text
stringlengths 37
1.41M
|
---|
#This program used to remove redundant words in a sentence.
s = input("Please input you text: ")
w = s.split(" ")
print (" ".join(sorted(list(set(w)))))
|
import BinaryTree
root = BinaryTree.BinaryTree('root')
a = root.insertLeftChild('A')
b = root.insertRightChild('B')
c = a.insertLeftChild('3')
d = c.insertRightChild('D')
e = b.insertRightChild('E')
f = e.insertLeftChild('F')
root.inOrder()
a.preOrder()
print('\n')
root.preOrder()
|
"""
title: data_structures
author: Zyden Walcher
date: 7/19/18 data_structures
"""
import random
def name_generator(first_list, last_list ):
"""generates random name
:param first_list: the list of strings of first names
:param last_list: the list of strings of last names
if __name__ == '__main__':
first_list = ["Joe", "Moe", "Bo", "LoLo", "Zo"]
last_list = ["Smith", "Rodriguez", "Hernandez", "Doe", "Phillips"]
print(name_generator(first_list, last_list)
|
import numpy as np
class Conv3x3:
# A Convolution layer using 3x3 filters.
def __init__(self, num_filters):
self.num_filters = num_filters
# filters is a 3d array with dimensions (num_filters, 3, 3)
# We divide by 9 to reduce the variance of our initial values
self.filters = np.random.randn(num_filters, 3, 3)/9
def iterate_regions(self, image):
'''
Generates all possible 3x3 image regions using valid padding.
- image is a 2d numpy array
'''
h, w = image.shape
for i in range(h - 2):
for j in range(w - 2):
im_region = image[i: (i+3), j:(j+3)]
yield im_region, i, j
def forward(self, input):
'''
Performs a forward pass of the conv layer using the given input.
Returns a 3d numpy array with dimensions (h, w, num_filters).
- input is a 2d numpy array
'''
h, w = input.shape
output = np.zeros((h - 2, w - 2, self.num_filters))
for im_region, i, j in self.iterate_regions(input):
output[i, j] = np.sum(im_region * self.filters, axis=(1, 2))
return output
|
#!/usr/bin/env python
"""
parse_species_data.py - script to display number of unique genera for (a)
given habitat(s)
Usage: parse_species_data.py [-m] [-v] <data_file>
One can run parse_species_data.py -h
for a list of command-line options.
Supplied data should be in the format of:
[habitat_number]: [species,...]
e.g.:
12345: Homo sapiens sapiens, Homo habilis, Homo heidelbergensis
67891: Homo neanderthalensis, Mosasaurus hofmanni
Limited coverage tests in the bottom of the file.
Tested using Nose, python v2.7.6.
"""
import sys, re, os, argparse
HEADER_COLOR = "\033[32m"
ERROR_COLOR = "\033[31m"
WARNING_COLOR = "\033[93m"
END_COLOR = "\033[0m"
RECORD_REGEX = re.compile( r"""^
(?P<habitat>[0-9]{5,})
(?:\s?\:+\s?)
(?P<species>(?:(\w+\s\w+)(?:\s?\,?\s?))+)
$""", re.VERBOSE )
SPECIES_REGEX = re.compile( r"""
(?P<species>
(?P<genus>\w+)
(\s\w+)+)
""", re.VERBOSE )
""" Render a non-fatal warning """
def warn(message):
fatal(message, fatal=False)
def fatal(message, fatal=True):
"""
Raises a fatal exception (default) or throws a warning.
"""
if fatal:
raise RuntimeError("%sError parsing data: %s%s" %
(ERROR_COLOR, message, END_COLOR))
sys.stderr.write("%s*** Warning: %s ***%s\n" %
(WARNING_COLOR, message, END_COLOR))
def _sanitise_record(record):
CONSECUTIVE_SPACES = re.compile(r"\s{2,}")
record = record.strip()
if not record:
return None
### normalise possible multiple spaces
record = re.sub(CONSECUTIVE_SPACES, " ", record)
return record
def extract_data_from_record(record):
"""
Attempt to extract data from a given record using two regular expressions.
The first regex checks for a valid data record and extracts the habitat and species list.
The second regex extracts the full name and genus for each species.
Any non-parseable record throws a warning.
Returns: {
"habitat" : [int], # 12345
"species" : [set], # Homo habilis, Mosasaurus hofmanni
"genera" : [set], # Homo, Mosasaurus
}
"""
record = _sanitise_record(record)
if record is None:
return record
match = RECORD_REGEX.match(record)
if match is None:
warn("Invalid data record: '%s' " \
"could not parse, skipping." % record)
return match
data_dict = match.groupdict()
habitat = int(data_dict["habitat"])
species = data_dict["species"]
genus_set = set()
species_set = set()
matches = re.finditer(SPECIES_REGEX, species)
for match in matches:
data_dict = match.groupdict()
genus_set.add(data_dict["genus"])
species_set.add(data_dict["species"])
return {
"habitat" : habitat,
"species" : species_set,
"genera" : genus_set,
}
def parse_file(file_name, merge):
"""
Initialise a generator that yields a processed record for each
line of data in the file.
Depending on whether we attempt to merge duplicate habitats, either
the generator itself is returned, or a final processed dictionary
of habitats, of the format:
{
[habitat] : { # 12345
"habitat" : [int] # 12345 - denormalised for rendering later
"genera" : [set], # Homo, Mosasaurus
"species" : [set], # Homo habilis, Mosasaurus hofmanni
}
...
}
"""
### use a generator to save memory in case of huge data files
### this only works when we are not merging duplicate habitats
### since that requires processing the entire file
def record_generator(file_name):
try:
with open(file_name) as file_handler:
for line in file_handler:
extracted = extract_data_from_record(line)
if not extracted:
continue
yield extracted
except IOError as file_error:
fatal(file_error.strerror)
records = record_generator(file_name)
if not merge:
return records
habitats = {}
### merge distinct genera and species by habitat
for record in records:
if record["habitat"] in habitats:
habitat_data = habitats[ record["habitat"] ]
for key in ["genera", "species"]:
habitat_data[key].update(record[key])
else:
habitats[ record["habitat"] ] = {
"habitat" : record["habitat"],
"genera" : record["genera"],
"species" : record["species"],
}
return habitats
def render_parsing_results(habitat_data, verbose, merge):
"""
Pretty-print the relevant parsing results.
"""
def render_header():
print "%s%-8s %s%s" % (HEADER_COLOR, "HABITAT", "GENERA", END_COLOR)
def render_record(r):
if not verbose:
print "%-8d %d" % (r["habitat"], len(r["genera"]))
return
print "%-8d %-6d (%s) - (%s)" % \
(r["habitat"],
len(r["genera"]),
', '.join(sorted(r["genera"])),
', '.join(sorted(r["species"])))
### no merging, so this is a generator we can process
if not merge:
render_header()
for record in habitat_data:
render_record(record)
### process the pre-merged habitat dict
### this also allows us to sort by habitat and
### warn the user about possible flawed data beforehand
else:
if not habitat_data:
fatal("No valid data found in file.")
render_header()
for habitat in sorted(habitat_data):
render_record(habitat_data[habitat])
def main():
"""
Parse command-line arguments, parse and render the results.
"""
parser = argparse.ArgumentParser(
description = 'Display number of unique genera " \
for a list of habitats and species.')
parser.add_argument('file_name',
metavar = 'FILE',
type = str,
help = 'a file containing data to process'
)
parser.add_argument('-v',
dest = 'verbose',
action = 'store_true',
help = "append the list of genera and species for each habitat"
)
parser.add_argument('-m',
dest = 'merge',
action = 'store_true',
help = "merge multiple habitat occurrences " \
"(possibly memory intensive)"
)
class ArgumentHolder(object):
pass
a = ArgumentHolder()
parser.parse_args(namespace = a)
render_parsing_results(
parse_file(a.file_name, a.merge),
a.verbose, a.merge
)
if __name__ == "__main__": main()
""" __TESTS__ """
import unittest, tempfile
class MockNull(object):
"""
Mock std* replacement for output capturing.
"""
def __init__(self):
self._capture = ''
def write(self, data):
self._capture += data
class WarningCapturer(object):
"""
Simple context manager to suppress and capture
stderr output.
"""
def __enter__(self):
self.old_stderr = sys.stderr
self.mocknull = MockNull()
sys.stderr = self.mocknull
def __exit__(self, type, value, traceback):
sys.stderr = self.old_stderr
class TestParser(unittest.TestCase):
def setUp(self):
try:
self.temp_file = tempfile.NamedTemporaryFile()
except Exception as e:
raise Exception("Unable to create temp file: %s" % e)
self.capture_warnings = WarningCapturer()
def tearDown(self):
# self.temp_file is closed automatically on GC
pass
def test_single_record(self):
record = "12345: Homo sapiens, Homo habilis"
actual = extract_data_from_record(record)
expected = {
"habitat" : 12345,
"genera" : set(["Homo"]),
"species" : set(["Homo sapiens", "Homo habilis"]),
}
self.assertEqual(actual, expected, "Single record extracts")
def test_invalid_data_file(self):
with self.assertRaises(RuntimeError) as context:
self.temp_file.write("foo\nbar\naz\n")
self.temp_file.flush()
merge = True
no_verbose = False
with self.capture_warnings:
result = parse_file(self.temp_file.name, merge)
render_parsing_results(result, no_verbose, merge)
self.assertEqual(result, {}, "Invalid file begets empty dict")
self.assertRegexpMatches(context.exception.__str__(),
r"No valid data found in file.")
def test_merge_multi_record_file(self):
test_records = \
"""12345: Homo habilis, Homo sapiens, Homo erectus
45678: Baryonyx walkeri, Mosasaurus hofmanni
12345: Baryonyx walkeri, Homo sapiens"""
self.temp_file.write(test_records)
self.temp_file.flush()
merge = True
actual = parse_file(self.temp_file.name, merge)
expected = {
12345 : {
"habitat" : 12345,
"genera" : set(["Homo", "Baryonyx"]),
"species" : set(["Homo habilis", "Homo sapiens",
"Homo erectus", "Baryonyx walkeri"]),
},
45678 : {
"habitat" : 45678,
"genera" : set(["Baryonyx", "Mosasaurus"]),
"species" : set(["Baryonyx walkeri", "Mosasaurus hofmanni"]),
}
}
self.assertEqual(actual, expected)
def test_liberal_parser(self):
data = [
{
"record" : "12345678: Homo sapiens sapiens, Homo " \
"sapiens sapiens, Baryonyx walkeri",
"expected" : {
"habitat" : 12345678,
"genera" : set(["Homo", "Baryonyx"]),
"species" : set(["Homo sapiens sapiens",
"Baryonyx walkeri"])
}
},
{
"record" : "12345 :::: Homo sapiens sapiens, Baryonyx " \
"walkeri",
"expected" : {
"habitat" : 12345,
"genera" : set(["Homo", "Baryonyx"]),
"species" : set(["Homo sapiens sapiens",
"Baryonyx walkeri"])
}
},
{
"record" : "12345 : Homo sapiens sapiens , Baryonyx walkeri ",
"expected" : {
"habitat" : 12345,
"genera" : set(["Homo", "Baryonyx"]),
"species" : set(["Homo sapiens sapiens",
"Baryonyx walkeri"])
}
}
]
for case in data:
actual = extract_data_from_record(case["record"])
self.assertEqual(actual, case["expected"])
def test_broken_record(self):
record = "abcde: Homo sapiens, Homo habilis"
with self.capture_warnings:
actual = extract_data_from_record(record)
captured_warning = self.capture_warnings.mocknull._capture
expected = None
self.assertRegexpMatches(captured_warning, r"could not parse, skipping",
"Broken record parsing throws warning")
self.assertEqual(actual, expected, "Broken record results in None")
|
#!/usr/local/bin/python
# Written by Duncan Forgan, 18th July 2012
# This code produces a Photon Wavelength/Frequency Calculator GUI
# We use the standard Tkinter toolkit which comes with pretty much all Python distributions
# We start by defining the GUI as a class (derived from the base class Frame), with methods
# to create the elements inside the window, and methods to handle events
from Tkinter import Frame, Button, Entry, Listbox,Text, END,SINGLE,W
class photGUI(Frame):
"""The base class for the phot_calc GUI"""
# This is the constructor for the GUI
def __init__(self,master=None):
# We begin by calling the base class's constructor first
Frame.__init__(self,master)
# We now have an empty window!
# This command sets up a grid structure in the window
self.grid()
# This loop generates rows and columns in the grid
for i in range(13):
self.rowconfigure(i,minsize=10)
for i in range(3):
self.columnconfigure(i,minsize=30)
# These are methods which appear below the constructor
self.defineUnits() # this sets up the units I'll be using in the converter
self.createWidgets() # this places the elements (or widgets) in the grid
# This command "binds" the user's click to a method (varChoice)
# This method will determine which variable the user wants (Distance, Mass, Time)
self.inputlist.bind("<Button-1>",self.__varChoice)
# This is a similar command for the selection of unit
self.unitlist.bind("<Button-1>",self.__unitChoice)
# Finally, this bind reads in whatever value is in the text box when the user hits return
# and carries out the unit conversion
self.inputfield.bind("<Return>",self.__calcConversion)
# This function creates and defines the units
def defineUnits(self):
'''Method defines tuples that carry the various units stored by the converter'''
self.speed = 2.997924580000019e10
self.h = 6.6260755e-27
# Wavelengths
self.wavunits = ('nm','um', 'cm','m')
self.wavvalues = (1.0e-7, 1.0e-4,1.0,1.0e2)
self.frequnits = ('Hz','MHz','GHz','THz')
self.freqvalues = (1.0, 1.0e6, 1.0e9, 1.0e12)
self.energunits = ('eV','keV','MeV','GeV','erg')
self.energvalues = (1.0,1.0e3,1.0e6,1.0e9,1.6e-12)
# Keep the unit values in dictionaries, and use the above strings as keys
self.wavdict = {}
self.createUnitDict(self.wavdict,self.wavunits,self.wavvalues) # this method is shown below
self.freqdict = {}
self.createUnitDict(self.freqdict,self.frequnits,self.freqvalues)
self.energdict = {}
self.createUnitDict(self.energdict, self.energunits, self.energvalues)
self.myunits = self.wavunits
self.myvalues = self.wavvalues
self.mydict = self.wavdict
def createUnitDict(self,mydict,mykeys,myvalues):
'''This method takes a set of units and values, and creates a dictionary to store them in'''
for i in range(len(myvalues)):
mydict[mykeys[i]] = myvalues[i]
def createWidgets(self):
'''This method creates all widgets and adds them to the GUI'''
# Create Widgets in order of appearance
# This is not necessary, but makes code easier to read
# Start with text telling user what to do
self.varlabel = Text(self,height=1, width=20)
self.varlabel.insert(END,"Which Variable?")
# Place widget on the Frame according to a grid
self.varlabel.grid(row=0,column=0,sticky=W)
# Second text label asking user which units are being used
self.unitlabel = Text(self,height=1,width=20)
self.unitlabel.insert(END,"Which Units?")
self.unitlabel.grid(row=0,column=1,sticky=W)
# Third text label asking user for numerical value
self.numlabel = Text(self,height=1, width=20)
self.numlabel.insert(END,"Enter Variable Values")
self.numlabel.grid(row=0,column=2,sticky=W)
# This creates a list of options for the user to select
self.inputlist = Listbox(self, height=4, selectmode=SINGLE)
# Tuple of choices we're going to put in this list
self.paramlist = ('Frequency', 'Wavelength', 'Energy')
# Add each item separately
for item in self.paramlist:
self.inputlist.insert(END,item)
# Add it to the grid
self.inputlist.grid(row=1, column=0,rowspan=4,sticky=W)
# Add a unit list (several combinations of units allowed)
self.unitlist = Listbox(self, height=4,selectmode=SINGLE)
self.unitlist.grid(row=1,column=1,rowspan=4, sticky=W)
# Number Entry Boxes (and Text Labels)
self.inputlabel = Text(self,height=1,width=20)
self.inputlabel.insert(END,"Waiting Selection")
self.inputlabel.grid(row=1,column=2,sticky=W)
self.inputfield = Entry(self)
self.inputfield.grid(row=2,column=2,sticky=W)
# Text Output Boxes
self.wavoutput = Text(self, height=5, width=20)
self.wavoutput.grid(row=7,column=0,rowspan=5,sticky=W)
self.wavoutput.insert(END, "Wavelength: \n")
self.freqoutput = Text(self, height=5, width=20)
self.freqoutput.grid(row=7,column=1,rowspan=5,sticky=W)
self.freqoutput.insert(END, "Frequency: \n")
self.energoutput = Text(self, height=5, width=20)
self.energoutput.grid(row=7,column=2,rowspan=5,sticky=W)
self.energoutput.insert(END, "Energy: \n")
# Create the Quit Button
self.quitButton=Button(self,text='Quit',command=self.quit)
self.quitButton.grid(row =13, column=0, sticky=W)
# Event handler functions begin here
# This handler defines the choice of units available to the user,
# depending on selected variable
def __varChoice(self, event):
'''Handles the selection of variable: updates the list of units'''
# Firstly, delete anything already in the units column
self.unitlist.delete(first=0,last=len(self.myvalues))
num = 0
# Identify which option was clicked on
try:
num = self.inputlist.curselection()[0]
self.varchoice = int(num)
except:
self.varchoice = 0
return
# Get the string associated with this choice
selection= self.inputlist.get(self.varchoice)
print selection, " chosen"
# Highlight current choice in red
self.inputlist.itemconfig(self.varchoice, selectbackground='red')
# If statement defines units being used
if selection =='Wavelength':
self.myunits = self.wavunits
self.myvalues = self.wavvalues
self.mydict = self.wavdict
elif selection == 'Frequency':
self.myunits = self.frequnits
self.myvalues = self.freqvalues
self.mydict = self.freqdict
elif selection == 'Energy':
self.myunits = self.energunits
self.myvalues = self.energvalues
self.mydict = self.energdict
self.inputlabel.delete("1.0",index2=END)
self.inputlabel.insert(END,selection)
for i in range(len(self.myunits)):
self.unitlist.insert(END,self.myunits[i])
def __unitChoice(self,event):
'''Handles the selection of units'''
num = 0
# Find which number is selected
try:
num = self.unitlist.curselection()[0]
self.unitchoice = int(num)
except:
self.unitchoice = 0
return
# Get the string (i.e. which unit is selected)
selection= self.unitlist.get(self.unitchoice)
print selection, " chosen"
# Highlight current choice in red
self.unitlist.itemconfig(self.unitchoice, selectbackground='red')
# Handler takes current state of GUI, and calculates results
def __calcConversion(self,event):
'''This method takes the current state of all GUI variables, calculates one of four equations'''
# Which variable has been selected for calculation?
# This decides what equation to use
a = self.inputfield.get()
var = self.unitlist.get(self.unitchoice)
a=float(a)
freq = 0.0
wav = 0.0
energy = 0.0
if self.varchoice==0:
freq = a
freq = freq*self.mydict[var]
wav = self.speed/freq
energy = self.h*freq/self.energdict['erg']
elif self.varchoice==1:
wav = a
wav = wav*self.mydict[var]
freq = self.speed/wav
energy = self.speed*self.h/wav
elif self.varchoice==2:
energy = a
energy=energy*self.energdict["erg"]
freq = energy/self.h
wav = self.speed*self.h/energy
energy = energy*self.mydict[var]/self.energdict["erg"]
# Remove all text in the output boxes
self.wavoutput.delete("1.0",index2=END)
self.freqoutput.delete("1.0",index2=END)
self.energoutput.delete("1.0",index2=END)
self.wavoutput.insert(END, "Wavelength: \n")
self.freqoutput.insert(END, "Frequency: \n")
self.energoutput.insert(END, "Energy: \n")
# Calculate each conversion and output it to the GUI
for i in range(len(self.wavvalues)):
# As all units stored in cgs values, conversion is simple
output = wav/self.wavvalues[i]
# Express output in
# Add to the output list
self.wavoutput.insert(END,self.wavunits[i] + ": %.4e" % output+"\n")
for i in range(len(self.freqvalues)):
# As all units stored in cgs values, conversion is simple
output = freq/self.freqvalues[i]
# Add to the output list
self.freqoutput.insert(END,self.frequnits[i] + ": %.4e" % output+"\n")
for i in range(len(self.energvalues)):
# As all units stored in cgs values, conversion is simple
output = energy/self.energvalues[i]
# Add to the output list
self.energoutput.insert(END,self.energunits[i] + ": %.4e" % output+"\n")
# End of methods and class definition
# Main program begins here
app = photGUI() # Call the exo class
app.master.title("Photon Property Calculator") # Give it a title
app.mainloop() # This command allows the GUI to run until a terminate command is issued (e.g. the user clicks "Quit")
|
import os
import math
def timedelta_to_seconds(delta):
'''Convert a timedelta to seconds with the microseconds as fraction
>>> from datetime import timedelta
>>> '%d' % timedelta_to_seconds(timedelta(days=1))
'86400'
>>> '%d' % timedelta_to_seconds(timedelta(seconds=1))
'1'
>>> '%.6f' % timedelta_to_seconds(timedelta(seconds=1, microseconds=1))
'1.000001'
>>> '%.6f' % timedelta_to_seconds(timedelta(microseconds=1))
'0.000001'
'''
# Only convert to float if needed
if delta.microseconds:
total = delta.microseconds * 1e-6
else:
total = 0
total += delta.seconds
total += delta.days * 60 * 60 * 24
return total
def scale_1024(x, n_prefixes):
'''Scale a number down to a suitable size, based on powers of 1024.
Returns the scaled number and the power of 1024 used.
Use to format numbers of bytes to KiB, MiB, etc.
>>> scale_1024(310, 3)
(310.0, 0)
>>> scale_1024(2048, 3)
(2.0, 1)
'''
power = min(int(math.log(x, 2) / 10), n_prefixes - 1)
scaled = float(x) / (2 ** (10 * power))
return scaled, power
def get_terminal_size(): # pragma: no cover
'''Get the current size of your terminal
Multiple returns are not always a good idea, but in this case it greatly
simplifies the code so I believe it's justified. It's not the prettiest
function but that's never really possible with cross-platform code.
Returns:
width, height: Two integers containing width and height
'''
try:
# This works for Python 3, but not Pypy3. Probably the best method if
# it's supported so let's always try
import shutil
w, h = shutil.get_terminal_size()
if w and h:
# The off by one is needed due to progressbars in some cases, for
# safety we'll always substract it.
return w - 1, h
except: # pragma: no cover
pass
try:
w = int(os.environ.get('COLUMNS'))
h = int(os.environ.get('LINES'))
if w and h:
return w, h
except: # pragma: no cover
pass
try:
import blessings
terminal = blessings.Terminal()
w = terminal.width
h = terminal.height
if w and h:
return w, h
except: # pragma: no cover
pass
try:
w, h = _get_terminal_size_linux()
if w and h:
return w, h
except: # pragma: no cover
pass
try:
# Windows detection doesn't always work, let's try anyhow
w, h = _get_terminal_size_windows()
if w and h:
return w, h
except: # pragma: no cover
pass
try:
# needed for window's python in cygwin's xterm!
w, h = _get_terminal_size_tput()
if w and h:
return w, h
except: # pragma: no cover
pass
return 79, 24
def _get_terminal_size_windows(): # pragma: no cover
res = None
try:
from ctypes import windll, create_string_buffer
# stdin handle is -10
# stdout handle is -11
# stderr handle is -12
h = windll.kernel32.GetStdHandle(-12)
csbi = create_string_buffer(22)
res = windll.kernel32.GetConsoleScreenBufferInfo(h, csbi)
except:
return None
if res:
import struct
(_, _, _, _, _, left, top, right, bottom, _, _) = \
struct.unpack("hhhhHhhhhhh", csbi.raw)
w = right - left
h = bottom - top
return w, h
else:
return None
def _get_terminal_size_tput(): # pragma: no cover
# get terminal width src: http://stackoverflow.com/questions/263890/
try:
import subprocess
proc = subprocess.Popen(
['tput', 'cols'], stdin=subprocess.PIPE, stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
output = proc.communicate(input=None)
w = int(output[0])
proc = subprocess.Popen(
['tput', 'lines'], stdin=subprocess.PIPE, stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
output = proc.communicate(input=None)
h = int(output[0])
return w, h
except:
return None
def _get_terminal_size_linux(): # pragma: no cover
def ioctl_GWINSZ(fd):
try:
import fcntl
import termios
import struct
size = struct.unpack(
'hh', fcntl.ioctl(fd, termios.TIOCGWINSZ, '1234'))
except:
return None
return size
size = ioctl_GWINSZ(0) or ioctl_GWINSZ(1) or ioctl_GWINSZ(2)
if not size:
try:
fd = os.open(os.ctermid(), os.O_RDONLY)
size = ioctl_GWINSZ(fd)
os.close(fd)
except:
pass
if not size:
try:
size = os.environ['LINES'], os.environ['COLUMNS']
except:
return None
return int(size[1]), int(size[0])
|
"""
Name: 12_flatten
Author: Lio Hong
Date: 20180726
Goal:
Write a function to flatten a list. The list contains other lists, strings, or ints.
For example, [[1,'a',['cat'],2],[[[3]],'dog'],4,5] is flattened into
[1,'a','cat',2,3,'dog',4,5]
I.E. transfers all entries from nested lists to main list.
Comments:
Might have to use recursion for this.
What's the base case then?
A single list? Or an entry that is a list itself?
Anyway, to insert the sublist entries we have list.insert(i,x)
Might have to do some reverse-traversing to manage it though.
Knowing this, the base case will be a list containing at least one sublist entry.
"""
aList = [88,[1,'a',['cat'],2],[[[3]],'dog'],4,5]
##OUTPUT = [88,1,'a','cat',2,3,'dog',4,5]
def flatten(aList):
'''
aList: a list
Returns a copy of aList, which is a flattened version of aList
'''
bList = aList
for i in bList:
print(i)
if type(i) == int or type(i) == str:
continue
elif type(i) == list:
for b in range(0,len(i)):
bList.insert(bList.index(i),i[b])
#Assumes there are no duplicate sublists
#Even if there were, only the leftmost would be removed.
bList.remove(i)
print(bList)
return bList
## for j in aList:
## print(j)
## while type(j) == list:
## flatten(aList)
|
"""
Name: letter_freq_counter
Date: 20181008
Author: Lio Hong
Purpose: Counts letter frequencies.
Comments:
I actually found code examples online but couldn't make sense of it.
I can check my results against online databases at least, but I still
have to code this to use on encrypted texts.
There's a lot of patterns:
- Single letter - 26
- Two-letter - 26^2
- Three-letter - 26^3
- Start of word - 26. > at start. Find symbol and take next char.
- End of word - 26. < at end. Find symbol and take prev char
- Followed by apostrophe - Potentially 26 but more like 6 (stdrlv)
Find symbol and take next char.
- Doubles - 26. Subset of two-letter techincally.
The hints are actually not that suitable because of how short they are, so
running a statistical analysis on them would be difficult because of the high
likelihood of random error.
Personally, it might be possible for me to find these letter frequencies myself.
Once I have the function setup, it's just a matter of finding data to crunch.
I could also search online for the figures, and make sure I get it from a
reliable source.
Regardless, I'll still have to crunch the numbers so as to handle encrypted
texts.
In the end though, I know there are other, more complex ciphers. The pendulum
one, the reverse, the space-less.
Very fitting entry into data analytics.
"""
import string
import operator
def get_passage():
"""
Returns: A passage in plain text
"""
files = ['laudato-si1-6.txt','laudato-si.txt','1m.txt','1m2.txt','1m3.txt',\
'bible2.txt']
print('Files available: ', files)
num = int(input('Which file do you want to open? '))
f = open(files[num], "r")
story = removeNonAscii(str(f.read()))
f.close()
return story
def removeNonAscii(s):
return "".join(i for i in s if ord(i)<128)
def word_Lister(text):
# Returns a list of words
textSplit = text.split()
textWords = []
numList = ['0','1','2','3','4','5','6','7','8,','9']
for word in textSplit:
word = word.lower()
word = word.strip(" !@#$%^&*()-_+={}[]|\:;'<>?,./\"")
word = word.strip('""')
if word in numList:
pass
else:
textWords.append(word)
return textWords
def wordFreq(text):
# Returns a dict for word:freq
textWords = word_Lister(text)
textDict = {}
for word in textWords:
if word not in textDict:
textDict[word] = 1
else:
textDict[word] += 1
return textDict
def letterFreq(text):
# Counts frequency
textWords = word_Lister(text)
letterDict = {}
for char in string.ascii_lowercase:
letterDict[char] = 0
for word in textWords:
for letter in word:
if letter in letterDict:
letterDict[letter] += 1
else:
pass
return letterDict
def rankLF(text):
# Really janky stuff. But I managed to make it functional.
letterDict = letterFreq(text)
letterTot = 0
## letterDictRanked = sorted(letterDict.items(), key=operator.itemgetter(0),reverse=True)
letterDictRanked = sorted(letterDict.items() , reverse=True, key=lambda x: x[1])
for pair in letterDictRanked:
letterTot += pair[1]
print(pair)
## print(pair[0],end='')
letterDict2 = letterDict.copy()
## letterDictPerc = sorted(letterDict2.items() , reverse=True, key=lambda x: x[1])
for key in letterDict:
letterDict2[key] = round(letterDict2[key]/letterTot*100,3)
letterDictPerc = sorted(letterDict2.items() , reverse=True, key=lambda x: x[1])
for pair in letterDictPerc:
print(pair,end='%\n')
for pair in letterDictRanked:
print(pair[0],end='')
|
L = [3,9,5,3,5,3,9,5,9,13]
def largest_odd_times(L):
"""
Date: 20180725
Goal:
Assumes L is a non-empty list of ints
Returns the largest element of L that occurs an odd number
of times in L. If no such element exists, returns None
"""
'''
Today we learn that dictionary keys can also be int
'''
if type(L) != list:
print('Lists only!')
dict_L = {}
for num in L:
if num in dict_L:
dict_L[num] += 1
else:
dict_L[num] = 1
largest = max(dict_L)
if dict_L[largest] %2 == 1:
return largest
else:
return None
|
"""
Name: genPrimes
Date: 20181005
Author: Lio Hong
Purpose: A generator that returns primes numbers on successive calls to
its method
Comments: Store a list of primes that is used to find whether subsequent
numbers are primes.
//Generators are used for printing out unbounded sequences, or finding a specific
value in a sequence.
Standard functions are more suitable for bounded sequences (though generators
can handle these as well).
Also use standard functions when more than two values have to be stored
in memory.
"""
def genPrimes():
listPrimes = [2]
count = 3
prime = 2 #First prime number
while True:
listModulo = []
for num in listPrimes:
listModulo.append(count % num)
if (0 in listModulo) == False:
yield prime
prime = count
listPrimes.append(prime)
count += 1
'''
A far more elegant example from online. Supposedly is more Pythonic as well.
Perhaps because of how wordy my code is. Apparently Java is also pretty wordy.
'''
def genPrimesANS():
x = 2
while True:
flag = True
for i in range(2, x):
if not x % i:
flag = False
break
if flag:
yield x
x += 1
#Is a generator still a generator if its yield statement is never reached?
#Yes.
def generator1():
if True:
yield 1
def generator2():
if False:
yield 1
g1 = generator1()
g2 = generator2()
print(type(g1))
print(type(g2))
print(g1.__next__())
print(g2.__next__())
|
"""
Name: Mastermind00
Date: 20181003
Author: Lio Hong
Purpose: Recreate the game 'Mastermind' with Python. Inspired by EthosLab
who is doing this in Minecraft
Rules:
1. Player 2 generates a combination of coloured beads -> CPU randomly generates
a sequence
2. Player 1 makes a guess
3. [P2] Check for beads with same colour and same position -> BLACK peg
4. Check for other beads with same colour only --> WHITE peg
#WHITE = #sameValue - #BLACK
Comments: COMPLETE
All you need to know are the rules to create a game. You don't have to
know how to beat it. I'm sure this is something profound for game design.
I found a pretty reliable approach to beat this game for 4 terms + 6 colours
First start with all same colours.
This identifies those terms that match.
Keep changing the colour for non-B terms, and position for non-W terms.
Usually the answer will be found within 6 tries.
"""
def comboGen():
import random
## numHoles = random.randint(4,9)
numHoles = 4
ansCombo = [random.randint(1,6) for i in range(numHoles)]
print('Length of target sequence is ' + str(numHoles))
return ansCombo
def guesser():
ans = comboGen()
numHoles = len(ans)
guess = []
pegs = [0,0]
countg = 0
countMax = 8
print("I have a sequence of " + str(numHoles) + " terms, each from 1 to 6.")
while guess != ans and countg < countMax:
## print('Please make a guess of ' + str(numHoles) + ' terms: ')
## guess = [int(x) for x in input().split()]
guess = []
g = input('Please make a guess: ')
#Cheat code to show answer and break
if g == 'answer':
print(ans)
break
#Converts string input into list
g1 = g.split()
for term in g1:
guess.append(int(term))
if type(guess) != list:
print('Input must be of type list!')
elif len(guess) != numHoles:
print('Input must have ' + str(numHoles) + ' terms.')
else:
pegs = pegChecker(guess,ans)
print('Guess #' + str(countg + 1) + ': ' + str(guess) + ' || ' + \
str(pegs[0]) + 'B ' + str(pegs[1]) + 'W')
countg += 1
print('Game Over. Answer is ' + str(ans))
def pegChecker(guess,ans):
guessCopy = guess[:]
ansCopy = ans[:]
numHoles = len(guess)
pegBlack = 0
pegWhite = 0
listBlack = []
#Find which terms are identical
for i in range(numHoles):
if guess[i] == ans[i]:
pegBlack += 1
listBlack.append(i)
#Remove identical terms in reverse order
listBlack.reverse()
for index in listBlack:
guessCopy.pop(index)
ansCopy.pop(index)
#Find terms with identical values
for bead in guessCopy:
if bead in ansCopy:
pegWhite += 1
ansCopy.remove(bead)
return pegBlack, pegWhite
def pegChecker1():
## guess and ans should be the parameter
guess = comboGen()
guessCopy = guess[:]
ans = comboGen()
ansCopy = ans[:]
numHoles = len(guess)
pegBlack = 0
pegWhite = 0
listBlack = []
for i in range(numHoles):
if guess[i] == ans[i]:
pegBlack += 1
listBlack.append(i)
#Etho exploits item stacking to automatically execute this removal.
#How to remove the term properly?
listBlack.reverse()
for index in listBlack:
guessCopy.pop(index)
ansCopy.pop(index)
print(guess)
print(ans)
print('Indexes: ' + str(listBlack))
print(guessCopy)
print(ansCopy)
for bead in guessCopy:
if bead in ansCopy:
pegWhite += 1
ansCopy.remove(bead)
print('=====')
print(guessCopy)
print(ansCopy)
return pegBlack, pegWhite
## guessCDict = {}
## ansCDict = {}
## for bead in guessCopy:
## if bead in guessCDict:
## guessCDict[bead] += 1
## else:
## guessCDict[bead] = 1
##
## for bead in ansCopy:
## if bead in ansCDict:
## ansCDict[bead] += 1
## else:
## ansCDict[bead] = 1
## print(guessCDict)
## print(ansCDict)
## for bead in guessCDict:
## if bead in ans
|
ch = input("enter a character")
if(ch=='A' or ch=='a'):
print(ch,"is a vowel")
else:
print(ch,"is aconstant")
|
# GUI 모듈(tkinter) import
import tkinter
# 가장 상위 레벨의 윈도우 창 생성
window = tkinter.Tk()
window.title("LEE A REUM") # 윈도우 창의 제목 설정
window.geometry("640x400+100+100") # ("너비x높이+x좌표+y좌표") 윈도우 창의 너비와 높이, 초기 화면의 위치 설정
window.resizable(False, False) # (상하, 좌우) 윈도우 창의 창 크기 조절 가능 여부 설정
label = tkinter.Label(window, text="안녕하세요.") # 윈도우 창에 Label 위젯 설정
# 위젯 배치
label.pack()
# 윈도우 이름의 윈도우 창을 윈도우가 종료될 때까지 실행
window.mainloop()
|
# Resolve the problem!!
import string
import random
SYMBOLS = list('!"#$%&\'()*+,-./:;?@[]^_`{|}~')
LETTERS = list('abcdefghijklmnopqrstuvwxyz')
CAPITAL_LETTERS = list('ABCDEFGHIJKLMNOPQRSTUVWXYZ')
NUMBERS = list('0123456789')
def generate_password():
# Start coding here
characters = SYMBOLS + LETTERS + CAPITAL_LETTERS + NUMBERS
password = []
one_SYMBOL = random.choice(SYMBOLS)
one_LETTER = random.choice(LETTERS)
one_CAPITAL_LETTER = random.choice(CAPITAL_LETTERS)
one_NUMBER = random.choice(NUMBERS)
password.extend([one_SYMBOL, one_LETTER , one_CAPITAL_LETTER, one_NUMBER])
random_password_length = random.randint(4, 12)
for i in range(random_password_length):
random_character = random.choice(characters)
password.append(random_character)
random.shuffle(password)
password = ''.join(password)
return password
def validate(password):
if len(password) >= 8 and len(password) <= 16:
has_lowercase_letters = False
has_numbers = False
has_uppercase_letters = False
has_symbols = False
for char in password:
if char in string.ascii_lowercase:
has_lowercase_letters = True
break
for char in password:
if char in string.ascii_uppercase:
has_uppercase_letters = True
break
for char in password:
if char in string.digits:
has_numbers = True
break
for char in password:
if char in SYMBOLS:
has_symbols = True
break
if has_symbols and has_numbers and has_lowercase_letters and has_uppercase_letters:
return True
return False
def run():
password = generate_password()
if validate(password):
print('Secure Password')
else:
print('Insecure Password')
if __name__ == '__main__':
run()
|
def ears_cout(n):
if n == 0:
return 0
elif n % 2 == 0: #To count even bunnies
return ears_cout(n - 1) + 3
else: #To count odd bunnies
return ears_cout(n - 1) + 2
print("How many bunnies in a line?")
n = int ( input() )
m = ears_cout(n)
print("There are total",m,"ears")
#--------------------------simple output1
#/Library/Frameworks/Python.framework/Versions/3.4/bin/python3.4 /Users/QW/Documents/classtest/classtest.py
#How many bunnies in a line?
#0
#There are total 0 ears
#Process finished with exit code 0
#--------------------------simple output2
#/Library/Frameworks/Python.framework/Versions/3.4/bin/python3.4 /Users/QW/Documents/classtest/classtest.py
#How many bunnies in a line?
#5
#There are total 12 ears
#Process finished with exit code 0
|
class Employee:
def __init__(self,first,last):
self.first = first
self.last = last
def get_data(self):
print(self.first + '' +self.last)
def Email(self):
email = self.first + '.' + self.last + '@company.com'
return email
# emp1 = Employee() # First instance of class is created
# emp2 = Employee() # Second Instance of class is created
# emp1.name = 'Rajat' # This is instance varibale
# emp2.name = 'Manav' # This is instance varibale
# print(emp1.name)
# print(emp2.name)
emp1 = Employee('Rajat','Prakash')
emp2 = Employee('Manav','Saxena')
# emp1.get_data()
# emp2.get_data()
print(emp1.Email())
print(emp2.Email())
|
import os
def divide(a, b):
assert b > 0
nmr=a//b
rem=a%b
visited={rem:0}
digit=[]
while(True):
rem *= 10
digit.append(rem//b)
rem = rem % b
if rem in visited:
location=visited[rem]
print "location is:"
print location
return (nmr, digit[:location], digit[location:])
else:
visited[rem] = len(digit)
print "visited is:"
print visited
print "digit is:"
print digit
for a, b in [(5,4), (1,6), (7,17), (2,4), (1,3)]:
(n,f,r)=divide(a,b)
print "%d/%d = %d.%s(%s)" % (a,b,n, ''.join(map(str,f)), ''.join(map(str,r)))
|
#you only have access to one node. the sol is to copy the data from next node
# and then delete the next node.
import os
global nodea
global nodeb
global nodec
global noded
class LinkedListNode:
def __init__(self, initData):
self.data = initData
self.next = None
self.previous = None
def getData(self):
return self.data
def setData(self, newData):
self.data=newData
def getNext(self):
return self.next
def setNext(self, newNext):
self.next=newNext
def getPrevious(self):
return self.previous
def setPrevious(self, newPrevious):
self.previous = newPrevious
nodea = LinkedListNode("first")
nodeb = LinkedListNode("second")
nodec = LinkedListNode("NodeC")
noded = LinkedListNode("third")
nodea.previous=None
nodea.next=nodeb
nodeb.next=nodec
nodec.next=noded
nodeb.previous=nodea
nodec.previous=nodeb
noded.previous=nodec
noded.next=None
def printList():
node=nodea;
while(node!=None):
print node.data
node=node.next
def deleteMiddleNode(middlenode):
if(middlenode == None or middlenode.next==None):
print "Invalid Node - can't be removed"
return None
nextNode=middlenode.next
middlenode.data=nextNode.data
middlenode.next=nextNode.next
print "-----deleting nodec------"
deleteMiddleNode(noded)
print "--- AND NEW LIST IS ---"
printList()
|
lista = [2,4,3,1,7,6,9,8,5]
print('Lista :', (lista))
print("Minha lista em ordem numérica : ", sorted(lista))
|
print('Привет')
print('Напишите несколько чисел. Ваше первое число?')
a = int(input())
print('Напишите второе число')
b = int(input())
print('Напишите третье число')
c = int(input())
if (a*b = c):
print('Условие о равенстве произведении первых чисел третьему верно')
else:
print('Условие о равенстве произведения первых чисел третьему не верно')
if (b*c) = a):
print('Условие о равенстве частного первых чисел третьему верно')
else:
print('Условие о равенстве частного первых чисел третьему не верно')
input()
|
# store previous values of function f in a cache
# function takes a function as input
# function currying style
def memoize(f):
# create empty cache to store previously computed values of f(x)
cache = {}
#
def g(x):
print cache
if x not in cache:
print x,"not in cache"
# print "adding", f(x),"to cache for",x
cache[x] = f(x)
return cache[x]
return g
def fib(n):
if n == 0:
return 0
if n == 1:
return 1
return fib(n-2)+fib(n-1)
# pass in the function fib to memoize
# fib(n) now passes n into function g
# memoize creates and returns a new function
fib = memoize(fib)
print fib(7)
|
def summ(x):
if x == 1:
return 1
else:
return x + summ(x-1)
def sumSeries(n):
if n <= 0:
return 0
else:
return n + sumSeries(n-2)
def main():
print "returning sum of all integers from 1,2,3...10"
print summ(10)
print "returning sum of all integers from 24,22,20,18,16...0"
print sumSeries(24)
main()
|
"""
https://leetcode.com/problems/find-all-duplicates-in-an-array/
Given an array of integers, 1 ≤ a[i] ≤ n (n = size of array), some elements appear twice and others appear once.
Find all the elements that appear twice in this array.
Could you do it without extra space and in O(n) runtime?
"""
class Solution(object):
def findDuplicates(self, nums):
"""
:type nums: List[int]
:rtype: List[int]
"""
results = {}
ans = []
for i in xrange(len(nums)):
results[nums[i]] = 0
for i in xrange(len(nums)):
results[nums[i]]+=1
for x in results:
if results[x] == 2:
ans.append(x)
return ans
def findDuplicates_2(self, nums):
ans = []
for i in nums:
if nums[i] > 0:
nums[i] = -nums[i]
else:
ans.append(abs(nums[i]))
return ans
|
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
row=[]
def levelOrder(self, root):
"""
:type root: TreeNode
:rtype: List[List[int]]
"""
if root is None:
return []
result=[]
h = self.getHeight(root)+1
for i in range(1, h+1):
self.row=[]
print "iteration:",i
self.makeLevelOrder(root,i)
result.append(self.row)
return result
def makeLevelOrder(self, root, height):
if root is None:
return
if height == 1:
self.row.append(root.val)
return
elif height > 1:
leftEle = self.makeLevelOrder(root.left, height-1)
rightEle = self.makeLevelOrder(root.right, height-1)
def getHeight(self, root):
if root is None:
return 0
if root.left is None and root.right is None:
return 0
height = 0
hleft = self.getHeight(root.left)
hright = self.getHeight(root.right)
height = 1 + max(hleft,hright)
return height
|
import keyboard
import time
time.sleep(2) # to give some time for interpreter to execute
for i in range(10): # here we are using loop for how many time we need to run our script
keyboard.write("hy \n") # write() function take the text as input
keyboard.press_and_release("enter") # here press_and_release() function used to enter hotkeys(like enter , shift+@, etc)
|
from turtle import *
import tkinter
import sys
class Node:
def __init__(self,item):
self.item = item
self.next = None
class Queue:
def __init__(self):
self.head = None
self.tail = None
def is_empty(self):
return self.head == None
def enqueue(self, item):
if self.is_empty():
self.head = self.tail = Node(item)
else:
self.tail.next = self.tail = Node(item)
def dequeue(self):
if self.is_empty():
raise IndexError
else:
temp = self.head
self.head = self.head.next
return temp.item
def peek(self):
return self.head.item
def size(self):
return size_helper(self.head)
def size_helper(node):
if node == None:
return 0
return 1 + size_helper(node.next)
class TreeNode:
def __init__(self, item, left=None, right=None):
self.item = item
self.left = left
self.right = right
self.x = None
self.y = None
class BinarySearchTree:
def __init__(self, contents=[]):
self.root = None
for e in contents:
self.insert(e)
def __contains__(self, item):
if contains_helper(self.root, item) == False:
return False
return True
def is_empty(self):
return self.root == None
def insert(self, item):
insert_helper(self, self.root, item)
def find_min(self):
return min_helper(self.root)
def find_max(self):
return max_helper(self.root)
def numItems(self):
return numItems_helper(self.root)
def tree_height(self):
if self.is_empty():
return None
else:
leaves = height_helper(self.root, [])
heights = []
for item in leaves:
node = self.root
height = 0
while node.item != item:
if item < node.item:
node = node.left
elif item > node.item:
node = node.right
height += 1
heights.append(height)
return max(heights)
def inorder(self):
if self.is_empty():
return []
return inorder_helper(self.root, [])
def preorder(self):
if self.is_empty():
return []
return preorder_helper(self.root, [])
def postorder(self):
if self.is_empty():
return []
return postorder_helper(self.root, [])
def levelorder(self):
lst = []
if self.is_empty():
return lst
q = Queue()
q.enqueue(self.root)
while not q.is_empty():
node = q.dequeue()
lst.append(node.item)
if node.left != None:
q.enqueue(node.left)
if node.right != None:
q.enqueue(node.right)
return lst
def delete(self, item):
if not item in self:
return False
elif self.root.item == item:
if self.root.left == None and self.root.right == None:
self.root = None
elif self.root.right == None:
self.root = self.root.left
elif self.root.left == None:
self.root = self.root.right
else:
min_item = max_helper(self.root.left)
self.delete(min_item)
self.root = TreeNode(min_item, self.root.left, self.root.right)
return True
node = delete_helper(self.root, item)
if node.left != None and node.left.item == item:
if node.left.left == None and node.left.right == None:
node.left = None
elif node.left.right == None:
node.left = node.left.left
elif node.left.left == None:
node.left = node.left.right
else:
min_item = max_helper(node.left.left)
self.delete(min_item)
node.left = TreeNode(min_item, node.left.left, node.left.right)
elif node.right != None and node.right.item == item:
if node.right.left == None and node.right.right == None:
node.right = None
elif node.right.right == None:
node.right = node.right.left
elif node.right.left == None:
node.right = node.right.right
else:
min_item = max_helper(node.right.left)
self.delete(min_item)
node.right = TreeNode(min_item, node.right.left, node.right.right)
return True
def delete_helper(node, item):
if (node.right != None and node.right.item == item) or (node.left != None and node.left.item == item):
return node
elif item < node.item:
return delete_helper(node.left, item)
else:
return delete_helper(node.right, item)
def numItems_helper(node):
if node == None:
return 0
return 1 + numItems_helper(node.left) + numItems_helper(node.right)
def max_helper(node):
if node.right == None:
return node.item
return max_helper(node.right)
def min_helper(node):
if node.left == None:
return node.item
return min_helper(node.left)
def postorder_helper(node, postorderlst):
if node.left != None:
postorderlst = postorder_helper(node.left, postorderlst)
if node.right != None:
postorderlst = postorder_helper(node.right, postorderlst)
postorderlst.append(node.item)
return postorderlst
def preorder_helper(node, preorderlst):
preorderlst.append(node.item)
if node.left != None:
preorderlst = preorder_helper(node.left, preorderlst)
if node.right != None:
preorderlst = preorder_helper(node.right, preorderlst)
return preorderlst
def inorder_helper(node, inorderlst):
if node.left != None:
inorderlst = inorder_helper(node.left, inorderlst)
inorderlst.append(node.item)
if node.right != None:
inorderlst = inorder_helper(node.right, inorderlst)
return inorderlst
def height_helper(node, leaves_list):
if node == None:
return []
elif node.left == None and node.right == None:
return [node.item]
else:
return leaves_list + height_helper(node.left, leaves_list) + height_helper(node.right, leaves_list)
def insert_helper(tree, node, item):
if tree.is_empty():
tree.root = TreeNode(item)
elif item > node.item:
if node.right == None:
node.right = TreeNode(item)
else:
return insert_helper(tree, node.right, item)
elif item < node.item:
if node.left == None:
node.left = TreeNode(item)
else:
return insert_helper(tree, node.left, item)
def contains_helper(node,item):
if node == None:
return False
elif node.item == item:
return node
elif item > node.item:
return contains_helper(node.right, item)
elif item < node.item:
return contains_helper(node.left, item)
class Grid:
def __init__(self, rows, cols, screen=None, canvas=None):
self.screen = screen
self.canvas = canvas
self.rows = rows
self.cols = cols
self.items = []
for i in range(rows):
self.items.append([None] * cols)
def __getitem__(self, index):
return self.items[index]
def drawNodes(self):
self.screen.tracer(0)
x_spacing = 500 // self.cols
y_spacing = 500 // self.rows
for row in range(self.rows):
for col in range(self.cols):
if self[row][col] != None:
bstnode = RawTurtle(self.canvas)
bstnode.ht()
bstnode.shape("circle")
bstnode.shapesize(.25, .25)
bstnode.penup()
bstnode.speed(5)
bstnode.goto(100+col*x_spacing,500-row*y_spacing)
bstnode.st()
bstnode.write(str(float(self[row][col].item)), False, align="center")
if self[row][col].left != None:
parent = self[row][col]
left_child = self[row][col].left
LineTurtle = RawTurtle(self.canvas)
LineTurtle.ht()
LineTurtle.penup()
LineTurtle.goto(100+col*x_spacing,500-row*y_spacing)
LineTurtle.pendown()
LineTurtle.goto(100+left_child.x*x_spacing,500-left_child.y*y_spacing)
if self[row][col].right != None:
parent = self[row][col]
right_child = self[row][col].right
LineTurtle = RawTurtle(self.canvas)
LineTurtle.ht()
LineTurtle.penup()
LineTurtle.goto(100+col*x_spacing,500-row*y_spacing)
LineTurtle.pendown()
LineTurtle.goto(100+right_child.x*x_spacing,500-right_child.y*y_spacing)
self.screen.update()
class BinaryTreeApplication(tkinter.Frame):
def __init__(self, master=None):
super().__init__(master)
self.pack()
self.buildWindow()
def buildWindow(self):
cv = ScrolledCanvas(self,600,600,600,600)
cv.pack(side = tkinter.LEFT)
t = RawTurtle(cv)
screen = t.getscreen()
screen.setworldcoordinates(0,0,600,600)
screen.bgcolor("white")
t.ht()
frame = tkinter.Frame(self)
frame.pack(side = tkinter.RIGHT,fill=tkinter.BOTH)
def quitHandler():
self.master.quit()
quitButton = tkinter.Button(frame, text = "Quit", command=quitHandler)
quitButton.pack()
label = tkinter.Label(frame,text="Node Value:")
label.pack()
nodevalue = tkinter.StringVar()
entry = tkinter.Entry(frame, width=25, textvariable=nodevalue)
entry.pack()
tree = BinarySearchTree()
def insertHandler():
try:
item = float(nodevalue.get())
except:
return
if item in tree:
pass
else:
tree.insert(item)
knuth_layout(tree.root, 0)
global i
i = 0
grid = Grid(tree.tree_height() + 1, tree.numItems(), screen, cv)
screen.clear()
for n in tree.inorder():
node = contains_helper(tree.root, n)
grid[node.y][node.x] = TreeNode(node.item, node.left, node.right)
grid.drawNodes()
def removeHandler():
try:
item = int(nodevalue.get())
except:
return
if item in tree:
tree.delete(item)
if tree.is_empty():
screen.clear()
return
knuth_layout(tree.root, 0)
global i
i = 0
grid = Grid(tree.tree_height() + 1, tree.numItems(), screen, cv)
screen.clear()
for n in tree.inorder():
node = contains_helper(tree.root, n)
grid[node.y][node.x] = TreeNode(node.item,node.left,node.right)
grid.drawNodes()
else:
pass
def containsHandler():
try:
item = int(nodevalue.get())
except:
return
if item in tree:
tkinter.messagebox.showwarning("Search Result","Item is in tree!")
else:
tkinter.messagebox.showwarning("Search Result","Item is NOT in tree!")
insertButton = tkinter.Button(frame, text = "Insert", command=insertHandler) #add command=insertHander parameter
insertButton.pack()
removeButton = tkinter.Button(frame, text = "Remove", command=removeHandler) #add command=removeHandler parameter
removeButton.pack()
containsButton = tkinter.Button(frame, text = "Contains?", command=containsHandler) #add command=containsHandler parameter
containsButton.pack()
i = 0
def knuth_layout(root, depth):
if root.left != None:
knuth_layout(root.left, depth + 1)
global i
root.x = i
root.y = depth; i += 1
if root.right != None:
knuth_layout(root.right, depth + 1)
def main():
root = tkinter.Tk()
root.title("Binary Tree Visualization")
application = BinaryTreeApplication(root)
application.mainloop()
if __name__ == "__main__":
main()
|
# 增加单个元素
# list1=[1,2,3]
# list1.append(4)
# print(list1)
# 指定位置添加
# list1=[1,2,3]
# list1.insert(3,4)
# print(list1)
# 列表一次性添加多个元素
# list1 = [1,2,3,4]
# list1.extend([5,6,7,8,9,10])
# print(list1)
#取值
# list1 = [1,2,3,4,5,6,7,8,9,10]
# print(list1[0:4])
# 修改
# list1 = [1,2,3,4,5,6,7,8,9,10]
# list1[-1]=11
# print(list1)
# 默认删除最后一个元素
# list1 = [1,2,3,4,5,6,7,8,9,10]
# list1.pop()
# print(list1)
# 删除整个列表,清空
# list1 = [1,2,3,4,5,6,7,8,9,10]
# del list1
# 创建空列表
# list2=[]
# print(list2,type(list2))
# 字典
# dict1 = {"name":"lemon"}
# print(dict1,type(dict1))
# 取值
# dict1 = {"name":"lemon"}
# # print(dict1['name'])
# print(dict1.get('name'))
# 更新修改字典
# dict1 = {"name":"lemon","age":18}
# dict1["age"]=19
# print(dict1)
# 字典增加多个元素:update({字典})
# dict1 = {"name":"lemon","age":18}
# dict1.update({"工作年限:":2,"sex":"男"})
# print(dict1)
# 字典增加一个元素
# dict1 = {"name":"lemon","age":18}
# dict1["adress"]="江苏"
# dict1["工作年限"]=2
# print(dict1)
# 创建只有一个元素的元祖
# tup3=(4,)
# print(tup3)
# 元祖中的元素不能修改
# tup1=(1,2,3,4,5)
# tup1[0]=0
# print("修改后的元组:",tup1)
# 元祖和列表转换,然后修改元素
# tup1=(1,2,3,4,5)
# list1=list(tup1)
# # print(list1,type(list1))
# list1[0]=0
# # print(list1)
# tup2=tuple(list1)
# print(tup2)
# 元祖转换为列表取值
# tup1=(1,2,3,4,5)
# list1=list(tup1)
# print(list1[0])
# 集合去重复
# set1=set({1,2,3,4,5,1,2,3})
# print (set1)
# 两种方式定义集合
# 方法一:{}
# set1={1,2,3,4,5}
# print (set1)
# 方法二:set() 函数
# set1=set({1,2,3,4,5})
# print (set1)
# if判断语句
# 根据你输入的工资,去判断你当前的岗位级别,初级:小于15k;中级:15-25k;高级:25-50k
# xinzi=int(input('请输入月薪:'))
# if xinzi < 15:
# print('初级')
# elif xinzi >= 15 and xinzi < 25:
# print('中级')
# else:
# print('高级')
# for循环语句
# sum=0
# for nuber in [1,2,3,4,5,6,7,8,9,10]:
# print(nuber)
# sum=sum+nuber
# print('1+2+3+4+5+6+7+8+9+10=',sum)
# 求1+2+3+4+....+100=?range() 函数
# sum=0
# for nuber in range(1,101):
# sum+=nuber
# print('1+2+3+4+....+100=',sum)
# 求2+4+6+...+100=?---->求偶数值
# 方法一
# sum=0
# for nuber in range(2,101,2):
# sum += nuber
# print('2+4+6+...+100=',sum)
# 方法二:内嵌 if 语句
# sum=0
# for nuber in range(1,101):
# if nuber%2==0:
# print(nuber)
# sum+=nuber
# else:
# continue
# print('2+4+6+...+100=',sum)
# 方法三:while 语句
# sum=0
# nuber=2
# while nuber<=100:
# sum+=nuber
# nuber+=2
# print('2+4+6+...+100=',sum)
# 定义无参数函数
# def sum():
# sum = 0
# for nuber in range(1, 11):
# print(nuber)
# sum = sum + nuber
# print('1+2+3+...+10=', sum)
# sum()
# 求1+2+...+n=?
# def sum(n):
# sum = 0
# for nuber in range(1, n + 1):
# print(nuber)
# sum = sum + nuber
# print(f'1+2+...+{n}=', sum)
# sum(10)
# 必备参数
# def user_info(name,age,adress):
# # name = "张三"
# # age = 18
# # adress = "江苏"
# print(f"hello{name},age{age},来自:{adress}")
# user_info("张三",18,"江苏")
# 关键字参数
# def user_info(name, age, adress, nianxian, sex):
# print(f"hello{name},age{age},来自:{adress},工作年限:{nianxian},性别:{sex}")
# # user_info(name="张三", age=18, adress="江苏", nianxian=2, sex="男")
# user_info(age=18,adress="江苏",nianxian=2,name="张三",sex="男")
# 默认参数
# def user_info(name, age, adress, nianxian, sex='男'):
# print(f"hello{name},age{age},来自:{adress},工作年限:{nianxian},性别:{sex}")
#
# user_info(name="张三", age=18, adress="江苏", nianxian=2)
# user_info(name="李四", age=18, adress="江苏", nianxian=2,sex='女')
# 题目:a=[1,2,'6','summer'] 请用成员运算符判断 i是否在这个列表里面
# 方法一
# a=[1,2,'6','summer']
# print('i'in a)
# 方法二
# a=[1,2,'6','summer']
# print('i'not in a)
# 题目:dict_1={"class_id":45,'num':20} 请判断班级上课人数是否大于5 注:num表示课堂人数。如果大于5,输出人数
# dict_1={"class_id":45,'num':20}
# if dict_1['num'] > 5:
# print(dict_1['num'])
# list3 = ['飞羽', '路飞', '凉公子', '社会杨', '小书生', '凉夏'] 列表当中的每一个值包含:姓名、性别、年龄、城市。以字典的形
# 式表达。并且把字典都存在新的 list中,最后打印最终的列表
# 方法1: 手动扩充--字典--存放在列表里面;{} --简单
# list3=['飞羽','路飞', '凉公子', '社会杨', '小书生', '凉夏']
# dict1={"姓名":"飞羽","性别":'男',"年龄":"20","城市":"上海"}
# dict2={"姓名":"路飞","性别":'男',"年龄":"21","城市":"江苏"}
# dict3={"姓名":"凉公子","性别":'男',"年龄":"22","城市":"重庆"}
# dict4={"姓名":"社会杨","性别":'男',"年龄":"23","城市":"陕西"}
# dict5={"姓名":"小书生","性别":'男',"年龄":"24","城市":"浙江"}
# dict6={"姓名":"凉夏","性别":'男',"年龄":"25","城市":"上海"}
# list1=[dict1,dict2,dict3,dict4,dict5,dict6]
# # for list2 in list1: -----> 这句不用写,写了打印出来的只是每个字典,而不是一个列表,题目时打印出列表
# print(list1)
# 方法1.1:
# list3=['飞羽','路飞', '凉公子', '社会杨', '小书生', '凉夏']
# list1=[]
# dict1={"姓名":'飞羽',"性别":'男',"年龄":"20","城市":"上海"}
# dict2={"姓名":"路飞","性别":'男',"年龄":"21","城市":"江苏"}
# dict3={"姓名":"凉公子","性别":'男',"年龄":"22","城市":"重庆"}
# dict4={"姓名":"社会杨","性别":'男',"年龄":"23","城市":"陕西"}
# dict5={"姓名":"小书生","性别":'男',"年龄":"24","城市":"浙江"}
# dict6={"姓名":"凉夏","性别":'男',"年龄":"25","城市":"上海"}
# list1.append(dict1)
# list1.append(dict2)
# list1.append(dict3)
# list1.append(dict4)
# list1.append(dict5)
# list1.append(dict6)
# # for list2 in list1:
# print(list2)
# 方法2:自动--dict()--不强制 list.append()
# list3=['飞羽','路飞', '凉公子', '社会杨', '小书生', '凉夏']
# list1=[]
# for x in list3:
# dict1 = { "性别": '男', "年龄": "20", "城市": "上海"}
# print(x)
# dict1['姓名']=x
# list1.append(dict1)
# print(list1)
# 遍历列表
# list1 = ['name', 'age', 'sex']
# for list2 in list1:
# print(list2)
# 遍历字典,items()返回一个键 — 值对列表, for 循环依次将每个键 — 值对存储到指定的两个变量(key,value)中
# dict1 = {'name':"张三", 'age':"20", 'sex':"男"}
# for key,value in dict1.items():
# print(key+":"+value)
# 遍历集合
# set1={1,2,3,4,5}
# for set2 in set1:
# print(set2)
# 遍历元祖
# tup1=(1,2,3,4,5)
# for tup2 in tup1:
# print(tup2)
# 题目:把字符串转成列表
# title=('hello','lemon',2)
# list1=list(title)
# print(list1,type(list1))
# 题目:任意整数序列相加
# def sum(n):
# sum=0
# for x in range(1,n+1):
# print(x)
# sum+=x
# print(f'1+2+...+{n}=',sum)
#
# sum(10)
# 题目:定义函数,判断一个对象(列表、字典、字符串)的长度是否大于5
# def a(x):
# if len(x) > 5:
# print(len(x) > 5)
# else:
# print(len(x) <= 5)
#
# a({'namezhangsan'})
# 不定长参数
# def sum2(**b):
# print(b)
# sum=0
# for x in b:
# sum += b[x]
# print(sum)
# return sum
#
# print(sum2(one=1,two=2,three=3),type(sum2(one=1,two=2,three=3)))
# print(all,type(all))
# 计算字符串中 a 的数量
# x="python hello aaa 123123aabb"
# print('a的次数:',x.count('a'))
|
def get_fibonacci_n(n):
return fibonacci_n_helper(n)
def fibonacci_n_helper(n, i=1, a=0, b=1):
return a if n <= i else fibonacci_n_helper(n, i + 1, b, a + b)
# if n <= i:
# print(a)
# return a
# print(a, end=" ")
# return fibonacci_n_helper(n, i + 1, b, a + b)
n1 = int(input("Enter a number: "))
print("element number", n1, "in fibonacci series:", get_fibonacci_n(n1))
|
"""
*
**
***
****
*****
"""
a1 = int(input("Enter a number: "))
for i in range(a1):
print(" " * (a1 - i - 1), end="")
print("*" * (i + 1))
|
l1 = []
for i in range(10):
l1.append(int(input(f"Enter {i+1} value: ")))
max_value = max(l1)
for i in range(max_value, 0, -1):
for value in l1:
if value >= i:
print("*\t", end="")
else:
print("\t", end="")
print()
|
from day13_inheritance.item_inheritance.book import Book
from day13_inheritance.item_inheritance.dvd import Dvd
print("Enter 5 items you want to issue")
items = []
for i in range(5):
item_type = input("book or dvd (b/d): ")
item = Book() if 'b' == item_type else Dvd()
item.read()
items.append(item)
print("\nlist of issued items")
for item in items:
item.show()
|
a1 = input("Enter a word:\n")
for i in range(1, len(a1) + 1):
print(a1[i:], a1[:i], sep="")
|
a1 = input("Enter a word:\n")
l = len(a1)
for i in range(l):
for i2 in range(l):
print(a1[(i + i2 + 1) % l], end="")
print()
|
def power(x, y):
if(y == 0): return 1
temp = power(x, int(y/2))
if (y%2==0): return temp*temp
else:
if(y>0): return x * temp * temp
else: return (temp * temp)/x
x = 2; y = 10
print('%.6f' %(power(x, y)))
|
from utils.base_estimator import BaseEstimator
import numpy as np
from sklearn.tree import DecisionTreeClassifier
class AdaBoost(BaseEstimator):
"""
An AdaBoost classifier is a meta-estimator that begins by fitting a
classifier on the original dataset and then fits additional copies of the
classifier on the same dataset but where the weights of incorrectly
classified instances are adjusted such that subsequent classifiers focus
more on difficult cases.
Parameters
----------
n_estimators : integer, optional (default=50)
The maximum number of estimators at which boosting is terminated.
"""
def __init__(self, n_estimators=50):
self.n_estimators = n_estimators
self.estimators_ = []
self.estimator_weights_ = np.zeros(self.n_estimators)
def fit(self, X, y=None):
"""Build a boosted classifier from the training set (X, y)."""
self._setup_input(X, y)
# Initialize weights to 1 / n_samples
sample_weight = np.zeros(self.n_samples)
sample_weight[:] = 1.0 / self.n_samples
for i in range(self.n_estimators):
# Boosting step
sample_weight, estimator_weight = self._boost(sample_weight)
self.estimator_weights_[i] = estimator_weight
def _boost(self, sample_weight):
"""Implement a single boost.
sample_weight : array-like of shape = [n_samples]
The current sample weights.
Returns
-------
sample_weight : array-like of shape = [n_samples] or None
The reweighted sample weights.
estimator_weight : float
The weight for the current boost.
"""
X, y = self.X, self.y
estimator = DecisionTreeClassifier(max_depth=1)
# TODO: replace with custom decision tree
estimator.fit(X, y, sample_weight=sample_weight)
self.estimators_.append(estimator)
y_predict = estimator.predict(X)
# Instances incorrectly and correctly classified
incorrect = y != y_predict
correct = y == y_predict
# Error fraction
estimator_error = np.average(incorrect, weights=sample_weight)
scaling_factor = np.sqrt((1 - estimator_error) / estimator_error)
# Boosting by weighting up incorrect samples and weighting down correct ones
sample_weight[incorrect] *= scaling_factor
sample_weight[correct] /= scaling_factor
# Normalize sample_weight
sample_weight /= sample_weight.sum()
estimator_weight = np.log(scaling_factor)
return sample_weight, estimator_weight
def _predict(self, X):
score = self.decision_function(X)
# expect y to be 1 or 0
return np.where(score >= 0.5, 1.0, 0.0)
def decision_function(self, X):
"""Compute the decision function of ``X``."""
pred = np.sum([estimator.predict(X) * w for estimator, w in
zip(self.estimators_, self.estimator_weights_)], axis=0)
pred /= self.estimator_weights_.sum()
return pred
|
from utils.base_estimator import BaseEstimator
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
np.random.seed(2046)
def euclidean_distance(x, y):
return np.sqrt(np.sum((x - y) ** 2))
class KMeans(BaseEstimator):
"""Partition a dataset into K clusters.
Finds clusters by repeatedly assigning each data point to the cluster with
the nearest centroid and iterating until the assignments converge (meaning
they don't change during an iteration) or the maximum number of iterations
is reached.
Init centroids by randomly select k values from the dataset
For better method to improve convergence rates and avoid degenerate cases.
See: Arthur, D. and Vassilvitskii, S.
"k-means++: the advantages of careful seeding". ACM-SIAM symposium
on Discrete algorithms. 2007
Parameters
----------
K : int, default 8
The number of clusters into which the dataset is partitioned.
max_iters: int, default 300
The maximum iterations of assigning points to the nearest cluster.
Short-circuited by the assignments converging on their own.
"""
def __init__(self, K=8, max_iters=300):
self.K = K
self.max_iters = max_iters
# an array of cluster that each data point belongs to
self.labels = []
# an array of center value of cluster
self.centroids = []
def _init_cetroids(self):
"""Set the initial centroids."""
indices = np.random.choice(self.n_samples, self.K, replace=False)
self.centroids = self.X[indices]
def _dist_from_centers(self):
return np.array([min([euclidean_distance(x, c) for c in self.centroids]) for x in self.X])
def fit(self, X=None):
"""Perform the clustering on the given dataset."""
self._setup_input(X, y_required=False)
self._init_cetroids()
for i in range(self.max_iters):
new_centroids = []
# update clusters base on new centroids
new_labels = np.apply_along_axis(self._closest_cluster, 1, self.X)
# update centroids base on new clusters
for k in range(self.K):
centroid = np.mean(self.X[new_labels == k], axis=0)
new_centroids.append(centroid)
if self._is_converged(self.centroids, new_centroids):
print('Converged on iteration %s' % (i + 1))
break
# not converged yet, update centroids / labels to new centroids / labels
self.labels = new_labels
self.centroids = new_centroids
def _predict(self, X=None):
return np.apply_along_axis(self._closest_cluster, 1, X)
def _closest_cluster(self, data_point):
""" Return the closest cluster index and distance given data point"""
closest_index = 0
closest_distance = float("inf")
for cluster_i, centroid in enumerate(self.centroids):
distance = euclidean_distance(data_point, centroid)
if distance < closest_distance:
closest_distance = distance
closest_index = cluster_i
return closest_index
def _is_converged(self, centroids, new_centroids):
return True if sum([euclidean_distance(centroids[i], new_centroids[i]) for i in range(self.K)]) == 0 else False
def plot(self, data=None):
if data is None:
data = self.X
for k in range(self.K):
points = data[self.labels == k].T
plt.scatter(*points, c=sns.color_palette("hls", self.K + 1)[k])
for point in self.centroids:
plt.scatter(*point, marker='x', linewidths=10)
|
"""
For a categorization task the user has to select a category from a set of options.
Tasks and responses are stored in a SQLite database.
"""
from typing import NamedTuple
from typing import List, Optional
import json
class CategorizationTask(NamedTuple):
task_id: int
description: str
metadata: str
options: List[str]
category: Optional[str]
class CategorizationTaskStore:
def __init__(self, cursor):
self.cursor = cursor
def create_task(self, description, options, metadata=None):
metadata = metadata or {}
self.cursor.execute(
"""
insert into categorization_task (description, options, metadata) values (:description, :options, :metadata)
""",
{
"description": description,
"options": json.dumps(options),
"metadata": json.dumps(metadata),
},
)
return CategorizationTask(
task_id=self.cursor.lastrowid,
description=description,
options=options,
metadata=metadata,
category=None,
)
def fetch_tasks_by_category(self, category):
self.cursor.execute(
"""
select ROWID, description, options, category, metadata
from categorization_task
where category = :category
""",
{"category": category},
)
return self._fetch_results()
def load_tasks(self, include_completed=False):
if include_completed:
self.cursor.execute(
"""
select ROWID, description, options, category, metadata
from categorization_task
"""
)
else:
self.cursor.execute(
"""
select ROWID, description, options, category, metadata
from categorization_task
where category is null
"""
)
return self._fetch_results()
def _fetch_results(self):
result = []
for row in self.cursor.fetchall():
metadata = json.loads(row["metadata"]) if row["metadata"] else {}
result.append(
CategorizationTask(
task_id=row["ROWID"],
description=row["description"],
options=json.loads(row["options"]),
metadata=metadata,
category=row["category"],
)
)
return result
def save_result(self, task_id, result):
self.cursor.execute(
"""
update categorization_task set category=:result where ROWID=:task_id
""",
{"task_id": task_id, "result": result},
)
def update_metadata(self, task_id, metadata):
self.cursor.execute(
"""
update categorization_task set metadata=:metadata where ROWID=:task_id
""",
{"task_id": task_id, "metadata": json.dumps(metadata)},
)
def create_schema(self):
self.cursor.execute(
"""
create table if not exists categorization_task (
description text not null,
options text not null,
category text,
metadata text
);
"""
)
if __name__ == "__main__":
import sqlite3
conn = sqlite3.connect(":memory:")
conn.row_factory = sqlite3.Row
store = CategorizationTaskStore(conn.cursor())
store.create_schema()
print(store.create_task(description="desc", options=["a", "b", "c"]))
print(store.create_task(description="desc2", options=["a2", "b2", "c2"]))
store.save_result(1, "c")
print(store.load_tasks(include_completed=True))
|
#STACK with Python List
class Stack_with_Plist:
def __init__(self):
self.items = []
def is_empty(self):
return self.items == []
def push(self, item):
self.items.appent(item)
def pop(self):
if self.is_empty():
return None
else:
return self.items.pop()
def peek(self):
if self.is_empty():
return None
else:
self.items[len(self.items)-1]
def size(self):
return len(self.items)
#Stack with simply linked list
#단순 연결 리스트로 구현한 스택
class Node:
def __init__(self, item):
self.item = item
self.next = None
def get_next(self):
return self.next
def get_item(self):
return self.item
def set_item(self, new_item):
self.item = new_item
def set_next(self, new_next):
self.next = new_next
class Stack:
def __init__(self):
self.head = None
def is_empty(self):
return self.head == None
def push(self,item):
new_node = Node(item)
new_node.set_next(self.head)
self.head = new_node
def pop(self):
if self.is_empty():
return None
else:
pop_item = self.head.item
self.head = self.head.get_next()
return pop_item
def peek(self):
if self.is_empty():
return None
else:
return self.head.get_item()
def size(self):
current = self.head
count =0
while current != None:
count +=1
current = current.get_next()
return count
|
# Author: coneypo
# Blog: http://www.cnblogs.com/AdaminXie/
# Github: https://github.com/coneypo/Generate_handwritten_number
# 生成手写体数字 / Generate handwritten numbers from 1~9
import random
import os
from PIL import Image, ImageDraw, ImageFont
random.seed(3)
path_img = "data_pngs/"
# 在目录下生成用来存放数字 1-9 的 9 个文件夹,分别用 number_1-9 命名 / mkdir folders with name 'number_1' to 'number_9'
def mkdir_for_images():
if not os.path.isdir(path_img):
os.mkdir(path_img)
for i in range(1, 10):
if os.path.isdir(path_img + "number_" + str(i)):
pass
else:
print(path_img + "number_" + str(i))
os.mkdir(path_img + "number_" + str(i))
mkdir_for_images()
# 删除路径下的图片 / Clear images in 'data/pngs/number_x/'
def clear_images():
for i in range(1, 10):
dir_nums = os.listdir(path_img+ "number_" + str(i))
for tmp_img in dir_nums:
if tmp_img in dir_nums:
# print("delete: ", tmp_img)
os.remove(path_img + "number_" + str(i) + "/" + tmp_img)
print("Delete finish", "\n")
clear_images()
# 生成单张扭曲的数字图像 / Generate a single distorted digital image
def generate_single():
# 先绘制一个 50*50 的空图像 / Draw a blank image with size 50*50
im_50_blank = Image.new('RGB', (50, 50), (255, 255, 255))
# 创建画笔 / Create drawer
draw = ImageDraw.Draw(im_50_blank)
# 生成随机数 1-9 / Generate random number from 1-9
num = str(random.randint(1, 9))
# 设置字体,这里选取字体大小 25 / Set font
font = ImageFont.truetype('simsun.ttc', 20)
# xy 是左上角开始的位置坐标 / xy is the position starts
draw.text(xy=(18, 11), font=font, text=num, fill=(0, 0, 0))
# 随机旋转-10-10角度 / Rotate with an angle of -10 to 10 randomly
random_angle = random.randint(-10, 10)
im_50_rotated = im_50_blank.rotate(random_angle)
# 图形扭曲参数 / Distortion parameters
params = [1 - float(random.randint(1, 2)) / 100,
0,
0,
0,
1 - float(random.randint(1, 10)) / 100,
float(random.randint(1, 2)) / 500,
0.001,
float(random.randint(1, 2)) / 500]
# 创建扭曲 / Do distortion
im_50_transformed = im_50_rotated.transform((50, 50), Image.PERSPECTIVE, params)
# 生成新的 30*30 空白图像 / Generate blank image with size 30*30
im_30 = im_50_transformed.crop([10, 10, 40, 40])
return im_30, num
# 生成手写体数字 1-9 存入指定文件夹 1-9 / Generate 1-9
def generate_number_1_to_9(n):
cnt_num = []
for i in range(10):
cnt_num.append(0)
for m in range(1, n + 1):
img, generate_num = generate_single()
img_gray = img.convert('1')
for j in range(1, 10):
if generate_num == str(j):
cnt_num[j] = cnt_num[j] + 1
print("Generate:", path_img + "number_" + str(j) + "/" + str(j) + "_" + str(cnt_num[j]) + ".png")
img_gray.save(path_img + "number_" + str(j) + "/" + str(j) + "_" + str(cnt_num[j]) + ".png")
print("\n")
print("生成的数字 1-9 的分布 / Distribution of generated numbers 1-9:")
for k in range(9):
print("number", k + 1, ":", cnt_num[k + 1], "in all")
def main():
# 运行 1000 次 / Run 100 times
generate_number_1_to_9(100)
if __name__ == '__main__':
main()
|
import numpy as np
import time
from time import time
time0 = time()
'''numero de ecuaciones'''
n = int(input("Número de ecuaciones: "))
print("\n")
'''llenado de matriz'''
def LlenarM(M):
m = np.zeros((n,n+1))
for i in range(n):
for j in range(n+1):
m[i][j]=float(input(f"Valor elemento [{i}][{j}]: "))
return m
'''eliminacion de gauss jordan'''
def GaussJordan(m,n):
piv = 0
for x in range(n-1):
r = 1
while m[x][x] == 0:
if renglon == n:
return math.nan
IntercambiarRenglones(m, x,re)
r += 1
for i in range(x+1, n):
piv = m[i][x]/m[x][x]
m[i][x] = 0
for j in range(x+1, n+1):
m[i][j] -= piv*m[x][j]
x = n -1
while x > 0:
for i in range(x):
piv = m[i][x]/m[x][x]
m[i][x] = 0
m[i][-1] -= piv*m[x][-1]
x -= 1
for i in range(n):
m[i][-1] /= m[i][i]
m[i][i]= 1
'''intercambio de renglones'''
def IntercambiarRenglones(m,x,r):
y = len(m)
z = m[x]
m[x]= m[x+r]
m[x+r] = z
'''solucion'''
def ImprimirSolucion(s):
print("Solucion:")
y = len(s)
for i in range(y):
sf = float(s[i][-1])
print(f"x{i} = {sf}")
Matriz = LlenarM(n)
GaussJordan(Matriz,n)
ImprimirSolucion(Matriz)
print(f"Tiempo: {time() - time0}")
|
#!/usr/bin/env python
from hwtools import *
print "Section 4: For Loops"
print "-----------------------------"
nums = input_nums()
# 1. What is the sum of all the numbers in nums?
print "1.", sum(nums)
# 2. Print every even number in nums
print "2."
for i in nums:
if not i%2:
print i
#CODE GOES HERE
# 3. Does nums only contain even numbers?
only_even = False
for num in nums:
if num%2:
only_even = False
break
else:
only_even = True
print "3.",
if only_even:
print "only even"
else:
print "some odd"
# 4. Generate a list every odd number less than 100. Hint: use range()
print "4.",
y = range(1,100)
q = []
for g in y:
if g%2:
q.append(g)
print q
|
#!/usr/bin/env python
"""
tron.py
The simple game of tron with two players. Press the space bar to start the game. Player 1 (red) is controlled with WSAD and player 2 (blue) is controlled with the arrow keys. Once the game is over, press space to reset and then again to restart. Escape quits the program.
"""
import pygame
from pygame.locals import *
## Defining player one. ##
class tron_p1:
def __init__(self, surface, x, y, length):
self.surface = surface
self.x = x
self.y = y
self.length = length
self.dir_x = 0
self.dir_y = -1
self.body = []
self.crashed = False
# Defining player one's keyboard controls (w,a,s,d) and which direction they move the character towards.
def key_event_p1(self, event):
if event.key == pygame.K_w and self.dir_y != 1: # This prevents the player from crashing into themselves while pressing the key that would go in the opposite direction of their current movement.
self.dir_x = 0
self.dir_y = -1
elif event.key == pygame.K_d and self.dir_x != -1:
self.dir_x = 1
self.dir_y = 0
elif event.key == pygame.K_s and self.dir_y != -1:
self.dir_x = 0
self.dir_y = 1
elif event.key == pygame.K_a and self.dir_x != 1:
self.dir_x = -1
self.dir_y = 0
# Defining player one's movement.
def move(self):
self.x += self.dir_x
self.y += self.dir_y
# Tells the character to crash if it runs into itself.
if (self.x, self.y) in self.body:
self.crashed = True
self.body.insert(0, (self.x, self.y))
# Defining player one's color (red)
def draw(self):
for x, y in self.body:
self.surface.set_at((x, y), (255, 0, 0))
## Defining player two (almost the same as Player One's stuff). ##
class tron_p2:
def __init__(self, surface, x, y, length):
self.surface = surface
self.x = x
self.y = y
self.length = length
self.dir_x = 0
self.dir_y = -1
self.body = []
self.crashed = False
# Defining player two's keyboard controls (the arrow keys).
def key_event_p2(self, event):
if event.key == pygame.K_UP and self.dir_y != 1:
self.dir_x = 0
self.dir_y = -1
elif event.key == pygame.K_RIGHT and self.dir_x != -1:
self.dir_x = 1
self.dir_y = 0
elif event.key == pygame.K_DOWN and self.dir_y != -1:
self.dir_x = 0
self.dir_y = 1
elif event.key == pygame.K_LEFT and self.dir_x != 1:
self.dir_x = -1
self.dir_y = 0
# Defining player two's movement.
def move(self):
self.x += self.dir_x
self.y += self.dir_y
if (self.x, self.y) in self.body:
self.crashed = True
self.body.insert(0, (self.x, self.y))
# Defining player two's color (blue).
def draw(self):
for x, y in self.body:
self.surface.set_at((x, y), (0, 0, 255))
# The dimensions of the screen.
width = 700
height = 600
screen = pygame.display.set_mode((width, height))
clock = pygame.time.Clock()
running = True
end_game = False
p1 = tron_p1(screen, width/3, height/2, 500) # Player one's starting position.
p2 = tron_p2(screen, width/2, height/2, 500) # Player two's starting position.
# Printed instructions on how to play the game.
print "Controls: "
print "Player one is Red and uses w,a,s,d to move."
print "Player two is blue and uses the arrow keys to move."
print "Avoid the edges of the screen, the other player and your own trail."
# While the game hasn't ended, play the game. (This is how the player can exit the game using the escape key but this extra while loop was originally how I was going to have the space bar start and repeat work). It also adds a pause at the end of the game after one eprson crashes (but before the player exits) so I decided to keep it in.
while end_game == False:
# While the game is running... #
while running == True:
screen.fill((0, 0, 0)) #Making the screen black.
# Player one during the game.
p1.move()
p1.draw()
# If player one crashes into itself or into the boundries of the screen, end the game.
if p1.crashed or (p1.x <= 0) or (p1.x >= width-1) or (p1.y <= 0) or (p1.y >= height-1):
print "Player one crashes!"
running = False
# If player one crashes into player two, end the game.
if (p1.x, p1.y) in p2.body:
p1.crashed = True
print "Player one crashes!"
running = False
# Key commands for both players.
for event in pygame.event.get():
# Exiting the game using the escape key during the game.
if event.type == KEYDOWN and event.key == pygame.K_ESCAPE:
running = False
end_game = True
print "Thanks for playing!"
# Player one and two controls.
elif event.type == pygame.KEYDOWN:
p1.key_event_p1(event)
p2.key_event_p2(event)
# Player two during the game.
p2.move()
p2.draw()
# If player two crashes into itself or into the boundries of the screen, end the game.
if p2.crashed or (p2.x <= 0) or (p2.x >= width-1) or (p2.y <= 0) or (p2.y >= height-1):
print "Player two crashes!"
running = False
# If player two crashes into player one, end the game.
if (p2.x, p2.y) in p1.body:
p2.crashed = True
print "Player two crashes!"
running = False
pygame.display.flip()
clock.tick(250)
# Exiting the game using the escape key after the game is over.
for event in pygame.event.get():
if event.type == KEYDOWN and event.key == pygame.K_ESCAPE:
end_game = True
print "Thanks for playing!"
"""
I couldn't find a way to make the game restart when the player hits the spacebar. All of the ways I tried made it so the game would only run if the spacebar was constantly being pressed and this was annoying. So for the sake of my sanity, the game will just have to be restarted in the terminal.
One of the most promising ways I tried to make this thing restart:
- Turning the enitre game (everything inside the "while running == True" loop) into a function (named "play_tron") and then making this:
for event in pygame.event.get():
if event.type == KEYDOWN and event.key == pygame.K_SPACE:
play_tron()
elif event.type == KEYDOWN and event.key == pygame.K_ESCAPE:
end_game = True
But this didn't work. And this was about as close as the internet got to gettingthe "spacebar restart" problem to work. Soooo... this made me sad. :(
"""
|
#!/usr/bin/env python
"""
users.py
User Database (Advanced)
=========================================================
The nice thing about dictionaries (and objects) is you can
have a list or a dictionary of items that all have the same
properties. The result is something like a lookup table or
a database
For the following examples, assume that users is a list that
looks something like this:
users = {
"Ben S": { "age": 23, "follows": [ "Sally F", "Gerald Q" ] },
"Sally F": { "age": 10, "follows": [ "Gerald Q", "Frank L" ] },
"Jeff B": { "age": 12, "follows": [ "Steve M", "Sally F", "Gerald Q" ] },
"Gerald Q": { "age": 20, "follows": [ ] },
"Steve M": { "age": 18, "follows": [ ] },
...
}
You can see the actual data as a table in users_data.txt
"""
# 1. followers
# Find everyone who is following the given names. Using the
# above example:
# >>> followers(users, "Gerald Q", "Sally F")
# [ "Ben S", "Sally F", "Jeff B", "Steve M" ]
#
# Hint, lookup "set" in python
def followers(users, *names):
"find followers for given names"
# 2. underage_follows
# Find everyone that underage users (age <= 12) follow. Make
# sure there are no duplicates. Do not include the underage
# users themselves
# >>> underage_follows(users)
# [ "Steve M", "Gerald Q", "Frank L" ]
def underage_follows(users):
"find who underage users follow"
# 3. foaf
# Foaf (friend of a freind) returns a list of everyone whom
# a user's followers follow not including the user themself.
# >>> foaf(users, "Gerald Q")
# [ "Sally F", "Frank L", "Steve M" ]
def foaf(users, name):
"find everyone whom a user's followers follow (not including user)"
# 4. age_demographics
# For "statistics", return a dictionary with the average age
# of the followers for a given user age. So, for example,
# find the average age of EVERYONE who follows someone who is
# 19.
#
# Sample output:
# { 19: 20.33333333,
# 20: 24.125,
# 21: 17
# ...
# }
def age_demographics(users):
"calculate age demographics"
# UNCOMMENT THE FOLLOWING TO WRITE YOUR OWN CODE USING USERS
# if __name__ == "__main__":
# from tests.test_users import USERS
# print USERS
|
import pygame
from pygame import Rect, Surface
from layer import Layer
class ShadowLayer(Layer):
color = 0,0,0,150
ratio = 3.0 / 4.0
def draw_sprite(self, sprite, ratio=None):
if ratio is None:
ratio = self.ratio
# calculate the size of the shadow
w = sprite.rect.width * ratio + 1
h = w/2
rect = Rect(0,0,w,h)
# shrink the shadow according to height
if hasattr(sprite, "height"):
height0 = sprite.__class__.height
ratio = (height0 - sprite.height) / float(height0)
rect.width = max(8, rect.width * ratio)
rect.height = max(4, rect.height * ratio)
# move the the midbottom of the sprite
rect.center = sprite.rect.midbottom
rect.x -= 1
rect.y -= 3
# if the sprite has a height property, use it to move the shadow
if hasattr(sprite, "height"):
rect.y += sprite.height
# draw to the layer
pygame.draw.ellipse(self._layer, self.color, rect)
# self._layer.fill(self.color, rect)
|
import sqlite3
class ToDoItem:
dbpath = ""
tablename = "todoitems"
def __init__(self,**kwargs):
#use kwargs if your table name is constantly changing, kwargs lets you take in any column value pairs
self.pk = kwargs.get("pk")
self.title = kwargs.get("title")
self.description = kwargs.get("description")
self.complete = kwargs.get("complete")
def save(self):
if self.pk is None: #if pk doesnt exist, insert or update data
self.insert()
else:
self.update()
def insert(self):
with sqlite3.connect(self.dbpath) as conn:
curs = conn.cursor()
SQL = """INSERT INTO {} (title,description,complete) VALUES(?,?,?);""".format(self.tablename)
values = (self.title, self.description, self.complete)
curs.execute(SQL,values)
pk = curs.lastrowid #this just put the id of the last row it interacted with
self.pk = pk #or could say self.pk = curs.lastrowid
def update(self):
with sqlite3.connect(self.dbpath) as conn:
curs = conn.cursor()
SQL = """UPDATE {} SET title=?,description=?,complete=? WHERE pk=?;""".format(self.tablename)
values = (self.title, self.description, self.complete,self.pk)
curs.execute(SQL,values)
def delete(self):
if not self.pk:
raise KeyError(self.__repr__() + " is not a row in " + self.tablename)
with sqlite3.connect(self.dbpath) as conn:
curs = conn.cursor()
SQL = """DELETE FROM {} WHERE pk=?;""".format(self.tablename)
curs.execute(SQL, (self.pk,))
@classmethod
def all(cls,complete=None): #select all, if used True it would select all where complete = True only
if complete is None: #if none are complete
SQL = """ SELECT * FROM {};""".format(cls.tablename)
elif bool(complete) is True:
SQL = """SELECT * FROM {} WHERE complete=1;""".format(cls.tablename)
elif bool(complete) is False:
SQL = """SELECT * FROM {} WHERE complete=1;""".format(cls.tablename)
with sqlite3.connect(cls.dbpath) as conn:
conn.row_factory = sqlite3.Row
curs = conn.cursor()
curs.execute(SQL)
rows = curs.fetchall()
return [cls(***row) for row in rows] # lets you manipualte rows like a dictionary
#this returns a list of objects that are of type ToDoItem that can be fed into the init method
@classmethod
def one_from_pk(cls,pk):
SQL = """SELECT * FROM {} WHERE pk=?;""".format(cls.tablename)
with sqlite3.connect(cls.dbpath) as conn:
conn.row_factory = sqlite3.Row
curs = conn.cursor()
curs.execute(SQL,(pk,)) #class method so there is no self, no instance attributes yet
rows = curs.fetchone()
return cls(***row) #creating one instance
def __repr__(self):
pattern = "<ToDoItem: title={} pk={}>"
return pattern.format(self.title,self.pk)
|
# a=50
# if a>50:
# print('yes')
# elif a<50:
# print("hemine")
# else:
# print('nadarimo')
r = int(input('num'))
if r%2==0:
print('{} is even' .format(r))
else:
print('{} is fard',r)
|
string = input().split()
a = float(string[0])
b = float(string[1])
c = float(string[2])
lista = [a, b, c]
lista.sort(reverse=True)
a = lista[0]
b = lista[1]
c = lista[2]
if a >= (b + c):
print('NAO FORMA TRIANGULO')
if (a ** 2) == (b ** 2) + (c ** 2):
print('TRIANGULO RETANGULO')
if ((a ** 2) > (b ** 2) + (c ** 2)) and ((a + b) > c ) and ((b + c) > a) and ((a + c) > b):
print('TRIANGULO OBTUSANGULO')
if (a ** 2) < (b ** 2) + (c ** 2):
print('TRIANGULO ACUTANGULO')
if a == b == c:
print('TRIANGULO EQUILATERO')
if ((a == b) and (b != c)) or ((b == c) and (a != b)) or ((a == c) and (c != b)):
print('TRIANGULO ISOSCELES')
|
x = int(input())
z = 0
while True:
z = int(input())
if z > x:
break
soma = x
c = 1
while z > soma:
soma = soma + x
c += 1
x += 1
print(c)
|
while True:
try:
c1 = c = 0
flag = True
s = input()
if s == '':
flag = True
elif s[0] == ')' or s[-1] == '(':
flag = False
c = s.count('(')
c1 = s.count(')')
if c == 0 and c1 == 0 and s == '':
print('correct')
elif c == 0 or c1 == 0 and s != 0:
print('incorrect')
elif c == 1 and c1 == 1:
if flag is True:
print('correct')
else:
print('incorrect')
elif c == c1:
if flag is True:
print('correct')
else:
print('incorrect')
else:
print('incorrect')
except EOFError:
break
|
# criar uma lista com range
l = list(range(1, 11))
# step 2
l1 = list(range(2, 11, 2))
# criar um lista vazia
lista = list()
lista1 = []
# copiar um lista
lnew = l.copy()
print(lnew)
|
'''
from collections import deque
>>> d=deque([1,2,3,4,5])
>>> d
deque([1, 2, 3, 4, 5])
>>> d.rotate(2)
>>> d
deque([4, 5, 1, 2, 3])
>>> d.rotate(-2)
>>> d
deque([1, 2, 3, 4, 5])
Or with list slices:
>>> li=[1,2,3,4,5]
>>> li[2:]+li[:2]
[3, 4, 5, 1, 2]
>>> li[-2:]+li[:-2]
[4, 5, 1, 2, 3]
Note that the sign convention is opposite with deque.rotate vs slices.
If you want a function that has the same sign convention:
def rotate(l, y=1):
if len(l) == 0:
return l
y = -y % len(l) # flip rotation direction
return l[y:] + l[:y]
>>> rotate([1,2,3,4,5],2)
[4, 5, 1, 2, 3]
>>> rotate([1,2,3,4,5],-22)
[3, 4, 5, 1, 2]
>>> rotate('abcdefg',3)
'efgabcd'
For numpy, just use np.roll
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.roll(a, 1)
array([9, 0, 1, 2, 3, 4, 5, 6, 7, 8])
>>> np.roll(a, -1)
array([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
'''
|
print()
dados = {'nome':'Pedro', 'idade': 25}
# Criando um elemento
dados['sexo'] = 'M'
# Removendo um elemento e o valor dele
#del dados['idade']
# imprimindo somente as chaves
print(dados.keys(), 'imprimindo somente as chaves\n')
# imprimindo somente os valores
print(dados.values(),'imprimindo somente os valores\n')
# imprimindo todos os itens
print(dados.items(),'imprimindo todos os itens\n')
print(dados)
|
i = 0
j = 1
for x in range(3):
print("I=%d J=%d" % (i, j))
j = j + 1
for x in range(9):
j = j - 3
j = j + 0.2
i = i + 0.2
for x in range(3):
if (i == 1):
print("I=%d J=%d" % (i, j))
else:
print("I=%.1f J=%.1f" % (i, j))
j = j + 1
i = 2
j = 3
for x in range(3):
print("I=%d J=%d" % (i, j))
j = j + 1
|
n = int(input())
res2 = ''
if n == 0:
print('0')
n = -1
else:
t1 = 0
t2 = 1
res2 = '0 1 '
i = 2
while i < n:
t3 = t1 + t2
res2 += str(t3) + ' '
t1 = t2
t2 = t3
i += 1
print(res2[:-1])
|
c = 0
soma = 0
for x in range(1,7,1):
a = float(input())
if a > 0:
c = c + 1
soma = soma + a
print('%d valores positivos' % c)
print('%.1f' % (soma/c))
|
n = int(input())
if n <= 800:
print('1')
if 800 < n <= 1400:
print('2')
if 1400 < n <= 2000:
print('3')
|
x = float(input())
if (x > 0.00) and (x < 2000.00):
print('Isento')
elif(x >= 2000.01) and (x <= 3000.00):
resto = x - 2000
res = resto * 0.08
print("R$ %.2f" % res)
elif (x >= 3000.01) and (x <= 4500.00):
resto = x - 3000
res = (resto * 0.18) + (1000 * 0.08)
print("R$ %.2f" % res)
else:
resto = x - 4500
res = (resto * 0.28) + (1500 * 0.18) + (1000 * 0.08)
print("R$ %.2f" % res)
|
# coding=utf-8
import random
import time
print("2 tane 1-6 arasında rakam gir ve kaçıncı denemede geldiğini öğren")
birinci_rakam = int(input("Birinci Rakamı Giriniz: "))
ikinci_rakam = int(input("İkinci rakamı giriniz: "))
if birinci_rakam >=1 and birinci_rakam <=6 and ikinci_rakam >= 1 and ikinci_rakam<=6:
i = 1
while True:
zar_1 = random.randint(1, 6)
zar_2 = random.randint(1, 6)
if zar_1 == birinci_rakam and zar_2 == ikinci_rakam:
print("""Deneme {}:\t({},{}) *** """.format(i, zar_1, zar_2))
time.sleep(2)
break
print("""Deneme {}:\t({},{}) """.format(i, zar_1, zar_2))
i += 1
time.sleep(0.5)
print("""\n*** {}. denemede ({},{}) geldi ***""".format(i, birinci_rakam,ikinci_rakam))
else:
print("1 ile 6 arasında sayı seçmelisiniz")
|
#文字列を反転し、後ろから探索してみる
def execute(S):
while "dreameraser" in S:
S = S.replace("dreameraser", "")
while "dreamerase" in S:
S = S.replace("dreamerase", "")
while "eraser" in S:
S = S.replace("dreamerase", "")
while "dreamerase" in S:
S = S.replace("dreamerase", "")
while "dreamerase" in S:
S = S.replace("dreamerase", "")
S = S.replace("dreamer", "")\
.replace("eraser", "")\
.replace("dream", "")\
.replace("erase", "")
#print(S)
res = ''
if S == '':
res = 'YES'
else:
res = 'NO'
print(res)
return res
if __name__ == '__main__':
S = input()
execute(S)
|
def create_list(max,incr):
i = 0
numbers = []
for i in range(0,max,incr):
print "At the top i is %d" %i
print "Numbers is now: ", numbers
numbers.append(i)
print "At the bottom i is %d." %i
for num in numbers:
print num
create_list(8,2)
|
## Towers of Hanoi game. Plan is later use this with
## Reinforcement Learning model to find optimal strategy
## Create Initial Game State
def game_setup():
state = [[1,2,3,4],[],[]]
return state
## Check to see if rod is empty
def is_empty(rod,state):
if len(state[rod]) == 0:
is_empty = True
else:
is_empty = False
return is_empty
## Check to see if move is legal. Returns 1 if valid
def check_valid_move(from_rod,to_rod,state):
if is_empty(from_rod,state):
valid_move = 0
elif is_empty(to_rod,state):
valid_move = 1
elif state[from_rod][0] < state[to_rod][0]:
valid_move = 1
elif state[from_rod][0] > state[to_rod][0]:
valid_move = 0
else:
valid_move = 2
print "something weird is happening here"
return valid_move
## Make a move
def move(from_rod,to_rod,state):
if check_valid_move(from_rod,to_rod,state)== 1:
disk_to_move = state[from_rod].pop(0)
state[to_rod].insert(0,disk_to_move)
print "Valid move! New board is: %r" %state
elif check_valid_move(from_rod,to_rod,state)== 0:
print "Try again"
print "Current board is %r" %state
else:
print "It looks like the move didn't make sense. valid move = 2"
|
from flask import Flask
app = Flask(__name__)
a=2
b=3
@app.route("/")
def index():
return str(a+b)
@app.route("/sub")
def sub():
return str(a-b)
@app.route("/mul")
def mul():
return str(a*b)
@app.route("/power")
def power():
return str(a**b)
@app.route("/exp")
def exp():
return str(a*b+a**b)
#"Hello, world!"
if __name__ == "__main__":
app.run()
#from flask import Flask
#app = Flask(__name__)
#@app.route("/")
#def index():
# return "Hello, world!"
#if __name__ == "__main__":
# app.run()
|
class Pixel:
@classmethod
def is_in_tap(cls, b: int, g: int, r: int) -> bool:
"""
:return: 色がTapの中身のものであればTrueを返す.
:rtype: bool
"""
if b in range(128, 213) and g in range(128, 238) and r in range(128, 238):
return True
else:
return False
@classmethod
def is_green(cls, b: int, g: int, r: int) -> bool:
"""
:return: 色がStart,TapEndの枠またはmiddleの中身のものであればTrueを返す.
:rtype: bool
"""
if b == 50 and g == 205 and r == 50:
return True
else:
return False
@classmethod
def is_connecting_green(cls, b: int, g: int, r: int) -> bool:
"""
(startを識別するためのもの。)
:return: 色が長押しの途中のものであればTrueを返す.
:rtype: bool
"""
if b == 13 and g == 51 and r == 13:
return True
elif b == 106 and g == 144 and r == 92:
return True
elif b == 37 and g == 51 and r == 13:
return True
# elif b == 25 and g == 103 and r == 25: # TapStartの中身 or つながり緑の枠。終点と認識されるのでだめ。
# return True
elif b == 31 and g == 128 and r == 31:
return True
elif b == 31 and g == 128 and r == 43:
return True
elif b == 37 and g == 75 and r == 13: # サビ
return True
elif b == 140 and g == 178 and r == 140: # 小節境界線と繋がり緑中身
return True
elif b == 109 and g == 187 and r == 109: # 小節境界線と繋がり緑枠
return True
else:
return False
@classmethod
def is_middle_frame(cls, b: int, g: int, r: int) -> bool:
"""
:return: 色がmiddleの枠のものであればTrueを返す.
:rtype: bool
"""
if b == 211 and g == 211 and r == 211:
return True
else:
return False
@classmethod
def is_tap_frame(cls, b: int, g: int, r: int) -> bool:
"""
:return: 色がTapの枠のものであればTrueを返す.
:rtype: bool
"""
if b == 255 and g == 255 and r == 255:
return True
else:
return False
@classmethod
def is_flick_frame(cls, b: int, g: int, r: int) -> bool:
"""
:return: 色がFlickの枠のものであればTrueを返す.
:rtype: bool
"""
if b == 255 and g == 0 and r == 255:
return True
else:
return False
@classmethod
def is_yellow_frame(cls, b: int, g: int, r: int) -> bool:
"""
:return: 色が黄色円枠のものであればTrueを返す.
:rtype: bool
"""
if b == 0 and g == 165 and r == 255: # 黄色
return True
else:
return False
@classmethod
def is_following_color(cls, b: int, g: int, r: int) -> bool:
"""
:return: 色が追跡すべきものであればTrueを返す.
:rtype: bool
"""
bgr = [b, g, r]
if max(bgr) == g and max(bgr) != b and max(bgr) != r:
return True
elif cls.is_middle_frame(r, g, b):
return True
else:
return False
# if cls.is_connecting_green(b, g, r) or cls.is_flick_frame(b, g, r):
# return True
# elif cls.is_green(b, g, r) or cls.is_middle_frame(b, g, r):
# return True
# elif b == 42 and g == 221 and r == 138: # TapEnd中身+同時押し黄色
# return True
# elif b == 47 and g == 221 and r == 142: # TapEnd中身+同時押し黄色+サビ
# return True
# elif b == 95 and g == 192 and r == 95: # TapEnd中身+小節境界線
# return True
# elif b == 115 and g == 193 and r == 109: # TapEnd中身+小節境界線+サビ
# return True
# else:
# return False
|
import math
def binary_search(list, item):
low = 0
high = len(list) - 1
while low <= high:
mid = (low + high) // 2
guess = list[mid]
if guess == item:
return mid
if guess > item:
high = mid - 1
else:
low = mid + 1
return None
my_list = [1, 3, 5, 7, 9]
print(binary_search(my_list, 3)) #1
print(binary_search(my_list, 8)) #None
print(math.log2(128)) #7
print(math.log2(256)) #8
print(math.log2(1000000000)) #30
#always remember that bigO notation is about WORST case scenarios, NOT best case
|
x=(1,2,3)
y=(4,5,6)
# length of tuple
print len(x)
#index based
print x[2]
#list of tuples
listOfTuples = [x,y]
print listOfTuples
#use in data analysis
(age,income) = "20,120000".split(',')
print age
print income
|
import numpy as np
np.random.seed(0)
totals = {20:0,30:0,40:0,50:0,60:0,70:0} #total number of people in each age grp
purchases = {20:0,30:0,40:0,50:0,60:0,70:0} # total purchase done by each age group
totalpurchases = 0
for _ in range(100000):
ageDecade = np.random.choice([20,30,40,50,60,70])
totals[ageDecade]+=1
purchaseProbability = float(ageDecade)/100.0 # to assign lesser probability for young people
if (np.random.random() < purchaseProbability):
totalpurchases+=1
purchases[ageDecade]+=1
print totals
print purchases
print totalpurchases
# Probability of buying something given that you are in your 30's, P(E|F)
# Equivalent to the percentage of how many 30 year old bought something
PEF = float(purchases[30])/float(totals[30])
print "P(Purchases | 30)" , PEF
# Probablity of being 30 in the data set , p(F)
PF = float(totals[30])/100000.0
print "P(30)" , PF
#Overall probability of buying something , P(E)
PE = float(totalpurchases) / 100000.0
print "P(Purchase)" , PE
#Since P(E) and P(E|F) are different , that means purchase and age are dependent
print "P(30)*P(Purchase)",PE*PF
#Probability of both being in 30's and purchasing , P(E,F) = P(E)*P(F).
#Here it might defer due to random nature of data
print "P(purchase,30)" , float(purchases[30])/100000.0
#P(E,F)/P(F) = P(E|F)
print (float(purchases[30])/100000.0)/PF # Equal to P(E|F)
|
import sys
class minHeap():
def __init__(self, arr, n):
self.harr = arr
self.heapSize = n
i = (self.heapSize // 2) - 1
while i >= 0:
self.heapify(i)
i -= 1
def left(self, i):
return (i * 2) + 1
def right(self, i):
return (i * 2) + 2
def parent(self, i):
return (i - 1) // 2
def heapify(self, i):
l = self.left(i)
r = self.right(i)
smallest = i
if l < self.heapSize and self.harr[l] < self.harr[smallest]:
smallest = l
if r < self.heapSize and self.harr[r] < self.harr[smallest]:
smallest = r
if smallest != i:
self.harr[smallest], self.harr[i] = self.harr[i], self.harr[smallest]
self.heapify(smallest)
def extractMin(self):
if self.heapSize == 0:
return sys.maxsize
min = self.harr[0]
if self.heapSize > 1:
self.harr[0] = self.harr[self.heapSize - 1]
self.heapify(0)
self.heapSize -= 1
return min
def getMin(self):
return self.harr[0]
def heapSort(self):
n = self.heapSize
while n > 0:
res = self.extractMin()
self.harr[n - 1] = res
n -= 1
if __name__ == '__main__':
a = [12, 11, 13, 5, 6, 7, 1, 10, 100, 8]
print('Initial array: ', a)
minheap = minHeap(a, len(a))
print('After heapify, array: ', a)
print('Minimum element: ', minheap.getMin())
minheap.heapSort()
print('After heap sort, array: ', a)
|
# chess dictionary validator
# Fantasy game Inventory
stuff = {'rope': 1, 'torch': 6, 'gold coin': 42, 'dagger': 1, 'arrow': 12, 'map fragments': 3}
def display_inventory(inventory):
#Print contents and total number of items in inventory.
print('Inventory:')
item_total = 0
for k, v in inventory.items():
# FILL THIS PART IN
print(str(v) + ' ' + k)
item_total += v
print('Total number of items : ' + str(item_total))
# List to Dictionary Function for Fantasy Game Inventory
def add_to_inventory(inventory, added_items):
for item in added_items:
inventory.setdefault(item, 0)
inventory[item] += 1
return(inventory)
inv = {'gold coin': 42, 'rope': 1}
dragon_loot = ['gold coin', 'dagger', 'gold coin', 'gold coin', 'ruby']
inv = add_to_inventory(inv, dragon_loot)
display_inventory(inv)
|
numpeople = input("How many people are taking the journey? ")
nummiles = input("How many miles is your trip? ")
price = 3
if int(numpeople) < 5:
price = price
if int(nummiles) == 1:
price = price
elif int(nummiles) > 1:
price = ((price * 2) - 1)
elif int(numpeople) >= 5:
price = (price * 2)
print (("Your price is £") + str(price))
|
# Create table updated
import MySQLdb
#======================== Connect to database ==================================
# Create an Object = connection to database
db = MySQLdb.connect(host="localhost", # your host, usually localhost
user="root", # your username
passwd="vertrigo", # your password
db="mybooks") # name of the data base
# prepare a cursor object using cursor() method
cursor = db.cursor()
#========================== Use sql from Py ====================================
# Show the SQL response
def SQL(sql):
s = ""
try:
cursor.execute(sql) # execute
for x in cursor.fetchall():
print x
s = s + str(x) + "\n"
except:
print " !!!!!!!! Error happened !!!!!!!!!! "
return s
#====================== Create table as per requirement ========================
SQL("DROP TABLE IF EXISTS updated;") # Carefull !!! Drops the Table!!.
sql = """CREATE TABLE updated (
ID INT(15) UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
Title VARCHAR(1000) NOT NULL DEFAULT '',
Author VARCHAR(300) NOT NULL DEFAULT '',
VolumeInfo VARCHAR(100) NOT NULL DEFAULT '',
Year INT(4) UNSIGNED DEFAULT NULL,
Edition VARCHAR(50) NOT NULL DEFAULT '',
Publisher VARCHAR(100) NOT NULL DEFAULT '',
Pages INT(10) UNSIGNED DEFAULT NULL,
Identifier VARCHAR(100) NOT NULL DEFAULT '',
Language VARCHAR(50) NOT NULL DEFAULT '',
Extension VARCHAR(50) NOT NULL DEFAULT '',
Filesize BIGINT(20) UNSIGNED NOT NULL DEFAULT '0',
Library VARCHAR(50) NOT NULL DEFAULT '',
MD5 CHAR(32) NOT NULL UNIQUE KEY,
Topic VARCHAR(500) DEFAULT '',
Commentary VARCHAR(10000) DEFAULT '',
Path VARCHAR(733) DEFAULT ''
) ENGINE=MyISAM DEFAULT CHARSET=utf8"""
SQL(sql)
#======================== disconnect from server ===============================
cursor.close ()
db.close() # disconnect from server
|
import math
# the above code imports everything from python math
# you can print number by just putting them in a print statement
print(2)
print(3.1415)
print(-6)
# all types of numbers work and you have the basic math operators too!
print(3*4)
print(4/2)
# % is the remainder operator will give you the remainder or division
print(10 % 3)
# you can also use "()" to change order of operations
print(3*(4+5))
my_num = 64
print(str(my_num) + " my favorite number!")
# you can use functions on nubmers too!
my_num = -64
# gives you the absolute value of a number
print(abs(my_num))
# you can use pow(num1,num2) will let you do exponents
print(pow(5, 2))
# functions such as min(num1, num2) or max(num1, num2) will give you the
# minimum or maximum value
# when you import everything you have more functions like floor(num) and
# ceil(num) which truncates the decimal or rounds up regardless the number
# respectively
print(math.pi)
|
from PIL import Image, ImageDraw, ImageFont
from datetime import date
import pandas as pd
import numpy as np
import yagmail
import os
#Function to verify if the certificate exists in the search_path
def find_files(filename, search_path):
result = []
for root, dir, files in os.walk(search_path):
if filename in files:
result.append(filename)
return result
#Function to attach the certificate file and send using
#gmail account ([email protected]) to all participants
def mail_send(recv_mail, filename,name):
receiver = recv_mail
body = "Hi "+name+"! Here's your Certificate of Participation for Hack-n-Slash Webinar by HackersVilla :)"
location = "certs/"+filename.strip()
yag = yagmail.SMTP("[email protected]")
yag.send(
to=receiver,
subject="Knock Knock! Its HackersVilla..",
contents=body,
attachments=location,
)
#Fetch today's date for printing on certificate
today = date.today()
date = today.strftime("%B %d, %Y")
#Storing entire csv file into a dataframe
df = pd.read_csv('list.csv')
#Length of dataframe (for iterating in the loop)
entries = len(df)
#Storing the names and emails of participants as a numpy array
arr = np.array(df[['name','email','date']])
date = arr[0][2]
print("Found",entries,"participants")
print("Creating Certificates now.. Please Wait")
#Segment to create certificate
font1 = ImageFont.truetype('Herland.ttf',170)
font2 = ImageFont.truetype('Poppins-SemiBold.otf',34)
for index,j in df.iterrows():
img = Image.open('certificate.jpg')
draw = ImageDraw.Draw(img)
W = 3650
msg = '{}'.format(j['name'])
w, h = draw.textsize(msg, font=font1)
draw.text(((W-w)/2,900), msg, fill="white", font=font1)
#draw.text(xy=(1700,900),text='{}'.format(j['name']),fill="white",font=font1)
draw.text(xy=(2400,1385),text=date,fill="#00f0ff",font=font2)
img.save('certs/{}.jpg'.format(j['name']))
print("Certificates have been created and are ready to mail")
print("Stariting now \n\n")
#Segment to iterate over every row in the array, verify the cert file and send on the corresponding email of participant
for x in range(entries):
name = arr[x][0]
img = ""
img = img + name + ".jpg"
print("Name of Participant:", name)
print("Searching for cert", img)
if find_files(img,"./certs"):
print("Certificate Found for", name)
email = arr[x][1]
print("Sending email on",email)
mail_send(email,img,name)
print("Certificate Sent\n\n")
else:
print("Certificate file not found for",name)
print("Continuing further..\n\n")
print("Huff! I am done boss")
|
# Credit: http://www.python-course.eu/turing_machine.php
class Tape(object):
blank_symbol = " "
def __init__(self, input=""):
self.__tape = {}
for i,sym in enumerate(input):
self.__tape[i] = sym
def __str__(self): # BUG
s = ""
minUsedIndex = min(self.__tape.keys())
maxUsedIndex = max(self.__tape.keys())
for i in range(minUsedIndex, maxUsedIndex):
s += self.__tape[i]
return s
def __getItem__(self,index):
if index in self.__tape:
return self.__tape[index]
else:
return blank_symbol
def __setItem__(self, pos, char):
self.__tape[pos] = char
class TuringMachine(object):
def __init__(self,
tape = "",
blank_symbol = " ",
tape_alphabet = ["0", "1"],
initial_state = "",
accepting_states = [],
final_states = [],
transition_function = {}):
self.__tape = Tape(tape)
self.__head_position = 0
self.__blank_symbol = blank_symbol
self.__current_state = initial_state
self.__transition_function = transition_function
self.__tape_alphabet = tape_alphabet
self.__final_states = final_states
def showTape(self):
print(self.__tape)
return True
def step(self):
char_under_head = self.__tape[self.__head_position]
x = (self.__current_state, char_under_head)
if x in self.__transition_function:
y = self.__transition_function[x]
self.__tape[self.__head_position] = y[1]
if y[2] == "R":
self.__head_position += 1
elif y[2] == "L":
self.__head_position -= 1
self.__current_state = y[0]
def inFinal(self):
if self.__current_state in self.__final_states:
return True
else:
return False
if __name__ == "__main__":
# Test the class
def quickTest( func, input, expected):
if func(input) == expected:
print(input, ": passed!")
else:
print(input, ": failed!")
|
###########################
# a lambda in Python is just an anonymous function that has one or more arguments, but only one expression.
###########################
# Syntax:
# lambda arguments : expression
# Example
add_ten = lambda a : a + 10
print(type(add_ten))
# Prints <class 'function'>
print(add_ten(5))
# Prints 15
my_list = [1, 8, 5, 2]
sort_list = lambda x : sorted(x)
result = sort_list(my_list)
my_list.sort()
print(my_list) # [1, 2, 5, 8]
print(result) # [1, 2, 5, 8]
def daily_activity(order, day, activity):
return {'order': order, 'day': day, 'activity': activity}
mon_activity = daily_activity(0, 'Mon', 'Baseball')
tue_activity = daily_activity(1, 'Tue', 'Swim')
wed_activity = daily_activity(2, 'Wed', 'Soccer')
thu_activity0 = daily_activity(3, 'Thu', 'Basketball')
thu_activity1 = daily_activity(4, 'Thu', 'Dance')
thu_activity2 = daily_activity(5, 'Thu', 'Football')
activities = [mon_activity, tue_activity, wed_activity, thu_activity0, thu_activity1, thu_activity2]
# print(activities) # prints in one wrapable row
def print_nice(val):
for item in val:
print(item)
# to sort by a key value
sorted_activities = sorted(activities, key= lambda x : x['order'], reverse = True)
print(f' sort by activities')
print_nice(sorted_activities)
print(f' original')
print_nice(activities)
# to sort by more than one Key
sorted_activities2 = sorted(activities, key = lambda x : (x['order'], x['activity']), reverse = True )
print(f" sort by \'order\' and then by \'activity\' ")
print_nice(sorted_activities2)
# the itemgetter function cna be used to represent the sequence of keys
from operator import itemgetter
sorted_activities3 = sorted(activities, key = itemgetter('day', 'activity'), reverse = True)
print(f" sort by \'day\' and then by \'activity\' ")
print_nice(sorted_activities3)
# we can use a function to define the key as well
def sort_keys(day):
return (day['day'])
sorted_activities4 = sorted(activities, key = sort_keys)
print(f"sorted by \'day\'")
print_nice(sorted_activities4)
|
"""Задача 0
Написать программу, запрашивающую у пользователя строку с текстом и разделитель.
Необходимо вывести список слов с их длиной в начале слова, например, 5hello.
Для каждой из пользовательских функций написать функцию-тест.
"""
def inp():
usstr = input("String here: ")
r = input("Razdel: ")
usstr = usstr.split(r)
return usstr
def count(ustr):
#ustr = inp()
print(ustr)
for i in range(len(ustr)): # берет строку с длиной каждого слова(которые лежат в списке)
ustr[i] = str(len(ustr[i])) + ustr[i] # и складывает с самим словом, которое тоже строка
return ustr
def tests():
if count(['saddsa', 'dsdsadsa', 'dsadsadsa']) == ['6saddsa', '8dsdsadsa', '9dsadsadsa']:
print(count(['saddsa', 'dsdsadsa', 'dsadsadsa']))
print("tests are okay")
else:
print("errors")
tests()
|
"""Задача 1
Дана целая матрица А(N,N). Составить программу подсчета среднего арифметического значения элементов матрицы.
"""
# input: [1, 2, 3], [1, 4, 5], [3, 8, 0]
# output: ((1+2+3)/3 + (1+4+5)/3 + (3+8+0)/3)3
def make_matrix():
from random import randrange
# Задаем матрицу через генератор
n = int(input("Enter n: ")) # количество строк матрицы
m = int(input("Enter m: ")) # кол-во эл-тов строки матрицы
matrix = [[randrange(0, 10) for i in range(m)] for j in range(n)]
return matrix
def n_mid():
x = 0
matrix = make_matrix()
for i in matrix:
x += sum(i)/len(i) # считаю среднее арифметическое для каждой строки, сразу добавляя в общую сумму
return x/len(matrix)
def test_func():
try:
print(n_mid())
print("Tests are okay")
except ValueError:
print("An error occured")
test_func()
|
"""Задача 4*
Дана квадратная матрица А(N,N). Составить программу подсчета количества отрицательных элементов,
расположенных выше главной диагонали.
"""
def make_matrix(n=3):
from random import randrange
# n = int(input("Enter n: "))
matrix = [[randrange(-100, 100) for i in range(n)] for j in range(n)]
d = [] # Главная диагональ -- проведена из левого верхнего,т.e 1 эл-ту 1-го столбца к
for i in range(len(matrix)): # правому нижнему, т.e последнему эл-ту последнего стольца
d.append(matrix[i][i])
print("Matrix is:", matrix)
print("Diagonal is:", d)
return matrix
# Для 0-й строки проверяю каждый эл-т от [0+1] до [len()]
# Для 1-й эл-ты [1+1] до [len()]
# Для n-ной эл-ты [n+1] до [len()]
def elements():
c = 0
i_num = 0 # т.к. диагональ не считается. Если бы считалась, то начал бы с -1
matrix = make_matrix()
for i in range(len(matrix)):
i_num += 1
for j in range(i_num, len(matrix[i])): # для каждой итерации j будет начинаться на 1 правее
if matrix[i][j] < 0:
c += 1
return c
def test_fuct():
try:
print("\nThe ammount of negative elements above the diagonal is/are:", elements())
print("\nTests are okay")
except ValueError as err:
print(err)
print("\nAn error occured!")
test_fuct()
|
# Задача 5. На вход поступают две строки. Необходимо выяснить, является ли вторая строка подстрокой первой.
str1 = 'aaaaaaasdadasdsadsadasgsdfgfggsg'
str2 = 'aaa'
# 1
if str2 in str1:
print(1)
else:
print(0)
|
""" Дана строка ‘Hello!Anthony!Have!A!Good!Day!’. Создать список,
состоящий из отдельных слов[‘HELLO’, ‘ANTHONY’, ‘HAVE’, ‘A’, ‘GOOD’, ‘DAY’].
"""
mystr = "Hello!How!Are!you?!"
s = mystr.upper().split("!")
s.remove("")
print(s)
|
from urllib.request import Request
from urllib.request import urlopen
from urllib.error import HTTPError
from urllib.error import URLError
from bs4 import BeautifulSoup
def converToSoup(url):
'''
This function will parse the url to BeautifulSoup(BS)
'''
try:
urlRequest = Request(url,headers={'User-Agent':'Mozilla/6.0'})
urlOpen = urlopen(urlRequest)
urlRead = urlOpen.read()
urlClose = urlOpen.close()
urlBSoup = BeautifulSoup(urlRead,"html.parser")
return urlBSoup
except HTTPError:
print ("The server returned an HTTP error")
except URLError:
print ("The server could not be found")
def getNewsInfo(urlBSoup):
'''
This function will get title,author,date information
'''
Title = urlBSoup.find("h1",{"class":"entry-title"}).text
checkAuthorisNull = urlBSoup.find("div",{"id":"art_author"})
if checkAuthorisNull == None:
Author = ""
else:
Author = checkAuthorisNull.text.replace("\n","")
Date = urlBSoup.find("div",{"id":"art_plat"}).text
NewsInfo = [Title,Author,Date]
return NewsInfo
def getWholeArticle(urlBSoup):
'''
This function will get article's body. It also removes unwanted text after the <p> tag making use of the decompose method
'''
soupBody = urlBSoup.findAll("div",{"id":"article_content"})
articleBody = soupBody[0].div
for unwantedText in articleBody.findAll("div"):
unwantedText.decompose()
wholeArticle = articleBody.get_text()
return wholeArticle
def saveData(newsInfo,url,wholeArticle):
'''
This function will save the scraped data to a text file
'''
filename = newsInfo[0].replace(" ","_") + ".txt"
f = open(filename,"w")
f.write(newsInfo[0] + "\n")
f.write(newsInfo[1] + "\n")
f.write(newsInfo[2] + "\n")
f.write(url + "\n")
f.write(wholeArticle)
f.close()
return True
def main():
# The url of the website we will scrape
url="https://opinion.inquirer.net/117659/a-hard-hitting-biography-of-duterte"
# This function (converToSoup) will convert the url to BeautifulSoup
urlBSoup = converToSoup(url)
# This function will get the title,author,date of the article
newsInfo = getNewsInfo(urlBSoup)
print (newsInfo)
# This function will retrieve the content of the entire article
wholeArticle = getWholeArticle(urlBSoup)
print (wholeArticle)
# This function will save the scraped data to a text file
saveData(newsInfo,url,wholeArticle)
main()
|
from datetime import date
import Book
# Receipt class
#
# Class to generate the receipt
class Receipt:
books = []
def add_book(self, book: Book, due_date=date.today()):
self.books.append([book, due_date])
def remove_book(self, book: Book):
self.books.remove(book)
def generate_receipt(self):
print("Receipt")
for book, due_date in self.books:
print(book)
print("Due date: ", due_date)
|
from itertools import combinations
"""
Python
======
Your code will run inside a Python 2.7.13 sandbox. All tests will be run by calling the solution() function.
Standard libraries are supported except for bz2, crypt, fcntl, mmap, pwd, pyexpat, select, signal, termios, thread,
time, unicodedata, zipimport, zlib.
Input/output operations are not allowed.
Your solution must be under 32000 characters in length including new lines and and other non-printing characters.
Please Pass the Coded Messages
==============================
You need to pass a message to the bunny prisoners, but to avoid detection, the code you agreed to use is... obscure, to
say the least. The bunnies are given food on standard-issue prison plates that are stamped with the numbers 0-9 for
easier sorting, and you need to combine sets of plates to create the numbers in the code. The signal that a number is
part of the code is that it is divisible by 3. You can do smaller numbers like 15 and 45 easily, but bigger numbers
like 144 and 414 are a little trickier. Write a program to help yourself quickly create large numbers for use in the
code, given a limited number of plates to work with.
You have L, a list containing some digits (0 to 9). Write a function solution(L) which finds the largest number that
can be made from some or all of these digits and is divisible by 3. If it is not possible to make such a number, return
0 as the solution. L will contain anywhere from 1 to 9 digits. The same digit may appear multiple times in the list,
but each element in the list may only be used once.
-- Python cases --
Input:
solution.solution([3, 1, 4, 1])
Output:
4311
Input:
solution.solution([3, 1, 4, 1, 5, 9])
Output:
94311
"""
"""
-L, a list of 0 to 9
- function is solution(L)
- number must be divisible by 3
"""
def solution(L):
L.sort(reverse=True)
for i in reversed(range(1, len(L) + 1)):
for n in list(combinations(L, i)):
if sum(n) % 3 == 0:
return int(''.join(map(str, n)))
return 0
print(solution([3, 1, 4, 1]))
print(solution([3, 1, 4, 1, 5, 9]))
|
#2.
"""
#4. Convert degree celsius to fahrenheit
#take input in degree celsius
input1 = int(input("Enter temperatue in ˚C:"))
print("temperature in fahrenheit is: "+str(input1*(9/5)+32))
"""
"""
#5. to check the palindrome
def isPalindrome(string):
str = string[::-1]
#check whether str and string are the same
if str == string:
print(True)
else:
print(False)
isPalindrome("malayalam")
"""
"""
#6. to count the number of vowels in a string
a = ['a','e','i','o','u','A','E','I','O','U']
b = input("Enter a string:")
count = 0
not_a_vowel = 0
for i in b:
if i in a:
count = count+1
else:
not_a_vowel = not_a_vowel+1
print("number of vowels is:"+str(count))
"""
"""
#7. to check the presence of substring in a string
b = input("Enter something:")
c = input("Enter substring:")
if c in b:
print(True)
else:
print(False)
"""
"""
#8. slice and convert to float
str = "X-DSPAM-Confidence:0.8475"
i = str.find(":")
res = str[i+1:]
print(float(res))
"""
|
#!/usr/bin/env python3
# An insecure password locker program.
import sys
import pyperclip
PASSWORDS = {'email': 'F7minlBDDuvMJuxESSKHFhTxFtjVB6',
'blog': 'VmALvQyKAxiVH5G8v01if1MLZF3sdt',
'luggage': '12345'}
if len(sys.argv) < 2:
print('Copy account password to system clipboard')
print('Usage: python3 password_locker.py [account]')
sys.exit()
account = sys.argv[1]
if account in PASSWORDS:
pyperclip.copy(PASSWORDS[account])
print(f'Password for {account} copied to clipboard.')
else:
print(f'There is no account named {account}.')
|
import numpy as np
from scipy.optimize import fmin_cg
class NeuralNetwork_Classifier(object):
forwardProp = None
def __init__(self,hidden_layers = [2]):
self.hidden_layers_size = hidden_layers
print(self.hidden_layers_size)
def sigmoid(self,X):
"""
It returns the sigmoid function applied to the matrix X. X may have any shape.
"""
sig = 1/(1+np.exp(-X))
return sig
def sigmoidGradient(self,X):
"""
It returns the derivative of the sigmoid function calculated at X. X is a matrix and may have any shape.
"""
sig_g = self.sigmoid(X)*(1-self.sigmoid(X))
return sig_g
def Rand_param_Theta(self,In_value, Out_value):
"""
It returns a (Out_value x In_value+1) random matrix with small entries.
"""
epsilon_init = 0.12
Rand_param = np.random.rand(Out_value, In_value+1) * 2 * epsilon_init - epsilon_init
return Rand_param
def predict(self,nn_params, layers_data, X, min_class_pred = 0):
"""
The function returns a vector with the classification prediction for the set X.
min_class_pred identify the smaller integer in the classification and must be adjusted accordingly to your
classification labels. For instance if your labels are 1-10 you need to set min_class_pred =1. This is because
the predictions are obtained from the indeces of a matrix and python as base index 0. By default it is setted
on zero.
"""
Theta_vec = self.reshape_thetas(nn_params, layers_data)
m = np.shape(X)[0]
h_pred = [0 for i in range(len(Theta_vec)+1)]
h_pred[0] = np.hstack((np.ones(m)[np.newaxis].T, X))
for i in range(len(h_pred)-1):
h = self.sigmoid(h_pred[i]@Theta_vec[i].T)
if i == len(h_pred)-2:
h_pred[i+1] = h # h_pred[-1] is a (num_exp x num_label) matrix. The entry (i,j) contains the probabilities
# that the i-th experiment is classified with label j
else:
h_pred[i+1] = np.hstack((np.ones(m)[np.newaxis].T, h))
return np.argmax(h_pred[-1],axis = 1)+min_class_pred
def score(self,nn_params, X, Y):
"""
It return the accuracy of the Neural Network given the parameter vector nn_params, the expereiments matrix X
and the label vector Y.
"""
X = np.array(X)
Y = np.array(Y)
input_layer_size = np.shape(X)[1] #recovering the input units from the experimental matrix
num_labels = len(np.unique(Y)) #recovering the number of labels from the data stored in the label vector Y
layers_data = [input_layer_size] + self.hidden_layers_size + [num_labels] # a vector that contains the info about the units of all the layers
min_class_pred = np.unique(Y)[0]
pred = self.predict(nn_params, layers_data, X, min_class_pred)
if np.ndim(Y) ==1: Y = Y[np.newaxis]
if np.shape(Y)[1] == 1:
Y = Y.T # Reshape Y in a row vector in order to perform boolean operation
return(pred == Y).mean()
def reshape_thetas(self,nn_params,layers_data):
"""
Given a vector v and a list of integers L of lenght n it will returns a list of n-1 matrices exatrapolated by the vector v.
The shape of a returned matrix is (j x (i+1)) where [...,i,j,..] are two consecutive entries of the list L.
If it will not be possible automatically rise an Error. The order to reshape the matrices is F = Fortran.
"""
T_list = []
start_ind = 0
for m,n in zip(layers_data,layers_data[1:]):
dum = np.reshape(nn_params[start_ind:start_ind+n*(m+1)], (n, m+1), order = 'F')
T_list.append(dum)
start_ind = start_ind + n*(m+1)
return T_list
def ForwardProp(self,nn_params, layers_data, X, Y, class_range = [0,1]):
"""
It compute the Forward Propagation of the Neural Network.
It returns
-a_vec : a vector containing the computed value of the units for each layer.
Therefore a_vec[0] are the input units + bias, while a_vec[-1] are
the outputs units without the bias to use in the activation function.
- z_vec : contains the values of the activation function at each unit of the layer
excluded the output ones.
- Y : is a label Matrix of zeroes and ones. Column j has value 1 in i-th position
if i is the value of the j-th entries of Y. If it is not a "row" vector it will
be reshape into one
- Theta_vec : is the list of the weights matrices.
"""
### UTILITIES ###
if self.forwardProp is None:
Theta_vec = self.reshape_thetas(nn_params, layers_data) # recover the weights matrices from the weights vector
m = np.shape(X)[0] # number of experiments
min_class = class_range[0] # smallest value occurring in the classification
max_class = class_range[-1] # larger alue occurring in the classification
### CLASSIFICATION MATRIX ###
I = np.repeat([np.arange(min_class, max_class +1)],m,0).T # Classification Matrix
if np.ndim(Y) == 1:
Y = Y[np.newaxis]
if np.shape(Y)[1] == 1:
Y = Y.T # Reshape Y in a row vector in order to perform boolean operation
Y = np.array(I == Y).astype(int) # Matrix of zeroes and ones of the labels. Column j has value 1 in i-th position if i is the value of the j-th entries of Y.
### FORWARD ROPAGATION ###
J = 0 # Initialise the cost Function J
a1 = np.hstack((np.ones(m)[np.newaxis].T, X)) # Add the bias Column at the Input Layer
a_vec = [0 for i in range(len(layers_data))] # Initialise the units vector
z_vec = [0 for i in range(len(layers_data)-1)] # Initialise the activation function vector
a_vec[0] = a1.T
for i in range(len(layers_data)-1):
zi = Theta_vec[i]@a_vec[i] # comupte z(i)
z_vec[i] = zi
ai = self.sigmoid(zi) # Values of the unit at layer (i)
mi = np.shape(ai)[1]
if i != len(layers_data)-2:
a_i_bias = np.vstack((np.ones(mi), ai)) # Add the Bias Column at the units
a_vec[i+1] = a_i_bias
else:
a_vec[i+1] = ai
forwardProp = a_vec, z_vec, Y,Theta_vec
return forwardProp
def cost_func_NN(self,nn_params, layers_data, X, Y, class_range = [0,1], Lambda =0):
"""
The function has input:
- nn params : a vector of weights parameters
- layers_data: a list containing the number of units at each layer (input and output included)
- X : the training set matrix X
- Y : the label vector Y
-class_range (optional): is a list that contains the minimum and the maximum value of the classifier.
The maximum value determines also how many values the Neural Network need to
classify. By default it is setted as a binary 0,1 classifier.
- J : the regularisation parameter, by default is zero
The algorithm is vectorised and will return the value of the cost function J on the output layer.
"""
m = np.shape(X)[0]
a,_,Y,Theta_vec = self.ForwardProp(nn_params, layers_data, X, Y, class_range) #computing the units values, the label matrix Y and the weights matrices
a_out = a[-1] # the output units of the Neural Network
reg = (Lambda/(2*m))*(sum([(Theta[:,1:]*Theta[:,1:]).sum() for Theta in Theta_vec])) #regolarisation factor
J = (1/m) * (((-Y * np.log(a_out))-((1-Y) * np.log(1-a_out))).sum()) + reg #formula for the regularised cost function
return(J)
def grad_NN(self,nn_params,layers_data, X, Y, class_range = [0,1], Lambda =0):
"""
It compute the Backward Propagation and gradient of the Neural Network.
The function as input
- nn params : a vector of weights parameters
- layers_data: a list containing the number of units at each layer (input and output included)
- X : the training set matrix X
- Y : the label vector Y
-class_range (optional): is a list that contains the minimum and the maximum value of the classifier.
The maximum value determines also how many values the Neural Network need to
classify. By default it is setted as a binary 0,1 classifier.
- Lambda : the regularisation parameter, by default is zero
The output is a single vector containing all the unrolled gradients. This is because the fmin_cg accept
only vectors and not matrices.
"""
m = np.shape(X)[0]
a_vet,z,Y,Theta_vec = self.ForwardProp(nn_params, layers_data, X, Y, class_range) #computing the units values, the activated values z, the label matrix Y and the weights matrices
self.forwardProp = None
delta = [0 for i in range(len(layers_data)-1)] # initialise the little delta list
for i in reversed(range(1,len(layers_data))):
if i == len(layers_data)-1:
delta[i-1] = a_vet[-1]-Y # this is the value of the delta_out
else:
delta[i-1]= (Theta_vec[i][:,1:].T@delta[i])*self.sigmoidGradient(z[i-1]) #formula for computing the inner delta.
Delta = [0 for i in range(len(layers_data)-1)] # Initialise the big delta list.
for i in reversed(range(0, len(layers_data)-1)):
Delta[i] = delta[i]@a_vet[i].T # The entry i is a matrix with same shape of the weights matrix i
reg_grad = [(Lambda/m)*(np.hstack((np.zeros(np.shape(Theta)[0])[np.newaxis].T, Theta[:,1:]))) for Theta in Theta_vec] #regularisation factors
Theta_grad =[(1/m)*Del+reg for Del,reg in zip(Delta,reg_grad)] # list of gradient matrices
grad_vec = np.concatenate([Theta_g.reshape(Theta_g.size,order = 'F') for Theta_g in Theta_grad]) #gradients vector
ForwardProp = None
return grad_vec
def mini_batches(self,X,Y, num_batches = 1, strict_num_batches = True):
"""
The function will divides the trainining and labels sets into mini batches.
The output is a list containing the mini batches and their respictevely labels.
It takes input
-X : is a training matrix. Each row is an experiment and each column is a feature.
-Y : is a vector containing the labels of the experiments.
-num_batches (optional): it is the number of mini batch you want create. By defaul
it is 1, so tat it returns the entire training and label set
-strict_num_batches(optional): if the required number of mini_batches does not split
the training when True it will return num_batches mini
batches with the last one bigger since contains the remaining
value of X. If False it return num_batches+1 mini batches
with the first num_batches dimensionally equals.
"""
if num_batches == 1:
return [(X,Y)]
else:
### INITIALISATION ###
m = np.shape(X)[0] # Number of training examples
if np.ndim(Y) ==1:
Y = Y[np.newaxis] # we need to see a vector as a mx1 or 1xm matrix to perform the transpose
if np.shape(Y)[1] != 1: # Y must be a column vector
Y = Y.T
full_data = np.hstack((X,Y))
np.random.shuffle(full_data)
batch_size = m // num_batches # it returns the floor of m/num_batches
batches = [0 for i in range(num_batches)]
if m % num_batches ==0:
creation_iter = num_batches
flag = False
else:
creation_iter = num_batches +1
flag = True
### BATCHES CREATION ###
for i in range(creation_iter):
batch_i = full_data[i*batch_size:(i+1)*batch_size,:]
X_i = batch_i[:,:-1]
Y_i = batch_i[:,-1]
if flag:
if strict_num_batches and i+1 == num_batches: # if the number of batches does not split perfectly the training set
batch_i = full_data[i*batch_size:,:] # then the last batch it will contains all the remaining values and
X_i = batch_i[:,:-1] # the function it will return a list with num_batches entries
Y_i = batch_i[:,-1]
batches[i] = X_i,Y_i
break
elif i == num_batches: # if the number of batches does not split perfectly the training set
batches.append((X_i,Y_i)) # then the function it will return a list with num_batches+1 entries
break # with the first num_batches will be dimensional equal.
batches[i] = X_i,Y_i
return batches
def grad_descent(self,nn_params, layers_data, X, Y, n_iters = 100, class_range = [0,1], learning_rate = 0.001, momentum = 0, Lambda = 0, num_batches = 1, strict_num_batches = True, verbose = True, SGD_history = False):
"""
Perform the Gradient descent Algorithm(s). It returns the vector of parameters obtained
by the last iteration.
The function receive input:
- nn params : a vector of weights parameters
- layers_data: a list containing the number of units at each layer (input and output included)
- X : the training set matrix X
- Y : the label vector Y
- n_iter(optional): the number of iteration for the algorithm. By default is 100
-class_range (optional): is a list that contains the minimum and the maximum value of the classifier.
The maximum value determines also how many values the Neural Network need to
classify. By default it is setted as a binary 0,1 classifier.
- learning_rate (optional): is the size of the step for the gradient descent algorithm. Usually
referred as 'alpha'. By default is 0.01.
- momentum (optional): is the rate to multiply the velocity vector. It is a float between 0 and 1.
By default is zero so that the function perform a plain gradient descent.
- Lambda (optional) : the regularisation parameter for the cost function and the gradient function.
By default is zero
- num_batches : it is the number of mini batches we want to extrapolate from the the training set. When
setted as 1 it will perform the 'Batch Gradient Descent'. When it is equal to the number
of training example the function will do the 'Stochastic Gradient Descent'. For intermediate
value it will perform the 'Mini Batch Gradient Descent'. By default is setted to perform the
Gradient Descent.
- strict_num_batches : is a value to pass to the batch creation function. It will adjust the batches in the
case the training set is not perfectly divisible by the choosen number of batches.
"""
if SGD_history:
Theta_history = [0 for i in range(n_iters*num_batches)]
Cost_history = [0 for i in range(n_iters*num_batches)]
idx = 0
else:
Theta_history = [0 for i in range(n_iters)]
Cost_history = [0 for i in range(n_iters)]
v = np.zeros_like(nn_params)
for i in range(n_iters):
m_batches = self.mini_batches(X,Y, num_batches, strict_num_batches)
for batch in m_batches:
X_i,Y_i = batch
grad = self.grad_NN(nn_params,layers_data, X_i, Y_i, class_range, Lambda) # Derivative of the Cost Function
v = momentum*v+ learning_rate*grad # computing the velocity vector
nn_params = nn_params - v # updating the parameters
if SGD_history:
Cost_history[idx] = self.cost_func_NN(nn_params, layers_data, X_i, Y_i, class_range, Lambda) # storing the new value of the cost function
Theta_history[idx] = nn_params
idx+=1
else:
Cost_history[i] = self.cost_func_NN(nn_params, layers_data, X_i, Y_i, class_range, Lambda)
Theta_history[i] = nn_params
if verbose:
print('The value of the cost function is: {}'.format(Cost_history[i]))
return nn_params, Cost_history, Theta_history
def fit(self,X, Y, class_range =[0,1], Lambda = 0, max_iter = 50, optim_fun = 'fmin_cg', learning_rate = 0.01, momentum = 0, num_batches = 1, strict_num_batches = True, verbose = True, SGD_history = False):
"""
The function will train a Neural Network Classifier on your set X with labels in the vector Y.
It returns a single vector that containing all the optimal weights for the classifier after max_iter iterations
of the optimisation function fmin_cg. To use it for the prediction you need to reshape all the Weights matrix.
The function reshape_thetas will do it for you.
The function has input:
-X : is a training matrix. Each row is an experiment and each column is a feature.
-Y : is a vector containing the labels of the experiments.
You have also the following options:
-hidden_layers_sizes (optional): is a list that contains the numbers of units in each internal
layer of the Neural Network. By default the Neural Network has
a single internal layer with two units. More entries in the vector
means more layers.
-class_range (optional): is a list that contains the minimum and the maximum value of the classifier.
The maximum value determines also how many values the Neural Network need to
clssify. By default it is setted as a binary 0,1 classifier.
-max_iter(optional): it determines the maximum number of iterations that the optimisation function
-Lambda (optional): is the regularisation parameter. By default is zero. Increase the parameter if you are
experiencing high variance or reduce it if you have high bias.
-optim_fun (optional): You can choose the optimisation function to find the best weights parameters. At the
moment you can give the value 'fmin_cg' (default value) and will use the fmin_cg function
from the library scipy.optimize. Alternatively you can write 'GradDesc' and we will use
our implementation of the Gradient Descent Algorithm.
-learning_rate (optional): is the learning rate parameter 'alpha' for the Gradient Descent algorithm. By default
is 0.01.
- num_batches(optional): it is the number of mini batches we want to extrapolate from the the training set. When
setted as 1 it will perform the 'Batch Gradient Descent'. When it is equal to the number
of training example the function will do the 'Stochastic Gradient Descent'. For intermediate
value it will perform the 'Mini Batch Gradient Descent'. By default is setted to perform the
Gradient Descent.
- strict_num_batches(optional) : is a value to pass to the batch creation function. It will adjust the batches in the
case the training set is not perfectly divisible by the choosen number of batches.
"""
X = np.array(X)
Y = np.array(Y)
#### UTILITIES ####
input_layer_size = np.shape(X)[1] #recovering the input units from the experimental matrix
num_labels = len(np.unique(Y)) #recovering the number of labels from the data stored in the label vector Y
layers_data = [input_layer_size] + self.hidden_layers_size + [num_labels] # a list that contains the info about the units of all the layers
#### INITIALISATION OF THE PARAMETERS ####
Thetas = [self.Rand_param_Theta(i,j) for i,j in zip(layers_data,layers_data[1:])] #random initialisation of the layers matrices Weights
nn_params_init = np.concatenate([Theta_p.reshape(Theta_p.size,order = 'F') for Theta_p in Thetas]) #it creates a vector with all the entries of the Weights
#### FITTING OF THE NEURAL NETWORK ####
if optim_fun == 'fmin_cg':
args = (layers_data, X, Y, class_range, Lambda) #arguments to pass to the functions
xopt = fmin_cg(self.cost_func_NN, x0 = nn_params_init, fprime = self.grad_NN, args = args, maxiter = max_iter) #computes the optimal Weights vector
return xopt
elif optim_fun == 'GradDesc':
if num_batches > np.shape(X)[0]:
print('Error: Number of batches bigger than number of training examples')
return None
xopt, Cost_history, Theta_history = self.grad_descent(nn_params_init, layers_data, X, Y, max_iter, class_range, learning_rate, momentum, Lambda, num_batches, strict_num_batches, verbose, SGD_history)
return xopt, Cost_history, Theta_history
|
# https://www.reddit.com/r/dailyprogrammer/comments/8bh8dh/20180411_challenge_356_intermediate_goldbachs/
def goldbach_weak_conjecture(*args):
for n in args:
if n % 2 == 0 or n < 6:
print("Illegal argument")
return -1
def find_primes(n):
l = []
for i in range(2, n):
is_prime = True
for j in range(2, i):
if i%j == 0:
is_prime = False
if is_prime:
l.append(i)
return l
for n in args:
list_of_primes = find_primes(n)
for i in range(len(list_of_primes)):
for j in range(i, len(list_of_primes)):
for k in range(j, len(list_of_primes)):
if list_of_primes[i] + list_of_primes[j] + list_of_primes[k] == n:
print("{} = {} + {} + {}".format(n, list_of_primes[j], list_of_primes[i], list_of_primes[k]))
|
import unittest
import numpy as np
from LogisticRegression import LogisticRegressionClassifier
class Test(unittest.TestCase):
def test_sigmoid(self):
# Creating object of classifier for unit testing
lrs = LogisticRegressionClassifier()
print("test_sigmoid")
# Checking if values for sigmoid are between 0 and 1
# testing with positive and negative numbers which are varied.
self.assertEqual(lrs.sigmoid(100), 1)
self.assertEqual(lrs.sigmoid(1), 0.7310585786300049)
self.assertEqual(lrs.sigmoid(2), 0.8807970779778823)
self.assertEqual(lrs.sigmoid(3), 0.9525741268224334)
self.assertEqual(lrs.sigmoid(0.1), 0.52497918747894)
self.assertEqual(lrs.sigmoid(-1), 0.2689414213699951)
def test_loss(self):
lrs = LogisticRegressionClassifier()
print("test_loss")
# Testing for correct log loss output from cost function.
self.assertAlmostEqual(lrs.loss(0,0), -0.0000099999)
self.assertAlmostEqual(lrs.loss(1,1), -0.0000099999)
self.assertAlmostEqual(lrs.loss(0.5,1), 0.69312718)
self.assertAlmostEqual(lrs.loss(0.5,0), 0.69312718)
def test_prediction(self):
lrs = LogisticRegressionClassifier()
# Testing prediction when classifier is not trained
print("test_prediction when not trained")
self.assertEqual(lrs.predict(0.222), None)
lrs.weight = np.zeros(1)
print("test_prediction when trained")
# Testing prediction when classifier has some weight
self.assertEqual(lrs.predict(0.222), 0)
# simulating trained weights.
lrs.weight += 0.3
self.assertEqual(lrs.predict(0.222), 1)
def test_gradientD(self):
lrs = LogisticRegressionClassifier()
print("test_gradient")
# Test case for when max iterations are 0.
lrs.iterations = 0
self.assertEqual(lrs.fit(np.array([0]),1), None)
lrs.iterations = 10
# Checking correct update of weights for network.
lrs.fit(np.array([[0.4, 0.5],[0.2,0.3]]),np.array([1,0]))
self.assertAlmostEqual(lrs.weight[0],0.04872931)
self.assertAlmostEqual(lrs.weight[1],0.04834258)
if __name__ == '__main__':
unittest.main()
|
# 第二章 CSV文件
# comma-separated value 逗号分隔值
#=======读写CSV文件=========================================================
#
#----------------------------------------------------------------
# input_file = 'supplier_data.csv'
# output_file = 'output_1.csv'
# with open(input_file,'r',newline='') as filereader:
# with open(output_file,'w',newline='') as filewriter:
# header = filereader.readline()
# header = header.strip()
# header_list = header.split(',')
# print(header_list)
# filewriter.write(','.join(map(str,header_list))+'\n')
# # map() 将str()应用于 header_list中每个元素 确保每个元素都是字符串
# # join() 在header_list中每个值之间插一个逗号 将列表转换为一个字符串
# for row in filereader:
# row = row.strip()
# row_list = row.split(',')
# print(row_list)
# filewriter.write(','.join(map(str,row_list))+'\n')
#----------------------------------------------------------------
#======pandas 处理CSV==========================================================
# pd.read_csv() data_frame.to_csv()
#----------------------------------------------------------------
# import pandas as pd
# input_file = 'supplier_data.csv'
# output_file = 'output_pandas.csv'
# data_frame = pd.read_csv(input_file) # 数据框
# print(data_frame)
# data_frame.to_csv(output_file, index=False)
#----------------------------------------------------------------
#======读写CSV文件(二)==========================================================
# Python内置csv模块 csv.reader() csv.writer() .writerow()
#----------------------------------------------------------------
# import csv
# input_file = 'supplier_data.csv'
# output_file = 'output_2.csv'
# with open(input_file,'r',newline='') as csv_in_file:
# with open(output_file,'w',newline='') as csv_out_file:
# filereader = csv.reader(csv_in_file,delimiter=',',quotechar='"')
# filewriter = csv.writer(csv_out_file,delimiter=',') # delimiter 分隔符
# for row_list in filereader:
# print(row_list)
# filewriter.writerow(row_list)
# #----------------------------------------------------------------
#======筛选行==========================================================
# for row in filereader:
# if value in row meets some business rule or set of rules:
# do something
# else:
# do something
#----------------------------------------------------------------
#----------------------------------------------------------------
#======筛选行中的值满足某个条件==========================================================
# python csv
#----------------------------------------------------------------
# import csv
# input_file = 'supplier_data.csv'
# output_file = 'output_3.csv'
# with open(input_file,'r',newline='') as csv_in_file: # 如果不指定newline='',则每写入一行将有一空行被写入。
# with open(output_file,'w',newline='') as csv_out_file:
# filereader = csv.reader(csv_in_file)
# filewriter = csv.writer(csv_out_file)
# header = next(filereader) # next() 读取文件的第一行
# filewriter.writerow(header)
# for row_list in filereader:
# suppiler = str(row_list[0]).strip()
# cost = str(row_list[3].strip('$').replace(',',''))
# if suppiler == 'Suppiler Z' or float(cost) > 600.0:
# filewriter.writerow(row_list)
#----------------------------------------------------------------
#=======筛选行中的值满足某个条件=========================================================
# pandas .loc() 设置筛选条件
#----------------------------------------------------------------
# import pandas as pd
# input_file = 'supplier_data.csv'
# output_file = 'output_pandas_3.csv'
# data_frame = pd.read_csv(input_file)
# # data_frame['Cost'] = data_frame['Cost'].str.strip('$').str.replace(',','').astype(float) # 直接改变['Cost']的内容
# cost = data_frame['Cost'].str.strip('$').str.replace(',','').astype(float) # 保留原始格式
# data_frame_value_meets_condition = data_frame.loc[(data_frame['Supplier Name'].str.contains('Z'))|(cost >600.0),:]
# print(data_frame_value_meets_condition)
# data_frame_value_meets_condition.to_csv(output_file,index=False)
#----------------------------------------------------------------
#=======筛选行中的值属于某个集合=========================================================
# python csv
#----------------------------------------------------------------
# import csv
# input_file = 'supplier_data.csv'
# output_file = 'output_4.csv'
# important_dates = ['1/20/14', '1/30/14']
# with open(input_file,'r',newline='') as csv_in_file: # 如果不指定newline='',则每写入一行将有一空行被写入。
# with open(output_file,'w',newline='') as csv_out_file:
# filereader = csv.reader(csv_in_file)
# filewriter = csv.writer(csv_out_file)
# header = next(filereader) # next() 读取文件的第一行
# filewriter.writerow(header)
# for row_list in filereader:
# a_data = row_list[4]
# if a_data in important_dates:
# filewriter.writerow(row_list)
#----------------------------------------------------------------
#========筛选行中的值属于某个集合========================================================
# pandas isin()
#----------------------------------------------------------------
# import pandas as pd
# input_file = 'supplier_data.csv'
# output_file = 'output_pandas_4.csv'
# data_frame = pd.read_csv(input_file)
# important_dates = ['1/20/14', '1/30/14']
# data_frame_value_in_set = data_frame.loc[data_frame['Purchase Date'].isin(important_dates),:]
# print(data_frame_value_in_set)
# data_frame_value_in_set.to_csv(output_file,index=False)
#----------------------------------------------------------------
#=======行中的值匹配于某个模式\正则表达式=========================================================
# python csv
#----------------------------------------------------------------
# import csv
# import re
# input_file = 'supplier_data.csv'
# output_file = 'output_5.csv'
# # ?P<my_pattern_group> 捕获了名为<my_p_g>的组中匹配了的子字符串 不知道这句目前有什么用
# # ^001-.* ^:只在字符串开头搜索模式 .:匹配任何字符,除了换行符 *:重复前面的字符0次或更多次
# # 即 .* 组合 表示除换行符意外的任何字符出现
# # 参数 re.I 正则表达式进行大小写敏感匹配
# pattern = re.compile(r'(?P<my_pattern_group>^001-.*)',re.I)
# with open(input_file,'r',newline='') as csv_in_file:
# with open(output_file,'w',newline='') as csv_out_file:
# filereader = csv.reader(csv_in_file)
# filewriter = csv.writer(csv_out_file)
# header = next(filereader)
# filewriter.writerow(header)
# for row_list in filereader:
# invoice_number = row_list[1]
# if pattern.search(invoice_number):
# filewriter.writerow(row_list)
# print(row_list)
#----------------------------------------------------------------
#========行中的值匹配于某个模式\正则表达式========================================================
# pandas startswith() 进行搜索数据
#----------------------------------------------------------------
# import pandas as pd
# input_file = 'supplier_data.csv'
# output_file = 'output_pandas_5.csv'
# data_frame = pd.read_csv(input_file)
# data_frame_value_matches_pattern = data_frame.loc[data_frame['Invoice Number'].str.startswith("001-"),:]
# data_frame_value_matches_pattern.to_csv(output_file,index=False)
# print(data_frame_value_matches_pattern)
#----------------------------------------------------------------
#======选取特定的列==========================================================
# 1.使用列索引值
# 2.使用列标题
#----------------------------------------------------------------
#----------------------------------------------------------------
#======列索引值==========================================================
# python
#----------------------------------------------------------------
# import csv
# input_file = 'supplier_data.csv'
# output_file = 'output_6.csv'
# my_columns = [0,3]
# with open(input_file,'r',newline='') as csv_in_file:
# with open(output_file,'w',newline='') as csv_out_file:
# filereader = csv.reader(csv_in_file)
# filewriter = csv.writer(csv_out_file)
# for row_list in filereader:
# row_list_ouput = []
# for index_value in my_columns:
# row_list_ouput.append(row_list[index_value])
# filewriter.writerow(row_list_ouput)
# print(row_list_ouput)
#----------------------------------------------------------------
#========列索引值========================================================
# pandas iloc[] 根据索引位置选取列
#----------------------------------------------------------------
# import pandas as pd
# input_file = 'supplier_data.csv'
# output_file = 'output_pandas_6.csv'
# data_frame = pd.read_csv(input_file)
# data_frame_column_by_index = data_frame.iloc[:,[0,3]]
# data_frame_column_by_index.to_csv(output_file,index=False)
# print(data_frame_column_by_index)
#----------------------------------------------------------------
#========列标题========================================================
# python 思想:通过标题行的关键词 得到索引值
#----------------------------------------------------------------
# import csv
# input_file = 'supplier_data.csv'
# output_file = 'output_7.csv'
# my_columns = ['Invoice Number','Purchase Date']
# my_columns_index = []
# with open(input_file,'r',newline='') as csv_in_file:
# with open(output_file,'w',newline='') as csv_out_file:
# filereader = csv.reader(csv_in_file)
# filewriter = csv.writer(csv_out_file)
# header = next(filereader,None)
# for index_value in range(len(header)):
# if header[index_value] in my_columns:
# my_columns_index.append(index_value) # 得到索引值
# filewriter.writerow(my_columns)
# print(my_columns)
# for row_list in filereader:
# row_list_ouput = []
# for index_value in my_columns_index:
# row_list_ouput.append(row_list[index_value])
# filewriter.writerow(row_list_ouput)
# print(row_list_ouput)
#----------------------------------------------------------------
#========列标题========================================================
# pandas lic[] 选取列
#----------------------------------------------------------------
# import pandas as pd
# input_file = 'supplier_data.csv'
# output_file = 'output_pandas_7.csv'
# data_frame = pd.read_csv(input_file)
# data_frame_column_by_name = data_frame.loc[:,['Invoice Number','Purchase Date']]
# data_frame_column_by_name.to_csv(output_file,index=False)
# print(data_frame_column_by_name)
#----------------------------------------------------------------
#=======选取连续的行=========================================================
# python row_counter 来跟踪行编号
#----------------------------------------------------------------
# import csv
# input_file = 'supplier_data_unnecessary_header_footer.csv'
# output_file = 'output_8.csv'
# row_counter = 0
# with open(input_file,'r',newline='') as csv_in_file:
# with open(output_file,'w',newline='') as csv_out_file:
# filereader = csv.reader(csv_in_file)
# filewriter = csv.writer(csv_out_file)
# for row in filereader:
# if row_counter >=3 and row_counter <=15:
# filewriter.writerow([value.strip() for value in row])
# print(row_counter,[value.strip() for value in row])
# row_counter += 1
#----------------------------------------------------------------
#=======选取连续的行=========================================================
# pandas drop() 根据索引的行、列标题来丢弃行或列
# iloc[] 根据行索引选取一个单独的行作为列索引
# reindex() 为数据框重新生成索引
#----------------------------------------------------------------
# import pandas as pd
# input_file = 'supplier_data_unnecessary_header_footer.csv'
# output_file = 'output_pandas_8.csv'
# data_frame = pd.read_csv(input_file, header=None) # 不读取header
# data_frame = data_frame.drop([0,1,2,16,17,18])
# data_frame.columns = data_frame.iloc[0] #
# data_frame = data_frame.reindex(data_frame.index.drop(3))
# data_frame.to_csv(output_file,index=False)
# print(data_frame)
#----------------------------------------------------------------
#================================================================
#
#----------------------------------------------------------------
#----------------------------------------------------------------
#================================================================
#
#----------------------------------------------------------------
#----------------------------------------------------------------
#================================================================
#
#----------------------------------------------------------------
#----------------------------------------------------------------
#================================================================
#
#----------------------------------------------------------------
#----------------------------------------------------------------
#================================================================
#
#----------------------------------------------------------------
#----------------------------------------------------------------
#================================================================
#
#----------------------------------------------------------------
#----------------------------------------------------------------
#================================================================
#
#----------------------------------------------------------------
#----------------------------------------------------------------
#================================================================
#
#----------------------------------------------------------------
#----------------------------------------------------------------
#================================================================
#
#----------------------------------------------------------------
#----------------------------------------------------------------
#================================================================
#
#----------------------------------------------------------------
#----------------------------------------------------------------
#================================================================
#
#----------------------------------------------------------------
#----------------------------------------------------------------
#================================================================
#
#----------------------------------------------------------------
#----------------------------------------------------------------
#================================================================
#
#----------------------------------------------------------------
#----------------------------------------------------------------
#================================================================
#
#----------------------------------------------------------------
#----------------------------------------------------------------
#================================================================
#
#----------------------------------------------------------------
#----------------------------------------------------------------
#================================================================
#
#----------------------------------------------------------------
#----------------------------------------------------------------
|
class Punkt:
def __init__(self, x, y):
self.x = x
self.y = y
def __str__(self):
return f"POINT ({self.x} {self.y})"
def __int__(self):
return f"POINT ({self.x} {self.y})"
# -------------------------------------
a = Punkt(2,3)
print(a) # <__main__.Punkt object at 0x000002851A29D190>
#b = Punkt(4,5)
#print(b)
##print(str(b))
#c = int(a)
#print(c)
|
from copy import deepcopy
class Board:
"""Represents a chess board which keeps track of positions where a queen can be placed."""
def __init__(self, n, allowed=None):
"""Initialize board dimension and allowed positions."""
assert isinstance(n, int), "Size must be an integer"
assert n > 0, "Size must be positive"
self.dim = n
if allowed is None:
self.allowed = [[True for _ in range(n)] for _ in range(n)]
else:
self.allowed = allowed
def place(self, position):
"""Try to place a queen on the given position and return a new board.
If the queen cannot be placed, return False. Otherwise, return a new board which has
the board state of the queen being in that position plus the previous state.
"""
x, y = position
if not self.allowed[x][y]:
return False
updated = deepcopy(self.allowed)
# Update horizontally and vertically
for i in range(self.dim):
updated[x][i] = False
updated[i][y] = False
# Update diagonally
directions = [(1, 1), (1, -1), (-1, 1), (-1, 1)]
for xdir, ydir in directions:
row, col = x, y
while row < self.dim and col < self.dim and row >= 0 and col >= 0:
updated[row][col] = False
row += xdir
col += ydir
return Board(self.dim, allowed=updated)
def valid_positions(self, row):
"""Return a list of valid positions for a given row."""
return [(row, col) for col in range(self.dim) if self.allowed[row][col]]
def nqueen(board, positions=[], row=0):
"""Solve the n-queen puzzle recursively for a given board."""
valids = board.valid_positions(row)
if not valids:
return False, None
for valid in valids:
# Try to find a solution with queen in this position
new_board = board.place(valid)
positions.append(valid)
if row == board.dim - 1:
return True, positions
found, final_positions = nqueen(new_board, positions=positions, row=row + 1)
if found:
return True, final_positions
# There was no solution, keep trying
positions.pop()
# No solution found with the given board
return False, None
def main():
"""Prompt the user for a board size and solve the n-queen puzzle for that board."""
size = input("Grid size: ")
size = int(size)
board = Board(size)
found, positions = nqueen(board)
if not found:
print("No solution found")
else:
print("Queen positions:", positions)
if __name__ == "__main__":
main()
|
import numpy as np
import pandas as pd
#n = input("Enter an integer:")
#for i in range(n):
# print(n)
my_matrix = np.identity(5)
second_matrix = np.random.random(size(5,4))
print(my_matrix, second_matrix)
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon May 4 18:16:54 2020
@author: luismanuelalvarez
"""
class Estudiante:
def __init__(self,nombre,edad=16):
self.nombre = nombre
self.edad = edad
def devuelve_datos(self):
if(self.edad > 18):
return "El estudiante"+ self.nombre + " con edad "+ str(self.edad) +" es mayor de edad"
return "El estudiante " + self.nombre + " Es menor de edad"
if __name__ == '__main__':
a1 = Estudiante('Manuel', 30)
print(a1.devuelve_datos())
|
import random
"""
Chapter 1.10
"""
print()
print()
print("self_check_1:")
# the answer is: ['c', 'a', 't', 'd', 'o', 'g', 'r', 'b', 'i']
wordlist = ['cat', 'dog', 'rabbit']
letterlist = []
for aword in wordlist:
for aletter in aword:
if aletter not in letterlist:
letterlist.append(aletter)
print(letterlist)
print()
print("self_check_2:")
# the answer is: ['c', 'a', 't', 'd', 'o', 'g', 'r', 'a', 'b', 'b', 'i', 't']
awordlist = ['cat', 'dog', 'rabbit']
aletterlist = [letter for word in awordlist for letter in word]
print(aletterlist)
print("extra challege:")
aletter_set = set(aletterlist)
new_letterlist = [letter for letter in aletter_set]
print(new_letterlist)
print()
print("self_check_3:")
quote = "methinks it is like a weasel" # goal string
qlen = 28 # length of quote
def monkey(qlen):
alphabet = "abcdefghijklmnopqrstuvwxyz "
res = ""
for i in range(qlen):
res = res + alphabet[random.randrange(27)]
return res
print(monkey(qlen))
print("self_check_3 Challenge:")
def luck(quote, guess):
num_same = 0
for i in range(qlen):
if quote == guess[i]:
num_same += 1
return num_same / qlen
def lucky_monkey():
new_guess = monkey(qlen)
best = 0
count = 0
mluck = luck(quote, new_guess)
while mluck < 1 or count < 10:
if mluck > best:
print(mluck, new_guess)
best = mluck
count += 1
new_guess = monkey(qlen)
mluck = luck(quote, new_guess)
print(new_guess)
# lucky_monkey()
print("not working but I realized I didn't need to do this one anyway...")
|
import re
import string
def count_me():
freq = {}
file_obj = open('count.txt', 'r')
word_content = file_obj.read().lower()
reg_exp = re.findall(r'\b[a-z]{3,15}\b', word_content)
for word in reg_exp:
count = freq.get(word, 0)
freq[word] = count + 1
freq_list = freq.keys()
for word in freq_list:
print word, freq[word]
if __name__ == '__main__':
count_me()
|
import numpy as np
#Do not import any other libraries
"""
Write a function that takes a two dimensional array, and returns another two dimensional array where the columns of the array are
the Z scores of the columns in the original array. You should do question 2 before doing this question. For example, suppose
arr = array([[4.,2.,-3.],
[3.,7.,11.],
[13.,6.,2.],
[2.,-9.,8.]])
Then f(arr) should return array([[-0.34188173, 0.07881104, -1.38675049],
[-0.56980288, 0.86692145, 1.20185043],
[ 1.70940865, 0.70929937, -0.46225016],
[-0.79772404, -1.65503185, 0.64715023]])
If you are going to test this function, make sure to use an array of floats rather than an array of integers. Otherwise you may run into
rounding issues.
"""
def f(arr):
##########YOUR CODE HERE##########
pass
###########END CODE###############
if __name__=='__main__':
######CREATE TEST CASES HERE######
pass
##################################
|
import numpy as np
import pandas as pd
#Do not import any other libraries
"""
Write a function that takes a pandas dataframe, df as input. df is assumed to have the columns col_1 and col_2. df will have missing values (NaNs) in both columns.
The function should return the dataframe but with the missing values in col_1 replaced with the mean value within col_1 and have the rows with missing values in
col_2 dropped. Note that the order that these operations are done matters. Dropping the rows with missing values first will remove some entries and thus change the
mean value in col_1. Make sure that the NaNs in col_1 are replaced with the mean value first and then drop the rows with NaNs in col_2. This function should not actually
mutate df but instead return a different version of it. You can create a copy of df within the function by using the built in copy() method if you wish. There is a
file in this repo called testdf7.csv. Loading this dataframe into memory and running f(df) should return
col_1 col_2
0 1.0 2.0
2 6.6 6.0
3 7.0 8.0
5 6.6 12.0
6 13.0 14.0
"""
def f(df):
##########YOUR CODE HERE##########
pass
###########END CODE###############
if __name__=='__main__':
######CREATE TEST CASES HERE######
pass
##################################
|
#!/usr/bin/env python3
# Wankyu Choi (c) 2014
# For Creative Works of Knowledge Python Training
# for loop and iterators: custom iterator
def my_year_range(start, end, step=1):
"""
iterator should yield resulting value
"""
result = start
while result < end:
yield result
result += step
def my_year_range_with_bug(start, end, step=1):
"""
return breaks the code
"""
result = start
while result < end:
return result
# the following line will never run
result += step
def main():
"""program entry point
"""
start = 1800
end = 2014
step = 1
per_line = 10
year = start
count = 1
for year in my_year_range(start, end+1):
end_char = "\n" if count % per_line == 0 else "\t"
print(year, end=end_char)
year += step
count += 1
if __name__ == '__main__': main()
|
#program to find the sum of contiguous subarray of numbers that has the largest sum
def maxSubArraySum(arr):
size = len(arr)
if size == 0:
return 0
max_so_far = float('-inf')
max_ending_here = 0
for i in range(0, size):
max_ending_here = max_ending_here + arr[i]
if (max_so_far < max_ending_here):
max_so_far = max_ending_here
if max_ending_here < 0:
max_ending_here = 0
return max_so_far
if __name__ == '__main__':
arr = [-4, 2, 2, -5, 8, 4, 3]
print(maxSubArraySum(arr))
|
"""All messages."""
class Messages:
"""Class message."""
def __init__(self):
"""Init."""
self.message = ""
def set_message(self, message):
"""Add."""
self.message = message
def get_message(self):
"""Get and clear the messages."""
msg = self.message
self.message = ""
return msg
def exists(self):
"""Return true if there is a message."""
return bool(self.message)
messages = Messages()
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.