1.shape[: ndim - 2] + (inp_1.shape[ndim - 2], inp_2.shape[ndim - 2]))
def bigbird_block_sparse_attention(
self,
query_layer,
key_layer,
value_layer,
band_mask,
from_mask,
to_mask,
from_blocked_mask,
to_blocked_mask,
n_heads,
n_rand_blocks,
attention_head_size,
from_block_size,
to_block_size,
batch_size,
from_seq_len,
to_seq_len,
seed,
plan_from_length,
plan_num_rand_blocks,
output_attentions,
):
# BigBird block-sparse attention as suggested in paper
# ITC:
# global tokens: 2 x block_size
# window tokens: 3 x block_size
# random tokens: num_rand_tokens x block_size
# ETC:
# global tokens: extra_globals_tokens + 2 x block_size
# window tokens: 3 x block_size
# random tokens: num_rand_tokens x block_size
# Note:
# 1) Currently, ETC is not supported.
# 2) Window size is fixed to 3 blocks & it can be changed only by
# changing `block_size`.
# 3) Number of global blocks are fixed (2 blocks here) & global tokens can be
# controlled only by `block_size`.
# attention is calculated separately for q[0], q[1], q[2:-2], q[-2], q[-1] in order to use special trick of shifting tokens (for calculating sliding attention)
# hence following code can be divided into 5 parts.
if from_seq_len // from_block_size != to_seq_len // to_block_size:
raise ValueError("Error the number of blocks needs to be same!")
rsqrt_d = 1 / math.sqrt(attention_head_size)
bsz = batch_size
attn_mask_penalty = -10000.0
# generate random attention and corresponding masks
np.random.seed(seed)
if from_seq_len in [1024, 3072, 4096]: # old plans used in paper
rand_attn = [
self._bigbird_block_rand_mask(
self.max_seqlen, self.max_seqlen, from_block_size, to_block_size, n_rand_blocks, last_idx=1024
)[: (from_seq_len // from_block_size - 2)]
for _ in range(n_heads)
]
else:
if plan_from_length is None:
plan_from_length, plan_num_rand_blocks = self._get_rand_attn_plan(
from_seq_len, from_block_size, n_rand_blocks
)
rand_attn = self._bigbird_block_rand_mask_with_head(
from_seq_length=from_seq_len,
to_seq_length=to_seq_len,
from_block_size=from_block_size,
to_block_size=to_block_size,
num_heads=n_heads,
plan_from_length=plan_from_length,
plan_num_rand_blocks=plan_num_rand_blocks,
)
rand_attn = np.stack(rand_attn, axis=0)
rand_attn = torch.tensor(rand_attn, device=query_layer.device, dtype=torch.long)
rand_attn.unsqueeze_(0)
rand_attn = torch.cat([rand_attn for _ in range(batch_size)], dim=0)
rand_mask = self._create_rand_mask_from_inputs(
from_blocked_mask, to_blocked_mask, rand_attn, n_heads, n_rand_blocks, bsz, from_seq_len, from_block_size
)
blocked_query_matrix = query_layer.view(bsz, n_heads, from_seq_len // from_block_size, from_block_size, -1)
blocked_key_matrix = key_layer.view(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1)
blocked_value_matrix = value_layer.view(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1)
# preparing block for randn attn
gathered_key = self.torch_gather_b2(blocked_key_matrix, rand_attn)
gathered_key = gathered_key.view(
bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1
) # [bsz, n_heads, to_seq_len//to_block_size-2, n_rand_blocks, to_block_size, -1]
gathered_value = self.torch_gather_b2(blocked_value_matrix, rand_attn)
gathered_value = gathered_value.view(
bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1
) # [bsz, n_heads, to_seq_len//to_block_size-2, n_rand_blocks, to_block_size, -1]
# 1st PART
# 1st block (global block) attention scores
# q[0] x (k[0], k[1], k[2], k[3], k[4] .... )
# [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len]
first_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, 0], key_layer, ndim=4)
first_product = first_product * rsqrt_d
first_product += (1.0 - to_mask) * attn_mask_penalty
first_attn_weights = nn.functional.softmax(
first_product, dim=-1
) # [bsz, n_heads, from_block_size, to_seq_len]
# [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1]
first_context_layer = self.torch_bmm_nd(first_attn_weights, value_layer, ndim=4)
first_context_layer.unsqueeze_(2)
# 2nd PART
# 2nd block attention scores
# q[1] x (sliding_keys, random_keys, global_keys)
# sliding key blocks -> 2nd, 3rd blocks
# global key blocks -> 1st block
second_key_mat = torch.cat(
[
blocked_key_matrix[:, :, 0],
blocked_key_matrix[:, :, 1],
blocked_key_matrix[:, :, 2],
blocked_key_matrix[:, :, -1],
gathered_key[:, :, 0],
],
dim=2,
) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1]
second_value_mat = torch.cat(
[
blocked_value_matrix[:, :, 0],
blocked_value_matrix[:, :, 1],
blocked_value_matrix[:, :, 2],
blocked_value_matrix[:, :, -1],
gathered_value[:, :, 0],
],
dim=2,
) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1]
# [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
second_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, 1], second_key_mat, ndim=4)
second_seq_pad = torch.cat(
[
to_mask[:, :, :, : 3 * to_block_size],
to_mask[:, :, :, -to_block_size:],
to_mask.new_ones([bsz, 1, 1, n_rand_blocks * to_block_size]),
],
dim=3,
)
second_rand_pad = torch.cat(
[
rand_mask.new_ones([bsz, n_heads, from_block_size, 4 * to_block_size]),
rand_mask[:, :, 0],
],
dim=3,
)
second_product = second_product * rsqrt_d
second_product += (1.0 - torch.minimum(second_seq_pad, second_rand_pad)) * attn_mask_penalty
second_attn_weights = nn.functional.softmax(
second_product, dim=-1
) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
# [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, -1]
second_context_layer = self.torch_bmm_nd(second_attn_weights, second_value_mat, ndim=4)
second_context_layer.unsqueeze_(2)
# 3rd PART
# Middle blocks attention scores
# q[-2:2] x (sliding_keys, random_keys, global_keys)
# sliding attn is calculated using special trick of shifting tokens as discussed in paper
# random keys are generated by taking random indices as per `rand_attn`
# global keys -> 1st & last block
exp_blocked_key_matrix = torch.cat(
[blocked_key_matrix[:, :, 1:-3], blocked_key_matrix[:, :, 2:-2], blocked_key_matrix[:, :, 3:-1]], dim=3
) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
exp_blocked_value_matrix = torch.cat(
[blocked_value_matrix[:, :, 1:-3], blocked_value_matrix[:, :, 2:-2], blocked_value_matrix[:, :, 3:-1]],
dim=3,
) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
middle_query_matrix = blocked_query_matrix[:, :, 2:-2]
# sliding attention scores for q[-2:2]
# [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [b, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
inner_band_product = self.torch_bmm_nd_transpose(middle_query_matrix, exp_blocked_key_matrix, ndim=5)
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, 3*to_block_size]
inner_band_product = inner_band_product * rsqrt_d
# randn attention scores for q[-2:2]
# [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1]
rand_band_product = self.torch_bmm_nd_transpose(middle_query_matrix, gathered_key[:, :, 1:-1], ndim=5)
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size]
rand_band_product = rand_band_product * rsqrt_d
# Including 1st block (since it's global)
first_band_product = torch.einsum(
"bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, 0]
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size]
first_band_product = first_band_product * rsqrt_d
# Including last block (since it's global)
last_band_product = torch.einsum(
"bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, -1]
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size]
last_band_product = last_band_product * rsqrt_d
# masking padded tokens
inner_band_product += (1.0 - band_mask) * attn_mask_penalty
first_band_product += (1.0 - to_mask[:, :, :, :to_block_size].unsqueeze(3)) * attn_mask_penalty
last_band_product += (1.0 - to_mask[:, :, :, -to_block_size:].unsqueeze(3)) * attn_mask_penalty
rand_band_product += (1.0 - rand_mask[:, :, 1:-1]) * attn_mask_penalty
# completing attention scores matrix for all q[-2:2]
band_product = torch.cat(
[first_band_product, inner_band_product, rand_band_product, last_band_product], dim=-1
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size]
# safely doing softmax since attention matrix is completed
attn_weights = nn.functional.softmax(
band_product, dim=-1
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size]
# contribution of sliding keys
# [bsz, n_heads, m//from_block_size-4, from_block_size, 3*to_block_size] x [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
context_layer = self.torch_bmm_nd(
attn_weights[:, :, :, :, to_block_size : 4 * to_block_size], exp_blocked_value_matrix, ndim=5
)
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
# adding contribution of random keys
# [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size] x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1]
context_layer += self.torch_bmm_nd(
attn_weights[:, :, :, :, 4 * to_block_size : -to_block_size], gathered_value[:, :, 1:-1], ndim=5
)
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
# adding contribution of global keys
context_layer += torch.einsum(
"bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, :to_block_size], blocked_value_matrix[:, :, 0]
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
context_layer += torch.einsum(
"bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, -to_block_size:], blocked_value_matrix[:, :, -1]
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
# 4th PART
# last 2nd token attention scores
# q[-2] x (sliding_keys, random_keys, global_keys)
# sliding key blocks -> last 3 blocks
# global key block -> 1st block
# random key block -> based on indices stored in `randn_attn`
second_last_key_mat = torch.cat(
[
blocked_key_matrix[:, :, 0],
blocked_key_matrix[:, :, -3],
blocked_key_matrix[:, :, -2],
blocked_key_matrix[:, :, -1],
gathered_key[:, :, -1],
],
dim=2,
) # [bsz, n_heads, (4+n_random_blocks)*to_block_size, -1]
second_last_value_mat = torch.cat(
[
blocked_value_matrix[:, :, 0],
blocked_value_matrix[:, :, -3],
blocked_value_matrix[:, :, -2],
blocked_value_matrix[:, :, -1],
gathered_value[:, :, -1],
],
dim=2,
) # [bsz, n_heads, (4+r)*to_block_size, -1]
# [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
second_last_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, -2], second_last_key_mat, ndim=4)
second_last_seq_pad = torch.cat(
[
to_mask[:, :, :, :to_block_size],
to_mask[:, :, :, -3 * to_block_size :],
to_mask.new_ones([bsz, 1, 1, n_rand_blocks * to_block_size]),
],
dim=3,
)
second_last_rand_pad = torch.cat(
[
rand_mask.new_ones([bsz, n_heads, from_block_size, 4 * to_block_size]),
rand_mask[:, :, -1],
],
dim=3,
)
second_last_product = second_last_product * rsqrt_d
second_last_product += (1.0 - torch.minimum(second_last_seq_pad, second_last_rand_pad)) * attn_mask_penalty
second_last_attn_weights = nn.functional.softmax(
second_last_product, dim=-1
) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
# [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, -1]
second_last_context_layer = self.torch_bmm_nd(second_last_attn_weights, second_last_value_mat, ndim=4)
second_last_context_layer.unsqueeze_(2)
# 5th PART
# last block (global) attention scores
# q[-1] x (k[0], k[1], k[2], k[3], .... )
# [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len]
last_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, -1], key_layer, ndim=4)
last_product = last_product * rsqrt_d
last_product += (1.0 - to_mask) * attn_mask_penalty
last_attn_weights = nn.functional.softmax(last_product, dim=-1) # [bsz, n_heads, from_block_size, n]
# [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1]
last_context_layer = self.torch_bmm_nd(last_attn_weights, value_layer, ndim=4)
last_context_layer.unsqueeze_(2)
# combining representations of all tokens
context_layer = torch.cat(
[first_context_layer, second_context_layer, context_layer, second_last_context_layer, last_context_layer],
dim=2,
)
context_layer = context_layer.view((bsz, n_heads, from_seq_len, -1)) * from_mask
context_layer = torch.transpose(context_layer, 1, 2)
# this is just for visualizing; forward pass doesn't depend on following code
if output_attentions:
# TODO(PVP): need to verify if below code is correct
attention_probs = torch.zeros(
bsz, n_heads, from_seq_len, to_seq_len, dtype=torch.float, device=context_layer.device
)
# 1st query block
# corresponding to `first_context_layer`
attention_probs[:, :, :from_block_size, :] = first_attn_weights # all keys global
# 2nd query block
# corresponding to `second_context_layer`
attention_probs[:, :, from_block_size : 2 * from_block_size, : 3 * to_block_size] = second_attn_weights[
:, :, :, : 3 * to_block_size
] # 1st three key blocks (global + sliding)
attention_probs[:, :, from_block_size : 2 * from_block_size, -to_block_size:] = second_attn_weights[
:, :, :, 3 * to_block_size : 4 * to_block_size
] # last key block (global)
# random keys
for p1, i1, w1 in zip(range(bsz), rand_attn, second_attn_weights):
# p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch
for p2, i2, w2 in zip(range(n_heads), i1, w1):
# p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads
attn_probs_view = attention_probs.view(
bsz,
n_heads,
from_seq_len // from_block_size,
from_block_size,
to_seq_len // to_block_size,
to_block_size,
)
right_slice = w2[:, 4 * to_block_size :]
attn_probs_view[p1, p2, 1, :, i2[0]] = right_slice.view(
from_block_size, n_rand_blocks, to_block_size
)
# Middle query blocks
# corresponding to `context_layer`
# sliding keys
for q_idx in range(from_seq_len // from_block_size - 4):
attn_probs_view = attention_probs.view(
bsz,
n_heads,
from_seq_len // from_block_size,
from_block_size,
to_seq_len // to_block_size,
to_block_size,
)[:, :, 2:-2, :, 1:-1, :]
right_slice = attn_weights[:, :, q_idx, :, to_block_size : 4 * to_block_size]
attn_probs_view[:, :, q_idx, :, q_idx : q_idx + 3, :] = right_slice.view(
bsz, n_heads, from_block_size, 3, to_block_size
) # inner_band_product
# global keys (corresponding to 1st key block)
attention_probs[:, :, 2 * from_block_size : -2 * from_block_size, :to_block_size] = attn_weights[
:, :, :, :, :to_block_size
].view(bsz, n_heads, -1, to_block_size) # first_band_product
# global keys (corresponding to last key block)
attention_probs[:, :, 2 * from_block_size : -2 * from_block_size, -to_block_size:] = attn_weights[
:, :, :, :, -to_block_size:
].view(bsz, n_heads, -1, to_block_size) # last_band_product
# random keys
for p1, i1, w1 in zip(range(bsz), rand_attn, attn_weights):
# p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch
for p2, i2, w2 in zip(range(n_heads), i1, w1):
# p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads
for q_idx in range(1, len(i2) - 1):
attn_probs_view = attention_probs.view(
bsz,
n_heads,
from_seq_len // from_block_size,
from_block_size,
to_seq_len // to_block_size,
to_block_size,
)
right_slice = w2[q_idx - 1, :, 4 * to_block_size : -to_block_size]
attn_probs_view[p1, p2, q_idx + 1, :, i2[q_idx]] = right_slice.view(
from_block_size, n_rand_blocks, to_block_size
)
# Second-last query block
# corresponding to `second_last_context_layer`
attention_probs[:, :, -2 * from_block_size : -from_block_size, :to_block_size] = second_last_attn_weights[
:, :, :, :to_block_size
] # 1st key block (global)
attention_probs[:, :, -2 * from_block_size : -from_block_size, -3 * to_block_size :] = (
second_last_attn_weights[:, :, :, to_block_size : 4 * to_block_size]
) # last three blocks (global + sliding)
# random keys
for p1, i1, w1 in zip(range(bsz), rand_attn, second_last_attn_weights):
# p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch
for p2, i2, w2 in zip(range(n_heads), i1, w1):
# p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads
attn_probs_view = attention_probs.view(
bsz,
n_heads,
from_seq_len // from_block_size,
from_block_size,
to_seq_len // to_block_size,
to_block_size,
)
right_slice = w2[:, 4 * to_block_size :]
attn_probs_view[p1, p2, -2, :, i2[-1]] = right_slice.view(
from_block_size, n_rand_blocks, to_block_size
)
# last query block
# corresponding to `last_context_layer`
attention_probs[:, :, -from_block_size:, :] = last_attn_weights # all keys global
else:
attention_probs = None
return context_layer, attention_probs
@staticmethod
def torch_gather_b2(params, indices):
# this operation is equivalent to tf.gather when batch_dims=2
if params.shape[:2] != indices.shape[:2]:
raise ValueError(
"Make sure that the first two dimensions of params and indices are identical, but"
f" they are params: {params.shape[:2]} vs. indices: {indices.shape[:2]}"
)
num_indices_to_gather = indices.shape[-2] * indices.shape[-1]
num_indices_to_pick_from = params.shape[2]
shift = torch.arange(indices.shape[0] * indices.shape[1] * num_indices_to_gather, device=indices.device)
indices_shift = torch.div(shift, num_indices_to_gather, rounding_mode="floor") * num_indices_to_pick_from
flattened_indices = indices.view(-1) + indices_shift
flattened_params = params.reshape(-1, params.shape[-2], params.shape[-1])
out_flattened = flattened_params.index_select(0, flattened_indices)
out = out_flattened.reshape(params.shape[:2] + (num_indices_to_gather,) + params.shape[3:])
return out
@staticmethod
def _create_rand_mask_from_inputs(
from_blocked_mask,
to_blocked_mask,
rand_attn,
num_attention_heads,
num_rand_blocks,
batch_size,
from_seq_length,
from_block_size,
):
"""
Create 3D attention mask from a 2D tensor mask.
Args:
from_blocked_mask: 2D Tensor of shape [batch_size,
from_seq_length//from_block_size, from_block_size].
to_blocked_mask: int32 Tensor of shape [batch_size,
to_seq_length//to_block_size, to_block_size].
rand_attn: [batch_size, num_attention_heads,
from_seq_length//from_block_size-2, num_rand_blocks]
num_attention_heads: int. Number of attention heads.
num_rand_blocks: int. Number of random chunks per row.
batch_size: int. Batch size for computation.
from_seq_length: int. length of from sequence.
from_block_size: int. size of block in from sequence.
Returns:
float Tensor of shape [batch_size, num_attention_heads, from_seq_length//from_block_size-2,
from_block_size, num_rand_blocks*to_block_size].
"""
num_windows = from_seq_length // from_block_size - 2
rand_mask = torch.stack([p1[i1.flatten()] for p1, i1 in zip(to_blocked_mask, rand_attn)])
rand_mask = rand_mask.view(batch_size, num_attention_heads, num_windows, num_rand_blocks * from_block_size)
rand_mask = torch.einsum("blq,bhlk->bhlqk", from_blocked_mask[:, 1:-1], rand_mask)
return rand_mask
@staticmethod
def _get_rand_attn_plan(from_seq_length, from_block_size, num_rand_blocks):
"""
Gives the plan of where to put random attention.
Args:
from_seq_length: int. length of from sequence.
from_block_size: int. size of block in from sequence.
num_rand_blocks: int. Number of random chunks per row.
Returns:
plan_from_length: ending location of from block plan_num_rand_blocks: number of random ending location for
each block
"""
plan_from_length = []
plan_num_rand_blocks = []
if (2 * num_rand_blocks + 5) < (from_seq_length // from_block_size):
plan_from_length.append(int((2 * num_rand_blocks + 5) * from_block_size))
plan_num_rand_blocks.append(num_rand_blocks)
plan_from_length.append(from_seq_length)
plan_num_rand_blocks.append(0)
elif (num_rand_blocks + 5) < (from_seq_length // from_block_size):
plan_from_length.append(int((num_rand_blocks + 5) * from_block_size))
plan_num_rand_blocks.append(num_rand_blocks // 2)
plan_from_length.append(from_seq_length)
plan_num_rand_blocks.append(num_rand_blocks - (num_rand_blocks // 2))
else:
plan_from_length.append(from_seq_length)
plan_num_rand_blocks.append(num_rand_blocks)
return plan_from_length, plan_num_rand_blocks
def _bigbird_block_rand_mask(
self, from_seq_length, to_seq_length, from_block_size, to_block_size, num_rand_blocks, last_idx=-1
):
"""
Create adjacency list of random attention.
Args:
from_seq_length: int. length of from sequence.
to_seq_length: int. length of to sequence.
from_block_size: int. size of block in from sequence.
to_block_size: int. size of block in to sequence.
num_rand_blocks: int. Number of random chunks per row.
last_idx: if -1 then num_rand_blocks blocks chosen anywhere in to sequence,
if positive then num_rand_blocks blocks chosen only up to last_idx.
Returns:
adjacency list of size from_seq_length//from_block_size-2 by num_rand_blocks
"""
# using this method when from_seq_length in [1024, 3072, 4096]
if from_seq_length // from_block_size != to_seq_length // to_block_size:
raise ValueError("Error the number of blocks needs to be same!")
rand_attn = np.zeros((from_seq_length // from_block_size - 2, num_rand_blocks), dtype=np.int32)
# During inference (eval) no randomness
if not self.training:
return rand_attn
middle_seq = np.arange(1, to_seq_length // to_block_size - 1, dtype=np.int32)
last = to_seq_length // to_block_size - 1
if last_idx > (2 * to_block_size):
last = (last_idx // to_block_size) - 1
r = num_rand_blocks # shorthand
for i in range(1, from_seq_length // from_block_size - 1):
start = i - 2
end = i
if i == 1:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[2:last])[:r]
elif i == 2:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[3:last])[:r]
elif i == from_seq_length // from_block_size - 3:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[:last])[:r]
# Missing -3: should have been sliced till last-3
elif i == from_seq_length // from_block_size - 2:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[:last])[:r]
# Missing -4: should have been sliced till last-4
else:
if start > last:
start = last
rand_attn[i - 1, :] = np.random.permutation(middle_seq[:start])[:r]
elif (end + 1) == last:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[:start])[:r]
else:
rand_attn[i - 1, :] = np.random.permutation(
np.concatenate((middle_seq[:start], middle_seq[end + 1 : last]))
)[:r]
return rand_attn
def _bigbird_block_rand_mask_with_head(
self,
from_seq_length,
to_seq_length,
from_block_size,
to_block_size,
num_heads,
plan_from_length,
plan_num_rand_blocks,
window_block_left=1,
window_block_right=1,
global_block_top=1,
global_block_bottom=1,
global_block_left=1,
global_block_right=1,
):
"""
Create adjacency list of random attention.
Args:
from_seq_length: int. length of from sequence.
to_seq_length: int. length of to sequence.
from_block_size: int. size of block in from sequence.
to_block_size: int. size of block in to sequence.
num_heads: int. total number of heads.
plan_from_length: list. plan from length where num_random_blocks are chosen from.
plan_num_rand_blocks: list. number of rand blocks within the plan.
window_block_left: int. number of blocks of window to left of a block.
window_block_right: int. number of blocks of window to right of a block.
global_block_top: int. number of blocks at the top.
global_block_bottom: int. number of blocks at the bottom.
global_block_left: int. Number of blocks globally used to the left.
global_block_right: int. Number of blocks globally used to the right.
Returns:
adjacency list of size num_head where each element is of size from_seq_length//from_block_size-2 by
num_rand_blocks
"""
# using this method when from_seq_length not in [1024, 3072, 4096]
if from_seq_length // from_block_size != to_seq_length // to_block_size:
raise ValueError("Error the number of blocks needs to be same!")
if from_seq_length not in plan_from_length:
raise ValueError("Error from sequence length not in plan!")
# Total number of blocks in the mmask
num_blocks = from_seq_length // from_block_size
# Number of blocks per plan
plan_block_length = np.array(plan_from_length) // from_block_size
# till when to follow plan
max_plan_idx = plan_from_length.index(from_seq_length)
# Random Attention adjacency list
rand_attn = [
np.zeros((num_blocks, np.sum(plan_num_rand_blocks[: max_plan_idx + 1])), dtype=np.int32)
for i in range(num_heads)
]
# During inference (eval) no randomness
if not self.training:
for nh in range(num_heads):
rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :]
return rand_attn
# We will go iteratively over the plan blocks and pick random number of
# Attention blocks from the legally allowed blocks
for plan_idx in range(max_plan_idx + 1):
rnd_r_cnt = 0
if plan_idx > 0:
# set the row for all from_blocks starting from 0 to
# plan_block_length[plan_idx-1]
# column indx start fromm plan_block_length[plan_idx-1] and ends at
# plan_block_length[plan_idx]
if plan_num_rand_blocks[plan_idx] > 0:
rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:plan_idx]))
curr_r_cnt = int(np.sum(plan_num_rand_blocks[: plan_idx + 1]))
for blk_rw_idx in range(global_block_top, plan_block_length[plan_idx - 1]):
for h in range(num_heads):
rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention(
block_id=blk_rw_idx,
to_start_block_id=plan_block_length[plan_idx - 1],
to_end_block_id=plan_block_length[plan_idx],
num_rand_blocks=plan_num_rand_blocks[plan_idx],
window_block_left=window_block_left,
window_block_right=window_block_right,
global_block_left=global_block_left,
global_block_right=global_block_right,
)
for pl_id in range(plan_idx):
if plan_num_rand_blocks[pl_id] == 0:
continue
for blk_rw_idx in range(plan_block_length[plan_idx - 1], plan_block_length[plan_idx]):
rnd_r_cnt = 0
to_start_block_id = 0
if pl_id > 0:
rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:pl_id]))
to_start_block_id = plan_block_length[pl_id - 1]
curr_r_cnt = int(np.sum(plan_num_rand_blocks[: pl_id + 1]))
for h in range(num_heads):
rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention(
block_id=blk_rw_idx,
to_start_block_id=to_start_block_id,
to_end_block_id=plan_block_length[pl_id],
num_rand_blocks=plan_num_rand_blocks[pl_id],
window_block_left=window_block_left,
window_block_right=window_block_right,
global_block_left=global_block_left,
global_block_right=global_block_right,
)
if plan_num_rand_blocks[plan_idx] == 0:
continue
curr_r_cnt = int(np.sum(plan_num_rand_blocks[: plan_idx + 1]))
from_start_block_id = global_block_top
to_start_block_id = 0
if plan_idx > 0:
rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:plan_idx]))
from_start_block_id = plan_block_length[plan_idx - 1]
to_start_block_id = plan_block_length[plan_idx - 1]
for blk_rw_idx in range(from_start_block_id, plan_block_length[plan_idx]):
for h in range(num_heads):
rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention(
block_id=blk_rw_idx,
to_start_block_id=to_start_block_id,
to_end_block_id=plan_block_length[plan_idx],
num_rand_blocks=plan_num_rand_blocks[plan_idx],
window_block_left=window_block_left,
window_block_right=window_block_right,
global_block_left=global_block_left,
global_block_right=global_block_right,
)
for nh in range(num_heads):
rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :]
return rand_attn
@staticmethod
def _get_single_block_row_attention(
block_id,
to_start_block_id,
to_end_block_id,
num_rand_blocks,
window_block_left=1,
window_block_right=1,
global_block_left=1,
global_block_right=1,
):
"""
For a single row block get random row attention.
Args:
block_id: int. block id of row.
to_start_block_id: int. random attention column start id.
to_end_block_id: int. random attention column end id.
num_rand_blocks: int. number of random blocks to be selected.
window_block_left: int. number of blocks of window to left of a block.
window_block_right: int. number of blocks of window to right of a block.
global_block_left: int. Number of blocks globally used to the left.
global_block_right: int. Number of blocks globally used to the right.
Returns:
row containing the random attention vector of size num_rand_blocks.
"""
# list of to_blocks from which to choose random attention
to_block_list = np.arange(to_start_block_id, to_end_block_id, dtype=np.int32)
# permute the blocks
perm_block = np.random.permutation(to_block_list)
# illegal blocks for the current block id, using window
illegal_blocks = list(range(block_id - window_block_left, block_id + window_block_right + 1))
# Add blocks at the start and at the end
illegal_blocks.extend(list(range(global_block_left)))
illegal_blocks.extend(list(range(to_end_block_id - global_block_right, to_end_block_id)))
# The second from_block cannot choose random attention on second last to_block
if block_id == 1:
illegal_blocks.append(to_end_block_id - 2)
# The second last from_block cannot choose random attention on second to_block
if block_id == to_end_block_id - 2:
illegal_blocks.append(1)
selected_random_blokcs = []
for i in range(to_end_block_id - to_start_block_id):
if perm_block[i] not in illegal_blocks:
selected_random_blokcs.append(perm_block[i])
if len(selected_random_blokcs) == num_rand_blocks:
break
return np.array(selected_random_blokcs, dtype=np.int32)
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->BigBird
class BigBirdSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BigBirdAttention(nn.Module):
def __init__(self, config, seed=None):
super().__init__()
self.attention_type = config.attention_type
self.config = config
self.seed = seed
if self.config.attention_type == "original_full":
self.self = BigBirdSelfAttention(config)
elif self.config.attention_type == "block_sparse":
self.self = BigBirdBlockSparseAttention(config, seed)
else:
raise ValueError(
f"attention_type can either be original_full or block_sparse, but is {self.config.attention_type}"
)
self.output = BigBirdSelfOutput(config)
def set_attention_type(self, value: str):
if value not in ["original_full", "block_sparse"]:
raise ValueError(
f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}"
)
# attention type is already correctly set
if value == self.attention_type:
return
self.attention_type = value
if value == "original_full":
# copy all weights to new full attention class
attn_weights = BigBirdSelfAttention(self.config)
else:
# copy all weights to new sparse attention class
attn_weights = BigBirdBlockSparseAttention(self.config, self.seed)
attn_weights.query = self.self.query
attn_weights.value = self.self.value
attn_weights.key = self.self.key
self.self = attn_weights
self.attention_type = value
if not self.training:
self.self.eval()
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
# block_sparse config
band_mask=None,
from_mask=None,
to_mask=None,
from_blocked_mask=None,
to_blocked_mask=None,
):
# fp16 compatibility
if band_mask is not None:
band_mask = band_mask.to(hidden_states.dtype)
if from_mask is not None:
from_mask = from_mask.to(hidden_states.dtype)
if to_mask is not None:
to_mask = to_mask.to(hidden_states.dtype)
if self.attention_type == "original_full":
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
if encoder_hidden_states is not None:
raise ValueError("BigBird cannot be used as a decoder when config.attention_type != 'original_full'")
self_outputs = self.self(
hidden_states, band_mask, from_mask, to_mask, from_blocked_mask, to_blocked_mask, output_attentions
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->BigBird
class BigBirdIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->BigBird
class BigBirdOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BigBirdLayer(nn.Module):
def __init__(self, config, seed=None):
super().__init__()
self.config = config
self.attention_type = config.attention_type
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BigBirdAttention(config, seed=seed)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise TypeError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = BigBirdAttention(config)
self.intermediate = BigBirdIntermediate(config)
self.output = BigBirdOutput(config)
def set_attention_type(self, value: str):
if value not in ["original_full", "block_sparse"]:
raise ValueError(
f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}"
)
# attention type is already correctly set
if value == self.attention_type:
return
self.attention_type = value
self.attention.set_attention_type(value)
if self.add_cross_attention:
self.crossattention.set_attention_type(value)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
band_mask=None,
from_mask=None,
to_mask=None,
blocked_encoder_mask=None,
past_key_value=None,
output_attentions=False,
):
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=self_attn_past_key_value,
output_attentions=output_attentions,
band_mask=band_mask,
from_mask=from_mask,
to_mask=to_mask,
from_blocked_mask=blocked_encoder_mask,
to_blocked_mask=blocked_encoder_mask,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
" cross-attention layers by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class BigBirdEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.attention_type = config.attention_type
self.layer = nn.ModuleList(
[BigBirdLayer(config, seed=layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.gradient_checkpointing = False
def set_attention_type(self, value: str):
if value not in ["original_full", "block_sparse"]:
raise ValueError(
f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}"
)
# attention type is already correctly set
if value == self.attention_type:
return
self.attention_type = value
for layer in self.layer:
layer.set_attention_type(value)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=False,
output_hidden_states=False,
band_mask=None,
from_mask=None,
to_mask=None,
blocked_encoder_mask=None,
return_dict=True,
) -> Union[BaseModelOutputWithPastAndCrossAttentions, Tuple]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
band_mask,
from_mask,
to_mask,
blocked_encoder_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
band_mask,
from_mask,
to_mask,
blocked_encoder_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->BigBird
class BigBirdPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->BigBird
class BigBirdLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = BigBirdPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->BigBird
class BigBirdOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BigBirdLMPredictionHead(config)
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
# Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->BigBird
class BigBirdOnlyNSPHead(nn.Module):
def __init__(self, config):
super().__init__()
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, pooled_output):
seq_relationship_score = self.seq_relationship(pooled_output)
return seq_relationship_score
# Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->BigBird
class BigBirdPreTrainingHeads(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BigBirdLMPredictionHead(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, sequence_output, pooled_output):
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class BigBirdPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BigBirdConfig
load_tf_weights = load_tf_weights_in_big_bird
base_model_prefix = "bert"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, BigBirdLMPredictionHead):
module.bias.data.zero_()
BIG_BIRD_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`BigBirdConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BIG_BIRD_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@dataclass
class BigBirdForPreTrainingOutput(ModelOutput):
"""
Output type of [`BigBirdForPreTraining`].
Args:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
prediction_logits: Optional[torch.FloatTensor] = None
seq_relationship_logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class BigBirdForQuestionAnsweringModelOutput(ModelOutput):
"""
Base class for outputs of question answering models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-end scores (before SoftMax).
pooler_output (`torch.FloatTensor` of shape `(batch_size, 1)`):
pooler output from BigBigModel
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
start_logits: Optional[torch.FloatTensor] = None
end_logits: Optional[torch.FloatTensor] = None
pooler_output: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@add_start_docstrings(
"The bare BigBird Model transformer outputting raw hidden-states without any specific head on top.",
BIG_BIRD_START_DOCSTRING,
)
class BigBirdModel(BigBirdPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
"""
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.attention_type = self.config.attention_type
self.config = config
self.block_size = self.config.block_size
self.embeddings = BigBirdEmbeddings(config)
self.encoder = BigBirdEncoder(config)
if add_pooling_layer:
self.pooler = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
else:
self.pooler = None
self.activation = None
if self.attention_type != "original_full" and config.add_cross_attention:
logger.warning(
"When using `BigBirdForCausalLM` as decoder, then `attention_type` must be `original_full`. Setting"
" `attention_type=original_full`"
)
self.set_attention_type("original_full")
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def set_attention_type(self, value: str):
if value not in ["original_full", "block_sparse"]:
raise ValueError(
f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}"
)
# attention type is already correctly set
if value == self.attention_type:
return
self.attention_type = value
self.encoder.set_attention_type(value)
@add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # NOOP kwargs, for now
) -> Union[BaseModelOutputWithPoolingAndCrossAttentions, Tuple[torch.FloatTensor]]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# in order to use block_sparse attention, sequence_length has to be at least
# bigger than all global attentions: 2 * block_size
# + sliding tokens: 3 * block_size
# + random tokens: 2 * num_random_blocks * block_size
max_tokens_to_attend = (5 + 2 * self.config.num_random_blocks) * self.config.block_size
if self.attention_type == "block_sparse" and seq_length <= max_tokens_to_attend:
# change attention_type from block_sparse to original_full
sequence_length = input_ids.size(1) if input_ids is not None else inputs_embeds.size(1)
logger.warning(
"Attention type 'block_sparse' is not possible if sequence_length: "
f"{sequence_length} <= num global tokens: 2 * config.block_size "
"+ min. num sliding tokens: 3 * config.block_size "
"+ config.num_random_blocks * config.block_size "
"+ additional buffer: config.num_random_blocks * config.block_size "
f"= {max_tokens_to_attend} with config.block_size "
f"= {self.config.block_size}, config.num_random_blocks "
f"= {self.config.num_random_blocks}. "
"Changing attention type to 'original_full'..."
)
self.set_attention_type("original_full")
if self.attention_type == "block_sparse":
(
padding_len,
input_ids,
attention_mask,
token_type_ids,
position_ids,
inputs_embeds,
) = self._pad_to_block_size(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
pad_token_id=self.config.pad_token_id,
)
else:
padding_len = 0
if self.attention_type == "block_sparse":
blocked_encoder_mask, band_mask, from_mask, to_mask = self.create_masks_for_block_sparse_attn(
attention_mask, self.block_size
)
extended_attention_mask = None
elif self.attention_type == "original_full":
blocked_encoder_mask = None
band_mask = None
from_mask = None
to_mask = None
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
else:
raise ValueError(
f"attention_type can either be original_full or block_sparse, but is {self.attention_type}"
)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
band_mask=band_mask,
from_mask=from_mask,
to_mask=to_mask,
blocked_encoder_mask=blocked_encoder_mask,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooler_output = self.activation(self.pooler(sequence_output[:, 0, :])) if (self.pooler is not None) else None
# undo padding
if padding_len > 0:
# unpad `sequence_output` because the calling function is expecting a length == input_ids.size(1)
sequence_output = sequence_output[:, :-padding_len]
if not return_dict:
return (sequence_output, pooler_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooler_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@staticmethod
def create_masks_for_block_sparse_attn(attention_mask: torch.Tensor, block_size: int):
batch_size, seq_length = attention_mask.size()
if seq_length % block_size != 0:
raise ValueError(
f"Sequence length must be multiple of block size, but sequence length is {seq_length}, while block"
f" size is {block_size}."
)
def create_band_mask_from_inputs(from_blocked_mask, to_blocked_mask):
"""
Create 3D attention mask from a 2D tensor mask.
Args:
from_blocked_mask: 2D Tensor of shape [batch_size,
from_seq_length//from_block_size, from_block_size].
to_blocked_mask: int32 Tensor of shape [batch_size,
to_seq_length//to_block_size, to_block_size].
Returns:
float Tensor of shape [batch_size, 1, from_seq_length//from_block_size-4, from_block_size,
3*to_block_size].
"""
exp_blocked_to_pad = torch.cat(
[to_blocked_mask[:, 1:-3], to_blocked_mask[:, 2:-2], to_blocked_mask[:, 3:-1]], dim=2
)
band_mask = torch.einsum("blq,blk->blqk", from_blocked_mask[:, 2:-2], exp_blocked_to_pad)
band_mask.unsqueeze_(1)
return band_mask
blocked_encoder_mask = attention_mask.view(batch_size, seq_length // block_size, block_size)
band_mask = create_band_mask_from_inputs(blocked_encoder_mask, blocked_encoder_mask)
from_mask = attention_mask.view(batch_size, 1, seq_length, 1)
to_mask = attention_mask.view(batch_size, 1, 1, seq_length)
return blocked_encoder_mask, band_mask, from_mask, to_mask
def _pad_to_block_size(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
token_type_ids: torch.Tensor,
position_ids: torch.Tensor,
inputs_embeds: torch.Tensor,
pad_token_id: int,
):
"""A helper function to pad tokens and mask to work with implementation of BigBird block-sparse attention."""
# padding
block_size = self.config.block_size
input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape
batch_size, seq_len = input_shape[:2]
padding_len = (block_size - seq_len % block_size) % block_size
if padding_len > 0:
logger.warning_once(
f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of "
f"`config.block_size`: {block_size}"
)
if input_ids is not None:
input_ids = nn.functional.pad(input_ids, (0, padding_len), value=pad_token_id)
if position_ids is not None:
# pad with position_id = pad_token_id as in modeling_bigbird.BigBirdEmbeddings
position_ids = nn.functional.pad(position_ids, (0, padding_len), value=pad_token_id)
if inputs_embeds is not None:
input_ids_padding = inputs_embeds.new_full(
(batch_size, padding_len),
self.config.pad_token_id,
dtype=torch.long,
)
inputs_embeds_padding = self.embeddings(input_ids_padding)
inputs_embeds = torch.cat([inputs_embeds, inputs_embeds_padding], dim=-2)
attention_mask = nn.functional.pad(
attention_mask, (0, padding_len), value=False
) # no attention on the padding tokens
token_type_ids = nn.functional.pad(token_type_ids, (0, padding_len), value=0) # pad with token_type_id = 0
return padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds
class BigBirdForPreTraining(BigBirdPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
self.bert = BigBirdModel(config, add_pooling_layer=True)
self.cls = BigBirdPreTrainingHeads(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=BigBirdForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.FloatTensor] = None,
next_sentence_label: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[BigBirdForPreTrainingOutput, Tuple[torch.FloatTensor]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the next sequence prediction (classification) loss. If specified, nsp loss will be
added to masked_lm loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in
`[0, 1]`:
- 0 indicates sequence B is a continuation of sequence A,
- 1 indicates sequence B is a random sequence.
kwargs (`Dict[str, any]`, *optional*, defaults to `{}`):
Used to hide legacy arguments that have been deprecated.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, BigBirdForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output, pooled_output = outputs[:2]
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
total_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
total_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if next_sentence_label is not None and total_loss is not None:
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
total_loss = total_loss + next_sentence_loss
if not return_dict:
output = (prediction_scores, seq_relationship_score) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return BigBirdForPreTrainingOutput(
loss=total_loss,
prediction_logits=prediction_scores,
seq_relationship_logits=seq_relationship_score,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings("""BigBird Model with a `language modeling` head on top.""", BIG_BIRD_START_DOCSTRING)
class BigBirdForMaskedLM(BigBirdPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `BigBirdForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.bert = BigBirdModel(config)
self.cls = BigBirdOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[MaskedLMOutput, Tuple[torch.FloatTensor]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoTokenizer, BigBirdForMaskedLM
>>> from datasets import load_dataset
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForMaskedLM.from_pretrained("google/bigbird-roberta-base")
>>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train") # doctest: +IGNORE_RESULT
>>> # select random long article
>>> LONG_ARTICLE_TARGET = squad_ds[81514]["context"]
>>> # select random sentence
>>> LONG_ARTICLE_TARGET[332:398]
'the highest values are very close to the theoretical maximum value'
>>> # add mask_token
>>> LONG_ARTICLE_TO_MASK = LONG_ARTICLE_TARGET.replace("maximum", "[MASK]")
>>> inputs = tokenizer(LONG_ARTICLE_TO_MASK, return_tensors="pt")
>>> # long article input
>>> list(inputs["input_ids"].shape)
[1, 919]
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
'maximum'
```
```python
>>> labels = tokenizer(LONG_ARTICLE_TARGET, return_tensors="pt")["input_ids"]
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
1.99
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
effective_batch_size = input_shape[0]
# add a dummy token
if self.config.pad_token_id is None:
raise ValueError("The PAD token should be defined for generation")
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
dummy_token = torch.full(
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
)
input_ids = torch.cat([input_ids, dummy_token], dim=1)
return {"input_ids": input_ids, "attention_mask": attention_mask}
@add_start_docstrings(
"""BigBird Model with a `language modeling` head on top for CLM fine-tuning.""", BIG_BIRD_START_DOCSTRING
)
class BigBirdForCausalLM(BigBirdPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
if not config.is_decoder:
logger.warning("If you want to use `BigBirdForCausalLM` as a standalone, add `is_decoder=True.`")
self.bert = BigBirdModel(config)
self.cls = BigBirdOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[CausalLMOutputWithCrossAttentions, Tuple[torch.FloatTensor]]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
lm_loss = None
if labels is not None:
lm_loss = self.loss_function(
prediction_scores,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
class BigBirdClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
self.config = config
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = ACT2FN[self.config.hidden_act](x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""
BigBird Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
BIG_BIRD_START_DOCSTRING,
)
class BigBirdForSequenceClassification(BigBirdPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = BigBirdModel(config)
self.classifier = BigBirdClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoTokenizer, BigBirdForSequenceClassification
>>> from datasets import load_dataset
>>> tokenizer = AutoTokenizer.from_pretrained("l-yohai/bigbird-roberta-base-mnli")
>>> model = BigBirdForSequenceClassification.from_pretrained("l-yohai/bigbird-roberta-base-mnli")
>>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train") # doctest: +IGNORE_RESULT
>>> LONG_ARTICLE = squad_ds[81514]["context"]
>>> inputs = tokenizer(LONG_ARTICLE, return_tensors="pt")
>>> # long input article
>>> list(inputs["input_ids"].shape)
[1, 919]
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'LABEL_0'
```
```python
>>> num_labels = len(model.config.id2label)
>>> model = BigBirdForSequenceClassification.from_pretrained(
... "l-yohai/bigbird-roberta-base-mnli", num_labels=num_labels
... )
>>> labels = torch.tensor(1)
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
1.13
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
BigBird Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
BIG_BIRD_START_DOCSTRING,
)
class BigBirdForMultipleChoice(BigBirdPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = BigBirdModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(
BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[MultipleChoiceModelOutput, Tuple[torch.FloatTensor]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
BigBird Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
BIG_BIRD_START_DOCSTRING,
)
class BigBirdForTokenClassification(BigBirdPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BigBirdModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[TokenClassifierOutput, Tuple[torch.FloatTensor]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class BigBirdForQuestionAnsweringHead(nn.Module):
"""Head for question answering tasks."""
def __init__(self, config):
super().__init__()
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.intermediate = BigBirdIntermediate(config)
self.output = BigBirdOutput(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, encoder_output):
hidden_states = self.dropout(encoder_output)
hidden_states = self.intermediate(hidden_states)
hidden_states = self.output(hidden_states, encoder_output)
hidden_states = self.qa_outputs(hidden_states)
return hidden_states
@add_start_docstrings(
"""
BigBird Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
BIG_BIRD_START_DOCSTRING,
)
class BigBirdForQuestionAnswering(BigBirdPreTrainedModel):
def __init__(self, config, add_pooling_layer=False):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.sep_token_id = config.sep_token_id
self.bert = BigBirdModel(config, add_pooling_layer=add_pooling_layer)
self.qa_classifier = BigBirdForQuestionAnsweringHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=BigBirdForQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
question_lengths: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[BigBirdForQuestionAnsweringModelOutput, Tuple[torch.FloatTensor]]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoTokenizer, BigBirdForQuestionAnswering
>>> from datasets import load_dataset
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = BigBirdForQuestionAnswering.from_pretrained("google/bigbird-roberta-base")
>>> squad_ds = load_dataset("rajpurkar/squad_v2", split="train") # doctest: +IGNORE_RESULT
>>> # select random article and question
>>> LONG_ARTICLE = squad_ds[81514]["context"]
>>> QUESTION = squad_ds[81514]["question"]
>>> QUESTION
'During daytime how high can the temperatures reach?'
>>> inputs = tokenizer(QUESTION, LONG_ARTICLE, return_tensors="pt")
>>> # long article and question input
>>> list(inputs["input_ids"].shape)
[1, 929]
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_token_ids = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> predict_answer_token = tokenizer.decode(predict_answer_token_ids)
```
```python
>>> target_start_index, target_end_index = torch.tensor([130]), torch.tensor([132])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
seqlen = input_ids.size(1) if input_ids is not None else inputs_embeds.size(1)
if question_lengths is None and input_ids is not None:
# assuming input_ids format: <cls> <question> <sep> context <sep>
question_lengths = torch.argmax(input_ids.eq(self.sep_token_id).int(), dim=-1) + 1
question_lengths.unsqueeze_(1)
logits_mask = None
if question_lengths is not None:
# setting lengths logits to `-inf`
logits_mask = self.prepare_question_mask(question_lengths, seqlen)
if token_type_ids is None:
token_type_ids = torch.ones(logits_mask.size(), dtype=int, device=logits_mask.device) - logits_mask
logits_mask = logits_mask
logits_mask[:, 0] = False
logits_mask.unsqueeze_(2)
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_classifier(sequence_output)
if logits_mask is not None:
# removing question tokens from the competition
logits = logits - logits_mask * 1e6
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return BigBirdForQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
pooler_output=outputs.pooler_output,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@staticmethod
def prepare_question_mask(q_lengths: torch.Tensor, maxlen: int):
# q_lengths -> (bz, 1)
mask = torch.arange(0, maxlen).to(q_lengths.device)
mask.unsqueeze_(0) # -> (1, maxlen)
mask = torch.where(mask < q_lengths, 1, 0)
return mask
__all__ = [
"BigBirdForCausalLM",
"BigBirdForMaskedLM",
"BigBirdForMultipleChoice",
"BigBirdForPreTraining",
"BigBirdForQuestionAnswering",
"BigBirdForSequenceClassification",
"BigBirdForTokenClassification",
"BigBirdLayer",
"BigBirdModel",
"BigBirdPreTrainedModel",
"load_tf_weights_in_big_bird",
]
```
|
==============================================================================================================================================
SOURCE CODE FILE: modeling_flax_big_bird.py
LINES: 1
SIZE: 107.30 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\big_bird\modeling_flax_big_bird.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Tuple
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen import partitioning as nn_partitioning
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from ...modeling_flax_outputs import (
FlaxBaseModelOutputWithPastAndCrossAttentions,
FlaxBaseModelOutputWithPooling,
FlaxBaseModelOutputWithPoolingAndCrossAttentions,
FlaxCausalLMOutputWithCrossAttentions,
FlaxMaskedLMOutput,
FlaxMultipleChoiceModelOutput,
FlaxSequenceClassifierOutput,
FlaxTokenClassifierOutput,
)
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_call_sample_docstring,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_big_bird import BigBirdConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/bigbird-roberta-base"
_CONFIG_FOR_DOC = "BigBirdConfig"
remat = nn_partitioning.remat
@flax.struct.dataclass
class FlaxBigBirdForPreTrainingOutput(ModelOutput):
"""
Output type of [`BigBirdForPreTraining`].
Args:
prediction_logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_logits (`jnp.ndarray` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
prediction_logits: jnp.ndarray = None
seq_relationship_logits: jnp.ndarray = None
hidden_states: Optional[Tuple[jnp.ndarray]] = None
attentions: Optional[Tuple[jnp.ndarray]] = None
@flax.struct.dataclass
class FlaxBigBirdForQuestionAnsweringModelOutput(ModelOutput):
"""
Base class for outputs of question answering models.
Args:
start_logits (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Span-end scores (before SoftMax).
pooled_output (`jnp.ndarray` of shape `(batch_size, hidden_size)`):
pooled_output returned by FlaxBigBirdModel.
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
start_logits: jnp.ndarray = None
end_logits: jnp.ndarray = None
pooled_output: jnp.ndarray = None
hidden_states: Optional[Tuple[jnp.ndarray]] = None
attentions: Optional[Tuple[jnp.ndarray]] = None
BIG_BIRD_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a
[flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`BigBirdConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
BIG_BIRD_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`numpy.ndarray` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
head_mask (`numpy.ndarray` of shape `({0})`, `optional):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class FlaxBigBirdEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings.setup
def setup(self):
self.word_embeddings = nn.Embed(
self.config.vocab_size,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
dtype=self.dtype,
)
self.position_embeddings = nn.Embed(
self.config.max_position_embeddings,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
dtype=self.dtype,
)
self.token_type_embeddings = nn.Embed(
self.config.type_vocab_size,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
dtype=self.dtype,
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True):
# Embed
inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
position_embeds = self.position_embeddings(position_ids.astype("i4"))
token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
if self.config.rescale_embeddings:
inputs_embeds *= self.config.hidden_size**0.5
# Sum all embeddings
hidden_states = inputs_embeds + token_type_embeddings + position_embeds
# Layer Norm
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->BigBird
class FlaxBigBirdSelfAttention(nn.Module):
config: BigBirdConfig
causal: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.head_dim = self.config.hidden_size // self.config.num_attention_heads
if self.config.hidden_size % self.config.num_attention_heads != 0:
raise ValueError(
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
" : {self.config.num_attention_heads}"
)
self.query = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.key = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.value = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,))
@nn.compact
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slightly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
key_value_states: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic=True,
output_attentions: bool = False,
):
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
# get query proj
query_states = self.query(hidden_states)
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self.key(key_value_states)
value_states = self.value(key_value_states)
else:
# self_attention
key_states = self.key(hidden_states)
value_states = self.value(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# handle cache prepare causal attention mask
if self.causal:
query_length, key_length = query_states.shape[1], key_states.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_probs_dropout_prob,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
class FlaxBigBirdBlockSparseAttention(nn.Module):
config: BigBirdConfig
block_sparse_seed: Optional[int] = None
dtype: jnp.dtype = jnp.float32
def setup(self):
self.query = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
use_bias=self.config.use_bias,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.key = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
use_bias=self.config.use_bias,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.value = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
use_bias=self.config.use_bias,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
@staticmethod
def transpose_for_scores(x, n_heads, head_size):
new_x_shape = x.shape[:-1] + (n_heads, head_size)
x = x.reshape(*new_x_shape)
return jnp.transpose(x, axes=(0, 2, 1, 3))
def __call__(
self,
hidden_states,
attention_mask,
deterministic=True,
output_attentions=False,
):
n_heads = self.config.num_attention_heads
head_size = self.config.hidden_size // n_heads
blocked_encoder_mask, band_mask, from_mask, to_mask = self.create_masks_for_block_sparse_attn(
attention_mask, self.config.block_size
)
query_layer = self.transpose_for_scores(self.query(hidden_states), n_heads, head_size)
key_layer = self.transpose_for_scores(self.key(hidden_states), n_heads, head_size)
value_layer = self.transpose_for_scores(self.value(hidden_states), n_heads, head_size)
indices_prng_key = None
if not deterministic:
indices_prng_key = self.make_rng("indices")
attn_output, attn_weights = self.bigbird_block_sparse_attention(
query_layer,
key_layer,
value_layer,
band_mask,
from_mask,
to_mask,
blocked_encoder_mask,
blocked_encoder_mask,
n_heads,
head_size,
indices_prng_key=indices_prng_key,
deterministic=deterministic,
plan_from_length=None,
plan_num_rand_blocks=None,
output_attentions=output_attentions,
)
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
@staticmethod
def create_masks_for_block_sparse_attn(attention_mask, block_size: int):
batch_size, seq_length = attention_mask.shape
if seq_length % block_size != 0:
raise ValueError(
f"Sequence length must be multiple of block size, but sequence length is {seq_length}, while block"
f" size is {block_size}."
)
def create_band_mask_from_inputs(from_blocked_mask, to_blocked_mask):
"""
Create 3D attention mask from a 2D tensor mask.
Args:
from_blocked_mask: 2D Tensor of shape [batch_size,
from_seq_length//from_block_size, from_block_size].
to_blocked_mask: int32 Tensor of shape [batch_size,
to_seq_length//to_block_size, to_block_size].
Returns:
float Tensor of shape [batch_size, 1, from_seq_length//from_block_size-4, from_block_size,
3*to_block_size].
"""
exp_blocked_to_pad = jnp.concatenate(
[to_blocked_mask[:, 1:-3], to_blocked_mask[:, 2:-2], to_blocked_mask[:, 3:-1]], axis=2
)
band_mask = jnp.einsum("blq,blk->blqk", from_blocked_mask[:, 2:-2], exp_blocked_to_pad)
band_mask = jnp.expand_dims(band_mask, 1)
return band_mask
blocked_encoder_mask = attention_mask.reshape(batch_size, seq_length // block_size, block_size)
band_mask = create_band_mask_from_inputs(blocked_encoder_mask, blocked_encoder_mask)
from_mask = attention_mask.reshape(batch_size, 1, seq_length, 1)
to_mask = attention_mask.reshape(batch_size, 1, 1, seq_length)
return blocked_encoder_mask, band_mask, from_mask, to_mask
def bigbird_block_sparse_attention(
self,
query_layer,
key_layer,
value_layer,
band_mask,
from_mask,
to_mask,
from_blocked_mask,
to_blocked_mask,
n_heads,
head_size,
indices_prng_key: Optional[jax.random.PRNGKey] = None,
deterministic: Optional[bool] = True,
plan_from_length=None,
plan_num_rand_blocks=None,
output_attentions=None,
):
# BigBird block-sparse attention as suggested in paper
# ITC:
# global tokens: 2 x block_size
# window tokens: 3 x block_size
# random tokens: num_rand_tokens x block_size
# ETC:
# global tokens: extra_globals_tokens + 2 x block_size
# window tokens: 3 x block_size
# random tokens: num_rand_tokens x block_size
# Note:
# 1) Currently, ETC is not supported.
# 2) Window size is fixed to 3 blocks & it can be changed only by
# changing `block_size`.
# 3) Number of global blocks are fixed (2 blocks here) & global tokens can be
# controlled only by `block_size`.
# attention is calculated separately for q[0], q[1], q[2:-2], q[-2], q[-1] in order to use special trick of
# shifting tokens (for calculating sliding attention). hence following code can be divided into 5 parts.
bsz, _, from_seq_len, _ = query_layer.shape
to_seq_len = key_layer.shape[2]
from_block_size = to_block_size = self.config.block_size
if from_seq_len % from_block_size != 0:
raise ValueError("Query sided sequence length must be multiple of block size")
if to_seq_len % to_block_size != 0:
raise ValueError("Key/Value sided sequence length must be multiple of block size")
if from_seq_len // from_block_size != to_seq_len // to_block_size:
raise ValueError("Error the number of blocks needs to be same!")
n_rand_blocks = self.config.num_random_blocks
rsqrt_d = 1 / jnp.sqrt(head_size)
attn_mask_penalty = -10000.0
if from_seq_len in [1024, 3072, 4096]: # old plans used in paper
max_seqlen = self.config.max_position_embeddings
rand_attn = [
self._bigbird_block_rand_mask(
max_seqlen,
max_seqlen,
from_block_size,
to_block_size,
n_rand_blocks,
indices_prng_key=indices_prng_key,
deterministic=deterministic,
last_idx=1024,
)[: (from_seq_len // from_block_size - 2)]
for _ in range(n_heads)
]
else:
if plan_from_length is None:
plan_from_length, plan_num_rand_blocks = self._get_rand_attn_plan(
from_seq_len, from_block_size, n_rand_blocks
)
rand_attn = self._bigbird_block_rand_mask_with_head(
from_seq_length=from_seq_len,
to_seq_length=to_seq_len,
from_block_size=from_block_size,
to_block_size=to_block_size,
num_heads=n_heads,
plan_from_length=plan_from_length,
plan_num_rand_blocks=plan_num_rand_blocks,
indices_prng_key=indices_prng_key,
)
rand_attn = jnp.stack(rand_attn, axis=0)
rand_attn = jnp.broadcast_to(rand_attn, (bsz,) + rand_attn.shape)
rand_mask = self._create_rand_mask_from_inputs(
from_blocked_mask, to_blocked_mask, rand_attn, n_heads, n_rand_blocks, bsz, from_seq_len, from_block_size
)
blocked_query_matrix = query_layer.reshape(bsz, n_heads, from_seq_len // from_block_size, from_block_size, -1)
blocked_key_matrix = key_layer.reshape(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1)
blocked_value_matrix = value_layer.reshape(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1)
shape = (bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1)
gathered_key = self.jax_gather(blocked_key_matrix, rand_attn, batch_dims=2).reshape(*shape)
gathered_value = self.jax_gather(blocked_value_matrix, rand_attn, batch_dims=2).reshape(*shape)
# 1st PART
# 1st block (global block) attention scores
# q[0] x (k[0], k[1], k[2], k[3], k[4] .... )
# [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len]
first_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, 0], key_layer)
first_product = first_product * rsqrt_d
first_product += (1.0 - to_mask) * attn_mask_penalty
first_attn_weights = jax.nn.softmax(first_product, axis=-1) # [bsz, n_heads, from_block_size, to_seq_len]
# [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1]
first_context_layer = jnp.einsum("bhqk,bhkd->bhqd", first_attn_weights, value_layer)
first_context_layer = jnp.expand_dims(first_context_layer, 2)
# 2nd PART
# 2nd block attention scores
# q[1] x (sliding_keys, random_keys, global_keys)
# sliding key blocks -> 2nd, 3rd blocks
# global key blocks -> 1st block
second_key_mat = jnp.concatenate(
[
blocked_key_matrix[:, :, 0],
blocked_key_matrix[:, :, 1],
blocked_key_matrix[:, :, 2],
blocked_key_matrix[:, :, -1],
gathered_key[:, :, 0],
],
axis=2,
) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1]
second_value_mat = jnp.concatenate(
[
blocked_value_matrix[:, :, 0],
blocked_value_matrix[:, :, 1],
blocked_value_matrix[:, :, 2],
blocked_value_matrix[:, :, -1],
gathered_value[:, :, 0],
],
axis=2,
) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1]
# [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1]
# ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
second_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, 1], second_key_mat)
second_seq_pad = jnp.concatenate(
[
to_mask[:, :, :, : 3 * to_block_size],
to_mask[:, :, :, -to_block_size:],
jnp.ones([bsz, 1, 1, n_rand_blocks * to_block_size], dtype=to_mask.dtype),
],
axis=3,
)
second_rand_pad = jnp.concatenate(
[
jnp.ones([bsz, n_heads, from_block_size, 4 * to_block_size], dtype=rand_mask.dtype),
rand_mask[:, :, 0],
],
axis=3,
)
second_product = second_product * rsqrt_d
second_product += (1.0 - jnp.minimum(second_seq_pad, second_rand_pad)) * attn_mask_penalty
second_attn_weights = jax.nn.softmax(
second_product, axis=-1
) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
# [bsz, n_heads, from_block_size, (4+r)*to_block_size] x [bsz, n_heads, (4+r)*to_block_size, -1]
# ==> [bsz, n_heads, from_block_size, -1]
second_context_layer = jnp.einsum("bhqk,bhkd->bhqd", second_attn_weights, second_value_mat)
second_context_layer = jnp.expand_dims(second_context_layer, 2)
# 3rd PART
# Middle blocks attention scores
# q[-2:2] x (sliding_keys, random_keys, global_keys)
# sliding attn is calculated using special trick of shifting tokens as discussed in paper
# random keys are generated by taking random indices as per `rand_attn`
# global keys -> 1st & last block
exp_blocked_key_matrix = jnp.concatenate(
[blocked_key_matrix[:, :, 1:-3], blocked_key_matrix[:, :, 2:-2], blocked_key_matrix[:, :, 3:-1]], axis=3
) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
exp_blocked_value_matrix = jnp.concatenate(
[blocked_value_matrix[:, :, 1:-3], blocked_value_matrix[:, :, 2:-2], blocked_value_matrix[:, :, 3:-1]],
axis=3,
) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
middle_query_matrix = blocked_query_matrix[:, :, 2:-2]
# sliding attention scores for q[-2:2]
# [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [b, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
inner_band_product = jnp.einsum("bhlqd,bhlkd->bhlqk", middle_query_matrix, exp_blocked_key_matrix)
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, 3*to_block_size]
inner_band_product = inner_band_product * rsqrt_d
# randn attention scores for q[-2:2]
# [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
# x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1]
rand_band_product = jnp.einsum("bhlqd,bhlkd->bhlqk", middle_query_matrix, gathered_key[:, :, 1:-1])
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size]
rand_band_product = rand_band_product * rsqrt_d
# Including 1st block (since it's global)
# [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1]
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size]
first_band_product = jnp.einsum("bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, 0])
first_band_product = first_band_product * rsqrt_d
# Including last block (since it's global)
# [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1]
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size]
last_band_product = jnp.einsum("bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, -1])
last_band_product = last_band_product * rsqrt_d
# masking padded tokens
inner_band_product += (1.0 - band_mask) * attn_mask_penalty
first_band_product += (1.0 - jnp.expand_dims(to_mask[:, :, :, :to_block_size], 3)) * attn_mask_penalty
last_band_product += (1.0 - jnp.expand_dims(to_mask[:, :, :, -to_block_size:], 3)) * attn_mask_penalty
rand_band_product += (1.0 - rand_mask[:, :, 1:-1]) * attn_mask_penalty
# completing attention scores matrix for all q[-2:2]
band_product = jnp.concatenate(
[first_band_product, inner_band_product, rand_band_product, last_band_product], axis=-1
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size]
# safely doing softmax since attention matrix is completed
attn_weights = jax.nn.softmax(
band_product, axis=-1
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size]
# contribution of sliding keys
# [bsz, n_heads, m//from_block_size-4, from_block_size, 3*to_block_size]
# x [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
context_layer = jnp.einsum(
"bhlqk,bhlkd->bhlqd", attn_weights[:, :, :, :, to_block_size : 4 * to_block_size], exp_blocked_value_matrix
)
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
# adding contribution of random keys
# [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size]
# x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1]
context_layer += jnp.einsum(
"bhlqk,bhlkd->bhlqd",
attn_weights[:, :, :, :, 4 * to_block_size : -to_block_size],
gathered_value[:, :, 1:-1],
)
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
# adding contribution of global keys
# [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1]
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
context_layer += jnp.einsum(
"bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, :to_block_size], blocked_value_matrix[:, :, 0]
)
# [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1]
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
context_layer += jnp.einsum(
"bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, -to_block_size:], blocked_value_matrix[:, :, -1]
)
# 4th PART
# last 2nd token attention scores
# q[-2] x (sliding_keys, random_keys, global_keys)
# sliding key blocks -> last 3 blocks
# global key block -> 1st block
# random key block -> based on indices stored in `randn_attn`
second_last_key_mat = jnp.concatenate(
[
blocked_key_matrix[:, :, 0],
blocked_key_matrix[:, :, -3],
blocked_key_matrix[:, :, -2],
blocked_key_matrix[:, :, -1],
gathered_key[:, :, -1],
],
axis=2,
) # [bsz, n_heads, (4+n_random_blocks)*to_block_size, -1]
second_last_value_mat = jnp.concatenate(
[
blocked_value_matrix[:, :, 0],
blocked_value_matrix[:, :, -3],
blocked_value_matrix[:, :, -2],
blocked_value_matrix[:, :, -1],
gathered_value[:, :, -1],
],
axis=2,
) # [bsz, n_heads, (4+r)*to_block_size, -1]
# [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1]
# ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
second_last_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, -2], second_last_key_mat)
second_last_seq_pad = jnp.concatenate(
[
to_mask[:, :, :, :to_block_size],
to_mask[:, :, :, -3 * to_block_size :],
jnp.ones([bsz, 1, 1, n_rand_blocks * to_block_size], dtype=to_mask.dtype),
],
axis=3,
)
second_last_rand_pad = jnp.concatenate(
[
jnp.ones([bsz, n_heads, from_block_size, 4 * to_block_size], dtype=rand_mask.dtype),
rand_mask[:, :, -1],
],
axis=3,
)
second_last_product = second_last_product * rsqrt_d
second_last_product += (1.0 - jnp.minimum(second_last_seq_pad, second_last_rand_pad)) * attn_mask_penalty
second_last_attn_weights = jax.nn.softmax(
second_last_product, axis=-1
) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
# [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1]
# ==> [bsz, n_heads, from_block_size, -1]
second_last_context_layer = jnp.einsum("bhqk,bhkd->bhqd", second_last_attn_weights, second_last_value_mat)
second_last_context_layer = jnp.expand_dims(second_last_context_layer, 2)
# 5th PART
# last block (global) attention scores
# q[-1] x (k[0], k[1], k[2], k[3], .... )
# [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len]
last_product = jnp.einsum("bhqd,bhkd->bhqk", blocked_query_matrix[:, :, -1], key_layer)
last_product = last_product * rsqrt_d
last_product += (1.0 - to_mask) * attn_mask_penalty
last_attn_weights = jax.nn.softmax(last_product, axis=-1) # [bsz, n_heads, from_block_size, n]
# [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1]
last_context_layer = jnp.einsum("bhqk,bhkd->bhqd", last_attn_weights, value_layer)
last_context_layer = jnp.expand_dims(last_context_layer, 2)
# combining representations of all tokens
context_layer = jnp.concatenate(
[first_context_layer, second_context_layer, context_layer, second_last_context_layer, last_context_layer],
axis=2,
)
context_layer = context_layer.reshape(bsz, n_heads, from_seq_len, -1) * from_mask
context_layer = jnp.transpose(context_layer, axes=(0, 2, 1, 3)).reshape(bsz, from_seq_len, -1)
attention_probs = None
return context_layer, attention_probs
@staticmethod
def jax_gather(params, indices, batch_dims=2):
"""
Gather the indices from params correctly (equivalent to tf.gather but with modifications)
Args:
params: (bsz, n_heads, num_blocks, block_size, head_dim)
indices: (<num_blocks, 1)
"""
def _jax_gather(params, indices):
return params[indices]
for _ in range(batch_dims):
_jax_gather = jax.vmap(_jax_gather, in_axes=(0, 0))
return _jax_gather(params, indices) # params.shape[:batch_dims] + indices.shape + params.shape[batch_dims+1:]
def _create_rand_mask_from_inputs(
self,
from_blocked_mask,
to_blocked_mask,
broadcasted_rand_attn,
num_attention_heads,
num_random_blocks,
batch_size,
from_seq_length,
from_block_size,
):
"""
Create 3D attention mask from a 2D tensor mask.
Args:
from_blocked_mask: 2D Tensor of shape [batch_size, from_seq_length//from_block_size, from_block_size].
to_blocked_mask: int32 Tensor of shape [batch_size, to_seq_length//to_block_size, to_block_size].
broadcasted_rand_attn:
[batch_size, num_attention_heads, from_seq_length//from_block_size-2, num_rand_blocks]
num_attention_heads: int. Number of attention heads.
num_random_blocks: int. Number of random chunks per row.
batch_size: int. Batch size for computation.
from_seq_length: int. length of from sequence.
from_block_size: int. size of block in from sequence.
Returns:
float Tensor of shape [batch_size, num_attention_heads, from_seq_length//from_block_size-2,
from_block_size, num_rand_blocks*to_block_size].
"""
num_windows = from_seq_length // from_block_size - 2
rand_mask = self.jax_gather(to_blocked_mask, broadcasted_rand_attn, batch_dims=1)
rand_mask = rand_mask.reshape(
batch_size, num_attention_heads, num_windows, num_random_blocks * from_block_size
)
rand_mask = jnp.einsum("blq,bhlk->bhlqk", from_blocked_mask[:, 1:-1], rand_mask)
return rand_mask
@staticmethod
def _get_rand_attn_plan(from_seq_length, from_block_size, num_rand_blocks):
"""
Gives the plan of where to put random attention.
Args:
from_seq_length: int. length of from sequence.
from_block_size: int. size of block in from sequence.
num_rand_blocks: int. Number of random chunks per row.
Returns:
plan_from_length: ending location of from block plan_num_rand_blocks: number of random ending location for
each block
"""
plan_from_length = []
plan_num_rand_blocks = []
if (2 * num_rand_blocks + 5) < (from_seq_length // from_block_size):
plan_from_length.append(int((2 * num_rand_blocks + 5) * from_block_size))
plan_num_rand_blocks.append(num_rand_blocks)
plan_from_length.append(from_seq_length)
plan_num_rand_blocks.append(0)
elif (num_rand_blocks + 5) < (from_seq_length // from_block_size):
plan_from_length.append(int((num_rand_blocks + 5) * from_block_size))
plan_num_rand_blocks.append(num_rand_blocks // 2)
plan_from_length.append(from_seq_length)
plan_num_rand_blocks.append(num_rand_blocks - (num_rand_blocks // 2))
else:
plan_from_length.append(from_seq_length)
plan_num_rand_blocks.append(num_rand_blocks)
return plan_from_length, plan_num_rand_blocks
@staticmethod
def _bigbird_block_rand_mask(
from_seq_length,
to_seq_length,
from_block_size,
to_block_size,
num_rand_blocks,
indices_prng_key: Optional[jax.random.PRNGKey] = None,
deterministic: Optional[bool] = True,
last_idx: Optional[int] = -1,
):
"""
Create adjacency list of random attention.
Args:
from_seq_length: int. length of from sequence.
to_seq_length: int. length of to sequence.
from_block_size: int. size of block in from sequence.
to_block_size: int. size of block in to sequence.
num_rand_blocks: int. Number of random chunks per row.
indices_prng_key: jax.random.PRNGKey. PRNG key that is used to perform random jax operations.
deterministic: bool. When False random attention will be used.
last_idx: if -1 then num_rand_blocks blocks chosen anywhere in to sequence,
if positive then num_rand_blocks blocks chosen only up to last_idx.
Returns:
adjacency list of size from_seq_length//from_block_size-2 by num_rand_blocks
"""
# using this method when from_seq_length in [1024, 3072, 4096]
if from_seq_length // from_block_size != to_seq_length // to_block_size:
raise ValueError("Error the number of blocks needs to be same!")
rand_attn = jnp.zeros((from_seq_length // from_block_size - 2, num_rand_blocks), dtype=jnp.int32)
# deterministic nor randomness
if deterministic:
return rand_attn
middle_seq = jnp.arange(1, to_seq_length // to_block_size - 1, dtype=jnp.int32)
last = to_seq_length // to_block_size - 1
if last_idx > (2 * to_block_size):
last = (last_idx // to_block_size) - 1
r = num_rand_blocks # shorthand
for i in range(1, from_seq_length // from_block_size - 1):
start = i - 2
end = i
if i == 1:
seq_values = jax.random.permutation(indices_prng_key, middle_seq[2:last])[:r]
rand_attn = rand_attn.at[i - 1].set(seq_values)
elif i == 2:
seq_values = jax.random.permutation(indices_prng_key, middle_seq[3:last])[:r]
rand_attn = rand_attn.at[i - 1].set(seq_values)
elif i == from_seq_length // from_block_size - 3:
seq_values = jax.random.permutation(indices_prng_key, middle_seq[:last])[:r]
rand_attn = rand_attn.at[i - 1].set(seq_values)
# Missing -3: should have been sliced till last-3
elif i == from_seq_length // from_block_size - 2:
seq_values = jax.random.permutation(indices_prng_key, middle_seq[:last])[:r]
rand_attn = rand_attn.at[i - 1].set(seq_values)
# Missing -4: should have been sliced till last-4
else:
if start > last:
start = last
seq_values = jax.random.permutation(indices_prng_key, middle_seq[:start])[:r]
rand_attn = rand_attn.at[i - 1].set(seq_values)
elif (end + 1) == last:
seq_values = jax.random.permutation(indices_prng_key, middle_seq[:start])[:r]
rand_attn = rand_attn.at[i - 1].set(seq_values)
else:
concat_values = jnp.concatenate((middle_seq[:start], middle_seq[end + 1 : last]))
seq_values = jax.random.permutation(indices_prng_key, concat_values)[:r]
rand_attn = rand_attn.at[i - 1].set(seq_values)
return rand_attn
def _bigbird_block_rand_mask_with_head(
self,
from_seq_length,
to_seq_length,
from_block_size,
to_block_size,
num_heads,
plan_from_length,
plan_num_rand_blocks,
indices_prng_key: Optional[jax.random.PRNGKey] = None,
deterministic: Optional[bool] = True,
window_block_left=1,
window_block_right=1,
global_block_top=1,
global_block_bottom=1,
global_block_left=1,
global_block_right=1,
):
"""
Create adjacency list of random attention.
Args:
from_seq_length: int. length of from sequence.
to_seq_length: int. length of to sequence.
from_block_size: int. size of block in from sequence.
to_block_size: int. size of block in to sequence.
num_heads: int. total number of heads.
plan_from_length: list. plan from length where num_random_blocks are choosen from.
plan_num_rand_blocks: list. number of rand blocks within the plan.
indices_prng_key: jax.random.PRNGKey. PRNG key that is used to perform random jax operations.
deterministic: bool. When False random attention will be used.
window_block_left: int. number of blocks of window to left of a block.
window_block_right: int. number of blocks of window to right of a block.
global_block_top: int. number of blocks at the top.
global_block_bottom: int. number of blocks at the bottom.
global_block_left: int. Number of blocks globally used to the left.
global_block_right: int. Number of blocks globally used to the right.
Returns:
adjacency list of size num_head where each element is of size from_seq_length//from_block_size-2 by
num_rand_blocks
"""
# using this method when from_seq_length not in [1024, 3072, 4096]
if from_seq_length // from_block_size != to_seq_length // to_block_size:
raise ValueError("Error the number of blocks needs to be same!")
if from_seq_length not in plan_from_length:
raise ValueError("Error from sequence length not in plan!")
# Total number of blocks in the mmask
num_blocks = from_seq_length // from_block_size
# Number of blocks per plan
plan_block_length = jnp.array(plan_from_length) // from_block_size
# till when to follow plan
max_plan_idx = plan_from_length.index(from_seq_length)
# Random Attention adjacency list
rand_attn = [
jnp.zeros((num_blocks, sum(plan_num_rand_blocks[: max_plan_idx + 1])), dtype=jnp.int32)
for i in range(num_heads)
]
# deterministic
if deterministic:
for nh in range(num_heads):
rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :]
return rand_attn
# We will go iteratively over the plan blocks and pick random number of
# Attention blocks from the legally allowed blocks
for plan_idx in range(max_plan_idx + 1):
rnd_r_cnt = 0
if plan_idx > 0:
# set the row for all from_blocks starting from 0 to
# plan_block_length[plan_idx-1]
# column indx start fromm plan_block_length[plan_idx-1] and ends at
# plan_block_length[plan_idx]
if plan_num_rand_blocks[plan_idx] > 0:
rnd_r_cnt = int(sum(plan_num_rand_blocks[:plan_idx]))
curr_r_cnt = int(sum(plan_num_rand_blocks[: plan_idx + 1]))
for blk_rw_idx in range(global_block_top, plan_block_length[plan_idx - 1]):
for h in range(num_heads):
single_block_row_attention = self._get_single_block_row_attention(
block_id=blk_rw_idx,
to_start_block_id=plan_block_length[plan_idx - 1],
to_end_block_id=plan_block_length[plan_idx],
num_rand_blocks=plan_num_rand_blocks[plan_idx],
window_block_left=window_block_left,
window_block_right=window_block_right,
global_block_left=global_block_left,
global_block_right=global_block_right,
indices_prng_key=indices_prng_key,
)
rand_attn[h] = (
rand_attn[h].at[blk_rw_idx, rnd_r_cnt:curr_r_cnt].set(single_block_row_attention)
)
for pl_id in range(plan_idx):
if plan_num_rand_blocks[pl_id] == 0:
continue
for blk_rw_idx in range(plan_block_length[plan_idx - 1], plan_block_length[plan_idx]):
rnd_r_cnt = 0
to_start_block_id = 0
if pl_id > 0:
rnd_r_cnt = int(sum(plan_num_rand_blocks[:pl_id]))
to_start_block_id = plan_block_length[pl_id - 1]
curr_r_cnt = int(sum(plan_num_rand_blocks[: pl_id + 1]))
for h in range(num_heads):
single_block_row_attention = self._get_single_block_row_attention(
block_id=blk_rw_idx,
to_start_block_id=to_start_block_id,
to_end_block_id=plan_block_length[pl_id],
num_rand_blocks=plan_num_rand_blocks[pl_id],
window_block_left=window_block_left,
window_block_right=window_block_right,
global_block_left=global_block_left,
global_block_right=global_block_right,
indices_prng_key=indices_prng_key,
)
rand_attn[h] = (
rand_attn[h].at[blk_rw_idx, rnd_r_cnt:curr_r_cnt].set(single_block_row_attention)
)
if plan_num_rand_blocks[plan_idx] == 0:
continue
curr_r_cnt = int(sum(plan_num_rand_blocks[: plan_idx + 1]))
from_start_block_id = global_block_top
to_start_block_id = 0
if plan_idx > 0:
rnd_r_cnt = int(sum(plan_num_rand_blocks[:plan_idx]))
from_start_block_id = plan_block_length[plan_idx - 1]
to_start_block_id = plan_block_length[plan_idx - 1]
for blk_rw_idx in range(from_start_block_id, plan_block_length[plan_idx]):
for h in range(num_heads):
single_block_row_attention = self._get_single_block_row_attention(
block_id=blk_rw_idx,
to_start_block_id=to_start_block_id,
to_end_block_id=plan_block_length[plan_idx],
num_rand_blocks=plan_num_rand_blocks[plan_idx],
window_block_left=window_block_left,
window_block_right=window_block_right,
global_block_left=global_block_left,
global_block_right=global_block_right,
indices_prng_key=indices_prng_key,
)
rand_attn[h] = rand_attn[h].at[blk_rw_idx, rnd_r_cnt:curr_r_cnt].set(single_block_row_attention)
for nh in range(num_heads):
rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :]
return rand_attn
@staticmethod
def _get_single_block_row_attention(
block_id,
to_start_block_id,
to_end_block_id,
num_rand_blocks,
indices_prng_key: Optional[jax.random.PRNGKey] = None,
window_block_left=1,
window_block_right=1,
global_block_left=1,
global_block_right=1,
):
"""
For a single row block get random row attention.
Args:
block_id: int. block id of row.
to_start_block_id: int. random attention column start id.
to_end_block_id: int. random attention column end id.
num_rand_blocks: int. number of random blocks to be selected.
indices_prng_key: jax.random.PRNGKey. PRNG key that is used to perform random jax operations
window_block_left: int. number of blocks of window to left of a block.
window_block_right: int. number of blocks of window to right of a block.
global_block_left: int. Number of blocks globally used to the left.
global_block_right: int. Number of blocks globally used to the right.
Returns:
row containing the random attention vector of size num_rand_blocks.
"""
# list of to_blocks from which to choose random attention
to_block_list = jnp.arange(to_start_block_id, to_end_block_id, dtype=jnp.int32)
# permute the blocks
perm_block = jax.random.permutation(indices_prng_key, to_block_list)
# illegal blocks for the current block id, using window
illegal_blocks = list(range(block_id - window_block_left, block_id + window_block_right + 1))
# Add blocks at the start and at the end
illegal_blocks.extend(list(range(global_block_left)))
illegal_blocks.extend(list(range(to_end_block_id - global_block_right, to_end_block_id)))
# The second from_block cannot choose random attention on second last to_block
if block_id == 1:
illegal_blocks.append(to_end_block_id - 2)
# The second last from_block cannot choose random attention on second to_block
if block_id == to_end_block_id - 2:
illegal_blocks.append(1)
selected_random_blocks = []
for i in range(to_end_block_id - to_start_block_id):
if perm_block[i] not in illegal_blocks:
selected_random_blocks.append(perm_block[i])
if len(selected_random_blocks) == num_rand_blocks:
break
return jnp.array(selected_random_blocks, dtype=jnp.int32)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->BigBird
class FlaxBigBirdSelfOutput(nn.Module):
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class FlaxBigBirdAttention(nn.Module):
config: BigBirdConfig
layer_id: Optional[int] = None
causal: bool = False
dtype: jnp.dtype = jnp.float32
def setup(self):
if self.config.attention_type == "original_full":
self.self = FlaxBigBirdSelfAttention(self.config, causal=self.causal, dtype=self.dtype)
elif self.config.attention_type == "block_sparse":
self.self = FlaxBigBirdBlockSparseAttention(self.config, block_sparse_seed=self.layer_id, dtype=self.dtype)
else:
raise ValueError(
f"Your `config.attention_type` is {self.config.attention_type} but it can either be `original_full` or"
" `block_sparse`"
)
self.output = FlaxBigBirdSelfOutput(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
key_value_states=None,
init_cache=False,
deterministic=True,
output_attentions: bool = False,
):
# Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length)
# FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable
# with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length)
if self.config.attention_type == "original_full":
attn_outputs = self.self(
hidden_states,
attention_mask,
layer_head_mask=layer_head_mask,
key_value_states=key_value_states,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
)
else:
attn_outputs = self.self(
hidden_states,
attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0]
hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_outputs[1],)
return outputs
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->BigBird
class FlaxBigBirdIntermediate(nn.Module):
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.intermediate_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.activation = ACT2FN[self.config.hidden_act]
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->BigBird
class FlaxBigBirdOutput(nn.Module):
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(self, hidden_states, attention_output, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.LayerNorm(hidden_states + attention_output)
return hidden_states
class FlaxBigBirdLayer(nn.Module):
config: BigBirdConfig
layer_id: Optional[int] = None
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.attention = FlaxBigBirdAttention(
self.config, layer_id=self.layer_id, causal=self.config.is_decoder, dtype=self.dtype
)
self.intermediate = FlaxBigBirdIntermediate(self.config, dtype=self.dtype)
self.output = FlaxBigBirdOutput(self.config, dtype=self.dtype)
if self.config.add_cross_attention:
self.crossattention = FlaxBigBirdAttention(self.config, causal=False, dtype=self.dtype)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer.__call__ with Bert->BigBird
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
):
# Self Attention
attention_outputs = self.attention(
hidden_states,
attention_mask,
layer_head_mask=layer_head_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = attention_outputs[0]
# Cross-Attention Block
if encoder_hidden_states is not None:
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask=encoder_attention_mask,
layer_head_mask=layer_head_mask,
key_value_states=encoder_hidden_states,
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = cross_attention_outputs[0]
hidden_states = self.intermediate(attention_output)
hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attention_outputs[1],)
if encoder_hidden_states is not None:
outputs += (cross_attention_outputs[1],)
return outputs
class FlaxBigBirdLayerCollection(nn.Module):
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
if self.gradient_checkpointing:
FlaxBigBirdCheckpointLayer = remat(FlaxBigBirdLayer, static_argnums=(5, 6, 7))
self.layers = [
FlaxBigBirdCheckpointLayer(self.config, layer_id=i, name=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_layers)
]
else:
self.layers = [
FlaxBigBirdLayer(self.config, layer_id=i, name=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_layers)
]
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection.__call__ with Bert->BigBird
def __call__(
self,
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
# Check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.shape[0] != (len(self.layers)):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for "
f" {head_mask.shape[0]}."
)
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer(
hidden_states,
attention_mask,
head_mask[i] if head_mask is not None else None,
encoder_hidden_states,
encoder_attention_mask,
init_cache,
deterministic,
output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->BigBird
class FlaxBigBirdEncoder(nn.Module):
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
self.layer = FlaxBigBirdLayerCollection(
self.config,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
def __call__(
self,
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return self.layer(
hidden_states,
attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPredictionHeadTransform with Bert->BigBird
class FlaxBigBirdPredictionHeadTransform(nn.Module):
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
self.activation = ACT2FN[self.config.hidden_act]
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
return self.LayerNorm(hidden_states)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLMPredictionHead with Bert->BigBird, np.ndarray->jnp.ndarray
class FlaxBigBirdLMPredictionHead(nn.Module):
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32
bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
def setup(self):
self.transform = FlaxBigBirdPredictionHeadTransform(self.config, dtype=self.dtype)
self.decoder = nn.Dense(self.config.vocab_size, dtype=self.dtype, use_bias=False)
self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,))
def __call__(self, hidden_states, shared_embedding=None):
hidden_states = self.transform(hidden_states)
if shared_embedding is not None:
hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
hidden_states = self.decoder(hidden_states)
bias = jnp.asarray(self.bias, self.dtype)
hidden_states += bias
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOnlyMLMHead with Bert->BigBird
class FlaxBigBirdOnlyMLMHead(nn.Module):
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.predictions = FlaxBigBirdLMPredictionHead(self.config, dtype=self.dtype)
def __call__(self, hidden_states, shared_embedding=None):
hidden_states = self.predictions(hidden_states, shared_embedding=shared_embedding)
return hidden_states
class FlaxBigBirdPreTrainingHeads(nn.Module):
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.predictions = FlaxBigBirdLMPredictionHead(self.config, dtype=self.dtype)
self.seq_relationship = nn.Dense(2, dtype=self.dtype)
def __call__(self, hidden_states, pooled_output, shared_embedding=None):
prediction_scores = self.predictions(hidden_states, shared_embedding=shared_embedding)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class FlaxBigBirdPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BigBirdConfig
base_model_prefix = "bert"
module_class: nn.Module = None
def __init__(
self,
config: BigBirdConfig,
input_shape: Optional[tuple] = None,
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
gradient_checkpointing: bool = False,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs)
if config.attention_type == "block_sparse" and input_shape is None:
input_shape = (1, 12 * config.block_size)
elif input_shape is None:
input_shape = (1, 1)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing
def enable_gradient_checkpointing(self):
self._module = self.module_class(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=True,
)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
token_type_ids = jnp.zeros_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
attention_mask = jnp.ones_like(input_ids)
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
params_rng, dropout_rng, indices_rng = jax.random.split(rng, num=3)
rngs = {"params": params_rng, "dropout": dropout_rng, "indices": indices_rng}
if self.config.add_cross_attention:
encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,))
encoder_attention_mask = attention_mask
module_init_outputs = self.module.init(
rngs,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
return_dict=False,
)
else:
module_init_outputs = self.module.init(
rngs,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
return_dict=False,
)
random_params = module_init_outputs["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
attention_mask = jnp.ones_like(input_ids, dtype="i4")
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
@add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
params: dict = None,
dropout_rng: Optional[jax.random.PRNGKey] = None,
indices_rng: Optional[jax.random.PRNGKey] = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
past_key_values: dict = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# init input tensors if not passed
if token_type_ids is None:
token_type_ids = jnp.zeros_like(input_ids)
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if head_mask is None:
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
# Handle any PRNG if needed
rngs = {}
if indices_rng is not None:
rngs["indices"] = indices_rng
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
if self.config.add_cross_attention:
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
# changed by FlaxBigBirdAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
head_mask=jnp.array(head_mask, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
deterministic=not train,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
else:
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
head_mask=jnp.array(head_mask, dtype="i4"),
deterministic=not train,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
rngs=rngs,
)
return outputs
class FlaxBigBirdModule(nn.Module):
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
add_pooling_layer: bool = True
gradient_checkpointing: bool = False
def setup(self):
self.embeddings = FlaxBigBirdEmbeddings(self.config, dtype=self.dtype)
self.encoder = FlaxBigBirdEncoder(
self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.pooler = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
hidden_states = self.embeddings(
input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic
)
outputs = self.encoder(
hidden_states,
attention_mask,
head_mask=head_mask,
deterministic=deterministic,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
pooled = nn.tanh(self.pooler(hidden_states[:, 0, :])) if self.add_pooling_layer else None
if not return_dict:
# if pooled is None, don't return it
if pooled is None:
return (hidden_states,) + outputs[1:]
return (hidden_states, pooled) + outputs[1:]
return FlaxBaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=hidden_states,
pooler_output=pooled,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"The bare BigBird Model transformer outputting raw hidden-states without any specific head on top.",
BIG_BIRD_START_DOCSTRING,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertModel with Bert->BigBird
class FlaxBigBirdModel(FlaxBigBirdPreTrainedModel):
module_class = FlaxBigBirdModule
append_call_sample_docstring(FlaxBigBirdModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForPreTrainingModule with Bert->BigBird
class FlaxBigBirdForPreTrainingModule(nn.Module):
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.bert = FlaxBigBirdModule(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
self.cls = FlaxBigBirdPreTrainingHeads(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.bert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.tie_word_embeddings:
shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
else:
shared_embedding = None
hidden_states = outputs[0]
pooled_output = outputs[1]
prediction_scores, seq_relationship_score = self.cls(
hidden_states, pooled_output, shared_embedding=shared_embedding
)
if not return_dict:
return (prediction_scores, seq_relationship_score) + outputs[2:]
return FlaxBigBirdForPreTrainingOutput(
prediction_logits=prediction_scores,
seq_relationship_logits=seq_relationship_score,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
BigBird Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
sentence prediction (classification)` head.
""",
BIG_BIRD_START_DOCSTRING,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForPreTraining with Bert->BigBird
class FlaxBigBirdForPreTraining(FlaxBigBirdPreTrainedModel):
module_class = FlaxBigBirdForPreTrainingModule
FLAX_BIG_BIRD_FOR_PRETRAINING_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxBigBirdForPreTraining
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
>>> model = FlaxBigBirdForPreTraining.from_pretrained("google/bigbird-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
```
"""
overwrite_call_docstring(
FlaxBigBirdForPreTraining,
BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_BIG_BIRD_FOR_PRETRAINING_DOCSTRING,
)
append_replace_return_docstrings(
FlaxBigBirdForPreTraining, output_type=FlaxBigBirdForPreTrainingOutput, config_class=_CONFIG_FOR_DOC
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMaskedLMModule with Bert->BigBird
class FlaxBigBirdForMaskedLMModule(nn.Module):
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.bert = FlaxBigBirdModule(
config=self.config,
add_pooling_layer=False,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
self.cls = FlaxBigBirdOnlyMLMHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.bert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
else:
shared_embedding = None
# Compute the prediction scores
logits = self.cls(hidden_states, shared_embedding=shared_embedding)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxMaskedLMOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings("""BigBird Model with a `language modeling` head on top.""", BIG_BIRD_START_DOCSTRING)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMaskedLM with Bert->BigBird
class FlaxBigBirdForMaskedLM(FlaxBigBirdPreTrainedModel):
module_class = FlaxBigBirdForMaskedLMModule
append_call_sample_docstring(FlaxBigBirdForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC)
class FlaxBigBirdClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
classifier_dropout = (
self.config.classifier_dropout
if self.config.classifier_dropout is not None
else self.config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.out_proj = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(self, features, deterministic=True):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x, deterministic=deterministic)
x = self.dense(x)
x = ACT2FN[self.config.hidden_act](x)
x = self.dropout(x, deterministic=deterministic)
x = self.out_proj(x)
return x
class FlaxBigBirdForSequenceClassificationModule(nn.Module):
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.bert = FlaxBigBirdModule(
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.classifier = FlaxBigBirdClassificationHead(self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.bert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output, deterministic=deterministic)
if not return_dict:
return (logits,) + outputs[2:]
return FlaxSequenceClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
BigBird Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
BIG_BIRD_START_DOCSTRING,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForSequenceClassification with Bert->BigBird
class FlaxBigBirdForSequenceClassification(FlaxBigBirdPreTrainedModel):
module_class = FlaxBigBirdForSequenceClassificationModule
append_call_sample_docstring(
FlaxBigBirdForSequenceClassification,
_CHECKPOINT_FOR_DOC,
FlaxSequenceClassifierOutput,
_CONFIG_FOR_DOC,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMultipleChoiceModule with Bert->BigBird
class FlaxBigBirdForMultipleChoiceModule(nn.Module):
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.bert = FlaxBigBirdModule(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.classifier = nn.Dense(1, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
num_choices = input_ids.shape[1]
input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None
# Model
outputs = self.bert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
logits = self.classifier(pooled_output)
reshaped_logits = logits.reshape(-1, num_choices)
if not return_dict:
return (reshaped_logits,) + outputs[2:]
return FlaxMultipleChoiceModelOutput(
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
BigBird Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
BIG_BIRD_START_DOCSTRING,
)
class FlaxBigBirdForMultipleChoice(FlaxBigBirdPreTrainedModel):
module_class = FlaxBigBirdForMultipleChoiceModule
def __init__(
self,
config: BigBirdConfig,
input_shape: Optional[tuple] = None,
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
if config.attention_type == "block_sparse" and input_shape is None:
input_shape = (1, 1, 12 * config.block_size)
elif input_shape is None:
input_shape = (1, 1)
super().__init__(config, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
overwrite_call_docstring(
FlaxBigBirdForMultipleChoice, BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
append_call_sample_docstring(
FlaxBigBirdForMultipleChoice,
_CHECKPOINT_FOR_DOC,
FlaxMultipleChoiceModelOutput,
_CONFIG_FOR_DOC,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForTokenClassificationModule with Bert->BigBird
class FlaxBigBirdForTokenClassificationModule(nn.Module):
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.bert = FlaxBigBirdModule(
config=self.config,
dtype=self.dtype,
add_pooling_layer=False,
gradient_checkpointing=self.gradient_checkpointing,
)
classifier_dropout = (
self.config.classifier_dropout
if self.config.classifier_dropout is not None
else self.config.hidden_dropout_prob
)
self.dropout = nn.Dropout(rate=classifier_dropout)
self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.bert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
logits = self.classifier(hidden_states)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxTokenClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
BigBird Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
BIG_BIRD_START_DOCSTRING,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForTokenClassification with Bert->BigBird
class FlaxBigBirdForTokenClassification(FlaxBigBirdPreTrainedModel):
module_class = FlaxBigBirdForTokenClassificationModule
append_call_sample_docstring(
FlaxBigBirdForTokenClassification,
_CHECKPOINT_FOR_DOC,
FlaxTokenClassifierOutput,
_CONFIG_FOR_DOC,
)
class FlaxBigBirdForQuestionAnsweringHead(nn.Module):
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.intermediate = FlaxBigBirdIntermediate(self.config, dtype=self.dtype)
self.output = FlaxBigBirdOutput(self.config, dtype=self.dtype)
self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(self, encoder_output, deterministic=True):
hidden_states = self.dropout(encoder_output, deterministic=deterministic)
hidden_states = self.intermediate(hidden_states)
hidden_states = self.output(hidden_states, encoder_output)
hidden_states = self.qa_outputs(hidden_states)
return hidden_states
class FlaxBigBirdForQuestionAnsweringModule(nn.Module):
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32
add_pooling_layer: bool = False
gradient_checkpointing: bool = False
def setup(self):
self.config.num_labels = 2
self.bert = FlaxBigBirdModule(
self.config,
dtype=self.dtype,
add_pooling_layer=self.add_pooling_layer,
gradient_checkpointing=self.gradient_checkpointing,
)
self.qa_classifier = FlaxBigBirdForQuestionAnsweringHead(self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
logits_mask=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.bert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
pooled_output = outputs[1] if self.add_pooling_layer else None
logits = self.qa_classifier(hidden_states, deterministic=deterministic)
if logits_mask is not None:
# removing question tokens from the competition
logits = logits - logits_mask * 1e6
start_logits, end_logits = jnp.split(logits, self.config.num_labels, axis=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if not return_dict:
return (start_logits, end_logits) + outputs[1:]
return FlaxBigBirdForQuestionAnsweringModelOutput(
start_logits=start_logits,
end_logits=end_logits,
pooled_output=pooled_output,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
BigBird Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
BIG_BIRD_START_DOCSTRING,
)
class FlaxBigBirdForQuestionAnswering(FlaxBigBirdPreTrainedModel):
module_class = FlaxBigBirdForQuestionAnsweringModule
@add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
question_lengths=None,
params: dict = None,
dropout_rng: Optional[jax.random.PRNGKey] = None,
indices_rng: Optional[jax.random.PRNGKey] = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if head_mask is None:
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
if question_lengths is None and input_ids is not None:
# assuming input_ids format: <cls> <question> <sep> context <sep>
question_lengths = jnp.argmax((input_ids == self.config.sep_token_id).astype("i4"), axis=-1) + 1
question_lengths = jnp.expand_dims(question_lengths, axis=1)
seqlen = input_ids.shape[1]
logits_mask = None
if question_lengths is not None:
# setting lengths logits to `-inf`
logits_mask = self.prepare_question_mask(question_lengths, seqlen)
if token_type_ids is None:
token_type_ids = (~logits_mask).astype("i4")
logits_mask = jnp.expand_dims(logits_mask, axis=2)
logits_mask = logits_mask.at[:, 0].set(False)
# init input tensors if not passed
if token_type_ids is None:
token_type_ids = jnp.zeros_like(input_ids)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
if indices_rng is not None:
rngs["indices"] = indices_rng
return self.module.apply(
{"params": params or self.params},
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
token_type_ids,
jnp.array(position_ids, dtype="i4"),
jnp.array(head_mask, dtype="i4"),
logits_mask,
not train,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
)
@staticmethod
def prepare_question_mask(q_lengths, maxlen: int):
# q_lengths -> (bz, 1)
mask = jnp.arange(0, maxlen)
mask = jnp.expand_dims(mask, axis=0) < q_lengths
return mask
append_call_sample_docstring(
FlaxBigBirdForQuestionAnswering,
_CHECKPOINT_FOR_DOC,
FlaxBigBirdForQuestionAnsweringModelOutput,
_CONFIG_FOR_DOC,
)
class FlaxBigBirdForCausalLMModule(nn.Module):
config: BigBirdConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.bert = FlaxBigBirdModule(
config=self.config,
add_pooling_layer=False,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
self.cls = FlaxBigBirdOnlyMLMHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
token_type_ids: Optional[jnp.ndarray] = None,
head_mask: Optional[jnp.ndarray] = None,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.bert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.bert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
else:
shared_embedding = None
# Compute the prediction scores
logits = self.cls(hidden_states, shared_embedding=shared_embedding)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxCausalLMOutputWithCrossAttentions(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
BigBird Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for
autoregressive tasks.
""",
BIG_BIRD_START_DOCSTRING,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForCausalLM with Bert->BigBird
class FlaxBigBirdForCausalLM(FlaxBigBirdPreTrainedModel):
module_class = FlaxBigBirdForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyway.
# Thus, we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
FlaxBigBirdForCausalLM,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutputWithCrossAttentions,
_CONFIG_FOR_DOC,
)
__all__ = [
"FlaxBigBirdForCausalLM",
"FlaxBigBirdForMaskedLM",
"FlaxBigBirdForMultipleChoice",
"FlaxBigBirdForPreTraining",
"FlaxBigBirdForQuestionAnswering",
"FlaxBigBirdForSequenceClassification",
"FlaxBigBirdForTokenClassification",
"FlaxBigBirdModel",
"FlaxBigBirdPreTrainedModel",
]
```
|
=============================================================================================================================================
SOURCE CODE FILE: tokenization_big_bird.py
LINES: 1
SIZE: 13.93 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\big_bird\tokenization_big_bird.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for BigBird."""
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
class BigBirdTokenizer(PreTrainedTokenizer):
"""
Construct a BigBird tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The begin of sequence token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
prefix_tokens: List[int] = []
def __init__(
self,
vocab_file,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
pad_token="<pad>",
sep_token="[SEP]",
mask_token="[MASK]",
cls_token="[CLS]",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.vocab_file = vocab_file
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
sep_token=sep_token,
mask_token=mask_token,
cls_token=cls_token,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
@property
def vocab_size(self):
return self.sp_model.get_piece_size()
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def _tokenize(self, text: str) -> List[str]:
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.sp_model.IdToPiece(index)
return token
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
prev_is_special = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
return out_string.strip()
def _decode(
self,
token_ids: List[int],
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: Optional[bool] = None,
spaces_between_special_tokens: bool = True,
**kwargs,
) -> str:
self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False)
filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
sub_texts = []
current_sub_text = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(current_sub_text))
current_sub_text = []
sub_texts.append(token)
else:
current_sub_text.append(token)
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(current_sub_text))
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
text = re.sub(r" (\[(MASK|SEP)\])", r"\1", " ".join(sub_texts))
else:
text = "".join(sub_texts)
clean_up_tokenization_spaces = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
clean_text = self.clean_up_tokenization(text)
return clean_text
else:
return text
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A Big Bird sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second
sequence | If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
__all__ = ["BigBirdTokenizer"]
```
|
==================================================================================================================================================
SOURCE CODE FILE: tokenization_big_bird_fast.py
LINES: 1
SIZE: 9.96 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\big_bird\tokenization_big_bird_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for Big Bird model."""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_big_bird import BigBirdTokenizer
else:
BigBirdTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
SPIECE_UNDERLINE = "▁"
class BigBirdTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" BigBird tokenizer (backed by HuggingFace's *tokenizers* library). Based on
[Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This
tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token
that is used for the end of sequence. The token used is the `sep_token`.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = BigBirdTokenizer
model_input_names = ["input_ids", "attention_mask"]
prefix_tokens: List[int] = []
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
pad_token="<pad>",
sep_token="[SEP]",
mask_token="[MASK]",
cls_token="[CLS]",
**kwargs,
):
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
**kwargs,
)
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An BigBird sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return cls + token_ids_0 + sep
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Set to True if the token list is already formatted with special tokens for the model
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model."
)
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_0]
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
__all__ = ["BigBirdTokenizerFast"]
```
|
=======================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.99 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bigbird_pegasus\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_bigbird_pegasus import *
from .modeling_bigbird_pegasus import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
============================================================================================================================================================
SOURCE CODE FILE: configuration_bigbird_pegasus.py
LINES: 1
SIZE: 18.83 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bigbird_pegasus\configuration_bigbird_pegasus.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright Google Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BigBirdPegasus model configuration"""
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
logger = logging.get_logger(__name__)
class BigBirdPegasusConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BigBirdPegasusModel`]. It is used to instantiate
an BigBirdPegasus model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the BigBirdPegasus
[google/bigbird-pegasus-large-arxiv](https://huggingface.co/google/bigbird-pegasus-large-arxiv) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 96103):
Vocabulary size of the BigBirdPegasus model. Defines the number of different tokens that can be represented
by the `inputs_ids` passed when calling [`BigBirdPegasusModel`].
d_model (`int`, *optional*, defaults to 1024):
Dimension of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 16):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 16):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 1024 or 2048 or 4096).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
attention_type (`str`, *optional*, defaults to `"block_sparse"`)
Whether to use block sparse attention (with n complexity) as introduced in paper or original attention
layer (with n^2 complexity) in encoder. Possible values are `"original_full"` and `"block_sparse"`.
use_bias (`bool`, *optional*, defaults to `False`)
Whether to use bias in query, key, value.
block_size (`int`, *optional*, defaults to 64)
Size of each block. Useful only when `attention_type == "block_sparse"`.
num_random_blocks (`int`, *optional*, defaults to 3)
Each query is going to attend these many number of random blocks. Useful only when `attention_type ==
"block_sparse"`.
scale_embeddings (`bool`, *optional*, defaults to `True`)
Whether to rescale embeddings with (hidden_size ** 0.5).
Example:
```python
>>> from transformers import BigBirdPegasusConfig, BigBirdPegasusModel
>>> # Initializing a BigBirdPegasus bigbird-pegasus-base style configuration
>>> configuration = BigBirdPegasusConfig()
>>> # Initializing a model (with random weights) from the bigbird-pegasus-base style configuration
>>> model = BigBirdPegasusModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "bigbird_pegasus"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_attention_heads": "encoder_attention_heads",
"hidden_size": "d_model",
"attention_probs_dropout_prob": "attention_dropout",
}
def __init__(
self,
vocab_size=96103,
max_position_embeddings=4096,
encoder_layers=16,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=16,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
activation_function="gelu_new",
d_model=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
decoder_start_token_id=2,
classifier_dropout=0.0,
scale_embedding=True,
pad_token_id=0,
bos_token_id=2,
eos_token_id=1,
attention_type="block_sparse", # only for encoder
block_size=64,
num_random_blocks=3,
use_bias=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.classifier_dropout = classifier_dropout
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
# extra config
self.attention_type = attention_type
self.block_size = block_size
self.num_random_blocks = num_random_blocks
self.use_bias = use_bias
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig
class BigBirdPegasusOnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
common_inputs["decoder_input_ids"] = {0: "batch"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
elif self.task == "causal-lm":
# TODO: figure this case out.
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
num_encoder_layers, _ = self.num_layers
for i in range(num_encoder_layers):
common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
else:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
]
)
return common_inputs
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
common_outputs = super().outputs
else:
common_outputs = super(OnnxConfigWithPast, self).outputs
if self.use_past:
num_encoder_layers, _ = self.num_layers
for i in range(num_encoder_layers):
common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair, framework
)
# Generate decoder inputs
decoder_seq_length = seq_length if not self.use_past else 1
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, decoder_seq_length, is_pair, framework
)
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
common_inputs = dict(**encoder_inputs, **decoder_inputs)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, encoder_seq_length = common_inputs["input_ids"].shape
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
encoder_shape = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
decoder_past_length = decoder_seq_length + 3
decoder_shape = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
common_inputs["decoder_attention_mask"] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
)
common_inputs["past_key_values"] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
num_encoder_layers, num_decoder_layers = self.num_layers
min_num_layers = min(num_encoder_layers, num_decoder_layers)
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(min_num_layers):
common_inputs["past_key_values"].append(
(
torch.zeros(decoder_shape),
torch.zeros(decoder_shape),
torch.zeros(encoder_shape),
torch.zeros(encoder_shape),
)
)
# TODO: test this.
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(min_num_layers, max_num_layers):
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
return common_inputs
def _generate_dummy_inputs_for_causal_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair, framework
)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
past_key_values_length = seqlen + 2
num_encoder_layers, _ = self.num_layers
num_encoder_attention_heads, _ = self.num_attention_heads
past_shape = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
mask_dtype = common_inputs["attention_mask"].dtype
common_inputs["attention_mask"] = torch.cat(
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
)
common_inputs["past_key_values"] = [
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers)
]
return common_inputs
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
seq_length = compute_effective_axis_dimension(
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
)
# Generate dummy inputs according to compute batch and sequence
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
return common_inputs
def generate_dummy_inputs(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
elif self.task == "causal-lm":
common_inputs = self._generate_dummy_inputs_for_causal_lm(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
else:
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
return common_inputs
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
if self.task in ["default", "seq2seq-lm"]:
flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
else:
flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
flattened_output, name, idx, t
)
__all__ = ["BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig"]
```
|
=======================================================================================================================================================
SOURCE CODE FILE: modeling_bigbird_pegasus.py
LINES: 1
SIZE: 141.63 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bigbird_pegasus\modeling_bigbird_pegasus.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 Google Research The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BigBirdPegasus model."""
import copy
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Seq2SeqQuestionAnsweringModelOutput,
Seq2SeqSequenceClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_bigbird_pegasus import BigBirdPegasusConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/bigbird-pegasus-large-arxiv"
_CONFIG_FOR_DOC = "BigBirdPegasusConfig"
_EXPECTED_OUTPUT_SHAPE = [1, 7, 1024]
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class BigBirdPegasusLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
super().__init__(num_embeddings, embedding_dim)
def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids_shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
)
return super().forward(positions)
# Copied from transformers.models.bart.modeling_bart.BartScaledWordEmbedding with Bart->BigBirdPegasus
class BigBirdPegasusScaledWordEmbedding(nn.Embedding):
"""
This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
super().__init__(num_embeddings, embedding_dim, padding_idx)
self.embed_scale = embed_scale
def forward(self, input_ids: torch.Tensor):
return super().forward(input_ids) * self.embed_scale
# Copied from transformers.models.big_bird.modeling_big_bird.BigBirdSelfAttention with BigBird->BigBirdPegasus
class BigBirdPegasusSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BigBirdPegasusModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.big_bird.modeling_big_bird.BigBirdBlockSparseAttention with BigBird->BigBirdPegasus
class BigBirdPegasusBlockSparseAttention(nn.Module):
def __init__(self, config, seed=None):
super().__init__()
self.max_seqlen = config.max_position_embeddings
self.seed = seed
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size {config.hidden_size} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.num_random_blocks = config.num_random_blocks
self.block_size = config.block_size
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
band_mask=None,
from_mask=None,
to_mask=None,
from_blocked_mask=None,
to_blocked_mask=None,
output_attentions=None,
):
# Currently this `class` can't be used in decoder.
batch_size, seqlen, _ = hidden_states.size()
to_seq_length = from_seq_length = seqlen
from_block_size = to_block_size = self.block_size
if from_seq_length % from_block_size != 0:
raise ValueError("Query sided sequence length must be multiple of block size")
if to_seq_length % to_block_size != 0:
raise ValueError("Key/Value sided sequence length must be multiple of block size")
query_layer = self.transpose_for_scores(self.query(hidden_states))
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
context_layer, attention_probs = self.bigbird_block_sparse_attention(
query_layer,
key_layer,
value_layer,
band_mask,
from_mask,
to_mask,
from_blocked_mask,
to_blocked_mask,
self.num_attention_heads,
self.num_random_blocks,
self.attention_head_size,
from_block_size,
to_block_size,
batch_size,
from_seq_length,
to_seq_length,
seed=self.seed,
plan_from_length=None,
plan_num_rand_blocks=None,
output_attentions=output_attentions,
)
context_layer = context_layer.contiguous().view(batch_size, from_seq_length, -1)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
@staticmethod
def torch_bmm_nd(inp_1, inp_2, ndim=None):
"""Fast nd matrix multiplication"""
# faster replacement of torch.einsum ("bhqk,bhkd->bhqd")
return torch.bmm(inp_1.reshape((-1,) + inp_1.shape[-2:]), inp_2.reshape((-1,) + inp_2.shape[-2:])).view(
inp_1.shape[: ndim - 2] + (inp_1.shape[ndim - 2], inp_2.shape[ndim - 1])
)
@staticmethod
def torch_bmm_nd_transpose(inp_1, inp_2, ndim=None):
"""Fast nd matrix multiplication with transpose"""
# faster replacement of torch.einsum (bhqd,bhkd->bhqk)
return torch.bmm(
inp_1.reshape((-1,) + inp_1.shape[-2:]), inp_2.reshape((-1,) + inp_2.shape[-2:]).transpose(1, 2)
).view(inp_1.shape[: ndim - 2] + (inp_1.shape[ndim - 2], inp_2.shape[ndim - 2]))
def bigbird_block_sparse_attention(
self,
query_layer,
key_layer,
value_layer,
band_mask,
from_mask,
to_mask,
from_blocked_mask,
to_blocked_mask,
n_heads,
n_rand_blocks,
attention_head_size,
from_block_size,
to_block_size,
batch_size,
from_seq_len,
to_seq_len,
seed,
plan_from_length,
plan_num_rand_blocks,
output_attentions,
):
# BigBirdPegasus block-sparse attention as suggested in paper
# ITC:
# global tokens: 2 x block_size
# window tokens: 3 x block_size
# random tokens: num_rand_tokens x block_size
# ETC:
# global tokens: extra_globals_tokens + 2 x block_size
# window tokens: 3 x block_size
# random tokens: num_rand_tokens x block_size
# Note:
# 1) Currently, ETC is not supported.
# 2) Window size is fixed to 3 blocks & it can be changed only by
# changing `block_size`.
# 3) Number of global blocks are fixed (2 blocks here) & global tokens can be
# controlled only by `block_size`.
# attention is calculated separately for q[0], q[1], q[2:-2], q[-2], q[-1] in order to use special trick of shifting tokens (for calculating sliding attention)
# hence following code can be divided into 5 parts.
if from_seq_len // from_block_size != to_seq_len // to_block_size:
raise ValueError("Error the number of blocks needs to be same!")
rsqrt_d = 1 / math.sqrt(attention_head_size)
bsz = batch_size
attn_mask_penalty = -10000.0
# generate random attention and corresponding masks
np.random.seed(seed)
if from_seq_len in [1024, 3072, 4096]: # old plans used in paper
rand_attn = [
self._bigbird_block_rand_mask(
self.max_seqlen, self.max_seqlen, from_block_size, to_block_size, n_rand_blocks, last_idx=1024
)[: (from_seq_len // from_block_size - 2)]
for _ in range(n_heads)
]
else:
if plan_from_length is None:
plan_from_length, plan_num_rand_blocks = self._get_rand_attn_plan(
from_seq_len, from_block_size, n_rand_blocks
)
rand_attn = self._bigbird_block_rand_mask_with_head(
from_seq_length=from_seq_len,
to_seq_length=to_seq_len,
from_block_size=from_block_size,
to_block_size=to_block_size,
num_heads=n_heads,
plan_from_length=plan_from_length,
plan_num_rand_blocks=plan_num_rand_blocks,
)
rand_attn = np.stack(rand_attn, axis=0)
rand_attn = torch.tensor(rand_attn, device=query_layer.device, dtype=torch.long)
rand_attn.unsqueeze_(0)
rand_attn = torch.cat([rand_attn for _ in range(batch_size)], dim=0)
rand_mask = self._create_rand_mask_from_inputs(
from_blocked_mask, to_blocked_mask, rand_attn, n_heads, n_rand_blocks, bsz, from_seq_len, from_block_size
)
blocked_query_matrix = query_layer.view(bsz, n_heads, from_seq_len // from_block_size, from_block_size, -1)
blocked_key_matrix = key_layer.view(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1)
blocked_value_matrix = value_layer.view(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1)
# preparing block for randn attn
gathered_key = self.torch_gather_b2(blocked_key_matrix, rand_attn)
gathered_key = gathered_key.view(
bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1
) # [bsz, n_heads, to_seq_len//to_block_size-2, n_rand_blocks, to_block_size, -1]
gathered_value = self.torch_gather_b2(blocked_value_matrix, rand_attn)
gathered_value = gathered_value.view(
bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1
) # [bsz, n_heads, to_seq_len//to_block_size-2, n_rand_blocks, to_block_size, -1]
# 1st PART
# 1st block (global block) attention scores
# q[0] x (k[0], k[1], k[2], k[3], k[4] .... )
# [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len]
first_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, 0], key_layer, ndim=4)
first_product = first_product * rsqrt_d
first_product += (1.0 - to_mask) * attn_mask_penalty
first_attn_weights = nn.functional.softmax(
first_product, dim=-1
) # [bsz, n_heads, from_block_size, to_seq_len]
# [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1]
first_context_layer = self.torch_bmm_nd(first_attn_weights, value_layer, ndim=4)
first_context_layer.unsqueeze_(2)
# 2nd PART
# 2nd block attention scores
# q[1] x (sliding_keys, random_keys, global_keys)
# sliding key blocks -> 2nd, 3rd blocks
# global key blocks -> 1st block
second_key_mat = torch.cat(
[
blocked_key_matrix[:, :, 0],
blocked_key_matrix[:, :, 1],
blocked_key_matrix[:, :, 2],
blocked_key_matrix[:, :, -1],
gathered_key[:, :, 0],
],
dim=2,
) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1]
second_value_mat = torch.cat(
[
blocked_value_matrix[:, :, 0],
blocked_value_matrix[:, :, 1],
blocked_value_matrix[:, :, 2],
blocked_value_matrix[:, :, -1],
gathered_value[:, :, 0],
],
dim=2,
) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1]
# [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
second_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, 1], second_key_mat, ndim=4)
second_seq_pad = torch.cat(
[
to_mask[:, :, :, : 3 * to_block_size],
to_mask[:, :, :, -to_block_size:],
to_mask.new_ones([bsz, 1, 1, n_rand_blocks * to_block_size]),
],
dim=3,
)
second_rand_pad = torch.cat(
[
rand_mask.new_ones([bsz, n_heads, from_block_size, 4 * to_block_size]),
rand_mask[:, :, 0],
],
dim=3,
)
second_product = second_product * rsqrt_d
second_product += (1.0 - torch.minimum(second_seq_pad, second_rand_pad)) * attn_mask_penalty
second_attn_weights = nn.functional.softmax(
second_product, dim=-1
) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
# [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, -1]
second_context_layer = self.torch_bmm_nd(second_attn_weights, second_value_mat, ndim=4)
second_context_layer.unsqueeze_(2)
# 3rd PART
# Middle blocks attention scores
# q[-2:2] x (sliding_keys, random_keys, global_keys)
# sliding attn is calculated using special trick of shifting tokens as discussed in paper
# random keys are generated by taking random indices as per `rand_attn`
# global keys -> 1st & last block
exp_blocked_key_matrix = torch.cat(
[blocked_key_matrix[:, :, 1:-3], blocked_key_matrix[:, :, 2:-2], blocked_key_matrix[:, :, 3:-1]], dim=3
) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
exp_blocked_value_matrix = torch.cat(
[blocked_value_matrix[:, :, 1:-3], blocked_value_matrix[:, :, 2:-2], blocked_value_matrix[:, :, 3:-1]],
dim=3,
) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
middle_query_matrix = blocked_query_matrix[:, :, 2:-2]
# sliding attention scores for q[-2:2]
# [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [b, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
inner_band_product = self.torch_bmm_nd_transpose(middle_query_matrix, exp_blocked_key_matrix, ndim=5)
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, 3*to_block_size]
inner_band_product = inner_band_product * rsqrt_d
# randn attention scores for q[-2:2]
# [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1]
rand_band_product = self.torch_bmm_nd_transpose(middle_query_matrix, gathered_key[:, :, 1:-1], ndim=5)
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size]
rand_band_product = rand_band_product * rsqrt_d
# Including 1st block (since it's global)
first_band_product = torch.einsum(
"bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, 0]
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size]
first_band_product = first_band_product * rsqrt_d
# Including last block (since it's global)
last_band_product = torch.einsum(
"bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, -1]
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size]
last_band_product = last_band_product * rsqrt_d
# masking padded tokens
inner_band_product += (1.0 - band_mask) * attn_mask_penalty
first_band_product += (1.0 - to_mask[:, :, :, :to_block_size].unsqueeze(3)) * attn_mask_penalty
last_band_product += (1.0 - to_mask[:, :, :, -to_block_size:].unsqueeze(3)) * attn_mask_penalty
rand_band_product += (1.0 - rand_mask[:, :, 1:-1]) * attn_mask_penalty
# completing attention scores matrix for all q[-2:2]
band_product = torch.cat(
[first_band_product, inner_band_product, rand_band_product, last_band_product], dim=-1
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size]
# safely doing softmax since attention matrix is completed
attn_weights = nn.functional.softmax(
band_product, dim=-1
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size]
# contribution of sliding keys
# [bsz, n_heads, m//from_block_size-4, from_block_size, 3*to_block_size] x [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
context_layer = self.torch_bmm_nd(
attn_weights[:, :, :, :, to_block_size : 4 * to_block_size], exp_blocked_value_matrix, ndim=5
)
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
# adding contribution of random keys
# [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size] x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1]
context_layer += self.torch_bmm_nd(
attn_weights[:, :, :, :, 4 * to_block_size : -to_block_size], gathered_value[:, :, 1:-1], ndim=5
)
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
# adding contribution of global keys
context_layer += torch.einsum(
"bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, :to_block_size], blocked_value_matrix[:, :, 0]
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
context_layer += torch.einsum(
"bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, -to_block_size:], blocked_value_matrix[:, :, -1]
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
# 4th PART
# last 2nd token attention scores
# q[-2] x (sliding_keys, random_keys, global_keys)
# sliding key blocks -> last 3 blocks
# global key block -> 1st block
# random key block -> based on indices stored in `randn_attn`
second_last_key_mat = torch.cat(
[
blocked_key_matrix[:, :, 0],
blocked_key_matrix[:, :, -3],
blocked_key_matrix[:, :, -2],
blocked_key_matrix[:, :, -1],
gathered_key[:, :, -1],
],
dim=2,
) # [bsz, n_heads, (4+n_random_blocks)*to_block_size, -1]
second_last_value_mat = torch.cat(
[
blocked_value_matrix[:, :, 0],
blocked_value_matrix[:, :, -3],
blocked_value_matrix[:, :, -2],
blocked_value_matrix[:, :, -1],
gathered_value[:, :, -1],
],
dim=2,
) # [bsz, n_heads, (4+r)*to_block_size, -1]
# [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
second_last_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, -2], second_last_key_mat, ndim=4)
second_last_seq_pad = torch.cat(
[
to_mask[:, :, :, :to_block_size],
to_mask[:, :, :, -3 * to_block_size :],
to_mask.new_ones([bsz, 1, 1, n_rand_blocks * to_block_size]),
],
dim=3,
)
second_last_rand_pad = torch.cat(
[
rand_mask.new_ones([bsz, n_heads, from_block_size, 4 * to_block_size]),
rand_mask[:, :, -1],
],
dim=3,
)
second_last_product = second_last_product * rsqrt_d
second_last_product += (1.0 - torch.minimum(second_last_seq_pad, second_last_rand_pad)) * attn_mask_penalty
second_last_attn_weights = nn.functional.softmax(
second_last_product, dim=-1
) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
# [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, -1]
second_last_context_layer = self.torch_bmm_nd(second_last_attn_weights, second_last_value_mat, ndim=4)
second_last_context_layer.unsqueeze_(2)
# 5th PART
# last block (global) attention scores
# q[-1] x (k[0], k[1], k[2], k[3], .... )
# [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len]
last_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, -1], key_layer, ndim=4)
last_product = last_product * rsqrt_d
last_product += (1.0 - to_mask) * attn_mask_penalty
last_attn_weights = nn.functional.softmax(last_product, dim=-1) # [bsz, n_heads, from_block_size, n]
# [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1]
last_context_layer = self.torch_bmm_nd(last_attn_weights, value_layer, ndim=4)
last_context_layer.unsqueeze_(2)
# combining representations of all tokens
context_layer = torch.cat(
[first_context_layer, second_context_layer, context_layer, second_last_context_layer, last_context_layer],
dim=2,
)
context_layer = context_layer.view((bsz, n_heads, from_seq_len, -1)) * from_mask
context_layer = torch.transpose(context_layer, 1, 2)
# this is just for visualizing; forward pass doesn't depend on following code
if output_attentions:
# TODO(PVP): need to verify if below code is correct
attention_probs = torch.zeros(
bsz, n_heads, from_seq_len, to_seq_len, dtype=torch.float, device=context_layer.device
)
# 1st query block
# corresponding to `first_context_layer`
attention_probs[:, :, :from_block_size, :] = first_attn_weights # all keys global
# 2nd query block
# corresponding to `second_context_layer`
attention_probs[:, :, from_block_size : 2 * from_block_size, : 3 * to_block_size] = second_attn_weights[
:, :, :, : 3 * to_block_size
] # 1st three key blocks (global + sliding)
attention_probs[:, :, from_block_size : 2 * from_block_size, -to_block_size:] = second_attn_weights[
:, :, :, 3 * to_block_size : 4 * to_block_size
] # last key block (global)
# random keys
for p1, i1, w1 in zip(range(bsz), rand_attn, second_attn_weights):
# p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch
for p2, i2, w2 in zip(range(n_heads), i1, w1):
# p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads
attn_probs_view = attention_probs.view(
bsz,
n_heads,
from_seq_len // from_block_size,
from_block_size,
to_seq_len // to_block_size,
to_block_size,
)
right_slice = w2[:, 4 * to_block_size :]
attn_probs_view[p1, p2, 1, :, i2[0]] = right_slice.view(
from_block_size, n_rand_blocks, to_block_size
)
# Middle query blocks
# corresponding to `context_layer`
# sliding keys
for q_idx in range(from_seq_len // from_block_size - 4):
attn_probs_view = attention_probs.view(
bsz,
n_heads,
from_seq_len // from_block_size,
from_block_size,
to_seq_len // to_block_size,
to_block_size,
)[:, :, 2:-2, :, 1:-1, :]
right_slice = attn_weights[:, :, q_idx, :, to_block_size : 4 * to_block_size]
attn_probs_view[:, :, q_idx, :, q_idx : q_idx + 3, :] = right_slice.view(
bsz, n_heads, from_block_size, 3, to_block_size
) # inner_band_product
# global keys (corresponding to 1st key block)
attention_probs[:, :, 2 * from_block_size : -2 * from_block_size, :to_block_size] = attn_weights[
:, :, :, :, :to_block_size
].view(bsz, n_heads, -1, to_block_size) # first_band_product
# global keys (corresponding to last key block)
attention_probs[:, :, 2 * from_block_size : -2 * from_block_size, -to_block_size:] = attn_weights[
:, :, :, :, -to_block_size:
].view(bsz, n_heads, -1, to_block_size) # last_band_product
# random keys
for p1, i1, w1 in zip(range(bsz), rand_attn, attn_weights):
# p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch
for p2, i2, w2 in zip(range(n_heads), i1, w1):
# p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads
for q_idx in range(1, len(i2) - 1):
attn_probs_view = attention_probs.view(
bsz,
n_heads,
from_seq_len // from_block_size,
from_block_size,
to_seq_len // to_block_size,
to_block_size,
)
right_slice = w2[q_idx - 1, :, 4 * to_block_size : -to_block_size]
attn_probs_view[p1, p2, q_idx + 1, :, i2[q_idx]] = right_slice.view(
from_block_size, n_rand_blocks, to_block_size
)
# Second-last query block
# corresponding to `second_last_context_layer`
attention_probs[:, :, -2 * from_block_size : -from_block_size, :to_block_size] = second_last_attn_weights[
:, :, :, :to_block_size
] # 1st key block (global)
attention_probs[:, :, -2 * from_block_size : -from_block_size, -3 * to_block_size :] = (
second_last_attn_weights[:, :, :, to_block_size : 4 * to_block_size]
) # last three blocks (global + sliding)
# random keys
for p1, i1, w1 in zip(range(bsz), rand_attn, second_last_attn_weights):
# p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch
for p2, i2, w2 in zip(range(n_heads), i1, w1):
# p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads
attn_probs_view = attention_probs.view(
bsz,
n_heads,
from_seq_len // from_block_size,
from_block_size,
to_seq_len // to_block_size,
to_block_size,
)
right_slice = w2[:, 4 * to_block_size :]
attn_probs_view[p1, p2, -2, :, i2[-1]] = right_slice.view(
from_block_size, n_rand_blocks, to_block_size
)
# last query block
# corresponding to `last_context_layer`
attention_probs[:, :, -from_block_size:, :] = last_attn_weights # all keys global
else:
attention_probs = None
return context_layer, attention_probs
@staticmethod
def torch_gather_b2(params, indices):
# this operation is equivalent to tf.gather when batch_dims=2
if params.shape[:2] != indices.shape[:2]:
raise ValueError(
"Make sure that the first two dimensions of params and indices are identical, but"
f" they are params: {params.shape[:2]} vs. indices: {indices.shape[:2]}"
)
num_indices_to_gather = indices.shape[-2] * indices.shape[-1]
num_indices_to_pick_from = params.shape[2]
shift = torch.arange(indices.shape[0] * indices.shape[1] * num_indices_to_gather, device=indices.device)
indices_shift = torch.div(shift, num_indices_to_gather, rounding_mode="floor") * num_indices_to_pick_from
flattened_indices = indices.view(-1) + indices_shift
flattened_params = params.reshape(-1, params.shape[-2], params.shape[-1])
out_flattened = flattened_params.index_select(0, flattened_indices)
out = out_flattened.reshape(params.shape[:2] + (num_indices_to_gather,) + params.shape[3:])
return out
@staticmethod
def _create_rand_mask_from_inputs(
from_blocked_mask,
to_blocked_mask,
rand_attn,
num_attention_heads,
num_rand_blocks,
batch_size,
from_seq_length,
from_block_size,
):
"""
Create 3D attention mask from a 2D tensor mask.
Args:
from_blocked_mask: 2D Tensor of shape [batch_size,
from_seq_length//from_block_size, from_block_size].
to_blocked_mask: int32 Tensor of shape [batch_size,
to_seq_length//to_block_size, to_block_size].
rand_attn: [batch_size, num_attention_heads,
from_seq_length//from_block_size-2, num_rand_blocks]
num_attention_heads: int. Number of attention heads.
num_rand_blocks: int. Number of random chunks per row.
batch_size: int. Batch size for computation.
from_seq_length: int. length of from sequence.
from_block_size: int. size of block in from sequence.
Returns:
float Tensor of shape [batch_size, num_attention_heads, from_seq_length//from_block_size-2,
from_block_size, num_rand_blocks*to_block_size].
"""
num_windows = from_seq_length // from_block_size - 2
rand_mask = torch.stack([p1[i1.flatten()] for p1, i1 in zip(to_blocked_mask, rand_attn)])
rand_mask = rand_mask.view(batch_size, num_attention_heads, num_windows, num_rand_blocks * from_block_size)
rand_mask = torch.einsum("blq,bhlk->bhlqk", from_blocked_mask[:, 1:-1], rand_mask)
return rand_mask
@staticmethod
def _get_rand_attn_plan(from_seq_length, from_block_size, num_rand_blocks):
"""
Gives the plan of where to put random attention.
Args:
from_seq_length: int. length of from sequence.
from_block_size: int. size of block in from sequence.
num_rand_blocks: int. Number of random chunks per row.
Returns:
plan_from_length: ending location of from block plan_num_rand_blocks: number of random ending location for
each block
"""
plan_from_length = []
plan_num_rand_blocks = []
if (2 * num_rand_blocks + 5) < (from_seq_length // from_block_size):
plan_from_length.append(int((2 * num_rand_blocks + 5) * from_block_size))
plan_num_rand_blocks.append(num_rand_blocks)
plan_from_length.append(from_seq_length)
plan_num_rand_blocks.append(0)
elif (num_rand_blocks + 5) < (from_seq_length // from_block_size):
plan_from_length.append(int((num_rand_blocks + 5) * from_block_size))
plan_num_rand_blocks.append(num_rand_blocks // 2)
plan_from_length.append(from_seq_length)
plan_num_rand_blocks.append(num_rand_blocks - (num_rand_blocks // 2))
else:
plan_from_length.append(from_seq_length)
plan_num_rand_blocks.append(num_rand_blocks)
return plan_from_length, plan_num_rand_blocks
def _bigbird_block_rand_mask(
self, from_seq_length, to_seq_length, from_block_size, to_block_size, num_rand_blocks, last_idx=-1
):
"""
Create adjacency list of random attention.
Args:
from_seq_length: int. length of from sequence.
to_seq_length: int. length of to sequence.
from_block_size: int. size of block in from sequence.
to_block_size: int. size of block in to sequence.
num_rand_blocks: int. Number of random chunks per row.
last_idx: if -1 then num_rand_blocks blocks chosen anywhere in to sequence,
if positive then num_rand_blocks blocks chosen only up to last_idx.
Returns:
adjacency list of size from_seq_length//from_block_size-2 by num_rand_blocks
"""
# using this method when from_seq_length in [1024, 3072, 4096]
if from_seq_length // from_block_size != to_seq_length // to_block_size:
raise ValueError("Error the number of blocks needs to be same!")
rand_attn = np.zeros((from_seq_length // from_block_size - 2, num_rand_blocks), dtype=np.int32)
# During inference (eval) no randomness
if not self.training:
return rand_attn
middle_seq = np.arange(1, to_seq_length // to_block_size - 1, dtype=np.int32)
last = to_seq_length // to_block_size - 1
if last_idx > (2 * to_block_size):
last = (last_idx // to_block_size) - 1
r = num_rand_blocks # shorthand
for i in range(1, from_seq_length // from_block_size - 1):
start = i - 2
end = i
if i == 1:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[2:last])[:r]
elif i == 2:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[3:last])[:r]
elif i == from_seq_length // from_block_size - 3:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[:last])[:r]
# Missing -3: should have been sliced till last-3
elif i == from_seq_length // from_block_size - 2:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[:last])[:r]
# Missing -4: should have been sliced till last-4
else:
if start > last:
start = last
rand_attn[i - 1, :] = np.random.permutation(middle_seq[:start])[:r]
elif (end + 1) == last:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[:start])[:r]
else:
rand_attn[i - 1, :] = np.random.permutation(
np.concatenate((middle_seq[:start], middle_seq[end + 1 : last]))
)[:r]
return rand_attn
def _bigbird_block_rand_mask_with_head(
self,
from_seq_length,
to_seq_length,
from_block_size,
to_block_size,
num_heads,
plan_from_length,
plan_num_rand_blocks,
window_block_left=1,
window_block_right=1,
global_block_top=1,
global_block_bottom=1,
global_block_left=1,
global_block_right=1,
):
"""
Create adjacency list of random attention.
Args:
from_seq_length: int. length of from sequence.
to_seq_length: int. length of to sequence.
from_block_size: int. size of block in from sequence.
to_block_size: int. size of block in to sequence.
num_heads: int. total number of heads.
plan_from_length: list. plan from length where num_random_blocks are chosen from.
plan_num_rand_blocks: list. number of rand blocks within the plan.
window_block_left: int. number of blocks of window to left of a block.
window_block_right: int. number of blocks of window to right of a block.
global_block_top: int. number of blocks at the top.
global_block_bottom: int. number of blocks at the bottom.
global_block_left: int. Number of blocks globally used to the left.
global_block_right: int. Number of blocks globally used to the right.
Returns:
adjacency list of size num_head where each element is of size from_seq_length//from_block_size-2 by
num_rand_blocks
"""
# using this method when from_seq_length not in [1024, 3072, 4096]
if from_seq_length // from_block_size != to_seq_length // to_block_size:
raise ValueError("Error the number of blocks needs to be same!")
if from_seq_length not in plan_from_length:
raise ValueError("Error from sequence length not in plan!")
# Total number of blocks in the mmask
num_blocks = from_seq_length // from_block_size
# Number of blocks per plan
plan_block_length = np.array(plan_from_length) // from_block_size
# till when to follow plan
max_plan_idx = plan_from_length.index(from_seq_length)
# Random Attention adjacency list
rand_attn = [
np.zeros((num_blocks, np.sum(plan_num_rand_blocks[: max_plan_idx + 1])), dtype=np.int32)
for i in range(num_heads)
]
# During inference (eval) no randomness
if not self.training:
for nh in range(num_heads):
rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :]
return rand_attn
# We will go iteratively over the plan blocks and pick random number of
# Attention blocks from the legally allowed blocks
for plan_idx in range(max_plan_idx + 1):
rnd_r_cnt = 0
if plan_idx > 0:
# set the row for all from_blocks starting from 0 to
# plan_block_length[plan_idx-1]
# column indx start fromm plan_block_length[plan_idx-1] and ends at
# plan_block_length[plan_idx]
if plan_num_rand_blocks[plan_idx] > 0:
rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:plan_idx]))
curr_r_cnt = int(np.sum(plan_num_rand_blocks[: plan_idx + 1]))
for blk_rw_idx in range(global_block_top, plan_block_length[plan_idx - 1]):
for h in range(num_heads):
rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention(
block_id=blk_rw_idx,
to_start_block_id=plan_block_length[plan_idx - 1],
to_end_block_id=plan_block_length[plan_idx],
num_rand_blocks=plan_num_rand_blocks[plan_idx],
window_block_left=window_block_left,
window_block_right=window_block_right,
global_block_left=global_block_left,
global_block_right=global_block_right,
)
for pl_id in range(plan_idx):
if plan_num_rand_blocks[pl_id] == 0:
continue
for blk_rw_idx in range(plan_block_length[plan_idx - 1], plan_block_length[plan_idx]):
rnd_r_cnt = 0
to_start_block_id = 0
if pl_id > 0:
rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:pl_id]))
to_start_block_id = plan_block_length[pl_id - 1]
curr_r_cnt = int(np.sum(plan_num_rand_blocks[: pl_id + 1]))
for h in range(num_heads):
rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention(
block_id=blk_rw_idx,
to_start_block_id=to_start_block_id,
to_end_block_id=plan_block_length[pl_id],
num_rand_blocks=plan_num_rand_blocks[pl_id],
window_block_left=window_block_left,
window_block_right=window_block_right,
global_block_left=global_block_left,
global_block_right=global_block_right,
)
if plan_num_rand_blocks[plan_idx] == 0:
continue
curr_r_cnt = int(np.sum(plan_num_rand_blocks[: plan_idx + 1]))
from_start_block_id = global_block_top
to_start_block_id = 0
if plan_idx > 0:
rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:plan_idx]))
from_start_block_id = plan_block_length[plan_idx - 1]
to_start_block_id = plan_block_length[plan_idx - 1]
for blk_rw_idx in range(from_start_block_id, plan_block_length[plan_idx]):
for h in range(num_heads):
rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention(
block_id=blk_rw_idx,
to_start_block_id=to_start_block_id,
to_end_block_id=plan_block_length[plan_idx],
num_rand_blocks=plan_num_rand_blocks[plan_idx],
window_block_left=window_block_left,
window_block_right=window_block_right,
global_block_left=global_block_left,
global_block_right=global_block_right,
)
for nh in range(num_heads):
rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :]
return rand_attn
@staticmethod
def _get_single_block_row_attention(
block_id,
to_start_block_id,
to_end_block_id,
num_rand_blocks,
window_block_left=1,
window_block_right=1,
global_block_left=1,
global_block_right=1,
):
"""
For a single row block get random row attention.
Args:
block_id: int. block id of row.
to_start_block_id: int. random attention column start id.
to_end_block_id: int. random attention column end id.
num_rand_blocks: int. number of random blocks to be selected.
window_block_left: int. number of blocks of window to left of a block.
window_block_right: int. number of blocks of window to right of a block.
global_block_left: int. Number of blocks globally used to the left.
global_block_right: int. Number of blocks globally used to the right.
Returns:
row containing the random attention vector of size num_rand_blocks.
"""
# list of to_blocks from which to choose random attention
to_block_list = np.arange(to_start_block_id, to_end_block_id, dtype=np.int32)
# permute the blocks
perm_block = np.random.permutation(to_block_list)
# illegal blocks for the current block id, using window
illegal_blocks = list(range(block_id - window_block_left, block_id + window_block_right + 1))
# Add blocks at the start and at the end
illegal_blocks.extend(list(range(global_block_left)))
illegal_blocks.extend(list(range(to_end_block_id - global_block_right, to_end_block_id)))
# The second from_block cannot choose random attention on second last to_block
if block_id == 1:
illegal_blocks.append(to_end_block_id - 2)
# The second last from_block cannot choose random attention on second to_block
if block_id == to_end_block_id - 2:
illegal_blocks.append(1)
selected_random_blokcs = []
for i in range(to_end_block_id - to_start_block_id):
if perm_block[i] not in illegal_blocks:
selected_random_blokcs.append(perm_block[i])
if len(selected_random_blokcs) == num_rand_blocks:
break
return np.array(selected_random_blokcs, dtype=np.int32)
class BigBirdPegasusEncoderAttention(nn.Module):
def __init__(self, config, seed=None):
super().__init__()
self.config = config
self.seed = seed
self.attention_type = config.attention_type
if self.attention_type == "original_full":
self.self = BigBirdPegasusSelfAttention(config)
elif self.attention_type == "block_sparse":
self.self = BigBirdPegasusBlockSparseAttention(config, seed)
else:
raise ValueError(
f"attention_type can either be original_full or block_sparse, but is {self.config.attention_type}"
)
self.output = nn.Linear(config.hidden_size, config.hidden_size, bias=config.use_bias)
def set_attention_type(self, value: str):
if value not in ["original_full", "block_sparse"]:
raise ValueError(
f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}"
)
# attention type is already correctly set
if value == self.attention_type:
return
self.attention_type = value
if value == "original_full":
# copy all weights to new full attention class
attn_weights = BigBirdPegasusSelfAttention(self.config)
else:
# copy all weights to new sparse attention class
attn_weights = BigBirdPegasusBlockSparseAttention(self.config, self.seed)
attn_weights.query = self.self.query
attn_weights.value = self.self.value
attn_weights.key = self.self.key
self.self = attn_weights
self.attention_type = value
if not self.training:
self.self.eval()
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
past_key_value=None,
output_attentions=False,
band_mask=None,
from_mask=None,
to_mask=None,
from_blocked_mask=None,
to_blocked_mask=None,
):
# Expand dims to enable multiplication in the self-attention module
head_mask = head_mask.reshape(1, -1, 1, 1) if head_mask is not None else None
if self.config.attention_type == "original_full":
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
)
else:
self_outputs = self.self(
hidden_states, band_mask, from_mask, to_mask, from_blocked_mask, to_blocked_mask, output_attentions
)
attention_output = self.output(self_outputs[0])
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bart.modeling_bart.BartAttention with BartConfig->BigBirdPegasusConfig, Bart->BigBirdPegasusDecoder
class BigBirdPegasusDecoderAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[BigBirdPegasusConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class BigBirdPegasusEncoderLayer(nn.Module):
def __init__(self, config: BigBirdPegasusConfig, seed=None):
super().__init__()
self.attention_type = config.attention_type
self.embed_dim = config.d_model
self.self_attn = BigBirdPegasusEncoderAttention(config, seed=seed)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
band_mask=None,
from_mask=None,
to_mask=None,
from_blocked_mask=None,
to_blocked_mask=None,
output_attentions: bool = False,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
self_attention_outputs = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
head_mask=layer_head_mask,
output_attentions=output_attentions,
band_mask=band_mask,
from_mask=from_mask,
to_mask=to_mask,
from_blocked_mask=from_blocked_mask,
to_blocked_mask=to_blocked_mask,
)
hidden_states = self_attention_outputs[0]
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attention_outputs[1],)
return outputs
def set_attention_type(self, value: str):
if value not in ["original_full", "block_sparse"]:
raise ValueError(
f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}"
)
# attention type is already correctly set
if value == self.attention_type:
return
self.attention_type = value
self.self_attn.set_attention_type(value)
class BigBirdPegasusDecoderLayer(nn.Module):
def __init__(self, config: BigBirdPegasusConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = BigBirdPegasusDecoderAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
bias=config.use_bias,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = BigBirdPegasusDecoderAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
bias=config.use_bias,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
# Copied from transformers.models.bart.modeling_bart.BartClassificationHead with Bart->BigBirdPegasus
class BigBirdPegasusClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim: int,
inner_dim: int,
num_classes: int,
pooler_dropout: float,
):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class BigBirdPegasusPreTrainedModel(PreTrainedModel):
config_class = BigBirdPegasusConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["BigBirdPegasusEncoderLayer", "BigBirdPegasusDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_param_buffer_assignment = False
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
dummy_inputs = {
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
}
return dummy_inputs
BIGBIRD_PEGASUS_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`BigBirdPegasusConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BIGBIRD_PEGASUS_GENERATION_EXAMPLE = r"""
Summarization example:
```python
>>> from transformers import AutoTokenizer, BigBirdPegasusForConditionalGeneration
>>> model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> ARTICLE_TO_SUMMARIZE = (
... "The dominant sequence transduction models are based on complex recurrent or convolutional neural "
... "networks in an encoder-decoder configuration. The best performing models also connect the encoder "
... "and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, "
... "based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. "
... "Experiments on two machine translation tasks show these models to be superior in quality "
... "while being more parallelizable and requiring significantly less time to train."
... )
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=4096, return_tensors="pt", truncation=True)
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=15)
>>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'dominant sequence models are based on recurrent or convolutional neural networks .'
```
"""
BIGBIRD_PEGASUS_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Provide for translation and summarization training. By default, the model will create this tensor by
shifting the `input_ids` to the right, following the paper.
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should read
[`modeling_bigbird_pegasus._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in
[the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
decoder_head_mask (`torch.Tensor` of shape `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
BIGBIRD_PEGASUS_STANDALONE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`ProphetNetTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class BigBirdPegasusEncoder(BigBirdPegasusPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`BigBirdPegasusEncoderLayer`].
Args:
config: BigBirdPegasusConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BigBirdPegasusConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.attention_type = config.attention_type
self.block_size = config.block_size
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = BigBirdPegasusScaledWordEmbedding(
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = BigBirdPegasusLearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
)
self.layers = nn.ModuleList([BigBirdPegasusEncoderLayer(config, seed=i) for i in range(config.encoder_layers)])
self.layernorm_embedding = nn.LayerNorm(embed_dim)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
embed_pos = self.embed_positions(input_shape)
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=hidden_states.device)
attention_mask = attention_mask.long()
# in order to use block_sparse attention, sequence_length has to be at least
# bigger than all global attentions: 2 * block_size
# + sliding tokens: 3 * block_size
# + random tokens: 2 * num_random_blocks * block_size
max_tokens_to_attend = (5 + 2 * self.config.num_random_blocks) * self.config.block_size
if self.attention_type == "block_sparse" and input_shape[1] <= max_tokens_to_attend:
# change attention_type from block_sparse to original_full
sequence_length = input_shape[1]
logger.warning(
"Attention type 'block_sparse' is not possible if sequence_length: "
f"{sequence_length} <= num global tokens: 2 * config.block_size "
"+ min. num sliding tokens: 3 * config.block_size "
"+ config.num_random_blocks * config.block_size "
"+ additional buffer: config.num_random_blocks * config.block_size "
f"= {max_tokens_to_attend} with config.block_size "
f"= {self.config.block_size}, config.num_random_blocks "
f"= {self.config.num_random_blocks}. "
"Changing attention type to 'original_full'..."
)
self.set_attention_type("original_full")
if self.attention_type == "block_sparse":
padding_len, hidden_states, attention_mask = self._pad_to_block_size(hidden_states, attention_mask)
else:
padding_len = 0
# expand attention_mask
if self.attention_type == "original_full":
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
blocked_encoder_mask = band_mask = from_mask = to_mask = None
elif self.attention_type == "block_sparse":
blocked_encoder_mask, band_mask, from_mask, to_mask = self.create_masks_for_block_sparse_attn(
attention_mask, self.block_size
)
attention_mask = None
else:
raise ValueError(
f"attention_type can either be original_full or block_sparse, but is {self.attention_type}"
)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
band_mask,
from_mask,
to_mask,
blocked_encoder_mask,
blocked_encoder_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
band_mask=band_mask,
from_mask=from_mask,
to_mask=to_mask,
from_blocked_mask=blocked_encoder_mask,
to_blocked_mask=blocked_encoder_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layernorm_embedding(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if padding_len > 0:
# unpad `sequence_output` because the calling function is expecting a length == input_ids.size(1)
hidden_states = hidden_states[:, :-padding_len]
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
self.encoder_o = hidden_states
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
def set_attention_type(self, value: str):
if value not in ["original_full", "block_sparse"]:
raise ValueError(
f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}"
)
# attention type is already correctly set
if value == self.attention_type:
return
self.attention_type = value
for layer in self.layers:
layer.set_attention_type(value)
@staticmethod # Copied from transformers.models.big_bird.modeling_big_bird.BigBirdModel.create_masks_for_block_sparse_attn
def create_masks_for_block_sparse_attn(attention_mask: torch.Tensor, block_size: int):
batch_size, seq_length = attention_mask.size()
if seq_length % block_size != 0:
raise ValueError(
f"Sequence length must be multiple of block size, but sequence length is {seq_length}, while block"
f" size is {block_size}."
)
def create_band_mask_from_inputs(from_blocked_mask, to_blocked_mask):
"""
Create 3D attention mask from a 2D tensor mask.
Args:
from_blocked_mask: 2D Tensor of shape [batch_size,
from_seq_length//from_block_size, from_block_size].
to_blocked_mask: int32 Tensor of shape [batch_size,
to_seq_length//to_block_size, to_block_size].
Returns:
float Tensor of shape [batch_size, 1, from_seq_length//from_block_size-4, from_block_size,
3*to_block_size].
"""
exp_blocked_to_pad = torch.cat(
[to_blocked_mask[:, 1:-3], to_blocked_mask[:, 2:-2], to_blocked_mask[:, 3:-1]], dim=2
)
band_mask = torch.einsum("blq,blk->blqk", from_blocked_mask[:, 2:-2], exp_blocked_to_pad)
band_mask.unsqueeze_(1)
return band_mask
blocked_encoder_mask = attention_mask.view(batch_size, seq_length // block_size, block_size)
band_mask = create_band_mask_from_inputs(blocked_encoder_mask, blocked_encoder_mask)
from_mask = attention_mask.view(batch_size, 1, seq_length, 1)
to_mask = attention_mask.view(batch_size, 1, 1, seq_length)
return blocked_encoder_mask, band_mask, from_mask, to_mask
def _pad_to_block_size(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor):
"""A helper function to pad tokens and mask to work with implementation of BigBird block-sparse attention."""
# padding
block_size = self.config.block_size
batch_size, seq_len = hidden_states.shape[:2]
padding_len = (block_size - seq_len % block_size) % block_size
if padding_len > 0:
logger.warning_once(
f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of "
f"`config.block_size`: {block_size}"
)
pad_id = self.config.pad_token_id
device = hidden_states.device
input_ids_padding = torch.ones((batch_size, padding_len), dtype=torch.long, device=device) * pad_id
inputs_embeds_padding = self.embed_tokens(input_ids_padding)
hidden_states = torch.cat([hidden_states, inputs_embeds_padding], dim=-2)
attention_mask = nn.functional.pad(
attention_mask, (0, padding_len), value=0
) # no attention on the padding tokens
return padding_len, hidden_states, attention_mask
class BigBirdPegasusDecoder(BigBirdPegasusPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BigBirdPegasusDecoderLayer`]
Args:
config: BigBirdPegasusConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BigBirdPegasusConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = BigBirdPegasusScaledWordEmbedding(
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = BigBirdPegasusLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
)
self.layers = nn.ModuleList([BigBirdPegasusDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input_shape, past_key_values_length)
positions = positions.to(inputs_embeds.device)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layernorm_embedding(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare BigBirdPegasus Model outputting raw hidden-states without any specific head on top.",
BIGBIRD_PEGASUS_START_DOCSTRING,
)
class BigBirdPegasusModel(BigBirdPegasusPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: BigBirdPegasusConfig):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.shared = BigBirdPegasusScaledWordEmbedding(
vocab_size, config.d_model, padding_idx, embed_scale=embed_scale
)
self.encoder = BigBirdPegasusEncoder(config, self.shared)
self.decoder = BigBirdPegasusDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(BIGBIRD_PEGASUS_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
# Copied from transformers.models.bart.modeling_bart.BartModel.forward with Bart->BigBirdPegasus
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqModelOutput]:
# different to other models, BigBirdPegasus automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
if input_ids is None:
raise ValueError(
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
"passed, `input_ids` cannot be `None`. Please pass either "
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
)
decoder_input_ids = shift_tokens_right(
input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The BigBirdPegasus Model with a language modeling head. Can be used for summarization.",
BIGBIRD_PEGASUS_START_DOCSTRING,
)
# Copied from transformers.models.bart.modeling_bart.BartForConditionalGeneration with Bart->BigBirdPegasus, BART->BIGBIRD_PEGASUS
class BigBirdPegasusForConditionalGeneration(BigBirdPegasusPreTrainedModel, GenerationMixin):
base_model_prefix = "model"
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
_keys_to_ignore_on_load_missing = ["final_logits_bias"]
def __init__(self, config: BigBirdPegasusConfig):
super().__init__(config)
self.model = BigBirdPegasusModel(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def resize_token_embeddings(
self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None, mean_resizing: bool = True
) -> nn.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing)
self._resize_final_logits_bias(new_embeddings.weight.shape[0])
return new_embeddings
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
old_num_tokens = self.final_logits_bias.shape[-1]
if new_num_tokens <= old_num_tokens:
new_bias = self.final_logits_bias[:, :new_num_tokens]
else:
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def _tie_weights(self):
if self.config.tie_word_embeddings:
self.model._tie_weights()
self._tie_or_clone_weights(self.lm_head, self.model.shared)
@add_start_docstrings_to_model_forward(BIGBIRD_PEGASUS_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(BIGBIRD_PEGASUS_GENERATION_EXAMPLE)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0])
lm_logits = lm_logits + self.final_logits_bias.to(lm_logits.device)
masked_lm_loss = None
if labels is not None:
labels = labels.to(lm_logits.device)
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"""
BigBirdPegasus model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g.
for GLUE tasks.
""",
BIGBIRD_PEGASUS_START_DOCSTRING,
)
class BigBirdPegasusForSequenceClassification(BigBirdPegasusPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: BigBirdPegasusConfig, **kwargs):
super().__init__(config, **kwargs)
self.model = BigBirdPegasusModel(config)
self.classification_head = BigBirdPegasusClassificationHead(
config.d_model,
config.d_model,
config.num_labels,
config.classifier_dropout,
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BIGBIRD_PEGASUS_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
# Copied from transformers.models.bart.modeling_bart.BartForSequenceClassification.forward
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
if input_ids is None and inputs_embeds is not None:
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
:, -1, :
]
logits = self.classification_head(sentence_representation)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqSequenceClassifierOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"""
BigBirdPegasus Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
BIGBIRD_PEGASUS_START_DOCSTRING,
)
class BigBirdPegasusForQuestionAnswering(BigBirdPegasusPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.model = BigBirdPegasusModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BIGBIRD_PEGASUS_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
# Copied from transformers.models.bart.modeling_bart.BartForQuestionAnswering.forward
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqQuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if start_positions is not None and end_positions is not None:
use_cache = False
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (
start_logits,
end_logits,
) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return Seq2SeqQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
# Copied from transformers.models.pegasus.modeling_pegasus.PegasusDecoderWrapper with Pegasus->BigBirdPegasus
class BigBirdPegasusDecoderWrapper(BigBirdPegasusPreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = BigBirdPegasusDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
class BigBirdPegasusForCausalLM(BigBirdPegasusPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
super().__init__(config)
self.model = BigBirdPegasusDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, BigBirdPegasusForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> model = BigBirdPegasusForCausalLM.from_pretrained(
... "google/bigbird-pegasus-large-arxiv", add_cross_attention=False
... )
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
__all__ = [
"BigBirdPegasusForCausalLM",
"BigBirdPegasusForConditionalGeneration",
"BigBirdPegasusForQuestionAnswering",
"BigBirdPegasusForSequenceClassification",
"BigBirdPegasusModel",
"BigBirdPegasusPreTrainedModel",
]
```
|
==============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.01 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\biogpt\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_biogpt import *
from .modeling_biogpt import *
from .tokenization_biogpt import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==========================================================================================================================================
SOURCE CODE FILE: configuration_biogpt.py
LINES: 1
SIZE: 6.06 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\biogpt\configuration_biogpt.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Team and Microsoft Research AI4Science All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BioGPT model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class BioGptConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BioGptModel`]. It is used to instantiate an
BioGPT model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the BioGPT
[microsoft/biogpt](https://huggingface.co/microsoft/biogpt) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 42384):
Vocabulary size of the BioGPT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`BioGptModel`].
hidden_size (`int`, *optional*, defaults to 1024):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 4096):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
scale_embedding (`bool`, *optional*, defaults to `True`):
Scale embeddings by diving by sqrt(d_model).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
layerdrop (`float`, *optional*, defaults to 0.0):
Please refer to the paper about LayerDrop: https://arxiv.org/abs/1909.11556 for further details
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
pad_token_id (`int`, *optional*, defaults to 1):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 0):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
Example:
```python
>>> from transformers import BioGptModel, BioGptConfig
>>> # Initializing a BioGPT microsoft/biogpt style configuration
>>> configuration = BioGptConfig()
>>> # Initializing a model from the microsoft/biogpt style configuration
>>> model = BioGptModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "biogpt"
def __init__(
self,
vocab_size=42384,
hidden_size=1024,
num_hidden_layers=24,
num_attention_heads=16,
intermediate_size=4096,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=1024,
initializer_range=0.02,
layer_norm_eps=1e-12,
scale_embedding=True,
use_cache=True,
layerdrop=0.0,
activation_dropout=0.0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.scale_embedding = scale_embedding
self.use_cache = use_cache
self.layerdrop = layerdrop
self.activation_dropout = activation_dropout
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
__all__ = ["BioGptConfig"]
```
|
=====================================================================================================================================
SOURCE CODE FILE: modeling_biogpt.py
LINES: 1
SIZE: 46.14 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\biogpt\modeling_biogpt.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Team and Microsoft Research AI4Science All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BioGPT model."""
import math
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_biogpt import BioGptConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "microsoft/biogpt"
_CONFIG_FOR_DOC = "BioGptConfig"
# copied from transformers.models.opt.modeling_opt.OPTLearnedPositionalEmbedding with OPT->BioGpt
# TODO @ArthurZucker bring copied from back
class BioGptLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
# BioGpt is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int = 0):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
attention_mask = attention_mask.long()
# create positions depending on attention_mask
positions = (torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask).long() - 1
# cut positions if `past_key_values_length` is > 0
positions = positions[:, past_key_values_length:]
return super().forward(positions + self.offset)
# Copied from transformers.models.bart.modeling_bart.BartScaledWordEmbedding with Bart->BioGpt
class BioGptScaledWordEmbedding(nn.Embedding):
"""
This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
super().__init__(num_embeddings, embedding_dim, padding_idx)
self.embed_scale = embed_scale
def forward(self, input_ids: torch.Tensor):
return super().forward(input_ids) * self.embed_scale
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->BioGpt
class BioGptAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[BioGptConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
# Copied from transformers.models.bart.modeling_bart.BartSdpaAttention with Bart->BioGpt
class BioGptSdpaAttention(BioGptAttention):
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
if output_attentions or layer_head_mask is not None:
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"BioGptModel is using BioGptSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states,
key_value_states=key_value_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
query_states = self._shape(query_states, tgt_len, bsz)
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False
# NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
# but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.dropout if self.training else 0.0,
is_causal=is_causal,
)
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, None, past_key_value
BIOGPT_ATTENTION_CLASSES = {
"eager": BioGptAttention,
"sdpa": BioGptSdpaAttention,
}
class BioGptDecoderLayer(nn.Module):
def __init__(self, config: BioGptConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = BIOGPT_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
dropout=config.attention_probs_dropout_prob,
is_decoder=True,
is_causal=True,
)
self.dropout = config.hidden_dropout_prob
self.activation_fn = ACT2FN[config.hidden_act]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class BioGptPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BioGptConfig
base_model_prefix = "biogpt"
supports_gradient_checkpointing = True
_supports_sdpa = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
BIOGPT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`~BioGptConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BIOGPT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare BioGPT Model transformer outputting raw hidden-states without any specific head on top.",
BIOGPT_START_DOCSTRING,
)
class BioGptModel(BioGptPreTrainedModel):
def __init__(self, config: BioGptConfig):
super().__init__(config)
self.config = config
self.layerdrop = config.layerdrop
self.dropout = config.hidden_dropout_prob
self.embed_dim = config.hidden_size
self.padding_idx = config.pad_token_id
embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0
self.embed_tokens = BioGptScaledWordEmbedding(
config.vocab_size, self.embed_dim, self.padding_idx, embed_scale=embed_scale
)
self.embed_positions = BioGptLearnedPositionalEmbedding(config.max_position_embeddings, self.embed_dim)
self.layers = nn.ModuleList([BioGptDecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.layer_norm = nn.LayerNorm(self.embed_dim)
self.gradient_checkpointing = False
self._use_sdpa = config._attn_implementation == "sdpa"
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # NOOP kwargs, for now
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input)
if attention_mask is None:
attention_mask = torch.ones(
(inputs_embeds.shape[0], inputs_embeds.shape[1] + past_key_values_length),
dtype=torch.bool,
device=inputs_embeds.device,
)
elif attention_mask.shape[1] != past_key_values_length + input_shape[1]:
raise ValueError(
f"The provided attention mask has length {attention_mask.shape[1]}, but its length should be "
f"{past_key_values_length + input_shape[1]} (sum of the lengths of current and past inputs)"
)
# embed positions
positions = self.embed_positions(attention_mask, past_key_values_length)
if self._use_sdpa and not output_attentions and head_mask is None:
# output_attentions=True & head_mask can not be supported when using SDPA, fall back to
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
else:
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
head_mask[idx] if head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
hidden_states = self.layer_norm(hidden_states)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"""BioGPT Model with a `language modeling` head on top for CLM fine-tuning.""", BIOGPT_START_DOCSTRING
)
class BioGptForCausalLM(BioGptPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["output_projection.weight"]
def __init__(self, config):
super().__init__(config)
self.biogpt = BioGptModel(config)
self.output_projection = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.output_projection
def set_output_embeddings(self, new_embeddings):
self.output_projection = new_embeddings
@add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.biogpt(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.output_projection(sequence_output)
lm_loss = None
if labels is not None:
lm_loss = self.loss_function(
prediction_scores,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
@add_start_docstrings(
"""
BioGPT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
BIOGPT_START_DOCSTRING,
)
class BioGptForTokenClassification(BioGptPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.biogpt = BioGptModel(config)
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
classifier_dropout = config.classifier_dropout
else:
classifier_dropout = config.hidden_dropout_prob
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.post_init()
@add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.biogpt(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)
active_labels = torch.where(
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
)
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + transformer_outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The BioGpt Model transformer with a sequence classification head on top (linear layer).
[`BioGptForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it is required to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
BIOGPT_START_DOCSTRING,
)
class BioGptForSequenceClassification(BioGptPreTrainedModel):
def __init__(self, config: BioGptConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.biogpt = BioGptModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.biogpt(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]
if self.config.pad_token_id is None:
sequence_length = -1
else:
if input_ids is not None:
sequence_length = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
else:
sequence_length = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_length]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def get_input_embeddings(self):
return self.biogpt.embed_tokens
def set_input_embeddings(self, value):
self.biogpt.embed_tokens = value
__all__ = [
"BioGptForCausalLM",
"BioGptForTokenClassification",
"BioGptForSequenceClassification",
"BioGptModel",
"BioGptPreTrainedModel",
]
```
|
=========================================================================================================================================
SOURCE CODE FILE: tokenization_biogpt.py
LINES: 6
SIZE: 12.98 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\biogpt\tokenization_biogpt.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Team and Microsoft Research AI4Science. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for BioGPT."""
import json
import os
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
}
def get_pairs(word):
"""
Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length
strings)
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class BioGptTokenizer(PreTrainedTokenizer):
"""
Construct an FAIRSEQ Transformer tokenizer. Moses tokenization followed by Byte-Pair Encoding.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Merges file.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
merges_file,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
pad_token="<pad>",
**kwargs,
):
try:
import sacremoses
except ImportError:
raise ImportError(
"You need to install sacremoses to use BioGptTokenizer. "
"See https://pypi.org/project/sacremoses/ for installation."
)
self.lang = "en"
self.sm = sacremoses
# cache of sm.MosesTokenizer instance
self.cache_moses_tokenizer = {}
self.cache_moses_detokenizer = {}
""" Initialisation"""
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
merges = merges_handle.read().split("\n")[:-1]
merges = [tuple(merge.split()[:2]) for merge in merges]
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {}
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
unk_token=unk_token,
pad_token=pad_token,
**kwargs,
)
@property
def vocab_size(self):
"""Returns vocab size"""
return len(self.encoder)
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def moses_tokenize(self, text, lang):
if lang not in self.cache_moses_tokenizer:
moses_tokenizer = self.sm.MosesTokenizer(lang=lang)
self.cache_moses_tokenizer[lang] = moses_tokenizer
return self.cache_moses_tokenizer[lang].tokenize(
text, aggressive_dash_splits=True, return_str=False, escape=True
)
def moses_detokenize(self, tokens, lang):
if lang not in self.cache_moses_detokenizer:
moses_detokenizer = self.sm.MosesDetokenizer(lang=lang)
self.cache_moses_detokenizer[lang] = moses_detokenizer
return self.cache_moses_detokenizer[lang].detokenize(tokens)
def bpe(self, token):
word = tuple(token[:-1]) + (token[-1] + "</w>",)
if token in self.cache:
return self.cache[token]
pairs = get_pairs(word)
if not pairs:
return token + "</w>"
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
if word == "\n </w>":
word = "\n</w>"
self.cache[token] = word
return word
def _tokenize(self, text, bypass_tokenizer=False):
"""Returns a tokenized string."""
if bypass_tokenizer:
text = text.split()
else:
text = self.moses_tokenize(text, self.lang)
split_tokens = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(token).split(" ")))
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
# remove BPE
tokens = [t.replace(" ", "").replace("</w>", " ") for t in tokens]
tokens = "".join(tokens).split()
# detokenize
text = self.moses_detokenize(tokens, self.lang)
return text
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BioGPT sequence has the following format:
- single sequence: `</s> X `
- pair of sequences: `</s> A </s> B `
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.sep_token_id] + token_ids_0
sep = [self.sep_token_id]
return sep + token_ids_0 + sep + token_ids_1
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
# no bos used in fairseq
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
return [1] + ([0] * len(token_ids_0))
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A FAIRSEQ
Transformer sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
# no bos used in fairseq
if token_ids_1 is None:
return len(token_ids_0 + sep) * [0]
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return vocab_file, merge_file
def __getstate__(self):
state = self.__dict__.copy()
state["sm"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
try:
import sacremoses
except ImportError:
raise ImportError(
"You need to install sacremoses to use XLMTokenizer. "
"See https://pypi.org/project/sacremoses/ for installation."
)
self.sm = sacremoses
__all__ = ["BioGptTokenizer"]
```
|
===========================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.00 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bit\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_bit import *
from .image_processing_bit import *
from .modeling_bit import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
====================================================================================================================================
SOURCE CODE FILE: configuration_bit.py
LINES: 1
SIZE: 6.15 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bit\configuration_bit.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BiT model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
class BitConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BitModel`]. It is used to instantiate an BiT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the BiT
[google/bit-50](https://huggingface.co/google/bit-50) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
embedding_size (`int`, *optional*, defaults to 64):
Dimensionality (hidden size) for the embedding layer.
hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`):
Dimensionality (hidden size) at each stage.
depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`):
Depth (number of layers) for each stage.
layer_type (`str`, *optional*, defaults to `"preactivation"`):
The layer to use, it can be either `"preactivation"` or `"bottleneck"`.
hidden_act (`str`, *optional*, defaults to `"relu"`):
The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"`
are supported.
global_padding (`str`, *optional*):
Padding strategy to use for the convolutional layers. Can be either `"valid"`, `"same"`, or `None`.
num_groups (`int`, *optional*, defaults to 32):
Number of groups used for the `BitGroupNormActivation` layers.
drop_path_rate (`float`, *optional*, defaults to 0.0):
The drop path rate for the stochastic depth.
embedding_dynamic_padding (`bool`, *optional*, defaults to `False`):
Whether or not to make use of dynamic padding for the embedding layer.
output_stride (`int`, *optional*, defaults to 32):
The output stride of the model.
width_factor (`int`, *optional*, defaults to 1):
The width factor for the model.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
Example:
```python
>>> from transformers import BitConfig, BitModel
>>> # Initializing a BiT bit-50 style configuration
>>> configuration = BitConfig()
>>> # Initializing a model (with random weights) from the bit-50 style configuration
>>> model = BitModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "bit"
layer_types = ["preactivation", "bottleneck"]
supported_padding = ["SAME", "VALID"]
def __init__(
self,
num_channels=3,
embedding_size=64,
hidden_sizes=[256, 512, 1024, 2048],
depths=[3, 4, 6, 3],
layer_type="preactivation",
hidden_act="relu",
global_padding=None,
num_groups=32,
drop_path_rate=0.0,
embedding_dynamic_padding=False,
output_stride=32,
width_factor=1,
out_features=None,
out_indices=None,
**kwargs,
):
super().__init__(**kwargs)
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types)}")
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
global_padding = global_padding.upper()
else:
raise ValueError(f"Padding strategy {global_padding} not supported")
self.num_channels = num_channels
self.embedding_size = embedding_size
self.hidden_sizes = hidden_sizes
self.depths = depths
self.layer_type = layer_type
self.hidden_act = hidden_act
self.global_padding = global_padding
self.num_groups = num_groups
self.drop_path_rate = drop_path_rate
self.embedding_dynamic_padding = embedding_dynamic_padding
self.output_stride = output_stride
self.width_factor = width_factor
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
__all__ = ["BitConfig"]
```
|
=======================================================================================================================================
SOURCE CODE FILE: image_processing_bit.py
LINES: 1
SIZE: 15.52 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bit\image_processing_bit.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for BiT."""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
convert_to_rgb,
get_resize_output_image_size,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
logger = logging.get_logger(__name__)
if is_vision_available():
import PIL
class BitImageProcessor(BaseImageProcessor):
r"""
Constructs a BiT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
`preprocess` method.
crop_size (`Dict[str, int]` *optional*, defaults to 224):
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
method.
do_normalize:
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `OPENAI_CLIP_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `OPENAI_CLIP_MEAN`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
Can be overridden by the `image_std` parameter in the `preprocess` method.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
self.do_convert_rgb = do_convert_rgb
# Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
resized to keep the input aspect ratio.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
default_to_square = True
if "shortest_edge" in size:
size = size["shortest_edge"]
default_to_square = False
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
else:
raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")
output_size = get_resize_output_image_size(
image,
size=size,
default_to_square=default_to_square,
input_data_format=input_data_format,
)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None,
crop_size: Optional[int] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, param_name="size", default_to_square=False)
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
# PIL RGBA images are converted to RGB
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
all_images = []
for image in images:
if do_resize:
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
if do_center_crop:
image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
)
all_images.append(image)
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
for image in all_images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
__all__ = ["BitImageProcessor"]
```
|
===============================================================================================================================
SOURCE CODE FILE: modeling_bit.py
LINES: 1
SIZE: 31.53 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\bit\modeling_bit.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 Google AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BiT model. Also supports backbone for ViT hybrid."""
import collections
import math
from typing import Optional, Tuple
import numpy as np
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_bit import BitConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "BitConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "google/bit-50"
_EXPECTED_OUTPUT_SHAPE = [1, 2048, 7, 7]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "google/bit-50"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tiger cat"
def get_padding_value(padding=None, kernel_size=7, stride=1, dilation=1) -> Tuple[Tuple, bool]:
r"""
Utility function to get the tuple padding value given the kernel_size and padding.
Args:
padding (Union[`str`, `int`], *optional*):
Padding value, can be either `"same"`, `"valid"`. If a different value is provided the default padding from
PyTorch is used.
kernel_size (`int`, *optional*, defaults to 7):
Kernel size of the convolution layers.
stride (`int`, *optional*, defaults to 1):
Stride value of the convolution layers.
dilation (`int`, *optional*, defaults to 1):
Dilation value of the convolution layers.
"""
dynamic = False
if padding is None:
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
return padding, dynamic
if isinstance(padding, str):
# for any string padding, the padding will be calculated for you, one of three ways
padding = padding.lower()
if padding == "same":
# TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
if stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0:
# static case, no extra overhead
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
else:
# dynamic 'SAME' padding, has runtime/GPU memory overhead
padding = 0
dynamic = True
elif padding == "valid":
# 'VALID' padding, same as padding=0
padding = 0
else:
# Default to PyTorch style 'same'-ish symmetric padding
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
return padding, dynamic
class WeightStandardizedConv2d(nn.Conv2d):
"""Conv2d with Weight Standardization. Includes TensorFlow compatible SAME padding. Used for ViT Hybrid model.
Paper: [Micro-Batch Training with Batch-Channel Normalization and Weight
Standardization](https://arxiv.org/abs/1903.10520v2)
"""
def __init__(
self,
in_channel,
out_channels,
kernel_size,
stride=1,
padding="SAME",
dilation=1,
groups=1,
bias=False,
eps=1e-6,
):
padding, is_dynamic = get_padding_value(padding, kernel_size, stride=stride, dilation=dilation)
super().__init__(
in_channel,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
)
if is_dynamic:
self.pad = DynamicPad2d(kernel_size, stride, dilation)
else:
self.pad = None
self.eps = eps
def forward(self, hidden_state):
if self.pad is not None:
hidden_state = self.pad(hidden_state)
weight = nn.functional.batch_norm(
self.weight.reshape(1, self.out_channels, -1), None, None, training=True, momentum=0.0, eps=self.eps
).reshape_as(self.weight)
hidden_state = nn.functional.conv2d(
hidden_state, weight, self.bias, self.stride, self.padding, self.dilation, self.groups
)
return hidden_state
class BitGroupNormActivation(nn.GroupNorm):
r"""
A module that combines group normalization with an activation function.
"""
def __init__(self, config, num_channels, eps=1e-5, affine=True, apply_activation=True):
super(BitGroupNormActivation, self).__init__(config.num_groups, num_channels, eps=eps, affine=affine)
if apply_activation:
self.activation = ACT2FN[config.hidden_act]
else:
self.activation = nn.Identity()
def forward(self, hidden_state):
hidden_state = nn.functional.group_norm(hidden_state, self.num_groups, self.weight, self.bias, self.eps)
hidden_state = self.activation(hidden_state)
return hidden_state
class DynamicPad2d(nn.Module):
r"""
A module that wraps dynamic padding of any input, given the parameters of the convolutional layer and the input
hidden states.
"""
def __init__(self, kernel_size, stride, dilation, value=0):
super().__init__()
# Safety checkers
if isinstance(kernel_size, int):
kernel_size = (kernel_size, kernel_size)
if isinstance(stride, int):
stride = (stride, stride)
if isinstance(dilation, int):
dilation = (dilation, dilation)
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
self.value = value
def compute_padding(x, kernel_size, stride, dilation):
return max((math.ceil(x / stride) - 1) * stride + (kernel_size - 1) * dilation + 1 - x, 0)
self.compute_padding = compute_padding
def forward(self, input):
# Get width and height
input_height, input_width = input.size()[-2:]
# Compute the padding values
padding_height = self.compute_padding(input_height, self.kernel_size[0], self.stride[0], self.dilation[0])
padding_width = self.compute_padding(input_width, self.kernel_size[1], self.stride[1], self.dilation[1])
# apply pad
if padding_height > 0 or padding_width > 0:
input = nn.functional.pad(
input,
[
padding_width // 2,
padding_width - padding_width // 2,
padding_height // 2,
padding_height - padding_height // 2,
],
value=self.value,
)
return input
class BitMaxPool2d(nn.MaxPool2d):
"""Tensorflow like 'SAME' wrapper for 2D max pooling"""
def __init__(
self,
kernel_size: int,
stride=None,
dilation=1,
ceil_mode=False,
padding=(0, 0),
padding_value=0,
use_dynamic_padding=True,
):
kernel_size = kernel_size if isinstance(kernel_size, collections.abc.Iterable) else (kernel_size, kernel_size)
stride = stride if isinstance(stride, collections.abc.Iterable) else (stride, stride)
dilation = dilation if isinstance(dilation, collections.abc.Iterable) else (dilation, dilation)
super().__init__(kernel_size, stride, padding, dilation, ceil_mode)
if use_dynamic_padding:
self.pad = DynamicPad2d(kernel_size, stride, dilation, padding_value)
else:
self.pad = nn.Identity()
def forward(self, hidden_states):
hidden_states = self.pad(hidden_states)
return nn.functional.max_pool2d(
hidden_states, self.kernel_size, self.stride, self.padding, self.dilation, self.ceil_mode
)
class BitEmbeddings(nn.Module):
"""
BiT Embeddings (stem) composed of a single aggressive convolution.
"""
def __init__(self, config: BitConfig):
super().__init__()
self.convolution = WeightStandardizedConv2d(
config.num_channels,
config.embedding_size,
kernel_size=7,
stride=2,
eps=1e-8,
padding=config.global_padding,
)
self.pooler = BitMaxPool2d(kernel_size=3, stride=2, use_dynamic_padding=config.embedding_dynamic_padding)
# Use the same padding strategy as convolutional layers
if config.global_padding is not None and config.global_padding.upper() == "SAME":
self.pad = nn.Identity()
else:
self.pad = nn.ConstantPad2d(padding=(1, 1, 1, 1), value=0.0)
if not config.layer_type == "preactivation":
self.norm = BitGroupNormActivation(config, num_channels=config.embedding_size)
else:
self.norm = nn.Identity()
self.num_channels = config.num_channels
def forward(self, pixel_values: Tensor) -> Tensor:
num_channels = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embedding = self.convolution(pixel_values)
embedding = self.pad(embedding)
embedding = self.norm(embedding)
embedding = self.pooler(embedding)
return embedding
# Copied from transformers.models.convnext.modeling_convnext.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Bit
class BitDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
def make_div(value, divisor=8):
min_value = divisor
new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
if new_value < 0.9 * value:
new_value += divisor
return new_value
class BitPreActivationBottleneckLayer(nn.Module):
"""Pre-activation (v2) bottleneck block.
Follows the implementation of "Identity Mappings in Deep Residual Networks":
https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua
Except it puts the stride on 3x3 conv when available.
"""
def __init__(
self,
config,
in_channels,
out_channels=None,
bottle_ratio=0.25,
stride=1,
dilation=1,
first_dilation=None,
groups=1,
drop_path_rate=0.0,
is_first_layer=False,
):
super().__init__()
first_dilation = first_dilation or dilation
out_channels = out_channels or in_channels
mid_channels = make_div(out_channels * bottle_ratio)
if is_first_layer:
self.downsample = BitDownsampleConv(
config,
in_channels,
out_channels,
stride=stride,
preact=True,
)
else:
self.downsample = None
self.norm1 = BitGroupNormActivation(config, in_channels)
self.conv1 = WeightStandardizedConv2d(in_channels, mid_channels, 1, eps=1e-8, padding=config.global_padding)
self.norm2 = BitGroupNormActivation(config, num_channels=mid_channels)
self.conv2 = WeightStandardizedConv2d(
mid_channels, mid_channels, 3, stride=stride, groups=groups, eps=1e-8, padding=config.global_padding
)
self.norm3 = BitGroupNormActivation(config, mid_channels)
self.conv3 = WeightStandardizedConv2d(mid_channels, out_channels, 1, eps=1e-8, padding=config.global_padding)
self.drop_path = BitDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
def forward(self, hidden_states):
hidden_states_preact = self.norm1(hidden_states)
# shortcut branch
shortcut = hidden_states
if self.downsample is not None:
shortcut = self.downsample(hidden_states_preact)
# residual branch
hidden_states = self.conv1(hidden_states_preact)
hidden_states = self.conv2(self.norm2(hidden_states))
hidden_states = self.conv3(self.norm3(hidden_states))
hidden_states = self.drop_path(hidden_states)
return hidden_states + shortcut
class BitBottleneckLayer(nn.Module):
"""Non Pre-activation bottleneck block, equivalent to V1.5/V1b bottleneck. Used for ViT Hybrid."""
def __init__(
self,
config,
in_channels,
out_channels=None,
bottle_ratio=0.25,
stride=1,
dilation=1,
first_dilation=None,
groups=1,
drop_path_rate=0.0,
is_first_layer=False,
):
super().__init__()
first_dilation = first_dilation or dilation
out_channels = out_channels or in_channels
mid_chs = make_div(out_channels * bottle_ratio)
if is_first_layer:
self.downsample = BitDownsampleConv(
config,
in_channels,
out_channels,
stride=stride,
preact=False,
)
else:
self.downsample = None
self.conv1 = WeightStandardizedConv2d(in_channels, mid_chs, 1, eps=1e-8, padding=config.global_padding)
self.norm1 = BitGroupNormActivation(config, num_channels=mid_chs)
self.conv2 = WeightStandardizedConv2d(
mid_chs,
mid_chs,
3,
stride=stride,
dilation=first_dilation,
groups=groups,
eps=1e-8,
padding=config.global_padding,
)
self.norm2 = BitGroupNormActivation(config, num_channels=mid_chs)
self.conv3 = WeightStandardizedConv2d(mid_chs, out_channels, 1, eps=1e-8, padding=config.global_padding)
self.norm3 = BitGroupNormActivation(config, num_channels=out_channels, apply_activation=False)
self.drop_path = BitDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
self.activation = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
# shortcut branch
shortcut = hidden_states
if self.downsample is not None:
shortcut = self.downsample(hidden_states)
# residual
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm1(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = self.norm2(hidden_states)
hidden_states = self.conv3(hidden_states)
hidden_states = self.norm3(hidden_states)
hidden_states = self.drop_path(hidden_states)
hidden_states = self.activation(hidden_states + shortcut)
return hidden_states
class BitDownsampleConv(nn.Module):
def __init__(
self,
config,
in_channels,
out_channels,
stride=1,
preact=True,
):
super().__init__()
self.conv = WeightStandardizedConv2d(
in_channels, out_channels, 1, stride=stride, eps=1e-8, padding=config.global_padding
)
self.norm = (
nn.Identity()
if preact
else BitGroupNormActivation(config, num_channels=out_channels, apply_activation=False)
)
def forward(self, x):
return self.norm(self.conv(x))
class BitStage(nn.Module):
"""
A ResNet v2 stage composed by stacked layers.
"""
def __init__(
self,
config,
in_channels,
out_channels,
stride,
dilation,
depth,
bottle_ratio=0.25,
layer_dropout=None,
):
super().__init__()
first_dilation = 1 if dilation in (1, 2) else 2
# Get the layer type
if config.layer_type == "bottleneck":
layer_cls = BitBottleneckLayer
else:
layer_cls = BitPreActivationBottleneckLayer
prev_chs = in_channels
self.layers = nn.Sequential()
for layer_idx in range(depth):
# Get the current hyper-parameters
stride, drop_path_rate, is_first_layer = self._get_updated_hyperparameters(
layer_idx, stride, layer_dropout
)
self.layers.add_module(
str(layer_idx),
layer_cls(
config,
prev_chs,
out_channels,
stride=stride,
dilation=dilation,
bottle_ratio=bottle_ratio,
first_dilation=first_dilation,
drop_path_rate=drop_path_rate,
is_first_layer=is_first_layer,
),
)
prev_chs = out_channels
first_dilation = dilation
def _get_updated_hyperparameters(self, layer_idx, stride, layer_dropout):
r"""
Get the new hyper-parameters with respect to the previous ones and the index of the current layer.
"""
if layer_dropout:
drop_path_rate = layer_dropout[layer_idx]
else:
drop_path_rate = 0.0
if layer_idx != 0:
stride = 1
is_first_layer = layer_idx == 0
return stride, drop_path_rate, is_first_layer
def forward(self, input: Tensor) -> Tensor:
hidden_state = input
for _, layer in enumerate(self.layers):
hidden_state = layer(hidden_state)
return hidden_state
class BitEncoder(nn.Module):
def __init__(self, config: BitConfig):
super().__init__()
self.stages = nn.ModuleList([])
prev_chs = config.embedding_size
# These needs to stay hardcoded
current_stride = 4
dilation = 1
layer_dropouts = [
x.tolist()
for x in torch.Tensor(np.linspace(0, config.drop_path_rate, sum(config.depths))).split(config.depths)
]
for stage_idx, (current_depth, current_hidden_size, layer_dropout) in enumerate(
zip(config.depths, config.hidden_sizes, layer_dropouts)
):
# Get the updated hyper params
out_channels, stride, dilation = self._get_updated_hyperparameters(
stage_idx, current_stride, current_hidden_size, dilation, config
)
stage = BitStage(
config,
prev_chs,
out_channels,
stride=stride,
dilation=dilation,
depth=current_depth,
layer_dropout=layer_dropout,
)
prev_chs = out_channels
current_stride *= stride
self.stages.add_module(str(stage_idx), stage)
def _get_updated_hyperparameters(self, stage_idx, current_stride, current_hidden_size, dilation, config):
out_channels = make_div(current_hidden_size * config.width_factor)
stride = 1 if stage_idx == 0 else 2
if current_stride >= config.output_stride:
dilation *= stride
stride = 1
return out_channels, stride, dilation
def forward(
self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True
) -> BaseModelOutputWithNoAttention:
hidden_states = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
hidden_states = hidden_states + (hidden_state,)
hidden_state = stage_module(hidden_state)
if output_hidden_states:
hidden_states = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(
last_hidden_state=hidden_state,
hidden_states=hidden_states,
)
class BitPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BitConfig
base_model_prefix = "bit"
main_input_name = "pixel_values"
_no_split_modules = ["BitEmbeddings"]
def _init_weights(self, module):
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
# copied from the `reset_parameters` method of `class Linear(Module)` in `torch`.
elif isinstance(module, nn.Linear):
nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
if module.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(module.bias, -bound, bound)
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
BIT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`BitConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`BitImageProcessor.__call__`]
for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare BiT model outputting raw features without any specific head on top.",
BIT_START_DOCSTRING,
)
class BitModel(BitPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embedder = BitEmbeddings(config)
self.encoder = BitEncoder(config)
self.norm = (
BitGroupNormActivation(config, num_channels=config.hidden_sizes[-1])
if config.layer_type == "preactivation"
else nn.Identity()
)
self.pooler = nn.AdaptiveAvgPool2d((1, 1))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
) -> BaseModelOutputWithPoolingAndNoAttention:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
embedding_output = self.embedder(pixel_values)
encoder_outputs = self.encoder(
embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.norm(last_hidden_state)
pooled_output = self.pooler(last_hidden_state)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"""
BiT Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
BIT_START_DOCSTRING,
)
class BitForImageClassification(BitPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bit = BitModel(config)
# classification head
self.classifier = nn.Sequential(
nn.Flatten(),
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(),
)
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> ImageClassifierOutputWithNoAttention:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
@add_start_docstrings(
"""
BiT backbone, to be used with frameworks like DETR and MaskFormer.
""",
BIT_START_DOCSTRING,
)
class BitBackbone(BitPreTrainedModel, BackboneMixin):
def __init__(self, config):
super().__init__(config)
super()._init_backbone(config)
self.bit = BitModel(config)
self.num_features = [config.embedding_size] + config.hidden_sizes
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("google/bit-50")
>>> model = AutoBackbone.from_pretrained("google/bit-50")
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.bit(pixel_values, output_hidden_states=True, return_dict=True)
hidden_states = outputs.hidden_states
feature_maps = ()
for idx, stage in enumerate(self.stage_names):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
output = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=None,
)
__all__ = ["BitForImageClassification", "BitModel", "BitPreTrainedModel", "BitBackbone"]
```
|
==================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.15 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\blenderbot\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_blenderbot import *
from .modeling_blenderbot import *
from .modeling_flax_blenderbot import *
from .modeling_tf_blenderbot import *
from .tokenization_blenderbot import *
from .tokenization_blenderbot_fast import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==================================================================================================================================================
SOURCE CODE FILE: configuration_blenderbot.py
LINES: 1
SIZE: 18.40 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\blenderbot\configuration_blenderbot.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Blenderbot model configuration"""
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
logger = logging.get_logger(__name__)
class BlenderbotConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BlenderbotModel`]. It is used to instantiate an
Blenderbot model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Blenderbot
[facebook/blenderbot-3B](https://huggingface.co/facebook/blenderbot-3B) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the Blenderbot model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`BlenderbotModel`] or [`TFBlenderbotModel`].
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
max_position_embeddings (`int`, *optional*, defaults to 128):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
scale_embedding (`bool`, *optional*, defaults to `False`):
Scale embeddings by diving by sqrt(d_model).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models)
forced_eos_token_id (`int`, *optional*, defaults to 2):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
Example:
```python
>>> from transformers import BlenderbotConfig, BlenderbotModel
>>> # Initializing a Blenderbot facebook/blenderbot-3B style configuration
>>> configuration = BlenderbotConfig()
>>> # Initializing a model (with random weights) from the facebook/blenderbot-3B style configuration
>>> model = BlenderbotModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "blenderbot"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
vocab_size=8008,
max_position_embeddings=128,
encoder_layers=2,
encoder_ffn_dim=10240,
encoder_attention_heads=32,
decoder_layers=24,
decoder_ffn_dim=10240,
decoder_attention_heads=32,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
activation_function="gelu",
d_model=2560,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
decoder_start_token_id=1,
scale_embedding=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
encoder_no_repeat_ngram_size=3,
forced_eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
encoder_no_repeat_ngram_size=encoder_no_repeat_ngram_size,
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
class BlenderbotOnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
common_inputs["decoder_input_ids"] = {0: "batch"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
elif self.task == "causal-lm":
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
_, num_decoder_layers = self.num_layers
for i in range(num_decoder_layers):
common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
else:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
]
)
return common_inputs
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
def outputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
common_outputs = super().outputs
else:
common_outputs = super(OnnxConfigWithPast, self).outputs
if self.use_past:
num_encoder_layers, _ = self.num_layers
for i in range(num_encoder_layers):
common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair, framework
)
# Generate decoder inputs
decoder_seq_length = seq_length if not self.use_past else 1
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, decoder_seq_length, is_pair, framework
)
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
common_inputs = dict(**encoder_inputs, **decoder_inputs)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, encoder_seq_length = common_inputs["input_ids"].shape
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
encoder_shape = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
decoder_past_length = decoder_seq_length
decoder_shape = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
common_inputs["decoder_attention_mask"] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
)
common_inputs["past_key_values"] = []
_, num_decoder_layers = self.num_layers
for _ in range(num_decoder_layers):
common_inputs["past_key_values"].append(
(
torch.zeros(decoder_shape),
torch.zeros(decoder_shape),
torch.zeros(encoder_shape),
torch.zeros(encoder_shape),
)
)
return common_inputs
def _generate_dummy_inputs_for_causal_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair, framework
)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
past_key_values_length = seqlen
_, num_decoder_layers = self.num_layers
num_encoder_attention_heads, _ = self.num_attention_heads
past_shape = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
mask_dtype = common_inputs["attention_mask"].dtype
common_inputs["attention_mask"] = torch.cat(
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
)
common_inputs["past_key_values"] = [
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_decoder_layers)
]
return common_inputs
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._generate_dummy_inputs_for_sequence_classification_and_question_answering
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
seq_length = compute_effective_axis_dimension(
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
)
# Generate dummy inputs according to compute batch and sequence
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
return common_inputs
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.generate_dummy_inputs
def generate_dummy_inputs(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
elif self.task == "causal-lm":
common_inputs = self._generate_dummy_inputs_for_causal_lm(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
else:
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
return common_inputs
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._flatten_past_key_values_
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
if self.task in ["default", "seq2seq-lm"]:
flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
else:
flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
flattened_output, name, idx, t
)
def fill_with_past_key_values_(self, inputs_or_outputs: Mapping[str, Mapping[int, str]], direction: str):
if direction not in ["inputs", "outputs"]:
raise ValueError(f'direction must either be "inputs" or "outputs", but {direction} was given')
name = "past_key_values" if direction == "inputs" else "present"
_, num_decoder_layers = self.num_layers
encoder_sequence = "past_encoder_sequence"
decoder_sequence = "past_decoder_sequence" if direction == "inputs" else "past_decoder_sequence + sequence"
for i in range(num_decoder_layers):
inputs_or_outputs[f"{name}.{i}.decoder.key"] = {0: "batch", 2: decoder_sequence}
inputs_or_outputs[f"{name}.{i}.decoder.value"] = {0: "batch", 2: decoder_sequence}
inputs_or_outputs[f"{name}.{i}.encoder.key"] = {0: "batch", 2: encoder_sequence}
inputs_or_outputs[f"{name}.{i}.encoder.value"] = {0: "batch", 2: encoder_sequence}
__all__ = ["BlenderbotConfig", "BlenderbotOnnxConfig"]
```
|
=============================================================================================================================================
SOURCE CODE FILE: modeling_blenderbot.py
LINES: 1
SIZE: 72.32 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\blenderbot\modeling_blenderbot.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Blenderbot model."""
import copy
import math
import os
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ..blenderbot_small import BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel
from .configuration_blenderbot import BlenderbotConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "BlenderbotConfig"
_CHECKPOINT_FOR_DOC = "facebook/blenderbot-400M-distill"
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class BlenderbotLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
super().__init__(num_embeddings, embedding_dim)
def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids_shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
)
return super().forward(positions)
# Copied from transformers.models.bart.modeling_bart.BartScaledWordEmbedding with Bart->Blenderbot
class BlenderbotScaledWordEmbedding(nn.Embedding):
"""
This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
super().__init__(num_embeddings, embedding_dim, padding_idx)
self.embed_scale = embed_scale
def forward(self, input_ids: torch.Tensor):
return super().forward(input_ids) * self.embed_scale
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Blenderbot
class BlenderbotAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[BlenderbotConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
BLENDERBOT_ATTENTION_CLASSES = {"eager": BlenderbotAttention}
# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Blenderbot, MBART->BLENDERBOT
class BlenderbotEncoderLayer(nn.Module):
def __init__(self, config: BlenderbotConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = BLENDERBOT_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
config=config,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16:
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Blenderbot, MBART->BLENDERBOT
class BlenderbotDecoderLayer(nn.Module):
def __init__(self, config: BlenderbotConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = BLENDERBOT_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
is_causal=True,
config=config,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = BLENDERBOT_ATTENTION_CLASSES[config._attn_implementation](
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
config=config,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class BlenderbotPreTrainedModel(PreTrainedModel):
config_class = BlenderbotConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
dummy_inputs = {
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
"decoder_input_ids": input_ids,
}
return dummy_inputs
BLENDERBOT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`BlenderbotConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BLENDERBOT_GENERATION_EXAMPLE = r"""
Conversation example:
```python
>>> from transformers import AutoTokenizer, BlenderbotForConditionalGeneration
>>> mname = "facebook/blenderbot-400M-distill"
>>> model = BlenderbotForConditionalGeneration.from_pretrained(mname)
>>> tokenizer = AutoTokenizer.from_pretrained(mname)
>>> UTTERANCE = "My friends are cool but they eat too many carbs."
>>> print("Human: ", UTTERANCE)
Human: My friends are cool but they eat too many carbs.
>>> inputs = tokenizer([UTTERANCE], return_tensors="pt")
>>> reply_ids = model.generate(**inputs)
>>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])
Bot: That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?
>>> REPLY = "I'm not sure"
>>> print("Human: ", REPLY)
Human: I'm not sure
>>> NEXT_UTTERANCE = (
... "My friends are cool but they eat too many carbs.</s> <s>That's unfortunate. "
... "Are they trying to lose weight or are they just trying to be healthier?</s> "
... "<s> I'm not sure."
... )
>>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="pt")
>>> next_reply_ids = model.generate(**inputs)
>>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
Bot: I see. Well, it's good that they're trying to change their eating habits.
```
"""
BLENDERBOT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
Blenderbot uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class BlenderbotEncoder(BlenderbotPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`BlenderbotEncoderLayer`].
Args:
config: BlenderbotConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = BlenderbotScaledWordEmbedding(
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
)
self.embed_positions = BlenderbotLearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
)
self.layers = nn.ModuleList([BlenderbotEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
embed_pos = self.embed_positions(input_shape)
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# add final layer norm
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class BlenderbotDecoder(BlenderbotPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BlenderbotDecoderLayer`]
Args:
config: BlenderbotConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = BlenderbotScaledWordEmbedding(
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
self.embed_positions = BlenderbotLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
)
self.layers = nn.ModuleList([BlenderbotDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input_shape, past_key_values_length)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add final layer norm
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare Blenderbot Model outputting raw hidden-states without any specific head on top.",
BLENDERBOT_START_DOCSTRING,
)
class BlenderbotModel(BlenderbotPreTrainedModel):
_tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]
def __init__(self, config: BlenderbotConfig):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.shared = BlenderbotScaledWordEmbedding(vocab_size, config.d_model, padding_idx, embed_scale=embed_scale)
self.encoder = BlenderbotEncoder(config, self.shared)
self.decoder = BlenderbotDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
if pretrained_model_name_or_path == "facebook/blenderbot-90M":
warnings.warn(
"The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical"
" checkpoint `facebook/small_blenderbot-90M` with"
" `BlenderbotSmallModel.from_pretrained('facebook/small_blenderbot-90M')` instead.",
FutureWarning,
)
return BlenderbotSmallModel.from_pretrained(pretrained_model_name_or_path)
return super(BlenderbotModel, cls).from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, BlenderbotModel
>>> model = BlenderbotModel.from_pretrained("facebook/blenderbot-400M-distill")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 6, 1280]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The Blenderbot Model with a language modeling head. Can be used for summarization.", BLENDERBOT_START_DOCSTRING
)
class BlenderbotForConditionalGeneration(BlenderbotPreTrainedModel, GenerationMixin):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = ["final_logits_bias"]
_tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: BlenderbotConfig):
super().__init__(config)
self.model = BlenderbotModel(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
if pretrained_model_name_or_path == "facebook/blenderbot-90M":
warnings.warn(
"The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical"
" checkpoint `facebook/small_blenderbot-90M` with"
" `BlenderbotSmallForConditionalGeneration.from_pretrained('facebook/small_blenderbot-90M')` instead.",
FutureWarning,
)
return BlenderbotSmallForConditionalGeneration.from_pretrained(pretrained_model_name_or_path)
return super(BlenderbotForConditionalGeneration, cls).from_pretrained(
pretrained_model_name_or_path, *model_args, **kwargs
)
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def resize_token_embeddings(
self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None, mean_resizing: bool = True
) -> nn.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing)
self._resize_final_logits_bias(new_embeddings.weight.shape[0])
return new_embeddings
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
old_num_tokens = self.final_logits_bias.shape[-1]
if new_num_tokens <= old_num_tokens:
new_bias = self.final_logits_bias[:, :new_num_tokens]
else:
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(BLENDERBOT_GENERATION_EXAMPLE)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->Blenderbot
class BlenderbotDecoderWrapper(BlenderbotPreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = BlenderbotDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->Blenderbot, facebook/bart-base->facebook/blenderbot-400M-distill
class BlenderbotForCausalLM(BlenderbotPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
super().__init__(config)
self.model = BlenderbotDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, BlenderbotForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> model = BlenderbotForCausalLM.from_pretrained("facebook/blenderbot-400M-distill", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
labels = labels.to(logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
__all__ = [
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
```
|
==================================================================================================================================================
SOURCE CODE FILE: modeling_flax_blenderbot.py
LINES: 1
SIZE: 63.57 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\blenderbot\modeling_flax_blenderbot.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flax Blenderbot model."""
import math
import random
from functools import partial
from typing import Callable, Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from jax.random import PRNGKey
from ...modeling_flax_outputs import (
FlaxBaseModelOutput,
FlaxBaseModelOutputWithPastAndCrossAttentions,
FlaxCausalLMOutputWithCrossAttentions,
FlaxSeq2SeqLMOutput,
FlaxSeq2SeqModelOutput,
)
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_call_sample_docstring,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_blenderbot import BlenderbotConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "BlenderbotConfig"
_CHECKPOINT_FOR_DOC = "facebook/blenderbot-400M-distill"
BLENDERBOT_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`BlenderbotConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
"""
BLENDERBOT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
BLENDERBOT_ENCODE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
BLENDERBOT_DECODE_INPUTS_DOCSTRING = r"""
Args:
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
encoder_outputs (`tuple(tuple(jnp.ndarray)`):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
shifted_input_ids = jnp.zeros_like(input_ids)
shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1])
shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id)
shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)
return shifted_input_ids
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->Blenderbot
class FlaxBlenderbotAttention(nn.Module):
config: BlenderbotConfig
embed_dim: int
num_heads: int
dropout: float = 0.0
causal: bool = False
bias: bool = True
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self) -> None:
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {self.num_heads})."
)
dense = partial(
nn.Dense,
self.embed_dim,
use_bias=self.bias,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
self.out_proj = dense()
self.dropout_layer = nn.Dropout(rate=self.dropout)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
@nn.compact
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slightly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states: jnp.ndarray,
key_value_states: Optional[jnp.ndarray] = None,
attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self.k_proj(key_value_states)
value_states = self.v_proj(key_value_states)
else:
# self_attention
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# handle cache prepare causal attention mask
if self.causal:
query_length, key_length = query_states.shape[1], key_states.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = self._merge_heads(attn_output)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
# Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartEncoderLayer with MBart->Blenderbot
class FlaxBlenderbotEncoderLayer(nn.Module):
config: BlenderbotConfig
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = FlaxBlenderbotAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.encoder_attention_heads,
dropout=self.config.attention_dropout,
dtype=self.dtype,
)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
self.fc1 = nn.Dense(
self.config.encoder_ffn_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: jnp.ndarray,
output_attentions: bool = True,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->Blenderbot
class FlaxBlenderbotEncoderLayerCollection(nn.Module):
config: BlenderbotConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxBlenderbotEncoderLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.encoder_layers)
]
self.layerdrop = self.config.encoder_layerdrop
def __call__(
self,
hidden_states,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for encoder_layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions,
deterministic,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states, all_hidden_states, all_attentions)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
# Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartDecoderLayer with MBart->Blenderbot
class FlaxBlenderbotDecoderLayer(nn.Module):
config: BlenderbotConfig
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = FlaxBlenderbotAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
causal=True,
dtype=self.dtype,
)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.encoder_attn = FlaxBlenderbotAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
dtype=self.dtype,
)
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.fc1 = nn.Dense(
self.config.decoder_ffn_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: jnp.ndarray,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = True,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->Blenderbot
class FlaxBlenderbotDecoderLayerCollection(nn.Module):
config: BlenderbotConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxBlenderbotDecoderLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.decoder_layers)
]
self.layerdrop = self.config.decoder_layerdrop
def __call__(
self,
hidden_states,
attention_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if not deterministic and (dropout_probability < self.layerdrop):
layer_outputs = (None, None, None)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
class FlaxBlenderbotEncoder(nn.Module):
config: BlenderbotConfig
embed_tokens: nn.Embed
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.max_source_positions = self.config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
self.embed_positions = nn.Embed(
self.config.max_position_embeddings,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
self.layers = FlaxBlenderbotEncoderLayerCollection(self.config, self.dtype)
self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
input_shape = input_ids.shape
input_ids = input_ids.reshape(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(position_ids)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
outputs = self.layers(
hidden_states,
attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_states = outputs[0]
last_hidden_states = self.layer_norm(last_hidden_states)
# update the last element in `hidden_states` after applying `layernorm` above
hidden_states = None
if output_hidden_states:
hidden_states = outputs[1]
hidden_states = hidden_states[:-1] + (last_hidden_states,)
if not return_dict:
outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=last_hidden_states,
hidden_states=hidden_states,
attentions=outputs.attentions,
)
class FlaxBlenderbotDecoder(nn.Module):
config: BlenderbotConfig
embed_tokens: nn.Embed
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.max_target_positions = self.config.max_position_embeddings
self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
self.embed_positions = nn.Embed(
self.config.max_position_embeddings,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
self.layers = FlaxBlenderbotDecoderLayerCollection(self.config, self.dtype)
self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
input_shape = input_ids.shape
input_ids = input_ids.reshape(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
# embed positions
positions = self.embed_positions(position_ids)
hidden_states = inputs_embeds + positions
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
outputs = self.layers(
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_states = outputs[0]
last_hidden_states = self.layer_norm(last_hidden_states)
# update the last element in `hidden_states` after applying `layernorm` above
hidden_states = None
if output_hidden_states:
hidden_states = outputs[1]
hidden_states = hidden_states[:-1] + (last_hidden_states,)
if not return_dict:
outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=last_hidden_states,
hidden_states=hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModule with Bart->Blenderbot
class FlaxBlenderbotModule(nn.Module):
config: BlenderbotConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
dtype=self.dtype,
)
self.encoder = FlaxBlenderbotEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
self.decoder = FlaxBlenderbotDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
def _get_encoder_module(self):
return self.encoder
def _get_decoder_module(self):
return self.decoder
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return FlaxSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
class FlaxBlenderbotPreTrainedModel(FlaxPreTrainedModel):
config_class = BlenderbotConfig
base_model_prefix: str = "model"
module_class: nn.Module = None
def __init__(
self,
config: BlenderbotConfig,
input_shape: Tuple[int] = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
# make sure initialization pass will work for FlaxBlenderbotForSequenceClassificationModule
input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id)
attention_mask = jnp.ones_like(input_ids)
decoder_input_ids = input_ids
decoder_attention_mask = jnp.ones_like(input_ids)
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(
rngs,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length, encoder_outputs):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
`encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
`attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
cross-attention of the decoder.
"""
# init input variables to retrieve cache
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
decoder_position_ids = jnp.broadcast_to(
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape
)
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
init_variables = self.module.init(
jax.random.PRNGKey(0),
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
init_cache=True,
method=_decoder_forward, # we only need to call the decoder to init the cache
)
return unfreeze(init_variables["cache"])
@add_start_docstrings(BLENDERBOT_ENCODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=BlenderbotConfig)
def encode(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
>>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs):
encode_module = module._get_encoder_module()
return encode_module(input_ids, attention_mask, position_ids, **kwargs)
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
method=_encoder_forward,
)
@add_start_docstrings(BLENDERBOT_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(
output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=BlenderbotConfig
)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
>>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
if decoder_position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxBlenderbotAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past = outputs
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past = outputs
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
@add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
decoder_input_ids: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# prepare encoder inputs
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# prepare decoder inputs
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(
input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
)
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
if decoder_position_ids is None:
batch_size, sequence_length = decoder_input_ids.shape
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
)
@add_start_docstrings(
"The bare MBart Model transformer outputting raw hidden-states without any specific head on top.",
BLENDERBOT_START_DOCSTRING,
)
class FlaxBlenderbotModel(FlaxBlenderbotPreTrainedModel):
config: BlenderbotConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
module_class = FlaxBlenderbotModule
append_call_sample_docstring(FlaxBlenderbotModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC)
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule with Bart->Blenderbot
class FlaxBlenderbotForConditionalGenerationModule(nn.Module):
config: BlenderbotConfig
dtype: jnp.dtype = jnp.float32
bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
def setup(self):
self.model = FlaxBlenderbotModule(config=self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.model.shared.num_embeddings,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings))
def _get_encoder_module(self):
return self.model.encoder
def _get_decoder_module(self):
return self.model.decoder
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
position_ids=position_ids,
decoder_position_ids=decoder_position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.model.variables["params"]["shared"]["embedding"]
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return output
return FlaxSeq2SeqLMOutput(
logits=lm_logits,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"The Blenderbot Model with a language modeling head. Can be used for summarization.", BLENDERBOT_START_DOCSTRING
)
class FlaxBlenderbotForConditionalGeneration(FlaxBlenderbotPreTrainedModel):
module_class = FlaxBlenderbotForConditionalGenerationModule
dtype: jnp.dtype = jnp.float32
@add_start_docstrings(BLENDERBOT_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=BlenderbotConfig)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
>>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
if decoder_position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxBlenderbotAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
outputs = decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = module.model.variables["params"]["shared"]["embedding"]
lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
lm_logits = module.lm_head(hidden_states)
lm_logits += module.final_logits_bias
return lm_logits, outputs
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
if past_key_values is None:
lm_logits, decoder_outputs = outputs
else:
(lm_logits, decoder_outputs), past = outputs
if return_dict:
outputs = FlaxCausalLMOutputWithCrossAttentions(
logits=lm_logits,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
)
else:
outputs = (lm_logits,) + decoder_outputs[1:]
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
def prepare_inputs_for_generation(
self,
decoder_input_ids,
max_length,
attention_mask: Optional[jax.Array] = None,
decoder_attention_mask: Optional[jax.Array] = None,
encoder_outputs=None,
**kwargs,
):
# initializing the cache
batch_size, seq_length = decoder_input_ids.shape
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if decoder_attention_mask is not None:
position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"encoder_attention_mask": attention_mask,
"decoder_attention_mask": extended_attention_mask,
"decoder_position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1
return model_kwargs
FLAX_BLENDERBOT_CONDITIONAL_GENERATION_DOCSTRING = r"""
Returns:
Conversation example::
```py
>>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration
>>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> UTTERANCE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([UTTERANCE], max_length=1024, return_tensors="np")
>>> # Generate Reply
>>> reply_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5, early_stopping=True).sequences
>>> print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in reply_ids])
```
"""
overwrite_call_docstring(
FlaxBlenderbotForConditionalGeneration,
BLENDERBOT_INPUTS_DOCSTRING + FLAX_BLENDERBOT_CONDITIONAL_GENERATION_DOCSTRING,
)
append_replace_return_docstrings(
FlaxBlenderbotForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
)
__all__ = ["FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel"]
```
|
================================================================================================================================================
SOURCE CODE FILE: modeling_tf_blenderbot.py
LINES: 1
SIZE: 71.09 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\blenderbot\modeling_tf_blenderbot.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The Facebook, Inc and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF 2.0 Blenderbot model."""
from __future__ import annotations
import os
import random
import warnings
from typing import List, Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPastAndCrossAttentions,
TFSeq2SeqLMOutput,
TFSeq2SeqModelOutput,
)
# Public API
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFPreTrainedModel,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_blenderbot import BlenderbotConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/blenderbot-400M-distill"
_CONFIG_FOR_DOC = "BlenderbotConfig"
LARGE_NEGATIVE = -1e8
# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
start_tokens = tf.fill(
(shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)
)
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids = tf.where(
shifted_input_ids == -100,
tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)),
shifted_input_ids,
)
# "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
# Make sure the assertion op is called by wrapping the result in an identity no-op
with tf.control_dependencies([assert_gte0]):
shifted_input_ids = tf.identity(shifted_input_ids)
return shifted_input_ids
# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz = input_ids_shape[0]
tgt_len = input_ids_shape[1]
mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
mask_cond = tf.range(shape_list(mask)[-1])
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
if past_key_values_length > 0:
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
src_len = shape_list(mask)[1]
tgt_len = tgt_len if tgt_len is not None else src_len
one_cst = tf.constant(1.0)
mask = tf.cast(mask, dtype=one_cst.dtype)
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
return (one_cst - expanded_mask) * LARGE_NEGATIVE
class TFBlenderbotLearnedPositionalEmbedding(keras.layers.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs):
super().__init__(num_embeddings, embedding_dim, **kwargs)
def call(
self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None
):
"""Input is expected to be of size [bsz x seqlen]."""
if position_ids is None:
seq_len = input_shape[1]
position_ids = tf.range(seq_len, delta=1, name="range")
position_ids += past_key_values_length
return super().call(tf.cast(position_ids, dtype=tf.int32))
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->Blenderbot
class TFBlenderbotAttention(keras.layers.Layer):
"""Multi-headed attention from "Attention Is All You Need"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
def call(
self,
hidden_states: tf.Tensor,
key_value_states: tf.Tensor | None = None,
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
attention_mask: tf.Tensor | None = None,
layer_head_mask: tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor, tf.Tensor | None]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = shape_list(hidden_states)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = tf.concat([past_key_value[0], key_states], axis=2)
value_states = tf.concat([past_key_value[1], value_states], axis=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
key_states = tf.reshape(key_states, proj_shape)
value_states = tf.reshape(value_states, proj_shape)
src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
tf.debugging.assert_equal(
shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len],
message=(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {shape_list(attn_weights)}"
),
)
if attention_mask is not None:
tf.debugging.assert_equal(
shape_list(attention_mask),
[bsz, 1, tgt_len, src_len],
message=(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {shape_list(attention_mask)}"
),
)
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None:
tf.debugging.assert_equal(
shape_list(layer_head_mask),
[self.num_heads],
message=(
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
f" {shape_list(layer_head_mask)}"
),
)
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
)
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states)
tf.debugging.assert_equal(
shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim],
message=(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {shape_list(attn_output)}"
),
)
attn_output = tf.transpose(
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
)
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
attn_output = self.out_proj(attn_output)
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
return attn_output, attn_weights, past_key_value
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "k_proj", None) is not None:
with tf.name_scope(self.k_proj.name):
self.k_proj.build([None, None, self.embed_dim])
if getattr(self, "q_proj", None) is not None:
with tf.name_scope(self.q_proj.name):
self.q_proj.build([None, None, self.embed_dim])
if getattr(self, "v_proj", None) is not None:
with tf.name_scope(self.v_proj.name):
self.v_proj.build([None, None, self.embed_dim])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.embed_dim])
# Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartEncoderLayer with MBart->Blenderbot
class TFBlenderbotEncoderLayer(keras.layers.Layer):
def __init__(self, config: BlenderbotConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFBlenderbotAttention(
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
)
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.dropout = keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
self.config = config
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
layer_head_mask: tf.Tensor,
training: Optional[bool] = False,
):
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
attention_mask (`tf.Tensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
*(encoder_attention_heads,)*
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, self_attn_weights, _ = self.self_attn(
hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
)
tf.debugging.assert_equal(
shape_list(hidden_states),
shape_list(residual),
message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
return hidden_states, self_attn_weights
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attn", None) is not None:
with tf.name_scope(self.self_attn.name):
self.self_attn.build(None)
if getattr(self, "self_attn_layer_norm", None) is not None:
with tf.name_scope(self.self_attn_layer_norm.name):
self.self_attn_layer_norm.build([None, None, self.embed_dim])
if getattr(self, "fc1", None) is not None:
with tf.name_scope(self.fc1.name):
self.fc1.build([None, None, self.embed_dim])
if getattr(self, "fc2", None) is not None:
with tf.name_scope(self.fc2.name):
self.fc2.build([None, None, self.config.encoder_ffn_dim])
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.embed_dim])
# Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartDecoderLayer with MBart->Blenderbot
class TFBlenderbotDecoderLayer(keras.layers.Layer):
def __init__(self, config: BlenderbotConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFBlenderbotAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
name="self_attn",
is_decoder=True,
)
self.dropout = keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.encoder_attn = TFBlenderbotAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
name="encoder_attn",
is_decoder=True,
)
self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
self.config = config
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor | None = None,
encoder_hidden_states: tf.Tensor | None = None,
encoder_attention_mask: tf.Tensor | None = None,
layer_head_mask: tf.Tensor | None = None,
cross_attn_layer_head_mask: tf.Tensor | None = None,
past_key_value: Tuple[tf.Tensor] | None = None,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
attention_mask (`tf.Tensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
encoder_hidden_states (`tf.Tensor`):
cross attention input to the layer of shape *(batch, seq_len, embed_dim)*
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
*(decoder_attention_heads,)*
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
*(decoder_attention_heads,)*
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
return (
hidden_states,
self_attn_weights,
cross_attn_weights,
present_key_value,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attn", None) is not None:
with tf.name_scope(self.self_attn.name):
self.self_attn.build(None)
if getattr(self, "self_attn_layer_norm", None) is not None:
with tf.name_scope(self.self_attn_layer_norm.name):
self.self_attn_layer_norm.build([None, None, self.embed_dim])
if getattr(self, "encoder_attn", None) is not None:
with tf.name_scope(self.encoder_attn.name):
self.encoder_attn.build(None)
if getattr(self, "encoder_attn_layer_norm", None) is not None:
with tf.name_scope(self.encoder_attn_layer_norm.name):
self.encoder_attn_layer_norm.build([None, None, self.embed_dim])
if getattr(self, "fc1", None) is not None:
with tf.name_scope(self.fc1.name):
self.fc1.build([None, None, self.embed_dim])
if getattr(self, "fc2", None) is not None:
with tf.name_scope(self.fc2.name):
self.fc2.build([None, None, self.config.decoder_ffn_dim])
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.embed_dim])
class TFBlenderbotPreTrainedModel(TFPreTrainedModel):
config_class = BlenderbotConfig
base_model_prefix = "model"
BLENDERBOT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Args:
config ([`BlenderbotConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
BLENDERBOT_GENERATION_EXAMPLE = r"""
Conversation example::
```py
>>> from transformers import AutoTokenizer, TFBlenderbotForConditionalGeneration
>>> mname = "facebook/blenderbot-400M-distill"
>>> model = TFBlenderbotForConditionalGeneration.from_pretrained(mname)
>>> tokenizer = AutoTokenizer.from_pretrained(mname)
>>> UTTERANCE = "My friends are cool but they eat too many carbs."
>>> print("Human: ", UTTERANCE)
>>> inputs = tokenizer([UTTERANCE], return_tensors="tf")
>>> reply_ids = model.generate(**inputs)
>>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])
>>> REPLY = "I'm not sure"
>>> print("Human: ", REPLY)
>>> NEXT_UTTERANCE = (
... "My friends are cool but they eat too many carbs.</s> <s>That's unfortunate. "
... "Are they trying to lose weight or are they just trying to be healthier?</s> "
... "<s> I'm not sure."
... )
>>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="tf")
>>> next_reply_ids = model.generate(**inputs)
>>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
```
"""
BLENDERBOT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
Blenderbot uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tf.FloatTensor`, *optional*):
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape `(batch_size, sequence_length, hidden_size)` is a sequence of
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@keras_serializable
class TFBlenderbotEncoder(keras.layers.Layer):
config_class = BlenderbotConfig
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`TFBlenderbotEncoderLayer`].
Args:
config: BlenderbotConfig
"""
def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
super().__init__(**kwargs)
self.config = config
self.dropout = keras.layers.Dropout(config.dropout)
self.layerdrop = config.encoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
self.embed_tokens = embed_tokens
self.embed_positions = TFBlenderbotLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
name="embed_positions",
)
self.layers = [TFBlenderbotEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
def get_embed_tokens(self):
return self.embed_tokens
def set_embed_tokens(self, embed_tokens):
self.embed_tokens = embed_tokens
@unpack_inputs
def call(
self,
input_ids=None,
inputs_embeds=None,
attention_mask=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
in the config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail. This argument can be used only in eager mode, in graph mode the value in the config
will be used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
in eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input_shape)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.dropout(hidden_states, training=training)
# check attention mask and invert
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask)
else:
attention_mask = None
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
tf.debugging.assert_equal(
shape_list(head_mask)[0],
len(self.layers),
message=(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {shape_list(head_mask)[0]}."
),
)
# encoder layers
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if training and (dropout_probability < self.layerdrop): # skip the layer
continue
hidden_states, attn = encoder_layer(
hidden_states,
attention_mask,
head_mask[idx] if head_mask is not None else None,
)
if output_attentions:
all_attentions += (attn,)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embed_positions", None) is not None:
with tf.name_scope(self.embed_positions.name):
self.embed_positions.build(None)
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.d_model])
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFBlenderbotDecoder(keras.layers.Layer):
config_class = BlenderbotConfig
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFBlenderbotDecoderLayer`]
Args:
config: BlenderbotConfig
embed_tokens: output embedding
"""
def __init__(self, config: BlenderbotConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
super().__init__(**kwargs)
self.config = config
self.padding_idx = config.pad_token_id
self.embed_tokens = embed_tokens
self.layerdrop = config.decoder_layerdrop
self.embed_positions = TFBlenderbotLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
name="embed_positions",
)
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
self.layers = [TFBlenderbotDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
self.dropout = keras.layers.Dropout(config.dropout)
def get_embed_tokens(self):
return self.embed_tokens
def set_embed_tokens(self, embed_tokens):
self.embed_tokens = embed_tokens
@unpack_inputs
def call(
self,
input_ids=None,
inputs_embeds=None,
attention_mask=None,
position_ids=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
r"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
in the config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail. This argument can be used only in eager mode, in graph mode the value in the config
will be used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
in eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
# embed positions
if position_ids is None:
positions = self.embed_positions(input_shape, past_key_values_length)
else:
positions = self.embed_positions(input_shape, position_ids=position_ids)
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
hidden_states = inputs_embeds
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
else:
combined_attention_mask = _expand_mask(
tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1]
)
if attention_mask is not None:
combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1])
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1])
hidden_states = hidden_states + positions
hidden_states = self.dropout(hidden_states, training=training)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None
present_key_values = () if use_cache else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
if attn_mask is not None:
tf.debugging.assert_equal(
shape_list(attn_mask)[0],
len(self.layers),
message=(
f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
f" {shape_list(attn_mask)[0]}."
),
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=head_mask[idx] if head_mask is not None else None,
cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
past_key_value=past_key_value,
)
if use_cache:
present_key_values += (present_key_value,)
if output_attentions:
all_self_attns += (layer_self_attn,)
if encoder_hidden_states is not None:
all_cross_attns += (layer_cross_attn,)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
else:
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attns,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embed_positions", None) is not None:
with tf.name_scope(self.embed_positions.name):
self.embed_positions.build(None)
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.d_model])
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFBlenderbotMainLayer(keras.layers.Layer):
config_class = BlenderbotConfig
def __init__(self, config: BlenderbotConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.shared = keras.layers.Embedding(
input_dim=config.vocab_size,
output_dim=config.d_model,
embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std),
name="model.shared",
)
# Additional attribute to specify the expected name scope of the layer (for loading/storing weights)
self.shared.load_weight_prefix = "model.shared"
self.encoder = TFBlenderbotEncoder(config, self.shared, name="encoder")
self.decoder = TFBlenderbotDecoder(config, self.shared, name="decoder")
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
@unpack_inputs
def call(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
decoder_position_ids=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput):
encoder_outputs = TFBaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
elif not return_dict and not isinstance(encoder_outputs, tuple):
encoder_outputs = encoder_outputs.to_tuple()
decoder_outputs = self.decoder(
decoder_input_ids,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return TFSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
# The shared/tied weights expect to be in the model base namespace
# Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than
# the current one.
with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"):
self.shared.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "decoder", None) is not None:
with tf.name_scope(self.decoder.name):
self.decoder.build(None)
@add_start_docstrings(
"The bare BLENDERBOT Model outputting raw hidden-states without any specific head on top.",
BLENDERBOT_START_DOCSTRING,
)
class TFBlenderbotModel(TFBlenderbotPreTrainedModel):
def __init__(self, config: BlenderbotConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.model = TFBlenderbotMainLayer(config, name="model")
def get_encoder(self):
return self.model.encoder
def get_decoder(self):
return self.model.decoder
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
if pretrained_model_name_or_path == "facebook/blenderbot-90M":
from ..blenderbot_small import TFBlenderbotSmallModel
warnings.warn(
"The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical"
" checkpoint `facebook/small_blenderbot-90M` with"
" `TFBlenderbotSmallForConditionalGeneration.from_pretrained('facebook/small_blenderbot-90M')`"
" instead.",
FutureWarning,
)
return TFBlenderbotSmallModel.from_pretrained(pretrained_model_name_or_path)
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
@unpack_inputs
@add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSeq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
decoder_input_ids: tf.Tensor | None = None,
decoder_attention_mask: tf.Tensor | None = None,
decoder_position_ids: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
decoder_head_mask: tf.Tensor | None = None,
cross_attn_head_mask: tf.Tensor | None = None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values: List[tf.Tensor] | None = None,
inputs_embeds: tf.Tensor | None = None,
decoder_inputs_embeds: tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]:
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
# Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
return TFSeq2SeqModelOutput(
last_hidden_state=output.last_hidden_state,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "model", None) is not None:
with tf.name_scope(self.model.name):
self.model.build(None)
# Copied from transformers.models.bart.modeling_tf_bart.BiasLayer
class BiasLayer(keras.layers.Layer):
"""
Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis,
so all weights have to be registered in a layer.
"""
def __init__(self, shape, initializer, trainable, name, **kwargs):
super().__init__(name=name, **kwargs)
# Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of
# "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see:
# https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214
self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable)
def call(self, x):
return x + self.bias
@add_start_docstrings(
"The BLENDERBOT Model with a language modeling head. Can be used for summarization.",
BLENDERBOT_START_DOCSTRING,
)
class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausalLanguageModelingLoss):
_keys_to_ignore_on_load_unexpected = [
r"model.encoder.embed_tokens.weight",
r"model.decoder.embed_tokens.weight",
]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.model = TFBlenderbotMainLayer(config, name="model")
self.use_cache = config.use_cache
# final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency.
self.bias_layer = BiasLayer(
name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False
)
def get_decoder(self):
return self.model.decoder
def get_encoder(self):
return self.model.encoder
def get_output_embeddings(self):
return self.get_input_embeddings()
def set_output_embeddings(self, value):
self.set_input_embeddings(value)
def get_bias(self):
return {"final_logits_bias": self.bias_layer.bias}
def set_bias(self, value):
# Replaces the existing layers containing bias for correct (de)serialization.
vocab_size = value["final_logits_bias"].shape[-1]
self.bias_layer = BiasLayer(
name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False
)
self.bias_layer.bias.assign(value["final_logits_bias"])
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
if pretrained_model_name_or_path == "facebook/blenderbot-90M":
from ..blenderbot_small import TFBlenderbotSmallForConditionalGeneration
warnings.warn(
"The checkpoint `facebook/blenderbot-90M` is deprecated. In the future, please use the identical"
" checkpoint `facebook/small_blenderbot-90M` with"
" `TFBlenderbotSmallForConditionalGeneration.from_pretrained('facebook/small_blenderbot-90M')`"
" instead.",
FutureWarning,
)
return TFBlenderbotSmallForConditionalGeneration.from_pretrained(pretrained_model_name_or_path)
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
@unpack_inputs
@add_start_docstrings_to_model_forward(BLENDERBOT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(BLENDERBOT_GENERATION_EXAMPLE)
def call(
self,
input_ids: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
decoder_input_ids: tf.Tensor | None = None,
decoder_attention_mask: tf.Tensor | None = None,
decoder_position_ids: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
decoder_head_mask: tf.Tensor | None = None,
cross_attn_head_mask: tf.Tensor | None = None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values: List[tf.Tensor] | None = None,
inputs_embeds: tf.Tensor | None = None,
decoder_inputs_embeds: tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]:
r"""
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
if labels is not None:
labels = tf.where(
labels == self.config.pad_token_id,
tf.cast(tf.fill(shape_list(labels), -100), labels.dtype),
labels,
)
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True)
lm_logits = self.bias_layer(lm_logits)
masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return TFSeq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values, # index 1 of d outputs
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
cross_attentions=outputs.cross_attentions, # index 4 of d outputs
encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
encoder_attentions=outputs.encoder_attentions, # 2 of e out
)
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
return TFSeq2SeqLMOutput(
logits=output.logits,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
)
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past_key_values is used
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
if decoder_attention_mask is not None: # xla
decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:]
elif past_key_values is not None: # no xla + past_key_values
decoder_position_ids = past_key_values[0][0].shape[2]
else: # no xla + no past_key_values
decoder_position_ids = tf.range(decoder_input_ids.shape[1])
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"decoder_position_ids": decoder_position_ids,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "model", None) is not None:
with tf.name_scope(self.model.name):
self.model.build(None)
if getattr(self, "bias_layer", None) is not None:
with tf.name_scope(self.bias_layer.name):
self.bias_layer.build(None)
__all__ = ["TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel"]
```
|
========================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.19 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\blenderbot_small\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_blenderbot_small import *
from .modeling_blenderbot_small import *
from .modeling_flax_blenderbot_small import *
from .modeling_tf_blenderbot_small import *
from .tokenization_blenderbot_small import *
from .tokenization_blenderbot_small_fast import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==============================================================================================================================================================
SOURCE CODE FILE: configuration_blenderbot_small.py
LINES: 1
SIZE: 17.85 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\blenderbot_small\configuration_blenderbot_small.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BlenderbotSmall model configuration"""
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
logger = logging.get_logger(__name__)
class BlenderbotSmallConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BlenderbotSmallModel`]. It is used to instantiate
an BlenderbotSmall model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the BlenderbotSmall
[facebook/blenderbot_small-90M](https://huggingface.co/facebook/blenderbot_small-90M) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the BlenderbotSmall model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`BlenderbotSmallModel`] or [`TFBlenderbotSmallModel`].
d_model (`int`, *optional*, defaults to 512):
Dimensionality of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 8):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 8):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
scale_embedding (`bool`, *optional*, defaults to `False`):
Scale embeddings by diving by sqrt(d_model).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models)
forced_eos_token_id (`int`, *optional*, defaults to 2):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
Example:
```python
>>> from transformers import BlenderbotSmallConfig, BlenderbotSmallModel
>>> # Initializing a BlenderbotSmall facebook/blenderbot_small-90M style configuration
>>> configuration = BlenderbotSmallConfig()
>>> # Initializing a model (with random weights) from the facebook/blenderbot_small-90M style configuration
>>> model = BlenderbotSmallModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "blenderbot-small"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
vocab_size=50265,
max_position_embeddings=512,
encoder_layers=8,
encoder_ffn_dim=2048,
encoder_attention_heads=16,
decoder_layers=8,
decoder_ffn_dim=2048,
decoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
activation_function="gelu",
d_model=512,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
decoder_start_token_id=1,
scale_embedding=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
forced_eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig
class BlenderbotSmallOnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
common_inputs["decoder_input_ids"] = {0: "batch"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
elif self.task == "causal-lm":
# TODO: figure this case out.
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
num_encoder_layers, _ = self.num_layers
for i in range(num_encoder_layers):
common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
else:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
]
)
return common_inputs
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
common_outputs = super().outputs
else:
common_outputs = super(OnnxConfigWithPast, self).outputs
if self.use_past:
num_encoder_layers, _ = self.num_layers
for i in range(num_encoder_layers):
common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair, framework
)
# Generate decoder inputs
decoder_seq_length = seq_length if not self.use_past else 1
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, decoder_seq_length, is_pair, framework
)
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
common_inputs = dict(**encoder_inputs, **decoder_inputs)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, encoder_seq_length = common_inputs["input_ids"].shape
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
encoder_shape = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
decoder_past_length = decoder_seq_length + 3
decoder_shape = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
common_inputs["decoder_attention_mask"] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
)
common_inputs["past_key_values"] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
num_encoder_layers, num_decoder_layers = self.num_layers
min_num_layers = min(num_encoder_layers, num_decoder_layers)
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(min_num_layers):
common_inputs["past_key_values"].append(
(
torch.zeros(decoder_shape),
torch.zeros(decoder_shape),
torch.zeros(encoder_shape),
torch.zeros(encoder_shape),
)
)
# TODO: test this.
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(min_num_layers, max_num_layers):
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
return common_inputs
def _generate_dummy_inputs_for_causal_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair, framework
)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
past_key_values_length = seqlen + 2
num_encoder_layers, _ = self.num_layers
num_encoder_attention_heads, _ = self.num_attention_heads
past_shape = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
mask_dtype = common_inputs["attention_mask"].dtype
common_inputs["attention_mask"] = torch.cat(
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
)
common_inputs["past_key_values"] = [
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers)
]
return common_inputs
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
seq_length = compute_effective_axis_dimension(
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
)
# Generate dummy inputs according to compute batch and sequence
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
return common_inputs
def generate_dummy_inputs(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
elif self.task == "causal-lm":
common_inputs = self._generate_dummy_inputs_for_causal_lm(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
else:
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
return common_inputs
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
if self.task in ["default", "seq2seq-lm"]:
flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
else:
flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
flattened_output, name, idx, t
)
__all__ = ["BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig"]
```
|
=========================================================================================================================================================
SOURCE CODE FILE: modeling_blenderbot_small.py
LINES: 1
SIZE: 70.53 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\blenderbot_small\modeling_blenderbot_small.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BlenderbotSmall model."""
import copy
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_blenderbot_small import BlenderbotSmallConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "BlenderbotSmallConfig"
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
# Copied from transformers.models.blenderbot.modeling_blenderbot.BlenderbotLearnedPositionalEmbedding with Blenderbot->BlenderbotSmall
class BlenderbotSmallLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
super().__init__(num_embeddings, embedding_dim)
def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids_shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
)
return super().forward(positions)
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->BlenderbotSmall
class BlenderbotSmallAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[BlenderbotSmallConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
# Copied from transformers.models.bart.modeling_bart.BartEncoderLayer with Bart->BlenderbotSmall, BART->BLENDERBOT_SMALL
class BlenderbotSmallEncoderLayer(nn.Module):
def __init__(self, config: BlenderbotSmallConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
config=config,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: torch.FloatTensor,
layer_head_mask: torch.FloatTensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# TODO: Implement attention with SDPA for TimeSeriesTransformer.
BLENDERBOT_SMALL_ATTENTION_CLASSES = {
"eager": BlenderbotSmallAttention,
}
# Copied from transformers.models.bart.modeling_bart.BartDecoderLayer with Bart->BlenderbotSmall, BART->BLENDERBOT_SMALL
class BlenderbotSmallDecoderLayer(nn.Module):
def __init__(self, config: BlenderbotSmallConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
is_causal=True,
config=config,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation](
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
config=config,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class BlenderbotSmallPreTrainedModel(PreTrainedModel):
config_class = BlenderbotSmallConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
dummy_inputs = {
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
"decoder_input_ids": input_ids,
}
return dummy_inputs
BLENDERBOT_SMALL_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`BlenderbotSmallConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BLENDERBOT_SMALL_GENERATION_EXAMPLE = r"""
Conversation example:
```python
>>> from transformers import AutoTokenizer, BlenderbotSmallForConditionalGeneration
>>> mname = "facebook/blenderbot_small-90M"
>>> model = BlenderbotSmallForConditionalGeneration.from_pretrained(mname)
>>> tokenizer = AutoTokenizer.from_pretrained(mname)
>>> UTTERANCE = "My friends are cool but they eat too many carbs."
>>> print("Human: ", UTTERANCE)
Human: My friends are cool but they eat too many carbs.
>>> inputs = tokenizer([UTTERANCE], return_tensors="pt")
>>> reply_ids = model.generate(**inputs)
>>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])
Bot: what kind of carbs do they eat? i don't know much about carbs.
>>> REPLY = "I'm not sure"
>>> print("Human: ", REPLY)
Human: I'm not sure
>>> NEXT_UTTERANCE = (
... "My friends are cool but they eat too many carbs.__end__ __start__what kind of carbs do they eat? "
... "i don't know much about carbs__end__ "
... "__start__ I'm not sure."
... )
>>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="pt")
>>> next_reply_ids = model.generate(**inputs)
>>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
Bot: they eat a lot of carbs. carbs are high in fat, protein, and fats.
```
"""
BLENDERBOT_SMALL_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
BlenderbotSmall uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class BlenderbotSmallEncoder(BlenderbotSmallPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`BlenderbotSmallEncoderLayer`].
Args:
config: BlenderbotSmallConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
)
self.layers = nn.ModuleList([BlenderbotSmallEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layernorm_embedding = nn.LayerNorm(embed_dim)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input_shape)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class BlenderbotSmallDecoder(BlenderbotSmallPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BlenderbotSmallDecoderLayer`]
Args:
config: BlenderbotSmallConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
)
self.layers = nn.ModuleList([BlenderbotSmallDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input_shape, past_key_values_length)
# BlenderbotSmall applies layer norm on hidden_states
inputs_embeds = self.layernorm_embedding(inputs_embeds)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare BlenderbotSmall Model outputting raw hidden-states without any specific head on top.",
BLENDERBOT_SMALL_START_DOCSTRING,
)
class BlenderbotSmallModel(BlenderbotSmallPreTrainedModel):
_tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]
def __init__(self, config: BlenderbotSmallConfig):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.encoder = BlenderbotSmallEncoder(config, self.shared)
self.decoder = BlenderbotSmallDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, BlenderbotSmallModel
>>> model = BlenderbotSmallModel.from_pretrained("facebook/blenderbot_small-90M")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
>>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
>>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt") # Batch size 1
>>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 3, 512]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The BlenderbotSmall Model with a language modeling head. Can be used for summarization.",
BLENDERBOT_SMALL_START_DOCSTRING,
)
class BlenderbotSmallForConditionalGeneration(BlenderbotSmallPreTrainedModel, GenerationMixin):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = ["final_logits_bias"]
_tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: BlenderbotSmallConfig):
super().__init__(config)
self.model = BlenderbotSmallModel(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def resize_token_embeddings(
self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None, mean_resizing: bool = True
) -> nn.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing)
self._resize_final_logits_bias(new_embeddings.weight.shape[0])
return new_embeddings
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
old_num_tokens = self.final_logits_bias.shape[-1]
if new_num_tokens <= old_num_tokens:
new_bias = self.final_logits_bias[:, :new_num_tokens]
else:
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->BlenderbotSmall
class BlenderbotSmallDecoderWrapper(BlenderbotSmallPreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = BlenderbotSmallDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->BlenderbotSmall, facebook/bart-base->facebook/blenderbot_small-90M
class BlenderbotSmallForCausalLM(BlenderbotSmallPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
super().__init__(config)
self.model = BlenderbotSmallDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, BlenderbotSmallForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
>>> model = BlenderbotSmallForCausalLM.from_pretrained("facebook/blenderbot_small-90M", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
labels = labels.to(logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
__all__ = [
"BlenderbotSmallForCausalLM",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallModel",
"BlenderbotSmallPreTrainedModel",
]
```
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.