text
stringlengths
145
7.65M
==================================================================================================================================================== SOURCE CODE FILE: modeling_flax_xlm_roberta.py LINES: 1 SIZE: 57.39 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\xlm_roberta\modeling_flax_xlm_roberta.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 Facebook AI Research and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Flax XLM-RoBERTa model.""" from typing import Callable, Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from ...modeling_flax_outputs import ( FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxBaseModelOutputWithPooling, FlaxBaseModelOutputWithPoolingAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxMaskedLMOutput, FlaxMultipleChoiceModelOutput, FlaxQuestionAnsweringModelOutput, FlaxSequenceClassifierOutput, FlaxTokenClassifierOutput, ) from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, overwrite_call_docstring from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_xlm_roberta import XLMRobertaConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "FacebookAI/xlm-roberta-base" _CONFIG_FOR_DOC = "XLMRobertaConfig" remat = nn_partitioning.remat # Copied from transformers.models.roberta.modeling_flax_roberta.create_position_ids_from_input_ids def create_position_ids_from_input_ids(input_ids, padding_idx): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: input_ids: jnp.ndarray padding_idx: int Returns: jnp.ndarray """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = (input_ids != padding_idx).astype("i4") if mask.ndim > 2: mask = mask.reshape((-1, mask.shape[-1])) incremental_indices = jnp.cumsum(mask, axis=1).astype("i4") * mask incremental_indices = incremental_indices.reshape(input_ids.shape) else: incremental_indices = jnp.cumsum(mask, axis=1).astype("i4") * mask return incremental_indices.astype("i4") + padding_idx XLM_ROBERTA_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models) This model is also a [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`XLMRobertaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. """ XLM_ROBERTA_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`numpy.ndarray` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. head_mask (`numpy.ndarray` of shape `({0})`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings with Bert->XLMRoberta class FlaxXLMRobertaEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.word_embeddings = nn.Embed( self.config.vocab_size, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), dtype=self.dtype, ) self.position_embeddings = nn.Embed( self.config.max_position_embeddings, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), dtype=self.dtype, ) self.token_type_embeddings = nn.Embed( self.config.type_vocab_size, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), dtype=self.dtype, ) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True): # Embed inputs_embeds = self.word_embeddings(input_ids.astype("i4")) position_embeds = self.position_embeddings(position_ids.astype("i4")) token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4")) # Sum all embeddings hidden_states = inputs_embeds + token_type_embeddings + position_embeds # Layer Norm hidden_states = self.LayerNorm(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->XLMRoberta class FlaxXLMRobertaSelfAttention(nn.Module): config: XLMRobertaConfig causal: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.head_dim = self.config.hidden_size // self.config.num_attention_heads if self.config.hidden_size % self.config.num_attention_heads != 0: raise ValueError( "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` " " : {self.config.num_attention_heads}" ) self.query = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.key = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.value = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,)) @nn.compact # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slightly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states, attention_mask, layer_head_mask, key_value_states: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic=True, output_attentions: bool = False, ): # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.query(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.key(key_value_states) value_states = self.value(key_value_states) else: # self_attention key_states = self.key(hidden_states) value_states = self.value(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.config.attention_probs_dropout_prob > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.config.attention_probs_dropout_prob, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) # Mask heads if we want to if layer_head_mask is not None: attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->XLMRoberta class FlaxXLMRobertaSelfOutput(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, hidden_states, input_tensor, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertAttention with Bert->XLMRoberta class FlaxXLMRobertaAttention(nn.Module): config: XLMRobertaConfig causal: bool = False dtype: jnp.dtype = jnp.float32 def setup(self): self.self = FlaxXLMRobertaSelfAttention(self.config, causal=self.causal, dtype=self.dtype) self.output = FlaxXLMRobertaSelfOutput(self.config, dtype=self.dtype) def __call__( self, hidden_states, attention_mask, layer_head_mask, key_value_states=None, init_cache=False, deterministic=True, output_attentions: bool = False, ): # Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length) # FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable # with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length) attn_outputs = self.self( hidden_states, attention_mask, layer_head_mask=layer_head_mask, key_value_states=key_value_states, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, ) attn_output = attn_outputs[0] hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic) outputs = (hidden_states,) if output_attentions: outputs += (attn_outputs[1],) return outputs # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->XLMRoberta class FlaxXLMRobertaIntermediate(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.intermediate_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.activation = ACT2FN[self.config.hidden_act] def __call__(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->XLMRoberta class FlaxXLMRobertaOutput(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__(self, hidden_states, attention_output, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.LayerNorm(hidden_states + attention_output) return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer with Bert->XLMRoberta class FlaxXLMRobertaLayer(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.attention = FlaxXLMRobertaAttention(self.config, causal=self.config.is_decoder, dtype=self.dtype) self.intermediate = FlaxXLMRobertaIntermediate(self.config, dtype=self.dtype) self.output = FlaxXLMRobertaOutput(self.config, dtype=self.dtype) if self.config.add_cross_attention: self.crossattention = FlaxXLMRobertaAttention(self.config, causal=False, dtype=self.dtype) def __call__( self, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, ): # Self Attention attention_outputs = self.attention( hidden_states, attention_mask, layer_head_mask=layer_head_mask, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, ) attention_output = attention_outputs[0] # Cross-Attention Block if encoder_hidden_states is not None: cross_attention_outputs = self.crossattention( attention_output, attention_mask=encoder_attention_mask, layer_head_mask=layer_head_mask, key_value_states=encoder_hidden_states, deterministic=deterministic, output_attentions=output_attentions, ) attention_output = cross_attention_outputs[0] hidden_states = self.intermediate(attention_output) hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic) outputs = (hidden_states,) if output_attentions: outputs += (attention_outputs[1],) if encoder_hidden_states is not None: outputs += (cross_attention_outputs[1],) return outputs # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection with Bert->XLMRoberta class FlaxXLMRobertaLayerCollection(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): if self.gradient_checkpointing: FlaxXLMRobertaCheckpointLayer = remat(FlaxXLMRobertaLayer, static_argnums=(5, 6, 7)) self.layers = [ FlaxXLMRobertaCheckpointLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] else: self.layers = [ FlaxXLMRobertaLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] def __call__( self, hidden_states, attention_mask, head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None # Check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.shape[0] != (len(self.layers)): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for " f" {head_mask.shape[0]}." ) for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = layer( hidden_states, attention_mask, head_mask[i] if head_mask is not None else None, encoder_hidden_states, encoder_attention_mask, init_cache, deterministic, output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->XLMRoberta class FlaxXLMRobertaEncoder(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): self.layer = FlaxXLMRobertaLayerCollection( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) def __call__( self, hidden_states, attention_mask, head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return self.layer( hidden_states, attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPooler with Bert->XLMRoberta class FlaxXLMRobertaPooler(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) def __call__(self, hidden_states): cls_hidden_state = hidden_states[:, 0] cls_hidden_state = self.dense(cls_hidden_state) return nn.tanh(cls_hidden_state) # Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaLMHead with Roberta->XLMRoberta class FlaxXLMRobertaLMHead(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros def setup(self): self.dense = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.decoder = nn.Dense( self.config.vocab_size, dtype=self.dtype, use_bias=False, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,)) def __call__(self, hidden_states, shared_embedding=None): hidden_states = self.dense(hidden_states) hidden_states = ACT2FN["gelu"](hidden_states) hidden_states = self.layer_norm(hidden_states) if shared_embedding is not None: hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: hidden_states = self.decoder(hidden_states) bias = jnp.asarray(self.bias, self.dtype) hidden_states += bias return hidden_states # Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaClassificationHead with Roberta->XLMRoberta class FlaxXLMRobertaClassificationHead(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.dense = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) classifier_dropout = ( self.config.classifier_dropout if self.config.classifier_dropout is not None else self.config.hidden_dropout_prob ) self.dropout = nn.Dropout(rate=classifier_dropout) self.out_proj = nn.Dense( self.config.num_labels, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) def __call__(self, hidden_states, deterministic=True): hidden_states = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS]) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.dense(hidden_states) hidden_states = nn.tanh(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.out_proj(hidden_states) return hidden_states # Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaPreTrainedModel with Roberta->XLMRoberta, roberta->xlm-roberta, ROBERTA->XLM_ROBERTA class FlaxXLMRobertaPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XLMRobertaConfig base_model_prefix = "xlm-roberta" module_class: nn.Module = None def __init__( self, config: XLMRobertaConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, gradient_checkpointing: bool = False, **kwargs, ): module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing def enable_gradient_checkpointing(self): self._module = self.module_class( config=self.config, dtype=self.dtype, gradient_checkpointing=True, ) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") token_type_ids = jnp.ones_like(input_ids) position_ids = create_position_ids_from_input_ids(input_ids, self.config.pad_token_id) attention_mask = jnp.ones_like(input_ids) head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} if self.config.add_cross_attention: encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,)) encoder_attention_mask = attention_mask module_init_outputs = self.module.init( rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, encoder_hidden_states, encoder_attention_mask, return_dict=False, ) else: module_init_outputs = self.module.init( rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False ) random_params = module_init_outputs["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache def init_cache(self, batch_size, max_length): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. """ # init input variables to retrieve cache input_ids = jnp.ones((batch_size, max_length), dtype="i4") attention_mask = jnp.ones_like(input_ids, dtype="i4") position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) init_variables = self.module.init( jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True ) return unfreeze(init_variables["cache"]) @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def __call__( self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, past_key_values: dict = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # init input tensors if not passed if token_type_ids is None: token_type_ids = jnp.zeros_like(input_ids) if position_ids is None: position_ids = create_position_ids_from_input_ids(input_ids, self.config.pad_token_id) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if head_mask is None: head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} if self.config.add_cross_attention: # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be # changed by FlaxXLMRobertaAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), token_type_ids=jnp.array(token_type_ids, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), head_mask=jnp.array(head_mask, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, deterministic=not train, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, rngs=rngs, mutable=mutable, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past_key_values = outputs outputs["past_key_values"] = unfreeze(past_key_values["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past_key_values = outputs outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] else: outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), token_type_ids=jnp.array(token_type_ids, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), head_mask=jnp.array(head_mask, dtype="i4"), deterministic=not train, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, rngs=rngs, ) return outputs # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertModule with Bert->XLMRoberta class FlaxXLMRobertaModule(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation add_pooling_layer: bool = True gradient_checkpointing: bool = False def setup(self): self.embeddings = FlaxXLMRobertaEmbeddings(self.config, dtype=self.dtype) self.encoder = FlaxXLMRobertaEncoder( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.pooler = FlaxXLMRobertaPooler(self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, head_mask: Optional[jnp.ndarray] = None, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # make sure `token_type_ids` is correctly initialized when not passed if token_type_ids is None: token_type_ids = jnp.zeros_like(input_ids) # make sure `position_ids` is correctly initialized when not passed if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) hidden_states = self.embeddings( input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic ) outputs = self.encoder( hidden_states, attention_mask, head_mask=head_mask, deterministic=deterministic, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] pooled = self.pooler(hidden_states) if self.add_pooling_layer else None if not return_dict: # if pooled is None, don't return it if pooled is None: return (hidden_states,) + outputs[1:] return (hidden_states, pooled) + outputs[1:] return FlaxBaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=hidden_states, pooler_output=pooled, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings( "The bare XLM RoBERTa Model transformer outputting raw hidden-states without any specific head on top.", XLM_ROBERTA_START_DOCSTRING, ) class FlaxXLMRobertaModel(FlaxXLMRobertaPreTrainedModel): module_class = FlaxXLMRobertaModule append_call_sample_docstring(FlaxXLMRobertaModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC) # Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForMaskedLMModule with Roberta->XLMRoberta class FlaxXLMRobertaForMaskedLMModule(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.roberta = FlaxXLMRobertaModule( config=self.config, add_pooling_layer=False, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.lm_head = FlaxXLMRobertaLMHead(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.roberta( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.roberta.variables["params"]["embeddings"]["word_embeddings"]["embedding"] else: shared_embedding = None # Compute the prediction scores logits = self.lm_head(hidden_states, shared_embedding=shared_embedding) if not return_dict: return (logits,) + outputs[1:] return FlaxMaskedLMOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""XLM RoBERTa Model with a `language modeling` head on top.""", XLM_ROBERTA_START_DOCSTRING) class FlaxXLMRobertaForMaskedLM(FlaxXLMRobertaPreTrainedModel): module_class = FlaxXLMRobertaForMaskedLMModule append_call_sample_docstring( FlaxXLMRobertaForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC, mask="<mask>", ) # Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForSequenceClassificationModule with Roberta->XLMRoberta class FlaxXLMRobertaForSequenceClassificationModule(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.roberta = FlaxXLMRobertaModule( config=self.config, dtype=self.dtype, add_pooling_layer=False, gradient_checkpointing=self.gradient_checkpointing, ) self.classifier = FlaxXLMRobertaClassificationHead(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.roberta( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output, deterministic=deterministic) if not return_dict: return (logits,) + outputs[1:] return FlaxSequenceClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLM Roberta Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, XLM_ROBERTA_START_DOCSTRING, ) class FlaxXLMRobertaForSequenceClassification(FlaxXLMRobertaPreTrainedModel): module_class = FlaxXLMRobertaForSequenceClassificationModule append_call_sample_docstring( FlaxXLMRobertaForSequenceClassification, _CHECKPOINT_FOR_DOC, FlaxSequenceClassifierOutput, _CONFIG_FOR_DOC, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMultipleChoiceModule with Bert->XLMRoberta, with self.bert->self.roberta class FlaxXLMRobertaForMultipleChoiceModule(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.roberta = FlaxXLMRobertaModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) self.classifier = nn.Dense(1, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): num_choices = input_ids.shape[1] input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None # Model outputs = self.roberta( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, deterministic=deterministic) logits = self.classifier(pooled_output) reshaped_logits = logits.reshape(-1, num_choices) if not return_dict: return (reshaped_logits,) + outputs[2:] return FlaxMultipleChoiceModelOutput( logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLM Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, XLM_ROBERTA_START_DOCSTRING, ) class FlaxXLMRobertaForMultipleChoice(FlaxXLMRobertaPreTrainedModel): module_class = FlaxXLMRobertaForMultipleChoiceModule overwrite_call_docstring( FlaxXLMRobertaForMultipleChoice, XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) append_call_sample_docstring( FlaxXLMRobertaForMultipleChoice, _CHECKPOINT_FOR_DOC, FlaxMultipleChoiceModelOutput, _CONFIG_FOR_DOC, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForTokenClassificationModule with Bert->XLMRoberta, with self.bert->self.roberta class FlaxXLMRobertaForTokenClassificationModule(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.roberta = FlaxXLMRobertaModule( config=self.config, dtype=self.dtype, add_pooling_layer=False, gradient_checkpointing=self.gradient_checkpointing, ) classifier_dropout = ( self.config.classifier_dropout if self.config.classifier_dropout is not None else self.config.hidden_dropout_prob ) self.dropout = nn.Dropout(rate=classifier_dropout) self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.roberta( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states, deterministic=deterministic) logits = self.classifier(hidden_states) if not return_dict: return (logits,) + outputs[1:] return FlaxTokenClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLM Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, XLM_ROBERTA_START_DOCSTRING, ) class FlaxXLMRobertaForTokenClassification(FlaxXLMRobertaPreTrainedModel): module_class = FlaxXLMRobertaForTokenClassificationModule append_call_sample_docstring( FlaxXLMRobertaForTokenClassification, _CHECKPOINT_FOR_DOC, FlaxTokenClassifierOutput, _CONFIG_FOR_DOC, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForQuestionAnsweringModule with Bert->XLMRoberta, with self.bert->self.roberta class FlaxXLMRobertaForQuestionAnsweringModule(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.roberta = FlaxXLMRobertaModule( config=self.config, dtype=self.dtype, add_pooling_layer=False, gradient_checkpointing=self.gradient_checkpointing, ) self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.roberta( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.qa_outputs(hidden_states) start_logits, end_logits = jnp.split(logits, self.config.num_labels, axis=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) if not return_dict: return (start_logits, end_logits) + outputs[1:] return FlaxQuestionAnsweringModelOutput( start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLM Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, XLM_ROBERTA_START_DOCSTRING, ) class FlaxXLMRobertaForQuestionAnswering(FlaxXLMRobertaPreTrainedModel): module_class = FlaxXLMRobertaForQuestionAnsweringModule append_call_sample_docstring( FlaxXLMRobertaForQuestionAnswering, _CHECKPOINT_FOR_DOC, FlaxQuestionAnsweringModelOutput, _CONFIG_FOR_DOC, ) # Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForCausalLMModule with Roberta->XLMRoberta class FlaxXLMRobertaForCausalLMModule(nn.Module): config: XLMRobertaConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.roberta = FlaxXLMRobertaModule( config=self.config, add_pooling_layer=False, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.lm_head = FlaxXLMRobertaLMHead(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask, position_ids, token_type_ids: Optional[jnp.ndarray] = None, head_mask: Optional[jnp.ndarray] = None, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.roberta( input_ids, attention_mask, token_type_ids, position_ids, head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.roberta.variables["params"]["embeddings"]["word_embeddings"]["embedding"] else: shared_embedding = None # Compute the prediction scores logits = self.lm_head(hidden_states, shared_embedding=shared_embedding) if not return_dict: return (logits,) + outputs[1:] return FlaxCausalLMOutputWithCrossAttentions( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings( """ XLM Roberta Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for autoregressive tasks. """, XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForCausalLM with Roberta->XLMRoberta class FlaxXLMRobertaForCausalLM(FlaxXLMRobertaPreTrainedModel): module_class = FlaxXLMRobertaForCausalLMModule def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): # initializing the cache batch_size, seq_length = input_ids.shape past_key_values = self.init_cache(batch_size, max_length) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyway. # Thus, we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if attention_mask is not None: position_ids = attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "attention_mask": extended_attention_mask, "position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 return model_kwargs append_call_sample_docstring( FlaxXLMRobertaForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutputWithCrossAttentions, _CONFIG_FOR_DOC, ) __all__ = [ "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] ```
================================================================================================================================================== SOURCE CODE FILE: modeling_tf_xlm_roberta.py LINES: 1 SIZE: 80.20 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\xlm_roberta\modeling_tf_xlm_roberta.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2019 Facebook AI Research and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF 2.0 XLM-RoBERTa model.""" from __future__ import annotations import math import warnings from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutputWithPastAndCrossAttentions, TFBaseModelOutputWithPoolingAndCrossAttentions, TFCausalLMOutputWithCrossAttentions, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_xlm_roberta import XLMRobertaConfig logger = logging.get_logger(__name__) logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "FacebookAI/xlm-roberta-base" _CONFIG_FOR_DOC = "XLMRobertaConfig" XLM_ROBERTA_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`XLMRobertaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ XLM_ROBERTA_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaEmbeddings with Roberta->XLMRoberta class TFXLMRobertaEmbeddings(keras.layers.Layer): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config, **kwargs): super().__init__(**kwargs) self.padding_idx = 1 self.config = config self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(self.initializer_range), ) if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) def create_position_ids_from_input_ids(self, input_ids, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: input_ids: tf.Tensor Returns: tf.Tensor """ mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype) incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask return incremental_indices + self.padding_idx def call( self, input_ids=None, position_ids=None, token_type_ids=None, inputs_embeds=None, past_key_values_length=0, training=False, ): """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids( input_ids=input_ids, past_key_values_length=past_key_values_length ) else: position_ids = tf.expand_dims( tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0 ) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->XLMRoberta class TFXLMRobertaPooler(keras.layers.Layer): def __init__(self, config: XLMRobertaConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->XLMRoberta class TFXLMRobertaSelfAttention(keras.layers.Layer): def __init__(self, config: XLMRobertaConfig, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) self.is_decoder = config.is_decoder self.config = config def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) key_layer = tf.concat([past_key_value[0], key_layer], axis=2) value_layer = tf.concat([past_key_value[1], value_layer], axis=2) else: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFXLMRobertaModel call() function) attention_scores = tf.add(attention_scores, attention_mask) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->XLMRoberta class TFXLMRobertaSelfOutput(keras.layers.Layer): def __init__(self, config: XLMRobertaConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->XLMRoberta class TFXLMRobertaAttention(keras.layers.Layer): def __init__(self, config: XLMRobertaConfig, **kwargs): super().__init__(**kwargs) self.self_attention = TFXLMRobertaSelfAttention(config, name="self") self.dense_output = TFXLMRobertaSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self_attention( hidden_states=input_tensor, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) # add attentions (possibly with past_key_value) if we output them outputs = (attention_output,) + self_outputs[1:] return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attention", None) is not None: with tf.name_scope(self.self_attention.name): self.self_attention.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None) # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->XLMRoberta class TFXLMRobertaIntermediate(keras.layers.Layer): def __init__(self, config: XLMRobertaConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->XLMRoberta class TFXLMRobertaOutput(keras.layers.Layer): def __init__(self, config: XLMRobertaConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->XLMRoberta class TFXLMRobertaLayer(keras.layers.Layer): def __init__(self, config: XLMRobertaConfig, **kwargs): super().__init__(**kwargs) self.attention = TFXLMRobertaAttention(config, name="attention") self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = TFXLMRobertaAttention(config, name="crossattention") self.intermediate = TFXLMRobertaIntermediate(config, name="intermediate") self.bert_output = TFXLMRobertaOutput(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_value: Tuple[tf.Tensor] | None, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( input_tensor=hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=self_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( input_tensor=attention_output, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value intermediate_output = self.intermediate(hidden_states=attention_output) layer_output = self.bert_output( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + outputs # add attentions if we output them # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "bert_output", None) is not None: with tf.name_scope(self.bert_output.name): self.bert_output.build(None) if getattr(self, "crossattention", None) is not None: with tf.name_scope(self.crossattention.name): self.crossattention.build(None) # Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->XLMRoberta class TFXLMRobertaEncoder(keras.layers.Layer): def __init__(self, config: XLMRobertaConfig, **kwargs): super().__init__(**kwargs) self.config = config self.layer = [TFXLMRobertaLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_values: Tuple[Tuple[tf.Tensor]] | None, use_cache: Optional[bool], output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) past_key_value = past_key_values[i] if past_key_values is not None else None layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if self.config.add_cross_attention and encoder_hidden_states is not None: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) @keras_serializable # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaMainLayer with Roberta->XLMRoberta class TFXLMRobertaMainLayer(keras.layers.Layer): config_class = XLMRobertaConfig def __init__(self, config, add_pooling_layer=True, **kwargs): super().__init__(**kwargs) self.config = config self.is_decoder = config.is_decoder self.num_hidden_layers = config.num_hidden_layers self.initializer_range = config.initializer_range self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.encoder = TFXLMRobertaEncoder(config, name="encoder") self.pooler = TFXLMRobertaPooler(config, name="pooler") if add_pooling_layer else None # The embeddings must be the last declaration in order to follow the weights order self.embeddings = TFXLMRobertaEmbeddings(config, name="embeddings") # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.get_input_embeddings def get_input_embeddings(self) -> keras.layers.Layer: return self.embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.set_input_embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.call def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: if not self.config.is_decoder: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape if past_key_values is None: past_key_values_length = 0 past_key_values = [None] * len(self.encoder.layer) else: past_key_values_length = shape_list(past_key_values[0][0])[-2] if attention_mask is None: attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1) if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, training=training, ) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask_shape = shape_list(attention_mask) mask_seq_length = seq_length + past_key_values_length # Copied from `modeling_tf_t5.py` # Provided a padding mask of dimensions [batch_size, mask_seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] if self.is_decoder: seq_ids = tf.range(mask_seq_length) causal_mask = tf.less_equal( tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)), seq_ids[None, :, None], ) causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype) extended_attention_mask = causal_mask * attention_mask[:, None, :] attention_mask_shape = shape_list(extended_attention_mask) extended_attention_mask = tf.reshape( extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2]) ) if past_key_values[0] is not None: # attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length] extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :] else: extended_attention_mask = tf.reshape( attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Copied from `modeling_tf_t5.py` with -1e9 -> -10000 if self.is_decoder and encoder_attention_mask is not None: # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype) num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask)) if num_dims_encoder_attention_mask == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if num_dims_encoder_attention_mask == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask, # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2))) encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0 else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaPreTrainedModel with Roberta->XLMRoberta class TFXLMRobertaPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XLMRobertaConfig base_model_prefix = "roberta" @add_start_docstrings( "The bare XLM RoBERTa Model transformer outputting raw hidden-states without any specific head on top.", XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaModel with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class TFXLMRobertaModel(TFXLMRobertaPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.roberta = TFXLMRobertaMainLayer(config, name="roberta") @unpack_inputs @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation """ outputs = self.roberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roberta", None) is not None: with tf.name_scope(self.roberta.name): self.roberta.build(None) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaLMHead with Roberta->XLMRoberta class TFXLMRobertaLMHead(keras.layers.Layer): """XLMRoberta Head for masked language modeling.""" def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.act = get_tf_activation("gelu") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = input_embeddings def build(self, input_shape=None): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.hidden_size]) def get_output_embeddings(self): return self.decoder def set_output_embeddings(self, value): self.decoder.weight = value self.decoder.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.layer_norm(hidden_states) # project back to size of vocabulary with bias seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states @add_start_docstrings("""XLM RoBERTa Model with a `language modeling` head on top.""", XLM_ROBERTA_START_DOCSTRING) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMaskedLM with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class TFXLMRobertaForMaskedLM(TFXLMRobertaPreTrainedModel, TFMaskedLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta") self.lm_head = TFXLMRobertaLMHead(config, self.roberta.embeddings, name="lm_head") def get_lm_head(self): return self.lm_head def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_head.name @unpack_inputs @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", expected_output="' Paris'", expected_loss=0.1, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roberta", None) is not None: with tf.name_scope(self.roberta.name): self.roberta.build(None) if getattr(self, "lm_head", None) is not None: with tf.name_scope(self.lm_head.name): self.lm_head.build(None) @add_start_docstrings( "XLM-RoBERTa Model with a `language modeling` head on top for CLM fine-tuning.", XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForCausalLM with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class TFXLMRobertaForCausalLM(TFXLMRobertaPreTrainedModel, TFCausalLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"] def __init__(self, config: XLMRobertaConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if not config.is_decoder: logger.warning("If you want to use `TFXLMRobertaLMHeadModel` as a standalone, add `is_decoder=True.`") self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta") self.lm_head = TFXLMRobertaLMHead(config, input_embeddings=self.roberta.embeddings, name="lm_head") def get_lm_head(self): return self.lm_head def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_head.name # Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.prepare_inputs_for_generation def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = tf.ones(input_shape) # cut decoder_input_ids if past is used if past_key_values is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} @unpack_inputs @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. """ outputs = self.roberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.lm_head(hidden_states=sequence_output, training=training) loss = None if labels is not None: # shift labels to the left and cut last logit token shifted_logits = logits[:, :-1] labels = labels[:, 1:] loss = self.hf_compute_loss(labels=labels, logits=shifted_logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roberta", None) is not None: with tf.name_scope(self.roberta.name): self.roberta.build(None) if getattr(self, "lm_head", None) is not None: with tf.name_scope(self.lm_head.name): self.lm_head.build(None) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaClassificationHead with Roberta->XLMRoberta class TFXLMRobertaClassificationHead(keras.layers.Layer): """Head for sentence-level classification tasks.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = keras.layers.Dropout(classifier_dropout) self.out_proj = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" ) self.config = config def call(self, features, training=False): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x, training=training) x = self.dense(x) x = self.dropout(x, training=training) x = self.out_proj(x) return x def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ XLM RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForSequenceClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class TFXLMRobertaForSequenceClassification(TFXLMRobertaPreTrainedModel, TFSequenceClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta") self.classifier = TFXLMRobertaClassificationHead(config, name="classifier") @unpack_inputs @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="cardiffnlp/twitter-roberta-base-emotion", output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output="'optimism'", expected_loss=0.08, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.classifier(sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roberta", None) is not None: with tf.name_scope(self.roberta.name): self.roberta.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build(None) @add_start_docstrings( """ XLM Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMultipleChoice with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class TFXLMRobertaForMultipleChoice(TFXLMRobertaPreTrainedModel, TFMultipleChoiceLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"lm_head"] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.roberta = TFXLMRobertaMainLayer(config, name="roberta") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward( XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None outputs = self.roberta( flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roberta", None) is not None: with tf.name_scope(self.roberta.name): self.roberta.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ XLM RoBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForTokenClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class TFXLMRobertaForTokenClassification(TFXLMRobertaPreTrainedModel, TFTokenClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = keras.layers.Dropout(classifier_dropout) self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="ydshieh/roberta-large-ner-english", output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']", expected_loss=0.01, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roberta", None) is not None: with tf.name_scope(self.roberta.name): self.roberta.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ XLM RoBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForQuestionAnswering with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class TFXLMRobertaForQuestionAnswering(TFXLMRobertaPreTrainedModel, TFQuestionAnsweringLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta") self.qa_outputs = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="ydshieh/roberta-base-squad2", output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, expected_output="' puppet'", expected_loss=0.86, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "roberta", None) is not None: with tf.name_scope(self.roberta.name): self.roberta.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size]) __all__ = [ "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] ```
=============================================================================================================================================== SOURCE CODE FILE: modeling_xlm_roberta.py LINES: 1 SIZE: 77.80 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\xlm_roberta\modeling_xlm_roberta.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2019 Facebook AI Research and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch XLM-RoBERTa model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from packaging import version from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN, gelu from ...generation import GenerationMixin from ...modeling_attn_mask_utils import ( _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa, ) from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, get_torch_version, logging, replace_return_docstrings, ) from .configuration_xlm_roberta import XLMRobertaConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "FacebookAI/xlm-roberta-base" _CONFIG_FOR_DOC = "XLMRobertaConfig" # Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->XLMRoberta class XLMRobertaEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->XLMRoberta class XLMRobertaSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in XLMRobertaModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.roberta.modeling_roberta.RobertaSdpaSelfAttention with Roberta->XLMRoberta class XLMRobertaSdpaSelfAttention(XLMRobertaSelfAttention): def __init__(self, config, position_embedding_type=None): super().__init__(config, position_embedding_type=position_embedding_type) self.dropout_prob = config.attention_probs_dropout_prob self.require_contiguous_qkv = version.parse(get_torch_version()) < version.parse("2.2.0") # Adapted from XLMRobertaSelfAttention def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: if self.position_embedding_type != "absolute" or output_attentions or head_mask is not None: # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once implemented. logger.warning_once( "XLMRobertaSdpaSelfAttention is used but `torch.nn.functional.scaled_dot_product_attention` does not support " "non-absolute `position_embedding_type` or `output_attentions=True` or `head_mask`. Falling back to " "the manual attention implementation, but specifying the manual implementation will be required from " "Transformers version v5.0.0 onwards. This warning can be removed using the argument " '`attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) bsz, tgt_len, _ = hidden_states.size() query_layer = self.transpose_for_scores(self.query(hidden_states)) # If this is instantiated as a cross-attention module, the keys and values come from an encoder; the attention # mask needs to be such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None current_states = encoder_hidden_states if is_cross_attention else hidden_states attention_mask = encoder_attention_mask if is_cross_attention else attention_mask # Check `seq_length` of `past_key_value` == `len(current_states)` to support prefix tuning if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]: key_layer, value_layer = past_key_value else: key_layer = self.transpose_for_scores(self.key(current_states)) value_layer = self.transpose_for_scores(self.value(current_states)) if past_key_value is not None and not is_cross_attention: key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # SDPA with memory-efficient backend is broken in torch==2.1.2 when using non-contiguous inputs and a custom # attn_mask, so we need to call `.contiguous()` here. This was fixed in torch==2.2.0. # Reference: https://github.com/pytorch/pytorch/issues/112577 if self.require_contiguous_qkv and query_layer.device.type == "cuda" and attention_mask is not None: query_layer = query_layer.contiguous() key_layer = key_layer.contiguous() value_layer = value_layer.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create # a causal mask in case tgt_len == 1. is_causal = ( True if self.is_decoder and not is_cross_attention and attention_mask is None and tgt_len > 1 else False ) attn_output = torch.nn.functional.scaled_dot_product_attention( query_layer, key_layer, value_layer, attn_mask=attention_mask, dropout_p=self.dropout_prob if self.training else 0.0, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, self.all_head_size) outputs = (attn_output,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfOutput with Roberta->XLMRoberta class XLMRobertaSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states XLM_ROBERTA_SELF_ATTENTION_CLASSES = { "eager": XLMRobertaSelfAttention, "sdpa": XLMRobertaSdpaSelfAttention, } # Copied from transformers.models.roberta.modeling_roberta.RobertaAttention with Roberta->XLMRoberta,ROBERTA->XLM_ROBERTA class XLMRobertaAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = XLM_ROBERTA_SELF_ATTENTION_CLASSES[config._attn_implementation]( config, position_embedding_type=position_embedding_type ) self.output = XLMRobertaSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.roberta.modeling_roberta.RobertaIntermediate with Roberta->XLMRoberta class XLMRobertaIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.roberta.modeling_roberta.RobertaOutput with Roberta->XLMRoberta class XLMRobertaOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.roberta.modeling_roberta.RobertaLayer with Roberta->XLMRoberta class XLMRobertaLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = XLMRobertaAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = XLMRobertaAttention(config, position_embedding_type="absolute") self.intermediate = XLMRobertaIntermediate(config) self.output = XLMRobertaOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Copied from transformers.models.roberta.modeling_roberta.RobertaEncoder with Roberta->XLMRoberta class XLMRobertaEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([XLMRobertaLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaPooler with Roberta->XLMRoberta class XLMRobertaPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.roberta.modeling_roberta.RobertaPreTrainedModel with Roberta->XLMRoberta class XLMRobertaPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XLMRobertaConfig base_model_prefix = "roberta" supports_gradient_checkpointing = True _no_split_modules = ["XLMRobertaEmbeddings", "XLMRobertaSelfAttention", "XLMRobertaSdpaSelfAttention"] _supports_sdpa = True # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights with BertLMPredictionHead->XLMRobertaLMHead def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, XLMRobertaLMHead): module.bias.data.zero_() XLM_ROBERTA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`XLMRobertaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ XLM_ROBERTA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare XLM-RoBERTa Model transformer outputting raw hidden-states without any specific head on top.", XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaModel with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class XLMRobertaModel(XLMRobertaPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ _no_split_modules = ["XLMRobertaEmbeddings", "XLMRobertaLayer"] def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = XLMRobertaEmbeddings(config) self.encoder = XLMRobertaEncoder(config) self.pooler = XLMRobertaPooler(config) if add_pooling_layer else None self.attn_implementation = config._attn_implementation self.position_embedding_type = config.position_embedding_type # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, target_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length + past_key_values_length), device=device) use_sdpa_attention_masks = ( self.attn_implementation == "sdpa" and self.position_embedding_type == "absolute" and head_mask is None and not output_attentions ) # Expand the attention mask if use_sdpa_attention_masks and attention_mask.dim() == 2: # Expand the attention mask for SDPA. # [bsz, seq_len] -> [bsz, 1, seq_len, seq_len] if self.config.is_decoder: extended_attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, input_shape, embedding_output, past_key_values_length, ) else: extended_attention_mask = _prepare_4d_attention_mask_for_sdpa( attention_mask, embedding_output.dtype, tgt_len=seq_length ) else: # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) if use_sdpa_attention_masks and encoder_attention_mask.dim() == 2: # Expand the attention mask for SDPA. # [bsz, seq_len] -> [bsz, 1, seq_len, seq_len] encoder_extended_attention_mask = _prepare_4d_attention_mask_for_sdpa( encoder_attention_mask, embedding_output.dtype, tgt_len=seq_length ) else: encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( "XLM-RoBERTa Model with a `language modeling` head on top for CLM fine-tuning.", XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class XLMRobertaForCausalLM(XLMRobertaPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `XLMRobertaLMHeadModel` as a standalone, add `is_decoder=True.`") self.roberta = XLMRobertaModel(config, add_pooling_layer=False) self.lm_head = XLMRobertaLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, XLMRobertaForCausalLM, AutoConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base") >>> config = AutoConfig.from_pretrained("FacebookAI/roberta-base") >>> config.is_decoder = True >>> model = XLMRobertaForCausalLM.from_pretrained("FacebookAI/roberta-base", config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) lm_loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(prediction_scores.device) lm_loss = self.loss_function( prediction_scores, labels, vocab_size=self.config.vocab_size, **kwargs, ) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings( """XLM-RoBERTa Model with a `language modeling` head on top.""", XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class XLMRobertaForMaskedLM(XLMRobertaPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `XLMRobertaForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.roberta = XLMRobertaModel(config, add_pooling_layer=False) self.lm_head = XLMRobertaLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", expected_output="' Paris'", expected_loss=0.1, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` kwargs (`Dict[str, any]`, *optional*, defaults to `{}`): Used to hide legacy arguments that have been deprecated. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(prediction_scores.device) loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead class XLMRobertaLMHead(nn.Module): """Roberta Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = self.decoder(x) return x def _tie_weights(self): # To tie those two weights if they get disconnected (on TPU or when the bias is resized) # For accelerate compatibility and to not break backward compatibility if self.decoder.bias.device.type == "meta": self.decoder.bias = self.bias else: self.bias = self.decoder.bias @add_start_docstrings( """ XLM-RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.roberta = XLMRobertaModel(config, add_pooling_layer=False) self.classifier = XLMRobertaClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="cardiffnlp/twitter-roberta-base-emotion", output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output="'optimism'", expected_loss=0.08, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLM-RoBERTa Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForMultipleChoice with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class XLMRobertaForMultipleChoice(XLMRobertaPreTrainedModel): def __init__(self, config): super().__init__(config) self.roberta = XLMRobertaModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None flat_inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.roberta( flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(reshaped_logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLM-RoBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class XLMRobertaForTokenClassification(XLMRobertaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = XLMRobertaModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="Jean-Baptiste/roberta-large-ner-english", output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']", expected_loss=0.01, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->XLMRoberta class XLMRobertaClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ XLM-RoBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, XLM_ROBERTA_START_DOCSTRING, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class XLMRobertaForQuestionAnswering(XLMRobertaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = XLMRobertaModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="deepset/roberta-base-squad2", output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, expected_output="' puppet'", expected_loss=0.86, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx __all__ = [ "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] ```
=================================================================================================================================================== SOURCE CODE FILE: tokenization_xlm_roberta.py LINES: 1 SIZE: 12.44 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\xlm_roberta\tokenization_xlm_roberta.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """Tokenization classes for XLM-RoBERTa model.""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} class XLMRobertaTokenizer(PreTrainedTokenizer): """ Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(vocab_file)) self.vocab_file = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab self.fairseq_offset = 1 self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + self.fairseq_offset self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None state["sp_model_proto"] = self.sp_model.serialized_model_proto() return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM-RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] @property def vocab_size(self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text: str) -> List[str]: # TODO check if the t5/llama PR also applies here return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] spm_id = self.sp_model.PieceToId(token) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) __all__ = ["XLMRobertaTokenizer"] ```
======================================================================================================================================================== SOURCE CODE FILE: tokenization_xlm_roberta_fast.py LINES: 1 SIZE: 7.77 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\xlm_roberta\tokenization_xlm_roberta_fast.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """Tokenization classes for XLM-RoBERTa model.""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlm_roberta import XLMRobertaTokenizer else: XLMRobertaTokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} class XLMRobertaTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" XLM-RoBERTa tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`): Additional special tokens used by the tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = XLMRobertaTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( vocab_file, tokenizer_file=tokenizer_file, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, **kwargs, ) self.vocab_file = vocab_file @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM-RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory.") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,) __all__ = ["XLMRobertaTokenizerFast"] ```
====================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.99 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\xlm_roberta_xl\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_xlm_roberta_xl import * from .modeling_xlm_roberta_xl import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
========================================================================================================================================================== SOURCE CODE FILE: configuration_xlm_roberta_xl.py LINES: 1 SIZE: 7.15 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\xlm_roberta_xl\configuration_xlm_roberta_xl.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """XLM_ROBERTa_XL configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) class XLMRobertaXLConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`XLMRobertaXLModel`] or a [`TFXLMRobertaXLModel`]. It is used to instantiate a XLM_ROBERTA_XL model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the XLM_ROBERTA_XL [facebook/xlm-roberta-xl](https://huggingface.co/facebook/xlm-roberta-xl) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 250880): Vocabulary size of the XLM_ROBERTA_XL model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`XLMRobertaXLModel`]. hidden_size (`int`, *optional*, defaults to 2560): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 36): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 10240): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 514): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 1): The vocabulary size of the `token_type_ids` passed when calling [`XLMRobertaXLModel`] or [`TFXLMRobertaXLModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Examples: ```python >>> from transformers import XLMRobertaXLConfig, XLMRobertaXLModel >>> # Initializing a XLM_ROBERTA_XL google-bert/bert-base-uncased style configuration >>> configuration = XLMRobertaXLConfig() >>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration >>> model = XLMRobertaXLModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "xlm-roberta-xl" def __init__( self, vocab_size=250880, hidden_size=2560, num_hidden_layers=36, num_attention_heads=32, intermediate_size=10240, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=514, type_vocab_size=1, initializer_range=0.02, layer_norm_eps=1e-05, pad_token_id=1, bos_token_id=0, eos_token_id=2, position_embedding_type="absolute", use_cache=True, classifier_dropout=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.classifier_dropout = classifier_dropout # Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->XLMRobertaXL class XLMRobertaXLOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] ) __all__ = ["XLMRobertaXLConfig", "XLMRobertaXLOnnxConfig"] ```
===================================================================================================================================================== SOURCE CODE FILE: modeling_xlm_roberta_xl.py LINES: 1 SIZE: 76.05 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\xlm_roberta_xl\modeling_xlm_roberta_xl.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch XLM RoBERTa xl,xxl model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from packaging import version from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN, gelu from ...generation import GenerationMixin from ...modeling_attn_mask_utils import ( _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa, ) from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, get_torch_version, logging, replace_return_docstrings, ) from .configuration_xlm_roberta_xl import XLMRobertaXLConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/xlm-roberta-xl" _CONFIG_FOR_DOC = "XLMRobertaXLConfig" class XLMRobertaXLEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings.create_position_ids_from_inputs_embeds def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->XLMRobertaXL class XLMRobertaXLSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in XLMRobertaXLModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSdpaSelfAttention with Bert->XLMRobertaXL class XLMRobertaXLSdpaSelfAttention(XLMRobertaXLSelfAttention): def __init__(self, config, position_embedding_type=None): super().__init__(config, position_embedding_type=position_embedding_type) self.dropout_prob = config.attention_probs_dropout_prob self.require_contiguous_qkv = version.parse(get_torch_version()) < version.parse("2.2.0") # Adapted from XLMRobertaXLSelfAttention def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: if self.position_embedding_type != "absolute" or output_attentions or head_mask is not None: # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once implemented. logger.warning_once( "XLMRobertaXLSdpaSelfAttention is used but `torch.nn.functional.scaled_dot_product_attention` does not support " "non-absolute `position_embedding_type` or `output_attentions=True` or `head_mask`. Falling back to " "the manual attention implementation, but specifying the manual implementation will be required from " "Transformers version v5.0.0 onwards. This warning can be removed using the argument " '`attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) bsz, tgt_len, _ = hidden_states.size() query_layer = self.transpose_for_scores(self.query(hidden_states)) # If this is instantiated as a cross-attention module, the keys and values come from an encoder; the attention # mask needs to be such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None current_states = encoder_hidden_states if is_cross_attention else hidden_states attention_mask = encoder_attention_mask if is_cross_attention else attention_mask # Check `seq_length` of `past_key_value` == `len(current_states)` to support prefix tuning if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]: key_layer, value_layer = past_key_value else: key_layer = self.transpose_for_scores(self.key(current_states)) value_layer = self.transpose_for_scores(self.value(current_states)) if past_key_value is not None and not is_cross_attention: key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # SDPA with memory-efficient backend is broken in torch==2.1.2 when using non-contiguous inputs and a custom # attn_mask, so we need to call `.contiguous()` here. This was fixed in torch==2.2.0. # Reference: https://github.com/pytorch/pytorch/issues/112577 if self.require_contiguous_qkv and query_layer.device.type == "cuda" and attention_mask is not None: query_layer = query_layer.contiguous() key_layer = key_layer.contiguous() value_layer = value_layer.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create # a causal mask in case tgt_len == 1. is_causal = ( True if self.is_decoder and not is_cross_attention and attention_mask is None and tgt_len > 1 else False ) attn_output = torch.nn.functional.scaled_dot_product_attention( query_layer, key_layer, value_layer, attn_mask=attention_mask, dropout_p=self.dropout_prob if self.training else 0.0, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, self.all_head_size) outputs = (attn_output,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class XLMRobertaXLSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states XLMROBERTAXL_SELF_ATTENTION_CLASSES = { "eager": XLMRobertaXLSelfAttention, "sdpa": XLMRobertaXLSdpaSelfAttention, } class XLMRobertaXLAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.self = XLMROBERTAXL_SELF_ATTENTION_CLASSES[config._attn_implementation]( config, position_embedding_type=position_embedding_type ) self.output = XLMRobertaXLSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): intermediate = self.self_attn_layer_norm(hidden_states) self_outputs = self.self( intermediate, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class XLMRobertaXLIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class XLMRobertaXLOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class XLMRobertaXLLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = XLMRobertaXLAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = XLMRobertaXLAttention(config, position_embedding_type="absolute") self.intermediate = XLMRobertaXLIntermediate(config) self.output = XLMRobertaXLOutput(config) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.LayerNorm(attention_output) intermediate_output = self.intermediate(intermediate_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class XLMRobertaXLEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([XLMRobertaXLLayer(config) for _ in range(config.num_hidden_layers)]) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) hidden_states = self.LayerNorm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler class XLMRobertaXLPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class XLMRobertaXLPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XLMRobertaXLConfig base_model_prefix = "roberta" _no_split_modules = ["XLMRobertaXLEmbeddings", "XLMRobertaXLLayer"] _supports_sdpa = True # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights with BertLMPredictionHead->XLMRobertaXLLMHead def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, XLMRobertaXLLMHead): module.bias.data.zero_() XLM_ROBERTA_XL_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`XLMRobertaXLConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ XLM_ROBERTA_XL_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare XLM-RoBERTa-XL Model transformer outputting raw hidden-states without any specific head on top.", XLM_ROBERTA_XL_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertModel with Bert->XLMRobertaXL, BERT->XLM_ROBERTA_XL class XLMRobertaXLModel(XLMRobertaXLPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ _no_split_modules = ["XLMRobertaXLEmbeddings", "XLMRobertaXLLayer"] def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = XLMRobertaXLEmbeddings(config) self.encoder = XLMRobertaXLEncoder(config) self.pooler = XLMRobertaXLPooler(config) if add_pooling_layer else None self.attn_implementation = config._attn_implementation self.position_embedding_type = config.position_embedding_type # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, target_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length + past_key_values_length), device=device) use_sdpa_attention_masks = ( self.attn_implementation == "sdpa" and self.position_embedding_type == "absolute" and head_mask is None and not output_attentions ) # Expand the attention mask if use_sdpa_attention_masks and attention_mask.dim() == 2: # Expand the attention mask for SDPA. # [bsz, seq_len] -> [bsz, 1, seq_len, seq_len] if self.config.is_decoder: extended_attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, input_shape, embedding_output, past_key_values_length, ) else: extended_attention_mask = _prepare_4d_attention_mask_for_sdpa( attention_mask, embedding_output.dtype, tgt_len=seq_length ) else: # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) if use_sdpa_attention_masks and encoder_attention_mask.dim() == 2: # Expand the attention mask for SDPA. # [bsz, seq_len] -> [bsz, 1, seq_len, seq_len] encoder_extended_attention_mask = _prepare_4d_attention_mask_for_sdpa( encoder_attention_mask, embedding_output.dtype, tgt_len=seq_length ) else: encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """XLM-RoBERTa-XL Model with a `language modeling` head on top for CLM fine-tuning.""", XLM_ROBERTA_XL_START_DOCSTRING, ) class XLMRobertaXLForCausalLM(XLMRobertaXLPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `RobertaLMHeadModel` as a standalone, add `is_decoder=True.`") self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False) self.lm_head = XLMRobertaXLLMHead(config) self.init_weights() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings self.lm_head.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, RobertaForCausalLM, RobertaConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base") >>> config = RobertaConfig.from_pretrained("FacebookAI/roberta-base") >>> config.is_decoder = True >>> model = RobertaForCausalLM.from_pretrained("FacebookAI/roberta-base", config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) lm_loss = None if labels is not None: lm_loss = self.loss_function( prediction_scores, labels, vocab_size=self.config.vocab_size, **kwargs, ) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): # Overwritten -- model logic breaks when `inputs_embeds` are passed from this function input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # Create missing `position_ids` on the fly position_ids = None if model_kwargs.get("position_ids") is None: position_ids = create_position_ids_from_input_ids( input_ids, padding_idx=self.config.pad_token_id ) # placed in kwargs for further processing (see below) # cut decoder_input_ids if past_key_values is used if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] if position_ids is not None: position_ids = position_ids[:, remove_prefix_length:] return { "input_ids": input_ids, "attention_mask": attention_mask, "position_ids": position_ids, "past_key_values": past_key_values, } def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings( """XLM-RoBERTa-XL Model with a `language modeling` head on top.""", XLM_ROBERTA_XL_START_DOCSTRING ) class XLMRobertaXLForMaskedLM(XLMRobertaXLPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False) self.lm_head = XLMRobertaXLLMHead(config) self.init_weights() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings self.lm_head.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` kwargs (`Dict[str, any]`, *optional*, defaults to `{}`): Used to hide legacy arguments that have been deprecated. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class XLMRobertaXLLMHead(nn.Module): """XLM-RoBERTa-XL Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = self.decoder(x) return x def _tie_weights(self) -> None: # For accelerate compatibility and to not break backward compatibility if self.decoder.bias.device.type == "meta": self.decoder.bias = self.bias else: # To tie those two weights if they get disconnected (on TPU or when the bias is resized) self.bias = self.decoder.bias @add_start_docstrings( """ XLM-RoBERTa-XL Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, XLM_ROBERTA_XL_START_DOCSTRING, ) class XLMRobertaXLForSequenceClassification(XLMRobertaXLPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False) self.classifier = XLMRobertaXLClassificationHead(config) self.init_weights() @add_start_docstrings_to_model_forward(XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLM-RoBERTa-XL Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, XLM_ROBERTA_XL_START_DOCSTRING, ) class XLMRobertaXLForMultipleChoice(XLMRobertaXLPreTrainedModel): def __init__(self, config): super().__init__(config) self.roberta = XLMRobertaXLModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) self.init_weights() @add_start_docstrings_to_model_forward( XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None flat_inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.roberta( flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLM-RoBERTa-XL Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, XLM_ROBERTA_XL_START_DOCSTRING, ) class XLMRobertaXLForTokenClassification(XLMRobertaXLPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class XLMRobertaXLClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ XLM-RoBERTa-XL Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, XLM_ROBERTA_XL_START_DOCSTRING, ) class XLMRobertaXLForQuestionAnswering(XLMRobertaXLPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = XLMRobertaXLModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(XLM_ROBERTA_XL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx __all__ = [ "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] ```
=================================================================================================================================== SOURCE CODE FILE: tokenization_xlm.py LINES: 6 SIZE: 23.90 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\xlm\tokenization_xlm.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2019 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for XLM.""" import json import os import re import sys import unicodedata from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } def get_pairs(word): """ Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length strings) """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def lowercase_and_remove_accent(text): """ Lowercase and strips accents from a piece of text based on https://github.com/facebookresearch/XLM/blob/master/tools/lowercase_and_remove_accent.py """ text = " ".join(text) text = text.lower() text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output).lower().split(" ") def replace_unicode_punct(text): """ Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl """ text = text.replace(",", ",") text = re.sub(r"。\s*", ". ", text) text = text.replace("、", ",") text = text.replace("”", '"') text = text.replace("“", '"') text = text.replace("∶", ":") text = text.replace(":", ":") text = text.replace("?", "?") text = text.replace("《", '"') text = text.replace("》", '"') text = text.replace(")", ")") text = text.replace("!", "!") text = text.replace("(", "(") text = text.replace(";", ";") text = text.replace("1", "1") text = text.replace("」", '"') text = text.replace("「", '"') text = text.replace("0", "0") text = text.replace("3", "3") text = text.replace("2", "2") text = text.replace("5", "5") text = text.replace("6", "6") text = text.replace("9", "9") text = text.replace("7", "7") text = text.replace("8", "8") text = text.replace("4", "4") text = re.sub(r".\s*", ". ", text) text = text.replace("~", "~") text = text.replace("’", "'") text = text.replace("…", "...") text = text.replace("━", "-") text = text.replace("〈", "<") text = text.replace("〉", ">") text = text.replace("【", "[") text = text.replace("】", "]") text = text.replace("%", "%") return text def remove_non_printing_char(text): """ Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl """ output = [] for char in text: cat = unicodedata.category(char) if cat.startswith("C"): continue output.append(char) return "".join(output) def romanian_preprocessing(text): """Sennrich's WMT16 scripts for Romanian preprocessing, used by model `FacebookAI/xlm-mlm-enro-1024`""" # https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/normalise-romanian.py text = text.replace("\u015e", "\u0218").replace("\u015f", "\u0219") text = text.replace("\u0162", "\u021a").replace("\u0163", "\u021b") # https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/remove-diacritics.py text = text.replace("\u0218", "S").replace("\u0219", "s") # s-comma text = text.replace("\u021a", "T").replace("\u021b", "t") # t-comma text = text.replace("\u0102", "A").replace("\u0103", "a") text = text.replace("\u00c2", "A").replace("\u00e2", "a") text = text.replace("\u00ce", "I").replace("\u00ee", "i") return text class XLMTokenizer(PreTrainedTokenizer): """ Construct an XLM tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following: - Moses preprocessing and tokenization for most supported languages. - Language specific tokenization for Chinese (Jieba), Japanese (KyTea) and Thai (PyThaiNLP). - Optionally lowercases and normalizes all inputs text. - The arguments `special_tokens` and the function `set_special_tokens`, can be used to add additional symbols (like "__classify__") to a vocabulary. - The `lang2id` attribute maps the languages supported by the model with their IDs if provided (automatically set for pretrained vocabularies). - The `id2lang` attributes does reverse mapping if provided (automatically set for pretrained vocabularies). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Vocabulary file. merges_file (`str`): Merges file. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"</s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"<special1>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `['<special0>', '<special1>', '<special2>', '<special3>', '<special4>', '<special5>', '<special6>', '<special7>', '<special8>', '<special9>']`): List of additional special tokens. lang2id (`Dict[str, int]`, *optional*): Dictionary mapping languages string identifiers to their IDs. id2lang (`Dict[int, str]`, *optional*): Dictionary mapping language IDs to their string identifiers. do_lowercase_and_remove_accent (`bool`, *optional*, defaults to `True`): Whether to lowercase and remove accents when tokenizing. """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, merges_file, unk_token="<unk>", bos_token="<s>", sep_token="</s>", pad_token="<pad>", cls_token="</s>", mask_token="<special1>", additional_special_tokens=[ "<special0>", "<special1>", "<special2>", "<special3>", "<special4>", "<special5>", "<special6>", "<special7>", "<special8>", "<special9>", ], lang2id=None, id2lang=None, do_lowercase_and_remove_accent=True, **kwargs, ): try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use XLMTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.sm = sacremoses # cache of sm.MosesPunctNormalizer instance self.cache_moses_punct_normalizer = {} # cache of sm.MosesTokenizer instance self.cache_moses_tokenizer = {} self.lang_with_custom_tokenizer = {"zh", "th", "ja"} # True for current supported model (v1.2.0), False for XLM-17 & 100 self.do_lowercase_and_remove_accent = do_lowercase_and_remove_accent self.lang2id = lang2id self.id2lang = id2lang if lang2id is not None and id2lang is not None: assert len(lang2id) == len(id2lang) self.ja_word_tokenizer = None self.zh_word_tokenizer = None with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[:-1] merges = [tuple(merge.split()[:2]) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} super().__init__( unk_token=unk_token, bos_token=bos_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, additional_special_tokens=additional_special_tokens, lang2id=lang2id, id2lang=id2lang, do_lowercase_and_remove_accent=do_lowercase_and_remove_accent, **kwargs, ) @property def do_lower_case(self): return self.do_lowercase_and_remove_accent def moses_punct_norm(self, text, lang): if lang not in self.cache_moses_punct_normalizer: punct_normalizer = self.sm.MosesPunctNormalizer(lang=lang) self.cache_moses_punct_normalizer[lang] = punct_normalizer else: punct_normalizer = self.cache_moses_punct_normalizer[lang] return punct_normalizer.normalize(text) def moses_tokenize(self, text, lang): if lang not in self.cache_moses_tokenizer: moses_tokenizer = self.sm.MosesTokenizer(lang=lang) self.cache_moses_tokenizer[lang] = moses_tokenizer else: moses_tokenizer = self.cache_moses_tokenizer[lang] return moses_tokenizer.tokenize(text, return_str=False, escape=False) def moses_pipeline(self, text, lang): text = replace_unicode_punct(text) text = self.moses_punct_norm(text, lang) text = remove_non_printing_char(text) return text def ja_tokenize(self, text): if self.ja_word_tokenizer is None: try: import Mykytea self.ja_word_tokenizer = Mykytea.Mykytea( f"-model {os.path.expanduser('~')}/local/share/kytea/model.bin" ) except (AttributeError, ImportError): logger.error( "Make sure you install KyTea (https://github.com/neubig/kytea) and it's python wrapper" " (https://github.com/chezou/Mykytea-python) with the following steps" ) logger.error("1. git clone [email protected]:neubig/kytea.git && cd kytea") logger.error("2. autoreconf -i") logger.error("3. ./configure --prefix=$HOME/local") logger.error("4. make && make install") logger.error("5. pip install kytea") raise return list(self.ja_word_tokenizer.getWS(text)) @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): word = tuple(token[:-1]) + (token[-1] + "</w>",) if token in self.cache: return self.cache[token] pairs = get_pairs(word) if not pairs: return token + "</w>" while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) if word == "\n </w>": word = "\n</w>" self.cache[token] = word return word def _tokenize(self, text, lang="en", bypass_tokenizer=False): """ Tokenize a string given language code. For Chinese, Japanese and Thai, we use a language specific tokenizer. Otherwise, we use Moses. Details of tokenization: - [sacremoses](https://github.com/alvations/sacremoses): port of Moses - Install with `pip install sacremoses` - [pythainlp](https://github.com/PyThaiNLP/pythainlp): Thai tokenizer - Install with `pip install pythainlp` - [kytea](https://github.com/chezou/Mykytea-python): Japanese tokenizer, wrapper of [KyTea](https://github.com/neubig/kytea) - Install with the following steps: :: git clone [email protected]:neubig/kytea.git && cd kytea autoreconf -i ./configure --prefix=$HOME/local make && make install pip install kytea - [jieba](https://github.com/fxsjy/jieba): Chinese tokenizer (*) - Install with `pip install jieba` (*) The original XLM used [Stanford Segmenter](https://nlp.stanford.edu/software/stanford-segmenter-2018-10-16.zip). However, the wrapper (`nltk.tokenize.stanford_segmenter`) is slow due to JVM overhead, and it will be deprecated. Jieba is a lot faster and pip-installable. Note there is some mismatch with the Stanford Segmenter. It should be fine if you fine-tune the model with Chinese supervisionself. If you want the same exact behaviour, use the original XLM [preprocessing script](https://github.com/facebookresearch/XLM/tree/master/tools) to tokenize the sentence externally, and set `bypass_tokenizer=True` to bypass the tokenizer. Args: - lang: ISO language code (default = 'en') (string). Languages should belong of the model supported languages. However, we don't enforce it. - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False) (bool). If True, we only apply BPE. Returns: List of tokens. """ if lang and self.lang2id and lang not in self.lang2id: logger.error( "Supplied language code not found in lang2id mapping. Please check that your language is supported by" " the loaded pretrained model." ) if bypass_tokenizer: text = text.split() elif lang not in self.lang_with_custom_tokenizer: text = self.moses_pipeline(text, lang=lang) # TODO: make sure we are using `FacebookAI/xlm-mlm-enro-1024`, since XLM-100 doesn't have this step if lang == "ro": text = romanian_preprocessing(text) text = self.moses_tokenize(text, lang=lang) elif lang == "th": text = self.moses_pipeline(text, lang=lang) try: if "pythainlp" not in sys.modules: from pythainlp.tokenize import word_tokenize as th_word_tokenize else: th_word_tokenize = sys.modules["pythainlp"].word_tokenize except (AttributeError, ImportError): logger.error( "Make sure you install PyThaiNLP (https://github.com/PyThaiNLP/pythainlp) with the following steps" ) logger.error("1. pip install pythainlp") raise text = th_word_tokenize(text) elif lang == "zh": try: if "jieba" not in sys.modules: import jieba else: jieba = sys.modules["jieba"] except (AttributeError, ImportError): logger.error("Make sure you install Jieba (https://github.com/fxsjy/jieba) with the following steps") logger.error("1. pip install jieba") raise text = " ".join(jieba.cut(text)) text = self.moses_pipeline(text, lang=lang) text = text.split() elif lang == "ja": text = self.moses_pipeline(text, lang=lang) text = self.ja_tokenize(text) else: raise ValueError("It should not reach here") if self.do_lowercase_and_remove_accent and not bypass_tokenizer: text = lowercase_and_remove_accent(text) split_tokens = [] for token in text: if token: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = "".join(tokens).replace("</w>", " ").strip() return out_string def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ bos = [self.bos_token_id] sep = [self.sep_token_id] if token_ids_1 is None: return bos + token_ids_0 + sep return bos + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLM sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def __getstate__(self): state = self.__dict__.copy() state["sm"] = None return state def __setstate__(self, d): self.__dict__ = d try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use XLMTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.sm = sacremoses __all__ = ["XLMTokenizer"] ```
============================================================================================================================= SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.08 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\xlnet\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_xlnet import * from .modeling_tf_xlnet import * from .modeling_xlnet import * from .tokenization_xlnet import * from .tokenization_xlnet_fast import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
======================================================================================================================================== SOURCE CODE FILE: configuration_xlnet.py LINES: 1 SIZE: 10.70 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\xlnet\configuration_xlnet.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """XLNet configuration""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class XLNetConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`XLNetModel`] or a [`TFXLNetModel`]. It is used to instantiate a XLNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [xlnet/xlnet-large-cased](https://huggingface.co/xlnet/xlnet-large-cased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the XLNet model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`XLNetModel`] or [`TFXLNetModel`]. d_model (`int`, *optional*, defaults to 1024): Dimensionality of the encoder layers and the pooler layer. n_layer (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. d_inner (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. ff_activation (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. untie_r (`bool`, *optional*, defaults to `True`): Whether or not to untie relative position biases attn_type (`str`, *optional*, defaults to `"bi"`): The attention type used by the model. Set `"bi"` for XLNet, `"uni"` for Transformer-XL. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. mem_len (`int` or `None`, *optional*): The number of tokens to cache. The key/value pairs that have already been pre-computed in a previous forward pass won't be re-computed. See the [quickstart](https://huggingface.co/transformers/quickstart.html#using-the-past) for more information. reuse_len (`int`, *optional*): The number of tokens in the current batch to be cached and reused in the future. bi_data (`bool`, *optional*, defaults to `False`): Whether or not to use bidirectional input pipeline. Usually set to `True` during pretraining and `False` during finetuning. clamp_len (`int`, *optional*, defaults to -1): Clamp all relative distances larger than clamp_len. Setting this attribute to -1 means no clamping. same_length (`bool`, *optional*, defaults to `False`): Whether or not to use the same attention length for each token. summary_type (`str`, *optional*, defaults to "last"): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Has to be one of the following options: - `"last"`: Take the last token hidden state (like XLNet). - `"first"`: Take the first token hidden state (like BERT). - `"mean"`: Take the mean of all tokens hidden states. - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). - `"attn"`: Not implemented now, use multi-head attention. summary_use_proj (`bool`, *optional*, defaults to `True`): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Whether or not to add a projection after the vector extraction. summary_activation (`str`, *optional*): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation. summary_proj_to_labels (`boo`, *optional*, defaults to `True`): Used in the sequence classification and multiple choice models. Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes. summary_last_dropout (`float`, *optional*, defaults to 0.1): Used in the sequence classification and multiple choice models. The dropout ratio to be used after the projection and activation. start_n_top (`int`, *optional*, defaults to 5): Used in the SQuAD evaluation script. end_n_top (`int`, *optional*, defaults to 5): Used in the SQuAD evaluation script. use_mems_eval (`bool`, *optional*, defaults to `True`): Whether or not the model should make use of the recurrent memory mechanism in evaluation mode. use_mems_train (`bool`, *optional*, defaults to `False`): Whether or not the model should make use of the recurrent memory mechanism in train mode. <Tip> For pretraining, it is recommended to set `use_mems_train` to `True`. For fine-tuning, it is recommended to set `use_mems_train` to `False` as discussed [here](https://github.com/zihangdai/xlnet/issues/41#issuecomment-505102587). If `use_mems_train` is set to `True`, one has to make sure that the train batches are correctly pre-processed, *e.g.* `batch_1 = [[This line is], [This is the]]` and `batch_2 = [[ the first line], [ second line]]` and that all batches are of equal size. </Tip> Examples: ```python >>> from transformers import XLNetConfig, XLNetModel >>> # Initializing a XLNet configuration >>> configuration = XLNetConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = XLNetModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "xlnet" keys_to_ignore_at_inference = ["mems"] attribute_map = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, vocab_size=32000, d_model=1024, n_layer=24, n_head=16, d_inner=4096, ff_activation="gelu", untie_r=True, attn_type="bi", initializer_range=0.02, layer_norm_eps=1e-12, dropout=0.1, mem_len=512, reuse_len=None, use_mems_eval=True, use_mems_train=False, bi_data=False, clamp_len=-1, same_length=False, summary_type="last", summary_use_proj=True, summary_activation="tanh", summary_last_dropout=0.1, start_n_top=5, end_n_top=5, pad_token_id=5, bos_token_id=1, eos_token_id=2, **kwargs, ): """Constructs XLNetConfig.""" self.vocab_size = vocab_size self.d_model = d_model self.n_layer = n_layer self.n_head = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) self.d_head = d_model // n_head self.ff_activation = ff_activation self.d_inner = d_inner self.untie_r = untie_r self.attn_type = attn_type self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.dropout = dropout self.mem_len = mem_len self.reuse_len = reuse_len self.bi_data = bi_data self.clamp_len = clamp_len self.same_length = same_length self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation self.summary_last_dropout = summary_last_dropout self.start_n_top = start_n_top self.end_n_top = end_n_top self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.eos_token_id = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", FutureWarning, ) use_mems_eval = kwargs["use_cache"] self.use_mems_eval = use_mems_eval self.use_mems_train = use_mems_train super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) @property def max_position_embeddings(self): logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def max_position_embeddings(self, value): # Message copied from Transformer-XL documentation raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." ) __all__ = ["XLNetConfig"] ```
====================================================================================================================================== SOURCE CODE FILE: modeling_tf_xlnet.py LINES: 1 SIZE: 76.11 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\xlnet\modeling_tf_xlnet.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 XLNet model. """ from __future__ import annotations import warnings from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFSequenceSummary, TFSharedEmbeddings, TFTokenClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_xlnet import XLNetConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "xlnet/xlnet-base-cased" _CONFIG_FOR_DOC = "XLNetConfig" class TFXLNetRelativeAttention(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.d_model % config.n_head != 0: raise ValueError( f"The hidden size ({config.d_model}) is not a multiple of the number of attention " f"heads ({config.n_head}" ) self.n_head = config.n_head self.d_head = config.d_head self.d_model = config.d_model self.scale = 1 / (config.d_head**0.5) self.initializer_range = config.initializer_range self.output_attentions = config.output_attentions self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.dropout = keras.layers.Dropout(config.dropout) self.config = config def build(self, input_shape=None): initializer = get_initializer(self.initializer_range) self.q = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="q" ) self.k = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="k" ) self.v = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="v" ) self.o = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="o" ) self.r = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="r" ) self.r_r_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias" ) self.r_s_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_s_bias" ) self.r_w_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias" ) self.seg_embed = self.add_weight( shape=(2, self.n_head, self.d_head), initializer=initializer, trainable=True, name="seg_embed" ) if self.built: return self.built = True if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) def prune_heads(self, heads): raise NotImplementedError def rel_shift(self, x, klen=-1): """perform relative shift to form the relative attention score.""" x_size = shape_list(x) x = tf.reshape(x, (x_size[1], x_size[0], x_size[2], x_size[3])) x = x[1:, ...] x = tf.reshape(x, (x_size[0], x_size[1] - 1, x_size[2], x_size[3])) x = x[:, 0:klen, :, :] # x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long)) return x def rel_attn_core( self, q_head, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask, head_mask, output_attentions, training=False ): """Core relative positional attention operations.""" # content based attention score ac = tf.einsum("ibnd,jbnd->ijbn", q_head + self.r_w_bias, k_head_h) # position based attention score bd = tf.einsum("ibnd,jbnd->ijbn", q_head + self.r_r_bias, k_head_r) bd = self.rel_shift(bd, klen=shape_list(ac)[1]) # segment based attention score if seg_mat is None: ef = 0 else: ef = tf.einsum("ibnd,snd->ibns", q_head + self.r_s_bias, self.seg_embed) ef = tf.einsum("ijbs,ibns->ijbn", seg_mat, ef) # merge attention scores and perform masking attn_score = (ac + bd + ef) * self.scale if attn_mask is not None: # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask if attn_mask.dtype == tf.float16 or attn_mask.dtype == tf.bfloat16: attn_score = attn_score - 65500 * attn_mask else: attn_score = attn_score - 1e30 * attn_mask # attention probability attn_prob = stable_softmax(attn_score, axis=1) attn_prob = self.dropout(attn_prob, training=training) # Mask heads if we want to if head_mask is not None: attn_prob = attn_prob * head_mask # attention output attn_vec = tf.einsum("ijbn,jbnd->ibnd", attn_prob, v_head_h) if output_attentions: return attn_vec, attn_prob return attn_vec def post_attention(self, h, attn_vec, residual=True, training=False): """Post-attention processing.""" # post-attention projection (back to `d_model`) attn_out = tf.einsum("ibnd,hnd->ibh", attn_vec, self.o) attn_out = self.dropout(attn_out, training=training) if residual: attn_out = attn_out + h output = self.layer_norm(attn_out) return output def call( self, h, g, attn_mask_h, attn_mask_g, r, seg_mat, mems: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = False, training: bool = False, ): if g is not None: # Two-stream attention with relative positional encoding. # content based attention score if mems is not None and len(shape_list(mems)) > 1: cat = tf.concat([mems, h], axis=0) else: cat = h # content-based key head k_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.k) # content-based value head v_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.v) # position-based key head k_head_r = tf.einsum("ibh,hnd->ibnd", r, self.r) # h-stream # content-stream query head q_head_h = tf.einsum("ibh,hnd->ibnd", h, self.q) # core attention ops attn_vec_h = self.rel_attn_core( q_head_h, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_h, head_mask, output_attentions, training=training, ) if output_attentions: attn_vec_h, attn_prob_h = attn_vec_h # post processing output_h = self.post_attention(h, attn_vec_h, training=training) # g-stream # query-stream query head q_head_g = tf.einsum("ibh,hnd->ibnd", g, self.q) # core attention ops if target_mapping is not None: q_head_g = tf.einsum("mbnd,mlb->lbnd", q_head_g, target_mapping) attn_vec_g = self.rel_attn_core( q_head_g, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_g, head_mask, output_attentions, training=training, ) if output_attentions: attn_vec_g, attn_prob_g = attn_vec_g attn_vec_g = tf.einsum("lbnd,mlb->mbnd", attn_vec_g, target_mapping) else: attn_vec_g = self.rel_attn_core( q_head_g, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_g, head_mask, output_attentions, training=training, ) if output_attentions: attn_vec_g, attn_prob_g = attn_vec_g # post processing output_g = self.post_attention(g, attn_vec_g, training=training) if output_attentions: attn_prob = attn_prob_h, attn_prob_g else: # Multi-head attention with relative positional encoding if mems is not None and len(shape_list(mems)) > 1: cat = tf.concat([mems, h], axis=0) else: cat = h # content heads q_head_h = tf.einsum("ibh,hnd->ibnd", h, self.q) k_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.k) v_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.v) # positional heads k_head_r = tf.einsum("ibh,hnd->ibnd", r, self.r) # core attention ops attn_vec = self.rel_attn_core( q_head_h, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_h, head_mask, output_attentions, training=training, ) if output_attentions: attn_vec, attn_prob = attn_vec # post processing output_h = self.post_attention(h, attn_vec, training=training) output_g = None outputs = (output_h, output_g) if output_attentions: outputs = outputs + (attn_prob,) return outputs class TFXLNetFeedForward(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.layer_1 = keras.layers.Dense( config.d_inner, kernel_initializer=get_initializer(config.initializer_range), name="layer_1" ) self.layer_2 = keras.layers.Dense( config.d_model, kernel_initializer=get_initializer(config.initializer_range), name="layer_2" ) self.dropout = keras.layers.Dropout(config.dropout) if isinstance(config.ff_activation, str): self.activation_function = get_tf_activation(config.ff_activation) else: self.activation_function = config.ff_activation self.config = config def call(self, inp, training=False): output = inp output = self.layer_1(output) output = self.activation_function(output) output = self.dropout(output, training=training) output = self.layer_2(output) output = self.dropout(output, training=training) output = self.layer_norm(output + inp) return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) if getattr(self, "layer_1", None) is not None: with tf.name_scope(self.layer_1.name): self.layer_1.build([None, None, self.config.d_model]) if getattr(self, "layer_2", None) is not None: with tf.name_scope(self.layer_2.name): self.layer_2.build([None, None, self.config.d_inner]) class TFXLNetLayer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.rel_attn = TFXLNetRelativeAttention(config, name="rel_attn") self.ff = TFXLNetFeedForward(config, name="ff") self.dropout = keras.layers.Dropout(config.dropout) def call( self, output_h, output_g, non_tgt_mask, attn_mask, pos_emb, seg_mat, mems: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = False, training: bool = False, ): outputs = self.rel_attn( output_h, output_g, non_tgt_mask, attn_mask, pos_emb, seg_mat, mems, target_mapping, head_mask, output_attentions, training=training, ) output_h, output_g = outputs[:2] if output_g is not None: output_g = self.ff(output_g, training=training) output_h = self.ff(output_h, training=training) outputs = (output_h, output_g) + outputs[2:] # Add again attentions if there are there return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "rel_attn", None) is not None: with tf.name_scope(self.rel_attn.name): self.rel_attn.build(None) if getattr(self, "ff", None) is not None: with tf.name_scope(self.ff.name): self.ff.build(None) class TFXLNetLMHead(keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.config = config # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.input_embeddings def set_output_embeddings(self, value): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.input_embeddings(hidden_states, mode="linear") hidden_states = hidden_states + self.bias return hidden_states @keras_serializable class TFXLNetMainLayer(keras.layers.Layer): config_class = XLNetConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.return_dict = config.return_dict self.mem_len = config.mem_len self.reuse_len = config.reuse_len self.d_model = config.d_model self.same_length = config.same_length self.attn_type = config.attn_type self.bi_data = config.bi_data self.clamp_len = config.clamp_len self.n_layer = config.n_layer self.use_bfloat16 = config.use_bfloat16 self.initializer_range = config.initializer_range self.word_embedding = TFSharedEmbeddings( config.vocab_size, config.d_model, initializer_range=config.initializer_range, name="word_embedding" ) self.layer = [TFXLNetLayer(config, name=f"layer_._{i}") for i in range(config.n_layer)] self.dropout = keras.layers.Dropout(config.dropout) self.use_mems_eval = config.use_mems_eval self.use_mems_train = config.use_mems_train def get_input_embeddings(self): return self.word_embedding def set_input_embeddings(self, value): self.word_embedding.weight = value self.word_embedding.vocab_size = shape_list(value)[0] def build(self, input_shape=None): initializer = get_initializer(self.initializer_range) self.mask_emb = self.add_weight( shape=(1, 1, self.d_model), initializer=initializer, trainable=True, name="mask_emb" ) if self.built: return self.built = True if getattr(self, "word_embedding", None) is not None: with tf.name_scope(self.word_embedding.name): self.word_embedding.build(None) if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) def _prune_heads(self, heads_to_prune): raise NotImplementedError def create_mask(self, qlen, mlen): """ Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked. Args: qlen: TODO Lysandre didn't fill mlen: TODO Lysandre didn't fill ``` same_length=False: same_length=True: <mlen > < qlen > <mlen > < qlen > ^ [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 0 1 1 1] [1 0 0 0 0 0 1 1 1] qlen [0 0 0 0 0 0 0 1 1] [1 1 0 0 0 0 0 1 1] [0 0 0 0 0 0 0 0 1] [1 1 1 0 0 0 0 0 1] v [0 0 0 0 0 0 0 0 0] [1 1 1 1 0 0 0 0 0] ``` """ attn_mask = tf.ones([qlen, qlen]) mask_u = tf.linalg.band_part(attn_mask, 0, -1) mask_dia = tf.linalg.band_part(attn_mask, 0, 0) attn_mask_pad = tf.zeros([qlen, mlen]) ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1) if self.same_length: mask_l = tf.linalg.band_part(attn_mask, -1, 0) ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1) return ret def cache_mem(self, curr_out, prev_mem): # cache hidden states into memory. if self.reuse_len is not None and self.reuse_len > 0: curr_out = curr_out[: self.reuse_len] if self.mem_len is None or self.mem_len == 0: # If `use_mems` is active but no `mem_len` is defined, the model behaves like GPT-2 at inference time # and returns all of the past and current hidden states. cutoff = 0 else: # If `use_mems` is active and `mem_len` is defined, the model returns the last `mem_len` hidden # states. This is the preferred setting for training and long-form generation. cutoff = -self.mem_len if prev_mem is None: # if `use_mems` is active and `mem_len` is defined, the model new_mem = curr_out[cutoff:] else: new_mem = tf.concat([prev_mem, curr_out], 0)[cutoff:] return tf.stop_gradient(new_mem) @staticmethod def positional_embedding(pos_seq, inv_freq, bsz=None): sinusoid_inp = tf.einsum("i,d->id", pos_seq, inv_freq) pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], axis=-1) pos_emb = pos_emb[:, None, :] if bsz is not None: pos_emb = tf.tile(pos_emb, [1, bsz, 1]) return pos_emb def relative_positional_encoding(self, qlen, klen, bsz=None): """create relative positional encoding.""" freq_seq = tf.range(0, self.d_model, 2.0) inv_freq = 1 / (10000 ** (freq_seq / self.d_model)) if self.attn_type == "bi": # beg, end = klen - 1, -qlen beg, end = klen, -qlen elif self.attn_type == "uni": # beg, end = klen - 1, -1 beg, end = klen, -1 else: raise ValueError(f"Unknown `attn_type` {self.attn_type}.") if self.bi_data: fwd_pos_seq = tf.range(beg, end, -1.0) bwd_pos_seq = tf.range(-beg, -end, 1.0) if self.clamp_len > 0: fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len, self.clamp_len) bwd_pos_seq = tf.clip_by_value(bwd_pos_seq, -self.clamp_len, self.clamp_len) if bsz is not None: if bsz % 2 != 0: raise ValueError(f"With bi_data, the batch size {bsz} should be divisible by 2") fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz // 2) bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz // 2) else: fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq) bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq) pos_emb = tf.concat([fwd_pos_emb, bwd_pos_emb], axis=1) else: fwd_pos_seq = tf.range(beg, end, -1.0) if self.clamp_len > 0: fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len, self.clamp_len) pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz) return pos_emb @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ): if training and use_mems is None: use_mems = self.use_mems_train else: use_mems = self.use_mems_eval # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end # but we want a unified interface in the library with the batch size on the first dimension # so we move here the first dimension (batch) to the end if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_ids = tf.transpose(input_ids, perm=(1, 0)) qlen, bsz = shape_list(input_ids)[:2] elif inputs_embeds is not None: inputs_embeds = tf.transpose(inputs_embeds, perm=(1, 0, 2)) qlen, bsz = shape_list(inputs_embeds)[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") token_type_ids = tf.transpose(token_type_ids, perm=(1, 0)) if token_type_ids is not None else None input_mask = tf.transpose(input_mask, perm=(1, 0)) if input_mask is not None else None attention_mask = tf.transpose(attention_mask, perm=(1, 0)) if attention_mask is not None else None perm_mask = tf.transpose(perm_mask, perm=(1, 2, 0)) if perm_mask is not None else None target_mapping = tf.transpose(target_mapping, perm=(1, 2, 0)) if target_mapping is not None else None mlen = shape_list(mems[0])[0] if mems is not None and mems[0] is not None else 0 klen = mlen + qlen # Attention mask # causal attention mask if self.attn_type == "uni": attn_mask = self.create_mask(qlen, mlen) attn_mask = attn_mask[:, :, None, None] elif self.attn_type == "bi": attn_mask = None else: raise ValueError(f"Unsupported attention type: {self.attn_type}") # data mask: input mask & perm mask assert input_mask is None or attention_mask is None, ( "You can only use one of input_mask (uses 1 for padding) " "or attention_mask (uses 0 for padding, added for compatibility with BERT). Please choose one." ) if input_mask is None and attention_mask is not None: one_cst = tf.constant(1.0) input_mask = 1.0 - tf.cast(attention_mask, dtype=one_cst.dtype) if input_mask is not None and perm_mask is not None: data_mask = input_mask[None] + perm_mask elif input_mask is not None and perm_mask is None: data_mask = input_mask[None] elif input_mask is None and perm_mask is not None: data_mask = perm_mask else: data_mask = None if data_mask is not None: # all mems can be attended to if mlen > 0: mems_mask = tf.zeros([shape_list(data_mask)[0], mlen, bsz]) data_mask = tf.concat([mems_mask, data_mask], axis=1) if attn_mask is None: attn_mask = data_mask[:, :, :, None] else: attn_mask += data_mask[:, :, :, None] if attn_mask is not None: attn_mask = tf.cast(attn_mask > 0, dtype=attn_mask.dtype) if attn_mask is not None: non_tgt_mask = -tf.eye(qlen) if mlen > 0: non_tgt_mask = tf.concat([tf.zeros([qlen, mlen]), non_tgt_mask], axis=-1) non_tgt_mask = tf.cast((attn_mask + non_tgt_mask[:, :, None, None]) > 0, dtype=non_tgt_mask.dtype) else: non_tgt_mask = None # Word embeddings and prepare h & g hidden states if inputs_embeds is not None: word_emb_k = inputs_embeds else: check_embeddings_within_bounds(input_ids, self.word_embedding.vocab_size) word_emb_k = self.word_embedding(input_ids) output_h = self.dropout(word_emb_k, training=training) if target_mapping is not None: word_emb_q = tf.tile(self.mask_emb, [shape_list(target_mapping)[0], bsz, 1]) # else: # We removed the inp_q input which was same as target mapping # inp_q_ext = inp_q[:, :, None] # word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k output_g = self.dropout(word_emb_q, training=training) else: output_g = None # Segment embedding if token_type_ids is not None: # Convert `token_type_ids` to one-hot `seg_mat` if mlen > 0: mem_pad = tf.zeros([mlen, bsz], dtype=token_type_ids.dtype) cat_ids = tf.concat([mem_pad, token_type_ids], 0) else: cat_ids = token_type_ids # `1` indicates not in the same segment [qlen x klen x bsz] seg_mat = tf.cast( tf.logical_not(tf.equal(token_type_ids[:, None], cat_ids[None, :])), dtype=token_type_ids.dtype, ) seg_mat = tf.one_hot(seg_mat, 2) else: seg_mat = None # Positional encoding pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz) pos_emb = self.dropout(pos_emb, training=training) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.n_layer new_mems = () if mems is None: mems = [None] * len(self.layer) attentions = [] if output_attentions else None hidden_states = [] if output_hidden_states else None for i, layer_module in enumerate(self.layer): # cache new mems if use_mems: new_mems = new_mems + (self.cache_mem(output_h, mems[i]),) if output_hidden_states: hidden_states.append((output_h, output_g) if output_g is not None else output_h) outputs = layer_module( output_h, output_g, non_tgt_mask, attn_mask, pos_emb, seg_mat, mems[i], target_mapping, head_mask[i], output_attentions, training=training, ) output_h, output_g = outputs[:2] if output_attentions: attentions.append(outputs[2]) # Add last hidden state if output_hidden_states: hidden_states.append((output_h, output_g) if output_g is not None else output_h) output = self.dropout(output_g if output_g is not None else output_h, training=training) # Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method) output = tf.transpose(output, perm=(1, 0, 2)) if not use_mems: new_mems = None if output_hidden_states: if output_g is not None: hidden_states = tuple(tf.transpose(h, perm=(1, 0, 2)) for hs in hidden_states for h in hs) else: hidden_states = tuple(tf.transpose(hs, perm=(1, 0, 2)) for hs in hidden_states) if output_attentions: if target_mapping is not None: # when target_mapping is provided, there are 2-tuple of attentions attentions = tuple( tuple(tf.transpose(attn_stream, perm=(2, 3, 0, 1)) for attn_stream in t) for t in attentions ) else: attentions = tuple(tf.transpose(t, perm=(2, 3, 0, 1)) for t in attentions) if not return_dict: return tuple(v for v in [output, new_mems, hidden_states, attentions] if v is not None) return TFXLNetModelOutput( last_hidden_state=output, mems=new_mems, hidden_states=hidden_states, attentions=attentions ) class TFXLNetPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XLNetConfig base_model_prefix = "transformer" @dataclass class TFXLNetModelOutput(ModelOutput): """ Output type of [`TFXLNetModel`]. Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, num_predict, hidden_size)`): Sequence of hidden-states at the last layer of the model. `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`. mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: Optional[tf.Tensor] = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFXLNetLMHeadModelOutput(ModelOutput): """ Output type of [`TFXLNetLMHeadModel`]. Args: loss (`tf.Tensor` of shape *(1,)*, *optional*, returned when `labels` is provided) Language modeling loss (for next-token prediction). logits (`tf.Tensor` of shape `(batch_size, num_predict, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`. mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: Optional[tf.Tensor] = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFXLNetForSequenceClassificationOutput(ModelOutput): """ Output type of [`TFXLNetForSequenceClassification`]. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `label` is provided): Classification (or regression if config.num_labels==1) loss. logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: Optional[tf.Tensor] = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFXLNetForTokenClassificationOutput(ModelOutput): """ Output type of [`TFXLNetForTokenClassificationOutput`]. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : Classification loss. logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.num_labels)`): Classification scores (before SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: Optional[tf.Tensor] = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFXLNetForMultipleChoiceOutput(ModelOutput): """ Output type of [`TFXLNetForMultipleChoice`]. Args: loss (`tf.Tensor` of shape *(1,)*, *optional*, returned when `labels` is provided): Classification loss. logits (`tf.Tensor` of shape `(batch_size, num_choices)`): *num_choices* is the second dimension of the input tensors. (see *input_ids* above). Classification scores (before SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: Optional[tf.Tensor] = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFXLNetForQuestionAnsweringSimpleOutput(ModelOutput): """ Output type of [`TFXLNetForQuestionAnsweringSimple`]. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_logits (`tf.Tensor` of shape `(batch_size, sequence_length,)`): Span-start scores (before SoftMax). end_logits (`tf.Tensor` of shape `(batch_size, sequence_length,)`): Span-end scores (before SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None start_logits: Optional[tf.Tensor] = None end_logits: Optional[tf.Tensor] = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None XLNET_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`XLNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ XLNET_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. `use_mems` has to be set to `True` to make use of `mems`. perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*): Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`: - if `perm_mask[k, i, j] = 0`, i attend to j in batch k; - if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k. If not set, each token attends to all the others (full bidirectional attention). Only used during pretraining (to define factorization order) or for sequential decoding (generation). target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*): Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is on the j-th token. Only used during pretraining for partial prediction or for sequential decoding (generation). token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) input_mask (`torch.FloatTensor` of shape `{0}`, *optional*): Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for real tokens and 1 for padding which is kept for compatibility with the original code base. Mask values selected in `[0, 1]`: - 1 for tokens that are **masked**, - 0 for tokens that are **not masked**. You can only uses one of `input_mask` and `attention_mask`. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare XLNet Model transformer outputting raw hidden-states without any specific head on top.", XLNET_START_DOCSTRING, ) class TFXLNetModel(TFXLNetPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLNetMainLayer(config, name="transformer") @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFXLNetModelOutput, Tuple[tf.Tensor]]: outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) @add_start_docstrings( """ XLNet Model with a language modeling head on top (linear layer with weights tied to the input embeddings). """, XLNET_START_DOCSTRING, ) class TFXLNetLMHeadModel(TFXLNetPreTrainedModel, TFCausalLanguageModelingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLNetMainLayer(config, name="transformer") self.lm_loss = TFXLNetLMHead(config, self.transformer.word_embedding, name="lm_loss") # generate fails to convert to a graph with XLNet self.supports_xla_generation = False def get_lm_head(self): return self.lm_loss def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_loss.name def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_mems=None, **kwargs): # Add dummy token at the end (no attention on this one) effective_batch_size = inputs.shape[0] dummy_token = tf.zeros((effective_batch_size, 1), dtype=inputs.dtype) # At every pass, the attention values for the new token and the two last generated tokens # are computed, the rest is reloaded from the `past` cache. A purely auto-regressive model would have # offset = 1; offset = 2 seems to have slightly better computation. offset = 2 if past_key_values: input_ids = tf.concat([inputs[:, -offset:], dummy_token], axis=1) else: input_ids = tf.concat([inputs, dummy_token], axis=1) # Build permutation mask so that previous tokens don't see last token sequence_length = input_ids.shape[1] perm_mask = tf.zeros((effective_batch_size, sequence_length, sequence_length - 1)) perm_mask_seq_end = tf.ones((effective_batch_size, sequence_length, 1)) perm_mask = tf.concat([perm_mask, perm_mask_seq_end], axis=-1) # We'll only predict the last token target_mapping = tf.zeros((effective_batch_size, 1, sequence_length - 1)) target_mapping_seq_end = tf.ones((effective_batch_size, 1, 1)) target_mapping = tf.concat([target_mapping, target_mapping_seq_end], axis=-1) inputs = { "input_ids": input_ids, "perm_mask": perm_mask, "target_mapping": target_mapping, "use_mems": use_mems, } # if past is defined in model kwargs then use it for faster decoding if past_key_values: inputs["mems"] = tuple(layer_past[:-offset, :, :] for layer_past in past_key_values) return inputs @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFXLNetLMHeadModelOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFXLNetLMHeadModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. Return: Examples: ```python >>> import tensorflow as tf >>> import numpy as np >>> from transformers import AutoTokenizer, TFXLNetLMHeadModel >>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-large-cased") >>> model = TFXLNetLMHeadModel.from_pretrained("xlnet/xlnet-large-cased") >>> # We show how to setup inputs to predict a next token using a bi-directional context. >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=True))[ ... None, : ... ] # We will predict the masked token >>> perm_mask = np.zeros((1, input_ids.shape[1], input_ids.shape[1])) >>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token >>> target_mapping = np.zeros( ... (1, 1, input_ids.shape[1]) ... ) # Shape [1, 1, seq_length] => let's predict one token >>> target_mapping[ ... 0, 0, -1 ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token) >>> outputs = model( ... input_ids, ... perm_mask=tf.constant(perm_mask, dtype=tf.float32), ... target_mapping=tf.constant(target_mapping, dtype=tf.float32), ... ) >>> next_token_logits = outputs[ ... 0 ... ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size] ```""" transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_state = transformer_outputs[0] logits = self.lm_loss(hidden_state, training=training) loss = None if labels is not None: loss = self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetLMHeadModelOutput( loss=loss, logits=logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "lm_loss", None) is not None: with tf.name_scope(self.lm_loss.name): self.lm_loss.build(None) @add_start_docstrings( """ XLNet Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, XLNET_START_DOCSTRING, ) class TFXLNetForSequenceClassification(TFXLNetPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFXLNetMainLayer(config, name="transformer") self.sequence_summary = TFSequenceSummary( config, initializer_range=config.initializer_range, name="sequence_summary" ) self.logits_proj = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetForSequenceClassificationOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFXLNetForSequenceClassificationOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] output = self.sequence_summary(output) logits = self.logits_proj(output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetForSequenceClassificationOutput( loss=loss, logits=logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "sequence_summary", None) is not None: with tf.name_scope(self.sequence_summary.name): self.sequence_summary.build(None) if getattr(self, "logits_proj", None) is not None: with tf.name_scope(self.logits_proj.name): self.logits_proj.build([None, None, self.config.d_model]) @add_start_docstrings( """ XLNET Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, XLNET_START_DOCSTRING, ) class TFXLNetForMultipleChoice(TFXLNetPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLNetMainLayer(config, name="transformer") self.sequence_summary = TFSequenceSummary( config, initializer_range=config.initializer_range, name="sequence_summary" ) self.logits_proj = keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetForMultipleChoiceOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFXLNetForMultipleChoiceOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_input_mask = tf.reshape(input_mask, (-1, seq_length)) if input_mask is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) transformer_outputs = self.transformer( flat_input_ids, flat_attention_mask, mems, perm_mask, target_mapping, flat_token_type_ids, flat_input_mask, head_mask, flat_inputs_embeds, use_mems, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] logits = self.sequence_summary(output) logits = self.logits_proj(logits) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetForMultipleChoiceOutput( loss=loss, logits=reshaped_logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "sequence_summary", None) is not None: with tf.name_scope(self.sequence_summary.name): self.sequence_summary.build(None) if getattr(self, "logits_proj", None) is not None: with tf.name_scope(self.logits_proj.name): self.logits_proj.build([None, None, self.config.d_model]) @add_start_docstrings( """ XLNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, XLNET_START_DOCSTRING, ) class TFXLNetForTokenClassification(TFXLNetPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFXLNetMainLayer(config, name="transformer") self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetForTokenClassificationOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFXLNetForTokenClassificationOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] logits = self.classifier(output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetForTokenClassificationOutput( loss=loss, logits=logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, XLNET_START_DOCSTRING, ) class TFXLNetForQuestionAnsweringSimple(TFXLNetPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLNetMainLayer(config, name="transformer") self.qa_outputs = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetForQuestionAnsweringSimpleOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFXLNetForQuestionAnsweringSimpleOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = transformer_outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetForQuestionAnsweringSimpleOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size]) __all__ = [ "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] ```
=================================================================================================================================== SOURCE CODE FILE: modeling_xlnet.py LINES: 1 SIZE: 91.13 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\xlnet\modeling_xlnet.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch XLNet model. """ import warnings from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...generation import GenerationMixin from ...modeling_utils import PoolerAnswerClass, PoolerEndLogits, PoolerStartLogits, PreTrainedModel, SequenceSummary from ...pytorch_utils import apply_chunking_to_forward from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_xlnet import XLNetConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "xlnet/xlnet-base-cased" _CONFIG_FOR_DOC = "XLNetConfig" def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None): """ A map of modules from TF to PyTorch. I use a map to keep the PyTorch model as identical to the original PyTorch model as possible. """ tf_to_pt_map = {} if hasattr(model, "transformer"): if hasattr(model, "lm_loss"): # We will load also the output bias tf_to_pt_map["model/lm_loss/bias"] = model.lm_loss.bias if hasattr(model, "sequence_summary") and "model/sequnece_summary/summary/kernel" in tf_weights: # We will load also the sequence summary tf_to_pt_map["model/sequnece_summary/summary/kernel"] = model.sequence_summary.summary.weight tf_to_pt_map["model/sequnece_summary/summary/bias"] = model.sequence_summary.summary.bias if ( hasattr(model, "logits_proj") and config.finetuning_task is not None and f"model/regression_{config.finetuning_task}/logit/kernel" in tf_weights ): tf_to_pt_map[f"model/regression_{config.finetuning_task}/logit/kernel"] = model.logits_proj.weight tf_to_pt_map[f"model/regression_{config.finetuning_task}/logit/bias"] = model.logits_proj.bias # Now load the rest of the transformer model = model.transformer # Embeddings and output tf_to_pt_map.update( { "model/transformer/word_embedding/lookup_table": model.word_embedding.weight, "model/transformer/mask_emb/mask_emb": model.mask_emb, } ) # Transformer blocks for i, b in enumerate(model.layer): layer_str = f"model/transformer/layer_{i}/" tf_to_pt_map.update( { layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight, layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias, layer_str + "rel_attn/o/kernel": b.rel_attn.o, layer_str + "rel_attn/q/kernel": b.rel_attn.q, layer_str + "rel_attn/k/kernel": b.rel_attn.k, layer_str + "rel_attn/r/kernel": b.rel_attn.r, layer_str + "rel_attn/v/kernel": b.rel_attn.v, layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight, layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias, layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight, layer_str + "ff/layer_1/bias": b.ff.layer_1.bias, layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight, layer_str + "ff/layer_2/bias": b.ff.layer_2.bias, } ) # Relative positioning biases if config.untie_r: r_r_list = [] r_w_list = [] r_s_list = [] seg_embed_list = [] for b in model.layer: r_r_list.append(b.rel_attn.r_r_bias) r_w_list.append(b.rel_attn.r_w_bias) r_s_list.append(b.rel_attn.r_s_bias) seg_embed_list.append(b.rel_attn.seg_embed) else: r_r_list = [model.r_r_bias] r_w_list = [model.r_w_bias] r_s_list = [model.r_s_bias] seg_embed_list = [model.seg_embed] tf_to_pt_map.update( { "model/transformer/r_r_bias": r_r_list, "model/transformer/r_w_bias": r_w_list, "model/transformer/r_s_bias": r_s_list, "model/transformer/seg_embed": seg_embed_list, } ) return tf_to_pt_map def load_tf_weights_in_xlnet(model, config, tf_path): """Load tf checkpoints in a pytorch model""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model init_vars = tf.train.list_variables(tf_path) tf_weights = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) tf_weights[name] = array # Build TF to PyTorch weights loading map tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config, tf_weights) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}") if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping") continue array = tf_weights[name] # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if "kernel" in name and ("ff" in name or "summary" in name or "logit" in name): logger.info("Transposing") array = np.transpose(array) if isinstance(pointer, list): # Here we will split the TF weights assert len(pointer) == array.shape[0], ( f"Pointer length {len(pointer)} and array length {array.shape[0]} mismatched" ) for i, p_i in enumerate(pointer): arr_i = array[i, ...] try: assert p_i.shape == arr_i.shape, ( f"Pointer shape {p_i.shape} and array shape {arr_i.shape} mismatched" ) except AssertionError as e: e.args += (p_i.shape, arr_i.shape) raise logger.info(f"Initialize PyTorch weight {name} for layer {i}") p_i.data = torch.from_numpy(arr_i) else: try: assert pointer.shape == array.shape, ( f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) tf_weights.pop(name, None) tf_weights.pop(name + "/Adam", None) tf_weights.pop(name + "/Adam_1", None) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}") return model class XLNetRelativeAttention(nn.Module): def __init__(self, config): super().__init__() if config.d_model % config.n_head != 0: raise ValueError( f"The hidden size ({config.d_model}) is not a multiple of the number of attention " f"heads ({config.n_head}" ) self.n_head = config.n_head self.d_head = config.d_head self.d_model = config.d_model self.scale = 1 / (config.d_head**0.5) self.q = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) self.k = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) self.v = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) self.o = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) self.r = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) self.r_s_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) self.seg_embed = nn.Parameter(torch.FloatTensor(2, self.n_head, self.d_head)) self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.dropout) def prune_heads(self, heads): raise NotImplementedError @staticmethod def rel_shift(x, klen=-1): """perform relative shift to form the relative attention score.""" x_size = x.shape x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3]) x = x[1:, ...] x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3]) # x = x[:, 0:klen, :, :] x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long)) return x @staticmethod def rel_shift_bnij(x, klen=-1): x_size = x.shape x = x.reshape(x_size[0], x_size[1], x_size[3], x_size[2]) x = x[:, :, 1:, :] x = x.reshape(x_size[0], x_size[1], x_size[2], x_size[3] - 1) # Note: the tensor-slice form was faster in my testing than torch.index_select # However, tracing doesn't like the nature of the slice, and if klen changes # during the run then it'll fail, whereas index_select will be fine. x = torch.index_select(x, 3, torch.arange(klen, device=x.device, dtype=torch.long)) # x = x[:, :, :, :klen] return x def rel_attn_core( self, q_head, k_head_h, v_head_h, k_head_r, seg_mat=None, attn_mask=None, head_mask=None, output_attentions=False, ): """Core relative positional attention operations.""" # content based attention score ac = torch.einsum("ibnd,jbnd->bnij", q_head + self.r_w_bias, k_head_h) # position based attention score bd = torch.einsum("ibnd,jbnd->bnij", q_head + self.r_r_bias, k_head_r) bd = self.rel_shift_bnij(bd, klen=ac.shape[3]) # segment based attention score if seg_mat is None: ef = 0 else: ef = torch.einsum("ibnd,snd->ibns", q_head + self.r_s_bias, self.seg_embed) ef = torch.einsum("ijbs,ibns->bnij", seg_mat, ef) # merge attention scores and perform masking attn_score = (ac + bd + ef) * self.scale if attn_mask is not None: # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask if attn_mask.dtype == torch.float16: attn_score = attn_score - 65500 * torch.einsum("ijbn->bnij", attn_mask) else: attn_score = attn_score - 1e30 * torch.einsum("ijbn->bnij", attn_mask) # attention probability attn_prob = nn.functional.softmax(attn_score, dim=3) attn_prob = self.dropout(attn_prob) # Mask heads if we want to if head_mask is not None: attn_prob = attn_prob * torch.einsum("ijbn->bnij", head_mask) # attention output attn_vec = torch.einsum("bnij,jbnd->ibnd", attn_prob, v_head_h) if output_attentions: return attn_vec, torch.einsum("bnij->ijbn", attn_prob) return attn_vec def post_attention(self, h, attn_vec, residual=True): """Post-attention processing.""" # post-attention projection (back to `d_model`) attn_out = torch.einsum("ibnd,hnd->ibh", attn_vec, self.o) attn_out = self.dropout(attn_out) if residual: attn_out = attn_out + h output = self.layer_norm(attn_out) return output def forward( self, h, g, attn_mask_h, attn_mask_g, r, seg_mat, mems=None, target_mapping=None, head_mask=None, output_attentions=False, ): if g is not None: # Two-stream attention with relative positional encoding. # content based attention score if mems is not None and mems.dim() > 1: cat = torch.cat([mems, h], dim=0) else: cat = h # content-based key head k_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.k) # content-based value head v_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.v) # position-based key head k_head_r = torch.einsum("ibh,hnd->ibnd", r, self.r) # h-stream # content-stream query head q_head_h = torch.einsum("ibh,hnd->ibnd", h, self.q) # core attention ops attn_vec_h = self.rel_attn_core( q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask, output_attentions=output_attentions, ) if output_attentions: attn_vec_h, attn_prob_h = attn_vec_h # post processing output_h = self.post_attention(h, attn_vec_h) # g-stream # query-stream query head q_head_g = torch.einsum("ibh,hnd->ibnd", g, self.q) # core attention ops if target_mapping is not None: q_head_g = torch.einsum("mbnd,mlb->lbnd", q_head_g, target_mapping) attn_vec_g = self.rel_attn_core( q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask, output_attentions=output_attentions, ) if output_attentions: attn_vec_g, attn_prob_g = attn_vec_g attn_vec_g = torch.einsum("lbnd,mlb->mbnd", attn_vec_g, target_mapping) else: attn_vec_g = self.rel_attn_core( q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask, output_attentions=output_attentions, ) if output_attentions: attn_vec_g, attn_prob_g = attn_vec_g # post processing output_g = self.post_attention(g, attn_vec_g) if output_attentions: attn_prob = attn_prob_h, attn_prob_g else: # Multi-head attention with relative positional encoding if mems is not None and mems.dim() > 1: cat = torch.cat([mems, h], dim=0) else: cat = h # content heads q_head_h = torch.einsum("ibh,hnd->ibnd", h, self.q) k_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.k) v_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.v) # positional heads # type casting for fp16 support k_head_r = torch.einsum("ibh,hnd->ibnd", r.type(self.r.dtype), self.r) # core attention ops attn_vec = self.rel_attn_core( q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask, output_attentions=output_attentions, ) if output_attentions: attn_vec, attn_prob = attn_vec # post processing output_h = self.post_attention(h, attn_vec) output_g = None outputs = (output_h, output_g) if output_attentions: outputs = outputs + (attn_prob,) return outputs class XLNetFeedForward(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps) self.layer_1 = nn.Linear(config.d_model, config.d_inner) self.layer_2 = nn.Linear(config.d_inner, config.d_model) self.dropout = nn.Dropout(config.dropout) if isinstance(config.ff_activation, str): self.activation_function = ACT2FN[config.ff_activation] else: self.activation_function = config.ff_activation def forward(self, inp): output = inp output = self.layer_1(output) output = self.activation_function(output) output = self.dropout(output) output = self.layer_2(output) output = self.dropout(output) output = self.layer_norm(output + inp) return output class XLNetLayer(nn.Module): def __init__(self, config): super().__init__() self.rel_attn = XLNetRelativeAttention(config) self.ff = XLNetFeedForward(config) self.dropout = nn.Dropout(config.dropout) self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 def forward( self, output_h, output_g, attn_mask_h, attn_mask_g, r, seg_mat, mems=None, target_mapping=None, head_mask=None, output_attentions=False, ): outputs = self.rel_attn( output_h, output_g, attn_mask_h, attn_mask_g, r, seg_mat, mems=mems, target_mapping=target_mapping, head_mask=head_mask, output_attentions=output_attentions, ) output_h, output_g = outputs[:2] if output_g is not None: output_g = apply_chunking_to_forward( self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, output_g ) output_h = apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, output_h) outputs = (output_h, output_g) + outputs[2:] # Add again attentions if there are there return outputs def ff_chunk(self, output_x): output_x = self.ff(output_x) return output_x class XLNetPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XLNetConfig load_tf_weights = load_tf_weights_in_xlnet base_model_prefix = "transformer" def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, XLNetRelativeAttention): for param in [ module.q, module.k, module.v, module.o, module.r, module.r_r_bias, module.r_s_bias, module.r_w_bias, module.seg_embed, ]: param.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, XLNetModel): module.mask_emb.data.normal_(mean=0.0, std=self.config.initializer_range) @dataclass class XLNetModelOutput(ModelOutput): """ Output type of [`XLNetModel`]. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_predict, hidden_size)`): Sequence of hidden-states at the last layer of the model. `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`. mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor mems: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class XLNetLMHeadModelOutput(ModelOutput): """ Output type of [`XLNetLMHeadModel`]. Args: loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided) Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, num_predict, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`. mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None mems: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class XLNetForSequenceClassificationOutput(ModelOutput): """ Output type of [`XLNetForSequenceClassification`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `label` is provided): Classification (or regression if config.num_labels==1) loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None mems: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class XLNetForTokenClassificationOutput(ModelOutput): """ Output type of [`XLNetForTokenClassificationOutput`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : Classification loss. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`): Classification scores (before SoftMax). mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None mems: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class XLNetForMultipleChoiceOutput(ModelOutput): """ Output type of [`XLNetForMultipleChoice`]. Args: loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided): Classification loss. logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`): *num_choices* is the second dimension of the input tensors. (see *input_ids* above). Classification scores (before SoftMax). mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None mems: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class XLNetForQuestionAnsweringSimpleOutput(ModelOutput): """ Output type of [`XLNetForQuestionAnsweringSimple`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length,)`): Span-start scores (before SoftMax). end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length,)`): Span-end scores (before SoftMax). mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None start_logits: Optional[torch.FloatTensor] = None end_logits: Optional[torch.FloatTensor] = None mems: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class XLNetForQuestionAnsweringOutput(ModelOutput): """ Output type of [`XLNetForQuestionAnswering`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided): Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses. start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Log probabilities for the top config.start_n_top start token possibilities (beam-search). start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Indices for the top config.start_n_top start token possibilities (beam-search). end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search). end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search). cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Log probabilities for the `is_impossible` label of the answers. mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None start_top_log_probs: Optional[torch.FloatTensor] = None start_top_index: Optional[torch.LongTensor] = None end_top_log_probs: Optional[torch.FloatTensor] = None end_top_index: Optional[torch.LongTensor] = None cls_logits: Optional[torch.FloatTensor] = None mems: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None XLNET_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`XLNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ XLNET_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. `use_mems` has to be set to `True` to make use of `mems`. perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*): Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`: - if `perm_mask[k, i, j] = 0`, i attend to j in batch k; - if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k. If not set, each token attends to all the others (full bidirectional attention). Only used during pretraining (to define factorization order) or for sequential decoding (generation). target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*): Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is on the j-th token. Only used during pretraining for partial prediction or for sequential decoding (generation). token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) input_mask (`torch.FloatTensor` of shape `{0}`, *optional*): Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for real tokens and 1 for padding which is kept for compatibility with the original code base. Mask values selected in `[0, 1]`: - 1 for tokens that are **masked**, - 0 for tokens that are **not masked**. You can only uses one of `input_mask` and `attention_mask`. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare XLNet Model transformer outputting raw hidden-states without any specific head on top.", XLNET_START_DOCSTRING, ) class XLNetModel(XLNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.mem_len = config.mem_len self.reuse_len = config.reuse_len self.d_model = config.d_model self.same_length = config.same_length self.attn_type = config.attn_type self.bi_data = config.bi_data self.clamp_len = config.clamp_len self.n_layer = config.n_layer self.word_embedding = nn.Embedding(config.vocab_size, config.d_model) self.mask_emb = nn.Parameter(torch.FloatTensor(1, 1, config.d_model)) self.layer = nn.ModuleList([XLNetLayer(config) for _ in range(config.n_layer)]) self.dropout = nn.Dropout(config.dropout) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embedding def set_input_embeddings(self, new_embeddings): self.word_embedding = new_embeddings def _prune_heads(self, heads_to_prune): raise NotImplementedError def create_mask(self, qlen, mlen): """ Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked. Args: qlen: Sequence length mlen: Mask length :: same_length=False: same_length=True: <mlen > < qlen > <mlen > < qlen > ^ [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 0 1 1 1] [1 0 0 0 0 0 1 1 1] qlen [0 0 0 0 0 0 0 1 1] [1 1 0 0 0 0 0 1 1] [0 0 0 0 0 0 0 0 1] [1 1 1 0 0 0 0 0 1] v [0 0 0 0 0 0 0 0 0] [1 1 1 1 0 0 0 0 0] """ mask = torch.ones((qlen, qlen + mlen), device=self.device) if self.same_length: mask_lo = mask[:, :qlen].tril(-1) mask.triu_(mlen + 1) mask[:, :qlen] += mask_lo else: mask.triu_(mlen + 1) return mask def cache_mem(self, curr_out, prev_mem): # cache hidden states into memory. if self.reuse_len is not None and self.reuse_len > 0: curr_out = curr_out[: self.reuse_len] if self.mem_len is None or self.mem_len == 0: # If `use_mems` is active but no `mem_len` is defined, the model behaves like GPT-2 at inference time # and returns all of the past and current hidden states. cutoff = 0 else: # If `use_mems` is active and `mem_len` is defined, the model returns the last `mem_len` hidden # states. This is the preferred setting for training and long-form generation. cutoff = -self.mem_len if prev_mem is None: # if `use_mems` is active and `mem_len` is defined, the model new_mem = curr_out[cutoff:] else: new_mem = torch.cat([prev_mem, curr_out], dim=0)[cutoff:] return new_mem.detach() @staticmethod def positional_embedding(pos_seq, inv_freq, bsz=None): sinusoid_inp = torch.einsum("i,d->id", pos_seq, inv_freq) pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1) pos_emb = pos_emb[:, None, :] if bsz is not None: pos_emb = pos_emb.expand(-1, bsz, -1) return pos_emb def relative_positional_encoding(self, qlen, klen, bsz=None): # create relative positional encoding. freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.int64).float() inv_freq = 1 / torch.pow(10000, (freq_seq / self.d_model)) if self.attn_type == "bi": # beg, end = klen - 1, -qlen beg, end = klen, -qlen elif self.attn_type == "uni": # beg, end = klen - 1, -1 beg, end = klen, -1 else: raise ValueError(f"Unknown `attn_type` {self.attn_type}.") if self.bi_data: fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.int64).float() bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.int64).float() if self.clamp_len > 0: fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len) bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len) if bsz is not None: fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz // 2) bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz // 2) else: fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq) bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq) pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1) else: fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.int64).float() if self.clamp_len > 0: fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len) pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz) return pos_emb @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=XLNetModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, mems: Optional[torch.Tensor] = None, perm_mask: Optional[torch.Tensor] = None, target_mapping: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, input_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, # delete after depreciation warning is removed ) -> Union[Tuple, XLNetModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems`" " instead.", FutureWarning, ) use_mems = kwargs["use_cache"] if self.training: use_mems = use_mems if use_mems is not None else self.config.use_mems_train else: use_mems = use_mems if use_mems is not None else self.config.use_mems_eval # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end # but we want a unified interface in the library with the batch size on the first dimension # so we move here the first dimension (batch) to the end if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_ids = input_ids.transpose(0, 1).contiguous() qlen, bsz = input_ids.shape[0], input_ids.shape[1] elif inputs_embeds is not None: inputs_embeds = inputs_embeds.transpose(0, 1).contiguous() qlen, bsz = inputs_embeds.shape[0], inputs_embeds.shape[1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None mlen = mems[0].shape[0] if mems is not None and mems[0] is not None else 0 klen = mlen + qlen dtype_float = self.dtype device = self.device # Attention mask # causal attention mask if self.attn_type == "uni": attn_mask = self.create_mask(qlen, mlen) attn_mask = attn_mask[:, :, None, None] elif self.attn_type == "bi": attn_mask = None else: raise ValueError(f"Unsupported attention type: {self.attn_type}") # data mask: input mask & perm mask assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) " "or attention_mask (uses 0 for padding, added for compatibility with BERT). Please choose one." if input_mask is None and attention_mask is not None: input_mask = 1.0 - attention_mask if input_mask is not None and perm_mask is not None: data_mask = input_mask[None] + perm_mask elif input_mask is not None and perm_mask is None: data_mask = input_mask[None] elif input_mask is None and perm_mask is not None: data_mask = perm_mask else: data_mask = None if data_mask is not None: # all mems can be attended to if mlen > 0: mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask) data_mask = torch.cat([mems_mask, data_mask], dim=1) if attn_mask is None: attn_mask = data_mask[:, :, :, None] else: attn_mask += data_mask[:, :, :, None] if attn_mask is not None: attn_mask = (attn_mask > 0).to(dtype_float) if attn_mask is not None: non_tgt_mask = -torch.eye(qlen).to(attn_mask) if mlen > 0: non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1) non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask) else: non_tgt_mask = None # Word embeddings and prepare h & g hidden states if inputs_embeds is not None: word_emb_k = inputs_embeds else: word_emb_k = self.word_embedding(input_ids) output_h = self.dropout(word_emb_k) if target_mapping is not None: word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1) # else: # We removed the inp_q input which was same as target mapping # inp_q_ext = inp_q[:, :, None] # word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k output_g = self.dropout(word_emb_q) else: output_g = None # Segment embedding if token_type_ids is not None: # Convert `token_type_ids` to one-hot `seg_mat` if mlen > 0: mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device) cat_ids = torch.cat([mem_pad, token_type_ids], dim=0) else: cat_ids = token_type_ids # `1` indicates not in the same segment [qlen x klen x bsz] seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long() seg_mat = nn.functional.one_hot(seg_mat, num_classes=2).to(dtype_float) else: seg_mat = None # Positional encoding pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz) pos_emb = pos_emb.to(output_h.device) pos_emb = self.dropout(pos_emb) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0) head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1) head_mask = head_mask.to( dtype=next(self.parameters()).dtype ) # switch to float if need + fp16 compatibility else: head_mask = [None] * self.n_layer new_mems = () if mems is None: mems = [None] * len(self.layer) attentions = [] if output_attentions else None hidden_states = [] if output_hidden_states else None for i, layer_module in enumerate(self.layer): if use_mems: # cache new mems new_mems = new_mems + (self.cache_mem(output_h, mems[i]),) if output_hidden_states: hidden_states.append((output_h, output_g) if output_g is not None else output_h) outputs = layer_module( output_h, output_g, attn_mask_h=non_tgt_mask, attn_mask_g=attn_mask, r=pos_emb, seg_mat=seg_mat, mems=mems[i], target_mapping=target_mapping, head_mask=head_mask[i], output_attentions=output_attentions, ) output_h, output_g = outputs[:2] if output_attentions: attentions.append(outputs[2]) # Add last hidden state if output_hidden_states: hidden_states.append((output_h, output_g) if output_g is not None else output_h) output = self.dropout(output_g if output_g is not None else output_h) # Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method) output = output.permute(1, 0, 2).contiguous() if not use_mems: new_mems = None if output_hidden_states: if output_g is not None: hidden_states = tuple(h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs) else: hidden_states = tuple(hs.permute(1, 0, 2).contiguous() for hs in hidden_states) if output_attentions: if target_mapping is not None: # when target_mapping is provided, there are 2-tuple of attentions attentions = tuple( tuple(att_stream.permute(2, 3, 0, 1).contiguous() for att_stream in t) for t in attentions ) else: attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions) if not return_dict: return tuple(v for v in [output, new_mems, hidden_states, attentions] if v is not None) return XLNetModelOutput( last_hidden_state=output, mems=new_mems, hidden_states=hidden_states, attentions=attentions ) @add_start_docstrings( """ XLNet Model with a language modeling head on top (linear layer with weights tied to the input embeddings). """, XLNET_START_DOCSTRING, ) class XLNetLMHeadModel(XLNetPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_loss.weight"] def __init__(self, config): super().__init__(config) self.attn_type = config.attn_type self.same_length = config.same_length self.transformer = XLNetModel(config) self.lm_loss = nn.Linear(config.d_model, config.vocab_size, bias=True) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_loss def set_output_embeddings(self, new_embeddings): self.lm_loss = new_embeddings def prepare_inputs_for_generation(self, input_ids, past_key_values=None, use_mems=None, **kwargs): # Overwritten -- this model has unique input preparation # Add dummy token at the end (no attention on this one) effective_batch_size = input_ids.shape[0] dummy_token = torch.zeros((effective_batch_size, 1), dtype=torch.long, device=input_ids.device) # At every pass, the attention values for the new token and the two last generated tokens # are computed, the rest is reloaded from the `past` cache. A purely auto-regressive model would have # offset = 1; offset = 2 seems to have slightly better computation. offset = 2 if past_key_values: input_ids = torch.cat([input_ids[:, -offset:], dummy_token], dim=1) else: input_ids = torch.cat([input_ids, dummy_token], dim=1) # Build permutation mask so that previous tokens don't see last token sequence_length = input_ids.shape[1] perm_mask = torch.zeros( (effective_batch_size, sequence_length, sequence_length), dtype=torch.float, device=input_ids.device ) perm_mask[:, :, -1] = 1.0 # We'll only predict the last token target_mapping = torch.zeros( (effective_batch_size, 1, sequence_length), dtype=torch.float, device=input_ids.device ) target_mapping[:, 0, -1] = 1.0 inputs = { "input_ids": input_ids, "perm_mask": perm_mask, "target_mapping": target_mapping, "use_mems": use_mems, } # if past is defined in model kwargs then use it for faster decoding if past_key_values: inputs["mems"] = tuple(layer_past[:-offset, :, :] for layer_past in past_key_values) return inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=XLNetLMHeadModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, mems: Optional[torch.Tensor] = None, perm_mask: Optional[torch.Tensor] = None, target_mapping: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, input_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, # delete when `use_cache` is removed in XLNetModel ) -> Union[Tuple, XLNetLMHeadModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, num_predict)`, *optional*): Labels for masked language modeling. `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`. The labels should correspond to the masked input words that should be predicted and depends on `target_mapping`. Note in order to perform standard auto-regressive language modeling a *<mask>* token has to be added to the `input_ids` (see the `prepare_inputs_for_generation` function and examples below) Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored, the loss is only computed for labels in `[0, ..., config.vocab_size]` Return: Examples: ```python >>> from transformers import AutoTokenizer, XLNetLMHeadModel >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-large-cased") >>> model = XLNetLMHeadModel.from_pretrained("xlnet/xlnet-large-cased") >>> # We show how to setup inputs to predict a next token using a bi-directional context. >>> input_ids = torch.tensor( ... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False) ... ).unsqueeze( ... 0 ... ) # We will predict the masked token >>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float) >>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token >>> target_mapping = torch.zeros( ... (1, 1, input_ids.shape[1]), dtype=torch.float ... ) # Shape [1, 1, seq_length] => let's predict one token >>> target_mapping[ ... 0, 0, -1 ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token) >>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping) >>> next_token_logits = outputs[ ... 0 ... ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size] >>> # The same way can the XLNetLMHeadModel be used to be trained by standard auto-regressive language modeling. >>> input_ids = torch.tensor( ... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False) ... ).unsqueeze( ... 0 ... ) # We will predict the masked token >>> labels = torch.tensor(tokenizer.encode("cute", add_special_tokens=False)).unsqueeze(0) >>> assert labels.shape[0] == 1, "only one word will be predicted" >>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float) >>> perm_mask[ ... :, :, -1 ... ] = 1.0 # Previous tokens don't see last token as is done in standard auto-regressive lm training >>> target_mapping = torch.zeros( ... (1, 1, input_ids.shape[1]), dtype=torch.float ... ) # Shape [1, 1, seq_length] => let's predict one token >>> target_mapping[ ... 0, 0, -1 ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token) >>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping, labels=labels) >>> loss = outputs.loss >>> next_token_logits = ( ... outputs.logits ... ) # Logits have shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) logits = self.lm_loss(transformer_outputs[0]) loss = None if labels is not None: # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1)) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return XLNetLMHeadModelOutput( loss=loss, logits=logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @staticmethod def _reorder_cache(mems: List[torch.Tensor], beam_idx: torch.Tensor) -> List[torch.Tensor]: """ This function is used to re-order the `mems` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `mems` with the correct beam_idx at every generation step. """ return [layer_past.index_select(1, beam_idx.to(layer_past.device)) for layer_past in mems] @add_start_docstrings( """ XLNet Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, XLNET_START_DOCSTRING, ) class XLNetForSequenceClassification(XLNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.transformer = XLNetModel(config) self.sequence_summary = SequenceSummary(config) self.logits_proj = nn.Linear(config.d_model, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=XLNetForSequenceClassificationOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, mems: Optional[torch.Tensor] = None, perm_mask: Optional[torch.Tensor] = None, target_mapping: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, input_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, # delete when `use_cache` is removed in XLNetModel ) -> Union[Tuple, XLNetForSequenceClassificationOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) output = transformer_outputs[0] output = self.sequence_summary(output) logits = self.logits_proj(output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return XLNetForSequenceClassificationOutput( loss=loss, logits=logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ XLNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, XLNET_START_DOCSTRING, ) class XLNetForTokenClassification(XLNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = XLNetModel(config) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=XLNetForTokenClassificationOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, mems: Optional[torch.Tensor] = None, perm_mask: Optional[torch.Tensor] = None, target_mapping: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, input_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, # delete when `use_cache` is removed in XLNetModel ) -> Union[Tuple, XLNetForTokenClassificationOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return XLNetForTokenClassificationOutput( loss=loss, logits=logits, mems=outputs.mems, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RACE/SWAG tasks. """, XLNET_START_DOCSTRING, ) class XLNetForMultipleChoice(XLNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = XLNetModel(config) self.sequence_summary = SequenceSummary(config) self.logits_proj = nn.Linear(config.d_model, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=XLNetForMultipleChoiceOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, input_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, mems: Optional[torch.Tensor] = None, perm_mask: Optional[torch.Tensor] = None, target_mapping: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, # delete when `use_cache` is removed in XLNetModel ) -> Union[Tuple, XLNetForMultipleChoiceOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None flat_input_mask = input_mask.view(-1, input_mask.size(-1)) if input_mask is not None else None flat_inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) transformer_outputs = self.transformer( flat_input_ids, token_type_ids=flat_token_type_ids, input_mask=flat_input_mask, attention_mask=flat_attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) output = transformer_outputs[0] output = self.sequence_summary(output) logits = self.logits_proj(output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels.view(-1)) if not return_dict: output = (reshaped_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return XLNetForMultipleChoiceOutput( loss=loss, logits=reshaped_logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, XLNET_START_DOCSTRING, ) class XLNetForQuestionAnsweringSimple(XLNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = XLNetModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=XLNetForQuestionAnsweringSimpleOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, mems: Optional[torch.Tensor] = None, perm_mask: Optional[torch.Tensor] = None, target_mapping: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, input_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, # delete when `use_cache` is removed in XLNetModel ) -> Union[Tuple, XLNetForQuestionAnsweringSimpleOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return XLNetForQuestionAnsweringSimpleOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, mems=outputs.mems, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, XLNET_START_DOCSTRING, ) class XLNetForQuestionAnswering(XLNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.start_n_top = config.start_n_top self.end_n_top = config.end_n_top self.transformer = XLNetModel(config) self.start_logits = PoolerStartLogits(config) self.end_logits = PoolerEndLogits(config) self.answer_class = PoolerAnswerClass(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=XLNetForQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, mems: Optional[torch.Tensor] = None, perm_mask: Optional[torch.Tensor] = None, target_mapping: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, input_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, is_impossible: Optional[torch.Tensor] = None, cls_index: Optional[torch.Tensor] = None, p_mask: Optional[torch.Tensor] = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, # delete when `use_cache` is removed in XLNetModel ) -> Union[Tuple, XLNetForQuestionAnsweringOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels whether a question has an answer or no answer (SQuAD 2.0) cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the classification token to use as input for computing plausibility of the answer. p_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). 1.0 means token should be masked. 0.0 mean token is not masked. Returns: Example: ```python >>> from transformers import AutoTokenizer, XLNetForQuestionAnswering >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-base-cased") >>> model = XLNetForQuestionAnswering.from_pretrained("xlnet/xlnet-base-cased") >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze( ... 0 ... ) # Batch size 1 >>> start_positions = torch.tensor([1]) >>> end_positions = torch.tensor([3]) >>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) >>> loss = outputs.loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs, ) hidden_states = transformer_outputs[0] start_logits = self.start_logits(hidden_states, p_mask=p_mask) outputs = transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it if start_positions is not None and end_positions is not None: # If we are on multi-GPU, let's remove the dimension added by batch splitting for x in (start_positions, end_positions, cls_index, is_impossible): if x is not None and x.dim() > 1: x.squeeze_(-1) # during training, compute the end logits based on the ground truth of the start position end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask) loss_fct = CrossEntropyLoss() start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if cls_index is not None and is_impossible is not None: # Predict answerability from the representation of CLS and START cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index) loss_fct_cls = nn.BCEWithLogitsLoss() cls_loss = loss_fct_cls(cls_logits, is_impossible) # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss total_loss += cls_loss * 0.5 if not return_dict: return (total_loss,) + transformer_outputs[1:] else: return XLNetForQuestionAnsweringOutput( loss=total_loss, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) else: # during inference, compute the end logits based on beam search bsz, slen, hsz = hidden_states.size() start_log_probs = nn.functional.softmax(start_logits, dim=-1) # shape (bsz, slen) start_top_log_probs, start_top_index = torch.topk( start_log_probs, self.start_n_top, dim=-1 ) # shape (bsz, start_n_top) start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz) start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz) start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz) hidden_states_expanded = hidden_states.unsqueeze(2).expand_as( start_states ) # shape (bsz, slen, start_n_top, hsz) p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask) end_log_probs = nn.functional.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top) end_top_log_probs, end_top_index = torch.topk( end_log_probs, self.end_n_top, dim=1 ) # shape (bsz, end_n_top, start_n_top) end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top) end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top) start_states = torch.einsum( "blh,bl->bh", hidden_states, start_log_probs ) # get the representation of START as weighted sum of hidden states cls_logits = self.answer_class( hidden_states, start_states=start_states, cls_index=cls_index ) # Shape (batch size,): one single `cls_logits` for each sample if not return_dict: outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) return outputs + transformer_outputs[1:] else: return XLNetForQuestionAnsweringOutput( start_top_log_probs=start_top_log_probs, start_top_index=start_top_index, end_top_log_probs=end_top_log_probs, end_top_index=end_top_index, cls_logits=cls_logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) __all__ = [ "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] ```
======================================================================================================================================= SOURCE CODE FILE: tokenization_xlnet.py LINES: 1 SIZE: 15.37 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\xlnet\tokenization_xlnet.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for XLNet model.""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} # Segments (not really needed) SEG_ID_A = 0 SEG_ID_B = 1 SEG_ID_CLS = 2 SEG_ID_SEP = 3 SEG_ID_PAD = 4 class XLNetTokenizer(PreTrainedTokenizer): """ Construct an XLNet tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that contains the vocabulary necessary to instantiate a tokenizer. do_lower_case (`bool`, *optional*, defaults to `False`): Whether to lowercase the input when tokenizing. remove_space (`bool`, *optional*, defaults to `True`): Whether to strip the text when tokenizing (removing excess spaces before and after the string). keep_accents (`bool`, *optional*, defaults to `False`): Whether to keep accents when tokenizing. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"<sep>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"<cls>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `['<eop>', '<eod>']`): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES padding_side = "left" def __init__( self, vocab_file, do_lower_case=False, remove_space=True, keep_accents=False, bos_token="<s>", eos_token="</s>", unk_token="<unk>", sep_token="<sep>", pad_token="<pad>", cls_token="<cls>", mask_token="<mask>", additional_special_tokens=["<eop>", "<eod>"], sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) super().__init__( do_lower_case=do_lower_case, remove_space=remove_space, keep_accents=keep_accents, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, additional_special_tokens=additional_special_tokens, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self._pad_token_type_id = 3 @property def vocab_size(self): return len(self.sp_model) def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def preprocess_text(self, inputs): if self.remove_space: outputs = " ".join(inputs.strip().split()) else: outputs = inputs outputs = outputs.replace("``", '"').replace("''", '"') if not self.keep_accents: outputs = unicodedata.normalize("NFKD", outputs) outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) if self.do_lower_case: outputs = outputs.lower() return outputs def _tokenize(self, text: str) -> List[str]: """Tokenize a string.""" text = self.preprocess_text(text) pieces = self.sp_model.encode(text, out_type=str) new_pieces = [] for piece in pieces: if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: cur_pieces = cur_pieces[1:] else: cur_pieces[0] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(cur_pieces) else: new_pieces.append(piece) return new_pieces def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.PieceToId(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.sp_model.IdToPiece(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def _decode( self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: Optional[bool] = None, spaces_between_special_tokens: bool = True, **kwargs, ) -> str: self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False) filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 sub_texts = [] current_sub_text = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) current_sub_text = [] sub_texts.append(token) else: current_sub_text.append(token) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens text = "".join(sub_texts) clean_up_tokenization_spaces = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: clean_text = self.clean_up_tokenization(text) return clean_text else: return text def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLNet sequence has the following format: - single sequence: `X <sep> <cls>` - pair of sequences: `A <sep> B <sep> <cls>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return token_ids_0 + sep + cls return token_ids_0 + sep + token_ids_1 + sep + cls def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1, 1] return ([0] * len(token_ids_0)) + [1, 1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls_segment_id = [2] if token_ids_1 is None: return len(token_ids_0 + sep) * [0] + cls_segment_id return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + cls_segment_id def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) __all__ = ["XLNetTokenizer"] ```
============================================================================================================================================ SOURCE CODE FILE: tokenization_xlnet_fast.py LINES: 1 SIZE: 9.18 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\xlnet\tokenization_xlnet_fast.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for XLNet model.""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: XLNetTokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} SPIECE_UNDERLINE = "▁" # Segments (not really needed) SEG_ID_A = 0 SEG_ID_B = 1 SEG_ID_CLS = 2 SEG_ID_SEP = 3 SEG_ID_PAD = 4 class XLNetTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" XLNet tokenizer (backed by HuggingFace's *tokenizers* library). Based on [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that contains the vocabulary necessary to instantiate a tokenizer. do_lower_case (`bool`, *optional*, defaults to `True`): Whether to lowercase the input when tokenizing. remove_space (`bool`, *optional*, defaults to `True`): Whether to strip the text when tokenizing (removing excess spaces before and after the string). keep_accents (`bool`, *optional*, defaults to `False`): Whether to keep accents when tokenizing. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"<sep>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"<cls>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `["<eop>", "<eod>"]`): Additional special tokens used by the tokenizer. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES padding_side = "left" slow_tokenizer_class = XLNetTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=False, remove_space=True, keep_accents=False, bos_token="<s>", eos_token="</s>", unk_token="<unk>", sep_token="<sep>", pad_token="<pad>", cls_token="<cls>", mask_token="<mask>", additional_special_tokens=["<eop>", "<eod>"], **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( vocab_file=vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, remove_space=remove_space, keep_accents=keep_accents, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, additional_special_tokens=additional_special_tokens, **kwargs, ) self._pad_token_type_id = 3 self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLNet sequence has the following format: - single sequence: `X <sep> <cls>` - pair of sequences: `A <sep> B <sep> <cls>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return token_ids_0 + sep + cls return token_ids_0 + sep + token_ids_1 + sep + cls def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls_segment_id = [2] if token_ids_1 is None: return len(token_ids_0 + sep) * [0] + cls_segment_id return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + cls_segment_id def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,) __all__ = ["XLNetTokenizerFast"] ```
============================================================================================================================ SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.97 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\xmod\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_xmod import * from .modeling_xmod import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
====================================================================================================================================== SOURCE CODE FILE: configuration_xmod.py LINES: 1 SIZE: 8.94 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\xmod\configuration_xmod.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The Meta AI Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """X-MOD configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) class XmodConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`XmodModel`]. It is used to instantiate an X-MOD model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [facebook/xmod-base](https://huggingface.co/facebook/xmod-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the X-MOD model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`XmodModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`XmodModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. pre_norm (`bool`, *optional*, defaults to `False`): Whether to apply layer normalization before each block. adapter_reduction_factor (`int` or `float`, *optional*, defaults to 2): The factor by which the dimensionality of the adapter is reduced relative to `hidden_size`. adapter_layer_norm (`bool`, *optional*, defaults to `False`): Whether to apply a new layer normalization before the adapter modules (shared across all adapters). adapter_reuse_layer_norm (`bool`, *optional*, defaults to `True`): Whether to reuse the second layer normalization and apply it before the adapter modules as well. ln_before_adapter (`bool`, *optional*, defaults to `True`): Whether to apply the layer normalization before the residual connection around the adapter module. languages (`Iterable[str]`, *optional*, defaults to `["en_XX"]`): An iterable of language codes for which adapter modules should be initialized. default_language (`str`, *optional*): Language code of a default language. It will be assumed that the input is in this language if no language codes are explicitly passed to the forward method. Examples: ```python >>> from transformers import XmodConfig, XmodModel >>> # Initializing an X-MOD facebook/xmod-base style configuration >>> configuration = XmodConfig() >>> # Initializing a model (with random weights) from the facebook/xmod-base style configuration >>> model = XmodModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "xmod" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=1, bos_token_id=0, eos_token_id=2, position_embedding_type="absolute", use_cache=True, classifier_dropout=None, pre_norm=False, adapter_reduction_factor=2, adapter_layer_norm=False, adapter_reuse_layer_norm=True, ln_before_adapter=True, languages=("en_XX",), default_language=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.classifier_dropout = classifier_dropout self.pre_norm = pre_norm self.adapter_reduction_factor = adapter_reduction_factor self.adapter_layer_norm = adapter_layer_norm self.adapter_reuse_layer_norm = adapter_reuse_layer_norm self.ln_before_adapter = ln_before_adapter self.languages = list(languages) self.default_language = default_language # Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->Xmod class XmodOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] ) __all__ = ["XmodConfig", "XmodOnnxConfig"] ```
================================================================================================================================= SOURCE CODE FILE: modeling_xmod.py LINES: 1 SIZE: 73.56 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\xmod\modeling_xmod.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 Meta AI Team and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch X-MOD model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN, gelu from ...generation import GenerationMixin from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_xmod import XmodConfig logger = logging.get_logger(__name__) # Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->Xmod class XmodEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->Xmod class XmodSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in XmodModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class XmodSelfOutput(nn.Module): # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfOutput.__init__ def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class XmodAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = XmodSelfAttention(config, position_embedding_type=position_embedding_type) self.output = XmodSelfOutput(config) self.pruned_heads = set() self.pre_norm = config.pre_norm # Copied from transformers.models.roberta.modeling_roberta.RobertaAttention.prune_heads def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: residual = hidden_states if self.pre_norm: hidden_states = self.output.LayerNorm(hidden_states) self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], residual) if not self.pre_norm: attention_output = self.output.LayerNorm(attention_output) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.roberta.modeling_roberta.RobertaIntermediate class XmodIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class XmodAdapter(nn.Module): def __init__(self, config): super().__init__() self.bottleneck_size = config.hidden_size // config.adapter_reduction_factor self.dense1 = nn.Linear(config.hidden_size, self.bottleneck_size) self.dense2 = nn.Linear(self.bottleneck_size, config.hidden_size) if isinstance(config.hidden_act, str): self.adapter_act_fn = ACT2FN[config.hidden_act] else: self.adapter_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense1(hidden_states) hidden_states = self.adapter_act_fn(hidden_states) hidden_states = self.dense2(hidden_states) return hidden_states class XmodOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.ln_before_adapter = config.ln_before_adapter self.dropout = nn.Dropout(config.hidden_dropout_prob) if config.adapter_layer_norm: self.adapter_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) else: self.adapter_layer_norm = None self.adapter_reuse_layer_norm = config.adapter_reuse_layer_norm self.adapter_modules = nn.ModuleDict({}) for language in config.languages: self.adapter_modules[str(language)] = XmodAdapter(config) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, lang_ids: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor hidden_states = self.lang_adapter(lang_ids, hidden_states) return hidden_states def lang_adapter(self, lang_ids: torch.Tensor, hidden_states: torch.Tensor): # Process subsequent samples with the same lang_id in parallel lang_ids, lang_lengths = torch.unique_consecutive(lang_ids, return_counts=True) if not self.ln_before_adapter: residual = hidden_states if self.adapter_layer_norm is not None: hidden_states = self.adapter_layer_norm(hidden_states) elif self.adapter_reuse_layer_norm: hidden_states = self.LayerNorm(hidden_states) if self.ln_before_adapter: residual = hidden_states split_hidden_states = torch.split(hidden_states, lang_lengths.tolist(), 0) lang_wise_outputs = [] for i, (lang_id, split_hidden_state) in enumerate(zip(lang_ids, split_hidden_states)): lang = list(self.adapter_modules.keys())[int(lang_id.item())] lang_wise_outputs.append(self.adapter_modules[lang](split_hidden_state)) hidden_states = torch.cat(lang_wise_outputs, 0) hidden_states = self.dropout(hidden_states) hidden_states += residual return hidden_states class XmodLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = XmodAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = XmodAttention(config, position_embedding_type="absolute") self.intermediate = XmodIntermediate(config) self.output = XmodOutput(config) self.pre_norm = config.pre_norm def forward( self, hidden_states: torch.Tensor, lang_ids: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value residual = attention_output if self.pre_norm: attention_output = self.output.LayerNorm(attention_output) intermediate_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output, ) layer_output = self.output(intermediate_output, residual, lang_ids) if not self.pre_norm: layer_output = self.output.LayerNorm(layer_output) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): return self.intermediate(attention_output) class XmodEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([XmodLayer(config) for _ in range(config.num_hidden_layers)]) self.is_pre_norm = config.pre_norm if self.is_pre_norm: self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, lang_ids: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, lang_ids, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, lang_ids, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if self.is_pre_norm: hidden_states = self.LayerNorm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaPooler class XmodPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class XmodPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XmodConfig base_model_prefix = "roberta" supports_gradient_checkpointing = True # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights with BertLMPredictionHead->XmodLMHead def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, XmodLMHead): module.bias.data.zero_() def set_default_language(self, language: str): """ Set the default language code for the model. This is used when the language is not specified in the input. Args: language (`str`): The language code, such as `"en_XX"` or `"de_DE"`. """ if language not in self.config.languages: raise ValueError( f"{self} does not have an adapter for {language}. Supported languages: {list(self.config.languages)}" ) self.config.default_language = language def freeze_embeddings_and_language_adapters(self): """ Freeze the embeddings and language adapters of the model. Usually, this is applied before the model is fine-tuned on a downstream task. """ logger.info("Freezing embeddings") for parameter in self.roberta.embeddings.parameters(): parameter.requires_grad = False logger.info("Freezing adapters") for layer in self.roberta.encoder.layer: if layer.output.adapter_layer_norm is not None: for parameter in layer.output.adapter_layer_norm.parameters(): parameter.requires_grad = False for parameter in layer.output.adapter_modules.parameters(): parameter.requires_grad = False XMOD_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`XmodConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ XMOD_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) lang_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of the language adapters that should be activated for each sample, respectively. Default: the index that corresponds to `self.config.default_language`. attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare X-MOD Model transformer outputting raw hidden-states without any specific head on top.", XMOD_START_DOCSTRING, ) class XmodModel(XmodPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in *Attention is all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 """ # Copied from transformers.models.clap.modeling_clap.ClapTextModel.__init__ with ClapText->Xmod def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = XmodEmbeddings(config) self.encoder = XmodEncoder(config) self.pooler = XmodPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.roberta.modeling_roberta.RobertaModel.get_input_embeddings def get_input_embeddings(self): return self.embeddings.word_embeddings # Copied from transformers.models.roberta.modeling_roberta.RobertaModel.set_input_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value # Copied from transformers.models.roberta.modeling_roberta.RobertaModel._prune_heads def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.Tensor] = None, lang_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors: of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if lang_ids is None: if self.config.default_language is None: raise ValueError("Input language unknown. Please call `XmodPreTrainedModel.set_default_language()`") adapter_languages = list(self.encoder.layer[0].output.adapter_modules.keys()) default_lang_id = adapter_languages.index(self.config.default_language) lang_ids = default_lang_id * torch.ones(batch_size, device=device) if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, lang_ids=lang_ids, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( "X-MOD Model with a `language modeling` head on top for CLM fine-tuning.", XMOD_START_DOCSTRING, ) class XmodForCausalLM(XmodPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] # Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM.__init__ with Roberta->Xmod def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `XmodLMHeadModel` as a standalone, add `is_decoder=True.`") self.roberta = XmodModel(config, add_pooling_layer=False) self.lm_head = XmodLMHead(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM.get_output_embeddings def get_output_embeddings(self): return self.lm_head.decoder # Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: `transformers.modeling_outputs.CausalLMOutputWithCrossAttentions` or `tuple(torch.FloatTensor)` Example: ```python >>> from transformers import AutoTokenizer, XmodForCausalLM, AutoConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base") >>> config = AutoConfig.from_pretrained("facebook/xmod-base") >>> config.is_decoder = True >>> model = XmodForCausalLM.from_pretrained("facebook/xmod-base", config=config) >>> model.set_default_language("en_XX") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.roberta( input_ids, lang_ids=lang_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) lm_loss = None if labels is not None: lm_loss = self.loss_function( prediction_scores, labels, vocab_size=self.config.vocab_size, **kwargs, ) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM._reorder_cache def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings( """X-MOD Model with a `language modeling` head on top.""", XMOD_START_DOCSTRING, ) class XmodForMaskedLM(XmodPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] # Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.__init__ with Roberta->Xmod def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `XmodForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.roberta = XmodModel(config, add_pooling_layer=False) self.lm_head = XmodLMHead(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.get_output_embeddings def get_output_embeddings(self): return self.lm_head.decoder # Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` kwargs (`Dict[str, any]`, *optional*, defaults to *{}*): Used to hide legacy arguments that have been deprecated. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, lang_ids=lang_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead class XmodLMHead(nn.Module): """Roberta Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = self.decoder(x) return x def _tie_weights(self): # To tie those two weights if they get disconnected (on TPU or when the bias is resized) # For accelerate compatibility and to not break backward compatibility if self.decoder.bias.device.type == "meta": self.decoder.bias = self.bias else: self.bias = self.decoder.bias @add_start_docstrings( """ X-MOD Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, XMOD_START_DOCSTRING, ) class XmodForSequenceClassification(XmodPreTrainedModel): # Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification.__init__ with Roberta->Xmod def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.roberta = XmodModel(config, add_pooling_layer=False) self.classifier = XmodClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, lang_ids=lang_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ X-MOD Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, XMOD_START_DOCSTRING, ) class XmodForMultipleChoice(XmodPreTrainedModel): # Copied from transformers.models.roberta.modeling_roberta.RobertaForMultipleChoice.__init__ with Roberta->Xmod def __init__(self, config): super().__init__(config) self.roberta = XmodModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) def forward( self, input_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None flat_lang_ids = lang_ids.repeat(input_ids.size(0) * input_ids.size(1)) if lang_ids is not None else None flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None flat_inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.roberta( flat_input_ids, lang_ids=flat_lang_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ X-MOD Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, XMOD_START_DOCSTRING, ) class XmodForTokenClassification(XmodPreTrainedModel): # Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification.__init__ with Roberta->Xmod def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = XmodModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, lang_ids=lang_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead class XmodClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ X-MOD Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, XMOD_START_DOCSTRING, ) class XmodForQuestionAnswering(XmodPreTrainedModel): # Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering.__init__ with Roberta->Xmod def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = XmodModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(XMOD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.LongTensor] = None, lang_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, lang_ids=lang_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx __all__ = [ "XmodForCausalLM", "XmodForMaskedLM", "XmodForMultipleChoice", "XmodForQuestionAnswering", "XmodForSequenceClassification", "XmodForTokenClassification", "XmodModel", "XmodPreTrainedModel", ] ```
============================================================================================================================= SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.05 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\yolos\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_yolos import * from .feature_extraction_yolos import * from .image_processing_yolos import * from .modeling_yolos import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
======================================================================================================================================== SOURCE CODE FILE: configuration_yolos.py LINES: 1 SIZE: 7.44 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\yolos\configuration_yolos.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """YOLOS model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) class YolosConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`YolosModel`]. It is used to instantiate a YOLOS model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the YOLOS [hustvl/yolos-base](https://huggingface.co/hustvl/yolos-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. image_size (`List[int]`, *optional*, defaults to `[512, 864]`): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. num_detection_tokens (`int`, *optional*, defaults to 100): The number of detection tokens. use_mid_position_embeddings (`bool`, *optional*, defaults to `True`): Whether to use the mid-layer position encodings. auxiliary_loss (`bool`, *optional*, defaults to `False`): Whether auxiliary decoding losses (loss at each decoder layer) are to be used. class_cost (`float`, *optional*, defaults to 1): Relative weight of the classification error in the Hungarian matching cost. bbox_cost (`float`, *optional*, defaults to 5): Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost. giou_cost (`float`, *optional*, defaults to 2): Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost. bbox_loss_coefficient (`float`, *optional*, defaults to 5): Relative weight of the L1 bounding box loss in the object detection loss. giou_loss_coefficient (`float`, *optional*, defaults to 2): Relative weight of the generalized IoU loss in the object detection loss. eos_coefficient (`float`, *optional*, defaults to 0.1): Relative classification weight of the 'no-object' class in the object detection loss. Example: ```python >>> from transformers import YolosConfig, YolosModel >>> # Initializing a YOLOS hustvl/yolos-base style configuration >>> configuration = YolosConfig() >>> # Initializing a model (with random weights) from the hustvl/yolos-base style configuration >>> model = YolosModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "yolos" def __init__( self, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, image_size=[512, 864], patch_size=16, num_channels=3, qkv_bias=True, num_detection_tokens=100, use_mid_position_embeddings=True, auxiliary_loss=False, class_cost=1, bbox_cost=5, giou_cost=2, bbox_loss_coefficient=5, giou_loss_coefficient=2, eos_coefficient=0.1, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias self.num_detection_tokens = num_detection_tokens self.use_mid_position_embeddings = use_mid_position_embeddings self.auxiliary_loss = auxiliary_loss # Hungarian matcher self.class_cost = class_cost self.bbox_cost = bbox_cost self.giou_cost = giou_cost # Loss coefficients self.bbox_loss_coefficient = bbox_loss_coefficient self.giou_loss_coefficient = giou_loss_coefficient self.eos_coefficient = eos_coefficient class YolosOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4 @property def default_onnx_opset(self) -> int: return 12 __all__ = ["YolosConfig", "YolosOnnxConfig"] ```
============================================================================================================================================= SOURCE CODE FILE: feature_extraction_yolos.py LINES: 1 SIZE: 1.48 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\yolos\feature_extraction_yolos.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for YOLOS.""" import warnings from ...image_transforms import rgb_to_id as _rgb_to_id from ...utils import logging from .image_processing_yolos import YolosImageProcessor logger = logging.get_logger(__name__) def rgb_to_id(x): warnings.warn( "rgb_to_id has moved and will not be importable from this module from v5. " "Please import from transformers.image_transforms instead.", FutureWarning, ) return _rgb_to_id(x) class YolosFeatureExtractor(YolosImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs) __all__ = ["YolosFeatureExtractor"] ```
=========================================================================================================================================== SOURCE CODE FILE: image_processing_yolos.py LINES: 1 SIZE: 66.29 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\yolos\image_processing_yolos.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for YOLOS.""" import pathlib from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Union import numpy as np from ...feature_extraction_utils import BatchFeature from ...image_processing_utils import BaseImageProcessor, get_size_dict from ...image_transforms import ( PaddingMode, center_to_corners_format, corners_to_center_format, id_to_rgb, pad, rescale, resize, rgb_to_id, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, AnnotationFormat, AnnotationType, ChannelDimension, ImageInput, PILImageResampling, get_image_size, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_annotations, validate_kwargs, validate_preprocess_arguments, ) from ...utils import ( TensorType, is_flax_available, is_jax_tensor, is_scipy_available, is_tf_available, is_tf_tensor, is_torch_available, is_torch_tensor, is_vision_available, logging, ) if is_torch_available(): import torch from torch import nn if is_vision_available(): import PIL if is_scipy_available(): import scipy.special import scipy.stats logger = logging.get_logger(__name__) SUPPORTED_ANNOTATION_FORMATS = (AnnotationFormat.COCO_DETECTION, AnnotationFormat.COCO_PANOPTIC) # Copied from transformers.models.detr.image_processing_detr.get_max_height_width def get_max_height_width( images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None ) -> List[int]: """ Get the maximum height and width across all images in a batch. """ if input_data_format is None: input_data_format = infer_channel_dimension_format(images[0]) if input_data_format == ChannelDimension.FIRST: _, max_height, max_width = max_across_indices([img.shape for img in images]) elif input_data_format == ChannelDimension.LAST: max_height, max_width, _ = max_across_indices([img.shape for img in images]) else: raise ValueError(f"Invalid channel dimension format: {input_data_format}") return (max_height, max_width) def get_size_with_aspect_ratio( image_size: Tuple[int, int], size: int, max_size: Optional[int] = None, mod_size: int = 16 ) -> Tuple[int, int]: """ Computes the output image size given the input image size and the desired output size with multiple of divisible_size. Args: image_size (`Tuple[int, int]`): The input image size. size (`int`): The desired output size. max_size (`int`, *optional*): The maximum allowed output size. mod_size (`int`, *optional*): The size to make multiple of mod_size. """ height, width = image_size raw_size = None if max_size is not None: min_original_size = float(min((height, width))) max_original_size = float(max((height, width))) if max_original_size / min_original_size * size > max_size: raw_size = max_size * min_original_size / max_original_size size = int(round(raw_size)) if width < height: ow = size if max_size is not None and raw_size is not None: oh = int(raw_size * height / width) else: oh = int(size * height / width) elif (height <= width and height == size) or (width <= height and width == size): oh, ow = height, width else: oh = size if max_size is not None and raw_size is not None: ow = int(raw_size * width / height) else: ow = int(size * width / height) if mod_size is not None: ow_mod = np.mod(ow, mod_size) oh_mod = np.mod(oh, mod_size) ow = ow - ow_mod oh = oh - oh_mod return (oh, ow) # Copied from transformers.models.detr.image_processing_detr.get_image_size_for_max_height_width def get_image_size_for_max_height_width( input_image: np.ndarray, max_height: int, max_width: int, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Tuple[int, int]: """ Computes the output image size given the input image and the maximum allowed height and width. Keep aspect ratio. Important, even if image_height < max_height and image_width < max_width, the image will be resized to at least one of the edges be equal to max_height or max_width. For example: - input_size: (100, 200), max_height: 50, max_width: 50 -> output_size: (25, 50) - input_size: (100, 200), max_height: 200, max_width: 500 -> output_size: (200, 400) Args: input_image (`np.ndarray`): The image to resize. max_height (`int`): The maximum allowed height. max_width (`int`): The maximum allowed width. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred from the input image. """ image_size = get_image_size(input_image, input_data_format) height, width = image_size height_scale = max_height / height width_scale = max_width / width min_scale = min(height_scale, width_scale) new_height = int(height * min_scale) new_width = int(width * min_scale) return new_height, new_width # Copied from transformers.models.detr.image_processing_detr.get_resize_output_image_size def get_resize_output_image_size( input_image: np.ndarray, size: Union[int, Tuple[int, int], List[int]], max_size: Optional[int] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Tuple[int, int]: """ Computes the output image size given the input image size and the desired output size. If the desired output size is a tuple or list, the output image size is returned as is. If the desired output size is an integer, the output image size is computed by keeping the aspect ratio of the input image size. Args: input_image (`np.ndarray`): The image to resize. size (`int` or `Tuple[int, int]` or `List[int]`): The desired output size. max_size (`int`, *optional*): The maximum allowed output size. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred from the input image. """ image_size = get_image_size(input_image, input_data_format) if isinstance(size, (list, tuple)): return size return get_size_with_aspect_ratio(image_size, size, max_size) # Copied from transformers.models.detr.image_processing_detr.get_numpy_to_framework_fn def get_numpy_to_framework_fn(arr) -> Callable: """ Returns a function that converts a numpy array to the framework of the input array. Args: arr (`np.ndarray`): The array to convert. """ if isinstance(arr, np.ndarray): return np.array if is_tf_available() and is_tf_tensor(arr): import tensorflow as tf return tf.convert_to_tensor if is_torch_available() and is_torch_tensor(arr): import torch return torch.tensor if is_flax_available() and is_jax_tensor(arr): import jax.numpy as jnp return jnp.array raise ValueError(f"Cannot convert arrays of type {type(arr)}") # Copied from transformers.models.detr.image_processing_detr.safe_squeeze def safe_squeeze(arr: np.ndarray, axis: Optional[int] = None) -> np.ndarray: """ Squeezes an array, but only if the axis specified has dim 1. """ if axis is None: return arr.squeeze() try: return arr.squeeze(axis=axis) except ValueError: return arr # Copied from transformers.models.detr.image_processing_detr.normalize_annotation def normalize_annotation(annotation: Dict, image_size: Tuple[int, int]) -> Dict: image_height, image_width = image_size norm_annotation = {} for key, value in annotation.items(): if key == "boxes": boxes = value boxes = corners_to_center_format(boxes) boxes /= np.asarray([image_width, image_height, image_width, image_height], dtype=np.float32) norm_annotation[key] = boxes else: norm_annotation[key] = value return norm_annotation # Copied from transformers.models.detr.image_processing_detr.max_across_indices def max_across_indices(values: Iterable[Any]) -> List[Any]: """ Return the maximum value across all indices of an iterable of values. """ return [max(values_i) for values_i in zip(*values)] # Copied from transformers.models.detr.image_processing_detr.make_pixel_mask def make_pixel_mask( image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: """ Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding. Args: image (`np.ndarray`): Image to make the pixel mask for. output_size (`Tuple[int, int]`): Output size of the mask. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) mask = np.zeros(output_size, dtype=np.int64) mask[:input_height, :input_width] = 1 return mask # Copied from transformers.models.detr.image_processing_detr.convert_coco_poly_to_mask def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndarray: """ Convert a COCO polygon annotation to a mask. Args: segmentations (`List[List[float]]`): List of polygons, each polygon represented by a list of x-y coordinates. height (`int`): Height of the mask. width (`int`): Width of the mask. """ try: from pycocotools import mask as coco_mask except ImportError: raise ImportError("Pycocotools is not installed in your environment.") masks = [] for polygons in segmentations: rles = coco_mask.frPyObjects(polygons, height, width) mask = coco_mask.decode(rles) if len(mask.shape) < 3: mask = mask[..., None] mask = np.asarray(mask, dtype=np.uint8) mask = np.any(mask, axis=2) masks.append(mask) if masks: masks = np.stack(masks, axis=0) else: masks = np.zeros((0, height, width), dtype=np.uint8) return masks # Copied from transformers.models.detr.image_processing_detr.prepare_coco_detection_annotation def prepare_coco_detection_annotation( image, target, return_segmentation_masks: bool = False, input_data_format: Optional[Union[ChannelDimension, str]] = None, ): """ Convert the target in COCO format into the format expected by DETR. """ image_height, image_width = get_image_size(image, channel_dim=input_data_format) image_id = target["image_id"] image_id = np.asarray([image_id], dtype=np.int64) # Get all COCO annotations for the given image. annotations = target["annotations"] annotations = [obj for obj in annotations if "iscrowd" not in obj or obj["iscrowd"] == 0] classes = [obj["category_id"] for obj in annotations] classes = np.asarray(classes, dtype=np.int64) # for conversion to coco api area = np.asarray([obj["area"] for obj in annotations], dtype=np.float32) iscrowd = np.asarray([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in annotations], dtype=np.int64) boxes = [obj["bbox"] for obj in annotations] # guard against no boxes via resizing boxes = np.asarray(boxes, dtype=np.float32).reshape(-1, 4) boxes[:, 2:] += boxes[:, :2] boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width) boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height) keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) new_target = {} new_target["image_id"] = image_id new_target["class_labels"] = classes[keep] new_target["boxes"] = boxes[keep] new_target["area"] = area[keep] new_target["iscrowd"] = iscrowd[keep] new_target["orig_size"] = np.asarray([int(image_height), int(image_width)], dtype=np.int64) if annotations and "keypoints" in annotations[0]: keypoints = [obj["keypoints"] for obj in annotations] # Converting the filtered keypoints list to a numpy array keypoints = np.asarray(keypoints, dtype=np.float32) # Apply the keep mask here to filter the relevant annotations keypoints = keypoints[keep] num_keypoints = keypoints.shape[0] keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints new_target["keypoints"] = keypoints if return_segmentation_masks: segmentation_masks = [obj["segmentation"] for obj in annotations] masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width) new_target["masks"] = masks[keep] return new_target # Copied from transformers.models.detr.image_processing_detr.masks_to_boxes def masks_to_boxes(masks: np.ndarray) -> np.ndarray: """ Compute the bounding boxes around the provided panoptic segmentation masks. Args: masks: masks in format `[number_masks, height, width]` where N is the number of masks Returns: boxes: bounding boxes in format `[number_masks, 4]` in xyxy format """ if masks.size == 0: return np.zeros((0, 4)) h, w = masks.shape[-2:] y = np.arange(0, h, dtype=np.float32) x = np.arange(0, w, dtype=np.float32) # see https://github.com/pytorch/pytorch/issues/50276 y, x = np.meshgrid(y, x, indexing="ij") x_mask = masks * np.expand_dims(x, axis=0) x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1) x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool))) x_min = x.filled(fill_value=1e8) x_min = x_min.reshape(x_min.shape[0], -1).min(-1) y_mask = masks * np.expand_dims(y, axis=0) y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1) y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool))) y_min = y.filled(fill_value=1e8) y_min = y_min.reshape(y_min.shape[0], -1).min(-1) return np.stack([x_min, y_min, x_max, y_max], 1) # Copied from transformers.models.detr.image_processing_detr.prepare_coco_panoptic_annotation with DETR->YOLOS def prepare_coco_panoptic_annotation( image: np.ndarray, target: Dict, masks_path: Union[str, pathlib.Path], return_masks: bool = True, input_data_format: Union[ChannelDimension, str] = None, ) -> Dict: """ Prepare a coco panoptic annotation for YOLOS. """ image_height, image_width = get_image_size(image, channel_dim=input_data_format) annotation_path = pathlib.Path(masks_path) / target["file_name"] new_target = {} new_target["image_id"] = np.asarray([target["image_id"] if "image_id" in target else target["id"]], dtype=np.int64) new_target["size"] = np.asarray([image_height, image_width], dtype=np.int64) new_target["orig_size"] = np.asarray([image_height, image_width], dtype=np.int64) if "segments_info" in target: masks = np.asarray(PIL.Image.open(annotation_path), dtype=np.uint32) masks = rgb_to_id(masks) ids = np.array([segment_info["id"] for segment_info in target["segments_info"]]) masks = masks == ids[:, None, None] masks = masks.astype(np.uint8) if return_masks: new_target["masks"] = masks new_target["boxes"] = masks_to_boxes(masks) new_target["class_labels"] = np.array( [segment_info["category_id"] for segment_info in target["segments_info"]], dtype=np.int64 ) new_target["iscrowd"] = np.asarray( [segment_info["iscrowd"] for segment_info in target["segments_info"]], dtype=np.int64 ) new_target["area"] = np.asarray( [segment_info["area"] for segment_info in target["segments_info"]], dtype=np.float32 ) return new_target # Copied from transformers.models.detr.image_processing_detr.get_segmentation_image def get_segmentation_image( masks: np.ndarray, input_size: Tuple, target_size: Tuple, stuff_equiv_classes, deduplicate=False ): h, w = input_size final_h, final_w = target_size m_id = scipy.special.softmax(masks.transpose(0, 1), -1) if m_id.shape[-1] == 0: # We didn't detect any mask :( m_id = np.zeros((h, w), dtype=np.int64) else: m_id = m_id.argmax(-1).reshape(h, w) if deduplicate: # Merge the masks corresponding to the same stuff class for equiv in stuff_equiv_classes.values(): for eq_id in equiv: m_id[m_id == eq_id] = equiv[0] seg_img = id_to_rgb(m_id) seg_img = resize(seg_img, (final_w, final_h), resample=PILImageResampling.NEAREST) return seg_img # Copied from transformers.models.detr.image_processing_detr.get_mask_area def get_mask_area(seg_img: np.ndarray, target_size: Tuple[int, int], n_classes: int) -> np.ndarray: final_h, final_w = target_size np_seg_img = seg_img.astype(np.uint8) np_seg_img = np_seg_img.reshape(final_h, final_w, 3) m_id = rgb_to_id(np_seg_img) area = [(m_id == i).sum() for i in range(n_classes)] return area # Copied from transformers.models.detr.image_processing_detr.score_labels_from_class_probabilities def score_labels_from_class_probabilities(logits: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: probs = scipy.special.softmax(logits, axis=-1) labels = probs.argmax(-1, keepdims=True) scores = np.take_along_axis(probs, labels, axis=-1) scores, labels = scores.squeeze(-1), labels.squeeze(-1) return scores, labels # Copied from transformers.models.detr.image_processing_detr.resize_annotation def resize_annotation( annotation: Dict[str, Any], orig_size: Tuple[int, int], target_size: Tuple[int, int], threshold: float = 0.5, resample: PILImageResampling = PILImageResampling.NEAREST, ): """ Resizes an annotation to a target size. Args: annotation (`Dict[str, Any]`): The annotation dictionary. orig_size (`Tuple[int, int]`): The original size of the input image. target_size (`Tuple[int, int]`): The target size of the image, as returned by the preprocessing `resize` step. threshold (`float`, *optional*, defaults to 0.5): The threshold used to binarize the segmentation masks. resample (`PILImageResampling`, defaults to `PILImageResampling.NEAREST`): The resampling filter to use when resizing the masks. """ ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(target_size, orig_size)) ratio_height, ratio_width = ratios new_annotation = {} new_annotation["size"] = target_size for key, value in annotation.items(): if key == "boxes": boxes = value scaled_boxes = boxes * np.asarray([ratio_width, ratio_height, ratio_width, ratio_height], dtype=np.float32) new_annotation["boxes"] = scaled_boxes elif key == "area": area = value scaled_area = area * (ratio_width * ratio_height) new_annotation["area"] = scaled_area elif key == "masks": masks = value[:, None] masks = np.array([resize(mask, target_size, resample=resample) for mask in masks]) masks = masks.astype(np.float32) masks = masks[:, 0] > threshold new_annotation["masks"] = masks elif key == "size": new_annotation["size"] = target_size else: new_annotation[key] = value return new_annotation # Copied from transformers.models.detr.image_processing_detr.binary_mask_to_rle def binary_mask_to_rle(mask): """ Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format. Args: mask (`torch.Tensor` or `numpy.array`): A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target segment_id or class_id. Returns: `List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE format. """ if is_torch_tensor(mask): mask = mask.numpy() pixels = mask.flatten() pixels = np.concatenate([[0], pixels, [0]]) runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 runs[1::2] -= runs[::2] return list(runs) # Copied from transformers.models.detr.image_processing_detr.convert_segmentation_to_rle def convert_segmentation_to_rle(segmentation): """ Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format. Args: segmentation (`torch.Tensor` or `numpy.array`): A segmentation map of shape `(height, width)` where each value denotes a segment or class id. Returns: `List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id. """ segment_ids = torch.unique(segmentation) run_length_encodings = [] for idx in segment_ids: mask = torch.where(segmentation == idx, 1, 0) rle = binary_mask_to_rle(mask) run_length_encodings.append(rle) return run_length_encodings # Copied from transformers.models.detr.image_processing_detr.remove_low_and_no_objects def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels): """ Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and `labels`. Args: masks (`torch.Tensor`): A tensor of shape `(num_queries, height, width)`. scores (`torch.Tensor`): A tensor of shape `(num_queries)`. labels (`torch.Tensor`): A tensor of shape `(num_queries)`. object_mask_threshold (`float`): A number between 0 and 1 used to binarize the masks. Raises: `ValueError`: Raised when the first dimension doesn't match in all input tensors. Returns: `Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region < `object_mask_threshold`. """ if not (masks.shape[0] == scores.shape[0] == labels.shape[0]): raise ValueError("mask, scores and labels must have the same shape!") to_keep = labels.ne(num_labels) & (scores > object_mask_threshold) return masks[to_keep], scores[to_keep], labels[to_keep] # Copied from transformers.models.detr.image_processing_detr.check_segment_validity def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8): # Get the mask associated with the k class mask_k = mask_labels == k mask_k_area = mask_k.sum() # Compute the area of all the stuff in query k original_area = (mask_probs[k] >= mask_threshold).sum() mask_exists = mask_k_area > 0 and original_area > 0 # Eliminate disconnected tiny segments if mask_exists: area_ratio = mask_k_area / original_area if not area_ratio.item() > overlap_mask_area_threshold: mask_exists = False return mask_exists, mask_k # Copied from transformers.models.detr.image_processing_detr.compute_segments def compute_segments( mask_probs, pred_scores, pred_labels, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, label_ids_to_fuse: Optional[Set[int]] = None, target_size: Tuple[int, int] = None, ): height = mask_probs.shape[1] if target_size is None else target_size[0] width = mask_probs.shape[2] if target_size is None else target_size[1] segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device) segments: List[Dict] = [] if target_size is not None: mask_probs = nn.functional.interpolate( mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False )[0] current_segment_id = 0 # Weigh each mask by its prediction score mask_probs *= pred_scores.view(-1, 1, 1) mask_labels = mask_probs.argmax(0) # [height, width] # Keep track of instances of each class stuff_memory_list: Dict[str, int] = {} for k in range(pred_labels.shape[0]): pred_class = pred_labels[k].item() should_fuse = pred_class in label_ids_to_fuse # Check if mask exists and large enough to be a segment mask_exists, mask_k = check_segment_validity( mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold ) if mask_exists: if pred_class in stuff_memory_list: current_segment_id = stuff_memory_list[pred_class] else: current_segment_id += 1 # Add current object segment to final segmentation map segmentation[mask_k] = current_segment_id segment_score = round(pred_scores[k].item(), 6) segments.append( { "id": current_segment_id, "label_id": pred_class, "was_fused": should_fuse, "score": segment_score, } ) if should_fuse: stuff_memory_list[pred_class] = current_segment_id return segmentation, segments class YolosImageProcessor(BaseImageProcessor): r""" Constructs a Detr image processor. Args: format (`str`, *optional*, defaults to `"coco_detection"`): Data format of the annotations. One of "coco_detection" or "coco_panoptic". do_resize (`bool`, *optional*, defaults to `True`): Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`): Size of the image's `(height, width)` dimensions after resizing. Can be overridden by the `size` parameter in the `preprocess` method. Available options are: - `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`. Do NOT keep the aspect ratio. - `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge less or equal to `longest_edge`. - `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to `max_width`. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. do_rescale (`bool`, *optional*, defaults to `True`): Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize: Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`): Mean values to use when normalizing the image. Can be a single value or a list of values, one for each channel. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`): Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method. do_pad (`bool`, *optional*, defaults to `True`): Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess` method. If `True`, padding will be applied to the bottom and right of the image with zeros. If `pad_size` is provided, the image will be padded to the specified dimensions. Otherwise, the image will be padded to the maximum height and width of the batch. pad_size (`Dict[str, int]`, *optional*): The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest height and width in the batch. """ model_input_names = ["pixel_values", "pixel_mask"] def __init__( self, format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Union[float, List[float]] = None, image_std: Union[float, List[float]] = None, do_convert_annotations: Optional[bool] = None, do_pad: bool = True, pad_size: Optional[Dict[str, int]] = None, **kwargs, ) -> None: if "pad_and_return_pixel_mask" in kwargs: do_pad = kwargs.pop("pad_and_return_pixel_mask") if "max_size" in kwargs: logger.warning_once( "The `max_size` parameter is deprecated and will be removed in v4.26. " "Please specify in `size['longest_edge'] instead`.", ) max_size = kwargs.pop("max_size") else: max_size = None if size is None else 1333 size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333} size = get_size_dict(size, max_size=max_size, default_to_square=False) # Backwards compatibility if do_convert_annotations is None: do_convert_annotations = do_normalize super().__init__(**kwargs) self.format = format self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.do_convert_annotations = do_convert_annotations self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.do_pad = do_pad self.pad_size = pad_size self._valid_processor_keys = [ "images", "annotations", "return_segmentation_masks", "masks_path", "do_resize", "size", "resample", "do_rescale", "rescale_factor", "do_normalize", "image_mean", "image_std", "do_convert_annotations", "do_pad", "pad_size", "format", "return_tensors", "data_format", "input_data_format", ] @classmethod # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.from_dict with Detr->Yolos def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs): """ Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is created using from_dict and kwargs e.g. `YolosImageProcessor.from_pretrained(checkpoint, size=600, max_size=800)` """ image_processor_dict = image_processor_dict.copy() if "max_size" in kwargs: image_processor_dict["max_size"] = kwargs.pop("max_size") if "pad_and_return_pixel_mask" in kwargs: image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask") return super().from_dict(image_processor_dict, **kwargs) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_annotation def prepare_annotation( self, image: np.ndarray, target: Dict, format: Optional[AnnotationFormat] = None, return_segmentation_masks: Optional[bool] = None, masks_path: Optional[Union[str, pathlib.Path]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Dict: """ Prepare an annotation for feeding into DETR model. """ format = format if format is not None else self.format if format == AnnotationFormat.COCO_DETECTION: return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks target = prepare_coco_detection_annotation( image, target, return_segmentation_masks, input_data_format=input_data_format ) elif format == AnnotationFormat.COCO_PANOPTIC: return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks target = prepare_coco_panoptic_annotation( image, target, masks_path=masks_path, return_masks=return_segmentation_masks, input_data_format=input_data_format, ) else: raise ValueError(f"Format {format} is not supported.") return target # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an int, smaller edge of the image will be matched to this number. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the image's `(height, width)` dimensions after resizing. Available options are: - `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`. Do NOT keep the aspect ratio. - `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge less or equal to `longest_edge`. - `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to `max_width`. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ if "max_size" in kwargs: logger.warning_once( "The `max_size` parameter is deprecated and will be removed in v4.26. " "Please specify in `size['longest_edge'] instead`.", ) max_size = kwargs.pop("max_size") else: max_size = None size = get_size_dict(size, max_size=max_size, default_to_square=False) if "shortest_edge" in size and "longest_edge" in size: new_size = get_resize_output_image_size( image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format ) elif "max_height" in size and "max_width" in size: new_size = get_image_size_for_max_height_width( image, size["max_height"], size["max_width"], input_data_format=input_data_format ) elif "height" in size and "width" in size: new_size = (size["height"], size["width"]) else: raise ValueError( "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got" f" {size.keys()}." ) image = resize( image, size=new_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) return image # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize_annotation def resize_annotation( self, annotation, orig_size, size, resample: PILImageResampling = PILImageResampling.NEAREST, ) -> Dict: """ Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched to this number. """ return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale def rescale( self, image: np.ndarray, rescale_factor: float, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Rescale the image by the given factor. image = image * rescale_factor. Args: image (`np.ndarray`): Image to rescale. rescale_factor (`float`): The value to use for rescaling. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the input image. If unset, is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. """ return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict: """ Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to `[center_x, center_y, width, height]` format and from absolute to relative pixel values. """ return normalize_annotation(annotation, image_size=image_size) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._update_annotation_for_padded_image def _update_annotation_for_padded_image( self, annotation: Dict, input_image_size: Tuple[int, int], output_image_size: Tuple[int, int], padding, update_bboxes, ) -> Dict: """ Update the annotation for a padded image. """ new_annotation = {} new_annotation["size"] = output_image_size for key, value in annotation.items(): if key == "masks": masks = value masks = pad( masks, padding, mode=PaddingMode.CONSTANT, constant_values=0, input_data_format=ChannelDimension.FIRST, ) masks = safe_squeeze(masks, 1) new_annotation["masks"] = masks elif key == "boxes" and update_bboxes: boxes = value boxes *= np.asarray( [ input_image_size[1] / output_image_size[1], input_image_size[0] / output_image_size[0], input_image_size[1] / output_image_size[1], input_image_size[0] / output_image_size[0], ] ) new_annotation["boxes"] = boxes elif key == "size": new_annotation["size"] = output_image_size else: new_annotation[key] = value return new_annotation # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image def _pad_image( self, image: np.ndarray, output_size: Tuple[int, int], annotation: Optional[Dict[str, Any]] = None, constant_values: Union[float, Iterable[float]] = 0, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, update_bboxes: bool = True, ) -> np.ndarray: """ Pad an image with zeros to the given size. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) output_height, output_width = output_size pad_bottom = output_height - input_height pad_right = output_width - input_width padding = ((0, pad_bottom), (0, pad_right)) padded_image = pad( image, padding, mode=PaddingMode.CONSTANT, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, ) if annotation is not None: annotation = self._update_annotation_for_padded_image( annotation, (input_height, input_width), (output_height, output_width), padding, update_bboxes ) return padded_image, annotation def pad( self, images: List[np.ndarray], annotations: Optional[List[Dict[str, Any]]] = None, constant_values: Union[float, Iterable[float]] = 0, return_pixel_mask: bool = False, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, update_bboxes: bool = True, pad_size: Optional[Dict[str, int]] = None, ) -> BatchFeature: """ Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width in the batch and optionally returns their corresponding pixel mask. Args: image (`np.ndarray`): Image to pad. annotations (`List[Dict[str, any]]`, *optional*): Annotations to pad along with the images. If provided, the bounding boxes will be updated to match the padded images. constant_values (`float` or `Iterable[float]`, *optional*): The value to use for the padding if `mode` is `"constant"`. return_pixel_mask (`bool`, *optional*, defaults to `True`): Whether to return a pixel mask. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. update_bboxes (`bool`, *optional*, defaults to `True`): Whether to update the bounding boxes in the annotations to match the padded images. If the bounding boxes have not been converted to relative coordinates and `(centre_x, centre_y, width, height)` format, the bounding boxes will not be updated. pad_size (`Dict[str, int]`, *optional*): The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest height and width in the batch. """ pad_size = pad_size if pad_size is not None else self.pad_size if pad_size is not None: padded_size = (pad_size["height"], pad_size["width"]) else: padded_size = get_max_height_width(images, input_data_format=input_data_format) annotation_list = annotations if annotations is not None else [None] * len(images) padded_images = [] padded_annotations = [] for image, annotation in zip(images, annotation_list): padded_image, padded_annotation = self._pad_image( image, padded_size, annotation, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, update_bboxes=update_bboxes, ) padded_images.append(padded_image) padded_annotations.append(padded_annotation) data = {"pixel_values": padded_images} if return_pixel_mask: masks = [ make_pixel_mask(image=image, output_size=padded_size, input_data_format=input_data_format) for image in images ] data["pixel_mask"] = masks encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors) if annotations is not None: encoded_inputs["labels"] = [ BatchFeature(annotation, tensor_type=return_tensors) for annotation in padded_annotations ] return encoded_inputs def preprocess( self, images: ImageInput, annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None, return_segmentation_masks: Optional[bool] = None, masks_path: Optional[Union[str, pathlib.Path]] = None, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample=None, # PILImageResampling do_rescale: Optional[bool] = None, rescale_factor: Optional[Union[int, float]] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_annotations: Optional[bool] = None, do_pad: Optional[bool] = None, format: Optional[Union[str, AnnotationFormat]] = None, return_tensors: Optional[Union[TensorType, str]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, pad_size: Optional[Dict[str, int]] = None, **kwargs, ) -> BatchFeature: """ Preprocess an image or a batch of images so that it can be used by the model. Args: images (`ImageInput`): Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. annotations (`AnnotationType` or `List[AnnotationType]`, *optional*): List of annotations associated with the image or batch of images. If annotation is for object detection, the annotations should be a dictionary with the following keys: - "image_id" (`int`): The image id. - "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a dictionary. An image can have no annotations, in which case the list should be empty. If annotation is for segmentation, the annotations should be a dictionary with the following keys: - "image_id" (`int`): The image id. - "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary. An image can have no segments, in which case the list should be empty. - "file_name" (`str`): The file name of the image. return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks): Whether to return segmentation masks. masks_path (`str` or `pathlib.Path`, *optional*): Path to the directory containing the segmentation masks. do_resize (`bool`, *optional*, defaults to self.do_resize): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to self.size): Size of the image's `(height, width)` dimensions after resizing. Available options are: - `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`. Do NOT keep the aspect ratio. - `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge less or equal to `longest_edge`. - `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to `max_width`. resample (`PILImageResampling`, *optional*, defaults to self.resample): Resampling filter to use when resizing the image. do_rescale (`bool`, *optional*, defaults to self.do_rescale): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to self.rescale_factor): Rescale factor to use when rescaling the image. do_normalize (`bool`, *optional*, defaults to self.do_normalize): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean): Mean to use when normalizing the image. image_std (`float` or `List[float]`, *optional*, defaults to self.image_std): Standard deviation to use when normalizing the image. do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations): Whether to convert the annotations to the format expected by the model. Converts the bounding boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)` and in relative coordinates. do_pad (`bool`, *optional*, defaults to self.do_pad): Whether to pad the image. If `True`, padding will be applied to the bottom and right of the image with zeros. If `pad_size` is provided, the image will be padded to the specified dimensions. Otherwise, the image will be padded to the maximum height and width of the batch. format (`str` or `AnnotationFormat`, *optional*, defaults to self.format): Format of the annotations. return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors): Type of tensors to return. If `None`, will return the list of images. data_format (`str` or `ChannelDimension`, *optional*, defaults to self.data_format): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. pad_size (`Dict[str, int]`, *optional*): The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest height and width in the batch. """ if "pad_and_return_pixel_mask" in kwargs: logger.warning_once( "The `pad_and_return_pixel_mask` argument is deprecated and will be removed in v4.33, " "use `do_pad` instead.", ) do_pad = kwargs.pop("pad_and_return_pixel_mask") if "max_size" in kwargs: logger.warning_once( "The `max_size` argument is deprecated and will be removed in v4.33, use" " `size['longest_edge']` instead.", ) size = kwargs.pop("max_size") do_resize = self.do_resize if do_resize is None else do_resize size = self.size if size is None else size size = get_size_dict(size=size, default_to_square=False) resample = self.resample if resample is None else resample do_rescale = self.do_rescale if do_rescale is None else do_rescale rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor do_normalize = self.do_normalize if do_normalize is None else do_normalize image_mean = self.image_mean if image_mean is None else image_mean image_std = self.image_std if image_std is None else image_std do_convert_annotations = ( self.do_convert_annotations if do_convert_annotations is None else do_convert_annotations ) do_pad = self.do_pad if do_pad is None else do_pad pad_size = self.pad_size if pad_size is None else pad_size format = self.format if format is None else format validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # Here the pad() method pads using the max of (width, height) and does not need to be validated. validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) if annotations is not None and isinstance(annotations, dict): annotations = [annotations] if annotations is not None and len(images) != len(annotations): raise ValueError( f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match." ) format = AnnotationFormat(format) if annotations is not None: validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations) if ( masks_path is not None and format == AnnotationFormat.COCO_PANOPTIC and not isinstance(masks_path, (pathlib.Path, str)) ): raise ValueError( "The path to the directory containing the mask PNG files should be provided as a" f" `pathlib.Path` or string object, but is {type(masks_path)} instead." ) # All transformations expect numpy arrays images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) # prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image) if annotations is not None: prepared_images = [] prepared_annotations = [] for image, target in zip(images, annotations): target = self.prepare_annotation( image, target, format, return_segmentation_masks=return_segmentation_masks, masks_path=masks_path, input_data_format=input_data_format, ) prepared_images.append(image) prepared_annotations.append(target) images = prepared_images annotations = prepared_annotations del prepared_images, prepared_annotations # transformations if do_resize: if annotations is not None: resized_images, resized_annotations = [], [] for image, target in zip(images, annotations): orig_size = get_image_size(image, input_data_format) resized_image = self.resize( image, size=size, resample=resample, input_data_format=input_data_format ) resized_annotation = self.resize_annotation( target, orig_size, get_image_size(resized_image, input_data_format) ) resized_images.append(resized_image) resized_annotations.append(resized_annotation) images = resized_images annotations = resized_annotations del resized_images, resized_annotations else: images = [ self.resize(image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_rescale: images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images] if do_normalize: images = [ self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images ] if do_convert_annotations and annotations is not None: annotations = [ self.normalize_annotation(annotation, get_image_size(image, input_data_format)) for annotation, image in zip(annotations, images) ] if do_pad: # Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...} encoded_inputs = self.pad( images, annotations=annotations, return_pixel_mask=False, data_format=data_format, input_data_format=input_data_format, update_bboxes=do_convert_annotations, return_tensors=return_tensors, pad_size=pad_size, ) else: images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors) if annotations is not None: encoded_inputs["labels"] = [ BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations ] return encoded_inputs # POSTPROCESSING METHODS - TODO: add support for other frameworks # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process with Detr->Yolos def post_process(self, outputs, target_sizes): """ Converts the raw output of [`YolosForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch. Args: outputs ([`YolosObjectDetectionOutput`]): Raw outputs of the model. target_sizes (`torch.Tensor` of shape `(batch_size, 2)`): Tensor containing the size (height, width) of each image of the batch. For evaluation, this must be the original image size (before any data augmentation). For visualization, this should be the image size after data augment, but before padding. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model. """ logger.warning_once( "`post_process` is deprecated and will be removed in v5 of Transformers, please use" " `post_process_object_detection` instead, with `threshold=0.` for equivalent results.", ) out_logits, out_bbox = outputs.logits, outputs.pred_boxes if len(out_logits) != len(target_sizes): raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits") if target_sizes.shape[1] != 2: raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch") prob = nn.functional.softmax(out_logits, -1) scores, labels = prob[..., :-1].max(-1) # convert to [x0, y0, x1, y1] format boxes = center_to_corners_format(out_bbox) # and from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device) boxes = boxes * scale_fct[:, None, :] results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)] return results # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_object_detection with Detr->Yolos def post_process_object_detection( self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None ): """ Converts the raw output of [`YolosForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch. Args: outputs ([`YolosObjectDetectionOutput`]): Raw outputs of the model. threshold (`float`, *optional*): Score threshold to keep object detection predictions. target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size `(height, width)` of each image in the batch. If unset, predictions will not be resized. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model. """ out_logits, out_bbox = outputs.logits, outputs.pred_boxes if target_sizes is not None: if len(out_logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) prob = nn.functional.softmax(out_logits, -1) scores, labels = prob[..., :-1].max(-1) # Convert to [x0, y0, x1, y1] format boxes = center_to_corners_format(out_bbox) # Convert from relative [0, 1] to absolute [0, height] coordinates if target_sizes is not None: if isinstance(target_sizes, List): img_h = torch.Tensor([i[0] for i in target_sizes]) img_w = torch.Tensor([i[1] for i in target_sizes]) else: img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device) boxes = boxes * scale_fct[:, None, :] results = [] for s, l, b in zip(scores, labels, boxes): score = s[s > threshold] label = l[s > threshold] box = b[s > threshold] results.append({"scores": score, "labels": label, "boxes": box}) return results __all__ = ["YolosImageProcessor"] ```
=================================================================================================================================== SOURCE CODE FILE: modeling_yolos.py LINES: 1 SIZE: 37.16 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\yolos\modeling_yolos.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 School of EIC, Huazhong University of Science & Technology and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch YOLOS model.""" import collections.abc from dataclasses import dataclass from typing import Callable, Dict, List, Optional, Set, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_yolos import YolosConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "YolosConfig" # Base docstring _CHECKPOINT_FOR_DOC = "hustvl/yolos-small" _EXPECTED_OUTPUT_SHAPE = [1, 3401, 384] @dataclass class YolosObjectDetectionOutput(ModelOutput): """ Output type of [`YolosForObjectDetection`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)): Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized scale-invariant IoU loss. loss_dict (`Dict`, *optional*): A dictionary containing the individual losses. Useful for logging. logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`): Classification logits (including no-object) for all queries. pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding possible padding). You can use [`~YolosImageProcessor.post_process`] to retrieve the unnormalized bounding boxes. auxiliary_outputs (`list[Dict]`, *optional*): Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`) and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and `pred_boxes`) for each decoder layer. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the decoder of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None loss_dict: Optional[Dict] = None logits: Optional[torch.FloatTensor] = None pred_boxes: Optional[torch.FloatTensor] = None auxiliary_outputs: Optional[List[Dict]] = None last_hidden_state: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None class YolosEmbeddings(nn.Module): """ Construct the CLS token, detection tokens, position and patch embeddings. """ def __init__(self, config: YolosConfig) -> None: super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.detection_tokens = nn.Parameter(torch.zeros(1, config.num_detection_tokens, config.hidden_size)) self.patch_embeddings = YolosPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter( torch.zeros(1, num_patches + config.num_detection_tokens + 1, config.hidden_size) ) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.interpolation = InterpolateInitialPositionEmbeddings(config) self.config = config def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape embeddings = self.patch_embeddings(pixel_values) batch_size, seq_len, _ = embeddings.size() # add the [CLS] and detection tokens to the embedded patch tokens cls_tokens = self.cls_token.expand(batch_size, -1, -1) detection_tokens = self.detection_tokens.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings, detection_tokens), dim=1) # add positional encoding to each token # this might require interpolation of the existing position embeddings position_embeddings = self.interpolation(self.position_embeddings, (height, width)) embeddings = embeddings + position_embeddings embeddings = self.dropout(embeddings) return embeddings class InterpolateInitialPositionEmbeddings(nn.Module): def __init__(self, config) -> None: super().__init__() self.config = config def forward(self, pos_embed, img_size=(800, 1344)) -> torch.Tensor: cls_pos_embed = pos_embed[:, 0, :] cls_pos_embed = cls_pos_embed[:, None] det_pos_embed = pos_embed[:, -self.config.num_detection_tokens :, :] patch_pos_embed = pos_embed[:, 1 : -self.config.num_detection_tokens, :] patch_pos_embed = patch_pos_embed.transpose(1, 2) batch_size, hidden_size, seq_len = patch_pos_embed.shape patch_height, patch_width = ( self.config.image_size[0] // self.config.patch_size, self.config.image_size[1] // self.config.patch_size, ) patch_pos_embed = patch_pos_embed.view(batch_size, hidden_size, patch_height, patch_width) height, width = img_size new_patch_heigth, new_patch_width = height // self.config.patch_size, width // self.config.patch_size patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(new_patch_heigth, new_patch_width), mode="bicubic", align_corners=False ) patch_pos_embed = patch_pos_embed.flatten(2).transpose(1, 2) scale_pos_embed = torch.cat((cls_pos_embed, patch_pos_embed, det_pos_embed), dim=1) return scale_pos_embed class InterpolateMidPositionEmbeddings(nn.Module): def __init__(self, config) -> None: super().__init__() self.config = config def forward(self, pos_embed, img_size=(800, 1344)) -> torch.Tensor: cls_pos_embed = pos_embed[:, :, 0, :] cls_pos_embed = cls_pos_embed[:, None] det_pos_embed = pos_embed[:, :, -self.config.num_detection_tokens :, :] patch_pos_embed = pos_embed[:, :, 1 : -self.config.num_detection_tokens, :] patch_pos_embed = patch_pos_embed.transpose(2, 3) depth, batch_size, hidden_size, seq_len = patch_pos_embed.shape patch_height, patch_width = ( self.config.image_size[0] // self.config.patch_size, self.config.image_size[1] // self.config.patch_size, ) patch_pos_embed = patch_pos_embed.view(depth * batch_size, hidden_size, patch_height, patch_width) height, width = img_size new_patch_height, new_patch_width = height // self.config.patch_size, width // self.config.patch_size patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(new_patch_height, new_patch_width), mode="bicubic", align_corners=False ) patch_pos_embed = ( patch_pos_embed.flatten(2) .transpose(1, 2) .contiguous() .view(depth, batch_size, new_patch_height * new_patch_width, hidden_size) ) scale_pos_embed = torch.cat((cls_pos_embed, patch_pos_embed, det_pos_embed), dim=2) return scale_pos_embed class YolosPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) return embeddings # Copied from transformers.models.vit.modeling_vit.eager_attention_forward def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): # Take the dot product between "query" and "key" to get the raw attention scores. attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling # Normalize the attention scores to probabilities. attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) # Mask heads if we want to if attention_mask is not None: attn_weights = attn_weights * attention_mask attn_output = torch.matmul(attn_weights, value) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights # Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Yolos class YolosSelfAttention(nn.Module): def __init__(self, config: YolosConfig) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.config = config self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.dropout_prob = config.attention_probs_dropout_prob self.scaling = self.attention_head_size**-0.5 self.is_causal = False self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(self.query(hidden_states)) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and output_attentions: logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] context_layer, attention_probs = attention_interface( self, query_layer, key_layer, value_layer, head_mask, is_causal=self.is_causal, scaling=self.scaling, dropout=0.0 if not self.training else self.dropout_prob, ) new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.reshape(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Yolos class YolosSelfOutput(nn.Module): """ The residual connection is defined in YolosLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: YolosConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Yolos class YolosAttention(nn.Module): def __init__(self, config: YolosConfig) -> None: super().__init__() self.attention = YolosSelfAttention(config) self.output = YolosSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->Yolos class YolosIntermediate(nn.Module): def __init__(self, config: YolosConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->Yolos class YolosOutput(nn.Module): def __init__(self, config: YolosConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->Yolos,VIT->YOLOS class YolosLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: YolosConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = YolosAttention(config) self.intermediate = YolosIntermediate(config) self.output = YolosOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in Yolos, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states # in Yolos, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs class YolosEncoder(nn.Module): def __init__(self, config: YolosConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([YolosLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False seq_length = ( 1 + (config.image_size[0] * config.image_size[1] // config.patch_size**2) + config.num_detection_tokens ) self.mid_position_embeddings = ( nn.Parameter( torch.zeros( config.num_hidden_layers - 1, 1, seq_length, config.hidden_size, ) ) if config.use_mid_position_embeddings else None ) self.interpolation = InterpolateMidPositionEmbeddings(config) if config.use_mid_position_embeddings else None def forward( self, hidden_states: torch.Tensor, height, width, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if self.config.use_mid_position_embeddings: interpolated_mid_position_embeddings = self.interpolation(self.mid_position_embeddings, (height, width)) for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if self.config.use_mid_position_embeddings: if i < (self.config.num_hidden_layers - 1): hidden_states = hidden_states + interpolated_mid_position_embeddings[i] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class YolosPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = YolosConfig base_model_prefix = "vit" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = [] _supports_sdpa = True _supports_flash_attn_2 = True def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) YOLOS_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`YolosConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ YOLOS_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`YolosImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare YOLOS Model transformer outputting raw hidden-states without any specific head on top.", YOLOS_START_DOCSTRING, ) class YolosModel(YolosPreTrainedModel): def __init__(self, config: YolosConfig, add_pooling_layer: bool = True): super().__init__(config) self.config = config self.embeddings = YolosEmbeddings(config) self.encoder = YolosEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = YolosPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> YolosPatchEmbeddings: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. Args: heads_to_prune (`dict`): See base class `PreTrainedModel`. The input dictionary must have the following format: {layer_num: list of heads to prune in this layer} """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(YOLOS_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings(pixel_values) encoder_outputs = self.encoder( embedding_output, height=pixel_values.shape[-2], width=pixel_values.shape[-1], head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class YolosPooler(nn.Module): def __init__(self, config: YolosConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.detr.modeling_detr.DetrMLPPredictionHead with Detr->Yolos class YolosMLPPredictionHead(nn.Module): """ Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates, height and width of a bounding box w.r.t. an image. Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py """ def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x @add_start_docstrings( """ YOLOS Model (consisting of a ViT encoder) with object detection heads on top, for tasks such as COCO detection. """, YOLOS_START_DOCSTRING, ) class YolosForObjectDetection(YolosPreTrainedModel): def __init__(self, config: YolosConfig): super().__init__(config) # YOLOS (ViT) encoder model self.vit = YolosModel(config, add_pooling_layer=False) # Object detection heads # We add one for the "no object" class self.class_labels_classifier = YolosMLPPredictionHead( input_dim=config.hidden_size, hidden_dim=config.hidden_size, output_dim=config.num_labels + 1, num_layers=3 ) self.bbox_predictor = YolosMLPPredictionHead( input_dim=config.hidden_size, hidden_dim=config.hidden_size, output_dim=4, num_layers=3 ) # Initialize weights and apply final processing self.post_init() # taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py @torch.jit.unused def _set_aux_loss(self, outputs_class, outputs_coord): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] @add_start_docstrings_to_model_forward(YOLOS_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=YolosObjectDetectionOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, labels: Optional[List[Dict]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, YolosObjectDetectionOutput]: r""" labels (`List[Dict]` of len `(batch_size,)`, *optional*): Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the following 2 keys: `'class_labels'` and `'boxes'` (the class labels and bounding boxes of an image in the batch respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`. Returns: Examples: ```python >>> from transformers import AutoImageProcessor, AutoModelForObjectDetection >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("hustvl/yolos-tiny") >>> model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-tiny") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax) >>> target_sizes = torch.tensor([image.size[::-1]]) >>> results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[ ... 0 ... ] >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): ... box = [round(i, 2) for i in box.tolist()] ... print( ... f"Detected {model.config.id2label[label.item()]} with confidence " ... f"{round(score.item(), 3)} at location {box}" ... ) Detected remote with confidence 0.991 at location [46.48, 72.78, 178.98, 119.3] Detected remote with confidence 0.908 at location [336.48, 79.27, 368.23, 192.36] Detected cat with confidence 0.934 at location [337.18, 18.06, 638.14, 373.09] Detected cat with confidence 0.979 at location [10.93, 53.74, 313.41, 470.67] Detected remote with confidence 0.974 at location [41.63, 72.23, 178.09, 119.99] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # First, sent images through YOLOS base model to obtain hidden states outputs = self.vit( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # Take the final hidden states of the detection tokens sequence_output = sequence_output[:, -self.config.num_detection_tokens :, :] # Class logits + predicted bounding boxes logits = self.class_labels_classifier(sequence_output) pred_boxes = self.bbox_predictor(sequence_output).sigmoid() loss, loss_dict, auxiliary_outputs = None, None, None if labels is not None: outputs_class, outputs_coord = None, None if self.config.auxiliary_loss: intermediate = outputs.intermediate_hidden_states if return_dict else outputs[4] outputs_class = self.class_labels_classifier(intermediate) outputs_coord = self.bbox_predictor(intermediate).sigmoid() loss, loss_dict, auxiliary_outputs = self.loss_function( logits, labels, self.device, pred_boxes, self.config, outputs_class, outputs_coord ) if not return_dict: if auxiliary_outputs is not None: output = (logits, pred_boxes) + auxiliary_outputs + outputs else: output = (logits, pred_boxes) + outputs return ((loss, loss_dict) + output) if loss is not None else output return YolosObjectDetectionOutput( loss=loss, loss_dict=loss_dict, logits=logits, pred_boxes=pred_boxes, auxiliary_outputs=auxiliary_outputs, last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = ["YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel"] ```
============================================================================================================================ SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.97 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\yoso\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_yoso import * from .modeling_yoso import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
====================================================================================================================================== SOURCE CODE FILE: configuration_yoso.py LINES: 1 SIZE: 6.56 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\yoso\configuration_yoso.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """YOSO model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class YosoConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`YosoModel`]. It is used to instantiate an YOSO model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the YOSO [uw-madison/yoso-4096](https://huggingface.co/uw-madison/yoso-4096) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the YOSO model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`YosoModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`YosoModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. use_expectation (`bool`, *optional*, defaults to `True`): Whether or not to use YOSO Expectation. Overrides any effect of num_hash. hash_code_len (`int`, *optional*, defaults to 9): The length of hashes generated by the hash functions. num_hash (`int`, *optional*, defaults to 64): Number of hash functions used in [`YosoSelfAttention`]. conv_window (`int`, *optional*): Kernel size of depth-wise convolution. use_fast_hash (`bool`, *optional*, defaults to `False`): Whether or not to use custom cuda kernels which perform fast random projection via hadamard transform. lsh_backward (`bool`, *optional*, defaults to `True`): Whether or not to perform backpropagation using Locality Sensitive Hashing. Example: ```python >>> from transformers import YosoConfig, YosoModel >>> # Initializing a YOSO uw-madison/yoso-4096 style configuration >>> configuration = YosoConfig() >>> # Initializing a model (with random weights) from the uw-madison/yoso-4096 style configuration >>> model = YosoModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "yoso" def __init__( self, vocab_size=50265, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=4096, type_vocab_size=1, initializer_range=0.02, layer_norm_eps=1e-12, position_embedding_type="absolute", use_expectation=True, hash_code_len=9, num_hash=64, conv_window=None, use_fast_hash=True, lsh_backward=True, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_expectation = use_expectation self.hash_code_len = hash_code_len self.num_hash = num_hash self.conv_window = conv_window self.use_fast_hash = use_fast_hash self.lsh_backward = lsh_backward __all__ = ["YosoConfig"] ```
================================================================================================================================= SOURCE CODE FILE: modeling_yoso.py LINES: 1 SIZE: 53.69 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\yoso\modeling_yoso.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 University of Wisconsin-Madison and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch YOSO model.""" import math from pathlib import Path from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_ninja_available, is_torch_cuda_available, logging, ) from .configuration_yoso import YosoConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "uw-madison/yoso-4096" _CONFIG_FOR_DOC = "YosoConfig" lsh_cumulation = None def load_cuda_kernels(): global lsh_cumulation from torch.utils.cpp_extension import load def append_root(files): src_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "yoso" return [src_folder / file for file in files] src_files = append_root(["fast_lsh_cumulation_torch.cpp", "fast_lsh_cumulation.cu", "fast_lsh_cumulation_cuda.cu"]) load("fast_lsh_cumulation", src_files, verbose=True) import fast_lsh_cumulation as lsh_cumulation def to_contiguous(input_tensors): if isinstance(input_tensors, list): out = [] for tensor in input_tensors: if not tensor.is_contiguous(): tensor = tensor.contiguous() out.append(tensor) return out else: if not input_tensors.is_contiguous(): input_tensors = input_tensors.contiguous() return input_tensors def normalize(input_tensors): if isinstance(input_tensors, list): out = [] for tensor in input_tensors: out.append(nn.functional.normalize(tensor, p=2, dim=-1)) return out else: return nn.functional.normalize(input_tensors, p=2, dim=-1) def hashing(query, key, num_hash, hash_len): if len(query.size()) != 3: raise ValueError("Query has incorrect size.") if len(key.size()) != 3: raise ValueError("Key has incorrect size.") rmat = torch.randn(query.size(0), query.size(2), num_hash * hash_len, device=query.device) raise_pow = 2 ** torch.arange(hash_len, device=query.device) query_projection = torch.matmul(query, rmat).reshape(query.size(0), query.size(1), num_hash, hash_len) key_projection = torch.matmul(key, rmat).reshape(key.size(0), key.size(1), num_hash, hash_len) query_binary = (query_projection > 0).int() key_binary = (key_projection > 0).int() query_hash = torch.sum(query_binary * raise_pow, dim=-1) query_hash = torch.sum(key_binary * raise_pow, dim=-1) return query_hash.int(), query_hash.int() class YosoCumulation(torch.autograd.Function): @staticmethod def forward(ctx, query_mask, key_mask, query, key, value, config): hash_code_len = config["hash_code_len"] expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :] cumulation_value = torch.matmul(expectation, value) ctx.save_for_backward(query_mask, key_mask, expectation, query, key, value) ctx.config = config return cumulation_value @staticmethod def backward(ctx, grad): grad = to_contiguous(grad) query_mask, key_mask, expectation, query, key, value = ctx.saved_tensors config = ctx.config hash_code_len = config["hash_code_len"] weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key) grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query) grad_value = torch.matmul(expectation.transpose(-1, -2), grad) return None, None, grad_query, grad_key, grad_value, None class YosoLSHCumulation(torch.autograd.Function): @staticmethod def forward(ctx, query_mask, key_mask, query, key, value, config): if query_mask.size(0) != key_mask.size(0): raise ValueError("Query mask and Key mask differ in sizes in dimension 0") if query_mask.size(0) != query.size(0): raise ValueError("Query mask and Query differ in sizes in dimension 0") if query_mask.size(0) != key.size(0): raise ValueError("Query mask and Key differ in sizes in dimension 0") if query_mask.size(0) != value.size(0): raise ValueError("Query mask and Value mask differ in sizes in dimension 0") if key.size(1) != value.size(1): raise ValueError("Key and Value differ in sizes in dimension 1") if query.size(2) != key.size(2): raise ValueError("Query and Key differ in sizes in dimension 2") query_mask, key_mask, query, key, value = to_contiguous([query_mask, key_mask, query, key, value]) use_cuda = query_mask.is_cuda num_hash = config["num_hash"] hash_code_len = config["hash_code_len"] hashtable_capacity = int(2**hash_code_len) if config["use_fast_hash"]: query_hash_code, key_hash_code = lsh_cumulation.fast_hash( query_mask, query, key_mask, key, num_hash, hash_code_len, use_cuda, 1 ) else: query_hash_code, key_hash_code = hashing(query, key, num_hash, hash_code_len) cumulation_value = lsh_cumulation.lsh_cumulation( query_mask, query_hash_code, key_mask, key_hash_code, value, hashtable_capacity, use_cuda, 1 ) ctx.save_for_backward(query_mask, key_mask, query_hash_code, key_hash_code, query, key, value) ctx.config = config return cumulation_value @staticmethod def backward(ctx, grad): grad = to_contiguous(grad) query_mask, key_mask, query_hash_code, key_hash_code, query, key, value = ctx.saved_tensors config = ctx.config use_cuda = grad.is_cuda hash_code_len = config["hash_code_len"] hashtable_capacity = int(2**hash_code_len) if config["lsh_backward"]: grad_value = lsh_cumulation.lsh_cumulation( key_mask, key_hash_code, query_mask, query_hash_code, grad, hashtable_capacity, use_cuda, 1 ) grad_query = lsh_cumulation.lsh_weighted_cumulation( query_mask, query_hash_code, grad, key_mask, key_hash_code, value, (hash_code_len / 2) * key, hashtable_capacity, use_cuda, 4, ) grad_key = lsh_cumulation.lsh_weighted_cumulation( key_mask, key_hash_code, value, query_mask, query_hash_code, grad, (hash_code_len / 2) * query, hashtable_capacity, use_cuda, 4, ) else: expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :] weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key) grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query) grad_value = torch.matmul(expectation.transpose(-1, -2), grad) return None, None, grad_query, grad_key, grad_value, None # Copied from transformers.models.nystromformer.modeling_nystromformer.NystromformerEmbeddings class YosoEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2, persistent=False ) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device), persistent=False, ) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class YosoSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) kernel_loaded = lsh_cumulation is not None if is_torch_cuda_available() and is_ninja_available() and not kernel_loaded: try: load_cuda_kernels() except Exception as e: logger.warning(f"Could not load the custom kernel for multi-scale deformable attention: {e}") self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = ( position_embedding_type if position_embedding_type is not None else config.position_embedding_type ) self.use_expectation = config.use_expectation self.hash_code_len = config.hash_code_len self.use_conv = config.conv_window is not None self.use_fast_hash = config.use_fast_hash self.num_hash = config.num_hash self.lsh_backward = config.lsh_backward self.lsh_config = { "hash_code_len": self.hash_code_len, "use_fast_hash": self.use_fast_hash, "num_hash": self.num_hash, "lsh_backward": self.lsh_backward, } if config.conv_window is not None: self.conv = nn.Conv2d( in_channels=config.num_attention_heads, out_channels=config.num_attention_heads, kernel_size=(config.conv_window, 1), padding=(config.conv_window // 2, 0), bias=False, groups=config.num_attention_heads, ) def transpose_for_scores(self, layer): new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size) layer = layer.view(*new_layer_shape) return layer.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) if self.use_conv: conv_value_layer = self.conv(value_layer * attention_mask[:, None, :, None]) batch_size, num_heads, seq_len, head_dim = query_layer.size() query_layer = query_layer.reshape(batch_size * num_heads, seq_len, head_dim) key_layer = key_layer.reshape(batch_size * num_heads, seq_len, head_dim) value_layer = value_layer.reshape(batch_size * num_heads, seq_len, head_dim) attention_mask = 1.0 + attention_mask / 10000.0 attention_mask = ( attention_mask.unsqueeze(1) .repeat_interleave(num_heads, dim=1) .reshape(batch_size * num_heads, seq_len) .int() ) # The CUDA kernels are most efficient with inputs whose size is a multiple of a GPU's warp size (32). Inputs # smaller than this are padded with zeros. gpu_warp_size = 32 if (not self.use_expectation) and head_dim < gpu_warp_size: pad_size = batch_size * num_heads, seq_len, gpu_warp_size - head_dim query_layer = torch.cat( [ query_layer, torch.zeros(pad_size, device=query_layer.device), ], dim=-1, ) key_layer = torch.cat( [ key_layer, torch.zeros(pad_size, device=key_layer.device), ], dim=-1, ) value_layer = torch.cat( [ value_layer, torch.zeros(pad_size, device=value_layer.device), ], dim=-1, ) if self.use_expectation or self.training: query_layer, key_layer = normalize([query_layer, key_layer]) if self.use_expectation: context_layer = YosoCumulation.apply( attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config ) else: context_layer = YosoLSHCumulation.apply( attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config ) if (not self.use_expectation) and head_dim < gpu_warp_size: context_layer = context_layer[:, :, :head_dim] context_layer = normalize(context_layer) context_layer = context_layer.reshape(batch_size, num_heads, seq_len, head_dim) if self.use_conv: context_layer += conv_value_layer context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, context_layer) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput class YosoSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class YosoAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = YosoSelfAttention(config, position_embedding_type=position_embedding_type) self.output = YosoSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states, attention_mask=None, output_attentions=False): self_outputs = self.self(hidden_states, attention_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class YosoIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput class YosoOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class YosoLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = YosoAttention(config) self.add_cross_attention = config.add_cross_attention self.intermediate = YosoIntermediate(config) self.output = YosoOutput(config) def forward(self, hidden_states, attention_mask=None, output_attentions=False): self_attention_outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class YosoEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([YosoLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, attention_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform class YosoPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Yoso class YosoLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = YosoPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def _tie_weights(self): self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Yoso class YosoOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = YosoLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores class YosoPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = YosoConfig base_model_prefix = "yoso" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) YOSO_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`YosoConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ YOSO_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare YOSO Model transformer outputting raw hidden-states without any specific head on top.", YOSO_START_DOCSTRING, ) class YosoModel(YosoPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embeddings = YosoEmbeddings(config) self.encoder = YosoEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) encoder_outputs = self.encoder( embedding_output, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutputWithCrossAttentions( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings("""YOSO Model with a `language modeling` head on top.""", YOSO_START_DOCSTRING) class YosoForMaskedLM(YosoPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.yoso = YosoModel(config) self.cls = YosoOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.yoso( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class YosoClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) self.config = config def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = ACT2FN[self.config.hidden_act](x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """YOSO Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.""", YOSO_START_DOCSTRING, ) class YosoForSequenceClassification(YosoPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.yoso = YosoModel(config) self.classifier = YosoClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.yoso( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """YOSO Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.""", YOSO_START_DOCSTRING, ) class YosoForMultipleChoice(YosoPreTrainedModel): def __init__(self, config): super().__init__(config) self.yoso = YosoModel(config) self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.yoso( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_state = outputs[0] # (bs * num_choices, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs * num_choices, dim) pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim) pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """YOSO Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.""", YOSO_START_DOCSTRING, ) class YosoForTokenClassification(YosoPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.yoso = YosoModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.yoso( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """YOSO Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""", YOSO_START_DOCSTRING, ) class YosoForQuestionAnswering(YosoPreTrainedModel): def __init__(self, config): super().__init__(config) config.num_labels = 2 self.num_labels = config.num_labels self.yoso = YosoModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.yoso( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = [ "YosoForMaskedLM", "YosoForMultipleChoice", "YosoForQuestionAnswering", "YosoForSequenceClassification", "YosoForTokenClassification", "YosoLayer", "YosoModel", "YosoPreTrainedModel", ] ```
============================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.97 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\zamba2\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_zamba2 import * from .modeling_zamba2 import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
========================================================================================================================================== SOURCE CODE FILE: configuration_zamba2.py LINES: 1 SIZE: 12.38 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\zamba2\configuration_zamba2.py ENCODING: utf-8 ```py # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/zamba2/modular_zamba2.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_zamba2.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2024 Zyphra Technologies and the HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...configuration_utils import PretrainedConfig class Zamba2Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Zamba2Model`]. It is used to instantiate a Zamba2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Zamba2 model. [Zyphra/Zamba2-2.7B](https://huggingface.co/Zyphra/Zamba2-2.7B) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Zamba2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Zamba2Model`] max_position_embeddings (`int`, *optional*, defaults to 4096): The maximum sequence length that this model might ever be used with. hidden_size (`int`, *optional*, defaults to 2560): Dimension of the hidden representations. num_hidden_layers (`int`, *optional*, defaults to 54): Number of hidden layers in the model. layers_block_type (`list`, *optional*): List of layer types, which can be either "mamba" or "hybrid". mamba_d_state (`int`, *optional*, defaults to 64): shape of the state space latents. mamba_d_conv (`int`, *optional*, defaults to 4): Size of the convolution kernel. mamba_expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size. mamba_ngroups (`int`, *optional*, defaults to 1): Number of groups for the evolution matrices of mamba 2. time_step_min (`float`, *optional*, defaults to 0.001): Minimum `time_step` used to bound `dt_proj.bias`. time_step_max (`float`, *optional*, defaults to 0.1): Maximum `time_step` used to bound `dt_proj.bias`. time_step_floor (`float`, *optional*, defaults to 0.0001): Minimum clamping value of the `dt_proj.bias` layer initialization. time_step_limit (`tuple`, *optional*): Accepted range of time step values. n_mamba_heads (`int`, *optional*, defaults to 8): Number of heads for the evolution matrices of mamba 2. use_conv_bias (`bool`, *optional*, defaults to `True`): Whether or not to use bias in the convolution layer of the mixer block. chunk_size (`int`, *optional*, defaults to 256): Size of the chunks that will comprise the sequence. use_mem_eff_path (`bool`, *optional*, defaults to `False`): Whether or not to use the fused conv1d and scan in mamba2 layers. add_bias_linear (`bool`, *optional*, defaults to `False`): Flag indicating whether or not to use bias in various layers intermediate_size (`int`, *optional*, defaults to 4 * hidden_size): Dimension of the MLP representations. hidden_act (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the MLP. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=None`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. num_mem_blocks (`int`, *optional*, defaults to 1): Number of unshared transformer blocks. use_shared_attention_adapter (`bool`, *optional*, defaults to `False`): If True, unshared adapters (formally the same as LoRA but used in the base model) will be added to the q, k, v projectors in the shared attention layers. adapter_rank (`int`, *optional*, defaults to 128): Rank of the adapter in the shared MLP and shared attention layers. use_mem_rope (`bool`, *optional*, defaults to `False`): If True, includes RoPE in the shared attention layers. rope_theta (`float`, *optional*, defaults to `10000.0`): The base period of the RoPE embeddings. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. num_logits_to_keep (`int` or `None`, *optional*, defaults to 1): Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the logits of the last prompt token are needed for generation. For long sequences, the logits for the entire sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint significantly. pad_token_id (`int`, *optional*, defaults to 0): The id of the padding token. bos_token_id (`int`, *optional*, defaults to 1): The id of the "beginning-of-sequence" token. eos_token_id (`int`, *optional*, defaults to 2): The id of the "end-of-sequence" token. use_long_context (`bool`, *optional*, defaults to `False`): Activates the context-extended version of Zamba by modifying RoPE. ```python >>> from transformers import Zamba2Model, Zamba2Config >>> # Initializing a Zamba2-2.7B style configuration >>> configuration = Zamba2Config() >>> # Initializing a model from the Zamba2-2.7B style configuration >>> model = Zamba2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "zamba2" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=32000, max_position_embeddings=4096, hidden_size=2560, num_hidden_layers=54, layers_block_type=None, mamba_d_state=64, mamba_d_conv=4, mamba_expand=2, mamba_ngroups=1, time_step_min=0.001, time_step_max=0.1, time_step_floor=1e-4, time_step_limit=None, n_mamba_heads=8, use_conv_bias=True, chunk_size=256, use_mem_eff_path=False, add_bias_linear=False, intermediate_size=None, hidden_act="gelu", num_attention_heads=32, num_key_value_heads=None, attention_dropout=0.0, num_mem_blocks=1, use_shared_attention_adapter=False, adapter_rank=128, use_mem_rope=False, rope_theta=10000, initializer_range=0.02, rms_norm_eps=1e-5, use_cache=True, num_logits_to_keep=1, pad_token_id=0, bos_token_id=1, eos_token_id=2, use_long_context=False, **kwargs, ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs, ) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size if intermediate_size is None: self.intermediate_size = 4 * hidden_size else: self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_mem_blocks = num_mem_blocks self.attention_hidden_size = 2 * hidden_size self.attention_head_dim = 2 * self.hidden_size // self.num_attention_heads self.attention_dropout = attention_dropout self.use_mem_rope = use_mem_rope self.use_long_context = use_long_context if use_mem_rope and use_long_context: a = 8 rope_theta = rope_theta * a ** (self.attention_head_dim / (self.attention_head_dim - 2)) self.rope_theta = rope_theta self.mamba_d_state = mamba_d_state self.mamba_d_conv = mamba_d_conv self.mamba_expand = mamba_expand self.add_bias_linear = add_bias_linear self.mamba_ngroups = mamba_ngroups self.n_mamba_heads = n_mamba_heads self.mamba_headdim = int(mamba_expand * hidden_size) // n_mamba_heads self.use_conv_bias = use_conv_bias self.chunk_size = chunk_size self.time_step_limit = time_step_limit self.use_shared_attention_adapter = use_shared_attention_adapter self.adapter_rank = adapter_rank self.time_step_min = time_step_min self.time_step_max = time_step_max self.time_step_floor = time_step_floor if use_long_context: self.max_position_embeddings = 16384 if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.num_attention_heads = num_attention_heads self.kv_channels = self.hidden_size // self.num_attention_heads self.num_query_groups = self.num_attention_heads # Below, "mamba" stands for mamba layer, "hybrid" stands for hybrid layer (composed by a shared transformer followed by mamba layer) if layers_block_type is None: self.layers_block_type = ( ["mamba"] + (["mamba"] * 5 + ["hybrid"]) * 7 + ["mamba"] * 4 + ["hybrid"] + ["mamba"] * 3 + ["hybrid"] + ["mamba"] * 2 ) else: self.layers_block_type = layers_block_type self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.num_logits_to_keep = num_logits_to_keep self.hybrid_layer_ids = [index for index, type in enumerate(self.layers_block_type) if type == "hybrid"] self.use_mem_eff_path = use_mem_eff_path __all__ = ["Zamba2Config"] ```
===================================================================================================================================== SOURCE CODE FILE: modeling_zamba2.py LINES: 2 SIZE: 91.76 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\zamba2\modeling_zamba2.py ENCODING: utf-8 ```py # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/zamba2/modular_zamba2.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_zamba2.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2024 Zyphra Technologies and the HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import re from itertools import cycle from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache from ...generation import GenerationMixin from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.deprecation import deprecate_kwarg from ...utils.import_utils import is_causal_conv1d_available, is_mamba_ssm_available from .configuration_zamba2 import Zamba2Config if is_mamba_ssm_available(): from mamba_ssm.ops.triton.selective_state_update import selective_state_update from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined else: selective_state_update, mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined = None, None, None if is_causal_conv1d_available(): from causal_conv1d import causal_conv1d_fn, causal_conv1d_update else: causal_conv1d_update, causal_conv1d_fn = None, None logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "Zyphra/Zamba2-2.7B" class Zamba2RMSNormGated(torch.nn.Module): def __init__(self, hidden_size, group_size, eps=1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps self.group_size = group_size def forward(self, hidden_states, gate=None): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) if gate is not None: hidden_states = hidden_states * nn.functional.silu(gate.to(torch.float32)) *prefix_dims, last_dim = hidden_states.shape group_count = last_dim // self.group_size hidden_states_group = hidden_states.view(*prefix_dims, group_count, self.group_size) variance = hidden_states_group.pow(2).mean(-1, keepdim=True) hidden_states_group = hidden_states_group * torch.rsqrt(variance + self.variance_epsilon) hidden_states = hidden_states_group.view(*prefix_dims, group_count * self.group_size) return self.weight * hidden_states.to(input_dtype) class Zamba2RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Zamba2RMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" class Zamba2HybridDynamicCache(DynamicCache): """ A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache (which has a constant shape regardless of seq_len). This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states` and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`, while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors). For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors), while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`, and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`. """ def __init__( self, config: Zamba2Config, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None ): self.dtype = dtype self.layers_block_type = config.layers_block_type self.has_previous_state = False self.intermediate_size = int(config.mamba_expand * config.hidden_size) self.ssm_state_size = config.mamba_d_state self.conv_kernel_size = config.mamba_d_conv self.n_mamba_heads = config.n_mamba_heads self.transformer_layers = [] self._modules = {} self._parameters = {} self._buffers = {} self.conv_states = {} self.ssm_states = {} for i in range(config.num_hidden_layers): self.conv_states[i] = torch.zeros( batch_size, self.intermediate_size + 2 * config.mamba_ngroups * config.mamba_d_state, self.conv_kernel_size, device=device, dtype=dtype, ) self.ssm_states[i] = torch.zeros( batch_size, self.n_mamba_heads, config.mamba_headdim, self.ssm_state_size, device=device, dtype=dtype ) if self.layers_block_type[i] == "hybrid": self.transformer_layers.append(i) self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] def update( self, key_states: torch.Tensor, value_states: torch.Tensor, layer_idx: int, cache_kwargs: Optional[Dict[str, Any]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: # Update the cache if self.key_cache[layer_idx].shape[-1] == 0: self.key_cache[layer_idx] = key_states self.value_cache[layer_idx] = value_states else: self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2) self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2) return self.key_cache[layer_idx], self.value_cache[layer_idx] def reorder_cache(self, beam_idx: torch.LongTensor): """Reorders the cache for beam search, given the selected beam indices.""" for layer_idx in range(len(self.key_cache)): device = self.key_cache[layer_idx].device self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device)) device = self.value_cache[layer_idx].device self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device)) device = self.conv_states[layer_idx].device self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device)) device = self.ssm_states[layer_idx].device self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device)) def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: """Returns the sequence length of the cached states. A layer index can be optionally passed.""" # take any layer that contains cache and not empty tensor layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx if len(self.key_cache) <= layer_idx or self.key_cache[layer_idx].numel() == 0: return 0 return self.key_cache[layer_idx].shape[-2] def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]: raise NotImplementedError("Zamba2HybridDynamicCache does not have a legacy cache equivalent.") @classmethod def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache": raise NotImplementedError("Zamba2HybridDynamicCache does not have a legacy cache equivalent.") def update_conv_state( self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor ) -> torch.Tensor: conv_state = self.conv_states[layer_idx] cache_position = cache_position.clamp(0, self.conv_kernel_size - 1) conv_state = conv_state.roll(shifts=-1, dims=-1) conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device) self.conv_states[layer_idx].zero_() self.conv_states[layer_idx] += conv_state return self.conv_states[layer_idx] def reset(self): self.conv_states.zero_() self.ssm_states.zero_() class Zamba2RotaryEmbedding(nn.Module): def __init__( self, config: Zamba2Config, device=None, ): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] # we cannot use the config here to parameterize because of a factor 2 for the head_dim inv_freq, self.attention_scaling = self.rope_init_fn( device=device, base=config.rope_theta, dim=config.attention_head_dim ) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class Zamba2Attention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers". Adapted from transformers.models.mistral.modeling_mistral.MistralAttention: The input dimension here is attention_hidden_size = 2 * hidden_size, and head_dim = attention_hidden_size // num_heads. The extra factor of 2 comes from the input being the concatenation of original_hidden_states with the output of the previous (mamba) layer (see fig. 2 in https://arxiv.org/pdf/2405.16712). Additionally, replaced attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) with attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim/2) Multi-headed attention from 'Attention Is All You Need' paper. Adapted from transformers.models.mistral.modeling_mistral.MistralAttention: The input dimension here is attention_hidden_size = 2 * hidden_size, and head_dim = attention_hidden_size // num_heads. The extra factor of 2 comes from the input being the concatenation of original_hidden_states with the output of the previous (mamba) layer (see fig. 2 in https://arxiv.org/pdf/2405.16712). Additionally, replaced attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) with attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim/2) Finally, this attention layer contributes to tied transformer blocks aimed to increasing compute without increasing model size. Because this layer is tied, un-tied adapters (formally the same as LoRA but used in the base model) modules are added to the q, k, v projectors to increase expressivity with a small memory overhead (see Fig. 2 of https://arxiv.org/pdf/2411.15242). """ def __init__( self, config: Zamba2Config, layer_idx: Optional[int] = None, num_fwd_mem_blocks: Optional[int] = None, block_id: Optional[int] = None, ): super().__init__() self.config = config self.layer_idx = layer_idx self.attention_hidden_size = config.attention_hidden_size self.head_dim = config.attention_head_dim self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.scaling = (self.head_dim / 2) ** -0.5 self.is_causal = True self.attention_dropout = config.attention_dropout self.q_proj = nn.Linear(config.attention_hidden_size, config.num_attention_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(config.attention_hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(config.attention_hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) self.num_fwd_mem_blocks = num_fwd_mem_blocks self.layer_block_map = config.hybrid_layer_ids self.block_id = block_id if config.use_shared_attention_adapter: self.linear_q_adapter_list = nn.ModuleList([]) self.linear_k_adapter_list = nn.ModuleList([]) self.linear_v_adapter_list = nn.ModuleList([]) for i in range(self.num_fwd_mem_blocks): if i % config.num_mem_blocks == block_id: linear_q_adapter = nn.Sequential( nn.Linear(self.attention_hidden_size, self.config.adapter_rank, bias=False), nn.Linear(self.config.adapter_rank, self.attention_hidden_size, bias=False), ) linear_k_adapter = nn.Sequential( nn.Linear(self.attention_hidden_size, self.config.adapter_rank, bias=False), nn.Linear(self.config.adapter_rank, self.attention_hidden_size, bias=False), ) linear_v_adapter = nn.Sequential( nn.Linear(self.attention_hidden_size, self.config.adapter_rank, bias=False), nn.Linear(self.config.adapter_rank, self.attention_hidden_size, bias=False), ) else: linear_q_adapter = nn.Identity() linear_k_adapter = nn.Identity() linear_v_adapter = nn.Identity() self.linear_q_adapter_list.append(linear_q_adapter) self.linear_k_adapter_list.append(linear_k_adapter) self.linear_v_adapter_list.append(linear_v_adapter) self.layer_dic = {value: index for index, value in enumerate(self.layer_block_map)} def forward( self, hidden_states: torch.Tensor, layer_idx: int, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Zamba2HybridDynamicCache] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) if self.config.use_shared_attention_adapter: adapter_layer_idx = self.layer_dic[layer_idx] query_states = query_states + self.linear_q_adapter_list[adapter_layer_idx](hidden_states) key_states = key_states + self.linear_k_adapter_list[adapter_layer_idx](hidden_states) value_states = value_states + self.linear_v_adapter_list[adapter_layer_idx](hidden_states) query_states = query_states.view(hidden_shape).transpose(1, 2) key_states = key_states.view(hidden_shape).transpose(1, 2) value_states = value_states.view(hidden_shape).transpose(1, 2) if self.config.use_mem_rope: cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: key_states, value_states = past_key_value.update(key_states, value_states, layer_idx) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights # Helper methods for segment sum computation def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int): """ Padding x tensor with `pad_size` on the seq_len dim (dim=1) Assumes that we only have tensors of either size 4 or 3 """ pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0) return torch.nn.functional.pad(input_tensor, pad_shape, mode="constant", value=0) def reshape_into_chunks(input_tensor, pad_size, chunk_size): """ Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and simultaneously splitting it into chunk sequences. Assumes that we only have tensors of either size 4 or 3 """ # [bsz, seq_len, ...] -> [bsz, seq_len multiple of chunk_size, ...] input_tensor = pad_tensor_by_size(input_tensor, pad_size) if len(input_tensor.shape) == 3: # [bsz, seq_len multiple of chunk_size, num_heads] -> [bsz, -1, chunk_size, num_heads] return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2]) else: # [bsz, seq_len multiple of chunk_size, num_heads, head_dim or state_size] -> [bsz, -1, chunk_size, num_heads, head_dim or state_size] return input_tensor.reshape( input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3] ) def segment_sum(input_tensor): """ More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions. """ chunk_size = input_tensor.size(-1) # 1. expand input tensor to have an additional dimension and repeat along that dimension # [..., chunk_size] -> [..., chunk_size, chunk_size] input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size) # 2. create a lower triangular mask with the diagonal set to 0 to 0 out elements above diag mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1) input_tensor = input_tensor.masked_fill(~mask, 0) # 3. compute actual cumsum tensor_segsum = torch.cumsum(input_tensor, dim=-2) # 4. apply mask to keep only the lower triangular part of the cumulative sum result (incl diagonal this time) mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0) tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf) return tensor_segsum is_fast_path_available = all((selective_state_update, causal_conv1d_fn, causal_conv1d_update)) class Zamba2MambaMixer(nn.Module): """ Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, and is why Mamba is called **selective** state spaces) """ def __init__(self, config: Zamba2Config, layer_idx: Optional[int] = None): super().__init__() self.config = config self.hidden_size = config.hidden_size self.ssm_state_size = config.mamba_d_state self.conv_kernel_size = config.mamba_d_conv self.intermediate_size = int(config.mamba_expand * self.hidden_size) self.layer_idx = layer_idx self.use_conv_bias = config.use_conv_bias self.activation = "silu" self.act = nn.SiLU() self.use_mem_eff_path = config.use_mem_eff_path self.n_groups = config.mamba_ngroups self.head_dim = config.mamba_headdim self.num_heads = self.config.n_mamba_heads self.chunk_size = config.chunk_size self.time_step_limit = config.time_step_limit self.time_step_min = config.time_step_min self.time_step_max = config.time_step_max self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size self.conv1d = nn.Conv1d( in_channels=self.conv_dim, out_channels=self.conv_dim, bias=True, kernel_size=config.mamba_d_conv, groups=self.conv_dim, padding=config.mamba_d_conv - 1, ) # projection of the input hidden states projection_size = self.intermediate_size + self.conv_dim + self.num_heads self.in_proj = nn.Linear( self.hidden_size, projection_size, bias=config.add_bias_linear, ) # selective projection used to make dt, B and C input dependant # time step projection (discretization) # instantiate once and copy inv_dt in init_weights of PretrainedModel self.dt_bias = nn.Parameter(torch.ones(self.num_heads)) # S4D real initialization. These are not discretized! # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded A = torch.arange(1, self.num_heads + 1) self.A_log = nn.Parameter(torch.log(A)) self.A_log._no_weight_decay = True self.norm = Zamba2RMSNormGated( self.intermediate_size, group_size=self.intermediate_size // self.n_groups, eps=1e-5 ) self.D = nn.Parameter(torch.ones(self.num_heads)) self.D._no_weight_decay = True self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.add_bias_linear) if not is_fast_path_available: logger.warning_once( "The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`" " is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and" " https://github.com/Dao-AILab/causal-conv1d" ) def cuda_kernels_forward( self, hidden_states: torch.Tensor, cache_params: Optional[Zamba2HybridDynamicCache] = None, attention_mask: Optional[torch.Tensor] = None, ): # set up dimensions for reshapes later batch_size, seq_len, _ = hidden_states.shape groups_time_state_size = self.n_groups * self.ssm_state_size d_to_remove = 2 * self.intermediate_size + 2 * self.n_groups * self.ssm_state_size + self.num_heads # getting projected states from cache if it exists if cache_params is not None and cache_params.has_previous_state: in_projected_states = self.in_proj(hidden_states.squeeze(1)) # (B 2D) d_mlp = (in_projected_states.shape[-1] - d_to_remove) // 2 split_projection_dim = [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads] _, _, gate, hidden_states_B_C, dt = torch.split(in_projected_states, split_projection_dim, dim=-1) hidden_states_B_C = causal_conv1d_update( hidden_states_B_C, cache_params.conv_states[self.layer_idx], self.conv1d.weight.squeeze(1), self.conv1d.bias, self.activation, ) hidden_states, B, C = torch.split( hidden_states_B_C, [self.intermediate_size, groups_time_state_size, groups_time_state_size], dim=-1, ) A = -torch.exp(self.A_log.float()) # (nheads,) A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32) dt = dt[:, :, None].expand(-1, -1, self.head_dim) dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim) D = self.D[:, None, ...].expand(-1, self.head_dim) B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups) C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups) hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim) hidden_states = selective_state_update( cache_params.ssm_states[self.layer_idx], hidden_states_reshaped, dt, A, B, C, D, z=None, dt_bias=dt_bias, dt_softplus=True, ) hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim) hidden_states = self.norm(hidden_states, gate) out = self.out_proj(hidden_states)[:, None, ...] # if no cache is found, calling the kernel else: if attention_mask is not None and not torch.all(attention_mask == 1): # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 dtype = hidden_states.dtype hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) # 1. Gated MLP's linear projection projected_states = self.in_proj(hidden_states) A = -torch.exp(self.A_log.float()) # (num_heads) or (intermediate_size, state_size) dt_limit_kwargs = {} if self.time_step_limit is None else {"dt_limit": self.time_step_limit} if attention_mask is not None: input_not_masked = torch.all(attention_mask == 1) else: input_not_masked = True if self.use_mem_eff_path and self.training and cache_params is None and input_not_masked: out, ssm_state = mamba_split_conv1d_scan_combined( projected_states, self.conv1d.weight.squeeze(1), self.conv1d.bias, self.dt_bias, A, D=self.D, chunk_size=self.chunk_size, seq_idx=None, activation=self.activation, rmsnorm_weight=self.norm.weight, rmsnorm_eps=self.norm.variance_epsilon, outproj_weight=self.out_proj.weight, outproj_bias=self.out_proj.bias, headdim=self.head_dim, ngroups=self.n_groups, norm_before_gate=False, return_final_states=True, **dt_limit_kwargs, ) else: gate, hidden_states_B_C, time_step = torch.split( projected_states, [self.intermediate_size, self.conv_dim, self.num_heads], dim=-1, ) # 1D Convolution if cache_params is not None: hidden_states_B_C_t = hidden_states_B_C.transpose(1, 2) conv_state = nn.functional.pad( hidden_states_B_C_t, (self.conv_kernel_size - hidden_states_B_C_t.shape[-1], 0) ) cache_params.conv_states[self.layer_idx].copy_(conv_state) if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]: hidden_states_B_C = self.act( self.conv1d(hidden_states_B_C.transpose(1, 2)).transpose(1, 2)[:, :seq_len] ) # (B, L, self.d_inner + 2 * ngroups * d_state) else: hidden_states_B_C = causal_conv1d_fn( x=hidden_states_B_C.transpose(1, 2), weight=self.conv1d.weight.squeeze(1), bias=self.conv1d.bias, activation=self.activation, ).transpose(1, 2)[:, :seq_len] hidden_states, B, C = torch.split( hidden_states_B_C, [self.intermediate_size, groups_time_state_size, groups_time_state_size], dim=-1, ) if attention_mask is not None and not torch.all(attention_mask == 1): # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 dtype = hidden_states.dtype hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) scan_output, ssm_state = mamba_chunk_scan_combined( hidden_states.view(batch_size, seq_len, -1, self.head_dim), time_step, A, B.view(batch_size, seq_len, self.n_groups, -1), C.view(batch_size, seq_len, self.n_groups, -1), chunk_size=self.chunk_size, D=self.D, z=None, seq_idx=None, return_final_states=True, dt_bias=self.dt_bias, dt_softplus=True, **dt_limit_kwargs, ) if ssm_state is not None and cache_params is not None: cache_params.ssm_states[self.layer_idx].copy_(ssm_state) scan_output = scan_output.view(batch_size, seq_len, -1) # Multiply "gate" branch and apply extra normalization layer scan_output = self.norm(scan_output, gate) out = self.out_proj(scan_output) return out # fmt: off def torch_forward(self, input_states, cache_params: Optional[Zamba2HybridDynamicCache]=None, attention_mask: Optional[torch.Tensor]=None): batch_size, seq_len, _ = input_states.shape dtype = input_states.dtype # Gated MLP's linear projection if cache_params is not None and cache_params.has_previous_state: projected_states = self.in_proj(input_states.squeeze(1)) else: if attention_mask is not None and not torch.all(attention_mask==1): # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 input_states = (input_states * attention_mask[:, :, None]).to(dtype) projected_states = self.in_proj(input_states) d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size- self.num_heads) // 2 _, _, gate, hidden_states, dt = projected_states.split( [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1 ) # Convolution sequence transformation if cache_params is not None: ssm_state = cache_params.ssm_states[self.layer_idx].clone() ssm_state = ssm_state.to(hidden_states.device) if cache_params.has_previous_state: gate = gate.unsqueeze(1) conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size] conv_state = torch.roll(conv_state, shifts=-1, dims=-1) # handle batched generation - states are copied through conv_state[:, :, -1] = hidden_states[:, 0, :] if hidden_states.ndim == 3 else hidden_states cache_params.conv_states[self.layer_idx].copy_(conv_state) hidden_states = torch.sum(conv_state.to(projected_states.device) * self.conv1d.weight[:, 0, :], dim=-1) if self.use_conv_bias: hidden_states += self.conv1d.bias hidden_states = self.act(hidden_states).to(dtype)[:, None, ...] # [batch, 1, intermediate_size] : decoding else: hidden_states = hidden_states.transpose(1,2) conv_state = nn.functional.pad( hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0) ) cache_params.conv_states[self.layer_idx].copy_(conv_state) hidden_states = self.act(self.conv1d(hidden_states).transpose(1,2))[:, :seq_len, :] # [batch, intermediate_size, seq_len] if attention_mask is not None and not torch.all(attention_mask==1): dtype = hidden_states.dtype # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) else: ssm_state = torch.zeros( (batch_size, self.num_heads, self.head_dim, self.ssm_state_size), device=hidden_states.device, dtype=dtype ) hidden_states = self.act(self.conv1d(hidden_states.transpose(1, 2))[..., :seq_len].transpose(1, 2)) hidden_states, B, C = torch.split(hidden_states, [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], dim=-1) A = -torch.exp(self.A_log.float()) # [num_heads] if cache_params is not None and cache_params.has_previous_state: # Note: there is no need to pad parameter matrices here, as there is just one new token # for batched generation dt = dt[:, None, ...] if dt.ndim == 2 else dt[:, 0, :][:, None, ...] dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim) # [num_heads] -> [num_heads, head_dim] dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim) dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype)) dt = torch.clamp(dt, self.time_step_min) #, self.time_step_max) A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32) # [bsz, num_heads, head_dim, state_size] dA = torch.exp(dt[..., None] * A) # Discretize B # [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] -> # -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size] B = B.reshape(batch_size, self.n_groups, -1)[..., None, :] B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous() B = B.reshape(batch_size, -1, B.shape[-1]) # [bsz, num_heads, head_dim, state_size] dB = dt[..., None] * B[..., None, :] # Discretize x into dB # [bsz, intermediate_size] -> [bsz, num_heads, head_dim] hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim) dBx = dB * hidden_states[..., None] # State calculation cache_params.ssm_states[self.layer_idx].copy_( cache_params.ssm_states[self.layer_idx] * dA + dBx ) # Subsequent output # [bsz, n_groups * state_size] -> [bsz, num_heads, state_size] C = C.reshape(batch_size, self.n_groups, -1)[..., None, :] C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous() C = C.reshape(batch_size, -1, C.shape[-1]) # [bsz, num_heads, head_dim] ssm_states = cache_params.ssm_states[self.layer_idx].to(C.dtype) # Shape: [b, h, d, n] # Reshape ssm_states to merge the first two dimensions ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) # Shape: [b*h, d, n] C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) # Shape: [b*h, n, 1] y = torch.bmm(ssm_states_reshaped, C_reshaped) y = y.view(batch_size, self.num_heads, self.head_dim) # D skip connection # [num_heads] -> [num_heads, head_dim] D = self.D[..., None].expand(self.D.shape[0], self.head_dim) y = (y + hidden_states * D).to(y.dtype) # [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size] y = y.reshape(batch_size, -1)[:, None, ...] else: # begin ssd naive implementation without einsums dt = nn.functional.softplus(dt + self.dt_bias) dt = torch.clamp(dt, self.time_step_min) hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float() B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float() C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float() B = B.repeat(1, 1, self.num_heads // self.n_groups, 1) C = C.repeat(1, 1, self.num_heads // self.n_groups, 1) pad_size = (self.chunk_size - seq_len % self.chunk_size) % self.chunk_size D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size) # Discretize x and A hidden_states = hidden_states * dt[..., None] A = A.to(hidden_states.dtype) * dt # Rearrange into blocks/chunks hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)] # [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size] A = A.permute(0, 3, 1, 2) A_cumsum = torch.cumsum(A, dim=-1) # 1. Compute the output for each intra-chunk (diagonal blocks) # This is the analog of a causal mask L = torch.exp(segment_sum(A)) # First, contraction of C and B to get G (attention-weights like) G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, : ,:] # shape: (b, c, l, s, h, n) G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h) # Step 2: Compute M, equivalent to applying attention mask to weights M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None] M = M_intermediate.sum(dim=-1) # Step 3: Compute Y_diag (apply to values) Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(3) # (right term of low-rank factorization of off-diagonal blocks; B terms) decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum)) B_decay_contraction = B * decay_states.permute(0, 2, 3, 1)[..., None] # permute back B * decay states states = (B_decay_contraction.permute(0, 1, 3, 2, 4)[..., None] * hidden_states.permute(0, 1, 3, 2, 4)[..., None, :]).sum(dim=3).permute(0, 1, 2, 4, 3) if cache_params is not None and cache_params.has_previous_state: previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...] else: previous_states = torch.zeros_like(states[:, :1]) states = torch.cat([previous_states, states], dim=1) decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0)))) states_permuted = states.permute(0, 2, 1, 3, 4) result = (decay_chunk[..., None, None] * states_permuted[:, :, None, ...]).sum(dim=2) new_states = result.permute(0, 2, 1, 3, 4) states, ssm_state = new_states[:, :-1], new_states[:, -1] # Compute state -> output conversion per chunk # (left term of low-rank factorization of off-diagonal blocks; C terms) state_decay_out = torch.exp(A_cumsum) # compute Yoff C_times_states = (C[..., None, :] * states[:, :, None, ...]) state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1) Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None]) # Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks) y = Y_diag + Y_off # [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim] y = y.reshape(batch_size, -1, self.num_heads, self.head_dim) y = y + D_residual # Cutting off padded chunks if pad_size > 0: y = y[:, :seq_len, :, :] y = y.reshape(batch_size, seq_len, -1) if ssm_state is not None and cache_params is not None: cache_params.ssm_states[self.layer_idx].copy_(ssm_state) scan_output = self.norm(y, gate) # end ssd naive # 4. Final linear projection contextualized_states = self.out_proj(scan_output.to(dtype)) # [batch, seq_len, hidden_size] return contextualized_states # fmt: on def forward( self, hidden_states, cache_params: Optional[Zamba2HybridDynamicCache] = None, attention_mask: Optional[torch.Tensor] = None, ): if is_fast_path_available and "cuda" in self.in_proj.weight.device.type: return self.cuda_kernels_forward(hidden_states, cache_params, attention_mask) return self.torch_forward(hidden_states, cache_params, attention_mask) class Zamba2MLP(nn.Module): def __init__(self, config: Zamba2Config, num_fwd_mem_blocks=None, block_id: Optional[int] = None): """ This MLP layer contributes to tied transformer blocks aimed to increasing compute without increasing model size. Because this layer is tied, un-tied adapter modules (formally same as LoRA, but used in the base model) are added to the up and gate projectors to increase expressivity with a small memory overhead. """ super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.num_fwd_mem_blocks = num_fwd_mem_blocks self.block_id = block_id self.gate_up_proj = nn.Linear(self.hidden_size, 2 * self.intermediate_size, bias=config.add_bias_linear) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.add_bias_linear) self.act_fn = ACT2FN[config.hidden_act] self.gate_up_proj_adapter_list = nn.ModuleList([]) for i in range(self.num_fwd_mem_blocks): if i % config.num_mem_blocks == block_id: gate_up_proj_adapter = nn.Sequential( nn.Linear(self.config.hidden_size, self.config.adapter_rank, bias=False), nn.Linear(self.config.adapter_rank, 2 * self.intermediate_size, bias=False), ) else: gate_up_proj_adapter = nn.Identity() self.gate_up_proj_adapter_list.append(gate_up_proj_adapter) layer_block_map = config.hybrid_layer_ids self.layer_dic = {value: index for index, value in enumerate(layer_block_map)} def forward(self, hidden_state, layer_idx=None): gate_up_state = self.gate_up_proj(hidden_state) layer_idx = self.layer_dic[layer_idx] gate_up_state = gate_up_state + self.gate_up_proj_adapter_list[layer_idx](hidden_state) gate_up_state = torch.chunk(gate_up_state, 2, dim=-1) hidden_state = self.act_fn(gate_up_state[0]) * gate_up_state[1] output = self.down_proj(hidden_state) return output class Zamba2AttentionDecoderLayer(nn.Module): def __init__(self, config: Zamba2Config, block_id: Optional[int] = None, layer_idx: Optional[int] = None): super().__init__() self.block_id = block_id num_gs = len(config.hybrid_layer_ids) self.self_attn = Zamba2Attention(config, layer_idx=-1, num_fwd_mem_blocks=num_gs, block_id=block_id) self.feed_forward = Zamba2MLP(config, num_fwd_mem_blocks=num_gs, block_id=block_id) self.input_layernorm = Zamba2RMSNorm(config.attention_hidden_size, eps=config.rms_norm_eps) self.pre_ff_layernorm = Zamba2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, original_hidden_states: torch.Tensor, layer_idx: int, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Zamba2HybridDynamicCache] = None, output_attentions: Optional[bool] = False, position_embeddings: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): output of previous Mamba layer of shape `(batch, seq_len, embed_dim)` original_hidden_states (`torch.FloatTensor`): word embedding output of shape `(batch, seq_len, embed_dim)`. This is concatenated with `hidden_states` (which is the output of the previous (mamba) layer). The concatenated tensor is then used as input of the pre-attention RMSNorm (see fig. 2 in https://arxiv.org/pdf/2405.16712). attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`Zamba2HybridDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. """ hidden_states = torch.concatenate([hidden_states, original_hidden_states], dim=-1) hidden_states = self.input_layernorm(hidden_states) hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, layer_idx=layer_idx, attention_mask=attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, position_embeddings=position_embeddings, **kwargs, ) hidden_states = self.pre_ff_layernorm(hidden_states) hidden_states = self.feed_forward(hidden_states, layer_idx) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs class Zamba2MambaDecoderLayer(nn.Module): def __init__(self, config: Zamba2Config, layer_idx: int): super().__init__() self.mamba = Zamba2MambaMixer(config=config, layer_idx=layer_idx) self.input_layernorm = Zamba2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.layer_idx = layer_idx def forward( self, hidden_states: torch.Tensor, original_hidden_states: Optional[torch.Tensor] = None, layer_idx: Optional[int] = None, attention_mask: Optional[torch.Tensor] = None, causal_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Zamba2HybridDynamicCache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, transformer_hidden_states: Optional[torch.Tensor] = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`Zamba2HybridDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. """ residual = hidden_states # `transformer_hidden_states` is the output from shared transformer + linear layer (see fig. 2 in https://arxiv.org/pdf/2405.16712). # `transformer_hidden_states` is then added to the input to the mamba layer below (as described in eq. (6) of https://arxiv.org/pdf/2405.16712). hidden_states = ( hidden_states + transformer_hidden_states if transformer_hidden_states is not None else hidden_states ) hidden_states = self.input_layernorm(hidden_states) hidden_states = self.mamba( hidden_states=hidden_states, cache_params=past_key_value, attention_mask=attention_mask, ) self_attn_weights = None # residual connection after mamba hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (past_key_value,) return outputs class Zamba2HybridLayer(nn.Module): def __init__( self, shared_transformer: Zamba2AttentionDecoderLayer, linear: nn.Linear, mamba: Zamba2MambaDecoderLayer ): super().__init__() self.linear = linear self.mamba_decoder = mamba self.shared_transformer = shared_transformer def forward( self, hidden_states: torch.Tensor, original_hidden_states: Optional[torch.Tensor] = None, layer_idx: Optional[int] = None, attention_mask: Optional[torch.Tensor] = None, causal_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Zamba2HybridDynamicCache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, position_embeddings: Optional[torch.LongTensor] = None, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` original_hidden_states (`torch.FloatTensor`): word embedding output that will be concatenated with hidden activations to form the input of the shared transformer layer. layer_idx (`int`): layer number. attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`Zamba2HybridDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. """ layer_outputs = self.shared_transformer( hidden_states, original_hidden_states=original_hidden_states, layer_idx=layer_idx, attention_mask=causal_mask, past_key_value=past_key_value, output_attentions=output_attentions, position_embeddings=position_embeddings, ) transformer_hidden_states = layer_outputs[0] if output_attentions: self_attn_weights = layer_outputs[1] transformer_hidden_states = self.linear(transformer_hidden_states) layer_outputs = self.mamba_decoder( hidden_states, transformer_hidden_states=transformer_hidden_states, attention_mask=attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, position_embeddings=position_embeddings, ) if output_attentions: layer_outputs = (layer_outputs[0], self_attn_weights) + layer_outputs[2:] return layer_outputs class Zamba2PreTrainedModel(PreTrainedModel): config_class = Zamba2Config base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Zamba2AttentionDecoderLayer", "Zamba2MambaDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_flex_attn = True _supports_sdpa = True _supports_cache_class = True # Note: only supports Zamba2HybridDynamicCache _is_stateful = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, Zamba2MambaMixer): module.A_log._no_weight_decay = True module.D._no_weight_decay = True dt = torch.exp( torch.rand(self.config.n_mamba_heads) * (math.log(self.config.time_step_max) - math.log(self.config.time_step_min)) + math.log(self.config.time_step_min) ).clamp(min=self.config.time_step_floor) # # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759 inv_dt = dt + torch.log(-torch.expm1(-dt)) with torch.no_grad(): module.dt_bias.copy_(inv_dt) module.dt_bias._no_reinit = True ZAMBA2_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Zamba2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ ZAMBA2_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Zamba2HybridDynamicCache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): A Zamba2HybridDynamicCache object containing pre-computed hidden-states (keys and values in the self-attention blocks and convolution and ssm states in the mamba blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. Key and value cache tensors have shape `(batch_size, num_heads, seq_len, head_dim)`. Convolution and ssm states tensors have shape `(batch_size, d_inner, d_conv)` and `(batch_size, d_inner, d_state)` respectively. See the `Zamba2HybridDynamicCache` class for more details. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( "The bare Zamba2 Model outputting raw hidden-states without any specific head on top.", ZAMBA2_START_DOCSTRING, ) class Zamba2Model(Zamba2PreTrainedModel): """ Model consisting of *config.num_hidden_layers* layers. Args: config: Zamba2Config """ def __init__(self, config: Zamba2Config): super().__init__(config) self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) blocks = [Zamba2AttentionDecoderLayer(config, block_id=k) for k in range(config.num_mem_blocks)] mamba_layers = [] linear_layers = [] self.layers_block_type = config.layers_block_type for i in range(config.num_hidden_layers): if config.layers_block_type[i] == "mamba": mamba_layers.append(Zamba2MambaDecoderLayer(config, layer_idx=i)) elif config.layers_block_type[i] == "hybrid": linear_layers.append(nn.Linear(self.config.hidden_size, self.config.hidden_size, bias=False)) mamba_layers.append(Zamba2MambaDecoderLayer(config, layer_idx=i)) mamba_layers = iter(mamba_layers) linear_layers = iter(linear_layers) blocks = cycle(blocks) layers = self.get_layers(blocks, linear_layers, mamba_layers) self.layers = nn.ModuleList(layers) self._attn_implementation = config._attn_implementation self.final_layernorm = Zamba2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) if config.use_mem_rope: if config.use_long_context: logger.warning_once( "`use_long_context` set to `True`: using rescaled `rope_theta` and extended `max_position_embeddings`." ) self.rotary_emb = Zamba2RotaryEmbedding(config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(ZAMBA2_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Zamba2HybridDynamicCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" ) if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) hidden_states = inputs_embeds original_hidden_states = torch.clone(inputs_embeds) # original_hidden_states: word embedding output that will be concatenated with hidden activations to form the input of the shared transformer layer if use_cache and past_key_values is None: batch_size = input_ids.shape[0] if input_ids is not None else inputs_embeds.shape[0] past_key_values = Zamba2HybridDynamicCache(self.config, batch_size, dtype=self.dtype, device=self.device) if cache_position is None: past_seen_tokens = ( past_key_values.get_seq_length(layer_idx=self.first_transformer_layer_id) if past_key_values is not None else 0 ) cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position) # create position embeddings to be shared across the decoder layers if self.config.use_mem_rope: position_embeddings = self.rotary_emb(hidden_states, position_ids) else: position_embeddings = None all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for layer_idx, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, original_hidden_states, layer_idx, attention_mask, causal_mask, past_key_values, output_attentions, use_cache, position_embeddings, ) else: layer_outputs = layer( hidden_states, original_hidden_states=original_hidden_states, layer_idx=layer_idx, attention_mask=attention_mask, causal_mask=causal_mask, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, position_embeddings=position_embeddings, ) hidden_states = layer_outputs[0] if output_attentions: if layer_outputs[1] is not None: # append attentions only of attention layers. Mamba layers return `None` as the attention weights all_self_attns += (layer_outputs[1],) hidden_states = self.final_layernorm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if past_key_values and not past_key_values.has_previous_state: past_key_values.has_previous_state = True output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple() def _update_causal_mask(self, attention_mask, input_tensor, cache_position): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] target_length = cache_position[-1] + 1 causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit if attention_mask.dim() == 2: mask_length = attention_mask.shape[-1] padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0) causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu"] ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask def get_layers(self, blocks, linear_layers, mamba_layers): layers = [] self._tied_weights_keys = [] self.first_transformer_layer_id = 0 for layer_id, layer_type in enumerate(self.layers_block_type): if layer_type == "hybrid": if self.first_transformer_layer_id == 0: self.first_transformer_layer_id = layer_id block = next(blocks) if self.config.num_mem_blocks * len(self.config.hybrid_layer_ids) > 1: prefix_pattern = rf"^layers\.{layer_id}\.shared_transformer\." main_keys_pattern = re.compile( prefix_pattern + r"(?:" + r"self_attn\.(?:q_proj|k_proj|v_proj|o_proj)\.weight|" + r"feed_forward\.(?:gate_up_proj|down_proj)\.weight|" + r"(?:input_layernorm|pre_ff_layernorm)\.weight" + r")$" ) self._tied_weights_keys.append(main_keys_pattern) adapter_id = 0 for _layer_type in self.layers_block_type: if _layer_type == "hybrid" and adapter_id % self.config.num_mem_blocks == block.block_id: adapter_pattern = re.compile( r"^shared_transformer\.feed_forward\.gate_up_proj_adapter_list\." + str(adapter_id) + r"\.(?:0|1)\.weight$" ) self._tied_weights_keys.append(adapter_pattern) adapter_id += 1 if self.config.use_shared_attention_adapter: adapter_id = 0 for _layer_type in self.layers_block_type: if _layer_type == "hybrid" and adapter_id % self.config.num_mem_blocks == block.block_id: attn_adapter_pattern = re.compile( r"^shared_transformer\.self_attn\." + r"(?:linear_q_adapter_list|linear_k_adapter_list|linear_v_adapter_list)\." + str(adapter_id) + r"\.(?:0|1)\.weight$" ) self._tied_weights_keys.append(attn_adapter_pattern) adapter_id += 1 layers.append(Zamba2HybridLayer(block, next(linear_layers), next(mamba_layers))) else: layers.append(next(mamba_layers)) return layers # Adapted from transformers.models.jamba.modeling_jamba.JambaForCausalLM with Jamba->Zamba2, JAMBA->ZAMBA2 class Zamba2ForCausalLM(Zamba2PreTrainedModel, GenerationMixin): def __init__(self, config: Zamba2Config): super().__init__(config) self.model = Zamba2Model(config) self._tied_weights_keys = ["lm_head.weight", *self.model._tied_weights_keys] self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") @add_start_docstrings_to_model_forward(ZAMBA2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Zamba2HybridDynamicCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **loss_kwargs, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from transformers import AutoTokenizer, Zamba2ForCausalLM >>> model = Zamba2ForCausalLM.from_pretrained("Zyphra/Zamba2-7B-v1") >>> tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-7B-v1") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, return_dict=return_dict, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, **kwargs, ): # Overwitten -- has a unique cache type, `Zamba2HybridDynamicCache` empty_past_kv = past_key_values is None # Omit tokens covered by past_key_values if not empty_past_kv: # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens # Exception 1: when passing input_embeds, input_ids may be missing entries # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here # Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case. # (we can't check exception 3 while compiling) if ( inputs_embeds is not None # Exception 1 or cache_position[-1] >= input_ids.shape[1] # Exception 3 ): input_ids = input_ids[:, -cache_position.shape[0] :] elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) input_ids = input_ids[:, cache_position] else: past_key_values = Zamba2HybridDynamicCache( self.config, input_ids.shape[0], dtype=self.dtype, device=self.device ) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if not empty_past_kv: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and empty_past_kv: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": use_cache, "attention_mask": attention_mask, "logits_to_keep": self.config.num_logits_to_keep, "cache_position": cache_position, } ) return model_inputs @add_start_docstrings( """ The Zamba2 Model with a sequence classification head on top (linear layer). [`Zamba2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, ZAMBA2_START_DOCSTRING, ) class Zamba2ForSequenceClassification(Zamba2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = Zamba2Model(config) self._tied_weights_keys = self.model._tied_weights_keys self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(ZAMBA2_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: last_non_pad_token = -1 elif input_ids is not None: # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32) last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) else: last_non_pad_token = -1 logger.warning_once( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) __all__ = ["Zamba2ForCausalLM", "Zamba2ForSequenceClassification", "Zamba2Model", "Zamba2PreTrainedModel"] ```
==================================================================================================================================== SOURCE CODE FILE: modular_zamba2.py LINES: 1 SIZE: 55.69 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\zamba2\modular_zamba2.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 Zyphra Technologies and the HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import re from itertools import cycle from typing import Callable, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_outputs import BaseModelOutputWithPast from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import ( logging, ) from ...utils.import_utils import ( is_causal_conv1d_available, is_mamba_ssm_available, ) from ..llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb from ..mamba2.modeling_mamba2 import pad_tensor_by_size, reshape_into_chunks, segment_sum from ..zamba.modeling_zamba import ( ZambaAttention, ZambaAttentionDecoderLayer, ZambaForCausalLM, ZambaForSequenceClassification, ZambaHybridDynamicCache, ZambaHybridLayer, ZambaMambaDecoderLayer, ZambaModel, ZambaRMSNorm, eager_attention_forward, ) from .configuration_zamba2 import Zamba2Config if is_mamba_ssm_available(): from mamba_ssm.ops.triton.selective_state_update import selective_state_update from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined else: selective_state_update, mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined = None, None, None if is_causal_conv1d_available(): from causal_conv1d import causal_conv1d_fn, causal_conv1d_update else: causal_conv1d_update, causal_conv1d_fn = None, None is_fast_path_available = all((selective_state_update, causal_conv1d_fn, causal_conv1d_update)) _CONFIG_FOR_DOC = "Zyphra/Zamba2-2.7B" logger = logging.get_logger(__name__) class Zamba2RMSNormGated(torch.nn.Module): def __init__(self, hidden_size, group_size, eps=1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps self.group_size = group_size def forward(self, hidden_states, gate=None): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) if gate is not None: hidden_states = hidden_states * nn.functional.silu(gate.to(torch.float32)) *prefix_dims, last_dim = hidden_states.shape group_count = last_dim // self.group_size hidden_states_group = hidden_states.view(*prefix_dims, group_count, self.group_size) variance = hidden_states_group.pow(2).mean(-1, keepdim=True) hidden_states_group = hidden_states_group * torch.rsqrt(variance + self.variance_epsilon) hidden_states = hidden_states_group.view(*prefix_dims, group_count * self.group_size) return self.weight * hidden_states.to(input_dtype) class Zamba2RMSNorm(ZambaRMSNorm): pass class Zamba2HybridDynamicCache(ZambaHybridDynamicCache): """ A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache (which has a constant shape regardless of seq_len). This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states` and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`, while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors). For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors), while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`, and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`. """ def __init__( self, config: Zamba2Config, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None ): self.dtype = dtype self.layers_block_type = config.layers_block_type self.has_previous_state = False self.intermediate_size = int(config.mamba_expand * config.hidden_size) self.ssm_state_size = config.mamba_d_state self.conv_kernel_size = config.mamba_d_conv self.n_mamba_heads = config.n_mamba_heads self.transformer_layers = [] self._modules = {} self._parameters = {} self._buffers = {} self.conv_states = {} self.ssm_states = {} for i in range(config.num_hidden_layers): self.conv_states[i] = torch.zeros( batch_size, self.intermediate_size + 2 * config.mamba_ngroups * config.mamba_d_state, self.conv_kernel_size, device=device, dtype=dtype, ) self.ssm_states[i] = torch.zeros( batch_size, self.n_mamba_heads, config.mamba_headdim, self.ssm_state_size, device=device, dtype=dtype ) if self.layers_block_type[i] == "hybrid": self.transformer_layers.append(i) self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] def update_conv_state( self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor ) -> torch.Tensor: conv_state = self.conv_states[layer_idx] cache_position = cache_position.clamp(0, self.conv_kernel_size - 1) conv_state = conv_state.roll(shifts=-1, dims=-1) conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device) self.conv_states[layer_idx].zero_() self.conv_states[layer_idx] += conv_state return self.conv_states[layer_idx] def reset(self): self.conv_states.zero_() self.ssm_states.zero_() def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: """Returns the sequence length of the cached states. A layer index can be optionally passed.""" # take any layer that contains cache and not empty tensor layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx if len(self.key_cache) <= layer_idx or self.key_cache[layer_idx].numel() == 0: return 0 return self.key_cache[layer_idx].shape[-2] class Zamba2RotaryEmbedding(LlamaRotaryEmbedding): def __init__( self, config: Zamba2Config, device=None, ): super().__init__(config, device) # we cannot use the config here to parameterize because of a factor 2 for the head_dim inv_freq, self.attention_scaling = self.rope_init_fn( device=device, base=config.rope_theta, dim=config.attention_head_dim ) class Zamba2Attention(ZambaAttention): """ Multi-headed attention from 'Attention Is All You Need' paper. Adapted from transformers.models.mistral.modeling_mistral.MistralAttention: The input dimension here is attention_hidden_size = 2 * hidden_size, and head_dim = attention_hidden_size // num_heads. The extra factor of 2 comes from the input being the concatenation of original_hidden_states with the output of the previous (mamba) layer (see fig. 2 in https://arxiv.org/pdf/2405.16712). Additionally, replaced attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) with attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim/2) Finally, this attention layer contributes to tied transformer blocks aimed to increasing compute without increasing model size. Because this layer is tied, un-tied adapters (formally the same as LoRA but used in the base model) modules are added to the q, k, v projectors to increase expressivity with a small memory overhead (see Fig. 2 of https://arxiv.org/pdf/2411.15242). """ def __init__( self, config: Zamba2Config, layer_idx: Optional[int] = None, num_fwd_mem_blocks: Optional[int] = None, block_id: Optional[int] = None, ): super().__init__(config, layer_idx) self.num_fwd_mem_blocks = num_fwd_mem_blocks self.layer_block_map = config.hybrid_layer_ids self.block_id = block_id if config.use_shared_attention_adapter: self.linear_q_adapter_list = nn.ModuleList([]) self.linear_k_adapter_list = nn.ModuleList([]) self.linear_v_adapter_list = nn.ModuleList([]) for i in range(self.num_fwd_mem_blocks): if i % config.num_mem_blocks == block_id: linear_q_adapter = nn.Sequential( nn.Linear(self.attention_hidden_size, self.config.adapter_rank, bias=False), nn.Linear(self.config.adapter_rank, self.attention_hidden_size, bias=False), ) linear_k_adapter = nn.Sequential( nn.Linear(self.attention_hidden_size, self.config.adapter_rank, bias=False), nn.Linear(self.config.adapter_rank, self.attention_hidden_size, bias=False), ) linear_v_adapter = nn.Sequential( nn.Linear(self.attention_hidden_size, self.config.adapter_rank, bias=False), nn.Linear(self.config.adapter_rank, self.attention_hidden_size, bias=False), ) else: linear_q_adapter = nn.Identity() linear_k_adapter = nn.Identity() linear_v_adapter = nn.Identity() self.linear_q_adapter_list.append(linear_q_adapter) self.linear_k_adapter_list.append(linear_k_adapter) self.linear_v_adapter_list.append(linear_v_adapter) self.layer_dic = {value: index for index, value in enumerate(self.layer_block_map)} def forward( self, hidden_states: torch.Tensor, layer_idx: int, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Zamba2HybridDynamicCache] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) if self.config.use_shared_attention_adapter: adapter_layer_idx = self.layer_dic[layer_idx] query_states = query_states + self.linear_q_adapter_list[adapter_layer_idx](hidden_states) key_states = key_states + self.linear_k_adapter_list[adapter_layer_idx](hidden_states) value_states = value_states + self.linear_v_adapter_list[adapter_layer_idx](hidden_states) query_states = query_states.view(hidden_shape).transpose(1, 2) key_states = key_states.view(hidden_shape).transpose(1, 2) value_states = value_states.view(hidden_shape).transpose(1, 2) if self.config.use_mem_rope: cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: key_states, value_states = past_key_value.update(key_states, value_states, layer_idx) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class Zamba2MambaMixer(nn.Module): """ Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, and is why Mamba is called **selective** state spaces) """ def __init__(self, config: Zamba2Config, layer_idx: Optional[int] = None): super().__init__() self.config = config self.hidden_size = config.hidden_size self.ssm_state_size = config.mamba_d_state self.conv_kernel_size = config.mamba_d_conv self.intermediate_size = int(config.mamba_expand * self.hidden_size) self.layer_idx = layer_idx self.use_conv_bias = config.use_conv_bias self.activation = "silu" self.act = nn.SiLU() self.use_mem_eff_path = config.use_mem_eff_path self.n_groups = config.mamba_ngroups self.head_dim = config.mamba_headdim self.num_heads = self.config.n_mamba_heads self.chunk_size = config.chunk_size self.time_step_limit = config.time_step_limit self.time_step_min = config.time_step_min self.time_step_max = config.time_step_max self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size self.conv1d = nn.Conv1d( in_channels=self.conv_dim, out_channels=self.conv_dim, bias=True, kernel_size=config.mamba_d_conv, groups=self.conv_dim, padding=config.mamba_d_conv - 1, ) # projection of the input hidden states projection_size = self.intermediate_size + self.conv_dim + self.num_heads self.in_proj = nn.Linear( self.hidden_size, projection_size, bias=config.add_bias_linear, ) # selective projection used to make dt, B and C input dependant # time step projection (discretization) # instantiate once and copy inv_dt in init_weights of PretrainedModel self.dt_bias = nn.Parameter(torch.ones(self.num_heads)) # S4D real initialization. These are not discretized! # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded A = torch.arange(1, self.num_heads + 1) self.A_log = nn.Parameter(torch.log(A)) self.A_log._no_weight_decay = True self.norm = Zamba2RMSNormGated( self.intermediate_size, group_size=self.intermediate_size // self.n_groups, eps=1e-5 ) self.D = nn.Parameter(torch.ones(self.num_heads)) self.D._no_weight_decay = True self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.add_bias_linear) if not is_fast_path_available: logger.warning_once( "The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`" " is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and" " https://github.com/Dao-AILab/causal-conv1d" ) def cuda_kernels_forward( self, hidden_states: torch.Tensor, cache_params: Optional[Zamba2HybridDynamicCache] = None, attention_mask: Optional[torch.Tensor] = None, ): # set up dimensions for reshapes later batch_size, seq_len, _ = hidden_states.shape groups_time_state_size = self.n_groups * self.ssm_state_size d_to_remove = 2 * self.intermediate_size + 2 * self.n_groups * self.ssm_state_size + self.num_heads # getting projected states from cache if it exists if cache_params is not None and cache_params.has_previous_state: in_projected_states = self.in_proj(hidden_states.squeeze(1)) # (B 2D) d_mlp = (in_projected_states.shape[-1] - d_to_remove) // 2 split_projection_dim = [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads] _, _, gate, hidden_states_B_C, dt = torch.split(in_projected_states, split_projection_dim, dim=-1) hidden_states_B_C = causal_conv1d_update( hidden_states_B_C, cache_params.conv_states[self.layer_idx], self.conv1d.weight.squeeze(1), self.conv1d.bias, self.activation, ) hidden_states, B, C = torch.split( hidden_states_B_C, [self.intermediate_size, groups_time_state_size, groups_time_state_size], dim=-1, ) A = -torch.exp(self.A_log.float()) # (nheads,) A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32) dt = dt[:, :, None].expand(-1, -1, self.head_dim) dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim) D = self.D[:, None, ...].expand(-1, self.head_dim) B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups) C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups) hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim) hidden_states = selective_state_update( cache_params.ssm_states[self.layer_idx], hidden_states_reshaped, dt, A, B, C, D, z=None, dt_bias=dt_bias, dt_softplus=True, ) hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim) hidden_states = self.norm(hidden_states, gate) out = self.out_proj(hidden_states)[:, None, ...] # if no cache is found, calling the kernel else: if attention_mask is not None and not torch.all(attention_mask == 1): # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 dtype = hidden_states.dtype hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) # 1. Gated MLP's linear projection projected_states = self.in_proj(hidden_states) A = -torch.exp(self.A_log.float()) # (num_heads) or (intermediate_size, state_size) dt_limit_kwargs = {} if self.time_step_limit is None else {"dt_limit": self.time_step_limit} if attention_mask is not None: input_not_masked = torch.all(attention_mask == 1) else: input_not_masked = True if self.use_mem_eff_path and self.training and cache_params is None and input_not_masked: out, ssm_state = mamba_split_conv1d_scan_combined( projected_states, self.conv1d.weight.squeeze(1), self.conv1d.bias, self.dt_bias, A, D=self.D, chunk_size=self.chunk_size, seq_idx=None, activation=self.activation, rmsnorm_weight=self.norm.weight, rmsnorm_eps=self.norm.variance_epsilon, outproj_weight=self.out_proj.weight, outproj_bias=self.out_proj.bias, headdim=self.head_dim, ngroups=self.n_groups, norm_before_gate=False, return_final_states=True, **dt_limit_kwargs, ) else: gate, hidden_states_B_C, time_step = torch.split( projected_states, [self.intermediate_size, self.conv_dim, self.num_heads], dim=-1, ) # 1D Convolution if cache_params is not None: hidden_states_B_C_t = hidden_states_B_C.transpose(1, 2) conv_state = nn.functional.pad( hidden_states_B_C_t, (self.conv_kernel_size - hidden_states_B_C_t.shape[-1], 0) ) cache_params.conv_states[self.layer_idx].copy_(conv_state) if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]: hidden_states_B_C = self.act( self.conv1d(hidden_states_B_C.transpose(1, 2)).transpose(1, 2)[:, :seq_len] ) # (B, L, self.d_inner + 2 * ngroups * d_state) else: hidden_states_B_C = causal_conv1d_fn( x=hidden_states_B_C.transpose(1, 2), weight=self.conv1d.weight.squeeze(1), bias=self.conv1d.bias, activation=self.activation, ).transpose(1, 2)[:, :seq_len] hidden_states, B, C = torch.split( hidden_states_B_C, [self.intermediate_size, groups_time_state_size, groups_time_state_size], dim=-1, ) if attention_mask is not None and not torch.all(attention_mask == 1): # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 dtype = hidden_states.dtype hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) scan_output, ssm_state = mamba_chunk_scan_combined( hidden_states.view(batch_size, seq_len, -1, self.head_dim), time_step, A, B.view(batch_size, seq_len, self.n_groups, -1), C.view(batch_size, seq_len, self.n_groups, -1), chunk_size=self.chunk_size, D=self.D, z=None, seq_idx=None, return_final_states=True, dt_bias=self.dt_bias, dt_softplus=True, **dt_limit_kwargs, ) if ssm_state is not None and cache_params is not None: cache_params.ssm_states[self.layer_idx].copy_(ssm_state) scan_output = scan_output.view(batch_size, seq_len, -1) # Multiply "gate" branch and apply extra normalization layer scan_output = self.norm(scan_output, gate) out = self.out_proj(scan_output) return out # fmt: off def torch_forward(self, input_states, cache_params: Optional[Zamba2HybridDynamicCache]=None, attention_mask: Optional[torch.Tensor]=None): batch_size, seq_len, _ = input_states.shape dtype = input_states.dtype # Gated MLP's linear projection if cache_params is not None and cache_params.has_previous_state: projected_states = self.in_proj(input_states.squeeze(1)) else: if attention_mask is not None and not torch.all(attention_mask==1): # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 input_states = (input_states * attention_mask[:, :, None]).to(dtype) projected_states = self.in_proj(input_states) d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size- self.num_heads) // 2 _, _, gate, hidden_states, dt = projected_states.split( [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1 ) # Convolution sequence transformation if cache_params is not None: ssm_state = cache_params.ssm_states[self.layer_idx].clone() ssm_state = ssm_state.to(hidden_states.device) if cache_params.has_previous_state: gate = gate.unsqueeze(1) conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size] conv_state = torch.roll(conv_state, shifts=-1, dims=-1) # handle batched generation - states are copied through conv_state[:, :, -1] = hidden_states[:, 0, :] if hidden_states.ndim == 3 else hidden_states cache_params.conv_states[self.layer_idx].copy_(conv_state) hidden_states = torch.sum(conv_state.to(projected_states.device) * self.conv1d.weight[:, 0, :], dim=-1) if self.use_conv_bias: hidden_states += self.conv1d.bias hidden_states = self.act(hidden_states).to(dtype)[:, None, ...] # [batch, 1, intermediate_size] : decoding else: hidden_states = hidden_states.transpose(1,2) conv_state = nn.functional.pad( hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0) ) cache_params.conv_states[self.layer_idx].copy_(conv_state) hidden_states = self.act(self.conv1d(hidden_states).transpose(1,2))[:, :seq_len, :] # [batch, intermediate_size, seq_len] if attention_mask is not None and not torch.all(attention_mask==1): dtype = hidden_states.dtype # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) else: ssm_state = torch.zeros( (batch_size, self.num_heads, self.head_dim, self.ssm_state_size), device=hidden_states.device, dtype=dtype ) hidden_states = self.act(self.conv1d(hidden_states.transpose(1, 2))[..., :seq_len].transpose(1, 2)) hidden_states, B, C = torch.split(hidden_states, [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], dim=-1) A = -torch.exp(self.A_log.float()) # [num_heads] if cache_params is not None and cache_params.has_previous_state: # Note: there is no need to pad parameter matrices here, as there is just one new token # for batched generation dt = dt[:, None, ...] if dt.ndim == 2 else dt[:, 0, :][:, None, ...] dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim) # [num_heads] -> [num_heads, head_dim] dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim) dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype)) dt = torch.clamp(dt, self.time_step_min) #, self.time_step_max) A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32) # [bsz, num_heads, head_dim, state_size] dA = torch.exp(dt[..., None] * A) # Discretize B # [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] -> # -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size] B = B.reshape(batch_size, self.n_groups, -1)[..., None, :] B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous() B = B.reshape(batch_size, -1, B.shape[-1]) # [bsz, num_heads, head_dim, state_size] dB = dt[..., None] * B[..., None, :] # Discretize x into dB # [bsz, intermediate_size] -> [bsz, num_heads, head_dim] hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim) dBx = dB * hidden_states[..., None] # State calculation cache_params.ssm_states[self.layer_idx].copy_( cache_params.ssm_states[self.layer_idx] * dA + dBx ) # Subsequent output # [bsz, n_groups * state_size] -> [bsz, num_heads, state_size] C = C.reshape(batch_size, self.n_groups, -1)[..., None, :] C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous() C = C.reshape(batch_size, -1, C.shape[-1]) # [bsz, num_heads, head_dim] ssm_states = cache_params.ssm_states[self.layer_idx].to(C.dtype) # Shape: [b, h, d, n] # Reshape ssm_states to merge the first two dimensions ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) # Shape: [b*h, d, n] C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) # Shape: [b*h, n, 1] y = torch.bmm(ssm_states_reshaped, C_reshaped) y = y.view(batch_size, self.num_heads, self.head_dim) # D skip connection # [num_heads] -> [num_heads, head_dim] D = self.D[..., None].expand(self.D.shape[0], self.head_dim) y = (y + hidden_states * D).to(y.dtype) # [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size] y = y.reshape(batch_size, -1)[:, None, ...] else: # begin ssd naive implementation without einsums dt = nn.functional.softplus(dt + self.dt_bias) dt = torch.clamp(dt, self.time_step_min) hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float() B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float() C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float() B = B.repeat(1, 1, self.num_heads // self.n_groups, 1) C = C.repeat(1, 1, self.num_heads // self.n_groups, 1) pad_size = (self.chunk_size - seq_len % self.chunk_size) % self.chunk_size D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size) # Discretize x and A hidden_states = hidden_states * dt[..., None] A = A.to(hidden_states.dtype) * dt # Rearrange into blocks/chunks hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)] # [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size] A = A.permute(0, 3, 1, 2) A_cumsum = torch.cumsum(A, dim=-1) # 1. Compute the output for each intra-chunk (diagonal blocks) # This is the analog of a causal mask L = torch.exp(segment_sum(A)) # First, contraction of C and B to get G (attention-weights like) G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, : ,:] # shape: (b, c, l, s, h, n) G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h) # Step 2: Compute M, equivalent to applying attention mask to weights M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None] M = M_intermediate.sum(dim=-1) # Step 3: Compute Y_diag (apply to values) Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(3) # (right term of low-rank factorization of off-diagonal blocks; B terms) decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum)) B_decay_contraction = B * decay_states.permute(0, 2, 3, 1)[..., None] # permute back B * decay states states = (B_decay_contraction.permute(0, 1, 3, 2, 4)[..., None] * hidden_states.permute(0, 1, 3, 2, 4)[..., None, :]).sum(dim=3).permute(0, 1, 2, 4, 3) if cache_params is not None and cache_params.has_previous_state: previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...] else: previous_states = torch.zeros_like(states[:, :1]) states = torch.cat([previous_states, states], dim=1) decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0)))) states_permuted = states.permute(0, 2, 1, 3, 4) result = (decay_chunk[..., None, None] * states_permuted[:, :, None, ...]).sum(dim=2) new_states = result.permute(0, 2, 1, 3, 4) states, ssm_state = new_states[:, :-1], new_states[:, -1] # Compute state -> output conversion per chunk # (left term of low-rank factorization of off-diagonal blocks; C terms) state_decay_out = torch.exp(A_cumsum) # compute Yoff C_times_states = (C[..., None, :] * states[:, :, None, ...]) state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1) Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None]) # Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks) y = Y_diag + Y_off # [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim] y = y.reshape(batch_size, -1, self.num_heads, self.head_dim) y = y + D_residual # Cutting off padded chunks if pad_size > 0: y = y[:, :seq_len, :, :] y = y.reshape(batch_size, seq_len, -1) if ssm_state is not None and cache_params is not None: cache_params.ssm_states[self.layer_idx].copy_(ssm_state) scan_output = self.norm(y, gate) # end ssd naive # 4. Final linear projection contextualized_states = self.out_proj(scan_output.to(dtype)) # [batch, seq_len, hidden_size] return contextualized_states # fmt: on def forward( self, hidden_states, cache_params: Optional[Zamba2HybridDynamicCache] = None, attention_mask: Optional[torch.Tensor] = None, ): if is_fast_path_available and "cuda" in self.in_proj.weight.device.type: return self.cuda_kernels_forward(hidden_states, cache_params, attention_mask) return self.torch_forward(hidden_states, cache_params, attention_mask) class Zamba2MLP(nn.Module): def __init__(self, config: Zamba2Config, num_fwd_mem_blocks=None, block_id: Optional[int] = None): """ This MLP layer contributes to tied transformer blocks aimed to increasing compute without increasing model size. Because this layer is tied, un-tied adapter modules (formally same as LoRA, but used in the base model) are added to the up and gate projectors to increase expressivity with a small memory overhead. """ super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.num_fwd_mem_blocks = num_fwd_mem_blocks self.block_id = block_id self.gate_up_proj = nn.Linear(self.hidden_size, 2 * self.intermediate_size, bias=config.add_bias_linear) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.add_bias_linear) self.act_fn = ACT2FN[config.hidden_act] self.gate_up_proj_adapter_list = nn.ModuleList([]) for i in range(self.num_fwd_mem_blocks): if i % config.num_mem_blocks == block_id: gate_up_proj_adapter = nn.Sequential( nn.Linear(self.config.hidden_size, self.config.adapter_rank, bias=False), nn.Linear(self.config.adapter_rank, 2 * self.intermediate_size, bias=False), ) else: gate_up_proj_adapter = nn.Identity() self.gate_up_proj_adapter_list.append(gate_up_proj_adapter) layer_block_map = config.hybrid_layer_ids self.layer_dic = {value: index for index, value in enumerate(layer_block_map)} def forward(self, hidden_state, layer_idx=None): gate_up_state = self.gate_up_proj(hidden_state) layer_idx = self.layer_dic[layer_idx] gate_up_state = gate_up_state + self.gate_up_proj_adapter_list[layer_idx](hidden_state) gate_up_state = torch.chunk(gate_up_state, 2, dim=-1) hidden_state = self.act_fn(gate_up_state[0]) * gate_up_state[1] output = self.down_proj(hidden_state) return output class Zamba2AttentionDecoderLayer(ZambaAttentionDecoderLayer): def __init__(self, config: Zamba2Config, block_id: Optional[int] = None, layer_idx: Optional[int] = None): self.block_id = block_id num_gs = len(config.hybrid_layer_ids) super().__init__(config, layer_idx) self.self_attn = Zamba2Attention(config, layer_idx=-1, num_fwd_mem_blocks=num_gs, block_id=block_id) self.feed_forward = Zamba2MLP(config, num_fwd_mem_blocks=num_gs, block_id=block_id) def forward( self, hidden_states: torch.Tensor, original_hidden_states: torch.Tensor, layer_idx: int, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Zamba2HybridDynamicCache] = None, output_attentions: Optional[bool] = False, position_embeddings: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): output of previous Mamba layer of shape `(batch, seq_len, embed_dim)` original_hidden_states (`torch.FloatTensor`): word embedding output of shape `(batch, seq_len, embed_dim)`. This is concatenated with `hidden_states` (which is the output of the previous (mamba) layer). The concatenated tensor is then used as input of the pre-attention RMSNorm (see fig. 2 in https://arxiv.org/pdf/2405.16712). attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`Zamba2HybridDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. """ hidden_states = torch.concatenate([hidden_states, original_hidden_states], dim=-1) hidden_states = self.input_layernorm(hidden_states) hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, layer_idx=layer_idx, attention_mask=attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, position_embeddings=position_embeddings, **kwargs, ) hidden_states = self.pre_ff_layernorm(hidden_states) hidden_states = self.feed_forward(hidden_states, layer_idx) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs class Zamba2MambaDecoderLayer(ZambaMambaDecoderLayer): def __init__(self, config: Zamba2Config, layer_idx: int): super().__init__(config, layer_idx) self.mamba = Zamba2MambaMixer(config=config, layer_idx=layer_idx) self.input_layernorm = Zamba2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) class Zamba2HybridLayer(ZambaHybridLayer): def __init__( self, shared_transformer: Zamba2AttentionDecoderLayer, linear: nn.Linear, mamba: Zamba2MambaDecoderLayer ): super().__init__(shared_transformer, linear, mamba) del self.shared_transf self.shared_transformer = shared_transformer def forward( self, hidden_states: torch.Tensor, original_hidden_states: Optional[torch.Tensor] = None, layer_idx: Optional[int] = None, attention_mask: Optional[torch.Tensor] = None, causal_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Zamba2HybridDynamicCache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, position_embeddings: Optional[torch.LongTensor] = None, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` original_hidden_states (`torch.FloatTensor`): word embedding output that will be concatenated with hidden activations to form the input of the shared transformer layer. layer_idx (`int`): layer number. attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`Zamba2HybridDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. """ layer_outputs = self.shared_transformer( hidden_states, original_hidden_states=original_hidden_states, layer_idx=layer_idx, attention_mask=causal_mask, past_key_value=past_key_value, output_attentions=output_attentions, position_embeddings=position_embeddings, ) transformer_hidden_states = layer_outputs[0] if output_attentions: self_attn_weights = layer_outputs[1] transformer_hidden_states = self.linear(transformer_hidden_states) layer_outputs = self.mamba_decoder( hidden_states, transformer_hidden_states=transformer_hidden_states, attention_mask=attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, position_embeddings=position_embeddings, ) if output_attentions: layer_outputs = (layer_outputs[0], self_attn_weights) + layer_outputs[2:] return layer_outputs class Zamba2PreTrainedModel(PreTrainedModel): config_class = Zamba2Config base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Zamba2AttentionDecoderLayer", "Zamba2MambaDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_flex_attn = True _supports_sdpa = True _supports_cache_class = True # Note: only supports Zamba2HybridDynamicCache _is_stateful = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, Zamba2MambaMixer): module.A_log._no_weight_decay = True module.D._no_weight_decay = True dt = torch.exp( torch.rand(self.config.n_mamba_heads) * (math.log(self.config.time_step_max) - math.log(self.config.time_step_min)) + math.log(self.config.time_step_min) ).clamp(min=self.config.time_step_floor) # # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759 inv_dt = dt + torch.log(-torch.expm1(-dt)) with torch.no_grad(): module.dt_bias.copy_(inv_dt) module.dt_bias._no_reinit = True class Zamba2Model(ZambaModel, Zamba2PreTrainedModel): """ Model consisting of *config.num_hidden_layers* layers. Args: config: Zamba2Config """ def __init__(self, config: Zamba2Config): Zamba2PreTrainedModel.__init__(self, config) self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) blocks = [Zamba2AttentionDecoderLayer(config, block_id=k) for k in range(config.num_mem_blocks)] mamba_layers = [] linear_layers = [] self.layers_block_type = config.layers_block_type for i in range(config.num_hidden_layers): if config.layers_block_type[i] == "mamba": mamba_layers.append(Zamba2MambaDecoderLayer(config, layer_idx=i)) elif config.layers_block_type[i] == "hybrid": linear_layers.append(nn.Linear(self.config.hidden_size, self.config.hidden_size, bias=False)) mamba_layers.append(Zamba2MambaDecoderLayer(config, layer_idx=i)) mamba_layers = iter(mamba_layers) linear_layers = iter(linear_layers) blocks = cycle(blocks) layers = self.get_layers(blocks, linear_layers, mamba_layers) self.layers = nn.ModuleList(layers) self._attn_implementation = config._attn_implementation self.final_layernorm = Zamba2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) if config.use_mem_rope: if config.use_long_context: logger.warning_once( "`use_long_context` set to `True`: using rescaled `rope_theta` and extended `max_position_embeddings`." ) self.rotary_emb = Zamba2RotaryEmbedding(config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_layers(self, blocks, linear_layers, mamba_layers): layers = [] self._tied_weights_keys = [] self.first_transformer_layer_id = 0 for layer_id, layer_type in enumerate(self.layers_block_type): if layer_type == "hybrid": if self.first_transformer_layer_id == 0: self.first_transformer_layer_id = layer_id block = next(blocks) if self.config.num_mem_blocks * len(self.config.hybrid_layer_ids) > 1: prefix_pattern = rf"^layers\.{layer_id}\.shared_transformer\." main_keys_pattern = re.compile( prefix_pattern + r"(?:" + r"self_attn\.(?:q_proj|k_proj|v_proj|o_proj)\.weight|" + r"feed_forward\.(?:gate_up_proj|down_proj)\.weight|" + r"(?:input_layernorm|pre_ff_layernorm)\.weight" + r")$" ) self._tied_weights_keys.append(main_keys_pattern) adapter_id = 0 for _layer_type in self.layers_block_type: if _layer_type == "hybrid" and adapter_id % self.config.num_mem_blocks == block.block_id: adapter_pattern = re.compile( r"^shared_transformer\.feed_forward\.gate_up_proj_adapter_list\." + str(adapter_id) + r"\.(?:0|1)\.weight$" ) self._tied_weights_keys.append(adapter_pattern) adapter_id += 1 if self.config.use_shared_attention_adapter: adapter_id = 0 for _layer_type in self.layers_block_type: if _layer_type == "hybrid" and adapter_id % self.config.num_mem_blocks == block.block_id: attn_adapter_pattern = re.compile( r"^shared_transformer\.self_attn\." + r"(?:linear_q_adapter_list|linear_k_adapter_list|linear_v_adapter_list)\." + str(adapter_id) + r"\.(?:0|1)\.weight$" ) self._tied_weights_keys.append(attn_adapter_pattern) adapter_id += 1 layers.append(Zamba2HybridLayer(block, next(linear_layers), next(mamba_layers))) else: layers.append(next(mamba_layers)) return layers def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Zamba2HybridDynamicCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" ) if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) hidden_states = inputs_embeds original_hidden_states = torch.clone(inputs_embeds) # original_hidden_states: word embedding output that will be concatenated with hidden activations to form the input of the shared transformer layer if use_cache and past_key_values is None: batch_size = input_ids.shape[0] if input_ids is not None else inputs_embeds.shape[0] past_key_values = Zamba2HybridDynamicCache(self.config, batch_size, dtype=self.dtype, device=self.device) if cache_position is None: past_seen_tokens = ( past_key_values.get_seq_length(layer_idx=self.first_transformer_layer_id) if past_key_values is not None else 0 ) cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position) # create position embeddings to be shared across the decoder layers if self.config.use_mem_rope: position_embeddings = self.rotary_emb(hidden_states, position_ids) else: position_embeddings = None all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for layer_idx, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, original_hidden_states, layer_idx, attention_mask, causal_mask, past_key_values, output_attentions, use_cache, position_embeddings, ) else: layer_outputs = layer( hidden_states, original_hidden_states=original_hidden_states, layer_idx=layer_idx, attention_mask=attention_mask, causal_mask=causal_mask, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, position_embeddings=position_embeddings, ) hidden_states = layer_outputs[0] if output_attentions: if layer_outputs[1] is not None: # append attentions only of attention layers. Mamba layers return `None` as the attention weights all_self_attns += (layer_outputs[1],) hidden_states = self.final_layernorm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if past_key_values and not past_key_values.has_previous_state: past_key_values.has_previous_state = True output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple() class Zamba2ForCausalLM(ZambaForCausalLM): pass class Zamba2ForSequenceClassification(ZambaForSequenceClassification): pass __all__ = [ "Zamba2ForCausalLM", "Zamba2ForSequenceClassification", "Zamba2Model", "Zamba2PreTrainedModel", ] ```
============================================================================================================================= SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.97 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\zamba\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_zamba import * from .modeling_zamba import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
======================================================================================================================================== SOURCE CODE FILE: configuration_zamba.py LINES: 1 SIZE: 11.02 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\zamba\configuration_zamba.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 Zyphra Technologies and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Zamba model configuration""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class ZambaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ZambaModel`]. It is used to instantiate a Zamba model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Zamba-v0.1 model. [Zyphra/Zamba-7B-v1](https://huggingface.co/Zyphra/Zamba-7B-v1) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Zamba model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ZambaModel`] tie_word_embeddings (`bool`, *optional*, defaults to `True`): Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the model has a output word embedding layer. hidden_size (`int`, *optional*, defaults to 3712): Dimension of the hidden representations. attention_hidden_size (`int`, *optional*): Dimension of the hidden representations of the inputs to the Attention layer. intermediate_size (`int`, *optional*, defaults to 14848): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 76): Number of hidden layers in the model. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. attention_head_dim (`int`, *optional*): Dimension of the attention head in the Transformer decoder. num_key_value_heads (`int`, *optional*, defaults to 16): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=None`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). n_mamba_heads (`int`, *optional*, defaults to 2): Number of mamba heads for each mamba layer. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the decoder. hidden_mamba_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the mamba layer. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. num_logits_to_keep (`int` or `None`, *optional*, defaults to 1): Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the logits of the last prompt token are needed for generation. For long sequences, the logits for the entire sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint significantly. pad_token_id (`int`, *optional*, defaults to 0): The id of the padding token. bos_token_id (`int`, *optional*, defaults to 1): The id of the "beginning-of-sequence" token. eos_token_id (`int`, *optional*, defaults to 2): The id of the "end-of-sequence" token. max_position_embeddings (`int`, *optional*, defaults to 4096): This value doesn't have any real effect. The maximum sequence length that this model is intended to be used with. It can be used with longer sequences, but performance may degrade. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. attn_layer_period (`int`, *optional*, defaults to 6): Once in this many layers, we will have a shared attention layer attn_layer_offset (`int`, *optional*, defaults to 4): Offset of the shared attention layer use_mamba_kernels (`bool`, *optional*, defaults to `True`): Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and `causal-conv1d` are installed, and the mamba modules are running on a CUDA device. Raises ValueError if `True` and kernels are not available mamba_d_state (`int`, *optional*, defaults to 16): The dimension the mamba state space latents mamba_d_conv (`int`, *optional*, defaults to 4): The size of the mamba convolution kernel mamba_expand (`int`, *optional*, defaults to 2): Expanding factor (relative to hidden_size) used to determine the mamba intermediate size mamba_dt_rank (`Union[int,str]`, *optional*, defaults to `"auto"`): Rank of the mamba discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)` time_step_min (`float`, *optional*, defaults to 0.001): Minimum `time_step` used to bound `dt_proj_bias`. time_step_max (`float`, *optional*, defaults to 0.1): Maximum `time_step` used to bound `dt_proj_bias`. time_step_floor (`float`, *optional*, defaults to 0.0001): Minimum clamping value of the `dt_proj.bias` layer initialization. mamba_conv_bias (`bool`, *optional*, defaults to `True`): Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block. mamba_proj_bias (`bool`, *optional*, defaults to `False`): Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block """ model_type = "zamba" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=32000, tie_word_embeddings=True, hidden_size=3712, attention_hidden_size=None, intermediate_size=14848, num_hidden_layers=76, num_attention_heads=16, attention_head_dim=None, num_key_value_heads=16, n_mamba_heads=2, hidden_act="gelu", hidden_mamba_act="silu", initializer_range=0.02, rms_norm_eps=1e-5, use_cache=True, num_logits_to_keep=1, pad_token_id=0, bos_token_id=1, eos_token_id=2, max_position_embeddings=4096, attention_dropout=0.0, attn_layer_period=6, attn_layer_offset=4, use_mamba_kernels=True, mamba_d_state=16, mamba_d_conv=4, mamba_expand=2, mamba_dt_rank="auto", time_step_min=0.001, time_step_max=0.1, time_step_floor=1e-4, mamba_conv_bias=True, mamba_proj_bias=False, **kwargs, ): self.vocab_size = vocab_size self.tie_word_embeddings = tie_word_embeddings self.hidden_size = hidden_size if attention_hidden_size is None: self.attention_hidden_size = 2 * hidden_size else: self.attention_hidden_size = attention_hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads if attention_head_dim is None: self.attention_head_dim = 2 * self.hidden_size // self.num_attention_heads else: self.attention_head_dim = attention_head_dim self.max_position_embeddings = max_position_embeddings self.attention_dropout = attention_dropout self.num_key_value_heads = num_key_value_heads self.n_mamba_heads = n_mamba_heads self.hidden_act = hidden_act self.hidden_mamba_act = hidden_mamba_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.num_logits_to_keep = num_logits_to_keep self.attn_layer_period = attn_layer_period self.attn_layer_offset = attn_layer_offset self.use_mamba_kernels = use_mamba_kernels self.mamba_d_state = mamba_d_state self.mamba_d_conv = mamba_d_conv self.mamba_expand = mamba_expand self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank self.time_step_min = time_step_min self.time_step_max = time_step_max self.time_step_floor = time_step_floor self.mamba_conv_bias = mamba_conv_bias self.mamba_proj_bias = mamba_proj_bias self.layers_block_type = self._layers_block_type(num_hidden_layers, attn_layer_period, attn_layer_offset) assert (self.mamba_expand * self.hidden_size) % self.n_mamba_heads == 0, ( "`intermediate_size` should be divisible by `n_mamba_heads`." ) super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) def _layers_block_type(self, num_hidden_layers, attn_layer_period, attn_layer_offset): layers = [ "mamba", "mamba", "hybrid", ] + ["hybrid" if i % attn_layer_period == attn_layer_offset else "mamba" for i in range(num_hidden_layers - 3)] return layers __all__ = ["ZambaConfig"] ```
=================================================================================================================================== SOURCE CODE FILE: modeling_zamba.py LINES: 2 SIZE: 69.98 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\zamba\modeling_zamba.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 Zyphra Technologies and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Zamba model.""" import math from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache from ...generation import GenerationMixin from ...modeling_attn_mask_utils import ( AttentionMaskConverter, ) from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast, ) from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...pytorch_utils import ALL_LAYERNORM_LAYERS from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.deprecation import deprecate_kwarg from ...utils.import_utils import ( is_causal_conv1d_available, is_mamba_ssm_available, ) from .configuration_zamba import ZambaConfig if is_mamba_ssm_available(): from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn from mamba_ssm.ops.triton.selective_state_update import selective_state_update else: selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None if is_causal_conv1d_available(): from causal_conv1d import causal_conv1d_fn, causal_conv1d_update else: causal_conv1d_update, causal_conv1d_fn = None, None is_fast_path_available = all( (selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn) ) logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "ZambaConfig" # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Zamba class ZambaRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ ZambaRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" ALL_LAYERNORM_LAYERS.append(ZambaRMSNorm) # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class ZambaHybridDynamicCache(DynamicCache): """ A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache (which has a constant shape regardless of seq_len). This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states` and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`, while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors). For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors), while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`, and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`. """ def __init__(self, config, batch_size, dtype=torch.float16, device=None): self.dtype = dtype self.layers_block_type = config.layers_block_type self.has_previous_state = False # only used by mamba self.intermediate_size = config.mamba_expand * config.hidden_size self.ssm_state_size = config.mamba_d_state self.conv_kernel_size = config.mamba_d_conv self.n_mamba_heads = config.n_mamba_heads self.conv_states = [] self.ssm_states = [] self.transformer_layers = [] self._modules = {} self._parameters = {} self._buffers = {} for i in range(config.num_hidden_layers): self.conv_states += [ torch.zeros(batch_size, self.intermediate_size, self.conv_kernel_size, device=device, dtype=dtype) ] cache_shape = ( batch_size, self.n_mamba_heads, self.intermediate_size // self.n_mamba_heads, self.ssm_state_size, ) self.ssm_states += [torch.zeros(cache_shape, device=device, dtype=dtype)] if self.layers_block_type[i] == "hybrid": self.transformer_layers.append(i) self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] # Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.update def update( self, key_states: torch.Tensor, value_states: torch.Tensor, layer_idx: int, cache_kwargs: Optional[Dict[str, Any]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: # Update the cache if self.key_cache[layer_idx].shape[-1] == 0: self.key_cache[layer_idx] = key_states self.value_cache[layer_idx] = value_states else: self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2) self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2) return self.key_cache[layer_idx], self.value_cache[layer_idx] # Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.reorder_cache def reorder_cache(self, beam_idx: torch.LongTensor): """Reorders the cache for beam search, given the selected beam indices.""" for layer_idx in range(len(self.key_cache)): device = self.key_cache[layer_idx].device self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device)) device = self.value_cache[layer_idx].device self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device)) device = self.conv_states[layer_idx].device self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device)) device = self.ssm_states[layer_idx].device self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device)) # Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.get_seq_length def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: """Returns the sequence length of the cached states. A layer index can be optionally passed.""" # take any layer that contains cache and not empty tensor layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx if len(self.key_cache) <= layer_idx: return 0 return self.key_cache[layer_idx].shape[-2] def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]: raise NotImplementedError("ZambaHybridDynamicCache does not have a legacy cache equivalent.") @classmethod def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache": raise NotImplementedError("ZambaHybridDynamicCache does not have a legacy cache equivalent.") def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class ZambaAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers". Adapted from transformers.models.mistral.modeling_mistral.MistralAttention: The input dimension here is attention_hidden_size = 2 * hidden_size, and head_dim = attention_hidden_size // num_heads. The extra factor of 2 comes from the input being the concatenation of original_hidden_states with the output of the previous (mamba) layer (see fig. 2 in https://arxiv.org/pdf/2405.16712). Additionally, replaced attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) with attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim/2) """ def __init__(self, config: ZambaConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.attention_hidden_size = config.attention_hidden_size self.head_dim = config.attention_head_dim self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.scaling = (self.head_dim / 2) ** -0.5 self.is_causal = True self.attention_dropout = config.attention_dropout self.q_proj = nn.Linear(config.attention_hidden_size, config.num_attention_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(config.attention_hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(config.attention_hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) def forward( self, hidden_states: torch.Tensor, layer_idx: int, attention_mask: Optional[torch.Tensor], past_key_value: Optional[ZambaHybridDynamicCache] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) if past_key_value is not None: key_states, value_states = past_key_value.update(key_states, value_states, layer_idx) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class ZambaMambaMixer(nn.Module): """ Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, and is why Mamba is called **selective** state spaces) This module differs from `transformers.models.mamba.modeling_mamba.MambaMixer` in two ways: - Added multi-head: the output of `self.in_proj` is split into `self.n_mamba_heads` heads, and each head undergoes an independent forward pass, identical to the original `MambaMixer`, up until the pre-activations of `self.out_proj`. The pre-activations, coming from different mamba heads, are then concatenated and fed into `self.out_proj`. """ def __init__(self, config: ZambaConfig, layer_idx): super().__init__() self.config = config self.layer_idx = layer_idx self.hidden_size = config.hidden_size self.ssm_state_size = config.mamba_d_state self.conv_kernel_size = config.mamba_d_conv self.intermediate_size = config.mamba_expand * config.hidden_size self.time_step_rank = config.mamba_dt_rank self.n_mamba_heads = config.n_mamba_heads self.mamba_head_dim = self.intermediate_size // self.n_mamba_heads self.use_conv_bias = config.mamba_conv_bias self.use_bias = config.mamba_proj_bias self.conv1d = nn.Conv1d( in_channels=self.intermediate_size, out_channels=self.intermediate_size, bias=self.use_conv_bias, kernel_size=self.conv_kernel_size, groups=self.intermediate_size, padding=self.conv_kernel_size - 1, ) self.activation = config.hidden_mamba_act self.act = ACT2FN[config.hidden_mamba_act] self.use_fast_kernels = config.use_mamba_kernels # projection of the input hidden states self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=self.use_bias) # weight associated to the selective projection used to make dt, B and C input dependent # each mamba head is processed independently self.x_proj_weight = nn.Parameter( ( torch.zeros( self.n_mamba_heads, self.time_step_rank + self.ssm_state_size * 2, self.mamba_head_dim, ) ) ) # time step projection (discretization) self.dt_proj_weight = nn.Parameter( (torch.zeros(self.n_mamba_heads, self.mamba_head_dim, self.time_step_rank) - 0.5) * 2 / self.time_step_rank**0.5 ) self.dt_proj_bias = nn.Parameter(torch.zeros(self.n_mamba_heads, self.mamba_head_dim)) # S4D real initialization. These are not discretized! # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :] A = A.expand(self.intermediate_size, -1).contiguous() self.A_log = nn.Parameter(torch.log(A).reshape(self.n_mamba_heads, self.mamba_head_dim, -1)) self.D = nn.Parameter(torch.ones(self.n_mamba_heads, self.mamba_head_dim)) self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias) if not is_fast_path_available: logger.warning_once( "The fast path is not available because on of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`" " is None. To install follow https://github.com/state-spaces/mamba/#installation and" " https://github.com/Dao-AILab/causal-conv1d. If you want to use the naive implementation, set `use_mamba_kernels=False` in the model config" ) def cuda_kernels_forward( self, hidden_states: torch.Tensor, cache_params: ZambaHybridDynamicCache = None, attention_mask=None ): batch_size, seq_len, _ = hidden_states.shape use_precomputed_states = cache_params is not None and cache_params.has_previous_state and seq_len == 1 # 1. Gated linear projection projected_states = self.in_proj(hidden_states).transpose(1, 2) hidden_states, gate = projected_states.view(batch_size, -1, 2, seq_len).chunk(2, dim=2) hidden_states = hidden_states.squeeze(2).contiguous() gate = gate.squeeze(2) gate = gate.reshape(batch_size, self.n_mamba_heads, -1, seq_len).transpose(0, 1) # 2. Convolution sequence transformation conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2)) if use_precomputed_states: hidden_states = causal_conv1d_update( hidden_states.squeeze(-1), cache_params.conv_states[self.layer_idx], conv_weights, self.conv1d.bias, self.activation, ) hidden_states = hidden_states.unsqueeze(-1) else: if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask.unsqueeze(1) if cache_params is not None: conv_states = nn.functional.pad(hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)) cache_params.conv_states[self.layer_idx].copy_(conv_states) hidden_states = causal_conv1d_fn(hidden_states, conv_weights, self.conv1d.bias, activation=self.activation) if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask.unsqueeze(1) # 3. SSM sequence transformation # 3.a. input varying initialization of time_step, B and C hidden_states = hidden_states.reshape(-1, self.n_mamba_heads, self.mamba_head_dim, seq_len).transpose(0, 1) ssm_parameters = (self.x_proj_weight[:, None, :, :] @ hidden_states).transpose(-1, -2) time_step, B, C = torch.split( ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 ) discrete_time_step = self.dt_proj_weight[:, None] @ time_step.transpose(-1, -2) A = -torch.exp(self.A_log.float()) # 3.c perform the recurrence y ← SSM(A, B, C)(x) time_proj_bias = self.dt_proj_bias.float() if self.dt_proj_bias is not None else None scan_outputs = torch.empty((batch_size, 0, seq_len), device=hidden_states.device, dtype=hidden_states.dtype) if use_precomputed_states: for n in range(self.n_mamba_heads): scan_outputs_ = selective_state_update( cache_params.ssm_states[self.layer_idx][:, n], hidden_states[n, ..., 0], discrete_time_step[n, ..., 0], A[n], B[n, :, 0], C[n, :, 0], self.D[n], gate[n, ..., 0], time_proj_bias[n], dt_softplus=True, ).unsqueeze(-1) scan_outputs = torch.cat((scan_outputs, scan_outputs_), dim=1) else: ssm_state = torch.empty( (batch_size, 0, self.mamba_head_dim, self.ssm_state_size), device=hidden_states.device, dtype=hidden_states.dtype, ) for n in range(self.n_mamba_heads): scan_outputs_, ssm_state_ = selective_scan_fn( hidden_states[n], discrete_time_step[n], A[n], B[n].transpose(1, 2), C[n].transpose(1, 2), self.D[n].float(), gate[n], time_proj_bias[n], delta_softplus=True, return_last_state=True, ) scan_outputs = torch.cat((scan_outputs, scan_outputs_), dim=1).contiguous() ssm_state = torch.cat((ssm_state, ssm_state_.unsqueeze(1)), dim=1) if ssm_state is not None and cache_params is not None: cache_params.ssm_states[self.layer_idx].copy_(ssm_state) # 4. Final linear projection contextualized_states = self.out_proj(scan_outputs.transpose(1, 2)) return contextualized_states def slow_forward(self, input_states, cache_params: ZambaHybridDynamicCache = None, attention_mask=None): batch_size, seq_len, _ = input_states.shape dtype = input_states.dtype # 1. Gated linear projection projected_states = self.in_proj(input_states).transpose(1, 2) hidden_states, gate = projected_states.view(batch_size, -1, 2, seq_len).chunk(2, dim=2) hidden_states = hidden_states.squeeze(2).contiguous() gate = gate.squeeze(2) gate = gate.reshape(batch_size, self.n_mamba_heads, -1, seq_len).transpose(0, 1) use_cache = isinstance(cache_params, ZambaHybridDynamicCache) # 2. Convolution sequence transformation if use_cache and cache_params.ssm_states[self.layer_idx].shape[0] == batch_size: if self.training: # In training mode, we don't want to perform in-place operations on ssm_state so we can compute the backwards pass ssm_state = cache_params.ssm_states[self.layer_idx].clone() else: ssm_state = cache_params.ssm_states[self.layer_idx] ssm_state = ssm_state.to(hidden_states.device) if ( cache_params.has_previous_state and seq_len == 1 and cache_params.conv_states[self.layer_idx].shape[0] == batch_size ): conv_state = cache_params.conv_states[self.layer_idx] conv_state = torch.roll(conv_state, shifts=-1, dims=-1) conv_state[:, :, -1] = hidden_states[:, :, 0] cache_params.conv_states[self.layer_idx] = conv_state hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1) if self.use_conv_bias: hidden_states += self.conv1d.bias hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) else: if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask[:, -hidden_states.shape[-1] :].unsqueeze(1) conv_state = nn.functional.pad(hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)) cache_params.conv_states[self.layer_idx] = conv_state hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask[:, -hidden_states.shape[-1] :].unsqueeze(1) else: ssm_state = torch.zeros( (batch_size, self.n_mamba_heads, self.mamba_head_dim, self.ssm_state_size), device=hidden_states.device, dtype=dtype, ) if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask.unsqueeze(1) hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask.unsqueeze(1) # 3. State Space Model sequence transformation # 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2] hidden_states = hidden_states.reshape(-1, self.n_mamba_heads, self.mamba_head_dim, seq_len).transpose(0, 1) ssm_parameters = (self.x_proj_weight[:, None, :, :] @ hidden_states).transpose(-1, -2) time_step, B, C = torch.split( ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 ) discrete_time_step = (self.dt_proj_weight[:, None] @ time_step.transpose(-1, -2)) + self.dt_proj_bias[ :, None, :, None ] discrete_time_step = nn.functional.softplus(discrete_time_step) # 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM) A = -torch.exp(self.A_log.float()) discrete_A = torch.exp(A[:, None, :, None, :] * discrete_time_step[:, :, :, :, None]) discrete_B = discrete_time_step[:, :, :, :, None] * B[:, :, None, :, :].float() deltaB_u = discrete_B * hidden_states[:, :, :, :, None].float() # 3.c perform the recurrence y ← SSM(A, B, C)(x) scan_outputs = [] for i in range(seq_len): ssm_state = discrete_A[:, :, :, i, :].transpose(0, 1) * ssm_state + deltaB_u[:, :, :, i, :].transpose(0, 1) scan_output = torch.matmul(ssm_state.transpose(0, 1).to(dtype), C[:, :, i, :].unsqueeze(-1)) scan_outputs.append(scan_output[:, :, :, 0]) scan_output = torch.stack(scan_outputs, dim=-1) scan_output = scan_output + (hidden_states * self.D[:, None, :, None]) scan_output = scan_output * self.act(gate) if use_cache: cache_params.ssm_states[self.layer_idx] = ssm_state # 4. Final linear projection contextualized_states = self.out_proj( scan_output.transpose(0, 1).reshape(batch_size, -1, seq_len).transpose(1, 2) ) return contextualized_states def forward(self, hidden_states, cache_params: ZambaHybridDynamicCache = None, attention_mask=None): if self.use_fast_kernels: if not is_fast_path_available or "cuda" not in self.x_proj_weight.device.type: raise ValueError( "Fast Mamba kernels are not available. Make sure to they are installed and that " "the mamba module is on a CUDA device. lease run 'pip install causal-conv1d>=1.2.0' " "and 'pip install mamba-ssm', or set use_mamba_kernels=False in the model's config." ) return self.cuda_kernels_forward(hidden_states, cache_params, attention_mask=attention_mask) return self.slow_forward(hidden_states, cache_params, attention_mask=attention_mask) # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Zamba class ZambaMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj class ZambaAttentionDecoderLayer(nn.Module): def __init__(self, config: ZambaConfig, layer_idx: Optional[int] = None): super().__init__() self.self_attn = ZambaAttention(config, layer_idx) self.feed_forward = ZambaMLP(config) self.input_layernorm = ZambaRMSNorm(config.attention_hidden_size, eps=config.rms_norm_eps) self.pre_ff_layernorm = ZambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, original_hidden_states: torch.Tensor, layer_idx: int, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[ZambaHybridDynamicCache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): output of previous Mamba layer of shape `(batch, seq_len, embed_dim)` original_hidden_states (`torch.FloatTensor`): word embedding output of shape `(batch, seq_len, embed_dim)`. This is concatenated with `hidden_states` (which is the output of the previous (mamba) layer). The concatenated tensor is then used as input of the pre-attention RMSNorm (see fig. 2 in https://arxiv.org/pdf/2405.16712). layer_idx (`int`): layer_idx in the forward pass. Used to distinguish Zamba's tied transformer layers. attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`ZambaHybridDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. """ hidden_states = torch.concatenate([hidden_states, original_hidden_states], dim=-1) hidden_states = self.input_layernorm(hidden_states) hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, layer_idx=layer_idx, attention_mask=attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, **kwargs, ) # feed-forward (MLP) hidden_states = self.pre_ff_layernorm(hidden_states) hidden_states = self.feed_forward(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs class ZambaMambaDecoderLayer(nn.Module): def __init__(self, config: ZambaConfig, layer_idx: int): super().__init__() self.mamba = ZambaMambaMixer(config=config, layer_idx=layer_idx) self.input_layernorm = ZambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.layer_idx = layer_idx def forward( self, hidden_states: torch.Tensor, original_hidden_states: Optional[torch.Tensor] = None, layer_idx: Optional[int] = None, attention_mask: Optional[torch.Tensor] = None, causal_mask: Optional[torch.Tensor] = None, past_key_value: Optional[ZambaHybridDynamicCache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, transformer_hidden_states: Optional[torch.Tensor] = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`ZambaHybridDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. """ residual = hidden_states # `transformer_hidden_states` is the output from shared transformer + linear layer (see fig. 2 in https://arxiv.org/pdf/2405.16712). # `transformer_hidden_states` is then added to the input to the mamba layer below (as described in eq. (6) of https://arxiv.org/pdf/2405.16712). hidden_states = ( hidden_states + transformer_hidden_states if transformer_hidden_states is not None else hidden_states ) hidden_states = self.input_layernorm(hidden_states) hidden_states = self.mamba( hidden_states=hidden_states, cache_params=past_key_value, attention_mask=attention_mask, ) self_attn_weights = None # residual connection after mamba hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (past_key_value,) return outputs class ZambaHybridLayer(nn.Module): def __init__(self, shared_transf: ZambaAttentionDecoderLayer, linear: nn.Linear, mamba: ZambaMambaDecoderLayer): super().__init__() self.shared_transf = shared_transf self.linear = linear self.mamba_decoder = mamba def forward( self, hidden_states: torch.Tensor, original_hidden_states: Optional[torch.Tensor] = None, layer_idx: Optional[int] = None, attention_mask: Optional[torch.Tensor] = None, causal_mask: Optional[torch.Tensor] = None, past_key_value: Optional[ZambaHybridDynamicCache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` original_hidden_states (`torch.FloatTensor`): word embedding output that will be concatenated with hidden activations to form the input of the shared transformer layer. layer_idx (`int`): layer number. attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`ZambaHybridDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. """ layer_outputs = self.shared_transf( hidden_states, original_hidden_states=original_hidden_states, layer_idx=layer_idx, attention_mask=causal_mask, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) transformer_hidden_states = layer_outputs[0] if output_attentions: self_attn_weights = layer_outputs[1] transformer_hidden_states = self.linear(transformer_hidden_states) layer_outputs = self.mamba_decoder( hidden_states, transformer_hidden_states=transformer_hidden_states, attention_mask=attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) if output_attentions: layer_outputs = (layer_outputs[0], self_attn_weights) + layer_outputs[2:] return layer_outputs ZAMBA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ZambaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Zamba Model outputting raw hidden-states without any specific head on top.", ZAMBA_START_DOCSTRING, ) class ZambaPreTrainedModel(PreTrainedModel): config_class = ZambaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["ZambaAttentionDecoderLayer", "ZambaMambaDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = False _supports_sdpa = False _supports_cache_class = True # Note: only supports ZambaHybridDynamicCache _is_stateful = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, ZambaMambaMixer): module.A_log._no_weight_decay = True module.D._no_weight_decay = True module.x_proj_weight.data.normal_(mean=0.0, std=std) dt_init_std = self.config.mamba_dt_rank**-0.5 nn.init.uniform_(module.dt_proj_weight, -dt_init_std, dt_init_std) mamba_head_dim = self.config.mamba_expand * self.config.hidden_size // self.config.n_mamba_heads dt = torch.exp( torch.rand(self.config.n_mamba_heads, mamba_head_dim) * (math.log(self.config.time_step_max) - math.log(self.config.time_step_min)) + math.log(self.config.time_step_min) ).clamp(min=self.config.time_step_floor) # # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759 inv_dt = dt + torch.log(-torch.expm1(-dt)) with torch.no_grad(): module.dt_proj_bias.copy_(inv_dt) module.dt_proj_bias._no_reinit = True @classmethod @classmethod def _check_and_enable_flash_attn_2( cls, config, torch_dtype: Optional[torch.dtype] = None, device_map: Optional[Union[str, Dict[str, int]]] = None, hard_check_only: bool = False, check_device_map: bool = False, ): """ Overloads `PreTrainedModel._check_and_enable_flash_attn_2` so as to DISABLE Flash Attention 2 by default on Zamba models. Flash attention 2 is currently not supported in the HuggingFace implementation of Zamba v1. """ config = super()._check_and_enable_flash_attn_2( config, torch_dtype, device_map, hard_check_only=hard_check_only, check_device_map=check_device_map ) # if using the default path -> swap sdpa by eager if not hard_check_only and config._attn_implementation == "flash_attention_2": config._attn_implementation = "eager" return config ZAMBA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`ZambaHybridDynamicCache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): A ZambaHybridDynamicCache object containing pre-computed hidden-states (keys and values in the self-attention blocks and convolution and ssm states in the mamba blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. Key and value cache tensors have shape `(batch_size, num_heads, seq_len, head_dim)`. Convolution and ssm states tensors have shape `(batch_size, d_inner, d_conv)` and `(batch_size, d_inner, d_state)` respectively. See the `ZambaHybridDynamicCache` class for more details. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( "The bare Zamba Model outputting raw hidden-states without any specific head on top.", ZAMBA_START_DOCSTRING, ) class ZambaModel(ZambaPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`ZambaDecoderLayer`] Args: config: ZambaConfig """ def __init__(self, config: ZambaConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) block = ZambaAttentionDecoderLayer(config) mamba_layers = [] linear_layers = [] self.layers_block_type = config.layers_block_type for i in range(config.num_hidden_layers): if config.layers_block_type[i] == "mamba": mamba_layers.append(ZambaMambaDecoderLayer(config, layer_idx=i)) elif config.layers_block_type[i] == "hybrid": linear_layers.append(nn.Linear(self.config.hidden_size, self.config.hidden_size, bias=False)) mamba_layers.append(ZambaMambaDecoderLayer(config, layer_idx=i)) mamba_layers = iter(mamba_layers) linear_layers = iter(linear_layers) layers = [] self._tied_weights_keys = [] for layer_id, layer_type in enumerate(self.layers_block_type): if layer_type == "hybrid": prefix_name = f"layers.{layer_id}." tied_keys = [ "shared_transf.self_attn.q_proj.weight", "shared_transf.self_attn.k_proj.weight", "shared_transf.self_attn.v_proj.weight", "shared_transf.self_attn.o_proj.weight", "shared_transf.feed_forward.gate_proj.weight", "shared_transf.feed_forward.up_proj.weight", "shared_transf.feed_forward.down_proj.weight", "shared_transf.input_layernorm.weight", "shared_transf.pre_ff_layernorm.weight", ] self._tied_weights_keys = [*self._tied_weights_keys, *[prefix_name + key for key in tied_keys]] layers.append(ZambaHybridLayer(block, next(linear_layers), next(mamba_layers))) else: layers.append(next(mamba_layers)) self.layers = nn.ModuleList(layers) self._attn_implementation = config._attn_implementation self.final_layernorm = ZambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(ZAMBA_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[ZambaHybridDynamicCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" ) if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) hidden_states = inputs_embeds original_hidden_states = torch.clone(inputs_embeds) # original_hidden_states: word embedding output that will be concatenated with hidden activations to form the input of the shared transformer layer if use_cache and past_key_values is None: logger.warning_once( "Zamba requires an initialized `ZambaHybridDynamicCache` to return a cache. None was " "provided, so no cache will be returned." ) if cache_position is None: cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position) all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for layer_idx, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, original_hidden_states, layer_idx, attention_mask, causal_mask, past_key_values, output_attentions, use_cache, cache_position, ) else: layer_outputs = layer( hidden_states, original_hidden_states=original_hidden_states, layer_idx=layer_idx, attention_mask=attention_mask, causal_mask=causal_mask, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) hidden_states = layer_outputs[0] if output_attentions: if layer_outputs[1] is not None: # append attentions only of attention layers. Mamba layers return `None` as the attention weights all_self_attns += (layer_outputs[1],) hidden_states = self.final_layernorm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if past_key_values and not past_key_values.has_previous_state: past_key_values.has_previous_state = True output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple() # Copied from transformers.models.jamba.modeling_jamba.JambaModel._update_causal_mask def _update_causal_mask(self, attention_mask, input_tensor, cache_position): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] target_length = cache_position[-1] + 1 causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit if attention_mask.dim() == 2: mask_length = attention_mask.shape[-1] padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0) causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu"] ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask # Adapted from transformers.models.jamba.modeling_jamba.JambaForCausalLM with Jamba->Zamba, JAMBA->ZAMBA class ZambaForCausalLM(ZambaPreTrainedModel, GenerationMixin): def __init__(self, config: ZambaConfig): super().__init__(config) self.model = ZambaModel(config) self._tied_weights_keys = ["lm_head.weight", *self.model._tied_weights_keys] self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") @add_start_docstrings_to_model_forward(ZAMBA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[ZambaHybridDynamicCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **loss_kwargs, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from transformers import AutoTokenizer, ZambaForCausalLM >>> model = ZambaForCausalLM.from_pretrained("Zyphra/Zamba-7B-v1") >>> tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba-7B-v1") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, return_dict=return_dict, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, **kwargs, ): # Overwitten -- has a unique cache type, `ZambaHybridDynamicCache` empty_past_kv = past_key_values is None # Omit tokens covered by past_key_values if not empty_past_kv: # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens # Exception 1: when passing input_embeds, input_ids may be missing entries # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here # Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case. # (we can't check exception 3 while compiling) if ( inputs_embeds is not None # Exception 1 or cache_position[-1] >= input_ids.shape[1] # Exception 3 ): input_ids = input_ids[:, -cache_position.shape[0] :] elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) input_ids = input_ids[:, cache_position] else: past_key_values = ZambaHybridDynamicCache( self.config, input_ids.shape[0], dtype=self.dtype, device=self.device ) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if not empty_past_kv: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and empty_past_kv: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": use_cache, "attention_mask": attention_mask, "logits_to_keep": self.config.num_logits_to_keep, "cache_position": cache_position, } ) return model_inputs @add_start_docstrings( """ The Zamba Model with a sequence classification head on top (linear layer). [`ZambaForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, ZAMBA_START_DOCSTRING, ) class ZambaForSequenceClassification(ZambaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = ZambaModel(config) self._tied_weights_keys = self.model._tied_weights_keys self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(ZAMBA_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: last_non_pad_token = -1 elif input_ids is not None: # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32) last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) else: last_non_pad_token = -1 logger.warning_once( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) __all__ = ["ZambaForCausalLM", "ZambaForSequenceClassification", "ZambaModel", "ZambaPreTrainedModel"] ```
================================================================================================================================ SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.02 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\zoedepth\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_zoedepth import * from .image_processing_zoedepth import * from .modeling_zoedepth import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
============================================================================================================================================== SOURCE CODE FILE: configuration_zoedepth.py LINES: 1 SIZE: 12.46 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\zoedepth\configuration_zoedepth.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ZoeDepth model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING logger = logging.get_logger(__name__) ZOEDEPTH_PRETRAINED_CONFIG_ARCHIVE_MAP = { "Intel/zoedepth-nyu": "https://huggingface.co/Intel/zoedepth-nyu/resolve/main/config.json", } class ZoeDepthConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ZoeDepthForDepthEstimation`]. It is used to instantiate an ZoeDepth model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ZoeDepth [Intel/zoedepth-nyu](https://huggingface.co/Intel/zoedepth-nyu) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: backbone_config (`Union[Dict[str, Any], PretrainedConfig]`, *optional*, defaults to `BeitConfig()`): The configuration of the backbone model. backbone (`str`, *optional*): Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone` is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights. use_pretrained_backbone (`bool`, *optional*, defaults to `False`): Whether to use pretrained weights for the backbone. backbone_kwargs (`dict`, *optional*): Keyword arguments to be passed to AutoBackbone when loading from a checkpoint e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. batch_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the batch normalization layers. readout_type (`str`, *optional*, defaults to `"project"`): The readout type to use when processing the readout token (CLS token) of the intermediate hidden states of the ViT backbone. Can be one of [`"ignore"`, `"add"`, `"project"`]. - "ignore" simply ignores the CLS token. - "add" passes the information from the CLS token to all other tokens by adding the representations. - "project" passes information to the other tokens by concatenating the readout to all other tokens before projecting the representation to the original feature dimension D using a linear layer followed by a GELU non-linearity. reassemble_factors (`List[int]`, *optional*, defaults to `[4, 2, 1, 0.5]`): The up/downsampling factors of the reassemble layers. neck_hidden_sizes (`List[str]`, *optional*, defaults to `[96, 192, 384, 768]`): The hidden sizes to project to for the feature maps of the backbone. fusion_hidden_size (`int`, *optional*, defaults to 256): The number of channels before fusion. head_in_index (`int`, *optional*, defaults to -1): The index of the features to use in the heads. use_batch_norm_in_fusion_residual (`bool`, *optional*, defaults to `False`): Whether to use batch normalization in the pre-activate residual units of the fusion blocks. use_bias_in_fusion_residual (`bool`, *optional*, defaults to `True`): Whether to use bias in the pre-activate residual units of the fusion blocks. num_relative_features (`int`, *optional*, defaults to 32): The number of features to use in the relative depth estimation head. add_projection (`bool`, *optional*, defaults to `False`): Whether to add a projection layer before the depth estimation head. bottleneck_features (`int`, *optional*, defaults to 256): The number of features in the bottleneck layer. num_attractors (`List[int], *optional*, defaults to `[16, 8, 4, 1]`): The number of attractors to use in each stage. bin_embedding_dim (`int`, *optional*, defaults to 128): The dimension of the bin embeddings. attractor_alpha (`int`, *optional*, defaults to 1000): The alpha value to use in the attractor. attractor_gamma (`int`, *optional*, defaults to 2): The gamma value to use in the attractor. attractor_kind (`str`, *optional*, defaults to `"mean"`): The kind of attractor to use. Can be one of [`"mean"`, `"sum"`]. min_temp (`float`, *optional*, defaults to 0.0212): The minimum temperature value to consider. max_temp (`float`, *optional*, defaults to 50.0): The maximum temperature value to consider. bin_centers_type (`str`, *optional*, defaults to `"softplus"`): Activation type used for bin centers. Can be "normed" or "softplus". For "normed" bin centers, linear normalization trick is applied. This results in bounded bin centers. For "softplus", softplus activation is used and thus are unbounded. bin_configurations (`List[dict]`, *optional*, defaults to `[{'n_bins': 64, 'min_depth': 0.001, 'max_depth': 10.0}]`): Configuration for each of the bin heads. Each configuration should consist of the following keys: - name (`str`): The name of the bin head - only required in case of multiple bin configurations. - `n_bins` (`int`): The number of bins to use. - `min_depth` (`float`): The minimum depth value to consider. - `max_depth` (`float`): The maximum depth value to consider. In case only a single configuration is passed, the model will use a single head with the specified configuration. In case multiple configurations are passed, the model will use multiple heads with the specified configurations. num_patch_transformer_layers (`int`, *optional*): The number of transformer layers to use in the patch transformer. Only used in case of multiple bin configurations. patch_transformer_hidden_size (`int`, *optional*): The hidden size to use in the patch transformer. Only used in case of multiple bin configurations. patch_transformer_intermediate_size (`int`, *optional*): The intermediate size to use in the patch transformer. Only used in case of multiple bin configurations. patch_transformer_num_attention_heads (`int`, *optional*): The number of attention heads to use in the patch transformer. Only used in case of multiple bin configurations. Example: ```python >>> from transformers import ZoeDepthConfig, ZoeDepthForDepthEstimation >>> # Initializing a ZoeDepth zoedepth-large style configuration >>> configuration = ZoeDepthConfig() >>> # Initializing a model from the zoedepth-large style configuration >>> model = ZoeDepthForDepthEstimation(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "zoedepth" def __init__( self, backbone_config=None, backbone=None, use_pretrained_backbone=False, backbone_kwargs=None, hidden_act="gelu", initializer_range=0.02, batch_norm_eps=1e-05, readout_type="project", reassemble_factors=[4, 2, 1, 0.5], neck_hidden_sizes=[96, 192, 384, 768], fusion_hidden_size=256, head_in_index=-1, use_batch_norm_in_fusion_residual=False, use_bias_in_fusion_residual=None, num_relative_features=32, add_projection=False, bottleneck_features=256, num_attractors=[16, 8, 4, 1], bin_embedding_dim=128, attractor_alpha=1000, attractor_gamma=2, attractor_kind="mean", min_temp=0.0212, max_temp=50.0, bin_centers_type="softplus", bin_configurations=[{"n_bins": 64, "min_depth": 0.001, "max_depth": 10.0}], num_patch_transformer_layers=None, patch_transformer_hidden_size=None, patch_transformer_intermediate_size=None, patch_transformer_num_attention_heads=None, **kwargs, ): super().__init__(**kwargs) if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']") if attractor_kind not in ["mean", "sum"]: raise ValueError("Attractor_kind must be one of ['mean', 'sum']") if use_pretrained_backbone: raise ValueError("Pretrained backbones are not supported yet.") if backbone_config is not None and backbone is not None: raise ValueError("You can't specify both `backbone` and `backbone_config`.") if backbone_config is None and backbone is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `BEiT` backbone.") backbone_config = CONFIG_MAPPING["beit"]( image_size=384, num_hidden_layers=24, hidden_size=1024, intermediate_size=4096, num_attention_heads=16, use_relative_position_bias=True, reshape_hidden_states=False, out_features=["stage6", "stage12", "stage18", "stage24"], ) elif isinstance(backbone_config, dict): backbone_model_type = backbone_config.get("model_type") config_class = CONFIG_MAPPING[backbone_model_type] backbone_config = config_class.from_dict(backbone_config) if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None: raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.") self.backbone_config = backbone_config self.backbone = backbone self.hidden_act = hidden_act self.use_pretrained_backbone = use_pretrained_backbone self.initializer_range = initializer_range self.batch_norm_eps = batch_norm_eps self.readout_type = readout_type self.reassemble_factors = reassemble_factors self.neck_hidden_sizes = neck_hidden_sizes self.fusion_hidden_size = fusion_hidden_size self.head_in_index = head_in_index self.use_batch_norm_in_fusion_residual = use_batch_norm_in_fusion_residual self.use_bias_in_fusion_residual = use_bias_in_fusion_residual self.num_relative_features = num_relative_features self.add_projection = add_projection self.bottleneck_features = bottleneck_features self.num_attractors = num_attractors self.bin_embedding_dim = bin_embedding_dim self.attractor_alpha = attractor_alpha self.attractor_gamma = attractor_gamma self.attractor_kind = attractor_kind self.min_temp = min_temp self.max_temp = max_temp self.bin_centers_type = bin_centers_type self.bin_configurations = bin_configurations self.num_patch_transformer_layers = num_patch_transformer_layers self.patch_transformer_hidden_size = patch_transformer_hidden_size self.patch_transformer_intermediate_size = patch_transformer_intermediate_size self.patch_transformer_num_attention_heads = patch_transformer_num_attention_heads __all__ = ["ZOEDEPTH_PRETRAINED_CONFIG_ARCHIVE_MAP", "ZoeDepthConfig"] ```
================================================================================================================================================= SOURCE CODE FILE: image_processing_zoedepth.py LINES: 1 SIZE: 27.50 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\zoedepth\image_processing_zoedepth.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for ZoeDepth.""" import math from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Tuple, Union import numpy as np if TYPE_CHECKING: from .modeling_zoedepth import ZoeDepthDepthEstimatorOutput from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import PaddingMode, pad, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import ( TensorType, filter_out_non_signature_kwargs, is_torch_available, is_vision_available, logging, requires_backends, ) if is_vision_available(): import PIL if is_torch_available(): import torch from torch import nn logger = logging.get_logger(__name__) def get_resize_output_image_size( input_image: np.ndarray, output_size: Union[int, Iterable[int]], keep_aspect_ratio: bool, multiple: int, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Tuple[int, int]: def constrain_to_multiple_of(val, multiple, min_val=0): x = (np.round(val / multiple) * multiple).astype(int) if x < min_val: x = math.ceil(val / multiple) * multiple return x output_size = (output_size, output_size) if isinstance(output_size, int) else output_size input_height, input_width = get_image_size(input_image, input_data_format) output_height, output_width = output_size # determine new height and width scale_height = output_height / input_height scale_width = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width) < abs(1 - scale_height): # fit width scale_height = scale_width else: # fit height scale_width = scale_height new_height = constrain_to_multiple_of(scale_height * input_height, multiple=multiple) new_width = constrain_to_multiple_of(scale_width * input_width, multiple=multiple) return (new_height, new_width) class ZoeDepthImageProcessor(BaseImageProcessor): r""" Constructs a ZoeDepth image processor. Args: do_pad (`bool`, *optional*, defaults to `True`): Whether to apply pad the input. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overidden by `do_rescale` in `preprocess`. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overidden by `rescale_factor` in `preprocess`. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions. Can be overidden by `do_resize` in `preprocess`. size (`Dict[str, int]` *optional*, defaults to `{"height": 384, "width": 512}`): Size of the image after resizing. Size of the image after resizing. If `keep_aspect_ratio` is `True`, the image is resized by choosing the smaller of the height and width scaling factors and using it for both dimensions. If `ensure_multiple_of` is also set, the image is further resized to a size that is a multiple of this value. Can be overidden by `size` in `preprocess`. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): Defines the resampling filter to use if resizing the image. Can be overidden by `resample` in `preprocess`. keep_aspect_ratio (`bool`, *optional*, defaults to `True`): If `True`, the image is resized by choosing the smaller of the height and width scaling factors and using it for both dimensions. This ensures that the image is scaled down as little as possible while still fitting within the desired output size. In case `ensure_multiple_of` is also set, the image is further resized to a size that is a multiple of this value by flooring the height and width to the nearest multiple of this value. Can be overidden by `keep_aspect_ratio` in `preprocess`. ensure_multiple_of (`int`, *optional*, defaults to 32): If `do_resize` is `True`, the image is resized to a size that is a multiple of this value. Works by flooring the height and width to the nearest multiple of this value. Works both with and without `keep_aspect_ratio` being set to `True`. Can be overidden by `ensure_multiple_of` in `preprocess`. """ model_input_names = ["pixel_values"] def __init__( self, do_pad: bool = True, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, keep_aspect_ratio: bool = True, ensure_multiple_of: int = 32, **kwargs, ) -> None: super().__init__(**kwargs) self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_pad = do_pad self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD size = size if size is not None else {"height": 384, "width": 512} size = get_size_dict(size) self.do_resize = do_resize self.size = size self.keep_aspect_ratio = keep_aspect_ratio self.ensure_multiple_of = ensure_multiple_of self.resample = resample def resize( self, image: np.ndarray, size: Dict[str, int], keep_aspect_ratio: bool = False, ensure_multiple_of: int = 1, resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Resize an image to target size `(size["height"], size["width"])`. If `keep_aspect_ratio` is `True`, the image is resized to the largest possible size such that the aspect ratio is preserved. If `ensure_multiple_of` is set, the image is resized to a size that is a multiple of this value. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Target size of the output image. keep_aspect_ratio (`bool`, *optional*, defaults to `False`): If `True`, the image is resized to the largest possible size such that the aspect ratio is preserved. ensure_multiple_of (`int`, *optional*, defaults to 1): The image is resized to a size that is a multiple of this value. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Defines the resampling filter to use if resizing the image. Otherwise, the image is resized to size specified in `size`. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ if input_data_format is None: input_data_format = infer_channel_dimension_format(image) data_format = data_format if data_format is not None else input_data_format size = get_size_dict(size) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}") output_size = get_resize_output_image_size( image, output_size=(size["height"], size["width"]), keep_aspect_ratio=keep_aspect_ratio, multiple=ensure_multiple_of, input_data_format=input_data_format, ) height, width = output_size torch_image = torch.from_numpy(image).unsqueeze(0) torch_image = torch_image.permute(0, 3, 1, 2) if input_data_format == "channels_last" else torch_image # TODO support align_corners=True in image_transforms.resize requires_backends(self, "torch") resample_to_mode = {PILImageResampling.BILINEAR: "bilinear", PILImageResampling.BICUBIC: "bicubic"} mode = resample_to_mode[resample] resized_image = nn.functional.interpolate( torch_image, (int(height), int(width)), mode=mode, align_corners=True ) resized_image = resized_image.squeeze().numpy() resized_image = to_channel_dimension_format( resized_image, data_format, input_channel_dim=ChannelDimension.FIRST ) return resized_image def pad_image( self, image: np.array, mode: PaddingMode = PaddingMode.REFLECT, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Pad an image as done in the original ZoeDepth implementation. Padding fixes the boundary artifacts in the output depth map. Boundary artifacts are sometimes caused by the fact that the model is trained on NYU raw dataset which has a black or white border around the image. This function pads the input image and crops the prediction back to the original size / view. Args: image (`np.ndarray`): Image to pad. mode (`PaddingMode`): The padding mode to use. Can be one of: - `"constant"`: pads with a constant value. - `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the vector along each axis. - `"replicate"`: pads with the replication of the last value on the edge of the array along each axis. - `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ height, width = get_image_size(image, input_data_format) pad_height = int(np.sqrt(height / 2) * 3) pad_width = int(np.sqrt(width / 2) * 3) return pad( image, padding=((pad_height, pad_height), (pad_width, pad_width)), mode=mode, data_format=data_format, input_data_format=input_data_format, ) @filter_out_non_signature_kwargs() def preprocess( self, images: ImageInput, do_pad: Optional[bool] = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_resize: Optional[bool] = None, size: Optional[int] = None, keep_aspect_ratio: Optional[bool] = None, ensure_multiple_of: Optional[int] = None, resample: PILImageResampling = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_pad (`bool`, *optional*, defaults to `self.do_pad`): Whether to pad the input image. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. If `keep_aspect_ratio` is `True`, he image is resized by choosing the smaller of the height and width scaling factors and using it for both dimensions. If `ensure_multiple_of` is also set, the image is further resized to a size that is a multiple of this value. keep_aspect_ratio (`bool`, *optional*, defaults to `self.keep_aspect_ratio`): If `True` and `do_resize=True`, the image is resized by choosing the smaller of the height and width scaling factors and using it for both dimensions. This ensures that the image is scaled down as little as possible while still fitting within the desired output size. In case `ensure_multiple_of` is also set, the image is further resized to a size that is a multiple of this value by flooring the height and width to the nearest multiple of this value. ensure_multiple_of (`int`, *optional*, defaults to `self.ensure_multiple_of`): If `do_resize` is `True`, the image is resized to a size that is a multiple of this value. Works by flooring the height and width to the nearest multiple of this value. Works both with and without `keep_aspect_ratio` being set to `True`. Can be overidden by `ensure_multiple_of` in `preprocess`. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only has an effect if `do_resize` is set to `True`. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size) keep_aspect_ratio = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio ensure_multiple_of = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_pad = do_pad if do_pad is not None else self.do_pad images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_pad: images = [self.pad_image(image=image, input_data_format=input_data_format) for image in images] if do_resize: images = [ self.resize( image=image, size=size, resample=resample, keep_aspect_ratio=keep_aspect_ratio, ensure_multiple_of=ensure_multiple_of, input_data_format=input_data_format, ) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors) def post_process_depth_estimation( self, outputs: "ZoeDepthDepthEstimatorOutput", source_sizes: Optional[Union[TensorType, List[Tuple[int, int]], None]] = None, target_sizes: Optional[Union[TensorType, List[Tuple[int, int]], None]] = None, outputs_flipped: Optional[Union["ZoeDepthDepthEstimatorOutput", None]] = None, do_remove_padding: Optional[Union[bool, None]] = None, ) -> List[Dict[str, TensorType]]: """ Converts the raw output of [`ZoeDepthDepthEstimatorOutput`] into final depth predictions and depth PIL images. Only supports PyTorch. Args: outputs ([`ZoeDepthDepthEstimatorOutput`]): Raw outputs of the model. source_sizes (`TensorType` or `List[Tuple[int, int]]`, *optional*): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the source size (height, width) of each image in the batch before preprocessing. This argument should be dealt as "required" unless the user passes `do_remove_padding=False` as input to this function. target_sizes (`TensorType` or `List[Tuple[int, int]]`, *optional*): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size (height, width) of each image in the batch. If left to None, predictions will not be resized. outputs_flipped ([`ZoeDepthDepthEstimatorOutput`], *optional*): Raw outputs of the model from flipped input (averaged out in the end). do_remove_padding (`bool`, *optional*): By default ZoeDepth addes padding equal to `int(√(height / 2) * 3)` (and similarly for width) to fix the boundary artifacts in the output depth map, so we need remove this padding during post_processing. The parameter exists here in case the user changed the image preprocessing to not include padding. Returns: `List[Dict[str, TensorType]]`: A list of dictionaries of tensors representing the processed depth predictions. """ requires_backends(self, "torch") predicted_depth = outputs.predicted_depth if (outputs_flipped is not None) and (predicted_depth.shape != outputs_flipped.predicted_depth.shape): raise ValueError("Make sure that `outputs` and `outputs_flipped` have the same shape") if (target_sizes is not None) and (len(predicted_depth) != len(target_sizes)): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the predicted depth" ) if do_remove_padding is None: do_remove_padding = self.do_pad if source_sizes is None and do_remove_padding: raise ValueError( "Either `source_sizes` should be passed in, or `do_remove_padding` should be set to False" ) if (source_sizes is not None) and (len(predicted_depth) != len(source_sizes)): raise ValueError( "Make sure that you pass in as many source image sizes as the batch dimension of the logits" ) if outputs_flipped is not None: predicted_depth = (predicted_depth + torch.flip(outputs_flipped.predicted_depth, dims=[-1])) / 2 predicted_depth = predicted_depth.unsqueeze(1) # Zoe Depth model adds padding around the images to fix the boundary artifacts in the output depth map # The padding length is `int(np.sqrt(img_h/2) * fh)` for the height and similar for the width # fh (and fw respectively) are equal to '3' by default # Check [here](https://github.com/isl-org/ZoeDepth/blob/edb6daf45458569e24f50250ef1ed08c015f17a7/zoedepth/models/depth_model.py#L57) # for the original implementation. # In this section, we remove this padding to get the final depth image and depth prediction padding_factor_h = padding_factor_w = 3 results = [] target_sizes = [None] * len(predicted_depth) if target_sizes is None else target_sizes source_sizes = [None] * len(predicted_depth) if source_sizes is None else source_sizes for depth, target_size, source_size in zip(predicted_depth, target_sizes, source_sizes): # depth.shape = [1, H, W] if source_size is not None: pad_h = pad_w = 0 if do_remove_padding: pad_h = int(np.sqrt(source_size[0] / 2) * padding_factor_h) pad_w = int(np.sqrt(source_size[1] / 2) * padding_factor_w) depth = nn.functional.interpolate( depth.unsqueeze(1), size=[source_size[0] + 2 * pad_h, source_size[1] + 2 * pad_w], mode="bicubic", align_corners=False, ) if pad_h > 0: depth = depth[:, :, pad_h:-pad_h, :] if pad_w > 0: depth = depth[:, :, :, pad_w:-pad_w] depth = depth.squeeze(1) # depth.shape = [1, H, W] if target_size is not None: target_size = [target_size[0], target_size[1]] depth = nn.functional.interpolate( depth.unsqueeze(1), size=target_size, mode="bicubic", align_corners=False ) depth = depth.squeeze() # depth.shape = [H, W] results.append({"predicted_depth": depth}) return results __all__ = ["ZoeDepthImageProcessor"] ```
========================================================================================================================================= SOURCE CODE FILE: modeling_zoedepth.py LINES: 1 SIZE: 56.00 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\zoedepth\modeling_zoedepth.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 Intel Labs and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch ZoeDepth model.""" import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...file_utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import DepthEstimatorOutput from ...modeling_utils import PreTrainedModel from ...utils import ModelOutput, logging from ...utils.backbone_utils import load_backbone from .configuration_zoedepth import ZoeDepthConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "ZoeDepthConfig" @dataclass class ZoeDepthDepthEstimatorOutput(ModelOutput): """ Extension of `DepthEstimatorOutput` to include domain logits (ZoeDepth specific). Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. predicted_depth (`torch.FloatTensor` of shape `(batch_size, height, width)`): Predicted depth for each pixel. domain_logits (`torch.FloatTensor` of shape `(batch_size, num_domains)`): Logits for each domain (e.g. NYU and KITTI) in case multiple metric heads are used. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, num_channels, height, width)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, patch_size, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None predicted_depth: Optional[torch.FloatTensor] = None domain_logits: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None class ZoeDepthReassembleStage(nn.Module): """ This class reassembles the hidden states of the backbone into image-like feature representations at various resolutions. This happens in 3 stages: 1. Map the N + 1 tokens to a set of N tokens, by taking into account the readout ([CLS]) token according to `config.readout_type`. 2. Project the channel dimension of the hidden states according to `config.neck_hidden_sizes`. 3. Resizing the spatial dimensions (height, width). Args: config (`[ZoeDepthConfig]`): Model configuration class defining the model architecture. """ def __init__(self, config): super().__init__() self.readout_type = config.readout_type self.layers = nn.ModuleList() for neck_hidden_size, factor in zip(config.neck_hidden_sizes, config.reassemble_factors): self.layers.append(ZoeDepthReassembleLayer(config, channels=neck_hidden_size, factor=factor)) if config.readout_type == "project": self.readout_projects = nn.ModuleList() hidden_size = config.backbone_hidden_size for _ in config.neck_hidden_sizes: self.readout_projects.append( nn.Sequential(nn.Linear(2 * hidden_size, hidden_size), ACT2FN[config.hidden_act]) ) def forward(self, hidden_states: List[torch.Tensor], patch_height, patch_width) -> List[torch.Tensor]: """ Args: hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length + 1, hidden_size)`): List of hidden states from the backbone. """ batch_size = hidden_states[0].shape[0] # stack along batch dimension # shape (batch_size*num_stages, sequence_length + 1, hidden_size) hidden_states = torch.cat(hidden_states, dim=0) cls_token, hidden_states = hidden_states[:, 0], hidden_states[:, 1:] # reshape hidden_states to (batch_size*num_stages, num_channels, height, width) total_batch_size, sequence_length, num_channels = hidden_states.shape hidden_states = hidden_states.reshape(total_batch_size, patch_height, patch_width, num_channels) hidden_states = hidden_states.permute(0, 3, 1, 2).contiguous() if self.readout_type == "project": # reshape to (batch_size*num_stages, height*width, num_channels) hidden_states = hidden_states.flatten(2).permute((0, 2, 1)) readout = cls_token.unsqueeze(dim=1).expand_as(hidden_states) # concatenate the readout token to the hidden states # to get (batch_size*num_stages, height*width, 2*num_channels) hidden_states = torch.cat((hidden_states, readout), -1) elif self.readout_type == "add": hidden_states = hidden_states + cls_token.unsqueeze(-1) out = [] for stage_idx, hidden_state in enumerate(hidden_states.split(batch_size, dim=0)): if self.readout_type == "project": hidden_state = self.readout_projects[stage_idx](hidden_state) # reshape back to (batch_size, num_channels, height, width) hidden_state = hidden_state.permute(0, 2, 1).reshape(batch_size, -1, patch_height, patch_width) hidden_state = self.layers[stage_idx](hidden_state) out.append(hidden_state) return out class ZoeDepthReassembleLayer(nn.Module): def __init__(self, config, channels, factor): super().__init__() # projection hidden_size = config.backbone_hidden_size self.projection = nn.Conv2d(in_channels=hidden_size, out_channels=channels, kernel_size=1) # up/down sampling depending on factor if factor > 1: self.resize = nn.ConvTranspose2d(channels, channels, kernel_size=factor, stride=factor, padding=0) elif factor == 1: self.resize = nn.Identity() elif factor < 1: # so should downsample self.resize = nn.Conv2d(channels, channels, kernel_size=3, stride=int(1 / factor), padding=1) # Copied from transformers.models.dpt.modeling_dpt.DPTReassembleLayer.forward with DPT->ZoeDepth def forward(self, hidden_state): hidden_state = self.projection(hidden_state) hidden_state = self.resize(hidden_state) return hidden_state # Copied from transformers.models.dpt.modeling_dpt.DPTFeatureFusionStage with DPT->ZoeDepth class ZoeDepthFeatureFusionStage(nn.Module): def __init__(self, config): super().__init__() self.layers = nn.ModuleList() for _ in range(len(config.neck_hidden_sizes)): self.layers.append(ZoeDepthFeatureFusionLayer(config)) def forward(self, hidden_states): # reversing the hidden_states, we start from the last hidden_states = hidden_states[::-1] fused_hidden_states = [] fused_hidden_state = None for hidden_state, layer in zip(hidden_states, self.layers): if fused_hidden_state is None: # first layer only uses the last hidden_state fused_hidden_state = layer(hidden_state) else: fused_hidden_state = layer(fused_hidden_state, hidden_state) fused_hidden_states.append(fused_hidden_state) return fused_hidden_states # Copied from transformers.models.dpt.modeling_dpt.DPTPreActResidualLayer with DPT->ZoeDepth class ZoeDepthPreActResidualLayer(nn.Module): """ ResidualConvUnit, pre-activate residual unit. Args: config (`[ZoeDepthConfig]`): Model configuration class defining the model architecture. """ # Ignore copy def __init__(self, config): super().__init__() self.use_batch_norm = config.use_batch_norm_in_fusion_residual use_bias_in_fusion_residual = ( config.use_bias_in_fusion_residual if config.use_bias_in_fusion_residual is not None else not self.use_batch_norm ) self.activation1 = nn.ReLU() self.convolution1 = nn.Conv2d( config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=3, stride=1, padding=1, bias=use_bias_in_fusion_residual, ) self.activation2 = nn.ReLU() self.convolution2 = nn.Conv2d( config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=3, stride=1, padding=1, bias=use_bias_in_fusion_residual, ) if self.use_batch_norm: self.batch_norm1 = nn.BatchNorm2d(config.fusion_hidden_size, eps=config.batch_norm_eps) self.batch_norm2 = nn.BatchNorm2d(config.fusion_hidden_size, eps=config.batch_norm_eps) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: residual = hidden_state hidden_state = self.activation1(hidden_state) hidden_state = self.convolution1(hidden_state) if self.use_batch_norm: hidden_state = self.batch_norm1(hidden_state) hidden_state = self.activation2(hidden_state) hidden_state = self.convolution2(hidden_state) if self.use_batch_norm: hidden_state = self.batch_norm2(hidden_state) return hidden_state + residual # Copied from transformers.models.dpt.modeling_dpt.DPTFeatureFusionLayer with DPT->ZoeDepth class ZoeDepthFeatureFusionLayer(nn.Module): """Feature fusion layer, merges feature maps from different stages. Args: config (`[ZoeDepthConfig]`): Model configuration class defining the model architecture. align_corners (`bool`, *optional*, defaults to `True`): The align_corner setting for bilinear upsample. """ def __init__(self, config, align_corners=True): super().__init__() self.align_corners = align_corners self.projection = nn.Conv2d(config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=1, bias=True) self.residual_layer1 = ZoeDepthPreActResidualLayer(config) self.residual_layer2 = ZoeDepthPreActResidualLayer(config) def forward(self, hidden_state, residual=None): if residual is not None: if hidden_state.shape != residual.shape: residual = nn.functional.interpolate( residual, size=(hidden_state.shape[2], hidden_state.shape[3]), mode="bilinear", align_corners=False ) hidden_state = hidden_state + self.residual_layer1(residual) hidden_state = self.residual_layer2(hidden_state) hidden_state = nn.functional.interpolate( hidden_state, scale_factor=2, mode="bilinear", align_corners=self.align_corners ) hidden_state = self.projection(hidden_state) return hidden_state class ZoeDepthNeck(nn.Module): """ ZoeDepthNeck. A neck is a module that is normally used between the backbone and the head. It takes a list of tensors as input and produces another list of tensors as output. For ZoeDepth, it includes 2 stages: * ZoeDepthReassembleStage * ZoeDepthFeatureFusionStage. Args: config (dict): config dict. """ # Copied from transformers.models.dpt.modeling_dpt.DPTNeck.__init__ with DPT->ZoeDepth def __init__(self, config): super().__init__() self.config = config # postprocessing: only required in case of a non-hierarchical backbone (e.g. ViT, BEiT) if config.backbone_config is not None and config.backbone_config.model_type in ["swinv2"]: self.reassemble_stage = None else: self.reassemble_stage = ZoeDepthReassembleStage(config) self.convs = nn.ModuleList() for channel in config.neck_hidden_sizes: self.convs.append(nn.Conv2d(channel, config.fusion_hidden_size, kernel_size=3, padding=1, bias=False)) # fusion self.fusion_stage = ZoeDepthFeatureFusionStage(config) def forward(self, hidden_states: List[torch.Tensor], patch_height, patch_width) -> List[torch.Tensor]: """ Args: hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length, hidden_size)` or `(batch_size, hidden_size, height, width)`): List of hidden states from the backbone. """ if not isinstance(hidden_states, (tuple, list)): raise TypeError("hidden_states should be a tuple or list of tensors") if len(hidden_states) != len(self.config.neck_hidden_sizes): raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.") # postprocess hidden states if self.reassemble_stage is not None: hidden_states = self.reassemble_stage(hidden_states, patch_height, patch_width) features = [self.convs[i](feature) for i, feature in enumerate(hidden_states)] # fusion blocks output = self.fusion_stage(features) return output, features[-1] class ZoeDepthRelativeDepthEstimationHead(nn.Module): """ Relative depth estimation head consisting of 3 convolutional layers. It progressively halves the feature dimension and upsamples the predictions to the input resolution after the first convolutional layer (details can be found in DPT's paper's supplementary material). """ def __init__(self, config): super().__init__() self.head_in_index = config.head_in_index self.projection = None if config.add_projection: self.projection = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) features = config.fusion_hidden_size self.conv1 = nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1) self.upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True) self.conv2 = nn.Conv2d(features // 2, config.num_relative_features, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(config.num_relative_features, 1, kernel_size=1, stride=1, padding=0) def forward(self, hidden_states: List[torch.Tensor]) -> torch.Tensor: # use last features hidden_states = hidden_states[self.head_in_index] if self.projection is not None: hidden_states = self.projection(hidden_states) hidden_states = nn.ReLU()(hidden_states) hidden_states = self.conv1(hidden_states) hidden_states = self.upsample(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = nn.ReLU()(hidden_states) # we need the features here (after second conv + ReLu) features = hidden_states hidden_states = self.conv3(hidden_states) hidden_states = nn.ReLU()(hidden_states) predicted_depth = hidden_states.squeeze(dim=1) return predicted_depth, features def log_binom(n, k, eps=1e-7): """log(nCk) using stirling approximation""" n = n + eps k = k + eps return n * torch.log(n) - k * torch.log(k) - (n - k) * torch.log(n - k + eps) class LogBinomialSoftmax(nn.Module): def __init__(self, n_classes=256, act=torch.softmax): """Compute log binomial distribution for n_classes Args: n_classes (`int`, *optional*, defaults to 256): Number of output classes. act (`torch.nn.Module`, *optional*, defaults to `torch.softmax`): Activation function to apply to the output. """ super().__init__() self.k = n_classes self.act = act self.register_buffer("k_idx", torch.arange(0, n_classes).view(1, -1, 1, 1), persistent=False) self.register_buffer("k_minus_1", torch.tensor([self.k - 1]).view(1, -1, 1, 1), persistent=False) def forward(self, probabilities, temperature=1.0, eps=1e-4): """Compute the log binomial distribution for probabilities. Args: probabilities (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`): Tensor containing probabilities of each class. temperature (`float` or `torch.Tensor` of shape `(batch_size, num_channels, height, width)`, *optional*, defaults to 1): Temperature of distribution. eps (`float`, *optional*, defaults to 1e-4): Small number for numerical stability. Returns: `torch.Tensor` of shape `(batch_size, num_channels, height, width)`: Log binomial distribution logbinomial(p;t). """ if probabilities.ndim == 3: probabilities = probabilities.unsqueeze(1) # make it (batch_size, num_channels, height, width) one_minus_probabilities = torch.clamp(1 - probabilities, eps, 1) probabilities = torch.clamp(probabilities, eps, 1) y = ( log_binom(self.k_minus_1, self.k_idx) + self.k_idx * torch.log(probabilities) + (self.k_minus_1 - self.k_idx) * torch.log(one_minus_probabilities) ) return self.act(y / temperature, dim=1) class ZoeDepthConditionalLogBinomialSoftmax(nn.Module): def __init__( self, config, in_features, condition_dim, n_classes=256, bottleneck_factor=2, ): """Per-pixel MLP followed by a Conditional Log Binomial softmax. Args: in_features (`int`): Number of input channels in the main feature. condition_dim (`int`): Number of input channels in the condition feature. n_classes (`int`, *optional*, defaults to 256): Number of classes. bottleneck_factor (`int`, *optional*, defaults to 2): Hidden dim factor. """ super().__init__() bottleneck = (in_features + condition_dim) // bottleneck_factor self.mlp = nn.Sequential( nn.Conv2d(in_features + condition_dim, bottleneck, kernel_size=1, stride=1, padding=0), nn.GELU(), # 2 for probabilities linear norm, 2 for temperature linear norm nn.Conv2d(bottleneck, 2 + 2, kernel_size=1, stride=1, padding=0), nn.Softplus(), ) self.p_eps = 1e-4 self.max_temp = config.max_temp self.min_temp = config.min_temp self.log_binomial_transform = LogBinomialSoftmax(n_classes, act=torch.softmax) def forward(self, main_feature, condition_feature): """ Args: main_feature (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`): Main feature. condition_feature (torch.Tensor of shape `(batch_size, num_channels, height, width)`): Condition feature. Returns: `torch.Tensor`: Output log binomial distribution """ probabilities_and_temperature = self.mlp(torch.concat((main_feature, condition_feature), dim=1)) probabilities, temperature = ( probabilities_and_temperature[:, :2, ...], probabilities_and_temperature[:, 2:, ...], ) probabilities = probabilities + self.p_eps probabilities = probabilities[:, 0, ...] / (probabilities[:, 0, ...] + probabilities[:, 1, ...]) temperature = temperature + self.p_eps temperature = temperature[:, 0, ...] / (temperature[:, 0, ...] + temperature[:, 1, ...]) temperature = temperature.unsqueeze(1) temperature = (self.max_temp - self.min_temp) * temperature + self.min_temp return self.log_binomial_transform(probabilities, temperature) class ZoeDepthSeedBinRegressor(nn.Module): def __init__(self, config, n_bins=16, mlp_dim=256, min_depth=1e-3, max_depth=10): """Bin center regressor network. Can be "normed" or "unnormed". If "normed", bin centers are bounded on the (min_depth, max_depth) interval. Args: config (`int`): Model configuration. n_bins (`int`, *optional*, defaults to 16): Number of bin centers. mlp_dim (`int`, *optional*, defaults to 256): Hidden dimension. min_depth (`float`, *optional*, defaults to 1e-3): Min depth value. max_depth (`float`, *optional*, defaults to 10): Max depth value. """ super().__init__() self.in_features = config.bottleneck_features self.bin_centers_type = config.bin_centers_type self.min_depth = min_depth self.max_depth = max_depth self.conv1 = nn.Conv2d(self.in_features, mlp_dim, 1, 1, 0) self.act1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(mlp_dim, n_bins, 1, 1, 0) self.act2 = nn.ReLU(inplace=True) if self.bin_centers_type == "normed" else nn.Softplus() def forward(self, x): """ Returns tensor of bin_width vectors (centers). One vector b for every pixel """ x = self.conv1(x) x = self.act1(x) x = self.conv2(x) bin_centers = self.act2(x) if self.bin_centers_type == "normed": bin_centers = bin_centers + 1e-3 bin_widths_normed = bin_centers / bin_centers.sum(dim=1, keepdim=True) # shape (batch_size, num_channels, height, width) bin_widths = (self.max_depth - self.min_depth) * bin_widths_normed # pad has the form (left, right, top, bottom, front, back) bin_widths = nn.functional.pad(bin_widths, (0, 0, 0, 0, 1, 0), mode="constant", value=self.min_depth) # shape (batch_size, num_channels, height, width) bin_edges = torch.cumsum(bin_widths, dim=1) bin_centers = 0.5 * (bin_edges[:, :-1, ...] + bin_edges[:, 1:, ...]) return bin_widths_normed, bin_centers else: return bin_centers, bin_centers @torch.jit.script def inv_attractor(dx, alpha: float = 300, gamma: int = 2): """Inverse attractor: dc = dx / (1 + alpha*dx^gamma), where dx = a - c, a = attractor point, c = bin center, dc = shift in bin center This is the default one according to the accompanying paper. Args: dx (`torch.Tensor`): The difference tensor dx = Ai - Cj, where Ai is the attractor point and Cj is the bin center. alpha (`float`, *optional*, defaults to 300): Proportional Attractor strength. Determines the absolute strength. Lower alpha = greater attraction. gamma (`int`, *optional*, defaults to 2): Exponential Attractor strength. Determines the "region of influence" and indirectly number of bin centers affected. Lower gamma = farther reach. Returns: torch.Tensor: Delta shifts - dc; New bin centers = Old bin centers + dc """ return dx.div(1 + alpha * dx.pow(gamma)) class ZoeDepthAttractorLayer(nn.Module): def __init__( self, config, n_bins, n_attractors=16, min_depth=1e-3, max_depth=10, memory_efficient=False, ): """ Attractor layer for bin centers. Bin centers are bounded on the interval (min_depth, max_depth) """ super().__init__() self.alpha = config.attractor_alpha self.gemma = config.attractor_gamma self.kind = config.attractor_kind self.n_attractors = n_attractors self.n_bins = n_bins self.min_depth = min_depth self.max_depth = max_depth self.memory_efficient = memory_efficient # MLP to predict attractor points in_features = mlp_dim = config.bin_embedding_dim self.conv1 = nn.Conv2d(in_features, mlp_dim, 1, 1, 0) self.act1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(mlp_dim, n_attractors * 2, 1, 1, 0) # x2 for linear norm self.act2 = nn.ReLU(inplace=True) def forward(self, x, prev_bin, prev_bin_embedding=None, interpolate=True): """ The forward pass of the attractor layer. This layer predicts the new bin centers based on the previous bin centers and the attractor points (the latter are predicted by the MLP). Args: x (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`): Feature block. prev_bin (`torch.Tensor` of shape `(batch_size, prev_number_of_bins, height, width)`): Previous bin centers normed. prev_bin_embedding (`torch.Tensor`, *optional*): Optional previous bin embeddings. interpolate (`bool`, *optional*, defaults to `True`): Whether to interpolate the previous bin embeddings to the size of the input features. Returns: `Tuple[`torch.Tensor`, `torch.Tensor`]: New bin centers normed and scaled. """ if prev_bin_embedding is not None: if interpolate: prev_bin_embedding = nn.functional.interpolate( prev_bin_embedding, x.shape[-2:], mode="bilinear", align_corners=True ) x = x + prev_bin_embedding x = self.conv1(x) x = self.act1(x) x = self.conv2(x) attractors = self.act2(x) attractors = attractors + 1e-3 batch_size, _, height, width = attractors.shape attractors = attractors.view(batch_size, self.n_attractors, 2, height, width) # batch_size, num_attractors, 2, height, width # note: original repo had a bug here: https://github.com/isl-org/ZoeDepth/blame/edb6daf45458569e24f50250ef1ed08c015f17a7/zoedepth/models/layers/attractor.py#L105C9-L106C50 # we include the bug to maintain compatibility with the weights attractors_normed = attractors[:, :, 0, ...] # batch_size, batch_size*num_attractors, height, width bin_centers = nn.functional.interpolate(prev_bin, (height, width), mode="bilinear", align_corners=True) # note: only attractor_type = "exp" is supported here, since no checkpoints were released with other attractor types if not self.memory_efficient: func = {"mean": torch.mean, "sum": torch.sum}[self.kind] # shape (batch_size, num_bins, height, width) delta_c = func(inv_attractor(attractors_normed.unsqueeze(2) - bin_centers.unsqueeze(1)), dim=1) else: delta_c = torch.zeros_like(bin_centers, device=bin_centers.device) for i in range(self.n_attractors): # shape (batch_size, num_bins, height, width) delta_c += inv_attractor(attractors_normed[:, i, ...].unsqueeze(1) - bin_centers) if self.kind == "mean": delta_c = delta_c / self.n_attractors bin_new_centers = bin_centers + delta_c bin_centers = (self.max_depth - self.min_depth) * bin_new_centers + self.min_depth bin_centers, _ = torch.sort(bin_centers, dim=1) bin_centers = torch.clip(bin_centers, self.min_depth, self.max_depth) return bin_new_centers, bin_centers class ZoeDepthAttractorLayerUnnormed(nn.Module): def __init__( self, config, n_bins, n_attractors=16, min_depth=1e-3, max_depth=10, memory_efficient=True, ): """ Attractor layer for bin centers. Bin centers are unbounded """ super().__init__() self.n_attractors = n_attractors self.n_bins = n_bins self.min_depth = min_depth self.max_depth = max_depth self.alpha = config.attractor_alpha self.gamma = config.attractor_alpha self.kind = config.attractor_kind self.memory_efficient = memory_efficient in_features = mlp_dim = config.bin_embedding_dim self.conv1 = nn.Conv2d(in_features, mlp_dim, 1, 1, 0) self.act1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(mlp_dim, n_attractors, 1, 1, 0) self.act2 = nn.Softplus() def forward(self, x, prev_bin, prev_bin_embedding=None, interpolate=True): """ The forward pass of the attractor layer. This layer predicts the new bin centers based on the previous bin centers and the attractor points (the latter are predicted by the MLP). Args: x (`torch.Tensor` of shape (batch_size, num_channels, height, width)`): Feature block. prev_bin (`torch.Tensor` of shape (batch_size, prev_num_bins, height, width)`): Previous bin centers normed. prev_bin_embedding (`torch.Tensor`, *optional*): Optional previous bin embeddings. interpolate (`bool`, *optional*, defaults to `True`): Whether to interpolate the previous bin embeddings to the size of the input features. Returns: `Tuple[`torch.Tensor`, `torch.Tensor`]: New bin centers unbounded. Two outputs just to keep the API consistent with the normed version. """ if prev_bin_embedding is not None: if interpolate: prev_bin_embedding = nn.functional.interpolate( prev_bin_embedding, x.shape[-2:], mode="bilinear", align_corners=True ) x = x + prev_bin_embedding x = self.conv1(x) x = self.act1(x) x = self.conv2(x) attractors = self.act2(x) height, width = attractors.shape[-2:] bin_centers = nn.functional.interpolate(prev_bin, (height, width), mode="bilinear", align_corners=True) if not self.memory_efficient: func = {"mean": torch.mean, "sum": torch.sum}[self.kind] # shape batch_size, num_bins, height, width delta_c = func(inv_attractor(attractors.unsqueeze(2) - bin_centers.unsqueeze(1)), dim=1) else: delta_c = torch.zeros_like(bin_centers, device=bin_centers.device) for i in range(self.n_attractors): # shape batch_size, num_bins, height, width delta_c += inv_attractor(attractors[:, i, ...].unsqueeze(1) - bin_centers) if self.kind == "mean": delta_c = delta_c / self.n_attractors bin_new_centers = bin_centers + delta_c bin_centers = bin_new_centers return bin_new_centers, bin_centers class ZoeDepthProjector(nn.Module): def __init__(self, in_features, out_features, mlp_dim=128): """Projector MLP. Args: in_features (`int`): Number of input channels. out_features (`int`): Number of output channels. mlp_dim (`int`, *optional*, defaults to 128): Hidden dimension. """ super().__init__() self.conv1 = nn.Conv2d(in_features, mlp_dim, 1, 1, 0) self.act = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(mlp_dim, out_features, 1, 1, 0) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: hidden_state = self.conv1(hidden_state) hidden_state = self.act(hidden_state) hidden_state = self.conv2(hidden_state) return hidden_state # Copied from transformers.models.grounding_dino.modeling_grounding_dino.GroundingDinoMultiheadAttention with GroundingDino->ZoeDepth class ZoeDepthMultiheadAttention(nn.Module): """Equivalent implementation of nn.MultiheadAttention with `batch_first=True`.""" # Ignore copy def __init__(self, hidden_size, num_attention_heads, dropout): super().__init__() if hidden_size % num_attention_heads != 0: raise ValueError( f"The hidden size ({hidden_size}) is not a multiple of the number of attention " f"heads ({num_attention_heads})" ) self.num_attention_heads = num_attention_heads self.attention_head_size = int(hidden_size / num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(hidden_size, self.all_head_size) self.key = nn.Linear(hidden_size, self.all_head_size) self.value = nn.Linear(hidden_size, self.all_head_size) self.out_proj = nn.Linear(hidden_size, hidden_size) self.dropout = nn.Dropout(dropout) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, queries: torch.Tensor, keys: torch.Tensor, values: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: query_layer = self.transpose_for_scores(self.query(queries)) key_layer = self.transpose_for_scores(self.key(keys)) value_layer = self.transpose_for_scores(self.value(values)) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in ZoeDepthModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) context_layer = self.out_proj(context_layer) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class ZoeDepthTransformerEncoderLayer(nn.Module): def __init__(self, config, dropout=0.1, activation="relu"): super().__init__() hidden_size = config.patch_transformer_hidden_size intermediate_size = config.patch_transformer_intermediate_size num_attention_heads = config.patch_transformer_num_attention_heads self.self_attn = ZoeDepthMultiheadAttention(hidden_size, num_attention_heads, dropout=dropout) self.linear1 = nn.Linear(hidden_size, intermediate_size) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(intermediate_size, hidden_size) self.norm1 = nn.LayerNorm(hidden_size) self.norm2 = nn.LayerNorm(hidden_size) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = ACT2FN[activation] def forward( self, src, src_mask: Optional[torch.Tensor] = None, ): queries = keys = src src2 = self.self_attn(queries=queries, keys=keys, values=src, attention_mask=src_mask)[0] src = src + self.dropout1(src2) src = self.norm1(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) src = src + self.dropout2(src2) src = self.norm2(src) return src class ZoeDepthPatchTransformerEncoder(nn.Module): def __init__(self, config): """ViT-like transformer block Args: config (`ZoeDepthConfig`): Model configuration class defining the model architecture. """ super().__init__() in_channels = config.bottleneck_features self.transformer_encoder = nn.ModuleList( [ZoeDepthTransformerEncoderLayer(config) for _ in range(config.num_patch_transformer_layers)] ) self.embedding_convPxP = nn.Conv2d( in_channels, config.patch_transformer_hidden_size, kernel_size=1, stride=1, padding=0 ) def positional_encoding_1d(self, batch_size, sequence_length, embedding_dim, device="cpu", dtype=torch.float32): """Generate positional encodings Args: sequence_length (int): Sequence length embedding_dim (int): Embedding dimension Returns: torch.Tensor: Positional encodings. """ position = torch.arange(0, sequence_length, dtype=dtype, device=device).unsqueeze(1) index = torch.arange(0, embedding_dim, 2, dtype=dtype, device=device).unsqueeze(0) div_term = torch.exp(index * (-torch.log(torch.tensor(10000.0, device=device)) / embedding_dim)) pos_encoding = position * div_term pos_encoding = torch.cat([torch.sin(pos_encoding), torch.cos(pos_encoding)], dim=1) pos_encoding = pos_encoding.unsqueeze(dim=0).repeat(batch_size, 1, 1) return pos_encoding def forward(self, x): """Forward pass Args: x (torch.Tensor - NCHW): Input feature tensor Returns: torch.Tensor - Transformer output embeddings of shape (batch_size, sequence_length, embedding_dim) """ embeddings = self.embedding_convPxP(x).flatten(2) # shape (batch_size, num_channels, sequence_length) # add an extra special CLS token at the start for global accumulation embeddings = nn.functional.pad(embeddings, (1, 0)) embeddings = embeddings.permute(0, 2, 1) batch_size, sequence_length, embedding_dim = embeddings.shape embeddings = embeddings + self.positional_encoding_1d( batch_size, sequence_length, embedding_dim, device=embeddings.device, dtype=embeddings.dtype ) for i in range(4): embeddings = self.transformer_encoder[i](embeddings) return embeddings class ZoeDepthMLPClassifier(nn.Module): def __init__(self, in_features, out_features) -> None: super().__init__() hidden_features = in_features self.linear1 = nn.Linear(in_features, hidden_features) self.activation = nn.ReLU() self.linear2 = nn.Linear(hidden_features, out_features) def forward(self, hidden_state): hidden_state = self.linear1(hidden_state) hidden_state = self.activation(hidden_state) domain_logits = self.linear2(hidden_state) return domain_logits class ZoeDepthMultipleMetricDepthEstimationHeads(nn.Module): """ Multiple metric depth estimation heads. A MLP classifier is used to route between 2 different heads. """ def __init__(self, config): super().__init__() bin_embedding_dim = config.bin_embedding_dim n_attractors = config.num_attractors self.bin_configurations = config.bin_configurations self.bin_centers_type = config.bin_centers_type # Bottleneck convolution bottleneck_features = config.bottleneck_features self.conv2 = nn.Conv2d(bottleneck_features, bottleneck_features, kernel_size=1, stride=1, padding=0) # Transformer classifier on the bottleneck self.patch_transformer = ZoeDepthPatchTransformerEncoder(config) # MLP classifier self.mlp_classifier = ZoeDepthMLPClassifier(in_features=128, out_features=2) # Regressor and attractor if self.bin_centers_type == "normed": Attractor = ZoeDepthAttractorLayer elif self.bin_centers_type == "softplus": Attractor = ZoeDepthAttractorLayerUnnormed # We have bins for each bin configuration # Create a map (ModuleDict) of 'name' -> seed_bin_regressor self.seed_bin_regressors = nn.ModuleDict( { conf["name"]: ZoeDepthSeedBinRegressor( config, n_bins=conf["n_bins"], mlp_dim=bin_embedding_dim // 2, min_depth=conf["min_depth"], max_depth=conf["max_depth"], ) for conf in config.bin_configurations } ) self.seed_projector = ZoeDepthProjector( in_features=bottleneck_features, out_features=bin_embedding_dim, mlp_dim=bin_embedding_dim // 2 ) self.projectors = nn.ModuleList( [ ZoeDepthProjector( in_features=config.fusion_hidden_size, out_features=bin_embedding_dim, mlp_dim=bin_embedding_dim // 2, ) for _ in range(4) ] ) # Create a map (ModuleDict) of 'name' -> attractors (ModuleList) self.attractors = nn.ModuleDict( { configuration["name"]: nn.ModuleList( [ Attractor( config, n_bins=n_attractors[i], min_depth=configuration["min_depth"], max_depth=configuration["max_depth"], ) for i in range(len(n_attractors)) ] ) for configuration in config.bin_configurations } ) last_in = config.num_relative_features # conditional log binomial for each bin configuration self.conditional_log_binomial = nn.ModuleDict( { configuration["name"]: ZoeDepthConditionalLogBinomialSoftmax( config, last_in, bin_embedding_dim, configuration["n_bins"], bottleneck_factor=4, ) for configuration in config.bin_configurations } ) def forward(self, outconv_activation, bottleneck, feature_blocks, relative_depth): x = self.conv2(bottleneck) # Predict which path to take # Embedding is of shape (batch_size, hidden_size) embedding = self.patch_transformer(x)[:, 0, :] # MLP classifier to get logits of shape (batch_size, 2) domain_logits = self.mlp_classifier(embedding) domain_vote = torch.softmax(domain_logits.sum(dim=0, keepdim=True), dim=-1) # Get the path names = [configuration["name"] for configuration in self.bin_configurations] bin_configurations_name = names[torch.argmax(domain_vote, dim=-1).squeeze().item()] try: conf = [config for config in self.bin_configurations if config["name"] == bin_configurations_name][0] except IndexError: raise ValueError(f"bin_configurations_name {bin_configurations_name} not found in bin_configurationss") min_depth = conf["min_depth"] max_depth = conf["max_depth"] seed_bin_regressor = self.seed_bin_regressors[bin_configurations_name] _, seed_bin_centers = seed_bin_regressor(x) if self.bin_centers_type in ["normed", "hybrid2"]: prev_bin = (seed_bin_centers - min_depth) / (max_depth - min_depth) else: prev_bin = seed_bin_centers prev_bin_embedding = self.seed_projector(x) attractors = self.attractors[bin_configurations_name] for projector, attractor, feature in zip(self.projectors, attractors, feature_blocks): bin_embedding = projector(feature) bin, bin_centers = attractor(bin_embedding, prev_bin, prev_bin_embedding, interpolate=True) prev_bin = bin prev_bin_embedding = bin_embedding last = outconv_activation bin_centers = nn.functional.interpolate(bin_centers, last.shape[-2:], mode="bilinear", align_corners=True) bin_embedding = nn.functional.interpolate(bin_embedding, last.shape[-2:], mode="bilinear", align_corners=True) conditional_log_binomial = self.conditional_log_binomial[bin_configurations_name] x = conditional_log_binomial(last, bin_embedding) # Now depth value is Sum px * cx , where cx are bin_centers from the last bin tensor out = torch.sum(x * bin_centers, dim=1, keepdim=True) return out, domain_logits class ZoeDepthMetricDepthEstimationHead(nn.Module): def __init__(self, config): super().__init__() bin_configuration = config.bin_configurations[0] n_bins = bin_configuration["n_bins"] min_depth = bin_configuration["min_depth"] max_depth = bin_configuration["max_depth"] bin_embedding_dim = config.bin_embedding_dim n_attractors = config.num_attractors bin_centers_type = config.bin_centers_type self.min_depth = min_depth self.max_depth = max_depth self.bin_centers_type = bin_centers_type # Bottleneck convolution bottleneck_features = config.bottleneck_features self.conv2 = nn.Conv2d(bottleneck_features, bottleneck_features, kernel_size=1, stride=1, padding=0) # Regressor and attractor if self.bin_centers_type == "normed": Attractor = ZoeDepthAttractorLayer elif self.bin_centers_type == "softplus": Attractor = ZoeDepthAttractorLayerUnnormed self.seed_bin_regressor = ZoeDepthSeedBinRegressor( config, n_bins=n_bins, min_depth=min_depth, max_depth=max_depth ) self.seed_projector = ZoeDepthProjector(in_features=bottleneck_features, out_features=bin_embedding_dim) self.projectors = nn.ModuleList( [ ZoeDepthProjector(in_features=config.fusion_hidden_size, out_features=bin_embedding_dim) for _ in range(4) ] ) self.attractors = nn.ModuleList( [ Attractor( config, n_bins=n_bins, n_attractors=n_attractors[i], min_depth=min_depth, max_depth=max_depth, ) for i in range(4) ] ) last_in = config.num_relative_features + 1 # +1 for relative depth # use log binomial instead of softmax self.conditional_log_binomial = ZoeDepthConditionalLogBinomialSoftmax( config, last_in, bin_embedding_dim, n_classes=n_bins, ) def forward(self, outconv_activation, bottleneck, feature_blocks, relative_depth): x = self.conv2(bottleneck) _, seed_bin_centers = self.seed_bin_regressor(x) if self.bin_centers_type in ["normed", "hybrid2"]: prev_bin = (seed_bin_centers - self.min_depth) / (self.max_depth - self.min_depth) else: prev_bin = seed_bin_centers prev_bin_embedding = self.seed_projector(x) # unroll this loop for better performance for projector, attractor, feature in zip(self.projectors, self.attractors, feature_blocks): bin_embedding = projector(feature) bin, bin_centers = attractor(bin_embedding, prev_bin, prev_bin_embedding, interpolate=True) prev_bin = bin.clone() prev_bin_embedding = bin_embedding.clone() last = outconv_activation # concatenative relative depth with last. First interpolate relative depth to last size relative_conditioning = relative_depth.unsqueeze(1) relative_conditioning = nn.functional.interpolate( relative_conditioning, size=last.shape[2:], mode="bilinear", align_corners=True ) last = torch.cat([last, relative_conditioning], dim=1) bin_embedding = nn.functional.interpolate(bin_embedding, last.shape[-2:], mode="bilinear", align_corners=True) x = self.conditional_log_binomial(last, bin_embedding) # Now depth value is Sum px * cx , where cx are bin_centers from the last bin tensor bin_centers = nn.functional.interpolate(bin_centers, x.shape[-2:], mode="bilinear", align_corners=True) out = torch.sum(x * bin_centers, dim=1, keepdim=True) return out, None # Modified from transformers.models.dpt.modeling_dpt.DPTPreTrainedModel with DPT->ZoeDepth,dpt->zoedepth # avoiding sdpa and flash_attn_2 support, it's done int the backend class ZoeDepthPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ZoeDepthConfig base_model_prefix = "zoedepth" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) ZOEDEPTH_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ViTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ ZOEDEPTH_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`DPTImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """ ZoeDepth model with one or multiple metric depth estimation head(s) on top. """, ZOEDEPTH_START_DOCSTRING, ) class ZoeDepthForDepthEstimation(ZoeDepthPreTrainedModel): def __init__(self, config): super().__init__(config) self.backbone = load_backbone(config) if hasattr(self.backbone.config, "hidden_size") and hasattr(self.backbone.config, "patch_size"): config.backbone_hidden_size = self.backbone.config.hidden_size self.patch_size = self.backbone.config.patch_size else: raise ValueError( "ZoeDepth assumes the backbone's config to have `hidden_size` and `patch_size` attributes" ) self.neck = ZoeDepthNeck(config) self.relative_head = ZoeDepthRelativeDepthEstimationHead(config) self.metric_head = ( ZoeDepthMultipleMetricDepthEstimationHeads(config) if len(config.bin_configurations) > 1 else ZoeDepthMetricDepthEstimationHead(config) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ZOEDEPTH_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth depth estimation maps for computing the loss. Returns: Examples: ```python >>> from transformers import AutoImageProcessor, ZoeDepthForDepthEstimation >>> import torch >>> import numpy as np >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("Intel/zoedepth-nyu-kitti") >>> model = ZoeDepthForDepthEstimation.from_pretrained("Intel/zoedepth-nyu-kitti") >>> # prepare image for the model >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> # interpolate to original size >>> post_processed_output = image_processor.post_process_depth_estimation( ... outputs, ... source_sizes=[(image.height, image.width)], ... ) >>> # visualize the prediction >>> predicted_depth = post_processed_output[0]["predicted_depth"] >>> depth = predicted_depth * 255 / predicted_depth.max() >>> depth = depth.detach().cpu().numpy() >>> depth = Image.fromarray(depth.astype("uint8")) ```""" loss = None if labels is not None: raise NotImplementedError("Training is not implemented yet") return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions outputs = self.backbone.forward_with_filtered_kwargs( pixel_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions ) hidden_states = outputs.feature_maps _, _, height, width = pixel_values.shape patch_size = self.patch_size patch_height = height // patch_size patch_width = width // patch_size hidden_states, features = self.neck(hidden_states, patch_height, patch_width) out = [features] + hidden_states relative_depth, features = self.relative_head(hidden_states) out = [features] + out metric_depth, domain_logits = self.metric_head( outconv_activation=out[0], bottleneck=out[1], feature_blocks=out[2:], relative_depth=relative_depth ) metric_depth = metric_depth.squeeze(dim=1) if not return_dict: if domain_logits is not None: output = (metric_depth, domain_logits) + outputs[1:] else: output = (metric_depth,) + outputs[1:] return ((loss,) + output) if loss is not None else output return ZoeDepthDepthEstimatorOutput( loss=loss, predicted_depth=metric_depth, domain_logits=domain_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = ["ZoeDepthForDepthEstimation", "ZoeDepthPreTrainedModel"] ```
===================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.51 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\onnx\__init__.py ENCODING: utf-8 ```py # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..utils import _LazyModule _import_structure = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) ```
===================================================================================================================== SOURCE CODE FILE: __main__.py LINES: 1 SIZE: 9.27 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\onnx\__main__.py ENCODING: utf-8 ```py # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import subprocess import sys import warnings from argparse import ArgumentParser from pathlib import Path from packaging import version from .. import AutoFeatureExtractor, AutoImageProcessor, AutoProcessor, AutoTokenizer from ..utils import logging from ..utils.import_utils import is_optimum_available from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import get_preprocessor MIN_OPTIMUM_VERSION = "1.5.0" ENCODER_DECODER_MODELS = ["vision-encoder-decoder"] def export_with_optimum(args): if is_optimum_available(): from optimum.version import __version__ as optimum_version parsed_optimum_version = version.parse(optimum_version) if parsed_optimum_version < version.parse(MIN_OPTIMUM_VERSION): raise RuntimeError( f"transformers.onnx requires optimum >= {MIN_OPTIMUM_VERSION} but {optimum_version} is installed. You " "can upgrade optimum by running: pip install -U optimum[exporters]" ) else: raise RuntimeError( "transformers.onnx requires optimum to run, you can install the library by running: pip install " "optimum[exporters]" ) cmd_line = [ sys.executable, "-m", "optimum.exporters.onnx", f"--model {args.model}", f"--task {args.feature}", f"--framework {args.framework}" if args.framework is not None else "", f"{args.output}", ] proc = subprocess.Popen(cmd_line, stdout=subprocess.PIPE) proc.wait() logger.info( "The export was done by optimum.exporters.onnx. We recommend using to use this package directly in future, as " "transformers.onnx is deprecated, and will be removed in v5. You can find more information here: " "https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model." ) def export_with_transformers(args): args.output = args.output if args.output.is_file() else args.output.joinpath("model.onnx") if not args.output.parent.exists(): args.output.parent.mkdir(parents=True) # Allocate the model model = FeaturesManager.get_model_from_feature( args.feature, args.model, framework=args.framework, cache_dir=args.cache_dir ) model_kind, model_onnx_config = FeaturesManager.check_supported_model_or_raise(model, feature=args.feature) onnx_config = model_onnx_config(model.config) if model_kind in ENCODER_DECODER_MODELS: encoder_model = model.get_encoder() decoder_model = model.get_decoder() encoder_onnx_config = onnx_config.get_encoder_config(encoder_model.config) decoder_onnx_config = onnx_config.get_decoder_config( encoder_model.config, decoder_model.config, feature=args.feature ) if args.opset is None: args.opset = max(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset) if args.opset < min(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset): raise ValueError( f"Opset {args.opset} is not sufficient to export {model_kind}. At least " f" {min(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset)} is required." ) preprocessor = AutoFeatureExtractor.from_pretrained(args.model) onnx_inputs, onnx_outputs = export( preprocessor, encoder_model, encoder_onnx_config, args.opset, args.output.parent.joinpath("encoder_model.onnx"), ) validate_model_outputs( encoder_onnx_config, preprocessor, encoder_model, args.output.parent.joinpath("encoder_model.onnx"), onnx_outputs, args.atol if args.atol else encoder_onnx_config.atol_for_validation, ) preprocessor = AutoTokenizer.from_pretrained(args.model) onnx_inputs, onnx_outputs = export( preprocessor, decoder_model, decoder_onnx_config, args.opset, args.output.parent.joinpath("decoder_model.onnx"), ) validate_model_outputs( decoder_onnx_config, preprocessor, decoder_model, args.output.parent.joinpath("decoder_model.onnx"), onnx_outputs, args.atol if args.atol else decoder_onnx_config.atol_for_validation, ) logger.info( f"All good, model saved at: {args.output.parent.joinpath('encoder_model.onnx').as_posix()}," f" {args.output.parent.joinpath('decoder_model.onnx').as_posix()}" ) else: # Instantiate the appropriate preprocessor if args.preprocessor == "auto": preprocessor = get_preprocessor(args.model) elif args.preprocessor == "tokenizer": preprocessor = AutoTokenizer.from_pretrained(args.model) elif args.preprocessor == "image_processor": preprocessor = AutoImageProcessor.from_pretrained(args.model) elif args.preprocessor == "feature_extractor": preprocessor = AutoFeatureExtractor.from_pretrained(args.model) elif args.preprocessor == "processor": preprocessor = AutoProcessor.from_pretrained(args.model) else: raise ValueError(f"Unknown preprocessor type '{args.preprocessor}'") # Ensure the requested opset is sufficient if args.opset is None: args.opset = onnx_config.default_onnx_opset if args.opset < onnx_config.default_onnx_opset: raise ValueError( f"Opset {args.opset} is not sufficient to export {model_kind}. " f"At least {onnx_config.default_onnx_opset} is required." ) onnx_inputs, onnx_outputs = export( preprocessor, model, onnx_config, args.opset, args.output, ) if args.atol is None: args.atol = onnx_config.atol_for_validation validate_model_outputs(onnx_config, preprocessor, model, args.output, onnx_outputs, args.atol) logger.info(f"All good, model saved at: {args.output.as_posix()}") warnings.warn( "The export was done by transformers.onnx which is deprecated and will be removed in v5. We recommend" " using optimum.exporters.onnx in future. You can find more information here:" " https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model.", FutureWarning, ) def main(): parser = ArgumentParser("Hugging Face Transformers ONNX exporter") parser.add_argument( "-m", "--model", type=str, required=True, help="Model ID on huggingface.co or path on disk to load model from." ) parser.add_argument( "--feature", default="default", help="The type of features to export the model with.", ) parser.add_argument("--opset", type=int, default=None, help="ONNX opset version to export the model with.") parser.add_argument( "--atol", type=float, default=None, help="Absolute difference tolerance when validating the model." ) parser.add_argument( "--framework", type=str, choices=["pt", "tf"], default=None, help=( "The framework to use for the ONNX export." " If not provided, will attempt to use the local checkpoint's original framework" " or what is available in the environment." ), ) parser.add_argument("output", type=Path, help="Path indicating where to store generated ONNX model.") parser.add_argument("--cache_dir", type=str, default=None, help="Path indicating where to store cache.") parser.add_argument( "--preprocessor", type=str, choices=["auto", "tokenizer", "feature_extractor", "image_processor", "processor"], default="auto", help="Which type of preprocessor to use. 'auto' tries to automatically detect it.", ) parser.add_argument( "--export_with_transformers", action="store_true", help=( "Whether to use transformers.onnx instead of optimum.exporters.onnx to perform the ONNX export. It can be " "useful when exporting a model supported in transformers but not in optimum, otherwise it is not " "recommended." ), ) args = parser.parse_args() if args.export_with_transformers or not is_optimum_available(): export_with_transformers(args) else: export_with_optimum(args) if __name__ == "__main__": logger = logging.get_logger("transformers.onnx") # pylint: disable=invalid-name logger.setLevel(logging.INFO) main() ```
=================================================================================================================== SOURCE CODE FILE: config.py LINES: 1 SIZE: 31.82 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\onnx\config.py ENCODING: utf-8 ```py # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import dataclasses import warnings from abc import ABC, abstractmethod from collections import OrderedDict from typing import TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Mapping, Optional, Tuple, Union import numpy as np from packaging import version from ..utils import TensorType, is_torch_available, is_vision_available, logging from .utils import ParameterFormat, compute_effective_axis_dimension, compute_serialized_parameters_size if TYPE_CHECKING: from ..configuration_utils import PretrainedConfig from ..feature_extraction_utils import FeatureExtractionMixin from ..image_processing_utils import ImageProcessingMixin from ..tokenization_utils_base import PreTrainedTokenizerBase if is_vision_available(): from PIL import Image logger = logging.get_logger(__name__) DEFAULT_ONNX_OPSET = 11 # 2 Gb EXTERNAL_DATA_FORMAT_SIZE_LIMIT = 2 * 1024 * 1024 * 1024 @dataclasses.dataclass class PatchingSpec: """ Data class that holds patching specifications. Args: o: Module / object where the op to patch is located name: Name of the op to monkey patch custom_op: Custom op that patches the original op orig_op: Original op that is being patched op_wrapper: Wrapper (optional) that wraps both the original and custom ops. It is useful for ops that are class or static methods for instance. """ o: Any name: str custom_op: Callable orig_op: Optional[Callable] = None op_wrapper: Optional[Callable] = None class OnnxConfig(ABC): """ Base class for ONNX exportable model describing metadata on how to export the model through the ONNX format. """ default_fixed_batch = 2 default_fixed_sequence = 8 default_fixed_num_choices = 4 torch_onnx_minimum_version = version.parse("1.8") _tasks_to_common_outputs = { "causal-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), "default": OrderedDict({"last_hidden_state": {0: "batch", 1: "sequence"}}), "image-classification": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), "image-segmentation": OrderedDict( { "logits": {0: "batch", 1: "sequence"}, "pred_boxes": {0: "batch", 1: "sequence"}, "pred_masks": {0: "batch", 1: "sequence"}, } ), "masked-im": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), "masked-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), "multiple-choice": OrderedDict({"logits": {0: "batch"}}), "object-detection": OrderedDict( { "logits": {0: "batch", 1: "sequence"}, "pred_boxes": {0: "batch", 1: "sequence"}, } ), "question-answering": OrderedDict( { "start_logits": {0: "batch", 1: "sequence"}, "end_logits": {0: "batch", 1: "sequence"}, } ), "semantic-segmentation": OrderedDict({"logits": {0: "batch", 1: "num_labels", 2: "height", 3: "width"}}), "seq2seq-lm": OrderedDict({"logits": {0: "batch", 1: "decoder_sequence"}}), "sequence-classification": OrderedDict({"logits": {0: "batch"}}), "token-classification": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), "vision2seq-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), "speech2seq-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), } def __init__(self, config: "PretrainedConfig", task: str = "default", patching_specs: List[PatchingSpec] = None): self._config = config if task not in self._tasks_to_common_outputs: raise ValueError( f"{task} is not a supported task, supported tasks: {self._tasks_to_common_outputs.keys()}" ) self.task = task self._patching_specs = [] for spec in patching_specs if patching_specs is not None else []: final_spec = spec if spec.orig_op is None: final_spec = dataclasses.replace(spec, orig_op=getattr(spec.o, spec.name)) self._patching_specs.append(final_spec) @classmethod def from_model_config(cls, config: "PretrainedConfig", task: str = "default") -> "OnnxConfig": """ Instantiate a OnnxConfig for a specific model Args: config: The model's configuration to use when exporting to ONNX Returns: OnnxConfig for this model """ return cls(config, task=task) @property @abstractmethod def inputs(self) -> Mapping[str, Mapping[int, str]]: """ Mapping containing the axis definition of the input tensors to provide to the model Returns: For each input: its name associated to the axes symbolic name and the axis position within the tensor """ raise NotImplementedError() @property def outputs(self) -> Mapping[str, Mapping[int, str]]: """ Mapping containing the axis definition of the output tensors to provide to the model Returns: For each output: its name associated to the axes symbolic name and the axis position within the tensor """ common_outputs = self._tasks_to_common_outputs[self.task] return copy.deepcopy(common_outputs) @property def values_override(self) -> Optional[Mapping[str, Any]]: """ Dictionary of keys to override in the model's config before exporting Returns: Dictionary with the keys (and their corresponding values) to override """ if hasattr(self._config, "use_cache"): return {"use_cache": False} return None @property def default_batch_size(self) -> int: """ The default batch size to use if no other indication Returns: Integer > 0 """ # Using 2 avoid ONNX making assumption about single sample batch return OnnxConfig.default_fixed_batch @property def default_sequence_length(self) -> int: """ The default sequence length to use if no other indication Returns: Integer > 0 """ return OnnxConfig.default_fixed_sequence @property def default_num_choices(self) -> int: """ The default number of choices to use if no other indication Returns: Integer > 0 """ return OnnxConfig.default_fixed_num_choices @property def default_onnx_opset(self) -> int: """ Which onnx opset to use when exporting the model Returns: Integer ONNX Opset version """ return DEFAULT_ONNX_OPSET @property def atol_for_validation(self) -> float: """ What absolute tolerance value to use during model conversion validation. Returns: Float absolute tolerance value. """ return 1e-5 @property def is_torch_support_available(self) -> bool: """ The minimum PyTorch version required to export the model. Returns: `bool`: Whether the installed version of PyTorch is compatible with the model. """ if is_torch_available(): from transformers.utils import get_torch_version return version.parse(get_torch_version()) >= self.torch_onnx_minimum_version else: return False @staticmethod def use_external_data_format(num_parameters: int) -> bool: """ Flag indicating if the model requires using external data format Args: num_parameters: Number of parameter on the model Returns: True if model.num_parameters() * size_of(float32) >= 2Gb False otherwise """ return ( compute_serialized_parameters_size(num_parameters, ParameterFormat.Float) >= EXTERNAL_DATA_FORMAT_SIZE_LIMIT ) def _generate_dummy_images( self, batch_size: int = 2, num_channels: int = 3, image_height: int = 40, image_width: int = 40 ): images = [] for _ in range(batch_size): data = np.random.rand(image_height, image_width, num_channels) * 255 images.append(Image.fromarray(data.astype("uint8")).convert("RGB")) return images def _generate_dummy_audio( self, batch_size: int = 2, sampling_rate: int = 22050, time_duration: float = 5.0, frequency: int = 220 ): audio_data = [] for _ in range(batch_size): # time variable t = np.linspace(0, time_duration, int(time_duration * sampling_rate), endpoint=False) # generate pure sine wave at `frequency` Hz audio_data.append(0.5 * np.sin(2 * np.pi * frequency * t)) return audio_data def generate_dummy_inputs( self, preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin", "ImageProcessingMixin"], batch_size: int = -1, seq_length: int = -1, num_choices: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, num_channels: int = 3, image_width: int = 40, image_height: int = 40, sampling_rate: int = 22050, time_duration: float = 5.0, frequency: int = 220, tokenizer: Optional["PreTrainedTokenizerBase"] = None, ) -> Mapping[str, Any]: """ Generate inputs to provide to the ONNX exporter for the specific framework Args: preprocessor: ([`PreTrainedTokenizerBase`], [`FeatureExtractionMixin`], or [`ImageProcessingMixin`]): The preprocessor associated with this model configuration. batch_size (`int`, *optional*, defaults to -1): The batch size to export the model for (-1 means dynamic axis). num_choices (`int`, *optional*, defaults to -1): The number of candidate answers provided for multiple choice task (-1 means dynamic axis). seq_length (`int`, *optional*, defaults to -1): The sequence length to export the model for (-1 means dynamic axis). is_pair (`bool`, *optional*, defaults to `False`): Indicate if the input is a pair (sentence 1, sentence 2) framework (`TensorType`, *optional*, defaults to `None`): The framework (PyTorch or TensorFlow) that the tokenizer will generate tensors for. num_channels (`int`, *optional*, defaults to 3): The number of channels of the generated images. image_width (`int`, *optional*, defaults to 40): The width of the generated images. image_height (`int`, *optional*, defaults to 40): The height of the generated images. sampling_rate (`int`, *optional* defaults to 22050) The sampling rate for audio data generation. time_duration (`float`, *optional* defaults to 5.0) Total seconds of sampling for audio data generation. frequency (`int`, *optional* defaults to 220) The desired natural frequency of generated audio. Returns: Mapping[str, Tensor] holding the kwargs to provide to the model's forward function """ from ..feature_extraction_utils import FeatureExtractionMixin from ..image_processing_utils import ImageProcessingMixin from ..tokenization_utils_base import PreTrainedTokenizerBase if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None: raise ValueError("You cannot provide both a tokenizer and a preprocessor to generate dummy inputs.") if tokenizer is not None: warnings.warn( "The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use" " `preprocessor` instead.", FutureWarning, ) logger.warning("Overwriting the `preprocessor` argument with `tokenizer` to generate dummy inputs.") preprocessor = tokenizer if isinstance(preprocessor, PreTrainedTokenizerBase): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension( batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX token_to_add = preprocessor.num_special_tokens_to_add(is_pair) seq_length = compute_effective_axis_dimension( seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add ) # Generate dummy inputs according to compute batch and sequence input_token = ( preprocessor.unk_token if (preprocessor.unk_token is not None and len(preprocessor.unk_token) > 0) else "0" ) dummy_input = [" ".join([input_token]) * seq_length] * batch_size if self.task == "multiple-choice": # If dynamic axis (-1) we forward with a fixed dimension of 4 candidate answers to avoid optimizations # made by ONNX num_choices = compute_effective_axis_dimension( num_choices, fixed_dimension=OnnxConfig.default_fixed_num_choices, num_token_to_add=0 ) dummy_input = dummy_input * num_choices # The shape of the tokenized inputs values is [batch_size * num_choices, seq_length] tokenized_input = preprocessor(dummy_input, text_pair=dummy_input) # Unflatten the tokenized inputs values expanding it to the shape [batch_size, num_choices, seq_length] for k, v in tokenized_input.items(): tokenized_input[k] = [v[i : i + num_choices] for i in range(0, len(v), num_choices)] return dict(tokenized_input.convert_to_tensors(tensor_type=framework)) return dict(preprocessor(dummy_input, return_tensors=framework)) elif isinstance(preprocessor, ImageProcessingMixin): if preprocessor.model_input_names[0] != "pixel_values": raise ValueError( f"The `preprocessor` is an image processor ({preprocessor.__class__.__name__}) and expects" f' `model_input_names[0]` to be "pixel_values", but got {preprocessor.model_input_names[0]}' ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width) return dict(preprocessor(images=dummy_input, return_tensors=framework)) elif isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width) return dict(preprocessor(images=dummy_input, return_tensors=framework)) elif ( isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "input_features" ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) dummy_input = self._generate_dummy_audio(batch_size, sampling_rate, time_duration, frequency) return dict(preprocessor(dummy_input, return_tensors=framework)) else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." ) def generate_dummy_inputs_onnxruntime(self, reference_model_inputs: Mapping[str, Any]) -> Mapping[str, Any]: """ Generate inputs for ONNX Runtime using the reference model inputs. Override this to run inference with seq2seq models which have the encoder and decoder exported as separate ONNX files. Args: reference_model_inputs ([`Mapping[str, Tensor]`): Reference inputs for the model. Returns: `Mapping[str, Tensor]`: The mapping holding the kwargs to provide to the model's forward function """ return reference_model_inputs def patch_ops(self): for spec in self._patching_specs: custom_op = spec.custom_op if spec.op_wrapper is None else spec.op_wrapper(spec.custom_op) setattr(spec.o, spec.name, custom_op) def restore_ops(self): for spec in self._patching_specs: orig_op = spec.orig_op if spec.op_wrapper is None else spec.op_wrapper(spec.orig_op) setattr(spec.o, spec.name, orig_op) @classmethod def flatten_output_collection_property(cls, name: str, field: Iterable[Any]) -> Dict[str, Any]: """ Flatten any potential nested structure expanding the name of the field with the index of the element within the structure. Args: name: The name of the nested structure field: The structure to, potentially, be flattened Returns: (Dict[str, Any]): Outputs with flattened structure and key mapping this new structure. """ from itertools import chain return {f"{name}.{idx}": item for idx, item in enumerate(chain.from_iterable(field))} class OnnxConfigWithPast(OnnxConfig, ABC): def __init__( self, config: "PretrainedConfig", task: str = "default", patching_specs: Optional[list[PatchingSpec]] = None, use_past: bool = False, ): super().__init__(config, task=task, patching_specs=patching_specs) self.use_past = use_past @classmethod def with_past(cls, config: "PretrainedConfig", task: str = "default") -> "OnnxConfigWithPast": """ Instantiate a OnnxConfig with `use_past` attribute set to True Args: config: The underlying model's config to use when exporting to ONNX Returns: OnnxConfig with `.use_past = True` """ return cls(config, task=task, use_past=True) @property def outputs(self) -> Mapping[str, Mapping[int, str]]: common_outputs = super().outputs if self.use_past: self.fill_with_past_key_values_(common_outputs, direction="outputs") return common_outputs @property def values_override(self) -> Optional[Mapping[str, Any]]: if hasattr(self._config, "use_cache"): return {"use_cache": self.use_past} return None @property def num_layers(self) -> int: """ The number of layers attribute retrieved from the model config. Override this for model configs where the number of layers attribute is not called `num_layers`. """ if not hasattr(self._config, "num_layers"): raise AttributeError( "could not find the number of layers attribute in the model configuration, override the num_layers" " property of the model OnnxConfig to solve this" ) return self._config.num_layers @property def num_attention_heads(self) -> int: """ The number of attention heads attribute retrieved from the model config. Override this for model configs where the number of attention heads attribute is not called `num_attention_heads`. """ if not hasattr(self._config, "num_attention_heads"): raise AttributeError( "could not find the number of attention heads attribute in the model configuration, override the" " num_attention_heads property of the model OnnxConfig to solve this" ) return self._config.num_attention_heads def generate_dummy_inputs( self, tokenizer: "PreTrainedTokenizerBase", batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: # TODO: should we set seq_length = 1 when self.use_past = True? common_inputs = super().generate_dummy_inputs( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, seqlen = common_inputs["input_ids"].shape # Not using the same length for past_key_values past_key_values_length = seqlen + 2 shape = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) if "attention_mask" in common_inputs: mask_dtype = common_inputs["attention_mask"].dtype common_inputs["attention_mask"] = torch.cat( [common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1, ) common_inputs["past_key_values"] = [] for _ in range(self.num_layers): common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) return common_inputs def fill_with_past_key_values_( self, inputs_or_outputs: Mapping[str, Mapping[int, str]], direction: str, inverted_values_shape: bool = False ): """ Fill the input_or_outputs mapping with past_key_values dynamic axes considering. Args: inputs_or_outputs: The mapping to fill. direction: either "inputs" or "outputs", it specifies whether input_or_outputs is the input mapping or the output mapping, this is important for axes naming. inverted_values_shape: If `True`, store values on dynamic axis 1, else on axis 2. """ if direction not in ["inputs", "outputs"]: raise ValueError(f'direction must either be "inputs" or "outputs", but {direction} was given') name = "past_key_values" if direction == "inputs" else "present" for i in range(self.num_layers): inputs_or_outputs[f"{name}.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} if inverted_values_shape: inputs_or_outputs[f"{name}.{i}.value"] = {0: "batch", 1: "past_sequence + sequence"} else: inputs_or_outputs[f"{name}.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} def _flatten_past_key_values_(self, flattened_output, name, idx, t): flattened_output[f"{name}.{idx}.key"] = t[0] flattened_output[f"{name}.{idx}.value"] = t[1] def flatten_output_collection_property(self, name: str, field: Iterable[Any]) -> Dict[str, Any]: flattened_output = {} if name in ["present", "past_key_values"]: for idx, t in enumerate(field): self._flatten_past_key_values_(flattened_output, name, idx, t) else: flattened_output = super().flatten_output_collection_property(name, field) return flattened_output class OnnxSeq2SeqConfigWithPast(OnnxConfigWithPast): @property def outputs(self) -> Mapping[str, Mapping[int, str]]: common_outputs = super(OnnxConfigWithPast, self).outputs # Renaming the outputs axes properly. for name, axes_names in common_outputs.items(): sequence_name = "encoder_sequence" if "encoder" in name else "decoder_sequence" for axis_idx, name in axes_names.items(): if "sequence" in name: axes_names[axis_idx] = sequence_name # We reset the value as the order in common_outputs (OrderedDict) is lost otherwise else: axes_names[axis_idx] = name if self.use_past: self.fill_with_past_key_values_(common_outputs, direction="outputs") return common_outputs @property def num_layers(self) -> Tuple[int]: try: num_layers = super().num_layers num_layers = (num_layers, num_layers) except AttributeError: if hasattr(self._config, "encoder_layers") and hasattr(self._config, "decoder_layers"): num_layers = (self._config.encoder_layers, self._config.decoder_layers) else: raise AttributeError( "could not find the number of encoder and decoder layers attributes in the model configuration," " override the num_layers property of the model OnnxConfig to solve this" ) return num_layers @property def num_attention_heads(self) -> Tuple[int]: try: num_attention_heads = super().num_attention_heads num_attention_heads = (num_attention_heads, num_attention_heads) except AttributeError: if hasattr(self._config, "encoder_attention_heads") and hasattr(self._config, "decoder_attention_heads"): num_attention_heads = (self._config.encoder_attention_heads, self._config.decoder_attention_heads) else: raise AttributeError( "could not find the number of attention heads for the encoder and the decoder attributes in the" " model configuration, override the num_attention_heads property of the model OnnxConfig to solve" " this" ) return num_attention_heads def generate_dummy_inputs( self, tokenizer: Optional["PreTrainedTokenizerBase"], batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: encoder_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) # Generate decoder inputs decoder_seq_length = seq_length if not self.use_past else 1 decoder_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( tokenizer, batch_size=batch_size, seq_length=decoder_seq_length, is_pair=is_pair, framework=framework ) decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} common_inputs = dict(**encoder_inputs, **decoder_inputs) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch = common_inputs["input_ids"].shape[0] encoder_seq_length = common_inputs["input_ids"].shape[1] decoder_seq_length = common_inputs["decoder_input_ids"].shape[1] num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads encoder_shape = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) decoder_shape = ( batch, num_decoder_attention_heads, # Not using the same length for past_key_values decoder_seq_length + 3, self._config.hidden_size // num_decoder_attention_heads, ) common_inputs["past_key_values"] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered num_encoder_layers, num_decoder_layers = self.num_layers min_num_layers = min(num_encoder_layers, num_decoder_layers) max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(min_num_layers): # For encoder-decoder models, past_key_values contains pre-computed values for both the encoder and the # decoder layers, hence a tuple of 4 tensors instead of 2 common_inputs["past_key_values"].append( ( torch.zeros(decoder_shape), torch.zeros(decoder_shape), torch.zeros(encoder_shape), torch.zeros(encoder_shape), ) ) # TODO: test this. shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(min_num_layers, max_num_layers): common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) return common_inputs def fill_with_past_key_values_(self, inputs_or_outputs: Mapping[str, Mapping[int, str]], direction: str): if direction not in ["inputs", "outputs"]: raise ValueError(f'direction must either be "inputs" or "outputs", but {direction} was given') name = "past_key_values" if direction == "inputs" else "present" # If the number of encoder and decoder layers are present in the model configuration, both are considered num_encoder_layers, num_decoder_layers = self.num_layers min_num_layers = min(num_encoder_layers, num_decoder_layers) max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" encoder_sequence = "past_encoder_sequence" decoder_sequence = "past_decoder_sequence" if direction == "inputs" else "past_decoder_sequence + sequence" for i in range(min_num_layers): inputs_or_outputs[f"{name}.{i}.decoder.key"] = {0: "batch", 2: decoder_sequence} inputs_or_outputs[f"{name}.{i}.decoder.value"] = {0: "batch", 2: decoder_sequence} inputs_or_outputs[f"{name}.{i}.encoder.key"] = {0: "batch", 2: encoder_sequence} inputs_or_outputs[f"{name}.{i}.encoder.value"] = {0: "batch", 2: encoder_sequence} for i in range(min_num_layers, max_num_layers): if remaining_side_name == "encoder": axes_info = {0: "batch", 2: encoder_sequence} else: axes_info = {0: "batch", 2: decoder_sequence} inputs_or_outputs[f"{name}.{i}.{remaining_side_name}.key"] = axes_info def _flatten_past_key_values_(self, flattened_output, name, idx, t): flattened_output[f"{name}.{idx}.decoder.key"] = t[0] flattened_output[f"{name}.{idx}.decoder.value"] = t[1] flattened_output[f"{name}.{idx}.encoder.key"] = t[2] flattened_output[f"{name}.{idx}.encoder.value"] = t[3] ```
==================================================================================================================== SOURCE CODE FILE: convert.py LINES: 2 SIZE: 18.96 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\onnx\convert.py ENCODING: utf-8 ```py # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from inspect import signature from itertools import chain from pathlib import Path from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np from packaging.version import Version, parse from ..tokenization_utils_base import PreTrainedTokenizerBase from ..utils import ( TensorType, is_tf_available, is_torch_available, logging, ) from .config import OnnxConfig if is_torch_available(): from ..modeling_utils import PreTrainedModel if is_tf_available(): from ..modeling_tf_utils import TFPreTrainedModel if TYPE_CHECKING: from ..feature_extraction_utils import FeatureExtractionMixin from ..processing_utils import ProcessorMixin from ..tokenization_utils import PreTrainedTokenizer logger = logging.get_logger(__name__) # pylint: disable=invalid-name # This is the minimal required version to support some ONNX Runtime features ORT_QUANTIZE_MINIMUM_VERSION = parse("1.4.0") def check_onnxruntime_requirements(minimum_version: Version): """ Check onnxruntime is installed and if the installed version match is recent enough Raises: ImportError: If onnxruntime is not installed or too old version is found """ try: import onnxruntime # Parse the version of the installed onnxruntime ort_version = parse(onnxruntime.__version__) # We require 1.4.0 minimum if ort_version < ORT_QUANTIZE_MINIMUM_VERSION: raise ImportError( f"We found an older version of onnxruntime ({onnxruntime.__version__}) " f"but we require onnxruntime to be >= {minimum_version} to enable all the conversions options.\n" "Please update onnxruntime by running `pip install --upgrade onnxruntime`" ) except ImportError: raise ImportError( "onnxruntime doesn't seem to be currently installed. " "Please install the onnxruntime by running `pip install onnxruntime`" " and relaunch the conversion." ) def export_pytorch( preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin", "ProcessorMixin"], model: "PreTrainedModel", config: OnnxConfig, opset: int, output: Path, tokenizer: Optional["PreTrainedTokenizer"] = None, device: str = "cpu", ) -> Tuple[List[str], List[str]]: """ Export a PyTorch model to an ONNX Intermediate Representation (IR) Args: preprocessor: ([`PreTrainedTokenizer`], [`FeatureExtractionMixin`] or [`ProcessorMixin`]): The preprocessor used for encoding the data. model ([`PreTrainedModel`]): The model to export. config ([`~onnx.config.OnnxConfig`]): The ONNX configuration associated with the exported model. opset (`int`): The version of the ONNX operator set to use. output (`Path`): Directory to store the exported ONNX model. device (`str`, *optional*, defaults to `cpu`): The device on which the ONNX model will be exported. Either `cpu` or `cuda`. Returns: `Tuple[List[str], List[str]]`: A tuple with an ordered list of the model's inputs, and the named inputs from the ONNX configuration. """ if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None: raise ValueError("You cannot provide both a tokenizer and a preprocessor to export the model.") if tokenizer is not None: warnings.warn( "The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use" " `preprocessor` instead.", FutureWarning, ) logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummy inputs.") preprocessor = tokenizer if issubclass(type(model), PreTrainedModel): import torch from torch.onnx import export as onnx_export logger.info(f"Using framework PyTorch: {torch.__version__}") with torch.no_grad(): model.config.return_dict = True model.eval() # Check if we need to override certain configuration item if config.values_override is not None: logger.info(f"Overriding {len(config.values_override)} configuration item(s)") for override_config_key, override_config_value in config.values_override.items(): logger.info(f"\t- {override_config_key} -> {override_config_value}") setattr(model.config, override_config_key, override_config_value) # Ensure inputs match # TODO: Check when exporting QA we provide "is_pair=True" model_inputs = config.generate_dummy_inputs(preprocessor, framework=TensorType.PYTORCH) device = torch.device(device) if device.type == "cuda" and torch.cuda.is_available(): model.to(device) model_inputs_device = {} for k, v in model_inputs.items(): if isinstance(v, Tuple): model_inputs_device[k] = tuple( x.to(device) if isinstance(x, torch.Tensor) else None for x in v ) elif isinstance(v, List): model_inputs_device[k] = [ tuple(x.to(device) if isinstance(x, torch.Tensor) else None for x in t) for t in v ] else: model_inputs_device[k] = v.to(device) model_inputs = model_inputs_device inputs_match, matched_inputs = ensure_model_and_config_inputs_match(model, model_inputs.keys()) onnx_outputs = list(config.outputs.keys()) if not inputs_match: raise ValueError("Model and config inputs doesn't match") config.patch_ops() onnx_export( model, (model_inputs,), f=output.as_posix(), input_names=list(config.inputs.keys()), output_names=onnx_outputs, dynamic_axes=dict(chain(config.inputs.items(), config.outputs.items())), do_constant_folding=True, opset_version=opset, ) config.restore_ops() return matched_inputs, onnx_outputs def export_tensorflow( preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin"], model: "TFPreTrainedModel", config: OnnxConfig, opset: int, output: Path, tokenizer: Optional["PreTrainedTokenizer"] = None, ) -> Tuple[List[str], List[str]]: """ Export a TensorFlow model to an ONNX Intermediate Representation (IR) Args: preprocessor: ([`PreTrainedTokenizer`] or [`FeatureExtractionMixin`]): The preprocessor used for encoding the data. model ([`TFPreTrainedModel`]): The model to export. config ([`~onnx.config.OnnxConfig`]): The ONNX configuration associated with the exported model. opset (`int`): The version of the ONNX operator set to use. output (`Path`): Directory to store the exported ONNX model. Returns: `Tuple[List[str], List[str]]`: A tuple with an ordered list of the model's inputs, and the named inputs from the ONNX configuration. """ import onnx import tensorflow as tf import tf2onnx if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None: raise ValueError("You cannot provide both a tokenizer and preprocessor to export the model.") if tokenizer is not None: warnings.warn( "The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use" " `preprocessor` instead.", FutureWarning, ) logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummy inputs.") preprocessor = tokenizer model.config.return_dict = True # Check if we need to override certain configuration item if config.values_override is not None: logger.info(f"Overriding {len(config.values_override)} configuration item(s)") for override_config_key, override_config_value in config.values_override.items(): logger.info(f"\t- {override_config_key} -> {override_config_value}") setattr(model.config, override_config_key, override_config_value) # Ensure inputs match model_inputs = config.generate_dummy_inputs(preprocessor, framework=TensorType.TENSORFLOW) inputs_match, matched_inputs = ensure_model_and_config_inputs_match(model, model_inputs.keys()) onnx_outputs = list(config.outputs.keys()) input_signature = [ tf.TensorSpec([None] * tensor.ndim, dtype=tensor.dtype, name=key) for key, tensor in model_inputs.items() ] onnx_model, _ = tf2onnx.convert.from_keras(model, input_signature, opset=opset) onnx.save(onnx_model, output.as_posix()) config.restore_ops() return matched_inputs, onnx_outputs def export( preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin", "ProcessorMixin"], model: Union["PreTrainedModel", "TFPreTrainedModel"], config: OnnxConfig, opset: int, output: Path, tokenizer: Optional["PreTrainedTokenizer"] = None, device: str = "cpu", ) -> Tuple[List[str], List[str]]: """ Export a Pytorch or TensorFlow model to an ONNX Intermediate Representation (IR) Args: preprocessor: ([`PreTrainedTokenizer`], [`FeatureExtractionMixin`] or [`ProcessorMixin`]): The preprocessor used for encoding the data. model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): The model to export. config ([`~onnx.config.OnnxConfig`]): The ONNX configuration associated with the exported model. opset (`int`): The version of the ONNX operator set to use. output (`Path`): Directory to store the exported ONNX model. device (`str`, *optional*, defaults to `cpu`): The device on which the ONNX model will be exported. Either `cpu` or `cuda`. Only PyTorch is supported for export on CUDA devices. Returns: `Tuple[List[str], List[str]]`: A tuple with an ordered list of the model's inputs, and the named inputs from the ONNX configuration. """ if not (is_torch_available() or is_tf_available()): raise ImportError( "Cannot convert because neither PyTorch nor TensorFlow are not installed. " "Please install torch or tensorflow first." ) if is_tf_available() and isinstance(model, TFPreTrainedModel) and device == "cuda": raise RuntimeError("`tf2onnx` does not support export on CUDA device.") if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None: raise ValueError("You cannot provide both a tokenizer and a preprocessor to export the model.") if tokenizer is not None: warnings.warn( "The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use" " `preprocessor` instead.", FutureWarning, ) logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummy inputs.") preprocessor = tokenizer if is_torch_available(): from ..utils import get_torch_version if not config.is_torch_support_available: logger.warning( f"Unsupported PyTorch version for this model. Minimum required is {config.torch_onnx_minimum_version}," f" got: {get_torch_version()}" ) if is_torch_available() and issubclass(type(model), PreTrainedModel): return export_pytorch(preprocessor, model, config, opset, output, tokenizer=tokenizer, device=device) elif is_tf_available() and issubclass(type(model), TFPreTrainedModel): return export_tensorflow(preprocessor, model, config, opset, output, tokenizer=tokenizer) def validate_model_outputs( config: OnnxConfig, preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin", "ProcessorMixin"], reference_model: Union["PreTrainedModel", "TFPreTrainedModel"], onnx_model: Path, onnx_named_outputs: List[str], atol: float, tokenizer: Optional["PreTrainedTokenizer"] = None, ): from onnxruntime import InferenceSession, SessionOptions logger.info("Validating ONNX model...") if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None: raise ValueError("You cannot provide both a tokenizer and a preprocessor to validate the model outputs.") if tokenizer is not None: warnings.warn( "The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use" " `preprocessor` instead.", FutureWarning, ) logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummy inputs.") preprocessor = tokenizer # generate inputs with a different batch_size and seq_len that was used for conversion to properly test # dynamic input shapes. if is_torch_available() and issubclass(type(reference_model), PreTrainedModel): reference_model_inputs = config.generate_dummy_inputs( preprocessor, batch_size=config.default_fixed_batch + 1, seq_length=config.default_fixed_sequence + 1, framework=TensorType.PYTORCH, ) else: reference_model_inputs = config.generate_dummy_inputs( preprocessor, batch_size=config.default_fixed_batch + 1, seq_length=config.default_fixed_sequence + 1, framework=TensorType.TENSORFLOW, ) # Create ONNX Runtime session options = SessionOptions() session = InferenceSession(onnx_model.as_posix(), options, providers=["CPUExecutionProvider"]) # Compute outputs from the reference model if is_torch_available() and issubclass(type(reference_model), PreTrainedModel): reference_model.to("cpu") ref_outputs = reference_model(**reference_model_inputs) ref_outputs_dict = {} # We flatten potential collection of outputs (i.e. past_keys) to a flat structure for name, value in ref_outputs.items(): # Overwriting the output name as "present" since it is the name used for the ONNX outputs # ("past_key_values" being taken for the ONNX inputs) if name == "past_key_values": name = "present" if isinstance(value, (list, tuple)): value = config.flatten_output_collection_property(name, value) ref_outputs_dict.update(value) else: ref_outputs_dict[name] = value # Create onnxruntime inputs from the reference model inputs reference_model_inputs_onnxruntime = config.generate_dummy_inputs_onnxruntime(reference_model_inputs) # We flatten potential collection of inputs (i.e. past_keys) onnx_inputs = {} for name, value in reference_model_inputs_onnxruntime.items(): if isinstance(value, (list, tuple)): value = config.flatten_output_collection_property(name, value) onnx_inputs.update({tensor_name: pt_tensor.numpy() for tensor_name, pt_tensor in value.items()}) else: onnx_inputs[name] = value.numpy() # Compute outputs from the ONNX model onnx_outputs = session.run(onnx_named_outputs, onnx_inputs) # Check we have a subset of the keys into onnx_outputs against ref_outputs ref_outputs_set, onnx_outputs_set = set(ref_outputs_dict.keys()), set(onnx_named_outputs) if not onnx_outputs_set.issubset(ref_outputs_set): logger.info( f"\t-[x] ONNX model output names {onnx_outputs_set} do not match reference model {ref_outputs_set}" ) raise ValueError( "Outputs doesn't match between reference model and ONNX exported model: " f"{onnx_outputs_set.difference(ref_outputs_set)}" ) else: logger.info(f"\t-[✓] ONNX model output names match reference model ({onnx_outputs_set})") # Check the shape and values match for name, ort_value in zip(onnx_named_outputs, onnx_outputs): if is_torch_available() and issubclass(type(reference_model), PreTrainedModel): ref_value = ref_outputs_dict[name].detach().numpy() else: ref_value = ref_outputs_dict[name].numpy() logger.info(f'\t- Validating ONNX Model output "{name}":') # Shape if not ort_value.shape == ref_value.shape: logger.info(f"\t\t-[x] shape {ort_value.shape} doesn't match {ref_value.shape}") raise ValueError( "Outputs shape doesn't match between reference model and ONNX exported model: " f"Got {ref_value.shape} (reference) and {ort_value.shape} (ONNX)" ) else: logger.info(f"\t\t-[✓] {ort_value.shape} matches {ref_value.shape}") # Values if not np.allclose(ref_value, ort_value, atol=atol): bad_indices = np.logical_not(np.isclose(ref_value, ort_value, atol=atol)) logger.info(f"\t\t-[x] values not close enough (atol: {atol})") raise ValueError( "Outputs values doesn't match between reference model and ONNX exported model: " f"Got max absolute difference of: {np.amax(np.abs(ref_value - ort_value))} for " f"{ref_value[bad_indices]} vs {ort_value[bad_indices]}" ) else: logger.info(f"\t\t-[✓] all values close (atol: {atol})") def ensure_model_and_config_inputs_match( model: Union["PreTrainedModel", "TFPreTrainedModel"], model_inputs: Iterable[str] ) -> Tuple[bool, List[str]]: """ :param model_inputs: :param config_inputs: :return: """ if is_torch_available() and issubclass(type(model), PreTrainedModel): forward_parameters = signature(model.forward).parameters else: forward_parameters = signature(model.call).parameters model_inputs_set = set(model_inputs) # We are fine if config_inputs has more keys than model_inputs forward_inputs_set = set(forward_parameters.keys()) is_ok = model_inputs_set.issubset(forward_inputs_set) # Make sure the input order match (VERY IMPORTANT !!!!) matching_inputs = forward_inputs_set.intersection(model_inputs_set) ordered_inputs = [parameter for parameter in forward_parameters.keys() if parameter in matching_inputs] return is_ok, ordered_inputs ```
===================================================================================================================== SOURCE CODE FILE: features.py LINES: 1 SIZE: 27.64 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\onnx\features.py ENCODING: utf-8 ```py import os from functools import partial, reduce from typing import TYPE_CHECKING, Callable, Dict, Optional, Tuple, Type, Union import transformers from .. import PretrainedConfig, is_tf_available, is_torch_available from ..utils import TF2_WEIGHTS_NAME, WEIGHTS_NAME, logging from .config import OnnxConfig if TYPE_CHECKING: from transformers import PreTrainedModel, TFPreTrainedModel logger = logging.get_logger(__name__) # pylint: disable=invalid-name if is_torch_available(): from transformers.models.auto import ( AutoModel, AutoModelForCausalLM, AutoModelForImageClassification, AutoModelForImageSegmentation, AutoModelForMaskedImageModeling, AutoModelForMaskedLM, AutoModelForMultipleChoice, AutoModelForObjectDetection, AutoModelForQuestionAnswering, AutoModelForSemanticSegmentation, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForSpeechSeq2Seq, AutoModelForTokenClassification, AutoModelForVision2Seq, ) if is_tf_available(): from transformers.models.auto import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForMultipleChoice, TFAutoModelForQuestionAnswering, TFAutoModelForSemanticSegmentation, TFAutoModelForSeq2SeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ) if not is_torch_available() and not is_tf_available(): logger.warning( "The ONNX export features are only supported for PyTorch or TensorFlow. You will not be able to export models" " without one of these libraries installed." ) def supported_features_mapping( *supported_features: str, onnx_config_cls: Optional[str] = None ) -> Dict[str, Callable[[PretrainedConfig], OnnxConfig]]: """ Generate the mapping between supported the features and their corresponding OnnxConfig for a given model. Args: *supported_features: The names of the supported features. onnx_config_cls: The OnnxConfig full name corresponding to the model. Returns: The dictionary mapping a feature to an OnnxConfig constructor. """ if onnx_config_cls is None: raise ValueError("A OnnxConfig class must be provided") config_cls = transformers for attr_name in onnx_config_cls.split("."): config_cls = getattr(config_cls, attr_name) mapping = {} for feature in supported_features: if "-with-past" in feature: task = feature.replace("-with-past", "") mapping[feature] = partial(config_cls.with_past, task=task) else: mapping[feature] = partial(config_cls.from_model_config, task=feature) return mapping class FeaturesManager: _TASKS_TO_AUTOMODELS = {} _TASKS_TO_TF_AUTOMODELS = {} if is_torch_available(): _TASKS_TO_AUTOMODELS = { "default": AutoModel, "masked-lm": AutoModelForMaskedLM, "causal-lm": AutoModelForCausalLM, "seq2seq-lm": AutoModelForSeq2SeqLM, "sequence-classification": AutoModelForSequenceClassification, "token-classification": AutoModelForTokenClassification, "multiple-choice": AutoModelForMultipleChoice, "object-detection": AutoModelForObjectDetection, "question-answering": AutoModelForQuestionAnswering, "image-classification": AutoModelForImageClassification, "image-segmentation": AutoModelForImageSegmentation, "masked-im": AutoModelForMaskedImageModeling, "semantic-segmentation": AutoModelForSemanticSegmentation, "vision2seq-lm": AutoModelForVision2Seq, "speech2seq-lm": AutoModelForSpeechSeq2Seq, } if is_tf_available(): _TASKS_TO_TF_AUTOMODELS = { "default": TFAutoModel, "masked-lm": TFAutoModelForMaskedLM, "causal-lm": TFAutoModelForCausalLM, "seq2seq-lm": TFAutoModelForSeq2SeqLM, "sequence-classification": TFAutoModelForSequenceClassification, "token-classification": TFAutoModelForTokenClassification, "multiple-choice": TFAutoModelForMultipleChoice, "question-answering": TFAutoModelForQuestionAnswering, "semantic-segmentation": TFAutoModelForSemanticSegmentation, } # Set of model topologies we support associated to the features supported by each topology and the factory _SUPPORTED_MODEL_TYPE = { "albert": supported_features_mapping( "default", "masked-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.albert.AlbertOnnxConfig", ), "bart": supported_features_mapping( "default", "default-with-past", "causal-lm", "causal-lm-with-past", "seq2seq-lm", "seq2seq-lm-with-past", "sequence-classification", "question-answering", onnx_config_cls="models.bart.BartOnnxConfig", ), # BEiT cannot be used with the masked image modeling autoclass, so this feature is excluded here "beit": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.beit.BeitOnnxConfig" ), "bert": supported_features_mapping( "default", "masked-lm", "causal-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.bert.BertOnnxConfig", ), "big-bird": supported_features_mapping( "default", "masked-lm", "causal-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.big_bird.BigBirdOnnxConfig", ), "bigbird-pegasus": supported_features_mapping( "default", "default-with-past", "causal-lm", "causal-lm-with-past", "seq2seq-lm", "seq2seq-lm-with-past", "sequence-classification", "question-answering", onnx_config_cls="models.bigbird_pegasus.BigBirdPegasusOnnxConfig", ), "blenderbot": supported_features_mapping( "default", "default-with-past", "causal-lm", "causal-lm-with-past", "seq2seq-lm", "seq2seq-lm-with-past", onnx_config_cls="models.blenderbot.BlenderbotOnnxConfig", ), "blenderbot-small": supported_features_mapping( "default", "default-with-past", "causal-lm", "causal-lm-with-past", "seq2seq-lm", "seq2seq-lm-with-past", onnx_config_cls="models.blenderbot_small.BlenderbotSmallOnnxConfig", ), "bloom": supported_features_mapping( "default", "default-with-past", "causal-lm", "causal-lm-with-past", "sequence-classification", "token-classification", onnx_config_cls="models.bloom.BloomOnnxConfig", ), "camembert": supported_features_mapping( "default", "masked-lm", "causal-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.camembert.CamembertOnnxConfig", ), "clip": supported_features_mapping( "default", onnx_config_cls="models.clip.CLIPOnnxConfig", ), "codegen": supported_features_mapping( "default", "causal-lm", onnx_config_cls="models.codegen.CodeGenOnnxConfig", ), "convbert": supported_features_mapping( "default", "masked-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.convbert.ConvBertOnnxConfig", ), "convnext": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.convnext.ConvNextOnnxConfig", ), "data2vec-text": supported_features_mapping( "default", "masked-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.data2vec.Data2VecTextOnnxConfig", ), "data2vec-vision": supported_features_mapping( "default", "image-classification", # ONNX doesn't support `adaptive_avg_pool2d` yet # "semantic-segmentation", onnx_config_cls="models.data2vec.Data2VecVisionOnnxConfig", ), "deberta": supported_features_mapping( "default", "masked-lm", "sequence-classification", "token-classification", "question-answering", onnx_config_cls="models.deberta.DebertaOnnxConfig", ), "deberta-v2": supported_features_mapping( "default", "masked-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.deberta_v2.DebertaV2OnnxConfig", ), "deit": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.deit.DeiTOnnxConfig" ), "detr": supported_features_mapping( "default", "object-detection", "image-segmentation", onnx_config_cls="models.detr.DetrOnnxConfig", ), "distilbert": supported_features_mapping( "default", "masked-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.distilbert.DistilBertOnnxConfig", ), "electra": supported_features_mapping( "default", "masked-lm", "causal-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.electra.ElectraOnnxConfig", ), "flaubert": supported_features_mapping( "default", "masked-lm", "causal-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.flaubert.FlaubertOnnxConfig", ), "gpt2": supported_features_mapping( "default", "default-with-past", "causal-lm", "causal-lm-with-past", "sequence-classification", "token-classification", onnx_config_cls="models.gpt2.GPT2OnnxConfig", ), "gptj": supported_features_mapping( "default", "default-with-past", "causal-lm", "causal-lm-with-past", "question-answering", "sequence-classification", onnx_config_cls="models.gptj.GPTJOnnxConfig", ), "gpt-neo": supported_features_mapping( "default", "default-with-past", "causal-lm", "causal-lm-with-past", "sequence-classification", onnx_config_cls="models.gpt_neo.GPTNeoOnnxConfig", ), "groupvit": supported_features_mapping( "default", onnx_config_cls="models.groupvit.GroupViTOnnxConfig", ), "ibert": supported_features_mapping( "default", "masked-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.ibert.IBertOnnxConfig", ), "imagegpt": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.imagegpt.ImageGPTOnnxConfig" ), "layoutlm": supported_features_mapping( "default", "masked-lm", "sequence-classification", "token-classification", onnx_config_cls="models.layoutlm.LayoutLMOnnxConfig", ), "layoutlmv3": supported_features_mapping( "default", "question-answering", "sequence-classification", "token-classification", onnx_config_cls="models.layoutlmv3.LayoutLMv3OnnxConfig", ), "levit": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.levit.LevitOnnxConfig" ), "longt5": supported_features_mapping( "default", "default-with-past", "seq2seq-lm", "seq2seq-lm-with-past", onnx_config_cls="models.longt5.LongT5OnnxConfig", ), "longformer": supported_features_mapping( "default", "masked-lm", "multiple-choice", "question-answering", "sequence-classification", "token-classification", onnx_config_cls="models.longformer.LongformerOnnxConfig", ), "marian": supported_features_mapping( "default", "default-with-past", "seq2seq-lm", "seq2seq-lm-with-past", "causal-lm", "causal-lm-with-past", onnx_config_cls="models.marian.MarianOnnxConfig", ), "mbart": supported_features_mapping( "default", "default-with-past", "causal-lm", "causal-lm-with-past", "seq2seq-lm", "seq2seq-lm-with-past", "sequence-classification", "question-answering", onnx_config_cls="models.mbart.MBartOnnxConfig", ), "mobilebert": supported_features_mapping( "default", "masked-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.mobilebert.MobileBertOnnxConfig", ), "mobilenet-v1": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.mobilenet_v1.MobileNetV1OnnxConfig", ), "mobilenet-v2": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.mobilenet_v2.MobileNetV2OnnxConfig", ), "mobilevit": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.mobilevit.MobileViTOnnxConfig", ), "mt5": supported_features_mapping( "default", "default-with-past", "seq2seq-lm", "seq2seq-lm-with-past", onnx_config_cls="models.mt5.MT5OnnxConfig", ), "m2m-100": supported_features_mapping( "default", "default-with-past", "seq2seq-lm", "seq2seq-lm-with-past", onnx_config_cls="models.m2m_100.M2M100OnnxConfig", ), "owlvit": supported_features_mapping( "default", onnx_config_cls="models.owlvit.OwlViTOnnxConfig", ), "perceiver": supported_features_mapping( "image-classification", "masked-lm", "sequence-classification", onnx_config_cls="models.perceiver.PerceiverOnnxConfig", ), "poolformer": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.poolformer.PoolFormerOnnxConfig" ), "rembert": supported_features_mapping( "default", "masked-lm", "causal-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.rembert.RemBertOnnxConfig", ), "resnet": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.resnet.ResNetOnnxConfig", ), "roberta": supported_features_mapping( "default", "masked-lm", "causal-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.roberta.RobertaOnnxConfig", ), "roformer": supported_features_mapping( "default", "masked-lm", "causal-lm", "sequence-classification", "token-classification", "multiple-choice", "question-answering", "token-classification", onnx_config_cls="models.roformer.RoFormerOnnxConfig", ), "segformer": supported_features_mapping( "default", "image-classification", "semantic-segmentation", onnx_config_cls="models.segformer.SegformerOnnxConfig", ), "squeezebert": supported_features_mapping( "default", "masked-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.squeezebert.SqueezeBertOnnxConfig", ), "swin": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.swin.SwinOnnxConfig" ), "t5": supported_features_mapping( "default", "default-with-past", "seq2seq-lm", "seq2seq-lm-with-past", onnx_config_cls="models.t5.T5OnnxConfig", ), "vision-encoder-decoder": supported_features_mapping( "vision2seq-lm", onnx_config_cls="models.vision_encoder_decoder.VisionEncoderDecoderOnnxConfig" ), "vit": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.vit.ViTOnnxConfig" ), "whisper": supported_features_mapping( "default", "default-with-past", "speech2seq-lm", "speech2seq-lm-with-past", onnx_config_cls="models.whisper.WhisperOnnxConfig", ), "xlm": supported_features_mapping( "default", "masked-lm", "causal-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.xlm.XLMOnnxConfig", ), "xlm-roberta": supported_features_mapping( "default", "masked-lm", "causal-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.xlm_roberta.XLMRobertaOnnxConfig", ), "yolos": supported_features_mapping( "default", "object-detection", onnx_config_cls="models.yolos.YolosOnnxConfig", ), } AVAILABLE_FEATURES = sorted(reduce(lambda s1, s2: s1 | s2, (v.keys() for v in _SUPPORTED_MODEL_TYPE.values()))) @staticmethod def get_supported_features_for_model_type( model_type: str, model_name: Optional[str] = None ) -> Dict[str, Callable[[PretrainedConfig], OnnxConfig]]: """ Tries to retrieve the feature -> OnnxConfig constructor map from the model type. Args: model_type (`str`): The model type to retrieve the supported features for. model_name (`str`, *optional*): The name attribute of the model object, only used for the exception message. Returns: The dictionary mapping each feature to a corresponding OnnxConfig constructor. """ model_type = model_type.lower() if model_type not in FeaturesManager._SUPPORTED_MODEL_TYPE: model_type_and_model_name = f"{model_type} ({model_name})" if model_name else model_type raise KeyError( f"{model_type_and_model_name} is not supported yet. " f"Only {list(FeaturesManager._SUPPORTED_MODEL_TYPE.keys())} are supported. " f"If you want to support {model_type} please propose a PR or open up an issue." ) return FeaturesManager._SUPPORTED_MODEL_TYPE[model_type] @staticmethod def feature_to_task(feature: str) -> str: return feature.replace("-with-past", "") @staticmethod def _validate_framework_choice(framework: str): """ Validates if the framework requested for the export is both correct and available, otherwise throws an exception. """ if framework not in ["pt", "tf"]: raise ValueError( f"Only two frameworks are supported for ONNX export: pt or tf, but {framework} was provided." ) elif framework == "pt" and not is_torch_available(): raise RuntimeError("Cannot export model to ONNX using PyTorch because no PyTorch package was found.") elif framework == "tf" and not is_tf_available(): raise RuntimeError("Cannot export model to ONNX using TensorFlow because no TensorFlow package was found.") @staticmethod def get_model_class_for_feature(feature: str, framework: str = "pt") -> Type: """ Attempts to retrieve an AutoModel class from a feature name. Args: feature (`str`): The feature required. framework (`str`, *optional*, defaults to `"pt"`): The framework to use for the export. Returns: The AutoModel class corresponding to the feature. """ task = FeaturesManager.feature_to_task(feature) FeaturesManager._validate_framework_choice(framework) if framework == "pt": task_to_automodel = FeaturesManager._TASKS_TO_AUTOMODELS else: task_to_automodel = FeaturesManager._TASKS_TO_TF_AUTOMODELS if task not in task_to_automodel: raise KeyError( f"Unknown task: {feature}. Possible values are {list(FeaturesManager._TASKS_TO_AUTOMODELS.values())}" ) return task_to_automodel[task] @staticmethod def determine_framework(model: str, framework: Optional[str] = None) -> str: """ Determines the framework to use for the export. The priority is in the following order: 1. User input via `framework`. 2. If local checkpoint is provided, use the same framework as the checkpoint. 3. Available framework in environment, with priority given to PyTorch Args: model (`str`): The name of the model to export. framework (`str`, *optional*, defaults to `None`): The framework to use for the export. See above for priority if none provided. Returns: The framework to use for the export. """ if framework is not None: return framework framework_map = {"pt": "PyTorch", "tf": "TensorFlow"} exporter_map = {"pt": "torch", "tf": "tf2onnx"} if os.path.isdir(model): if os.path.isfile(os.path.join(model, WEIGHTS_NAME)): framework = "pt" elif os.path.isfile(os.path.join(model, TF2_WEIGHTS_NAME)): framework = "tf" else: raise FileNotFoundError( "Cannot determine framework from given checkpoint location." f" There should be a {WEIGHTS_NAME} for PyTorch" f" or {TF2_WEIGHTS_NAME} for TensorFlow." ) logger.info(f"Local {framework_map[framework]} model found.") else: if is_torch_available(): framework = "pt" elif is_tf_available(): framework = "tf" else: raise EnvironmentError("Neither PyTorch nor TensorFlow found in environment. Cannot export to ONNX.") logger.info(f"Framework not requested. Using {exporter_map[framework]} to export to ONNX.") return framework @staticmethod def get_model_from_feature( feature: str, model: str, framework: Optional[str] = None, cache_dir: Optional[str] = None ) -> Union["PreTrainedModel", "TFPreTrainedModel"]: """ Attempts to retrieve a model from a model's name and the feature to be enabled. Args: feature (`str`): The feature required. model (`str`): The name of the model to export. framework (`str`, *optional*, defaults to `None`): The framework to use for the export. See `FeaturesManager.determine_framework` for the priority should none be provided. Returns: The instance of the model. """ framework = FeaturesManager.determine_framework(model, framework) model_class = FeaturesManager.get_model_class_for_feature(feature, framework) try: model = model_class.from_pretrained(model, cache_dir=cache_dir) except OSError: if framework == "pt": logger.info("Loading TensorFlow model in PyTorch before exporting to ONNX.") model = model_class.from_pretrained(model, from_tf=True, cache_dir=cache_dir) else: logger.info("Loading PyTorch model in TensorFlow before exporting to ONNX.") model = model_class.from_pretrained(model, from_pt=True, cache_dir=cache_dir) return model @staticmethod def check_supported_model_or_raise( model: Union["PreTrainedModel", "TFPreTrainedModel"], feature: str = "default" ) -> Tuple[str, Callable]: """ Check whether or not the model has the requested features. Args: model: The model to export. feature: The name of the feature to check if it is available. Returns: (str) The type of the model (OnnxConfig) The OnnxConfig instance holding the model export properties. """ model_type = model.config.model_type.replace("_", "-") model_name = getattr(model, "name", "") model_features = FeaturesManager.get_supported_features_for_model_type(model_type, model_name=model_name) if feature not in model_features: raise ValueError( f"{model.config.model_type} doesn't support feature {feature}. Supported values are: {model_features}" ) return model.config.model_type, FeaturesManager._SUPPORTED_MODEL_TYPE[model_type][feature] def get_config(model_type: str, feature: str) -> OnnxConfig: """ Gets the OnnxConfig for a model_type and feature combination. Args: model_type (`str`): The model type to retrieve the config for. feature (`str`): The feature to retrieve the config for. Returns: `OnnxConfig`: config for the combination """ return FeaturesManager._SUPPORTED_MODEL_TYPE[model_type][feature] ```
================================================================================================================== SOURCE CODE FILE: utils.py LINES: 1 SIZE: 3.54 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\onnx\utils.py ENCODING: utf-8 ```py # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ctypes import c_float, sizeof from enum import Enum from typing import TYPE_CHECKING, Optional, Union if TYPE_CHECKING: from .. import AutoFeatureExtractor, AutoProcessor, AutoTokenizer # tests_ignore class ParameterFormat(Enum): Float = c_float @property def size(self) -> int: """ Number of byte required for this data type Returns: Integer > 0 """ return sizeof(self.value) def compute_effective_axis_dimension(dimension: int, fixed_dimension: int, num_token_to_add: int = 0) -> int: """ Args: dimension: fixed_dimension: num_token_to_add: Returns: """ # < 0 is possible if using a dynamic axis if dimension <= 0: dimension = fixed_dimension dimension -= num_token_to_add return dimension def compute_serialized_parameters_size(num_parameters: int, dtype: ParameterFormat) -> int: """ Compute the size taken by all the parameters in the given the storage format when serializing the model Args: num_parameters: Number of parameters to be saved dtype: The data format each parameter will be saved Returns: Size (in byte) taken to save all the parameters """ return num_parameters * dtype.size def get_preprocessor(model_name: str) -> Optional[Union["AutoTokenizer", "AutoFeatureExtractor", "AutoProcessor"]]: """ Gets a preprocessor (tokenizer, feature extractor or processor) that is available for `model_name`. Args: model_name (`str`): Name of the model for which a preprocessor are loaded. Returns: `Optional[Union[AutoTokenizer, AutoFeatureExtractor, AutoProcessor]]`: If a processor is found, it is returned. Otherwise, if a tokenizer or a feature extractor exists, it is returned. If both a tokenizer and a feature extractor exist, an error is raised. The function returns `None` if no preprocessor is found. """ # Avoid circular imports by only importing this here. from .. import AutoFeatureExtractor, AutoProcessor, AutoTokenizer # tests_ignore try: return AutoProcessor.from_pretrained(model_name) except (ValueError, OSError, KeyError): tokenizer, feature_extractor = None, None try: tokenizer = AutoTokenizer.from_pretrained(model_name) except (OSError, KeyError): pass try: feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) except (OSError, KeyError): pass if tokenizer is not None and feature_extractor is not None: raise ValueError( f"Couldn't auto-detect preprocessor for {model_name}. Found both a tokenizer and a feature extractor." ) elif tokenizer is None and feature_extractor is None: return None elif tokenizer is not None: return tokenizer else: return feature_extractor ```
==================================================================================================================== SOURCE CODE FILE: optimization.py LINES: 1 SIZE: 35.59 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\optimization.py ENCODING: utf-8 ```py # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch optimization for BERT model.""" import math import warnings from functools import partial from typing import Optional, Union import torch from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR, ReduceLROnPlateau from .trainer_pt_utils import LayerWiseDummyOptimizer, LayerWiseDummyScheduler from .trainer_utils import SchedulerType from .utils import logging from .utils.versions import require_version logger = logging.get_logger(__name__) def _get_constant_lambda(_=None): return 1 def get_constant_schedule(optimizer: Optimizer, last_epoch: int = -1): """ Create a schedule with a constant learning rate, using the learning rate set in optimizer. Args: optimizer ([`~torch.optim.Optimizer`]): The optimizer for which to schedule the learning rate. last_epoch (`int`, *optional*, defaults to -1): The index of the last epoch when resuming training. Return: `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ return LambdaLR(optimizer, _get_constant_lambda, last_epoch=last_epoch) def get_reduce_on_plateau_schedule(optimizer: Optimizer, **kwargs): """ Create a schedule with a constant learning rate that decreases when a metric has stopped improving. Args: optimizer ([`~torch.optim.Optimizer`]): The optimizer for which to schedule the learning rate. kwargs (`dict`, *optional*): Extra parameters to be passed to the scheduler. See `torch.optim.lr_scheduler.ReduceLROnPlateau` for possible parameters. Return: `torch.optim.lr_scheduler.ReduceLROnPlateau` with the appropriate schedule. """ return ReduceLROnPlateau(optimizer, **kwargs) def _get_constant_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int): if current_step < num_warmup_steps: return float(current_step) / float(max(1.0, num_warmup_steps)) return 1.0 def get_constant_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, last_epoch: int = -1): """ Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate increases linearly between 0 and the initial lr set in the optimizer. Args: optimizer ([`~torch.optim.Optimizer`]): The optimizer for which to schedule the learning rate. num_warmup_steps (`int`): The number of steps for the warmup phase. last_epoch (`int`, *optional*, defaults to -1): The index of the last epoch when resuming training. Return: `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ lr_lambda = partial(_get_constant_schedule_with_warmup_lr_lambda, num_warmup_steps=num_warmup_steps) return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch) def _get_linear_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int): if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) return max(0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps))) def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1): """ Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer. Args: optimizer ([`~torch.optim.Optimizer`]): The optimizer for which to schedule the learning rate. num_warmup_steps (`int`): The number of steps for the warmup phase. num_training_steps (`int`): The total number of training steps. last_epoch (`int`, *optional*, defaults to -1): The index of the last epoch when resuming training. Return: `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ lr_lambda = partial( _get_linear_schedule_with_warmup_lr_lambda, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, ) return LambdaLR(optimizer, lr_lambda, last_epoch) def _get_cosine_schedule_with_warmup_lr_lambda( current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_cycles: float ): if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps)) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) def get_cosine_schedule_with_warmup( optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1 ): """ Create a schedule with a learning rate that decreases following the values of the cosine function between the initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the initial lr set in the optimizer. Args: optimizer ([`~torch.optim.Optimizer`]): The optimizer for which to schedule the learning rate. num_warmup_steps (`int`): The number of steps for the warmup phase. num_training_steps (`int`): The total number of training steps. num_cycles (`float`, *optional*, defaults to 0.5): The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0 following a half-cosine). last_epoch (`int`, *optional*, defaults to -1): The index of the last epoch when resuming training. Return: `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ lr_lambda = partial( _get_cosine_schedule_with_warmup_lr_lambda, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, num_cycles=num_cycles, ) return LambdaLR(optimizer, lr_lambda, last_epoch) def _get_cosine_with_hard_restarts_schedule_with_warmup_lr_lambda( current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_cycles: int ): if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps)) if progress >= 1.0: return 0.0 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(num_cycles) * progress) % 1.0)))) def get_cosine_with_hard_restarts_schedule_with_warmup( optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: int = 1, last_epoch: int = -1 ): """ Create a schedule with a learning rate that decreases following the values of the cosine function between the initial lr set in the optimizer to 0, with several hard restarts, after a warmup period during which it increases linearly between 0 and the initial lr set in the optimizer. Args: optimizer ([`~torch.optim.Optimizer`]): The optimizer for which to schedule the learning rate. num_warmup_steps (`int`): The number of steps for the warmup phase. num_training_steps (`int`): The total number of training steps. num_cycles (`int`, *optional*, defaults to 1): The number of hard restarts to use. last_epoch (`int`, *optional*, defaults to -1): The index of the last epoch when resuming training. Return: `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ lr_lambda = partial( _get_cosine_with_hard_restarts_schedule_with_warmup_lr_lambda, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, num_cycles=num_cycles, ) return LambdaLR(optimizer, lr_lambda, last_epoch) def _get_polynomial_decay_schedule_with_warmup_lr_lambda( current_step: int, *, num_warmup_steps: int, num_training_steps: int, lr_end: float, power: float, lr_init: int, ): if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lr_range = lr_init - lr_end decay_steps = num_training_steps - num_warmup_steps pct_remaining = 1 - (current_step - num_warmup_steps) / decay_steps decay = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init def get_polynomial_decay_schedule_with_warmup( optimizer, num_warmup_steps, num_training_steps, lr_end=1e-7, power=1.0, last_epoch=-1 ): """ Create a schedule with a learning rate that decreases as a polynomial decay from the initial lr set in the optimizer to end lr defined by *lr_end*, after a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer. Args: optimizer ([`~torch.optim.Optimizer`]): The optimizer for which to schedule the learning rate. num_warmup_steps (`int`): The number of steps for the warmup phase. num_training_steps (`int`): The total number of training steps. lr_end (`float`, *optional*, defaults to 1e-7): The end LR. power (`float`, *optional*, defaults to 1.0): Power factor. last_epoch (`int`, *optional*, defaults to -1): The index of the last epoch when resuming training. Note: *power* defaults to 1.0 as in the fairseq implementation, which in turn is based on the original BERT implementation at https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/optimization.py#L37 Return: `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ lr_init = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be smaller than initial lr ({lr_init})") lr_lambda = partial( _get_polynomial_decay_schedule_with_warmup_lr_lambda, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, lr_end=lr_end, power=power, lr_init=lr_init, ) return LambdaLR(optimizer, lr_lambda, last_epoch) def _get_inverse_sqrt_schedule_lr_lambda(current_step: int, *, num_warmup_steps: int, timescale: Optional[int] = None): if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) shift = timescale - num_warmup_steps decay = 1.0 / math.sqrt((current_step + shift) / timescale) return decay def get_inverse_sqrt_schedule( optimizer: Optimizer, num_warmup_steps: int, timescale: Optional[int] = None, last_epoch: int = -1 ): """ Create a schedule with an inverse square-root learning rate, from the initial lr set in the optimizer, after a warmup period which increases lr linearly from 0 to the initial lr set in the optimizer. Args: optimizer ([`~torch.optim.Optimizer`]): The optimizer for which to schedule the learning rate. num_warmup_steps (`int`): The number of steps for the warmup phase. timescale (`int`, *optional*, defaults to `num_warmup_steps`): Time scale. last_epoch (`int`, *optional*, defaults to -1): The index of the last epoch when resuming training. Return: `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ # Note: this implementation is adapted from # https://github.com/google-research/big_vision/blob/f071ce68852d56099437004fd70057597a95f6ef/big_vision/utils.py#L930 if timescale is None: timescale = num_warmup_steps or 10_000 lr_lambda = partial(_get_inverse_sqrt_schedule_lr_lambda, num_warmup_steps=num_warmup_steps, timescale=timescale) return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch) def _get_cosine_schedule_with_warmup_lr_lambda( current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_cycles: float, min_lr_rate: float = 0.0 ): if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps)) factor = 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)) factor = factor * (1 - min_lr_rate) + min_lr_rate return max(0, factor) def get_cosine_with_min_lr_schedule_with_warmup( optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1, min_lr: Optional[float] = None, min_lr_rate: Optional[float] = None, ): """ Create a schedule with a learning rate that decreases following the values of the cosine function between the initial lr set in the optimizer to min_lr, after a warmup period during which it increases linearly between 0 and the initial lr set in the optimizer. Args: optimizer ([`~torch.optim.Optimizer`]): The optimizer for which to schedule the learning rate. num_warmup_steps (`int`): The number of steps for the warmup phase. num_training_steps (`int`): The total number of training steps. num_cycles (`float`, *optional*, defaults to 0.5): The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0 following a half-cosine). last_epoch (`int`, *optional*, defaults to -1): The index of the last epoch when resuming training. min_lr (`float`, *optional*): The minimum learning rate to reach after the cosine schedule. min_lr_rate (`float`, *optional*): The minimum learning rate as a ratio of the initial learning rate. If set, `min_lr` should not be set. Return: `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ if min_lr is not None and min_lr_rate is not None: raise ValueError("Only one of min_lr or min_lr_rate should be set") elif min_lr is not None: min_lr_rate = min_lr / optimizer.defaults["lr"] elif min_lr_rate is None: raise ValueError("One of min_lr or min_lr_rate should be set through the `lr_scheduler_kwargs`") lr_lambda = partial( _get_cosine_schedule_with_warmup_lr_lambda, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, num_cycles=num_cycles, min_lr_rate=min_lr_rate, ) return LambdaLR(optimizer, lr_lambda, last_epoch) def _get_wsd_scheduler_lambda( current_step: int, *, num_warmup_steps: int, num_stable_steps: int, num_decay_steps: int, warmup_type: str, decay_type: str, min_lr_ratio: float, num_cycles: float, ): if current_step < num_warmup_steps: progress = float(current_step) / float(max(1, num_warmup_steps)) if warmup_type == "linear": factor = progress elif warmup_type == "cosine": factor = 0.5 * (1.0 - math.cos(math.pi * progress)) elif warmup_type == "1-sqrt": factor = 1.0 - math.sqrt(1.0 - progress) factor = factor * (1.0 - min_lr_ratio) + min_lr_ratio return max(0.0, factor) if current_step < num_warmup_steps + num_stable_steps: return 1.0 if current_step < num_warmup_steps + num_stable_steps + num_decay_steps: progress = float(current_step - num_warmup_steps - num_stable_steps) / float(max(1, num_decay_steps)) if decay_type == "linear": factor = 1.0 - progress elif decay_type == "cosine": factor = 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)) elif decay_type == "1-sqrt": factor = 1.0 - math.sqrt(progress) factor = factor * (1.0 - min_lr_ratio) + min_lr_ratio return max(0.0, factor) return min_lr_ratio def get_wsd_schedule( optimizer: Optimizer, num_warmup_steps: int, num_decay_steps: int, num_training_steps: Optional[int] = None, num_stable_steps: Optional[int] = None, warmup_type: str = "linear", decay_type: str = "cosine", min_lr_ratio: float = 0, num_cycles: float = 0.5, last_epoch: int = -1, ): """ Create a schedule with a learning rate that has three stages: 1. warmup: increase from min_lr_ratio times the initial learning rate to the initial learning rate following a warmup_type. 2. stable: constant learning rate. 3. decay: decrease from the initial learning rate to min_lr_ratio times the initial learning rate following a decay_type. Args: optimizer ([`~torch.optim.Optimizer`]): The optimizer for which to schedule the learning rate. num_warmup_steps (`int`): The number of steps for the warmup phase. num_decay_steps (`int`): The number of steps for the decay phase. num_training_steps (`int`, *optional*): The total number of training steps. This is the sum of the warmup, stable and decay steps. If `num_stable_steps` is not provided, the stable phase will be `num_training_steps - num_warmup_steps - num_decay_steps`. num_stable_steps (`int`, *optional*): The number of steps for the stable phase. Please ensure that `num_warmup_steps + num_stable_steps + num_decay_steps` equals `num_training_steps`, otherwise the other steps will default to the minimum learning rate. warmup_type (`str`, *optional*, defaults to "linear"): The type of warmup to use. Can be 'linear', 'cosine' or '1-sqrt'. decay_type (`str`, *optional*, defaults to "cosine"): The type of decay to use. Can be 'linear', 'cosine' or '1-sqrt'. min_lr_ratio (`float`, *optional*, defaults to 0): The minimum learning rate as a ratio of the initial learning rate. num_cycles (`float`, *optional*, defaults to 0.5): The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0 following a half-cosine). last_epoch (`int`, *optional*, defaults to -1): The index of the last epoch when resuming training. Return: `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ if num_training_steps is None and num_stable_steps is None: raise ValueError("Either num_training_steps or num_stable_steps must be specified.") if num_training_steps is not None and num_stable_steps is not None: warnings.warn("Both num_training_steps and num_stable_steps are specified. num_stable_steps will be used.") if warmup_type not in ["linear", "cosine", "1-sqrt"]: raise ValueError(f"Unknown warmup type: {warmup_type}, expected 'linear', 'cosine' or '1-sqrt'") if decay_type not in ["linear", "cosine", "1-sqrt"]: raise ValueError(f"Unknown decay type: {decay_type}, expected 'linear', 'cosine' or '1-sqrt'") if num_stable_steps is None: num_stable_steps = num_training_steps - num_warmup_steps - num_decay_steps lr_lambda = partial( _get_wsd_scheduler_lambda, num_warmup_steps=num_warmup_steps, num_stable_steps=num_stable_steps, num_decay_steps=num_decay_steps, warmup_type=warmup_type, decay_type=decay_type, min_lr_ratio=min_lr_ratio, num_cycles=num_cycles, ) return LambdaLR(optimizer, lr_lambda, last_epoch) TYPE_TO_SCHEDULER_FUNCTION = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.INVERSE_SQRT: get_inverse_sqrt_schedule, SchedulerType.REDUCE_ON_PLATEAU: get_reduce_on_plateau_schedule, SchedulerType.COSINE_WITH_MIN_LR: get_cosine_with_min_lr_schedule_with_warmup, SchedulerType.WARMUP_STABLE_DECAY: get_wsd_schedule, } def get_scheduler( name: Union[str, SchedulerType], optimizer: Optimizer, num_warmup_steps: Optional[int] = None, num_training_steps: Optional[int] = None, scheduler_specific_kwargs: Optional[dict] = None, ): """ Unified API to get any scheduler from its name. Args: name (`str` or `SchedulerType`): The name of the scheduler to use. optimizer (`torch.optim.Optimizer`): The optimizer that will be used during training. num_warmup_steps (`int`, *optional*): The number of warmup steps to do. This is not required by all schedulers (hence the argument being optional), the function will raise an error if it's unset and the scheduler type requires it. num_training_steps (`int``, *optional*): The number of training steps to do. This is not required by all schedulers (hence the argument being optional), the function will raise an error if it's unset and the scheduler type requires it. scheduler_specific_kwargs (`dict`, *optional*): Extra parameters for schedulers such as cosine with restarts. Mismatched scheduler types and scheduler parameters will cause the scheduler function to raise a TypeError. """ name = SchedulerType(name) schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name] # If a `LayerWiseDummyOptimizer` is passed we extract the optimizer dict and # recursively call `get_scheduler` to get the proper schedulers on each parameter if optimizer is not None and isinstance(optimizer, LayerWiseDummyOptimizer): optimizer_dict = optimizer.optimizer_dict scheduler_dict = {} for param in optimizer_dict.keys(): scheduler_dict[param] = get_scheduler( name, optimizer=optimizer_dict[param], num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, ) def scheduler_hook(param): # Since the optimizer hook has been already attached we only need to # attach the scheduler hook, the gradients have been zeroed here scheduler_dict[param].step() for param in optimizer_dict.keys(): if param.requires_grad: param.register_post_accumulate_grad_hook(scheduler_hook) return LayerWiseDummyScheduler(optimizer_dict=optimizer_dict, lr=optimizer.defaults["lr"]) if name == SchedulerType.CONSTANT: return schedule_func(optimizer) if scheduler_specific_kwargs is None: scheduler_specific_kwargs = {} if name == SchedulerType.REDUCE_ON_PLATEAU: return schedule_func(optimizer, **scheduler_specific_kwargs) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.") if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(optimizer, num_warmup_steps=num_warmup_steps) if name == SchedulerType.INVERSE_SQRT: return schedule_func(optimizer, num_warmup_steps=num_warmup_steps) # wsd scheduler requires either num_training_steps or num_stable_steps if name == SchedulerType.WARMUP_STABLE_DECAY: return schedule_func( optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, **scheduler_specific_kwargs, ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.") return schedule_func( optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, **scheduler_specific_kwargs, ) class Adafactor(Optimizer): """ AdaFactor pytorch implementation can be used as a drop in replacement for Adam original fairseq code: https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py Paper: *Adafactor: Adaptive Learning Rates with Sublinear Memory Cost* https://arxiv.org/abs/1804.04235 Note that this optimizer internally adjusts the learning rate depending on the `scale_parameter`, `relative_step` and `warmup_init` options. To use a manual (external) learning rate schedule you should set `scale_parameter=False` and `relative_step=False`. Arguments: params (`Iterable[nn.parameter.Parameter]`): Iterable of parameters to optimize or dictionaries defining parameter groups. lr (`float`, *optional*): The external learning rate. eps (`Tuple[float, float]`, *optional*, defaults to `(1e-30, 0.001)`): Regularization constants for square gradient and parameter scale respectively clip_threshold (`float`, *optional*, defaults to 1.0): Threshold of root mean square of final gradient update decay_rate (`float`, *optional*, defaults to -0.8): Coefficient used to compute running averages of square beta1 (`float`, *optional*): Coefficient used for computing running averages of gradient weight_decay (`float`, *optional*, defaults to 0.0): Weight decay (L2 penalty) scale_parameter (`bool`, *optional*, defaults to `True`): If True, learning rate is scaled by root mean square relative_step (`bool`, *optional*, defaults to `True`): If True, time-dependent learning rate is computed instead of external learning rate warmup_init (`bool`, *optional*, defaults to `False`): Time-dependent learning rate computation depends on whether warm-up initialization is being used This implementation handles low-precision (FP16, bfloat) values, but we have not thoroughly tested. Recommended T5 finetuning settings (https://discuss.huggingface.co/t/t5-finetuning-tips/684/3): - Training without LR warmup or clip_threshold is not recommended. - use scheduled LR warm-up to fixed LR - use clip_threshold=1.0 (https://arxiv.org/abs/1804.04235) - Disable relative updates - Use scale_parameter=False - Additional optimizer operations like gradient clipping should not be used alongside Adafactor Example: ```python Adafactor(model.parameters(), scale_parameter=False, relative_step=False, warmup_init=False, lr=1e-3) ``` Others reported the following combination to work well: ```python Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None) ``` When using `lr=None` with [`Trainer`] you will most likely need to use [`~optimization.AdafactorSchedule`] scheduler as following: ```python from transformers.optimization import Adafactor, AdafactorSchedule optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None) lr_scheduler = AdafactorSchedule(optimizer) trainer = Trainer(..., optimizers=(optimizer, lr_scheduler)) ``` Usage: ```python # replace AdamW with Adafactor optimizer = Adafactor( model.parameters(), lr=1e-3, eps=(1e-30, 1e-3), clip_threshold=1.0, decay_rate=-0.8, beta1=None, weight_decay=0.0, relative_step=False, scale_parameter=False, warmup_init=False, ) ```""" def __init__( self, params, lr=None, eps=(1e-30, 1e-3), clip_threshold=1.0, decay_rate=-0.8, beta1=None, weight_decay=0.0, scale_parameter=True, relative_step=True, warmup_init=False, ): require_version("torch>=1.5.0") # add_ with alpha if lr is not None and relative_step: raise ValueError("Cannot combine manual `lr` and `relative_step=True` options") if warmup_init and not relative_step: raise ValueError("`warmup_init=True` requires `relative_step=True`") defaults = { "lr": lr, "eps": eps, "clip_threshold": clip_threshold, "decay_rate": decay_rate, "beta1": beta1, "weight_decay": weight_decay, "scale_parameter": scale_parameter, "relative_step": relative_step, "warmup_init": warmup_init, } super().__init__(params, defaults) @staticmethod def _get_lr(param_group, param_state): rel_step_sz = param_group["lr"] if param_group["relative_step"]: min_step = 1e-6 * param_state["step"] if param_group["warmup_init"] else 1e-2 rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"])) param_scale = 1.0 if param_group["scale_parameter"]: param_scale = max(param_group["eps"][1], param_state["RMS"]) return param_scale * rel_step_sz @staticmethod def _get_options(param_group, param_shape): factored = len(param_shape) >= 2 use_first_moment = param_group["beta1"] is not None return factored, use_first_moment @staticmethod def _rms(tensor): return tensor.norm(2) / (tensor.numel() ** 0.5) @staticmethod def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col): # copy from fairseq's adafactor implementation: # https://github.com/huggingface/transformers/blob/8395f14de6068012787d83989c3627c3df6a252b/src/transformers/optimization.py#L505 r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)).rsqrt_().unsqueeze(-1) c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt() return torch.mul(r_factor, c_factor) @torch.no_grad() def step(self, closure=None): """ Performs a single optimization step Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad if grad.dtype in {torch.float16, torch.bfloat16}: grad = grad.float() if grad.is_sparse: raise RuntimeError("Adafactor does not support sparse gradients.") state = self.state[p] grad_shape = grad.shape factored, use_first_moment = self._get_options(group, grad_shape) # State Initialization if len(state) == 0: state["step"] = 0 if use_first_moment: # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(grad) if factored: state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad) state["exp_avg_sq_col"] = torch.zeros(grad_shape[:-2] + grad_shape[-1:]).to(grad) else: state["exp_avg_sq"] = torch.zeros_like(grad) state["RMS"] = 0 else: if use_first_moment: state["exp_avg"] = state["exp_avg"].to(grad) if factored: state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad) state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad) else: state["exp_avg_sq"] = state["exp_avg_sq"].to(grad) p_data_fp32 = p if p.dtype in {torch.float16, torch.bfloat16}: p_data_fp32 = p_data_fp32.float() state["step"] += 1 state["RMS"] = self._rms(p_data_fp32) lr = self._get_lr(group, state) beta2t = 1.0 - math.pow(state["step"], group["decay_rate"]) update = (grad**2) + group["eps"][0] if factored: exp_avg_sq_row = state["exp_avg_sq_row"] exp_avg_sq_col = state["exp_avg_sq_col"] exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=(1.0 - beta2t)) exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=(1.0 - beta2t)) # Approximation of exponential moving average of square of gradient update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col) update.mul_(grad) else: exp_avg_sq = state["exp_avg_sq"] exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t)) update = exp_avg_sq.rsqrt().mul_(grad) update.div_((self._rms(update) / group["clip_threshold"]).clamp_(min=1.0)) update.mul_(lr) if use_first_moment: exp_avg = state["exp_avg"] exp_avg.mul_(group["beta1"]).add_(update, alpha=(1 - group["beta1"])) update = exp_avg if group["weight_decay"] != 0: p_data_fp32.add_(p_data_fp32, alpha=(-group["weight_decay"] * lr)) p_data_fp32.add_(-update) if p.dtype in {torch.float16, torch.bfloat16}: p.copy_(p_data_fp32) return loss class AdafactorSchedule(LambdaLR): """ Since [`~optimization.Adafactor`] performs its own scheduling, if the training loop relies on a scheduler (e.g., for logging), this class creates a proxy object that retrieves the current lr values from the optimizer. It returns `initial_lr` during startup and the actual `lr` during stepping. """ def __init__(self, optimizer, initial_lr=0.0): def lr_lambda(_): return initial_lr for group in optimizer.param_groups: group["initial_lr"] = initial_lr super().__init__(optimizer, lr_lambda) for group in optimizer.param_groups: del group["initial_lr"] def get_lr(self): opt = self.optimizer lrs = [ opt._get_lr(group, opt.state[group["params"][0]]) for group in opt.param_groups if group["params"][0].grad is not None ] if len(lrs) == 0: lrs = self.base_lrs # if called before stepping return lrs def get_adafactor_schedule(optimizer, initial_lr=0.0): """ Get a proxy schedule for [`~optimization.Adafactor`] Args: optimizer ([`~torch.optim.Optimizer`]): The optimizer for which to schedule the learning rate. initial_lr (`float`, *optional*, defaults to 0.0): Initial lr Return: [`~optimization.Adafactor`] proxy schedule object. """ return AdafactorSchedule(optimizer, initial_lr) ```
======================================================================================================================= SOURCE CODE FILE: optimization_tf.py LINES: 1 SIZE: 16.36 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\optimization_tf.py ENCODING: utf-8 ```py # Copyright 2019 The TensorFlow Authors, The Hugging Face Team. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions and classes related to optimization (weight updates).""" import re from typing import Callable, Optional, Union import tensorflow as tf try: from tf_keras.optimizers.legacy import Adam except (ImportError, ModuleNotFoundError): from tensorflow.keras.optimizers.legacy import Adam from .modeling_tf_utils import keras # This block because Keras loves randomly moving things to different places - this changed somewhere between 2.10 - 2.15 if hasattr(keras.optimizers.schedules, "learning_rate_schedule"): schedules = keras.optimizers.schedules.learning_rate_schedule else: schedules = keras.optimizers.schedules class WarmUp(schedules.LearningRateSchedule): """ Applies a warmup schedule on a given learning rate decay schedule. Args: initial_learning_rate (`float`): The initial learning rate for the schedule after the warmup (so this will be the learning rate at the end of the warmup). decay_schedule_fn (`Callable`): The schedule function to apply after the warmup for the rest of training. warmup_steps (`int`): The number of steps for the warmup part of training. power (`float`, *optional*, defaults to 1.0): The power to use for the polynomial warmup (defaults is a linear warmup). name (`str`, *optional*): Optional name prefix for the returned tensors during the schedule. """ def __init__( self, initial_learning_rate: float, decay_schedule_fn: Callable, warmup_steps: int, power: float = 1.0, name: Optional[str] = None, ): super().__init__() self.initial_learning_rate = initial_learning_rate self.warmup_steps = warmup_steps self.power = power self.decay_schedule_fn = decay_schedule_fn self.name = name def __call__(self, step): with tf.name_scope(self.name or "WarmUp") as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. global_step_float = tf.cast(step, tf.float32) warmup_steps_float = tf.cast(self.warmup_steps, tf.float32) warmup_percent_done = global_step_float / warmup_steps_float warmup_learning_rate = self.initial_learning_rate * tf.math.pow(warmup_percent_done, self.power) return tf.cond( global_step_float < warmup_steps_float, lambda: warmup_learning_rate, lambda: self.decay_schedule_fn(step - self.warmup_steps), name=name, ) def get_config(self): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def create_optimizer( init_lr: float, num_train_steps: int, num_warmup_steps: int, min_lr_ratio: float = 0.0, adam_beta1: float = 0.9, adam_beta2: float = 0.999, adam_epsilon: float = 1e-8, adam_clipnorm: Optional[float] = None, adam_global_clipnorm: Optional[float] = None, weight_decay_rate: float = 0.0, power: float = 1.0, include_in_weight_decay: Optional[list[str]] = None, ): """ Creates an optimizer with a learning rate schedule using a warmup phase followed by a linear decay. Args: init_lr (`float`): The desired learning rate at the end of the warmup phase. num_train_steps (`int`): The total number of training steps. num_warmup_steps (`int`): The number of warmup steps. min_lr_ratio (`float`, *optional*, defaults to 0): The final learning rate at the end of the linear decay will be `init_lr * min_lr_ratio`. adam_beta1 (`float`, *optional*, defaults to 0.9): The beta1 to use in Adam. adam_beta2 (`float`, *optional*, defaults to 0.999): The beta2 to use in Adam. adam_epsilon (`float`, *optional*, defaults to 1e-8): The epsilon to use in Adam. adam_clipnorm (`float`, *optional*, defaults to `None`): If not `None`, clip the gradient norm for each weight tensor to this value. adam_global_clipnorm (`float`, *optional*, defaults to `None`) If not `None`, clip gradient norm to this value. When using this argument, the norm is computed over all weight tensors, as if they were concatenated into a single vector. weight_decay_rate (`float`, *optional*, defaults to 0): The weight decay to use. power (`float`, *optional*, defaults to 1.0): The power to use for PolynomialDecay. include_in_weight_decay (`List[str]`, *optional*): List of the parameter names (or re patterns) to apply weight decay to. If none is passed, weight decay is applied to all parameters except bias and layer norm parameters. """ # Implements linear decay of the learning rate. lr_schedule = schedules.PolynomialDecay( initial_learning_rate=init_lr, decay_steps=num_train_steps - num_warmup_steps, end_learning_rate=init_lr * min_lr_ratio, power=power, ) if num_warmup_steps: lr_schedule = WarmUp( initial_learning_rate=init_lr, decay_schedule_fn=lr_schedule, warmup_steps=num_warmup_steps, ) if weight_decay_rate > 0.0: optimizer = AdamWeightDecay( learning_rate=lr_schedule, weight_decay_rate=weight_decay_rate, beta_1=adam_beta1, beta_2=adam_beta2, epsilon=adam_epsilon, clipnorm=adam_clipnorm, global_clipnorm=adam_global_clipnorm, exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"], include_in_weight_decay=include_in_weight_decay, ) else: optimizer = keras.optimizers.Adam( learning_rate=lr_schedule, beta_1=adam_beta1, beta_2=adam_beta2, epsilon=adam_epsilon, clipnorm=adam_clipnorm, global_clipnorm=adam_global_clipnorm, ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class AdamWeightDecay(Adam): """ Adam enables L2 weight decay and clip_by_global_norm on gradients. Just adding the square of the weights to the loss function is *not* the correct way of using L2 regularization/weight decay with Adam, since that will interact with the m and v parameters in strange ways as shown in [Decoupled Weight Decay Regularization](https://arxiv.org/abs/1711.05101). Instead we want to decay the weights in a manner that doesn't interact with the m/v parameters. This is equivalent to adding the square of the weights to the loss with plain (non-momentum) SGD. Args: learning_rate (`Union[float, LearningRateSchedule]`, *optional*, defaults to 0.001): The learning rate to use or a schedule. beta_1 (`float`, *optional*, defaults to 0.9): The beta1 parameter in Adam, which is the exponential decay rate for the 1st momentum estimates. beta_2 (`float`, *optional*, defaults to 0.999): The beta2 parameter in Adam, which is the exponential decay rate for the 2nd momentum estimates. epsilon (`float`, *optional*, defaults to 1e-07): The epsilon parameter in Adam, which is a small constant for numerical stability. amsgrad (`bool`, *optional*, defaults to `False`): Whether to apply AMSGrad variant of this algorithm or not, see [On the Convergence of Adam and Beyond](https://arxiv.org/abs/1904.09237). weight_decay_rate (`float`, *optional*, defaults to 0.0): The weight decay to apply. include_in_weight_decay (`List[str]`, *optional*): List of the parameter names (or re patterns) to apply weight decay to. If none is passed, weight decay is applied to all parameters by default (unless they are in `exclude_from_weight_decay`). exclude_from_weight_decay (`List[str]`, *optional*): List of the parameter names (or re patterns) to exclude from applying weight decay to. If a `include_in_weight_decay` is passed, the names in it will supersede this list. name (`str`, *optional*, defaults to `"AdamWeightDecay"`): Optional name for the operations created when applying gradients. kwargs (`Dict[str, Any]`, *optional*): Keyword arguments. Allowed to be {`clipnorm`, `clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients by norm; `clipvalue` is clip gradients by value, `decay` is included for backward compatibility to allow time inverse decay of learning rate. `lr` is included for backward compatibility, recommended to use `learning_rate` instead. """ def __init__( self, learning_rate: Union[float, schedules.LearningRateSchedule] = 0.001, beta_1: float = 0.9, beta_2: float = 0.999, epsilon: float = 1e-7, amsgrad: bool = False, weight_decay_rate: float = 0.0, include_in_weight_decay: Optional[list[str]] = None, exclude_from_weight_decay: Optional[list[str]] = None, name: str = "AdamWeightDecay", **kwargs, ): super().__init__(learning_rate, beta_1, beta_2, epsilon, amsgrad, name, **kwargs) self.weight_decay_rate = weight_decay_rate self._include_in_weight_decay = include_in_weight_decay self._exclude_from_weight_decay = exclude_from_weight_decay @classmethod def from_config(cls, config): """Creates an optimizer from its config with WarmUp custom object.""" custom_objects = {"WarmUp": WarmUp} return super().from_config(config, custom_objects=custom_objects) def _prepare_local(self, var_device, var_dtype, apply_state): super()._prepare_local(var_device, var_dtype, apply_state) apply_state[(var_device, var_dtype)]["weight_decay_rate"] = tf.constant( self.weight_decay_rate, name="adam_weight_decay_rate" ) def _decay_weights_op(self, var, learning_rate, apply_state): do_decay = self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"], use_locking=self._use_locking, ) return tf.no_op() def apply_gradients(self, grads_and_vars, name=None, **kwargs): grads, tvars = list(zip(*grads_and_vars)) return super().apply_gradients(zip(grads, tvars), name=name, **kwargs) def _get_lr(self, var_device, var_dtype, apply_state): """Retrieves the learning rate with the given state.""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} apply_state = apply_state or {} coefficients = apply_state.get((var_device, var_dtype)) if coefficients is None: coefficients = self._fallback_apply_state(var_device, var_dtype) apply_state[(var_device, var_dtype)] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _resource_apply_dense(self, grad, var, apply_state=None): lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state) decay = self._decay_weights_op(var, lr_t, apply_state) with tf.control_dependencies([decay]): return super()._resource_apply_dense(grad, var, **kwargs) def _resource_apply_sparse(self, grad, var, indices, apply_state=None): lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state) decay = self._decay_weights_op(var, lr_t, apply_state) with tf.control_dependencies([decay]): return super()._resource_apply_sparse(grad, var, indices, **kwargs) def get_config(self): config = super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate}) return config def _do_use_weight_decay(self, param_name): """Whether to use L2 weight decay for `param_name`.""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(r, param_name) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(r, param_name) is not None: return False return True # Extracted from https://github.com/OpenNMT/OpenNMT-tf/blob/master/opennmt/optimizers/utils.py class GradientAccumulator: """ Gradient accumulation utility. When used with a distribution strategy, the accumulator should be called in a replica context. Gradients will be accumulated locally on each replica and without synchronization. Users should then call `.gradients`, scale the gradients if required, and pass the result to `apply_gradients`. """ # We use the ON_READ synchronization policy so that no synchronization is # performed on assignment. To get the value, we call .value() which returns the # value on the current replica without synchronization. def __init__(self): """Initializes the accumulator.""" self._gradients = [] self._accum_steps = None @property def step(self): """Number of accumulated steps.""" if self._accum_steps is None: self._accum_steps = tf.Variable( tf.constant(0, dtype=tf.int64), trainable=False, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) return self._accum_steps.value() @property def gradients(self): """The accumulated gradients on the current replica.""" if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients") return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__(self, gradients): """Accumulates `gradients` on the current replica.""" if not self._gradients: _ = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(gradient), trainable=False, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) if gradient is not None else gradient for gradient in gradients ] ) if len(gradients) != len(self._gradients): raise ValueError(f"Expected {len(self._gradients)} gradients, but got {len(gradients)}") for accum_gradient, gradient in zip(self._gradients, gradients): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(gradient) self._accum_steps.assign_add(1) def reset(self): """Resets the accumulated gradients on the current replica.""" if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(gradient)) ```
========================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 2 SIZE: 54.04 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\__init__.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import warnings from pathlib import Path from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union from huggingface_hub import model_info from ..configuration_utils import PretrainedConfig from ..dynamic_module_utils import get_class_from_dynamic_module from ..feature_extraction_utils import PreTrainedFeatureExtractor from ..image_processing_utils import BaseImageProcessor from ..models.auto.configuration_auto import AutoConfig from ..models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING, AutoFeatureExtractor from ..models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING, AutoImageProcessor from ..models.auto.modeling_auto import AutoModelForDepthEstimation, AutoModelForImageToImage from ..models.auto.processing_auto import PROCESSOR_MAPPING, AutoProcessor from ..models.auto.tokenization_auto import TOKENIZER_MAPPING, AutoTokenizer from ..processing_utils import ProcessorMixin from ..tokenization_utils import PreTrainedTokenizer from ..utils import ( CONFIG_NAME, HUGGINGFACE_CO_RESOLVE_ENDPOINT, cached_file, extract_commit_hash, find_adapter_config_file, is_kenlm_available, is_offline_mode, is_peft_available, is_pyctcdecode_available, is_tf_available, is_torch_available, logging, ) from .audio_classification import AudioClassificationPipeline from .automatic_speech_recognition import AutomaticSpeechRecognitionPipeline from .base import ( ArgumentHandler, CsvPipelineDataFormat, JsonPipelineDataFormat, PipedPipelineDataFormat, Pipeline, PipelineDataFormat, PipelineException, PipelineRegistry, get_default_model_and_revision, infer_framework_load_model, ) from .depth_estimation import DepthEstimationPipeline from .document_question_answering import DocumentQuestionAnsweringPipeline from .feature_extraction import FeatureExtractionPipeline from .fill_mask import FillMaskPipeline from .image_classification import ImageClassificationPipeline from .image_feature_extraction import ImageFeatureExtractionPipeline from .image_segmentation import ImageSegmentationPipeline from .image_text_to_text import ImageTextToTextPipeline from .image_to_image import ImageToImagePipeline from .image_to_text import ImageToTextPipeline from .mask_generation import MaskGenerationPipeline from .object_detection import ObjectDetectionPipeline from .question_answering import QuestionAnsweringArgumentHandler, QuestionAnsweringPipeline from .table_question_answering import TableQuestionAnsweringArgumentHandler, TableQuestionAnsweringPipeline from .text2text_generation import SummarizationPipeline, Text2TextGenerationPipeline, TranslationPipeline from .text_classification import TextClassificationPipeline from .text_generation import TextGenerationPipeline from .text_to_audio import TextToAudioPipeline from .token_classification import ( AggregationStrategy, NerPipeline, TokenClassificationArgumentHandler, TokenClassificationPipeline, ) from .video_classification import VideoClassificationPipeline from .visual_question_answering import VisualQuestionAnsweringPipeline from .zero_shot_audio_classification import ZeroShotAudioClassificationPipeline from .zero_shot_classification import ZeroShotClassificationArgumentHandler, ZeroShotClassificationPipeline from .zero_shot_image_classification import ZeroShotImageClassificationPipeline from .zero_shot_object_detection import ZeroShotObjectDetectionPipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForImageClassification, TFAutoModelForMaskedLM, TFAutoModelForQuestionAnswering, TFAutoModelForSeq2SeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelForVision2Seq, TFAutoModelForZeroShotImageClassification, ) if is_torch_available(): import torch from ..models.auto.modeling_auto import ( AutoModel, AutoModelForAudioClassification, AutoModelForCausalLM, AutoModelForCTC, AutoModelForDocumentQuestionAnswering, AutoModelForImageClassification, AutoModelForImageSegmentation, AutoModelForImageTextToText, AutoModelForMaskedLM, AutoModelForMaskGeneration, AutoModelForObjectDetection, AutoModelForQuestionAnswering, AutoModelForSemanticSegmentation, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForSpeechSeq2Seq, AutoModelForTableQuestionAnswering, AutoModelForTextToSpectrogram, AutoModelForTextToWaveform, AutoModelForTokenClassification, AutoModelForVideoClassification, AutoModelForVision2Seq, AutoModelForVisualQuestionAnswering, AutoModelForZeroShotImageClassification, AutoModelForZeroShotObjectDetection, ) if TYPE_CHECKING: from ..modeling_tf_utils import TFPreTrainedModel from ..modeling_utils import PreTrainedModel from ..tokenization_utils_fast import PreTrainedTokenizerFast logger = logging.get_logger(__name__) # Register all the supported tasks here TASK_ALIASES = { "sentiment-analysis": "text-classification", "ner": "token-classification", "vqa": "visual-question-answering", "text-to-speech": "text-to-audio", } SUPPORTED_TASKS = { "audio-classification": { "impl": AudioClassificationPipeline, "tf": (), "pt": (AutoModelForAudioClassification,) if is_torch_available() else (), "default": {"model": {"pt": ("superb/wav2vec2-base-superb-ks", "372e048")}}, "type": "audio", }, "automatic-speech-recognition": { "impl": AutomaticSpeechRecognitionPipeline, "tf": (), "pt": (AutoModelForCTC, AutoModelForSpeechSeq2Seq) if is_torch_available() else (), "default": {"model": {"pt": ("facebook/wav2vec2-base-960h", "22aad52")}}, "type": "multimodal", }, "text-to-audio": { "impl": TextToAudioPipeline, "tf": (), "pt": (AutoModelForTextToWaveform, AutoModelForTextToSpectrogram) if is_torch_available() else (), "default": {"model": {"pt": ("suno/bark-small", "1dbd7a1")}}, "type": "text", }, "feature-extraction": { "impl": FeatureExtractionPipeline, "tf": (TFAutoModel,) if is_tf_available() else (), "pt": (AutoModel,) if is_torch_available() else (), "default": { "model": { "pt": ("distilbert/distilbert-base-cased", "6ea8117"), "tf": ("distilbert/distilbert-base-cased", "6ea8117"), } }, "type": "multimodal", }, "text-classification": { "impl": TextClassificationPipeline, "tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (), "pt": (AutoModelForSequenceClassification,) if is_torch_available() else (), "default": { "model": { "pt": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "714eb0f"), "tf": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "714eb0f"), }, }, "type": "text", }, "token-classification": { "impl": TokenClassificationPipeline, "tf": (TFAutoModelForTokenClassification,) if is_tf_available() else (), "pt": (AutoModelForTokenClassification,) if is_torch_available() else (), "default": { "model": { "pt": ("dbmdz/bert-large-cased-finetuned-conll03-english", "4c53496"), "tf": ("dbmdz/bert-large-cased-finetuned-conll03-english", "4c53496"), }, }, "type": "text", }, "question-answering": { "impl": QuestionAnsweringPipeline, "tf": (TFAutoModelForQuestionAnswering,) if is_tf_available() else (), "pt": (AutoModelForQuestionAnswering,) if is_torch_available() else (), "default": { "model": { "pt": ("distilbert/distilbert-base-cased-distilled-squad", "564e9b5"), "tf": ("distilbert/distilbert-base-cased-distilled-squad", "564e9b5"), }, }, "type": "text", }, "table-question-answering": { "impl": TableQuestionAnsweringPipeline, "pt": (AutoModelForTableQuestionAnswering,) if is_torch_available() else (), "tf": (TFAutoModelForTableQuestionAnswering,) if is_tf_available() else (), "default": { "model": { "pt": ("google/tapas-base-finetuned-wtq", "e3dde19"), "tf": ("google/tapas-base-finetuned-wtq", "e3dde19"), }, }, "type": "text", }, "visual-question-answering": { "impl": VisualQuestionAnsweringPipeline, "pt": (AutoModelForVisualQuestionAnswering,) if is_torch_available() else (), "tf": (), "default": { "model": {"pt": ("dandelin/vilt-b32-finetuned-vqa", "d0a1f6a")}, }, "type": "multimodal", }, "document-question-answering": { "impl": DocumentQuestionAnsweringPipeline, "pt": (AutoModelForDocumentQuestionAnswering,) if is_torch_available() else (), "tf": (), "default": { "model": {"pt": ("impira/layoutlm-document-qa", "beed3c4")}, }, "type": "multimodal", }, "fill-mask": { "impl": FillMaskPipeline, "tf": (TFAutoModelForMaskedLM,) if is_tf_available() else (), "pt": (AutoModelForMaskedLM,) if is_torch_available() else (), "default": { "model": { "pt": ("distilbert/distilroberta-base", "fb53ab8"), "tf": ("distilbert/distilroberta-base", "fb53ab8"), } }, "type": "text", }, "summarization": { "impl": SummarizationPipeline, "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (), "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (), "default": { "model": {"pt": ("sshleifer/distilbart-cnn-12-6", "a4f8f3e"), "tf": ("google-t5/t5-small", "df1b051")} }, "type": "text", }, # This task is a special case as it's parametrized by SRC, TGT languages. "translation": { "impl": TranslationPipeline, "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (), "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (), "default": { ("en", "fr"): {"model": {"pt": ("google-t5/t5-base", "a9723ea"), "tf": ("google-t5/t5-base", "a9723ea")}}, ("en", "de"): {"model": {"pt": ("google-t5/t5-base", "a9723ea"), "tf": ("google-t5/t5-base", "a9723ea")}}, ("en", "ro"): {"model": {"pt": ("google-t5/t5-base", "a9723ea"), "tf": ("google-t5/t5-base", "a9723ea")}}, }, "type": "text", }, "text2text-generation": { "impl": Text2TextGenerationPipeline, "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (), "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (), "default": {"model": {"pt": ("google-t5/t5-base", "a9723ea"), "tf": ("google-t5/t5-base", "a9723ea")}}, "type": "text", }, "text-generation": { "impl": TextGenerationPipeline, "tf": (TFAutoModelForCausalLM,) if is_tf_available() else (), "pt": (AutoModelForCausalLM,) if is_torch_available() else (), "default": {"model": {"pt": ("openai-community/gpt2", "607a30d"), "tf": ("openai-community/gpt2", "607a30d")}}, "type": "text", }, "zero-shot-classification": { "impl": ZeroShotClassificationPipeline, "tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (), "pt": (AutoModelForSequenceClassification,) if is_torch_available() else (), "default": { "model": { "pt": ("facebook/bart-large-mnli", "d7645e1"), "tf": ("FacebookAI/roberta-large-mnli", "2a8f12d"), }, "config": { "pt": ("facebook/bart-large-mnli", "d7645e1"), "tf": ("FacebookAI/roberta-large-mnli", "2a8f12d"), }, }, "type": "text", }, "zero-shot-image-classification": { "impl": ZeroShotImageClassificationPipeline, "tf": (TFAutoModelForZeroShotImageClassification,) if is_tf_available() else (), "pt": (AutoModelForZeroShotImageClassification,) if is_torch_available() else (), "default": { "model": { "pt": ("openai/clip-vit-base-patch32", "3d74acf"), "tf": ("openai/clip-vit-base-patch32", "3d74acf"), } }, "type": "multimodal", }, "zero-shot-audio-classification": { "impl": ZeroShotAudioClassificationPipeline, "tf": (), "pt": (AutoModel,) if is_torch_available() else (), "default": { "model": { "pt": ("laion/clap-htsat-fused", "cca9e28"), } }, "type": "multimodal", }, "image-classification": { "impl": ImageClassificationPipeline, "tf": (TFAutoModelForImageClassification,) if is_tf_available() else (), "pt": (AutoModelForImageClassification,) if is_torch_available() else (), "default": { "model": { "pt": ("google/vit-base-patch16-224", "3f49326"), "tf": ("google/vit-base-patch16-224", "3f49326"), } }, "type": "image", }, "image-feature-extraction": { "impl": ImageFeatureExtractionPipeline, "tf": (TFAutoModel,) if is_tf_available() else (), "pt": (AutoModel,) if is_torch_available() else (), "default": { "model": { "pt": ("google/vit-base-patch16-224", "3f49326"), "tf": ("google/vit-base-patch16-224", "3f49326"), } }, "type": "image", }, "image-segmentation": { "impl": ImageSegmentationPipeline, "tf": (), "pt": (AutoModelForImageSegmentation, AutoModelForSemanticSegmentation) if is_torch_available() else (), "default": {"model": {"pt": ("facebook/detr-resnet-50-panoptic", "d53b52a")}}, "type": "multimodal", }, "image-to-text": { "impl": ImageToTextPipeline, "tf": (TFAutoModelForVision2Seq,) if is_tf_available() else (), "pt": (AutoModelForVision2Seq,) if is_torch_available() else (), "default": { "model": { "pt": ("ydshieh/vit-gpt2-coco-en", "5bebf1e"), "tf": ("ydshieh/vit-gpt2-coco-en", "5bebf1e"), } }, "type": "multimodal", }, "image-text-to-text": { "impl": ImageTextToTextPipeline, "tf": (), "pt": (AutoModelForImageTextToText,) if is_torch_available() else (), "default": { "model": { "pt": ("llava-hf/llava-onevision-qwen2-0.5b-ov-hf", "2c9ba3b"), } }, "type": "multimodal", }, "object-detection": { "impl": ObjectDetectionPipeline, "tf": (), "pt": (AutoModelForObjectDetection,) if is_torch_available() else (), "default": {"model": {"pt": ("facebook/detr-resnet-50", "1d5f47b")}}, "type": "multimodal", }, "zero-shot-object-detection": { "impl": ZeroShotObjectDetectionPipeline, "tf": (), "pt": (AutoModelForZeroShotObjectDetection,) if is_torch_available() else (), "default": {"model": {"pt": ("google/owlvit-base-patch32", "cbc355f")}}, "type": "multimodal", }, "depth-estimation": { "impl": DepthEstimationPipeline, "tf": (), "pt": (AutoModelForDepthEstimation,) if is_torch_available() else (), "default": {"model": {"pt": ("Intel/dpt-large", "bc15f29")}}, "type": "image", }, "video-classification": { "impl": VideoClassificationPipeline, "tf": (), "pt": (AutoModelForVideoClassification,) if is_torch_available() else (), "default": {"model": {"pt": ("MCG-NJU/videomae-base-finetuned-kinetics", "488eb9a")}}, "type": "video", }, "mask-generation": { "impl": MaskGenerationPipeline, "tf": (), "pt": (AutoModelForMaskGeneration,) if is_torch_available() else (), "default": {"model": {"pt": ("facebook/sam-vit-huge", "87aecf0")}}, "type": "multimodal", }, "image-to-image": { "impl": ImageToImagePipeline, "tf": (), "pt": (AutoModelForImageToImage,) if is_torch_available() else (), "default": {"model": {"pt": ("caidas/swin2SR-classical-sr-x2-64", "cee1c92")}}, "type": "image", }, } NO_FEATURE_EXTRACTOR_TASKS = set() NO_IMAGE_PROCESSOR_TASKS = set() NO_TOKENIZER_TASKS = set() # Those model configs are special, they are generic over their task, meaning # any tokenizer/feature_extractor might be use for a given model so we cannot # use the statically defined TOKENIZER_MAPPING and FEATURE_EXTRACTOR_MAPPING to # see if the model defines such objects or not. MULTI_MODEL_AUDIO_CONFIGS = {"SpeechEncoderDecoderConfig"} MULTI_MODEL_VISION_CONFIGS = {"VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig"} for task, values in SUPPORTED_TASKS.items(): if values["type"] == "text": NO_FEATURE_EXTRACTOR_TASKS.add(task) NO_IMAGE_PROCESSOR_TASKS.add(task) elif values["type"] in {"image", "video"}: NO_TOKENIZER_TASKS.add(task) elif values["type"] in {"audio"}: NO_TOKENIZER_TASKS.add(task) NO_IMAGE_PROCESSOR_TASKS.add(task) elif values["type"] != "multimodal": raise ValueError(f"SUPPORTED_TASK {task} contains invalid type {values['type']}") PIPELINE_REGISTRY = PipelineRegistry(supported_tasks=SUPPORTED_TASKS, task_aliases=TASK_ALIASES) def get_supported_tasks() -> List[str]: """ Returns a list of supported task strings. """ return PIPELINE_REGISTRY.get_supported_tasks() def get_task(model: str, token: Optional[str] = None, **deprecated_kwargs) -> str: use_auth_token = deprecated_kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token if is_offline_mode(): raise RuntimeError("You cannot infer task automatically within `pipeline` when using offline mode") try: info = model_info(model, token=token) except Exception as e: raise RuntimeError(f"Instantiating a pipeline without a task set raised an error: {e}") if not info.pipeline_tag: raise RuntimeError( f"The model {model} does not seem to have a correct `pipeline_tag` set to infer the task automatically" ) if getattr(info, "library_name", "transformers") not in {"transformers", "timm"}: raise RuntimeError(f"This model is meant to be used with {info.library_name} not with transformers") task = info.pipeline_tag return task def check_task(task: str) -> Tuple[str, Dict, Any]: """ Checks an incoming task string, to validate it's correct and return the default Pipeline and Model classes, and default models if they exist. Args: task (`str`): The task defining which pipeline will be returned. Currently accepted tasks are: - `"audio-classification"` - `"automatic-speech-recognition"` - `"conversational"` - `"depth-estimation"` - `"document-question-answering"` - `"feature-extraction"` - `"fill-mask"` - `"image-classification"` - `"image-feature-extraction"` - `"image-segmentation"` - `"image-to-text"` - `"image-to-image"` - `"object-detection"` - `"question-answering"` - `"summarization"` - `"table-question-answering"` - `"text2text-generation"` - `"text-classification"` (alias `"sentiment-analysis"` available) - `"text-generation"` - `"text-to-audio"` (alias `"text-to-speech"` available) - `"token-classification"` (alias `"ner"` available) - `"translation"` - `"translation_xx_to_yy"` - `"video-classification"` - `"visual-question-answering"` (alias `"vqa"` available) - `"zero-shot-classification"` - `"zero-shot-image-classification"` - `"zero-shot-object-detection"` Returns: (normalized_task: `str`, task_defaults: `dict`, task_options: (`tuple`, None)) The normalized task name (removed alias and options). The actual dictionary required to initialize the pipeline and some extra task options for parametrized tasks like "translation_XX_to_YY" """ return PIPELINE_REGISTRY.check_task(task) def clean_custom_task(task_info): import transformers if "impl" not in task_info: raise RuntimeError("This model introduces a custom pipeline without specifying its implementation.") pt_class_names = task_info.get("pt", ()) if isinstance(pt_class_names, str): pt_class_names = [pt_class_names] task_info["pt"] = tuple(getattr(transformers, c) for c in pt_class_names) tf_class_names = task_info.get("tf", ()) if isinstance(tf_class_names, str): tf_class_names = [tf_class_names] task_info["tf"] = tuple(getattr(transformers, c) for c in tf_class_names) return task_info, None def pipeline( task: Optional[str] = None, model: Optional[Union[str, "PreTrainedModel", "TFPreTrainedModel"]] = None, config: Optional[Union[str, PretrainedConfig]] = None, tokenizer: Optional[Union[str, PreTrainedTokenizer, "PreTrainedTokenizerFast"]] = None, feature_extractor: Optional[Union[str, PreTrainedFeatureExtractor]] = None, image_processor: Optional[Union[str, BaseImageProcessor]] = None, processor: Optional[Union[str, ProcessorMixin]] = None, framework: Optional[str] = None, revision: Optional[str] = None, use_fast: bool = True, token: Optional[Union[str, bool]] = None, device: Optional[Union[int, str, "torch.device"]] = None, device_map=None, torch_dtype=None, trust_remote_code: Optional[bool] = None, model_kwargs: Optional[Dict[str, Any]] = None, pipeline_class: Optional[Any] = None, **kwargs, ) -> Pipeline: """ Utility factory method to build a [`Pipeline`]. A pipeline consists of: - One or more components for pre-processing model inputs, such as a [tokenizer](tokenizer), [image_processor](image_processor), [feature_extractor](feature_extractor), or [processor](processors). - A [model](model) that generates predictions from the inputs. - Optional post-processing steps to refine the model's output, which can also be handled by processors. <Tip> While there are such optional arguments as `tokenizer`, `feature_extractor`, `image_processor`, and `processor`, they shouldn't be specified all at once. If these components are not provided, `pipeline` will try to load required ones automatically. In case you want to provide these components explicitly, please refer to a specific pipeline in order to get more details regarding what components are required. </Tip> Args: task (`str`): The task defining which pipeline will be returned. Currently accepted tasks are: - `"audio-classification"`: will return a [`AudioClassificationPipeline`]. - `"automatic-speech-recognition"`: will return a [`AutomaticSpeechRecognitionPipeline`]. - `"depth-estimation"`: will return a [`DepthEstimationPipeline`]. - `"document-question-answering"`: will return a [`DocumentQuestionAnsweringPipeline`]. - `"feature-extraction"`: will return a [`FeatureExtractionPipeline`]. - `"fill-mask"`: will return a [`FillMaskPipeline`]:. - `"image-classification"`: will return a [`ImageClassificationPipeline`]. - `"image-feature-extraction"`: will return an [`ImageFeatureExtractionPipeline`]. - `"image-segmentation"`: will return a [`ImageSegmentationPipeline`]. - `"image-text-to-text"`: will return a [`ImageTextToTextPipeline`]. - `"image-to-image"`: will return a [`ImageToImagePipeline`]. - `"image-to-text"`: will return a [`ImageToTextPipeline`]. - `"mask-generation"`: will return a [`MaskGenerationPipeline`]. - `"object-detection"`: will return a [`ObjectDetectionPipeline`]. - `"question-answering"`: will return a [`QuestionAnsweringPipeline`]. - `"summarization"`: will return a [`SummarizationPipeline`]. - `"table-question-answering"`: will return a [`TableQuestionAnsweringPipeline`]. - `"text2text-generation"`: will return a [`Text2TextGenerationPipeline`]. - `"text-classification"` (alias `"sentiment-analysis"` available): will return a [`TextClassificationPipeline`]. - `"text-generation"`: will return a [`TextGenerationPipeline`]:. - `"text-to-audio"` (alias `"text-to-speech"` available): will return a [`TextToAudioPipeline`]:. - `"token-classification"` (alias `"ner"` available): will return a [`TokenClassificationPipeline`]. - `"translation"`: will return a [`TranslationPipeline`]. - `"translation_xx_to_yy"`: will return a [`TranslationPipeline`]. - `"video-classification"`: will return a [`VideoClassificationPipeline`]. - `"visual-question-answering"`: will return a [`VisualQuestionAnsweringPipeline`]. - `"zero-shot-classification"`: will return a [`ZeroShotClassificationPipeline`]. - `"zero-shot-image-classification"`: will return a [`ZeroShotImageClassificationPipeline`]. - `"zero-shot-audio-classification"`: will return a [`ZeroShotAudioClassificationPipeline`]. - `"zero-shot-object-detection"`: will return a [`ZeroShotObjectDetectionPipeline`]. model (`str` or [`PreTrainedModel`] or [`TFPreTrainedModel`], *optional*): The model that will be used by the pipeline to make predictions. This can be a model identifier or an actual instance of a pretrained model inheriting from [`PreTrainedModel`] (for PyTorch) or [`TFPreTrainedModel`] (for TensorFlow). If not provided, the default for the `task` will be loaded. config (`str` or [`PretrainedConfig`], *optional*): The configuration that will be used by the pipeline to instantiate the model. This can be a model identifier or an actual pretrained model configuration inheriting from [`PretrainedConfig`]. If not provided, the default configuration file for the requested model will be used. That means that if `model` is given, its default configuration will be used. However, if `model` is not supplied, this `task`'s default model's config is used instead. tokenizer (`str` or [`PreTrainedTokenizer`], *optional*): The tokenizer that will be used by the pipeline to encode data for the model. This can be a model identifier or an actual pretrained tokenizer inheriting from [`PreTrainedTokenizer`]. If not provided, the default tokenizer for the given `model` will be loaded (if it is a string). If `model` is not specified or not a string, then the default tokenizer for `config` is loaded (if it is a string). However, if `config` is also not given or not a string, then the default tokenizer for the given `task` will be loaded. feature_extractor (`str` or [`PreTrainedFeatureExtractor`], *optional*): The feature extractor that will be used by the pipeline to encode data for the model. This can be a model identifier or an actual pretrained feature extractor inheriting from [`PreTrainedFeatureExtractor`]. Feature extractors are used for non-NLP models, such as Speech or Vision models as well as multi-modal models. Multi-modal models will also require a tokenizer to be passed. If not provided, the default feature extractor for the given `model` will be loaded (if it is a string). If `model` is not specified or not a string, then the default feature extractor for `config` is loaded (if it is a string). However, if `config` is also not given or not a string, then the default feature extractor for the given `task` will be loaded. image_processor (`str` or [`BaseImageProcessor`], *optional*): The image processor that will be used by the pipeline to preprocess images for the model. This can be a model identifier or an actual image processor inheriting from [`BaseImageProcessor`]. Image processors are used for Vision models and multi-modal models that require image inputs. Multi-modal models will also require a tokenizer to be passed. If not provided, the default image processor for the given `model` will be loaded (if it is a string). If `model` is not specified or not a string, then the default image processor for `config` is loaded (if it is a string). processor (`str` or [`ProcessorMixin`], *optional*): The processor that will be used by the pipeline to preprocess data for the model. This can be a model identifier or an actual processor inheriting from [`ProcessorMixin`]. Processors are used for multi-modal models that require multi-modal inputs, for example, a model that requires both text and image inputs. If not provided, the default processor for the given `model` will be loaded (if it is a string). If `model` is not specified or not a string, then the default processor for `config` is loaded (if it is a string). framework (`str`, *optional*): The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided. revision (`str`, *optional*, defaults to `"main"`): When passing a task name or a string model identifier: The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. use_fast (`bool`, *optional*, defaults to `True`): Whether or not to use a Fast tokenizer if possible (a [`PreTrainedTokenizerFast`]). use_auth_token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). device (`int` or `str` or `torch.device`): Defines the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank like `1`) on which this pipeline will be allocated. device_map (`str` or `Dict[str, Union[int, str, torch.device]`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut). When `accelerate` library is present, set `device_map="auto"` to compute the most optimized `device_map` automatically (see [here](https://huggingface.co/docs/accelerate/main/en/package_reference/big_modeling#accelerate.cpu_offload) for more information). <Tip warning={true}> Do not use `device_map` AND `device` at the same time as they will conflict </Tip> torch_dtype (`str` or `torch.dtype`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model (`torch.float16`, `torch.bfloat16`, ... or `"auto"`). trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom code defined on the Hub in their own modeling, configuration, tokenization or even pipeline files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. model_kwargs (`Dict[str, Any]`, *optional*): Additional dictionary of keyword arguments passed along to the model's `from_pretrained(..., **model_kwargs)` function. kwargs (`Dict[str, Any]`, *optional*): Additional keyword arguments passed along to the specific pipeline init (see the documentation for the corresponding pipeline class for possible values). Returns: [`Pipeline`]: A suitable pipeline for the task. Examples: ```python >>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer >>> # Sentiment analysis pipeline >>> analyzer = pipeline("sentiment-analysis") >>> # Question answering pipeline, specifying the checkpoint identifier >>> oracle = pipeline( ... "question-answering", model="distilbert/distilbert-base-cased-distilled-squad", tokenizer="google-bert/bert-base-cased" ... ) >>> # Named entity recognition pipeline, passing in a specific model and tokenizer >>> model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english") >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased") >>> recognizer = pipeline("ner", model=model, tokenizer=tokenizer) ```""" if model_kwargs is None: model_kwargs = {} # Make sure we only pass use_auth_token once as a kwarg (it used to be possible to pass it in model_kwargs, # this is to keep BC). use_auth_token = model_kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token code_revision = kwargs.pop("code_revision", None) commit_hash = kwargs.pop("_commit_hash", None) hub_kwargs = { "revision": revision, "token": token, "trust_remote_code": trust_remote_code, "_commit_hash": commit_hash, } if task is None and model is None: raise RuntimeError( "Impossible to instantiate a pipeline without either a task or a model " "being specified. " "Please provide a task class or a model" ) if model is None and tokenizer is not None: raise RuntimeError( "Impossible to instantiate a pipeline with tokenizer specified but not the model as the provided tokenizer" " may not be compatible with the default model. Please provide a PreTrainedModel class or a" " path/identifier to a pretrained model when providing tokenizer." ) if model is None and feature_extractor is not None: raise RuntimeError( "Impossible to instantiate a pipeline with feature_extractor specified but not the model as the provided" " feature_extractor may not be compatible with the default model. Please provide a PreTrainedModel class" " or a path/identifier to a pretrained model when providing feature_extractor." ) if isinstance(model, Path): model = str(model) if commit_hash is None: pretrained_model_name_or_path = None if isinstance(config, str): pretrained_model_name_or_path = config elif config is None and isinstance(model, str): pretrained_model_name_or_path = model if not isinstance(config, PretrainedConfig) and pretrained_model_name_or_path is not None: # We make a call to the config file first (which may be absent) to get the commit hash as soon as possible resolved_config_file = cached_file( pretrained_model_name_or_path, CONFIG_NAME, _raise_exceptions_for_gated_repo=False, _raise_exceptions_for_missing_entries=False, _raise_exceptions_for_connection_errors=False, cache_dir=model_kwargs.get("cache_dir"), **hub_kwargs, ) hub_kwargs["_commit_hash"] = extract_commit_hash(resolved_config_file, commit_hash) else: hub_kwargs["_commit_hash"] = getattr(config, "_commit_hash", None) # Config is the primordial information item. # Instantiate config if needed adapter_path = None if isinstance(config, str): config = AutoConfig.from_pretrained( config, _from_pipeline=task, code_revision=code_revision, **hub_kwargs, **model_kwargs ) hub_kwargs["_commit_hash"] = config._commit_hash elif config is None and isinstance(model, str): # Check for an adapter file in the model path if PEFT is available if is_peft_available(): # `find_adapter_config_file` doesn't accept `trust_remote_code` _hub_kwargs = {k: v for k, v in hub_kwargs.items() if k != "trust_remote_code"} maybe_adapter_path = find_adapter_config_file( model, token=hub_kwargs["token"], revision=hub_kwargs["revision"], _commit_hash=hub_kwargs["_commit_hash"], ) if maybe_adapter_path is not None: with open(maybe_adapter_path, "r", encoding="utf-8") as f: adapter_config = json.load(f) adapter_path = model model = adapter_config["base_model_name_or_path"] config = AutoConfig.from_pretrained( model, _from_pipeline=task, code_revision=code_revision, **hub_kwargs, **model_kwargs ) hub_kwargs["_commit_hash"] = config._commit_hash custom_tasks = {} if config is not None and len(getattr(config, "custom_pipelines", {})) > 0: custom_tasks = config.custom_pipelines if task is None and trust_remote_code is not False: if len(custom_tasks) == 1: task = list(custom_tasks.keys())[0] else: raise RuntimeError( "We can't infer the task automatically for this model as there are multiple tasks available. Pick " f"one in {', '.join(custom_tasks.keys())}" ) if task is None and model is not None: if not isinstance(model, str): raise RuntimeError( "Inferring the task automatically requires to check the hub with a model_id defined as a `str`. " f"{model} is not a valid model_id." ) task = get_task(model, token) # Retrieve the task if task in custom_tasks: normalized_task = task targeted_task, task_options = clean_custom_task(custom_tasks[task]) if pipeline_class is None: if not trust_remote_code: raise ValueError( "Loading this pipeline requires you to execute the code in the pipeline file in that" " repo on your local machine. Make sure you have read the code there to avoid malicious use, then" " set the option `trust_remote_code=True` to remove this error." ) class_ref = targeted_task["impl"] pipeline_class = get_class_from_dynamic_module( class_ref, model, code_revision=code_revision, **hub_kwargs, ) else: normalized_task, targeted_task, task_options = check_task(task) if pipeline_class is None: pipeline_class = targeted_task["impl"] # Use default model/config/tokenizer for the task if no model is provided if model is None: # At that point framework might still be undetermined model, default_revision = get_default_model_and_revision(targeted_task, framework, task_options) revision = revision if revision is not None else default_revision logger.warning( f"No model was supplied, defaulted to {model} and revision" f" {revision} ({HUGGINGFACE_CO_RESOLVE_ENDPOINT}/{model}).\n" "Using a pipeline without specifying a model name and revision in production is not recommended." ) hub_kwargs["revision"] = revision if config is None and isinstance(model, str): config = AutoConfig.from_pretrained(model, _from_pipeline=task, **hub_kwargs, **model_kwargs) hub_kwargs["_commit_hash"] = config._commit_hash if device_map is not None: if "device_map" in model_kwargs: raise ValueError( 'You cannot use both `pipeline(... device_map=..., model_kwargs={"device_map":...})` as those' " arguments might conflict, use only one.)" ) if device is not None: logger.warning( "Both `device` and `device_map` are specified. `device` will override `device_map`. You" " will most likely encounter unexpected behavior. Please remove `device` and keep `device_map`." ) model_kwargs["device_map"] = device_map if torch_dtype is not None: if "torch_dtype" in model_kwargs: raise ValueError( 'You cannot use both `pipeline(... torch_dtype=..., model_kwargs={"torch_dtype":...})` as those' " arguments might conflict, use only one.)" ) if isinstance(torch_dtype, str) and hasattr(torch, torch_dtype): torch_dtype = getattr(torch, torch_dtype) model_kwargs["torch_dtype"] = torch_dtype model_name = model if isinstance(model, str) else None # Load the correct model if possible # Infer the framework from the model if not already defined if isinstance(model, str) or framework is None: model_classes = {"tf": targeted_task["tf"], "pt": targeted_task["pt"]} framework, model = infer_framework_load_model( adapter_path if adapter_path is not None else model, model_classes=model_classes, config=config, framework=framework, task=task, **hub_kwargs, **model_kwargs, ) model_config = model.config hub_kwargs["_commit_hash"] = model.config._commit_hash load_tokenizer = type(model_config) in TOKENIZER_MAPPING or model_config.tokenizer_class is not None load_feature_extractor = type(model_config) in FEATURE_EXTRACTOR_MAPPING or feature_extractor is not None load_image_processor = type(model_config) in IMAGE_PROCESSOR_MAPPING or image_processor is not None load_processor = type(model_config) in PROCESSOR_MAPPING or processor is not None # Check that pipeline class required loading load_tokenizer = load_tokenizer and pipeline_class._load_tokenizer load_feature_extractor = load_feature_extractor and pipeline_class._load_feature_extractor load_image_processor = load_image_processor and pipeline_class._load_image_processor load_processor = load_processor and pipeline_class._load_processor # If `model` (instance of `PretrainedModel` instead of `str`) is passed (and/or same for config), while # `image_processor` or `feature_extractor` is `None`, the loading will fail. This happens particularly for some # vision tasks when calling `pipeline()` with `model` and only one of the `image_processor` and `feature_extractor`. # TODO: we need to make `NO_IMAGE_PROCESSOR_TASKS` and `NO_FEATURE_EXTRACTOR_TASKS` more robust to avoid such issue. # This block is only temporarily to make CI green. if load_image_processor and load_feature_extractor: load_feature_extractor = False if ( tokenizer is None and not load_tokenizer and normalized_task not in NO_TOKENIZER_TASKS # Using class name to avoid importing the real class. and ( model_config.__class__.__name__ in MULTI_MODEL_AUDIO_CONFIGS or model_config.__class__.__name__ in MULTI_MODEL_VISION_CONFIGS ) ): # This is a special category of models, that are fusions of multiple models # so the model_config might not define a tokenizer, but it seems to be # necessary for the task, so we're force-trying to load it. load_tokenizer = True if ( image_processor is None and not load_image_processor and normalized_task not in NO_IMAGE_PROCESSOR_TASKS # Using class name to avoid importing the real class. and model_config.__class__.__name__ in MULTI_MODEL_VISION_CONFIGS ): # This is a special category of models, that are fusions of multiple models # so the model_config might not define a tokenizer, but it seems to be # necessary for the task, so we're force-trying to load it. load_image_processor = True if ( feature_extractor is None and not load_feature_extractor and normalized_task not in NO_FEATURE_EXTRACTOR_TASKS # Using class name to avoid importing the real class. and model_config.__class__.__name__ in MULTI_MODEL_AUDIO_CONFIGS ): # This is a special category of models, that are fusions of multiple models # so the model_config might not define a tokenizer, but it seems to be # necessary for the task, so we're force-trying to load it. load_feature_extractor = True if task in NO_TOKENIZER_TASKS: # These will never require a tokenizer. # the model on the other hand might have a tokenizer, but # the files could be missing from the hub, instead of failing # on such repos, we just force to not load it. load_tokenizer = False if task in NO_FEATURE_EXTRACTOR_TASKS: load_feature_extractor = False if task in NO_IMAGE_PROCESSOR_TASKS: load_image_processor = False if load_tokenizer: # Try to infer tokenizer from model or config name (if provided as str) if tokenizer is None: if isinstance(model_name, str): tokenizer = model_name elif isinstance(config, str): tokenizer = config else: # Impossible to guess what is the right tokenizer here raise Exception( "Impossible to guess which tokenizer to use. " "Please provide a PreTrainedTokenizer class or a path/identifier to a pretrained tokenizer." ) # Instantiate tokenizer if needed if isinstance(tokenizer, (str, tuple)): if isinstance(tokenizer, tuple): # For tuple we have (tokenizer name, {kwargs}) use_fast = tokenizer[1].pop("use_fast", use_fast) tokenizer_identifier = tokenizer[0] tokenizer_kwargs = tokenizer[1] else: tokenizer_identifier = tokenizer tokenizer_kwargs = model_kwargs.copy() tokenizer_kwargs.pop("torch_dtype", None) tokenizer = AutoTokenizer.from_pretrained( tokenizer_identifier, use_fast=use_fast, _from_pipeline=task, **hub_kwargs, **tokenizer_kwargs ) if load_image_processor: # Try to infer image processor from model or config name (if provided as str) if image_processor is None: if isinstance(model_name, str): image_processor = model_name elif isinstance(config, str): image_processor = config # Backward compatibility, as `feature_extractor` used to be the name # for `ImageProcessor`. elif feature_extractor is not None and isinstance(feature_extractor, BaseImageProcessor): image_processor = feature_extractor else: # Impossible to guess what is the right image_processor here raise Exception( "Impossible to guess which image processor to use. " "Please provide a PreTrainedImageProcessor class or a path/identifier " "to a pretrained image processor." ) # Instantiate image_processor if needed if isinstance(image_processor, (str, tuple)): image_processor = AutoImageProcessor.from_pretrained( image_processor, _from_pipeline=task, **hub_kwargs, **model_kwargs ) if load_feature_extractor: # Try to infer feature extractor from model or config name (if provided as str) if feature_extractor is None: if isinstance(model_name, str): feature_extractor = model_name elif isinstance(config, str): feature_extractor = config else: # Impossible to guess what is the right feature_extractor here raise Exception( "Impossible to guess which feature extractor to use. " "Please provide a PreTrainedFeatureExtractor class or a path/identifier " "to a pretrained feature extractor." ) # Instantiate feature_extractor if needed if isinstance(feature_extractor, (str, tuple)): feature_extractor = AutoFeatureExtractor.from_pretrained( feature_extractor, _from_pipeline=task, **hub_kwargs, **model_kwargs ) if ( feature_extractor._processor_class and feature_extractor._processor_class.endswith("WithLM") and isinstance(model_name, str) ): try: import kenlm # to trigger `ImportError` if not installed from pyctcdecode import BeamSearchDecoderCTC if os.path.isdir(model_name) or os.path.isfile(model_name): decoder = BeamSearchDecoderCTC.load_from_dir(model_name) else: language_model_glob = os.path.join( BeamSearchDecoderCTC._LANGUAGE_MODEL_SERIALIZED_DIRECTORY, "*" ) alphabet_filename = BeamSearchDecoderCTC._ALPHABET_SERIALIZED_FILENAME allow_patterns = [language_model_glob, alphabet_filename] decoder = BeamSearchDecoderCTC.load_from_hf_hub(model_name, allow_patterns=allow_patterns) kwargs["decoder"] = decoder except ImportError as e: logger.warning(f"Could not load the `decoder` for {model_name}. Defaulting to raw CTC. Error: {e}") if not is_kenlm_available(): logger.warning("Try to install `kenlm`: `pip install kenlm") if not is_pyctcdecode_available(): logger.warning("Try to install `pyctcdecode`: `pip install pyctcdecode") if load_processor: # Try to infer processor from model or config name (if provided as str) if processor is None: if isinstance(model_name, str): processor = model_name elif isinstance(config, str): processor = config else: # Impossible to guess what is the right processor here raise Exception( "Impossible to guess which processor to use. " "Please provide a processor instance or a path/identifier " "to a processor." ) # Instantiate processor if needed if isinstance(processor, (str, tuple)): processor = AutoProcessor.from_pretrained(processor, _from_pipeline=task, **hub_kwargs, **model_kwargs) if not isinstance(processor, ProcessorMixin): raise TypeError( "Processor was loaded, but it is not an instance of `ProcessorMixin`. " f"Got type `{type(processor)}` instead. Please check that you specified " "correct pipeline task for the model and model has processor implemented and saved." ) if task == "translation" and model.config.task_specific_params: for key in model.config.task_specific_params: if key.startswith("translation"): task = key warnings.warn( f'"translation" task was used, instead of "translation_XX_to_YY", defaulting to "{task}"', UserWarning, ) break if tokenizer is not None: kwargs["tokenizer"] = tokenizer if feature_extractor is not None: kwargs["feature_extractor"] = feature_extractor if torch_dtype is not None: kwargs["torch_dtype"] = torch_dtype if image_processor is not None: kwargs["image_processor"] = image_processor if device is not None: kwargs["device"] = device if processor is not None: kwargs["processor"] = processor return pipeline_class(model=model, framework=framework, task=task, **kwargs) ```
====================================================================================================================================== SOURCE CODE FILE: audio_classification.py LINES: 1 SIZE: 10.17 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\audio_classification.py ENCODING: utf-8 ```py # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import subprocess from typing import Union import numpy as np import requests from ..utils import add_end_docstrings, is_torch_available, is_torchaudio_available, logging from .base import Pipeline, build_pipeline_init_args if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES logger = logging.get_logger(__name__) def ffmpeg_read(bpayload: bytes, sampling_rate: int) -> np.array: """ Helper function to read an audio file through ffmpeg. """ ar = f"{sampling_rate}" ac = "1" format_for_conversion = "f32le" ffmpeg_command = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: ffmpeg_process = subprocess.Popen(ffmpeg_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE) except FileNotFoundError: raise ValueError("ffmpeg was not found but is required to load audio files from filename") output_stream = ffmpeg_process.communicate(bpayload) out_bytes = output_stream[0] audio = np.frombuffer(out_bytes, np.float32) if audio.shape[0] == 0: raise ValueError("Malformed soundfile") return audio @add_end_docstrings(build_pipeline_init_args(has_feature_extractor=True)) class AudioClassificationPipeline(Pipeline): """ Audio classification pipeline using any `AutoModelForAudioClassification`. This pipeline predicts the class of a raw waveform or an audio file. In case of an audio file, ffmpeg should be installed to support multiple audio formats. Example: ```python >>> from transformers import pipeline >>> classifier = pipeline(model="superb/wav2vec2-base-superb-ks") >>> classifier("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/1.flac") [{'score': 0.997, 'label': '_unknown_'}, {'score': 0.002, 'label': 'left'}, {'score': 0.0, 'label': 'yes'}, {'score': 0.0, 'label': 'down'}, {'score': 0.0, 'label': 'stop'}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"audio-classification"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=audio-classification). """ def __init__(self, *args, **kwargs): # Only set default top_k if explicitly provided if "top_k" in kwargs and kwargs["top_k"] is None: kwargs["top_k"] = None elif "top_k" not in kwargs: kwargs["top_k"] = 5 super().__init__(*args, **kwargs) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch.") self.check_model_type(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES) def __call__( self, inputs: Union[np.ndarray, bytes, str], **kwargs, ): """ Classify the sequence(s) given as inputs. See the [`AutomaticSpeechRecognitionPipeline`] documentation for more information. Args: inputs (`np.ndarray` or `bytes` or `str` or `dict`): The inputs is either : - `str` that is the filename of the audio file, the file will be read at the correct sampling rate to get the waveform using *ffmpeg*. This requires *ffmpeg* to be installed on the system. - `bytes` it is supposed to be the content of an audio file and is interpreted by *ffmpeg* in the same way. - (`np.ndarray` of shape (n, ) of type `np.float32` or `np.float64`) Raw audio at the correct sampling rate (no further check will be done) - `dict` form can be used to pass raw audio sampled at arbitrary `sampling_rate` and let this pipeline do the resampling. The dict must be either be in the format `{"sampling_rate": int, "raw": np.array}`, or `{"sampling_rate": int, "array": np.array}`, where the key `"raw"` or `"array"` is used to denote the raw audio waveform. top_k (`int`, *optional*, defaults to None): The number of top labels that will be returned by the pipeline. If the provided number is `None` or higher than the number of labels available in the model configuration, it will default to the number of labels. function_to_apply(`str`, *optional*, defaults to "softmax"): The function to apply to the model output. By default, the pipeline will apply the softmax function to the output of the model. Valid options: ["softmax", "sigmoid", "none"]. Note that passing Python's built-in `None` will default to "softmax", so you need to pass the string "none" to disable any post-processing. Return: A list of `dict` with the following keys: - **label** (`str`) -- The label predicted. - **score** (`float`) -- The corresponding probability. """ return super().__call__(inputs, **kwargs) def _sanitize_parameters(self, top_k=None, function_to_apply=None, **kwargs): postprocess_params = {} # If top_k is None, use all labels if top_k is None: postprocess_params["top_k"] = self.model.config.num_labels else: if top_k > self.model.config.num_labels: top_k = self.model.config.num_labels postprocess_params["top_k"] = top_k if function_to_apply is not None: if function_to_apply not in ["softmax", "sigmoid", "none"]: raise ValueError( f"Invalid value for `function_to_apply`: {function_to_apply}. " "Valid options are ['softmax', 'sigmoid', 'none']" ) postprocess_params["function_to_apply"] = function_to_apply else: postprocess_params["function_to_apply"] = "softmax" return {}, {}, postprocess_params def preprocess(self, inputs): if isinstance(inputs, str): if inputs.startswith("http://") or inputs.startswith("https://"): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png inputs = requests.get(inputs).content else: with open(inputs, "rb") as f: inputs = f.read() if isinstance(inputs, bytes): inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate) if isinstance(inputs, dict): inputs = inputs.copy() # So we don't mutate the original dictionary outside the pipeline # Accepting `"array"` which is the key defined in `datasets` for # better integration if not ("sampling_rate" in inputs and ("raw" in inputs or "array" in inputs)): raise ValueError( "When passing a dictionary to AudioClassificationPipeline, the dict needs to contain a " '"raw" key containing the numpy array representing the audio and a "sampling_rate" key, ' "containing the sampling_rate associated with that array" ) _inputs = inputs.pop("raw", None) if _inputs is None: # Remove path which will not be used from `datasets`. inputs.pop("path", None) _inputs = inputs.pop("array", None) in_sampling_rate = inputs.pop("sampling_rate") inputs = _inputs if in_sampling_rate != self.feature_extractor.sampling_rate: import torch if is_torchaudio_available(): from torchaudio import functional as F else: raise ImportError( "torchaudio is required to resample audio samples in AudioClassificationPipeline. " "The torchaudio package can be installed through: `pip install torchaudio`." ) inputs = F.resample( torch.from_numpy(inputs), in_sampling_rate, self.feature_extractor.sampling_rate ).numpy() if not isinstance(inputs, np.ndarray): raise TypeError("We expect a numpy ndarray as input") if len(inputs.shape) != 1: raise ValueError("We expect a single channel audio input for AudioClassificationPipeline") processed = self.feature_extractor( inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt" ) if self.torch_dtype is not None: processed = processed.to(dtype=self.torch_dtype) return processed def _forward(self, model_inputs): model_outputs = self.model(**model_inputs) return model_outputs def postprocess(self, model_outputs, top_k=5, function_to_apply="softmax"): if function_to_apply == "softmax": probs = model_outputs.logits[0].softmax(-1) elif function_to_apply == "sigmoid": probs = model_outputs.logits[0].sigmoid() else: probs = model_outputs.logits[0] scores, ids = probs.topk(top_k) scores = scores.tolist() ids = ids.tolist() labels = [{"score": score, "label": self.model.config.id2label[_id]} for score, _id in zip(scores, ids)] return labels ```
============================================================================================================================= SOURCE CODE FILE: audio_utils.py LINES: 1 SIZE: 11.99 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\audio_utils.py ENCODING: utf-8 ```py # Copyright 2023 The HuggingFace Team. All rights reserved. import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def ffmpeg_read(bpayload: bytes, sampling_rate: int) -> np.array: """ Helper function to read an audio file through ffmpeg. """ ar = f"{sampling_rate}" ac = "1" format_for_conversion = "f32le" ffmpeg_command = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(ffmpeg_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE) as ffmpeg_process: output_stream = ffmpeg_process.communicate(bpayload) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename") from error out_bytes = output_stream[0] audio = np.frombuffer(out_bytes, np.float32) if audio.shape[0] == 0: raise ValueError( "Soundfile is either not in the correct format or is malformed. Ensure that the soundfile has " "a valid audio file extension (e.g. wav, flac or mp3) and is not corrupted. If reading from a remote " "URL, ensure that the URL is the full address to **download** the audio file." ) return audio def ffmpeg_microphone( sampling_rate: int, chunk_length_s: float, format_for_conversion: str = "f32le", ffmpeg_input_device: Optional[str] = None, ffmpeg_additional_args: Optional[list[str]] = None, ): """ Helper function to read audio from a microphone using ffmpeg. The default input device will be used unless another input device is specified using the `ffmpeg_input_device` argument. Uses 'alsa' on Linux, 'avfoundation' on MacOS and 'dshow' on Windows. Arguments: sampling_rate (`int`): The sampling_rate to use when reading the data from the microphone. Try using the model's sampling_rate to avoid resampling later. chunk_length_s (`float` or `int`): The length of the maximum chunk of audio to be sent returned. format_for_conversion (`str`, defaults to `f32le`): The name of the format of the audio samples to be returned by ffmpeg. The standard is `f32le`, `s16le` could also be used. ffmpeg_input_device (`str`, *optional*): The identifier of the input device to be used by ffmpeg (i.e. ffmpeg's '-i' argument). If unset, the default input device will be used. See `https://www.ffmpeg.org/ffmpeg-devices.html#Input-Devices` for how to specify and list input devices. ffmpeg_additional_args (`list[str]`, *optional*): Additional arguments to pass to ffmpeg, can include arguments like -nostdin for running as a background process. For example, to pass -nostdin to the ffmpeg process, pass in ["-nostdin"]. If passing in flags with multiple arguments, use the following convention (eg ["flag", "arg1", "arg2]). Returns: A generator yielding audio chunks of `chunk_length_s` seconds as `bytes` objects of length `int(round(sampling_rate * chunk_length_s)) * size_of_sample`. """ ar = f"{sampling_rate}" ac = "1" if format_for_conversion == "s16le": size_of_sample = 2 elif format_for_conversion == "f32le": size_of_sample = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`") system = platform.system() if system == "Linux": format_ = "alsa" input_ = ffmpeg_input_device or "default" elif system == "Darwin": format_ = "avfoundation" input_ = ffmpeg_input_device or ":default" elif system == "Windows": format_ = "dshow" input_ = ffmpeg_input_device or _get_microphone_name() ffmpeg_additional_args = [] if ffmpeg_additional_args is None else ffmpeg_additional_args ffmpeg_command = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] ffmpeg_command.extend(ffmpeg_additional_args) chunk_len = int(round(sampling_rate * chunk_length_s)) * size_of_sample iterator = _ffmpeg_stream(ffmpeg_command, chunk_len) for item in iterator: yield item def ffmpeg_microphone_live( sampling_rate: int, chunk_length_s: float, stream_chunk_s: Optional[int] = None, stride_length_s: Optional[Union[Tuple[float, float], float]] = None, format_for_conversion: str = "f32le", ffmpeg_input_device: Optional[str] = None, ffmpeg_additional_args: Optional[list[str]] = None, ): """ Helper function to read audio from a microphone using ffmpeg. This will output `partial` overlapping chunks starting from `stream_chunk_s` (if it is defined) until `chunk_length_s` is reached. It will make use of striding to avoid errors on the "sides" of the various chunks. The default input device will be used unless another input device is specified using the `ffmpeg_input_device` argument. Uses 'alsa' on Linux, 'avfoundation' on MacOS and 'dshow' on Windows. Arguments: sampling_rate (`int`): The sampling_rate to use when reading the data from the microphone. Try using the model's sampling_rate to avoid resampling later. chunk_length_s (`float` or `int`): The length of the maximum chunk of audio to be sent returned. This includes the eventual striding. stream_chunk_s (`float` or `int`): The length of the minimal temporary audio to be returned. stride_length_s (`float` or `int` or `(float, float)`, *optional*): The length of the striding to be used. Stride is used to provide context to a model on the (left, right) of an audio sample but without using that part to actually make the prediction. Setting this does not change the length of the chunk. format_for_conversion (`str`, *optional*, defaults to `f32le`): The name of the format of the audio samples to be returned by ffmpeg. The standard is `f32le`, `s16le` could also be used. ffmpeg_input_device (`str`, *optional*): The identifier of the input device to be used by ffmpeg (i.e. ffmpeg's '-i' argument). If unset, the default input device will be used. See `https://www.ffmpeg.org/ffmpeg-devices.html#Input-Devices` for how to specify and list input devices. ffmpeg_additional_args (`list[str]`, *optional*): Additional arguments to pass to ffmpeg, can include arguments like -nostdin for running as a background process. For example, to pass -nostdin to the ffmpeg process, pass in ["-nostdin"]. If passing in flags with multiple arguments, use the following convention (eg ["flag", "arg1", "arg2]). Return: A generator yielding dictionaries of the following form `{"sampling_rate": int, "raw": np.array(), "partial" bool}` With optionally a `"stride" (int, int)` key if `stride_length_s` is defined. `stride` and `raw` are all expressed in `samples`, and `partial` is a boolean saying if the current yield item is a whole chunk, or a partial temporary result to be later replaced by another larger chunk. """ if stream_chunk_s is not None: chunk_s = stream_chunk_s else: chunk_s = chunk_length_s microphone = ffmpeg_microphone( sampling_rate, chunk_s, format_for_conversion=format_for_conversion, ffmpeg_input_device=ffmpeg_input_device, ffmpeg_additional_args=[] if ffmpeg_additional_args is None else ffmpeg_additional_args, ) if format_for_conversion == "s16le": dtype = np.int16 size_of_sample = 2 elif format_for_conversion == "f32le": dtype = np.float32 size_of_sample = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`") if stride_length_s is None: stride_length_s = chunk_length_s / 6 chunk_len = int(round(sampling_rate * chunk_length_s)) * size_of_sample if isinstance(stride_length_s, (int, float)): stride_length_s = [stride_length_s, stride_length_s] stride_left = int(round(sampling_rate * stride_length_s[0])) * size_of_sample stride_right = int(round(sampling_rate * stride_length_s[1])) * size_of_sample audio_time = datetime.datetime.now() delta = datetime.timedelta(seconds=chunk_s) for item in chunk_bytes_iter(microphone, chunk_len, stride=(stride_left, stride_right), stream=True): # Put everything back in numpy scale item["raw"] = np.frombuffer(item["raw"], dtype=dtype) item["stride"] = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) item["sampling_rate"] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def chunk_bytes_iter(iterator, chunk_len: int, stride: Tuple[int, int], stream: bool = False): """ Reads raw bytes from an iterator and does chunks of length `chunk_len`. Optionally adds `stride` to each chunks to get overlaps. `stream` is used to return partial results even if a full `chunk_len` is not yet available. """ acc = b"" stride_left, stride_right = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" ) _stride_left = 0 for raw in iterator: acc += raw if stream and len(acc) < chunk_len: stride = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(acc) >= chunk_len: # We are flushing the accumulator stride = (_stride_left, stride_right) item = {"raw": acc[:chunk_len], "stride": stride} if stream: item["partial"] = False yield item _stride_left = stride_left acc = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(acc) > stride_left: item = {"raw": acc, "stride": (_stride_left, 0)} if stream: item["partial"] = False yield item def _ffmpeg_stream(ffmpeg_command, buflen: int): """ Internal function to create the generator of data through ffmpeg """ bufsize = 2**24 # 16Mo try: with subprocess.Popen(ffmpeg_command, stdout=subprocess.PIPE, bufsize=bufsize) as ffmpeg_process: while True: raw = ffmpeg_process.stdout.read(buflen) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename") from error def _get_microphone_name(): """ Retrieve the microphone name in Windows . """ command = ["ffmpeg", "-list_devices", "true", "-f", "dshow", "-i", ""] try: ffmpeg_devices = subprocess.run(command, text=True, stderr=subprocess.PIPE, encoding="utf-8") microphone_lines = [line for line in ffmpeg_devices.stderr.splitlines() if "(audio)" in line] if microphone_lines: microphone_name = microphone_lines[0].split('"')[1] print(f"Using microphone: {microphone_name}") return f"audio={microphone_name}" except FileNotFoundError: print("ffmpeg was not found. Please install it or make sure it is in your system PATH.") return "default" ```
============================================================================================================================================== SOURCE CODE FILE: automatic_speech_recognition.py LINES: 1 SIZE: 38.41 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\automatic_speech_recognition.py ENCODING: utf-8 ```py # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from collections import defaultdict from typing import TYPE_CHECKING, Dict, Optional, Union import numpy as np import requests from ..tokenization_utils import PreTrainedTokenizer from ..utils import is_torch_available, is_torchaudio_available, logging from .audio_utils import ffmpeg_read from .base import ChunkPipeline if TYPE_CHECKING: from pyctcdecode import BeamSearchDecoderCTC from ..feature_extraction_sequence_utils import SequenceFeatureExtractor from ..modeling_utils import PreTrainedModel logger = logging.get_logger(__name__) if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES def rescale_stride(stride, ratio): """ Rescales the stride values from audio space to tokens/logits space. (160_000, 16_000, 16_000) -> (2000, 200, 200) for instance. """ # Shape is [B, SEQ] for tokens # [B, SEQ, V] for logits new_strides = [] for input_n, left, right in stride: token_n = int(round(input_n * ratio)) left = int(round(left / input_n * token_n)) right = int(round(right / input_n * token_n)) new_stride = (token_n, left, right) new_strides.append(new_stride) return new_strides def chunk_iter(inputs, feature_extractor, chunk_len, stride_left, stride_right, dtype=None): inputs_len = inputs.shape[0] step = chunk_len - stride_left - stride_right for chunk_start_idx in range(0, inputs_len, step): chunk_end_idx = chunk_start_idx + chunk_len chunk = inputs[chunk_start_idx:chunk_end_idx] processed = feature_extractor(chunk, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt") if dtype is not None: processed = processed.to(dtype=dtype) _stride_left = 0 if chunk_start_idx == 0 else stride_left is_last = chunk_end_idx >= inputs_len _stride_right = 0 if is_last else stride_right chunk_len = chunk.shape[0] stride = (chunk_len, _stride_left, _stride_right) if chunk.shape[0] > _stride_left: yield {"is_last": is_last, "stride": stride, **processed} if is_last: break def _fast_find_longest_common_sequence(sequence_left, sequence_right): seq_len_left = len(sequence_left) seq_len_right = len(sequence_right) counter = [[0] * (seq_len_right + 1) for _ in range(seq_len_left + 1)] longest = 0 for i in range(seq_len_left): for j in range(seq_len_right): if sequence_left[i] == sequence_right[j]: previous_counter = counter[i][j] + 1 counter[i + 1][j + 1] = previous_counter if previous_counter > longest: longest = previous_counter counter = np.array(counter) # we return the idx of the first element of the longest common sequence in the left sequence index_left = np.argwhere(counter == longest)[-1][0] - longest if longest != 0 else -1 index_right = np.argwhere(counter == longest)[-1][1] - longest if longest != 0 else -1 return index_left, index_right, longest def _find_longest_common_sequence(sequences, tokenizer): # TODO Use a faster algorithm this can probably be done in O(n) # using suffix array. # It might be tedious to do because of fault tolerance. # We actually have a really good property which is that the total sequence # MUST be those subsequences in order. # Also the algorithm should be more tolerant to errors. sequence = [tok_id for tok_id in sequences[0][0].tolist() if tok_id not in tokenizer.all_special_ids] for new_seq in sequences[1:]: new_sequence = [tok_id for tok_id in new_seq[0].tolist() if tok_id not in tokenizer.all_special_ids] index = 0 max_ = 0.0 for i in range(1, len(new_sequence) + 1): # epsilon to favor long perfect matches eps = i / 10000.0 matches = np.sum(np.array(sequence[-i:]) == np.array(new_sequence[:i])) matching = matches / i + eps if matches > 1 and matching > max_: index = i max_ = matching sequence.extend(new_sequence[index:]) return np.array(sequence) class AutomaticSpeechRecognitionPipeline(ChunkPipeline): """ Pipeline that aims at extracting spoken text contained within some audio. The input can be either a raw waveform or a audio file. In case of the audio file, ffmpeg should be installed for to support multiple audio formats Example: ```python >>> from transformers import pipeline >>> transcriber = pipeline(model="openai/whisper-base") >>> transcriber("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/1.flac") {'text': ' He hoped there would be stew for dinner, turnips and carrots and bruised potatoes and fat mutton pieces to be ladled out in thick, peppered flour-fatten sauce.'} ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from [`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow. feature_extractor ([`SequenceFeatureExtractor`]): The feature extractor that will be used by the pipeline to encode waveform for the model. tokenizer ([`PreTrainedTokenizer`]): The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from [`PreTrainedTokenizer`]. decoder (`pyctcdecode.BeamSearchDecoderCTC`, *optional*): [PyCTCDecode's BeamSearchDecoderCTC](https://github.com/kensho-technologies/pyctcdecode/blob/2fd33dc37c4111417e08d89ccd23d28e9b308d19/pyctcdecode/decoder.py#L180) can be passed for language model boosted decoding. See [`Wav2Vec2ProcessorWithLM`] for more information. chunk_length_s (`float`, *optional*, defaults to 0): The input length for in each chunk. If `chunk_length_s = 0` then chunking is disabled (default). <Tip> For more information on how to effectively use `chunk_length_s`, please have a look at the [ASR chunking blog post](https://huggingface.co/blog/asr-chunking). </Tip> stride_length_s (`float`, *optional*, defaults to `chunk_length_s / 6`): The length of stride on the left and right of each chunk. Used only with `chunk_length_s > 0`. This enables the model to *see* more context and infer letters better than without this context but the pipeline discards the stride bits at the end to make the final reconstitution as perfect as possible. <Tip> For more information on how to effectively use `stride_length_s`, please have a look at the [ASR chunking blog post](https://huggingface.co/blog/asr-chunking). </Tip> framework (`str`, *optional*): The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided. device (Union[`int`, `torch.device`], *optional*): Device ordinal for CPU/GPU supports. Setting this to `None` will leverage CPU, a positive will run the model on the associated CUDA device id. torch_dtype (Union[`int`, `torch.dtype`], *optional*): The data-type (dtype) of the computation. Setting this to `None` will use float32 precision. Set to `torch.float16` or `torch.bfloat16` to use half-precision in the respective dtypes. """ def __init__( self, model: "PreTrainedModel", feature_extractor: Union["SequenceFeatureExtractor", str] = None, tokenizer: Optional[PreTrainedTokenizer] = None, decoder: Optional[Union["BeamSearchDecoderCTC", str]] = None, device: Union[int, "torch.device"] = None, torch_dtype: Optional[Union[str, "torch.dtype"]] = None, **kwargs, ): # set the model type so we can check we have the right pre- and post-processing parameters if model.config.model_type == "whisper": self.type = "seq2seq_whisper" elif model.__class__.__name__ in MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES.values(): self.type = "seq2seq" elif ( feature_extractor._processor_class and feature_extractor._processor_class.endswith("WithLM") and decoder is not None ): self.decoder = decoder self.type = "ctc_with_lm" else: self.type = "ctc" super().__init__(model, tokenizer, feature_extractor, device=device, torch_dtype=torch_dtype, **kwargs) def __call__( self, inputs: Union[np.ndarray, bytes, str], **kwargs, ): """ Transcribe the audio sequence(s) given as inputs to text. See the [`AutomaticSpeechRecognitionPipeline`] documentation for more information. Args: inputs (`np.ndarray` or `bytes` or `str` or `dict`): The inputs is either : - `str` that is either the filename of a local audio file, or a public URL address to download the audio file. The file will be read at the correct sampling rate to get the waveform using *ffmpeg*. This requires *ffmpeg* to be installed on the system. - `bytes` it is supposed to be the content of an audio file and is interpreted by *ffmpeg* in the same way. - (`np.ndarray` of shape (n, ) of type `np.float32` or `np.float64`) Raw audio at the correct sampling rate (no further check will be done) - `dict` form can be used to pass raw audio sampled at arbitrary `sampling_rate` and let this pipeline do the resampling. The dict must be in the format `{"sampling_rate": int, "raw": np.array}` with optionally a `"stride": (left: int, right: int)` than can ask the pipeline to treat the first `left` samples and last `right` samples to be ignored in decoding (but used at inference to provide more context to the model). Only use `stride` with CTC models. return_timestamps (*optional*, `str` or `bool`): Only available for pure CTC models (Wav2Vec2, HuBERT, etc) and the Whisper model. Not available for other sequence-to-sequence models. For CTC models, timestamps can take one of two formats: - `"char"`: the pipeline will return timestamps along the text for every character in the text. For instance, if you get `[{"text": "h", "timestamp": (0.5, 0.6)}, {"text": "i", "timestamp": (0.7, 0.9)}]`, then it means the model predicts that the letter "h" was spoken after `0.5` and before `0.6` seconds. - `"word"`: the pipeline will return timestamps along the text for every word in the text. For instance, if you get `[{"text": "hi ", "timestamp": (0.5, 0.9)}, {"text": "there", "timestamp": (1.0, 1.5)}]`, then it means the model predicts that the word "hi" was spoken after `0.5` and before `0.9` seconds. For the Whisper model, timestamps can take one of two formats: - `"word"`: same as above for word-level CTC timestamps. Word-level timestamps are predicted through the *dynamic-time warping (DTW)* algorithm, an approximation to word-level timestamps by inspecting the cross-attention weights. - `True`: the pipeline will return timestamps along the text for *segments* of words in the text. For instance, if you get `[{"text": " Hi there!", "timestamp": (0.5, 1.5)}]`, then it means the model predicts that the segment "Hi there!" was spoken after `0.5` and before `1.5` seconds. Note that a segment of text refers to a sequence of one or more words, rather than individual words as with word-level timestamps. generate_kwargs (`dict`, *optional*): The dictionary of ad-hoc parametrization of `generate_config` to be used for the generation call. For a complete overview of generate, check the [following guide](https://huggingface.co/docs/transformers/en/main_classes/text_generation). Return: `Dict`: A dictionary with the following keys: - **text** (`str`): The recognized text. - **chunks** (*optional(, `List[Dict]`) When using `return_timestamps`, the `chunks` will become a list containing all the various text chunks identified by the model, *e.g.* `[{"text": "hi ", "timestamp": (0.5, 0.9)}, {"text": "there", "timestamp": (1.0, 1.5)}]`. The original full text can roughly be recovered by doing `"".join(chunk["text"] for chunk in output["chunks"])`. """ return super().__call__(inputs, **kwargs) def _sanitize_parameters( self, chunk_length_s=None, stride_length_s=None, ignore_warning=None, decoder_kwargs=None, return_timestamps=None, return_language=None, generate_kwargs=None, max_new_tokens=None, ): # No parameters on this pipeline right now preprocess_params = {} if chunk_length_s is not None: if self.type == "seq2seq" and not ignore_warning: logger.warning( "Using `chunk_length_s` is very experimental with seq2seq models. The results will not necessarily" " be entirely accurate and will have caveats. More information:" " https://github.com/huggingface/transformers/pull/20104. Ignore this warning with pipeline(...," " ignore_warning=True)" ) preprocess_params["chunk_length_s"] = chunk_length_s if stride_length_s is not None: preprocess_params["stride_length_s"] = stride_length_s forward_params = defaultdict(dict) if max_new_tokens is not None: warnings.warn( "`max_new_tokens` is deprecated and will be removed in version 4.49 of Transformers. To remove this warning, pass `max_new_tokens` as a key inside `generate_kwargs` instead.", FutureWarning, ) forward_params["max_new_tokens"] = max_new_tokens if generate_kwargs is not None: if max_new_tokens is not None and "max_new_tokens" in generate_kwargs: raise ValueError( "`max_new_tokens` is defined both as an argument and inside `generate_kwargs` argument, please use" " only 1 version" ) forward_params.update(generate_kwargs) postprocess_params = {} if decoder_kwargs is not None: postprocess_params["decoder_kwargs"] = decoder_kwargs if return_timestamps is not None: # Check whether we have a valid setting for return_timestamps and throw an error before we perform a forward pass if self.type == "seq2seq" and return_timestamps: raise ValueError("We cannot return_timestamps yet on non-CTC models apart from Whisper!") if self.type == "ctc_with_lm" and return_timestamps != "word": raise ValueError("CTC with LM can only predict word level timestamps, set `return_timestamps='word'`") if self.type == "ctc" and return_timestamps not in ["char", "word"]: raise ValueError( "CTC can either predict character level timestamps, or word level timestamps. " "Set `return_timestamps='char'` or `return_timestamps='word'` as required." ) if self.type == "seq2seq_whisper" and return_timestamps == "char": raise ValueError( "Whisper cannot return `char` timestamps, only word level or segment level timestamps. " "Use `return_timestamps='word'` or `return_timestamps=True` respectively." ) forward_params["return_timestamps"] = return_timestamps postprocess_params["return_timestamps"] = return_timestamps if return_language is not None: if self.type != "seq2seq_whisper": raise ValueError("Only Whisper can return language for now.") postprocess_params["return_language"] = return_language if self.assistant_model is not None: forward_params["assistant_model"] = self.assistant_model if self.assistant_tokenizer is not None: forward_params["tokenizer"] = self.tokenizer forward_params["assistant_tokenizer"] = self.assistant_tokenizer return preprocess_params, forward_params, postprocess_params def preprocess(self, inputs, chunk_length_s=0, stride_length_s=None): if isinstance(inputs, str): if inputs.startswith("http://") or inputs.startswith("https://"): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png inputs = requests.get(inputs).content else: with open(inputs, "rb") as f: inputs = f.read() if isinstance(inputs, bytes): inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate) stride = None extra = {} if isinstance(inputs, dict): stride = inputs.pop("stride", None) # Accepting `"array"` which is the key defined in `datasets` for # better integration if not ("sampling_rate" in inputs and ("raw" in inputs or "array" in inputs)): raise ValueError( "When passing a dictionary to AutomaticSpeechRecognitionPipeline, the dict needs to contain a " '"raw" key containing the numpy array representing the audio and a "sampling_rate" key, ' "containing the sampling_rate associated with that array" ) _inputs = inputs.pop("raw", None) if _inputs is None: # Remove path which will not be used from `datasets`. inputs.pop("path", None) _inputs = inputs.pop("array", None) in_sampling_rate = inputs.pop("sampling_rate") extra = inputs inputs = _inputs if in_sampling_rate != self.feature_extractor.sampling_rate: if is_torchaudio_available(): from torchaudio import functional as F else: raise ImportError( "torchaudio is required to resample audio samples in AutomaticSpeechRecognitionPipeline. " "The torchaudio package can be installed through: `pip install torchaudio`." ) inputs = F.resample( torch.from_numpy(inputs), in_sampling_rate, self.feature_extractor.sampling_rate ).numpy() ratio = self.feature_extractor.sampling_rate / in_sampling_rate else: ratio = 1 if stride is not None: if stride[0] + stride[1] > inputs.shape[0]: raise ValueError("Stride is too large for input") # Stride needs to get the chunk length here, it's going to get # swallowed by the `feature_extractor` later, and then batching # can add extra data in the inputs, so we need to keep track # of the original length in the stride so we can cut properly. stride = (inputs.shape[0], int(round(stride[0] * ratio)), int(round(stride[1] * ratio))) if not isinstance(inputs, np.ndarray): raise TypeError(f"We expect a numpy ndarray as input, got `{type(inputs)}`") if len(inputs.shape) != 1: raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline") if chunk_length_s: if stride_length_s is None: stride_length_s = chunk_length_s / 6 if isinstance(stride_length_s, (int, float)): stride_length_s = [stride_length_s, stride_length_s] # XXX: Carefuly, this variable will not exist in `seq2seq` setting. # Currently chunking is not possible at this level for `seq2seq` so # it's ok. align_to = getattr(self.model.config, "inputs_to_logits_ratio", 1) chunk_len = int(round(chunk_length_s * self.feature_extractor.sampling_rate / align_to) * align_to) stride_left = int(round(stride_length_s[0] * self.feature_extractor.sampling_rate / align_to) * align_to) stride_right = int(round(stride_length_s[1] * self.feature_extractor.sampling_rate / align_to) * align_to) if chunk_len < stride_left + stride_right: raise ValueError("Chunk length must be superior to stride length") for item in chunk_iter( inputs, self.feature_extractor, chunk_len, stride_left, stride_right, self.torch_dtype ): yield {**item, **extra} else: if self.type == "seq2seq_whisper" and inputs.shape[0] > self.feature_extractor.n_samples: processed = self.feature_extractor( inputs, sampling_rate=self.feature_extractor.sampling_rate, truncation=False, padding="longest", return_tensors="pt", return_attention_mask=True, ) else: if self.type == "seq2seq_whisper" and stride is None: processed = self.feature_extractor( inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt", return_token_timestamps=True, return_attention_mask=True, ) extra["num_frames"] = processed.pop("num_frames") else: processed = self.feature_extractor( inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt", return_attention_mask=True, ) if self.torch_dtype is not None: processed = processed.to(dtype=self.torch_dtype) if stride is not None: if self.type == "seq2seq": raise ValueError("Stride is only usable with CTC models, try removing it !") processed["stride"] = stride yield {"is_last": True, **processed, **extra} def _forward(self, model_inputs, return_timestamps=False, **generate_kwargs): attention_mask = model_inputs.pop("attention_mask", None) stride = model_inputs.pop("stride", None) num_frames = model_inputs.pop("num_frames", None) is_last = model_inputs.pop("is_last") if stride is not None and num_frames is not None: raise ValueError("num_frames must be used only when stride is None") if self.type in {"seq2seq", "seq2seq_whisper"}: # Consume values so we can let extra information flow freely through # the pipeline (important for `partial` in microphone) if "input_features" in model_inputs: inputs = model_inputs.pop("input_features") elif "input_values" in model_inputs: inputs = model_inputs.pop("input_values") else: raise ValueError( "Seq2Seq speech recognition model requires either a " f"`input_features` or `input_values` key, but only has {model_inputs.keys()}" ) # custom processing for Whisper timestamps and word-level timestamps if return_timestamps and self.type == "seq2seq_whisper": generate_kwargs["return_timestamps"] = return_timestamps if return_timestamps == "word": generate_kwargs["return_token_timestamps"] = True generate_kwargs["return_segments"] = True if stride is not None: if isinstance(stride, tuple): generate_kwargs["num_frames"] = stride[0] // self.feature_extractor.hop_length else: generate_kwargs["num_frames"] = [s[0] // self.feature_extractor.hop_length for s in stride] else: generate_kwargs["num_frames"] = num_frames # User-defined `generation_config` passed to the pipeline call take precedence if "generation_config" not in generate_kwargs: generate_kwargs["generation_config"] = self.generation_config tokens = self.model.generate( inputs=inputs, attention_mask=attention_mask, **generate_kwargs, ) # whisper longform generation stores timestamps in "segments" if return_timestamps == "word" and self.type == "seq2seq_whisper": if "segments" not in tokens: out = {"tokens": tokens["sequences"], "token_timestamps": tokens["token_timestamps"]} else: token_timestamps = [ torch.cat([segment["token_timestamps"] for segment in segment_list]) for segment_list in tokens["segments"] ] out = {"tokens": tokens["sequences"], "token_timestamps": token_timestamps} else: out = {"tokens": tokens} if self.type == "seq2seq_whisper": if stride is not None: out["stride"] = stride else: inputs = { self.model.main_input_name: model_inputs.pop(self.model.main_input_name), "attention_mask": attention_mask, } outputs = self.model(**inputs) logits = outputs.logits if self.type == "ctc_with_lm": out = {"logits": logits} else: out = {"tokens": logits.argmax(dim=-1)} if stride is not None: # Send stride to `postprocess`. # it needs to be handled there where # the pieces are to be concatenated. ratio = 1 / self.model.config.inputs_to_logits_ratio if isinstance(stride, tuple): out["stride"] = rescale_stride([stride], ratio)[0] else: out["stride"] = rescale_stride(stride, ratio) # Leftover extra = model_inputs return {"is_last": is_last, **out, **extra} def postprocess( self, model_outputs, decoder_kwargs: Optional[Dict] = None, return_timestamps=None, return_language=None ): # Optional return types optional = {} final_items = [] key = "logits" if self.type == "ctc_with_lm" else "tokens" stride = None for outputs in model_outputs: if self.framework == "pt" and outputs[key].dtype in (torch.bfloat16, torch.float16): items = outputs[key].to(torch.float32).numpy() else: items = outputs[key].numpy() stride = outputs.get("stride", None) if stride is not None and self.type in {"ctc", "ctc_with_lm"}: total_n, left, right = stride # Total_n might be < logits.shape[1] # because of padding, that's why # we need to reconstruct this information # This won't work with left padding (which doesn't exist right now) right_n = total_n - right items = items[:, left:right_n] final_items.append(items) if stride and self.type == "seq2seq": items = _find_longest_common_sequence(final_items, self.tokenizer) elif self.type == "seq2seq_whisper": time_precision = self.feature_extractor.chunk_length / self.model.config.max_source_positions # Send the chunking back to seconds, it's easier to handle in whisper sampling_rate = self.feature_extractor.sampling_rate for output in model_outputs: if "stride" in output: chunk_len, stride_left, stride_right = output["stride"] # Go back in seconds chunk_len /= sampling_rate stride_left /= sampling_rate stride_right /= sampling_rate output["stride"] = chunk_len, stride_left, stride_right text, optional = self.tokenizer._decode_asr( model_outputs, return_timestamps=return_timestamps, return_language=return_language, time_precision=time_precision, ) else: items = np.concatenate(final_items, axis=1) items = items.squeeze(0) if self.type == "ctc_with_lm": if decoder_kwargs is None: decoder_kwargs = {} beams = self.decoder.decode_beams(items, **decoder_kwargs) text = beams[0][0] if return_timestamps: # Simply cast from pyctcdecode format to wav2vec2 format to leverage # pre-existing code later chunk_offset = beams[0][2] offsets = [] for word, (start_offset, end_offset) in chunk_offset: offsets.append({"word": word, "start_offset": start_offset, "end_offset": end_offset}) elif self.type != "seq2seq_whisper": skip_special_tokens = self.type != "ctc" text = self.tokenizer.decode(items, skip_special_tokens=skip_special_tokens) if return_timestamps: offsets = self.tokenizer.decode( items, skip_special_tokens=skip_special_tokens, output_char_offsets=True )["char_offsets"] if return_timestamps == "word": offsets = self.tokenizer._get_word_offsets(offsets, self.tokenizer.replace_word_delimiter_char) if return_timestamps and self.type not in {"seq2seq", "seq2seq_whisper"}: chunks = [] for item in offsets: start = item["start_offset"] * self.model.config.inputs_to_logits_ratio start /= self.feature_extractor.sampling_rate stop = item["end_offset"] * self.model.config.inputs_to_logits_ratio stop /= self.feature_extractor.sampling_rate chunks.append({"text": item[return_timestamps], "timestamp": (start, stop)}) optional["chunks"] = chunks extra = defaultdict(list) for output in model_outputs: output.pop("tokens", None) output.pop("logits", None) output.pop("is_last", None) output.pop("stride", None) output.pop("token_timestamps", None) for k, v in output.items(): extra[k].append(v) return {"text": text, **optional, **extra} def _find_timestamp_sequence(sequences, tokenizer, feature_extractor, max_source_positions): """ Computes the final sequences by merging the end of the nth sequence with the beginning of the n+1th sequence. Since `WhisperForConditionalGeneration` produces the timestamps pairwise, we filter the consecutive timestamps and only iterate over them. We keep track of the `time` which indicates the actual starting time of the chunk that is processed. We need to make sure to offset the timestamps tokens by the `time` in order for the tokenizer to properly compute the final `offset`. """ # index of the first timestamp token timestamp_begin = tokenizer.convert_tokens_to_ids("<|notimestamps|>") + 1 items = [] # approximation of the token to time ratio : ~0.2seconds time_precision = feature_extractor.chunk_length / max_source_positions time = 0 for seq_idx, item in enumerate(sequences): sequence, stride = item if isinstance(sequence, list): sequence = np.array(sequence) chunk_len, stride_left, stride_right = stride sequence = sequence.squeeze(0) # get rid of the `forced_decoder_idx` that are use to parametrize the generation begin_idx = np.where(sequence == timestamp_begin)[0][0] if timestamp_begin in sequence else 0 sequence = sequence[begin_idx:] timestamp_tokens = sequence >= timestamp_begin if seq_idx != 0 and sum(timestamp_tokens) > 0: consecutive = np.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0] + 1 last_timestamp = np.where(timestamp_tokens)[0][-1] consecutive = np.append(consecutive, last_timestamp) if last_timestamp not in consecutive else consecutive time -= stride_left + stride_right offset = int((time / feature_extractor.sampling_rate) / time_precision) overlap_time = int((stride_left / feature_extractor.sampling_rate) / time_precision) # relevant timestamps are in the overlapping part relevant_timestamp = np.where(sequence[consecutive] >= timestamp_begin + overlap_time)[0] if relevant_timestamp.shape[0] > 0: relevant_timestamp = ( consecutive[relevant_timestamp[0] - 1] if relevant_timestamp[0] > 0 else consecutive[0] ) # if a big stride is used, we need to check some of the previous items for the best overlap best_match = 0 sliced_sequence = [] for idx, previous_sequence in enumerate(reversed(items)): previous_tokens = previous_sequence[1:-1] if previous_sequence[0] < (timestamp_begin + offset - overlap_time) and idx != 0: break # the previous sequence is too far in the past if len(previous_tokens) > 0: # find the longest common sequence between the overlapping parts index_left, index_right, match_length = _fast_find_longest_common_sequence( sequence[1:relevant_timestamp], previous_tokens ) # don't do anything if only 1 token was matched if match_length > 1 and match_length > best_match: best_match = match_length best_idx = idx end_of_curr_sequence_idx = ( np.where(sequence[index_left + 1 :] >= timestamp_begin)[0][0] + 1 ) end_of_curr_sequence_idx = end_of_curr_sequence_idx + 1 + index_left # if all the tokens are matched, suffix if index_left == 0 and match_length == len(previous_tokens): sliced_sequence = np.insert( sequence[index_left + 1 : end_of_curr_sequence_idx], 0, previous_sequence[0] ) sliced_sequence[-1] = previous_sequence[-1] # if part of the previous sequence is not taken elif index_left >= 0: sliced_sequence = sequence[index_left + 1 : end_of_curr_sequence_idx] # let's insert the missing part of the previous sequence previous_slice = ( previous_sequence[: index_right + 1] if index_right > 0 else [previous_sequence[0]] ) sliced_sequence = np.insert(sliced_sequence, 0, previous_slice) sliced_sequence[-1] += offset if len(sliced_sequence) > 0: items[len(items) - best_idx - 1] = sliced_sequence items = items[: len(items) - best_idx] sequence = sequence[end_of_curr_sequence_idx:] # sequence might have changed timestamp_tokens = sequence >= timestamp_begin consecutive = np.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0] + 1 if sum(timestamp_tokens) > 0: last_timestamp = np.where(timestamp_tokens)[0][-1] consecutive = ( np.append(consecutive, last_timestamp + 1) if last_timestamp not in consecutive else consecutive ) if len(consecutive) > 0: last_slice = 0 for current_slice in consecutive: actual_offset = items[-1][-1] if seq_idx != 0 or last_slice != 0 else sequence[0] sliced_tokens = sequence[last_slice:current_slice] duration = sliced_tokens[-1] - sliced_tokens[0] sliced_tokens[0] = actual_offset sliced_tokens[-1] = actual_offset + duration items.append(sliced_tokens) last_slice = current_slice time += chunk_len result = [] for i in range(len(items)): result += items[i].tolist() return result ```
====================================================================================================================== SOURCE CODE FILE: base.py LINES: 6 SIZE: 62.24 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\base.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import copy import csv import importlib import json import os import pickle import sys import traceback import types import warnings from abc import ABC, abstractmethod from collections import UserDict from contextlib import contextmanager from os.path import abspath, exists from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union from ..dynamic_module_utils import custom_object_save from ..feature_extraction_utils import PreTrainedFeatureExtractor from ..image_processing_utils import BaseImageProcessor from ..modelcard import ModelCard from ..models.auto import AutoConfig, AutoTokenizer from ..processing_utils import ProcessorMixin from ..tokenization_utils import PreTrainedTokenizer from ..utils import ( ModelOutput, PushToHubMixin, add_end_docstrings, copy_func, infer_framework, is_tf_available, is_torch_available, is_torch_cuda_available, is_torch_hpu_available, is_torch_mlu_available, is_torch_mps_available, is_torch_musa_available, is_torch_npu_available, is_torch_xpu_available, logging, ) GenericTensor = Union[List["GenericTensor"], "torch.Tensor", "tf.Tensor"] if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TFAutoModel if is_torch_available(): import torch from torch.utils.data import DataLoader, Dataset from ..modeling_utils import PreTrainedModel from ..models.auto.modeling_auto import AutoModel # Re-export for backward compatibility from .pt_utils import KeyDataset else: Dataset = None KeyDataset = None if TYPE_CHECKING: from ..modeling_tf_utils import TFPreTrainedModel from ..modeling_utils import PreTrainedModel logger = logging.get_logger(__name__) def no_collate_fn(items): if len(items) != 1: raise ValueError("This collate_fn is meant to be used with batch_size=1") return items[0] def _pad(items, key, padding_value, padding_side): batch_size = len(items) if isinstance(items[0][key], torch.Tensor): # Others include `attention_mask` etc... shape = items[0][key].shape dim = len(shape) if dim == 1: # We have a list of 1-dim torch tensors, which can be stacked without padding return torch.cat([item[key] for item in items], dim=0) if key in ["pixel_values", "image"]: # This is probable image so padding shouldn't be necessary # B, C, H, W return torch.cat([item[key] for item in items], dim=0) elif dim == 4 and key == "input_features": # this is probably a mel spectrogram batched return torch.cat([item[key] for item in items], dim=0) max_length = max(item[key].shape[1] for item in items) min_length = min(item[key].shape[1] for item in items) dtype = items[0][key].dtype if dim == 2: if max_length == min_length: # Bypass for `ImageGPT` which doesn't provide a padding value, yet # we can consistently pad since the size should be matching return torch.cat([item[key] for item in items], dim=0) tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value elif dim == 3: tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value elif dim == 4: tensor = torch.zeros((batch_size, max_length, shape[-2], shape[-1]), dtype=dtype) + padding_value for i, item in enumerate(items): if dim == 2: if padding_side == "left": tensor[i, -len(item[key][0]) :] = item[key][0].clone() else: tensor[i, : len(item[key][0])] = item[key][0].clone() elif dim == 3: if padding_side == "left": tensor[i, -len(item[key][0]) :, :] = item[key][0].clone() else: tensor[i, : len(item[key][0]), :] = item[key][0].clone() elif dim == 4: if padding_side == "left": tensor[i, -len(item[key][0]) :, :, :] = item[key][0].clone() else: tensor[i, : len(item[key][0]), :, :] = item[key][0].clone() return tensor else: return [item[key] for item in items] def pad_collate_fn(tokenizer, feature_extractor): # Tokenizer t_padding_side = None # Feature extractor f_padding_side = None if tokenizer is None and feature_extractor is None: raise ValueError("Pipeline without tokenizer or feature_extractor cannot do batching") if tokenizer is not None: if tokenizer.pad_token_id is None: raise ValueError( "Pipeline with tokenizer without pad_token cannot do batching. You can try to set it with " "`pipe.tokenizer.pad_token_id = model.config.eos_token_id`." ) else: t_padding_value = tokenizer.pad_token_id t_padding_side = tokenizer.padding_side if feature_extractor is not None: # Feature extractor can be images, where no padding is expected f_padding_value = getattr(feature_extractor, "padding_value", None) f_padding_side = getattr(feature_extractor, "padding_side", None) if t_padding_side is not None and f_padding_side is not None and t_padding_side != f_padding_side: raise ValueError( f"The feature extractor, and tokenizer don't agree on padding side {t_padding_side} != {f_padding_side}" ) padding_side = "right" if t_padding_side is not None: padding_side = t_padding_side if f_padding_side is not None: padding_side = f_padding_side def inner(items): keys = set(items[0].keys()) for item in items: if set(item.keys()) != keys: raise ValueError( f"The elements of the batch contain different keys. Cannot batch them ({set(item.keys())} !=" f" {keys})" ) # input_values, input_pixels, input_ids, ... padded = {} for key in keys: if key in {"input_ids"}: # ImageGPT uses a feature extractor if tokenizer is None and feature_extractor is not None: _padding_value = f_padding_value else: _padding_value = t_padding_value elif key in {"input_values", "pixel_values", "input_features"}: _padding_value = f_padding_value elif key in {"p_mask", "special_tokens_mask"}: _padding_value = 1 elif key in {"attention_mask", "token_type_ids"}: _padding_value = 0 else: # This is likely another random key maybe even user provided _padding_value = 0 padded[key] = _pad(items, key, _padding_value, padding_side) return padded return inner def infer_framework_load_model( model, config: AutoConfig, model_classes: Optional[Dict[str, Tuple[type]]] = None, task: Optional[str] = None, framework: Optional[str] = None, **model_kwargs, ): """ Select framework (TensorFlow or PyTorch) to use from the `model` passed. Returns a tuple (framework, model). If `model` is instantiated, this function will just infer the framework from the model class. Otherwise `model` is actually a checkpoint name and this method will try to instantiate it using `model_classes`. Since we don't want to instantiate the model twice, this model is returned for use by the pipeline. If both frameworks are installed and available for `model`, PyTorch is selected. Args: model (`str`, [`PreTrainedModel`] or [`TFPreTrainedModel]`): The model to infer the framework from. If `str`, a checkpoint name. The model to infer the framewrok from. config ([`AutoConfig`]): The config associated with the model to help using the correct class model_classes (dictionary `str` to `type`, *optional*): A mapping framework to class. task (`str`): The task defining which pipeline will be returned. model_kwargs: Additional dictionary of keyword arguments passed along to the model's `from_pretrained(..., **model_kwargs)` function. Returns: `Tuple`: A tuple framework, model. """ if not is_tf_available() and not is_torch_available(): raise RuntimeError( "At least one of TensorFlow 2.0 or PyTorch should be installed. " "To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ " "To install PyTorch, read the instructions at https://pytorch.org/." ) if isinstance(model, str): model_kwargs["_from_pipeline"] = task class_tuple = () look_pt = is_torch_available() and framework in {"pt", None} look_tf = is_tf_available() and framework in {"tf", None} if model_classes: if look_pt: class_tuple = class_tuple + model_classes.get("pt", (AutoModel,)) if look_tf: class_tuple = class_tuple + model_classes.get("tf", (TFAutoModel,)) if config.architectures: classes = [] for architecture in config.architectures: transformers_module = importlib.import_module("transformers") if look_pt: _class = getattr(transformers_module, architecture, None) if _class is not None: classes.append(_class) if look_tf: _class = getattr(transformers_module, f"TF{architecture}", None) if _class is not None: classes.append(_class) class_tuple = class_tuple + tuple(classes) if len(class_tuple) == 0: raise ValueError(f"Pipeline cannot infer suitable model classes from {model}") all_traceback = {} for model_class in class_tuple: kwargs = model_kwargs.copy() if framework == "pt" and model.endswith(".h5"): kwargs["from_tf"] = True logger.warning( "Model might be a TensorFlow model (ending with `.h5`) but TensorFlow is not available. " "Trying to load the model with PyTorch." ) elif framework == "tf" and model.endswith(".bin"): kwargs["from_pt"] = True logger.warning( "Model might be a PyTorch model (ending with `.bin`) but PyTorch is not available. " "Trying to load the model with Tensorflow." ) try: model = model_class.from_pretrained(model, **kwargs) if hasattr(model, "eval"): model = model.eval() # Stop loading on the first successful load. break except (OSError, ValueError): all_traceback[model_class.__name__] = traceback.format_exc() continue if isinstance(model, str): error = "" for class_name, trace in all_traceback.items(): error += f"while loading with {class_name}, an error is thrown:\n{trace}\n" raise ValueError( f"Could not load model {model} with any of the following classes: {class_tuple}. See the original errors:\n\n{error}\n" ) if framework is None: framework = infer_framework(model.__class__) return framework, model def infer_framework_from_model( model, model_classes: Optional[Dict[str, Tuple[type]]] = None, task: Optional[str] = None, framework: Optional[str] = None, **model_kwargs, ): """ Select framework (TensorFlow or PyTorch) to use from the `model` passed. Returns a tuple (framework, model). If `model` is instantiated, this function will just infer the framework from the model class. Otherwise `model` is actually a checkpoint name and this method will try to instantiate it using `model_classes`. Since we don't want to instantiate the model twice, this model is returned for use by the pipeline. If both frameworks are installed and available for `model`, PyTorch is selected. Args: model (`str`, [`PreTrainedModel`] or [`TFPreTrainedModel]`): The model to infer the framework from. If `str`, a checkpoint name. The model to infer the framewrok from. model_classes (dictionary `str` to `type`, *optional*): A mapping framework to class. task (`str`): The task defining which pipeline will be returned. model_kwargs: Additional dictionary of keyword arguments passed along to the model's `from_pretrained(..., **model_kwargs)` function. Returns: `Tuple`: A tuple framework, model. """ if isinstance(model, str): config = AutoConfig.from_pretrained(model, _from_pipeline=task, **model_kwargs) else: config = model.config return infer_framework_load_model( model, config, model_classes=model_classes, _from_pipeline=task, task=task, framework=framework, **model_kwargs ) def get_framework(model, revision: Optional[str] = None): """ Select framework (TensorFlow or PyTorch) to use. Args: model (`str`, [`PreTrainedModel`] or [`TFPreTrainedModel]`): If both frameworks are installed, picks the one corresponding to the model passed (either a model class or the model name). If no specific model is provided, defaults to using PyTorch. """ warnings.warn( "`get_framework` is deprecated and will be removed in v5, use `infer_framework_from_model` instead.", FutureWarning, ) if not is_tf_available() and not is_torch_available(): raise RuntimeError( "At least one of TensorFlow 2.0 or PyTorch should be installed. " "To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ " "To install PyTorch, read the instructions at https://pytorch.org/." ) if isinstance(model, str): if is_torch_available() and not is_tf_available(): model = AutoModel.from_pretrained(model, revision=revision) elif is_tf_available() and not is_torch_available(): model = TFAutoModel.from_pretrained(model, revision=revision) else: try: model = AutoModel.from_pretrained(model, revision=revision) except OSError: model = TFAutoModel.from_pretrained(model, revision=revision) framework = infer_framework(model.__class__) return framework def get_default_model_and_revision( targeted_task: Dict, framework: Optional[str], task_options: Optional[Any] ) -> Tuple[str, str]: """ Select a default model to use for a given task. Defaults to pytorch if ambiguous. Args: targeted_task (`Dict`): Dictionary representing the given task, that should contain default models framework (`str`, None) "pt", "tf" or None, representing a specific framework if it was specified, or None if we don't know yet. task_options (`Any`, None) Any further value required by the task to get fully specified, for instance (SRC, TGT) languages for translation task. Returns Tuple: - `str` The model string representing the default model for this pipeline. - `str` The revision of the model. """ if is_torch_available() and not is_tf_available(): framework = "pt" elif is_tf_available() and not is_torch_available(): framework = "tf" defaults = targeted_task["default"] if task_options: if task_options not in defaults: raise ValueError(f"The task does not provide any default models for options {task_options}") default_models = defaults[task_options]["model"] elif "model" in defaults: default_models = targeted_task["default"]["model"] else: # XXX This error message needs to be updated to be more generic if more tasks are going to become # parametrized raise ValueError('The task defaults can\'t be correctly selected. You probably meant "translation_XX_to_YY"') if framework is None: framework = "pt" return default_models[framework] def load_assistant_model( model: "PreTrainedModel", assistant_model: Optional[Union[str, "PreTrainedModel"]], assistant_tokenizer: Optional[PreTrainedTokenizer], ) -> Tuple[Optional["PreTrainedModel"], Optional[PreTrainedTokenizer]]: """ Prepares the assistant model and the assistant tokenizer for a pipeline whose model that can call `generate`. Args: model ([`PreTrainedModel`]): The main model that will be used by the pipeline to make predictions. assistant_model (`str` or [`PreTrainedModel`], *optional*): The assistant model that will be used by the pipeline to make predictions. assistant_tokenizer ([`PreTrainedTokenizer`], *optional*): The assistant tokenizer that will be used by the pipeline to encode data for the model. Returns: Tuple: The loaded assistant model and (optionally) the loaded tokenizer. """ if not model.can_generate() or assistant_model is None: return None, None if getattr(model, "framework") != "pt" or not isinstance(model, PreTrainedModel): raise ValueError( "Assisted generation, triggered by the `assistant_model` argument, is only available for " "`PreTrainedModel` model instances. For instance, TF or JAX models are not supported." ) # If the model is passed as a string, load the model and the corresponding tokenizer if isinstance(assistant_model, str): assistant_config = AutoConfig.from_pretrained(assistant_model) _, loaded_assistant_model = infer_framework_load_model(assistant_model, config=assistant_config) loaded_assistant_model = loaded_assistant_model.to(device=model.device, dtype=model.dtype) loaded_assistant_tokenizer = AutoTokenizer.from_pretrained(assistant_model) else: loaded_assistant_model = assistant_model loaded_assistant_tokenizer = assistant_tokenizer # Finally, let's check the tokenizers: if the two models have different tokenizers, we need to keep the assistant # tokenizer same_vocab_size = model.config.vocab_size == loaded_assistant_model.config.vocab_size same_special_tokens = all( getattr(model.config, token) == getattr(loaded_assistant_model.config, token) for token in ("eos_token_id", "pad_token_id", "bos_token_id") ) if same_vocab_size and same_special_tokens: loaded_assistant_tokenizer = None elif loaded_assistant_tokenizer is None: raise ValueError( "The assistant model has a different tokenizer than the main model. You should pass the assistant " "tokenizer." ) return loaded_assistant_model, loaded_assistant_tokenizer class PipelineException(Exception): """ Raised by a [`Pipeline`] when handling __call__. Args: task (`str`): The task of the pipeline. model (`str`): The model used by the pipeline. reason (`str`): The error message to display. """ def __init__(self, task: str, model: str, reason: str): super().__init__(reason) self.task = task self.model = model class ArgumentHandler(ABC): """ Base interface for handling arguments for each [`~pipelines.Pipeline`]. """ @abstractmethod def __call__(self, *args, **kwargs): raise NotImplementedError() class PipelineDataFormat: """ Base class for all the pipeline supported data format both for reading and writing. Supported data formats currently includes: - JSON - CSV - stdin/stdout (pipe) `PipelineDataFormat` also includes some utilities to work with multi-columns like mapping from datasets columns to pipelines keyword arguments through the `dataset_kwarg_1=dataset_column_1` format. Args: output_path (`str`): Where to save the outgoing data. input_path (`str`): Where to look for the input data. column (`str`): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. """ SUPPORTED_FORMATS = ["json", "csv", "pipe"] def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite: bool = False, ): self.output_path = output_path self.input_path = input_path self.column = column.split(",") if column is not None else [""] self.is_multi_columns = len(self.column) > 1 if self.is_multi_columns: self.column = [tuple(c.split("=")) if "=" in c else (c, c) for c in self.column] if output_path is not None and not overwrite: if exists(abspath(self.output_path)): raise OSError(f"{self.output_path} already exists on disk") if input_path is not None: if not exists(abspath(self.input_path)): raise OSError(f"{self.input_path} doesnt exist on disk") @abstractmethod def __iter__(self): raise NotImplementedError() @abstractmethod def save(self, data: Union[dict, List[dict]]): """ Save the provided data object with the representation for the current [`~pipelines.PipelineDataFormat`]. Args: data (`dict` or list of `dict`): The data to store. """ raise NotImplementedError() def save_binary(self, data: Union[dict, List[dict]]) -> str: """ Save the provided data object as a pickle-formatted binary data on the disk. Args: data (`dict` or list of `dict`): The data to store. Returns: `str`: Path where the data has been saved. """ path, _ = os.path.splitext(self.output_path) binary_path = os.path.extsep.join((path, "pickle")) with open(binary_path, "wb+") as f_output: pickle.dump(data, f_output) return binary_path @staticmethod def from_str( format: str, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ) -> "PipelineDataFormat": """ Creates an instance of the right subclass of [`~pipelines.PipelineDataFormat`] depending on `format`. Args: format (`str`): The format of the desired pipeline. Acceptable values are `"json"`, `"csv"` or `"pipe"`. output_path (`str`, *optional*): Where to save the outgoing data. input_path (`str`, *optional*): Where to look for the input data. column (`str`, *optional*): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. Returns: [`~pipelines.PipelineDataFormat`]: The proper data format. """ if format == "json": return JsonPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) elif format == "csv": return CsvPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) elif format == "pipe": return PipedPipelineDataFormat(output_path, input_path, column, overwrite=overwrite) else: raise KeyError(f"Unknown reader {format} (Available reader are json/csv/pipe)") class CsvPipelineDataFormat(PipelineDataFormat): """ Support for pipelines using CSV data format. Args: output_path (`str`): Where to save the outgoing data. input_path (`str`): Where to look for the input data. column (`str`): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. """ def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ): super().__init__(output_path, input_path, column, overwrite=overwrite) def __iter__(self): with open(self.input_path, "r") as f: reader = csv.DictReader(f) for row in reader: if self.is_multi_columns: yield {k: row[c] for k, c in self.column} else: yield row[self.column[0]] def save(self, data: List[dict]): """ Save the provided data object with the representation for the current [`~pipelines.PipelineDataFormat`]. Args: data (`List[dict]`): The data to store. """ with open(self.output_path, "w") as f: if len(data) > 0: writer = csv.DictWriter(f, list(data[0].keys())) writer.writeheader() writer.writerows(data) class JsonPipelineDataFormat(PipelineDataFormat): """ Support for pipelines using JSON file format. Args: output_path (`str`): Where to save the outgoing data. input_path (`str`): Where to look for the input data. column (`str`): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. """ def __init__( self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False, ): super().__init__(output_path, input_path, column, overwrite=overwrite) with open(input_path, "r") as f: self._entries = json.load(f) def __iter__(self): for entry in self._entries: if self.is_multi_columns: yield {k: entry[c] for k, c in self.column} else: yield entry[self.column[0]] def save(self, data: dict): """ Save the provided data object in a json file. Args: data (`dict`): The data to store. """ with open(self.output_path, "w") as f: json.dump(data, f) class PipedPipelineDataFormat(PipelineDataFormat): """ Read data from piped input to the python process. For multi columns data, columns should separated by \t If columns are provided, then the output will be a dictionary with {column_x: value_x} Args: output_path (`str`): Where to save the outgoing data. input_path (`str`): Where to look for the input data. column (`str`): The column to read. overwrite (`bool`, *optional*, defaults to `False`): Whether or not to overwrite the `output_path`. """ def __iter__(self): for line in sys.stdin: # Split for multi-columns if "\t" in line: line = line.split("\t") if self.column: # Dictionary to map arguments yield {kwargs: l for (kwargs, _), l in zip(self.column, line)} else: yield tuple(line) # No dictionary to map arguments else: yield line def save(self, data: dict): """ Print the data. Args: data (`dict`): The data to store. """ print(data) def save_binary(self, data: Union[dict, List[dict]]) -> str: if self.output_path is None: raise KeyError( "When using piped input on pipeline outputting large object requires an output file path. " "Please provide such output path through --output argument." ) return super().save_binary(data) class _ScikitCompat(ABC): """ Interface layer for the Scikit and Keras compatibility. """ @abstractmethod def transform(self, X): raise NotImplementedError() @abstractmethod def predict(self, X): raise NotImplementedError() def build_pipeline_init_args( has_tokenizer: bool = False, has_feature_extractor: bool = False, has_image_processor: bool = False, has_processor: bool = False, supports_binary_output: bool = True, ) -> str: docstring = r""" Arguments: model ([`PreTrainedModel`] or [`TFPreTrainedModel`]): The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from [`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow.""" if has_tokenizer: docstring += r""" tokenizer ([`PreTrainedTokenizer`]): The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from [`PreTrainedTokenizer`].""" if has_feature_extractor: docstring += r""" feature_extractor ([`SequenceFeatureExtractor`]): The feature extractor that will be used by the pipeline to encode data for the model. This object inherits from [`SequenceFeatureExtractor`].""" if has_image_processor: docstring += r""" image_processor ([`BaseImageProcessor`]): The image processor that will be used by the pipeline to encode data for the model. This object inherits from [`BaseImageProcessor`].""" if has_processor: docstring += r""" processor ([`ProcessorMixin`]): The processor that will be used by the pipeline to encode data for the model. This object inherits from [`ProcessorMixin`]. Processor is a composite object that might contain `tokenizer`, `feature_extractor`, and `image_processor`.""" docstring += r""" modelcard (`str` or [`ModelCard`], *optional*): Model card attributed to the model for this pipeline. framework (`str`, *optional*): The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be installed. If no framework is specified, will default to the one currently installed. If no framework is specified and both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is provided. task (`str`, defaults to `""`): A task-identifier for the pipeline. num_workers (`int`, *optional*, defaults to 8): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the number of workers to be used. batch_size (`int`, *optional*, defaults to 1): When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the size of the batch to use, for inference this is not always beneficial, please read [Batching with pipelines](https://huggingface.co/transformers/main_classes/pipelines.html#pipeline-batching) . args_parser ([`~pipelines.ArgumentHandler`], *optional*): Reference to the object in charge of parsing supplied pipeline parameters. device (`int`, *optional*, defaults to -1): Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id. You can pass native `torch.device` or a `str` too torch_dtype (`str` or `torch.dtype`, *optional*): Sent directly as `model_kwargs` (just a simpler shortcut) to use the available precision for this model (`torch.float16`, `torch.bfloat16`, ... or `"auto"`)""" if supports_binary_output: docstring += r""" binary_output (`bool`, *optional*, defaults to `False`): Flag indicating if the output the pipeline should happen in a serialized format (i.e., pickle) or as the raw output data e.g. text.""" return docstring PIPELINE_INIT_ARGS = build_pipeline_init_args( has_tokenizer=True, has_feature_extractor=True, has_image_processor=True, has_processor=True, supports_binary_output=True, ) if is_torch_available(): from transformers.pipelines.pt_utils import ( PipelineChunkIterator, PipelineDataset, PipelineIterator, PipelinePackIterator, ) @add_end_docstrings( build_pipeline_init_args( has_tokenizer=True, has_feature_extractor=True, has_image_processor=True, has_processor=True ) ) class Pipeline(_ScikitCompat, PushToHubMixin): """ The Pipeline class is the class from which all pipelines inherit. Refer to this class for methods shared across different pipelines. Base class implementing pipelined operations. Pipeline workflow is defined as a sequence of the following operations: Input -> Tokenization -> Model Inference -> Post-Processing (task dependent) -> Output Pipeline supports running on CPU or GPU through the device argument (see below). Some pipeline, like for instance [`FeatureExtractionPipeline`] (`'feature-extraction'`) output large tensor object as nested-lists. In order to avoid dumping such large structure as textual data we provide the `binary_output` constructor argument. If set to `True`, the output will be stored in the pickle format. """ # Historically we have pipelines working with `tokenizer`, `feature_extractor`, and `image_processor` # as separate processing components. While we have `processor` class that combines them, some pipelines # might still operate with these components separately. # With the addition of `processor` to `pipeline`, we want to avoid: # - loading `processor` for pipelines that still work with `image_processor` and `tokenizer` separately; # - loading `image_processor`/`tokenizer` as a separate component while we operate only with `processor`, # because `processor` will load required sub-components by itself. # Below flags allow granular control over loading components and set to be backward compatible with current # pipelines logic. You may override these flags when creating your pipeline. For example, for # `zero-shot-object-detection` pipeline which operates with `processor` you should set `_load_processor=True` # and all the rest flags to `False` to avoid unnecessary loading of the components. _load_processor = False _load_image_processor = True _load_feature_extractor = True _load_tokenizer = True default_input_names = None def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: Optional[PreTrainedTokenizer] = None, feature_extractor: Optional[PreTrainedFeatureExtractor] = None, image_processor: Optional[BaseImageProcessor] = None, processor: Optional[ProcessorMixin] = None, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, task: str = "", args_parser: ArgumentHandler = None, device: Union[int, "torch.device"] = None, torch_dtype: Optional[Union[str, "torch.dtype"]] = None, binary_output: bool = False, **kwargs, ): if framework is None: framework, model = infer_framework_load_model(model, config=model.config) self.task = task self.model = model self.tokenizer = tokenizer self.feature_extractor = feature_extractor self.image_processor = image_processor self.processor = processor self.modelcard = modelcard self.framework = framework # `accelerate` device map hf_device_map = getattr(self.model, "hf_device_map", None) if hf_device_map is not None and device is not None: raise ValueError( "The model has been loaded with `accelerate` and therefore cannot be moved to a specific device. Please " "discard the `device` argument when creating your pipeline object." ) if device is None: if hf_device_map is not None: # Take the first device used by `accelerate`. device = next(iter(hf_device_map.values())) else: device = 0 if is_torch_available() and self.framework == "pt": if device == -1 and self.model.device is not None: device = self.model.device if isinstance(device, torch.device): if (device.type == "xpu" and not is_torch_xpu_available(check_device=True)) or ( device.type == "hpu" and not is_torch_hpu_available() ): raise ValueError(f'{device} is not available, you should use device="cpu" instead') self.device = device elif isinstance(device, str): if ("xpu" in device and not is_torch_xpu_available(check_device=True)) or ( "hpu" in device and not is_torch_hpu_available() ): raise ValueError(f'{device} is not available, you should use device="cpu" instead') self.device = torch.device(device) elif device < 0: self.device = torch.device("cpu") elif is_torch_mlu_available(): self.device = torch.device(f"mlu:{device}") elif is_torch_musa_available(): self.device = torch.device(f"musa:{device}") elif is_torch_cuda_available(): self.device = torch.device(f"cuda:{device}") elif is_torch_npu_available(): self.device = torch.device(f"npu:{device}") elif is_torch_hpu_available(): self.device = torch.device(f"hpu:{device}") elif is_torch_xpu_available(check_device=True): self.device = torch.device(f"xpu:{device}") elif is_torch_mps_available(): self.device = torch.device(f"mps:{device}") else: self.device = torch.device("cpu") else: self.device = device if device is not None else -1 if torch.distributed.is_initialized(): self.device = self.model.device logger.warning(f"Device set to use {self.device}") self.binary_output = binary_output # We shouldn't call `model.to()` for models loaded with accelerate as well as the case that model is already on device if ( self.framework == "pt" and self.model.device != self.device and not (isinstance(self.device, int) and self.device < 0) and hf_device_map is None ): self.model.to(self.device) # If the model can generate: # 1 - create a local generation config. This is done to avoid side-effects on the model as we apply local # tweaks to the generation config. # 2 - load the assistant model if it is passed. self.assistant_model, self.assistant_tokenizer = load_assistant_model( self.model, kwargs.pop("assistant_model", None), kwargs.pop("assistant_tokenizer", None) ) if self.model.can_generate(): self.prefix = self.model.config.prefix if hasattr(self.model.config, "prefix") else None self.generation_config = copy.deepcopy(self.model.generation_config) # Update the generation config with task specific params if they exist # NOTE: `prefix` is pipeline-specific and doesn't exist in the generation config. task_specific_params = self.model.config.task_specific_params if task_specific_params is not None and task in task_specific_params: this_task_params = task_specific_params.get(task) if "prefix" in this_task_params: self.prefix = this_task_params.pop("prefix") self.generation_config.update(**this_task_params) # If the tokenizer has a pad token but the model doesn't, set it so that `generate` is aware of it. if ( self.tokenizer is not None and self.tokenizer.pad_token_id is not None and self.generation_config.pad_token_id is None ): self.generation_config.pad_token_id = self.tokenizer.pad_token_id self.call_count = 0 self._batch_size = kwargs.pop("batch_size", None) self._num_workers = kwargs.pop("num_workers", None) self._preprocess_params, self._forward_params, self._postprocess_params = self._sanitize_parameters(**kwargs) # In processor only mode, we can get the modality processors from the processor if self.processor is not None and all( [self.tokenizer is None, self.feature_extractor is None, self.image_processor is None] ): self.tokenizer = getattr(self.processor, "tokenizer", None) self.feature_extractor = getattr(self.processor, "feature_extractor", None) self.image_processor = getattr(self.processor, "image_processor", None) if self.image_processor is None and self.feature_extractor is not None: if isinstance(self.feature_extractor, BaseImageProcessor): # Backward compatible change, if users called # ImageSegmentationPipeline(.., feature_extractor=MyFeatureExtractor()) # then we should keep working self.image_processor = self.feature_extractor def save_pretrained( self, save_directory: Union[str, os.PathLike], safe_serialization: bool = True, **kwargs, ): """ Save the pipeline's model and tokenizer. Args: save_directory (`str` or `os.PathLike`): A path to the directory where to saved. It will be created if it doesn't exist. safe_serialization (`str`): Whether to save the model using `safetensors` or the traditional way for PyTorch or Tensorflow. kwargs (`Dict[str, Any]`, *optional*): Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. """ use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token if os.path.isfile(save_directory): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return os.makedirs(save_directory, exist_ok=True) if hasattr(self, "_registered_impl"): # Add info to the config pipeline_info = self._registered_impl.copy() custom_pipelines = {} for task, info in pipeline_info.items(): if info["impl"] != self.__class__: continue info = info.copy() module_name = info["impl"].__module__ last_module = module_name.split(".")[-1] # Change classes into their names/full names info["impl"] = f"{last_module}.{info['impl'].__name__}" info["pt"] = tuple(c.__name__ for c in info["pt"]) info["tf"] = tuple(c.__name__ for c in info["tf"]) custom_pipelines[task] = info self.model.config.custom_pipelines = custom_pipelines # Save the pipeline custom code custom_object_save(self, save_directory) kwargs["safe_serialization"] = safe_serialization self.model.save_pretrained(save_directory, **kwargs) if self.tokenizer is not None: self.tokenizer.save_pretrained(save_directory, **kwargs) if self.feature_extractor is not None: self.feature_extractor.save_pretrained(save_directory, **kwargs) if self.image_processor is not None: self.image_processor.save_pretrained(save_directory, **kwargs) if self.modelcard is not None: self.modelcard.save_pretrained(save_directory) def transform(self, X): """ Scikit / Keras interface to transformers' pipelines. This method will forward to __call__(). """ return self(X) def predict(self, X): """ Scikit / Keras interface to transformers' pipelines. This method will forward to __call__(). """ return self(X) @property def torch_dtype(self) -> Optional["torch.dtype"]: """ Torch dtype of the model (if it's Pytorch model), `None` otherwise. """ return getattr(self.model, "dtype", None) @contextmanager def device_placement(self): """ Context Manager allowing tensor allocation on the user-specified device in framework agnostic way. Returns: Context manager Examples: ```python # Explicitly ask for tensor allocation on CUDA device :0 pipe = pipeline(..., device=0) with pipe.device_placement(): # Every framework specific tensor allocation will be done on the request device output = pipe(...) ```""" if self.framework == "tf": with tf.device("/CPU:0" if self.device == -1 else f"/device:GPU:{self.device}"): yield else: if self.device.type == "cuda": with torch.cuda.device(self.device): yield elif self.device.type == "mlu": with torch.mlu.device(self.device): yield elif self.device.type == "musa": with torch.musa.device(self.device): yield elif self.device.type == "xpu": with torch.xpu.device(self.device): yield else: yield def ensure_tensor_on_device(self, **inputs): """ Ensure PyTorch tensors are on the specified device. Args: inputs (keyword arguments that should be `torch.Tensor`, the rest is ignored): The tensors to place on `self.device`. Recursive on lists **only**. Return: `Dict[str, torch.Tensor]`: The same as `inputs` but on the proper device. """ return self._ensure_tensor_on_device(inputs, self.device) def _ensure_tensor_on_device(self, inputs, device): if isinstance(inputs, ModelOutput): return ModelOutput( {name: self._ensure_tensor_on_device(tensor, device) for name, tensor in inputs.items()} ) elif isinstance(inputs, dict): return {name: self._ensure_tensor_on_device(tensor, device) for name, tensor in inputs.items()} elif isinstance(inputs, UserDict): return UserDict({name: self._ensure_tensor_on_device(tensor, device) for name, tensor in inputs.items()}) elif isinstance(inputs, list): return [self._ensure_tensor_on_device(item, device) for item in inputs] elif isinstance(inputs, tuple): return tuple([self._ensure_tensor_on_device(item, device) for item in inputs]) elif isinstance(inputs, torch.Tensor): return inputs.to(device) else: return inputs def check_model_type(self, supported_models: Union[List[str], dict]): """ Check if the model class is in supported by the pipeline. Args: supported_models (`List[str]` or `dict`): The list of models supported by the pipeline, or a dictionary with model class values. """ if not isinstance(supported_models, list): # Create from a model mapping supported_models_names = [] for _, model_name in supported_models.items(): # Mapping can now contain tuples of models for the same configuration. if isinstance(model_name, tuple): supported_models_names.extend(list(model_name)) else: supported_models_names.append(model_name) if hasattr(supported_models, "_model_mapping"): for _, model in supported_models._model_mapping._extra_content.items(): if isinstance(model_name, tuple): supported_models_names.extend([m.__name__ for m in model]) else: supported_models_names.append(model.__name__) supported_models = supported_models_names if self.model.__class__.__name__ not in supported_models: logger.error( f"The model '{self.model.__class__.__name__}' is not supported for {self.task}. Supported models are" f" {supported_models}." ) @abstractmethod def _sanitize_parameters(self, **pipeline_parameters): """ _sanitize_parameters will be called with any excessive named arguments from either `__init__` or `__call__` methods. It should return 3 dictionaries of the resolved parameters used by the various `preprocess`, `forward` and `postprocess` methods. Do not fill dictionaries if the caller didn't specify a kwargs. This lets you keep defaults in function signatures, which is more "natural". It is not meant to be called directly, it will be automatically called and the final parameters resolved by `__init__` and `__call__` """ raise NotImplementedError("_sanitize_parameters not implemented") @abstractmethod def preprocess(self, input_: Any, **preprocess_parameters: Dict) -> Dict[str, GenericTensor]: """ Preprocess will take the `input_` of a specific pipeline and return a dictionary of everything necessary for `_forward` to run properly. It should contain at least one tensor, but might have arbitrary other items. """ raise NotImplementedError("preprocess not implemented") @abstractmethod def _forward(self, input_tensors: Dict[str, GenericTensor], **forward_parameters: Dict) -> ModelOutput: """ _forward will receive the prepared dictionary from `preprocess` and run it on the model. This method might involve the GPU or the CPU and should be agnostic to it. Isolating this function is the reason for `preprocess` and `postprocess` to exist, so that the hot path, this method generally can run as fast as possible. It is not meant to be called directly, `forward` is preferred. It is basically the same but contains additional code surrounding `_forward` making sure tensors and models are on the same device, disabling the training part of the code (leading to faster inference). """ raise NotImplementedError("_forward not implemented") @abstractmethod def postprocess(self, model_outputs: ModelOutput, **postprocess_parameters: Dict) -> Any: """ Postprocess will receive the raw outputs of the `_forward` method, generally tensors, and reformat them into something more friendly. Generally it will output a list or a dict or results (containing just strings and numbers). """ raise NotImplementedError("postprocess not implemented") def get_inference_context(self): return torch.no_grad def forward(self, model_inputs, **forward_params): with self.device_placement(): if self.framework == "tf": model_inputs["training"] = False model_outputs = self._forward(model_inputs, **forward_params) elif self.framework == "pt": inference_context = self.get_inference_context() with inference_context(): model_inputs = self._ensure_tensor_on_device(model_inputs, device=self.device) model_outputs = self._forward(model_inputs, **forward_params) model_outputs = self._ensure_tensor_on_device(model_outputs, device=torch.device("cpu")) else: raise ValueError(f"Framework {self.framework} is not supported") return model_outputs def get_iterator( self, inputs, num_workers: int, batch_size: int, preprocess_params, forward_params, postprocess_params ): if isinstance(inputs, collections.abc.Sized): dataset = PipelineDataset(inputs, self.preprocess, preprocess_params) else: if num_workers > 1: logger.warning( "For iterable dataset using num_workers>1 is likely to result" " in errors since everything is iterable, setting `num_workers=1`" " to guarantee correctness." ) num_workers = 1 dataset = PipelineIterator(inputs, self.preprocess, preprocess_params) if "TOKENIZERS_PARALLELISM" not in os.environ: logger.info("Disabling tokenizer parallelism, we're using DataLoader multithreading already") os.environ["TOKENIZERS_PARALLELISM"] = "false" # TODO hack by collating feature_extractor and image_processor feature_extractor = self.feature_extractor if self.feature_extractor is not None else self.image_processor collate_fn = no_collate_fn if batch_size == 1 else pad_collate_fn(self.tokenizer, feature_extractor) dataloader = DataLoader(dataset, num_workers=num_workers, batch_size=batch_size, collate_fn=collate_fn) model_iterator = PipelineIterator(dataloader, self.forward, forward_params, loader_batch_size=batch_size) final_iterator = PipelineIterator(model_iterator, self.postprocess, postprocess_params) return final_iterator def __call__(self, inputs, *args, num_workers=None, batch_size=None, **kwargs): if args: logger.warning(f"Ignoring args : {args}") if num_workers is None: if self._num_workers is None: num_workers = 0 else: num_workers = self._num_workers if batch_size is None: if self._batch_size is None: batch_size = 1 else: batch_size = self._batch_size preprocess_params, forward_params, postprocess_params = self._sanitize_parameters(**kwargs) # Fuse __init__ params and __call__ params without modifying the __init__ ones. preprocess_params = {**self._preprocess_params, **preprocess_params} forward_params = {**self._forward_params, **forward_params} postprocess_params = {**self._postprocess_params, **postprocess_params} self.call_count += 1 if self.call_count > 10 and self.framework == "pt" and self.device.type == "cuda": logger.warning_once( "You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a" " dataset", ) is_dataset = Dataset is not None and isinstance(inputs, Dataset) is_generator = isinstance(inputs, types.GeneratorType) is_list = isinstance(inputs, list) is_iterable = is_dataset or is_generator or is_list # TODO make the get_iterator work also for `tf` (and `flax`). can_use_iterator = self.framework == "pt" and (is_dataset or is_generator or is_list) if is_list: if can_use_iterator: final_iterator = self.get_iterator( inputs, num_workers, batch_size, preprocess_params, forward_params, postprocess_params ) outputs = list(final_iterator) return outputs else: return self.run_multi(inputs, preprocess_params, forward_params, postprocess_params) elif can_use_iterator: return self.get_iterator( inputs, num_workers, batch_size, preprocess_params, forward_params, postprocess_params ) elif is_iterable: return self.iterate(inputs, preprocess_params, forward_params, postprocess_params) elif self.framework == "pt" and isinstance(self, ChunkPipeline): return next( iter( self.get_iterator( [inputs], num_workers, batch_size, preprocess_params, forward_params, postprocess_params ) ) ) else: return self.run_single(inputs, preprocess_params, forward_params, postprocess_params) def run_multi(self, inputs, preprocess_params, forward_params, postprocess_params): return [self.run_single(item, preprocess_params, forward_params, postprocess_params) for item in inputs] def run_single(self, inputs, preprocess_params, forward_params, postprocess_params): model_inputs = self.preprocess(inputs, **preprocess_params) model_outputs = self.forward(model_inputs, **forward_params) outputs = self.postprocess(model_outputs, **postprocess_params) return outputs def iterate(self, inputs, preprocess_params, forward_params, postprocess_params): # This function should become `get_iterator` again, this is a temporary # easy solution. for input_ in inputs: yield self.run_single(input_, preprocess_params, forward_params, postprocess_params) Pipeline.push_to_hub = copy_func(Pipeline.push_to_hub) if Pipeline.push_to_hub.__doc__ is not None: Pipeline.push_to_hub.__doc__ = Pipeline.push_to_hub.__doc__.format( object="pipe", object_class="pipeline", object_files="pipeline file" ).replace(".from_pretrained", "") class ChunkPipeline(Pipeline): def run_single(self, inputs, preprocess_params, forward_params, postprocess_params): all_outputs = [] for model_inputs in self.preprocess(inputs, **preprocess_params): model_outputs = self.forward(model_inputs, **forward_params) all_outputs.append(model_outputs) outputs = self.postprocess(all_outputs, **postprocess_params) return outputs def get_iterator( self, inputs, num_workers: int, batch_size: int, preprocess_params, forward_params, postprocess_params ): if "TOKENIZERS_PARALLELISM" not in os.environ: logger.info("Disabling tokenizer parallelism, we're using DataLoader multithreading already") os.environ["TOKENIZERS_PARALLELISM"] = "false" if num_workers > 1: logger.warning( "For ChunkPipeline using num_workers>0 is likely to result in errors since everything is iterable," " setting `num_workers=1` to guarantee correctness." ) num_workers = 1 dataset = PipelineChunkIterator(inputs, self.preprocess, preprocess_params) # TODO hack by collating feature_extractor and image_processor feature_extractor = self.feature_extractor if self.feature_extractor is not None else self.image_processor collate_fn = no_collate_fn if batch_size == 1 else pad_collate_fn(self.tokenizer, feature_extractor) dataloader = DataLoader(dataset, num_workers=num_workers, batch_size=batch_size, collate_fn=collate_fn) model_iterator = PipelinePackIterator(dataloader, self.forward, forward_params, loader_batch_size=batch_size) final_iterator = PipelineIterator(model_iterator, self.postprocess, postprocess_params) return final_iterator class PipelineRegistry: def __init__(self, supported_tasks: Dict[str, Any], task_aliases: Dict[str, str]) -> None: self.supported_tasks = supported_tasks self.task_aliases = task_aliases def get_supported_tasks(self) -> List[str]: supported_task = list(self.supported_tasks.keys()) + list(self.task_aliases.keys()) supported_task.sort() return supported_task def check_task(self, task: str) -> Tuple[str, Dict, Any]: if task in self.task_aliases: task = self.task_aliases[task] if task in self.supported_tasks: targeted_task = self.supported_tasks[task] return task, targeted_task, None if task.startswith("translation"): tokens = task.split("_") if len(tokens) == 4 and tokens[0] == "translation" and tokens[2] == "to": targeted_task = self.supported_tasks["translation"] task = "translation" return task, targeted_task, (tokens[1], tokens[3]) raise KeyError(f"Invalid translation task {task}, use 'translation_XX_to_YY' format") raise KeyError( f"Unknown task {task}, available tasks are {self.get_supported_tasks() + ['translation_XX_to_YY']}" ) def register_pipeline( self, task: str, pipeline_class: type, pt_model: Optional[Union[type, Tuple[type]]] = None, tf_model: Optional[Union[type, Tuple[type]]] = None, default: Optional[Dict] = None, type: Optional[str] = None, ) -> None: if task in self.supported_tasks: logger.warning(f"{task} is already registered. Overwriting pipeline for task {task}...") if pt_model is None: pt_model = () elif not isinstance(pt_model, tuple): pt_model = (pt_model,) if tf_model is None: tf_model = () elif not isinstance(tf_model, tuple): tf_model = (tf_model,) task_impl = {"impl": pipeline_class, "pt": pt_model, "tf": tf_model} if default is not None: if "model" not in default and ("pt" in default or "tf" in default): default = {"model": default} task_impl["default"] = default if type is not None: task_impl["type"] = type self.supported_tasks[task] = task_impl pipeline_class._registered_impl = {task: task_impl} def to_dict(self): return self.supported_tasks ```
================================================================================================================================== SOURCE CODE FILE: depth_estimation.py LINES: 1 SIZE: 5.61 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\depth_estimation.py ENCODING: utf-8 ```py from typing import List, Union from ..utils import ( add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import Pipeline, build_pipeline_init_args if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES logger = logging.get_logger(__name__) @add_end_docstrings(build_pipeline_init_args(has_image_processor=True)) class DepthEstimationPipeline(Pipeline): """ Depth estimation pipeline using any `AutoModelForDepthEstimation`. This pipeline predicts the depth of an image. Example: ```python >>> from transformers import pipeline >>> depth_estimator = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-base-hf") >>> output = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg") >>> # This is a tensor with the values being the depth expressed in meters for each pixel >>> output["predicted_depth"].shape torch.Size([1, 384, 384]) ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This depth estimation pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"depth-estimation"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=depth-estimation). """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) requires_backends(self, "vision") self.check_model_type(MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES) def __call__(self, inputs: Union[str, List[str], "Image.Image", List["Image.Image"]] = None, **kwargs): """ Predict the depth(s) of the image(s) passed as inputs. Args: inputs (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): The pipeline handles three types of images: - A string containing a http link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly The pipeline accepts either a single image or a batch of images, which must then be passed as a string. Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL images. parameters (`Dict`, *optional*): A dictionary of argument names to parameter values, to control pipeline behaviour. The only parameter available right now is `timeout`, which is the length of time, in seconds, that the pipeline should wait before giving up on trying to download an image. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and the call may block forever. Return: A dictionary or a list of dictionaries containing result. If the input is a single image, will return a dictionary, if the input is a list of several images, will return a list of dictionaries corresponding to the images. The dictionaries contain the following keys: - **predicted_depth** (`torch.Tensor`) -- The predicted depth by the model as a `torch.Tensor`. - **depth** (`PIL.Image`) -- The predicted depth by the model as a `PIL.Image`. """ # After deprecation of this is completed, remove the default `None` value for `images` if "images" in kwargs: inputs = kwargs.pop("images") if inputs is None: raise ValueError("Cannot call the depth-estimation pipeline without an inputs argument!") return super().__call__(inputs, **kwargs) def _sanitize_parameters(self, timeout=None, parameters=None, **kwargs): preprocess_params = {} if timeout is not None: preprocess_params["timeout"] = timeout if isinstance(parameters, dict) and "timeout" in parameters: preprocess_params["timeout"] = parameters["timeout"] return preprocess_params, {}, {} def preprocess(self, image, timeout=None): image = load_image(image, timeout) model_inputs = self.image_processor(images=image, return_tensors=self.framework) if self.framework == "pt": model_inputs = model_inputs.to(self.torch_dtype) model_inputs["target_size"] = image.size[::-1] return model_inputs def _forward(self, model_inputs): target_size = model_inputs.pop("target_size") model_outputs = self.model(**model_inputs) model_outputs["target_size"] = target_size return model_outputs def postprocess(self, model_outputs): outputs = self.image_processor.post_process_depth_estimation( model_outputs, # this acts as `source_sizes` for ZoeDepth and as `target_sizes` for the rest of the models so do *not* # replace with `target_sizes = [model_outputs["target_size"]]` [model_outputs["target_size"]], ) formatted_outputs = [] for output in outputs: depth = output["predicted_depth"].detach().cpu().numpy() depth = (depth - depth.min()) / (depth.max() - depth.min()) depth = Image.fromarray((depth * 255).astype("uint8")) formatted_outputs.append({"predicted_depth": output["predicted_depth"], "depth": depth}) return formatted_outputs[0] if len(outputs) == 1 else formatted_outputs ```
============================================================================================================================================= SOURCE CODE FILE: document_question_answering.py LINES: 1 SIZE: 24.05 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\document_question_answering.py ENCODING: utf-8 ```py # Copyright 2022 The Impira Team and the HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from typing import List, Optional, Tuple, Union import numpy as np from ..utils import ( ExplicitEnum, add_end_docstrings, is_pytesseract_available, is_torch_available, is_vision_available, logging, ) from .base import ChunkPipeline, build_pipeline_init_args from .question_answering import select_starts_ends if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES TESSERACT_LOADED = False if is_pytesseract_available(): TESSERACT_LOADED = True import pytesseract logger = logging.get_logger(__name__) # normalize_bbox() and apply_tesseract() are derived from apply_tesseract in models/layoutlmv3/feature_extraction_layoutlmv3.py. # However, because the pipeline may evolve from what layoutlmv3 currently does, it's copied (vs. imported) to avoid creating an # unnecessary dependency. def normalize_box(box, width, height): return [ int(1000 * (box[0] / width)), int(1000 * (box[1] / height)), int(1000 * (box[2] / width)), int(1000 * (box[3] / height)), ] def apply_tesseract(image: "Image.Image", lang: Optional[str], tesseract_config: Optional[str]): """Applies Tesseract OCR on a document image, and returns recognized words + normalized bounding boxes.""" # apply OCR data = pytesseract.image_to_data(image, lang=lang, output_type="dict", config=tesseract_config) words, left, top, width, height = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates irrelevant_indices = [idx for idx, word in enumerate(words) if not word.strip()] words = [word for idx, word in enumerate(words) if idx not in irrelevant_indices] left = [coord for idx, coord in enumerate(left) if idx not in irrelevant_indices] top = [coord for idx, coord in enumerate(top) if idx not in irrelevant_indices] width = [coord for idx, coord in enumerate(width) if idx not in irrelevant_indices] height = [coord for idx, coord in enumerate(height) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format actual_boxes = [] for x, y, w, h in zip(left, top, width, height): actual_box = [x, y, x + w, y + h] actual_boxes.append(actual_box) image_width, image_height = image.size # finally, normalize the bounding boxes normalized_boxes = [] for box in actual_boxes: normalized_boxes.append(normalize_box(box, image_width, image_height)) if len(words) != len(normalized_boxes): raise ValueError("Not as many words as there are bounding boxes") return words, normalized_boxes class ModelType(ExplicitEnum): LayoutLM = "layoutlm" LayoutLMv2andv3 = "layoutlmv2andv3" VisionEncoderDecoder = "vision_encoder_decoder" @add_end_docstrings(build_pipeline_init_args(has_image_processor=True, has_tokenizer=True)) class DocumentQuestionAnsweringPipeline(ChunkPipeline): # TODO: Update task_summary docs to include an example with document QA and then update the first sentence """ Document Question Answering pipeline using any `AutoModelForDocumentQuestionAnswering`. The inputs/outputs are similar to the (extractive) question answering pipeline; however, the pipeline takes an image (and optional OCR'd words/boxes) as input instead of text context. Example: ```python >>> from transformers import pipeline >>> document_qa = pipeline(model="impira/layoutlm-document-qa") >>> document_qa( ... image="https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png", ... question="What is the invoice number?", ... ) [{'score': 0.425, 'answer': 'us-001', 'start': 16, 'end': 16}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This document question answering pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"document-question-answering"`. The models that this pipeline can use are models that have been fine-tuned on a document question answering task. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=document-question-answering). """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.tokenizer is not None and not self.tokenizer.__class__.__name__.endswith("Fast"): raise ValueError( "`DocumentQuestionAnsweringPipeline` requires a fast tokenizer, but a slow tokenizer " f"(`{self.tokenizer.__class__.__name__}`) is provided." ) if self.model.config.__class__.__name__ == "VisionEncoderDecoderConfig": self.model_type = ModelType.VisionEncoderDecoder if self.model.config.encoder.model_type != "donut-swin": raise ValueError("Currently, the only supported VisionEncoderDecoder model is Donut") else: self.check_model_type(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES) if self.model.config.__class__.__name__ == "LayoutLMConfig": self.model_type = ModelType.LayoutLM else: self.model_type = ModelType.LayoutLMv2andv3 def _sanitize_parameters( self, padding=None, doc_stride=None, max_question_len=None, lang: Optional[str] = None, tesseract_config: Optional[str] = None, max_answer_len=None, max_seq_len=None, top_k=None, handle_impossible_answer=None, timeout=None, **kwargs, ): preprocess_params, postprocess_params = {}, {} if padding is not None: preprocess_params["padding"] = padding if doc_stride is not None: preprocess_params["doc_stride"] = doc_stride if max_question_len is not None: preprocess_params["max_question_len"] = max_question_len if max_seq_len is not None: preprocess_params["max_seq_len"] = max_seq_len if lang is not None: preprocess_params["lang"] = lang if tesseract_config is not None: preprocess_params["tesseract_config"] = tesseract_config if timeout is not None: preprocess_params["timeout"] = timeout if top_k is not None: if top_k < 1: raise ValueError(f"top_k parameter should be >= 1 (got {top_k})") postprocess_params["top_k"] = top_k if max_answer_len is not None: if max_answer_len < 1: raise ValueError(f"max_answer_len parameter should be >= 1 (got {max_answer_len}") postprocess_params["max_answer_len"] = max_answer_len if handle_impossible_answer is not None: postprocess_params["handle_impossible_answer"] = handle_impossible_answer forward_params = {} if self.assistant_model is not None: forward_params["assistant_model"] = self.assistant_model if self.assistant_tokenizer is not None: forward_params["tokenizer"] = self.tokenizer forward_params["assistant_tokenizer"] = self.assistant_tokenizer return preprocess_params, forward_params, postprocess_params def __call__( self, image: Union["Image.Image", str], question: Optional[str] = None, word_boxes: Tuple[str, List[float]] = None, **kwargs, ): """ Answer the question(s) given as inputs by using the document(s). A document is defined as an image and an optional list of (word, box) tuples which represent the text in the document. If the `word_boxes` are not provided, it will use the Tesseract OCR engine (if available) to extract the words and boxes automatically for LayoutLM-like models which require them as input. For Donut, no OCR is run. You can invoke the pipeline several ways: - `pipeline(image=image, question=question)` - `pipeline(image=image, question=question, word_boxes=word_boxes)` - `pipeline([{"image": image, "question": question}])` - `pipeline([{"image": image, "question": question, "word_boxes": word_boxes}])` Args: image (`str` or `PIL.Image`): The pipeline handles three types of images: - A string containing a http link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly The pipeline accepts either a single image or a batch of images. If given a single image, it can be broadcasted to multiple questions. question (`str`): A question to ask of the document. word_boxes (`List[str, Tuple[float, float, float, float]]`, *optional*): A list of words and bounding boxes (normalized 0->1000). If you provide this optional input, then the pipeline will use these words and boxes instead of running OCR on the image to derive them for models that need them (e.g. LayoutLM). This allows you to reuse OCR'd results across many invocations of the pipeline without having to re-run it each time. top_k (`int`, *optional*, defaults to 1): The number of answers to return (will be chosen by order of likelihood). Note that we return less than top_k answers if there are not enough options available within the context. doc_stride (`int`, *optional*, defaults to 128): If the words in the document are too long to fit with the question for the model, it will be split in several chunks with some overlap. This argument controls the size of that overlap. max_answer_len (`int`, *optional*, defaults to 15): The maximum length of predicted answers (e.g., only answers with a shorter length are considered). max_seq_len (`int`, *optional*, defaults to 384): The maximum length of the total sentence (context + question) in tokens of each chunk passed to the model. The context will be split in several chunks (using `doc_stride` as overlap) if needed. max_question_len (`int`, *optional*, defaults to 64): The maximum length of the question after tokenization. It will be truncated if needed. handle_impossible_answer (`bool`, *optional*, defaults to `False`): Whether or not we accept impossible as an answer. lang (`str`, *optional*): Language to use while running OCR. Defaults to english. tesseract_config (`str`, *optional*): Additional flags to pass to tesseract while running OCR. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and the call may block forever. Return: A `dict` or a list of `dict`: Each result comes as a dictionary with the following keys: - **score** (`float`) -- The probability associated to the answer. - **start** (`int`) -- The start word index of the answer (in the OCR'd version of the input or provided `word_boxes`). - **end** (`int`) -- The end word index of the answer (in the OCR'd version of the input or provided `word_boxes`). - **answer** (`str`) -- The answer to the question. - **words** (`list[int]`) -- The index of each word/box pair that is in the answer """ if isinstance(question, str): inputs = {"question": question, "image": image} if word_boxes is not None: inputs["word_boxes"] = word_boxes else: inputs = image return super().__call__(inputs, **kwargs) def preprocess( self, input, padding="do_not_pad", doc_stride=None, max_seq_len=None, word_boxes: Tuple[str, List[float]] = None, lang=None, tesseract_config="", timeout=None, ): # NOTE: This code mirrors the code in question answering and will be implemented in a follow up PR # to support documents with enough tokens that overflow the model's window if max_seq_len is None: max_seq_len = self.tokenizer.model_max_length if doc_stride is None: doc_stride = min(max_seq_len // 2, 256) image = None image_features = {} if input.get("image", None) is not None: image = load_image(input["image"], timeout=timeout) if self.image_processor is not None: image_inputs = self.image_processor(images=image, return_tensors=self.framework) if self.framework == "pt": image_inputs = image_inputs.to(self.torch_dtype) image_features.update(image_inputs) elif self.feature_extractor is not None: image_features.update(self.feature_extractor(images=image, return_tensors=self.framework)) elif self.model_type == ModelType.VisionEncoderDecoder: raise ValueError("If you are using a VisionEncoderDecoderModel, you must provide a feature extractor") words, boxes = None, None if not self.model_type == ModelType.VisionEncoderDecoder: if "word_boxes" in input: words = [x[0] for x in input["word_boxes"]] boxes = [x[1] for x in input["word_boxes"]] elif "words" in image_features and "boxes" in image_features: words = image_features.pop("words")[0] boxes = image_features.pop("boxes")[0] elif image is not None: if not TESSERACT_LOADED: raise ValueError( "If you provide an image without word_boxes, then the pipeline will run OCR using Tesseract," " but pytesseract is not available" ) if TESSERACT_LOADED: words, boxes = apply_tesseract(image, lang=lang, tesseract_config=tesseract_config) else: raise ValueError( "You must provide an image or word_boxes. If you provide an image, the pipeline will automatically" " run OCR to derive words and boxes" ) if self.tokenizer.padding_side != "right": raise ValueError( "Document question answering only supports tokenizers whose padding side is 'right', not" f" {self.tokenizer.padding_side}" ) if self.model_type == ModelType.VisionEncoderDecoder: task_prompt = f"<s_docvqa><s_question>{input['question']}</s_question><s_answer>" # Adapted from https://huggingface.co/spaces/nielsr/donut-docvqa/blob/main/app.py encoding = { "inputs": image_features["pixel_values"], "decoder_input_ids": self.tokenizer( task_prompt, add_special_tokens=False, return_tensors=self.framework ).input_ids, "return_dict_in_generate": True, } yield { **encoding, "p_mask": None, "word_ids": None, "words": None, "output_attentions": True, "is_last": True, } else: tokenizer_kwargs = {} if self.model_type == ModelType.LayoutLM: tokenizer_kwargs["text"] = input["question"].split() tokenizer_kwargs["text_pair"] = words tokenizer_kwargs["is_split_into_words"] = True else: tokenizer_kwargs["text"] = [input["question"]] tokenizer_kwargs["text_pair"] = [words] tokenizer_kwargs["boxes"] = [boxes] encoding = self.tokenizer( padding=padding, max_length=max_seq_len, stride=doc_stride, return_token_type_ids=True, truncation="only_second", return_overflowing_tokens=True, **tokenizer_kwargs, ) # TODO: check why slower `LayoutLMTokenizer` and `LayoutLMv2Tokenizer` don't have this key in outputs # FIXME: ydshieh and/or Narsil encoding.pop("overflow_to_sample_mapping", None) # We do not use this num_spans = len(encoding["input_ids"]) # p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer) # We put 0 on the tokens from the context and 1 everywhere else (question and special tokens) # This logic mirrors the logic in the question_answering pipeline p_mask = [[tok != 1 for tok in encoding.sequence_ids(span_id)] for span_id in range(num_spans)] for span_idx in range(num_spans): if self.framework == "pt": span_encoding = {k: torch.tensor(v[span_idx : span_idx + 1]) for (k, v) in encoding.items()} if "pixel_values" in image_features: span_encoding["image"] = image_features["pixel_values"] else: raise ValueError("Unsupported: Tensorflow preprocessing for DocumentQuestionAnsweringPipeline") input_ids_span_idx = encoding["input_ids"][span_idx] # keep the cls_token unmasked (some models use it to indicate unanswerable questions) if self.tokenizer.cls_token_id is not None: cls_indices = np.nonzero(np.array(input_ids_span_idx) == self.tokenizer.cls_token_id)[0] for cls_index in cls_indices: p_mask[span_idx][cls_index] = 0 # For each span, place a bounding box [0,0,0,0] for question and CLS tokens, [1000,1000,1000,1000] # for SEP tokens, and the word's bounding box for words in the original document. if "boxes" not in tokenizer_kwargs: bbox = [] for input_id, sequence_id, word_id in zip( encoding.input_ids[span_idx], encoding.sequence_ids(span_idx), encoding.word_ids(span_idx), ): if sequence_id == 1: bbox.append(boxes[word_id]) elif input_id == self.tokenizer.sep_token_id: bbox.append([1000] * 4) else: bbox.append([0] * 4) if self.framework == "pt": span_encoding["bbox"] = torch.tensor(bbox).unsqueeze(0) elif self.framework == "tf": raise ValueError("Unsupported: Tensorflow preprocessing for DocumentQuestionAnsweringPipeline") yield { **span_encoding, "p_mask": p_mask[span_idx], "word_ids": encoding.word_ids(span_idx), "words": words, "is_last": span_idx == num_spans - 1, } def _forward(self, model_inputs, **generate_kwargs): p_mask = model_inputs.pop("p_mask", None) word_ids = model_inputs.pop("word_ids", None) words = model_inputs.pop("words", None) is_last = model_inputs.pop("is_last", False) if self.model_type == ModelType.VisionEncoderDecoder: # User-defined `generation_config` passed to the pipeline call take precedence if "generation_config" not in generate_kwargs: generate_kwargs["generation_config"] = self.generation_config model_outputs = self.model.generate(**model_inputs, **generate_kwargs) else: model_outputs = self.model(**model_inputs) model_outputs = dict(model_outputs.items()) model_outputs["p_mask"] = p_mask model_outputs["word_ids"] = word_ids model_outputs["words"] = words model_outputs["attention_mask"] = model_inputs.get("attention_mask", None) model_outputs["is_last"] = is_last return model_outputs def postprocess(self, model_outputs, top_k=1, **kwargs): if self.model_type == ModelType.VisionEncoderDecoder: answers = [self.postprocess_encoder_decoder_single(o) for o in model_outputs] else: answers = self.postprocess_extractive_qa(model_outputs, top_k=top_k, **kwargs) answers = sorted(answers, key=lambda x: x.get("score", 0), reverse=True)[:top_k] return answers def postprocess_encoder_decoder_single(self, model_outputs, **kwargs): sequence = self.tokenizer.batch_decode(model_outputs["sequences"])[0] # TODO: A lot of this logic is specific to Donut and should probably be handled in the tokenizer # (see https://github.com/huggingface/transformers/pull/18414/files#r961747408 for more context). sequence = sequence.replace(self.tokenizer.eos_token, "").replace(self.tokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token ret = { "answer": None, } answer = re.search(r"<s_answer>(.*)</s_answer>", sequence) if answer is not None: ret["answer"] = answer.group(1).strip() return ret def postprocess_extractive_qa( self, model_outputs, top_k=1, handle_impossible_answer=False, max_answer_len=15, **kwargs ): min_null_score = 1000000 # large and positive answers = [] for output in model_outputs: words = output["words"] if self.framework == "pt" and output["start_logits"].dtype in (torch.bfloat16, torch.float16): output["start_logits"] = output["start_logits"].float() if self.framework == "pt" and output["end_logits"].dtype in (torch.bfloat16, torch.float16): output["end_logits"] = output["end_logits"].float() starts, ends, scores, min_null_score = select_starts_ends( start=output["start_logits"], end=output["end_logits"], p_mask=output["p_mask"], attention_mask=output["attention_mask"].numpy() if output.get("attention_mask", None) is not None else None, min_null_score=min_null_score, top_k=top_k, handle_impossible_answer=handle_impossible_answer, max_answer_len=max_answer_len, ) word_ids = output["word_ids"] for start, end, score in zip(starts, ends, scores): word_start, word_end = word_ids[start], word_ids[end] if word_start is not None and word_end is not None: answers.append( { "score": float(score), "answer": " ".join(words[word_start : word_end + 1]), "start": word_start, "end": word_end, } ) if handle_impossible_answer: answers.append({"score": min_null_score, "answer": "", "start": 0, "end": 0}) return answers ```
==================================================================================================================================== SOURCE CODE FILE: feature_extraction.py LINES: 1 SIZE: 3.29 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\feature_extraction.py ENCODING: utf-8 ```py from typing import Dict from ..utils import add_end_docstrings from .base import GenericTensor, Pipeline, build_pipeline_init_args @add_end_docstrings( build_pipeline_init_args(has_tokenizer=True, supports_binary_output=False), r""" tokenize_kwargs (`dict`, *optional*): Additional dictionary of keyword arguments passed along to the tokenizer. return_tensors (`bool`, *optional*): If `True`, returns a tensor according to the specified framework, otherwise returns a list.""", ) class FeatureExtractionPipeline(Pipeline): """ Feature extraction pipeline uses no model head. This pipeline extracts the hidden states from the base transformer, which can be used as features in downstream tasks. Example: ```python >>> from transformers import pipeline >>> extractor = pipeline(model="google-bert/bert-base-uncased", task="feature-extraction") >>> result = extractor("This is a simple test.", return_tensors=True) >>> result.shape # This is a tensor of shape [1, sequence_length, hidden_dimension] representing the input string. torch.Size([1, 8, 768]) ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier: `"feature-extraction"`. All models may be used for this pipeline. See a list of all models, including community-contributed models on [huggingface.co/models](https://huggingface.co/models). """ def _sanitize_parameters(self, truncation=None, tokenize_kwargs=None, return_tensors=None, **kwargs): if tokenize_kwargs is None: tokenize_kwargs = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( "truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)" ) tokenize_kwargs["truncation"] = truncation preprocess_params = tokenize_kwargs postprocess_params = {} if return_tensors is not None: postprocess_params["return_tensors"] = return_tensors return preprocess_params, {}, postprocess_params def preprocess(self, inputs, **tokenize_kwargs) -> Dict[str, GenericTensor]: model_inputs = self.tokenizer(inputs, return_tensors=self.framework, **tokenize_kwargs) return model_inputs def _forward(self, model_inputs): model_outputs = self.model(**model_inputs) return model_outputs def postprocess(self, model_outputs, return_tensors=False): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__(self, *args, **kwargs): """ Extract the features of the input(s). Args: args (`str` or `List[str]`): One or several texts (or one list of texts) to get the features of. Return: A nested list of `float`: The features computed by the model. """ return super().__call__(*args, **kwargs) ```
=========================================================================================================================== SOURCE CODE FILE: fill_mask.py LINES: 1 SIZE: 11.37 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\fill_mask.py ENCODING: utf-8 ```py from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import GenericTensor, Pipeline, PipelineException, build_pipeline_init_args if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch logger = logging.get_logger(__name__) @add_end_docstrings( build_pipeline_init_args(has_tokenizer=True), r""" top_k (`int`, *optional*, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). tokenizer_kwargs (`dict`, *optional*): Additional dictionary of keyword arguments passed along to the tokenizer.""", ) class FillMaskPipeline(Pipeline): """ Masked language modeling prediction pipeline using any `ModelWithLMHead`. See the [masked language modeling examples](../task_summary#masked-language-modeling) for more information. Example: ```python >>> from transformers import pipeline >>> fill_masker = pipeline(model="google-bert/bert-base-uncased") >>> fill_masker("This is a simple [MASK].") [{'score': 0.042, 'token': 3291, 'token_str': 'problem', 'sequence': 'this is a simple problem.'}, {'score': 0.031, 'token': 3160, 'token_str': 'question', 'sequence': 'this is a simple question.'}, {'score': 0.03, 'token': 8522, 'token_str': 'equation', 'sequence': 'this is a simple equation.'}, {'score': 0.027, 'token': 2028, 'token_str': 'one', 'sequence': 'this is a simple one.'}, {'score': 0.024, 'token': 3627, 'token_str': 'rule', 'sequence': 'this is a simple rule.'}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This mask filling pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"fill-mask"`. The models that this pipeline can use are models that have been trained with a masked language modeling objective, which includes the bi-directional models in the library. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=fill-mask). <Tip> This pipeline only works for inputs with exactly one token masked. Experimental: We added support for multiple masks. The returned values are raw model output, and correspond to disjoint probabilities where one might expect joint probabilities (See [discussion](https://github.com/huggingface/transformers/pull/10222)). </Tip> <Tip> This pipeline now supports tokenizer_kwargs. For example try: ```python >>> from transformers import pipeline >>> fill_masker = pipeline(model="google-bert/bert-base-uncased") >>> tokenizer_kwargs = {"truncation": True} >>> fill_masker( ... "This is a simple [MASK]. " + "...with a large amount of repeated text appended. " * 100, ... tokenizer_kwargs=tokenizer_kwargs, ... ) ``` </Tip> """ def get_masked_index(self, input_ids: GenericTensor) -> np.ndarray: if self.framework == "tf": masked_index = tf.where(input_ids == self.tokenizer.mask_token_id).numpy() elif self.framework == "pt": masked_index = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=False) else: raise ValueError("Unsupported framework") return masked_index def _ensure_exactly_one_mask_token(self, input_ids: GenericTensor) -> np.ndarray: masked_index = self.get_masked_index(input_ids) numel = np.prod(masked_index.shape) if numel < 1: raise PipelineException( "fill-mask", self.model.base_model_prefix, f"No mask_token ({self.tokenizer.mask_token}) found on the input", ) def ensure_exactly_one_mask_token(self, model_inputs: GenericTensor): if isinstance(model_inputs, list): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0]) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(input_ids) def preprocess( self, inputs, return_tensors=None, tokenizer_kwargs=None, **preprocess_parameters ) -> Dict[str, GenericTensor]: if return_tensors is None: return_tensors = self.framework if tokenizer_kwargs is None: tokenizer_kwargs = {} model_inputs = self.tokenizer(inputs, return_tensors=return_tensors, **tokenizer_kwargs) self.ensure_exactly_one_mask_token(model_inputs) return model_inputs def _forward(self, model_inputs): model_outputs = self.model(**model_inputs) model_outputs["input_ids"] = model_inputs["input_ids"] return model_outputs def postprocess(self, model_outputs, top_k=5, target_ids=None): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: top_k = target_ids.shape[0] input_ids = model_outputs["input_ids"][0] outputs = model_outputs["logits"] if self.framework == "tf": masked_index = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0] outputs = outputs.numpy() logits = outputs[0, masked_index, :] probs = stable_softmax(logits, axis=-1) if target_ids is not None: probs = tf.gather_nd(tf.squeeze(probs, 0), target_ids.reshape(-1, 1)) probs = tf.expand_dims(probs, 0) topk = tf.math.top_k(probs, k=top_k) values, predictions = topk.values.numpy(), topk.indices.numpy() else: masked_index = torch.nonzero(input_ids == self.tokenizer.mask_token_id, as_tuple=False).squeeze(-1) # Fill mask pipeline supports only one ${mask_token} per sample logits = outputs[0, masked_index, :] probs = logits.softmax(dim=-1) if target_ids is not None: probs = probs[..., target_ids] values, predictions = probs.topk(top_k) result = [] single_mask = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist(), predictions.tolist())): row = [] for v, p in zip(_values, _predictions): # Copy is important since we're going to modify this array in place tokens = input_ids.numpy().copy() if target_ids is not None: p = target_ids[p].tolist() tokens[masked_index[i]] = p # Filter padding out: tokens = tokens[np.where(tokens != self.tokenizer.pad_token_id)] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back sequence = self.tokenizer.decode(tokens, skip_special_tokens=single_mask) proposition = {"score": v, "token": p, "token_str": self.tokenizer.decode([p]), "sequence": sequence} row.append(proposition) result.append(row) if single_mask: return result[0] return result def get_target_ids(self, targets, top_k=None): if isinstance(targets, str): targets = [targets] try: vocab = self.tokenizer.get_vocab() except Exception: vocab = {} target_ids = [] for target in targets: id_ = vocab.get(target, None) if id_ is None: input_ids = self.tokenizer( target, add_special_tokens=False, return_attention_mask=False, return_token_type_ids=False, max_length=1, truncation=True, )["input_ids"] if len(input_ids) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " "We cannot replace it with anything meaningful, ignoring it" ) continue id_ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`." ) target_ids.append(id_) target_ids = list(set(target_ids)) if len(target_ids) == 0: raise ValueError("At least one target must be provided when passed.") target_ids = np.array(target_ids) return target_ids def _sanitize_parameters(self, top_k=None, targets=None, tokenizer_kwargs=None): preprocess_params = {} if tokenizer_kwargs is not None: preprocess_params["tokenizer_kwargs"] = tokenizer_kwargs postprocess_params = {} if targets is not None: target_ids = self.get_target_ids(targets, top_k) postprocess_params["target_ids"] = target_ids if top_k is not None: postprocess_params["top_k"] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask", self.model.base_model_prefix, "The tokenizer does not define a `mask_token`." ) return preprocess_params, {}, postprocess_params def __call__(self, inputs, **kwargs): """ Fill the masked token in the text(s) given as inputs. Args: inputs (`str` or `List[str]`): One or several texts (or one list of prompts) with masked tokens. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). top_k (`int`, *optional*): When passed, overrides the number of predictions to return. Return: A list or a list of list of `dict`: Each result comes as list of dictionaries with the following keys: - **sequence** (`str`) -- The corresponding input with the mask token prediction. - **score** (`float`) -- The corresponding probability. - **token** (`int`) -- The predicted token id (to replace the masked one). - **token_str** (`str`) -- The predicted token (to replace the masked one). """ outputs = super().__call__(inputs, **kwargs) if isinstance(inputs, list) and len(inputs) == 1: return outputs[0] return outputs ```
====================================================================================================================================== SOURCE CODE FILE: image_classification.py LINES: 1 SIZE: 9.55 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\image_classification.py ENCODING: utf-8 ```py # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Union import numpy as np from ..utils import ( ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import Pipeline, build_pipeline_init_args if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES logger = logging.get_logger(__name__) # Copied from transformers.pipelines.text_classification.sigmoid def sigmoid(_outputs): return 1.0 / (1.0 + np.exp(-_outputs)) # Copied from transformers.pipelines.text_classification.softmax def softmax(_outputs): maxes = np.max(_outputs, axis=-1, keepdims=True) shifted_exp = np.exp(_outputs - maxes) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True) # Copied from transformers.pipelines.text_classification.ClassificationFunction class ClassificationFunction(ExplicitEnum): SIGMOID = "sigmoid" SOFTMAX = "softmax" NONE = "none" @add_end_docstrings( build_pipeline_init_args(has_image_processor=True), r""" function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output.""", ) class ImageClassificationPipeline(Pipeline): """ Image classification pipeline using any `AutoModelForImageClassification`. This pipeline predicts the class of an image. Example: ```python >>> from transformers import pipeline >>> classifier = pipeline(model="microsoft/beit-base-patch16-224-pt22k-ft22k") >>> classifier("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png") [{'score': 0.442, 'label': 'macaw'}, {'score': 0.088, 'label': 'popinjay'}, {'score': 0.075, 'label': 'parrot'}, {'score': 0.073, 'label': 'parodist, lampooner'}, {'score': 0.046, 'label': 'poll, poll_parrot'}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This image classification pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"image-classification"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=image-classification). """ function_to_apply: ClassificationFunction = ClassificationFunction.NONE def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) requires_backends(self, "vision") self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) def _sanitize_parameters(self, top_k=None, function_to_apply=None, timeout=None): preprocess_params = {} if timeout is not None: preprocess_params["timeout"] = timeout postprocess_params = {} if top_k is not None: postprocess_params["top_k"] = top_k if isinstance(function_to_apply, str): function_to_apply = ClassificationFunction(function_to_apply.lower()) if function_to_apply is not None: postprocess_params["function_to_apply"] = function_to_apply return preprocess_params, {}, postprocess_params def __call__(self, inputs: Union[str, List[str], "Image.Image", List["Image.Image"]] = None, **kwargs): """ Assign labels to the image(s) passed as inputs. Args: inputs (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): The pipeline handles three types of images: - A string containing a http link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly The pipeline accepts either a single image or a batch of images, which must then be passed as a string. Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL images. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: If this argument is not specified, then it will apply the following functions according to the number of labels: - If the model has a single label, will apply the sigmoid function on the output. - If the model has several labels, will apply the softmax function on the output. Possible values are: - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. top_k (`int`, *optional*, defaults to 5): The number of top labels that will be returned by the pipeline. If the provided number is higher than the number of labels available in the model configuration, it will default to the number of labels. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and the call may block forever. Return: A dictionary or a list of dictionaries containing result. If the input is a single image, will return a dictionary, if the input is a list of several images, will return a list of dictionaries corresponding to the images. The dictionaries contain the following keys: - **label** (`str`) -- The label identified by the model. - **score** (`int`) -- The score attributed by the model for that label. """ # After deprecation of this is completed, remove the default `None` value for `images` if "images" in kwargs: inputs = kwargs.pop("images") if inputs is None: raise ValueError("Cannot call the image-classification pipeline without an inputs argument!") return super().__call__(inputs, **kwargs) def preprocess(self, image, timeout=None): image = load_image(image, timeout=timeout) model_inputs = self.image_processor(images=image, return_tensors=self.framework) if self.framework == "pt": model_inputs = model_inputs.to(self.torch_dtype) return model_inputs def _forward(self, model_inputs): model_outputs = self.model(**model_inputs) return model_outputs def postprocess(self, model_outputs, function_to_apply=None, top_k=5): if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: function_to_apply = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: function_to_apply = ClassificationFunction.SOFTMAX elif hasattr(self.model.config, "function_to_apply") and function_to_apply is None: function_to_apply = self.model.config.function_to_apply else: function_to_apply = ClassificationFunction.NONE if top_k > self.model.config.num_labels: top_k = self.model.config.num_labels outputs = model_outputs["logits"][0] if self.framework == "pt" and outputs.dtype in (torch.bfloat16, torch.float16): outputs = outputs.to(torch.float32).numpy() else: outputs = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: scores = sigmoid(outputs) elif function_to_apply == ClassificationFunction.SOFTMAX: scores = softmax(outputs) elif function_to_apply == ClassificationFunction.NONE: scores = outputs else: raise ValueError(f"Unrecognized `function_to_apply` argument: {function_to_apply}") dict_scores = [ {"label": self.model.config.id2label[i], "score": score.item()} for i, score in enumerate(scores) ] dict_scores.sort(key=lambda x: x["score"], reverse=True) if top_k is not None: dict_scores = dict_scores[:top_k] return dict_scores ```
========================================================================================================================================== SOURCE CODE FILE: image_feature_extraction.py LINES: 1 SIZE: 4.62 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\image_feature_extraction.py ENCODING: utf-8 ```py from typing import Dict from ..utils import add_end_docstrings, is_vision_available from .base import GenericTensor, Pipeline, build_pipeline_init_args if is_vision_available(): from ..image_utils import load_image @add_end_docstrings( build_pipeline_init_args(has_image_processor=True), """ image_processor_kwargs (`dict`, *optional*): Additional dictionary of keyword arguments passed along to the image processor e.g. {"size": {"height": 100, "width": 100}} pool (`bool`, *optional*, defaults to `False`): Whether or not to return the pooled output. If `False`, the model will return the raw hidden states. """, ) class ImageFeatureExtractionPipeline(Pipeline): """ Image feature extraction pipeline uses no model head. This pipeline extracts the hidden states from the base transformer, which can be used as features in downstream tasks. Example: ```python >>> from transformers import pipeline >>> extractor = pipeline(model="google/vit-base-patch16-224", task="image-feature-extraction") >>> result = extractor("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", return_tensors=True) >>> result.shape # This is a tensor of shape [1, sequence_lenth, hidden_dimension] representing the input image. torch.Size([1, 197, 768]) ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This image feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier: `"image-feature-extraction"`. All vision models may be used for this pipeline. See a list of all models, including community-contributed models on [huggingface.co/models](https://huggingface.co/models). """ def _sanitize_parameters(self, image_processor_kwargs=None, return_tensors=None, pool=None, **kwargs): preprocess_params = {} if image_processor_kwargs is None else image_processor_kwargs postprocess_params = {} if pool is not None: postprocess_params["pool"] = pool if return_tensors is not None: postprocess_params["return_tensors"] = return_tensors if "timeout" in kwargs: preprocess_params["timeout"] = kwargs["timeout"] return preprocess_params, {}, postprocess_params def preprocess(self, image, timeout=None, **image_processor_kwargs) -> Dict[str, GenericTensor]: image = load_image(image, timeout=timeout) model_inputs = self.image_processor(image, return_tensors=self.framework, **image_processor_kwargs) if self.framework == "pt": model_inputs = model_inputs.to(self.torch_dtype) return model_inputs def _forward(self, model_inputs): model_outputs = self.model(**model_inputs) return model_outputs def postprocess(self, model_outputs, pool=None, return_tensors=False): pool = pool if pool is not None else False if pool: if "pooler_output" not in model_outputs: raise ValueError( "No pooled output was returned. Make sure the model has a `pooler` layer when using the `pool` option." ) outputs = model_outputs["pooler_output"] else: # [0] is the first available tensor, logits or last_hidden_state. outputs = model_outputs[0] if return_tensors: return outputs if self.framework == "pt": return outputs.tolist() elif self.framework == "tf": return outputs.numpy().tolist() def __call__(self, *args, **kwargs): """ Extract the features of the input(s). Args: images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): The pipeline handles three types of images: - A string containing a http link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly The pipeline accepts either a single image or a batch of images, which must then be passed as a string. Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL images. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is used and the call may block forever. Return: A nested list of `float`: The features computed by the model. """ return super().__call__(*args, **kwargs) ```
==================================================================================================================================== SOURCE CODE FILE: image_segmentation.py LINES: 1 SIZE: 9.39 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\image_segmentation.py ENCODING: utf-8 ```py from typing import Any, Dict, List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import Pipeline, build_pipeline_init_args if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import ( MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES, MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES, MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING_NAMES, ) logger = logging.get_logger(__name__) Prediction = Dict[str, Any] Predictions = List[Prediction] @add_end_docstrings(build_pipeline_init_args(has_image_processor=True)) class ImageSegmentationPipeline(Pipeline): """ Image segmentation pipeline using any `AutoModelForXXXSegmentation`. This pipeline predicts masks of objects and their classes. Example: ```python >>> from transformers import pipeline >>> segmenter = pipeline(model="facebook/detr-resnet-50-panoptic") >>> segments = segmenter("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png") >>> len(segments) 2 >>> segments[0]["label"] 'bird' >>> segments[1]["label"] 'bird' >>> type(segments[0]["mask"]) # This is a black and white mask showing where is the bird on the original image. <class 'PIL.Image.Image'> >>> segments[0]["mask"].size (768, 512) ``` This image segmentation pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"image-segmentation"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=image-segmentation). """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch.") requires_backends(self, "vision") mapping = MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES.copy() mapping.update(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES) mapping.update(MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES) mapping.update(MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING_NAMES) self.check_model_type(mapping) def _sanitize_parameters(self, **kwargs): preprocess_kwargs = {} postprocess_kwargs = {} if "subtask" in kwargs: postprocess_kwargs["subtask"] = kwargs["subtask"] preprocess_kwargs["subtask"] = kwargs["subtask"] if "threshold" in kwargs: postprocess_kwargs["threshold"] = kwargs["threshold"] if "mask_threshold" in kwargs: postprocess_kwargs["mask_threshold"] = kwargs["mask_threshold"] if "overlap_mask_area_threshold" in kwargs: postprocess_kwargs["overlap_mask_area_threshold"] = kwargs["overlap_mask_area_threshold"] if "timeout" in kwargs: preprocess_kwargs["timeout"] = kwargs["timeout"] return preprocess_kwargs, {}, postprocess_kwargs def __call__(self, inputs=None, **kwargs) -> Union[Predictions, List[Prediction]]: """ Perform segmentation (detect masks & classes) in the image(s) passed as inputs. Args: inputs (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): The pipeline handles three types of images: - A string containing an HTTP(S) link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly The pipeline accepts either a single image or a batch of images. Images in a batch must all be in the same format: all as HTTP(S) links, all as local paths, or all as PIL images. subtask (`str`, *optional*): Segmentation task to be performed, choose [`semantic`, `instance` and `panoptic`] depending on model capabilities. If not set, the pipeline will attempt tp resolve in the following order: `panoptic`, `instance`, `semantic`. threshold (`float`, *optional*, defaults to 0.9): Probability threshold to filter out predicted masks. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. overlap_mask_area_threshold (`float`, *optional*, defaults to 0.5): Mask overlap threshold to eliminate small, disconnected segments. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and the call may block forever. Return: A dictionary or a list of dictionaries containing the result. If the input is a single image, will return a list of dictionaries, if the input is a list of several images, will return a list of list of dictionaries corresponding to each image. The dictionaries contain the mask, label and score (where applicable) of each detected object and contains the following keys: - **label** (`str`) -- The class label identified by the model. - **mask** (`PIL.Image`) -- A binary mask of the detected object as a Pil Image of shape (width, height) of the original image. Returns a mask filled with zeros if no object is found. - **score** (*optional* `float`) -- Optionally, when the model is capable of estimating a confidence of the "object" described by the label and the mask. """ # After deprecation of this is completed, remove the default `None` value for `images` if "images" in kwargs: inputs = kwargs.pop("images") if inputs is None: raise ValueError("Cannot call the image-classification pipeline without an inputs argument!") return super().__call__(inputs, **kwargs) def preprocess(self, image, subtask=None, timeout=None): image = load_image(image, timeout=timeout) target_size = [(image.height, image.width)] if self.model.config.__class__.__name__ == "OneFormerConfig": if subtask is None: kwargs = {} else: kwargs = {"task_inputs": [subtask]} inputs = self.image_processor(images=[image], return_tensors="pt", **kwargs) if self.framework == "pt": inputs = inputs.to(self.torch_dtype) inputs["task_inputs"] = self.tokenizer( inputs["task_inputs"], padding="max_length", max_length=self.model.config.task_seq_len, return_tensors=self.framework, )["input_ids"] else: inputs = self.image_processor(images=[image], return_tensors="pt") if self.framework == "pt": inputs = inputs.to(self.torch_dtype) inputs["target_size"] = target_size return inputs def _forward(self, model_inputs): target_size = model_inputs.pop("target_size") model_outputs = self.model(**model_inputs) model_outputs["target_size"] = target_size return model_outputs def postprocess( self, model_outputs, subtask=None, threshold=0.9, mask_threshold=0.5, overlap_mask_area_threshold=0.5 ): fn = None if subtask in {"panoptic", None} and hasattr(self.image_processor, "post_process_panoptic_segmentation"): fn = self.image_processor.post_process_panoptic_segmentation elif subtask in {"instance", None} and hasattr(self.image_processor, "post_process_instance_segmentation"): fn = self.image_processor.post_process_instance_segmentation if fn is not None: outputs = fn( model_outputs, threshold=threshold, mask_threshold=mask_threshold, overlap_mask_area_threshold=overlap_mask_area_threshold, target_sizes=model_outputs["target_size"], )[0] annotation = [] segmentation = outputs["segmentation"] for segment in outputs["segments_info"]: mask = (segmentation == segment["id"]) * 255 mask = Image.fromarray(mask.numpy().astype(np.uint8), mode="L") label = self.model.config.id2label[segment["label_id"]] score = segment["score"] annotation.append({"score": score, "label": label, "mask": mask}) elif subtask in {"semantic", None} and hasattr(self.image_processor, "post_process_semantic_segmentation"): outputs = self.image_processor.post_process_semantic_segmentation( model_outputs, target_sizes=model_outputs["target_size"] )[0] annotation = [] segmentation = outputs.numpy() labels = np.unique(segmentation) for label in labels: mask = (segmentation == label) * 255 mask = Image.fromarray(mask.astype(np.uint8), mode="L") label = self.model.config.id2label[label] annotation.append({"score": None, "label": label, "mask": mask}) else: raise ValueError(f"Subtask {subtask} is not supported for model {type(self.model)}") return annotation ```
==================================================================================================================================== SOURCE CODE FILE: image_text_to_text.py LINES: 1 SIZE: 21.14 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\image_text_to_text.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import enum from collections.abc import Iterable # pylint: disable=g-importing-member from typing import Dict, List, Optional, Union from ..processing_utils import ProcessingKwargs, Unpack from ..utils import ( add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import Pipeline, build_pipeline_init_args if is_vision_available(): from PIL import Image from ..image_utils import load_images, valid_images if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES from .pt_utils import KeyDataset logger = logging.get_logger(__name__) IMAGE_TOKEN = "<image>" class ReturnType(enum.Enum): TENSORS = 0 NEW_TEXT = 1 FULL_TEXT = 2 class Chat: """This class is intended to just be used internally in this pipeline and not exposed to users. We convert chats to this format because the rest of the pipeline code tends to assume that lists of messages are actually a batch of samples rather than messages in the same conversation.""" def __init__(self, messages: Dict, images: Union[str, List[str], "Image.Image", List["Image.Image"]]): for message in messages: if not ("role" in message and "content" in message): raise ValueError("When passing chat dicts as input, each dict must have a 'role' and 'content' key.") images = retrieve_images_in_messages(messages, images) self.messages = messages self.images = images def retrieve_images_in_messages( messages: dict, images: Optional[Union[str, List[str], "Image.Image", List["Image.Image"]]] ): """ Retrieve and combine images from the chat and the images passed as input. """ if images is None: images = [] elif not isinstance(images, Iterable): images = [images] idx_images = 0 retrieved_images = [] for message in messages: for content in message["content"]: if isinstance(content, dict): if content.get("type") == "image": for key in ["image", "url", "path", "base64"]: if key in content: retrieved_images.append(content[key]) break else: if idx_images < len(images): retrieved_images.append(images[idx_images]) idx_images += 1 else: raise ValueError( "The number of images in the chat messages should be the same as the number of images passed to the pipeline." ) # Add support for OpenAI/TGI chat format elif content.get("type") == "image_url": if isinstance(content.get("image_url"), dict) and "url" in content["image_url"]: retrieved_images.append(content["image_url"]["url"]) # Rewrite content to be in the Transformers chat format content["type"] = "image" content["image"] = content["image_url"]["url"] del content["image_url"] else: raise ValueError( "Wrong format for 'image_url' content type. The content should have an 'image_url' dict with a 'url' key." ) # The number of images passed should be consistent with the number of images in the chat without an image key if idx_images != len(images): raise ValueError( "The number of images in the chat messages should be the same as the number of images passed to the pipeline." ) return retrieved_images @add_end_docstrings(build_pipeline_init_args(has_processor=True)) class ImageTextToTextPipeline(Pipeline): """ Image-text-to-text pipeline using an `AutoModelForImageTextToText`. This pipeline generates text given an image and text. When the underlying model is a conversational model, it can also accept one or more chats, in which case the pipeline will operate in chat mode and will continue the chat(s) by adding its response(s). Each chat takes the form of a list of dicts, where each dict contains "role" and "content" keys. Example: ```python >>> from transformers import pipeline >>> pipe = pipeline(task="image-text-to-text", model="Salesforce/blip-image-captioning-base") >>> pipe("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", text="A photo of") [{'generated_text': 'a photo of two birds'}] ``` ```python >>> from transformers import pipeline >>> pipe = pipeline("image-text-to-text", model="llava-hf/llava-interleave-qwen-0.5b-hf") >>> messages = [ >>> { >>> "role": "user", >>> "content": [ >>> { >>> "type": "image", >>> "url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", >>> }, >>> {"type": "text", "text": "Describe this image."}, >>> ], >>> }, >>> { >>> "role": "assistant", >>> "content": [ >>> {"type": "text", "text": "There is a dog and"}, >>> ], >>> }, >>> ] >>> pipe(text=messages, max_new_tokens=20, return_full_text=False) [{'input_text': [{'role': 'user', 'content': [{'type': 'image', 'url': 'https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg'}, {'type': 'text', 'text': 'Describe this image.'}]}, {'role': 'assistant', 'content': [{'type': 'text', 'text': 'There is a dog and'}]}], 'generated_text': ' a person in the image. The dog is sitting on the sand, and the person is sitting on'}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This image-text to text pipeline can currently be loaded from pipeline() using the following task identifier: "image-text-to-text". See the list of available models on [huggingface.co/models](https://huggingface.co/models?pipeline_tag=image-text-to-text). """ _load_processor = True _load_image_processor = False _load_feature_extractor = False _load_tokenizer = False def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) requires_backends(self, "vision") self.check_model_type(MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES) def _sanitize_parameters( self, max_new_tokens=None, generate_kwargs=None, timeout=None, return_full_text=None, return_tensors=None, return_type=None, clean_up_tokenization_spaces=None, stop_sequence=None, continue_final_message=None, **kwargs: Unpack[ProcessingKwargs], ): forward_kwargs = {} preprocess_params = {} postprocess_params = {} preprocess_params.update(kwargs) if timeout is not None: preprocess_params["timeout"] = timeout if continue_final_message is not None: preprocess_params["continue_final_message"] = continue_final_message if generate_kwargs is not None: forward_kwargs["generate_kwargs"] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: forward_kwargs["generate_kwargs"] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) forward_kwargs["generate_kwargs"]["max_new_tokens"] = max_new_tokens if return_full_text is not None and return_type is None: if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`") return_type = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: return_type = ReturnType.TENSORS if return_type is not None: postprocess_params["return_type"] = return_type if continue_final_message is not None: postprocess_params["continue_final_message"] = continue_final_message if clean_up_tokenization_spaces is not None: postprocess_params["clean_up_tokenization_spaces"] = clean_up_tokenization_spaces if stop_sequence is not None: stop_sequence_ids = self.processor.tokenizer.encode(stop_sequence, add_special_tokens=False) if len(stop_sequence_ids) > 1: logger.warning_once( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) generate_kwargs["eos_token_id"] = stop_sequence_ids[0] return preprocess_params, forward_kwargs, postprocess_params def __call__( self, images: Optional[ Union[str, List[str], List[List[str]], "Image.Image", List["Image.Image"], List[List["Image.Image"]]] ] = None, text: Optional[Union[str, List[str], List[dict]]] = None, **kwargs, ): """ Generate a text given text and the image(s) passed as inputs. Args: images (`str`, `List[str]`, `PIL.Image or `List[PIL.Image]`): The pipeline handles three types of images: - A string containing a HTTP(s) link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly The pipeline accepts either a single image or a batch of images. text (str, List[str], `List[Dict[str, Union[str, PIL.Image]]]`): The text to be used for generation. If a list of strings is passed, the length of the list should be the same as the number of images. Text can also follow the chat format: a list of dictionaries where each dictionary represents a message in a conversation. Each dictionary should have two keys: 'role' and 'content'. 'role' should be one of 'user', 'system' or 'assistant'. 'content' should be a list of dictionary containing the text of the message and the type of the message. The type of the message can be either 'text' or 'image'. If the type is 'image', no text is needed. return_tensors (`bool`, *optional*, defaults to `False`): Returns the tensors of predictions (as token indices) in the outputs. If set to `True`, the decoded text is not returned. return_text (`bool`, *optional*): Returns the decoded texts in the outputs. return_full_text (`bool`, *optional*, defaults to `True`): If set to `False` only added text is returned, otherwise the full text is returned. Cannot be specified at the same time as `return_text`. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`): Whether or not to clean up the potential extra spaces in the text output. continue_final_message( `bool`, *optional*): This indicates that you want the model to continue the last message in the input chat rather than starting a new one, allowing you to "prefill" its response. By default this is `True` when the final message in the input chat has the `assistant` role and `False` otherwise, but you can manually override that behaviour by setting this flag. Return: A list or a list of list of `dict`: Each result comes as a dictionary with the following key (cannot return a combination of both `generated_text` and `generated_token_ids`): - **generated_text** (`str`, present when `return_text=True`) -- The generated text. - **generated_token_ids** (`torch.Tensor`, present when `return_tensors=True`) -- The token ids of the generated text. - **input_text** (`str`) -- The input text. """ if images is None and text is None: raise ValueError("You must at least provide either text or images.") if images is not None and text is None and not valid_images(images): """ Supports the following format - {"image": image, "text": text} - [{"image": image, "text": text}] - Generator and datasets This is a common pattern in other multimodal pipelines, so we support it here as well. """ return super().__call__(images, **kwargs) if isinstance(text, (list, tuple, KeyDataset)) and isinstance(text[0], (list, tuple, dict)): # We have one or more prompts in list-of-dicts format, so this is chat mode if isinstance(text[0], dict): return super().__call__(Chat(text, images), **kwargs) else: if images is None: images = [None] * len(text) chats = [Chat(chat, image) for chat, image in zip(text, images)] # 🐈 🐈 🐈 return super().__call__(chats, **kwargs) # encourage the user to use the chat format if supported if getattr(self.processor, "chat_template", None) is not None: logger.warning_once( "The input data was not formatted as a chat with dicts containing 'role' and 'content' keys, even though this model supports chat. " "Consider using the chat format for better results. For more information, see https://huggingface.co/docs/transformers/en/chat_templating" ) # support text only generation if images is None: return super().__call__(text, **kwargs) if text is None: raise ValueError("You must provide text for this pipeline.") return super().__call__({"images": images, "text": text}, **kwargs) def preprocess(self, inputs=None, timeout=None, continue_final_message=None, **processing_kwargs): # In case we only have text inputs if isinstance(inputs, (list, tuple, str)): images = None text = inputs inputs_text = inputs else: if isinstance(inputs, Chat): # If the user passes a chat that ends in an assistant message, we treat it as a prefill by default # because very few models support multiple separate, consecutive assistant messages if continue_final_message is None: continue_final_message = inputs.messages[-1]["role"] == "assistant" text = self.processor.apply_chat_template( inputs.messages, add_generation_prompt=not continue_final_message, continue_final_message=continue_final_message, return_tensors=self.framework, **processing_kwargs, ) inputs_text = inputs images = inputs.images else: text = inputs["text"] inputs_text = inputs["text"] images = inputs["images"] images = load_images(images, timeout=timeout) # if batched text inputs, we set padding to True unless specified otherwise if isinstance(text, (list, tuple)) and len(text) > 1: processing_kwargs.setdefault("padding", True) model_inputs = self.processor(images=images, text=text, return_tensors=self.framework, **processing_kwargs).to( dtype=self.torch_dtype ) model_inputs["text"] = inputs_text return model_inputs def _forward(self, model_inputs, generate_kwargs=None): generate_kwargs = {} if generate_kwargs is None else generate_kwargs prompt_text = model_inputs.pop("text") input_ids = ( model_inputs["input_ids"] if "input_ids" in model_inputs else model_inputs["decoder_input_ids"] ) # for decoder-only models generated_sequence = self.model.generate(**model_inputs, **generate_kwargs) return {"generated_sequence": generated_sequence, "prompt_text": prompt_text, "input_ids": input_ids} def postprocess( self, model_outputs, return_type=ReturnType.FULL_TEXT, continue_final_message=None, **postprocess_kwargs ): input_texts = model_outputs["prompt_text"] input_texts = [input_texts] if isinstance(input_texts, (str, Chat)) else input_texts generated_sequence = model_outputs["generated_sequence"] input_ids = model_outputs["input_ids"] if return_type == ReturnType.TENSORS: return [ {"input_text": input_texts[i], "generated_token_ids": generated_sequence[i]} for i in range(len(input_texts)) ] # Decode inputs and outputs the same way to remove input text from generated text if present generated_texts = self.processor.post_process_image_text_to_text(generated_sequence, **postprocess_kwargs) decoded_inputs = self.processor.post_process_image_text_to_text(input_ids, **postprocess_kwargs) # Force consistent behavior for including the input text in the output if return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Remove the input text from the generated text if the generated text starts with the input text # (accounting for the possibility of a space between the input and generated text) new_generated_texts = [] for text_generated, decoded_input in zip(generated_texts, decoded_inputs): # There can be added characters before the input text, so we need to find the beginning of the input text in the generated text index_input_text = text_generated.find(decoded_input) # Limit the search to 2 residual characters, like spaces or new lines, to avoid removing a large part of the answer if 0 <= index_input_text <= 2: # If the input text is found, we remove it new_generated_texts.append(text_generated[index_input_text + len(decoded_input) :]) else: new_generated_texts.append(text_generated) generated_texts = new_generated_texts if return_type == ReturnType.FULL_TEXT: full_texts = [] for prompt_text, generated_text in zip(input_texts, generated_texts): if isinstance(prompt_text, str): generated_text = prompt_text + generated_text elif isinstance(prompt_text, Chat): if continue_final_message is None: # If the user passes a chat ending in an assistant message, we treat it as a prefill by # default because very few models support multiple separate, consecutive assistant messages continue_final_message = prompt_text.messages[-1]["role"] == "assistant" if continue_final_message: # With assistant prefill, concat onto the end of the last message new_text = dict(prompt_text.messages[-1]["content"][-1].items()) new_text["text"] += generated_text generated_text = list(prompt_text.messages)[:-1] + [ { "role": prompt_text.messages[-1]["role"], "content": prompt_text.messages[-1]["content"][:-1] + [new_text], } ] else: # When we're not starting from a prefill, the output is a new assistant message generated_text = list(prompt_text.messages) + [ {"role": "assistant", "content": generated_text} ] full_texts.append(generated_text) generated_texts = full_texts records = [ { "input_text": input_text.messages if isinstance(input_text, Chat) else input_text, "generated_text": generated_text, } for input_text, generated_text in zip(input_texts, generated_texts) ] return records ```
================================================================================================================================ SOURCE CODE FILE: image_to_image.py LINES: 1 SIZE: 4.90 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\image_to_image.py ENCODING: utf-8 ```py # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Union import numpy as np from ..utils import ( add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import Pipeline, build_pipeline_init_args if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES logger = logging.get_logger(__name__) @add_end_docstrings(build_pipeline_init_args(has_image_processor=True)) class ImageToImagePipeline(Pipeline): """ Image to Image pipeline using any `AutoModelForImageToImage`. This pipeline generates an image based on a previous image input. Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import pipeline >>> upscaler = pipeline("image-to-image", model="caidas/swin2SR-classical-sr-x2-64") >>> img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw) >>> img = img.resize((64, 64)) >>> upscaled_img = upscaler(img) >>> img.size (64, 64) >>> upscaled_img.size (144, 144) ``` This image to image pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"image-to-image"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=image-to-image). """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) requires_backends(self, "vision") self.check_model_type(MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES) def _sanitize_parameters(self, **kwargs): preprocess_params = {} postprocess_params = {} forward_params = {} if "timeout" in kwargs: preprocess_params["timeout"] = kwargs["timeout"] if "head_mask" in kwargs: forward_params["head_mask"] = kwargs["head_mask"] return preprocess_params, forward_params, postprocess_params def __call__( self, images: Union[str, List[str], "Image.Image", List["Image.Image"]], **kwargs ) -> Union["Image.Image", List["Image.Image"]]: """ Transform the image(s) passed as inputs. Args: images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): The pipeline handles three types of images: - A string containing a http link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly The pipeline accepts either a single image or a batch of images, which must then be passed as a string. Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL images. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is used and the call may block forever. Return: An image (Image.Image) or a list of images (List["Image.Image"]) containing result(s). If the input is a single image, the return will be also a single image, if the input is a list of several images, it will return a list of transformed images. """ return super().__call__(images, **kwargs) def _forward(self, model_inputs): model_outputs = self.model(**model_inputs) return model_outputs def preprocess(self, image, timeout=None): image = load_image(image, timeout=timeout) inputs = self.image_processor(images=[image], return_tensors="pt") if self.framework == "pt": inputs = inputs.to(self.torch_dtype) return inputs def postprocess(self, model_outputs): images = [] if "reconstruction" in model_outputs.keys(): outputs = model_outputs.reconstruction for output in outputs: output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() output = np.moveaxis(output, source=0, destination=-1) output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 images.append(Image.fromarray(output)) return images if len(images) > 1 else images[0] ```
=============================================================================================================================== SOURCE CODE FILE: image_to_text.py LINES: 1 SIZE: 9.28 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\image_to_text.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import Pipeline, build_pipeline_init_args if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES logger = logging.get_logger(__name__) @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True, has_image_processor=True)) class ImageToTextPipeline(Pipeline): """ Image To Text pipeline using a `AutoModelForVision2Seq`. This pipeline predicts a caption for a given image. Example: ```python >>> from transformers import pipeline >>> captioner = pipeline(model="ydshieh/vit-gpt2-coco-en") >>> captioner("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png") [{'generated_text': 'two birds are standing next to each other '}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This image to text pipeline can currently be loaded from pipeline() using the following task identifier: "image-to-text". See the list of available models on [huggingface.co/models](https://huggingface.co/models?pipeline_tag=image-to-text). """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) requires_backends(self, "vision") self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES ) def _sanitize_parameters(self, max_new_tokens=None, generate_kwargs=None, prompt=None, timeout=None): forward_params = {} preprocess_params = {} if prompt is not None: preprocess_params["prompt"] = prompt if timeout is not None: preprocess_params["timeout"] = timeout if max_new_tokens is not None: forward_params["max_new_tokens"] = max_new_tokens if generate_kwargs is not None: if max_new_tokens is not None and "max_new_tokens" in generate_kwargs: raise ValueError( "`max_new_tokens` is defined both as an argument and inside `generate_kwargs` argument, please use" " only 1 version" ) forward_params.update(generate_kwargs) if self.assistant_model is not None: forward_params["assistant_model"] = self.assistant_model if self.assistant_tokenizer is not None: forward_params["tokenizer"] = self.tokenizer forward_params["assistant_tokenizer"] = self.assistant_tokenizer return preprocess_params, forward_params, {} def __call__(self, inputs: Union[str, List[str], "Image.Image", List["Image.Image"]] = None, **kwargs): """ Assign labels to the image(s) passed as inputs. Args: inputs (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): The pipeline handles three types of images: - A string containing a HTTP(s) link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly The pipeline accepts either a single image or a batch of images. max_new_tokens (`int`, *optional*): The amount of maximum tokens to generate. By default it will use `generate` default. generate_kwargs (`Dict`, *optional*): Pass it to send all of these arguments directly to `generate` allowing full control of this function. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and the call may block forever. Return: A list or a list of list of `dict`: Each result comes as a dictionary with the following key: - **generated_text** (`str`) -- The generated text. """ # After deprecation of this is completed, remove the default `None` value for `images` if "images" in kwargs: inputs = kwargs.pop("images") if inputs is None: raise ValueError("Cannot call the image-to-text pipeline without an inputs argument!") return super().__call__(inputs, **kwargs) def preprocess(self, image, prompt=None, timeout=None): image = load_image(image, timeout=timeout) if prompt is not None: logger.warning_once( "Passing `prompt` to the `image-to-text` pipeline is deprecated and will be removed in version 4.48" " of 🤗 Transformers. Use the `image-text-to-text` pipeline instead", ) if not isinstance(prompt, str): raise ValueError( f"Received an invalid text input, got - {type(prompt)} - but expected a single string. " "Note also that one single text can be provided for conditional image to text generation." ) model_type = self.model.config.model_type if model_type == "git": model_inputs = self.image_processor(images=image, return_tensors=self.framework) if self.framework == "pt": model_inputs = model_inputs.to(self.torch_dtype) input_ids = self.tokenizer(text=prompt, add_special_tokens=False).input_ids input_ids = [self.tokenizer.cls_token_id] + input_ids input_ids = torch.tensor(input_ids).unsqueeze(0) model_inputs.update({"input_ids": input_ids}) elif model_type == "pix2struct": model_inputs = self.image_processor(images=image, header_text=prompt, return_tensors=self.framework) if self.framework == "pt": model_inputs = model_inputs.to(self.torch_dtype) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation model_inputs = self.image_processor(images=image, return_tensors=self.framework) if self.framework == "pt": model_inputs = model_inputs.to(self.torch_dtype) text_inputs = self.tokenizer(prompt, return_tensors=self.framework) model_inputs.update(text_inputs) else: raise ValueError(f"Model type {model_type} does not support conditional text generation") else: model_inputs = self.image_processor(images=image, return_tensors=self.framework) if self.framework == "pt": model_inputs = model_inputs.to(self.torch_dtype) if self.model.config.model_type == "git" and prompt is None: model_inputs["input_ids"] = None return model_inputs def _forward(self, model_inputs, **generate_kwargs): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"], list) and all(x is None for x in model_inputs["input_ids"]) ): model_inputs["input_ids"] = None # User-defined `generation_config` passed to the pipeline call take precedence if "generation_config" not in generate_kwargs: generate_kwargs["generation_config"] = self.generation_config # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. inputs = model_inputs.pop(self.model.main_input_name) model_outputs = self.model.generate(inputs, **model_inputs, **generate_kwargs) return model_outputs def postprocess(self, model_outputs): records = [] for output_ids in model_outputs: record = { "generated_text": self.tokenizer.decode( output_ids, skip_special_tokens=True, ) } records.append(record) return records ```
================================================================================================================================= SOURCE CODE FILE: mask_generation.py LINES: 1 SIZE: 12.89 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\mask_generation.py ENCODING: utf-8 ```py from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import ChunkPipeline, build_pipeline_init_args if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING_NAMES logger = logging.get_logger(__name__) @add_end_docstrings( build_pipeline_init_args(has_image_processor=True), r""" points_per_batch (*optional*, int, default to 64): Sets the number of points run simultaneously by the model. Higher numbers may be faster but use more GPU memory. output_bboxes_mask (`bool`, *optional*, default to `False`): Whether or not to output the bounding box predictions. output_rle_masks (`bool`, *optional*, default to `False`): Whether or not to output the masks in `RLE` format""", ) class MaskGenerationPipeline(ChunkPipeline): """ Automatic mask generation for images using `SamForMaskGeneration`. This pipeline predicts binary masks for an image, given an image. It is a `ChunkPipeline` because you can seperate the points in a mini-batch in order to avoid OOM issues. Use the `points_per_batch` argument to control the number of points that will be processed at the same time. Default is `64`. The pipeline works in 3 steps: 1. `preprocess`: A grid of 1024 points evenly separated is generated along with bounding boxes and point labels. For more details on how the points and bounding boxes are created, check the `_generate_crop_boxes` function. The image is also preprocessed using the `image_processor`. This function `yields` a minibatch of `points_per_batch`. 2. `forward`: feeds the outputs of `preprocess` to the model. The image embedding is computed only once. Calls both `self.model.get_image_embeddings` and makes sure that the gradients are not computed, and the tensors and models are on the same device. 3. `postprocess`: The most important part of the automatic mask generation happens here. Three steps are induced: - image_processor.postprocess_masks (run on each minibatch loop): takes in the raw output masks, resizes them according to the image size, and transforms there to binary masks. - image_processor.filter_masks (on each minibatch loop): uses both `pred_iou_thresh` and `stability_scores`. Also applies a variety of filters based on non maximum suppression to remove bad masks. - image_processor.postprocess_masks_for_amg applies the NSM on the mask to only keep relevant ones. Example: ```python >>> from transformers import pipeline >>> generator = pipeline(model="facebook/sam-vit-base", task="mask-generation") >>> outputs = generator( ... "http://images.cocodataset.org/val2017/000000039769.jpg", ... ) >>> outputs = generator( ... "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", points_per_batch=128 ... ) ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This segmentation pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"mask-generation"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=mask-generation). """ def __init__(self, **kwargs): super().__init__(**kwargs) requires_backends(self, "vision") requires_backends(self, "torch") if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch.") self.check_model_type(MODEL_FOR_MASK_GENERATION_MAPPING_NAMES) def _sanitize_parameters(self, **kwargs): preprocess_kwargs = {} postprocess_kwargs = {} forward_params = {} # preprocess args if "points_per_batch" in kwargs: preprocess_kwargs["points_per_batch"] = kwargs["points_per_batch"] if "points_per_crop" in kwargs: preprocess_kwargs["points_per_crop"] = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: preprocess_kwargs["crops_n_layers"] = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: preprocess_kwargs["crop_overlap_ratio"] = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: preprocess_kwargs["crop_n_points_downscale_factor"] = kwargs["crop_n_points_downscale_factor"] if "timeout" in kwargs: preprocess_kwargs["timeout"] = kwargs["timeout"] # postprocess args if "pred_iou_thresh" in kwargs: forward_params["pred_iou_thresh"] = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: forward_params["stability_score_offset"] = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: forward_params["mask_threshold"] = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: forward_params["stability_score_thresh"] = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: postprocess_kwargs["crops_nms_thresh"] = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: postprocess_kwargs["output_rle_mask"] = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: postprocess_kwargs["output_bboxes_mask"] = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self, image, *args, num_workers=None, batch_size=None, **kwargs): """ Generates binary segmentation masks Args: inputs (`np.ndarray` or `bytes` or `str` or `dict`): Image or list of images. mask_threshold (`float`, *optional*, defaults to 0.0): Threshold to use when turning the predicted masks into binary values. pred_iou_thresh (`float`, *optional*, defaults to 0.88): A filtering threshold in `[0,1]` applied on the model's predicted mask quality. stability_score_thresh (`float`, *optional*, defaults to 0.95): A filtering threshold in `[0,1]`, using the stability of the mask under changes to the cutoff used to binarize the model's mask predictions. stability_score_offset (`int`, *optional*, defaults to 1): The amount to shift the cutoff when calculated the stability score. crops_nms_thresh (`float`, *optional*, defaults to 0.7): The box IoU cutoff used by non-maximal suppression to filter duplicate masks. crops_n_layers (`int`, *optional*, defaults to 0): If `crops_n_layers>0`, mask prediction will be run again on crops of the image. Sets the number of layers to run, where each layer has 2**i_layer number of image crops. crop_overlap_ratio (`float`, *optional*, defaults to `512 / 1500`): Sets the degree to which crops overlap. In the first crop layer, crops will overlap by this fraction of the image length. Later layers with more crops scale down this overlap. crop_n_points_downscale_factor (`int`, *optional*, defaults to `1`): The number of points-per-side sampled in layer n is scaled down by crop_n_points_downscale_factor**n. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and the call may block forever. Return: `Dict`: A dictionary with the following keys: - **mask** (`PIL.Image`) -- A binary mask of the detected object as a PIL Image of shape `(width, height)` of the original image. Returns a mask filled with zeros if no object is found. - **score** (*optional* `float`) -- Optionally, when the model is capable of estimating a confidence of the "object" described by the label and the mask. """ return super().__call__(image, *args, num_workers=num_workers, batch_size=batch_size, **kwargs) def preprocess( self, image, points_per_batch=64, crops_n_layers: int = 0, crop_overlap_ratio: float = 512 / 1500, points_per_crop: Optional[int] = 32, crop_n_points_downscale_factor: Optional[int] = 1, timeout: Optional[float] = None, ): image = load_image(image, timeout=timeout) target_size = self.image_processor.size["longest_edge"] crop_boxes, grid_points, cropped_images, input_labels = self.image_processor.generate_crop_boxes( image, target_size, crops_n_layers, crop_overlap_ratio, points_per_crop, crop_n_points_downscale_factor ) model_inputs = self.image_processor(images=cropped_images, return_tensors="pt") if self.framework == "pt": model_inputs = model_inputs.to(self.torch_dtype) with self.device_placement(): if self.framework == "pt": inference_context = self.get_inference_context() with inference_context(): model_inputs = self._ensure_tensor_on_device(model_inputs, device=self.device) image_embeddings = self.model.get_image_embeddings(model_inputs.pop("pixel_values")) model_inputs["image_embeddings"] = image_embeddings n_points = grid_points.shape[1] points_per_batch = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0, n_points, points_per_batch): batched_points = grid_points[:, i : i + points_per_batch, :, :] labels = input_labels[:, i : i + points_per_batch] is_last = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _forward( self, model_inputs, pred_iou_thresh=0.88, stability_score_thresh=0.95, mask_threshold=0, stability_score_offset=1, ): input_boxes = model_inputs.pop("input_boxes") is_last = model_inputs.pop("is_last") original_sizes = model_inputs.pop("original_sizes").tolist() reshaped_input_sizes = model_inputs.pop("reshaped_input_sizes").tolist() model_outputs = self.model(**model_inputs) # post processing happens here in order to avoid CPU GPU copies of ALL the masks low_resolution_masks = model_outputs["pred_masks"] masks = self.image_processor.post_process_masks( low_resolution_masks, original_sizes, reshaped_input_sizes, mask_threshold, binarize=False ) iou_scores = model_outputs["iou_scores"] masks, iou_scores, boxes = self.image_processor.filter_masks( masks[0], iou_scores[0], original_sizes[0], input_boxes[0], pred_iou_thresh, stability_score_thresh, mask_threshold, stability_score_offset, ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def postprocess( self, model_outputs, output_rle_mask=False, output_bboxes_mask=False, crops_nms_thresh=0.7, ): all_scores = [] all_masks = [] all_boxes = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores")) all_masks.extend(model_output.pop("masks")) all_boxes.append(model_output.pop("boxes")) all_scores = torch.cat(all_scores) all_boxes = torch.cat(all_boxes) output_masks, iou_scores, rle_mask, bounding_boxes = self.image_processor.post_process_for_mask_generation( all_masks, all_scores, all_boxes, crops_nms_thresh ) extra = defaultdict(list) for output in model_outputs: for k, v in output.items(): extra[k].append(v) optional = {} if output_rle_mask: optional["rle_mask"] = rle_mask if output_bboxes_mask: optional["bounding_boxes"] = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra} ```
================================================================================================================================== SOURCE CODE FILE: object_detection.py LINES: 1 SIZE: 8.03 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\object_detection.py ENCODING: utf-8 ```py from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import Pipeline, build_pipeline_init_args if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import ( MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, ) logger = logging.get_logger(__name__) Prediction = Dict[str, Any] Predictions = List[Prediction] @add_end_docstrings(build_pipeline_init_args(has_image_processor=True)) class ObjectDetectionPipeline(Pipeline): """ Object detection pipeline using any `AutoModelForObjectDetection`. This pipeline predicts bounding boxes of objects and their classes. Example: ```python >>> from transformers import pipeline >>> detector = pipeline(model="facebook/detr-resnet-50") >>> detector("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png") [{'score': 0.997, 'label': 'bird', 'box': {'xmin': 69, 'ymin': 171, 'xmax': 396, 'ymax': 507}}, {'score': 0.999, 'label': 'bird', 'box': {'xmin': 398, 'ymin': 105, 'xmax': 767, 'ymax': 507}}] >>> # x, y are expressed relative to the top left hand corner. ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This object detection pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"object-detection"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=object-detection). """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch.") requires_backends(self, "vision") mapping = MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES.copy() mapping.update(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES) self.check_model_type(mapping) def _sanitize_parameters(self, **kwargs): preprocess_params = {} if "timeout" in kwargs: preprocess_params["timeout"] = kwargs["timeout"] postprocess_kwargs = {} if "threshold" in kwargs: postprocess_kwargs["threshold"] = kwargs["threshold"] return preprocess_params, {}, postprocess_kwargs def __call__(self, *args, **kwargs) -> Union[Predictions, List[Prediction]]: """ Detect objects (bounding boxes & classes) in the image(s) passed as inputs. Args: inputs (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): The pipeline handles three types of images: - A string containing an HTTP(S) link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly The pipeline accepts either a single image or a batch of images. Images in a batch must all be in the same format: all as HTTP(S) links, all as local paths, or all as PIL images. threshold (`float`, *optional*, defaults to 0.5): The probability necessary to make a prediction. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and the call may block forever. Return: A list of dictionaries or a list of list of dictionaries containing the result. If the input is a single image, will return a list of dictionaries, if the input is a list of several images, will return a list of list of dictionaries corresponding to each image. The dictionaries contain the following keys: - **label** (`str`) -- The class label identified by the model. - **score** (`float`) -- The score attributed by the model for that label. - **box** (`List[Dict[str, int]]`) -- The bounding box of detected object in image's original size. """ # After deprecation of this is completed, remove the default `None` value for `images` if "images" in kwargs and "inputs" not in kwargs: kwargs["inputs"] = kwargs.pop("images") return super().__call__(*args, **kwargs) def preprocess(self, image, timeout=None): image = load_image(image, timeout=timeout) target_size = torch.IntTensor([[image.height, image.width]]) inputs = self.image_processor(images=[image], return_tensors="pt") if self.framework == "pt": inputs = inputs.to(self.torch_dtype) if self.tokenizer is not None: inputs = self.tokenizer(text=inputs["words"], boxes=inputs["boxes"], return_tensors="pt") inputs["target_size"] = target_size return inputs def _forward(self, model_inputs): target_size = model_inputs.pop("target_size") outputs = self.model(**model_inputs) model_outputs = outputs.__class__({"target_size": target_size, **outputs}) if self.tokenizer is not None: model_outputs["bbox"] = model_inputs["bbox"] return model_outputs def postprocess(self, model_outputs, threshold=0.5): target_size = model_outputs["target_size"] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. height, width = target_size[0].tolist() def unnormalize(bbox): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) scores, classes = model_outputs["logits"].squeeze(0).softmax(dim=-1).max(dim=-1) labels = [self.model.config.id2label[prediction] for prediction in classes.tolist()] boxes = [unnormalize(bbox) for bbox in model_outputs["bbox"].squeeze(0)] keys = ["score", "label", "box"] annotation = [dict(zip(keys, vals)) for vals in zip(scores.tolist(), labels, boxes) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel raw_annotations = self.image_processor.post_process_object_detection(model_outputs, threshold, target_size) raw_annotation = raw_annotations[0] scores = raw_annotation["scores"] labels = raw_annotation["labels"] boxes = raw_annotation["boxes"] raw_annotation["scores"] = scores.tolist() raw_annotation["labels"] = [self.model.config.id2label[label.item()] for label in labels] raw_annotation["boxes"] = [self._get_bounding_box(box) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] keys = ["score", "label", "box"] annotation = [ dict(zip(keys, vals)) for vals in zip(raw_annotation["scores"], raw_annotation["labels"], raw_annotation["boxes"]) ] return annotation def _get_bounding_box(self, box: "torch.Tensor") -> Dict[str, int]: """ Turns list [xmin, xmax, ymin, ymax] into dict { "xmin": xmin, ... } Args: box (`torch.Tensor`): Tensor containing the coordinates in corners format. Returns: bbox (`Dict[str, int]`): Dict containing the coordinates in corners format. """ if self.framework != "pt": raise ValueError("The ObjectDetectionPipeline is only available in PyTorch.") xmin, ymin, xmax, ymax = box.int().tolist() bbox = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox ```
========================================================================================================================== SOURCE CODE FILE: pt_utils.py LINES: 1 SIZE: 12.46 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\pt_utils.py ENCODING: utf-8 ```py import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class PipelineDataset(Dataset): def __init__(self, dataset, process, params): self.dataset = dataset self.process = process self.params = params def __len__(self): return len(self.dataset) def __getitem__(self, i): item = self.dataset[i] processed = self.process(item, **self.params) return processed class PipelineIterator(IterableDataset): def __init__(self, loader, infer, params, loader_batch_size=None): """ Roughly equivalent to ``` for item in loader: yield infer(item, **params) ``` Arguments: loader (`torch.utils.data.DataLoader` or `Iterable`): The iterator that will be used to apply `infer` on. infer (any function): The function to apply of each element of `loader`. params (`dict`): The parameters passed to `infer` along with every item loader_batch_size (`int`, *optional*): If specified, the items of `loader` are supposed to come as batch, and are loader_batched here making it roughly behave as ``` for items in loader: for i in loader_batch_size: item = items[i] yield infer(item, **params) ```""" self.loader = loader self.infer = infer self.params = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether loader_batch_size = None self.loader_batch_size = loader_batch_size # Internal bookkeeping self._loader_batch_index = None self._loader_batch_data = None def __len__(self): return len(self.loader) def __iter__(self): self.iterator = iter(self.loader) return self def loader_batch_item(self): """ Return item located at `loader_batch_index` within the current `loader_batch_data`. """ if isinstance(self._loader_batch_data, torch.Tensor): # Batch data is simple tensor, just fetch the slice result = self._loader_batch_data[self._loader_batch_index].unsqueeze(0) else: # Batch data is assumed to be BaseModelOutput (or dict) loader_batched = {} for k, element in self._loader_batch_data.items(): if isinstance(element, ModelOutput): # Convert ModelOutput to tuple first element = element.to_tuple() if isinstance(element[0], torch.Tensor): loader_batched[k] = tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0], np.ndarray): loader_batched[k] = tuple(np.expand_dims(el[self._loader_batch_index], 0) for el in element) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(element, tuple): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0], torch.Tensor): loader_batched[k] = tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0], np.ndarray): loader_batched[k] = tuple(np.expand_dims(el[self._loader_batch_index], 0) for el in element) continue if element is None: # This can happen for optional data that get passed around loader_batched[k] = None elif isinstance(element[self._loader_batch_index], torch.Tensor): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers loader_batched[k] = element[self._loader_batch_index].unsqueeze(0) elif isinstance(element[self._loader_batch_index], np.ndarray): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers loader_batched[k] = np.expand_dims(element[self._loader_batch_index], 0) else: # This is typically a list, so no need to `unsqueeze`. loader_batched[k] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 result = self._loader_batch_data.__class__(loader_batched) self._loader_batch_index += 1 return result def __next__(self): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch item = next(self.iterator) processed = self.infer(item, **self.params) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(processed, torch.Tensor): first_tensor = processed elif isinstance(processed, tuple): first_tensor = processed[0] else: key = list(processed.keys())[0] first_tensor = processed[key] if isinstance(first_tensor, list): observed_batch_size = len(first_tensor) else: observed_batch_size = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. self.loader_batch_size = observed_batch_size # Setting internal index to unwrap the batch self._loader_batch_data = processed[0] if isinstance(processed, tuple) else processed self._loader_batch_index = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class PipelineChunkIterator(PipelineIterator): def __init__(self, loader, infer, params, loader_batch_size=None): """ Roughly equivalent to ``` for iterator in loader: for item in iterator: yield infer(item, **params) ``` Arguments: loader (`torch.utils.data.DataLoader` or `Iterable`): The iterator that will be used to apply `infer` on. infer (any function): The function to apply of each element of `loader`. params (`dict`): The parameters passed to `infer` along with every item """ super().__init__(loader, infer, params) def __iter__(self): self.iterator = iter(self.loader) self.subiterator = None return self def __next__(self): if self.subiterator is None: "Subiterator None means we haven't started a `preprocess` iterator. so start it" self.subiterator = self.infer(next(self.iterator), **self.params) try: # Try to return next item processed = next(self.subiterator) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators self.subiterator = self.infer(next(self.iterator), **self.params) processed = next(self.subiterator) return processed class PipelinePackIterator(PipelineIterator): """ Roughly equivalent to ``` packed = [] for item in loader: packed.append(item) if item["is_last"]: yield packed packed = [] ``` but it also handles cases where `item` are batched (meaning it's a dict of Tensor with first dimension > 1. In that case it does ``` packed = [] for batch in loader: # item is batched for item in batch: packed.append(item) if item["is_last"]: yield packed packed = [] ``` Arguments: loader (`torch.utils.data.DataLoader` or `Iterable`): The iterator that will be used to apply `infer` on. infer (any function): The function to apply of each element of `loader`. params (`dict`): The parameters passed to `infer` along with every item loader_batch_size (`int`, *optional*): If specified, the items of `loader` are supposed to come as batch, and are loader_batched here making it roughly behave as ``` for items in loader: for i in loader_batch_size: item = items[i] yield infer(item, **params) ```""" def __iter__(self): self.iterator = iter(self.loader) return self def __next__(self): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. is_last = False accumulator = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: item = self.loader_batch_item() is_last = item.pop("is_last") accumulator.append(item) if is_last: return accumulator while not is_last: processed = self.infer(next(self.iterator), **self.params) if self.loader_batch_size is not None: if isinstance(processed, torch.Tensor): first_tensor = processed else: key = list(processed.keys())[0] first_tensor = processed[key] if isinstance(first_tensor, list): observed_batch_size = len(first_tensor) else: observed_batch_size = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. self.loader_batch_size = observed_batch_size self._loader_batch_data = processed self._loader_batch_index = 0 while self._loader_batch_index < self.loader_batch_size: item = self.loader_batch_item() is_last = item.pop("is_last") accumulator.append(item) if is_last: return accumulator else: item = processed is_last = item.pop("is_last") accumulator.append(item) return accumulator class KeyDataset(Dataset): def __init__(self, dataset: Dataset, key: str): self.dataset = dataset self.key = key def __len__(self): return len(self.dataset) def __getitem__(self, i): return self.dataset[i][self.key] class KeyPairDataset(Dataset): def __init__(self, dataset: Dataset, key1: str, key2: str): self.dataset = dataset self.key1 = key1 self.key2 = key2 def __len__(self): return len(self.dataset) def __getitem__(self, i): return {"text": self.dataset[i][self.key1], "text_pair": self.dataset[i][self.key2]} ```
==================================================================================================================================== SOURCE CODE FILE: question_answering.py LINES: 1 SIZE: 29.51 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\question_answering.py ENCODING: utf-8 ```py import inspect import types import warnings from collections.abc import Iterable from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union import numpy as np from ..data import SquadExample, SquadFeatures, squad_convert_examples_to_features from ..modelcard import ModelCard from ..tokenization_utils import PreTrainedTokenizer from ..utils import ( PaddingStrategy, add_end_docstrings, is_tf_available, is_tokenizers_available, is_torch_available, logging, ) from .base import ArgumentHandler, ChunkPipeline, build_pipeline_init_args logger = logging.get_logger(__name__) if TYPE_CHECKING: from ..modeling_tf_utils import TFPreTrainedModel from ..modeling_utils import PreTrainedModel if is_tokenizers_available(): import tokenizers if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES Dataset = None if is_torch_available(): import torch from torch.utils.data import Dataset from ..models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES def decode_spans( start: np.ndarray, end: np.ndarray, topk: int, max_answer_len: int, undesired_tokens: np.ndarray ) -> Tuple: """ Take the output of any `ModelForQuestionAnswering` and will generate probabilities for each span to be the actual answer. In addition, it filters out some unwanted/impossible cases like answer len being greater than max_answer_len or answer end position being before the starting position. The method supports output the k-best answer through the topk argument. Args: start (`np.ndarray`): Individual start probabilities for each token. end (`np.ndarray`): Individual end probabilities for each token. topk (`int`): Indicates how many possible answer span(s) to extract from the model output. max_answer_len (`int`): Maximum size of the answer to extract from the model's output. undesired_tokens (`np.ndarray`): Mask determining tokens that can be part of the answer """ # Ensure we have batch axis if start.ndim == 1: start = start[None] if end.ndim == 1: end = end[None] # Compute the score of each tuple(start, end) to be the real answer outer = np.matmul(np.expand_dims(start, -1), np.expand_dims(end, 1)) # Remove candidate with end < start and end - start > max_answer_len candidates = np.tril(np.triu(outer), max_answer_len - 1) # Inspired by Chen & al. (https://github.com/facebookresearch/DrQA) scores_flat = candidates.flatten() if topk == 1: idx_sort = [np.argmax(scores_flat)] elif len(scores_flat) < topk: idx_sort = np.argsort(-scores_flat) else: idx = np.argpartition(-scores_flat, topk)[0:topk] idx_sort = idx[np.argsort(-scores_flat[idx])] starts, ends = np.unravel_index(idx_sort, candidates.shape)[1:] desired_spans = np.isin(starts, undesired_tokens.nonzero()) & np.isin(ends, undesired_tokens.nonzero()) starts = starts[desired_spans] ends = ends[desired_spans] scores = candidates[0, starts, ends] return starts, ends, scores def select_starts_ends( start, end, p_mask, attention_mask, min_null_score=1000000, top_k=1, handle_impossible_answer=False, max_answer_len=15, ): """ Takes the raw output of any `ModelForQuestionAnswering` and first normalizes its outputs and then uses `decode_spans()` to generate probabilities for each span to be the actual answer. Args: start (`np.ndarray`): Individual start logits for each token. end (`np.ndarray`): Individual end logits for each token. p_mask (`np.ndarray`): A mask with 1 for values that cannot be in the answer attention_mask (`np.ndarray`): The attention mask generated by the tokenizer min_null_score(`float`): The minimum null (empty) answer score seen so far. topk (`int`): Indicates how many possible answer span(s) to extract from the model output. handle_impossible_answer(`bool`): Whether to allow null (empty) answers max_answer_len (`int`): Maximum size of the answer to extract from the model's output. """ # Ensure padded tokens & question tokens cannot belong to the set of candidate answers. undesired_tokens = np.abs(np.array(p_mask) - 1) if attention_mask is not None: undesired_tokens = undesired_tokens & attention_mask # Generate mask undesired_tokens_mask = undesired_tokens == 0.0 # Make sure non-context indexes in the tensor cannot contribute to the softmax start = np.where(undesired_tokens_mask, -10000.0, start) end = np.where(undesired_tokens_mask, -10000.0, end) # Normalize logits and spans to retrieve the answer start = np.exp(start - start.max(axis=-1, keepdims=True)) start = start / start.sum() end = np.exp(end - end.max(axis=-1, keepdims=True)) end = end / end.sum() if handle_impossible_answer: min_null_score = min(min_null_score, (start[0, 0] * end[0, 0]).item()) # Mask CLS start[0, 0] = end[0, 0] = 0.0 starts, ends, scores = decode_spans(start, end, top_k, max_answer_len, undesired_tokens) return starts, ends, scores, min_null_score class QuestionAnsweringArgumentHandler(ArgumentHandler): """ QuestionAnsweringPipeline requires the user to provide multiple arguments (i.e. question & context) to be mapped to internal [`SquadExample`]. QuestionAnsweringArgumentHandler manages all the possible to create a [`SquadExample`] from the command-line supplied arguments. """ def normalize(self, item): if isinstance(item, SquadExample): return item elif isinstance(item, dict): for k in ["question", "context"]: if k not in item: raise KeyError("You need to provide a dictionary with keys {question:..., context:...}") elif item[k] is None: raise ValueError(f"`{k}` cannot be None") elif isinstance(item[k], str) and len(item[k]) == 0: raise ValueError(f"`{k}` cannot be empty") return QuestionAnsweringPipeline.create_sample(**item) raise ValueError(f"{item} argument needs to be of type (SquadExample, dict)") def __call__(self, *args, **kwargs): # Detect where the actual inputs are if args is not None and len(args) > 0: if len(args) == 1: inputs = args[0] elif len(args) == 2 and {type(el) for el in args} == {str}: inputs = [{"question": args[0], "context": args[1]}] else: inputs = list(args) # Generic compatibility with sklearn and Keras # Batched data elif "X" in kwargs: warnings.warn( "Passing the `X` argument to the pipeline is deprecated and will be removed in v5. Inputs should be passed using the `question` and `context` keyword arguments instead.", FutureWarning, ) inputs = kwargs["X"] elif "data" in kwargs: warnings.warn( "Passing the `data` argument to the pipeline is deprecated and will be removed in v5. Inputs should be passed using the `question` and `context` keyword arguments instead.", FutureWarning, ) inputs = kwargs["data"] elif "question" in kwargs and "context" in kwargs: if isinstance(kwargs["question"], list) and isinstance(kwargs["context"], str): inputs = [{"question": Q, "context": kwargs["context"]} for Q in kwargs["question"]] elif isinstance(kwargs["question"], list) and isinstance(kwargs["context"], list): if len(kwargs["question"]) != len(kwargs["context"]): raise ValueError("Questions and contexts don't have the same lengths") inputs = [{"question": Q, "context": C} for Q, C in zip(kwargs["question"], kwargs["context"])] elif isinstance(kwargs["question"], str) and isinstance(kwargs["context"], str): inputs = [{"question": kwargs["question"], "context": kwargs["context"]}] else: raise ValueError("Arguments can't be understood") else: raise ValueError(f"Unknown arguments {kwargs}") # When user is sending a generator we need to trust it's a valid example generator_types = (types.GeneratorType, Dataset) if Dataset is not None else (types.GeneratorType,) if isinstance(inputs, generator_types): return inputs # Normalize inputs if isinstance(inputs, dict): inputs = [inputs] elif isinstance(inputs, Iterable): # Copy to avoid overriding arguments inputs = list(inputs) else: raise ValueError(f"Invalid arguments {kwargs}") for i, item in enumerate(inputs): inputs[i] = self.normalize(item) return inputs @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True)) class QuestionAnsweringPipeline(ChunkPipeline): """ Question Answering pipeline using any `ModelForQuestionAnswering`. See the [question answering examples](../task_summary#question-answering) for more information. Example: ```python >>> from transformers import pipeline >>> oracle = pipeline(model="deepset/roberta-base-squad2") >>> oracle(question="Where do I live?", context="My name is Wolfgang and I live in Berlin") {'score': 0.9191, 'start': 34, 'end': 40, 'answer': 'Berlin'} ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This question answering pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"question-answering"`. The models that this pipeline can use are models that have been fine-tuned on a question answering task. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=question-answering). """ default_input_names = "question,context" handle_impossible_answer = False def __init__( self, model: Union["PreTrainedModel", "TFPreTrainedModel"], tokenizer: PreTrainedTokenizer, modelcard: Optional[ModelCard] = None, framework: Optional[str] = None, task: str = "", **kwargs, ): super().__init__( model=model, tokenizer=tokenizer, modelcard=modelcard, framework=framework, task=task, **kwargs, ) self._args_parser = QuestionAnsweringArgumentHandler() self.check_model_type( TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES if self.framework == "tf" else MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) @staticmethod def create_sample( question: Union[str, List[str]], context: Union[str, List[str]] ) -> Union[SquadExample, List[SquadExample]]: """ QuestionAnsweringPipeline leverages the [`SquadExample`] internally. This helper method encapsulate all the logic for converting question(s) and context(s) to [`SquadExample`]. We currently support extractive question answering. Arguments: question (`str` or `List[str]`): The question(s) asked. context (`str` or `List[str]`): The context(s) in which we will look for the answer. Returns: One or a list of [`SquadExample`]: The corresponding [`SquadExample`] grouping question and context. """ if isinstance(question, list): return [SquadExample(None, q, c, None, None, None) for q, c in zip(question, context)] else: return SquadExample(None, question, context, None, None, None) def _sanitize_parameters( self, padding=None, topk=None, top_k=None, doc_stride=None, max_answer_len=None, max_seq_len=None, max_question_len=None, handle_impossible_answer=None, align_to_words=None, **kwargs, ): # Set defaults values preprocess_params = {} if padding is not None: preprocess_params["padding"] = padding if doc_stride is not None: preprocess_params["doc_stride"] = doc_stride if max_question_len is not None: preprocess_params["max_question_len"] = max_question_len if max_seq_len is not None: preprocess_params["max_seq_len"] = max_seq_len postprocess_params = {} if topk is not None and top_k is None: warnings.warn("topk parameter is deprecated, use top_k instead", UserWarning) top_k = topk if top_k is not None: if top_k < 1: raise ValueError(f"top_k parameter should be >= 1 (got {top_k})") postprocess_params["top_k"] = top_k if max_answer_len is not None: if max_answer_len < 1: raise ValueError(f"max_answer_len parameter should be >= 1 (got {max_answer_len}") postprocess_params["max_answer_len"] = max_answer_len if handle_impossible_answer is not None: postprocess_params["handle_impossible_answer"] = handle_impossible_answer if align_to_words is not None: postprocess_params["align_to_words"] = align_to_words return preprocess_params, {}, postprocess_params def __call__(self, *args, **kwargs): """ Answer the question(s) given as inputs by using the context(s). Args: question (`str` or `List[str]`): One or several question(s) (must be used in conjunction with the `context` argument). context (`str` or `List[str]`): One or several context(s) associated with the question(s) (must be used in conjunction with the `question` argument). top_k (`int`, *optional*, defaults to 1): The number of answers to return (will be chosen by order of likelihood). Note that we return less than top_k answers if there are not enough options available within the context. doc_stride (`int`, *optional*, defaults to 128): If the context is too long to fit with the question for the model, it will be split in several chunks with some overlap. This argument controls the size of that overlap. max_answer_len (`int`, *optional*, defaults to 15): The maximum length of predicted answers (e.g., only answers with a shorter length are considered). max_seq_len (`int`, *optional*, defaults to 384): The maximum length of the total sentence (context + question) in tokens of each chunk passed to the model. The context will be split in several chunks (using `doc_stride` as overlap) if needed. max_question_len (`int`, *optional*, defaults to 64): The maximum length of the question after tokenization. It will be truncated if needed. handle_impossible_answer (`bool`, *optional*, defaults to `False`): Whether or not we accept impossible as an answer. align_to_words (`bool`, *optional*, defaults to `True`): Attempts to align the answer to real words. Improves quality on space separated languages. Might hurt on non-space-separated languages (like Japanese or Chinese) Return: A `dict` or a list of `dict`: Each result comes as a dictionary with the following keys: - **score** (`float`) -- The probability associated to the answer. - **start** (`int`) -- The character start index of the answer (in the tokenized version of the input). - **end** (`int`) -- The character end index of the answer (in the tokenized version of the input). - **answer** (`str`) -- The answer to the question. """ # Convert inputs to features if args: warnings.warn( "Passing a list of SQuAD examples to the pipeline is deprecated and will be removed in v5. Inputs should be passed using the `question` and `context` keyword arguments instead.", FutureWarning, ) examples = self._args_parser(*args, **kwargs) if isinstance(examples, (list, tuple)) and len(examples) == 1: return super().__call__(examples[0], **kwargs) return super().__call__(examples, **kwargs) def preprocess(self, example, padding="do_not_pad", doc_stride=None, max_question_len=64, max_seq_len=None): # XXX: This is special, args_parser will not handle anything generator or dataset like # For those we expect user to send a simple valid example either directly as a SquadExample or simple dict. # So we still need a little sanitation here. if isinstance(example, dict): example = SquadExample(None, example["question"], example["context"], None, None, None) if max_seq_len is None: max_seq_len = min(self.tokenizer.model_max_length, 384) if doc_stride is None: doc_stride = min(max_seq_len // 2, 128) if doc_stride > max_seq_len: raise ValueError(f"`doc_stride` ({doc_stride}) is larger than `max_seq_len` ({max_seq_len})") if not self.tokenizer.is_fast: features = squad_convert_examples_to_features( examples=[example], tokenizer=self.tokenizer, max_seq_length=max_seq_len, doc_stride=doc_stride, max_query_length=max_question_len, padding_strategy=PaddingStrategy.MAX_LENGTH, is_training=False, tqdm_enabled=False, ) else: # Define the side we want to truncate / pad and the text/pair sorting question_first = self.tokenizer.padding_side == "right" encoded_inputs = self.tokenizer( text=example.question_text if question_first else example.context_text, text_pair=example.context_text if question_first else example.question_text, padding=padding, truncation="only_second" if question_first else "only_first", max_length=max_seq_len, stride=doc_stride, return_token_type_ids=True, return_overflowing_tokens=True, return_offsets_mapping=True, return_special_tokens_mask=True, ) # When the input is too long, it's converted in a batch of inputs with overflowing tokens # and a stride of overlap between the inputs. If a batch of inputs is given, a special output # "overflow_to_sample_mapping" indicate which member of the encoded batch belong to which original batch sample. # Here we tokenize examples one-by-one so we don't need to use "overflow_to_sample_mapping". # "num_span" is the number of output samples generated from the overflowing tokens. num_spans = len(encoded_inputs["input_ids"]) # p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer) # We put 0 on the tokens from the context and 1 everywhere else (question and special tokens) p_mask = [ [tok != 1 if question_first else 0 for tok in encoded_inputs.sequence_ids(span_id)] for span_id in range(num_spans) ] features = [] for span_idx in range(num_spans): input_ids_span_idx = encoded_inputs["input_ids"][span_idx] attention_mask_span_idx = ( encoded_inputs["attention_mask"][span_idx] if "attention_mask" in encoded_inputs else None ) token_type_ids_span_idx = ( encoded_inputs["token_type_ids"][span_idx] if "token_type_ids" in encoded_inputs else None ) # keep the cls_token unmasked (some models use it to indicate unanswerable questions) if self.tokenizer.cls_token_id is not None: cls_indices = np.nonzero(np.array(input_ids_span_idx) == self.tokenizer.cls_token_id)[0] for cls_index in cls_indices: p_mask[span_idx][cls_index] = 0 submask = p_mask[span_idx] features.append( SquadFeatures( input_ids=input_ids_span_idx, attention_mask=attention_mask_span_idx, token_type_ids=token_type_ids_span_idx, p_mask=submask, encoding=encoded_inputs[span_idx], # We don't use the rest of the values - and actually # for Fast tokenizer we could totally avoid using SquadFeatures and SquadExample cls_index=None, token_to_orig_map={}, example_index=0, unique_id=0, paragraph_len=0, token_is_max_context=0, tokens=[], start_position=0, end_position=0, is_impossible=False, qas_id=None, ) ) for i, feature in enumerate(features): fw_args = {} others = {} model_input_names = self.tokenizer.model_input_names + ["p_mask", "token_type_ids"] for k, v in feature.__dict__.items(): if k in model_input_names: if self.framework == "tf": tensor = tf.constant(v) if tensor.dtype == tf.int64: tensor = tf.cast(tensor, tf.int32) fw_args[k] = tf.expand_dims(tensor, 0) elif self.framework == "pt": tensor = torch.tensor(v) if tensor.dtype == torch.int32: tensor = tensor.long() fw_args[k] = tensor.unsqueeze(0) else: others[k] = v is_last = i == len(features) - 1 yield {"example": example, "is_last": is_last, **fw_args, **others} def _forward(self, inputs): example = inputs["example"] model_inputs = {k: inputs[k] for k in self.tokenizer.model_input_names} # `XXXForSequenceClassification` models should not use `use_cache=True` even if it's supported model_forward = self.model.forward if self.framework == "pt" else self.model.call if "use_cache" in inspect.signature(model_forward).parameters.keys(): model_inputs["use_cache"] = False output = self.model(**model_inputs) if isinstance(output, dict): return {"start": output["start_logits"], "end": output["end_logits"], "example": example, **inputs} else: start, end = output[:2] return {"start": start, "end": end, "example": example, **inputs} def postprocess( self, model_outputs, top_k=1, handle_impossible_answer=False, max_answer_len=15, align_to_words=True, ): min_null_score = 1000000 # large and positive answers = [] for output in model_outputs: if self.framework == "pt" and output["start"].dtype == torch.bfloat16: start_ = output["start"].to(torch.float32) end_ = output["end"].to(torch.float32) else: start_ = output["start"] end_ = output["end"] example = output["example"] p_mask = output["p_mask"] attention_mask = ( output["attention_mask"].numpy() if output.get("attention_mask", None) is not None else None ) starts, ends, scores, min_null_score = select_starts_ends( start_, end_, p_mask, attention_mask, min_null_score, top_k, handle_impossible_answer, max_answer_len ) if not self.tokenizer.is_fast: char_to_word = np.array(example.char_to_word_offset) # Convert the answer (tokens) back to the original text # Score: score from the model # Start: Index of the first character of the answer in the context string # End: Index of the character following the last character of the answer in the context string # Answer: Plain text of the answer for s, e, score in zip(starts, ends, scores): token_to_orig_map = output["token_to_orig_map"] answers.append( { "score": score.item(), "start": np.where(char_to_word == token_to_orig_map[s])[0][0].item(), "end": np.where(char_to_word == token_to_orig_map[e])[0][-1].item(), "answer": " ".join(example.doc_tokens[token_to_orig_map[s] : token_to_orig_map[e] + 1]), } ) else: # Convert the answer (tokens) back to the original text # Score: score from the model # Start: Index of the first character of the answer in the context string # End: Index of the character following the last character of the answer in the context string # Answer: Plain text of the answer question_first = bool(self.tokenizer.padding_side == "right") enc = output["encoding"] # Encoding was *not* padded, input_ids *might*. # It doesn't make a difference unless we're padding on # the left hand side, since now we have different offsets # everywhere. if self.tokenizer.padding_side == "left": offset = (output["input_ids"] == self.tokenizer.pad_token_id).numpy().sum() else: offset = 0 # Sometimes the max probability token is in the middle of a word so: # - we start by finding the right word containing the token with `token_to_word` # - then we convert this word in a character span with `word_to_chars` sequence_index = 1 if question_first else 0 for s, e, score in zip(starts, ends, scores): s = s - offset e = e - offset start_index, end_index = self.get_indices(enc, s, e, sequence_index, align_to_words) answers.append( { "score": score.item(), "start": start_index, "end": end_index, "answer": example.context_text[start_index:end_index], } ) if handle_impossible_answer: answers.append({"score": min_null_score, "start": 0, "end": 0, "answer": ""}) answers = sorted(answers, key=lambda x: x["score"], reverse=True)[:top_k] if len(answers) == 1: return answers[0] return answers def get_indices( self, enc: "tokenizers.Encoding", s: int, e: int, sequence_index: int, align_to_words: bool ) -> Tuple[int, int]: if align_to_words: try: start_word = enc.token_to_word(s) end_word = enc.token_to_word(e) start_index = enc.word_to_chars(start_word, sequence_index=sequence_index)[0] end_index = enc.word_to_chars(end_word, sequence_index=sequence_index)[1] except Exception: # Some tokenizers don't really handle words. Keep to offsets then. start_index = enc.offsets[s][0] end_index = enc.offsets[e][1] else: start_index = enc.offsets[s][0] end_index = enc.offsets[e][1] return start_index, end_index def span_to_answer(self, text: str, start: int, end: int) -> Dict[str, Union[str, int]]: """ When decoding from token probabilities, this method maps token indexes to actual word in the initial context. Args: text (`str`): The actual context to extract the answer from. start (`int`): The answer starting token index. end (`int`): The answer end token index. Returns: Dictionary like `{'answer': str, 'start': int, 'end': int}` """ words = [] token_idx = char_start_idx = char_end_idx = chars_idx = 0 for i, word in enumerate(text.split(" ")): token = self.tokenizer.tokenize(word) # Append words if they are in the span if start <= token_idx <= end: if token_idx == start: char_start_idx = chars_idx if token_idx == end: char_end_idx = chars_idx + len(word) words += [word] # Stop if we went over the end of the answer if token_idx > end: break # Append the subtokenization length to the running index token_idx += len(token) chars_idx += len(word) + 1 # Join text with spaces return { "answer": " ".join(words), "start": max(0, char_start_idx), "end": min(len(text), char_end_idx), } ```
========================================================================================================================================== SOURCE CODE FILE: table_question_answering.py LINES: 1 SIZE: 19.88 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\table_question_answering.py ENCODING: utf-8 ```py import collections import types import numpy as np from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, requires_backends, ) from .base import ArgumentHandler, Dataset, Pipeline, PipelineException, build_pipeline_init_args if is_torch_available(): import torch from ..models.auto.modeling_auto import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES, ) if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import ( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES, ) class TableQuestionAnsweringArgumentHandler(ArgumentHandler): """ Handles arguments for the TableQuestionAnsweringPipeline """ def __call__(self, table=None, query=None, **kwargs): # Returns tqa_pipeline_inputs of shape: # [ # {"table": pd.DataFrame, "query": List[str]}, # ..., # {"table": pd.DataFrame, "query" : List[str]} # ] requires_backends(self, "pandas") import pandas as pd if table is None: raise ValueError("Keyword argument `table` cannot be None.") elif query is None: if isinstance(table, dict) and table.get("query") is not None and table.get("table") is not None: tqa_pipeline_inputs = [table] elif isinstance(table, list) and len(table) > 0: if not all(isinstance(d, dict) for d in table): raise ValueError( f"Keyword argument `table` should be a list of dict, but is {(type(d) for d in table)}" ) if table[0].get("query") is not None and table[0].get("table") is not None: tqa_pipeline_inputs = table else: raise ValueError( "If keyword argument `table` is a list of dictionaries, each dictionary should have a `table`" f" and `query` key, but only dictionary has keys {table[0].keys()} `table` and `query` keys." ) elif Dataset is not None and isinstance(table, Dataset) or isinstance(table, types.GeneratorType): return table else: raise ValueError( "Invalid input. Keyword argument `table` should be either of type `dict` or `list`, but " f"is {type(table)})" ) else: tqa_pipeline_inputs = [{"table": table, "query": query}] for tqa_pipeline_input in tqa_pipeline_inputs: if not isinstance(tqa_pipeline_input["table"], pd.DataFrame): if tqa_pipeline_input["table"] is None: raise ValueError("Table cannot be None.") tqa_pipeline_input["table"] = pd.DataFrame(tqa_pipeline_input["table"]) return tqa_pipeline_inputs @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True)) class TableQuestionAnsweringPipeline(Pipeline): """ Table Question Answering pipeline using a `ModelForTableQuestionAnswering`. This pipeline is only available in PyTorch. Example: ```python >>> from transformers import pipeline >>> oracle = pipeline(model="google/tapas-base-finetuned-wtq") >>> table = { ... "Repository": ["Transformers", "Datasets", "Tokenizers"], ... "Stars": ["36542", "4512", "3934"], ... "Contributors": ["651", "77", "34"], ... "Programming language": ["Python", "Python", "Rust, Python and NodeJS"], ... } >>> oracle(query="How many stars does the transformers repository have?", table=table) {'answer': 'AVERAGE > 36542', 'coordinates': [(0, 1)], 'cells': ['36542'], 'aggregator': 'AVERAGE'} ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This tabular question answering pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"table-question-answering"`. The models that this pipeline can use are models that have been fine-tuned on a tabular question answering task. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=table-question-answering). """ default_input_names = "table,query" def __init__(self, args_parser=TableQuestionAnsweringArgumentHandler(), *args, **kwargs): super().__init__(*args, **kwargs) self._args_parser = args_parser if self.framework == "tf": mapping = TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES.copy() mapping.update(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES) else: mapping = MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES.copy() mapping.update(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES) self.check_model_type(mapping) self.aggregate = bool(getattr(self.model.config, "aggregation_labels", None)) and bool( getattr(self.model.config, "num_aggregation_labels", None) ) self.type = "tapas" if hasattr(self.model.config, "aggregation_labels") else None def batch_inference(self, **inputs): return self.model(**inputs) def sequential_inference(self, **inputs): """ Inference used for models that need to process sequences in a sequential fashion, like the SQA models which handle conversational query related to a table. """ if self.framework == "pt": all_logits = [] all_aggregations = [] prev_answers = None batch_size = inputs["input_ids"].shape[0] input_ids = inputs["input_ids"].to(self.device) attention_mask = inputs["attention_mask"].to(self.device) token_type_ids = inputs["token_type_ids"].to(self.device) token_type_ids_example = None for index in range(batch_size): # If sequences have already been processed, the token type IDs will be created according to the previous # answer. if prev_answers is not None: prev_labels_example = token_type_ids_example[:, 3] # shape (seq_len,) model_labels = np.zeros_like(prev_labels_example.cpu().numpy()) # shape (seq_len,) token_type_ids_example = token_type_ids[index] # shape (seq_len, 7) for i in range(model_labels.shape[0]): segment_id = token_type_ids_example[:, 0].tolist()[i] col_id = token_type_ids_example[:, 1].tolist()[i] - 1 row_id = token_type_ids_example[:, 2].tolist()[i] - 1 if row_id >= 0 and col_id >= 0 and segment_id == 1: model_labels[i] = int(prev_answers[(col_id, row_id)]) token_type_ids_example[:, 3] = torch.from_numpy(model_labels).type(torch.long).to(self.device) input_ids_example = input_ids[index] attention_mask_example = attention_mask[index] # shape (seq_len,) token_type_ids_example = token_type_ids[index] # shape (seq_len, 7) outputs = self.model( input_ids=input_ids_example.unsqueeze(0), attention_mask=attention_mask_example.unsqueeze(0), token_type_ids=token_type_ids_example.unsqueeze(0), ) logits = outputs.logits if self.aggregate: all_aggregations.append(outputs.logits_aggregation) all_logits.append(logits) dist_per_token = torch.distributions.Bernoulli(logits=logits) probabilities = dist_per_token.probs * attention_mask_example.type(torch.float32).to( dist_per_token.probs.device ) coords_to_probs = collections.defaultdict(list) for i, p in enumerate(probabilities.squeeze().tolist()): segment_id = token_type_ids_example[:, 0].tolist()[i] col = token_type_ids_example[:, 1].tolist()[i] - 1 row = token_type_ids_example[:, 2].tolist()[i] - 1 if col >= 0 and row >= 0 and segment_id == 1: coords_to_probs[(col, row)].append(p) prev_answers = {key: np.array(coords_to_probs[key]).mean() > 0.5 for key in coords_to_probs} logits_batch = torch.cat(tuple(all_logits), 0) return (logits_batch,) if not self.aggregate else (logits_batch, torch.cat(tuple(all_aggregations), 0)) else: all_logits = [] all_aggregations = [] prev_answers = None batch_size = inputs["input_ids"].shape[0] input_ids = inputs["input_ids"] attention_mask = inputs["attention_mask"] token_type_ids = inputs["token_type_ids"].numpy() token_type_ids_example = None for index in range(batch_size): # If sequences have already been processed, the token type IDs will be created according to the previous # answer. if prev_answers is not None: prev_labels_example = token_type_ids_example[:, 3] # shape (seq_len,) model_labels = np.zeros_like(prev_labels_example, dtype=np.int32) # shape (seq_len,) token_type_ids_example = token_type_ids[index] # shape (seq_len, 7) for i in range(model_labels.shape[0]): segment_id = token_type_ids_example[:, 0].tolist()[i] col_id = token_type_ids_example[:, 1].tolist()[i] - 1 row_id = token_type_ids_example[:, 2].tolist()[i] - 1 if row_id >= 0 and col_id >= 0 and segment_id == 1: model_labels[i] = int(prev_answers[(col_id, row_id)]) token_type_ids_example[:, 3] = model_labels input_ids_example = input_ids[index] attention_mask_example = attention_mask[index] # shape (seq_len,) token_type_ids_example = token_type_ids[index] # shape (seq_len, 7) outputs = self.model( input_ids=np.expand_dims(input_ids_example, axis=0), attention_mask=np.expand_dims(attention_mask_example, axis=0), token_type_ids=np.expand_dims(token_type_ids_example, axis=0), ) logits = outputs.logits if self.aggregate: all_aggregations.append(outputs.logits_aggregation) all_logits.append(logits) probabilities = tf.math.sigmoid(tf.cast(logits, tf.float32)) * tf.cast( attention_mask_example, tf.float32 ) coords_to_probs = collections.defaultdict(list) token_type_ids_example = token_type_ids_example for i, p in enumerate(tf.squeeze(probabilities).numpy().tolist()): segment_id = token_type_ids_example[:, 0].tolist()[i] col = token_type_ids_example[:, 1].tolist()[i] - 1 row = token_type_ids_example[:, 2].tolist()[i] - 1 if col >= 0 and row >= 0 and segment_id == 1: coords_to_probs[(col, row)].append(p) prev_answers = {key: np.array(coords_to_probs[key]).mean() > 0.5 for key in coords_to_probs} logits_batch = tf.concat(tuple(all_logits), 0) return (logits_batch,) if not self.aggregate else (logits_batch, tf.concat(tuple(all_aggregations), 0)) def __call__(self, *args, **kwargs): r""" Answers queries according to a table. The pipeline accepts several types of inputs which are detailed below: - `pipeline(table, query)` - `pipeline(table, [query])` - `pipeline(table=table, query=query)` - `pipeline(table=table, query=[query])` - `pipeline({"table": table, "query": query})` - `pipeline({"table": table, "query": [query]})` - `pipeline([{"table": table, "query": query}, {"table": table, "query": query}])` The `table` argument should be a dict or a DataFrame built from that dict, containing the whole table: Example: ```python data = { "actors": ["brad pitt", "leonardo di caprio", "george clooney"], "age": ["56", "45", "59"], "number of movies": ["87", "53", "69"], "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"], } ``` This dictionary can be passed in as such, or can be converted to a pandas DataFrame: Example: ```python import pandas as pd table = pd.DataFrame.from_dict(data) ``` Args: table (`pd.DataFrame` or `Dict`): Pandas DataFrame or dictionary that will be converted to a DataFrame containing all the table values. See above for an example of dictionary. query (`str` or `List[str]`): Query or list of queries that will be sent to the model alongside the table. sequential (`bool`, *optional*, defaults to `False`): Whether to do inference sequentially or as a batch. Batching is faster, but models like SQA require the inference to be done sequentially to extract relations within sequences, given their conversational nature. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`TapasTruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate row by row, removing rows from the table. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). Return: A dictionary or a list of dictionaries containing results: Each result is a dictionary with the following keys: - **answer** (`str`) -- The answer of the query given the table. If there is an aggregator, the answer will be preceded by `AGGREGATOR >`. - **coordinates** (`List[Tuple[int, int]]`) -- Coordinates of the cells of the answers. - **cells** (`List[str]`) -- List of strings made up of the answer cell values. - **aggregator** (`str`) -- If the model has an aggregator, this returns the aggregator. """ pipeline_inputs = self._args_parser(*args, **kwargs) results = super().__call__(pipeline_inputs, **kwargs) if len(results) == 1: return results[0] return results def _sanitize_parameters(self, sequential=None, padding=None, truncation=None, **kwargs): preprocess_params = {} if padding is not None: preprocess_params["padding"] = padding if truncation is not None: preprocess_params["truncation"] = truncation forward_params = {} if sequential is not None: forward_params["sequential"] = sequential if self.assistant_model is not None: forward_params["assistant_model"] = self.assistant_model if self.assistant_tokenizer is not None: forward_params["tokenizer"] = self.tokenizer forward_params["assistant_tokenizer"] = self.assistant_tokenizer return preprocess_params, forward_params, {} def preprocess(self, pipeline_input, sequential=None, padding=True, truncation=None): if truncation is None: if self.type == "tapas": truncation = "drop_rows_to_fit" else: truncation = "do_not_truncate" table, query = pipeline_input["table"], pipeline_input["query"] if table.empty: raise ValueError("table is empty") if query is None or query == "": raise ValueError("query is empty") inputs = self.tokenizer(table, query, return_tensors=self.framework, truncation=truncation, padding=padding) inputs["table"] = table return inputs def _forward(self, model_inputs, sequential=False, **generate_kwargs): table = model_inputs.pop("table") if self.type == "tapas": if sequential: outputs = self.sequential_inference(**model_inputs) else: outputs = self.batch_inference(**model_inputs) else: # User-defined `generation_config` passed to the pipeline call take precedence if "generation_config" not in generate_kwargs: generate_kwargs["generation_config"] = self.generation_config outputs = self.model.generate(**model_inputs, **generate_kwargs) model_outputs = {"model_inputs": model_inputs, "table": table, "outputs": outputs} return model_outputs def postprocess(self, model_outputs): inputs = model_outputs["model_inputs"] table = model_outputs["table"] outputs = model_outputs["outputs"] if self.type == "tapas": if self.aggregate: logits, logits_agg = outputs[:2] predictions = self.tokenizer.convert_logits_to_predictions(inputs, logits, logits_agg) answer_coordinates_batch, agg_predictions = predictions aggregators = {i: self.model.config.aggregation_labels[pred] for i, pred in enumerate(agg_predictions)} no_agg_label_index = self.model.config.no_aggregation_label_index aggregators_prefix = { i: aggregators[i] + " > " for i, pred in enumerate(agg_predictions) if pred != no_agg_label_index } else: logits = outputs[0] predictions = self.tokenizer.convert_logits_to_predictions(inputs, logits) answer_coordinates_batch = predictions[0] aggregators = {} aggregators_prefix = {} answers = [] for index, coordinates in enumerate(answer_coordinates_batch): cells = [table.iat[coordinate] for coordinate in coordinates] aggregator = aggregators.get(index, "") aggregator_prefix = aggregators_prefix.get(index, "") answer = { "answer": aggregator_prefix + ", ".join(cells), "coordinates": coordinates, "cells": [table.iat[coordinate] for coordinate in coordinates], } if aggregator: answer["aggregator"] = aggregator answers.append(answer) if len(answer) == 0: raise PipelineException("Empty answer") else: answers = [{"answer": answer} for answer in self.tokenizer.batch_decode(outputs, skip_special_tokens=True)] return answers if len(answers) > 1 else answers[0] ```
====================================================================================================================================== SOURCE CODE FILE: text2text_generation.py LINES: 1 SIZE: 17.29 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\text2text_generation.py ENCODING: utf-8 ```py import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import Pipeline, build_pipeline_init_args if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES logger = logging.get_logger(__name__) class ReturnType(enum.Enum): TENSORS = 0 TEXT = 1 @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True)) class Text2TextGenerationPipeline(Pipeline): """ Pipeline for text to text generation using seq2seq models. Example: ```python >>> from transformers import pipeline >>> generator = pipeline(model="mrm8488/t5-base-finetuned-question-generation-ap") >>> generator( ... "answer: Manuel context: Manuel has created RuPERTa-base with the support of HF-Transformers and Google" ... ) [{'generated_text': 'question: Who created the RuPERTa-base?'}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial). You can pass text generation parameters to this pipeline to control stopping criteria, decoding strategy, and more. Learn more about text generation parameters in [Text generation strategies](../generation_strategies) and [Text generation](text_generation). This Text2TextGenerationPipeline pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"text2text-generation"`. The models that this pipeline can use are models that have been fine-tuned on a translation task. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=text2text-generation). For a list of available parameters, see the [following documentation](https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.generation.GenerationMixin.generate) Usage: ```python text2text_generator = pipeline("text2text-generation") text2text_generator("question: What is 42 ? context: 42 is the answer to life, the universe and everything") ```""" # Used in the return key of the pipeline. return_name = "generated" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) def _sanitize_parameters( self, return_tensors=None, return_text=None, return_type=None, clean_up_tokenization_spaces=None, truncation=None, stop_sequence=None, **generate_kwargs, ): preprocess_params = {} if truncation is not None: preprocess_params["truncation"] = truncation forward_params = generate_kwargs postprocess_params = {} if return_tensors is not None and return_type is None: return_type = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: postprocess_params["return_type"] = return_type if clean_up_tokenization_spaces is not None: postprocess_params["clean_up_tokenization_spaces"] = clean_up_tokenization_spaces if stop_sequence is not None: stop_sequence_ids = self.tokenizer.encode(stop_sequence, add_special_tokens=False) if len(stop_sequence_ids) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) generate_kwargs["eos_token_id"] = stop_sequence_ids[0] if self.assistant_model is not None: forward_params["assistant_model"] = self.assistant_model if self.assistant_tokenizer is not None: forward_params["tokenizer"] = self.tokenizer forward_params["assistant_tokenizer"] = self.assistant_tokenizer return preprocess_params, forward_params, postprocess_params def check_inputs(self, input_length: int, min_length: int, max_length: int): """ Checks whether there might be something wrong with given input with regard to the model. """ return True def _parse_and_tokenize(self, *args, truncation): prefix = self.prefix if self.prefix is not None else "" if isinstance(args[0], list): if self.tokenizer.pad_token_id is None: raise ValueError("Please make sure that the tokenizer has a pad_token_id when using a batch input") args = ([prefix + arg for arg in args[0]],) padding = True elif isinstance(args[0], str): args = (prefix + args[0],) padding = False else: raise ValueError( f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`" ) inputs = self.tokenizer(*args, padding=padding, truncation=truncation, return_tensors=self.framework) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__(self, *args, **kwargs): r""" Generate the output text(s) using text(s) given as inputs. Args: args (`str` or `List[str]`): Input text for the encoder. return_tensors (`bool`, *optional*, defaults to `False`): Whether or not to include the tensors of predictions (as token indices) in the outputs. return_text (`bool`, *optional*, defaults to `True`): Whether or not to include the decoded texts in the outputs. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): Whether or not to clean up the potential extra spaces in the text output. truncation (`TruncationStrategy`, *optional*, defaults to `TruncationStrategy.DO_NOT_TRUNCATE`): The truncation strategy for the tokenization within the pipeline. `TruncationStrategy.DO_NOT_TRUNCATE` (default) will never truncate, but it is sometimes desirable to truncate the input to fit the model's max_length instead of throwing an error down the line. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework [here](./text_generation)). Return: A list or a list of list of `dict`: Each result comes as a dictionary with the following keys: - **generated_text** (`str`, present when `return_text=True`) -- The generated text. - **generated_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token ids of the generated text. """ result = super().__call__(*args, **kwargs) if ( isinstance(args[0], list) and all(isinstance(el, str) for el in args[0]) and all(len(res) == 1 for res in result) ): return [res[0] for res in result] return result def preprocess(self, inputs, truncation=TruncationStrategy.DO_NOT_TRUNCATE, **kwargs): inputs = self._parse_and_tokenize(inputs, truncation=truncation, **kwargs) return inputs def _forward(self, model_inputs, **generate_kwargs): if self.framework == "pt": in_b, input_length = model_inputs["input_ids"].shape elif self.framework == "tf": in_b, input_length = tf.shape(model_inputs["input_ids"]).numpy() self.check_inputs( input_length, generate_kwargs.get("min_length", self.generation_config.min_length), generate_kwargs.get("max_length", self.generation_config.max_length), ) # User-defined `generation_config` passed to the pipeline call take precedence if "generation_config" not in generate_kwargs: generate_kwargs["generation_config"] = self.generation_config output_ids = self.model.generate(**model_inputs, **generate_kwargs) out_b = output_ids.shape[0] if self.framework == "pt": output_ids = output_ids.reshape(in_b, out_b // in_b, *output_ids.shape[1:]) elif self.framework == "tf": output_ids = tf.reshape(output_ids, (in_b, out_b // in_b, *output_ids.shape[1:])) return {"output_ids": output_ids} def postprocess(self, model_outputs, return_type=ReturnType.TEXT, clean_up_tokenization_spaces=False): records = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: record = {f"{self.return_name}_token_ids": output_ids} elif return_type == ReturnType.TEXT: record = { f"{self.return_name}_text": self.tokenizer.decode( output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) } records.append(record) return records @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True)) class SummarizationPipeline(Text2TextGenerationPipeline): """ Summarize news articles and other documents. This summarizing pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"summarization"`. The models that this pipeline can use are models that have been fine-tuned on a summarization task, which is currently, '*bart-large-cnn*', '*google-t5/t5-small*', '*google-t5/t5-base*', '*google-t5/t5-large*', '*google-t5/t5-3b*', '*google-t5/t5-11b*'. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=summarization). For a list of available parameters, see the [following documentation](https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.generation.GenerationMixin.generate) Usage: ```python # use bart in pytorch summarizer = pipeline("summarization") summarizer("An apple a day, keeps the doctor away", min_length=5, max_length=20) # use t5 in tf summarizer = pipeline("summarization", model="google-t5/t5-base", tokenizer="google-t5/t5-base", framework="tf") summarizer("An apple a day, keeps the doctor away", min_length=5, max_length=20) ```""" # Used in the return key of the pipeline. return_name = "summary" def __call__(self, *args, **kwargs): r""" Summarize the text(s) given as inputs. Args: documents (*str* or `List[str]`): One or several articles (or one list of articles) to summarize. return_text (`bool`, *optional*, defaults to `True`): Whether or not to include the decoded texts in the outputs return_tensors (`bool`, *optional*, defaults to `False`): Whether or not to include the tensors of predictions (as token indices) in the outputs. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): Whether or not to clean up the potential extra spaces in the text output. generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework [here](./text_generation)). Return: A list or a list of list of `dict`: Each result comes as a dictionary with the following keys: - **summary_text** (`str`, present when `return_text=True`) -- The summary of the corresponding input. - **summary_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token ids of the summary. """ return super().__call__(*args, **kwargs) def check_inputs(self, input_length: int, min_length: int, max_length: int) -> bool: """ Checks whether there might be something wrong with given input with regard to the model. """ if max_length < min_length: logger.warning(f"Your min_length={min_length} must be inferior than your max_length={max_length}.") if input_length < max_length: logger.warning( f"Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is " "a summarization task, where outputs shorter than the input are typically wanted, you might " f"consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length // 2})" ) @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True)) class TranslationPipeline(Text2TextGenerationPipeline): """ Translates from one language to another. This translation pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"translation_xx_to_yy"`. The models that this pipeline can use are models that have been fine-tuned on a translation task. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=translation). For a list of available parameters, see the [following documentation](https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.generation.GenerationMixin.generate) Usage: ```python en_fr_translator = pipeline("translation_en_to_fr") en_fr_translator("How old are you?") ```""" # Used in the return key of the pipeline. return_name = "translation" def check_inputs(self, input_length: int, min_length: int, max_length: int): if input_length > 0.9 * max_length: logger.warning( f"Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider " "increasing your max_length manually, e.g. translator('...', max_length=400)" ) return True def preprocess(self, *args, truncation=TruncationStrategy.DO_NOT_TRUNCATE, src_lang=None, tgt_lang=None): if getattr(self.tokenizer, "_build_translation_inputs", None): return self.tokenizer._build_translation_inputs( *args, return_tensors=self.framework, truncation=truncation, src_lang=src_lang, tgt_lang=tgt_lang ) else: return super()._parse_and_tokenize(*args, truncation=truncation) def _sanitize_parameters(self, src_lang=None, tgt_lang=None, **kwargs): preprocess_params, forward_params, postprocess_params = super()._sanitize_parameters(**kwargs) if src_lang is not None: preprocess_params["src_lang"] = src_lang if tgt_lang is not None: preprocess_params["tgt_lang"] = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. task = kwargs.get("task", self.task) items = task.split("_") if task and len(items) == 4: # translation, XX, to YY preprocess_params["src_lang"] = items[1] preprocess_params["tgt_lang"] = items[3] return preprocess_params, forward_params, postprocess_params def __call__(self, *args, **kwargs): r""" Translate the text(s) given as inputs. Args: args (`str` or `List[str]`): Texts to be translated. return_tensors (`bool`, *optional*, defaults to `False`): Whether or not to include the tensors of predictions (as token indices) in the outputs. return_text (`bool`, *optional*, defaults to `True`): Whether or not to include the decoded texts in the outputs. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): Whether or not to clean up the potential extra spaces in the text output. src_lang (`str`, *optional*): The language of the input. Might be required for multilingual models. Will not have any effect for single pair translation models tgt_lang (`str`, *optional*): The language of the desired output. Might be required for multilingual models. Will not have any effect for single pair translation models generate_kwargs: Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework [here](./text_generation)). Return: A list or a list of list of `dict`: Each result comes as a dictionary with the following keys: - **translation_text** (`str`, present when `return_text=True`) -- The translation. - **translation_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token ids of the translation. """ return super().__call__(*args, **kwargs) ```
===================================================================================================================================== SOURCE CODE FILE: text_classification.py LINES: 1 SIZE: 10.79 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\text_classification.py ENCODING: utf-8 ```py import inspect import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import GenericTensor, Pipeline, build_pipeline_init_args if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES def sigmoid(_outputs): return 1.0 / (1.0 + np.exp(-_outputs)) def softmax(_outputs): maxes = np.max(_outputs, axis=-1, keepdims=True) shifted_exp = np.exp(_outputs - maxes) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True) class ClassificationFunction(ExplicitEnum): SIGMOID = "sigmoid" SOFTMAX = "softmax" NONE = "none" @add_end_docstrings( build_pipeline_init_args(has_tokenizer=True), r""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. In case of regression tasks, will not apply any function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output.""", ) class TextClassificationPipeline(Pipeline): """ Text classification pipeline using any `ModelForSequenceClassification`. See the [sequence classification examples](../task_summary#sequence-classification) for more information. Example: ```python >>> from transformers import pipeline >>> classifier = pipeline(model="distilbert/distilbert-base-uncased-finetuned-sst-2-english") >>> classifier("This movie is disgustingly good !") [{'label': 'POSITIVE', 'score': 1.0}] >>> classifier("Director tried too much.") [{'label': 'NEGATIVE', 'score': 0.996}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This text classification pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"sentiment-analysis"` (for classifying sequences according to positive or negative sentiments). If multiple classification labels are available (`model.config.num_labels >= 2`), the pipeline will run a softmax over the results. If there is a single label, the pipeline will run a sigmoid over the result. In case of regression tasks (`model.config.problem_type == "regression"`), will not apply any function on the output. The models that this pipeline can use are models that have been fine-tuned on a sequence classification task. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=text-classification). """ return_all_scores = False function_to_apply = ClassificationFunction.NONE def __init__(self, **kwargs): super().__init__(**kwargs) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) def _sanitize_parameters(self, return_all_scores=None, function_to_apply=None, top_k="", **tokenizer_kwargs): # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" preprocess_params = tokenizer_kwargs postprocess_params = {} if hasattr(self.model.config, "return_all_scores") and return_all_scores is None: return_all_scores = self.model.config.return_all_scores if isinstance(top_k, int) or top_k is None: postprocess_params["top_k"] = top_k postprocess_params["_legacy"] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.", UserWarning, ) if return_all_scores: postprocess_params["top_k"] = None else: postprocess_params["top_k"] = 1 if isinstance(function_to_apply, str): function_to_apply = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: postprocess_params["function_to_apply"] = function_to_apply return preprocess_params, {}, postprocess_params def __call__(self, inputs, **kwargs): """ Classify the text(s) given as inputs. Args: inputs (`str` or `List[str]` or `Dict[str]`, or `List[Dict[str]]`): One or several texts to classify. In order to use text pairs for your classification, you can send a dictionary containing `{"text", "text_pair"}` keys, or a list of those. top_k (`int`, *optional*, defaults to `1`): How many results to return. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: If this argument is not specified, then it will apply the following functions according to the number of labels: - If problem type is regression, will not apply any function on the output. - If the model has a single label, will apply the sigmoid function on the output. - If the model has several labels, will apply the softmax function on the output. Possible values are: - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. Return: A list or a list of list of `dict`: Each result comes as list of dictionaries with the following keys: - **label** (`str`) -- The label predicted. - **score** (`float`) -- The corresponding probability. If `top_k` is used, one such dictionary is returned per label. """ inputs = (inputs,) result = super().__call__(*inputs, **kwargs) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _legacy = "top_k" not in kwargs if isinstance(inputs[0], str) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def preprocess(self, inputs, **tokenizer_kwargs) -> Dict[str, GenericTensor]: return_tensors = self.framework if isinstance(inputs, dict): return self.tokenizer(**inputs, return_tensors=return_tensors, **tokenizer_kwargs) elif isinstance(inputs, list) and len(inputs) == 1 and isinstance(inputs[0], list) and len(inputs[0]) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0], text_pair=inputs[0][1], return_tensors=return_tensors, **tokenizer_kwargs ) elif isinstance(inputs, list): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(inputs, return_tensors=return_tensors, **tokenizer_kwargs) def _forward(self, model_inputs): # `XXXForSequenceClassification` models should not use `use_cache=True` even if it's supported model_forward = self.model.forward if self.framework == "pt" else self.model.call if "use_cache" in inspect.signature(model_forward).parameters.keys(): model_inputs["use_cache"] = False return self.model(**model_inputs) def postprocess(self, model_outputs, function_to_apply=None, top_k=1, _legacy=True): # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "regression": function_to_apply = ClassificationFunction.NONE elif self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: function_to_apply = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: function_to_apply = ClassificationFunction.SOFTMAX elif hasattr(self.model.config, "function_to_apply") and function_to_apply is None: function_to_apply = self.model.config.function_to_apply else: function_to_apply = ClassificationFunction.NONE outputs = model_outputs["logits"][0] if self.framework == "pt": # To enable using fp16 and bf16 outputs = outputs.float().numpy() else: outputs = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: scores = sigmoid(outputs) elif function_to_apply == ClassificationFunction.SOFTMAX: scores = softmax(outputs) elif function_to_apply == ClassificationFunction.NONE: scores = outputs else: raise ValueError(f"Unrecognized `function_to_apply` argument: {function_to_apply}") if top_k == 1 and _legacy: return {"label": self.model.config.id2label[scores.argmax().item()], "score": scores.max().item()} dict_scores = [ {"label": self.model.config.id2label[i], "score": score.item()} for i, score in enumerate(scores) ] if not _legacy: dict_scores.sort(key=lambda x: x["score"], reverse=True) if top_k is not None: dict_scores = dict_scores[:top_k] return dict_scores ```
================================================================================================================================= SOURCE CODE FILE: text_generation.py LINES: 1 SIZE: 24.47 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\text_generation.py ENCODING: utf-8 ```py import enum import itertools import types from typing import Dict from ..utils import ModelOutput, add_end_docstrings, is_tf_available, is_torch_available from .base import Pipeline, build_pipeline_init_args if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from .pt_utils import KeyDataset if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES class ReturnType(enum.Enum): TENSORS = 0 NEW_TEXT = 1 FULL_TEXT = 2 class Chat: """This class is intended to just be used internally in this pipeline and not exposed to users. We convert chats to this format because the rest of the pipeline code tends to assume that lists of messages are actually a batch of samples rather than messages in the same conversation.""" def __init__(self, messages: Dict): for message in messages: if not ("role" in message and "content" in message): raise ValueError("When passing chat dicts as input, each dict must have a 'role' and 'content' key.") self.messages = messages @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True)) class TextGenerationPipeline(Pipeline): """ Language generation pipeline using any `ModelWithLMHead`. This pipeline predicts the words that will follow a specified text prompt. When the underlying model is a conversational model, it can also accept one or more chats, in which case the pipeline will operate in chat mode and will continue the chat(s) by adding its response(s). Each chat takes the form of a list of dicts, where each dict contains "role" and "content" keys. Examples: ```python >>> from transformers import pipeline >>> generator = pipeline(model="openai-community/gpt2") >>> generator("I can't believe you did such a ", do_sample=False) [{'generated_text': "I can't believe you did such a icky thing to me. I'm so sorry. I'm so sorry. I'm so sorry. I'm so sorry. I'm so sorry. I'm so sorry. I'm so sorry. I"}] >>> # These parameters will return suggestions, and only the newly created text making it easier for prompting suggestions. >>> outputs = generator("My tart needs some", num_return_sequences=4, return_full_text=False) ``` ```python >>> from transformers import pipeline >>> generator = pipeline(model="HuggingFaceH4/zephyr-7b-beta") >>> # Zephyr-beta is a conversational model, so let's pass it a chat instead of a single string >>> generator([{"role": "user", "content": "What is the capital of France? Answer in one word."}], do_sample=False, max_new_tokens=2) [{'generated_text': [{'role': 'user', 'content': 'What is the capital of France? Answer in one word.'}, {'role': 'assistant', 'content': 'Paris'}]}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial). You can pass text generation parameters to this pipeline to control stopping criteria, decoding strategy, and more. Learn more about text generation parameters in [Text generation strategies](../generation_strategies) and [Text generation](text_generation). This language generation pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"text-generation"`. The models that this pipeline can use are models that have been trained with an autoregressive language modeling objective. See the list of available [text completion models](https://huggingface.co/models?filter=text-generation) and the list of [conversational models](https://huggingface.co/models?other=conversational) on [huggingface.co/models]. """ # Prefix text to help Transformer-XL and XLNet with short prompts as proposed by Aman Rusia # in https://github.com/rusiaaman/XLNet-gen#methodology # and https://medium.com/@amanrusia/xlnet-speaks-comparison-to-gpt-2-ea1a4e9ba39e XL_PREFIX = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING_NAMES ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. prefix = None if self.prefix is not None: prefix = self.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. prefix = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. preprocess_params, forward_params, _ = self._sanitize_parameters(prefix=prefix, **self._forward_params) self._preprocess_params = {**self._preprocess_params, **preprocess_params} self._forward_params = {**self._forward_params, **forward_params} def _sanitize_parameters( self, return_full_text=None, return_tensors=None, return_text=None, return_type=None, clean_up_tokenization_spaces=None, prefix=None, handle_long_generation=None, stop_sequence=None, truncation=None, max_length=None, continue_final_message=None, **generate_kwargs, ): preprocess_params = {} add_special_tokens = False if "add_special_tokens" in generate_kwargs: add_special_tokens = preprocess_params["add_special_tokens"] = generate_kwargs.pop("add_special_tokens") if "padding" in generate_kwargs: preprocess_params["padding"] = generate_kwargs.pop("padding") if truncation is not None: preprocess_params["truncation"] = truncation if max_length is not None: preprocess_params["max_length"] = max_length generate_kwargs["max_length"] = max_length if prefix is not None: preprocess_params["prefix"] = prefix if prefix: prefix_inputs = self.tokenizer( prefix, padding=False, add_special_tokens=add_special_tokens, return_tensors=self.framework ) generate_kwargs["prefix_length"] = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" " [None, 'hole']" ) preprocess_params["handle_long_generation"] = handle_long_generation if continue_final_message is not None: preprocess_params["continue_final_message"] = continue_final_message preprocess_params.update(generate_kwargs) forward_params = generate_kwargs postprocess_params = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`") if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`") return_type = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`") return_type = ReturnType.TENSORS if return_type is not None: postprocess_params["return_type"] = return_type if clean_up_tokenization_spaces is not None: postprocess_params["clean_up_tokenization_spaces"] = clean_up_tokenization_spaces if continue_final_message is not None: postprocess_params["continue_final_message"] = continue_final_message if stop_sequence is not None: stop_sequence_ids = self.tokenizer.encode(stop_sequence, add_special_tokens=False) generate_kwargs["eos_token_id"] = stop_sequence_ids if self.assistant_model is not None: forward_params["assistant_model"] = self.assistant_model if self.assistant_tokenizer is not None: forward_params["tokenizer"] = self.tokenizer forward_params["assistant_tokenizer"] = self.assistant_tokenizer return preprocess_params, forward_params, postprocess_params # overriding _parse_and_tokenize to allow for unusual language-modeling tokenizer arguments def _parse_and_tokenize(self, *args, **kwargs): """ Parse arguments and tokenize """ # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True}) return super()._parse_and_tokenize(*args, **kwargs) def __call__(self, text_inputs, **kwargs): """ Complete the prompt(s) given as inputs. Args: text_inputs (`str`, `List[str]`, List[Dict[str, str]], or `List[List[Dict[str, str]]]`): One or several prompts (or one list of prompts) to complete. If strings or a list of string are passed, this pipeline will continue each prompt. Alternatively, a "chat", in the form of a list of dicts with "role" and "content" keys, can be passed, or a list of such chats. When chats are passed, the model's chat template will be used to format them before passing them to the model. return_tensors (`bool`, *optional*, defaults to `False`): Returns the tensors of predictions (as token indices) in the outputs. If set to `True`, the decoded text is not returned. return_text (`bool`, *optional*): Returns the decoded texts in the outputs. return_full_text (`bool`, *optional*, defaults to `True`): If set to `False` only added text is returned, otherwise the full text is returned. Cannot be specified at the same time as `return_text`. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`): Whether or not to clean up the potential extra spaces in the text output. continue_final_message( `bool`, *optional*): This indicates that you want the model to continue the last message in the input chat rather than starting a new one, allowing you to "prefill" its response. By default this is `True` when the final message in the input chat has the `assistant` role and `False` otherwise, but you can manually override that behaviour by setting this flag. prefix (`str`, *optional*): Prefix added to prompt. handle_long_generation (`str`, *optional*): By default, this pipelines does not handle long generation (ones that exceed in one form or the other the model maximum length). There is no perfect way to address this (more info :https://github.com/huggingface/transformers/issues/14033#issuecomment-948385227). This provides common strategies to work around that problem depending on your use case. - `None` : default strategy where nothing in particular happens - `"hole"`: Truncates left of input, and leaves a gap wide enough to let generation happen (might truncate a lot of the prompt and not suitable when generation exceed the model capacity) generate_kwargs (`dict`, *optional*): Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework [here](./text_generation)). Return: A list or a list of lists of `dict`: Returns one of the following dictionaries (cannot return a combination of both `generated_text` and `generated_token_ids`): - **generated_text** (`str`, present when `return_text=True`) -- The generated text. - **generated_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token ids of the generated text. """ if isinstance( text_inputs, (list, tuple, types.GeneratorType, KeyDataset) if is_torch_available() else (list, tuple, types.GeneratorType), ): if isinstance(text_inputs, types.GeneratorType): text_inputs, _ = itertools.tee(text_inputs) text_inputs, first_item = (x for x in text_inputs), next(_) else: first_item = text_inputs[0] if isinstance(first_item, (list, tuple, dict)): # We have one or more prompts in list-of-dicts format, so this is chat mode if isinstance(first_item, dict): return super().__call__(Chat(text_inputs), **kwargs) else: chats = (Chat(chat) for chat in text_inputs) # 🐈 🐈 🐈 if isinstance(text_inputs, types.GeneratorType): return super().__call__(chats, **kwargs) else: return super().__call__(list(chats), **kwargs) return super().__call__(text_inputs, **kwargs) def preprocess( self, prompt_text, prefix="", handle_long_generation=None, add_special_tokens=None, truncation=None, padding=None, max_length=None, continue_final_message=None, **generate_kwargs, ): # Only set non-None tokenizer kwargs, so as to rely on the tokenizer's defaults tokenizer_kwargs = { "add_special_tokens": add_special_tokens, "truncation": truncation, "padding": padding, "max_length": max_length, } tokenizer_kwargs = {key: value for key, value in tokenizer_kwargs.items() if value is not None} if isinstance(prompt_text, Chat): tokenizer_kwargs.pop("add_special_tokens", None) # ignore add_special_tokens on chats # If the user passes a chat that ends in an assistant message, we treat it as a prefill by default # because very few models support multiple separate, consecutive assistant messages if continue_final_message is None: continue_final_message = prompt_text.messages[-1]["role"] == "assistant" inputs = self.tokenizer.apply_chat_template( prompt_text.messages, add_generation_prompt=not continue_final_message, continue_final_message=continue_final_message, return_dict=True, return_tensors=self.framework, **tokenizer_kwargs, ) else: inputs = self.tokenizer(prefix + prompt_text, return_tensors=self.framework, **tokenizer_kwargs) inputs["prompt_text"] = prompt_text if handle_long_generation == "hole": cur_len = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: new_tokens = generate_kwargs["max_new_tokens"] else: new_tokens = generate_kwargs.get("max_length", self.generation_config.max_length) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected") if cur_len + new_tokens > self.tokenizer.model_max_length: keep_length = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) inputs["input_ids"] = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: inputs["attention_mask"] = inputs["attention_mask"][:, -keep_length:] return inputs def _forward(self, model_inputs, **generate_kwargs): input_ids = model_inputs["input_ids"] attention_mask = model_inputs.get("attention_mask", None) # Allow empty prompts if input_ids.shape[1] == 0: input_ids = None attention_mask = None in_b = 1 else: in_b = input_ids.shape[0] prompt_text = model_inputs.pop("prompt_text") # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. prefix_length = generate_kwargs.pop("prefix_length", 0) if prefix_length > 0: has_max_new_tokens = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: generate_kwargs["max_length"] = generate_kwargs.get("max_length") or self.generation_config.max_length generate_kwargs["max_length"] += prefix_length has_min_new_tokens = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # User-defined `generation_config` passed to the pipeline call take precedence if "generation_config" not in generate_kwargs: generate_kwargs["generation_config"] = self.generation_config output = self.model.generate(input_ids=input_ids, attention_mask=attention_mask, **generate_kwargs) if isinstance(output, ModelOutput): generated_sequence = output.sequences other_outputs = {k: v for k, v in output.items() if k != "sequences"} out_b = generated_sequence.shape[0] if self.framework == "pt": for key, value in other_outputs.items(): if isinstance(value, torch.Tensor) and value.shape[0] == out_b: other_outputs[key] = value.reshape(in_b, out_b // in_b, *value.shape[1:]) if isinstance(value, tuple) and len(value[0]) == out_b: value = torch.stack(value).swapaxes(0, 1) other_outputs[key] = value elif self.framework == "tf": for key, value in other_outputs.items(): if isinstance(value, tf.Tensor) and value.shape[0] == out_b: other_outputs[key] = tf.reshape(value, (in_b, out_b // in_b, *value.shape[1:])) if isinstance(value, tuple) and len(value[0]) == out_b: value = tf.stack(value).swapaxes(0, 1) other_outputs[key] = value else: generated_sequence = output other_outputs = {} out_b = generated_sequence.shape[0] if self.framework == "pt": generated_sequence = generated_sequence.reshape(in_b, out_b // in_b, *generated_sequence.shape[1:]) elif self.framework == "tf": generated_sequence = tf.reshape(generated_sequence, (in_b, out_b // in_b, *generated_sequence.shape[1:])) model_outputs = { "generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text, } model_outputs.update(other_outputs) return model_outputs def postprocess( self, model_outputs, return_type=ReturnType.FULL_TEXT, clean_up_tokenization_spaces=True, continue_final_message=None, ): generated_sequence = model_outputs["generated_sequence"][0] input_ids = model_outputs["input_ids"] prompt_text = model_outputs["prompt_text"] generated_sequence = generated_sequence.numpy().tolist() records = [] other_outputs = model_outputs.get("additional_outputs", {}) splitted_keys = {} if other_outputs: if self.framework == "pt": for k, v in other_outputs.items(): if isinstance(v, torch.Tensor) and v.shape[0] == len(generated_sequence): splitted_keys[k] = v.numpy().tolist() elif self.framework == "tf": for k, v in other_outputs.items(): if isinstance(v, tf.Tensor) and v.shape[0] == len(generated_sequence): splitted_keys[k] = v.numpy().tolist() for idx, sequence in enumerate(generated_sequence): if return_type == ReturnType.TENSORS: record = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text text = self.tokenizer.decode( sequence, skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: prompt_length = 0 else: prompt_length = len( self.tokenizer.decode( input_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) ) all_text = text[prompt_length:] if return_type == ReturnType.FULL_TEXT: if isinstance(prompt_text, str): all_text = prompt_text + all_text elif isinstance(prompt_text, Chat): if continue_final_message is None: # If the user passes a chat ending in an assistant message, we treat it as a prefill by # default because very few models support multiple separate, consecutive assistant messages continue_final_message = prompt_text.messages[-1]["role"] == "assistant" if continue_final_message: # With assistant prefill, concat onto the end of the last message all_text = list(prompt_text.messages)[:-1] + [ { "role": prompt_text.messages[-1]["role"], "content": prompt_text.messages[-1]["content"] + all_text, } ] else: # When we're not starting from a prefill, the output is a new assistant message all_text = list(prompt_text.messages) + [{"role": "assistant", "content": all_text}] record = {"generated_text": all_text} for key, values in splitted_keys.items(): record[key] = values[idx] records.append(record) return records ```
=============================================================================================================================== SOURCE CODE FILE: text_to_audio.py LINES: 1 SIZE: 8.64 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\text_to_audio.py ENCODING: utf-8 ```py # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.from typing import List, Union from typing import List, Union from ..utils import is_torch_available from .base import Pipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING from ..models.speecht5.modeling_speecht5 import SpeechT5HifiGan DEFAULT_VOCODER_ID = "microsoft/speecht5_hifigan" class TextToAudioPipeline(Pipeline): """ Text-to-audio generation pipeline using any `AutoModelForTextToWaveform` or `AutoModelForTextToSpectrogram`. This pipeline generates an audio file from an input text and optional other conditional inputs. Example: ```python >>> from transformers import pipeline >>> pipe = pipeline(model="suno/bark-small") >>> output = pipe("Hey it's HuggingFace on the phone!") >>> audio = output["audio"] >>> sampling_rate = output["sampling_rate"] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) <Tip> You can specify parameters passed to the model by using [`TextToAudioPipeline.__call__.forward_params`] or [`TextToAudioPipeline.__call__.generate_kwargs`]. Example: ```python >>> from transformers import pipeline >>> music_generator = pipeline(task="text-to-audio", model="facebook/musicgen-small", framework="pt") >>> # diversify the music generation by adding randomness with a high temperature and set a maximum music length >>> generate_kwargs = { ... "do_sample": True, ... "temperature": 0.7, ... "max_new_tokens": 35, ... } >>> outputs = music_generator("Techno music with high melodic riffs", generate_kwargs=generate_kwargs) ``` </Tip> This pipeline can currently be loaded from [`pipeline`] using the following task identifiers: `"text-to-speech"` or `"text-to-audio"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=text-to-speech). """ def __init__(self, *args, vocoder=None, sampling_rate=None, **kwargs): super().__init__(*args, **kwargs) if self.framework == "tf": raise ValueError("The TextToAudioPipeline is only available in PyTorch.") self.vocoder = None if self.model.__class__ in MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING.values(): self.vocoder = ( SpeechT5HifiGan.from_pretrained(DEFAULT_VOCODER_ID).to(self.model.device) if vocoder is None else vocoder ) self.sampling_rate = sampling_rate if self.vocoder is not None: self.sampling_rate = self.vocoder.config.sampling_rate if self.sampling_rate is None: # get sampling_rate from config and generation config config = self.model.config gen_config = self.model.__dict__.get("generation_config", None) if gen_config is not None: config.update(gen_config.to_dict()) for sampling_rate_name in ["sample_rate", "sampling_rate"]: sampling_rate = getattr(config, sampling_rate_name, None) if sampling_rate is not None: self.sampling_rate = sampling_rate def preprocess(self, text, **kwargs): if isinstance(text, str): text = [text] if self.model.config.model_type == "bark": # bark Tokenizer is called with BarkProcessor which uses those kwargs new_kwargs = { "max_length": self.generation_config.semantic_config.get("max_input_semantic_length", 256), "add_special_tokens": False, "return_attention_mask": True, "return_token_type_ids": False, "padding": "max_length", } # priority is given to kwargs new_kwargs.update(kwargs) kwargs = new_kwargs output = self.tokenizer(text, **kwargs, return_tensors="pt") return output def _forward(self, model_inputs, **kwargs): # we expect some kwargs to be additional tensors which need to be on the right device kwargs = self._ensure_tensor_on_device(kwargs, device=self.device) forward_params = kwargs["forward_params"] generate_kwargs = kwargs["generate_kwargs"] if self.model.can_generate(): # we expect some kwargs to be additional tensors which need to be on the right device generate_kwargs = self._ensure_tensor_on_device(generate_kwargs, device=self.device) # User-defined `generation_config` passed to the pipeline call take precedence if "generation_config" not in generate_kwargs: generate_kwargs["generation_config"] = self.generation_config # generate_kwargs get priority over forward_params forward_params.update(generate_kwargs) output = self.model.generate(**model_inputs, **forward_params) else: if len(generate_kwargs): raise ValueError( "You're using the `TextToAudioPipeline` with a forward-only model, but `generate_kwargs` is non " "empty. For forward-only TTA models, please use `forward_params` instead of `generate_kwargs`. " f"For reference, the `generate_kwargs` used here are: {generate_kwargs.keys()}" ) output = self.model(**model_inputs, **forward_params)[0] if self.vocoder is not None: # in that case, the output is a spectrogram that needs to be converted into a waveform output = self.vocoder(output) return output def __call__(self, text_inputs: Union[str, List[str]], **forward_params): """ Generates speech/audio from the inputs. See the [`TextToAudioPipeline`] documentation for more information. Args: text_inputs (`str` or `List[str]`): The text(s) to generate. forward_params (`dict`, *optional*): Parameters passed to the model generation/forward method. `forward_params` are always passed to the underlying model. generate_kwargs (`dict`, *optional*): The dictionary of ad-hoc parametrization of `generate_config` to be used for the generation call. For a complete overview of generate, check the [following guide](https://huggingface.co/docs/transformers/en/main_classes/text_generation). `generate_kwargs` are only passed to the underlying model if the latter is a generative model. Return: A `dict` or a list of `dict`: The dictionaries have two keys: - **audio** (`np.ndarray` of shape `(nb_channels, audio_length)`) -- The generated audio waveform. - **sampling_rate** (`int`) -- The sampling rate of the generated audio waveform. """ return super().__call__(text_inputs, **forward_params) def _sanitize_parameters( self, preprocess_params=None, forward_params=None, generate_kwargs=None, ): if self.assistant_model is not None: generate_kwargs["assistant_model"] = self.assistant_model if self.assistant_tokenizer is not None: generate_kwargs["tokenizer"] = self.tokenizer generate_kwargs["assistant_tokenizer"] = self.assistant_tokenizer params = { "forward_params": forward_params if forward_params else {}, "generate_kwargs": generate_kwargs if generate_kwargs else {}, } if preprocess_params is None: preprocess_params = {} postprocess_params = {} return preprocess_params, params, postprocess_params def postprocess(self, waveform): output_dict = {} if isinstance(waveform, dict): waveform = waveform["waveform"] elif isinstance(waveform, tuple): waveform = waveform[0] output_dict["audio"] = waveform.to(device="cpu", dtype=torch.float).numpy() output_dict["sampling_rate"] = self.sampling_rate return output_dict ```
====================================================================================================================================== SOURCE CODE FILE: token_classification.py LINES: 1 SIZE: 26.31 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\token_classification.py ENCODING: utf-8 ```py import types import warnings from typing import List, Optional, Tuple, Union import numpy as np from ..models.bert.tokenization_bert import BasicTokenizer from ..utils import ( ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available, ) from .base import ArgumentHandler, ChunkPipeline, Dataset, build_pipeline_init_args if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES class TokenClassificationArgumentHandler(ArgumentHandler): """ Handles arguments for token classification. """ def __call__(self, inputs: Union[str, List[str]], **kwargs): if inputs is not None and isinstance(inputs, (list, tuple)) and len(inputs) > 0: inputs = list(inputs) batch_size = len(inputs) elif isinstance(inputs, str): inputs = [inputs] batch_size = 1 elif Dataset is not None and isinstance(inputs, Dataset) or isinstance(inputs, types.GeneratorType): return inputs, None else: raise ValueError("At least one input is required.") offset_mapping = kwargs.get("offset_mapping") if offset_mapping: if isinstance(offset_mapping, list) and isinstance(offset_mapping[0], tuple): offset_mapping = [offset_mapping] if len(offset_mapping) != batch_size: raise ValueError("offset_mapping should have the same batch size as the input") return inputs, offset_mapping class AggregationStrategy(ExplicitEnum): """All the valid aggregation strategies for TokenClassificationPipeline""" NONE = "none" SIMPLE = "simple" FIRST = "first" AVERAGE = "average" MAX = "max" @add_end_docstrings( build_pipeline_init_args(has_tokenizer=True), r""" ignore_labels (`List[str]`, defaults to `["O"]`): A list of labels to ignore. grouped_entities (`bool`, *optional*, defaults to `False`): DEPRECATED, use `aggregation_strategy` instead. Whether or not to group the tokens corresponding to the same entity together in the predictions or not. stride (`int`, *optional*): If stride is provided, the pipeline is applied on all the text. The text is split into chunks of size model_max_length. Works only with fast tokenizers and `aggregation_strategy` different from `NONE`. The value of this argument defines the number of overlapping tokens between chunks. In other words, the model will shift forward by `tokenizer.model_max_length - stride` tokens each step. aggregation_strategy (`str`, *optional*, defaults to `"none"`): The strategy to fuse (or not) tokens based on the model prediction. - "none" : Will simply not do any aggregation and simply return raw results from the model - "simple" : Will attempt to group entities following the default schema. (A, B-TAG), (B, I-TAG), (C, I-TAG), (D, B-TAG2) (E, B-TAG2) will end up being [{"word": ABC, "entity": "TAG"}, {"word": "D", "entity": "TAG2"}, {"word": "E", "entity": "TAG2"}] Notice that two consecutive B tags will end up as different entities. On word based languages, we might end up splitting words undesirably : Imagine Microsoft being tagged as [{"word": "Micro", "entity": "ENTERPRISE"}, {"word": "soft", "entity": "NAME"}]. Look for FIRST, MAX, AVERAGE for ways to mitigate that and disambiguate words (on languages that support that meaning, which is basically tokens separated by a space). These mitigations will only work on real words, "New york" might still be tagged with two different entities. - "first" : (works only on word based models) Will use the `SIMPLE` strategy except that words, cannot end up with different tags. Words will simply use the tag of the first token of the word when there is ambiguity. - "average" : (works only on word based models) Will use the `SIMPLE` strategy except that words, cannot end up with different tags. scores will be averaged first across tokens, and then the maximum label is applied. - "max" : (works only on word based models) Will use the `SIMPLE` strategy except that words, cannot end up with different tags. Word entity will simply be the token with the maximum score.""", ) class TokenClassificationPipeline(ChunkPipeline): """ Named Entity Recognition pipeline using any `ModelForTokenClassification`. See the [named entity recognition examples](../task_summary#named-entity-recognition) for more information. Example: ```python >>> from transformers import pipeline >>> token_classifier = pipeline(model="Jean-Baptiste/camembert-ner", aggregation_strategy="simple") >>> sentence = "Je m'appelle jean-baptiste et je vis à montréal" >>> tokens = token_classifier(sentence) >>> tokens [{'entity_group': 'PER', 'score': 0.9931, 'word': 'jean-baptiste', 'start': 12, 'end': 26}, {'entity_group': 'LOC', 'score': 0.998, 'word': 'montréal', 'start': 38, 'end': 47}] >>> token = tokens[0] >>> # Start and end provide an easy way to highlight words in the original text. >>> sentence[token["start"] : token["end"]] ' jean-baptiste' >>> # Some models use the same idea to do part of speech. >>> syntaxer = pipeline(model="vblagoje/bert-english-uncased-finetuned-pos", aggregation_strategy="simple") >>> syntaxer("My name is Sarah and I live in London") [{'entity_group': 'PRON', 'score': 0.999, 'word': 'my', 'start': 0, 'end': 2}, {'entity_group': 'NOUN', 'score': 0.997, 'word': 'name', 'start': 3, 'end': 7}, {'entity_group': 'AUX', 'score': 0.994, 'word': 'is', 'start': 8, 'end': 10}, {'entity_group': 'PROPN', 'score': 0.999, 'word': 'sarah', 'start': 11, 'end': 16}, {'entity_group': 'CCONJ', 'score': 0.999, 'word': 'and', 'start': 17, 'end': 20}, {'entity_group': 'PRON', 'score': 0.999, 'word': 'i', 'start': 21, 'end': 22}, {'entity_group': 'VERB', 'score': 0.998, 'word': 'live', 'start': 23, 'end': 27}, {'entity_group': 'ADP', 'score': 0.999, 'word': 'in', 'start': 28, 'end': 30}, {'entity_group': 'PROPN', 'score': 0.999, 'word': 'london', 'start': 31, 'end': 37}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This token recognition pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"ner"` (for predicting the classes of tokens in a sequence: person, organisation, location or miscellaneous). The models that this pipeline can use are models that have been fine-tuned on a token classification task. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=token-classification). """ default_input_names = "sequences" def __init__(self, args_parser=TokenClassificationArgumentHandler(), *args, **kwargs): super().__init__(*args, **kwargs) self.check_model_type( TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES if self.framework == "tf" else MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) self._basic_tokenizer = BasicTokenizer(do_lower_case=False) self._args_parser = args_parser def _sanitize_parameters( self, ignore_labels=None, grouped_entities: Optional[bool] = None, ignore_subwords: Optional[bool] = None, aggregation_strategy: Optional[AggregationStrategy] = None, offset_mapping: Optional[List[Tuple[int, int]]] = None, stride: Optional[int] = None, ): preprocess_params = {} if offset_mapping is not None: preprocess_params["offset_mapping"] = offset_mapping postprocess_params = {} if grouped_entities is not None or ignore_subwords is not None: if grouped_entities and ignore_subwords: aggregation_strategy = AggregationStrategy.FIRST elif grouped_entities and not ignore_subwords: aggregation_strategy = AggregationStrategy.SIMPLE else: aggregation_strategy = AggregationStrategy.NONE if grouped_entities is not None: warnings.warn( "`grouped_entities` is deprecated and will be removed in version v5.0.0, defaulted to" f' `aggregation_strategy="{aggregation_strategy}"` instead.' ) if ignore_subwords is not None: warnings.warn( "`ignore_subwords` is deprecated and will be removed in version v5.0.0, defaulted to" f' `aggregation_strategy="{aggregation_strategy}"` instead.' ) if aggregation_strategy is not None: if isinstance(aggregation_strategy, str): aggregation_strategy = AggregationStrategy[aggregation_strategy.upper()] if ( aggregation_strategy in {AggregationStrategy.FIRST, AggregationStrategy.MAX, AggregationStrategy.AVERAGE} and not self.tokenizer.is_fast ): raise ValueError( "Slow tokenizers cannot handle subwords. Please set the `aggregation_strategy` option" ' to `"simple"` or use a fast tokenizer.' ) postprocess_params["aggregation_strategy"] = aggregation_strategy if ignore_labels is not None: postprocess_params["ignore_labels"] = ignore_labels if stride is not None: if stride >= self.tokenizer.model_max_length: raise ValueError( "`stride` must be less than `tokenizer.model_max_length` (or even lower if the tokenizer adds special tokens)" ) if aggregation_strategy == AggregationStrategy.NONE: raise ValueError( "`stride` was provided to process all the text but `aggregation_strategy=" f'"{aggregation_strategy}"`, please select another one instead.' ) else: if self.tokenizer.is_fast: tokenizer_params = { "return_overflowing_tokens": True, "padding": True, "stride": stride, } preprocess_params["tokenizer_params"] = tokenizer_params else: raise ValueError( "`stride` was provided to process all the text but you're using a slow tokenizer." " Please use a fast tokenizer." ) return preprocess_params, {}, postprocess_params def __call__(self, inputs: Union[str, List[str]], **kwargs): """ Classify each token of the text(s) given as inputs. Args: inputs (`str` or `List[str]`): One or several texts (or one list of texts) for token classification. Return: A list or a list of list of `dict`: Each result comes as a list of dictionaries (one for each token in the corresponding input, or each entity if this pipeline was instantiated with an aggregation_strategy) with the following keys: - **word** (`str`) -- The token/word classified. This is obtained by decoding the selected tokens. If you want to have the exact string in the original sentence, use `start` and `end`. - **score** (`float`) -- The corresponding probability for `entity`. - **entity** (`str`) -- The entity predicted for that token/word (it is named *entity_group* when *aggregation_strategy* is not `"none"`. - **index** (`int`, only present when `aggregation_strategy="none"`) -- The index of the corresponding token in the sentence. - **start** (`int`, *optional*) -- The index of the start of the corresponding entity in the sentence. Only exists if the offsets are available within the tokenizer - **end** (`int`, *optional*) -- The index of the end of the corresponding entity in the sentence. Only exists if the offsets are available within the tokenizer """ _inputs, offset_mapping = self._args_parser(inputs, **kwargs) if offset_mapping: kwargs["offset_mapping"] = offset_mapping return super().__call__(inputs, **kwargs) def preprocess(self, sentence, offset_mapping=None, **preprocess_params): tokenizer_params = preprocess_params.pop("tokenizer_params", {}) truncation = True if self.tokenizer.model_max_length and self.tokenizer.model_max_length > 0 else False inputs = self.tokenizer( sentence, return_tensors=self.framework, truncation=truncation, return_special_tokens_mask=True, return_offsets_mapping=self.tokenizer.is_fast, **tokenizer_params, ) inputs.pop("overflow_to_sample_mapping", None) num_chunks = len(inputs["input_ids"]) for i in range(num_chunks): if self.framework == "tf": model_inputs = {k: tf.expand_dims(v[i], 0) for k, v in inputs.items()} else: model_inputs = {k: v[i].unsqueeze(0) for k, v in inputs.items()} if offset_mapping is not None: model_inputs["offset_mapping"] = offset_mapping model_inputs["sentence"] = sentence if i == 0 else None model_inputs["is_last"] = i == num_chunks - 1 yield model_inputs def _forward(self, model_inputs): # Forward special_tokens_mask = model_inputs.pop("special_tokens_mask") offset_mapping = model_inputs.pop("offset_mapping", None) sentence = model_inputs.pop("sentence") is_last = model_inputs.pop("is_last") if self.framework == "tf": logits = self.model(**model_inputs)[0] else: output = self.model(**model_inputs) logits = output["logits"] if isinstance(output, dict) else output[0] return { "logits": logits, "special_tokens_mask": special_tokens_mask, "offset_mapping": offset_mapping, "sentence": sentence, "is_last": is_last, **model_inputs, } def postprocess(self, all_outputs, aggregation_strategy=AggregationStrategy.NONE, ignore_labels=None): if ignore_labels is None: ignore_labels = ["O"] all_entities = [] for model_outputs in all_outputs: if self.framework == "pt" and model_outputs["logits"][0].dtype in (torch.bfloat16, torch.float16): logits = model_outputs["logits"][0].to(torch.float32).numpy() else: logits = model_outputs["logits"][0].numpy() sentence = all_outputs[0]["sentence"] input_ids = model_outputs["input_ids"][0] offset_mapping = ( model_outputs["offset_mapping"][0] if model_outputs["offset_mapping"] is not None else None ) special_tokens_mask = model_outputs["special_tokens_mask"][0].numpy() maxes = np.max(logits, axis=-1, keepdims=True) shifted_exp = np.exp(logits - maxes) scores = shifted_exp / shifted_exp.sum(axis=-1, keepdims=True) if self.framework == "tf": input_ids = input_ids.numpy() offset_mapping = offset_mapping.numpy() if offset_mapping is not None else None pre_entities = self.gather_pre_entities( sentence, input_ids, scores, offset_mapping, special_tokens_mask, aggregation_strategy ) grouped_entities = self.aggregate(pre_entities, aggregation_strategy) # Filter anything that is in self.ignore_labels entities = [ entity for entity in grouped_entities if entity.get("entity", None) not in ignore_labels and entity.get("entity_group", None) not in ignore_labels ] all_entities.extend(entities) num_chunks = len(all_outputs) if num_chunks > 1: all_entities = self.aggregate_overlapping_entities(all_entities) return all_entities def aggregate_overlapping_entities(self, entities): if len(entities) == 0: return entities entities = sorted(entities, key=lambda x: x["start"]) aggregated_entities = [] previous_entity = entities[0] for entity in entities: if previous_entity["start"] <= entity["start"] < previous_entity["end"]: current_length = entity["end"] - entity["start"] previous_length = previous_entity["end"] - previous_entity["start"] if current_length > previous_length: previous_entity = entity elif current_length == previous_length and entity["score"] > previous_entity["score"]: previous_entity = entity else: aggregated_entities.append(previous_entity) previous_entity = entity aggregated_entities.append(previous_entity) return aggregated_entities def gather_pre_entities( self, sentence: str, input_ids: np.ndarray, scores: np.ndarray, offset_mapping: Optional[List[Tuple[int, int]]], special_tokens_mask: np.ndarray, aggregation_strategy: AggregationStrategy, ) -> List[dict]: """Fuse various numpy arrays into dicts with all the information needed for aggregation""" pre_entities = [] for idx, token_scores in enumerate(scores): # Filter special_tokens if special_tokens_mask[idx]: continue word = self.tokenizer.convert_ids_to_tokens(int(input_ids[idx])) if offset_mapping is not None: start_ind, end_ind = offset_mapping[idx] if not isinstance(start_ind, int): if self.framework == "pt": start_ind = start_ind.item() end_ind = end_ind.item() word_ref = sentence[start_ind:end_ind] if getattr(self.tokenizer, "_tokenizer", None) and getattr( self.tokenizer._tokenizer.model, "continuing_subword_prefix", None ): # This is a BPE, word aware tokenizer, there is a correct way # to fuse tokens is_subword = len(word) != len(word_ref) else: # This is a fallback heuristic. This will fail most likely on any kind of text + punctuation mixtures that will be considered "words". Non word aware models cannot do better than this unfortunately. if aggregation_strategy in { AggregationStrategy.FIRST, AggregationStrategy.AVERAGE, AggregationStrategy.MAX, }: warnings.warn( "Tokenizer does not support real words, using fallback heuristic", UserWarning, ) is_subword = start_ind > 0 and " " not in sentence[start_ind - 1 : start_ind + 1] if int(input_ids[idx]) == self.tokenizer.unk_token_id: word = word_ref is_subword = False else: start_ind = None end_ind = None is_subword = False pre_entity = { "word": word, "scores": token_scores, "start": start_ind, "end": end_ind, "index": idx, "is_subword": is_subword, } pre_entities.append(pre_entity) return pre_entities def aggregate(self, pre_entities: List[dict], aggregation_strategy: AggregationStrategy) -> List[dict]: if aggregation_strategy in {AggregationStrategy.NONE, AggregationStrategy.SIMPLE}: entities = [] for pre_entity in pre_entities: entity_idx = pre_entity["scores"].argmax() score = pre_entity["scores"][entity_idx] entity = { "entity": self.model.config.id2label[entity_idx], "score": score, "index": pre_entity["index"], "word": pre_entity["word"], "start": pre_entity["start"], "end": pre_entity["end"], } entities.append(entity) else: entities = self.aggregate_words(pre_entities, aggregation_strategy) if aggregation_strategy == AggregationStrategy.NONE: return entities return self.group_entities(entities) def aggregate_word(self, entities: List[dict], aggregation_strategy: AggregationStrategy) -> dict: word = self.tokenizer.convert_tokens_to_string([entity["word"] for entity in entities]) if aggregation_strategy == AggregationStrategy.FIRST: scores = entities[0]["scores"] idx = scores.argmax() score = scores[idx] entity = self.model.config.id2label[idx] elif aggregation_strategy == AggregationStrategy.MAX: max_entity = max(entities, key=lambda entity: entity["scores"].max()) scores = max_entity["scores"] idx = scores.argmax() score = scores[idx] entity = self.model.config.id2label[idx] elif aggregation_strategy == AggregationStrategy.AVERAGE: scores = np.stack([entity["scores"] for entity in entities]) average_scores = np.nanmean(scores, axis=0) entity_idx = average_scores.argmax() entity = self.model.config.id2label[entity_idx] score = average_scores[entity_idx] else: raise ValueError("Invalid aggregation_strategy") new_entity = { "entity": entity, "score": score, "word": word, "start": entities[0]["start"], "end": entities[-1]["end"], } return new_entity def aggregate_words(self, entities: List[dict], aggregation_strategy: AggregationStrategy) -> List[dict]: """ Override tokens from a given word that disagree to force agreement on word boundaries. Example: micro|soft| com|pany| B-ENT I-NAME I-ENT I-ENT will be rewritten with first strategy as microsoft| company| B-ENT I-ENT """ if aggregation_strategy in { AggregationStrategy.NONE, AggregationStrategy.SIMPLE, }: raise ValueError("NONE and SIMPLE strategies are invalid for word aggregation") word_entities = [] word_group = None for entity in entities: if word_group is None: word_group = [entity] elif entity["is_subword"]: word_group.append(entity) else: word_entities.append(self.aggregate_word(word_group, aggregation_strategy)) word_group = [entity] # Last item if word_group is not None: word_entities.append(self.aggregate_word(word_group, aggregation_strategy)) return word_entities def group_sub_entities(self, entities: List[dict]) -> dict: """ Group together the adjacent tokens with the same entity predicted. Args: entities (`dict`): The entities predicted by the pipeline. """ # Get the first entity in the entity group entity = entities[0]["entity"].split("-", 1)[-1] scores = np.nanmean([entity["score"] for entity in entities]) tokens = [entity["word"] for entity in entities] entity_group = { "entity_group": entity, "score": np.mean(scores), "word": self.tokenizer.convert_tokens_to_string(tokens), "start": entities[0]["start"], "end": entities[-1]["end"], } return entity_group def get_tag(self, entity_name: str) -> Tuple[str, str]: if entity_name.startswith("B-"): bi = "B" tag = entity_name[2:] elif entity_name.startswith("I-"): bi = "I" tag = entity_name[2:] else: # It's not in B-, I- format # Default to I- for continuation. bi = "I" tag = entity_name return bi, tag def group_entities(self, entities: List[dict]) -> List[dict]: """ Find and group together the adjacent tokens with the same entity predicted. Args: entities (`dict`): The entities predicted by the pipeline. """ entity_groups = [] entity_group_disagg = [] for entity in entities: if not entity_group_disagg: entity_group_disagg.append(entity) continue # If the current entity is similar and adjacent to the previous entity, # append it to the disaggregated entity group # The split is meant to account for the "B" and "I" prefixes # Shouldn't merge if both entities are B-type bi, tag = self.get_tag(entity["entity"]) last_bi, last_tag = self.get_tag(entity_group_disagg[-1]["entity"]) if tag == last_tag and bi != "B": # Modify subword type to be previous_type entity_group_disagg.append(entity) else: # If the current entity is different from the previous entity # aggregate the disaggregated entity group entity_groups.append(self.group_sub_entities(entity_group_disagg)) entity_group_disagg = [entity] if entity_group_disagg: # it's the last entity, add it to the entity groups entity_groups.append(self.group_sub_entities(entity_group_disagg)) return entity_groups NerPipeline = TokenClassificationPipeline ```
====================================================================================================================================== SOURCE CODE FILE: video_classification.py LINES: 1 SIZE: 7.70 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\video_classification.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from io import BytesIO from typing import List, Union import requests from ..utils import ( add_end_docstrings, is_av_available, is_torch_available, logging, requires_backends, ) from .base import Pipeline, build_pipeline_init_args if is_av_available(): import av import numpy as np if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES logger = logging.get_logger(__name__) @add_end_docstrings(build_pipeline_init_args(has_image_processor=True)) class VideoClassificationPipeline(Pipeline): """ Video classification pipeline using any `AutoModelForVideoClassification`. This pipeline predicts the class of a video. This video classification pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"video-classification"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=video-classification). """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) requires_backends(self, "av") self.check_model_type(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES) def _sanitize_parameters(self, top_k=None, num_frames=None, frame_sampling_rate=None, function_to_apply=None): preprocess_params = {} if frame_sampling_rate is not None: preprocess_params["frame_sampling_rate"] = frame_sampling_rate if num_frames is not None: preprocess_params["num_frames"] = num_frames postprocess_params = {} if top_k is not None: postprocess_params["top_k"] = top_k if function_to_apply is not None: if function_to_apply not in ["softmax", "sigmoid", "none"]: raise ValueError( f"Invalid value for `function_to_apply`: {function_to_apply}. " "Valid options are ['softmax', 'sigmoid', 'none']" ) postprocess_params["function_to_apply"] = function_to_apply else: postprocess_params["function_to_apply"] = "softmax" return preprocess_params, {}, postprocess_params def __call__(self, inputs: Union[str, List[str]] = None, **kwargs): """ Assign labels to the video(s) passed as inputs. Args: inputs (`str`, `List[str]`): The pipeline handles three types of videos: - A string containing a http link pointing to a video - A string containing a local path to a video The pipeline accepts either a single video or a batch of videos, which must then be passed as a string. Videos in a batch must all be in the same format: all as http links or all as local paths. top_k (`int`, *optional*, defaults to 5): The number of top labels that will be returned by the pipeline. If the provided number is higher than the number of labels available in the model configuration, it will default to the number of labels. num_frames (`int`, *optional*, defaults to `self.model.config.num_frames`): The number of frames sampled from the video to run the classification on. If not provided, will default to the number of frames specified in the model configuration. frame_sampling_rate (`int`, *optional*, defaults to 1): The sampling rate used to select frames from the video. If not provided, will default to 1, i.e. every frame will be used. function_to_apply(`str`, *optional*, defaults to "softmax"): The function to apply to the model output. By default, the pipeline will apply the softmax function to the output of the model. Valid options: ["softmax", "sigmoid", "none"]. Note that passing Python's built-in `None` will default to "softmax", so you need to pass the string "none" to disable any post-processing. Return: A list of dictionaries or a list of list of dictionaries containing result. If the input is a single video, will return a list of `top_k` dictionaries, if the input is a list of several videos, will return a list of list of `top_k` dictionaries corresponding to the videos. The dictionaries contain the following keys: - **label** (`str`) -- The label identified by the model. - **score** (`int`) -- The score attributed by the model for that label. """ # After deprecation of this is completed, remove the default `None` value for `images` if "videos" in kwargs: warnings.warn( "The `videos` argument has been renamed to `inputs`. In version 5 of Transformers, `videos` will no longer be accepted", FutureWarning, ) inputs = kwargs.pop("videos") if inputs is None: raise ValueError("Cannot call the video-classification pipeline without an inputs argument!") return super().__call__(inputs, **kwargs) def preprocess(self, video, num_frames=None, frame_sampling_rate=1): if num_frames is None: num_frames = self.model.config.num_frames if video.startswith("http://") or video.startswith("https://"): video = BytesIO(requests.get(video).content) container = av.open(video) start_idx = 0 end_idx = num_frames * frame_sampling_rate - 1 indices = np.linspace(start_idx, end_idx, num=num_frames, dtype=np.int64) video = read_video_pyav(container, indices) video = list(video) model_inputs = self.image_processor(video, return_tensors=self.framework) if self.framework == "pt": model_inputs = model_inputs.to(self.torch_dtype) return model_inputs def _forward(self, model_inputs): model_outputs = self.model(**model_inputs) return model_outputs def postprocess(self, model_outputs, top_k=5, function_to_apply="softmax"): if top_k > self.model.config.num_labels: top_k = self.model.config.num_labels if self.framework == "pt": if function_to_apply == "softmax": probs = model_outputs.logits[0].softmax(-1) elif function_to_apply == "sigmoid": probs = model_outputs.logits[0].sigmoid() else: probs = model_outputs.logits[0] scores, ids = probs.topk(top_k) else: raise ValueError(f"Unsupported framework: {self.framework}") scores = scores.tolist() ids = ids.tolist() return [{"score": score, "label": self.model.config.id2label[_id]} for score, _id in zip(scores, ids)] def read_video_pyav(container, indices): frames = [] container.seek(0) start_index = indices[0] end_index = indices[-1] for i, frame in enumerate(container.decode(video=0)): if i > end_index: break if i >= start_index and i in indices: frames.append(frame) return np.stack([x.to_ndarray(format="rgb24") for x in frames]) ```
=========================================================================================================================================== SOURCE CODE FILE: visual_question_answering.py LINES: 1 SIZE: 8.98 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\visual_question_answering.py ENCODING: utf-8 ```py from typing import List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import Pipeline, build_pipeline_init_args if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES from .pt_utils import KeyDataset logger = logging.get_logger(__name__) @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True, has_image_processor=True)) class VisualQuestionAnsweringPipeline(Pipeline): """ Visual Question Answering pipeline using a `AutoModelForVisualQuestionAnswering`. This pipeline is currently only available in PyTorch. Example: ```python >>> from transformers import pipeline >>> oracle = pipeline(model="dandelin/vilt-b32-finetuned-vqa") >>> image_url = "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/lena.png" >>> oracle(question="What is she wearing ?", image=image_url) [{'score': 0.948, 'answer': 'hat'}, {'score': 0.009, 'answer': 'fedora'}, {'score': 0.003, 'answer': 'clothes'}, {'score': 0.003, 'answer': 'sun hat'}, {'score': 0.002, 'answer': 'nothing'}] >>> oracle(question="What is she wearing ?", image=image_url, top_k=1) [{'score': 0.948, 'answer': 'hat'}] >>> oracle(question="Is this a person ?", image=image_url, top_k=1) [{'score': 0.993, 'answer': 'yes'}] >>> oracle(question="Is this a man ?", image=image_url, top_k=1) [{'score': 0.996, 'answer': 'no'}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This visual question answering pipeline can currently be loaded from [`pipeline`] using the following task identifiers: `"visual-question-answering", "vqa"`. The models that this pipeline can use are models that have been fine-tuned on a visual question answering task. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=visual-question-answering). """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.check_model_type(MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES) def _sanitize_parameters(self, top_k=None, padding=None, truncation=None, timeout=None, **kwargs): preprocess_params, postprocess_params = {}, {} if padding is not None: preprocess_params["padding"] = padding if truncation is not None: preprocess_params["truncation"] = truncation if timeout is not None: preprocess_params["timeout"] = timeout if top_k is not None: postprocess_params["top_k"] = top_k forward_params = {} if self.assistant_model is not None: forward_params["assistant_model"] = self.assistant_model if self.assistant_tokenizer is not None: forward_params["tokenizer"] = self.tokenizer forward_params["assistant_tokenizer"] = self.assistant_tokenizer return preprocess_params, forward_params, postprocess_params def __call__( self, image: Union["Image.Image", str, List["Image.Image"], List[str], "KeyDataset"], question: Union[str, List[str]] = None, **kwargs, ): r""" Answers open-ended questions about images. The pipeline accepts several types of inputs which are detailed below: - `pipeline(image=image, question=question)` - `pipeline({"image": image, "question": question})` - `pipeline([{"image": image, "question": question}])` - `pipeline([{"image": image, "question": question}, {"image": image, "question": question}])` Args: image (`str`, `List[str]`, `PIL.Image`, `List[PIL.Image]` or `KeyDataset`): The pipeline handles three types of images: - A string containing a http link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly The pipeline accepts either a single image or a batch of images. If given a single image, it can be broadcasted to multiple questions. For dataset: the passed in dataset must be of type `transformers.pipelines.pt_utils.KeyDataset` Example: ```python >>> from transformers.pipelines.pt_utils import KeyDataset >>> from datasets import load_dataset >>> dataset = load_dataset("detection-datasets/coco") >>> oracle(image=KeyDataset(dataset, "image"), question="What's in this image?") ``` question (`str`, `List[str]`): The question(s) asked. If given a single question, it can be broadcasted to multiple images. If multiple images and questions are given, each and every question will be broadcasted to all images (same effect as a Cartesian product) top_k (`int`, *optional*, defaults to 5): The number of top labels that will be returned by the pipeline. If the provided number is higher than the number of labels available in the model configuration, it will default to the number of labels. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and the call may block forever. Return: A dictionary or a list of dictionaries containing the result. The dictionaries contain the following keys: - **label** (`str`) -- The label identified by the model. - **score** (`int`) -- The score attributed by the model for that label. """ is_dataset = isinstance(image, KeyDataset) is_image_batch = isinstance(image, list) and all(isinstance(item, (Image.Image, str)) for item in image) is_question_batch = isinstance(question, list) and all(isinstance(item, str) for item in question) if isinstance(image, (Image.Image, str)) and isinstance(question, str): inputs = {"image": image, "question": question} elif (is_image_batch or is_dataset) and isinstance(question, str): inputs = [{"image": im, "question": question} for im in image] elif isinstance(image, (Image.Image, str)) and is_question_batch: inputs = [{"image": image, "question": q} for q in question] elif (is_image_batch or is_dataset) and is_question_batch: question_image_pairs = [] for q in question: for im in image: question_image_pairs.append({"image": im, "question": q}) inputs = question_image_pairs else: """ Supports the following format - {"image": image, "question": question} - [{"image": image, "question": question}] - Generator and datasets """ inputs = image results = super().__call__(inputs, **kwargs) return results def preprocess(self, inputs, padding=False, truncation=False, timeout=None): image = load_image(inputs["image"], timeout=timeout) model_inputs = self.tokenizer( inputs["question"], return_tensors=self.framework, padding=padding, truncation=truncation, ) image_features = self.image_processor(images=image, return_tensors=self.framework) if self.framework == "pt": image_features = image_features.to(self.torch_dtype) model_inputs.update(image_features) return model_inputs def _forward(self, model_inputs, **generate_kwargs): if self.model.can_generate(): # User-defined `generation_config` passed to the pipeline call take precedence if "generation_config" not in generate_kwargs: generate_kwargs["generation_config"] = self.generation_config model_outputs = self.model.generate(**model_inputs, **generate_kwargs) else: model_outputs = self.model(**model_inputs) return model_outputs def postprocess(self, model_outputs, top_k=5): if self.model.can_generate(): return [ {"answer": self.tokenizer.decode(output_ids, skip_special_tokens=True).strip()} for output_ids in model_outputs ] else: if top_k > self.model.config.num_labels: top_k = self.model.config.num_labels if self.framework == "pt": probs = model_outputs.logits.sigmoid()[0] scores, ids = probs.topk(top_k) else: raise ValueError(f"Unsupported framework: {self.framework}") scores = scores.tolist() ids = ids.tolist() return [{"score": score, "answer": self.model.config.id2label[_id]} for score, _id in zip(scores, ids)] ```
================================================================================================================================================ SOURCE CODE FILE: zero_shot_audio_classification.py LINES: 1 SIZE: 6.71 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\zero_shot_audio_classification.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import Pipeline, build_pipeline_init_args logger = logging.get_logger(__name__) @add_end_docstrings(build_pipeline_init_args(has_feature_extractor=True, has_tokenizer=True)) class ZeroShotAudioClassificationPipeline(Pipeline): """ Zero shot audio classification pipeline using `ClapModel`. This pipeline predicts the class of an audio when you provide an audio and a set of `candidate_labels`. <Tip warning={true}> The default `hypothesis_template` is : `"This is a sound of {}."`. Make sure you update it for your usage. </Tip> Example: ```python >>> from transformers import pipeline >>> from datasets import load_dataset >>> dataset = load_dataset("ashraq/esc50") >>> audio = next(iter(dataset["train"]["audio"]))["array"] >>> classifier = pipeline(task="zero-shot-audio-classification", model="laion/clap-htsat-unfused") >>> classifier(audio, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"]) [{'score': 0.9996, 'label': 'Sound of a dog'}, {'score': 0.0004, 'label': 'Sound of vaccum cleaner'}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This audio classification pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"zero-shot-audio-classification"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=zero-shot-audio-classification). """ def __init__(self, **kwargs): super().__init__(**kwargs) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch.") # No specific FOR_XXX available yet def __call__(self, audios: Union[np.ndarray, bytes, str], **kwargs): """ Assign labels to the audio(s) passed as inputs. Args: audios (`str`, `List[str]`, `np.array` or `List[np.array]`): The pipeline handles three types of inputs: - A string containing a http link pointing to an audio - A string containing a local path to an audio - An audio loaded in numpy candidate_labels (`List[str]`): The candidate labels for this audio. They will be formatted using *hypothesis_template*. hypothesis_template (`str`, *optional*, defaults to `"This is a sound of {}"`): The format used in conjunction with *candidate_labels* to attempt the audio classification by replacing the placeholder with the candidate_labels. Pass "{}" if *candidate_labels* are already formatted. Return: A list of dictionaries containing one entry per proposed label. Each dictionary contains the following keys: - **label** (`str`) -- One of the suggested *candidate_labels*. - **score** (`float`) -- The score attributed by the model to that label. It is a value between 0 and 1, computed as the `softmax` of `logits_per_audio`. """ return super().__call__(audios, **kwargs) def _sanitize_parameters(self, **kwargs): preprocess_params = {} if "candidate_labels" in kwargs: preprocess_params["candidate_labels"] = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: preprocess_params["hypothesis_template"] = kwargs["hypothesis_template"] return preprocess_params, {}, {} def preprocess(self, audio, candidate_labels=None, hypothesis_template="This is a sound of {}."): if isinstance(audio, str): if audio.startswith("http://") or audio.startswith("https://"): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png audio = requests.get(audio).content else: with open(audio, "rb") as f: audio = f.read() if isinstance(audio, bytes): audio = ffmpeg_read(audio, self.feature_extractor.sampling_rate) if not isinstance(audio, np.ndarray): raise TypeError("We expect a numpy ndarray as input") if len(audio.shape) != 1: raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline") inputs = self.feature_extractor( [audio], sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt" ) if self.framework == "pt": inputs = inputs.to(self.torch_dtype) inputs["candidate_labels"] = candidate_labels sequences = [hypothesis_template.format(x) for x in candidate_labels] text_inputs = self.tokenizer(sequences, return_tensors=self.framework, padding=True) inputs["text_inputs"] = [text_inputs] return inputs def _forward(self, model_inputs): candidate_labels = model_inputs.pop("candidate_labels") text_inputs = model_inputs.pop("text_inputs") if isinstance(text_inputs[0], UserDict): text_inputs = text_inputs[0] else: # Batching case. text_inputs = text_inputs[0][0] outputs = self.model(**text_inputs, **model_inputs) model_outputs = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_audio, } return model_outputs def postprocess(self, model_outputs): candidate_labels = model_outputs.pop("candidate_labels") logits = model_outputs["logits"][0] if self.framework == "pt": probs = logits.softmax(dim=0) scores = probs.tolist() else: raise ValueError("`tf` framework not supported.") result = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(scores, candidate_labels), key=lambda x: -x[0]) ] return result ```
========================================================================================================================================== SOURCE CODE FILE: zero_shot_classification.py LINES: 1 SIZE: 12.21 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\zero_shot_classification.py ENCODING: utf-8 ```py import inspect from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import ArgumentHandler, ChunkPipeline, build_pipeline_init_args logger = logging.get_logger(__name__) class ZeroShotClassificationArgumentHandler(ArgumentHandler): """ Handles arguments for zero-shot for text classification by turning each possible label into an NLI premise/hypothesis pair. """ def _parse_labels(self, labels): if isinstance(labels, str): labels = [label.strip() for label in labels.split(",") if label.strip()] return labels def __call__(self, sequences, labels, hypothesis_template): if len(labels) == 0 or len(sequences) == 0: raise ValueError("You must include at least one label and at least one sequence.") if hypothesis_template.format(labels[0]) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(hypothesis_template) ) if isinstance(sequences, str): sequences = [sequences] sequence_pairs = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(label)] for label in labels]) return sequence_pairs, sequences @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True)) class ZeroShotClassificationPipeline(ChunkPipeline): """ NLI-based zero-shot classification pipeline using a `ModelForSequenceClassification` trained on NLI (natural language inference) tasks. Equivalent of `text-classification` pipelines, but these models don't require a hardcoded number of potential classes, they can be chosen at runtime. It usually means it's slower but it is **much** more flexible. Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis pair and passed to the pretrained model. Then, the logit for *entailment* is taken as the logit for the candidate label being valid. Any NLI model can be used, but the id of the *entailment* label must be included in the model config's :attr:*~transformers.PretrainedConfig.label2id*. Example: ```python >>> from transformers import pipeline >>> oracle = pipeline(model="facebook/bart-large-mnli") >>> oracle( ... "I have a problem with my iphone that needs to be resolved asap!!", ... candidate_labels=["urgent", "not urgent", "phone", "tablet", "computer"], ... ) {'sequence': 'I have a problem with my iphone that needs to be resolved asap!!', 'labels': ['urgent', 'phone', 'computer', 'not urgent', 'tablet'], 'scores': [0.504, 0.479, 0.013, 0.003, 0.002]} >>> oracle( ... "I have a problem with my iphone that needs to be resolved asap!!", ... candidate_labels=["english", "german"], ... ) {'sequence': 'I have a problem with my iphone that needs to be resolved asap!!', 'labels': ['english', 'german'], 'scores': [0.814, 0.186]} ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This NLI pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"zero-shot-classification"`. The models that this pipeline can use are models that have been fine-tuned on an NLI task. See the up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?search=nli). """ def __init__(self, args_parser=ZeroShotClassificationArgumentHandler(), *args, **kwargs): self._args_parser = args_parser super().__init__(*args, **kwargs) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def entailment_id(self): for label, ind in self.model.config.label2id.items(): if label.lower().startswith("entail"): return ind return -1 def _parse_and_tokenize( self, sequence_pairs, padding=True, add_special_tokens=True, truncation=TruncationStrategy.ONLY_FIRST, **kwargs ): """ Parse arguments and tokenize only_first so that hypothesis (label) is not truncated """ return_tensors = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) self.tokenizer.pad_token = self.tokenizer.eos_token try: inputs = self.tokenizer( sequence_pairs, add_special_tokens=add_special_tokens, return_tensors=return_tensors, padding=padding, truncation=truncation, ) except Exception as e: if "too short" in str(e): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. inputs = self.tokenizer( sequence_pairs, add_special_tokens=add_special_tokens, return_tensors=return_tensors, padding=padding, truncation=TruncationStrategy.DO_NOT_TRUNCATE, ) else: raise e return inputs def _sanitize_parameters(self, **kwargs): if kwargs.get("multi_class", None) is not None: kwargs["multi_label"] = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) preprocess_params = {} if "candidate_labels" in kwargs: preprocess_params["candidate_labels"] = self._args_parser._parse_labels(kwargs["candidate_labels"]) if "hypothesis_template" in kwargs: preprocess_params["hypothesis_template"] = kwargs["hypothesis_template"] postprocess_params = {} if "multi_label" in kwargs: postprocess_params["multi_label"] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self, sequences: Union[str, List[str]], *args, **kwargs, ): """ Classify the sequence(s) given as inputs. See the [`ZeroShotClassificationPipeline`] documentation for more information. Args: sequences (`str` or `List[str]`): The sequence(s) to classify, will be truncated if the model input is too large. candidate_labels (`str` or `List[str]`): The set of possible class labels to classify each sequence into. Can be a single label, a string of comma-separated labels, or a list of labels. hypothesis_template (`str`, *optional*, defaults to `"This example is {}."`): The template used to turn each label into an NLI-style hypothesis. This template must include a {} or similar syntax for the candidate label to be inserted into the template. For example, the default template is `"This example is {}."` With the candidate label `"sports"`, this would be fed into the model like `"<cls> sequence to classify <sep> This example is sports . <sep>"`. The default template works well in many cases, but it may be worthwhile to experiment with different templates depending on the task setting. multi_label (`bool`, *optional*, defaults to `False`): Whether or not multiple candidate labels can be true. If `False`, the scores are normalized such that the sum of the label likelihoods for each sequence is 1. If `True`, the labels are considered independent and probabilities are normalized for each candidate by doing a softmax of the entailment score vs. the contradiction score. Return: A `dict` or a list of `dict`: Each result comes as a dictionary with the following keys: - **sequence** (`str`) -- The sequence for which this is the output. - **labels** (`List[str]`) -- The labels sorted by order of likelihood. - **scores** (`List[float]`) -- The probabilities for each of the labels. """ if len(args) == 0: pass elif len(args) == 1 and "candidate_labels" not in kwargs: kwargs["candidate_labels"] = args[0] else: raise ValueError(f"Unable to understand extra arguments {args}") return super().__call__(sequences, **kwargs) def preprocess(self, inputs, candidate_labels=None, hypothesis_template="This example is {}."): sequence_pairs, sequences = self._args_parser(inputs, candidate_labels, hypothesis_template) for i, (candidate_label, sequence_pair) in enumerate(zip(candidate_labels, sequence_pairs)): model_input = self._parse_and_tokenize([sequence_pair]) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(candidate_labels) - 1, **model_input, } def _forward(self, inputs): candidate_label = inputs["candidate_label"] sequence = inputs["sequence"] model_inputs = {k: inputs[k] for k in self.tokenizer.model_input_names} # `XXXForSequenceClassification` models should not use `use_cache=True` even if it's supported model_forward = self.model.forward if self.framework == "pt" else self.model.call if "use_cache" in inspect.signature(model_forward).parameters.keys(): model_inputs["use_cache"] = False outputs = self.model(**model_inputs) model_outputs = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def postprocess(self, model_outputs, multi_label=False): candidate_labels = [outputs["candidate_label"] for outputs in model_outputs] sequences = [outputs["sequence"] for outputs in model_outputs] if self.framework == "pt": logits = np.concatenate([output["logits"].float().numpy() for output in model_outputs]) else: logits = np.concatenate([output["logits"].numpy() for output in model_outputs]) N = logits.shape[0] n = len(candidate_labels) num_sequences = N // n reshaped_outputs = logits.reshape((num_sequences, n, -1)) if multi_label or len(candidate_labels) == 1: # softmax over the entailment vs. contradiction dim for each label independently entailment_id = self.entailment_id contradiction_id = -1 if entailment_id == 0 else 0 entail_contr_logits = reshaped_outputs[..., [contradiction_id, entailment_id]] scores = np.exp(entail_contr_logits) / np.exp(entail_contr_logits).sum(-1, keepdims=True) scores = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels entail_logits = reshaped_outputs[..., self.entailment_id] scores = np.exp(entail_logits) / np.exp(entail_logits).sum(-1, keepdims=True) top_inds = list(reversed(scores[0].argsort())) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), } ```
================================================================================================================================================ SOURCE CODE FILE: zero_shot_image_classification.py LINES: 1 SIZE: 7.80 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\zero_shot_image_classification.py ENCODING: utf-8 ```py import warnings from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import Pipeline, build_pipeline_init_args if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES from ..tf_utils import stable_softmax logger = logging.get_logger(__name__) @add_end_docstrings(build_pipeline_init_args(has_image_processor=True)) class ZeroShotImageClassificationPipeline(Pipeline): """ Zero shot image classification pipeline using `CLIPModel`. This pipeline predicts the class of an image when you provide an image and a set of `candidate_labels`. Example: ```python >>> from transformers import pipeline >>> classifier = pipeline(model="google/siglip-so400m-patch14-384") >>> classifier( ... "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", ... candidate_labels=["animals", "humans", "landscape"], ... ) [{'score': 0.965, 'label': 'animals'}, {'score': 0.03, 'label': 'humans'}, {'score': 0.005, 'label': 'landscape'}] >>> classifier( ... "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", ... candidate_labels=["black and white", "photorealist", "painting"], ... ) [{'score': 0.996, 'label': 'black and white'}, {'score': 0.003, 'label': 'photorealist'}, {'score': 0.0, 'label': 'painting'}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This image classification pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"zero-shot-image-classification"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=zero-shot-image-classification). """ def __init__(self, **kwargs): super().__init__(**kwargs) requires_backends(self, "vision") self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES ) def __call__(self, image: Union[str, List[str], "Image", List["Image"]] = None, **kwargs): """ Assign labels to the image(s) passed as inputs. Args: image (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): The pipeline handles three types of images: - A string containing a http link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly candidate_labels (`List[str]`): The candidate labels for this image. They will be formatted using *hypothesis_template*. hypothesis_template (`str`, *optional*, defaults to `"This is a photo of {}"`): The format used in conjunction with *candidate_labels* to attempt the image classification by replacing the placeholder with the candidate_labels. Pass "{}" if *candidate_labels* are already formatted. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and the call may block forever. Return: A list of dictionaries containing one entry per proposed label. Each dictionary contains the following keys: - **label** (`str`) -- One of the suggested *candidate_labels*. - **score** (`float`) -- The score attributed by the model to that label. It is a value between 0 and 1, computed as the `softmax` of `logits_per_image`. """ # After deprecation of this is completed, remove the default `None` value for `image` if "images" in kwargs: image = kwargs.pop("images") if image is None: raise ValueError("Cannot call the zero-shot-image-classification pipeline without an images argument!") return super().__call__(image, **kwargs) def _sanitize_parameters(self, tokenizer_kwargs=None, **kwargs): preprocess_params = {} if "candidate_labels" in kwargs: preprocess_params["candidate_labels"] = kwargs["candidate_labels"] if "timeout" in kwargs: preprocess_params["timeout"] = kwargs["timeout"] if "hypothesis_template" in kwargs: preprocess_params["hypothesis_template"] = kwargs["hypothesis_template"] if tokenizer_kwargs is not None: warnings.warn( "The `tokenizer_kwargs` argument is deprecated and will be removed in version 5 of Transformers", FutureWarning, ) preprocess_params["tokenizer_kwargs"] = tokenizer_kwargs return preprocess_params, {}, {} def preprocess( self, image, candidate_labels=None, hypothesis_template="This is a photo of {}.", timeout=None, tokenizer_kwargs=None, ): if tokenizer_kwargs is None: tokenizer_kwargs = {} image = load_image(image, timeout=timeout) inputs = self.image_processor(images=[image], return_tensors=self.framework) if self.framework == "pt": inputs = inputs.to(self.torch_dtype) inputs["candidate_labels"] = candidate_labels sequences = [hypothesis_template.format(x) for x in candidate_labels] tokenizer_default_kwargs = {"padding": True} if "siglip" in self.model.config.model_type: tokenizer_default_kwargs.update(padding="max_length", max_length=64, truncation=True) tokenizer_default_kwargs.update(tokenizer_kwargs) text_inputs = self.tokenizer(sequences, return_tensors=self.framework, **tokenizer_default_kwargs) inputs["text_inputs"] = [text_inputs] return inputs def _forward(self, model_inputs): candidate_labels = model_inputs.pop("candidate_labels") text_inputs = model_inputs.pop("text_inputs") if isinstance(text_inputs[0], UserDict): text_inputs = text_inputs[0] else: # Batching case. text_inputs = text_inputs[0][0] outputs = self.model(**text_inputs, **model_inputs) model_outputs = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def postprocess(self, model_outputs): candidate_labels = model_outputs.pop("candidate_labels") logits = model_outputs["logits"][0] if self.framework == "pt" and "siglip" in self.model.config.model_type: probs = torch.sigmoid(logits).squeeze(-1) scores = probs.tolist() if not isinstance(scores, list): scores = [scores] elif self.framework == "pt": probs = logits.softmax(dim=-1).squeeze(-1) scores = probs.tolist() if not isinstance(scores, list): scores = [scores] elif self.framework == "tf": probs = stable_softmax(logits, axis=-1) scores = probs.numpy().tolist() else: raise ValueError(f"Unsupported framework: {self.framework}") result = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(scores, candidate_labels), key=lambda x: -x[0]) ] return result ```
============================================================================================================================================ SOURCE CODE FILE: zero_shot_object_detection.py LINES: 1 SIZE: 10.01 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pipelines\zero_shot_object_detection.py ENCODING: utf-8 ```py from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import ChunkPipeline, build_pipeline_init_args if is_vision_available(): from PIL import Image from ..image_utils import load_image, valid_images if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES logger = logging.get_logger(__name__) @add_end_docstrings(build_pipeline_init_args(has_image_processor=True)) class ZeroShotObjectDetectionPipeline(ChunkPipeline): """ Zero shot object detection pipeline using `OwlViTForObjectDetection`. This pipeline predicts bounding boxes of objects when you provide an image and a set of `candidate_labels`. Example: ```python >>> from transformers import pipeline >>> detector = pipeline(model="google/owlvit-base-patch32", task="zero-shot-object-detection") >>> detector( ... "http://images.cocodataset.org/val2017/000000039769.jpg", ... candidate_labels=["cat", "couch"], ... ) [{'score': 0.287, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.254, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.121, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}] >>> detector( ... "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", ... candidate_labels=["head", "bird"], ... ) [{'score': 0.119, 'label': 'bird', 'box': {'xmin': 71, 'ymin': 170, 'xmax': 410, 'ymax': 508}}] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This object detection pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"zero-shot-object-detection"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=zero-shot-object-detection). """ def __init__(self, **kwargs): super().__init__(**kwargs) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch.") requires_backends(self, "vision") self.check_model_type(MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES) def __call__( self, image: Union[str, "Image.Image", List[Dict[str, Any]]], candidate_labels: Union[str, List[str]] = None, **kwargs, ): """ Detect objects (bounding boxes & classes) in the image(s) passed as inputs. Args: image (`str`, `PIL.Image` or `List[Dict[str, Any]]`): The pipeline handles three types of images: - A string containing an http url pointing to an image - A string containing a local path to an image - An image loaded in PIL directly You can use this parameter to send directly a list of images, or a dataset or a generator like so: ```python >>> from transformers import pipeline >>> detector = pipeline(model="google/owlvit-base-patch32", task="zero-shot-object-detection") >>> detector( ... [ ... { ... "image": "http://images.cocodataset.org/val2017/000000039769.jpg", ... "candidate_labels": ["cat", "couch"], ... }, ... { ... "image": "http://images.cocodataset.org/val2017/000000039769.jpg", ... "candidate_labels": ["cat", "couch"], ... }, ... ] ... ) [[{'score': 0.287, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.25, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.121, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}], [{'score': 0.287, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.254, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.121, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}]] ``` candidate_labels (`str` or `List[str]` or `List[List[str]]`): What the model should recognize in the image. threshold (`float`, *optional*, defaults to 0.1): The probability necessary to make a prediction. top_k (`int`, *optional*, defaults to None): The number of top predictions that will be returned by the pipeline. If the provided number is `None` or higher than the number of predictions available, it will default to the number of predictions. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and the call may block forever. Return: A list of lists containing prediction results, one list per input image. Each list contains dictionaries with the following keys: - **label** (`str`) -- Text query corresponding to the found object. - **score** (`float`) -- Score corresponding to the object (between 0 and 1). - **box** (`Dict[str,int]`) -- Bounding box of the detected object in image's original size. It is a dictionary with `x_min`, `x_max`, `y_min`, `y_max` keys. """ if "text_queries" in kwargs: candidate_labels = kwargs.pop("text_queries") if isinstance(image, (str, Image.Image)): inputs = {"image": image, "candidate_labels": candidate_labels} elif isinstance(image, (list, tuple)) and valid_images(image): return list( super().__call__( ({"image": img, "candidate_labels": labels} for img, labels in zip(image, candidate_labels)), **kwargs, ) ) else: """ Supports the following format - {"image": image, "candidate_labels": candidate_labels} - [{"image": image, "candidate_labels": candidate_labels}] - Generator and datasets This is a common pattern in other multimodal pipelines, so we support it here as well. """ inputs = image results = super().__call__(inputs, **kwargs) return results def _sanitize_parameters(self, **kwargs): preprocess_params = {} if "timeout" in kwargs: preprocess_params["timeout"] = kwargs["timeout"] postprocess_params = {} if "threshold" in kwargs: postprocess_params["threshold"] = kwargs["threshold"] if "top_k" in kwargs: postprocess_params["top_k"] = kwargs["top_k"] return preprocess_params, {}, postprocess_params def preprocess(self, inputs, timeout=None): image = load_image(inputs["image"], timeout=timeout) candidate_labels = inputs["candidate_labels"] if isinstance(candidate_labels, str): candidate_labels = candidate_labels.split(",") target_size = torch.tensor([[image.height, image.width]], dtype=torch.int32) for i, candidate_label in enumerate(candidate_labels): text_inputs = self.tokenizer(candidate_label, return_tensors=self.framework) image_features = self.image_processor(image, return_tensors=self.framework) if self.framework == "pt": image_features = image_features.to(self.torch_dtype) yield { "is_last": i == len(candidate_labels) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _forward(self, model_inputs): target_size = model_inputs.pop("target_size") candidate_label = model_inputs.pop("candidate_label") is_last = model_inputs.pop("is_last") outputs = self.model(**model_inputs) model_outputs = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def postprocess(self, model_outputs, threshold=0.1, top_k=None): results = [] for model_output in model_outputs: label = model_output["candidate_label"] model_output = BaseModelOutput(model_output) outputs = self.image_processor.post_process_object_detection( outputs=model_output, threshold=threshold, target_sizes=model_output["target_size"] )[0] for index in outputs["scores"].nonzero(): score = outputs["scores"][index].item() box = self._get_bounding_box(outputs["boxes"][index][0]) result = {"score": score, "label": label, "box": box} results.append(result) results = sorted(results, key=lambda x: x["score"], reverse=True) if top_k: results = results[:top_k] return results def _get_bounding_box(self, box: "torch.Tensor") -> Dict[str, int]: """ Turns list [xmin, xmax, ymin, ymax] into dict { "xmin": xmin, ... } Args: box (`torch.Tensor`): Tensor containing the coordinates in corners format. Returns: bbox (`Dict[str, int]`): Dict containing the coordinates in corners format. """ if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") xmin, ymin, xmax, ymax = box.int().tolist() bbox = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox ```
======================================================================================================================== SOURCE CODE FILE: processing_utils.py LINES: 8 SIZE: 70.65 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\processing_utils.py ENCODING: utf-8 ```py # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processing saving/loading class for common processors. """ import copy import inspect import json import os import sys import typing import warnings from pathlib import Path from typing import Any, Callable, Dict, List, Optional, TypedDict, Union import numpy as np import typing_extensions from .audio_utils import load_audio from .dynamic_module_utils import custom_object_save from .image_utils import ( ChannelDimension, ImageInput, VideoInput, is_valid_image, is_vision_available, load_image, load_video, ) if is_vision_available(): from .image_utils import PILImageResampling from .tokenization_utils_base import ( PaddingStrategy, PreTokenizedInput, PreTrainedTokenizerBase, TextInput, TruncationStrategy, ) from .utils import ( PROCESSOR_NAME, PushToHubMixin, TensorType, add_model_info_to_auto_map, add_model_info_to_custom_pipelines, cached_file, copy_func, direct_transformers_import, download_url, is_offline_mode, is_remote_url, logging, ) logger = logging.get_logger(__name__) # Dynamically import the Transformers module to grab the attribute classes of the processor from their names. transformers_module = direct_transformers_import(Path(__file__).parent) AUTO_TO_BASE_CLASS_MAPPING = { "AutoTokenizer": "PreTrainedTokenizerBase", "AutoFeatureExtractor": "FeatureExtractionMixin", "AutoImageProcessor": "ImageProcessingMixin", } if sys.version_info >= (3, 11): Unpack = typing.Unpack else: Unpack = typing_extensions.Unpack class TextKwargs(TypedDict, total=False): """ Keyword arguments for text processing. For extended documentation, check out tokenization_utils_base methods and docstrings associated. Attributes: add_special_tokens (`bool`, *optional*) Whether or not to add special tokens when encoding the sequences. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*) Activates and controls padding. truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*): Activates and controls truncation. max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. stride (`int`, *optional*): If set, the overflowing tokens will contain some tokens from the end of the truncated sequence. is_split_into_words (`bool`, *optional*): Whether or not the input is already pre-tokenized. pad_to_multiple_of (`int`, *optional*): If set, will pad the sequence to a multiple of the provided value. return_token_type_ids (`bool`, *optional*): Whether to return token type IDs. return_attention_mask (`bool`, *optional*): Whether to return the attention mask. return_overflowing_tokens (`bool`, *optional*): Whether or not to return overflowing token sequences. return_special_tokens_mask (`bool`, *optional*): Whether or not to return special tokens mask information. return_offsets_mapping (`bool`, *optional*): Whether or not to return `(char_start, char_end)` for each token. return_length (`bool`, *optional*): Whether or not to return the lengths of the encoded inputs. verbose (`bool`, *optional*): Whether or not to print more information and warnings. padding_side (`str`, *optional*): The side on which padding will be applied. """ text_pair: Optional[Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]]] text_target: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] text_pair_target: Optional[Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]]] add_special_tokens: Optional[bool] padding: Union[bool, str, PaddingStrategy] truncation: Union[bool, str, TruncationStrategy] max_length: Optional[int] stride: Optional[int] is_split_into_words: Optional[bool] pad_to_multiple_of: Optional[int] return_token_type_ids: Optional[bool] return_attention_mask: Optional[bool] return_overflowing_tokens: Optional[bool] return_special_tokens_mask: Optional[bool] return_offsets_mapping: Optional[bool] return_length: Optional[bool] verbose: Optional[bool] padding_side: Optional[str] class ImagesKwargs(TypedDict, total=False): """ Keyword arguments for image processing. For extended documentation, check the appropriate ImageProcessor class methods and docstrings. Attributes: do_resize (`bool`, *optional*): Whether to resize the image. size (`Dict[str, int]`, *optional*): Resize the shorter side of the input to `size["shortest_edge"]`. size_divisor (`int`, *optional*): The size by which to make sure both the height and width can be divided. crop_size (`Dict[str, int]`, *optional*): Desired output size when applying center-cropping. resample (`PILImageResampling`, *optional*): Resampling filter to use if resizing the image. do_rescale (`bool`, *optional*): Whether to rescale the image by the specified scale `rescale_factor`. rescale_factor (`int` or `float`, *optional*): Scale factor to use if rescaling the image. do_normalize (`bool`, *optional*): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*): Mean to use if normalizing the image. image_std (`float` or `List[float]`, *optional*): Standard deviation to use if normalizing the image. do_pad (`bool`, *optional*): Whether to pad the image to the `(max_height, max_width)` of the images in the batch. pad_size (`Dict[str, int]`, *optional*): The size `{"height": int, "width" int}` to pad the images to. do_center_crop (`bool`, *optional*): Whether to center crop the image. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. device (`str`, *optional*): The device to use for processing (e.g. "cpu", "cuda"), only relevant for fast image processing. """ do_resize: Optional[bool] size: Optional[dict[str, int]] size_divisor: Optional[int] crop_size: Optional[dict[str, int]] resample: Optional[Union["PILImageResampling", int]] do_rescale: Optional[bool] rescale_factor: Optional[float] do_normalize: Optional[bool] image_mean: Optional[Union[float, list[float]]] image_std: Optional[Union[float, list[float]]] do_pad: Optional[bool] pad_size: Optional[dict[str, int]] do_center_crop: Optional[bool] data_format: Optional[ChannelDimension] input_data_format: Optional[Union[str, ChannelDimension]] device: Optional[str] class VideosKwargs(TypedDict, total=False): """ Keyword arguments for video processing. Attributes: do_resize (`bool`): Whether to resize the image. size (`Dict[str, int]`, *optional*): Resize the shorter side of the input to `size["shortest_edge"]`. size_divisor (`int`, *optional*): The size by which to make sure both the height and width can be divided. resample (`PILImageResampling`, *optional*): Resampling filter to use if resizing the image. do_rescale (`bool`, *optional*): Whether to rescale the image by the specified scale `rescale_factor`. rescale_factor (`int` or `float`, *optional*): Scale factor to use if rescaling the image. do_normalize (`bool`, *optional*): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*): Mean to use if normalizing the image. image_std (`float` or `List[float]`, *optional*): Standard deviation to use if normalizing the image. do_pad (`bool`, *optional*): Whether to pad the image to the `(max_height, max_width)` of the images in the batch. do_center_crop (`bool`, *optional*): Whether to center crop the image. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. """ do_resize: Optional[bool] size: Optional[dict[str, int]] size_divisor: Optional[int] resample: Optional["PILImageResampling"] do_rescale: Optional[bool] rescale_factor: Optional[float] do_normalize: Optional[bool] image_mean: Optional[Union[float, list[float]]] image_std: Optional[Union[float, list[float]]] do_pad: Optional[bool] do_center_crop: Optional[bool] data_format: Optional[ChannelDimension] input_data_format: Optional[Union[str, ChannelDimension]] class AudioKwargs(TypedDict, total=False): """ Keyword arguments for audio processing. Attributes: sampling_rate (`int`, *optional*): The sampling rate at which the `raw_speech` input was sampled. raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not stereo, i.e. single float per timestep. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`, *optional*): Activates truncation to cut input sequences longer than *max_length* to *max_length*. pad_to_multiple_of (`int`, *optional*): If set, will pad the sequence to a multiple of the provided value. return_attention_mask (`bool`, *optional*): Whether or not [`~ASTFeatureExtractor.__call__`] should return `attention_mask`. """ sampling_rate: Optional[int] raw_speech: Optional[Union["np.ndarray", list[float], list["np.ndarray"], list[list[float]]]] padding: Optional[Union[bool, str, PaddingStrategy]] max_length: Optional[int] truncation: Optional[bool] pad_to_multiple_of: Optional[int] return_attention_mask: Optional[bool] class CommonKwargs(TypedDict, total=False): return_tensors: Optional[Union[str, TensorType]] class ProcessingKwargs(TextKwargs, ImagesKwargs, VideosKwargs, AudioKwargs, CommonKwargs, total=False): """ Base class for kwargs passing to processors. A model should have its own `ModelProcessorKwargs` class that inherits from `ProcessingKwargs` to provide: 1) Additional typed keys and that this model requires to process inputs. 2) Default values for existing keys under a `_defaults` attribute. New keys have to be defined as follows to ensure type hinting is done correctly. ```python # adding a new image kwarg for this model class ModelImagesKwargs(ImagesKwargs, total=False): new_image_kwarg: Optional[bool] class ModelProcessorKwargs(ProcessingKwargs, total=False): images_kwargs: ModelImagesKwargs _defaults = { "images_kwargs: { "new_image_kwarg": False, } "text_kwargs": { "padding": "max_length", }, } ``` For Python 3.8 compatibility, when inheriting from this class and overriding one of the kwargs, you need to manually update the __annotations__ dictionary. This can be done as follows: ```python class CustomProcessorKwargs(ProcessingKwargs, total=False): images_kwargs: CustomImagesKwargs CustomProcessorKwargs.__annotations__["images_kwargs"] = CustomImagesKwargs # python 3.8 compatibility ```python """ common_kwargs: CommonKwargs = { **CommonKwargs.__annotations__, } text_kwargs: TextKwargs = { **TextKwargs.__annotations__, } images_kwargs: ImagesKwargs = { **ImagesKwargs.__annotations__, } videos_kwargs: VideosKwargs = { **VideosKwargs.__annotations__, } audio_kwargs: AudioKwargs = { **AudioKwargs.__annotations__, } class TokenizerChatTemplateKwargs(TypedDict, total=False): """ Keyword arguments for tokenizer's `apply_chat_template`, when it is called from within a processor. tools (`List[Dict]`, *optional*): A list of tools (callable functions) that will be accessible to the model. If the template does not support function calling, this argument will have no effect. Each tool should be passed as a JSON Schema, giving the name, description and argument types for the tool. See our [chat templating guide](https://huggingface.co/docs/transformers/main/en/chat_templating#automated-function-conversion-for-tool-use) for more information. documents (`List[Dict[str, str]]`, *optional*): A list of dicts representing documents that will be accessible to the model if it is performing RAG (retrieval-augmented generation). If the template does not support RAG, this argument will have no effect. We recommend that each document should be a dict containing "title" and "text" keys. Please see the RAG section of the [chat templating guide](https://huggingface.co/docs/transformers/main/en/chat_templating#arguments-for-RAG) for examples of passing documents with chat templates. add_generation_prompt (bool, *optional*): If this is set, a prompt with the token(s) that indicate the start of an assistant message will be appended to the formatted output. This is useful when you want to generate a response from the model. Note that this argument will be passed to the chat template, and so it must be supported in the template for this argument to have any effect. continue_final_message (bool, *optional*): If this is set, the chat will be formatted so that the final message in the chat is open-ended, without any EOS tokens. The model will continue this message rather than starting a new one. This allows you to "prefill" part of the model's response for it. Cannot be used at the same time as `add_generation_prompt`. return_assistant_tokens_mask (`bool`, defaults to `False`): Whether to return a mask of the assistant generated tokens. For tokens generated by the assistant, the mask will contain 1. For user and system tokens, the mask will contain 0. This functionality is only available for chat templates that support it via the `{% generation %}` keyword. """ tools: Optional[list[dict]] = None documents: Optional[list[dict[str, str]]] = None add_generation_prompt: Optional[bool] = False continue_final_message: Optional[bool] = False return_assistant_tokens_mask: Optional[bool] = False class ChatTemplateLoadKwargs(TypedDict, total=False): """ Keyword arguments used to load multimodal data in processor chat templates. num_frames (`int`, *optional*): Number of frames to sample uniformly. If not passed, the whole video is loaded. video_load_backend (`str`, *optional*, defaults to `"pyav"`): The backend to use when loading the video which will be used only when there are videos in the conversation. Can be any of ["decord", "pyav", "opencv", "torchvision"]. Defaults to "pyav" because it is the only backend that supports all types of sources to load from. video_fps (`int`, *optional*): Number of frames to sample per second. Should be passed only when `num_frames=None`. If not specified and `num_frames==None`, all frames are sampled. sample_indices_fn (`Callable`, *optional*): A callable function that will return indices at which the video should be sampled. If the video has to be loaded using by a different sampling technique than provided by `num_frames` or `fps` arguments, one should provide their own `sample_indices_fn`. If not provided, simple uniformt sampling with fps is performed, otherwise `sample_indices_fn` has priority over other args. The function expects at input the all args along with all kwargs passed to `load_video` and should output valid indices at which the video should be sampled. For example: def sample_indices_fn(num_frames, fps, metadata, **kwargs): # add you sampling logic here ... return np.linspace(start_idx, end_idx, num_frames, dtype=int) """ num_frames: Optional[int] = None video_load_backend: Optional[str] = "pyav" video_fps: Optional[int] = None sampling_rate: Optional[int] = 16_000 sample_indices_fn: Optional[Callable] = None load_audio_from_video: Optional[bool] = False class ProcessorChatTemplateKwargs(ChatTemplateLoadKwargs, TokenizerChatTemplateKwargs, total=False): """ Keyword arguments for processor's `apply_chat_template`. tokenize (`bool`, *optional*, defaults to `False`): Whether to tokenize the output or not. return_dict (`bool`, defaults to `False`): Whether to return a dictionary with named outputs. Has no effect if tokenize is `False`. """ tokenize: Optional[bool] = False return_dict: Optional[bool] = False class AllKwargsForChatTemplate( TextKwargs, ImagesKwargs, VideosKwargs, AudioKwargs, CommonKwargs, ProcessorChatTemplateKwargs ): ... class ProcessorMixin(PushToHubMixin): """ This is a mixin used to provide saving/loading functionality for all processor classes. """ attributes = ["feature_extractor", "tokenizer"] optional_attributes = ["chat_template"] optional_call_args: list[str] = [] # Names need to be attr_class for attr in attributes feature_extractor_class = None tokenizer_class = None _auto_class = None valid_kwargs: list[str] = [] # args have to match the attributes class attribute def __init__(self, *args, **kwargs): # First, extract optional attributes from kwargs if present # Optional attributes can never be positional arguments for optional_attribute in self.optional_attributes: setattr(self, optional_attribute, kwargs.pop(optional_attribute, None)) # Sanitize args and kwargs for key in kwargs: if key not in self.attributes: raise TypeError(f"Unexpected keyword argument {key}.") for arg, attribute_name in zip(args, self.attributes): if attribute_name in kwargs: raise TypeError(f"Got multiple values for argument {attribute_name}.") else: kwargs[attribute_name] = arg if len(kwargs) != len(self.attributes): raise ValueError( f"This processor requires {len(self.attributes)} arguments: {', '.join(self.attributes)}. Got " f"{len(args)} arguments instead." ) # Check each arg is of the proper class (this will also catch a user initializing in the wrong order) for attribute_name, arg in kwargs.items(): class_name = getattr(self, f"{attribute_name}_class") # Nothing is ever going to be an instance of "AutoXxx", in that case we check the base class. class_name = AUTO_TO_BASE_CLASS_MAPPING.get(class_name, class_name) if isinstance(class_name, tuple): proper_class = tuple(self.get_possibly_dynamic_module(n) for n in class_name if n is not None) else: proper_class = self.get_possibly_dynamic_module(class_name) if not isinstance(arg, proper_class): raise TypeError( f"Received a {type(arg).__name__} for argument {attribute_name}, but a {class_name} was expected." ) setattr(self, attribute_name, arg) def to_dict(self) -> dict[str, Any]: """ Serializes this instance to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this processor instance. """ output = copy.deepcopy(self.__dict__) # Get the kwargs in `__init__`. sig = inspect.signature(self.__init__) # Only save the attributes that are presented in the kwargs of `__init__`. attrs_to_save = sig.parameters # Don't save attributes like `tokenizer`, `image processor` etc. attrs_to_save = [x for x in attrs_to_save if x not in self.__class__.attributes] # extra attributes to be kept attrs_to_save += ["auto_map"] output = {k: v for k, v in output.items() if k in attrs_to_save} output["processor_class"] = self.__class__.__name__ if "tokenizer" in output: del output["tokenizer"] if "image_processor" in output: del output["image_processor"] if "feature_extractor" in output: del output["feature_extractor"] if "chat_template" in output: del output["chat_template"] # Some attributes have different names but containing objects that are not simple strings output = { k: v for k, v in output.items() if not (isinstance(v, PushToHubMixin) or v.__class__.__name__ == "BeamSearchDecoderCTC") } return output def to_json_string(self) -> str: """ Serializes this instance to a JSON string. Returns: `str`: String containing all the attributes that make up this feature_extractor instance in JSON format. """ dictionary = self.to_dict() return json.dumps(dictionary, indent=2, sort_keys=True) + "\n" def to_json_file(self, json_file_path: Union[str, os.PathLike]): """ Save this instance to a JSON file. Args: json_file_path (`str` or `os.PathLike`): Path to the JSON file in which this processor instance's parameters will be saved. """ with open(json_file_path, "w", encoding="utf-8") as writer: writer.write(self.to_json_string()) def __repr__(self): attributes_repr = [f"- {name}: {repr(getattr(self, name))}" for name in self.attributes] attributes_repr = "\n".join(attributes_repr) return f"{self.__class__.__name__}:\n{attributes_repr}\n\n{self.to_json_string()}" def save_pretrained(self, save_directory, push_to_hub: bool = False, **kwargs): """ Saves the attributes of this processor (feature extractor, tokenizer...) in the specified directory so that it can be reloaded using the [`~ProcessorMixin.from_pretrained`] method. <Tip> This class method is simply calling [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] and [`~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained`]. Please refer to the docstrings of the methods above for more information. </Tip> Args: save_directory (`str` or `os.PathLike`): Directory where the feature extractor JSON file and the tokenizer files will be saved (directory will be created if it does not exist). push_to_hub (`bool`, *optional*, defaults to `False`): Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the repository you want to push to with `repo_id` (will default to the name of `save_directory` in your namespace). kwargs (`Dict[str, Any]`, *optional*): Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. """ use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token os.makedirs(save_directory, exist_ok=True) if push_to_hub: commit_message = kwargs.pop("commit_message", None) repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) repo_id = self._create_repo(repo_id, **kwargs) files_timestamps = self._get_files_timestamps(save_directory) # If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be # loaded from the Hub. if self._auto_class is not None: attrs = [getattr(self, attribute_name) for attribute_name in self.attributes] configs = [(a.init_kwargs if isinstance(a, PreTrainedTokenizerBase) else a) for a in attrs] configs.append(self) custom_object_save(self, save_directory, config=configs) for attribute_name in self.attributes: attribute = getattr(self, attribute_name) # Include the processor class in the attribute config so this processor can then be reloaded with the # `AutoProcessor` API. if hasattr(attribute, "_set_processor_class"): attribute._set_processor_class(self.__class__.__name__) attribute.save_pretrained(save_directory) if self._auto_class is not None: # We added an attribute to the init_kwargs of the tokenizers, which needs to be cleaned up. for attribute_name in self.attributes: attribute = getattr(self, attribute_name) if isinstance(attribute, PreTrainedTokenizerBase): del attribute.init_kwargs["auto_map"] # If we save using the predefined names, we can load using `from_pretrained` # plus we save chat_template in its own file output_processor_file = os.path.join(save_directory, PROCESSOR_NAME) output_raw_chat_template_file = os.path.join(save_directory, "chat_template.jinja") output_chat_template_file = os.path.join(save_directory, "chat_template.json") processor_dict = self.to_dict() # Save `chat_template` in its own file. We can't get it from `processor_dict` as we popped it in `to_dict` # to avoid serializing chat template in json config file. So let's get it from `self` directly if self.chat_template is not None: if kwargs.get("save_raw_chat_template", False): with open(output_raw_chat_template_file, "w", encoding="utf-8") as writer: writer.write(self.chat_template) logger.info(f"chat template saved in {output_raw_chat_template_file}") else: chat_template_json_string = ( json.dumps({"chat_template": self.chat_template}, indent=2, sort_keys=True) + "\n" ) with open(output_chat_template_file, "w", encoding="utf-8") as writer: writer.write(chat_template_json_string) logger.info(f"chat template saved in {output_chat_template_file}") # For now, let's not save to `processor_config.json` if the processor doesn't have extra attributes and # `auto_map` is not specified. if set(processor_dict.keys()) != {"processor_class"}: self.to_json_file(output_processor_file) logger.info(f"processor saved in {output_processor_file}") if push_to_hub: self._upload_modified_files( save_directory, repo_id, files_timestamps, commit_message=commit_message, token=kwargs.get("token"), ) if set(processor_dict.keys()) == {"processor_class"}: return [] return [output_processor_file] @classmethod def get_processor_dict( cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs ) -> tuple[dict[str, Any], dict[str, Any]]: """ From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a processor of type [`~processing_utils.ProcessingMixin`] using `from_args_and_dict`. Parameters: pretrained_model_name_or_path (`str` or `os.PathLike`): The identifier of the pre-trained checkpoint from which we want the dictionary of parameters. subfolder (`str`, *optional*, defaults to `""`): In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can specify the folder name here. Returns: `Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the processor object. """ cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", None) proxies = kwargs.pop("proxies", None) token = kwargs.pop("token", None) local_files_only = kwargs.pop("local_files_only", False) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", "") from_pipeline = kwargs.pop("_from_pipeline", None) from_auto_class = kwargs.pop("_from_auto", False) user_agent = {"file_type": "processor", "from_auto_class": from_auto_class} if from_pipeline is not None: user_agent["using_pipeline"] = from_pipeline if is_offline_mode() and not local_files_only: logger.info("Offline mode: forcing local_files_only=True") local_files_only = True pretrained_model_name_or_path = str(pretrained_model_name_or_path) is_local = os.path.isdir(pretrained_model_name_or_path) if os.path.isdir(pretrained_model_name_or_path): processor_file = os.path.join(pretrained_model_name_or_path, PROCESSOR_NAME) if os.path.isfile(pretrained_model_name_or_path): resolved_processor_file = pretrained_model_name_or_path # cant't load chat-template when given a file as pretrained_model_name_or_path resolved_chat_template_file = None resolved_raw_chat_template_file = None is_local = True elif is_remote_url(pretrained_model_name_or_path): processor_file = pretrained_model_name_or_path resolved_processor_file = download_url(pretrained_model_name_or_path) # can't load chat-template when given a file url as pretrained_model_name_or_path resolved_chat_template_file = None resolved_raw_chat_template_file = None else: processor_file = PROCESSOR_NAME chat_template_file = "chat_template.json" raw_chat_template_file = "chat_template.jinja" try: # Load from local folder or from cache or download from model Hub and cache resolved_processor_file = cached_file( pretrained_model_name_or_path, processor_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, subfolder=subfolder, _raise_exceptions_for_missing_entries=False, ) # Load chat template from a separate json if exists # because making it part of processor-config break BC. # Processors in older version do not accept any kwargs resolved_chat_template_file = cached_file( pretrained_model_name_or_path, chat_template_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, subfolder=subfolder, _raise_exceptions_for_missing_entries=False, ) resolved_raw_chat_template_file = cached_file( pretrained_model_name_or_path, raw_chat_template_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, subfolder=subfolder, _raise_exceptions_for_missing_entries=False, ) except OSError: # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to # the original exception. raise except Exception: # For any other exception, we throw a generic error. raise OSError( f"Can't load processor for '{pretrained_model_name_or_path}'. If you were trying to load" " it from 'https://huggingface.co/models', make sure you don't have a local directory with the" f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a" f" directory containing a {PROCESSOR_NAME} file" ) # Add chat template as kwarg before returning because most models don't have processor config if resolved_raw_chat_template_file is not None: with open(resolved_raw_chat_template_file, encoding="utf-8") as reader: chat_template = reader.read() kwargs["chat_template"] = chat_template elif resolved_chat_template_file is not None: with open(resolved_chat_template_file, encoding="utf-8") as reader: text = reader.read() chat_template = json.loads(text)["chat_template"] kwargs["chat_template"] = chat_template # Existing processors on the Hub created before #27761 being merged don't have `processor_config.json` (if not # updated afterward), and we need to keep `from_pretrained` work. So here it fallbacks to the empty dict. # (`cached_file` called using `_raise_exceptions_for_missing_entries=False` to avoid exception) # However, for models added in the future, we won't get the expected error if this file is missing. if resolved_processor_file is None: # In any case we need to pass `chat_template` if it is available processor_dict = {} if "chat_template" in kwargs: processor_dict = {"chat_template": kwargs.pop("chat_template")} return processor_dict, kwargs try: # Load processor dict with open(resolved_processor_file, encoding="utf-8") as reader: text = reader.read() processor_dict = json.loads(text) except json.JSONDecodeError: raise OSError(f"It looks like the config file at '{resolved_processor_file}' is not a valid JSON file.") if is_local: logger.info(f"loading configuration file {resolved_processor_file}") else: logger.info(f"loading configuration file {processor_file} from cache at {resolved_processor_file}") if "chat_template" in processor_dict and processor_dict["chat_template"] is not None: logger.warning_once( "Chat templates should be in a 'chat_template.jinja' file but found key='chat_template' " "in the processor's config. Make sure to move your template to its own file." ) if "chat_template" in kwargs: processor_dict["chat_template"] = kwargs.pop("chat_template") if not is_local: if "auto_map" in processor_dict: processor_dict["auto_map"] = add_model_info_to_auto_map( processor_dict["auto_map"], pretrained_model_name_or_path ) if "custom_pipelines" in processor_dict: processor_dict["custom_pipelines"] = add_model_info_to_custom_pipelines( processor_dict["custom_pipelines"], pretrained_model_name_or_path ) return processor_dict, kwargs @classmethod def from_args_and_dict(cls, args, processor_dict: dict[str, Any], **kwargs): """ Instantiates a type of [`~processing_utils.ProcessingMixin`] from a Python dictionary of parameters. Args: processor_dict (`Dict[str, Any]`): Dictionary that will be used to instantiate the processor object. Such a dictionary can be retrieved from a pretrained checkpoint by leveraging the [`~processing_utils.ProcessingMixin.to_dict`] method. kwargs (`Dict[str, Any]`): Additional parameters from which to initialize the processor object. Returns: [`~processing_utils.ProcessingMixin`]: The processor object instantiated from those parameters. """ processor_dict = processor_dict.copy() return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) # We have to pop up some unused (but specific) kwargs and then validate that it doesn't contain unused kwargs # If we don't pop, some specific kwargs will raise a warning if "processor_class" in processor_dict: del processor_dict["processor_class"] if "auto_map" in processor_dict: del processor_dict["auto_map"] unused_kwargs = cls.validate_init_kwargs(processor_config=processor_dict, valid_kwargs=cls.valid_kwargs) processor = cls(*args, **processor_dict) # Update processor with kwargs if needed for key in set(kwargs.keys()): if hasattr(processor, key): setattr(processor, key, kwargs.pop(key)) kwargs.update(unused_kwargs) logger.info(f"Processor {processor}") if return_unused_kwargs: return processor, kwargs else: return processor def _merge_kwargs( self, ModelProcessorKwargs: ProcessingKwargs, tokenizer_init_kwargs: Optional[dict] = None, **kwargs, ) -> dict[str, dict]: """ Method to merge dictionaries of kwargs cleanly separated by modality within a Processor instance. The order of operations is as follows: 1) kwargs passed as before have highest priority to preserve BC. ```python high_priority_kwargs = {"crop_size" = {"height": 222, "width": 222}, "padding" = "max_length"} processor(..., **high_priority_kwargs) ``` 2) kwargs passed as modality-specific kwargs have second priority. This is the recommended API. ```python processor(..., text_kwargs={"padding": "max_length"}, images_kwargs={"crop_size": {"height": 222, "width": 222}}}) ``` 3) kwargs passed during instantiation of a modality processor have fourth priority. ```python tokenizer = tokenizer_class(..., {"padding": "max_length"}) image_processor = image_processor_class(...) processor(tokenizer, image_processor) # will pass max_length unless overridden by kwargs at call ``` 4) defaults kwargs specified at processor level have lowest priority. ```python class MyProcessingKwargs(ProcessingKwargs, CommonKwargs, TextKwargs, ImagesKwargs, total=False): _defaults = { "text_kwargs": { "padding": "max_length", "max_length": 64, }, } ``` Args: ModelProcessorKwargs (`ProcessingKwargs`): Typed dictionary of kwargs specifically required by the model passed. tokenizer_init_kwargs (`Dict`, *optional*): Dictionary of kwargs the tokenizer was instantiated with and need to take precedence over defaults. Returns: output_kwargs (`Dict`): Dictionary of per-modality kwargs to be passed to each modality-specific processor. """ # Initialize dictionaries output_kwargs = { "text_kwargs": {}, "images_kwargs": {}, "audio_kwargs": {}, "videos_kwargs": {}, "common_kwargs": {}, } default_kwargs = { "text_kwargs": {}, "images_kwargs": {}, "audio_kwargs": {}, "videos_kwargs": {}, "common_kwargs": {}, } possible_modality_keywords = {"text", "audio", "videos", "images"} used_keys = set() # get defaults from set model processor kwargs if they exist for modality in default_kwargs: default_kwargs[modality] = ModelProcessorKwargs._defaults.get(modality, {}).copy() # update defaults with arguments from tokenizer init for modality_key in ModelProcessorKwargs.__annotations__[modality].__annotations__.keys(): # init with tokenizer init kwargs if necessary if modality_key in tokenizer_init_kwargs: value = ( getattr(self.tokenizer, modality_key) if hasattr(self.tokenizer, modality_key) else tokenizer_init_kwargs[modality_key] ) default_kwargs[modality][modality_key] = value # now defaults kwargs are updated with the tokenizers defaults. # pass defaults to output dictionary output_kwargs.update(default_kwargs) # update modality kwargs with passed kwargs non_modality_kwargs = set(kwargs) - set(output_kwargs) for modality in output_kwargs: for modality_key in ModelProcessorKwargs.__annotations__[modality].__annotations__.keys(): # check if we received a structured kwarg dict or not to handle it correctly if modality in kwargs: kwarg_value = kwargs[modality].pop(modality_key, "__empty__") # check if this key was passed as a flat kwarg. if kwarg_value != "__empty__" and modality_key in non_modality_kwargs: raise ValueError( f"Keyword argument {modality_key} was passed two times:\n" f"in a dictionary for {modality} and as a **kwarg." ) elif modality_key in kwargs: # we get a modality_key instead of popping it because modality-specific processors # can have overlapping kwargs kwarg_value = kwargs.get(modality_key, "__empty__") else: kwarg_value = "__empty__" if not isinstance(kwarg_value, str) or kwarg_value != "__empty__": output_kwargs[modality][modality_key] = kwarg_value used_keys.add(modality_key) # Determine if kwargs is a flat dictionary or contains nested dictionaries if any(key in default_kwargs for key in kwargs): # kwargs is dictionary-based, and some keys match modality names for modality, subdict in kwargs.items(): if modality in default_kwargs: for subkey, subvalue in subdict.items(): if subkey not in used_keys: output_kwargs[modality][subkey] = subvalue used_keys.add(subkey) else: # kwargs is a flat dictionary for key in kwargs: if key not in used_keys: if key in ModelProcessorKwargs.__annotations__["common_kwargs"].__annotations__.keys(): output_kwargs["common_kwargs"][key] = kwargs[key] elif key not in possible_modality_keywords: logger.warning_once( f"Keyword argument `{key}` is not a valid argument for this processor and will be ignored." ) # all modality-specific kwargs are updated with common kwargs for modality in output_kwargs: output_kwargs[modality].update(output_kwargs["common_kwargs"]) return output_kwargs @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Union[str, os.PathLike], cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, local_files_only: bool = False, token: Optional[Union[str, bool]] = None, revision: str = "main", **kwargs, ): r""" Instantiate a processor associated with a pretrained model. <Tip> This class method is simply calling the feature extractor [`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`], image processor [`~image_processing_utils.ImageProcessingMixin`] and the tokenizer [`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`] methods. Please refer to the docstrings of the methods above for more information. </Tip> Args: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on huggingface.co. - a path to a *directory* containing a feature extractor file saved using the [`~SequenceFeatureExtractor.save_pretrained`] method, e.g., `./my_model_directory/`. - a path or url to a saved feature extractor JSON *file*, e.g., `./my_model_directory/preprocessor_config.json`. **kwargs Additional keyword arguments passed along to both [`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`] and [`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`]. """ kwargs["cache_dir"] = cache_dir kwargs["force_download"] = force_download kwargs["local_files_only"] = local_files_only kwargs["revision"] = revision use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token if token is not None: kwargs["token"] = token args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs) processor_dict, kwargs = cls.get_processor_dict(pretrained_model_name_or_path, **kwargs) processor_dict.update({k: v for k, v in kwargs.items() if k in processor_dict.keys()}) return cls.from_args_and_dict(args, processor_dict, **kwargs) @classmethod def register_for_auto_class(cls, auto_class="AutoProcessor"): """ Register this class with a given auto class. This should only be used for custom feature extractors as the ones in the library are already mapped with `AutoProcessor`. <Tip warning={true}> This API is experimental and may have some slight breaking changes in the next releases. </Tip> Args: auto_class (`str` or `type`, *optional*, defaults to `"AutoProcessor"`): The auto class to register this new feature extractor with. """ if not isinstance(auto_class, str): auto_class = auto_class.__name__ import transformers.models.auto as auto_module if not hasattr(auto_module, auto_class): raise ValueError(f"{auto_class} is not a valid auto class.") cls._auto_class = auto_class @classmethod def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs): """ Identify and instantiate the subcomponents of Processor classes, like image processors and tokenizers. This method uses the Processor attributes like `tokenizer_class` to figure out what class those subcomponents should be. Note that any subcomponents must either be library classes that are accessible in the `transformers` root, or they must be custom code that has been registered with the relevant autoclass, via methods like `AutoTokenizer.register()`. If neither of these conditions are fulfilled, this method will be unable to find the relevant subcomponent class and will raise an error. """ args = [] for attribute_name in cls.attributes: class_name = getattr(cls, f"{attribute_name}_class") if isinstance(class_name, tuple): classes = tuple(cls.get_possibly_dynamic_module(n) if n is not None else None for n in class_name) if attribute_name == "image_processor": # TODO: @yoni, change logic in v4.52 (when use_fast set to True by default) use_fast = kwargs.get("use_fast", None) if use_fast is None: logger.warning_once( "Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. " "`use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. " "This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`." ) else: use_fast = kwargs.get("use_fast", True) if use_fast and classes[1] is not None: attribute_class = classes[1] else: attribute_class = classes[0] else: attribute_class = cls.get_possibly_dynamic_module(class_name) args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs)) return args @staticmethod def get_possibly_dynamic_module(module_name): if hasattr(transformers_module, module_name): return getattr(transformers_module, module_name) lookup_locations = [ transformers_module.IMAGE_PROCESSOR_MAPPING, transformers_module.TOKENIZER_MAPPING, transformers_module.FEATURE_EXTRACTOR_MAPPING, ] for lookup_location in lookup_locations: for custom_class in lookup_location._extra_content.values(): if isinstance(custom_class, tuple): for custom_subclass in custom_class: if custom_subclass is not None and custom_subclass.__name__ == module_name: return custom_subclass elif custom_class is not None and custom_class.__name__ == module_name: return custom_class else: raise ValueError( f"Could not find module {module_name} in `transformers`. If this is a custom class, " f"it should be registered using the relevant `AutoClass.register()` function so that " f"other functions can find it!" ) @property def model_input_names(self): first_attribute = getattr(self, self.attributes[0]) return getattr(first_attribute, "model_input_names", None) @staticmethod def validate_init_kwargs(processor_config, valid_kwargs): kwargs_from_config = processor_config.keys() unused_kwargs = {} unused_keys = set(kwargs_from_config) - set(valid_kwargs) if unused_keys: unused_kwargs = {k: processor_config[k] for k in unused_keys} return unused_kwargs def prepare_and_validate_optional_call_args(self, *args): """ Matches optional positional arguments to their corresponding names in `optional_call_args` in the processor class in the order they are passed to the processor call. Note that this should only be used in the `__call__` method of the processors with special arguments. Special arguments are arguments that aren't `text`, `images`, `audio`, nor `videos` but also aren't passed to the tokenizer, image processor, etc. Examples of such processors are: - `CLIPSegProcessor` - `LayoutLMv2Processor` - `OwlViTProcessor` Also note that passing by position to the processor call is now deprecated and will be disallowed in future versions. We only have this for backward compatibility. Example: Suppose that the processor class has `optional_call_args = ["arg_name_1", "arg_name_2"]`. And we define the call method as: ```python def __call__( self, text: str, images: Optional[ImageInput] = None, *arg, audio=None, videos=None, ) ``` Then, if we call the processor as: ```python images = [...] processor("What is common in these images?", images, arg_value_1, arg_value_2) ``` Then, this method will return: ```python { "arg_name_1": arg_value_1, "arg_name_2": arg_value_2, } ``` which we could then pass as kwargs to `self._merge_kwargs` """ if len(args): warnings.warn( "Passing positional arguments to the processor call is now deprecated and will be disallowed in v4.47. " "Please pass all arguments as keyword arguments." ) if len(args) > len(self.optional_call_args): raise ValueError( f"Expected *at most* {len(self.optional_call_args)} optional positional arguments in processor call" f"which will be matched with {' '.join(self.optional_call_args)} in the order they are passed." f"However, got {len(args)} positional arguments instead." "Please pass all arguments as keyword arguments instead (e.g. `processor(arg_name_1=..., arg_name_2=...))`." ) return {arg_name: arg_value for arg_value, arg_name in zip(args, self.optional_call_args)} def _process_messages_for_chat_template( self, conversation: List[List[Dict[str, str]]], batch_images: List[ImageInput], batch_videos: List[VideoInput], batch_video_metadata: List[List[Dict[str, any]]], **mm_load_kwargs: Unpack[ChatTemplateLoadKwargs], ): """ Used within `apply_chat_template` when a model has a special way to process conversation history. For example, video models might want to specify in the prompt the duration of video or which frame indices at which timestamps were sampled. This information cannot be accessed before the video is loaded. For most models it is a no-op, and must be overridden by model processors which require special processing. Args: conversation (`List[Dict, str, str]`): The conversation to process. Always comes in batched format. batch_images (`List[List[ImageInput]]`): Batch of images that were loaded from url/path defined in the conversation. The images are ordered in the same way as in the conversation. Comes in nested list format, one list of `PIL` images per batch. batch_videos (`List[List[ImageInput]]`): Batch of videos that were loaded from url/path defined in the conversation. The videos are ordered in the samm way as in the conversation. Comes in nested list format, one list of 4D video arrays per batch. batch_video_metadata (`List[List[Dict[[str, any]]]]`): Batch of metadata returned from loading videos. That includes video fps, duration and total number of framer in original video. Metadata are ordered in the same way as `batch_videos`. Comes in nested list format, one list of 4D video arrays per batch. """ return conversation def apply_chat_template( self, conversation: Union[list[dict[str, str]], list[list[dict[str, str]]]], chat_template: Optional[str] = None, **kwargs: Unpack[AllKwargsForChatTemplate], ) -> str: """ Similar to the `apply_chat_template` method on tokenizers, this method applies a Jinja template to input conversations to turn them into a single tokenizable string. The input is expected to be in the following format, where each message content is a list consisting of text and optionally image or video inputs. One can also provide an image, video, URL or local path which will be used to form `pixel_values` when `return_dict=True`. If not provided, one will get only the formatted text, optionally tokenized text. conversation = [ { "role": "user", "content": [ {"type": "image", "image": "https://www.ilankelman.org/stopsigns/australia.jpg"}, {"type": "text", "text": "Please describe this image in detail."}, ], }, ] Args: conversation (`Union[List[Dict, [str, str]], List[List[Dict[str, str]]]]`): The conversation to format. chat_template (`Optional[str]`, *optional*): The Jinja template to use for formatting the conversation. If not provided, the tokenizer's chat template is used. """ if chat_template is None: if self.chat_template is not None: chat_template = self.chat_template else: raise ValueError( "No chat template is set for this processor. Please either set the `chat_template` attribute, " "or provide a chat template as an argument. See " "https://huggingface.co/docs/transformers/main/en/chat_templating for more information." ) # Fill two sets of kwargs that should be used by tokenizer's `apply_chat_template` # and for multimodal data loading. Everything else will be used in `__call__` tokenizer_template_kwargs = {} for tokenizer_key in TokenizerChatTemplateKwargs.__annotations__.keys(): default_value = getattr(TokenizerChatTemplateKwargs, tokenizer_key, None) value = kwargs.pop(tokenizer_key, default_value) tokenizer_template_kwargs[tokenizer_key] = value mm_load_kwargs = {} for mm_load_key in ChatTemplateLoadKwargs.__annotations__.keys(): default_value = getattr(ChatTemplateLoadKwargs, mm_load_key, None) value = kwargs.pop(mm_load_key, default_value) mm_load_kwargs[mm_load_key] = value if isinstance(conversation, (list, tuple)) and ( isinstance(conversation[0], (list, tuple)) or hasattr(conversation[0], "content") ): is_batched = True conversations = conversation else: is_batched = False conversations = [conversation] tokenize = kwargs.pop("tokenize", False) return_dict = kwargs.pop("return_dict", False) if tokenize: batch_images, batch_videos = [], [] batch_audios = [] batch_video_metadata = [] for conversation in conversations: images, videos = [], [] video_metadata = [] for message in conversation: visuals = [content for content in message["content"] if content["type"] in ["image", "video"]] audio_fnames = [ content[key] for content in message["content"] for key in ["audio", "url", "path"] if key in content and content["type"] == "audio" ] image_fnames = [ vision_info[key] for vision_info in visuals for key in ["image", "url", "path", "base64"] if key in vision_info and vision_info["type"] == "image" ] video_fnames = [ vision_info[key] for vision_info in visuals for key in ["video", "url", "path"] if key in vision_info and vision_info["type"] == "video" ] for fname in image_fnames: images.append(load_image(fname)) # Audio models do not accept nested list of audios (yet!) so we construct a flat input audio list if not mm_load_kwargs["load_audio_from_video"]: for fname in audio_fnames: batch_audios.append(load_audio(fname, sampling_rate=mm_load_kwargs["sampling_rate"])) else: for fname in video_fnames: batch_audios.append(load_audio(fname, sampling_rate=mm_load_kwargs["sampling_rate"])) for fname in video_fnames: if isinstance(fname, (list, tuple)) and isinstance(fname[0], str): video = [np.array(load_image(image_fname)).T for image_fname in fname] # create a 4D video because `load_video` always returns a 4D array video = np.stack(video) metadata = None logger.warning( "When loading the video from list of images, we cannot infer metadata such as `fps` or `duration`. " "If your model uses this metadata during processing, please load the whole video and let the model sample frames instead." ) else: video, metadata = load_video( fname, num_frames=mm_load_kwargs["num_frames"], fps=mm_load_kwargs["video_fps"], backend=mm_load_kwargs["video_load_backend"], sample_indices_fn=mm_load_kwargs["sample_indices_fn"], ) videos.append(video) video_metadata.append(metadata) # Currently all processors can accept nested list of batches, but not flat list of visuals # So we'll make a batched list of images and let the processor handle it if images: batch_images.append(images) if videos: batch_videos.append(videos) batch_video_metadata.append(video_metadata) # Process conversation with video/image information if needed. Then convert into a prompt using Jinja template conversations = self._process_messages_for_chat_template( conversations, batch_images=batch_images, batch_videos=batch_videos, batch_video_metadata=batch_video_metadata, **mm_load_kwargs, ) prompt = self.tokenizer.apply_chat_template( conversations, chat_template=chat_template, tokenize=False, return_dict=False, **tokenizer_template_kwargs, ) if not is_batched: prompt = prompt[0] if tokenize: # Tokenizer's `apply_chat_template` never adds special tokens when tokenizing # But processor's `apply_chat_template` didn't have an option to tokenize, so users had to format the prompt # and pass it to the processor. Users thus never worried about special tokens relying on processor handling # everything internally. The below line is to keep BC for that and be able to work with model that have # special tokens in the template (consistent with tokenizers). We dont want to raise warning, it will flood command line # without actionable solution for users single_prompt = prompt[0] if is_batched else prompt if self.tokenizer.bos_token is not None and single_prompt.startswith(self.tokenizer.bos_token): kwargs["add_special_tokens"] = False out = self( text=prompt, images=batch_images if batch_images else None, videos=batch_videos if batch_videos else None, audio=batch_audios if batch_audios else None, **kwargs, ) if return_dict: return out else: return out["input_ids"] return prompt def post_process_image_text_to_text(self, generated_outputs, skip_special_tokens=True, **kwargs): """ Post-process the output of a vlm to decode the text. Args: generated_outputs (`torch.Tensor` or `np.ndarray`): The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)` or `(sequence_length,)`. skip_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method. **kwargs: Additional arguments to be passed to the tokenizer's `batch_decode method`. Returns: `List[str]`: The decoded text. """ return self.tokenizer.batch_decode(generated_outputs, skip_special_tokens=skip_special_tokens, **kwargs) def _validate_images_text_input_order(images, text): """ For backward compatibility: reverse the order of `images` and `text` inputs if they are swapped. This method should only be called for processors where `images` and `text` have been swapped for uniformization purposes. Note that this method assumes that two `None` inputs are valid inputs. If this is not the case, it should be handled in the processor's `__call__` method before calling this method. """ def is_url(val) -> bool: return isinstance(val, str) and val.startswith("http") def _is_valid_images_input_for_processor(imgs): # If we have an list of images, make sure every image is valid if isinstance(imgs, (list, tuple)): for img in imgs: if not _is_valid_images_input_for_processor(img): return False # If not a list or tuple, we have been given a single image or batched tensor of images elif not (is_valid_image(imgs) or is_url(imgs)): return False return True def _is_valid_text_input_for_processor(t): if isinstance(t, str): # Strings are fine return True elif isinstance(t, (list, tuple)): # List are fine as long as they are... if len(t) == 0: # ... not empty return False for t_s in t: return _is_valid_text_input_for_processor(t_s) return False def _is_valid(input, validator): return validator(input) or input is None images_is_valid = _is_valid(images, _is_valid_images_input_for_processor) images_is_text = _is_valid_text_input_for_processor(images) text_is_valid = _is_valid(text, _is_valid_text_input_for_processor) text_is_images = _is_valid_images_input_for_processor(text) # Handle cases where both inputs are valid if images_is_valid and text_is_valid: return images, text # Handle cases where inputs need to and can be swapped if (images is None and text_is_images) or (text is None and images_is_text) or (images_is_text and text_is_images): logger.warning_once( "You may have used the wrong order for inputs. `images` should be passed before `text`. " "The `images` and `text` inputs will be swapped. This behavior will be deprecated in transformers v4.47." ) return text, images raise ValueError("Invalid input type. Check that `images` and/or `text` are valid inputs.") ProcessorMixin.push_to_hub = copy_func(ProcessorMixin.push_to_hub) if ProcessorMixin.push_to_hub.__doc__ is not None: ProcessorMixin.push_to_hub.__doc__ = ProcessorMixin.push_to_hub.__doc__.format( object="processor", object_class="AutoProcessor", object_files="processor files" ) ```
===================================================================================================================== SOURCE CODE FILE: pytorch_utils.py LINES: 1 SIZE: 14.33 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\pytorch_utils.py ENCODING: utf-8 ```py # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import inspect from functools import lru_cache, wraps from typing import Callable import torch from safetensors.torch import storage_ptr, storage_size from torch import nn from .utils import is_torch_greater_or_equal, is_torch_xla_available, is_torchdynamo_compiling, logging ALL_LAYERNORM_LAYERS = [nn.LayerNorm] logger = logging.get_logger(__name__) is_torch_greater_or_equal_than_2_6 = is_torch_greater_or_equal("2.6", accept_dev=True) is_torch_greater_or_equal_than_2_4 = is_torch_greater_or_equal("2.4", accept_dev=True) is_torch_greater_or_equal_than_2_3 = is_torch_greater_or_equal("2.3", accept_dev=True) is_torch_greater_or_equal_than_2_2 = is_torch_greater_or_equal("2.2", accept_dev=True) is_torch_greater_or_equal_than_2_1 = is_torch_greater_or_equal("2.1", accept_dev=True) # For backwards compatibility (e.g. some remote codes on Hub using those variables). is_torch_greater_or_equal_than_2_0 = is_torch_greater_or_equal("2.0", accept_dev=True) is_torch_greater_or_equal_than_1_13 = is_torch_greater_or_equal("1.13", accept_dev=True) is_torch_greater_or_equal_than_1_12 = is_torch_greater_or_equal("1.12", accept_dev=True) # Cache this result has it's a C FFI call which can be pretty time-consuming _torch_distributed_available = torch.distributed.is_available() if is_torch_greater_or_equal("2.5") and _torch_distributed_available: pass def softmax_backward_data(parent, grad_output, output, dim, self): """ A function that calls the internal `_softmax_backward_data` PyTorch method and that adjusts the arguments according to the torch version detected. """ from torch import _softmax_backward_data return _softmax_backward_data(grad_output, output, parent.dim, self.dtype) def prune_linear_layer(layer: nn.Linear, index: torch.LongTensor, dim: int = 0) -> nn.Linear: """ Prune a linear layer to keep only entries in index. Used to remove heads. Args: layer (`torch.nn.Linear`): The layer to prune. index (`torch.LongTensor`): The indices to keep in the layer. dim (`int`, *optional*, defaults to 0): The dimension on which to keep the indices. Returns: `torch.nn.Linear`: The pruned layer as a new layer with `requires_grad=True`. """ index = index.to(layer.weight.device) W = layer.weight.index_select(dim, index).detach().clone() if layer.bias is not None: if dim == 1: b = layer.bias.detach().clone() else: b = layer.bias[index].detach().clone() new_size = list(layer.weight.size()) new_size[dim] = len(index) new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device) new_layer.weight.requires_grad = False new_layer.weight.copy_(W.contiguous()) new_layer.weight.requires_grad = True if layer.bias is not None: new_layer.bias.requires_grad = False new_layer.bias.copy_(b.contiguous()) new_layer.bias.requires_grad = True return new_layer class Conv1D(nn.Module): """ 1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2). Basically works like a linear layer but the weights are transposed. Args: nf (`int`): The number of output features. nx (`int`): The number of input features. """ def __init__(self, nf, nx): super().__init__() self.nf = nf self.nx = nx self.weight = nn.Parameter(torch.empty(nx, nf)) self.bias = nn.Parameter(torch.zeros(nf)) nn.init.normal_(self.weight, std=0.02) def __repr__(self) -> str: return "Conv1D(nf={nf}, nx={nx})".format(**self.__dict__) def forward(self, x): size_out = x.size()[:-1] + (self.nf,) x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) x = x.view(size_out) return x def prune_conv1d_layer(layer: Conv1D, index: torch.LongTensor, dim: int = 1) -> Conv1D: """ Prune a Conv1D layer to keep only entries in index. A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed. Used to remove heads. Args: layer ([`~pytorch_utils.Conv1D`]): The layer to prune. index (`torch.LongTensor`): The indices to keep in the layer. dim (`int`, *optional*, defaults to 1): The dimension on which to keep the indices. Returns: [`~pytorch_utils.Conv1D`]: The pruned layer as a new layer with `requires_grad=True`. """ index = index.to(layer.weight.device) W = layer.weight.index_select(dim, index).detach().clone() if dim == 0: b = layer.bias.detach().clone() else: b = layer.bias[index].detach().clone() new_size = list(layer.weight.size()) new_size[dim] = len(index) new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device) new_layer.weight.requires_grad = False new_layer.weight.copy_(W.contiguous()) new_layer.weight.requires_grad = True new_layer.bias.requires_grad = False new_layer.bias.copy_(b.contiguous()) new_layer.bias.requires_grad = True return new_layer def prune_layer(layer: nn.Linear | Conv1D, index: torch.LongTensor, dim: int | None = None) -> nn.Linear | Conv1D: """ Prune a Conv1D or linear layer to keep only entries in index. Used to remove heads. Args: layer (`Union[torch.nn.Linear, Conv1D]`): The layer to prune. index (`torch.LongTensor`): The indices to keep in the layer. dim (`int`, *optional*): The dimension on which to keep the indices. Returns: `torch.nn.Linear` or [`~pytorch_utils.Conv1D`]: The pruned layer as a new layer with `requires_grad=True`. """ if isinstance(layer, nn.Linear): return prune_linear_layer(layer, index, dim=0 if dim is None else dim) elif isinstance(layer, Conv1D): return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim) else: raise ValueError(f"Can't prune layer of class {layer.__class__}") def apply_chunking_to_forward( forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors, ) -> torch.Tensor: """ This function chunks the `input_tensors` into smaller input tensor parts of size `chunk_size` over the dimension `chunk_dim`. It then applies a layer `forward_fn` to each chunk independently to save memory. If the `forward_fn` is independent across the `chunk_dim` this function will yield the same result as directly applying `forward_fn` to `input_tensors`. Args: forward_fn (`Callable[..., torch.Tensor]`): The forward function of the model. chunk_size (`int`): The chunk size of a chunked tensor: `num_chunks = len(input_tensors[0]) / chunk_size`. chunk_dim (`int`): The dimension over which the `input_tensors` should be chunked. input_tensors (`Tuple[torch.Tensor]`): The input tensors of `forward_fn` which will be chunked Returns: `torch.Tensor`: A tensor with the same shape as the `forward_fn` would have given if applied`. Examples: ```python # rename the usual forward() fn to forward_chunk() def forward_chunk(self, hidden_states): hidden_states = self.decoder(hidden_states) return hidden_states # implement a chunked forward function def forward(self, hidden_states): return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states) ```""" assert len(input_tensors) > 0, f"{input_tensors} has to be a tuple/list of tensors" # inspect.signature exist since python 3.5 and is a python method -> no problem with backward compatibility num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters) if num_args_in_forward_chunk_fn != len(input_tensors): raise ValueError( f"forward_chunk_fn expects {num_args_in_forward_chunk_fn} arguments, but only {len(input_tensors)} input " "tensors are given" ) if chunk_size > 0: tensor_shape = input_tensors[0].shape[chunk_dim] for input_tensor in input_tensors: if input_tensor.shape[chunk_dim] != tensor_shape: raise ValueError( f"All input tenors have to be of the same shape: {tensor_shape}, " f"found shape {input_tensor.shape[chunk_dim]}" ) if input_tensors[0].shape[chunk_dim] % chunk_size != 0: raise ValueError( f"The dimension to be chunked {input_tensors[0].shape[chunk_dim]} has to be a multiple of the chunk " f"size {chunk_size}" ) num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size # chunk input tensor into tuples input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors) # apply forward fn to every tuple output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks)) # concatenate output at same dimension return torch.cat(output_chunks, dim=chunk_dim) return forward_fn(*input_tensors) def find_pruneable_heads_and_indices( heads: list[int], n_heads: int, head_size: int, already_pruned_heads: set[int] ) -> tuple[set[int], torch.LongTensor]: """ Finds the heads and their indices taking `already_pruned_heads` into account. Args: heads (`List[int]`): List of the indices of heads to prune. n_heads (`int`): The number of heads in the model. head_size (`int`): The size of each head. already_pruned_heads (`Set[int]`): A set of already pruned heads. Returns: `Tuple[Set[int], torch.LongTensor]`: A tuple with the indices of heads to prune taking `already_pruned_heads` into account and the indices of rows/columns to keep in the layer weight. """ mask = torch.ones(n_heads, head_size) heads = set(heads) - already_pruned_heads # Convert to set and remove already pruned heads for head in heads: # Compute how many pruned heads are before the head and move the index accordingly head = head - sum(1 if h < head else 0 for h in already_pruned_heads) mask[head] = 0 mask = mask.view(-1).contiguous().eq(1) index: torch.LongTensor = torch.arange(len(mask))[mask].long() return heads, index def meshgrid(*tensors: torch.Tensor | list[torch.Tensor], indexing: str | None = None) -> tuple[torch.Tensor, ...]: """ Wrapper around torch.meshgrid to avoid warning messages about the introduced `indexing` argument. Reference: https://pytorch.org/docs/1.13/generated/torch.meshgrid.html """ return torch.meshgrid(*tensors, indexing=indexing) def id_tensor_storage(tensor: torch.Tensor) -> tuple[torch.device, int, int]: """ Unique identifier to a tensor storage. Multiple different tensors can share the same underlying storage. For example, "meta" tensors all share the same storage, and thus their identifier will all be equal. This identifier is guaranteed to be unique and constant for this tensor's storage during its lifetime. Two tensor storages with non-overlapping lifetimes may have the same id. """ if tensor.device.type == "xla" and is_torch_xla_available(): # NOTE: xla tensors dont have storage # use some other unique id to distinguish. # this is a XLA tensor, it must be created using torch_xla's # device. So the following import is safe: import torch_xla unique_id = torch_xla._XLAC._xla_get_tensor_id(tensor) else: unique_id = storage_ptr(tensor) return tensor.device, unique_id, storage_size(tensor) def isin_mps_friendly(elements: torch.Tensor, test_elements: torch.Tensor | int) -> torch.Tensor: """ Same as `torch.isin` without flags, but MPS-friendly. We can remove this function when we stop supporting torch <= 2.3. See https://github.com/pytorch/pytorch/issues/77764#issuecomment-2067838075 Args: elements (`torch.Tensor`): Input elements test_elements (`torch.Tensor` or `int`): The elements to check against. Returns: `torch.Tensor`: A boolean tensor of the same shape as `elements` that is True for `elements` in `test_elements` and False otherwise """ if elements.device.type == "mps" and not is_torch_greater_or_equal_than_2_4: test_elements = torch.tensor(test_elements) if test_elements.ndim == 0: test_elements = test_elements.unsqueeze(0) return elements.tile(test_elements.shape[0], 1).eq(test_elements.unsqueeze(1)).sum(dim=0).bool().squeeze() else: # Note: don't use named arguments in `torch.isin`, see https://github.com/pytorch/pytorch/issues/126045 return torch.isin(elements, test_elements) def compile_compatible_method_lru_cache(*lru_args, **lru_kwargs): """ LRU cache decorator from standard functools library, but with a workaround to disable caching when torchdynamo is compiling. Expected to work with class methods. """ def decorator(func): @wraps(func) def wrapper(self, *args, **kwargs): if not is_torchdynamo_compiling(): # Cache the function only if the model is not being compiled # check if the function is already cached, otherwise create it if not hasattr(self, f"_cached_{func.__name__}"): self.__setattr__( f"_cached_{func.__name__}", lru_cache(*lru_args, **lru_kwargs)(func.__get__(self)) ) return self.__getattribute__(f"_cached_{func.__name__}")(*args, **kwargs) else: # Otherwise, just call the original function return func(self, *args, **kwargs) return wrapper return decorator ```
=========================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.78 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .auto import AutoHfQuantizer, AutoQuantizationConfig, register_quantization_config, register_quantizer from .base import HfQuantizer from .quantizers_utils import get_module_from_name ```
======================================================================================================================= SOURCE CODE FILE: auto.py LINES: 1 SIZE: 10.40 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\auto.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # Modifications Copyright (C) 2025, Advanced Micro Devices, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import Dict, Optional, Union from ..models.auto.configuration_auto import AutoConfig from ..utils import logging from ..utils.quantization_config import ( AqlmConfig, AwqConfig, BitNetConfig, BitsAndBytesConfig, CompressedTensorsConfig, EetqConfig, FbgemmFp8Config, FineGrainedFP8Config, GPTQConfig, HiggsConfig, HqqConfig, QuantizationConfigMixin, QuantizationMethod, QuantoConfig, QuarkConfig, SpQRConfig, TorchAoConfig, VptqConfig, ) from .base import HfQuantizer from .quantizer_aqlm import AqlmHfQuantizer from .quantizer_awq import AwqQuantizer from .quantizer_bitnet import BitNetHfQuantizer from .quantizer_bnb_4bit import Bnb4BitHfQuantizer from .quantizer_bnb_8bit import Bnb8BitHfQuantizer from .quantizer_compressed_tensors import CompressedTensorsHfQuantizer from .quantizer_eetq import EetqHfQuantizer from .quantizer_fbgemm_fp8 import FbgemmFp8HfQuantizer from .quantizer_finegrained_fp8 import FineGrainedFP8HfQuantizer from .quantizer_gptq import GptqHfQuantizer from .quantizer_higgs import HiggsHfQuantizer from .quantizer_hqq import HqqHfQuantizer from .quantizer_quanto import QuantoHfQuantizer from .quantizer_quark import QuarkHfQuantizer from .quantizer_spqr import SpQRHfQuantizer from .quantizer_torchao import TorchAoHfQuantizer from .quantizer_vptq import VptqHfQuantizer AUTO_QUANTIZER_MAPPING = { "awq": AwqQuantizer, "bitsandbytes_4bit": Bnb4BitHfQuantizer, "bitsandbytes_8bit": Bnb8BitHfQuantizer, "gptq": GptqHfQuantizer, "aqlm": AqlmHfQuantizer, "quanto": QuantoHfQuantizer, "quark": QuarkHfQuantizer, "eetq": EetqHfQuantizer, "higgs": HiggsHfQuantizer, "hqq": HqqHfQuantizer, "compressed-tensors": CompressedTensorsHfQuantizer, "fbgemm_fp8": FbgemmFp8HfQuantizer, "torchao": TorchAoHfQuantizer, "bitnet": BitNetHfQuantizer, "vptq": VptqHfQuantizer, "spqr": SpQRHfQuantizer, "fp8": FineGrainedFP8HfQuantizer, } AUTO_QUANTIZATION_CONFIG_MAPPING = { "awq": AwqConfig, "bitsandbytes_4bit": BitsAndBytesConfig, "bitsandbytes_8bit": BitsAndBytesConfig, "eetq": EetqConfig, "gptq": GPTQConfig, "aqlm": AqlmConfig, "quanto": QuantoConfig, "quark": QuarkConfig, "hqq": HqqConfig, "compressed-tensors": CompressedTensorsConfig, "fbgemm_fp8": FbgemmFp8Config, "higgs": HiggsConfig, "torchao": TorchAoConfig, "bitnet": BitNetConfig, "vptq": VptqConfig, "spqr": SpQRConfig, "fp8": FineGrainedFP8Config, } logger = logging.get_logger(__name__) class AutoQuantizationConfig: """ The Auto-HF quantization config class that takes care of automatically dispatching to the correct quantization config given a quantization config stored in a dictionary. """ @classmethod def from_dict(cls, quantization_config_dict: Dict): quant_method = quantization_config_dict.get("quant_method", None) # We need a special care for bnb models to make sure everything is BC .. if quantization_config_dict.get("load_in_8bit", False) or quantization_config_dict.get("load_in_4bit", False): suffix = "_4bit" if quantization_config_dict.get("load_in_4bit", False) else "_8bit" quant_method = QuantizationMethod.BITS_AND_BYTES + suffix elif quant_method is None: raise ValueError( "The model's quantization config from the arguments has no `quant_method` attribute. Make sure that the model has been correctly quantized" ) if quant_method not in AUTO_QUANTIZATION_CONFIG_MAPPING.keys(): raise ValueError( f"Unknown quantization type, got {quant_method} - supported types are:" f" {list(AUTO_QUANTIZER_MAPPING.keys())}" ) target_cls = AUTO_QUANTIZATION_CONFIG_MAPPING[quant_method] return target_cls.from_dict(quantization_config_dict) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): model_config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) if getattr(model_config, "quantization_config", None) is None: raise ValueError( f"Did not found a `quantization_config` in {pretrained_model_name_or_path}. Make sure that the model is correctly quantized." ) quantization_config_dict = model_config.quantization_config quantization_config = cls.from_dict(quantization_config_dict) # Update with potential kwargs that are passed through from_pretrained. quantization_config.update(**kwargs) return quantization_config class AutoHfQuantizer: """ The Auto-HF quantizer class that takes care of automatically instantiating to the correct `HfQuantizer` given the `QuantizationConfig`. """ @classmethod def from_config(cls, quantization_config: Union[QuantizationConfigMixin, Dict], **kwargs): # Convert it to a QuantizationConfig if the q_config is a dict if isinstance(quantization_config, dict): quantization_config = AutoQuantizationConfig.from_dict(quantization_config) quant_method = quantization_config.quant_method # Again, we need a special care for bnb as we have a single quantization config # class for both 4-bit and 8-bit quantization if quant_method == QuantizationMethod.BITS_AND_BYTES: if quantization_config.load_in_8bit: quant_method += "_8bit" else: quant_method += "_4bit" if quant_method not in AUTO_QUANTIZER_MAPPING.keys(): raise ValueError( f"Unknown quantization type, got {quant_method} - supported types are:" f" {list(AUTO_QUANTIZER_MAPPING.keys())}" ) target_cls = AUTO_QUANTIZER_MAPPING[quant_method] return target_cls(quantization_config, **kwargs) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): quantization_config = AutoQuantizationConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) return cls.from_config(quantization_config) @classmethod def merge_quantization_configs( cls, quantization_config: Union[dict, QuantizationConfigMixin], quantization_config_from_args: Optional[QuantizationConfigMixin], ): """ handles situations where both quantization_config from args and quantization_config from model config are present. """ if quantization_config_from_args is not None: warning_msg = ( "You passed `quantization_config` or equivalent parameters to `from_pretrained` but the model you're loading" " already has a `quantization_config` attribute. The `quantization_config` from the model will be used." ) else: warning_msg = "" if isinstance(quantization_config, dict): quantization_config = AutoQuantizationConfig.from_dict(quantization_config) if ( isinstance(quantization_config, (GPTQConfig, AwqConfig, FbgemmFp8Config, CompressedTensorsConfig)) and quantization_config_from_args is not None ): # special case for GPTQ / AWQ / FbgemmFp8 config collision loading_attr_dict = quantization_config_from_args.get_loading_attributes() for attr, val in loading_attr_dict.items(): setattr(quantization_config, attr, val) warning_msg += f"However, loading attributes (e.g. {list(loading_attr_dict.keys())}) will be overwritten with the one you passed to `from_pretrained`. The rest will be ignored." if warning_msg != "": warnings.warn(warning_msg) return quantization_config @staticmethod def supports_quant_method(quantization_config_dict): quant_method = quantization_config_dict.get("quant_method", None) if quantization_config_dict.get("load_in_8bit", False) or quantization_config_dict.get("load_in_4bit", False): suffix = "_4bit" if quantization_config_dict.get("load_in_4bit", False) else "_8bit" quant_method = QuantizationMethod.BITS_AND_BYTES + suffix elif quant_method is None: raise ValueError( "The model's quantization config from the arguments has no `quant_method` attribute. Make sure that the model has been correctly quantized" ) if quant_method not in AUTO_QUANTIZATION_CONFIG_MAPPING.keys(): logger.warning( f"Unknown quantization type, got {quant_method} - supported types are:" f" {list(AUTO_QUANTIZER_MAPPING.keys())}. Hence, we will skip the quantization. " "To remove the warning, you can delete the quantization_config attribute in config.json" ) return False return True def register_quantization_config(method: str): """Register a custom quantization configuration.""" def register_config_fn(cls): if method in AUTO_QUANTIZATION_CONFIG_MAPPING: raise ValueError(f"Config '{method}' already registered") if not issubclass(cls, QuantizationConfigMixin): raise ValueError("Config must extend QuantizationConfigMixin") AUTO_QUANTIZATION_CONFIG_MAPPING[method] = cls return cls return register_config_fn def register_quantizer(name: str): """Register a custom quantizer.""" def register_quantizer_fn(cls): if name in AUTO_QUANTIZER_MAPPING: raise ValueError(f"Quantizer '{name}' already registered") if not issubclass(cls, HfQuantizer): raise ValueError("Quantizer must extend HfQuantizer") AUTO_QUANTIZER_MAPPING[name] = cls return cls return register_quantizer_fn ```
======================================================================================================================= SOURCE CODE FILE: base.py LINES: 1 SIZE: 14.00 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\base.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union from ..utils import is_torch_available from ..utils.quantization_config import QuantizationConfigMixin, QuantizationMethod from .quantizers_utils import get_module_from_name if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel if is_torch_available(): import torch from torch.nn import ModuleList else: ModuleList = str class HfQuantizer(ABC): """ Abstract class of the HuggingFace quantizer. Supports for now quantizing HF transformers models for inference and/or quantization. This class is used only for transformers.PreTrainedModel.from_pretrained and cannot be easily used outside the scope of that method yet. Attributes quantization_config (`transformers.utils.quantization_config.QuantizationConfigMixin`): The quantization config that defines the quantization parameters of your model that you want to quantize. modules_to_not_convert (`List[str]`, *optional*): The list of module names to not convert when quantizing the model. required_packages (`List[str]`, *optional*): The list of required pip packages to install prior to using the quantizer requires_calibration (`bool`): Whether the quantization method requires to calibrate the model before using it. requires_parameters_quantization (`bool`): Whether the quantization method requires to create a new Parameter. For example, for bitsandbytes, it is required to create a new xxxParameter in order to properly quantize the model. """ requires_calibration = False required_packages = None requires_parameters_quantization = False def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): self.quantization_config = quantization_config # -- Handle extra kwargs below -- self.modules_to_not_convert = kwargs.pop("modules_to_not_convert", []) self.pre_quantized = kwargs.pop("pre_quantized", True) if not self.pre_quantized and self.requires_calibration: raise ValueError( f"The quantization method {quantization_config.quant_method} does require the model to be pre-quantized." f" You explicitly passed `pre_quantized=False` meaning your model weights are not quantized. Make sure to " f"pass `pre_quantized=True` while knowing what you are doing." ) def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": """ Some quantization methods require to explicitly set the dtype of the model to a target dtype. You need to override this method in case you want to make sure that behavior is preserved Args: torch_dtype (`torch.dtype`): The input dtype that is passed in `from_pretrained` """ return torch_dtype def update_device_map(self, device_map: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]: """ Override this method if you want to pass a override the existing device map with a new one. E.g. for bitsandbytes, since `accelerate` is a hard requirement, if no device_map is passed, the device_map is set to `"auto"`` Args: device_map (`Union[dict, str]`, *optional*): The device_map that is passed through the `from_pretrained` method. """ return device_map def adjust_target_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": """ Override this method if you want to adjust the `target_dtype` variable used in `from_pretrained` to compute the device_map in case the device_map is a `str`. E.g. for bitsandbytes we force-set `target_dtype` to `torch.int8` and for 4-bit we pass a custom enum `accelerate.CustomDtype.int4`. Args: torch_dtype (`torch.dtype`, *optional*): The torch_dtype that is used to compute the device_map. """ return torch_dtype def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: """ Override this method if you want to adjust the `missing_keys`. Args: missing_keys (`List[str]`, *optional*): The list of missing keys in the checkpoint compared to the state dict of the model """ return missing_keys def update_unexpected_keys(self, model, unexpected_keys: List[str], prefix: str) -> List[str]: """ Override this method if you want to adjust the `unexpected_keys`. Args: unexpected_keys (`List[str]`, *optional*): The list of unexpected keys in the checkpoint compared to the state dict of the model """ return unexpected_keys def update_missing_keys_after_loading(self, model, missing_keys: List[str], prefix: str) -> List[str]: """ Override this method if you want to adjust the `missing_keys` after loading the model params, but before the model is post-processed. Args: missing_keys (`List[str]`, *optional*): The list of missing keys in the checkpoint compared to the state dict of the model """ return missing_keys def update_expected_keys(self, model, expected_keys: List[str], loaded_keys: List[str]) -> List[str]: """ Override this method if you want to adjust the `update_expected_keys`. Args: expected_keys (`List[str]`, *optional*): The list of the expected keys in the initialized model. loaded_keys (`List[str]`, *optional*): The list of the loaded keys in the checkpoint. """ return expected_keys def get_special_dtypes_update(self, model, torch_dtype: "torch.dtype") -> Dict[str, "torch.dtype"]: """ returns dtypes for modules that are not quantized - used for the computation of the device_map in case one passes a str as a device_map. The method will use the `modules_to_not_convert` that is modified in `_process_model_before_weight_loading`. Args: model (`~transformers.PreTrainedModel`): The model to quantize torch_dtype (`torch.dtype`): The dtype passed in `from_pretrained` method. """ return { name: torch_dtype for name, _ in model.named_parameters() if any(m in name for m in self.modules_to_not_convert) } def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: """adjust max_memory argument for infer_auto_device_map() if extra memory is needed for quantization""" return max_memory def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: """ checks if a loaded state_dict component is part of quantized param + some validation; only defined if requires_parameters_quantization == True for quantization methods that require to create a new parameters for quantization. """ return False def create_quantized_param(self, *args, **kwargs) -> "torch.nn.Parameter": """ takes needed components from state_dict and creates quantized param; only applicable if requires_parameters_quantization == True """ if not self.requires_parameters_quantization: raise AttributeError( f"`.create_quantized_param()` method is not supported by quantizer class {self.__class__.__name__}." ) def validate_environment(self, *args, **kwargs): """ This method is used to potentially check for potential conflicts with arguments that are passed in `from_pretrained`. You need to define it for all future quantizers that are integrated with transformers. If no explicit check are needed, simply return nothing. """ return def update_tp_plan(self, config): "updates the tp plan for the scales" return config def preprocess_model(self, model: "PreTrainedModel", **kwargs): """ Setting model attributes and/or converting model before weights loading. At this point the model should be initialized on the meta device so you can freely manipulate the skeleton of the model in order to replace modules in-place. Make sure to override the abstract method `_process_model_before_weight_loading`. Args: model (`~transformers.PreTrainedModel`): The model to quantize kwargs (`dict`, *optional*): The keyword arguments that are passed along `_process_model_before_weight_loading`. """ model.is_quantized = True model.quantization_method = self.quantization_config.quant_method if self.pre_quantized: self._convert_model_for_quantization(model) return self._process_model_before_weight_loading(model, **kwargs) def postprocess_model(self, model: "PreTrainedModel", **kwargs): """ Post-process the model post weights loading. Make sure to override the abstract method `_process_model_after_weight_loading`. Args: model (`~transformers.PreTrainedModel`): The model to quantize kwargs (`dict`, *optional*): The keyword arguments that are passed along `_process_model_after_weight_loading`. """ return self._process_model_after_weight_loading(model, **kwargs) def dequantize(self, model): """ Potentially dequantize the model to retrive the original model, with some loss in accuracy / performance. Note not all quantization schemes support this. """ model = self._dequantize(model) # Delete quantizer and quantization config del model.hf_quantizer del model.config.quantization_config del model.config._pre_quantization_dtype model.is_quantized = False return model def _dequantize(self, model): raise NotImplementedError( f"{self.quantization_config.quant_method} has no implementation of `dequantize`, please raise an issue on GitHub." ) @staticmethod def get_modules_to_not_convert( model: "PreTrainedModel", skip_modules: Optional[List[str]] = None, keep_in_fp32_modules: Optional[List[str]] = None, ): from ..integrations import get_keys_to_not_convert modules_to_not_convert = [] if skip_modules is None: modules_to_not_convert = get_keys_to_not_convert(model) else: modules_to_not_convert = skip_modules if keep_in_fp32_modules is not None: modules_to_not_convert.extend(keep_in_fp32_modules) return modules_to_not_convert @property def is_qat_trainable(self) -> bool: """Flag indicating whether the quantized model can carry out quantization aware training""" return False @property def is_compileable(self) -> bool: """Flag indicating whether the quantized model can be compiled""" return False @abstractmethod def _process_model_before_weight_loading(self, model, **kwargs): ... @abstractmethod def _process_model_after_weight_loading(self, model, **kwargs): ... @abstractmethod def is_serializable(self, safe_serialization=None): ... @property @abstractmethod def is_trainable(self): ... def _convert_model_for_quantization(self, model): from accelerate import init_empty_weights for name, module in model.named_modules(): module_class_name = module.__class__.__name__ if ( module_class_name in MODULES_TO_PATCH_FOR_QUANTIZATION.keys() and self.quantization_config.quant_method == QuantizationMethod.COMPRESSED_TENSORS ): with init_empty_weights(): parent_module, name = get_module_from_name(model, name) parent_module._modules[name] = MODULES_TO_PATCH_FOR_QUANTIZATION[module_class_name]( model.config.get_text_config() ) class SequentialLlama4TextExperts(ModuleList): """ A module that implements a compressed version of a list of expert modules. This is specifically designed to work with Llama4TextExperts in MoE layers. """ def __init__(self, config): from transformers.models.llama4.modeling_llama4 import Llama4TextMLP super().__init__([Llama4TextMLP(config) for _ in range(config.num_local_experts)]) self.num_experts = config.num_local_experts def forward( self, hidden_states: "torch.Tensor", ) -> "torch.Tensor": hidden_states = hidden_states.reshape(self.num_experts, -1, hidden_states.shape[-1]) routed_out = torch.zeros_like(hidden_states) for expert_idx in range(self.num_experts): routed_out[expert_idx] = self[expert_idx](hidden_states[expert_idx]) return routed_out MODULES_TO_PATCH_FOR_QUANTIZATION = { "Llama4TextExperts": { "module_name": SequentialLlama4TextExperts, "quantization_methods": [ QuantizationMethod.COMPRESSED_TENSORS, QuantizationMethod.BITS_AND_BYTES, ], } } ```
================================================================================================================================= SOURCE CODE FILE: quantizer_aqlm.py LINES: 1 SIZE: 3.61 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\quantizer_aqlm.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib from typing import TYPE_CHECKING, Optional from packaging import version from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..integrations import replace_with_aqlm_linear from ..utils import is_accelerate_available, is_aqlm_available, is_torch_available, logging from ..utils.quantization_config import QuantizationConfigMixin if is_torch_available(): import torch logger = logging.get_logger(__name__) class AqlmHfQuantizer(HfQuantizer): """ Quantizer of the AQLM method. Enables the loading of prequantized models. """ requires_calibration = True required_packages = ["aqlm"] optimum_quantizer = None def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_accelerate_available(): raise ImportError("Using `aqlm` quantization requires Accelerate: `pip install accelerate`") if not is_aqlm_available(): raise ImportError("Using `aqlm` quantization requires AQLM: `pip install aqlm[gpu,cpu]`") def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: if torch.cuda.is_available(): torch_dtype = torch.float16 logger.info( "CUDA available. Assuming AQLM inference on GPU and loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually." ) else: torch_dtype = torch.float32 logger.info( "CUDA is unavailable. Assuming AQLM inference on CPU and loading the model in `torch.float32`. To overwrite it, set `torch_dtype` manually." ) return torch_dtype def _process_model_before_weight_loading( self, model: "PreTrainedModel", **kwargs, ): replace_with_aqlm_linear( model, quantization_config=self.quantization_config, linear_weights_not_to_quantize=self.quantization_config.linear_weights_not_to_quantize, ) model.config.quantization_config = self.quantization_config def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model @property def is_trainable(self, model: Optional["PreTrainedModel"] = None): aqlm_supports_training = version.parse(importlib.metadata.version("aqlm")) >= version.parse("1.0.2") if aqlm_supports_training: return True else: logger.warning( f"Currently installed `aqlm` version ({importlib.metadata.version('aqlm')}) doesn't support training. If you wish to train a quantized model, please update `aqlm` with `pip install aqlm>=1.0.2`" ) return False def is_serializable(self, safe_serialization=None): return True ```
================================================================================================================================ SOURCE CODE FILE: quantizer_awq.py LINES: 1 SIZE: 6.73 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\quantizer_awq.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib.metadata from typing import TYPE_CHECKING, List, Optional from packaging import version from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_accelerate_available, is_auto_awq_available, is_torch_available, logging from ..utils.quantization_config import AWQLinearVersion if is_torch_available(): import torch logger = logging.get_logger(__name__) class AwqQuantizer(HfQuantizer): """ 4-bit quantization for Activation-aware Weight Quantization(AWQ) (https://arxiv.org/abs/2306.00978) """ # AWQ requires data callibration - we support only inference requires_calibration = True required_packages = ["awq", "accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) def validate_environment(self, device_map, **kwargs): if not is_auto_awq_available(): raise ImportError("Loading an AWQ quantized model requires auto-awq library (`pip install autoawq`)") if not is_accelerate_available(): raise ImportError("Loading an AWQ quantized model requires accelerate (`pip install accelerate`)") if self.quantization_config.version == AWQLinearVersion.GEMM and not torch.cuda.is_available(): logger.warning_once("No CUDA found, replace GEMM with IPEX version to support non-cuda AWQ model.") self.quantization_config.version = AWQLinearVersion.IPEX if self.quantization_config.version == AWQLinearVersion.IPEX: if version.parse(importlib.metadata.version("autoawq")) < version.parse("0.2.6"): raise RuntimeError( "To use IPEX backend, you need autoawq>0.2.6. Please install the latest version or from source." ) if device_map is None: logger.warning_once( "You have loaded an AWQ model without setting device_map, please set 'cpu' or 'xpu' or 'auto'" ) elif isinstance(device_map, dict) and "disk" in device_map.values(): raise ValueError( "You are attempting to load an IPEX version AWQ model with a device_map that contains disk device." " This is not supported. Please make sure only cpu and xpu in the device_map." ) else: if not torch.cuda.is_available(): raise RuntimeError( "GPU is required to run AWQ quantized model. You can use IPEX version AWQ if you have an Intel CPU" ) if device_map is None: logger.warning_once( "You have loaded an AWQ model on CPU and have a CUDA device available, make sure to set " "your model on a GPU device in order to run your model." ) elif device_map is not None: if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): raise ValueError( "You are attempting to load an AWQ model with a device_map that contains a CPU or disk device." " This is not supported. Please remove the CPU or disk device from the device_map." ) def update_torch_dtype(self, torch_dtype): if torch_dtype is None: torch_dtype = torch.float16 logger.info("Loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually.") elif torch_dtype != torch.float16: logger.warning("We suggest you to set `torch_dtype=torch.float16` for better efficiency with AWQ.") return torch_dtype def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[List[str]] = None, **kwargs ): from ..integrations import replace_quantization_scales, replace_with_awq_linear self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) model, has_been_replaced = replace_with_awq_linear( model, quantization_config=self.quantization_config, modules_to_not_convert=self.modules_to_not_convert ) model = replace_quantization_scales(model, model.config.model_type) if not has_been_replaced: logger.warning( "You are loading an AWQ model but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is a bug." ) def _process_model_after_weight_loading(self, model, **kwargs): if self.quantization_config.do_fuse: from ..integrations import fuse_awq_modules model = fuse_awq_modules(model, self.quantization_config) model._awq_is_fused = True # TODO: consider storing this flag in model.config instead if self.quantization_config.version == AWQLinearVersion.EXLLAMA: from ..integrations import post_init_awq_exllama_modules model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) if self.quantization_config.version == AWQLinearVersion.IPEX: from ..integrations import post_init_awq_ipex_modules model = post_init_awq_ipex_modules(model) def is_serializable(self, safe_serialization=None): # AWQ through auto-awq has been always serializable, except if the model is fused. if self.quantization_config.do_fuse: logger.warning("You cannot save an AWQ model that uses fused modules!") return False if self.quantization_config.version == AWQLinearVersion.EXLLAMA: logger.warning("You cannot save an AWQ model that uses Exllama backend!") return False return True @property def is_trainable(self): # AWQ supports PEFT fine-tuning from version 0.2.0 MIN_AWQ_VERSION_FOR_PEFT = "0.2.0" return version.parse(importlib.metadata.version("autoawq")) >= version.parse(MIN_AWQ_VERSION_FOR_PEFT) ```
=================================================================================================================================== SOURCE CODE FILE: quantizer_bitnet.py LINES: 1 SIZE: 4.11 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\quantizer_bitnet.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Dict, List, Optional, Union from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_accelerate_available, is_torch_available, logging if is_torch_available(): import torch logger = logging.get_logger(__name__) class BitNetHfQuantizer(HfQuantizer): """ 1.58-bit quantization from BitNet quantization method: Before loading: it converts the linear layers into BitLinear layers during loading. Checkout the paper introducing this method : https://arxiv.org/pdf/2402.17764 """ requires_parameters_quantization = False requires_calibration = True required_packages = ["accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_accelerate_available(): raise ImportError("Loading a BitNet quantized model requires accelerate (`pip install accelerate`)") if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Loading ternary weights from tf/flax is currently not supported, please make" " sure the weights are in PyTorch format." ) if not torch.cuda.is_available(): logger.warning_once( "You don't have a GPU available to load the model, the inference will be slow because of weight unpacking" ) return device_map = kwargs.get("device_map", None) if device_map is None: logger.warning_once( "You have loaded a BitNet model on CPU and have a CUDA device available, make sure to set " "your model on a GPU device in order to run your model." ) elif device_map is not None: if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): raise ValueError( "You are attempting to load a BitNet model with a device_map that contains a CPU or disk device." "This is not supported. Please remove the CPU or disk device from the device_map." ) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[List[str]] = None, **kwargs, ): from ..integrations import replace_with_bitnet_linear self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) model = replace_with_bitnet_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config, pre_quantized=self.pre_quantized, ) def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": target_dtype = torch.int8 return target_dtype def is_serializable(self, safe_serialization=None): return True @property def is_trainable(self) -> bool: return False ```
===================================================================================================================================== SOURCE CODE FILE: quantizer_bnb_4bit.py LINES: 1 SIZE: 15.70 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\quantizer_bnb_4bit.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib from functools import cached_property from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union from packaging import version from .base import HfQuantizer from .quantizers_utils import get_module_from_name if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import ( ACCELERATE_MIN_VERSION, is_accelerate_available, is_bitsandbytes_available, is_torch_available, is_torch_hpu_available, is_torch_npu_available, is_torch_xpu_available, logging, ) if is_torch_available(): import torch from ..pytorch_utils import Conv1D logger = logging.get_logger(__name__) class Bnb4BitHfQuantizer(HfQuantizer): """ 4-bit quantization from bitsandbytes.py quantization method: before loading: converts transformer layers into Linear4bit during loading: load 16bit weight and pass to the layer object after: quantizes individual weights in Linear4bit into 4bit at the first .cuda() call saving: from state dict, as usual; saves weights and `quant_state` components loading: need to locate `quant_state` components and pass to Param4bit constructor """ use_keep_in_fp32_modules = True requires_parameters_quantization = True requires_calibration = False required_packages = ["bitsandbytes", "accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) if self.quantization_config.llm_int8_skip_modules is not None: self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules def validate_environment(self, *args, **kwargs): if not is_accelerate_available(): raise ImportError( f"Using `bitsandbytes` 4-bit quantization requires Accelerate: `pip install 'accelerate>={ACCELERATE_MIN_VERSION}'`" ) if not is_bitsandbytes_available(): raise ImportError( "Using `bitsandbytes` 4-bit quantization requires the latest version of bitsandbytes: `pip install -U bitsandbytes`" ) from ..integrations import validate_bnb_backend_availability from ..utils import is_bitsandbytes_multi_backend_available bnb_multibackend_is_enabled = is_bitsandbytes_multi_backend_available() validate_bnb_backend_availability(raise_exception=True) if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make" " sure the weights are in PyTorch format." ) device_map = kwargs.get("device_map", None) if ( device_map is not None and isinstance(device_map, dict) and not self.quantization_config.llm_int8_enable_fp32_cpu_offload ): device_map_without_lm_head = { key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert } if set(device_map.values()) == {"cpu"} and bnb_multibackend_is_enabled: pass elif "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values(): raise ValueError( "Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the " "quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules " "in 32-bit, you need to set `llm_int8_enable_fp32_cpu_offload=True` and pass a custom `device_map` to " "`from_pretrained`. Check " "https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu " "for more details. " ) if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.39.0"): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit inference and training" " make sure you have the latest version of `bitsandbytes` installed" ) def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.19.0"): from accelerate.utils import CustomDtype if target_dtype != torch.int8: logger.info("target_dtype {target_dtype} is replaced by `CustomDtype.INT4` for 4-bit BnB quantization") return CustomDtype.INT4 else: raise ValueError( "You are using `device_map='auto'` on a 4bit loaded version of the model. To automatically compute" " the appropriate device map, you should upgrade your `accelerate` library," "`pip install --upgrade accelerate` or install it from source to support fp4 auto device map" "calculation. You may encounter unexpected behavior, or pass your own device map" ) def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: import bitsandbytes as bnb module, tensor_name = get_module_from_name(model, param_name) if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Params4bit): # Add here check for loaded components' dtypes once serialization is implemented return True elif isinstance(module, bnb.nn.Linear4bit) and tensor_name == "bias": # bias could be loaded by regular set_module_tensor_to_device() from accelerate, # but it would wrongly use uninitialized weight there. return True else: return False def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: Optional[List[str]] = None, ): """ combines logic from _load_state_dict_into_meta_model and .integrations.bitsandbytes.py::set_module_quantized_tensor_to_device() """ import bitsandbytes as bnb module, tensor_name = get_module_from_name(model, param_name) if tensor_name not in module._parameters: raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.") old_value = getattr(module, tensor_name) # `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)). if isinstance(target_device, int) and is_torch_npu_available(): target_device = f"npu:{target_device}" if tensor_name == "bias": if param_value is None: new_value = old_value.to(target_device) else: new_value = param_value.to(target_device) new_value = torch.nn.Parameter(new_value, requires_grad=old_value.requires_grad) module._parameters[tensor_name] = new_value return if not isinstance(module._parameters[tensor_name], bnb.nn.Params4bit): raise ValueError("this function only loads `Linear4bit components`") if ( old_value.device == torch.device("meta") and target_device not in ["meta", torch.device("meta")] and param_value is None ): raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.") # construct `new_value` for the module._parameters[tensor_name]: if self.pre_quantized: # 4bit loading. Collecting components for restoring quantized weight # This can be expanded to make a universal call for any quantized weight loading if not self.is_serializable: raise ValueError( "Detected int4 weights but the version of bitsandbytes is not compatible with int4 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) if (param_name + ".quant_state.bitsandbytes__fp4" not in state_dict) and ( param_name + ".quant_state.bitsandbytes__nf4" not in state_dict ): raise ValueError( f"Supplied state dict for {param_name} does not contain `bitsandbytes__*` and possibly other `quantized_stats` components." ) quantized_stats = {} for k, v in state_dict.items(): if param_name + "." in k: quantized_stats[k] = v if unexpected_keys is not None and k in unexpected_keys: unexpected_keys.remove(k) param_kwargs = {} if self.is_bnb_supports_quant_storage_module: param_kwargs["module"] = module new_value = bnb.nn.Params4bit.from_prequantized( data=param_value, quantized_stats=quantized_stats, requires_grad=False, device=target_device, **param_kwargs, ) else: new_value = param_value.to("cpu") # Support models using `Conv1D` in place of `nn.Linear` (e.g. openai-community/gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls, Conv1D): new_value = new_value.T kwargs = old_value.__dict__ new_value = bnb.nn.Params4bit(new_value, requires_grad=False, **kwargs).to(target_device) module._parameters[tensor_name] = new_value # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.adjust_max_memory def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: # need more space for buffers that are created during quantization max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.update_torch_dtype def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: # We force the `dtype` to be float16, this is a requirement from `bitsandbytes` logger.info( "Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to " "requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. " "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass" " torch_dtype=torch.float16 to remove this warning.", torch_dtype, ) torch_dtype = torch.float16 return torch_dtype def update_device_map(self, device_map): if device_map is None: if torch.cuda.is_available(): device_map = {"": torch.cuda.current_device()} elif is_torch_npu_available(): device_map = {"": f"npu:{torch.npu.current_device()}"} elif is_torch_hpu_available(): device_map = {"": f"hpu:{torch.hpu.current_device()}"} elif is_torch_xpu_available(): device_map = {"": f"xpu:{torch.xpu.current_device()}"} else: device_map = {"": "cpu"} logger.info( "The device_map was not initialized. " f"Setting device_map to {device_map}. " "If you want to use the model for inference, please set device_map ='auto' " ) return device_map # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer._process_model_before_weight_loading def _process_model_before_weight_loading( self, model: "PreTrainedModel", device_map, keep_in_fp32_modules: Optional[List[str]] = None, **kwargs, ): from ..integrations import replace_with_bnb_linear llm_int8_enable_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.llm_int8_skip_modules, keep_in_fp32_modules ) # Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk` if isinstance(device_map, dict) and len(device_map.keys()) > 1: keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]] if len(keys_on_cpu) > 0 and not llm_int8_enable_fp32_cpu_offload: raise ValueError( "If you want to offload some keys to `cpu` or `disk`, you need to set " "`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be " " converted to 8-bit but kept in 32-bit." ) self.modules_to_not_convert.extend(keys_on_cpu) model = replace_with_bnb_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config ) # TODO: consider bringing replace_with_bnb_linear() code from ..integrations/bitsandbyter.py to here model.config.quantization_config = self.quantization_config # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer._process_model_after_weight_loading with 8bit->4bit def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): model.is_loaded_in_4bit = True model.is_4bit_serializable = self.is_serializable() return model def is_serializable(self, safe_serialization=None): _is_4bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.41.3") if not _is_4bit_serializable: logger.warning( "You are calling `save_pretrained` to a 4-bit converted model, but your `bitsandbytes` version doesn't support it. " "If you want to save 4-bit models, make sure to have `bitsandbytes>=0.41.3` installed." ) return False return True @cached_property def is_bnb_supports_quant_storage_module(self) -> bool: """ determines if the current version of bitsandbytes supports the `module` parameter in `Params4bit.from_prequantized` :return: """ return version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.43.3") @property def is_trainable(self) -> bool: return True def _dequantize(self, model): from ..integrations import dequantize_and_replace model = dequantize_and_replace( model, self.modules_to_not_convert, quantization_config=self.quantization_config ) return model ```
===================================================================================================================================== SOURCE CODE FILE: quantizer_bnb_8bit.py LINES: 1 SIZE: 13.18 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\quantizer_bnb_8bit.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union from packaging import version from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import ( ACCELERATE_MIN_VERSION, is_accelerate_available, is_bitsandbytes_available, is_torch_available, is_torch_xpu_available, logging, ) from .quantizers_utils import get_module_from_name if is_torch_available(): import torch from ..pytorch_utils import Conv1D logger = logging.get_logger(__name__) class Bnb8BitHfQuantizer(HfQuantizer): """ 8-bit quantization from bitsandbytes quantization method: before loading: converts transformer layers into Linear8bitLt during loading: load 16bit weight and pass to the layer object after: quantizes individual weights in Linear8bitLt into 8bit at fitst .cuda() call saving: from state dict, as usual; saves weights and 'SCB' component loading: need to locate SCB component and pass to the Linear8bitLt object """ use_keep_in_fp32_modules = True requires_parameters_quantization = True requires_calibration = False required_packages = ["bitsandbytes", "accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) if self.quantization_config.llm_int8_skip_modules is not None: self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules def validate_environment(self, *args, **kwargs): if not is_accelerate_available(): raise ImportError( f"Using `bitsandbytes` 8-bit quantization requires Accelerate: `pip install 'accelerate>={ACCELERATE_MIN_VERSION}'`" ) if not is_bitsandbytes_available(): raise ImportError( "Using `bitsandbytes` 8-bit quantization requires the latest version of bitsandbytes: `pip install -U bitsandbytes`" ) from ..integrations import validate_bnb_backend_availability from ..utils import is_bitsandbytes_multi_backend_available bnb_multibackend_is_enabled = is_bitsandbytes_multi_backend_available() validate_bnb_backend_availability(raise_exception=True) if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make" " sure the weights are in PyTorch format." ) device_map = kwargs.get("device_map", None) if ( device_map is not None and isinstance(device_map, dict) and not self.quantization_config.llm_int8_enable_fp32_cpu_offload ): device_map_without_lm_head = { key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert } if set(device_map.values()) == {"cpu"} and bnb_multibackend_is_enabled: pass elif "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values(): raise ValueError( "Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the " "quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules " "in 32-bit, you need to set `llm_int8_enable_fp32_cpu_offload=True` and pass a custom `device_map` to " "`from_pretrained`. Check " "https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu " "for more details. " ) if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.2"): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 8bit inference and training" " make sure you have the latest version of `bitsandbytes` installed" ) def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: # need more space for buffers that are created during quantization max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: # We force the `dtype` to be float16, this is a requirement from `bitsandbytes` logger.info( "Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to " "requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. " "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass" " torch_dtype=torch.float16 to remove this warning.", torch_dtype, ) torch_dtype = torch.float16 return torch_dtype def update_device_map(self, device_map): if device_map is None: if torch.cuda.is_available(): device_map = {"": torch.cuda.current_device()} elif is_torch_xpu_available(): device_map = {"": f"xpu:{torch.xpu.current_device()}"} else: device_map = {"": "cpu"} logger.info( "The device_map was not initialized. " f"Setting device_map to {device_map}. " "If you want to use the model for inference, please set device_map ='auto' " ) return device_map def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": if target_dtype != torch.int8: logger.info("target_dtype {target_dtype} is replaced by `torch.int8` for 8-bit BnB quantization") return torch.int8 def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ): import bitsandbytes as bnb module, tensor_name = get_module_from_name(model, param_name) if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Int8Params): if self.pre_quantized: if param_name.replace("weight", "SCB") not in state_dict.keys(): raise ValueError("Missing quantization component `SCB`") if param_value.dtype != torch.int8: raise ValueError( f"Incompatible dtype `{param_value.dtype}` when loading 8-bit prequantized weight. Expected `torch.int8`." ) return True return False def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: Optional[List[str]] = None, ): """ combines logic from _load_state_dict_into_meta_model and .integrations.bitsandbytes.py::set_module_quantized_tensor_to_device() needs aux items from state dicts, if found - removes them from unexpected_keys """ import bitsandbytes as bnb fp16_statistics_key = param_name.replace("weight", "SCB") fp16_weights_format_key = param_name.replace("weight", "weight_format") fp16_statistics = state_dict.get(fp16_statistics_key, None) fp16_weights_format = state_dict.get(fp16_weights_format_key, None) module, tensor_name = get_module_from_name(model, param_name) if tensor_name not in module._parameters: raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.") old_value = getattr(module, tensor_name) if not isinstance(module._parameters[tensor_name], bnb.nn.Int8Params): raise ValueError(f"Parameter `{tensor_name}` should only be a `bnb.nn.Int8Params` instance.") if ( old_value.device == torch.device("meta") and target_device not in ["meta", torch.device("meta")] and param_value is None ): raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.") new_value = param_value.to("cpu") if self.pre_quantized and not self.is_serializable(): raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. openai-community/gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls, Conv1D): if fp16_statistics is None: new_value = new_value.T kwargs = old_value.__dict__ new_value = bnb.nn.Int8Params(new_value, requires_grad=False, **kwargs).to(target_device) module._parameters[tensor_name] = new_value if fp16_statistics is not None: setattr(module.weight, "SCB", fp16_statistics.to(target_device)) if unexpected_keys is not None: unexpected_keys.remove(fp16_statistics_key) # We just need to pop the `weight_format` keys from the state dict to remove unneeded # messages. The correct format is correctly retrieved during the first forward pass. if fp16_weights_format is not None and unexpected_keys is not None: unexpected_keys.remove(fp16_weights_format_key) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): model.is_loaded_in_8bit = True model.is_8bit_serializable = self.is_serializable() return model def _process_model_before_weight_loading( self, model: "PreTrainedModel", device_map, keep_in_fp32_modules: Optional[List[str]] = None, **kwargs, ): from ..integrations import replace_with_bnb_linear llm_int8_enable_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.llm_int8_skip_modules, keep_in_fp32_modules ) # Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk` if isinstance(device_map, dict) and len(device_map.keys()) > 1: keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]] if len(keys_on_cpu) > 0 and not llm_int8_enable_fp32_cpu_offload: raise ValueError( "If you want to offload some keys to `cpu` or `disk`, you need to set " "`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be " " converted to 8-bit but kept in 32-bit." ) self.modules_to_not_convert.extend(keys_on_cpu) model = replace_with_bnb_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config ) # TODO: consider bringing replace_with_bnb_linear() code from ..integrations/bitsandbyter.py to here model.config.quantization_config = self.quantization_config def is_serializable(self, safe_serialization=None): _bnb_supports_8bit_serialization = version.parse(importlib.metadata.version("bitsandbytes")) > version.parse( "0.37.2" ) if not _bnb_supports_8bit_serialization: logger.warning( "You are calling `save_pretrained` to a 8-bit converted model, but your `bitsandbytes` version doesn't support it. " "If you want to save 8-bit models, make sure to have `bitsandbytes>0.37.2` installed. You will most likely face errors or" " unexpected behaviours." ) return False return True @property def is_trainable(self) -> bool: return version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.37.0") def _dequantize(self, model): from ..integrations import dequantize_and_replace model = dequantize_and_replace( model, self.modules_to_not_convert, quantization_config=self.quantization_config ) return model ```
=============================================================================================================================================== SOURCE CODE FILE: quantizer_compressed_tensors.py LINES: 1 SIZE: 7.30 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\quantizer_compressed_tensors.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re from typing import List from ..utils import is_compressed_tensors_available, is_torch_available, logging from ..utils.quantization_config import CompressedTensorsConfig from .base import HfQuantizer if is_torch_available(): import torch logger = logging.get_logger(__name__) class CompressedTensorsHfQuantizer(HfQuantizer): """ Quantizer for the compressed_tensors package. Loads and restores models to quantized state with compressed_tensors """ requires_calibration = True required_packages = ["compressed_tensors"] def __init__(self, quantization_config: CompressedTensorsConfig, **kwargs): super().__init__(quantization_config, **kwargs) if not is_compressed_tensors_available(): raise ImportError( "Using `compressed_tensors` quantized models requires the compressed-tensors library: " "`pip install compressed-tensors`" ) # Call post_init here to ensure proper config setup when `run_compressed` # is provided directly via CompressedTensorsConfig, and to avoid duplicate logging. quantization_config.post_init() from compressed_tensors.compressors import ModelCompressor self.compressor = ModelCompressor.from_compression_config(quantization_config) self.run_compressed = quantization_config.run_compressed self.quantization_config = quantization_config def update_missing_keys_after_loading(self, model, missing_keys: List[str], prefix: str) -> List[str]: """ Update missing keys after loading the model. This is necessary for compressed tensors to load the model correctly. We expect weights to be present in missing keys. The weight's are re-constructed by ModelCompressor in _process_model_after_weight_loading This function cleans up expected missing keys and returns the remaining missing keys """ if self.run_compressed: return missing_keys # We expect some keys to be missing for # compresed models # This is fine as the weights are reconstructed by ModelCompressor # in _process_model_after_weight_loading expected_missing_keys = self.compressor.get_missing_module_keys(model) return [ key for key in missing_keys if not any(re.match(f".*{pattern}", key) for pattern in expected_missing_keys) ] def update_unexpected_keys(self, model, unexpected_keys: List[str], prefix: str) -> List[str]: """ Override this method if you want to adjust the `unexpected_keys`. Args: unexpected_keys (`List[str]`, *optional*): The list of unexpected keys in the checkpoint compared to the state dict of the model """ if self.run_compressed: return unexpected_keys # We expect some unexpected keys in model # safetensors file for compressed models keys_to_ignore = self.compressor.get_unexpected_file_keys(model) return [key for key in unexpected_keys if not any(re.match(f".*{pattern}", key) for pattern in keys_to_ignore)] def validate_environment(self, *args, **kwargs): if not is_compressed_tensors_available(): raise ImportError( "Using `compressed_tensors` quantized models requires the compressed-tensors library: " "`pip install compressed-tensors`" ) if not is_torch_available(): # torch already should be installed as part of compressed tensors raise ImportError("torch is required for using compressed-tensors quantization") def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: logger.info("Loading model using torch.float16 for compressed-tensors quantization") torch_dtype = torch.float16 elif torch_dtype != torch.float16: logger.info( "We suggest you to set `torch_dtype=torch.float16` for better efficiency with compressed_tensors." ) return torch_dtype def _process_model_before_weight_loading(self, model, **kwargs): from compressed_tensors.quantization import apply_quantization_config ct_quantization_config = self.compressor.quantization_config if self.run_compressed: apply_quantization_config(model, ct_quantization_config, run_compressed=True) elif not self.quantization_config.is_quantization_compressed: apply_quantization_config(model, ct_quantization_config) def _process_model_after_weight_loading(self, model, **kwargs): """Decompress loaded model if necessary - need for qat""" if ( self.quantization_config.is_quantization_compressed and not self.run_compressed ) or self.quantization_config.is_sparsification_compressed: config = kwargs.get("config", None) cache_path = config._name_or_path if not os.path.exists(cache_path): from transformers.utils import cached_file config_file_path = cached_file(cache_path, "config.json") cache_path = os.path.sep.join(config_file_path.split(os.path.sep)[:-1]) if self.quantization_config.is_quantization_compressed and not self.run_compressed: from compressed_tensors.quantization import QuantizationStatus self.compressor.quantization_config.quantization_status = QuantizationStatus.FROZEN self.compressor.decompress(model_path=cache_path, model=model) def update_tp_plan(self, config): additional_plan = { "layers.*.feed_forward.experts.*.gate_proj.weight": "local_colwise", "layers.*.feed_forward.experts.*.gate_proj.weight_scale": "local_colwise", "layers.*.feed_forward.experts.*.up_proj.weight": "local_colwise", "layers.*.feed_forward.experts.*.up_proj.weight_scale": "local_colwise", "layers.*.feed_forward.experts.*.down_proj.weight": "local_rowwise", } if config.get_text_config() is not None and config.get_text_config().base_model_tp_plan is not None: config.get_text_config().base_model_tp_plan.update(additional_plan) return config @property def is_trainable(self): return True def is_qat_trainable(self) -> bool: """Loaded Models can carry out quantization aware training""" # models need to be decompressed carry out qat return not self.run_compressed or not self.quantization_config.is_quantization_compressed def is_serializable(self, safe_serialization=None) -> bool: """Models quantized using compressed tensors can be saved to disk""" return True ```
================================================================================================================================= SOURCE CODE FILE: quantizer_eetq.py LINES: 1 SIZE: 7.06 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\quantizer_eetq.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Any, Dict, List, Optional from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_accelerate_available, is_eetq_available, is_torch_available, logging from .quantizers_utils import get_module_from_name if is_torch_available(): import torch logger = logging.get_logger(__name__) class EetqHfQuantizer(HfQuantizer): """ 8-bit quantization from EETQ quantization method: before loading: converts transformer layers into W8A16Linear during loading: load 16bit weight and pass to the layer object after: quantizes individual weights in Linear8bitLt into 8bit at first .cuda() call """ requires_parameters_quantization = True requires_calibration = False required_packages = ["eetq", "accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_eetq_available(): raise ImportError( "Using `eetq` 8-bit quantization requires eetq." "Please install the latest version of eetq from : https://github.com/NetEase-FuXi/EETQ" ) try: import eetq # noqa: F401 except ImportError as exc: if "shard_checkpoint" in str(exc): # EETQ 1.0.0 is currently broken with the latest transformers because it tries to import the removed # shard_checkpoint function, see https://github.com/NetEase-FuXi/EETQ/issues/34. # TODO: Update message once eetq releases a fix raise ImportError( "You are using a version of EETQ that is incompatible with the current transformers version. " "Either downgrade transformers to <= v4.46.3 or, if available, upgrade EETQ to > v1.0.0." ) from exc else: raise if not is_accelerate_available(): raise ImportError("Loading an EETQ quantized model requires accelerate (`pip install accelerate`)") if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Converting into 8-bit weights from tf/flax weights is currently not supported, please make" " sure the weights are in PyTorch format." ) if not torch.cuda.is_available(): raise RuntimeError("No GPU found. A GPU is needed for quantization.") device_map = kwargs.get("device_map", None) if device_map is None: logger.warning_once( "You have loaded an EETQ model on CPU and have a CUDA device available, make sure to set " "your model on a GPU device in order to run your model." ) elif device_map is not None: if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): raise ValueError( "You are attempting to load an EETQ model with a device_map that contains a CPU or disk device." " This is not supported. Please remove the CPU or disk device from the device_map." ) def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: torch_dtype = torch.float16 logger.info( "Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to " "requirements of `eetq` to enable model loading in 8-bit. " "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass" " torch_dtype=torch.float16 to remove this warning.", torch_dtype, ) elif torch_dtype != torch.float16: logger.info("We suggest you to set `torch_dtype=torch.float16` for better efficiency with EETQ.") return torch_dtype def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ): from eetq import EetqLinear module, tensor_name = get_module_from_name(model, param_name) if isinstance(module, EetqLinear): if self.pre_quantized or tensor_name == "bias": if tensor_name == "weight" and param_value.dtype != torch.int8: raise ValueError("Expect quantized weights but got an unquantized weight") return False else: if tensor_name == "weight_scale": raise ValueError("Expect unquantized weights but got a quantized weight_scale") return True return False def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: Optional[List[str]] = None, ): """ quantizes weights into qweight and weight_scales """ from eetq import quantize_and_preprocess_weights module, tensor_name = get_module_from_name(model, param_name) new_value, weight_scale = quantize_and_preprocess_weights(param_value) module._buffers[tensor_name] = new_value.to(target_device) module.register("weight_scales", weight_scale.to(target_device)) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[List[str]] = None, **kwargs, ): from ..integrations import replace_with_eetq_linear self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) model = replace_with_eetq_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config, pre_quantized=self.pre_quantized, ) model.config.quantization_config = self.quantization_config def is_serializable(self, safe_serialization=None): return True @property def is_trainable(self) -> bool: return True ```
======================================================================================================================================= SOURCE CODE FILE: quantizer_fbgemm_fp8.py LINES: 1 SIZE: 12.51 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\quantizer_fbgemm_fp8.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib from typing import TYPE_CHECKING, Any, Dict, List, Optional from packaging import version from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_accelerate_available, is_fbgemm_gpu_available, is_torch_available, logging from .quantizers_utils import get_module_from_name if is_torch_available(): import torch logger = logging.get_logger(__name__) class FbgemmFp8HfQuantizer(HfQuantizer): """ FP8 quantization using fbgemm kernels """ requires_parameters_quantization = True requires_calibration = False required_packages = ["fbgemm-gpu", "accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_torch_available() or version.parse(importlib.metadata.version("torch")) < version.parse("2.1.0"): raise ImportError( "Using fbgemm fp8 quantization requires torch > 2.1.0" "Please install the latest version of torch ( pip install --upgrade torch )" ) if not is_fbgemm_gpu_available(): raise ImportError( "Using fbgemm fp8 quantization requires fbgemm-gpu library" "Please install the latest version of fbgemm-gpu library by following : https://pytorch.org/FBGEMM/fbgemm_gpu-development/InstallationInstructions.html#fbgemm-gpu-install-libraries" ) if not is_accelerate_available("0.32.2"): raise ImportError( "Loading an FP8 quantized model requires accelerate > 0.32.1 (`pip install --upgrade accelerate`)" ) if not torch.cuda.is_available(): raise RuntimeError("Using FP8 quantized models with fbgemm kernels requires a GPU") compute_capability = torch.cuda.get_device_capability() major, minor = compute_capability if major < 9: raise ValueError( "FP8 quantized models is only supported on GPUs with compute capability >= 9.0 (e.g H100)" ) device_map = kwargs.get("device_map", None) if device_map is None: logger.warning_once( "You have loaded an FP8 model on CPU and have a CUDA device available, make sure to set " "your model on a GPU device in order to run your model. To remove this warning, pass device_map = 'cuda'. " ) elif device_map is not None: if ( not self.pre_quantized and isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()) ): raise ValueError( "You are attempting to load an FP8 model with a device_map that contains a CPU or disk device." "This is not supported when the model is quantized on the fly. " "Please use a quantized checkpoint or remove the CPU or disk device from the device_map." ) def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: torch_dtype = torch.bfloat16 logger.info( "Overriding torch_dtype=%s with `torch_dtype=torch.bloat16` due to " "requirements of `fbgemm-gpu` to enable model loading in fp8. " "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass" " torch_dtype=torch.bfloat16 to remove this warning.", torch_dtype, ) elif torch_dtype == torch.float16: raise ValueError( "You cannot use FP8 with torch_dtype=torch.float16.We recommend you passing torch_dtype=torch.bfloat16" ) return torch_dtype def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ): from ..integrations import FbgemmFp8Linear, FbgemmFp8Llama4TextExperts module, tensor_name = get_module_from_name(model, param_name) if isinstance(module, FbgemmFp8Linear): if self.pre_quantized or tensor_name == "bias": if tensor_name == "weight" and param_value.dtype != torch.float8_e4m3fn: raise ValueError("Expect quantized weights but got an unquantized weight") return False else: if tensor_name == "weight_scale": raise ValueError("Expect unquantized weights but got a quantized weight_scale") return True if isinstance(module, FbgemmFp8Llama4TextExperts): if self.pre_quantized or tensor_name == "bias": return False else: if tensor_name == "gate_up_proj_scale" or tensor_name == "down_proj_scale": raise ValueError("Expect unquantized weights but got a quantized weight_scale") return True return False def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: Optional[List[str]] = None, ): """ Quantizes weights into weight and weight_scale """ from ..integrations import FbgemmFp8Llama4TextExperts module, tensor_name = get_module_from_name(model, param_name) if isinstance(module, FbgemmFp8Llama4TextExperts): if tensor_name == "gate_up_proj": # Process each expert separately # Transpose the second and third dimension transposed_param = param_value.transpose(1, 2) # Reshape to 2D for quantization original_shape = transposed_param.shape flattened_param = transposed_param.reshape(-1, original_shape[-1]) # Quantize using per row instead of per column new_value_flat, weight_scale_flat = torch.ops.fbgemm.quantize_fp8_per_row(flattened_param) # Reshape back to original dimensions new_value = new_value_flat.reshape(original_shape) new_value = new_value.transpose(1, 2) weight_scale = weight_scale_flat.reshape(original_shape[0], 1, original_shape[1]) elif tensor_name == "down_proj": # Process each expert separately # Transpose the weights for proper quantization transposed_param = param_value.transpose(1, 2) # Reshape to 2D for quantization original_shape = transposed_param.shape flattened_param = transposed_param.reshape(-1, original_shape[-1]) # Quantize using per column new_value_flat, weight_scale_flat = torch.ops.fbgemm.quantize_fp8_per_row(flattened_param) # Reshape back to original dimensions new_value = new_value_flat.reshape(original_shape) new_value = new_value.transpose(1, 2) weight_scale = weight_scale_flat.reshape(original_shape[0], original_shape[1], 1) module._parameters[f"{tensor_name}_scale"] = torch.nn.Parameter(weight_scale.to(target_device)) else: new_value, weight_scale = torch.ops.fbgemm.quantize_fp8_per_row(param_value) module._parameters[f"{tensor_name}_scale"] = torch.nn.Parameter( weight_scale.view(weight_scale.shape[0], 1).to(target_device) ) module._parameters[tensor_name] = torch.nn.Parameter(new_value.to(target_device)) if unexpected_keys is not None and param_name in unexpected_keys: unexpected_keys.remove(param_name) del param_name def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[List[str]] = None, **kwargs, ): from ..integrations import replace_with_fbgemm_fp8_linear tp_plan = model._tp_plan self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) config = model.config model = replace_with_fbgemm_fp8_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config, pre_quantized=self.pre_quantized, config=config, tp_plan=tp_plan, ) model.config.quantization_config = self.quantization_config def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: from ..integrations import FbgemmFp8Linear, FbgemmFp8Llama4TextExperts not_missing_keys = [] for name, module in model.named_modules(): if isinstance(module, FbgemmFp8Linear) or isinstance(module, FbgemmFp8Llama4TextExperts): for missing in missing_keys: if ( (name in missing or name in f"{prefix}.{missing}") and not missing.endswith(".weight") and not missing.endswith(".bias") ): not_missing_keys.append(missing) return [k for k in missing_keys if k not in not_missing_keys] def update_tp_plan(self, config): text_plan = { "layers.*.self_attn.q_proj.weight": "local_colwise", "layers.*.self_attn.q_proj.weight_scale": "local_colwise", "layers.*.self_attn.k_proj.weight": "local_colwise", "layers.*.self_attn.k_proj.weight_scale": "local_colwise", "layers.*.self_attn.v_proj.weight": "local_colwise", "layers.*.self_attn.v_proj.weight_scale": "local_colwise", "layers.*.self_attn.o_proj.weight": "local_rowwise", "layers.*.self_attn": "gather", "layers.*.input_layernorm.weight": "sequence_parallel", "layers.*.post_attention_layernorm.weight": "sequence_parallel", "norm.weight": "sequence_parallel", "layers.*.feed_forward.shared_expert.gate_proj.weight": "local_colwise", "layers.*.feed_forward.shared_expert.gate_proj.weight_scale": "local_colwise", "layers.*.feed_forward.shared_expert.up_proj.weight": "local_colwise", "layers.*.feed_forward.shared_expert.up_proj.weight_scale": "local_colwise", "layers.*.feed_forward.shared_expert.down_proj.weight": "local_rowwise", "layers.*.feed_forward.experts": "local", "layers.*.feed_forward": "gather", "layers.*.feed_forward.experts.*.gate_proj.weight": "local_colwise", "layers.*.feed_forward.experts.*.gate_proj.weight_scale": "local_colwise", "layers.*.feed_forward.experts.*.up_proj.weight": "local_colwise", "layers.*.feed_forward.experts.*.up_proj.weight_scale": "local_colwise", "layers.*.feed_forward.experts.*.down_proj.weight": "local_rowwise", # For Fused implementation "layers.*.feed_forward.experts.gate_up_proj": "local_packed_rowwise", "layers.*.feed_forward.experts.gate_up_proj_scale": "local_packed_rowwise", "layers.*.feed_forward.experts.down_proj": "local_colwise", } if config.get_text_config() is not None: config.get_text_config().base_model_tp_plan = text_plan else: config.base_model_tp_plan = text_plan return config def is_serializable(self, safe_serialization=None): return True @property def is_trainable(self) -> bool: return False ```
============================================================================================================================================ SOURCE CODE FILE: quantizer_finegrained_fp8.py LINES: 1 SIZE: 7.90 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\quantizer_finegrained_fp8.py ENCODING: utf-8 ```py import importlib from typing import TYPE_CHECKING, Any, Dict, List, Optional from packaging import version from ..utils import is_accelerate_available, is_torch_available, logging from .base import HfQuantizer from .quantizers_utils import get_module_from_name if is_torch_available(): import torch if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel logger = logging.get_logger(__name__) class FineGrainedFP8HfQuantizer(HfQuantizer): """ FP8 quantization implementation supporting both standard and MoE models. Supports both e4m3fn formats based on platform. """ requires_parameters_quantization = True requires_calibration = False required_packages = ["accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_torch_available() or version.parse(importlib.metadata.version("torch")) < version.parse("2.1.0"): raise ImportError( "Using fp8 quantization requires torch >= 2.1.0" "Please install the latest version of torch ( pip install --upgrade torch )" ) if not is_accelerate_available(): raise ImportError("Loading an FP8 quantized model requires accelerate (`pip install accelerate`)") if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Converting into FP8 weights from tf/flax weights is currently not supported, " "please make sure the weights are in PyTorch format." ) if not torch.cuda.is_available(): raise RuntimeError("No GPU found. A GPU is needed for FP8 quantization.") compute_capability = torch.cuda.get_device_capability() major, minor = compute_capability if (major < 8) or (major == 8 and minor < 9): raise ValueError( "FP8 quantized models is only supported on GPUs with compute capability >= 8.9 (e.g 4090/H100)" f", actual = `{major}.{minor}`" ) device_map = kwargs.get("device_map", None) if device_map is None: logger.warning_once( "You have loaded an FP8 model on CPU and have a CUDA device available, make sure to set " "your model on a GPU device in order to run your model. To remove this warning, pass device_map = 'cuda'. " ) elif device_map is not None: if ( not self.pre_quantized and isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()) ): raise ValueError( "You are attempting to load an FP8 model with a device_map that contains a cpu/disk device." "This is not supported when the model is quantized on the fly. " "Please use a quantized checkpoint or remove the cpu/disk device from the device_map." ) def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: logger.info("Setting torch_dtype to torch.float32 as no torch_dtype was specified in from_pretrained") torch_dtype = torch.float32 return torch_dtype def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: Optional[List[str]] = None, ): """ Quantizes weights to FP8 format using Block-wise quantization """ from accelerate.utils import set_module_tensor_to_device set_module_tensor_to_device(model, param_name, target_device, param_value) module, tensor_name = get_module_from_name(model, param_name) # Get FP8 min/max values fp8_min = torch.finfo(torch.float8_e4m3fn).min fp8_max = torch.finfo(torch.float8_e4m3fn).max block_size_m, block_size_n = self.quantization_config.weight_block_size rows, cols = param_value.shape[-2:] if rows % block_size_m != 0 or cols % block_size_n != 0: raise ValueError( f"Matrix dimensions ({rows}, {cols}) must be divisible by block sizes ({block_size_m}, {block_size_n})" ) param_value_orig_shape = param_value.shape param_value = param_value.reshape( -1, rows // block_size_m, block_size_m, cols // block_size_n, block_size_n ).permute(0, 1, 3, 2, 4) # Calculate scaling factor for each block max_abs = torch.amax(torch.abs(param_value), dim=(-1, -2)) scale = fp8_max / max_abs scale_orig_shape = scale.shape scale = scale.unsqueeze(-1).unsqueeze(-1) # Quantize the weights quantized_param = torch.clamp(param_value * scale, min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn) quantized_param = quantized_param.permute(0, 1, 3, 2, 4) # Reshape back to matrix shape quantized_param = quantized_param.reshape(param_value_orig_shape) # Reshape scale to match the number of blocks scale = scale.reshape(scale_orig_shape).squeeze().reciprocal() module._buffers[tensor_name] = quantized_param.to(target_device) module._buffers["weight_scale_inv"] = scale.to(target_device) def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ): from ..integrations.finegrained_fp8 import FP8Linear module, tensor_name = get_module_from_name(model, param_name) if isinstance(module, FP8Linear): if self.pre_quantized or tensor_name == "bias": if tensor_name == "weight" and param_value.dtype != torch.float8_e4m3fn: raise ValueError("Expect quantized weights but got an unquantized weight") return False else: if tensor_name == "weight_scale_inv": raise ValueError("Expect unquantized weights but got a quantized weight_scale") return True return False def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[List[str]] = None, **kwargs, ): from ..integrations.finegrained_fp8 import replace_with_fp8_linear self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) model = replace_with_fp8_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config, ) model.config.quantization_config = self.quantization_config def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: from ..integrations import FP8Linear not_missing_keys = [] for name, module in model.named_modules(): if isinstance(module, FP8Linear): for missing in missing_keys: if ( (name in missing or name in f"{prefix}.{missing}") and not missing.endswith(".weight") and not missing.endswith(".bias") ): not_missing_keys.append(missing) return [k for k in missing_keys if k not in not_missing_keys] def is_serializable(self, safe_serialization=None): return True @property def is_trainable(self) -> bool: return False ```
================================================================================================================================= SOURCE CODE FILE: quantizer_gptq.py LINES: 1 SIZE: 5.54 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\quantizer_gptq.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib from typing import TYPE_CHECKING, Optional from packaging import version from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_auto_gptq_available, is_gptqmodel_available, is_optimum_available, is_torch_available, logging from ..utils.quantization_config import GPTQConfig, QuantizationConfigMixin if is_torch_available(): import torch logger = logging.get_logger(__name__) class GptqHfQuantizer(HfQuantizer): """ Quantizer of the GPTQ method - for GPTQ the quantizer support calibration of the model through `auto_gptq` or `gptqmodel` package. Quantization is done under the hood for users if they load a non-prequantized model. """ requires_calibration = False required_packages = ["optimum", "auto_gptq", "gptqmodel"] optimum_quantizer = None def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) if not is_optimum_available(): raise ImportError("Loading a GPTQ quantized model requires optimum (`pip install optimum`)") from optimum.gptq import GPTQQuantizer self.optimum_quantizer = GPTQQuantizer.from_dict(self.quantization_config.to_dict_optimum()) def validate_environment(self, *args, **kwargs): if not is_optimum_available(): raise ImportError("Loading a GPTQ quantized model requires optimum (`pip install optimum`)") if is_auto_gptq_available() and is_gptqmodel_available(): logger.warning("Detected gptqmodel and auto-gptq, will use gptqmodel") gptq_supports_cpu = ( is_auto_gptq_available() and version.parse(importlib.metadata.version("auto-gptq")) > version.parse("0.4.2") ) or is_gptqmodel_available() if not gptq_supports_cpu and not torch.cuda.is_available(): raise RuntimeError("GPU is required to quantize or run quantize model.") elif not (is_auto_gptq_available() or is_gptqmodel_available()): raise ImportError( "Loading a GPTQ quantized model requires gptqmodel (`pip install gptqmodel`) or auto-gptq (`pip install auto-gptq`) library. " ) elif is_auto_gptq_available() and version.parse(importlib.metadata.version("auto_gptq")) < version.parse( "0.4.2" ): raise ImportError( "You need a version of auto_gptq >= 0.4.2 to use GPTQ: `pip install --upgrade auto-gptq` or use gptqmodel by `pip install gptqmodel>=1.4.3`." ) elif is_gptqmodel_available() and ( version.parse(importlib.metadata.version("gptqmodel")) < version.parse("1.4.3") or version.parse(importlib.metadata.version("optimum")) < version.parse("1.23.99") ): raise ImportError("The gptqmodel version should be >= 1.4.3, optimum version should >= 1.24.0") def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: torch_dtype = torch.float16 logger.info("Loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually.") elif torch_dtype != torch.float16: logger.info("We suggest you to set `torch_dtype=torch.float16` for better efficiency with GPTQ.") return torch_dtype def update_device_map(self, device_map): if device_map is None: device_map = {"": torch.device("cpu")} # Only with auto-gptq do not support CPU, we should move the model to cuda if available. if not is_gptqmodel_available() and device_map in ("cpu", {"": torch.device("cpu")}): device_map == {"": 0} return device_map def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs): if model.__class__.main_input_name != "input_ids": raise RuntimeError("We can only quantize pure text model.") if self.pre_quantized: # compat: latest optimum has gptqmodel refactor if version.parse(importlib.metadata.version("optimum")) <= version.parse("1.23.99"): model = self.optimum_quantizer.convert_model(model) else: model = self.optimum_quantizer.convert_model(model, **kwargs) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): if self.pre_quantized: model = self.optimum_quantizer.post_init_model(model) else: if self.quantization_config.tokenizer is None: self.quantization_config.tokenizer = model.name_or_path self.optimum_quantizer.quantize_model(model, self.quantization_config.tokenizer) model.config.quantization_config = GPTQConfig.from_dict(self.optimum_quantizer.to_dict()) @property def is_trainable(self, model: Optional["PreTrainedModel"] = None): return True def is_serializable(self, safe_serialization=None): return True ```
================================================================================================================================== SOURCE CODE FILE: quantizer_higgs.py LINES: 1 SIZE: 8.33 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\quantizer_higgs.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Any, Dict, List, Optional from ..utils.logging import tqdm from .base import HfQuantizer from .quantizers_utils import get_module_from_name if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_accelerate_available, is_flute_available, is_hadamard_available, is_torch_available, logging from ..utils.quantization_config import QuantizationConfigMixin if is_torch_available(): import torch logger = logging.get_logger(__name__) class HiggsHfQuantizer(HfQuantizer): """ Quantizer of the HIGGS method. Enables the loading of prequantized models and in-flight quantization of full-precision models. """ requires_calibration = False requires_parameters_quantization = True required_packages = ["flute-kernel", "fast_hadamard_transform"] def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, device_map, **kwargs): if not torch.cuda.is_available(): raise NotImplementedError("HIGGS quantization is only supported on GPU. Please use a different quantizer.") if not is_accelerate_available(): raise ImportError("Using `higgs` quantization requires Accelerate: `pip install accelerate`") if not is_flute_available(): raise ImportError("Using `higgs` quantization requires FLUTE: `pip install flute-kernel>=0.3.0`") if not is_hadamard_available(): raise ImportError( "Using `higgs` quantization requires fast_hadamard_transform: `pip install fast_hadamard_transform`" ) if device_map is None: raise ValueError( "You are attempting to load a HIGGS model without setting device_map." " Please set device_map comprised of 'cuda' devices." ) elif isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): raise ValueError( "You are attempting to load a HIGGS model with a device_map that contains a CPU or disk device." " This is not supported. Please remove the CPU or disk device from the device_map." ) def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: logger.info("`torch_dtype` is None. Setting `torch_dtype=torch.float16` for FLUTE compatibility.") torch_dtype = torch.float16 elif torch_dtype != torch.float16 and torch_dtype != torch.bfloat16: raise ValueError( f"Invalid `torch_dtype` {torch_dtype}. HIGGS quantization only supports `torch_dtype=torch.float16` or `torch_dtype=torch.bfloat16`." ) return torch_dtype def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: Optional[List[str]] = None, ): from ..integrations import quantize_with_higgs """ Quantizes weights into weight and weight_scale """ flute_dict = quantize_with_higgs( param_value.to(target_device), self.quantization_config.bits, self.quantization_config.p, self.quantization_config.group_size, self.quantization_config.hadamard_size, ) del param_value module, _ = get_module_from_name(model, param_name) module_name = ".".join(param_name.split(".")[:-1]) for key, value in flute_dict.items(): if key in module._parameters: module._parameters[key] = torch.nn.Parameter(value, requires_grad=False) elif key in module._buffers: module._buffers[key] = torch.nn.Buffer(value) elif key == "tune_metadata": module.tune_metadata = value self.quantization_config.tune_metadata[module_name] = value.to_dict() else: raise ValueError(f"Unexpected key {key} in module {module}") if unexpected_keys is not None and param_name in unexpected_keys: unexpected_keys.remove(param_name) def _process_model_before_weight_loading( self, model: "PreTrainedModel", **kwargs, ): from ..integrations import replace_with_higgs_linear replace_with_higgs_linear( model, quantization_config=self.quantization_config, ) model.config.quantization_config = self.quantization_config def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): from flute.tune import TuneMetaData, maybe_tune_and_repack from flute.utils import make_workspace_streamk from ..integrations import HiggsLinear flute_workspaces = {} flute_modules = {name: module for name, module in model.named_modules() if isinstance(module, HiggsLinear)} for name, module in tqdm(flute_modules.items(), desc="Repacking HIGGS modules", leave=False): # Every HiggsLinear needs a "workspace": a buffer for the unpacking operation. # This buffer needs to be on the same device as the weights, but can be reused across modules otherwise. if module.weight.device not in flute_workspaces: flute_workspaces[module.weight.device] = make_workspace_streamk(device=module.weight.device) module.workspace = flute_workspaces[module.weight.device] # FLUTE weights are packed in a way that is optimized for a specific number of SMs (GPU streaming multiprocessors). # If the model is loaded on a different device than the one it was saved on, we need to repack the weights. module.tune_metadata = TuneMetaData.from_dict(self.quantization_config.tune_metadata[name]) module.weight.data, module.tune_metadata = maybe_tune_and_repack( weight=module.weight.data, scales=module.scales.data, metadata=module.tune_metadata, ) self.quantization_config.tune_metadata[name] = module.tune_metadata.to_dict() def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: from ..integrations import HiggsLinear higgs_names = {name for name, module in model.named_modules() if isinstance(module, HiggsLinear)} def should_update(key: str) -> bool: if key.endswith(".weight") or key.endswith(".bias"): return False full_key = f"{prefix}.{key}" return any(name in key or name in full_key for name in higgs_names) return [key for key in missing_keys if not should_update(key)] @property def is_trainable(self, model: Optional["PreTrainedModel"] = None): return False def is_serializable(self, safe_serialization=None): return True def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: from ..integrations import HiggsLinear module, tensor_name = get_module_from_name(model, param_name) if isinstance(module, HiggsLinear) and tensor_name == "weight" and param_value.dtype != torch.int16: # Only quantize weights of HiggsLinear modules that are not already quantized return True else: return False def _dequantize(self, model): from ..integrations import dequantize_higgs model = dequantize_higgs(model) return model ```
================================================================================================================================ SOURCE CODE FILE: quantizer_hqq.py LINES: 1 SIZE: 12.17 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\quantizer_hqq.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Any, Dict, List from ..integrations import prepare_for_hqq_linear from ..utils import is_accelerate_available, is_hqq_available, is_torch_available, logging from .base import HfQuantizer from .quantizers_utils import get_module_from_name if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel if is_accelerate_available(): from accelerate.hooks import remove_hook_from_module if is_torch_available(): import torch logger = logging.get_logger(__name__) # Finds the parent of a node module named "name" def find_parent(model, name): module_tree = name.split(".")[:-1] parent = model for m in module_tree: parent = parent._modules[m] return parent class HqqHfQuantizer(HfQuantizer): """ HQQ quantizer base HF class. nn.Linear modules are first tagged with quant_config in _process_model_before_weight_loading(). The actual quantization and offloading to the GPU is done in check_quantized_param(). """ use_keep_in_fp32_modules = False requires_parameters_quantization = True requires_calibration = False required_packages = ["hqq"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.torch_dtype = None self.using_multi_gpu = False def validate_environment(self, *args, **kwargs): if not (is_hqq_available()): raise ImportError( "A valid HQQ version (>=0.2.1) is not available. Please follow the instructions to install it: `https://github.com/mobiusml/hqq/`." ) if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Converting weights from tf/flax weights is currently not supported, please make" " sure the weights are in PyTorch format." ) if not torch.cuda.is_available(): raise RuntimeError("No GPU found. A GPU is needed for quantization.") if self.torch_dtype is None: if "torch_dtype" in kwargs: self.torch_dtype = kwargs["torch_dtype"] else: self.torch_dtype = torch.float32 logger.info("Setting torch_dtype to torch.float32 as the default value since it was not specified.") device_map = kwargs.get("device_map", None) if isinstance(device_map, dict): if "cpu" in device_map.values() or "disk" in device_map.values(): raise ValueError( "You are attempting to use an HQQ model with a device_map that contains a CPU or disk device." " This is not supported. Please remove the CPU or disk device from the device_map." ) else: self.using_multi_gpu = len(set(device_map.values())) > 1 def update_missing_keys( self, model: "PreTrainedModel", missing_keys: List[str], prefix: str, **kwargs ) -> List[str]: if self.pre_quantized: return [key for key in missing_keys if ("weight" not in key)] else: return missing_keys # Adds missing keys for HQQLinear modules that are loaded but the model with initialized with torch.nn.Linear def update_expected_keys( self, model: "PreTrainedModel", expected_keys: List[str], loaded_keys: List[str] ) -> List[str]: if not self.pre_quantized: return expected_keys # Collects all quantizable (linear) layers def _find_hqq_quantizable_layers(model, layers): for name, module in model.named_children(): if isinstance(module, (torch.nn.Linear)): layers.add(module.name) _find_hqq_quantizable_layers(module, layers) new_keys = set(expected_keys) if is_hqq_available(): from hqq.core.quantize import HQQLinear # Name modules for name, module in model.named_modules(): module.name = name # valid modules are Linear layers that have HQQLinear state_dict. We ignore skip_modules and any layers with Linear state_dict() params _valid_modules = set() _find_hqq_quantizable_layers(model, _valid_modules) # Remove skipped modules _skipped_modules = set() for _module in _valid_modules: for _skip_module in model.config.quantization_config["skip_modules"]: if _skip_module in _module: _skipped_modules.add(_module) _valid_modules -= _skipped_modules # Append new expected layers based on _ref_keys _ref_keys = HQQLinear( linear_layer=None, quant_config=None, compute_dtype=torch.float16, device="cpu" ).state_dict_keys() - {"bias"} # Clean-up _rm_keys = set() for key in new_keys: if any(_module in key for _module in _valid_modules): _rm_keys.add(key) new_keys -= _rm_keys # At this point, new_keys contains all the keys of the layers that are NOT HQQLinear or torch.nn.Linear # Re-populate Linear/HQQLinear for _module in _valid_modules: if _module + ".weight" in loaded_keys: new_keys.add(_module + ".weight") else: new_keys.update({_module + "." + _ref_key for _ref_key in _ref_keys}) if _module + ".bias" in loaded_keys: new_keys.add(_module + ".bias") return list(new_keys) def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: if is_hqq_available(): from hqq.core.quantize import HQQLinear module, tensor_name = get_module_from_name(model, param_name) if self.pre_quantized: return ( (isinstance(module, torch.nn.Linear) or isinstance(module, HQQLinear)) and tensor_name != "weight" and tensor_name != "bias" ) else: # we need a special path for bias since hqq overwrote load_state_dict for this layer return ( isinstance(module, torch.nn.Linear) and tensor_name == "weight" or (isinstance(module, HQQLinear) and tensor_name == "bias") ) def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: List[str], ): """ Each nn.Linear layer is processed here. We first check if the corresponding module state_dict contains already HQQ quantized parameters. If not, we create a temp linear layer with the module state_dict params and use it for quantization """ if is_hqq_available(): from hqq.core.quantize import HQQLinear module, tensor_name = get_module_from_name(model, param_name) layer_name = ".".join(param_name.split(".")[:-1]) parent_module = find_parent(model, layer_name) node = layer_name.split(".")[-1] if tensor_name == "bias": # this should already be set return # set module state_dict module_state_dict = {} for k, v in state_dict.items(): if layer_name + "." in k: module_state_dict[k.split(".")[-1]] = v if unexpected_keys is not None and k in unexpected_keys: unexpected_keys.remove(k) if self.pre_quantized: if isinstance(module, HQQLinear): return else: hqq_layer = HQQLinear( linear_layer=None, quant_config=None, compute_dtype=self.torch_dtype, device=target_device, ) hqq_layer.load_state_dict(module_state_dict) if hqq_layer.bias is not None and isinstance(hqq_layer.bias, torch.Tensor): hqq_layer.bias = torch.nn.Parameter(hqq_layer.bias) if self.using_multi_gpu: hqq_layer = self._patch_layer_for_multigpu(hqq_layer) setattr(parent_module, node, hqq_layer) # cleanup del module.__dict__, module torch.cuda.empty_cache() return # Step 1: populate module with weight/bias from module state dict for key in module_state_dict: setattr(module, key, torch.nn.Parameter(module_state_dict[key])) # Step 2: Replace module with either HQQLinear or move it to device. We do this via setattr on the parent as doing on it on the module # directly doesn't work. quant_config = model.config.quantization_config["quant_config"] skip_modules = model.config.quantization_config["skip_modules"] module_tag = ".".join(module.name.split(".")[-2:]) module_quant_config = None if "weight_quant_params" in quant_config: module_quant_config = quant_config elif module_tag in quant_config: module_quant_config = quant_config[module_tag] for skip_module in skip_modules: if skip_module in module.name: module_quant_config = None break if module_quant_config is not None: hqq_layer = HQQLinear( module, quant_config=module_quant_config, compute_dtype=self.torch_dtype, device=target_device, del_orig=True, ) if hqq_layer.bias is not None and isinstance(hqq_layer.bias, torch.Tensor): hqq_layer.bias = torch.nn.Parameter(hqq_layer.bias) if self.using_multi_gpu: hqq_layer = self._patch_layer_for_multigpu(hqq_layer) setattr(parent_module, node, hqq_layer) else: module = module.to(dtype=self.torch_dtype, device=target_device) setattr(parent_module, node, module) torch.cuda.empty_cache() # Remove accelerate hook and uses a simpler forward pass. Otherwise, this breaks with multi-gpu def _patch_layer_for_multigpu(self, hqq_layer): hqq_layer = remove_hook_from_module(hqq_layer) def forward_with_device(self, x): out = torch.matmul(x.to(self.device), self.dequantize().t()) if self.bias is not None: out += self.bias return out hqq_layer.forward = lambda x: forward_with_device(hqq_layer, x) return hqq_layer def _process_model_before_weight_loading( self, model: "PreTrainedModel", **kwargs, ): # Add the corresponding quant_config to each valid module. This allows us to do the actual nn.Linear -> HQQLinear conversion in create_quantized_param(). # prepare_for_hqq_linear() also sets the right quantization config inside the model (model.config.quantization_config) and the layers (hqq_layer.quant_config) model = prepare_for_hqq_linear(model, quantization_config=self.quantization_config) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): model.is_hqq_quantized = True model.is_hqq_serializable = self.is_serializable() return model def is_serializable(self, safe_serialization=None): return True @property def is_trainable(self) -> bool: return True ```
=================================================================================================================================== SOURCE CODE FILE: quantizer_quanto.py LINES: 1 SIZE: 7.53 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\quantizer_quanto.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union from packaging import version from .base import HfQuantizer from .quantizers_utils import get_module_from_name if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import ( is_accelerate_available, is_optimum_quanto_available, is_torch_available, logging, ) from ..utils.quantization_config import QuantoConfig if is_torch_available(): import torch logger = logging.get_logger(__name__) class QuantoHfQuantizer(HfQuantizer): """ Quantizer for the quanto library """ required_packages = ["quanto", "accelerate"] requires_parameters_quantization = True requires_calibration = False def __init__(self, quantization_config: QuantoConfig, **kwargs): super().__init__(quantization_config, **kwargs) self.post_init() def post_init(self): r""" Safety checker """ if self.quantization_config.activations is not None and not self.pre_quantized: raise ValueError( "We don't support quantizing the activations with transformers library." "Use quanto library for more complex use cases such as activations quantization, calibration and quantization aware training." ) def validate_environment(self, *args, **kwargs): if not is_optimum_quanto_available(): raise ImportError( "Loading an optimum-quanto quantized model requires optimum-quanto library (`pip install optimum-quanto`)" ) if not is_accelerate_available(): raise ImportError( "Loading an optimum-quanto quantized model requires accelerate library (`pip install accelerate`)" ) def update_device_map(self, device_map): if device_map is None: device_map = {"": "cpu"} logger.info( "The device_map was not initialized. " "Setting device_map to {'':'cpu'}. " "If you want to use the model for inference, please set device_map ='auto'" ) return device_map def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: logger.info("You did not specify `torch_dtype` in `from_pretrained`. Setting it to `torch.float32`.") torch_dtype = torch.float32 return torch_dtype def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: if is_optimum_quanto_available(): from optimum.quanto import QModuleMixin not_missing_keys = [] for name, module in model.named_modules(): if isinstance(module, QModuleMixin): for missing in missing_keys: if ( (name in missing or name in f"{prefix}.{missing}") and not missing.endswith(".weight") and not missing.endswith(".bias") ): not_missing_keys.append(missing) return [k for k in missing_keys if k not in not_missing_keys] def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: """ Check if a parameter needs to be quantized. """ if is_optimum_quanto_available(): from optimum.quanto import QModuleMixin device_map = kwargs.get("device_map", None) param_device = kwargs.get("param_device", None) # we don't quantize the model if the module is going to be offloaded to the cpu if device_map is not None and param_device is not None: device_map_values = set(device_map.values()) if param_device == "cpu" and len(device_map_values) > 1: if not (device_map_values == {"cpu"} or device_map_values == {"cpu", "disk"}): return False module, tensor_name = get_module_from_name(model, param_name) # We only quantize the weights and the bias is not quantized. if isinstance(module, QModuleMixin) and "weight" in tensor_name: # if the weights are quantized, don't need to recreate it again with `create_quantized_param` return not module.frozen else: return False def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", *args, **kwargs, ): """ Create the quantized parameter by calling .freeze() after setting it to the module. """ from accelerate.utils import set_module_tensor_to_device set_module_tensor_to_device(model, param_name, target_device, param_value) module, _ = get_module_from_name(model, param_name) module.freeze() module.weight.requires_grad = False def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.27.0"): from accelerate.utils import CustomDtype mapping = { "int8": torch.int8, "float8": CustomDtype.FP8, "int4": CustomDtype.INT4, "int2": CustomDtype.INT2, } target_dtype = mapping[self.quantization_config.weights] return target_dtype else: raise ValueError( "You are using `device_map='auto'` on an optimum-quanto quantized model. To automatically compute" " the appropriate device map, you should upgrade your `accelerate` library," "`pip install --upgrade accelerate` or install it from source." ) def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[List[str]] = None, **kwargs ): from ..integrations import replace_with_quanto_layers self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) model, _ = replace_with_quanto_layers( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config ) model.config.quantization_config = self.quantization_config def _process_model_after_weight_loading(self, model, **kwargs): return model @property def is_trainable(self, model: Optional["PreTrainedModel"] = None): return True def is_serializable(self, safe_serialization=None): return False ```
================================================================================================================================== SOURCE CODE FILE: quantizer_quark.py LINES: 1 SIZE: 3.77 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\quantizer_quark.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2025 Advanced Micro Devices, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Any, Dict from ..file_utils import is_torch_available from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel if is_torch_available(): import torch from ..utils import is_accelerate_available, is_quark_available, logging if is_accelerate_available(): from accelerate.utils import set_module_tensor_to_device logger = logging.get_logger(__name__) CHECKPOINT_KEYS = { "weight_scale": "weight_quantizer.scale", "bias_scale": "bias_quantizer.scale", "input_scale": "input_quantizer.scale", "output_scale": "output_quantizer.scale", "weight_zero_point": "weight_quantizer.zero_point", "bias_zero_point": "bias_quantizer.zero_point", "input_zero_point": "input_quantizer.zero_point", "output_zero_point": "output_quantizer.zero_point", } class QuarkHfQuantizer(HfQuantizer): """ Quark quantizer (https://quark.docs.amd.com/latest/). """ requires_calibration = True # On-the-fly quantization with quark is not supported for now. required_packages = ["quark"] # Checkpoints are expected to be already quantized when loading a quark model. However, as some keys from # the checkpoint might mismatch the model parameters keys, we use the `create_quantized_param` method # to load the checkpoints, remapping the keys. requires_parameters_quantization = True def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.json_export_config = quantization_config.json_export_config def validate_environment(self, *args, **kwargs): if not is_quark_available(): raise ImportError( "Loading a Quark quantized model requires the `quark` library but it was not found in the environment. Please refer to https://quark.docs.amd.com/latest/install.html." ) def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs): from quark.torch.export.api import _map_to_quark _map_to_quark( model, self.quantization_config.quant_config, pack_method=self.json_export_config.pack_method, custom_mode=self.quantization_config.custom_mode, ) return model def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: return True def create_quantized_param( self, model, param, param_name, param_device, state_dict, unexpected_keys ) -> "torch.nn.Parameter": postfix = param_name.split(".")[-1] if postfix in CHECKPOINT_KEYS: param_name = param_name.replace(postfix, CHECKPOINT_KEYS[postfix]) set_module_tensor_to_device(model, param_name, param_device, value=param) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model def is_serializable(self, safe_serialization=None): return False @property def is_trainable(self): return False ```
================================================================================================================================= SOURCE CODE FILE: quantizer_spqr.py LINES: 1 SIZE: 3.22 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\quantizer_spqr.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/lic enses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, List, Optional from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..integrations import replace_with_spqr_linear from ..utils import is_accelerate_available, is_spqr_available, is_torch_available, logging from ..utils.quantization_config import QuantizationConfigMixin if is_torch_available(): import torch logger = logging.get_logger(__name__) class SpQRHfQuantizer(HfQuantizer): """ Quantizer of the SpQR method. Enables the loading of prequantized models. """ requires_calibration = True def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not torch.cuda.is_available(): raise RuntimeError("GPU is required to run SpQR quantized model.") if not is_accelerate_available(): raise ImportError("Using `spqr` quantization requires Accelerate: `pip install accelerate`") if not is_spqr_available(): raise ImportError("Using `spqr` quantization requires SpQR: `pip install spqr_quant[gpu]`") def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: torch_dtype = torch.float16 logger.info("Assuming SpQR inference on GPU and loading the model in `torch.float16`.") elif torch_dtype != torch.float16: raise ValueError( "You cannot use any type other than torch.float16 for SpQR. Please either leave it None or set it to" "torch.float16 explicitly." ) return torch_dtype def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[List[str]] = None, **kwargs, ): self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) replace_with_spqr_linear( model, quantization_config=self.quantization_config, modules_to_not_convert=self.modules_to_not_convert, ) model.config.quantization_config = self.quantization_config def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model @property def is_trainable(self, model: Optional["PreTrainedModel"] = None): return False def is_serializable(self, safe_serialization=None): return True ```
==================================================================================================================================== SOURCE CODE FILE: quantizer_torchao.py LINES: 1 SIZE: 11.94 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\quantizer_torchao.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import re import types from typing import TYPE_CHECKING, Optional, Union from packaging import version from .base import HfQuantizer from .quantizers_utils import get_module_from_name if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from typing import Any, Dict, List from ..utils import is_torch_available, is_torchao_available, logging from ..utils.quantization_config import TorchAoConfig if is_torch_available(): import torch import torch.nn as nn logger = logging.get_logger(__name__) def fuzzy_match_size(config_name: str) -> Optional[str]: """ Extract the size digit from strings like "4weight", "8weight". Returns the digit as an integer if found, otherwise None. """ config_name = config_name.lower() str_match = re.search(r"(\d)weight", config_name) if str_match: return str_match.group(1) return None # Finds the parent of a node module named "name" def find_parent(model, name): module_tree = name.split(".")[:-1] parent = model for m in module_tree: parent = parent._modules[m] return parent def _quantization_type(weight): from torchao.dtypes import AffineQuantizedTensor from torchao.quantization.linear_activation_quantized_tensor import LinearActivationQuantizedTensor if isinstance(weight, AffineQuantizedTensor): return f"{weight.__class__.__name__}({weight._quantization_type()})" if isinstance(weight, LinearActivationQuantizedTensor): return f"{weight.__class__.__name__}(activation={weight.input_quant_func}, weight={_quantization_type(weight.original_weight_tensor)})" def _linear_extra_repr(self): weight = _quantization_type(self.weight) if weight is None: return f"in_features={self.weight.shape[1]}, out_features={self.weight.shape[0]}, weight=None" else: return f"in_features={self.weight.shape[1]}, out_features={self.weight.shape[0]}, weight={weight}" class TorchAoHfQuantizer(HfQuantizer): """ Quantizer for torchao: https://github.com/pytorch/ao/ """ requires_parameters_quantization = True requires_calibration = False required_packages = ["torchao"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) def validate_environment(self, *args, **kwargs): if not is_torchao_available(): raise ImportError("Loading an torchao quantized model requires torchao library (`pip install torchao`)") self.offload = False device_map = kwargs.get("device_map", None) if isinstance(device_map, dict): if "cpu" in device_map.values() or "disk" in device_map.values(): if self.pre_quantized: raise ValueError( "You are attempting to perform cpu/disk offload with a pre-quantized torchao model " "This is not supported yet . Please remove the CPU or disk device from the device_map." ) else: self.offload = True if self.pre_quantized: weights_only = kwargs.get("weights_only", None) if weights_only: torch_version = version.parse(importlib.metadata.version("torch")) if torch_version < version.parse("2.5.0"): raise RuntimeError( f"In order to use torchao pre-quantized model, you need to have torch>=2.5.0. However, the current version is {torch_version}." f" You can also set with `weights_only=False` in `from_pretrained` if you don't want to update torch" ) def update_torch_dtype(self, torch_dtype): if self.quantization_config.quant_type == "int4_weight_only": if torch_dtype is not None and torch_dtype != torch.bfloat16: logger.warning_once( f"Setting torch_dtype to {torch_dtype} for int4_weight_only quantization, but only bfloat16 is supported right now. Please set the torch_dtype to bfloat16." ) if torch_dtype is None: logger.warning_once( "Setting torch_dtype to torch.bfloat16 for int4_weight_only quantization since only bfloat16 is supported right now. Please set torch_dtype=torch.bfloat16 to remove this warning." ) torch_dtype = torch.bfloat16 if self.quantization_config.quant_type == "int8_dynamic_activation_int8_weight": if torch_dtype is None: logger.info( "Setting torch_dtype to torch.float32 for int8_dynamic_activation_int8_weight quantization as no torch_dtype was specified in from_pretrained" ) # we need to set the torch_dtype, otherwise we have dtype mismatch when performing the quantized linear op torch_dtype = torch.float32 return torch_dtype def adjust_target_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.19.0"): from accelerate.utils import CustomDtype # Import AOBaseConfig directly since we know we have the right version if self.quantization_config._get_ao_version() > version.Version("0.9.0"): from torchao.core.config import AOBaseConfig quant_type = self.quantization_config.quant_type if isinstance(quant_type, AOBaseConfig): # Extract size digit using fuzzy match on the class name config_name = quant_type.__class__.__name__ size_digit = fuzzy_match_size(config_name) # Map the extracted digit to appropriate dtype if size_digit == "4": return CustomDtype.INT4 else: # Default to int8 return torch.int8 # Original mapping for non-AOBaseConfig types map_to_target_dtype = { "int4_weight_only": CustomDtype.INT4, "int8_weight_only": torch.int8, "int8_dynamic_activation_int8_weight": torch.int8, "autoquant": None, } return map_to_target_dtype[self.quantization_config.quant_type] else: raise ValueError( "You are using `device_map='auto'` on a torchao quantized model. To automatically compute" " the appropriate device map, you should upgrade your `accelerate` library with " "`pip install --upgrade accelerate`" ) def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: # need more space for the quantization parameters (e.g. scale). Tested with int4 wo and group size = 128 max_memory = {key: val * 0.9 for key, val in max_memory.items()} return max_memory def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[List[str]] = None, **kwargs ): self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) return def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: if self.quantization_config.quant_type == "autoquant": return False param_device = kwargs.pop("param_device", None) # check if the param_name is not in self.modules_to_not_convert if any((key + "." in param_name) or (key == param_name) for key in self.modules_to_not_convert): return False elif param_device == "cpu" and self.offload: # We don't quantize weights that we offload return False else: # we only quantize the weight of nn.Linear module, tensor_name = get_module_from_name(model, param_name) return isinstance(module, torch.nn.Linear) and (tensor_name == "weight") def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: List[str], ): """ Each nn.Linear layer that needs to be quantized is processsed here. First, we set the value the weight tensor, then we move it to the target device. Finally, we quantize the module. """ if self.quantization_config.quant_type == "autoquant": return from torchao.quantization import quantize_ module, tensor_name = get_module_from_name(model, param_name) if self.pre_quantized: module._parameters[tensor_name] = torch.nn.Parameter(param_value.to(device=target_device)) if isinstance(module, nn.Linear): module.extra_repr = types.MethodType(_linear_extra_repr, module) else: assert isinstance(self.quantization_config, TorchAoConfig) module._parameters[tensor_name] = torch.nn.Parameter(param_value).to(device=target_device) quantize_(module, self.quantization_config.get_apply_tensor_subclass()) def _process_model_after_weight_loading(self, model, **kwargs): """No process required for torchao quantized model""" if self.quantization_config.quant_type == "autoquant": from torchao import autoquant from torchao.quantization import ALL_AUTOQUANT_CLASS_LIST model = torch.compile(model, mode="max-autotune") model = autoquant( model, qtensor_class_list=ALL_AUTOQUANT_CLASS_LIST, set_inductor_config=False, **self.quantization_config.quant_type_kwargs, ) return model return def is_serializable(self, safe_serialization=None) -> bool: if safe_serialization: logger.warning( "torchao quantized model does not support safe serialization, please set `safe_serialization` to False" ) return False _is_torchao_serializable = version.parse(importlib.metadata.version("huggingface_hub")) >= version.parse( "0.25.0" ) if not _is_torchao_serializable: logger.warning("torchao quantized model is only serializable after huggingface_hub >= 0.25.0 ") if self.offload and self.quantization_config.modules_to_not_convert is None: logger.warning( "The model contains offloaded modules and these modules are not quantized. We don't recommend saving the model as we won't be able to reload them." "If you want to specify modules to not quantize, please specify modules_to_not_convert in the quantization_config." ) return False return _is_torchao_serializable @property def is_trainable(self) -> bool: supported_quant_types_for_training = [ "int8_weight_only", "int8_dynamic_activation_int8_weight", ] return self.quantization_config.quant_type in supported_quant_types_for_training @property def is_compileable(self) -> bool: return True ```
================================================================================================================================= SOURCE CODE FILE: quantizer_vptq.py LINES: 1 SIZE: 3.72 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\quantizer_vptq.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, List, Optional from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_accelerate_available, is_torch_available, is_vptq_available, logging from ..utils.quantization_config import QuantizationConfigMixin if is_torch_available(): import torch logger = logging.get_logger(__name__) class VptqHfQuantizer(HfQuantizer): """ Quantizer of the VPTQ method. Enables the loading of prequantized models. """ requires_calibration = True required_packages = ["vptq"] def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_accelerate_available(): raise ImportError("Using `vptq` quantization requires Accelerate: `pip install accelerate`") if not is_vptq_available(): raise ImportError("Using `vptq` quantization requires VPTQ>=0.0.4: `pip install -U vptq`") def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: if torch.cuda.is_available(): torch_dtype = torch.float16 logger.info( "CUDA available. Assuming VPTQ inference on GPU and loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually." ) else: import vptq device_availability = getattr(vptq, "device_availability", lambda device: False) if device_availability("cpu") is True: raise RuntimeError("No GPU found. Please wait for the next release of VPTQ to use CPU inference") torch_dtype = torch.float32 logger.info("No GPU found. Assuming VPTQ inference on CPU and loading the model in `torch.float32`.") return torch_dtype def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[List[str]] = None, **kwargs, ): """ we don't have param like modules_to_not_convert to indicate which layers should not be quantized because `quantization_config` include the layers that should be quantized """ from ..integrations import replace_with_vptq_linear self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) replace_with_vptq_linear( model, quantization_config=self.quantization_config, modules_to_not_convert=self.modules_to_not_convert, ) model.config.quantization_config = self.quantization_config def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model @property def is_trainable(self, model: Optional["PreTrainedModel"] = None): return False def is_serializable(self, safe_serialization=None): return True ```
=================================================================================================================================== SOURCE CODE FILE: quantizers_utils.py LINES: 1 SIZE: 0.86 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\quantizers\quantizers_utils.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Tuple def get_module_from_name(module, tensor_name: str) -> Tuple[Any, str]: if "." in tensor_name: module_name, tensor_name = tensor_name.rsplit(".", 1) module = module.get_submodule(module_name) return module, tensor_name ```
============================================================================================================================== SOURCE CODE FILE: safetensors_conversion.py LINES: 1 SIZE: 3.98 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\safetensors_conversion.py ENCODING: utf-8 ```py from typing import Optional import requests from huggingface_hub import Discussion, HfApi, get_repo_discussions from .utils import cached_file, http_user_agent, logging logger = logging.get_logger(__name__) def previous_pr(api: HfApi, model_id: str, pr_title: str, token: str) -> Optional["Discussion"]: main_commit = api.list_repo_commits(model_id, token=token)[0].commit_id for discussion in get_repo_discussions(repo_id=model_id, token=token): if discussion.title == pr_title and discussion.status == "open" and discussion.is_pull_request: commits = api.list_repo_commits(model_id, revision=discussion.git_reference, token=token) if main_commit == commits[1].commit_id: return discussion return None def spawn_conversion(token: str, private: bool, model_id: str): logger.info("Attempting to convert .bin model on the fly to safetensors.") safetensors_convert_space_url = "https://safetensors-convert.hf.space" sse_url = f"{safetensors_convert_space_url}/call/run" def start(_sse_connection): for line in _sse_connection.iter_lines(): line = line.decode() if line.startswith("event:"): status = line[7:] logger.debug(f"Safetensors conversion status: {status}") if status == "complete": return elif status == "heartbeat": logger.debug("Heartbeat") else: logger.debug(f"Unknown status {status}") else: logger.debug(line) data = {"data": [model_id, private, token]} result = requests.post(sse_url, stream=True, json=data).json() event_id = result["event_id"] with requests.get(f"{sse_url}/{event_id}", stream=True) as sse_connection: try: logger.debug("Spawning safetensors automatic conversion.") start(sse_connection) except Exception as e: logger.warning(f"Error during conversion: {repr(e)}") def get_conversion_pr_reference(api: HfApi, model_id: str, **kwargs): private = api.model_info(model_id).private logger.info("Attempting to create safetensors variant") pr_title = "Adding `safetensors` variant of this model" token = kwargs.get("token") # This looks into the current repo's open PRs to see if a PR for safetensors was already open. If so, it # returns it. It checks that the PR was opened by the bot and not by another user so as to prevent # security breaches. pr = previous_pr(api, model_id, pr_title, token=token) if pr is None or (not private and pr.author != "SFconvertbot"): spawn_conversion(token, private, model_id) pr = previous_pr(api, model_id, pr_title, token=token) else: logger.info("Safetensors PR exists") sha = f"refs/pr/{pr.num}" return sha def auto_conversion(pretrained_model_name_or_path: str, ignore_errors_during_conversion=False, **cached_file_kwargs): try: api = HfApi(token=cached_file_kwargs.get("token"), headers={"user-agent": http_user_agent()}) sha = get_conversion_pr_reference(api, pretrained_model_name_or_path, **cached_file_kwargs) if sha is None: return None, None cached_file_kwargs["revision"] = sha del cached_file_kwargs["_commit_hash"] # This is an additional HEAD call that could be removed if we could infer sharded/non-sharded from the PR # description. sharded = api.file_exists( pretrained_model_name_or_path, "model.safetensors.index.json", revision=sha, token=cached_file_kwargs.get("token"), ) filename = "model.safetensors.index.json" if sharded else "model.safetensors" resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs) return resolved_archive_file, sha, sharded except Exception as e: if not ignore_errors_during_conversion: raise e ```