text
stringlengths 37
1.41M
|
---|
def is_integer(num):
if int(num) != num:
return False
else:
return True
def prime(x):
for factor in range(1, int(x/2), 2):
div = x / factor
if is_integer(div) and factor != 1:
print('It is composite; can be divided by %d'%factor)
return
print('It is prime')
#Input source
print('Enter a number')
i = input()
fi = int(i)
prime(fi)
|
import torch
class MyReLu(torch.autograd.Function):
"""
We can implement our own custom autograd Functions by subclassing
torch.autograd.Function and implementing the forward and backward passes
which operate on Tensors.
"""
@staticmethod
def forward(ctx, input):
"""
In the forward pass we receive a Tensor containing the input and return
a Tensor containing the output. ctx is a context object that can be used
to stash information for backward computation. You can cache arbitrary
objects for use in the backward pass using the ctx.save_for_backward method.
"""
ctx.save_for_backward(input)
return input.clamp(min=0)
@staticmethod
def backward(ctx, grad_output):
"""
In the backward pass we receive a Tensor containing the gradient of the loss
with respect to the output, and we need to compute the gradient of the loss
with respect to the input.
"""
input, = ctx.saved_tensors # we only have one tensor saved
grad_input = grad_output.clone() # why clone?
grad_input[input < 0] = 0
return grad_input
dtype = torch.float
device = torch.device('cpu')
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in, device=device, dtype=dtype)
y = torch.randn(N, D_out, device=device, dtype=dtype)
W1 = torch.randn(D_in, H, device=device, dtype=dtype, requires_grad=True)
W2 = torch.randn(H, D_out, device=device, dtype=dtype, requires_grad=True)
learning_rate = 1e-6
for t in range(500):
relu = MyReLu.apply
yHat = relu(x.mm(W1)).mm(W2)
J = (y - yHat).pow(2).sum()
print(t, J.item())
# Use autograd to compute the backward pass. This call will compute the
# gradient of loss with respect to all Tensors with requires_grad=True.
# After this call w1.grad and w2.grad will be Tensors holding the gradient
# of the loss with respect to w1 and w2 respectively.
J.backward()
# Manually update weights using gradient descent. Wrap in torch.no_grad()
# because weights have requires_grad=True, but we don't need to track this
# in autograd.
# An alternative way is to operate on weight.data and weight.grad.data.
# Recall that tensor.data gives a tensor that shares the storage with
# tensor, but doesn't track history.
# You can also use torch.optim.SGD to achieve this.
with torch.no_grad():
W1 -= learning_rate * W1.grad
W2 -= learning_rate * W2.grad
# Manually zero the gradients after updating weights
W1.grad.zero_()
W2.grad.zero_()
|
# Ejemplo de fechas
#Es necesario importar las depencendias necesarias
from datetime import date
from datetime import datetime
#Día actual
today = date.today()
#Fecha actual
now = datetime.now()
print(today)
print(now)
#Date
print("El día actual es {}".format(today.day))
print("El mes actual es {}".format(today.month))
print("El año actual es {}".format(today.year))
#Datetime
print("El día actual es {}".format(now.day))
print("El mes actual es {}".format(now.month))
print("El año actual es {}".format(now.year))
|
#!/usr/bin/env python3
"""Convolution module
"""
import numpy as np
def convolve_grayscale_padding(images, kernel, padding):
"""
performs a convolution on grayscale images with custom padding:
- images: numpy.ndarray with shape (m, h, w) containing
multiple grayscale images
- m: number of images
- h: height in pixels of the images
- w: width in pixels of the images
- kernel: numpy.ndarray with shape (kh, kw) containing the
kernel for the convolution
- kh: height of the kernel
- kw: width of the kernel
- padding: tuple of (ph, pw)
- ph: padding for the height of the image
- pw: padding for the width of the image
- the image should be padded with 0’s
Returns: a numpy.ndarray containing the convolved images
"""
m, h, w = images.shape
kh, kw = kernel.shape
ph, pw = padding
images_pad = np.pad(images, ((0, 0), (ph, ph), (pw, pw)), 'constant')
out_w = w + 2*pw - kw + 1
out_h = h + 2*ph - kh + 1
convolve_out = np.ndarray((m, out_h, out_w))
for i in range(out_h):
for j in range(out_w):
convolve_out[:, i, j] = np.sum(
images_pad[:, i:kh+i, j:kw+j] * kernel,
axis=(1, 2))
return convolve_out
|
#!/usr/bin/env python3
"""
module to add matrices
"""
def add_matrices2D(mat1, mat2):
"""
Adds two matrices element-wise
"""
if len(mat1) != len(mat2):
return None
elif len(mat1[0]) != len(mat2[0]):
return None
add = []
total = []
for i in range(len(mat1)):
for j in range(len(mat1[0])):
result = mat1[i][j] + mat2[i][j]
add.append(result)
total.append(add)
add = []
return(total)
|
#!/usr/bin/env python3
"""train module
"""
import tensorflow.keras as K
def train_model(network, data, labels, batch_size,
epochs, validation_data=None,
early_stopping=False, patience=0,
verbose=True, shuffle=False):
"""
trains a model using mb gradient descent with early stopping:
- network: model to train
- data: numpy.ndarray of shape (m, nx) containing the input data
- labels: one-hot numpy.ndarray of shape (m, classes) with the labels
- batch_size: size of the batch used for mini-batch gradient descent
- epochs: number of passes through data for mini-batch gradient descent
- validation_data: data to validate the model with
- early_stopping: boolean that indicates whether early
stopping should be used:
- early stopping should only be performed if validation_data exists
- early stopping should be based on validation loss
- verbose: determines if output should be printed during training
- shuffle: determines whether to shuffle the batches every epoch.
"""
callback = None
if validation_data:
callback = [K.callbacks.EarlyStopping(patience=patience)]
history = network.fit(data, labels, batch_size=batch_size,
epochs=epochs,
validation_data=validation_data,
callbacks=callback,
verbose=verbose, shuffle=shuffle)
return history
|
#!/usr/bin/env python3
"""module that defines a single neuron
"""
import numpy as np
class Neuron:
"""define a single neuron performing binary classification
"""
def __init__(self, nx):
"""
- nx: number of input features to the neuron
Private instance attributes:
-__W: The weights vector for the neuron.
Initialized using a random normal distribution.
- __b: The bias for the neuron.
Initialized to 0.
- __A: The activated output of the neuron (prediction).
Initialized to 0.
Each private attribute have its getter function
(no setter function).
"""
if not isinstance(nx, int):
raise TypeError('nx must be an integer')
if nx < 1:
raise ValueError('nx must be a positive integer')
self.__W = np.random.normal(size=(1, nx))
self.__b = 0
self.__A = 0
@property
def W(self):
"""setter method of the weights
"""
return self.__W
@property
def b(self):
"""setter method of the bias
"""
return self.__b
@property
def A(self):
"""setter method of the activated output
"""
return self.__A
def forward_prop(self, X):
"""
Calculates the forward propagation of the neuron
- X: numpy.ndarray with shape (nx, m) that contains the input data
- nx: number of input features to the neuron
- m: number of examples
Updates the private attribute __A
The neuron use a sigmoid activation function
- sig(z) = 1 / (1 + exp(-z))
Returns the private attribute __A
"""
x = np.matmul(self.__W, X) + self.__b
self.__A = 1 / (1 + np.exp(-x))
return self.__A
def cost(self, Y, A):
"""
Calculates the cost of the model using logistic regression
Loss Function:
L(A, Y) = -(Y * log(A) + (1 - Y) * log(1 - A)))
Cost function:
J(w, b) = (1 / m) * ∑(i=1; i<=m) L(A, Y)
- Y: numpy.ndarray with shape (1, m) that contains the correct
labels for the input data.
- A: numpy.ndarray with shape (1, m) containing the activated
output of the neuron for each example
Returns the cost
"""
loss1 = np.matmul(Y, np.log(A).T)
# 1.0000001 - A instead of 1 - A to avoid division by zero errors
loss2 = np.matmul(1 - Y, np.log(1.0000001 - A).T)
m = Y.shape[1]
cost = np.sum(-(loss1 + loss2)) / m
return cost
|
#!/usr/bin/env python3
"""foward prpagation over pooling
"""
import numpy as np
def pool_forward(A_prev, kernel_shape, stride=(1, 1), mode='max'):
"""
Performs forward propagation over a pooling layer of a neural network:
- A_prev_numpy.ndarray of shape (m, h_prev, w_prev, c_prev)
containing the output of the previous layer
- m: number of examples
- h_prev: height of the previous layer
- w_prev: width of the previous layer
- c_prev: number of channels in the previous layer
- kernel_shape: tuple of (kh, kw) containing the size of
the kernel for the pooling
- kh: kernel height
- kw: kernel width
- stride: tuple of (sh, sw) containing the strides for the pooling
- sh is the stride for the height
- sw is the stride for the width
- mode: string containing either max or avg, indicating whether
to perform maximum or average pooling, respectively
Returns: the output of the pooling layer
"""
m, h_prev, w_prev, c_prev = A_prev.shape
kh, kw = kernel_shape
sh, sw = stride
ph = int(1 + (h_prev - kh) / sh)
pw = int(1 + (w_prev - kw) / sw)
output = np.zeros((m, ph, pw, c_prev))
m_prev = np.arange(0, m)
for h in range(ph):
for w in range(pw):
for c in range(c_prev):
pool = A_prev[m_prev, h * sh:h *
sh + kh, w * sw:w * sw + kw, c]
if mode == 'max':
output[m_prev, h, w, c] = np.max(pool, axis=(1, 2))
elif mode == "avg":
output[m_prev, h, w, c] = np.mean(pool, axis=(1, 2))
return output
|
#!/usr/bin/env python3
"""
"""
import numpy as np
kmeans = __import__('1-kmeans').kmeans
variance = __import__('2-variance').variance
def optimum_k(X, kmin=1, kmax=None, iterations=1000):
"""
tests for the optimum number of clusters by variance:
- X: numpy.ndarray of shape (n, d) containing the data set
- kmin: positive integer containing the minimum number of
clusters to check for (inclusive)
- kmax: positive integer containing the maximum number of
clusters to check for (inclusive)
- iterations: positive integer containing the maximum number
of iterations for K-means
This function should analyze at least 2 different cluster sizes
Returns: results, d_vars, or None, None on failure
- results: list containing the outputs of K-means for
each cluster size
- d_vars: list containing the difference in variance
from the smallest cluster size for each cluster size
"""
if not isinstance(X, np.ndarray) or len(X.shape) != 2:
return None, None
if not isinstance(iterations, int) or iterations <= 0:
return None, None
if not isinstance(kmin, int) or kmin < 1:
return None, None
if kmax and not isinstance(kmax, int) or kmax < 1:
return None, None
if kmax and kmin >= kmax:
return None, None
results = []
d_vars = []
for cluster in range(kmin, kmax + 1):
centroid, clss = kmeans(X, cluster, iterations=1000)
results.append((centroid, clss))
if cluster == kmin:
cluster_var = variance(X, centroid)
var = variance(X, centroid)
d_vars.append(cluster_var - var)
return results, d_vars
|
#!/usr/bin/env python3
"""
Module to slice matrix on an axis
"""
def np_slice(matrix, axes={}):
"""
Slices a matrix along a specific axes
"""
slices = []
for axis in range(len(matrix.shape)):
slices.append(slice(*axes.get(axis, (None, None, None))))
return matrix[tuple(slices)]
|
#!/usr/bin/env python3
"""
module to integrate
"""
def poly_integral(poly, C=0):
"""
calculate the integral of a polynomial
"""
if not isinstance(poly, list) or not isinstance(C, int) or len(poly) == 0:
return None
if C % 1 == 0:
integral = [int(C)]
else:
integral = [C]
if len(poly) == 0 or poly == [0]:
return integral
for coef in enumerate(poly):
if not isinstance(coef[1], int) and not isinstance(coef[1], float):
return None
c = coef[1] / (coef[0] + 1)
if c % 1 == 0:
integral.append(int(c))
else:
integral.append(c)
return integral
|
#!/usr/bin/env python3
"""module learning rate dacay
"""
import numpy as np
def learning_rate_decay(alpha, decay_rate, global_step, decay_step):
"""
updates the learning rate using inverse time decay in numpy
- alpha: original learning rate
- decay_rate: weight used to determine the rate at which alpha will decay
- global_step: number of passes of gradient descent that have elapsed
- decay_step: number of passes of gradient descent
that should occur before alpha is decayed further
learning rate decay occur in a stepwise fashion
Returns: the updated value for alpha
"""
global_step = int(global_step / decay_step)
alpha = alpha / (1 + decay_rate * global_step)
return alpha
|
#!/usr/bin/env python3
"""
module of Normal distribution
"""
class Normal:
"""
class that represents a normal distribution
"""
e = 2.7182818285
pi = 3.1415926536
def __init__(self, data=None, mean=0., stddev=1.):
"""initialize class
"""
self.mean = float(mean)
self.stddev = float(stddev)
if data is None:
self.mean = mean
self.stddev = stddev
if stddev <= 0:
raise ValueError('stddev must be a positive value')
else:
if not isinstance(data, list):
raise TypeError('data must be a list')
if len(data) < 2:
raise ValueError('data must contain multiple values')
self.mean = (float(sum(data) / len(data)))
sumdif = sum([(d - self.mean) ** 2 for d in data])
self.stddev = (sumdif / len(data)) ** (1 / 2)
def z_score(self, x):
"""z score calculation
"""
return (x - self.mean) / self.stddev
def x_value(self, z):
"""x value given z score
"""
return (z * self.stddev) + self.mean
def pdf(self, x):
"""probability density function
"""
variance = self.stddev ** 2
exp = -((x - self.mean) ** 2) / (2 * variance)
den = (2 * self.pi * variance) ** (1 / 2)
return (self.e ** exp) / den
def cdf(self, x):
"""cumulative distribution function
"""
error = self.erf((x - self.mean) / (self.stddev * (2 ** (1 / 2))))
return ((1 + error) / 2)
def erf(self, x):
"""error function
"""
serie = 0
for i in range(5):
j = 2 * i + 1
den = self.factorial(i) * j
if j in [3, 7]:
serie += -(x ** (j)) / den
elif j in [1, 5, 9]:
serie += (x ** (j)) / den
return serie * 2 / (self.pi ** (1 / 2))
def factorial(self, n):
"""returns factorial of a number
"""
if not isinstance(n, int):
n = int(n)
factorial = 1
for i in range(n):
factorial *= i + 1
return factorial
|
#!/usr/bin/env python3
"""module learning decay ugraded
"""
import tensorflow as tf
def learning_rate_decay(alpha, decay_rate, global_step, decay_step):
"""
creates a learning rate decay operation in tf using inverse time decay
- alpha: original learning rate
- decay_rate: weight used to determine the rate at which alpha will decay
- global_step: number of passes of gradient descent that have elapsed
- decay_step: number of passes of gradient descent that occurs before
alpha is decayed further
the learning rate decay occurs in a stepwise fashion
Returns: the learning rate decay operation
"""
lr_decay = tf.train.inverse_time_decay(
alpha, global_step, decay_step, decay_rate, staircase=True)
return lr_decay
|
year=int(input('year:\n'))
month=int(input('mouth:\n'))
day=int(input('day:\n'))
months = (0,31,59,90,120,151,181,212,243,273,304,334)
if 0 < month <=12:
sum=months[month -1]
else:
print('date error')
i = sum + day
print('it is the',str(i)+'th day')
|
class Heap:
def __init__(self, array, N):
self._heap = array
self._max = N
self._descending_sorted = []
def get_heap(self):
return self._heap
def get_child_index(self,parent_index):
return (parent_index * 2 + 1), (parent_index * 2 + 2)
def get_parent_index(self,child_index):
return (child_index - 1 )/2
def add(self,child):
if self._max == len(self._heap):
self.delete()
self._heap.append(child)
child_index = len(self._heap) - 1
while child_index > 0:
parent_index = self.get_parent_index(child_index)
if self._heap[parent_index] > self._heap[child_index]:
self._heap[parent_index], self._heap[child_index] = self._heap[child_index], self._heap[parent_index]
child_index = parent_index
def delete(self):
minimum_value = self._heap[0]
self._heap[0] = self._heap[-1]
del self._heap[-1]
if len(self._heap) > 1:
self.balance()
return minimum_value
def balance(self):
parent_index = 0
while True:
l_child_index, r_child_index = self.get_child_index(parent_index)
# Both left and right child present
if (l_child_index < len(self._heap)) and (r_child_index < len(self._heap)):
if self._heap[l_child_index] < self._heap[r_child_index]:
smaller = l_child_index
else:
smaller = r_child_index
# Only left child present
elif l_child_index < len(self._heap):
smaller = l_child_index
if self._heap[smaller] < self._heap[parent_index]:
self.get_heap()
self._heap[parent_index], self._heap[smaller] = self._heap[smaller], self._heap[parent_index]
parent_index = smaller
else:
break
def sort(self):
for i in range(0,len(self._heap)):
self._descending_sorted.append(self.delete())
return self._descending_sorted
if __name__ == '__main__':
f = 'test.txt'
N = 12
h = Heap([],N)
for line in open(f, 'r').readlines():
h.add(float(line))
print h.get_heap()
for number in reversed(h.sort()):
print number
|
import random
import time
pierre = 1
papier = 2
ciseaux = 3
names = { pierre: "Pierre", papier: "Papier", ciseaux: "Ciseaux" }
rules = { pierre: ciseaux, papier: pierre, ciseaux: papier }
player_score = 0
computer_score = 0
def start():
print("Faisons une partie de Pierre, Papier, Ciseaux!")
while game():
pass
scores()
def game():
player = move()
computer = random.randint(1, 3)
result(player, computer)
return play_again()
def move():
while True:
print
player = input("Pierre = 1\nPaper = 2\nCiseaux = 3\nFaites un mouvement: ")
try:
player = int(player)
if player in (1,2,3):
return player
except ValueError:
pass
print("HEY HO! Il faut rentrer 1, 2 ou 3 !!!")
def result(player, computer):
print("1...")
time.sleep(2)
print("2...")
time.sleep(2)
print("2.3/4...")
time.sleep(2)
print("ça devient long non?")
time.sleep(1.5)
print("Bon ok 3!")
time.sleep(1)
print("Computer a fait {0}!".format(names[computer]))
global player_score, computer_score
if player == computer:
print("Egalité")
else:
if rules[player] == computer:
print("VICTOIRE!! Bravo vous avez terrassé l'ennemi")
player_score += 1
else:
print("Computer se rit de vous, vous avez PERDU LOOSER AH AH AH!!!")
computer_score += 1
def play_again():
answer = input("Voulez-vous faire une autre partie? y/n: ")
if answer in ("y", "Y", "yes", "Yes", "o", "O", "oui", "Oui"):
return answer
else:
print("Merci d'avoir joué à mon jeu. A bientôt pour de nouvelles aventures ! ")
def scores():
global player_score, computer_score
print("Meilleurs scores")
print("Player: ", player_score)
print("Computer: ", computer_score)
if __name__ == '__main__':
start()
|
"""
Creating and populating the database
This file is used to :
- Create the MySQL tables "Categories", "Products" and "Favorites"
- Populate the "Categories" table
- Retrieve the API data
- Use the API Data to populate the "Products" table
"""
# Importing the Database objects provided by the ORM and the module to that has a requester object (named 'Collector')
from food_requests import Collector
from modeles.category import Categories
from modeles.favorite import Favorites
from modeles.product import Product
from modeles.users import Users
from modules.database_service import DatabaseService
# Creation of the tables
Product.create_table()
Categories.create_table()
Favorites.create_table()
Users.create_table()
# Instantiation of a Collector
collector = Collector()
# I defined there a tuple of categories
list_of_categories = ('soup', 'pizza', 'salad', 'cake', 'cheese')
# I populate the table of the categories
for category in list_of_categories:
category_entry = {"Name": category}
DatabaseService.fill_categories_table(category_entry)
# I retrieve only the products that correspond to my categories in my tuple and I populate the products table
for category in list_of_categories:
food_returned = collector.get_products_by_category(category)
DatabaseService.fill_products_table(food_returned)
|
from Crop_Class import *
class Carrot(Crop):
'''This is a child class of crop'''
#constructor
def __init__(self):
super().__init__(1, 6, 7)
self._type = "Carrot"
def Grow(self, light, water):
#Overwrites the grow function
if light >= self._light_need and water >= self._water_need:
if self._status == "Seed" and water > self._water_need:
self._growth = self._growth + self._growth_rate * 2
elif self._status == "Seedling" and water > self._water_need:
self._growth = self._growth + self._growth_rate * 1.75
elif self._status == "Young" and water > self._water_need:
self._growth = self._growth + self._growth_rate * 1.5
else:
self._growth = self._growth + self._growth_rate
else:
pass
self._days_grow = self._days_grow + 1
self._Update()
|
# -*- coding: utf-8 -*-
"""
Created on Wed Feb 3 17:53:11 2021
@author: dylan
"""
#connect 4:
#need to be able to input values
#matrix as the board
#1. input - range 0-6 col
#2. valid col? if T
#3 if T what is the next open row?
#4 place piece in that next open row, of selected col
#need to end game when connected 4
#loop only way that game_over = T if 4 in a row
import numpy as np
ROW_COUNT = 6
COL_COUNT = 7
def create_board():
board = np.zeros((ROW_COUNT,COL_COUNT))
return board
def drop_piece(board, row, col, piece):
board[row][col] = piece
#chack if top row for that column hasnt been filled-top row (5th) still 0
def is_valid(board, col):
return board[ROW_COUNT-1][col] == 0
#next open row within that column loop if that row =0
# is available so return the first position avaiable in that col
def open_row(board, col):
for r in range(ROW_COUNT):
if board[r][col] == 0:
return r
#numpy has the 0 index at the top of the matrix as default - so must flip it
# - logical sense for players
#(0 at the bottom)
def print_board(board):
print(np.flip(board, 0))
#winning - letting you know it's over
# to do this - can manually check all the possible winning positions and see
# if that matches - check every turn - to know which player won - (over all
#the possible starting positions of a winning move)
# im sure this isnt the best way - but didnt want to sink too much time into
# this - any suggestions would be very welcome
#[though about cheching around each piece, so may look at that if i try to
# refine this :)]
def winning_move(board, piece):
#1. check all horizontals for winning move - all starting position
#of winning move horizontal win e.g. cant start 4 in as only have 3
#horizontal spaces not the required 4, the last = 3rd col (starting at 0)
#loop that iterates over the columns
for c in range (COL_COUNT-3):
for r in range (ROW_COUNT):
if board[r][c] == piece and board[r][c+1] == piece and board[r][c+2] == piece and board[r][c+3] == piece:
return True
#vertical locations
#opposite of horizontal - any 4 up
for c in range(COL_COUNT):
for r in range(ROW_COUNT-3):
if board[r][c] == piece and board[r+1][c] == piece and board[r+2][c] == piece and board[r+3][c] == piece:
return True
#positively sloped diaganols
for c in range(COL_COUNT-3):
for r in range(ROW_COUNT-3):
if board[r][c] == piece and board[r+1][c+1] == piece and board[r+2][c+2] == piece and board[r+3][c+3] == piece:
return True
#negative slope- requires different -
# rows 0-6 ascending - can only have 4 starting from 3rd row
for c in range(COL_COUNT-3):
for r in range(3, ROW_COUNT):
if board[r][c] == piece and board[r-1][c+1] == piece and board[r-2][c+2] == piece and board[r-3][c+3] == piece:
return True
board = create_board()
print(board)
game_over = False
turn = 0
while not game_over:
#ask for the first player input column
if turn == 0:
col = int(input("Player 1 Make your Move (0-6):"))
if is_valid(board, col):
row = open_row(board, col)
drop_piece(board, row, col, 1)
if winning_move(board, 1):
print("PLAYER 1 WINS!")
game_over = True
#first player's assigned as 1
#second player's input
else:
col = int(input("Player 2 Make your Move (0-6):"))
if is_valid(board, col):
row = open_row(board, col)
drop_piece(board, row, col, 2)
if winning_move(board, 2):
print("PLAYER 2 WINS!")
game_over = True
break
#second player is assigned as 2
print_board(board)
#once turn is played need to update the board - print the new board
#increase the turn by 1 every play
#(%2) alternating between players turns
turn +=1
turn = turn % 2
|
from threading import Thread
import time
def timer(name, delay, repeat):
print "Timer: " + "name" + "Started"
while repeat > 0:
time.sleep(delay)
print name + ":" + str(time.ctime(time.time()))
repeat -= 1
print "Timer: " + name + "Completed"
def main():
t1 = Thread(target=timer, args=("Timer",1,5))
t2 = Thread(target=timer, args=("Timer",2,5))
t1.start()
t1.start()
print "main Completed"
if __name__ == '__main__':
main() |
for x in range(1,100):
if((x%3==0) and (x%5)!=0):
print x,"-fuzzy"
elif((x%5==0) and (x%3)!=0):
print x,"-buzzy"
elif((x%3==0) and (x%5)==0):
print x,"-fuzzybuzzy"
else:
print(x) |
# work with condicional
if True:
print('Condicional was True')
#language ='Python'
language ='Java'
if language =='Python':
print('Linguage is Phiton')
elif language =='Java':
print('Linguage is Java')
elif language =='JavaScript':
print('Linguage is JavaScript')
else:
print ('No match')
#and = &&
#or = ||
#not = !=
user = 'Admin'
logged_in = True
if user =='Admin' and logged_in:
print('Admin Page')
else:
print('Bad crad')
#logged_in = False
if not logged_in:
print('Please Log In')
else:
print('Welcome')
#is compara id(possiçao da memoria)
a = [1,2,3]
b = [1,2,3]
print(id(a))
print(id(b))
print(a is b)
b = a
print(a is b)
condition = 0# or '' or [] or {} contendo estruturas nulas
if condition:
print('Evalueted to true')
else:
print('Evaluated to False')
condition = 'Test'# extruturas nao nulas
if condition:
print('Evalueted to True')
else:
print('Evaluated to False') |
#work with loop
nums = [1,2,3,4,5]
for num in nums:
print(num)
for num in nums:
if num ==3:
print('Found!')
break
print(num)
for num in nums:
if num ==3:
print('Found!')
continue
print(num)
for num in nums:
for latter in 'abc' :
print(num,latter)
for i in range(1,11):
print(i)
x = 0
while x < 10:
print(x)
x+=1 |
# Implements unigram language model
# primary uses are 1) train with a file (passed as a path) to train probabilities of words
# and 2) evaluate against another file -- to evaluate perplexity scores (fitness of model)
from config import UNK_, STOP_, pad_sentence, UNK_THRESHOLD, MAX_UNKS
class Unigrams:
def __init__(self, trainingDataPath: str, report_mode) -> None:
self.unigram_counter: dict = None # set up when ready
self.probabilities: dict
self.vocab_size: int = 0 # assume empty vocab size to start
self.extract_vocab(trainingDataPath)
if report_mode: self.report_training()
# main worker for unigram model training
def extract_vocab(self, training_data_path):
# set up our model structure
self.unigram_counter = {} # use a dictionary for convenience
training_data_file = open(training_data_path, "r") # open a handle to our training corpus (read mode)
sentence = training_data_file.readline() # get the first sentence
while sentence:
sentence = pad_sentence(sentence)
self.consume_sentence(sentence) # update our model with this sentence
sentence = training_data_file.readline() # go to the next line
training_data_file.close()
'''
Train structures on a sentence -- takes a tokenized sentence (white space indicates a new token)
and process into our unigram model
'''
def consume_sentence(self, sentence):
for token in sentence.split():
# get a token and if we are first meeting it, default to 0
self.unigram_counter[token] = self.unigram_counter.get(token, 0) + 1
self.vocab_size += 1
def report_training(self):
print("Number of unigrams: {}".format(len(self.unigram_counter.keys())))
print("Vocabulary Size: {}", self.vocab_size)
print("Number of occurrences of 'the': {}".format(self.unigram_counter["the"]))
print("Number of occurrences of '.': {}".format(self.unigram_counter["."]))
print("Number of occurrences of special stop: {}".format(self.unigram_counter[("%s" % STOP_)]))
def get_unigrams(self):
return self.unigram_counter
def get_vocab_size(self):
return self.vocab_size
class UnigramModel:
def __init__(self, trainingDataPath: str, report_mode=False) -> None:
self.probabilities: dict = None # set up later
self.unigrams = Unigrams(trainingDataPath, report_mode)
self.learn()
if report_mode: self.report_learning()
def learn(self):
# probability is the number of encounters / total tokens
# Get our Unigrams and Vocab
unigrams = self.unigrams.get_unigrams()
vocab_size = self.unigrams.get_vocab_size()
# add the UNK place holder -- start at 0 occurrences
unigrams[UNK_] = 0
self.probabilities = {}
# Calc probs and add in some unkness
for unigram in unigrams.keys():
if unigrams[unigram] <= UNK_THRESHOLD and unigrams[UNK_] < MAX_UNKS: # [unk] the single occurrence unigrams
unigrams[UNK_] = unigrams.get(UNK_, 0) + unigrams[unigram]
else:
self.probabilities[unigram] = unigrams[unigram] / vocab_size
self.probabilities[UNK_] = unigrams[UNK_] / vocab_size
def report_learning(self):
print("Probability of 'the': {}".format(self.probabilities["the"]))
print("Probability of [unk]: {}".format(self.probabilities[UNK_]))
|
import numpy as np
from random import random
# save activations and derivatives
# implement backpropagation
# implement gradient descent
# implement a train method that uses both
# train our network with some dummy dataset
class MLP:
"""A class of a MLP for an ANN"""
def __init__(self, num_inputs=3, hidden_layers=[3, 5], num_outputs=2):
""" Constructor for the MLP class
:param num_inputs: int
number of inputs
:param hidden_layers: list
number of hidden layers stored in list, length is number of hidden layers
:param num_outputs: int
number of outputs
"""
self.num_inputs = num_inputs
self.hidden_layers = hidden_layers
self.num_outputs = num_outputs
# layer is a list where each input is number of nuerons in a layer
layers = [num_inputs] + hidden_layers + [num_outputs]
# initiate random weights
weights = []
for i in range(len(layers) - 1):
# creates random arrays that can have a matrix with rand(rows, columns)
# rows is #nuerons in i-th layer, column is #nuerons in i-th+1 layer
# ex. 2->3 would be (2,3) b/c we need |w11 w12 w13|
# (w23 is weight from nueron 2 -> 3 |w21 w22 w23|
w = np.random.rand(layers[i], layers[i + 1])
weights.append(w)
self.weights = weights
activations = []
for i in range(len(layers)):
a = np.zeros(layers[i])
activations.append(a)
# instance variable
self.activations = activations
derivatives = []
for i in range(len(layers) - 1):
# same logic as weights above
d = np.zeros((layers[i], layers[i + 1]))
derivatives.append(d)
# instance variable
self.derivatives = derivatives
def forward_propagate(self, inputs):
"""Forward propogation step of ANN
Loops through weights of weight array and calculates weight.
Then performs activation function (sigmoid) on each nueron.
:param inputs: array
array of inputs (net sum)
:return activations: array
activation layer
"""
activations = inputs
self.activations[0] = inputs
for i, w in enumerate(self.weights):
# calculate net inputs
net_inputs = np.dot(activations, w)
# calculate the activations
activations = self._sigmoid(net_inputs)
# save activations for backprop
self.activations[i + 1] = activations
return activations
def back_propagate(self, error, verbose=False):
for i in reversed(range(len(self.derivatives))):
# get activations for the previous layer
activations = self.activations[i + 1]
# apply the sigmoid derivative function and reshape
delta = error * self._sigmoid_derivative(activations)
delta_reshaped = delta.reshape(delta.shape[0], -1).T
# get activations for the current layer and reshape
current_activations = self.activations[i]
current_activations_reshaped = current_activations.reshape(current_activations.shape[0], -1)
# save derivative after applying matrix mult.
self.derivatives[i] = np.dot(current_activations_reshaped, delta_reshaped)
# back prop the next error
error = np.dot(delta, self.weights[i].T)
if verbose:
print("Derivatives for W{}: {}".format(i, self.derivatives[i]))
return error
def gradient_descent(self, learning_rate):
for i in range(len(self.weights)):
weights = self.weights[i]
derivatives = self.derivatives[i]
weights += derivatives * learning_rate
def train(self, inputs, targets, epochs, learning_rate):
""" Train the model and run forward and backward pro
:param inputs: ndarray
X
:param targets: ndarray
Y
:param epochs: int
Number of epochs we want to train network with
:param learning_rate: int
Step to apply gradient descent
"""
for i in range(epochs):
sum_error = 0
# iterate through all the training data
for j, input in enumerate(inputs):
target = targets[j]
# forward propagation
output = self.forward_propagate(input)
# calculate the error
error = target - output
# back propagation
self.back_propagate(error)
# apply gradient descent
self.gradient_descent(learning_rate)
sum_error += self._mse(target, output)
# report error for each error - are we improving?
print("Error: {} at epoch {}".format((sum_error / len(inputs)), i))
def _mse(self, target, output):
return np.average((target - output)**2)
def _sigmoid_derivative(self, x):
return x * (1.0 - x)
def _sigmoid(self, x):
"""
:param x: int
input for sigmoid function
:return: result
result of performing sigmoid on input
"""
return 1.0 / (1 + np.exp(-x))
if __name__ == "__main__":
# create a dataset to train a network for the sum operation
items = np.array([[random() / 2 for _ in range(2)] for _ in range(1000)])
targets = np.array([[i[0] + i[1]] for i in items])
# create a Multilayer Perceptron with one hidden layer
mlp = MLP(2, [5], 1)
# train network
mlp.train(items, targets, 50, 0.1)
# create dummy data
input = np.array([0.3, 0.1])
target = np.array([0.4])
# get a prediction
output = mlp.forward_propagate(input)
print()
print("Our network believes that {} + {} is equal to {}".format(input[0], input[1], output[0]))
print("Nice!")
|
# May Trinh
# CMPS 4553 - Computational Methods
# This program searches through mycoplasma dna sequence and its reverse complement in genbank format and finds all open reading frames (ORFs) with start
# codon ATG and stop codon TAA, TAG , TGA. It only print genes that has more than 1000 nucleotides. Additionally, it translates the ORFs
# to its corresponding amino acid sequence.
from Bio import SeqIO
from Bio.Seq import translate
import re
# Find ORF in Sequence
def find_orf(sequence):
# Find all ATG indexs
start_indexs = []
index = []
stops =["TAA", "TAG", "TGA"]
mark = 0
# find start codon index
for i in range(1, len(sequence)): # ORF 1, 2, 3
if sequence[i:i+3] == "ATG": #group of 3 nucleotides
start_indexs.append(i)
for i in range(0, len(start_indexs)):
if start_indexs[i] > mark: #start from the end of the previous ORF found
for j in range (start_indexs[i], len(sequence),3):
if sequence[j:j+3] in stops: #found stop codons
index.append((start_indexs[i], j+3)) #save the start and stop index of ORF found
mark = j + 3 #mark the end of the ORF just found. If another ATG is within the ORF, we ignore it
break #break out of for loop once ORF is found for a start index
return index
with open("orfs.txt","w") as outf:
outf.write("""
May Trinh
CMPS 4553 - Computational Methods
This program searches through mycoplasma dna sequence and its reverse complement and finds all open reading frames (ORFs) with start
codon ATG and stop codon TAA, TAG , TGA. It only print genes that has more than 1000 nucleotides. Additionally, it translates the ORFs
to its corresponding amino acid sequence. \n\n""")
outf.write("ORFs of original strand \n\n")
outf.write("Length \t\tStart \t Stop \t Sequence \n")
# find ORFs in the sequence
for seq_record in SeqIO.parse("mycoplasma.gb", "genbank"):
record = seq_record.seq
orfs = find_orf(record)
# the normal way
for s in orfs:
length = s[1] - s[0]
if length >= 1000: #only get gene with more than 1000 nucleotide in it
orf = record[s[0]:s[1]]
aa = orf.translate(cds=True, table = "Bacterial") #translate ORF to amino acid
outf.write(str(length) + "\t\t " + str(s[0]) + "\t " + str(s[1]) + "\t " + str(orf)+ "\n")
outf.write("Amino Acid: \t \t\t \t " + str(aa) + "\n")
outf.write("\nORFs of reverse complement strand \n\n")
outf.write("Length \t\tStart \t Stop \t Sequence \n")
# find orfs of reverse complement strand
reverse = record.reverse_complement()
orfReverse = find_orf(reverse)
for s in orfReverse:
length = s[1] - s[0]
start = len(record) - s[1]
stop = len(record) - s[0]
if length >= 1000:
orfR = reverse[s[0]:s[1]]
orf = record[start:stop]
# origin = orfR.reverse_complement()
# this translation also works as well
# aa = orfR.translate(to_stop=True, table = 4)
aa = orfR.translate(cds=True, table = "Bacterial")
outf.write(str(length) + "\t\t " + str(start) + "\t " + str(stop) + "\t " + str(orfR)+ "\n")
outf.write("Orginal strand: \t \t\t " + str(orf)+"\n")
outf.write("Amino Acid: \t \t\t \t " + str(aa) + "\n")
|
from question2 import CoPrimePairs
from collections import defaultdict
class Old:
# to understandold solution!
def coPrimes(n):
""" returns lists of all coprimes for 1 to n """
choices = defaultdict(list)
for pair in CoPrimePairs[n]:
choices[pair[0]].append(pair[1])
if pair[0] != pair[1]:
choices[pair[1]].append(pair[0])
return choices
def ways(num, length, coprimes):
ways = [0] + [1] * num
for _ in range(length):
total = sum(ways)
nextways = [0] * (num + 1)
nextways[1] = total
for i in range(2, num + 1):
nextways[i] = sum(ways[coprime] for coprime in coprimes[i])
ways = nextways
return total % (10**9 + 7)
print (ways(3, 4, coPrimes(3)))
|
"""
href: https://www.testdome.com/questions/25970
Write a function that provides change directory (cd) function for an abstract file system.
Notes:
Root path is '/'.
Path separator is '/'.
Parent directory is addressable as '..'.
Directory names consist only of English alphabet letters (A-Z and a-z).
The function should support both relative and absolute paths.
The function will not be passed any invalid paths.
Do not use built-in path-related functions.
For example:
path = Path('/a/b/c/d')
path.cd('../x')
print(path.current_path)
should display '/a/b/c/x'
"""
class Path:
def __init__(self, path):
self.current_path = path
def cd(self, new_path):
if not new_path.strip():
self.current_path = "/"
return
elif new_path.startswith("/"):
current_path = ['']
new_path = new_path[1:]
else:
current_path = self.current_path.split('/')
index = len(current_path)
for dirname in new_path.split("/"):
if dirname == "." or dirname == "":
continue
elif dirname == "..":
if index > 0:
index -= 1
elif dirname.isalpha():
if index < len(current_path):
current_path[index] = dirname
else:
current_path.append(dirname)
index += 1
else:
raise ValueError("abstract: cd: {}: No such file or directory"
.format(new_path))
self.current_path = "/".join(current_path[:index])
if not self.current_path.startswith("/"):
# FIXME remove this fix and write better code
self.current_path = '/' + self.current_path
if __name__ == '__main__':
path = Path('/a/b/c/d')
print(path.current_path)
path.cd('../x') # /a/b/c/x
print(path.current_path)
path.cd('/../x') # x
print(path.current_path)
path = Path('/a/b/c/d')
path.cd('..')
print(path.current_path)
|
"""
Smallest multiple
Problem 5
2520 is the smallest number that can be divided by each of the numbers from
1 to 10 without any remainder.
What is the smallest positive number that is evenly divisible by all of the
numbers from 1 to 20?
"""
#### Brute force method
def isDivisable(xNum, yList):
for y in yList:
if xNum%y != 0:
return False
return True
def smallest_multiple(top_range):
"""
takes top range to make a list from 1 to n
will return the smallest number which is multiple by all numbers in the list
No need to check 1 as everything will be divisable. So 2 onwards
"""
list = [x for x in range(2,top_range)]
base = 0
while True:
base += 1
if isDivisable(base, list) == True:
return base
else:
print "Current iteration of {0}".format(base)
print smallest_multiple(10)
#print smallest_multiple(20)
#Takes too long for 1-20.
#nicer method
#http://codereview.stackexchange.com/questions/67938/project-euler-5-lowest-multiple-of-1-through-20
def lowest_common_multiple(nfrom, nto):
lcm = nfrom
for i in range(nfrom, nto+1):
sum = lcm
print "sum is {0}, iteration is {1}".format(sum, i),
while (sum % i != 0):
print " adding {0}".format(lcm),
sum += lcm
print ""
lcm = sum
return lcm
print lowest_common_multiple(1,20)
|
import re
import numpy as np
from pprint import pprint
"""
Permutations
Functions for finding rotational permtuations.
This scipt supports countcycles.py
by finding all rotational permutations
of a given move sequence to help eliminate
duplicates.
"""
def main():
captains, seq2captains = algorithm_m_clean(2)
print("List of all length-2 permutations generated:")
pprint(list(seq2captains.keys()))
print("Total: %d"%(len(seq2captains.keys())))
print("")
print("List of rotationally unique length-2 permutations:")
pprint(list(captains))
print("Total: %d"%(len(captains)))
def algorithm_m_clean(n):
"""
Knuth's Algorithm M for permutation generation,
cleaned up to remove duplicate rotations.
This generates the rotations:
constructs a map of each sequence
to its captain.
"""
sequence_to_captain = {}
captains = set()
for perm in algorithm_m(n):
# get all possible rotations of this
# move sequence (permutation)
rotations = get_rotations(perm)
# important:
# sort rotations in reverse lexicographic order,
# extract captains after they are returned
captain = rotations[0]
# for each rotation,
# set its captain.
for rot in rotations:
if rot not in sequence_to_captain:
sequence_to_captain[rot] = captain
captains.add(captain)
captains = list(captains)
return captains, sequence_to_captain
def algorithm_m(n):
"""
Knuth's Algorithm M for permutation generation,
via AOCP Volume 4 Fascile 2.
This is a generator that returns permtuations
generated using the variable-radix method.
This generates ALL permutations.
Many of these are rotations of one another,
so use the get_rotations() function
below to get all rotations of a given
permutation.
A better way to do this is to clean up
algorithm M so it only generates
the original, plus the 24 rotations
each in turn...
...but that makes my brain hurt.
"""
moves = ['U', 'D', 'B', 'F', 'L', 'R',
'Uw','Dw','Bw','Fw','Lw','Rw',
'2U','2D','2B','2F','2L','2R', ]
# M1 - Initialize
a = np.zeros(n,)
m = np.ones(n,)*len(moves)
j = n-1
nvisits = 0
while True:
# M2 - visit
move_sequence = " ".join([ moves[int(aj)] for aj in a])
yield move_sequence
nvisits += 1
# M3 - prepare to +1
j = n-1
# M4 - carry
while( a[j] == m[j]-1):
a[j] = 0
j = j-1
# M5 - increase unless done
if(j<0):
break
else:
a[j] = a[j] + 1
def get_rotations(sequence):
"""
Given a cube sequence,
find all 24 rotations of it.
Need to fix this so it doesn't
necessarily expect the U-first case.
"""
cubes = ["UBFLRD",
"UFBRLD",
"ULRFBD",
"URLBFD",
"DFBLRU",
"DBFRLU",
"DLRBFU",
"DRLFBU",
"LUDBFR",
"LDUFBR",
"LFBUDR",
"LBFDUR",
"RUDFBL",
"RDUBFL",
"RBFUDL",
"RFBDUL",
"FUDLRB",
"FDURLB",
"FRLUDB",
"FLRDUB",
"BUDRLF",
"BDULRF",
"BLRUDF",
"BRLDUF"]
results = set()
results.add(sequence)
cubestart = {'U': 0,
'D': 4,
'L': 8,
'R':12,
'F':16,
'B':20}
# Split the sequence into its moves,
# and use the first cube configuration to map
# moves to numbers.
moves = sequence.split(" ")
move0 = moves[0]
first_move = move0[0]
if(move0[0]=='2'):
first_move = move0[1]
first_move_index = cubestart[first_move]
# Now run through all other cube configurations,
# and map the numbers back to moves.
move_numbers = []
for move in moves:
if(move[0]=='2'):
move_numbers.append(cubes[first_move_index].index(move[1]))
else:
move_numbers.append(cubes[first_move_index].index(move[0]))
for i in range(len(cubes)):
cube = cubes[i]
xmoves = []
for j, move_number in enumerate(move_numbers):
old_face = cubes[first_move_index][move_number]
new_face = cube[move_number]
old_move = moves[j]
new_move = re.sub(old_face,new_face,old_move)
xmoves.append(new_move)
# Assemble the moves to a string
xmove = " ".join(xmoves)
results.add(xmove)
# reversed is slightly more convenient,
# starts with U instead of B
return list(reversed(sorted(list(results))))
def test_rotations():
# Focusing on sequences of length 3 and up
# Focusing on right hand sequences only
#
# 12 possible right hand moves,
# 3^12 total possibilities,
# 24 rotational equivalents,
# 22,000 total unique 3-move sequences
moves = ['U', 'D', 'B', 'F', 'L', 'R',
'Uw','Dw','Bw','Fw','Lw','Rw',
'2U','2D','2B','2F','2L','2R', ]
sequences = []
move1 = 'L'
for move2 in ['D']:#moves:
for move3 in moves:
seq = " ".join([move1,move2,move3])
sequences.append(seq)
print("Length of sequence: %d"%(len(sequences)))
for sequence in sequences:
print(get_rotations(sequence))
if __name__=="__main__":
main()
|
first=1000
second=200
third=300
fourth=400
# to find the biggest number out of four(they are not equal)
first > second, first > third, first>fourth, 'first is biggest'
second > third, second > fourth, 'second is biggest'
third > fourth, 'third is biggest'
'fourth is biggest'
if (first > second) and (first > third) and (first > fourth):
print("first is biggest")
elif(second > third) and (second > fourth):
print("second is biggest")
elif(third > fourth):
print ("third is biggest")
else:
print(" fourth biggest")
|
# Qual o total de voos internacionais quue partiram do aeroporto de Logan no ano de 2014
calendario = ['Jan', 'Fev', 'Mar', 'Abr', 'Mai', 'Jun', 'Jul', 'Ago', 'Set', 'Out', 'Nov', 'Dez']
with open("economic-indicators.csv", "r") as boston:
total = 0
for linha in boston.readlines()[1:-1]:
if 2014 == int(linha.split(',')[0]):
total = total + float(linha.split(',')[3]) # separa pela vigula na posição 3
print("O total de voos é: ", total)
with open("economic-indicators.csv", "r") as boston:
maiorPassageiros = 0
for linha in boston.readlines()[1:-1]:
numPassageiros = float(linha.split(',')[2])
if numPassageiros > maiorPassageiros:
maiorPassageiros = numPassageiros
mes = int(linha.split(',')[1]), int(linha.split(',')[0])
print("O mês e ano ", mes[0], '/', mes[1], "houveram ", maiorPassageiros, 'passageiros')
with open("economic-indicators.csv", "r") as boston:
quantidadeDePassageirosQuePassaramPeloAeroporto = 0
quantidadeDeVezesQueApareceaData = 0
usuario = float(input('Digite o ano para saber o total de pessoas que passaram pelo aeroporto: '))
for linha in boston.readlines()[1:-1]:
if usuario == int(linha.split(',')[0]):
quantidadeDeVezesQueApareceaData += 1
quantidadeDePassageirosQuePassaramPeloAeroporto += int(linha.split(',')[2])
print(quantidadeDeVezesQueApareceaData)
print(quantidadeDePassageirosQuePassaramPeloAeroporto, " pessoas.")
with open("economic-indicators.csv", "r") as boston:
maiorMediadeDiaria = 0
mes = 0
usuario = int(input('Digite o ano para saber a maior diária de um hotel: '))
for linha in boston.readlines()[1:-1]:
if usuario == int(linha.split(',')[0]) and maiorMediadeDiaria < float(linha.split(',')[5]):
maiorMediadeDiaria = float(linha.split(',')[5])
mes = int(linha.split(',')[1])
for m in range(0, len(calendario) + 1, 1):
if mes == m:
print('O mês de', calendario[mes-1], 'teve a maior média de preços')
|
from tkinter import *
# ---------------------------- PASSWORD GENERATOR ------------------------------- #
# ---------------------------- SAVE PASSWORD ------------------------------- #
# ---------------------------- UI SETUP ------------------------------- #
window = Tk()
window.title("Password Manager")
window.config(padx=50,pady=50)
canvas = Canvas(height=200, width=200)
logo_img = PhotoImage(file="logo.png")
canvas.create_image(100,100,image=logo_img)
canvas.pack()
canvas.grid(column=1, row=0)
lb_website = Label(text="Website:").grid(column=0,row=1)
en_website = Entry(width=35).grid(column=1, row=1, columnspan=2)
lb_account = Label(text="Email/Username:").grid(column=0, row=2)
en_account = Entry(width=35)
en_account.insert(0, "[email protected]")
en_account.grid(column=1, row=2, columnspan=2)
lb_pwd = Label(text="Password").grid(column=0, row=3)
en_pwd = Entry(width=21).grid(column=1, row=3)
btn_pwd = Button(text="Generate Password").grid(column=2, row=3)
btn_add = Button(text="Add", width=36).grid(column=1, row=4, columnspan=2)
window.mainloop() |
from datetime import date
from datetime import time
from datetime import datetime
def main():
today = datetime.today()
print("Today's date is", today)
print("Today's date by date, month, year", today.day, today.month, today.year)
days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"]
print("Today is", days[today.weekday()])
now = datetime.now()
print("Current time is ", now)
if __name__ == '__main__':
main()
|
# Let's check the first if and else condition
x = 10
y = 20
z = 30
if x > y:
print(x + " is greater than " +y)
# this line is not executing that why it is not giving error.
# Otherwise it gives this error TypeError: unsupported operand type(s) for +: 'int' and 'str'
else: pass # this will pass without any thing print
# another example
if x > y:
print(str(x)+ " is greater than " + str(y)) # Here we need to type cast int to string.
else:
print(str(y) + " is greater than " + str(x))
# another example
if x > y & x > z:
print(str(x) + " is the greatest number")
elif y > x & y > z:
print(str(y) + " is the greatest number")
else:
print(str(z) + " is the greatest number")
# Let's check the loop condition
print("********While loop test**********")
x = 1
while x < 5:
print(x)
x += 1
print("********For loop test**********")
list = [1, 2, 3, 4, 5]
for x in list:
print(x)
print("********For loop range test**********")
for x in range(1,5):
print(x) |
# If he walks from A to B and then from B to A whit the same tempo, he has to walk 10 miles
... timeAB=2*495+3*432
>>> timeAB
2286
>>> timeBA=timeAB
>>> timeBA
2286
>>> totaltimesec=timeAB+timeBA
>>> totaltimesec
4572
>>> totaltimemin=totaltimesec/60
>>> totaltimemin
76
# He will be at home after 76min (8:08)
#If he walks in a circle(from A to A), he has to walk only 5 miles
... timesec=2*495+3*432
>>> timesec
2286
>>> timemin=timesec/60
>>> timemin
38
>>> #He will be at home after 38 min ( at 7:30)
|
def gcd(a, b):
if b == 0:
return a
else:
r = a % b
return gcd(b, r)
gcd(6, 8)
|
def divisores(num):
try:
if num < 0:
raise ValueError("Ingrese un número positivo")
divisor =[i for i in range(1,num+1) if num % i == 0]
return divisor
except ValueError as e:
print(e)
return False
def run():
num = input("Ingrese un número: ")
assert num.isnumeric(), "Ingrese un número"
print(divisores(int(num)))
print("El programa termino")
if __name__ == '__main__':
run() |
x=int(input("enter anumber"))
y=int(input("enter another number"))
z=int(input("enter third number"))
print(x,y,z)
|
def serialize(words):
return "".join(chr(len(word)) + word for word in words)
def deserialize(words):
if not words:
return []
idx = ord(words[0])+1
return [words[1:idx]] + deserialize(words[idx:])
serialized = serialize(["test", "word", "three", "hello", "world"])
print(serialized)
deserialized = deserialize(serialized)
print(deserialized)
|
import math
def isComposite(n):
"""Straight loop."""
for x in range(2, int(math.sqrt(n)) + 1):
if n % x == 0:
return x
return False
_PrimeList = [2]
def isCompPL(n):
"""Recursive version."""
for x in _PrimeList:
if n % x == 0:
if n == x:
return False
return x
for x in range(_PrimeList[-1], int(math.sqrt(n)) + 1):
if not isCompPL(x):
if x > _PrimeList[-1]:
_PrimeList.append(x)
if n % x == 0:
return x
return False
def isCompSR(n):
"""Serialized recursive version."""
l = [n]
while (math.sqrt(l[0]) > _PrimeList[-1]):
l.insert(0, int(math.sqrt(l[0])))
l.insert(0, _PrimeList[-1] + 1)
while (len(l) > 2):
q = l.pop(0)
for x in range(q, l[0]):
for y in _PrimeList:
if x % y == 0:
break
else:
_PrimeList.append(x)
return isCompPL(n)
#for i in range(20000, 50000):
for i in [1299827]*10000:
#print("{}: {}".format(i, isComp(i)))
#isComposite(i)
isCompSR(i)
|
def find_missing(numbers):
minimum = 1
length = len(numbers)
i = 0
while i < length:
idx = numbers[i] - minimum
if idx < length:
if numbers[i] - minimum == i:
i += 1
else:
numbers[idx], numbers[i] = numbers[i], numbers[idx]
else:
numbers[i] = None
i += 1
for i, val in enumerate(numbers):
if val is None: return i + minimum
return minimum + length
def find_missing2(numbers):
minimum = 1
length = len(numbers)
for i in range(length):
numbers[i] -= minimum
for i, val in enumerate(numbers):
while val != i:
if val >= length:
numbers[i] = None
break
numbers[val], numbers[i] = val, numbers[val]
val = numbers[i]
for i, val in enumerate(numbers):
if val is None: return i + minimum
return minimum + length
def find_missing3(numbers):
for i in range(len(numbers)):
if numbers[i] >= len(numbers):
numbers[i] = None
for i in range(len(numbers)):
while numbers[i] not in (i, None):
numbers[numbers[i]], numbers[i] = numbers[i], numbers[numbers[i]]
for i, val in enumerate(numbers[1:], 1):
if val is None: return i
return len(numbers)
def main():
numbers = [3, 2, 1, 7]
numbers = [4, 2, 7, 6, 1, 3]
missing = 1#find_missing(list(numbers))
missing2 = 1#find_missing2(list(numbers))
missing3 = find_missing3(list(numbers))
print(missing, missing2, missing3)
if __name__ == "__main__":
main()
|
size = 16
def printMatrix(matrix):
for row in matrix:
print(row)
"""
matrix = []
for i in range(size):
matrix.append([(i, x) for x in range(size)])
printMatrix(matrix)
print("========================")
"""
def shiftMatrixHoriz(matrix):
newMatrix = []
for i in range(len(matrix)//2):
#newMatrix.append([val for pair in zip(matrix[i],matrix[i+1]) for val in pair])
newMatrix.append([val for pair in zip(matrix[i],matrix[i+len(matrix)//2]) for val in pair])
return newMatrix
def shiftMatrixVert(matrix):
newM2 = []
for i in range(len(matrix)):
newM2.append(matrix[i][:len(matrix)*2])
newM2.append(matrix[i][len(matrix)*2:])
return newM2
def newShift(matrix, n):
m = []
for i in range(len(matrix)//n):
#m.append([val for tup in zip(*matrix[i:i+n]) for val in tup])
m.append([val for tup in zip(*matrix[i::len(matrix)//n]) for val in tup])
matrix = m
printMatrix(matrix)
m2 = []
for i in range(len(matrix)):
for j in range(n):
m2.append(matrix[i][len(matrix)*j*n:n*len(matrix)*(j+1)])
return m2
#matrix = shiftMatrixHoriz(matrix)
#matrix = shiftMatrixVert(matrix)
#matrix = shiftMatrixHoriz(matrix)
#matrix = shiftMatrixVert(matrix)
#matrix = newShift(matrix, 4)
#printMatrix(matrix)
sqrt9 = 3
sz = 9
M = []
for i in range(sz):
M.append([0]*sz)
for i in range(sz):
for j in range(sz):
#val = j // sqrt9 + sqrt9 * ((i + sz * j) % (sz * sqrt9))
#val = j // sqrt9 + sqrt9 * (i % (sz * sqrt9)) + sqrt9 * sz * (j % sqrt9)
val = j // sqrt9 + sqrt9 * (i + sz * (j % sqrt9))
#print(i + j * sz, val)
vi = (j // sqrt9 + sqrt9 * i) % sz
vj = (j // sqrt9 + sqrt9 * i) // sz + sqrt9 * (j % sqrt9)
#print((i,j), (val % sz, val // sz))
#print((i,j), (vi, vj))
M[i][j] = (val % sz, val // sz)
printMatrix(M)
|
import numpy as np
def winnow_fit(xs, ys):
# Implements the winnow algorithm as given in the coursework.
n = xs.shape[1]
w = np.ones(n, dtype=np.float64)
for i in range(ys.size):
x = xs[i]
y = ys[i]
y_hat = 0 if x @ w < n else 1
# Update weights if prediction is wrong.
if y_hat != y:
w *= np.power(2, (y - y_hat) * x, dtype=np.float64)
return w
def winnow_evaluate(w, xs, ys):
n = xs.shape[1]
predictions = np.where(xs @ w >= n, 1.0, 0.0)
return (predictions != ys).sum() / ys.size * 100.0
|
def Selectionsort(vetor):
for i in range(0, len(vetor)):
menor = i
for direita in range(i + 1, len(vetor)):
if vetor[direita] < vetor[i]:
menor = direita
vetor[i], vetor[menor] = vetor[menor], vetor[i] |
#!/usr/bin/env python
""" Assignment 1, Exercise 3, INF1340, Fall, 2015. Troubleshooting Car Issues.
This module contains one function diagnose_car(). It is an expert system to
interactive diagnose car issues.
"""
__author__ = 'Susan Sim'
__email__ = "[email protected]"
__copyright__ = "2015 Susan Sim"
__license__ = "MIT License"
def diagnose_car():
"""
Interactively queries the user with yes/no questions to identify a
possible issue with a car.
Inputs:
Expected Outputs:
Errors:
"""
print("The battery cables may be damaged. Replace cables and try again.")
diagnose_car() |
num1=int(input("Introduce un numero: "))
num2=int(input("Introduce un número mayor que: " + str(num1) + ": "))
while num2 > num1:
num1 = num2
num2 = int(input("introduce un numero mayor que: " + str(num1) + ": "))
print()
print (num2, "no es mayor que", str (num1)) |
year_of_birth=int(input("Date of birth: "))
current_year=int(input("Actual Date: "))
if year_of_birth==current_year:
print("You were born this very year!")
elif year_of_birth==current_year-1:
print("You are "+ str((year_of_birth-current_year)*-1) + " year old!")
elif year_of_birth<=current_year:
print("You are "+ str((year_of_birth-current_year)*-1) + " years old!")
elif year_of_birth>=current_year:
print("You will be born in " + str(year_of_birth-current_year) + " Years. ")
|
#Write a function called write_movie_info. write_movie_info
#will take as input two parameters: a string and a
#dictionary.
#
#The string will represent the filename to which to write.
#
#The keys in the dictionary will be strings representing
#movie titles. The values in the dictionary will be lists
#of strings representing performers in the corresponding
#movie.
#
#write_movie_info should write the list of movies to the file
#given by the filename using the following format:
#
# Title: Actor 1, Actor 2, Actor 3, etc.
#
#The movies and the actor names should be sorted
#alphabetically.
#
#So, for this dictionary:
#
# {"Chocolat": ["Juliette Binoche", "Judi Dench", "Johnny Depp", "Alfred Molina"],
# "Skyfall": ["Judi Dench", "Daniel Craig", "Javier Bardem", "Naomie Harris"]}
#
#The file printed would look like this:
#
# Chocolat: Alfred Molina, Johnny Depp, Judi Dench, Juliette Binoche
# Skyfall: Daniel Craig, Javier Bardem, Judi Dench, Naomie Harris
#
# HINT: the keys() method of a Dictionary will return a list
# of the dictionary's keys. So, to get a sorted list of a_dict's
# keys, you could call key_list = a_dict.keys(), then call
# key_list.sort().
# import os
# os.getcwd()
# Write your function here!
def write_movie_info( filename , movies ):
movie_names = movies.keys()
actors = movies.values()
outputFile = open( filename , "w")
for actor in actors:
actor.sort()
sorted_movie_names = dict()
sorted_movie_names = sorted(movie_names)
for movie_names, actor in movies.items():
sorted_movie_names(movie_names) = actor
for movie_names, actors in movies.items():
outputFile.write(str(movie_names) + ": ")
counter = 0
for actor in actors:
outputFile.write(str(actors))
counter += 1
if counter == len(actors):
outputFile.write("\n")
break
else:
outputFile.write(", ")
print(str(movie_names) + ": " + str(actors))
outputFile.close()
# new = dict(zip( key_sort , items_sort ))
# for i in movie_names:
# x = i + ": "
# outputFile.write(x)
# # outputFile.write(", ".join(actor))
# outputFile.write("\n")
# counter = 0
# while len(items) > counter:
# print(items[counter], end = "")
# counter += 1
# if counter == len(items):
# print("")
# break
# else:
# print(", ", end = "")
# outputFile.close()
#Below are some lines of code that will test your function.
#You can change the value of the variable(s) to test your
#function with different inputs.
#
#If your function works correctly, this will originally
#print nothing -- however, it should write the same contents
#as Sample.txt to Test.txt.
movies = {"Skyfall": ["Judi Dench", "Daniel Craig", "Javier Bardem", "Naomie Harris"], "Chocolat": ["Juliette Binoche", "Judi Dench", "Johnny Depp", "Alfred Molina"], }
write_movie_info("Test.txt", movies)
|
#APA citation style cites author names like this:
#
# Last, F., Joyner, D., & Burdell, G.
#
#Note the following:
#
# - Each individual name is listed as the last name, then a
# comma, then the first initial, then a period.
# - The names are separated by commas, including the last
# two.
# - There is also an ampersand and additional space before
# the final name.
# - There is no space or comma following the last period.
#
#Write a function called names_to_apa. names_to_apa should
#take as input one string, and return a reformatted string
#according to the style given above. You can assume that
#the input string will be of the following format:
#
# First Last, David Joyner, and George Burdell
#
#You may assume the following:
#
# - There will be at least three names, with "and" before
# the last name.
# - Each name will have exactly two words.
# - There will be commas between each pair of names.
# - The word 'and' will precede the last name
# - The names will only be letters (no punctuation, special
# characters, etc.), and first and last name will both be
# capitalized.
#Write your function below!
def names_to_apa( names ):
# remove unnecessary characters (separating wheat from the chaff)
names = names.replace(" and","")
names = names.split(", ")
# storing number of names
pop = len(names)
# isolates last name
final_name = names.pop()
# Iteratively isolates the list items
for name in names:
fname, lname = name.split(" ")
# Prints output in requested format (with modified print statement allowing single-line output)
piece1 = lname + ", " + fname[0] + "., ", sep="",end="",flush=True
# Preps final output
piece2 = "and ", sep="",end="",flush=True
# Splits last name
ffname, flname = final_name.split(" ")
# Declares variable to return at the end
final_final_i_promise_this_time_no_really_final_v2 = flname + ", " + ffname[0]
return final_final_i_promise_this_time_no_really_final_v2
#Below are some lines of code that will test your function.
#You can change the value of the variable(s) to test your
#function with different inputs.
#
#If your function works correctly, this will originally
#print: Last, F., Joyner, D., & Burdell, G.
print(names_to_apa("First Last, David Joyner, and George Burdell"))
|
#Imagine you're playing a game in which every action you
#take grants you some number of experience points. There is
#an item called a Lucky Egg that, when used, doubles the
#number of experience points you earn. The company behind
#the game also runs occasional events where they increase
#how many experience points you earn for each action by 50%,
#100%, or even 200%.
#
#Write a function called find_total_exp. find_total_exp
#should have one positional parameter, a base number of
#experience points. It should also have two keyword
#parameters: lucky_egg, whose default value is False, and
#event_multiplier, whose default value is 1.
#
#The function should return the number of experience
#points earned based on these two variables. The base number
#of experience points should always be multiplied by the
#event multiplier, and then doubled if lucky_egg is True.
#
#You should convert the final result from a float to an
#integer before returning it. This will automatically round
#down.
#Add your code here!
def find_total_exp( exp , lucky_egg = False , multiplier = 1):
exp *= multiplier
if lucky_egg == True:
exp *= 2
return int(exp)
#Below are some lines of code that will test your function.
#You can change the value of the variable(s) to test your
#function with different inputs.
#
#If your function works correctly, this will originally
#print:
#100
#200
#150
#300
print(find_total_exp(100))
print(find_total_exp(100, lucky_egg = True))
print(find_total_exp(100, multiplier = 1.5))
print(find_total_exp(100, lucky_egg = True, multiplier = 1.5))
|
x = 2
for i in range(2, 12, 2):
print(x)
x += 2
print('Goodbye!') |
#Write a function called num_factors. num_factors should
#have one parameter, an integer. num_factors should count
#how many factors the number has and return that count as
#an integer
#
#A number is a factor of another number if it divides
#evenly into that number. For example, 3 is a factor of 6,
#but 4 is not. As such, all factors will be less than the
#number itself.
#
#Do not count 1 or the number itself in your factor count.
#For example, 6 should have 2 factors: 2 and 3. Do not
#count 1 and 6. You may assume the number will be less than
#1000.
#Add your code here!
def num_factors( num ):
count = 0
for i in range(2,num):
if num % i == 0:
count += 1
return count
#Below are some lines of code that will test your function.
#You can change the value of the variable(s) to test your
#function with different inputs.
#
#If your function works correctly, this will originally
#print: 0, 2, 0, 6, 6, each on their own line.
print(num_factors(5))
print(num_factors(6))
print(num_factors(97))
print(num_factors(105))
print(num_factors(999))
|
class School():
def __init__(self,schoolName,stdCount,tchCount,employee,schoolType,classCount):
self.schoolName=schoolName
self.stdCount=stdCount
self.tchCount=tchCount
self.employee=employee
self.schoolType=schoolType
self.classCount=classCount
school1 = School("Afyon Fen Lisesi",500,30,25,"Science High School",25)
school2 = School("Afyon Anadolu Lisesi",400,25,25,"Anatolian High School",25)
school3 = School("Afyon Meslek Lisesi",450,35,25,"Vocational High School",25)
print("------------",school1.schoolName,"-------------")
print("\n Number of Students: ",school1.stdCount,"\n Number of Teacher: ",school1.tchCount
,"\n Number of Employee: ",school1.employee,"\n School Type: ",school1.schoolType,"\n Number of Class: ",school1.classCount)
print("------------",school2.schoolName,"-------------")
print("\n Number of Students: ",school2.stdCount,"\n Number of Teacher: ",school2.tchCount
,"\n Number of Employee: ",school2.employee,"\n School Type: ",school2.schoolType,"\n Number of Class: ",school2.classCount)
print("------------",school3.schoolName,"-------------")
print("\n Number of Students: ",school3.stdCount,"\n Number of Teacher: ",school3.tchCount
,"\n Number of Employee: ",school3.employee,"\n School Type: ",school3.schoolType,"\n Number of Class: ",school3.classCount)
school1.employee=35
school2.stdCount=515
school3.schoolName="Afyon Mesleki ve Teknik Anadolu Lisesi"
print("\n*** UPDATES ***")
print(school1.schoolName,"updated number of employees:",school1.employee,"\n",school2.schoolName,"updated number of students: ",school2.stdCount,"\n",school3.schoolName,"updated school names:",school3.schoolName) |
database = [
{"name":"Sakshi", "acc":123456, "ph":9008001001, "pin":6749, "balance":7800} ,
{"name":"Sarah", "acc":234567, "ph":9008001002, "pin":5903, "balance":6500} ,
{"name":"John", "acc":345678, "ph":9008001003, "pin":7832, "balance":9000} ,
{"name":"Nikki", "acc":456789, "ph":9008001004, "pin":4880, "balance":5500} ,
{"name":"Jimmy", "acc":567890, "ph":9008001005, "pin":2198, "balance":7400} ,
]
class Account:
def __init__(self, name, acc_no, phone_no, balance):
self.name = name
self.acc_no = acc_no
self.phone_no = phone_no
self.balance = balance
def account_info(self):
print('\nAccount Details: ')
print(f'\nName: {self.name}\nAccount no: {self.acc_no}\nContact no: {self.phone_no}\n')
def enquiry(self):
print(f'\nYour Account balance is: Rs.{self.balance}')
def pin_change(self,newpin):
self.pin = newpin
print(f"\nYour PIN is now {self.pin}")
def deposit(self,dep_amt):
self.balance += dep_amt
print(f'\nDeposit Accepted! Your Current balance is Rs. {self.balance}')
def withdraw(self,wd_amt):
if self.balance >= wd_amt:
self.balance -= wd_amt
print(f'\nWithdrawl Accepted! Your Current balance is Rs. {self.balance}')
else:
print('\nSorry! You have insuficient Balance.')
user_acc = int(input('Enter Account no: '))
attempt = 3
while attempt!=0:
user_pin = int(input('Enter PIN: '))
for user in database:
if user.get('acc') == user_acc and user.get('pin') == user_pin:
print (f"\nHello {user['name']}!")
attempt=0
userobj = Account(user['name'], user['acc'], user['ph'], user['balance'])
print("\nPlease select the operation:\nAccount details (press 1)\nBalance Enquiry (press 2)\nChange PIN (press 3)\nMoney Deposit (press 4)\nMoney Withdrawl (press 5)")
response = int(input("\nEnter your response: "))
if response == 1:
userobj.account_info()
elif response == 2:
userobj.enquiry()
elif response == 3:
newpin = int(input("\nEnter a new 4-digit PIN: "))
userobj.pin_change(newpin)
user['pin'] = newpin
elif response == 4:
dep_amt = int(input("\nEnter the amount to be deposited: "))
userobj.deposit(dep_amt)
elif response == 5:
wd_amt = int(input("\nEnter the amount to be withdrawn: "))
userobj.withdraw(wd_amt)
elif user.get('acc') == user_acc and user.get('pin') != user_pin:
print (f"{user['name']}, you have entered incorrect password. Try again!")
attempt = attempt-1
if attempt==0:
print("You've entered inncorrect password 3 times. Your account is now blocked!")
break
|
n = int(input('enter rows:'))
for i in range(n+1, 1, -1):
for j in range(1, i):
print(f'{j}', end=" ")
print("* "*(n+1-i) + "* "*(n-i))
|
cislo = int(input("Zadej číslo"))
if cislo == 0:
print("Je to moc jednoduché")
print(cislo, "+ 3", cislo + 3) |
from turtle import forward, left, right, shape, exitonclick
shape = 'turtle'
delka = 50
uhel = 60
for y in range(6):
for i in range(6):
forward(delka)
left(uhel)
forward(delka)
right(uhel)
exitonclick() |
from typing import Dict
def gc_content(sequence: str) -> float:
if any(nucleotide not in "atgc" for nucleotide in sequence):
raise AttributeError
nucleotides: Dict[str, int] = {nucleotide: sequence.count(nucleotide) for nucleotide in "atgc"}
gc_percentage: float = (nucleotides["g"] + nucleotides["c"]) / sum(nucleotides.values())
return gc_percentage * 100
if __name__ == "__main__":
sequence: str = input("\nDigite uma sequência de dna: ").strip().lower()
try:
print(f"\n{sequence} -> {gc_content(sequence)}%", end="\n\n")
except AttributeError:
print("\nSequencia de dna inválida. Tente novamente.", end="\n\n")
|
def st():
stscore = 0
#3rd quest for the user
print("\n1: Timer\n2: Ton\n3: Time\n4: Toh")
Quest3 = input("\nWhich of the above statements do i need, to create a timer for my program?\n")
stscore = 0
while Quest3 != '2':
print("\nYou disappoint me, Thanks for the points!\n")
Quest3 = input("\nYou may try again, i want more of these points of yours\n")
stscore -= 1
else:
stscore += 1
print("\nYou came this far, now lets move forward\n")
#4th quest for the user
print("\nI need to make a function for this program.\n")
print("\n\n1: Function_block <name>\n2: FC <name>\n3: Function <name>\n4: <name> Function\n")
Quest4 = input("\nWhich of the above statements is the right one, to create a function?\n")
while Quest4 != '3':
print("\nYou have to shape up, if you want to continue this journey!")
Quest4 = input("\nTry again, but do it right this time...\n")
stscore -= 1
else:
stscore += 1
print("\nYou are getting better... i guess\n")
return stscore
|
def gcd(a,b):
if (b==0):
return a
return gcd(b, a%b)
# Example Test Run
# a=8
# b=4
# print(gcd(a,b))
# output: 4 |
import random
print('\n\t\t\tЦе гра "Відгадай число:)" !!! ')
number = random.randint(1,100)
guest = int(input('\nЯ загадав число від 1 до 100, давай спробуй вгадай:'))
popitka = 1
while guest != number:
if guest>number:
print("Моє число менше :(")
else:
print("Моє число більше :)")
guest = int(input('Спробуй ще раз :'))
popitka+=1
print('Ура! Ти вгадав, так, це число :', number, '\n Ти вгадав його за ', popitka, ' спроби\n')
input('\t\t\tНатисни ентер для виходу :) ')
|
'''
This file defines the Assertion class. Assertions represent
conceptual knowledge.
'''
from SimpleRealizer import realize_brain_assertion
import json
class Assertion(object):
def __init__(self, attributes = {}):
for k, v in attributes.items():
setattr(self,k,v)
def __eq__(self, other):
if type(other) is type(self):
return self.__dict__ == other.__dict__
# Returns a dictionary with the attributes of this assertion.
def to_dict(self):
d = {}
for attr, value in self.__dict__.iteritems():
d[attr] = value
return d
# Same as to_dict(), except returns a dict with the non-default values.
def to_pruned_dict(self):
d = {}
for attr, value in self.__dict__.iteritems():
if value != "":
d[attr] = value
return d
# Same as to_dict(), except with pretty indentation.
def prettyprint(self):
print json.dumps(self.to_dict(), indent=2)
# Realize the assertion given a brain and a Boolean which represents
# whether the realization is a sentence fragment or not.
def realize(self, brain, isFragment):
return realize_brain_assertion(brain,self,isFragment)
|
def pyTriples(a):
return([(m**2-n**2,2*m*n,m**2+n**2) for m in range(1,a) for n in range(1,a) if 2*m*n > 0 if m**2-n**2 > 0 if m**2+n**2 > 0])
def quickSort(arr):
if arr == []:
return []
pivot = arr[0]
lower = quickSort([x for x in arr[1:] if x < pivot])
upper = quickSort([x for x in arr[1:] if x >= pivot])
return lower + [pivot] + upper
print(pyTriples(10))
print(quickSort([1,5,3,7,8,2,3,7,1,4,7,2,20])) |
#! /usr/bin/env python3
# -*- encoding: utf-8; py-indent-offset: 2 -*-
import sys
print("Polyalphabetic substitution cypher")
# asking for a key
key=input(" Specify (string, private) key: ")
# controlling key validity
if len(key)<1:
sys.stderr.write(" ERROR key should not be empty\n")
sys.exit(1)
# generating a salt based on the given key
salt=[]
for i in key:
ascii=ord(i)
if ascii >= 97 and ascii <= 122:
delta=97
elif ascii >=65 and ascii <= 90:
delta=65
salt.append(str(ord(i)-delta+1))
# asking for the message to encrypt, using our key (salt)
given=input(" Enter the text to encrypt: ")
if len(given)<1:
sys.stderr.write(" ERROR nothing given\n")
sys.exit(2)
# encoding each text character
j=0
for i in given:
ascii=ord(i)
if ascii >= 97 and ascii <= 122:
delta = 97
elif ascii >=65 and ascii <= 90:
delta = 65
else:
sys.stdout.write(i)
continue
sys.stdout.write(chr((ascii-delta+1+int(salt[j]))%26+delta))
j+=1
if j==len(salt):
j=0
|
number = int(input())
count, current_number = 1, 1
for i in range(number):
if count > 0:
print(current_number, end=' ')
count -= 1
else:
count = current_number
current_number += 1
print(current_number, end=' ')
|
import numpy as np
def gradient_decent(x,y):
m_curr=0
b_curr=0
iteration=100
n = len(x)
learning_rate=0.001
for i in range(iteration):
y_predict=m_curr*x+b_curr
md=-(2/n)*sum(x*(y-y_predict))
bd=-(2/n)*sum(y-y_predict)
m_curr=m_curr - learning_rate*md
b_curr=b_curr - learning_rate*bd
print("m {}, b {} , iteration {}".format(m_curr,b_curr,i))
x=np.array([1,2,3,4,5])
y=np.array([5,7,11,25,13])
gradient_decent(x,y) |
#!/usr/bin/env python3
class Duck:
count = 0
def quack(self):
print('Quaaack!')
def walk(self):
print('Walks like a duck.')
def main():
donald = Duck()
donald.quack()
donald.walk()
donald.count = 9
print(f'donald count {donald.count}')
drill = Duck() # so Duck() is equal to new a class
print(f'drill count {drill.count}')
drill.count = 3
print(f'drill count {drill.count}')
if __name__ == '__main__': main()
|
#!/usr/bin/env python3
hungry = True
default = 23**3
tunary = 'this is default' if default else 'use special case'
x = 'Feed the bear now!' if hungry else 'Do not feed the bear.'
print(default)
|
# Use Python3
n = input()
a, b = map(int, n.split())
def GCD(a, b):
if b == 0:
return a
else:
r = a % b
return GCD(b, r)
print(GCD(a, b))
|
import numpy as np
import matplotlib.pyplot as plt
def sigmoid(x):
return 1 / (1 + np.e ** (-x))
def create_bias(x):
bias = np.zeros(len(x))
bias = np.random.normal(bias)
return bias
def create_weight(x):
weight = np.zeros_like(x)
weight = np.random.normal(weight)
return weight
def hidden_layer(x, weight, bias):
hypothesis = weight * x + bias
return hypothesis
def cost_function(hypothesis, y):
cost_v = np.sum((y - hypothesis) ** 2) / len(y)
return cost_v
np.random.seed(3)
data = np.array([[100, 20], [150, 24], [300, 36], [400, 47], [130, 22], [240, 32], [350, 47],
[200, 42], [100, 21], [110, 21], [190, 30], [120, 25], [130, 18], [270, 38], [255, 28]])
data = data.astype('float32')
x_data = data[:, 0]
y_data = data[:, 1]
w1 = create_weight(x_data)
b1 = create_bias(y_data)
h1 = hidden_layer(x_data, w1, b1) # hypothesis = weight * x + bias
cost = cost_function(hidden_layer(x_data, w1, b1), y_data) # cost 의 값 이제 미분해서 w와 b값 갱신
print()
def numerical_gradient_w(x):
h = 1e-4
grad = np.zeros_like(x)
for idx in range(x.size):
tmp_val = x[idx]
x[idx] = tmp_val + h
hf = hidden_layer(x_data, x, b1)
fxh1 = cost_function(hf, y_data)
x[idx] = tmp_val - h
hf = hidden_layer(x_data, x, b1)
fxh2 = cost_function(hf, y_data)
grad[idx] = (fxh1 - fxh2) / (2 * h)
x[idx] = tmp_val
return grad
def numerical_gradient_b(x):
h = 1e-4
grad = np.zeros_like(x)
for idx in range(x.size):
tmp_val = x[idx]
x[idx] = tmp_val + h
hf = hidden_layer(x_data, w1, x)
fxh1 = cost_function(hf, y_data)
x[idx] = tmp_val - h
hf = hidden_layer(x_data, w1, x)
fxh2 = cost_function(hf, y_data)
grad[idx] = (fxh1 - fxh2) / (2 * h)
x[idx] = tmp_val
return grad
def back_propagation(x, y, w, b, epochs, learning_rate):
for i in range(epochs):
h1 = hidden_layer(x, w, b)
cost_function(h1, y)
if i % 100 == 0:
print(cost_function(h1, y))
print('\n\n')
grad_w = numerical_gradient_w(w)
grad_b = numerical_gradient_b(b)
w -= learning_rate * grad_w
b -= learning_rate * grad_b
return w, b
total_w, total_b = back_propagation(x_data, y_data, w1, b1, 500, 0.00001)
print(total_w, total_b)
W = total_w.mean()
B = total_b.mean()
y_predict = W * x_data + B
plt.scatter(x_data, y_data)
plt.plot([min(x_data), max(x_data)], [min(y_predict), max(y_predict)])
plt.show()
|
# Laços de repetiçãos
minha_condicao = True
while minha_condicao:
print("Esse para...")
print("1")
print("2")
minha_condicao -= True |
import numpy as np
import pandas as pd
import random
def generate_data(rn):
"""
Takes a roll number as input and generates random dataset
according to the required specifications.
:param rn: roll number of the student to ensure randomness
and uniqueness of data
"""
n = 93 + (rn%11)
m = 70 + (rn%11)
print("generate_data(): STARTING WITH " + str(n) + " ALTERNATIVES AND " + str(m) + " ATTRIBUTES.")
data = {
"alternatives": np.arange(1,n+1)
}
for i in range(1,m+1):
data["Attribute " + str(i)] = list(np.random.randint(rn-(rn%11), rn+(rn%11), n))
pd.DataFrame(data).to_csv("data.csv", index=False)
print("generate_data(): DATA GENERATION COMPLETED; CHECK data.csv IN CWD.")
if __name__=="__main__":
generate_data(72) |
# -*- coding:utf-8 -*-
class Solution:
def hasPath(self, matrix, rows, cols, path):
# write code here
visit = [0] * (rows * cols)
def helper(i, j, k):
idx = i * cols + j
if i < 0 or i >= rows or j < 0 or j >= cols or visit[idx] or matrix[idx] != path[k]:
return False
if k == len(path) - 1:
return True
visit[idx] = True
if helper(i - 1, j, k + 1):
return True
if helper(i + 1, j, k + 1):
return True
if helper(i, j - 1, k + 1):
return True
if helper(i, j + 1, k + 1):
return True
visit[idx] = False
return False
for i in range(rows):
for j in range(cols):
if helper(i, j, 0):
return True
return False |
def parse_input():
"""
Parses the input and passes the parsed input correctly into the calculator function.
Returns
-------
float
The calculated float from passing in the parameters of the operands and the operation symbol to calculator.
"""
inputString = input("Enter equation: ")
inputList = inputString.split(" ")
return calculator(inputList[0], inputList[2], inputList[1]) #order is 0, 2, 1 since the middle is the operator, which corresponds with index 1
def calculator(number1, number2, operator):
"""
Calculates the correct value from the equation that was taken from the user.
If the operator or numbers are invalid, the function exits and returns the boolean value false. Valid operators are
+, -, *, /, //, and ** which are addition, subtraction, multiplication, division, integer division, and power respectively.
Parameters
----------
number1: float
First operand.
number2: float
Second operand.
operator: string
Operator to do an operation of number1 operator number2.
Returns
-------
float
The operation of ``number1`` and ``number2``.
Examples
--------
Enter equation: 10 + 11
21.0
Enter equation: 10 ** 2
100.0
"""
try: #use a try and except block to test whether or not we can convert the 2 numbers into floats for valid input
#https://www.tutorialspoint.com/python/python_exceptions.htm for try except handling help
number1 = float(number1)
number2 = float(number2)
except ValueError:
return False
if operator == "+":
return number1 + number2
elif operator == "-":
return number1 - number2
elif operator == "*":
return number1 * number2
elif operator == "/":
if (number2 == 0):
return False
return number1 / number2
elif operator == "//":
if (number2 == 0):
return False
return number1 // number2
elif operator == "**":
return number1 ** number2
else:
return False |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
""" Calculates the average number of coins you would need to generate amounts up to `up_to_amount`, using representative
baskets from `ons_data/baskets2.txt`. Also generates the average weight of these coins (actual weight, like in kilograms!)
if you provide the `weights` as well.
"""
from __future__ import division
def get_min_coins(coins, target_amount, weights=0):
# Returns an array X = [0,1,1,...] of length target_amount,
# where X_i tells you the number of coins you need to make i money
if weights == 0:
weights = [1 for i in range(len(coins))]
min_coins = [0] + [10000] * target_amount
min_coins_desc = [0] + [10000] * target_amount
min_coins_weight = [0] + [10000] * target_amount
n = len(coins)
for c in range(n):
for target in range(coins[c], target_amount + 1):
if min_coins[target - coins[c]] + 1 < min_coins[target]:
min_coins_desc[target] = min_coins_desc[target - coins[c]] + 10**(n - c - 1)
min_coins[target] = min(min_coins[target - coins[c]] + 1, min_coins[target])
min_coins_weight[target] = min(min_coins_weight[target - coins[c]] + weights[c], min_coins_weight[target])
for target in range(target_amount + 1):
min_coins_desc[target] = str(min_coins_desc[target]).zfill(n)
return min_coins, min_coins_desc, min_coins_weight
# BASKETS ------------------------------------------------
basket_sizes = []
basket_prices = []
with open("ons_data/baskets2.txt", "r") as f:
for line in f:
line_split = line.split(',')
basket_sizes.append(int(line_split[0]))
basket_prices.append(int(line_split[1]))
prices_less_than = 2000
basket_prices_we_want = [basket_prices[i] for i in xrange(len(basket_prices)) if basket_prices[i] < prices_less_than]
lowest_banknote = 500
lowest_coin = 1
ends_in = range(0, lowest_banknote, lowest_coin)
prices_mod_lowest_banknote = [i % lowest_banknote for i in basket_prices_we_want]
prices_end_in_count = [sum(1 for i in prices_mod_lowest_banknote if i == j) for j in ends_in]
prices_end_in_count_as_percent = [i / sum(prices_end_in_count) * 100 for i in prices_end_in_count]
# END BASKETS ---------------------------------------------
'''
name = "UK"
up_to_amount = 499
coins = [1,2,5,10,20,50,100,200]
weights = [3.56,7.12,3.25,6.5,5,8,9.5,12]
weightings_for_each_amount = prices_end_in_count_as_percent
name = "UK self-service"
up_to_amount = 499
coins = [1,2,5,20,100,200]
weights = [3.56,7.12,3.25,5,9.5,12]
weightings_for_each_amount = prices_end_in_count_as_percent
'''
name = "UK no 1p or 2p"
up_to_amount = 499 // 5
coins = [5 // 5, 10 // 5, 20 // 5, 50 // 5, 100 // 5, 200 // 5]
weights = [3.25, 6.5, 5, 8, 9.5, 12]
weightings_for_each_amount = prices_end_in_count_as_percent
weightings_for_each_amount = [0 for i in range(100)]
weightings_for_each_amount[0] = (sum(prices_end_in_count_as_percent[0:3]) + sum(prices_end_in_count_as_percent[498:500])) / 5
for i in range(1, 100):
# Swedish rounding (i.e. prices of baskets would be rounded to the nearest 5p)
weightings_for_each_amount[i] = sum(prices_end_in_count_as_percent[5 * i - 2:5 * i + 3]) / 5
'''
name = "UK 1960"
up_to_amount = 479 # in farthings
coins = [1,2,1*4,3*4,6*4,12*4,24*4,30*4]
weights = [2.83,5.67,9.4,6.8,2.83,5.66,11.31,14.14]
name = "US"
up_to_amount = 99
coins = [1,5,10,25]
weights = [2.5,5,2.268,5.67]
name = "Canada"
up_to_amount = 495/5
coins = [5/5,10/5,25/5,100/5,200/5]
weights = [3.95,1.75,4.4,6.27,6.92]
name = "Euro"
up_to_amount = 499
coins = [1,2,5,10,20,50,100,200]
weights = [2.3,3.06,3.92,4.1,5.74,7.8,7.5,8.5]
name = "Japan"
up_to_amount = 999
coins = [1,5,10,50,100,500]
weights = [1,3.75,4.5,4,4.8,7]
name = "Switzerland"
up_to_amount = 995/5
coins = [5/5,10/5,20/5,50/5,100/5,200/5,500/5]
weights = [1.8,3,4,2.2,4.4,8.8,13.2]
name = "Australia"
up_to_amount = 495/5
coins = [5/5,10/5,20/5,50/5,100/5,200/5]
weights = [2.83,5.65,11.3,15.55,9,6.6]
name = "NZ"
up_to_amount = 490/10
coins = [10/10,20/10,50/10,100/10,200/10]
weights = [3.3,4,5,8,10]
name = "Harry Potter"
up_to_amount = 492
coins = [1,29]
weights = [1,29]
name = "Mexico"
up_to_amount = 1950/50
coins = [50/50,100/50,200/50,500/50,1000/50]
weights = [3.103,3.95,5.19,7.07,10.329]
name = "China"
up_to_amount = 100/10
coins = [10/10,50/50]
weights = [3.22,3.8]
name = "Sweden"
up_to_amount = 19
coins = [1,2,5,10]
weights = [3.6,4.8,6.1,6.6]
name = "Euro no 1 or 2 cent"
up_to_amount = 495/5
coins = [5/5,10/5,20/5,50/5,100/5,200/5]
weights = [3.92,4.1,5.74,7.8,7.5,8.5]
name = "UK new £1 coin"
up_to_amount = 499
coins = [1,2,5,10,20,50,100,200]
weights = [3.56,7.12,3.25,6.5,5,8,8.75,12]
name = "Singapore"
up_to_amount = 195/5
coins = [5/5,10/5,20/5,50/5,100/5]
weights = [1.24,2.83,5.66,9.33,16.85]
name = "HK"
up_to_amount = 990/10
coins = [10/10,20/10,50/10,100/10,200/10,500/10]
weights = [1.85,2.59,4.92,7.1,8.41,13.5]
name = "Norway"
up_to_amount = 49
coins = [1,5,10,20]
weights = [4.35,7.85,6.8,9.9]
name = "S Korea"
up_to_amount = 990/10
coins = [10/10,50/10,100/10,500/10]
weights = [1.22,4.16,5.42,7.7]
name = "Turkey"
up_to_amount = 495/5
coins = [5/5,10/5,25/5,50/5,100/5]
weights = [2.9,3.15,4,6.8,8.2]
name = "India"
up_to_amount = 9
coins = [1,2,5]
weights = [3.79,4.85,6]
name = "Russia"
up_to_amount = 4990/10
coins = [10/10,50/10,100/10,200/10,500/10,1000/10]
weights = [1.95,2.9,3.25,5.1,6.45,5.63]
name = "Brazil"
up_to_amount = 195/5
coins = [5/5,10/5,25/5,50/5,100/5]
weights = [4.1,4.8,7.55,7.81,7]
name = "South Africa"
up_to_amount = 990/10
coins = [10/10,20/10,50/10,100/10,200/10,500/10]
weights = [2,3.5,5,4,5.5,9.5]
name = "UK with £1.33"
up_to_amount = 499
coins = [1,2,5,10,20,50,100,133,200]
weights = [3.56,7.12,3.25,6.5,5,8,9.5,30,12]
name = "Best 3"
up_to_amount = 499
coins = [1, 7, 57, 80]
weights = 0
name = "Stamps"
up_to_amount = 499
coins = [1, 55, 64, 75, 96, 105, 133, 152, 225]
weights = 0
name = "UK with £1.23 instead of £1"
up_to_amount = 499
coins = [1,2,5,10,20,50,123,200]
weights = [3.56,7.12,3.25,6.5,5,8,8.75,12]
name = "UK with no 1p or 2p"
up_to_amount = 495/5
coins = [5/5,10/5,20/5,50/5,100/5,200/5]
weights = [3.25,6.5,5,8,9.5,12]
#coins = [1,2,1*4,3*4,6*4,12*4,24*4,30*4]
name = "UK with 25p instead of 20p"
up_to_amount = 499
coins = [1,2,5,10,25,50,100,200]
weights = [3.56,7.12,3.25,6.5,5,8,9.5,12]
'''
print name
print "Lowest note: ", up_to_amount + 1
print "Coins: ", coins
print "Average number of coins required: ", round(sum(get_min_coins(coins, up_to_amount)[0]) / float(up_to_amount), 2)
print "Average weight of coins required: ", round(sum(get_min_coins(coins, up_to_amount, weights)[2]) / float(up_to_amount), 1), "g"
print "On average expect to receive X of each coin: ",
each_coin = get_min_coins(coins, up_to_amount)[1]
print [round(sum([float(each_coin[amount][c]) for amount in range(len(each_coin))]) / float(len(each_coin)), 3) for c in range(len(coins))]
print ""
print "WEIGHTED by how common they are:"
weightings_symmetric = [weightings_for_each_amount[0]] + [(weightings_for_each_amount[i] + weightings_for_each_amount[len(weightings_for_each_amount) - i]) / 2 for i in range(1, len(weightings_for_each_amount))]
gmc = get_min_coins(coins, up_to_amount)[0]
mean_weighting = (sum(weightings_symmetric) / len(weightings_symmetric))
print "Average number of coins required: ", round(sum([gmc[i] * weightings_symmetric[i] for i in range(up_to_amount)]) / float(up_to_amount) / mean_weighting, 2)
|
def feladat6(lista):
print("6. feladat:")
datum = "2004-11-21"
for i in range(1, len(lista)):
if lista[i][5] == datum:
print("\t"+lista[i][0] + " - " + lista[i][1] + " (" + lista[i][2] + ":" + lista[i][3] + ")") |
class Car:
def __init__(self, p=0, i=0, e=0, t=0):
self.paint = p
self.interior = i
self.engine = e
self.tires = t
def setCustom(self, pnt, ntrr, engn, trs):
self.paint = pnt
self.interior = ntrr
self.engine = engn
self.tires = trs
def getPaint(self):
return self.paint
def getInterior(self):
return self.interior
def getEngine(self):
return self.engine
def getTires(self):
return self.tires
def main():
paint = input("Enter paint color(red/black/silver): ")
interior = input("Enter interior material(black leather/brown leather): ")
engine = input("Enter engine specs(5/6/7 liter, v6/v8, 500-800hp): ")
tires = input("enter tire type(road/sport): ")
car1 = Car(paint, interior, engine, tires)
print("Your Vehicle: ")
print("Paint: ",car1.getPaint())
print("Interior: ",car1.getInterior())
print("Engine: ",car1.getEngine())
print("Tires: ",car1.getTires())
main()
|
def receipt(food, price):
print("{:.<15}{:.>15.2f}".format(food,price))
food1=input("Please enter item 1:")
price1=float(input("Please enter the price of item 1:"))
food2=input("Please enter item 2:")
price2=float(input("Please enter the price of item 2:"))
food3=input("Please enter item 3:")
price3=float(input("Please enter the price of item 3:"))
food4="Subtotal:"
price4=price1+price2+price3
food5="Tax:"
price5=float((price1+price2+price3)/12.5)
food6="Total:"
price6=price1+price2+price3+price5
print("<<<<<<<<<<<<<<<<Receipt>>>>>>>>>>>>>>>")
receipt(food1, price1)
receipt(food2, price2)
receipt(food3, price3)
receipt(food4, price4)
receipt(food5, price5)
receipt(food6, price6)
print("____________________________________")
print("*Thank you for your support*")
|
def printf(word, number):
print("{:<10},{:<10.2f}".format(word, number))
word="blah!"
word="blah!"
number=3456.8934
printf(word, number)
word="oh boy!"
number=454.67848304
printf(word, number)
|
def interest(amount):
amount="${:<10.2f}".format(amount/(years*12))
return(amount)
principle=float(input("Please enter your intial monetary value to be invested:"))
rate=float(input("Please enter the interest rate, as a decimal to be multiplied by 100%:"))
number=float(input("Please enter the number of times your loan is compounded per year:"))
years=float(input("Please enter the life of the loan(in years):"))
amount=principle*((1+(rate/number))**(number*years))
print("The total payment amount on your loan is:",interest(amount))
|
def idcard(item1,item2):
print("*{:>15}{:>15} *".format(item1,item2))
item1=input("What organization are you affiliated with?")
item2=input("What years were you affiliated with said organization?")
item3=input("Enter your title:")
item4=input("Enter subject taught/duty:")
item5=input("Enter first name:")
item6=input("Enter last name:")
print("*********************************")
idcard(item1,item2)
idcard(item5,item6)
idcard(item3,item4)
print("*********************************")
|
num1=float(input("Enter value 1:"))
num2=float(input("Enter value 2:"))
num3=float(input("Enter value 3:"))
def average():
global avg
avg=float("{:.5f}".format((num1+num2+num3)/3))
def prnt():
print("The average of",num1,num2,"and",num3,"is",avg)
average()
prnt()
|
"https://www.practicepython.org/exercise/2014/03/12/06-string-lists.html"
word = str(input("Put word:"))
a = []
b = []
for i in word:
a.append(i)
count = len(word)-1
for j in word:
b.append(word[count])
count -= 1
if a == b:
print("The word is palindrome:")
else:
print("The word is not palindrome:")
|
"https://www.practicepython.org/exercise/2015/11/01/25-guessing-game-two.html"
from random import randint
x= ""
a=0
b=100
z=1
while x != "correct":
y=randint(a,b)
print(y)
x = input("Answer: ")
if x == "Too high":
b = y+1
elif x == "Too low":
a = y-1
elif x == "correct":
print("Number of attempt: "+ str(z))
elif x == "close":
print("Number of attempt: "+ str(z))
break
else:
print("wrong input")
z=z-1
z=z+1 |
"https://www.practicepython.org/exercise/2015/11/26/27-tic-tac-toe-draw.html"
a=[[0,0,0],
[0,0,0],
[0,0,0]]
def decided(a):
sx = 0
for i in range(0,3):
ste=""
for j in range(0,3):
if a[i][j] == 0:
sx+=1
ste=ste+" "+str(a[i][j])
print(ste)
print(str(sx)+" square left")
if sx == 0:
return 0
else:
return 3
s=3
while s == 3:
p = 3
while p == 3:
x =str(input("Enter the coordinate for x:"))
x = x.split(",")
if a[int(x[0])-1][int(x[1])-1] == 0:
a[int(x[0])-1][int(x[1])-1] = "x"
p = 0
else:
print("Already place")
s = decided(a)
if s == 3:
q = 3
while q == 3:
x =str(input("Enter the coordinate for o:"))
x = x.split(",")
if a[int(x[0])-1][int(x[1])-1] == 0:
a[int(x[0])-1][int(x[1])-1] = "o"
q = 0
else:
print("Already place")
s = decided(a)
|
with open("input.txt") as f:
lines = f.readlines()
valid_pass_count = 0
for line in lines:
splitted = line.split()
how_much = splitted[0].split("-")
letter = splitted[1][:1]
first_letter_check = splitted[2][int(how_much[0]) - 1]
second_letter_check = splitted[2][int(how_much[1]) - 1]
if (
first_letter_check == letter
and second_letter_check != letter
or first_letter_check != letter
and second_letter_check == letter
):
valid_pass_count = valid_pass_count + 1
print(valid_pass_count)
|
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 1 20:20:37 2018
@author: user
"""
import pandas as pd
df = pd.read_csv('Ntu_Orders.csv')
data = df.groupby(by='DateId')['Quantity'].sum()
data = pd.DataFrame(data).sort_values(by='Quantity',ascending=False)
data.to_csv('example.csv')
|
from urllib import error
from weather import Weather
weather = Weather()
while True:
city = input('Enter city: ')
days = input('Enter days: ')
try:
weather_data = weather.get_weather(city)
except error.HTTPError:
print('Please, enter valid city')
continue
print(weather_data)
weather_data = weather.get_weather_on_days(city, days)
for item in weather_data:
print(item)
if input('If you want to see another city enter (y)') != 'y':
break
|
f_name=input("Enter the first name:")
l_name=input("enter the last name:")
print(f_name[::-2],l_name[::-2]) |
""" Utilities
* General stable functions
* Transforming coordinates
* Computing rotations
* Performing spherical integrals
"""
import numpy
from scipy.integrate import dblquad
def cartesian_from_polar(phi, theta):
""" Embedded 3D unit vector from spherical polar coordinates.
Parameters
----------
phi, theta : float or numpy.array
azimuthal and polar angle in radians.
Returns
-------
nhat : numpy.array
unit vector(s) in direction (phi, theta).
"""
x = numpy.sin(theta) * numpy.cos(phi)
y = numpy.sin(theta) * numpy.sin(phi)
z = numpy.cos(theta)
return numpy.array([x, y, z])
def polar_from_cartesian(x):
""" Embedded 3D unit vector from spherical polar coordinates.
Parameters
----------
x : array_like
cartesian coordinates
Returns
-------
phi, theta : float or numpy.array
azimuthal and polar angle in radians.
"""
x = numpy.array(x)
r = (x*x).sum(axis=0)**0.5
x, y, z = x
theta = numpy.arccos(z / r)
phi = numpy.mod(numpy.arctan2(y, x), numpy.pi*2)
return phi, theta
def polar_from_decra(ra, dec):
""" Convert from spherical polar coordinates to ra and dec.
Parameters
----------
ra, dec : float or numpy.array
Right ascension and declination in degrees.
Returns
-------
phi, theta : float or numpy.array
Spherical polar coordinates in radians
"""
phi = numpy.mod(ra/180.*numpy.pi, 2*numpy.pi)
theta = numpy.pi/2-dec/180.*numpy.pi
return phi, theta
def decra_from_polar(phi, theta):
""" Convert from ra and dec to spherical polar coordinates.
Parameters
----------
phi, theta : float or numpy.array
azimuthal and polar angle in radians
Returns
-------
ra, dec : float or numpy.array
Right ascension and declination in degrees.
"""
ra = phi * (phi < numpy.pi) + (phi-2*numpy.pi)*(phi > numpy.pi)
dec = numpy.pi/2-theta
return ra/numpy.pi*180, dec/numpy.pi*180
def logsinh(x):
""" Compute log(sinh(x)), stably for large x.
Parameters
----------
x : float or numpy.array
argument to evaluate at, must be positive
Returns
-------
float or numpy.array
log(sinh(x))
"""
if numpy.any(x < 0):
raise ValueError("logsinh only valid for positive arguments")
return x + numpy.log(1-numpy.exp(-2*x)) - numpy.log(2)
def rotation_matrix(a, b):
""" The rotation matrix that takes a onto b.
Parameters
----------
a, b : numpy.array
Three dimensional vectors defining the rotation matrix
Returns
-------
M : numpy.array
Three by three rotation matrix
Notes
-----
StackExchange post:
https://math.stackexchange.com/questions/180418/calculate-rotation-matrix-to-align-vector-a-to-vector-b-in-3d
"""
v = numpy.cross(a, b)
s = v.dot(v)**0.5
if s == 0:
return numpy.identity(3)
c = numpy.dot(a, b)
Id = numpy.identity(3)
v1, v2, v3 = v
vx = numpy.array([[0, -v3, v2],
[v3, 0, -v1],
[-v2, v1, 0]])
vx2 = numpy.matmul(vx, vx)
R = Id + vx + vx2 * (1-c)/s**2
return R
def spherical_integrate(f, log=False):
r""" Integrate an area density function over the sphere.
Parameters
----------
f : callable
function to integrate (phi, theta) -> float
log : bool
Should the function be exponentiated?
Returns
-------
float
Spherical area integral
.. math::
\int_0^{2\pi}d\phi\int_0^\pi d\theta
f(\phi, \theta) \sin(\theta)
"""
if log:
def g(phi, theta):
return numpy.exp(f(phi, theta))
else:
g = f
ans, _ = dblquad(lambda phi, theta: g(phi, theta)*numpy.sin(theta),
0, numpy.pi, lambda x: 0, lambda x: 2*numpy.pi)
return ans
def spherical_kullback_liebler(logp, logq):
r""" Compute the spherical Kullback-Liebler divergence.
Parameters
----------
logp, logq : callable
log-probability distributions (phi, theta) -> float
Returns
-------
float
Kullback-Liebler divergence
.. math::
\int P(x)\log \frac{P(x)}{Q(x)} dx
Notes
-----
Wikipedia post:
https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
"""
def KL(phi, theta):
return (logp(phi, theta)-logq(phi, theta))*numpy.exp(logp(phi, theta))
return spherical_integrate(KL)
|
from multiprocessing import Pool
import time
def fun(n):
time.sleep(1)
print("执行pool map事件")
return n*n
def main():
pool =Pool(4)
l = [1,2,4,5,6,7,8]
j = pool.map(fun,l)
print(j)
pool.close()
pool.join()
if __name__ == '__main__':
main() |
import threading
def value(a,b,l):
while True:
l.acquire()
if a != b:
print(('a = %d,b = %d')%(a,b))
l.release()
def main():
lock = threading.Lock()
a = b = 0
t = threading.Thread(target=value,args=(a,b,lock))
t.start()
while True:
with lock:
a += 1
b += 1
t.join()
if __name__ == '__main__':
main() |
"""#############################################
# All tasks should be solved using recursion
#############################################
Task 3
from typing import Optional
def mult(a: int, n: int) -> int:
This function works only with positive integers
mult(2, 4) == 8
True
mult(2, 0) == 0
True
mult(2, -4)
ValueError("This function works only with postive integers")
"""
def mult(a: int, n: int) -> int:
if a == 0:
return 0
elif a == 1:
return n
elif n == 1:
return a
elif n < 0:
raise ValueError(Exception, "This function works only with postive integers")
else:
return n + mult(a - 1, n)
if __name__ == '__main__':
print(mult(2, 4))
print(mult(2, 0))
print(mult(2, -4))
|
"""Task 2
Implement a stack using a singly linked list."""
from node import Node
class Stack:
def __init__(self):
self.head = None
def isempty(self):
if self.head == None:
return True
else:
return False
def push(self, data):
if self.head == None:
self.head = Node(data)
else:
newnode = Node(data)
newnode.next = self.head
self.head = newnode
def pop(self):
if self.isempty():
return None
else:
poppednode = self.head
self.head = self.head.next
poppednode.next = None
return poppednode.data
def peek(self):
if self.isempty():
return None
else:
return self.head.data
def display(self):
iternode = self.head
if self.isempty():
print("Stack Empty")
else:
while (iternode != None):
print(iternode.data)
iternode = iternode.next
return
MyStack = Stack()
MyStack.push(18)
MyStack.push(11)
MyStack.push(20)
MyStack.display()
print("Fifo element is ", MyStack.peek())
MyStack.pop()
MyStack.pop()
MyStack.display()
print("Fifo element is ", MyStack.peek())
|
"""#############################################
# All tasks should be solved using recursion
#############################################
Task 1
from typing import Optional
def to_power(x: Optional[int, float], exp: int) -> Optional[int, float]:
Returns x ^ exp
to_power(2, 3) == 8
True
to_power(3.5, 2) == 12.25
True
to_power(2, -1)
ValueError: This function works only with exp > 0.
pass"""
from typing import Optional
def to_power(x, exp):
if exp == 1:
return x * exp
else:
if exp <= 0:
raise Exception(ValueError, "This function works only with exp > 0")
else:
return x * to_power(x, exp-1)
if __name__ == '__main__':
print(to_power(2, 3) == 8)
print(to_power(3.5, 2) == 12.25)
print(to_power(2, -1))
|
"""List comprehension exercise
Use a list comprehension to make a list containing tuples (i, j)
where `i` goes from 1 to 10 and `j` is corresponding to `i` squared."""
result = list(tuple(i for i in range(1, 11)), tuple(j for (j ** 2) in range(1, 11)))
|
"""Task 3
Fraction
Create a Fraction class, which will represent all basic arithmetic logic for fractions (+, -, /, *)
with appropriate checking and error handling
```
class Fraction:
pass
x = Fraction(1/2)
y = Fraction(1/4)
x + y == Fraction(3/4)
```"""
class Fraction:
def __init__(self, numerator: int, denominator: int):
self.den = denominator
self.num = numerator
def __add__(self, other):
return Fraction(self.num * other.den + self.den * other.num, self.den * other.den)
def __sub__(self, other):
return Fraction(self.num * other.den - other.num * self.den, self.den * other.den)
pass
def __truediv__(self, other):
return self.__mul__(Fraction(other.den, other.num))
def __mul__(self, other):
return Fraction(self.num * other.num, self.den * other.den)
def __str__(self):
return f"{self.num}\n——\n{self.den}\n"
if __name__ == '__main__':
f1 = Fraction(3, 7)
f2 = Fraction(5, 6)
print(f1 + f2)
print(f1 - f2)
print(f1 * f2)
print(f1 / f2)
|
"""Task 5
def sum_of_digits(digit_string: str) -> int:
um_of_digits('26') == 8
True
sum_of_digits('test')
ValueError("input string must be digit string")
"""
def sum_of_digits(digit_string: str) -> int:
if digit_string == "":
return 0
else:
return int(digit_string[0]) + sum_of_digits(digit_string[1:])
if __name__ == '__main__':
print(sum_of_digits("26"))
print(sum_of_digits("test")) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.