text
stringlengths 37
1.41M
|
---|
"""
Short script to create a dictionary for PR algo. Requires python 3.6+
for default ordered dictionaries.
Use main() to get the dictionary.
Dictionary contains swimmer names as keys, and meet[] objects as values.
Concrete example: {'Phelps Michael' : [2016 Olympics, Worlds], 'Adrian, Nathan G' :[2016 Olympics, Pan America]}
"""
import json
from Meet import Meet
"""
Helper function used to load .json files as dictionaries. I is the
ith json file to load
"""
def load_data(i):
with open('result' + str(i) + '.json', 'r') as fp:
dict1 = json.load(fp)
return dict1
"""
Merges two dictionaries. For conflicting keys, appends a '1' at
the end to remove key conflicts and ensure that they are all added.
DICT adds it's key-value pairs into MERGE.
"""
def merge_data(merge, dict):
for comp in dict:
dummy = comp
while dummy in merge:
dummy += '1'
merge[dummy] = dict[comp]
"""
Uses merge_data() and load_data() to create a dictionary with
swimmer-meet[] key-value pairs. Returns this dictionary.
"""
def main():
merge = load_data(1)
dict2 = load_data(2)
dict3 = load_data(3)
dict4 = load_data(4)
dict5 = load_data(5)
dict6 = load_data(6)
dict7 = load_data(7)
dict8 = load_data(8)
dict9 = load_data(9)
dict10 = load_data(10)
dict11 = load_data(11)
dict12 = load_data(12)
merge_data(merge, dict2)
merge_data(merge, dict3)
merge_data(merge, dict4)
merge_data(merge, dict5)
merge_data(merge, dict6)
merge_data(merge, dict7)
merge_data(merge, dict8)
merge_data(merge, dict9)
merge_data(merge, dict10)
merge_data(merge, dict11)
merge_data(merge, dict12)
print(len(merge))
swimmer_dict = {}
for competition in merge:
lost_to = [competition]
for competitor in merge[competition]:
time = merge[competition][competitor][1]
meet = Meet(competition, lost_to[:], time)
if competitor in swimmer_dict.keys():
swimmer_dict[competitor].append(meet)
else:
swimmer_dict[competitor] = [meet]
lost_to.append(competitor)
swimmer_dict[competition] = [Meet(competition, lost_to[1:], time)]
return swimmer_dict
|
def clean_data(data):
return list(map(int, data[0].split()))
def get_max(data):
# ties are broken by order, so first largest is largest
current_max = [0,0]
for i, val in enumerate(data):
if val > current_max[1]:
current_max = [i, val]
return current_max
def redistribute_data(data):
index, data_to_redistribute = get_max(data)
data[index] = 0
for i in range(1, data_to_redistribute+1):
# go to the next memory bank after max and redistribute the data
# wrap around to the start of the list
data[(index+i)%len(data)]+=1
return data
# how many redistributions until state is seen again
def part1(data):
# list of lists, need to use comprehension since [data] would be a reference of data
# so when data is modified so is [data], messing up while condition
states = [[v for v in data]]
count = 1
data = redistribute_data(data)
while data not in states:
states.append([v for v in data])
data = redistribute_data(data)
count += 1
return count
# run until state is seen again
# then how long does it take until state is seen again
def part2(data):
for i in range(part1(data)):
data = redistribute_data(data)
return part1(data)
|
import itertools
def clean_data(data):
# passphrases are strings of characters separated by spaces
return list(map(lambda x:x.split(" "), data))
def is_unique(passphrase):
# passphrase contains duplicate words if casting to set changes (reduces) length
return len(passphrase) == len(set(passphrase))
def is_anagram(word1, word2):
# word is an anagram if sorting it makes it the same
return sorted(word1) == sorted(word2)
def contains_anagram(passphrase):
# if any two words in the passphrase are an anagram, passphrase is invalid
for words in itertools.combinations(passphrase, r=2):
if is_anagram(*words):
return True
return False
def part1(data):
return len([passphrase for passphrase in data if is_unique(passphrase)])
def part2(data):
return len([passphrase for passphrase in data if is_unique(passphrase) and not contains_anagram(passphrase)])
|
import random
database = {}
def init():
import datetime
print("Welcome to HorlarBank")
print("=== ==== ====== ==== ====================")
datetime_object = datetime.datetime.now()
print(datetime_object)
print("=== ==== ====== ==== ====================")
haveAccount = int(input("Do you have an account with us: 1 (yes) 2 (no) \n"))
if(haveAccount == 1):
login()
elif(haveAccount == 2):
register()
else:
print("You have selected invalid option")
init()
def login():
print("********* Enter Your Login Details ********")
accountNumberFromUser = int(input("What is your account number? \n"))
password = input("What is your password: \n")
for accountNumber, userDetails in database.items():
if(accountNumber == accountNumberFromUser):
if(userDetails[3] == password):
bankOperation(userDetails)
#isLoginSuccessful = True
else:
print("Invalid Login Details")
login()
def register():
print("****** Sign Up Here *******")
email = input("Enter email address: \n")
first_name = input("Enter your first name? \n")
last_name = input("Enter your last name? \n")
password = input("Create a password: \n")
accountNumber = generationAccountNumber()
database[accountNumber] = [ first_name, last_name, email, password]
print("Your Account has been created")
print("=== ==== ====== ==== ===")
print("Your account number is: %d" %accountNumber)
print("=== ==== ====== ==== ====================")
print("DISCLAIMER : Do not share your details with anyone")
print("=== ==== ====== ==== ===")
login()
def bankOperation(user):
print("Welcome %s %s " % ( user[0], user[1] ) )
selectedOption = int(input("What would you like to do?: (1) Deposit (2) Withdarwal (3) Logout (4) Exit \n"))
if(selectedOption == 1):
depositOpration()
elif(selectedOption == 2):
withdrawalOperation()
elif(selectedOption == 3):
Logout()
elif(selectedOption == 4):
exit()
else:
print("Invalid Option Selected")
bankOperation(user)
def withdrawalOperation():
input("How much would you like to withdraw: \n")
print('Take Your Cash')
def depositOpration():
amount = input("How much would you like to deposit \n")
print('Current Balance : %s' % amount)
def generationAccountNumber():
return random.randrange(111111,999999)
def Logout():
print(" ")
print("THANK YOU FOR BANKING WITH US")
login()
init()
|
# -*- coding: utf-8 -*-
import os
import sys
import math
print("Oblicz dzienne zapotrzebowanie kaloryczne")
name = input("Podaj swoje imię: \n")
if name[-1] == "a":
name = int(-161)
else:
name = int(+5)
height = int(input("Podaj swój wzrost w centymetrach: \n"))
weight = int(input("Podaj swoją wagę w kilogramach: \n"))
age = int(input("Podaj swój wiek \n"))
ppm = (10 * weight) + (6.25 * height) - (5 * age) + name
print("Wybierz aktywnosc")
print("Praca siedząca, brak dodatkowej aktywności fizycznej \n [a]")
print("Praca niefizyczna, mało aktywny tryb życia \n [b]")
print(
"Lekka praca fizyczna, regularne ćwiczenia 3-4 razy print(ok. 5h) w tygodniu \n [c]")
print(
"Praca fizyczna, regularne ćwiczenia od 5razy (ok. 7h) w tygodniu \n [d]")
print("Praca fizyczna ciężka, regularne ćwiczenia 7 razy w tygodniu \n [e] ")
activity = input()
if activity == "a":
activity = 1.2
elif activity == "b":
activity = 1.4
elif activity == "c":
activity = 1.6
elif activity == "d":
activity = 1.8
elif activity == "e":
activity = 2.0
print("Dzienne zapotrzebowanie kaloryczne wynosi:", ppm * activity, "kcal")
|
'''
Lorin Vandegrift
2/7/2015
Assigment 1:
-- Number Operations: add, sub, mul, div, eq, lt, gt
-- Boolean Operators: and, or, not
Sequencing Operators: if, ifelse
-- Create Dictionary: dictz (No operands)
-- Stack Operations: begin, end
-- Name definition: def (takes value and name)
-- entire stack printing: stack
-- top-of-stack printing operator: =
'''
import sys
import re
#Program Variables
# The User Dictionary is checked before the system dictionary
# If the name is in the dictionary, it either pushes the value onto the stack
# preforms the operation
# Else, it raises an error
#All Dictionaries are kept on the dictionary stack
systemDictionary = {'add':add, 'sub':sub, 'mul':mul, 'div':div, 'eq':eq, 'lt':lt, 'gt':gt}
userDictionary = {}
dictStack = [userDictionary, systemDictionary]
if __name__ == "__main__":
fileContents = open(sys.argv[1]).readlines()
#Setup Dictionaries and other variables
def init():
pass
'''
Parsing the PostScript
'''
def evalLoop (tokens):
p = 0 # control the loop by idex p
while p < len(tokens):
t = tokens[p]
p += 1
# handle number, push to the stack
# handle operator, execute operator
# handle {
# push everything between { and } to the stack
# handle stack operations pop, clear, stack
# handle def
# push name and array to the dict stack
# handle if
# recursively call “evalLoop” to execute the code array
# handle ifelse
# recursively call “evalLoop” to execute the code array
# handle dict
# define empty dict
# begin: push dict to the dictionary stack
# end: pop dict from the dictionary stack
def parseProgram (fileContents):
pass
'''
Dictionary Operations
'''
#Adds new item to the stack
def spush(item):
stack.append(item)
return None
#Removes Item from the top of the stack
#Throws error is the stack is empty
def spop():
if not stack:
err("Error in pop: Stack is empty...")
return None
else:
return stack.pop()
#Returns the number of items in the stack
def slen():
pass
#Empties the stack
def sclear():
pass
#Duplicates the top item on the stack
def dup():
pass
#Exhanges the top two item on the stack
def exch():
pass
'''
Utility Functions
'''
#Check if item is a number
def isNum(item):
if isinstance(item, float):
return item
else:
err("Variable not a float.")
def isDict(item):
if isinstance(item, dict):
return item
else:
err("Variable not a dictionary.")
'''
Math Operations
'''
#Addition
def add():
if slen() >= 2:
spush(spop()+spop())
else:
return None
#Subtraction
def sub():
if slen() >= 2:
secondOperand = spop()
firstOperand = spop()
spush(firstOperand-secondOperand)
else:
return None
#Multiplication
def mul():
if slen() >= 2:
spush(spop() * spop())
else:
return None
#Division
def div():
if slen() >= 2:
secondOperand = spop()
firstOperand = spop()
spush(firstOperand / secondOperand)
else:
return None
'''
Boolean Operations
'''
#Equals
def eq():
if slen() >= 2:
if spop() == spop():
spush('true')
else:
spush('false')
return None
#Less than
def lt():
if slen() >= 2:
secondOperand = spop()
firstOperand = spop()
if firstOperand < secondOperand:
spush('true')
else:
spush('false')
return None
#Greater Than
def gt():
if slen() >= 2:
secondOperand = spop()
firstOperand = spop()
if firstOperand > secondOperand:
spush('true')
else:
spush('false')
return None
#And
def sand():
if slen() >= 2:
secondOperand = spop()
firstOperand = spop()
if isBool(firstOperand) and isBool(secondOperand):
if firstOperand == 'true' and secondOperand == 'true':
spush('true')
else:
spush('false')
else:
err("Not Boolean")
return None
#Or
def sor():
if slen() >= 2:
secondOperand = spop()
firstOperand = spop()
if isBool(firstOperand) and isBool(secondOperand):
if firstOperand == 'true' or secondOperand == 'true':
spush('true')
else:
spush('false')
else:
err("Not Boolean")
return None
#Not
def snot():
if slen() >= 2:
firstOperand = spop()
if isBool(firstOperand):
if firstOperand == 'true':
spush('false')
else:
spush('true')
else:
err("Not Boolean")
return None
'''
Logical Operators
'''
#If
def sif():
ifcode = isCode(spop()) # Make sure it is code (a list)
if chBool(spop()):
evalLoop(ifcode)
return None
#elseif
def selseif():
ifcode = isCode(spop()) # Make sure it is code (a list)
if chBool(spop()):
evalLoop(ifcode)
else:
return None
'''
Dictionary Operators
'''
#Adds a new dictionary to the top of the stack
def dictz ():
newDict = dict()
dictStack.append(newDict)
#Wasn't sure how this is supposed to be different
def begin ():
dictz ()
def end ():
if(len(dictStack) > 0):
dictStack.pop()
'''
Variable Operations
'''
#Defines a key variable with a given value
def sdef ():
if slen() >= 2:
name = spop ()
value = spop ()
dictStack[-1][name] = value
'''
Stack Operations
'''
#Prints out contents of the stack without changing it
def sprint ():
for i in mainStack:
print i
#Prints the top item in the stack
def top ():
print mainStack[-1]
|
from itertools import permutations
n=input()
a=[]
a=list(permutations(n))
for i in range(0,len(a)):
print(*a[i],sep='')
|
"""
Day 1 - Single Number
LeetCode Easy Problem
Given a non-empty array of integers, every element appears twice except for one. Find that single one.
Note: Your algorithm should have a linear runtime complexity. Could you implement it without using extra memory?
Example 1:
Input: [2,2,1]
Output: 1
Example 2:
Input: [4,1,2,1,2]
Output: 4
"""
class Solution:
def singleNumber(self, nums: List[int]) -> int:
for n in nums:
if nums.count(n) == 1:
return n
|
n = int(input("lutfen bir sayi giriniz :"))
for i in range(1,n+1):
print(("#"*i).rjust(n), end="\n")
|
# Credit to KINOCK SEBASTIAN for this code
import tweepy
# Reading Consumer key and secret from consumerKeys File
consumerKeyFile = open("consumerKeys", "r")
consumerKey = consumerKeyFile.readline().strip()
consumerSecret = consumerKeyFile.readline().strip()
consumerKeyFile.close()
# authenticating twitter consumer key
auth = tweepy.OAuthHandler(consumerKey, consumerSecret)
auth.secure = True
authUrl = auth.get_authorization_url()
# go to this url
print("Please Visit This link and authorize the app ==> " + authUrl)
print("Enter The Authorization PIN")
# writing access tokes to file
pin = raw_input().strip()
token = auth.get_access_token(verifier=pin)
accessTokenFile = open("accessTokens", "w")
accessTokenFile.write(token[0] + '\n')
accessTokenFile.write(token[1] + '\n')
'''
Here we initialize our consumer key and consumer secret with auth = tweepy.OAuthHandler().
With the auth object just create we get the authorization url using get_authorization_url() method of tweepy.
Now user can got to this url and enter his/her login credentials and verify app.
After verifying a pin will be returned.
We accept this pin and calls method get_access_toke(verifier = pin) with pin as argument
and fetch access token and access token secret. We save this in a file and use it when ever needed.
This token wont expire until user revoke access or we delete the application.
'''
|
from openpyxl import Workbook
sheet = workbook.active
# Let's say you have two sheets: "Products" and "Company Sales"
print(workbook.sheetnames)
# You can select a sheet using its title
products_sheet = workbook["Products"]
sales_sheet = workbook["Company Sales"]
products_sheet.title = "New Products"
print(workbook.sheetnames)
operations_sheet = workbook.create_sheet("Operations")
print(workbook.sheetnames)
# You can also define the position to create the sheet at
hr_sheet = workbook.create_sheet("HR", 0)
print(workbook.sheetnames)
# To remove them, just pass the sheet as an argument to the .remove()
workbook.remove(operations_sheet)
print(workbook.sheetnames)
workbook.remove(hr_sheet)
print(workbook.sheetnames)
workbook.copy_worksheet(products_sheet)
print(workbook.sheetnames)
|
import os,time,keyboard,json,hashlib,ast,numpy,menu
import system_choose as sc
import score as ds
import matplotlib.pyplot as plt
if __name__ == "__main__":
score = dict()
with open("score.json","r",encoding = "UTF-8-sig") as f:
some_string = f.read()
if not some_string:
score = {}
else:
score = json.loads(some_string)
while(True):
menu.menu()
choice = input("Enter your choice:\n=>")
if choice == "E" or choice == "e" :
sc.Subject_system(score)
elif choice == "C" or choice == "c":
sc.Score_system(score)
elif choice == "Q" or choice == "q":
break
else:
print("Enter Again...(Wait for few second)")
time.sleep(3)
|
import openpyxl
# create workbook
# wb = openpyxl.Workbook()
# for loading the existing workbooks
wb = openpyxl.load_workbook('transactions.xlsx')
# print(wb.sheetnames)
sheet = wb['Sheet1']
# wb.create_sheet('Sheet2',0)
# wb.remove_Sheet(sheet)
# to get the cell
# cell = sheet['a1']
# print(cell.value)
# to change the value
# cell.value = 1
# print(cell.row)
# print(cell.column)
# print(cell.coordinate)
# THE OTHER METHOD IS THE USE THE CELL METHOD
# usefull when iterating over the rows and columns
cell1 = sheet.cell(row=1, column=1)
# print(sheet.max_row)
# print(sheet.max_column)
# for row in range(1, sheet.max_row+1):
# for column in range(1, sheet.max_column+1):
# cell = sheet.cell(row, column)
# print(cell.value)
column = sheet['a']
# print(column)
cells = sheet['a:c']
print(cells)
sheet.append([1, 2, 3])
# sheet.insert_cols
# sheet.insert_rows
# sheet.delete_cols
# sheet.delete_rows
wb.save('transactions2.xlsx')
|
numbers = [1,5,7,5,8,1,9,6,4,7,13,9,7,1,36,3,5]
uniques = []
for number in numbers:
if number not in uniques:
uniques.append(number)
print(uniques)
|
def phone_magic():
phone = input("phone: ")
# A new dictionary (key, value)
digits_mapping= {
"1": "One",
"2": "Two",
"3": "Three",
"4": "Four",
"5": "Five"
}
output = ""
for ch in phone:
output += digits_mapping.get(ch, "!") + " "
print(output)
def another_function(a, b):
print(a*b)
print("start")
phone_magic()
print("finish")
print("#" *10)
print("start")
print("multiply integers")
x= input(">")
y= input(">")
another_function(int(x), int(y))
print("finish")
|
# A new tuple, it cannot be changed.
# You can't add, remove or change any item. Like a constant.
numbers = (7,5,1)
x, y, z = numbers #unpacking the values of numbers tuple
print(x)
print(y)
print(z)
coordinates = [10.25, 54.88, 124.56, 8.96] # a new List
x, y, z, w = coordinates #unpacking the values
print(x)
print(y)
print(z)
print(w)
|
import random # standard module of python3 library
print("random float nums")
for i in range(3):
print(random.random())
print("\nrandom integers")
for i in range(5):
print(random.randint(0, 10))
print("\nSelect leader")
members = ['Vaios', 'John', 'Mary', 'Dimitra']
leader = random.choice(members)
print(leader)
|
import turtle
var=turtle.Turtle()
s=turtle.getscreen()
turtle.screensize(1800,3200)
s.bgcolor("black")
var.hideturtle()
var.pencolor("red")
var.penup()
var.setposition(140,-270)
var.pendown()
var.write("Stay Home, Stay Safe!",'false','right', font=('Showcard Gothic',20))
var.penup()
var.setposition(100, -325)
var.pendown()
var.pencolor('orange')
var.write("Wear Face Mask.\n Wash hands often.\n Use Sanitizer.\n Cook food thoroughly.")
var1=0
var2=0
var.penup()
var.setposition(620,-325)
var.pencolor("pink")
var.pendown()
var.write("By Priyanka Ghosh",'false','right', font=('Showcard Gothic',10))
var.speed(0)
var.pencolor("dark green")
var.pensize(1)
var.penup()
var.goto(0,230)
var.pendown()
while True:
var.fd(var1)
var.rt(var2)
var1+=3
var2+=1
if var2==207:
break
var.hideturtle()
turtle.done()
|
class Rectangle:
def __init__(self, b, l):
self.b = b
self.l = l
def area(self):
return self.l * self.b
def perimeter(self):
return 2 * (self.l + self.b)
l = int(input("enter length of 1st rectangle:"))
b = int(input("enter breadth of 1st rectangle:"))
arr = Rectangle(l, b)
print("area of 1st rectangle", arr.area())
l = int(input("enter length of 2nd rectangle:"))
b = int(input("enter breadth of 2nd rectangle:"))
ar = Rectangle(l, b)
print("area of 2nd rectangle", ar.area())
print("1st rectangle perimeter=", arr.perimeter())
print("2nd rectangle perimeter=", ar.perimeter())
r1 = arr.area()
r2 = ar.area()
if r1 > r2:
print("area of 1st rectangle is greater")
else:
print("area of 2nd rectangle is greater")
|
# Priklad definicie triedy. Zbytocnej triedy
class Person:
name = "Michal"
def print_name():
print(f"Name is {Person.name}")
Person.print_name()
# Trieda je nejaky predpis niecoho v tomto pripade je to predpis osoby kazda osoba ma meno a priezvisko
class Person:
def __init__(self, name, surname):
self.name=name
self.surname=surname
def introduce_yourself(self):
print(f"Hi I am {self.name} {self.surname}")
michal = Person("Michal", "Hucko")
michal.introduce_yourself()
katka = Person("Katka", "Huckova")
katka.introduce_yourself()
# Volanie metody v konstruktore
class Person:
def __init__(self, name, surname):
self.name=name
self.surname=surname
self.introduce_yourself()
def introduce_yourself(self):
print(f"Hi I am {self.name} {self.surname}")
michal = Person("Michal", "Hucko")
katka = Person("Katka", "Huckova")
# Co je to ten self ? Je to skratka v pythone zoberme si nasledujucu triedu
class Classroom:
def __init__(self, student_number):
self.student_number = student_number
def get_info(self):
print(f"Student number is {self.student_number}")
new_class = Classroom(10)
new_class.get_info() # sa vnutorne prepise na
Classroom.get_info(new_class)
# !!!! Self v pripade prveho parametru funkcie sa nemusi volat self ale moze byt pouzite akekolvek meno
# Vacsinou sa pouziva self
class Classroom2:
def __init__(self, student_number):
self.student_number = student_number
def get_info(another_self):
print(f"Student number is {another_self.student_number}")
new_class = Classroom2(20)
new_class.get_info() # sa vnutorne prepise na
|
# OVERLOADING
class Person:
def __init__(self, name, surname):
self.name = name
self.surname = surname
def say_hello(self, name=None):
print("Hello") if not name else print(f"Hello {self.name}")
person = Person("Michal" ,"Hucko")
person.say_hello()
person.say_hello(name=True)
# V jave sa nedaju pouzit optional parametre preto sa tam vyuziva nieco taketo
# class Person:
# def __init__(self, name, surname):
# self.name = name
# self.surname = surname
# def say_hello(self):
# print("Hello")
# def say_hello(self, name=True):
# print(f"Hello {self.name}") # TOTO sa vsak neda pouzit v pythone lebo nevieme deklarovat dve funkcie s rovnakymi nazvami
# OVERRIDING
class Employee(Person):
def say_hello(self):
print("I am person and i will say something completely different than Person")
# Vsimnite si ze z rodica viem vytvorit kolko len vetiev chcem
class Student(Person):
def __init__(self, name, surname, studentId):
super().__init__(name,surname)
self.studentId = studentId
student = Student("Michal", "Hucko", 106)
print(student.studentId)
student.say_hello()
|
#while(true):
try:
def add():
n1=int(input('enter a number\n'))
n2=int(input('enter a number\n'))
sum=n1+n2
print('n1 and n2 equal=',sum)
add()
except ValueError:
print('plz enter a integer type value')
|
myDate = int(input('Enter a number\n'))
month = myDate // 30 + 1
day = myDate % 30
if day == 0:
day = 30
month -= 1
print('The day is: %d and the month is: %d' % (day, month))
|
# Search for a word in a sorted list
def search_in_list(thelist, word):
if len(thelist) == 0:
return False
if len(thelist) == 1:
if word == thelist[0]:
return True
else:
return False
mid = len(thelist) // 2
if word >= thelist[mid]:
thelist = thelist[mid:]
else:
thelist = thelist[:mid]
return search_in_list(thelist, word)
|
"""
Write a script that reads the current time and converts it to a time of day in hours, minutes, and
seconds, plus the number of days since the epoch.
"""
import time
print('**** started ****')
seconds_in_a_day = 24 * 60 * 60
the_time = time.time()
print('time:', the_time)
days = the_time // seconds_in_a_day
print('days: ', days)
total_seconds_today = int(the_time % seconds_in_a_day)
print('seconds_today: ', total_seconds_today)
hours_today = (total_seconds_today // 3600) - 8 + 1 - 12 # +1 is for summer time
print('hours_today: ', hours_today)
minutes_today = int((total_seconds_today % 3600) / 60)
print('minutes_today: ', minutes_today)
seconds_today = (total_seconds_today % 3600) % 60
print('seconds_today: ', seconds_today)
print('Current time Vancouver: '
+ str(hours_today) + ':'
+ str(minutes_today) + ':'
+ str(seconds_today))
|
import sys
import listsearch
sys.path.append(r"C:\DevLcl\Sandbox\python-sandbox\think_python\chapter_10")
fin = open(r'C:\DevLcl\Sandbox\python-sandbox\think_python\words.txt')
def word_list():
thelist = []
for line in fin:
thelist.append(line.strip())
return thelist
def find_reverse_pair(mylist, word):
res = word[::-1]
if (listsearch.search_in_list(mylist, res)):
print(word, res)
mylist = word_list()
mylist.sort()
for word in mylist:
find_reverse_pair(mylist, word)
|
def is_triangle(a, b, c):
if a > b+c or b > a+b or c > a+b:
print('No')
else:
print('Yes')
print('Give me "a", "b", "c" one after eachother')
a = int(input())
b = int(input())
c = int(input())
is_triangle(a, b, c)
|
class Point:
def __init__(self, x=0, y=0):
self.x = x
self.y = y
def __str__(self):
return 'Point is located at: x=%g, y=%g' % (self.x, self.y)
def __add__(self, other):
if isinstance(other, Point):
return self.add_point(other)
elif isinstance(other, tuple):
return self.add_tuple(other)
else:
raise TypeError(type(other), "data type is now supported for the 'other' object")
def __radd__(self, other):
return self.__add__(other)
def add_point(self, other):
self.x += other.x
self.y += other.y
return self
def add_tuple(self, tup):
self.x += tup[0]
self.y += tup[1]
return self
def __lt__(self, other):
if self.x < other.x and self.y < other.y:
return True
else:
return False
##############################################
def print_attributes(obj):
for attr in vars(obj):
print(attr, getattr(obj, attr))
# p = Point(2, 3)
# p1 = Point(10, 10)
# print(p)
# print(p1)
# print('p is less than p1:', p > p1)
# print(p + p1)
p = Point(2, 3)
p1 = Point(10, 10)
p2 = Point(100, 200)
p3 = Point(2000, 3000)
all = sum([p, p1, p2, p3], Point(0,0)) # we should give sum a valid Point to start otherwies is passes 'int=0'
total = p + p1 + p2 + p3
print('total point:', total)
print_attributes(p)
print(vars(p))
# print('try:')
# try:
# p = Point(2, 3)
# print(p + (100, 200))
# p = Point(2, 3)
# print(p + 100, 200)
# except Exception as e:
# print(e)
|
target = 999
def sumDivisibleBy(n):
p = target // n
sum = n * (p * (p + 1)) / 2
return sum
result = sumDivisibleBy(3) + sumDivisibleBy(5) - sumDivisibleBy(15)
print(result)
|
def main():
from math import sqrt
a=4
b=5
oper1 = float((2*(3/4)) + (4*(2/3))- (3*(1/5)) + (5*(1/2)))
oper2 = float(2*math.sqrt(35**2) + 4*math.sqrt(36**3) - 6*math.sqrt(49**2))
oper3 = float((a**3 + 2*b**2) / (4*a))
oper4 = float((2*((a+b)**2) + 4*((a-b)**2)) / (a*b**2))
oper5 = float((math.sqrt((a+b)**2 + 2**(a+b))) / (2*a + 2*b)**2)
print(round(oper1,4))
print(round(oper2,4))
print(round(oper3,4))
print(round(oper4,4))
print(round(oper5,4))
if __name__ == '__main__':
main()
|
"""
Monte Carlo Tic-Tac-Toe Player
"""
import random
import poc_ttt_gui
import poc_ttt_provided as provided
# Constants for Monte Carlo simulator
# You may change the values of these constants as desired, but
# do not change their names.
NTRIALS = 100 # Number of trials to run
SCORE_CURRENT = 1.0 # Score for squares played by the current player
SCORE_OTHER = 1.0 # Score for squares played by the other player
# TTTBoard constants
# provided.EMPTY
# provided.PLAYERX
# provided.PLAYERO
# provided.DRAW
# provided.switch_player(player)
def mc_trial(board, player):
"""
Input board, start game with input player by random play
rotate between player, modify board. return when game over
"""
#b_dim = board.get_dim()
while (board.check_win() == None):
empty_list = board.get_empty_squares();
# print empty_list
player_move = random.choice(empty_list)
board.move(player_move[0],player_move[1], player)
if ( player == provided.PLAYERX):
player = provided.PLAYERO
else:
player = provided.PLAYERX
#print board.__str__()
return
def mc_update_scores(scores, board, player):
"""
update scores(a grid of score as the dimention of the board
"""
b_dim = board.get_dim()
winner = board.check_win()
if ( winner == provided.PLAYERX ):
other = provided.PLAYERO
for col in range(b_dim):
for row in range(b_dim):
if (board.square(row, col) == winner):
scores[row][col] += SCORE_CURRENT
elif (board.square(row,col) == other):
scores[row][col] -= SCORE_OTHER
elif (board.square(row,col) == provided.EMPTY):
scores[row][col] += 0
#print scores
elif ( winner == provided.PLAYERO ):
other = provided.PLAYERX
for col in range(b_dim):
for row in range(b_dim):
if (board.square(row, col) == winner):
scores[row][col] += SCORE_CURRENT
elif (board.square(row, col) == other):
scores[row][col] -= SCORE_OTHER
elif (board.square(row, col) == provided.EMPTY):
scores[row][col] += 0
#print scores
print "scores for games so far: ", scores
return
def get_best_move(board, scores):
"""
when board is not empty, return (row, column)tuple for best move
random if there is more than one for the best move
"""
best_scores = []
b_dim = board.get_dim()
empty_list = board.get_empty_squares();
if (not empty_list):
return
empty_squre = random.choice(empty_list)
value = scores[empty_squre[0]][empty_squre[1]]
for col in range(b_dim):
for row in range(b_dim):
if (scores[row][col] == value):
if ((row,col) in empty_list):
best_scores.append((row, col))
elif (scores[row][col] > value):
if ((row,col) in empty_list):
best_scores = []
best_scores.append((row, col))
value = scores[row][col]
print best_scores
return random.choice(best_scores)
def mc_move(board, player, trials):
"""
Implement MC method for best move, return (row, column)tuple
my_score is 3x3 grid
ie
"""
b_dim = board.get_dim()
print board.__str__()
mc_score=[[0 + 0 for dummy_col in range(b_dim)]
for dummy_row in range(b_dim)]
mc_board = board.clone()
for dummy in range(trials):
mc_trial(mc_board, player)
mc_update_scores(mc_score, mc_board, player)
print mc_score
return get_best_move(board, mc_score)
# Test game with the console or the GUI. Uncomment whichever
# you prefer. Both should be commented out when you submit
# for testing to save time.
#provided.play_game(mc_move, NTRIALS, False)
poc_ttt_gui.run_gui(3, provided.PLAYERX, mc_move, NTRIALS, False)
# mov = get_best_move(provided.TTTBoard(2, False, [[provided.EMPTY, provided.EMPTY], [provided.EMPTY, provided.EMPTY]]), [[0, 0], [3, 0]])
# print mov
# mov = get_best_move(provided.TTTBoard(3, False, [[provided.PLAYERX, provided.PLAYERX, provided.PLAYERO], [provided.PLAYERO, provided.PLAYERX, provided.PLAYERX], [provided.PLAYERO, provided.EMPTY, provided.PLAYERO]]), [[0, 2, 0], [0, 2, 0], [0, 2, 0]])
# print mov
#mov = get_best_move(provided.TTTBoard(3, False, [[provided.EMPTY, provided.PLAYERX, provided.EMPTY], [provided.PLAYERO, provided.PLAYERX, provided.EMPTY], [provided.PLAYERO, provided.EMPTY, provided.EMPTY]]), [[-3, 6, -2], [8, 0, -3], [3, -2, -4]])
#print mov
#mov = get_best_move(provided.TTTBoard(3, False, [[provided.PLAYERX, provided.PLAYERX, provided.PLAYERO], [provided.PLAYERO, provided.PLAYERX, provided.PLAYERX], [provided.PLAYERO, provided.EMPTY, provided.PLAYERO]]), [[3, 2, 5], [8, 2, 8], [4, 0, 2]])
#print mov
#mc_trial(provided.TTTBoard(2, False, [[provided.EMPTY, provided.EMPTY], [provided.EMPTY, provided.EMPTY]]), 2)
#mc_trial(provided.TTTBoard(2, False, [[provided.EMPTY, provided.EMPTY], [provided.EMPTY, provided.EMPTY]]), 2)
#mc_update_scores([[0, 0, 0], [0, 0, 0], [0, 0, 0]], provided.TTTBoard(3, False, [[provided.PLAYERX, provided.PLAYERX, provided.PLAYERO], [provided.PLAYERO, provided.PLAYERX, provided.EMPTY], [provided.EMPTY, provided.PLAYERX, provided.PLAYERO]]), 2)
#mc_move(provided.TTTBoard(3, False, [[provided.PLAYERX, provided.PLAYERX, provided.PLAYERO], [provided.EMPTY, provided.PLAYERX, provided.PLAYERX], [provided.PLAYERO, provided.EMPTY, provided.PLAYERO]]), provided.PLAYERO, NTRIALS)
#mc_move[provided.TTTBoard(3, False, [[provided.PLAYERX, provided.PLAYERX, provided.PLAYERO], [provided.EMPTY, provided.PLAYERX, provided.PLAYERX], [provided.PLAYERO, provided.PLAYERO, provided.PLAYERO]]), 3, 1, [(2, 1)]]
#mc_move(provided.TTTBoard(3, False, [[provided.PLAYERX, provided.PLAYERX, provided.PLAYERO], [provided.PLAYERO, provided.PLAYERX, provided.PLAYERX], [provided.PLAYERO, provided.EMPTY, provided.PLAYERO]]), provided.PLAYERX, NTRIALS)
#mc_move(provided.TTTBoard(3, False, [[provided.EMPTY, provided.PLAYERX, provided.PLAYERX], [provided.PLAYERO, provided.EMPTY, provided.PLAYERX], [provided.PLAYERO, provided.PLAYERX, provided.EMPTY]]), provided.PLAYERO, NTRIALS)
#mc_move(provided.TTTBoard(3, False, [[provided.PLAYERX, provided.EMPTY, provided.EMPTY], [provided.PLAYERO, provided.PLAYERO, provided.EMPTY], [provided.EMPTY, provided.PLAYERX, provided.EMPTY]]), provided.PLAYERX, NTRIALS)
#mc_update_scores([[0, 0, 0], [0, 0, 0], [0, 0, 0]], provided.TTTBoard(3, False, [[provided.PLAYERX, provided.EMPTY, provided.EMPTY], [provided.EMPTY, provided.PLAYERX, provided.PLAYERX], [provided.PLAYERO, provided.PLAYERO, provided.PLAYERO]]), 2)
|
from Animal.Role import *
from Animal.Danaus.plexippus import *
from Land_Use.Developed.farm import *
import numpy as np
import pandas as pd
from Functions.Tests import *
def iterate_field(group: list = None, number_fields: int = 2) -> CropField:
"""
Iterate groups of fields to find optimal arrangements. Group is a list of
CropField objects, or we'll create some from the standard tests.
:param group: The field group to be optimized
:param number_fields: How many from the group to select.
:return: Optimal cropfield
>>>
"""
if group:
pass
else:
group = ['standard', 'food heavy', 'shelter heavy', "middle food windbreak",
'middle shelter windbreak', 'middle shelter windbreak 2', 'fallow']
total = []
for i in range(number_fields):
temp = np.random.choice(group)
if temp == 'standard':
created = StandardTest(34)
elif temp == 'food heavy':
created = HeavyFoodTest(34)
elif temp == 'shelter heavy':
created = ShelterHeavyTest(34)
elif temp == 'middle food windbreak':
created = MiddleFoodWindbreakTest(34)
elif temp == 'middle shelter windbreak':
created = MiddleShelterWindbreakTest(34)
elif temp == 'middle shelter windbreak 2':
created = MiddleShelterWindbreakTest2(34)
elif temp == 'fallow':
created = FallowTest(34)
else:
created = temp
total.append(created)
return total
def optimize_field_group(number_of_fields: int=5, dead_goal: int = 25, exit_goal: int = 50,
num_iters: int = 1000, total_iters: int=100) -> tuple:
'''
The goal of this function is to find an optimal arrangement of fields. It will start with a single field and repeat
it across several rows and columns, then run butterflies through the entire set and see if we can find an optimal
arrangement of fields. For example, maybe a fallow field in the middle is best, or maybe if there are food borders
around each field works best.
:param number_of_fields:
:param dead_goal:
:param exit_goal:
:param num_iters:
:param total_iters:
:return:
'''
master_list = []
result_list = []
exit_pct = 0
dead_pct = 100
iters = 0
while exit_pct <= exit_goal and dead_pct >= dead_goal and iters <= total_iters:
arrangement = iterate_field(number_fields=number_of_fields)
master_field = arrangement[0]
for i in range(1, len(arrangement)):
master_field.concatenate(arrangement[i].array)
# Simulate to see how well the field does
for i in range(num_iters):
b1 = Monarch(master_field)
while b1.status == 'alive':
b1.move_one_day()
result_list.append(b1.status)
dead_pct = result_list.count("dead")/len(result_list) * 100
exit_pct = result_list.count("exit")/len(result_list) * 100
master_list.append((iters, arrangement, dead_pct, exit_pct))
if iters % 5 == 0:
print("Working on iteration {}".format(iters))
iters += 1
dead_pct = []
for item in master_list:
dead_pct.append(item[2])
min_index = dead_pct.index(min(dead_pct))
return master_list[min_index]
|
# python3
import sys
def swap_by_index(values, a, b):
temp = values[a]
values[a] = values[b]
values[b] = temp
def selection_sort(values):
for i in range(0, len(values)):
min_index = i
for j in range(i + 1, len(values)):
if values[j] <= values[min_index]:
min_index = j
swap_by_index(values, i, min_index)
return values
if __name__ == '__main__':
print(selection_sort(
[4, 3, 2, 20, 18, 14, 1, 4, 3, 2, 20, 18, 14, 1, 4, 3, 2, 20, 18, 14, 1, 4, 3, 2, 20, 18, 14, 1]))
|
#!/usr/bin/python
"""
this is the code to accompany the Lesson 3 (decision tree) mini-project
use an DT to identify emails from the Enron corpus by their authors
Sara has label 0
Chris has label 1
"""
import sys
from time import time
sys.path.append("../tools/")
from email_preprocess import preprocess
### features_train and features_test are the features for the training
### and testing datasets, respectively
### labels_train and labels_test are the corresponding item labels
features_train, features_test, labels_train, labels_test = preprocess()
#########################################################
### your code goes here ###
from sklearn import tree
from sklearn.metrics import accuracy_score
# train model
clf = tree.DecisionTreeClassifier(min_samples_split=40)
print 'number of features: ', len(features_train[0])
t0 = time()
clf.fit(features_train, labels_train)
print "\ntraining time:", round(time()-t0, 3), "s"
# predict labels
t0 = time()
labels_pred = clf.predict(features_test)
print "prediction time:", round(time()-t0, 3), "s"
# calculate accuracy
accuracy = accuracy_score(labels_test, labels_pred)
print 'Accuracy: ', accuracy
#########################################################
# OUTPUT
# Decision Tree with min_sample_split=40
# training time: 69.636 s
# prediction time: 0.018 s
# Accuracy: 0.97838452787
#########################################################
# number of features: 3785
#########################################################
# Using SelectPercentile = 1%
# number of features: 379
#
# training time: 4.719 s
# prediction time: 0.001 s
# Accuracy: 0.96700796359
|
# Python common data structures
# data structures are just ways for us to store information for easy access and use
names = ["Adam", "Bill", "Steve"]
# lists will reisize as needed and can store any type
# lists are MUTABLE always add or remove elements
# lists can contain duplicates
stuff = ["Apple", 4, [[],1], 9.8, 4 ,4 ,4 ,4]
print(stuff)
stuff2 = stuff # points to the same list
print(stuff2 is stuff) # NOT THE EQUALITY operator. Are they the same EXACT OBJECT IN MEMORY
# to create a list
my_list = []
print(my_list)
my_list.append("Hello")
print(my_list)
my_list.append("World") # always adds at the end of the list
print(my_list)
# delete an item from a list
del my_list[1]
print(my_list)
my_list.insert(1,"!")
stuff2.append("Added just random string")
print(stuff)
|
# a lambda is an anonymous function
# () =>{}
# popular in funcitonal programming
nums = [1,2,3,4,5,6]
result = map(lambda n : n*10,nums)
# Lambdas are NOWHERE near as common or useful in python as in other languages JS
for r in result:
print(r)
|
# a simple greeting app that supports saying hello in many different languages
import english # import the python file (A python file is called a module)
from spanish import hola
from germanic_languages.german import gutentag
name = "Adam"
english.hello(name) # if you import just the module
# you have to use the module name to access the global funcitons anvariables
# if you use from you can specify what functions you want it particular and do not need to
# prefix with the module name
hola(name)
gutentag(name)
# Python is an interpreted language that executes line by line
# Most python interpreters (the software that reads you python code and executes it)
# will (compile imported files into lower level code native the the computer)
# by default .pyc C implemention of your python code
# A python file is a module
# A folder that contains one or many python modules is called a package
# __init__.py file in a package Older versions of python required this exact file name
# to be in a package otherwise it would not import the modules correctly
# every module has a built-in variable called __name__
# the value of that variable is the name of the module
# UNLESS you are running that module directly
# the __name__ value is "__main__" if it is the file you are DIRECTLY executing otherwise it
# is the name of the file
print(__name__)
# Essentially python's way of creating a entrypoint main method that you might see in
# other programming languages
if __name__ == "__main__":
print("I can only run if you direclty execute this file")
|
# Common Errors in Python
# LookUpError: get an index that does not exist from a list or tuple or use dictionary key that does not exist
# TypeError: when you pass in a variable that is of the wrong type (pass in a str instead of int/float)
# ValueError: when the type is right but the value of that variable is wrong
# NameError: you reference a variable that does not exist
# OFTEN functions will raise errors and NOT handle them
# For functions that might be used throughout the program you can handle the errors
# differently / most appropriately
def celcius_to_farenheit(c):
# Exceptions give you information on WHY something failed
# And you might want to address them different
if type(c) != int and type(c) != float:
raise TypeError("Temperature must be a numeric type") # all errors are objects
if c < -273:
raise ValueError(f"Input Temperature {c} is below absoulate zero -273 C")
f = c*9/5 +32
return f
try:
result = celcius_to_farenheit(-400)
except TypeError as e: # if you want the object put
print(e) # prints out the message you passed when you created the Error
# the __str__ for errors is to return the message it was created with
except ValueError as e:
print(e)
except Exception as e:
print(type(e)) # is a value error
|
#!/usr/bin/env python
"""
generate_graph.py
Generates a random graph for grading. For use
please run the module with --help
"""
__author__ = "Bobby Streit"
__version__ = "1.0"
__maintainer__ = "Bobby Streit"
__email__ = "[email protected]"
import argparse
import random
MAX_WEIGHT = 100
PARSER = argparse.ArgumentParser()
PARSER.add_argument("path", help="Output file path")
PARSER.add_argument("numvertices", help="Number of Vertices",
type=int)
PARSER.add_argument("-d", "--dense", help="Create a dense graph")
PARSER.add_argument("-s", "--sparsity",
help="Percent chance of an edge between two nodes occuring (50 by default)",
type=int)
PARSER.add_argument("-dc", "--disconnected", help="Create a disconnected graph")
ARGS = PARSER.parse_args()
if ARGS.sparsity:
SPARSITY = ARGS.sparsity
else:
SPARSITY = 50
def main():
vertices = []
edgecount = 0
for i in range(ARGS.numvertices):
vertices.append([0] * ARGS.numvertices)
if not ARGS.disconnected:
for i in range(ARGS.numvertices):
for j in range(i + 1, ARGS.numvertices):
if ARGS.dense or random.randint(0, 99) < SPARSITY:
weight = random.randint(1, MAX_WEIGHT)
vertices[i][j] = weight
vertices[j][i] = weight
edgecount += 1
f = open(ARGS.path, "w")
f.write(str(ARGS.numvertices) + " " + str(edgecount))
for i in range(ARGS.numvertices):
f.write("\n" + str(i))
for j in range(ARGS.numvertices):
if vertices[i][j] != 0:
f.write(" " + str(j))
f.write("\n" + str(i))
for j in range(ARGS.numvertices):
if vertices[i][j] != 0:
f.write(" " + str(vertices[i][j]))
if __name__ == "__main__":
main()
|
N = int(input())
star = '*'
stars = '* '
stars2 = ' *'
for i in range(N):
if N%2==0:
print(stars*(N//2))
print(stars2*(N//2))
else:
print(star + stars2*(N//2))
print(stars2*(N//2))
|
# RPG based on the game of fadishouis
# 12 issue run: January 2020 -January 2020
import sys
print("fadishouis: The game changing the earth")
print("Valid actions for current location")
# valid directions and actions for the characters
valid_actions = {"directions": ["north", "south", "east", "west"],
"actions": ["explore", "attack", "defend", "heal"]}
# after user input, print out the action choosen by the user
# print a list a valid actions before user input. Organized according to
# possible direction and actions
for user_action in valid_actions:
# prints out a list of valid directions from the list in valid_actions
if user_action == "directions":
# define possible_directions as the list that is the value
# attached to directions in valid_actions
possible_directions = valid_actions["directions"]
# using a loop, print out all the directions the user can go
for direction in possible_directions:
print(f"* {direction}")
if user_action == "actions":
# prints out a list of valid actions from the list in valid_actions
print(f"Complete one of the following {user_action}:")
possible_actions = valid_actions["actions"]
# using a loop, print out all the actions the user can use
for action in possible_actions:
print(f"* {action}")
action_input = input("Action: ")
direction = valid_actions["directions"]
action = valid_actions["actions"]
# convert the user input to all lower case to prevent errors
# print out the action chosen
if action_input.lower() in direction:
print(f"Go {action_input}!")
if action_input == "quit":
sys.exit()
if action_input.lower() in action:
print(f"{action_input}!")
print("Invalid action")
continue
|
class Node:
def __init__(self, v):
self.value = v
self.next = None
class LinkedList:
def __init__(self):
self.head = None
self.tail = None
self.current = None
def add_in_tail(self, item):
if self.tail is None:
self.head = item
self.current = item
else:
self.tail.next = item
self.tail = item
def print_all_nodes(self):
node = self.head
while node != None:
print(node.value)
node = node.next
def find(self, value):
node = self.head
while node != None:
if node.value == value:
return node
node = node.next
return None
def remove_by_value(self, value):
node = self.head
prior = None
while node != None:
if node.value == value:
if prior == None:
self.head = self.head.next
return True
else:
prior.next = node.next
return True
prior = node
node = node.next
return False
def remove_all_by_value(self, value):
node = self.head
prior = None
while node != None:
if node.value == value:
if prior == None:
self.head = self.head.next
else:
prior.next = node.next
prior = node
node = node.next
def clear(self):
self.head = None
self.tail = None
def find_all(self, value):
node = self.head
found_items = []
while node != None:
if node.value == value:
found_items.append(node)
node = node.next
return found_items
def length(self):
node = self.head
length = 0
while node != None:
length += 1
node = node.next
return length
def __iter__(self):
return self
def next(self):
current = self.current
if current != None:
self.current = self.current.next
return current.value
else:
raise StopIteration
l = LinkedList()
for x in xrange(1,100):
l.add_in_tail(Node(x))
for x in l:
print(x)
|
class Node:
def __init__(self, v):
self.value = v
self.prev = None
self.next = None
class OrderedList:
def __init__(self, sort_ascending = True):
self.head = None
self.tail = None
self.sort_ascending = sort_ascending
def print_all_nodes(self):
node = self.head
while node != None:
print(node.value)
node = node.next
def print_all_nodes_reverse(self):
node = self.tail
while node != None:
print(node.value)
node = node.prev
def add_in_tail(self, item):
if self.head is None:
self.head = item
item.prev = None
item.next = None
else:
self.tail.next = item
item.prev = self.tail
self.tail = item
def find(self, value):
node = self.head
while node != None and self.compare(node.value, value) < 1:
print(node.value)
if node.value == value:
return node
node = node.next
return None
def get_at(self, index):
node = self.head
current = 0
while node != None:
if current == index:
return node
current += 1
node = node.next
return node
def remove_by_value(self, value):
node = self.head
while node != None:
if node.value == value:
if node.prev == None:
self.head = self.head.next
return True
else:
node.prev.next = node.next
return True
node = node.next
return False
# Home work
def compare(self, a, b):
if self.sort_ascending:
return a - b
else:
return b - a
def insert(self, item):
if self.head is None:
self.head = item
self.tail = item
item.prev = None
item.next = None
else:
node = self.head
while node != None and self.compare(node.value, item.value) < 1:
node = node.next
if node != None:
item.next = node
item.prev = node.prev
if node.prev != None:
node.prev.next = item
else:
self.head = item
item.prev = None
node.prev = item
else:
self.tail.next = item
item.prev = self.tail
item.next = None
self.tail = item
class StringOrderedList(OrderedList):
def compare(self, a, b):
stripedA = a.strip()
strpedB = b.strip()
if stripedA > strpedB:
r = 1
elif stripedA < strpedB:
r = -1
else:
r = 0;
if self.sort_ascending == False:
r = -r
return r
|
import pygame
import time
import random
pygame.init()
pygame.font.init()
myfont = pygame.font.SysFont('Comic Sans MS', 30)
screen = pygame.display.set_mode((1280,720))
done = False
#set initial variables
p1_x,p1_y=30,30
p2_x,p2_y=(screen.get_width()-60),30
ball_x,ball_y=((screen.get_width())/2),((screen.get_height())/2)
slope_x,slope_y=2,2
#set constants
paddle_width = screen.get_width()/64
paddle_height = screen.get_height()/3.6
#define Paddle class
class Paddle:
def __init__(self,x,y):
self.x=x
self.y=y
self.player=pygame.draw.rect(screen, (255,255,255), pygame.Rect(self.x,self.y,paddle_width,paddle_height))
self.rect=pygame.Rect(self.x,self.y,paddle_width,paddle_height)
def draw(self):
self.player=pygame.draw.rect(screen, (255,255,255), pygame.Rect(self.x,self.y,paddle_width,paddle_height))
self.rect=pygame.Rect(self.x,self.y,paddle_width,paddle_height)
def up(self):
if self.y>0:
self.y-=3
def down(self):
if self.y<screen.get_height()-200:
self.y+=3
#define ball class
class Ball:
def __init__(self,x,y):
self.x=x
self.y=y
self.slope_x=slope_x
self.slope_y=slope_y
self.ball=pygame.draw.rect(screen, (255,255,255), pygame.Rect(self.x,self.y,paddle_width,paddle_width))
self.rect = pygame.Rect(self.x,self.y,paddle_width,paddle_width)
def draw(self):
#make ball movement
self.x+=self.slope_x
self.y+=self.slope_y
if self.y <= 0 or self.y >= (screen.get_height()):
self.slope_y*=-1
if self.x <= 0:
self.slope_x*=-1
#p2_score+=1
self.x,self.y=((screen.get_width())/2),((screen.get_height())/2)
time.sleep(1)
if self.x >= (screen.get_width()):
self.slope_x*=-1
#p1_score+=1
self.x,self.y=((screen.get_width())/2),((screen.get_height())/2)
time.sleep(1)
#collision
if self.rect.colliderect(p1.rect) or self.rect.colliderect(p2.rect):
self.col()
self.player=pygame.draw.rect(screen, (255,255,255), pygame.Rect(self.x,self.y,paddle_width,paddle_width))
self.rect = pygame.Rect(self.x,self.y,paddle_width,paddle_width)
def col(self):
self.slope_x*=-1
if self.slope_y>0:
self.slope_y=random.randint(1,3) * -1
else:
self.slope_y=random.randint(1,3)
self.x+=(self.slope_x*3)
self.y+=self.slope_y
#set initial conditions
p1_score,p2_score=0,0
p1=Paddle(p1_x,p1_y)
p2=Paddle(p2_x,p2_y)
ball=Ball(ball_x,ball_y)
#main loop
while not done:
for event in pygame.event.get():
if event.type == pygame.QUIT:
done = True
pressed=pygame.key.get_pressed()
#controls
#p1
if pressed[pygame.K_w]:
p1.up()
if pressed[pygame.K_s]:
p1.down()
#p2
if pressed[pygame.K_UP]:
p2.up()
if pressed[pygame.K_DOWN]:
p2.down()
#make players and ball
screen.fill((0,0,0))
score = myfont.render(str(p1_score)+" "+str(p2_score), True, (255,255,255))
screen.blit(score, ((screen.get_width()/2)-20,0))
p1.draw()
p2.draw()
ball.draw()
pygame.display.flip()
|
# Natural Language Toolkit: Language Model Unit Tests
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Ilia Kurenkov <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
from functools import partial
from itertools import chain
from nltk.util import everygrams, pad_sequence
flatten = chain.from_iterable
pad_both_ends = partial(
pad_sequence,
pad_left=True,
left_pad_symbol="<s>",
pad_right=True,
right_pad_symbol="</s>",
)
pad_both_ends.__doc__ = """Pads both ends of a sentence to length specified by ngram order.
Following convention <s> pads the start of sentence </s> pads its end.
"""
def padded_everygrams(order, sentence):
"""Helper with some useful defaults.
Applies pad_both_ends to sentence and follows it up with everygrams.
"""
return everygrams(list(pad_both_ends(sentence, n=order)), max_len=order)
def padded_everygram_pipeline(order, text):
"""Default preprocessing for a sequence of sentences.
Creates two iterators:
- sentences padded and turned into sequences of `nltk.util.everygrams`
- sentences padded as above and chained together for a flat stream of words
:param order: Largest ngram length produced by `everygrams`.
:param text: Text to iterate over. Expected to be an iterable of sentences.
:type text: Iterable[Iterable[str]]
:return: iterator over text as ngrams, iterator over text as vocabulary data
"""
padding_fn = partial(pad_both_ends, n=order)
return (
(everygrams(list(padding_fn(sent)), max_len=order) for sent in text),
flatten(map(padding_fn, text)),
)
|
# Natural Language Toolkit: API for alignment and translation objects
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Will Zhang <[email protected]>
# Guan Gui <[email protected]>
# Steven Bird <[email protected]>
# Tah Wei Hoon <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
import subprocess
from collections import namedtuple
class AlignedSent:
"""
Return an aligned sentence object, which encapsulates two sentences
along with an ``Alignment`` between them.
Typically used in machine translation to represent a sentence and
its translation.
>>> from nltk.translate import AlignedSent, Alignment
>>> algnsent = AlignedSent(['klein', 'ist', 'das', 'Haus'],
... ['the', 'house', 'is', 'small'], Alignment.fromstring('0-3 1-2 2-0 3-1'))
>>> algnsent.words
['klein', 'ist', 'das', 'Haus']
>>> algnsent.mots
['the', 'house', 'is', 'small']
>>> algnsent.alignment
Alignment([(0, 3), (1, 2), (2, 0), (3, 1)])
>>> from nltk.corpus import comtrans
>>> print(comtrans.aligned_sents()[54])
<AlignedSent: 'Weshalb also sollten...' -> 'So why should EU arm...'>
>>> print(comtrans.aligned_sents()[54].alignment)
0-0 0-1 1-0 2-2 3-4 3-5 4-7 5-8 6-3 7-9 8-9 9-10 9-11 10-12 11-6 12-6 13-13
:param words: Words in the target language sentence
:type words: list(str)
:param mots: Words in the source language sentence
:type mots: list(str)
:param alignment: Word-level alignments between ``words`` and ``mots``.
Each alignment is represented as a 2-tuple (words_index, mots_index).
:type alignment: Alignment
"""
def __init__(self, words, mots, alignment=None):
self._words = words
self._mots = mots
if alignment is None:
self.alignment = Alignment([])
else:
assert type(alignment) is Alignment
self.alignment = alignment
@property
def words(self):
return self._words
@property
def mots(self):
return self._mots
def _get_alignment(self):
return self._alignment
def _set_alignment(self, alignment):
_check_alignment(len(self.words), len(self.mots), alignment)
self._alignment = alignment
alignment = property(_get_alignment, _set_alignment)
def __repr__(self):
"""
Return a string representation for this ``AlignedSent``.
:rtype: str
"""
words = "[%s]" % (", ".join("'%s'" % w for w in self._words))
mots = "[%s]" % (", ".join("'%s'" % w for w in self._mots))
return f"AlignedSent({words}, {mots}, {self._alignment!r})"
def _to_dot(self):
"""
Dot representation of the aligned sentence
"""
s = "graph align {\n"
s += "node[shape=plaintext]\n"
# Declare node
for w in self._words:
s += f'"{w}_source" [label="{w}"] \n'
for w in self._mots:
s += f'"{w}_target" [label="{w}"] \n'
# Alignment
for u, v in self._alignment:
s += f'"{self._words[u]}_source" -- "{self._mots[v]}_target" \n'
# Connect the source words
for i in range(len(self._words) - 1):
s += '"{}_source" -- "{}_source" [style=invis]\n'.format(
self._words[i],
self._words[i + 1],
)
# Connect the target words
for i in range(len(self._mots) - 1):
s += '"{}_target" -- "{}_target" [style=invis]\n'.format(
self._mots[i],
self._mots[i + 1],
)
# Put it in the same rank
s += "{rank = same; %s}\n" % (" ".join('"%s_source"' % w for w in self._words))
s += "{rank = same; %s}\n" % (" ".join('"%s_target"' % w for w in self._mots))
s += "}"
return s
def _repr_svg_(self):
"""
Ipython magic : show SVG representation of this ``AlignedSent``.
"""
dot_string = self._to_dot().encode("utf8")
output_format = "svg"
try:
process = subprocess.Popen(
["dot", "-T%s" % output_format],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
except OSError as e:
raise Exception("Cannot find the dot binary from Graphviz package") from e
out, err = process.communicate(dot_string)
return out.decode("utf8")
def __str__(self):
"""
Return a human-readable string representation for this ``AlignedSent``.
:rtype: str
"""
source = " ".join(self._words)[:20] + "..."
target = " ".join(self._mots)[:20] + "..."
return f"<AlignedSent: '{source}' -> '{target}'>"
def invert(self):
"""
Return the aligned sentence pair, reversing the directionality
:rtype: AlignedSent
"""
return AlignedSent(self._mots, self._words, self._alignment.invert())
class Alignment(frozenset):
"""
A storage class for representing alignment between two sequences, s1, s2.
In general, an alignment is a set of tuples of the form (i, j, ...)
representing an alignment between the i-th element of s1 and the
j-th element of s2. Tuples are extensible (they might contain
additional data, such as a boolean to indicate sure vs possible alignments).
>>> from nltk.translate import Alignment
>>> a = Alignment([(0, 0), (0, 1), (1, 2), (2, 2)])
>>> a.invert()
Alignment([(0, 0), (1, 0), (2, 1), (2, 2)])
>>> print(a.invert())
0-0 1-0 2-1 2-2
>>> a[0]
[(0, 1), (0, 0)]
>>> a.invert()[2]
[(2, 1), (2, 2)]
>>> b = Alignment([(0, 0), (0, 1)])
>>> b.issubset(a)
True
>>> c = Alignment.fromstring('0-0 0-1')
>>> b == c
True
"""
def __new__(cls, pairs):
self = frozenset.__new__(cls, pairs)
self._len = max(p[0] for p in self) if self != frozenset([]) else 0
self._index = None
return self
@classmethod
def fromstring(cls, s):
"""
Read a giza-formatted string and return an Alignment object.
>>> Alignment.fromstring('0-0 2-1 9-2 21-3 10-4 7-5')
Alignment([(0, 0), (2, 1), (7, 5), (9, 2), (10, 4), (21, 3)])
:type s: str
:param s: the positional alignments in giza format
:rtype: Alignment
:return: An Alignment object corresponding to the string representation ``s``.
"""
return Alignment([_giza2pair(a) for a in s.split()])
def __getitem__(self, key):
"""
Look up the alignments that map from a given index or slice.
"""
if not self._index:
self._build_index()
return self._index.__getitem__(key)
def invert(self):
"""
Return an Alignment object, being the inverted mapping.
"""
return Alignment(((p[1], p[0]) + p[2:]) for p in self)
def range(self, positions=None):
"""
Work out the range of the mapping from the given positions.
If no positions are specified, compute the range of the entire mapping.
"""
image = set()
if not self._index:
self._build_index()
if not positions:
positions = list(range(len(self._index)))
for p in positions:
image.update(f for _, f in self._index[p])
return sorted(image)
def __repr__(self):
"""
Produce a Giza-formatted string representing the alignment.
"""
return "Alignment(%r)" % sorted(self)
def __str__(self):
"""
Produce a Giza-formatted string representing the alignment.
"""
return " ".join("%d-%d" % p[:2] for p in sorted(self))
def _build_index(self):
"""
Build a list self._index such that self._index[i] is a list
of the alignments originating from word i.
"""
self._index = [[] for _ in range(self._len + 1)]
for p in self:
self._index[p[0]].append(p)
def _giza2pair(pair_string):
i, j = pair_string.split("-")
return int(i), int(j)
def _naacl2pair(pair_string):
i, j, p = pair_string.split("-")
return int(i), int(j)
def _check_alignment(num_words, num_mots, alignment):
"""
Check whether the alignments are legal.
:param num_words: the number of source language words
:type num_words: int
:param num_mots: the number of target language words
:type num_mots: int
:param alignment: alignment to be checked
:type alignment: Alignment
:raise IndexError: if alignment falls outside the sentence
"""
assert type(alignment) is Alignment
if not all(0 <= pair[0] < num_words for pair in alignment):
raise IndexError("Alignment is outside boundary of words")
if not all(pair[1] is None or 0 <= pair[1] < num_mots for pair in alignment):
raise IndexError("Alignment is outside boundary of mots")
PhraseTableEntry = namedtuple("PhraseTableEntry", ["trg_phrase", "log_prob"])
class PhraseTable:
"""
In-memory store of translations for a given phrase, and the log
probability of the those translations
"""
def __init__(self):
self.src_phrases = dict()
def translations_for(self, src_phrase):
"""
Get the translations for a source language phrase
:param src_phrase: Source language phrase of interest
:type src_phrase: tuple(str)
:return: A list of target language phrases that are translations
of ``src_phrase``, ordered in decreasing order of
likelihood. Each list element is a tuple of the target
phrase and its log probability.
:rtype: list(PhraseTableEntry)
"""
return self.src_phrases[src_phrase]
def add(self, src_phrase, trg_phrase, log_prob):
"""
:type src_phrase: tuple(str)
:type trg_phrase: tuple(str)
:param log_prob: Log probability that given ``src_phrase``,
``trg_phrase`` is its translation
:type log_prob: float
"""
entry = PhraseTableEntry(trg_phrase=trg_phrase, log_prob=log_prob)
if src_phrase not in self.src_phrases:
self.src_phrases[src_phrase] = []
self.src_phrases[src_phrase].append(entry)
self.src_phrases[src_phrase].sort(key=lambda e: e.log_prob, reverse=True)
def __contains__(self, src_phrase):
return src_phrase in self.src_phrases
|
# Natural Language Toolkit: Simple Tokenizers
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Edward Loper <[email protected]>
# Steven Bird <[email protected]>
# URL: <https://www.nltk.org>
# For license information, see LICENSE.TXT
r"""
Simple Tokenizers
These tokenizers divide strings into substrings using the string
``split()`` method.
When tokenizing using a particular delimiter string, use
the string ``split()`` method directly, as this is more efficient.
The simple tokenizers are *not* available as separate functions;
instead, you should just use the string ``split()`` method directly:
>>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks."
>>> s.split() # doctest: +NORMALIZE_WHITESPACE
['Good', 'muffins', 'cost', '$3.88', 'in', 'New', 'York.',
'Please', 'buy', 'me', 'two', 'of', 'them.', 'Thanks.']
>>> s.split(' ') # doctest: +NORMALIZE_WHITESPACE
['Good', 'muffins', 'cost', '$3.88\nin', 'New', 'York.', '',
'Please', 'buy', 'me\ntwo', 'of', 'them.\n\nThanks.']
>>> s.split('\n') # doctest: +NORMALIZE_WHITESPACE
['Good muffins cost $3.88', 'in New York. Please buy me',
'two of them.', '', 'Thanks.']
The simple tokenizers are mainly useful because they follow the
standard ``TokenizerI`` interface, and so can be used with any code
that expects a tokenizer. For example, these tokenizers can be used
to specify the tokenization conventions when building a `CorpusReader`.
"""
from nltk.tokenize.api import StringTokenizer, TokenizerI
from nltk.tokenize.util import regexp_span_tokenize, string_span_tokenize
class SpaceTokenizer(StringTokenizer):
r"""Tokenize a string using the space character as a delimiter,
which is the same as ``s.split(' ')``.
>>> from nltk.tokenize import SpaceTokenizer
>>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks."
>>> SpaceTokenizer().tokenize(s) # doctest: +NORMALIZE_WHITESPACE
['Good', 'muffins', 'cost', '$3.88\nin', 'New', 'York.', '',
'Please', 'buy', 'me\ntwo', 'of', 'them.\n\nThanks.']
"""
_string = " "
class TabTokenizer(StringTokenizer):
r"""Tokenize a string use the tab character as a delimiter,
the same as ``s.split('\t')``.
>>> from nltk.tokenize import TabTokenizer
>>> TabTokenizer().tokenize('a\tb c\n\t d')
['a', 'b c\n', ' d']
"""
_string = "\t"
class CharTokenizer(StringTokenizer):
"""Tokenize a string into individual characters. If this functionality
is ever required directly, use ``for char in string``.
"""
_string = None
def tokenize(self, s):
return list(s)
def span_tokenize(self, s):
yield from enumerate(range(1, len(s) + 1))
class LineTokenizer(TokenizerI):
r"""Tokenize a string into its lines, optionally discarding blank lines.
This is similar to ``s.split('\n')``.
>>> from nltk.tokenize import LineTokenizer
>>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks."
>>> LineTokenizer(blanklines='keep').tokenize(s) # doctest: +NORMALIZE_WHITESPACE
['Good muffins cost $3.88', 'in New York. Please buy me',
'two of them.', '', 'Thanks.']
>>> # same as [l for l in s.split('\n') if l.strip()]:
>>> LineTokenizer(blanklines='discard').tokenize(s) # doctest: +NORMALIZE_WHITESPACE
['Good muffins cost $3.88', 'in New York. Please buy me',
'two of them.', 'Thanks.']
:param blanklines: Indicates how blank lines should be handled. Valid values are:
- ``discard``: strip blank lines out of the token list before returning it.
A line is considered blank if it contains only whitespace characters.
- ``keep``: leave all blank lines in the token list.
- ``discard-eof``: if the string ends with a newline, then do not generate
a corresponding token ``''`` after that newline.
"""
def __init__(self, blanklines="discard"):
valid_blanklines = ("discard", "keep", "discard-eof")
if blanklines not in valid_blanklines:
raise ValueError(
"Blank lines must be one of: %s" % " ".join(valid_blanklines)
)
self._blanklines = blanklines
def tokenize(self, s):
lines = s.splitlines()
# If requested, strip off blank lines.
if self._blanklines == "discard":
lines = [l for l in lines if l.rstrip()]
elif self._blanklines == "discard-eof":
if lines and not lines[-1].strip():
lines.pop()
return lines
# discard-eof not implemented
def span_tokenize(self, s):
if self._blanklines == "keep":
yield from string_span_tokenize(s, r"\n")
else:
yield from regexp_span_tokenize(s, r"\n(\s+\n)*")
######################################################################
# { Tokenization Functions
######################################################################
# XXX: it is stated in module docs that there is no function versions
def line_tokenize(text, blanklines="discard"):
return LineTokenizer(blanklines).tokenize(text)
|
# Natural Language Toolkit: Positive Naive Bayes Classifier
#
# Copyright (C) 2012 NLTK Project
# Author: Alessandro Presta <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
A variant of the Naive Bayes Classifier that performs binary classification with
partially-labeled training sets. In other words, assume we want to build a classifier
that assigns each example to one of two complementary classes (e.g., male names and
female names).
If we have a training set with labeled examples for both classes, we can use a
standard Naive Bayes Classifier. However, consider the case when we only have labeled
examples for one of the classes, and other, unlabeled, examples.
Then, assuming a prior distribution on the two labels, we can use the unlabeled set
to estimate the frequencies of the various features.
Let the two possible labels be 1 and 0, and let's say we only have examples labeled 1
and unlabeled examples. We are also given an estimate of P(1).
We compute P(feature|1) exactly as in the standard case.
To compute P(feature|0), we first estimate P(feature) from the unlabeled set (we are
assuming that the unlabeled examples are drawn according to the given prior distribution)
and then express the conditional probability as:
| P(feature) - P(feature|1) * P(1)
| P(feature|0) = ----------------------------------
| P(0)
Example:
>>> from nltk.classify import PositiveNaiveBayesClassifier
Some sentences about sports:
>>> sports_sentences = [ 'The team dominated the game',
... 'They lost the ball',
... 'The game was intense',
... 'The goalkeeper catched the ball',
... 'The other team controlled the ball' ]
Mixed topics, including sports:
>>> various_sentences = [ 'The President did not comment',
... 'I lost the keys',
... 'The team won the game',
... 'Sara has two kids',
... 'The ball went off the court',
... 'They had the ball for the whole game',
... 'The show is over' ]
The features of a sentence are simply the words it contains:
>>> def features(sentence):
... words = sentence.lower().split()
... return dict(('contains(%s)' % w, True) for w in words)
We use the sports sentences as positive examples, the mixed ones ad unlabeled examples:
>>> positive_featuresets = map(features, sports_sentences)
>>> unlabeled_featuresets = map(features, various_sentences)
>>> classifier = PositiveNaiveBayesClassifier.train(positive_featuresets,
... unlabeled_featuresets)
Is the following sentence about sports?
>>> classifier.classify(features('The cat is on the table'))
False
What about this one?
>>> classifier.classify(features('My team lost the game'))
True
"""
from collections import defaultdict
from nltk.classify.naivebayes import NaiveBayesClassifier
from nltk.probability import DictionaryProbDist, ELEProbDist, FreqDist
##//////////////////////////////////////////////////////
## Positive Naive Bayes Classifier
##//////////////////////////////////////////////////////
class PositiveNaiveBayesClassifier(NaiveBayesClassifier):
@staticmethod
def train(
positive_featuresets,
unlabeled_featuresets,
positive_prob_prior=0.5,
estimator=ELEProbDist,
):
"""
:param positive_featuresets: An iterable of featuresets that are known as positive
examples (i.e., their label is ``True``).
:param unlabeled_featuresets: An iterable of featuresets whose label is unknown.
:param positive_prob_prior: A prior estimate of the probability of the label
``True`` (default 0.5).
"""
positive_feature_freqdist = defaultdict(FreqDist)
unlabeled_feature_freqdist = defaultdict(FreqDist)
feature_values = defaultdict(set)
fnames = set()
# Count up how many times each feature value occurred in positive examples.
num_positive_examples = 0
for featureset in positive_featuresets:
for fname, fval in featureset.items():
positive_feature_freqdist[fname][fval] += 1
feature_values[fname].add(fval)
fnames.add(fname)
num_positive_examples += 1
# Count up how many times each feature value occurred in unlabeled examples.
num_unlabeled_examples = 0
for featureset in unlabeled_featuresets:
for fname, fval in featureset.items():
unlabeled_feature_freqdist[fname][fval] += 1
feature_values[fname].add(fval)
fnames.add(fname)
num_unlabeled_examples += 1
# If a feature didn't have a value given for an instance, then we assume that
# it gets the implicit value 'None'.
for fname in fnames:
count = positive_feature_freqdist[fname].N()
positive_feature_freqdist[fname][None] += num_positive_examples - count
feature_values[fname].add(None)
for fname in fnames:
count = unlabeled_feature_freqdist[fname].N()
unlabeled_feature_freqdist[fname][None] += num_unlabeled_examples - count
feature_values[fname].add(None)
negative_prob_prior = 1.0 - positive_prob_prior
# Create the P(label) distribution.
label_probdist = DictionaryProbDist(
{True: positive_prob_prior, False: negative_prob_prior}
)
# Create the P(fval|label, fname) distribution.
feature_probdist = {}
for fname, freqdist in positive_feature_freqdist.items():
probdist = estimator(freqdist, bins=len(feature_values[fname]))
feature_probdist[True, fname] = probdist
for fname, freqdist in unlabeled_feature_freqdist.items():
global_probdist = estimator(freqdist, bins=len(feature_values[fname]))
negative_feature_probs = {}
for fval in feature_values[fname]:
prob = (
global_probdist.prob(fval)
- positive_prob_prior * feature_probdist[True, fname].prob(fval)
) / negative_prob_prior
# TODO: We need to add some kind of smoothing here, instead of
# setting negative probabilities to zero and normalizing.
negative_feature_probs[fval] = max(prob, 0.0)
feature_probdist[False, fname] = DictionaryProbDist(
negative_feature_probs, normalize=True
)
return PositiveNaiveBayesClassifier(label_probdist, feature_probdist)
##//////////////////////////////////////////////////////
## Demo
##//////////////////////////////////////////////////////
def demo():
from nltk.classify.util import partial_names_demo
classifier = partial_names_demo(PositiveNaiveBayesClassifier.train)
classifier.show_most_informative_features()
|
# Natural Language Toolkit: Minimal Sets
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Steven Bird <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
from collections import defaultdict
class MinimalSet:
"""
Find contexts where more than one possible target value can
appear. E.g. if targets are word-initial letters, and contexts
are the remainders of words, then we would like to find cases like
"fat" vs "cat", and "training" vs "draining". If targets are
parts-of-speech and contexts are words, then we would like to find
cases like wind (noun) 'air in rapid motion', vs wind (verb)
'coil, wrap'.
"""
def __init__(self, parameters=None):
"""
Create a new minimal set.
:param parameters: The (context, target, display) tuples for the item
:type parameters: list(tuple(str, str, str))
"""
self._targets = set() # the contrastive information
self._contexts = set() # what we are controlling for
self._seen = defaultdict(set) # to record what we have seen
self._displays = {} # what we will display
if parameters:
for context, target, display in parameters:
self.add(context, target, display)
def add(self, context, target, display):
"""
Add a new item to the minimal set, having the specified
context, target, and display form.
:param context: The context in which the item of interest appears
:type context: str
:param target: The item of interest
:type target: str
:param display: The information to be reported for each item
:type display: str
"""
# Store the set of targets that occurred in this context
self._seen[context].add(target)
# Keep track of which contexts and targets we have seen
self._contexts.add(context)
self._targets.add(target)
# For a given context and target, store the display form
self._displays[(context, target)] = display
def contexts(self, minimum=2):
"""
Determine which contexts occurred with enough distinct targets.
:param minimum: the minimum number of distinct target forms
:type minimum: int
:rtype: list
"""
return [c for c in self._contexts if len(self._seen[c]) >= minimum]
def display(self, context, target, default=""):
if (context, target) in self._displays:
return self._displays[(context, target)]
else:
return default
def display_all(self, context):
result = []
for target in self._targets:
x = self.display(context, target)
if x:
result.append(x)
return result
def targets(self):
return self._targets
|
#5.5
#while
x=1
while x<=100:
print str(x)
x=x+1
#for
words=["This","is","an","ex","parrot"]
for word in words:
print word
#range
for number in range(1,101):
print number
#key,value
d={"x":1,"y":2,"z":3}
for key,value in d.items():
print "key="+key+" value="+str(value)
|
#9.6
class Fibs:
def __init__(self):
self.a=0
self.b=1
#implement __iter__
def __iter__(self):
return self
#implement next
def next(self):
self.a,self.b=self.b,self.a+self.b
return self.a
fibs=Fibs()
for f in fibs:
if f>1000:
print f
break
class TestIterator:
value=0
def __iter__(self):
return self
def next(self):
self.value=self.value+1
if self.value>10:
raise StopIteration
return self.value
Ti=TestIterator()
print list(Ti)
|
#example2-1
months=["January","February","March","April","May","June","July","August","September",
"October","November","December"]
endings=["st","nd","rd"]+17*["th"]+["st","nd","rd"]+7*["th"]+["st"]
year=raw_input("year: ")
month=raw_input("Month(1-12): ")
day=raw_input("Day(1-31): ")
month_number=int(month)
day_number=int(day)
month_name=months[month_number-1]
ordinal=day+endings[day_number-1]
print month_name+" "+ordinal+", "+year
|
#############################################
# This class implements the interface for a typical cipher.
# It defines functions usually used in a cipher
#############################################
class CipherInterface:
############################################
# Sets the key to use
# @param key - the key to use
# @return - True if the key is valid and False otherwise
#############################################
def setKey(self,key):
return False
##################################################
# Encrypts a plaintext string
# @param plaintext - the plaintext string
# @return - the encrypted ciphertext string
##################################################
def encrypt(self,plaintext):
return ""
###################################################
# Decrypts a string of ciphertext
# @param ciphertext - the ciphertext
# @return - the plaintext
###################################################
def decrypt(self,ciphertext):
return ""
# Example to check functions
#cipher = CipherInterface()
#text = cipher.setKey(1)
|
import pandas as pd
from pandas import Series, DataFrame
import numpy as np
np.set_printoptions(precision=4)
obj = Series(range(3), index=['a', 'b', 'c'])
index = obj.index
print(index)
print(obj)
print(index[1:])
|
"""
source: https://leetcode.com/problems/search-insert-position/
author: hpjhc
date: 2018/10/21
"""
class Solution:
def searchInsert(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: int
"""
try:
return nums.index(target)
except ValueError:
l = 0
r = len(nums)
while l < r - 1:
mid = (l + r) // 2
if nums[mid] < target:
l = mid
else:
r = mid
return l if nums[l] > target else l + 1
|
"""
source:https://leetcode.com/problems/roman-to-integer/
author: hpjhc
date: 2018/10/12
"""
class Solution:
def romanToInt(self, s):
"""
:type s: str
:rtype: int
"""
dict = {'I':1, 'V':5, 'X':10, 'L':50, 'C':100, 'D':500, 'M':1000}
res = 0
for i, key in enumerate(s):
nxt = s[i+1:i+2]
res += dict[key]
if nxt != '' and dict[key] < dict[nxt]:
res -= dict[key] * 2
return res
|
"""
source:https://leetcode.com/problems/1-bit-and-2-bit-characters/
author: hpjhc
date: 2018/9/21
"""
class Solution:
def isOneBitCharacter(self, bits):
"""
:type bits: List[int]
:rtype: bool
"""
bits.pop()
res = 0
while(bits and bits.pop()):
res += 1
return res % 2 == 0
|
import re
# Reg Expression
# Removing Begining of a String
str = ' hello python '
str = re.sub(r"^\s+", "", str, flags=re.UNICODE)
print("removed spaces at left side :",str)
# Ending of a string
str = ' hello python '
str = re.sub(r"\s+$", "", str, flags=re.UNICODE)
print("removed spaces at right side :",str)
# Removing Begining and Ending
str = ' hello python '
str = re.sub("^\s+|\s+$", "", str, flags=re.UNICODE)
print("removed spaces at both sides :",str)
# Removing all spaces
str = ' hello python '
pattern = re.compile(r'\s+')
str = re.sub(pattern, '', str)
print(str)
|
# importing pandas module
import pandas as pd
# defining File path
fpath = "Fruit.xlsx"
# method to be used to read the excel file
data2 = pd.read_excel(fpath,sheet_name='sweet or sour',header=[0])
print(data2)
#Reading custom no. of rows and columns:
import pandas as pd
# File path
fpath = "Fruit.xlsx"
# method to be used to read the data
data2 = pd.read_excel(fpath,usecols=['Fruit','Sweetness','Soreness'],index_col='Fruit',nrows = 5)
print(data2)
#Reading selective rows
import pandas as pd
fpath = "Fruit.xlsx"
data3 = pd.read_excel(fpath,header=None,nrows=4,skiprows=2)
print(data3)
|
if __name__ == '__main__':
languages = ['python', 'perl', 'groovy', 'java', 'curl', 'javascript']
for num, name in enumerate(languages):
print( num, name)
# index starts from 1
for num, name in enumerate(languages, start =1):
print( num, name)
# count of list items
for count, name in enumerate(languages, start=1):
print(name)
print(f'There were {count} items in the list')
|
persons = {
'user_name':'chandra',
'first_name':'chandra shekhar',
'last_name':'goka'
}
#Looping key,values
for key,value in persons.items():
print(f"Key: {key} - Value: {value}")
favorite_subjects={
'chandra':'Computers',
'panvith':'Physics',
'jon':'Mathematics',
'robert':'Computers'
}
for name,fav_subject in favorite_subjects.items():
print(f"{name} likes {fav_subject}")
#Order
for name,fav_subject in sorted(favorite_subjects.items()):
print(f"{name} likes {fav_subject}")
#Keys in Order
for name in sorted(favorite_subjects.keys()):
print(name)
#Values in Order
for fav_subject in sorted(favorite_subjects.values()):
print(fav_subject)
#Remove duplicates in values
for fav_subject in sorted(set(favorite_subjects.values())):
print(fav_subject)
|
# A program to do simple math while demonstrating the use of Functions
def adding(num1, num2):
answer = num1 + num2
return answer
def subtracting(num1, num2):
answer = int(num1) - int(num2)
return answer
def multiplying(num1, num2):
answer = int(num1) * int(num2)
return answer
def dividing(num1, num2):
answer = int(num1) / int(num2)
return answer
num1 = input("Enter the first number: ")
num2 = input("Enter the second number: ")
operation = input("Enter + - * / \n")
if operation == "+":
answer = adding(num1, num2)
elif operation == "-":
answer = subtracting(num1, num2)
elif operation == "*":
answer = multiplying(num1, num2)
elif operation == "/":
answer = dividing(num1, num2)
print("The result of " + str(num1) + " " + operation + " " + str(num2) + " = " + str(answer))
|
def display_board(x):
"""
This function displays the board for the X and O game before and after each turn.
"""
#prints the game table
print('|',x[0],'|',x[1],'|',x[2],'|')
print('|',x[3],'|',x[4],'|',x[5],'|')
print('|',x[6],'|',x[7],'|',x[8],'|')
def turn(y):
"""
Decides whose turn it is and allows them to play.
returns True if game is over
"""
#X's turn
if (y.count('x') == y.count('o')):
#x inputs and check x's input
value = valid_location('X',y)
#add x's table to data
y[value] = 'x'
#display table
display_board(y)
#check if X won
checker = check_board(y)
#returns value to stop game
if checker == True:
return checker
#check if game is a draw
elif y.count('x') == 5:
print(' Game is a draw')
return True
#O's turn
elif (y.count('x') > y.count('o')):
#o inputs and check o's input
value = valid_location('O',y)
#add o's table to data
y[value] = 'o'
#display table
display_board(y)
#check if O won
checker = check_board(y)
#returns value to stop game
if checker == True:
return checker
def check_board(a):
"""
This function checks if the game is won.
displays the winner of the game
returns True if game is won.
"""
#check horizontal rows
if (a[0] == a[1] == a[2] == 'x') or (a[0] == a[1] == a[2] == 'o'):
print(a[0], 'WINS')
return True
if (a[3] == a[4] == a[5] == 'x') or (a[3] == a[4] == a[5] == 'o'):
print(a[3], 'WINS')
return True
if (a[6] == a[7] == a[8] == 'x') or (a[6] == a[7] == a[8] == 'o'):
print(a[6], 'WINS')
return True
#check vertical rows
if (a[0] == a[3] == a[6] == 'x') or (a[0] == a[3] == a[6] == 'o'):
print(a[0], 'WINS')
return True
if (a[1] == a[4] == a[7] == 'x') or (a[1] == a[4] == a[7] == 'o'):
print(a[1], 'WINS')
return True
if (a[2] == a[5] == a[8] == 'x') or (a[2] == a[5] == a[8] == 'o'):
print(a[2], 'WINS')
return True
#check diagnoals
if (a[0] == a[4] == a[8] == 'x') or (a[0] == a[4] == a[8] == 'o'):
print(a[0], 'WINS')
return True
if (a[2] == a[4] == a[6] == 'x') or (a[2] == a[4] == a[6] == 'o'):
print(a[2], 'WINS')
return True
def play(z):
"""
starts the game
"""
#if cont is True game is over
cont = turn(z)
#if cont is None then game isn't over
while cont == None:
cont = turn(z)
def valid_location(j,b):
"""
takes in j as player and b as list.
checks if input is valid
returns valide input
"""
validity = False
while not False:
value = int(input(j+"'s turn to play, choose location: "))
value -= 1
if b[value] == '-':
validity = True
return value
else:
continue
def main():
affirm = False
while not affirm:
#defines board values
board_values = ['-','-','-','-','-','-','-','-','-']
#displays board
display_board(board_values)
#game plays
play(board_values)
#check if game wants to continue
answer = input("Do you want to play again {y is yes, anything else is no}: ")
if answer != 'y':
affirm = True
if __name__ == "__main__":
main()
|
#!/usr/bin/env python3
"""tuple typeanotation
create a tuple
"""
from typing import Tuple, Callable
def make_multiplier(multiplier: float) -> Callable[[float], float]:
"""make a multiplier call
Args:
multiplier (float): [number to use]
Returns:
Callable[[float], float]: [function to make the operation]
"""
def f(num: float) -> float:
"""return the multiplication
Args:
num (float): [float num to mult]
Returns:
float: [result of num * multiplier]
"""
return num * multiplier
return f
|
"""
This code is part of Data Science Dojo's bootcamp
Copyright (c) 2016-2018
Objective: Explore and visualize data using Python
Data Source: Multiple
Python Version: 3.4+
Packages: matplotlib, pandas, seaborn
"""
# Script for following along in Data Exploration and Visualization module
# Set your working directory to the bootcamp root with os.chdir()
# Copy-paste line by line into an iPython shell
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
# Import iris data into Pandas DataFrame
iris = pd.read_csv('Datasets/Iris_Data.csv')
iris.head()
# Pandas boxplot
iris.boxplot(column='Sepal.Length', by='Species', return_type='axes')
# Pandas boxplots with notches
plt.figure()
iris_box = iris.boxplot(column='Sepal.Length', by='Species', notch=True, return_type='axes')
# Saving Plots.
# Saves to current working directory (os.cwd()) by default
plt.figure()
iris_box['Sepal.Length'].get_figure().savefig("myplot.pdf", format='pdf')
# Matplotlib histogram
plt.figure()
plt.hist(iris['Petal.Width'], bins=20)
# Pandas density plot
plt.figure()
iris['Petal.Length'].plot(kind='kde')
# Seaborn multiple density plots
fig = plt.figure()
ax = fig.add_subplot(111)
for name, group in iris['Petal.Width'].groupby(iris['Species']):
sns.distplot(group, hist=False, rug=True, ax=ax, label=name)
ax.legend()
# Exercise 1:
# Make a 2-D scatter plot of Sepal Length vs Sepal Width and
# Petal Length vs Petal Width using core. Then recreate the same graphs in
# lattice, this time coloring the individual points by species.
# Matplotlib scatter plot
plt.figure()
plt.scatter(x=iris['Sepal.Length'], y=iris['Sepal.Width'])
# Pandas segmented scatter plot
plt.figure()
iris_groups = iris.groupby('Species')
ax = iris_groups.get_group('setosa').plot(kind='scatter', x='Sepal.Length', y='Sepal.Width',
label='Setosa', color='Blue')
iris_groups.get_group('virginica').plot(kind='scatter', x='Sepal.Length', y='Sepal.Width',
label='Virginica', color='Green', ax=ax)
iris_groups.get_group('versicolor').plot(kind='scatter', x='Sepal.Length', y='Sepal.Width',
label='Versicolor', color='Red', ax=ax)
# Seaborn regression lines
## Ungrouped
plt.figure()
sns.lmplot(x='Petal.Length', y='Petal.Width', data=iris)
## Grouped
plt.figure()
sns.lmplot(x='Petal.Length', y='Petal.Width', data=iris, hue='Species')
# Seaborn scatter plot matrix
plt.figure()
sns.pairplot(data=iris, hue='Species', diag_kind='kde', palette='husl', markers=['o', 's', 'D'])
#### Extended Titanic Exploration ####
# Read in the data and check structure
titanic = pd.read_csv('Datasets/titanic.csv')
titanic.head()
titanic.info()
# Casting & Readability
titanic['Survived'] = titanic['Survived'].astype('category')
titanic['Survived'].cat.categories = ['Dead', 'Survived']
titanic['Survived'].value_counts()
titanic['Embarked'] = titanic['Embarked'].astype('category')
titanic['Embarked'].cat.categories = ['Cherbourg', 'Queenstown', 'Southampton']
titanic['Embarked'].value_counts()
titanic.loc[:,['Survived', 'Embarked']].describe()
# Pie Chart
plt.figure()
titanic['Survived'].value_counts().plot(kind='pie')
# Is Sex a good predictor?
male = titanic[titanic['Sex']=='male']
female = titanic[titanic['Sex']=='female']
sex_values = pd.DataFrame({'male':male['Survived'].value_counts(),
'female':female['Survived'].value_counts()})
plt.figure()
sex_values.plot(kind='pie', subplots=True, figsize=(8,4))
# Is Age a good predictor?
titanic['Age'].describe()
titanic[titanic['Survived']=='Dead']['Age'].describe()
titanic[titanic['Survived']=='Survived']['Age'].describe()
# Exercise 3:
# Create 2 box plots of Age, one segmented by Sex, the other by Survived
# Create a histogram of Age
# Create 2 density plot of Age, also segmented by Sex and Survived
plt.figure()
titanic.boxplot(by='Sex', column='Age')
plt.figure()
titanic.boxplot(by='Survived', column='Age')
plt.figure()
titanic['Age'].hist(bins=12)
fig = plt.figure()
ax_sex = fig.add_subplot(211)
ax_surv = fig.add_subplot(212)
for name, group in titanic['Age'].groupby(titanic['Sex']):
sns.distplot(group, hist=False, label=name, ax=ax_sex)
for name, group in titanic['Age'].groupby(titanic['Survived']):
sns.distplot(group, hist=False, label=name, ax=ax_surv)
ax_sex.legend()
ax_surv.legend()
# Exercise 4:
# Create a new column "Child", and assign each row either "Adult" or "Child"
# based on a consistent metric. Then create a series of box plots
# relating Fare, Child, Sex, and Survived
child = titanic['Age']
child.loc[child < 13] = 0
child.loc[child >= 13] = 1
titanic['Child'] = child.astype('category')
titanic['Child'].cat.categories = ['Child', 'Adult']
# Run these next two lines as one block
plt.figure()
child_facets = sns.FacetGrid(data=titanic, row='Sex', col='Survived', sharey=True)
child_facets = child_facets.map(sns.boxplot, "Fare", "Child")
|
"""
This code is part of Data Science Dojo's bootcamp
Copyright (c) 2016-2018
Objective: Machine Learning of the Kyphosis dataset with a Decision Tree
Data Source: bootcamp root/Datasets/kyphosis.csv
Python Version: 3.4+
Packages: scikit-learn, pandas, numpy, pydotplus
"""
from sklearn.tree import DecisionTreeClassifier
from sklearn import metrics, tree
from sklearn.externals.six import StringIO
import pydotplus
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Import data. Remember to set your working directory to the bootcamp root.
kyphosis = pd.read_csv('Datasets/kyphosis.csv', index_col=0)
kyphosis["Kyphosis"] = pd.Categorical(kyphosis["Kyphosis"],
categories=['absent', 'present'])
# Data exploration and visualization
kyphosis.boxplot(by='Kyphosis')
pd.tools.plotting.scatter_matrix(kyphosis.iloc[:,1:])
plt.show()
# Randomly choose 60% of the data as training data (Why 60% instead of 70%?)
np.random.seed(27)
kyphosis.is_train = np.random.uniform(0, 1, len(kyphosis)) <= .6
kyphosis_train = kyphosis[kyphosis.is_train]
kyphosis_test = kyphosis[kyphosis.is_train == False]
# Train model
kyphosis_features = kyphosis.columns[1:]
kyphosis_dt_clf = DecisionTreeClassifier(criterion='entropy', max_depth=None,
min_samples_split=2, min_samples_leaf=1)
kyphosis_dt_clf = kyphosis_dt_clf.fit(kyphosis_train[kyphosis_features],
kyphosis_train['Kyphosis'])
# Print a string representation of the tree.
# If you have graphviz (www.graphviz.org) installed, you can write a pdf
# visualization using graph.write_pdf(filename)
kyphosis_dt_data = StringIO()
tree.export_graphviz(kyphosis_dt_clf, out_file=kyphosis_dt_data)
kyphosis_dt_graph = pydotplus.parser.parse_dot_data(kyphosis_dt_data.getvalue())
print(kyphosis_dt_graph.to_string())
# Predict classes of test set and evaluate
kyphosis_dt_pred = kyphosis_dt_clf.predict(kyphosis_test[kyphosis_features])
kyphosis_dt_cm = metrics.confusion_matrix(kyphosis_test['Kyphosis'],
kyphosis_dt_pred,
labels=['absent', 'present'])
print(kyphosis_dt_cm)
kyphosis_dt_acc = metrics.accuracy_score(kyphosis_test['Kyphosis'],
kyphosis_dt_pred)
kyphosis_dt_prec = metrics.precision_score(kyphosis_test['Kyphosis'],
kyphosis_dt_pred,
pos_label='absent')
kyphosis_dt_rec = metrics.recall_score(kyphosis_test['Kyphosis'],
kyphosis_dt_pred,
pos_label='absent')
kyphosis_dt_f1 = metrics.f1_score(kyphosis_test['Kyphosis'], kyphosis_dt_pred,
pos_label='absent')
print("accuracy: " + str(kyphosis_dt_acc) + "\n precision: "
+ str(kyphosis_dt_prec) + "\n recall: " + str(kyphosis_dt_rec)
+ "\n f1-score: " + str(kyphosis_dt_f1))
|
a=3
b=4
print('the value of a+b is ',3+4) #Arithmetic Operators
print('the value of a-b is ',3-4) #Arithmetic Operators
print('the value of a*b is ',3*4) #Arithmetic Operators
print('the value of a/b is ',3/4) #Arithmetic Operators
print('the value of a%b is ',type(3%4)) #Arithmetic Operators
#Assignment operators
a=34
a+=12
print(a)
# Comparison opera
b=14<7
print (b)
# Logical Operators
bool1=True
bool2=False
print("The value of bool1 and bool2 is :",(bool1 and bool2))
print("The value of not bool2 is :",(not bool2))
print("The value of bool1 or bool2 is :",(bool1 or bool2))
|
# inspired from https://www.bogotobogo.com/python/Multithread/python_multithreading_Synchronization_Producer_Consumer_using_Queue.php
import threading
import time
import random
import queue
q = queue.Queue()
class ProducerThread(threading.Thread):
def __init__(self, target=None, name=None):
super(ProducerThread, self).__init__()
self.target = target
self.name = name
def run(self):
while True:
item = random.randint(1, 10)
q.put(item)
print("+ item " + str(item))
time.sleep(2)
return
class ConsumerThread(threading.Thread):
def __init__(self, target=None, name=None, pool_size=10):
super(ConsumerThread, self).__init__()
self.target = target
self.name = name
self.pool_size = pool_size
return
def run(self):
while True:
time.sleep(3)
if not q.qsize() >= self.pool_size:
elems = []
for i in range(0, self.pool_size):
elems.append(q.get())
print("- items " + str(elems))
return
if __name__ == '__main__':
p = ProducerThread(name='producer')
c = ConsumerThread(name='consumer')
p.start()
c.start()
|
#!/usr/bin/python3
# Prints the weather from the command line.
# From Automate the boring stuff.
import json
import requests
location = input("Enter the City: ")
countrycode = input("Enter country code: ")
# Getting the DATA
url = 'http://api.openweathermap.org/data/2.5/forecast?q=%s,%s&APPID=(KEY)' % (
location, countrycode)
response = requests.get(url)
response.raise_for_status()
# Load JSON Data and make it readable.
weatherData = json.loads(response.text)
# Print weather.
w = weatherData['list']
print('Current weather in %s:' % (location))
print(w[0]['weather'][0]['main'], '-', w[0]['weather'][0]
['description'], '-' + '' + 'Wind: ', w[0]['wind']['speed'])
print()
print('Tomorrow:')
print(w[1]['weather'][0]['main'], '-', w[1]['weather'][0]
['description'], '-' + '' + 'Wind: ', w[1]['wind']['speed'])
print()
print('Day after tomorrow:')
print(w[2]['weather'][0]['main'], '-', w[2]['weather'][0]
['description'], '-' + '' + 'Wind: ', w[2]['wind']['speed'])
|
"""
All decisions are based on the number of occupied seats adjacent to a given seat (one of the eight positions immediately up, down, left, right, or diagonal from the seat). The following rules are applied to every seat simultaneously:
If a seat is empty (L) and there are no occupied seats adjacent to it, the seat becomes occupied.
If a seat is occupied (#) and four or more seats adjacent to it are also occupied, the seat becomes empty.
Otherwise, the seat's state does not change.
Floor (.) never changes; seats don't move, and nobody sits on the floor.
Simulate your seating area by applying the seating rules repeatedly until no seats change state. How many seats end up occupied?
"""
from enum import Enum
class CellType(Enum):
FLOOR = 1
SEAT = 2
class CellState(Enum):
EMPTY = 1
OCCUPIED = 2
class Cell:
FLOOR = '.'
EMPTY = 'L'
OCCUPIED = '#'
INPUT_TO_CELL_TYPE_KEY = {
FLOOR: CellType.FLOOR,
EMPTY: CellType.SEAT,
OCCUPIED: CellType.SEAT,
}
INPUT_TO_CELL_STATE_KEY = {
FLOOR: None,
EMPTY: CellState.EMPTY,
OCCUPIED: CellState.OCCUPIED,
}
FORMAT_STR_KEY = {
CellState.EMPTY: EMPTY,
CellState.OCCUPIED: OCCUPIED,
}
def __init__(self, type_, state):
self.type = type_
self.state = state
@classmethod
def from_input_char(cls, input_char):
return cls(
type_=cls.INPUT_TO_CELL_TYPE_KEY[input_char],
state=cls.INPUT_TO_CELL_STATE_KEY[input_char],
)
@classmethod
def init_empty(cls):
return cls(
type_=CellType.SEAT,
state=CellState.EMPTY,
)
@classmethod
def init_occupied(cls):
return cls(
type_=CellType.SEAT,
state=CellState.OCCUPIED,
)
def __str__(self):
if self.type == CellType.FLOOR:
return Cell.FLOOR
else:
return self.FORMAT_STR_KEY[self.state]
@property
def is_occupied(self):
return self.state == CellState.OCCUPIED
@property
def is_seat(self):
return self.type == CellType.SEAT
def matches_cell(self, other_cell):
return self.type == other_cell.type and self.state == other_cell.state
class Grid:
def __init__(self, cell_rows):
self.cell_rows = cell_rows
self.width = len(cell_rows[0])
self.height = len(cell_rows)
@classmethod
def from_input_lines(cls, lines):
cell_rows = []
for line in lines:
cell_rows.append([Cell.from_input_char(cell) for cell in list(line)])
return cls(cell_rows=cell_rows)
def __str__(self):
joined_cells = []
for cell_row in self.cell_rows:
joined_cells.append('|'.join([str(cell) for cell in cell_row]))
return '\n'.join(joined_cells)
def cell_at(self, row_col_tuple):
row, col = row_col_tuple
return self.cell_rows[row][col]
def adjacent_cell_coords_from_position(self, row_col_tuple):
row, col = row_col_tuple
adjacent_cell_tuples = []
upper_bound = 0 if row == 0 else row - 1
lower_bound = self.height - 1 if row == self.height - 1 else row + 1
left_bound = 0 if col == 0 else col - 1
right_bound = self.width - 1 if col == self.width - 1 else col + 1
for row in range(upper_bound, lower_bound + 1):
for col in range(left_bound, right_bound + 1):
if (row, col) != row_col_tuple:
adjacent_cell_tuples.append((row, col))
return adjacent_cell_tuples
def adjacent_cells_from_position(self, row_col_tuple):
adjacent_cell_tuples = self.adjacent_cell_coords_from_position(row_col_tuple)
return [self.cell_at(adjacent_cell_tuple) for adjacent_cell_tuple in adjacent_cell_tuples]
def num_occupied_cells_from_cells(self, cells):
occupied_fn = lambda cell: cell.type == CellType.SEAT and cell.state == CellState.OCCUPIED
filtered_cells = list(filter(occupied_fn, cells))
return len(filtered_cells)
def next_cell_iteration_for_cell_at_adjacent(self, row_col_tuple):
current_cell = self.cell_at(row_col_tuple)
if current_cell.type == CellType.FLOOR:
return current_cell
adjacent_cells = self.adjacent_cells_from_position(row_col_tuple)
num_occupied_adjacent_cells = self.num_occupied_cells_from_cells(adjacent_cells)
if current_cell.state == CellState.EMPTY and num_occupied_adjacent_cells == 0:
return Cell.init_occupied()
if current_cell.state == CellState.OCCUPIED and num_occupied_adjacent_cells >= 4:
return Cell.init_empty()
return current_cell
def visible_cell_coords_from_position(self, row_col_tuple):
visible_cell_tuples = []
# up left
row, col = row_col_tuple
while row > 0 and col > 0:
row -= 1
col -= 1
cell = self.cell_at((row, col))
if cell.is_seat:
visible_cell_tuples.append((row, col))
break
# up
row, col = row_col_tuple
while row > 0:
row -= 1
cell = self.cell_at((row, col))
if cell.is_seat:
visible_cell_tuples.append((row, col))
break
# up right
row, col = row_col_tuple
while row > 0 and col < self.width - 1:
row -= 1
col += 1
cell = self.cell_at((row, col))
if cell.is_seat:
visible_cell_tuples.append((row, col))
break
# left
row, col = row_col_tuple
while col > 0:
col -= 1
cell = self.cell_at((row, col))
if cell.is_seat:
visible_cell_tuples.append((row, col))
break
# right
row, col = row_col_tuple
while col < self.width - 1:
col += 1
cell = self.cell_at((row, col))
if cell.is_seat:
visible_cell_tuples.append((row, col))
break
# down left
row, col = row_col_tuple
while row < self.height - 1 and col > 0:
row += 1
col -= 1
cell = self.cell_at((row, col))
if cell.is_seat:
visible_cell_tuples.append((row, col))
break
# down
row, col = row_col_tuple
while row < self.height - 1:
row += 1
cell = self.cell_at((row, col))
if cell.is_seat:
visible_cell_tuples.append((row, col))
break
# down right
row, col = row_col_tuple
while row < self.height - 1 and col < self.width - 1:
row += 1
col += 1
cell = self.cell_at((row, col))
if cell.is_seat:
visible_cell_tuples.append((row, col))
break
return visible_cell_tuples
def visible_cells_from_position(self, row_col_tuple):
visible_cell_tuples = self.visible_cell_coords_from_position(row_col_tuple)
return [self.cell_at(visible_cell_tuple) for visible_cell_tuple in visible_cell_tuples]
def num_occupied_visible_seats(self, row_col_tuple):
visible_cells = self.visible_cells_from_position(row_col_tuple)
num_occupied_visible_cells = self.num_occupied_cells_from_cells(visible_cells)
return num_occupied_visible_cells
def next_cell_iteration_for_cell_at_visible(self, row_col_tuple):
current_cell = self.cell_at(row_col_tuple)
if current_cell.type == CellType.FLOOR:
return current_cell
num_occupied_visible_seats = self.num_occupied_visible_seats(row_col_tuple)
if current_cell.state == CellState.EMPTY and num_occupied_visible_seats == 0:
return Cell.init_occupied()
if current_cell.state == CellState.OCCUPIED and num_occupied_visible_seats >= 5:
return Cell.init_empty()
return current_cell
def next_cell_iteration_for_cell_at(self, row_col_tuple, lookup_version):
if lookup_version == 'ADJACENT':
return self.next_cell_iteration_for_cell_at_adjacent(row_col_tuple)
else:
return self.next_cell_iteration_for_cell_at_visible(row_col_tuple)
@classmethod
def from_previous_grid(cls, previous_grid, lookup_version):
new_cell_rows = []
for i in range(previous_grid.height):
new_row = []
for j in range(previous_grid.width):
new_row.append(previous_grid.next_cell_iteration_for_cell_at((i, j), lookup_version))
new_cell_rows.append(new_row)
return cls(cell_rows=new_cell_rows)
def changed_from_previous_state(self, previous_grid):
for i in range(self.height):
for j in range(self.width):
if not self.cell_at((i, j)).matches_cell(previous_grid.cell_at((i, j))):
return True
return False
def num_occupied_seats(self):
return sum([sum([1 for cell in row if cell.is_occupied]) for row in self.cell_rows])
def find_occupied_seats_at_equilibrium(lines, lookup_version):
previous_grid = Grid.from_input_lines(lines)
next_grid = Grid.from_previous_grid(previous_grid, lookup_version)
count = 0
while next_grid.changed_from_previous_state(previous_grid):
count += 1
previous_grid = next_grid
next_grid = Grid.from_previous_grid(previous_grid, lookup_version)
print('found equilibrium at %r iterations' % count)
return next_grid.num_occupied_seats()
def main():
with open('day11.txt') as f:
lines = [line.strip() for line in f.readlines()]
lookup_version = 'ADJACENT'
result = find_occupied_seats_at_equilibrium(lines, lookup_version)
print(result)
lookup_version = 'VISIBLE'
result = find_occupied_seats_at_equilibrium(lines, lookup_version)
print(result)
if __name__ == '__main__':
main()
|
def fizzbuzz():
list = []
for x in range(1,101):
if(x%3==0 and x%5==0):
list.append("FizzBuzz")
elif(x%3 == 0 ):
list.append('Fizz')
elif(x%5 == 0):
list.append("Buzz")
else:
list.append(x)
return list
print(fizzbuzz())
|
def longest_run(L):
"""
Assumes L is a list of integers containing at least 2 elements.
Finds the longest run of numbers in L, where the longest run can
either be monotonically increasing or monotonically decreasing.
In case of a tie for the longest run, choose the longest run
that occurs first.
Does not modify the list.
Returns the sum of the longest run.
"""
increasing_count = 0
decreasing_count = 0
maxcount = 0
result = 0
for i in range(len(L) - 1):
if L[i] <= L[i + 1]:
increasing_count += 1
if increasing_count > maxcount:
maxcount = increasing_count
result = i + 1
else:
increasing_count = 0
if L[i] >= L[i + 1]:
decreasing_count += 1
if decreasing_count > maxcount:
maxcount = decreasing_count
result = i + 1
else:
decreasing_count = 0
startposition = result - maxcount
return sum(L[startposition:result + 1])
'''
increasing_run = []
decreasing_run = []
longest_run = []
count = 0
i = count
increasing_run.append(L[i])
decreasing_run.append(L[i])
for i in range(len(L) - 1):
if L[i] <= L[i + 1]:
increasing_run.append(L[i + 1])
count += 1
if len(increasing_run) > len(longest_run):
longest_run = increasing_run
if L[i] >= L[i + 1]:
increasing_run = []
if L[i] >= L[i + 1]:
decreasing_run.append(L[i + 1])
count += 1
if len(decreasing_run) > len(longest_run):
longest_run = decreasing_run
return longest_run
print(longest_run([10, 4, 3, 8, 3, 4, 5, 7, 7, 2]))
print(len([5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1]))
'''
print(longest_run([5, 6, 5, 7]))
# print(longest_run([5, 4, 10]))
a = []
b = [5, 6, 7, 8]
print(range(len(b)))
print(len(a))
print(len(b))
print(len(a) + len(b))
|
n1 = int(input('Digite um numero: '))
ant = n1 - 1
dep = n1 + 1
print('O nuemro que você digitou é {}, o numero antecessor a ele é {} e por fim o numero depois é {}'.format(n1, ant, dep))
|
n1 = float(input('Digite o tamanho de largura: '))
n2 = float(input('Digite o tamanho de altura: '))
a = (n1*n2)/2
l1 = a / 2
print('Sabendo que a lagura de sua parede é {} e a sua altura {} o espaço em é {}m2 e a quantidade de tinta usada '
'será {}'.format(n1, n2, a, l1))
|
from LinkedListNode import node
l=[1,2,3,4,5,6,7,8,9,10]
head=node(l[0])
for i in range(1,len(l)):
head.appendToLast(node(l[i]))
def kThLast(k):
p1=head
p2=head
for i in range(k):
if p1.next==None:
return None
else:
p1=p1.next
while p1.next!=None:
p2=p2.next
p1=p1.next
return p2
# print(kThLast(5).data)
|
from LinkedListNode import node
l=[3,5,8,5,10,2,1]
head=node(l[0])
for i in range(1,len(l)):
head.appendToLast(node(l[i]))
def part(pivot):
linked1=None
linked2=None
temp=head
while temp!=None:
newNode = node(temp.data)
if temp.data<pivot:
if linked1==None:
linked1=newNode
else:
linked1.appendToLast(newNode)
else:
if linked2==None:
linked2=newNode
else:
linked2.appendToLast(newNode)
temp=temp.next
linked1.appendToLast(linked2)
return linked1
node=part(5)
node.printAll()
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Date : 2019-04-01 00:03:12
# @Author : Yong Lee ([email protected])
# @Link : http://www.cnblogs.com/honkly/
# @Version : 1.0
class Car():
"""A simple attempt to represent a car."""
def __init__(self, manufacturer, model, year):
"""Initialize attributes to describe a car."""
self.manufacturer = manufacturer
self.model = model
self.year = year
self.odometer_reading = 0
def get_descriptive_name(self):
"""Return a neatly formatted descriptive name."""
long_name = str(self.year) + ' ' + self.manufacturer + ' ' + self.model
return long_name.title()
def read_odometer(self):
"""Print a statement showing the car's mileage."""
print("This car has " + str(self.odometer_reading) + " miles on it.")
def update_odometer(self, mileage):
"""
Set the odometer reading to the given value.
Reject the change if it attempts to roll the odometer back.
"""
if mileage >= self.odometer_reading:
self.odometer_reading = mileage
else:
print("You can't roll back an odometer!")
def increment_odometer(self, miles):
"""Add the given amount to the odometer reading."""
self.odometer_reading += miles
# 9.2.1 Car类
print("9.2.1")
my_new_car = Car('audi', 'a4', 2016)
print(my_new_car.get_descriptive_name())
# 9.2.2 给属性指定默认值
print("9.2.2")
# def __init__(self, manufacturer, model, year):
# """Initialize attributes to describe a car."""
# self.manufacturer = manufacturer
# self.model = model
# self.year = year
# self.odometer_reading = 0
my_new_car.read_odometer()
# 9.2.3 修改属性的值
print("9.2.3")
my_new_car.odometer_reading = 23
my_new_car.read_odometer()
# 通过方法修改属性的值
my_new_car.update_odometer(30)
my_new_car.read_odometer()
# 通过方法对属性的值进行递增
my_new_car.increment_odometer(100)
my_new_car.read_odometer()
print("------动手试一试------")
# 9-4 就餐人数
print("9-4")
class Restaurant():
"""docstring for Restaurant"""
def __init__(self, restaurant_name, restaurant_type):
self.name = restaurant_name
self.type = restaurant_type
self.number_served = 0
def describe_restaurant(self):
print(self.name + ":" + self.type)
def open_restaurant(self):
print("Restaurant is OPEN!")
def print_number_served(self):
print("There are " + str(self.number_served) + " number served")
def set_number_served(self, number):
self.number_served = number
def increment_number_serverd(self):
self.number_served += 10
restaurant = Restaurant('ALAN', 'restaurant')
restaurant.print_number_served()
restaurant.number_served = 13
restaurant.print_number_served()
restaurant.set_number_served(666)
restaurant.print_number_served()
restaurant.increment_number_serverd()
restaurant.print_number_served()
# 9-5 尝试登陆次数
print("9-5")
class User():
"""docstring for User"""
def __init__(self, first_name, last_name):
self.first_name = first_name
self.last_name = last_name
self.login_attempts = 0
def describe_user(self):
print(self.first_name.title() + ' ' + self.last_name.title())
def greet_user(self):
print("Hello! " + self.first_name.title() + ' ' + self.last_name.title())
def increment_login_attempts(self):
self.login_attempts += 1
def reset_login_attempts(self):
self.login_attempts = 0
def print_login_attempts(self):
print("Login attempts are " + str(self.login_attempts))
user_test = User('knight', 'Lee')
user_test.print_login_attempts()
user_test.increment_login_attempts()
user_test.increment_login_attempts()
user_test.print_login_attempts()
user_test.reset_login_attempts()
user_test.print_login_attempts()
|
print("第一次打印时读取整个文件:")
with open('learning_python.txt') as file_object:
print(file_object.read())
print("第二次打印时遍历文件对象:")
with open('learning_python.txt') as file_object:
for line in file_object:
print(line.strip())
print("第三次打印时将各行存储在一个列表中, 再在with 代码块外打印它们")
with open('learning_python.txt') as file_object:
words_list = file_object.readlines()
for word in words_list:
print(word.strip())
|
filename = 'guest_book.txt'
while True:
name = input("Please input your name:\n")
print("Hello! " + name)
with open(filename,'a') as file_object:
file_object.write(name + '\n')
|
#
numero = int(input("Digite um numero: "))
# vai verificar a condicao
while numero < 100:
# caso a condicao seja verdadeira, o bloco abaixo sera executado
print(f"\t {numero}")
numero = numero + 1
# ao fim do bloco, volta para o inicio e verifica se a condicao ainda esta verdadeira
print("PROGRAMA ENCERRADO!")
|
class SortingRobot:
def __init__(self, l):
"""
SortingRobot takes a list and sorts it.
"""
self._list = l # The list the robot is tasked with sorting
self._item = None # The item the robot is holding
self._position = 0 # The list position the robot is at
self._light = "OFF" # The state of the robot's light
self._time = 0 # A time counter (stretch)
def can_move_right(self):
"""
Returns True if the robot can move right or False if it's
at the end of the list.
"""
return self._position < len(self._list) - 1
def can_move_left(self):
"""
Returns True if the robot can move left or False if it's
at the start of the list.
"""
return self._position > 0
def move_right(self):
"""
If the robot can move to the right, it moves to the right and
returns True. Otherwise, it stays in place and returns False.
This will increment the time counter by 1.
"""
self._time += 1
if self._position < len(self._list) - 1:
self._position += 1
return True
else:
return False
def move_left(self):
"""
If the robot can move to the left, it moves to the left and
returns True. Otherwise, it stays in place and returns False.
This will increment the time counter by 1.
"""
self._time += 1
if self._position > 0:
self._position -= 1
return True
else:
return False
def swap_item(self):
"""
The robot swaps its currently held item with the list item in front
of it.
This will increment the time counter by 1.
"""
self._time += 1
# Swap the held item with the list item at the robot's position
self._item, self._list[self._position] = self._list[self._position], self._item
def compare_item(self):
"""
Compare the held item with the item in front of the robot:
If the held item's value is greater, return 1.
If the held item's value is less, return -1.
If the held item's value is equal, return 0.
If either item is None, return None.
"""
if self._item is None or self._list[self._position] is None:
return None
elif self._item > self._list[self._position]:
return 1
elif self._item < self._list[self._position]:
return -1
else:
return 0
def set_light_on(self):
"""
Turn on the robot's light
"""
self._light = "ON"
def set_light_off(self):
"""
Turn off the robot's light
"""
self._light = "OFF"
def light_is_on(self):
"""
Returns True if the robot's light is on and False otherwise.
"""
return self._light == "ON"
def sort(self):
"""
OLD PLAN I HAD
------------------
The robot is capable of moving left and right inside the list.
The robot is capable of comparing an item he's holding vs the item he's looking at.
The robot can swap items.
The robot starts at position 0.
Loop through the entire length of the list
Pick up the item at position 0, then move right and compare the item you have to that item.
If the item is larger than the one in the robot's hand, swap it.
Go back through the list in the opposite direction, this time comparing in an opposite fashion
if the item is smaller than the one in the robot's hand, swap it.
-------------------------------------------
The robot starts at position 0.
Pick up the initial item.
While the robot can move right, move him right.
If the item he has is larger, swap the item.
At this point, there's actually "None" in the position behind.
Move left, swap items with "None" (basically, the robot's hand is empty)
Move back to the right, and swap "None" with the new card
If the item has has is smaller, you want to place the card back down and pick up the new card:
Move back to the left and "swap" the item with "None"
Move back to the right and swap None with the new highest card
Once the robot can not move right anymore, he is at the end of the array
NEED A WAY TO TELL IF THE ROBOT HAS FINISHED MOVING ALL THE WAY RIGHT -- the robot's light
The last item in the array will be a "None" because he just swapped with that position.
Swap again with "None" so the robot's hand is empty.
Move the robot all the way back to the beginning of the array
While the robot can move left
Move left until he can't move left anymore
Reset the light
RECURSION
------------------------------------------------
If the held item's value is greater, return 1.
If the held item's value is less, return -1.
If the held item's value is equal, return 0.
If either item is None, return None.
"""
self.swap_item()
# self.set_light_on()
while self.can_move_right():
self.move_right()
# self.set_light_on()
if self.compare_item() == 1:
self.set_light_on()
self.swap_item()
self.move_left()
self.swap_item()
self.move_right()
self.swap_item()
else:
self.move_left()
self.swap_item()
self.move_right()
self.swap_item()
# continue
# break
else:
self.swap_item()
if self.light_is_on():
while self.can_move_left():
self.move_left()
self.set_light_off()
self.sort() # ACTS AS A RESET, BINGO
# while self.can_move_right():
# self.move_right()
# # print("Line 118: Moving right!")
# if self.compare_item() == 1:
# self.swap_item()
# self.move_left()
# self.swap_item()
# self.move_right()
# self.swap_item()
# elif self.compare_item() == -1:
# self.move_left()
# self.swap_item()
# self.move_right()
# self.swap_item()
# else:
# while self.can_move_left():
# self.move_left()
# # print("Line 133: Moving left!")
# self.swap_item()
# self.move_left()
# if self.compare_item() == -1:
# self.swap_item()
# self.move_right()
# self.swap_item()
# self.move_left()
# self.swap_item()
# elif self.compare_item() == 1:
# self.move_right()
# self.swap_item()
# self.move_left()
# self.swap_item()
# while self.can_move_left():
# self.move_left()
# if self.compare_item() == -1:
# self.swap_item()
# self.move_right()
# self.swap_item()
# self.move_left()
# self.swap_item()
# elif self.can_move_left() == False and self.compare_item() == None:
# break
# elif self.compare_item() == 1:
# self.move_left()
# for i in (0, len(self._list)):
# while self.can_move_right():
# self.move_right()
# print(f"Line 117: Moving right!")
# if self.compare_item() == -1:
# self.swap_item()
# else:
# self.move_right()
# while self.can_move_left():
# print(f"Line 125: Moving left!")
# if self.compare_item() == 1:
# self.swap_item()
# self.move_left()
# else:
# self.move_left()
# self.set_light_on()
# for i in (0, len(self._list)):
# while self.light_is_on():
# while self.can_move_right():
# self.move_right()
# print(f"Line 117: Moving right!")
# if self.compare_item() == -1:
# self.swap_item()
# else:
# self.move_right()
# while self.can_move_left():
# print(f"Line 125: Moving left!")
# if self.compare_item() == 1:
# self.swap_item()
# self.move_left()
# elif self.can_move_left() == False and self.compare_item() == None:
# self.set_light_off()
# else:
# self.move_left()
# self.set_light_off()
# l = [15, 41, 58, 49, 26, 4, 28, 8, 61, 60, 65, 21, 78, 14, 35, 90, 54, 5, 0, 87, 82, 96, 43, 92, 62, 97, 69, 94, 99, 93, 76, 47, 2, 88, 51, 40, 95, 6, 23, 81, 30, 19, 25, 91, 18, 68, 71, 9, 66, 1, 45, 33, 3, 72, 16, 85, 27, 59, 64, 39, 32, 24, 38, 84, 44, 80, 11, 73, 42, 20, 10, 29, 22, 98, 17, 48, 52, 67, 53, 74, 77, 37, 63, 31, 7, 75, 36, 89, 70, 34, 79, 83, 13, 57, 86, 12, 56, 50, 55, 46]
# robot = SortingRobot(l)
# print(robot.can_move_right())
# print(robot.sort())
# print(robot._position)
# print(robot._item)
# print(robot._list)
if __name__ == "__main__":
# Test our your implementation from the command line
# with `python robot_sort.py`
l = [15, 41, 58, 49, 26, 4, 28, 8, 61, 60, 65, 21, 78, 14, 35, 90, 54, 5, 0, 87, 82, 96, 43, 92, 62, 97, 69, 94, 99, 93, 76, 47, 2, 88, 51, 40, 95, 6, 23, 81, 30, 19, 25, 91, 18, 68, 71, 9, 66, 1, 45, 33, 3, 72, 16, 85, 27, 59, 64, 39, 32, 24, 38, 84, 44, 80, 11, 73, 42, 20, 10, 29, 22, 98, 17, 48, 52, 67, 53, 74, 77, 37, 63, 31, 7, 75, 36, 89, 70, 34, 79, 83, 13, 57, 86, 12, 56, 50, 55, 46]
robot = SortingRobot(l)
robot.sort()
print(robot._list)
|
from pyspark.sql import SparkSession
from pyspark.sql.functions import explode, col
def count_per_skill(df):
"""
:param df: dataframe with schema: [name: string, technical_skills: array<string>]
:return : dataframe with two columns - 1) skill name, 2) distinct # of people who have that skill
"""
# Write function logic here
skills_count = (df.select(
col("name"),
explode(col("technical_skills")).alias("skill_name")
).groupBy("skill_name").agg({"name": "count"}))
return skills_count
if __name__ == '__main__':
spark = SparkSession.builder.appName("pyspark-example-app").getOrCreate()
input_df = spark.read.json("data")
skills_count_df = count_per_skill(input_df)
skills_count_df.write.csv("output_data")
|
"""
Not in use when import
outstanding_balance = float(raw_input("What is your outstanding balance? "))
annual_interest_rate = float(raw_input("What is your annual interest rate? "))
"""
monthly_lower_bound = outstanding_balance / 12.0 # 12 is set because we are looking to pay this off in a year
monthly_upper_bound = (outstanding_balance * (1 + (annual_interest_rate / 12.0)) ** 12.0) / 12.0 # (Balance * (1 + (Annual interest rate / 12.0)) ** 12.0) / 12.0
print "lower" + str(monthly_lower_bound)
print "higher" + str(monthly_upper_bound)
epsilon = .1
def paying_debt_year(outstanding_balance, monthly_lower_bound, monthly_upper_bound):
previous_balance = outstanding_balance
monthly_interest_rate = annual_interest_rate / 12.0
month = 0
# minimum_monthly_payment
minimum_monthly_payment = (monthly_upper_bound + monthly_lower_bound) / 2.0
while previous_balance > epsilon:
month += 1
updated_balance_each_month = previous_balance * (1 + monthly_interest_rate) - minimum_monthly_payment
previous_balance = updated_balance_each_month
if month >= 12:
break
if abs(previous_balance) > epsilon:
if previous_balance > 0:
monthly_lower_bound = minimum_monthly_payment
paying_debt_year(outstanding_balance, monthly_lower_bound, monthly_upper_bound)
elif previous_balance < 0:
monthly_upper_bound = minimum_monthly_payment
paying_debt_year(outstanding_balance, monthly_lower_bound, monthly_upper_bound)
else:
if previous_balance > 0:
monthly_lower_bound = minimum_monthly_payment
paying_debt_year(outstanding_balance, monthly_lower_bound, monthly_upper_bound)
else:
print "********** RESULTS **********"
print "Monthly payment to pay off debt in 1 year: " + str(minimum_monthly_payment)
print "Number of months needed: " + str(month)
print "Balance: " + str(updated_balance_each_month)
paying_debt_year(outstanding_balance, monthly_lower_bound, monthly_upper_bound)
|
out_file = open("name.txt", "w")
name = input("What is thy name? ")
print(name, file=out_file)
out_file.close()
in_file = open("name.txt", "r")
name = in_file.read().strip()
print("your name is ", name)
in_file.close()
in_file = open("numbers.txt", "r")
line1 = int(in_file.readline())
line2 = int(in_file.readline())
print(line1 + line2)
in_file.close()
# Quick Program 3 extended - sum of all numbers
in_file = open("numbers.txt", "r")
total = 0
for line in in_file:
number = int(line)
total += number
print(total)
in_file.close()
|
numbers = [3, 1, 4, 1, 5, 9, 2]
print(numbers[0], "\n",
numbers[-1], "\n",
numbers[3], "\n",
numbers[:-1], "\n",
numbers[3:4], "\n",
5 in numbers, "\n",
7 in numbers, "\n",
"3" in numbers, "\n",
numbers + [6, 5, 3])
numbers[0] = "ten"
numbers[-1] = 1
print(numbers[2:])
print(9 in numbers)
print(numbers)
|
"""
Read file into texts and calls.
It's ok if you don't understand how to read files.
"""
import csv
with open('texts.csv', 'r') as f:
reader = csv.reader(f)
texts = list(reader)
with open('calls.csv', 'r') as f:
reader = csv.reader(f)
calls = list(reader)
"""
TASK 3:
(080) is the area code for fixed line telephones in Bangalore.
Fixed line numbers include parentheses, so Bangalore numbers
have the form (080)xxxxxxx.)
Part A: Find all of the area codes and mobile prefixes called by people
in Bangalore.
- Fixed lines start with an area code enclosed in brackets. The area
codes vary in length but always begin with 0.
- Mobile numbers have no parentheses, but have a space in the middle
of the number to help readability. The prefix of a mobile number
is its first four digits, and they always start with 7, 8 or 9.
- Telemarketers' numbers have no parentheses or space, but they start
with the area code 140.
Print the answer as part of a message:
"The numbers called by people in Bangalore have codes:"
<list of codes>
The list of codes should be print out one per line in lexicographic order with no duplicates.
Part B: What percentage of calls from fixed lines in Bangalore are made
to fixed lines also in Bangalore? In other words, of all the calls made
from a number starting with "(080)", what percentage of these calls
were made to a number also starting with "(080)"?
Print the answer as a part of a message::
"<percentage> percent of calls from fixed lines in Bangalore are calls
to other fixed lines in Bangalore."
The percentage should have 2 decimal digits
"""
def all_numbers_from_bangalore(call):
prefix = set()
for item in call:
if "(080)" in item[0]:
prefix.add(item[1])
return sorted(prefix)
def landline_numbers(call):
data = all_numbers_from_bangalore(call)
landline = set()
for item in data:
if "(" in item:
landline.add(item)
return sorted(landline)
def landline_number_prefix(call):
data = list(landline_numbers(call))
prefix = set()
for item in data:
prefix.add(item[0:item.find(")")+1])
return sorted(prefix)
def mobile_numbers(call):
data = all_numbers_from_bangalore(call)
mobile = []
for item in data:
if "(0" not in item:
mobile.append(item)
return set(mobile)
def mobile_number_prefix(call):
data = list(mobile_numbers(call))
prefix = set()
for item in data:
prefix.add(item[0:4])
return sorted(prefix)
def all_calls(call):
landline = landline_number_prefix(call)
mobile = mobile_number_prefix(call)
new_list = landline + mobile
str1 = "\n"
str1 = str1.join(new_list)
return "The numbers called by people in Bangalore have codes:\n{}".format(str1)
def banglore_to_banglore(call):
btob = 0
btoa = 0
for item in call:
if "(080)" in item[0]:
if "(080)" in item[1]:
btob += 1
for item in call:
if "(080)" in item[0]:
btoa += 1
percentage = round(((btob/btoa)*100),2)
return "{} percent of calls from fixed lines in Bangalore are calls to other fixed lines in Bangalore."\
.format(percentage)
# print(all_numbers_from_banagalore(calls))
# print(landline_numbers(calls))
# print(landline_number_prefix(calls))
# print(mobile_numbers(calls))
# print(mobile_number_prefix(calls))
print(all_calls(calls))
print(banglore_to_banglore(calls))
|
def mean(mylist):
the_mean = sum(mylist) / len(mylist)
return the_mean
print(mean([1, 4, 5]))
print(type(mean), type(sum))
#Type of > <class 'function'> <class 'builtin_function_or_method'>
|
# LinearRegression is a machine learning library for linear regression
from sklearn.linear_model import LinearRegression
# pandas and numpy are used for data manipulation
import pandas as pd
import numpy as np
# matplotlib and seaborn are used for plotting graphs
import matplotlib.pyplot as plt
plt.style.use('seaborn-darkgrid')
# yahoo finance is used to fetch data
import yfinance as yf
# Read data
Df = yf.download('GC=F', '2000-01-01', '2021-02-15', auto_adjust=True)
#GC=F = gold
#BTC-USD = btc
#USDT = USDT-USD
# Only keep close columns
Df = Df[['Close']]
# Drop rows with missing values
Df = Df.dropna()
# Plot the closing price of GLD
Df.Close.plot(figsize=(20, 14),color='r')
plt.ylabel("Gold ETF Prices")
plt.title("Gold ETF Price Series")
plt.show()
# Define explanatory variables
Df['S_3'] = Df['Close'].rolling(window=3).mean()
Df['S_9'] = Df['Close'].rolling(window=9).mean()
Df['next_day_price'] = Df['Close'].shift(-1)
Df = Df.dropna()
X = Df[['S_3', 'S_9']]
# Define dependent variable
y = Df['next_day_price']
print('nexdayprice')
print(y)
# Split the data into train and test dataset
t = .8
t = int(t*len(Df))
# Train dataset
X_train = X[:t]
y_train = y[:t]
# Test dataset
X_test = X[t:]
y_test = y[t:]
print('train')
# Create a linear regression model
linear = LinearRegression().fit(X_train, y_train)
print("Linear Regression model")
print("Gold ETF Price (y) = %.2f * 3 Days Moving Average (x1) \
+ %.2f * 9 Days Moving Average (x2) \
+ %.2f (constant)" % (linear.coef_[0], linear.coef_[1], linear.intercept_))
print('endtrain')
# Predicting the Gold ETF prices
predicted_price = linear.predict(X_test)
predicted_price = pd.DataFrame(
predicted_price, index=y_test.index, columns=['price'])
predicted_price.plot(figsize=(20, 14))
y_test.plot()
plt.legend(['predicted_price', 'actual_price'])
plt.ylabel("Gold ETF Price")
plt.show()
print('show grapth2')
# R square
r2_score = linear.score(X[t:], y[t:])
float("{0:.2f}".format(r2_score))
print('r2score')
print(r2_score)
gold = pd.DataFrame()
gold['price'] = Df[t:]['Close']
gold['predicted_price_next_day'] = predicted_price
gold['actual_price_next_day'] = y_test
gold['gold_returns'] = gold['price'].pct_change().shift(-1)
gold['signal'] = np.where(gold.predicted_price_next_day.shift(1) < gold.predicted_price_next_day,1,0)
gold['strategy_returns'] = gold.signal * gold['gold_returns']
((gold['strategy_returns']+1).cumprod()).plot(figsize=(20,14),color='g')
plt.ylabel('Cumulative Returns')
plt.show()
print('show signal')
'Sharpe Ratio %.2f' % (gold['strategy_returns'].mean()/gold['strategy_returns'].std()*(252**0.5))
data = yf.download('GC=F', '2000-01-01', '2021-02-15', auto_adjust=True)
data['S_3'] = data['Close'].rolling(window=3).mean()
data['S_9'] = data['Close'].rolling(window=9).mean()
data = data.dropna()
XX = data[['S_3', 'S_9']]
data['predicted_gold_price'] = linear.predict(XX)
data['signal'] = np.where(data.predicted_gold_price.shift(1) < data.predicted_gold_price,"Buy","No Position")
data.to_csv('dataframe.csv')
#data.tail(7)
|
#!/usr/bin/python
#
# Script to fetch indices from user and store it in encrypted form in /etc/user_indices
#
import fileinput
from M2Crypto import *
import sys
import base64
username = raw_input('Enter a username: ')
indices = raw_input('Enter indices (space separated): ')
try:
indices_list = indices.split(" ")
if (len(indices_list) == 0) or (len(indices_list) == 1):
print("Invalid indices, please use spaces to separate them")
sys.exit(1)
for index in indices_list:
int_value = int(index, 10)
except:
print("Invalid indices, please use spaces to separate them")
sys.exit(1)
indices_cs = ",".join(indices.split())
user_str = "%s = %s" % (username, indices_cs)
priv = RSA.load_key("/etc/auth_private_key.pem")
pub = RSA.load_pub_key("/etc/auth_public_key.pem")
data_fd = open("/etc/user_indices", "rw+")
enc_data = data_fd.read()
file_was_empty = 0
if enc_data == "":
ctxt = pub.public_encrypt(user_str, RSA.pkcs1_oaep_padding)
data_fd.write(ctxt.encode('base64'))
file_was_empty = 1
else:
dec_data = base64.b64decode(enc_data)
dec_content = priv.private_decrypt(dec_data, RSA.pkcs1_oaep_padding)
if file_was_empty == 1:
sys.exit(0)
else:
user_indices_dict = {}
for line in dec_content.split("\n"):
try:
(user, indices_str) = line.split("=")
except ValueError:
pass
user = user.strip()
indices_str = indices_str.strip()
user_indices_dict[user] = indices_str
user_indices_dict[username] = indices_cs
data_fd.close()
open("/etc/user_indices", "rw").close()
data_fd = open("/etc/user_indices", "rw+")
to_write = ""
for key in user_indices_dict:
to_write = to_write + "%s = %s\n" % (key, user_indices_dict[key])
ctxt = pub.public_encrypt(to_write, RSA.pkcs1_oaep_padding)
data_fd.write(ctxt.encode('base64'))
data_fd.close()
|
# Simple Linear Regression
# Importing the Libraries
import numpy as np
import matplotlib.pyplot as plt
# Co-Efficient estimation Function
def estimate_coefficent(x,y):
x_size = np.size(x)
mean_x, mean_y = np.mean(x), np.mean(y)
SS_xy = np.sum(y*x - x_size*mean_y*mean_x)
SS_xx = np.sum(x*x - x_size*mean_x*mean_x)
coeff_b_1 = SS_xy / SS_xx
coeff_b_0 = mean_y - coeff_b_1*mean_x
return (coeff_b_0, coeff_b_1)
# Function to plot the regression Line
def plot_regressor_line(x, y, b):
plt.scatter(x, y, color = "m", marker = "x", s = 20)
y_pred = b[0] + b[1]*x
print(y_pred)
plt.plot(x, y_pred, color = 'g')
plt.xlabel('x')
plt.ylabel('y')
plt.show()
# Prediction Function which takes Value and predict by using our calculated coefficients
def pred_value(val, b):
ypred = b[0] + b[1]*val
return ypred
if __name__ == "__main__":
# Series of data point. This could be taken from csv file by reading and making a dataframe
X = np.array([0,1,2,3,4,5,6,7,8,9])
y = np.array([0,2,4,6,8,10,12,14,16,18])
# Calculating the coefficients
b = estimate_coefficent(X,y)
# checking the coefficient values
print('Co-efficient B0: ',b[0])
print('Co-efficient B1: ',b[1])
# Visualizing Regression Line with the data points
plot_regressor_line(X, y, b)
# Predicting another data point entered by user
value = int(input('Enter index to predict:'))
pred_val = pred_value(value, b)
print(pred_val)
|
# Поработайте с переменными, создайте несколько, выведите на экран, запросите у пользователя несколько чисел и строк и сохраните в переменные, выведите на экран.
a = 1
b = 2
c = 3
d = a + (b * c)
print(a, b, c, d)
name = input('Введите Ваше имя: ')
name = 'Привет ' + name + '! Меня зовут Альберт!'
print(name)
case = input('Сколько тебе лет? ')
case = 'Мне тоже ' + case
print(case)
|
# -*- coding: utf-8 -*-
class Location:
def __init__(self, location=0):
self._location = location
def get(self):
return self._location
def set(self, new_location):
self._location = new_location
def decrease(self, delta=1):
self._location -= delta
def increase(self, delta=1):
self._location += delta
def __str__(self):
return self.__repr__()
def __repr__(self):
return str(self._location)
class LocationRange:
def __init__(self, start=0, end=0):
self._start = Location(start)
self._end = Location(end)
def get_start(self):
return self._start
def get_end(self):
return self._end
def get_left(self):
return self._start if self._start.get() <= self._end.get() else self._end
def get_right(self):
return self._start if self._start.get() > self._end.get() else self._end
def __str__(self):
return self.__repr__()
def __repr__(self):
return "(" + str(self._start) + "," + str(self._end) + ")"
def is_empty(self):
return self._start.get() == self._end.get()
def clone(self):
return LocationRange(self._start.get(), self._end.get())
|
# -*- coding: utf-8 -*-
import requests
import keys
import constants
from objects import Location
# This function get the latitude and longitude of an address through Google Geocoding API.
# Return an object with the address, latitude and longitude.
# https://developers.google.com/maps/documentation/geocoding/start
def geocoding(location_address):
payload = {
"address" : location_address,
"key" : keys.GOOGLEAPI_KEY,
"language" : "es",
"region" : "es",
"components" : "country:ES"
}
r = requests.get(url=constants.GEOCODEAPI_URL, params=payload)
response = r.json()
if response["status"] == "OK":
lat = response["results"][0]["geometry"]["location"]["lat"]
lng = response["results"][0]["geometry"]["location"]["lng"]
address = response["results"][0]["formatted_address"]
else:
address = ''
lat = 0
lng = 0
loc = Location(address, lat, lng)
return loc
# This function get the weather of an address through DarkSky API.
# The API only works with the coordinates (latitude and longitude) for this reason its necessary use the geocoding function.
# https://darksky.net/dev/docs#forecast-request
def weather(location_query):
location = geocoding(location_query)
if len(location.address) != 0:
latlong = str(location.latitude) + str(",") + str(location.longitude)
url = constants.DARKSKYAPI_URL.format(keys.DARKSKY_KEY, latlong)
payload = {
"lang" : "es",
"units" : "si",
"exclude" : "minutely, hourly, daily"
}
r = requests.get(url=url, params=payload)
response = r.json()
#print r.url
#print r.text
print response['currently']['summary']
print response['currently']['temperature']
print response['currently']['precipProbability']
else:
response = ''
return response
def weatherY(location):
url = "https://query.yahooapis.com/v1/public/yql?"
query = "select * from weather.forecast where woeid in (select woeid from geo.places(1) where text='{}') and u='c'"
params = {
"q" : query.format(location),
"format" : "json"
}
r = requests.get(url=url, params=params)
response = r.json()
print r.url
print r.text
print '\n'
location = response['query']['results']['channel']['location']
if __name__ == "__main__":
weather('totana')
|
num = float(input("Enter number\n"))
intPart = num - (num % 1)
tmpInt = intPart
tmp = num
while int(tmp) != tmp:
tmp *= 10
tmpInt *= 10
floatPart = int(tmp - tmpInt)
print(floatPart)
def reverse(num):
ret = 0
while num >= 1:
ret *= 10
ret += num % 10
num //= 10
return ret
floatPart = reverse(floatPart)
intPart = reverse(intPart)
while intPart >=1:
intPart /= 10
print(str(floatPart + intPart))
|
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
import constants as c
class RegressionHandler:
"""
This class encapsulates the logic for calculating and plotting a linear regression.
"""
@staticmethod
def plot_regression(dataframe, sex=c.Sex.MALE):
"""
Plot a linear regression with the GDP per capita being the X-variable and the mean height the Y-variable.
:param dataframe: dataframe containing the data to plot
:param sex: either MALE (0) or FEMALE (1) - specifies the sex for which the given dataframe contains data
:return: nothing
"""
# sort by GDP/capita so that plot can use logarithmic scale
dataframe = dataframe.sort_values([c.GDP], 0)
sex_label = 'males' if sex == c.Sex.MALE else 'females'
X = dataframe.loc[:, c.GDP].values.reshape(-1, 1) # values converts it into a numpy array
Y = dataframe.loc[:, c.AVG_HEIGHT].values.reshape(-1, 1) # -1 means that calculate the dimension of rows, but have 1 column
linear_regressor = LinearRegression() # create object for the class
linear_regressor.fit(X, Y) # perform linear regression
Y_pred = linear_regressor.predict(X) # make predictions
plt.scatter(X, Y)
plt.plot(X, Y_pred, color='red')
plt.xscale('log')
plt.xlabel('GDP per capita [USD]')
plt.ylabel('average height of {0} aged 19 [cm]'.format(sex_label))
plt.savefig('out/regression_{0}.png'.format(sex_label))
plt.show()
|
def largestPerimeter(nums) -> int:
def is_triangle_valid(nums0, nums1, nums2):
valid = True
if nums0 >= nums1 + nums2:
valid = False
elif nums1 >= nums2 + nums0:
valid = False
elif nums2 >= nums1 + nums0:
valid = False
return valid
nums.sort()
max_perimeter = 0
for i in range(0, len(nums)-2):
if is_triangle_valid(nums[i], nums[i + 1], nums[i + 2]):
perimeter = nums[i] + nums[i + 1] + nums[i + 2]
print(perimeter)
max_perimeter = max(perimeter, max_perimeter)
return max_perimeter
print(largestPerimeter([3,2,3,4]))
|
# https://leetcode.com/problems/word-search-ii/
def word_search_2(grid, words):
R = len(grid)
C = len(grid[0])
found_list = []
for word in words:
print(f"finding {word}")
found = ""
i = 0
j = 0
k = 0
while 0 <= i < R and 0 <= j < C and k < len(word):
if grid[i][j] == word[k]:
found += word[k]
elif grid[i + 1][j] == word[k]:
i += 1
found += word[k]
elif grid[i][j + 1] == word[k]:
j += 1
found += word[k]
# elif grid[i - 1][j] == word[k]:
# i -= 1
# found += word[k]
# elif grid[i][j - 1] == word[k]:
# j -= 1
# found += word[k]
k += 1
print(found)
if found in words:
found_list.append(found)
print(found_list)
# board = [["o", "a", "a", "n"], ["e", "t", "a", "e"], ["i", "h", "k", "r"], ["i", "e", "a", "t"]]
# words = ["oath", "pea", "eat", "rain"]
# word_search(board, words)
def word_search(grid, word):
found = False
visited = []
visited_set = set()
R = len(grid)
C = len(grid[0])
def dfs(i, j, k, visited, visited_set, found):
if i < 0 or i >= R or j < 0 or j >= C or word[k] != grid[i][j] or (i, j) in visited_set or not found:
return
if k == len(word):
return True
visited += [(i, j)]
visited_set.add((i, j))
dirs = [(0, 1), (-1, 0), (1, 0), (0, -1)]
for r, c in dirs:
X = i + r
Y = j + c
dfs(X, Y, k + 1, visited, visited_set, found)
if not found:
visited_set.remove(visited.pop())
for i in range(R):
for j in range(C):
return dfs(i, j, 0, visited, visited_set, found)
return False
# if word_search(board, "oath"):
# print("true")
# else:
# print("false")
def word_search_1(board, word):
R = len(board)
C = len(board[0])
def dfs(i, r, c):
if i == len(word):
return True
if 0 <= r < R and 0 <= c < C and board[r][c] == word[i]:
board[r][c] = '#'
d1 = dfs(i + 1, r + 1, c)
d2 = dfs(i + 1, r - 1, c)
d3 = dfs(i + 1, r, c + 1)
d4 = dfs(i + 1, r, c - 1)
board[r][c] = word[i]
return any([d1, d2, d3, d4])
return False
for j in range(R):
for k in range(C):
if board[j][k] == word[0] and dfs(0, j, k):
return True
return False
board = [["A", "B", "C", "E"], ["S", "F", "C", "S"], ["A", "D", "E", "E"]]
word = "ABFD"
if word_search_1(board, word):
print(True)
else:
print(False)
|
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 19 22:22:27 2019
@author: jayada1
Consider a game where a player can score 3 or 5 or 10 points in a move. Given a total score n, find number of distinct combinations to reach the given score.
Input:
The first line of input contains an integer T denoting the number of test cases. T testcases follow.The first line of each test case is n.
Output:
For each testcase, in a new line, print number of ways/combinations to reach the given score.
"""
#code
t = int(input())
def find_ways(n):
a = [0 for i in range(n+1)]
a[0] = 1
for i in range(3,n+1):
a[i] += a[i-3]
for i in range(5,n+1):
a[i] += a[i-5]
for i in range(10,n+1):
a[i] += a[i-10]
print(a[n])
while t>0:
n = int(input())
find_ways(n)
t -= 1
word_dict = dict()
l = list()
l.append(1)
l.pop(2)
|
def insert_char_at_all_positions(char, perm_list):
res = []
for perm in perm_list:
n = len(perm)
for i in range(n + 1):
new_perm = perm[:i] + char + perm[i:]
if new_perm not in res:
res.append(new_perm)
return res
def generate_all_permutations(str1, n):
if n == 0:
return [str1[n]]
p = insert_char_at_all_positions(str1[n], generate_all_permutations(str1, n - 1))
return p
all_perm = generate_all_permutations('abcdd', len('abcdd') - 1)
print(all_perm)
print(len(all_perm))
# recursively find the permutations for bigger inputs.
# we start with a P(a) = [a]
# P(ab) = [ab, ba]
# P(abc) = [cab, acb, abc] + [cba, bca, bac]
# P(n) = Generate strings by appending the nth char at all positions of P(n-1)
|
# -*- coding: utf-8 -*-
"""
Created on Sat Aug 3 13:04:06 2019
@author: jayada1
"""
"""
Given an MxN matrix, find the number of ways of reaching bottom right element from top left element
only right and down movements allowed.
"""
#Solution 1: Recursion
def numpaths(m,n):
if m==1 or n==1:
return 1
else:
return numpaths(m-1,n) + numpaths(m,n-1)
print(numpaths(3,3))
#Solution 2: Dynamic programming
def numpaths_dp(m,n):
count = [[0 for i in range(n)] for j in range(m)]
for i in range(1,n):
count[0][i] = 1
for i in range(1,m):
count[i][0] = 1
for i in range(1,m):
for j in range (1,n):
count[i][j] = count[i-1][j] + count[i][j-1]
return count[m-1][n-1]
print(numpaths_dp(3,3))
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.