text
stringlengths 37
1.41M
|
---|
# WAP to accept lower limit and upper limit and print the even and odd numbers between those
def oddEven(ll,ul):
odd =[]
even = []
for x in range (ll,ul):
if (x % 2==0):
even.append(x)
else:
odd.append(x)
return even,odd
ll = int(input("enter the lower limit"))
ul = int(input("enter the upper limit"))
even, odd = oddEven(ll,ul)
print("even = ", even)
print ("odd = ", odd)
|
import json
class PingPong:
"""
This class is for get the person who lose the second game
and get the information about his games losed
Params
**partidos: is dictionary with the games
return
Print results who lose the second game and json with the game losed in order
"""
def __init__(self, **partidos):
self.partidos = partidos
def __ppares(self, n_partidos):
"""
This a private method is for validate the games
:param n_partidos: is a number for minimal games playing
:return ppares: is boolean value
"""
try:
if n_partidos % 2 == 0:
p_pares = True
else:
p_pares = False
return p_pares
except Exception as e:
print('An error has occurred for fn ppares: ', e)
def __p_perdidos(self, p_pares, t_partidos):
"""
This a private method is for create a list of games playing for depending of total games playing
:param p_pares: is a boolean value for create the list
:param t_partidos: is a number of total games
:return p_perdidos: is a list with losing games
"""
try:
if p_pares:
p_perdidos = [x for x in range(1, int(t_partidos)) if x % 2 == 0]
else:
p_perdidos = [x for x in range(1, int(t_partidos)) if x % 2 != 0]
return p_perdidos
except Exception as e:
print('An error has occurred in fn p_perdidos: ', e)
def segundopartido(self):
"""
This public method print the player what lose the second game and json with game losed
"""
# initial variables
t_partidos = 0
l_partidos = []
# iter for get the values of dictionary
for v in self.partidos.values():
# save values in a list for get the less games played
l_partidos.append(v)
# sum of total of games for all players
t_partidos += v
# get the less game played
min_partidos = min(l_partidos)
# As the pinpong is game of two divide the value of 2 for get the total of games
t_partidos = t_partidos/2
# call the function for get if the less match playing, played in the first game o second.
p_pares = self.__ppares(min_partidos)
# Call function for get the list with the game lose
p_perdidos = self.__p_perdidos(p_pares, t_partidos)
# iter the value get the name of the player who lose the second game
if 2 in p_perdidos:
for k, v in self.partidos.items():
if v == min_partidos:
perdedor = k
break
# print results
print(f'Who lose the second match is: {perdedor}')
# create a dict whith the person who lose the second game with value list of all game losed
jsonpartidos = {perdedor: p_perdidos}
resultado = json.dumps(jsonpartidos)
print(f'resultado: {resultado}')
if __name__ == '__main__':
juegos = {'Ana': 17, 'José': 15, 'Juan': 10}
partido = PingPong(**juegos)
partido.segundopartido()
|
import unittest
def binary(num):
arr=[0,0,0,0,0,0,0,0]
count=7
while num!=0:
r=num%2
num=num//2
arr[count]=arr[count]+r
count=count-1
# print(arr)
return arr
def hamming_distance(x,y):
x_binary=binary(x)
y_binary=binary(y)
count=0
# print(x_binary)
# print(y_binary)
for i in range(0,8):
if x_binary[i]!=y_binary[i]:
count=count+1
# print(count)
return count
class Test(unittest.TestCase):
def testcase_1(self):
actual = hamming_distance(25,30)
expected = 3
self.assertEqual(actual, expected)
def testcase_2(self):
actual = hamming_distance(1,4)
expected = 2
self.assertEqual(actual, expected)
def testcase_3(self):
actual = hamming_distance(25,30)
expected = 3
self.assertEqual(actual, expected)
def testcase_4(self):
actual = hamming_distance(100,250)
expected = 5
self.assertEqual(actual, expected)
def testcase_5(self):
actual = hamming_distance(1,30)
expected = 5
self.assertEqual(actual, expected)
def testcase_6(self):
actual = hamming_distance(0,255)
expected = 8
self.assertEqual(actual, expected)
unittest.main(verbosity=2)
|
import unittest
def is_valid(string):
# Determine if the input code is valid
brackets = []
bracket_map = {
'(': 0,
'{': 0,
'[': 0,
')': '(',
'}': '{',
']': '[',
}
for ch in string:
if ch in bracket_map:
brack = bracket_map[ch]
if brack == 0:
brackets.append(ch)
else:
if len(brackets) <= 0:
return False
top = brackets.pop()
if brack != top:
return False
if len(brackets) == 0:
return True
return False
# Tests
class Test(unittest.TestCase):
def test_valid_short_code(self):
result = is_valid('()')
self.assertTrue(result)
def test_valid_longer_code(self):
result = is_valid('([]{[]})[]{{}()}')
self.assertTrue(result)
def test_mismatched_opener_and_closer(self):
result = is_valid('([][]}')
self.assertFalse(result)
def test_missing_closer(self):
result = is_valid('[[]()')
self.assertFalse(result)
def test_extra_closer(self):
result = is_valid('[[]]())')
self.assertFalse(result)
def test_empty_string(self):
result = is_valid('')
self.assertTrue(result)
unittest.main(verbosity=2)
|
import operator
def GetCount(List,Map,num):
Count=[0]*num
temp=0
for val,id in List:
if id==1:
temp+=1
elif id==3:
temp-=1
else:
Count[Map[val]]=temp
return Count
def points_cover(starts, ends, points):
Map = {}
for index,val in enumerate(points):
Map[val]=index
List=[(val,1) for val in starts]
List+=[(val,2) for val in points]
List+=[(val,3) for val in ends]
List.sort(key=operator.itemgetter(0,1))
return GetCount(List,Map,len(points))
def main():
data = list(map(int, input().split()))
n, m = data[0], data[1]
input_starts=[]
input_ends=[]
for i in range(n):
start,end=list(map(int, input().split()))
input_starts.append(start)
input_ends.append(end)
input_points = list(map(int, input().split()))
output = points_cover(input_starts, input_ends, input_points)
[print(val,end=" ") for val in output]
if __name__ == "__main__":
main()
|
# Fractional Knapsack, Greedy Approach
def maximum_loot_value(capacity, weights, prices):
value=0
temp={}
for i in range(len(prices)):
temp[i] = (prices[i]/weights[i]) # Per unit value of each item
while capacity>0:
x = max(temp, key=temp.get) # Choose Item of Max per unit value
amount = min(weights[x],capacity)
value+= amount*temp[x]
capacity-=amount
temp[x]=0
return value
if __name__ == "__main__":
input_capacity = eval(input())
input_weights = list(map(eval,input().split()))
input_prices = list(map(eval,input().split()))
opt_value = maximum_loot_value(input_capacity, input_weights, input_prices)
print("{:.10f}".format(opt_value))
|
import json
import random
import time
from sort_algorithms import selection_sort, insertion_sort, shell_sort, start_merge_sort
def generate_array(numbers_array, n_experiment, len_array):
"""
:param numbers_array: a list of numbers from 0 to pow(2, 15) to save time on creating random lists,
instead every time generate random number I use random.sample from this numbers_array
:param n_experiment: a number of experiment to understand what type of array to return
:param len_array: a length of returned array
:return: a random array with len_array length
"""
array = []
if n_experiment == 1:
# get an array of len_array length randomly chosen elements
# from numbers_array
array = random.sample(numbers_array, k=len_array)
elif n_experiment == 2:
# get an array of len_array length from 0 to len_array
# in numbers_array
array = numbers_array[:len_array]
elif n_experiment == 3:
# get an array of len_array length from 0 to len_array
# in numbers_array and reverse it
array = numbers_array[:len_array]
array.reverse()
elif n_experiment == 4:
# shuffle elements of previous array fro fourth experiment
random.shuffle(numbers_array)
return array
def compare_algorithms_time():
"""
:return: save a json with all experiments data, format is such:
"experiment1": {
"selection_sort": {
"array_size": [],
"algorithm_time": [],
"algorithm_if_operations": []
},
"insertion_sort": {
"array_size": [],
"algorithm_time": [],
"algorithm_if_operations": []
}
...
"experiment2": {....
"""
# start power - a minimum length of array to sort
# end power - a maximum length of array to sort
start_pow = 5
end_pow = 15
end_len_array = pow(2, end_pow)
numbers_array = [i for i in range(end_len_array)]
# create array123 of {1, 2, 3} repeated elements
one_third_len = end_len_array // 3
array1 = [1 for _ in range(one_third_len)]
array2 = [2 for _ in range(one_third_len)]
array3 = [3 for _ in range(end_len_array - 2 * one_third_len)]
array123 = array1 + array2 + array3
# create len_arrays of length of arrays for cycle
len_arrays = []
for i in range(start_pow, end_pow + 1):
len_arrays.append(pow(2, i))
algorithms_names = ["selection_sort", "insertion_sort", "merge_sort", "shell_sort"]
# create a structure of result json of data for experiments
experiments_data_dict = dict()
for n_experiment in range(1, 5):
algorithms_data_dict = dict()
for i, algo in enumerate(algorithms_names):
algorithms_data_dict[algo] = {
"array_size": len_arrays,
"algorithm_time": [0 for _ in range(end_pow - start_pow + 1)],
"algorithm_if_operations": [0 for _ in range(end_pow - start_pow + 1)]
}
experiments_data_dict["experiment" + str(n_experiment)] = algorithms_data_dict
for n_experiment in range(1, 5):
# a variable to save position length of a current array
# to get it from len_arrays to save the result of experiment
# on certain position in result json
step_len_array = 0
for len_array in len_arrays:
print("len_array", len_array)
print("n_experiment", n_experiment)
# a variable to repeat experiments 1th and 4th
make_experiments = 1
if n_experiment == 1:
make_experiments = 5
elif n_experiment == 4:
make_experiments = 3
array = []
# dicts to save time of each repeated experiment and after to get mean value of it
algo_times_dict = {
0: [],
1: [],
2: [],
3: []
}
algo_if_operations_dict = {
0: [],
1: [],
2: [],
3: []
}
for i in range(make_experiments):
if n_experiment == 4:
if i == 0:
array = random.sample(array123, k=len_array)
else:
# for 4th experiment after first repetition of experiment we should
# shuffle the same elements of first array
generate_array(array, n_experiment, len_array)
else:
array = generate_array(numbers_array, n_experiment, len_array)
algo_time, if_operations = 0, 0
time_difference = 0
for n_algorithm in range(1, 5):
if n_algorithm == 1:
start_time = time.perf_counter()
if_operations = selection_sort(array)
time_difference = time.perf_counter() - start_time
print("Selection sort time", time_difference)
elif n_algorithm == 2:
start_time = time.perf_counter()
if_operations = insertion_sort(array)
time_difference = time.perf_counter() - start_time
print("Insertion sort time", time_difference)
elif n_algorithm == 3:
start_time = time.perf_counter()
if_operations = start_merge_sort(array, if_operations)
time_difference = time.perf_counter() - start_time
print("Merge sort time", time_difference)
elif n_algorithm == 4:
start_time = time.perf_counter()
if_operations = shell_sort(array)
time_difference = time.perf_counter() - start_time
print("Shell sort time", time_difference, '\n\n\n\n')
algo_times_dict[n_algorithm - 1].append(time_difference)
algo_if_operations_dict[n_algorithm - 1].append(if_operations)
# add mean variable of all repetitions of the experiment to result json
for n_algo_name in range(4):
experiments_data_dict["experiment" + str(n_experiment)][algorithms_names[n_algo_name]]["algorithm_time"][step_len_array] \
= sum(algo_times_dict[n_algo_name]) / len(algo_times_dict[n_algo_name])
experiments_data_dict["experiment" + str(n_experiment)][algorithms_names[n_algo_name]]["algorithm_if_operations"][step_len_array] \
= sum(algo_if_operations_dict[n_algo_name]) / len(algo_if_operations_dict[n_algo_name])
step_len_array += 1
with open("algorithms_data.json", "w", encoding="utf-8") as f:
json.dump(experiments_data_dict, f, indent=4, ensure_ascii=False)
if __name__ == '__main__':
compare_algorithms_time()
|
#Unix/Linux操作系统提供了一个fork()系统调用
#它非常特殊。普通的函数调用,调用一次,返回一次,但是fork()调用一次,返回两次
#因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程)
#然后,分别在父进程和子进程内返回
import os
print('Process (%s) start...' % os.getpid())
# Only works on Unix/Linux/Mac:
pid = os.fork()
if pid == 0:#如果返回0(子进程永远返回0,而父进程返回子进程的ID)
print('I am child process (%s) and my dad is %s.' % (os.getpid(), os.getppid()))
else:
print('I (%s) just created a child process (%s).' % (os.getpid(), pid))
#子进程只需要调用getppid()就可以拿到父进程的ID
#我是dad是getpid,我儿子就是pid
#我是儿子getpid,我dad就是getppid
#!!!!!windows玩不了fork,呵呵呵!欺负穷逼!拜拜了您!
|
#在Python中,读写文件这样的资源要特别注意,必须在使用完毕后正确关闭它们。
#正确关闭文件资源的一个方法是使用try...finally:
try:
f = open('/path/to/file', 'r')
f.read()
finally:
if f:
f.close()
#写try...finally非常繁琐。
#Python的with语句允许我们非常方便地使用资源,而不必担心资源没有关闭,
#所以上面的代码可以简化为:
with open('/path/to/file', 'r') as f:
f.read()
|
#Python的标准库提供了两个模块:_thread和threading,
#_thread是低级模块,threading是高级模块,对_thread进行了封装。
#绝大多数情况下,我们只需要使用threading这个高级模块
#启动线程
import time, threading
# 新线程执行的代码:
def loop():
print('thread %s is running...' % threading.current_thread().name)
n = 0
while n < 5:
n = n + 1
print('thread %s >>> %s' % (threading.current_thread().name, n))
time.sleep(1)
print('thread %s ended.' % threading.current_thread().name)
print('thread %s is running...' % threading.current_thread().name)
t = threading.Thread(target=loop, name='LoopThread')
t.start()
t.join()
print('thread %s ended.' % threading.current_thread().name)
#由于任何进程默认就会启动一个线程,我们把该线程称为主线程,
#主线程又可以启动新的线程,Python的threading模块有个current_thread()函数,
#它永远返回当前线程的实例。
#主线程实例的名字叫MainThread,
#子线程的名字在创建时指定,我们用LoopThread命名子线程。
#名字仅仅在打印时用来显示,完全没有其他意义,
#如果不起名字Python就自动给线程命名为Thread-1,Thread-2……
|
#允许对Student实例添加name和age属性
class Student(object):
__slots__ = ('name', 'age')
>>> s = Student() # 创建新的实例
>>> s.name = 'Michael' # 绑定属性'name'
>>> s.age = 25 # 绑定属性'age'
>>> s.score = 99 # 绑定属性'score'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'score'
#slots狭缝,缝外的一律对calss 类不管用!!!
|
#filter,和map类似,也接受一个函数和一个序列
#把传入的函数依次作用于每个元素,根据返回值是True还是False决定保留还是丢弃
#保留奇数,过滤掉偶数
def must_odd(n):
return n % 2 == 1
print(list(filter(must_odd,[1,2,3,4,5,6,7,8,9])
)
)
#1%2 的意思是求1除以2得到的余数,而1除以2 = 0 余1 所以 1%2是1
#把list中的元素代入must_odd中,1,3,5,7,9 %2都余1,返回值为True,保留
#2,4,6,8 %2余0,返回值为Fales,丢弃
#去掉空字符串
def not_empty(q):
return q and q.strip()
#经过q and q.strip()还有值的就返回True,是空的字符串的就就False
print(list(filter(not_empty,['A','b','',' ',None,' jiang'])
)
)
|
#Class responsible recording the video and storing it in a specified location.
import cv2;
import numpy as np;
from videocamera import CameraClass;
'''
# setDriveLocation: set the path where video will be stored.
# getDriveLocation: get the path where video will be stored.
# setpreferedFormat: format in which video is to recorded.
# setpreferedFormat: format in which video is recorded.
# starRecording: initiates the camera and starts recording.
'''
class RecordVideo(CameraClass):
def __init__(self,url,vFormat):
#super(RecordVideo, self).__init__(0,"mp4");
self.driveLocation=url;
self.preferedFormat=vFormat;
def setDriveLocation(self,url):
self.driveLocation=url;
def getDriveLocation(self):
return self.driveLocation;
def setPreferedFormat(self,vFormat):
self.preferedFormat=vFormat;
def getPreferedFormat(self):
return self.preferedFormat;
def startRecording(self):
CameraClass.startCamera(0);
#Input path and video type
print "Enter the location where you want to store the video:";
path=raw_input('---->');
print "Enter the format of video:";
vFormat=raw_input('---->');
#Create an object.
RV=RecordVideo(path,vFormat);
RV.startRecording();
|
# Reference: https://leetcode.com/problems/palindrome-number/
# Sequence = 9. Palindrome Number
# Prepared by - Maddy Rai
import time
class Solution:
def isPalindrome(self, x):
if x not in range(-2**31, 2**31):
raise Exception("Input number is out of range.")
return str(x) == str(x)[::-1]
x = 2
tic = time.perf_counter()
result = Solution.isPalindrome(None, x)
toc = time.perf_counter()
print(f"Time taken = {toc - tic:0.8f} seconds")
print(result)
# Testcases
print("----Starting Testcases-----")
print('Pass') if Solution.isPalindrome(None, -121) is False else print('Failed')
print('Pass') if Solution.isPalindrome(None, 10) is False else print('Failed')
print('Pass') if Solution.isPalindrome(None, -101) is False else print('Failed!!')
print('Pass') if Solution.isPalindrome(None, 123321) is True else print('Failed!!')
|
# Reference: https://leetcode.com/problems/shuffle-the-array/
# Sequence = 1470. Shuffle the Array
# Prepared by - Maddy Rai
import time
class Solution:
def shuffle(self, nums, n):
if n not in range(1, 501):
raise Exception("n is out of range.")
if len(nums) != 2*n:
raise Exception("Unexpected size of input list.")
if (min(nums) < 1) or (max(nums) > 1000):
raise Exception("Min or Max values exceed the desired range.")
lsans = len(nums) * [None]
for i in range(0, n):
lsans[i*2] = nums[i]
lsans[i*2+1] = nums[n]
n += 1
return lsans
nums = [1,2,3,4,5,6,7,8,9,10]
n = 5
tic = time.perf_counter()
result = Solution.shuffle(None, nums, n)
toc = time.perf_counter()
print(f"Time taken = {toc - tic:0.8f} seconds")
print(result)
|
# Reference: https://leetcode.com/problems/check-if-word-equals-summation-of-two-words/
# Sequence = 1880. Check if Word Equals Summation of Two Words
# Prepared by - Maddy Rai
import time
class Solution:
def isSumEqual(self, firstWord, secondWord, targetWord):
if len(firstWord) not in range(1, 9) or len(secondWord) not in range(1, 9) or len(targetWord) not in range(1, 9):
raise Exception("Unexpected length of inputs.")
dictm = {'a': '0', 'b': '1', 'c': '2', 'd': '3', 'e': '4', 'f': '5', 'g': '6', 'h': '7', 'i': '8', 'j': '9'}
s1 = ''.join([dictm[i] for i in firstWord])
s2 = ''.join([dictm[i] for i in secondWord])
s3 = ''.join([dictm[i] for i in targetWord])
if (int(s1) + int(s2)) == int(s3):
return True
else:
return False
firstWord = "acb"
secondWord = "cba"
targetWord = "cdb"
tic = time.perf_counter()
result = Solution.isSumEqual(None, firstWord, secondWord, targetWord)
toc = time.perf_counter()
print(f"Time taken = {toc - tic:0.8f} seconds")
print(result)
|
import ctypes
from time import time
class DynamicArray:
def __init__(self):
self._n = 0
self._capacity = 1
self._A = self._make_array(self._capacity)
def __len__(self):
return self._n
def __getitem__(self,k):
if not 0 <= k < self._n:
raise IndexError('invalid index')
return self._A[k]
def append(self,obj):
if self._n == self._capacity:
self._resize(2*self._capacity)
self._a[self._n] = obj
self._n += 1
def _resize(self,c):
B = self._make_array(c)
for k in range(self._n):
B[k] = self._A[k]
self._A = B
self._capacity = c
def _make_array(self,c):
return (c*ctypes.py_object)()
def compute_average(n):
data = []
start = time()
for k in range(n):
data.append(None)
end = time()
A = [3,5,19,2,7,13,17]
def insertion_sort(A):
for k in range(1,len(A)):
cur = A[k]
j = k
while j > 0 and A[j-1] > cur:
A[j] = A[j-1]
j -= 1
A[j] = cur
|
import requests
from bs4 import BeautifulSoup
import smtplib
# This program looks at a raspberry pi camera and
# emails me if the price has fallen below a certain amount
# https://www.youtube.com/watch?v=Bg9r_yLk7VY&t=330s&ab_channel=DevEd
URL = 'https://www.amazon.com/Raspberry-Camera-Vision-IR-Cut-Longruner/dp/B07R4JH2ZV/ref=sr_1_6?dchild=1&keywords=raspberry+pi+camera&qid=1603577903&sr=8-6'
response = requests.get(URL)
headers = {
"User-Agent": 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36'}
def check_price():
try:
page = requests.get(URL, headers=headers)
soup = BeautifulSoup(page.content, 'html.parser')
title = soup.find(id='productTitle').get_text()
price = soup.find(id='priceblock_ourprice').get_text()
# converts to float and only shows first 5 characters. It starts at the 1 index because the dollar sign cannot be converted to a float
string_price_to_float = float(price[1:5])
print(title.strip())
print(price.strip())
print(f"Here is the price in float form: {string_price_to_float}")
if string_price_to_float < 23:
send_mail()
else:
print("price has not dropped")
except AttributeError:
pass
def send_mail():
server = smtplib.SMTP('smtp.gmail.com', 587)
server.ehlo()
server.starttls()
server.ehlo()
server.login('[email protected]', 'vnjqtzgmqrzuqgua')
subject = 'Price fell down!'
body = 'Check the link! \n https://www.amazon.com/Raspberry-Camera-Vision-IR-Cut-Longruner/dp/B07R4JH2ZV/ref=sr_1_6?dchild=1&keywords=raspberry+pi+camera&qid=1603577903&sr=8-6'
msg = f"Subject: {subject}\n\n{body}"
server.sendmail(
'[email protected]',
'[email protected]',
msg
)
print('Email has been sent!')
server.quit()
check_price()
# while(True): if I want it to continually run and check once a day, I can uncomment this out and get rid of the check_price() call on line 57
# check_price()
# time.sleep(86400)
|
# Now, Dasher! Now, Dancer! Now, Prancer, and Vixen! On, Comet! On, Cupid! On,
# Donder and Blitzen! That's the order Santa wanted his reindeer...right?
# What do you mean he wants them in order by their last names!? Looks like we need your help!
# Write a function that accepts a sequence of Reindeer names,
# and returns a sequence with the Reindeer names sorted by their last names.
# Example
# for this input:
# [
# "Dasher Tonoyan",
# "Dancer Moore",
# "Prancer Chua",
# "Vixen Hall",
# "Comet Karavani",
# "Cupid Foroutan",
# "Donder Jonker",
# "Blitzen Claus"
# ]
# you should return this output:
# [
# "Prancer Chua",
# "Blitzen Claus",
# "Cupid Foroutan",
# "Vixen Hall",
# "Donder Jonker",
# "Comet Karavani",
# "Dancer Moore",
# "Dasher Tonoyan",
# ]
# Tests
# sort_reindeer(['Kenjiro Mori', 'Susumu Tokugawa', 'Juzo Okita', 'Akira Sanada']),
# ['Kenjiro Mori', 'Juzo Okita', 'Akira Sanada', 'Susumu Tokugawa'])
# sort_reindeer(['Yasuo Kodai', 'Kenjiro Sado', 'Daisuke Aihara', 'Susumu Shima', 'Akira Sanada',
# 'Yoshikazu Okita', 'Shiro Yabu', 'Sukeharu Nanbu', 'Sakezo Yamamoto', 'Hikozaemon Ohta',
# 'Juzo Mori', 'Saburo Tokugawa']),
# ['Daisuke Aihara', 'Yasuo Kodai', 'Juzo Mori', 'Sukeharu Nanbu',
# 'Hikozaemon Ohta', 'Yoshikazu Okita', 'Kenjiro Sado', 'Akira Sanada',
# 'Susumu Shima', 'Saburo Tokugawa', 'Shiro Yabu', 'Sakezo Yamamoto'])
def sort_reindeer(reindeer : list) -> list:
return sorted(reindeer, key=lambda x : x.split()[-1])
print(sort_reindeer([
"Dasher Tonoyan",
"Dancer Moore",
"Prancer Chua",
"Vixen Hall",
"Comet Karavani",
"Cupid Foroutan",
"Donder Jonker",
"Blitzen Claus"
]))
|
# The function is not returning the correct values. Can you figure out why?
# def get_planet_name(id):
# This doesn't work; Fix it!
# name=""
# switch id:
# case 1: name = "Mercury"
# case 2: name = "Venus"
# case 3: name = "Earth"
# case 4: name = "Mars"
# case 5: name = "Jupiter"
# case 6: name = "Saturn"
# case 7: name = "Uranus"
# case 8: name = "Neptune"
# return name
# Example
# get_planet_name(3) # should return 'Earth'
# Tests
# get_planet_name(3)
# get_planet_name(8)
# get_planet_name(1)
# get_planet_name(5)
def get_planet_name(id):
return (
{
1: "Mercury",
2: "Venus",
3: "Earth",
4: "Mars",
5: "Jupiter",
6: "Saturn",
7: "Uranus" ,
8: "Neptune"
}
).get(id, "Not valid id")
print(get_planet_name(3)) # output -> Earth
print(get_planet_name(8)) # output -> Neptune
print(get_planet_name(1)) # output -> Mercury
print(get_planet_name(0)) # output -> Not valid id
|
#Python orbital visualizer. By M. Ewers, P. Brabant, I. Laurent, P. Jermann and F. Meyer. 2021.
# Our goal is to draw a 3D representation of a few orbitals
# we import packages we need for our program
import numpy # we use numpy in order to use mathematical tools depending on x, y, z
from mayavi import mlab # we use mlab in order to draw our orbitals
import matplotlib
import matplotlib.pyplot as plt # We import all the modules we need to use in order to draw the graph (probability)
import sys
a0=0.52 # we define the Bohr radius
A="Orbital group, for example 3d"
print("This program displays the orbital shape as well as the most probable distance between the electron and the nuclei for a chosen orbital in the hydrogen atom.")
name = input("Which orbital do you wish to visualize? Please enter the name of the orbital: ") # the user chooses the orbital he wants to draw
# We define the spherical coordinates r, theta, phi depending on x, y, z
r = lambda x,y,z: numpy.sqrt(x**2+y**2+z**2)
theta = lambda x,y,z: numpy.arccos(z/r(x,y,z))
phi = lambda x,y,z: numpy.arctan(y/x)
# We create a library of each equation we need to draw the different orbitals
# Each section contains the radial part of the solution to the schrodinger equation, the wavefunction and the probability of presence for a given orbital.
#1s
rad1s = lambda r:((1/a0)**(3/2))*2*numpy.exp(-(r/a0))
WF1s = lambda r,theta,phi: rad1s(r)*(1./(numpy.sqrt(4*numpy.pi)))
Prob1s = lambda r,theta,phi: abs(WF1s(r,theta,phi)**2)
#2s
rad2s = lambda r:((1/a0)**(3/2))*(1/(2*numpy.sqrt(2)))*(2-(r/a0))*numpy.exp(-(r/(2*a0)))
WF2s = lambda r,theta,phi: rad1s(r)*(1./(numpy.sqrt(4*numpy.pi)))
Prob2s = lambda r,theta,phi: abs(WF1s(r,theta,phi)**2)
#2py
rad2py = lambda r:((1/a0)**(3/2))*(1/(2*numpy.sqrt(6)))*(r/a0)*numpy.exp(-(r/(2*a0)))
WF2py = lambda r,theta,phi: rad2py(r)*(numpy.sqrt(3/(4*numpy.pi))*numpy.sin(theta))*numpy.sin(phi)
Prob2py = lambda r,theta,phi: abs(WF2py(r,theta,phi)**2)
#2px
rad2px = lambda r:((1/a0)**(3/2))*(1/(2*numpy.sqrt(6)))*(r/a0)*numpy.exp(-(r/(2*a0)))
WF2px = lambda r,theta,phi: rad2px(r)*(numpy.sqrt(3/(4*numpy.pi))*numpy.sin(theta))*numpy.cos(phi)
Prob2px = lambda r,theta,phi: abs(WF2px(r,theta,phi)**2)
#2pz
rad2pz = lambda r:((1/a0)**(3/2))*(1/(2*numpy.sqrt(6)))*(r/a0)*numpy.exp(-(r/(2*a0)))
WF2pz = lambda r,theta,phi: rad2pz(r)*(numpy.sqrt(3/(4*numpy.pi))*numpy.cos(theta))
Prob2pz = lambda r,theta,phi: abs(WF2pz(r,theta,phi)**2)
#3s
rad3s = lambda r:((1/a0)**(3/2))*(1/(9*numpy.sqrt(3)))*(6-((4*r)/a0)+((4*r**2)/9*a0**2))*numpy.exp(-(r/(3*a0)))
WF3s = lambda r,theta,phi: rad3s(r)*(numpy.sqrt(1/(4*numpy.pi)))
Prob3s = lambda r,theta,phi: abs(WF3s(r,theta,phi)**2)
#3pz
rad3pz = lambda r:((1/a0)**(3/2))*(1/(9*numpy.sqrt(6)))*((2*r)/(3*a0))*(4-((2*r)/(3*a0)))*numpy.exp(-(r/(3*a0)))
WF3pz = lambda r,theta,phi: rad3pz(r)*(numpy.sqrt(3/(4*numpy.pi))*numpy.cos(theta))
Prob3pz = lambda r,theta,phi: abs(WF3pz(r,theta,phi)**2)
#3dz2
rad3dz2 = lambda r:((1/a0)**(3/2))*(1/(9*numpy.sqrt(30)))*((4*r**2)/(9*a0**2))*numpy.exp(-(r/(3*a0)))
WF3dz2 = lambda r,theta,phi: rad3dz2(r)*(numpy.sqrt(5/(16*numpy.pi))*(3*(numpy.cos(theta)**2)-1))
Prob3dz2 = lambda r,theta,phi: abs(WF3dz2(r,theta,phi)**2)
#3dxy
rad3dxy = lambda r:((1/a0)**(3/2))*(1/(9*numpy.sqrt(30)))*((4*(r**2))/(9*(a0**2)))*numpy.exp(-(r/(3*a0)))
WF3dxy = lambda r,theta,phi: rad3dxy(r)*(numpy.sqrt(5/(16*numpy.pi))*((numpy.sin(theta))**2)*numpy.sin(2*phi))
Prob3dxy = lambda r,theta,phi: abs(WF3dxy(r,theta,phi)**2)
#3dxz
rad3dxz = lambda r: ((1/a0)**(3/2))*(1/(9*numpy.sqrt(30)))*(4*(r**2)/9*(a0**2))*numpy.exp(-(r/(3*a0)))
WF3dxz = lambda r,theta,phi: rad3dxz(r)*(numpy.sqrt(5/(16*numpy.pi))*numpy.cos(phi)*numpy.sin(2*theta))
Prob3dxz = lambda r,theta,phi: abs(WF3dxz(r,theta,phi)**2)
#3dyz
rad3dyz = lambda r: ((1/a0)**(3/2))*(1/(9*numpy.sqrt(30)))*((4*(r**2))/(9*(a0**2)))*numpy.exp(-(r/(3*a0)))
WF3dyz = lambda r,theta,phi: rad3dyz(r)*(numpy.sqrt(5/(16*numpy.pi))*((numpy.sin(theta))*numpy.sin(phi)*numpy.cos(theta)))
Prob3dyz = lambda r,theta,phi: abs(WF3dyz(r,theta,phi)**2)
#3dx2y2
rad3dx2y2 = lambda r:((1/a0)**(3/2))*(1/(9*numpy.sqrt(30)))*((4*r**2)/9*a0**2)*numpy.exp(-(r/(3*a0)))
WF3dx2y2 = lambda r,theta,phi: rad3dx2y2(r)*(numpy.sqrt(5/(16*numpy.pi))*(numpy.sin(theta))**2*numpy.cos(2*phi))
Prob3dx2y2 = lambda r,theta,phi: abs(WF3dx2y2(r,theta,phi)**2)
#we define the grid on which we want to draw the orbitals with one hundred steps
x,y,z = numpy.ogrid[-10:10:100j,-10:10:100j,-10:10:100j]
# we create the figure
mlab.figure()
mask = 1
# We draw the orbital that the user chose by checking the input. We allocate a value to w which wil help in the visualization
# and A which will help for the probability graph
if name == "1s":
w=Prob1s(r(x,y,z),theta(x,y,z),phi(x,y,z))
A="1s"
elif name == "2s":
w=Prob2s(r(x,y,z),theta(x,y,z),phi(x,y,z))
A = "2s"
elif name == "2py":
w=Prob2py(r(x,y,z),theta(x,y,z),phi(x,y,z))
A = "2p"
elif name == "2px":
w=Prob2px(r(x,y,z),theta(x,y,z),phi(x,y,z))
A = "2p"
elif name == "2pz":
w=Prob2pz(r(x,y,z),theta(x,y,z),phi(x,y,z))
A = "2p"
elif name == "3s":
w=Prob3s(r(x,y,z),theta(x,y,z),phi(x,y,z))
A = "3s"
elif name == "3pz":
w=Prob3pz(r(x,y,z),theta(x,y,z),phi(x,y,z))
A = "3p"
elif name == "3dz2":
w=Prob3dz2(r(x,y,z),theta(x,y,z),phi(x,y,z))
A = "3d"
elif name == "3dxy":
w=Prob3dxy(r(x,y,z),theta(x,y,z),phi(x,y,z))
A = "3d"
elif name == "3dxz":
w=Prob3dxz(r(x,y,z),theta(x,y,z),phi(x,y,z))
A = "3d"
elif name == "3dyz":
w=Prob3dyz(r(x,y,z),theta(x,y,z),phi(x,y,z))
A = "3d"
elif name == "3dx2y2":
w=Prob3dx2y2(r(x,y,z),theta(x,y,z),phi(x,y,z))
A = "3d"
else:
# If the input doesn't match with any of the orbitals the program stops to prevent an error
print("Please restart the program and enter a valid orbital name")
sys.exit()
# We apply the orbital's mathematical description to the mask in order to draw it.
mlab.contour3d(w*mask,contours=20,transparent=False)
#We take a few extra steps and "voilà" the orbital shows itself
mlab.colorbar()
mlab.outline()
mlab.show()
# We create a new library of functions that correspond to the radial
def radial1s(x,y,z):
r=numpy.sqrt(x**2+y**2+z**2)
a0=5.29
R=(1/a0)**(3/2)*2*numpy.exp(-r/a0)
return(R)
def radial2s(x,y,z) :
r = numpy.sqrt(x ** 2 + y ** 2 + z ** 2)
a0 = 5.29
R = (1/a0) ** (3/2) * (1/ (2 * numpy.sqrt(2))) * (2 - (r / a0)) * numpy.exp(-r / (2 * a0))
return (R)
def radial2p(x, y,z) :
r = numpy.sqrt(x ** 2 + y ** 2 + z ** 2)
a0 = 5.29
R = (1 / a0) ** (3 / 2) * (1 / (2 * numpy.sqrt(6))) * (r / a0) * numpy.exp(-r / (2 * a0))
return (R)
def radial3s(x, y,z) :
r = numpy.sqrt(x ** 2 + y ** 2 + z ** 2)
a0 = 5.29
R = ((1 / a0) ** (3 / 2)) * (1 / (9 * numpy.sqrt(3))) * (6 - (4 * r / a0) + (4* r**2 / (9 * a0 **2))) * numpy.exp(-r / (3 * a0))
return (R)
def radial3pz(x, y,z) :
r = numpy.sqrt(x ** 2 + y ** 2 + z ** 2)
a0 = 5.29
R = ((1 / a0) ** (3 / 2)) * (1 / (9 * numpy.sqrt(6))) * (2 * r /3 * a0) * (4 - 2 * r / (3 * a0)) * numpy.exp(-r / (3 * a0))
return (R)
def radial3d(x, y,z) :
r = numpy.sqrt(x ** 2 + y ** 2 + z ** 2)
a0 = 5.29
R = (1 / a0) ** (3 / 2) * (1 / (9 * numpy.sqrt(30))) * (4 * r**2 /9 * a0**2) * numpy.exp(-r / (3 * a0))
return (R)
# we create a grid in order to be able to make a graph, so we define the coordinates and the axis
dz = 0.5
zmin = 0
zmax = 50
x = numpy.arange(zmin, zmax, dz)
y = numpy.arange(zmin, zmax, dz)
z = numpy.arange(zmin, zmax, dz)
X, Y, Z = numpy.meshgrid(x, y, z)
# we start a loop of "if" related to the orbital chosen by the user
# according to the chosen orbital, it will plot the right graph representing the most probable distance between the electron and the nucleus
if A == "1s" :
R = radial1s(x,y,z)
a0 = 5.29
r = numpy.sqrt(x ** 2 + y ** 2 + z ** 2)
graphX = r / a0
graphY = (R ** 2) * (r ** 2) * a0
plt.title("Probability density of the radial presence times a0 depending on r/a0")
plt.xlabel("r/a0")
plt.ylabel("a0Dr")
plt.plot(graphX, graphY)
ymax = numpy.max(graphY)
xmax = graphX[numpy.argmax(graphY)]
print("xmax =", xmax, "a0")
plt.scatter(xmax, ymax)
plt.text(xmax, ymax, " Maximum probability distance : 0.9822594371846185 a0 ")
plt.show()
matplotlib.pyplot.close()
elif A == "2s":
R = radial2s(x,y,z)
a0 = 5.29
r = numpy.sqrt(x ** 2 + y ** 2 + z ** 2)
graphX = r / a0
graphY = (R ** 2) * (r ** 2) * a0
plt.title("Probability density of the radial presence times a0 depending on r/a0")
plt.xlabel("r/a0")
plt.ylabel("a0Dr")
plt.plot(graphX, graphY)
ymax = numpy.max(graphY)
xmax = graphX[numpy.argmax(graphY)]
print("xmax =", xmax, "a0")
plt.scatter(xmax, ymax)
plt.text(xmax, ymax, "Maximum probability distance : 5.238716998317965 a0 ")
plt.show()
matplotlib.pyplot.close()
elif A == "2p":
R = radial2p(x,y,z)
a0 = 5.29
r = numpy.sqrt(x ** 2 + y ** 2 + z ** 2)
graphX = r / a0
graphY = (R ** 2) * (r ** 2) * a0
plt.title("Probability density of the radial presence times a0 depending on r/a0")
plt.xlabel("r/a0")
plt.ylabel("a0Dr")
plt.plot(graphX, graphY)
ymax = numpy.max(graphY)
xmax = graphX[numpy.argmax(graphY)]
print("xmax =", xmax, "a0")
plt.scatter(xmax, ymax)
plt.text(xmax, ymax, "Maximum probability distance : 3.929037748738474 a0 ")
plt.show()
matplotlib.pyplot.close()
elif A == "3s":
R = radial3s(x,y,z)
a0 = 5.29
r = numpy.sqrt(x ** 2 + y ** 2 + z ** 2)
graphX = r / a0
graphY = (R ** 2) * (r ** 2) * a0
plt.title("Probability density of the radial presence times a0 depending on r/a0")
plt.xlabel("r/a0")
plt.ylabel("a0Dr")
plt.plot(graphX, graphY)
ymax = numpy.max(graphY)
xmax = graphX[numpy.argmax(graphY)]
print("xmax =", xmax, "a0")
plt.scatter(xmax, ymax)
plt.text(xmax, ymax, " Maximum probability distance : 13.096792495794915 a0 ")
plt.show()
matplotlib.pyplot.close()
elif A == "3p":
R = radial3pz(x,y,z)
a0 = 5.29
r = numpy.sqrt(x ** 2 + y ** 2 + z ** 2)
graphX = r / a0
graphY = (R ** 2) * (r ** 2) * a0
plt.title("Probability density of the radial presence times a0 depending on r/a0")
plt.xlabel("r/a0")
plt.ylabel("a0Dr")
plt.plot(graphX, graphY)
ymax = numpy.max(graphY)
xmax = graphX[numpy.argmax(graphY)]
print("xmax =", xmax, "a0")
plt.scatter(xmax, ymax)
plt.text(xmax, ymax, " Maximum probability distance : 11.950823152412857 a0 ")
plt.show()
matplotlib.pyplot.close()
elif A == "3d":
R = radial3d(x,y,z)
a0 = 5.29
r = numpy.sqrt(x ** 2 + y ** 2 + z ** 2)
graphX = r / a0
graphY = (R ** 2) * (r ** 2) * a0
plt.title("Probability density of the radial presence times a0 depending on r/a0")
plt.xlabel("r/a0")
plt.ylabel("a0Dr")
plt.plot(graphX, graphY)
ymax = numpy.max(graphY)
xmax = graphX[numpy.argmax(graphY)]
print("xmax =", xmax, "a0")
plt.scatter(xmax, ymax)
plt.text(xmax, ymax, "Maximum probability distance : 9.004044840859002 a0 ")
plt.show()
matplotlib.pyplot.close()
|
import sys
print(sys.maxsize)
print(sys.float_info.max)
#Guys this is way of max limit of any float or int value
cn1 = 7 + 3j
cn2 = 8 + 2j
cn = (cn1 + cn2)*(- 1)
print(cn)
# ya guys the above example was for operation of complex numbers
|
def allowed_dating_age(my_age):
girls_age = my_age/2 + 10
return girls_age
Buckys_limit = allowed_dating_age(27)
print("Bucky can date girls",Buckys_limit,"or older")
# now we gonna do some multiple exampples
Rahuls_limit = allowed_dating_age(15)
print("Rahul can date girls",Rahuls_limit,"or older")
sandys_limit = allowed_dating_age(75)
print("sandy can date girls",sandys_limit,"or older")
|
from flask_sqlalchemy import SQLAlchemy
db = SQLAlchemy()
charlotte = {
"id": 6,
"name": "Charlotte",
"children": []
}
harrison = {
"id": 5,
"name": "Harrison",
"children": []
}
harry = {
"id": 4,
"name": "Harry",
"children": [harrison]
}
william = {
"id" : 3,
"name" : "William",
"children": [charlotte]
}
charles = {
"id": 2,
"name": "Charles",
"children": [william, harry]
}
elizabeth = {
"id": 1,
"name": "Elizabeth",
"children": [charles]
}
new_list = []
def list_all(parent):
# your code goes here
for child in parent["children"]:
new_list.append(child)
return list_all(child)
return new_list
def find_one(parent, id):
print("for loop initiated with " + parent["name"])
for child in parent["children"]:
print("testing for " + child["name"] + " with id " + str(child["id"]) + "==" + str(id))
if child["id"] == id:
print("if statement initiated")
return child
print("Not the id that we want, moving on")
return find_one(child, id)
# print(find_one(elizabeth, 6))
|
# USE RANGE
def fizz_buzz(numbers):
# I think that you need to use range and len here so that when it iterates through it keeps the list. if you just use for i in numbers, it will return the values as individuals
for i in range(len(numbers)):
num=numbers[i]
if num %3 ==0:
numbers[i]="fizz"
if num %5 ==0:
numbers[i]="buzz"
if num %3 ==0 and num % 5==0:
numbers[i]="fizzbuzz"
numbers=[45,22,14,65,97,72]
fizz_buzz(numbers)
numbers
#USE ENUMERATE enumerate allows you to iterate through a list AND its indicies returning a tuple
def fizz_buzz(numbers):
# I think that you need to use range and len here so that when it iterates through it keeps the list. if you just use for i in numbers, it will return the values as individuals
breakpoint()
for i, num in enumerate(numbers):
num=numbers[i]
if num %3 ==0:
numbers[i]="fizz"
if num %5 ==0:
numbers[i]="buzz"
if num %3 ==0 and num % 5==0:
numbers[i]="fizzbuzz"
numbers=[45,22,14,65,97,72]
fizz_buzz(numbers)
numbers
|
## USE PARAMETERIZED QUERIES TO INSERT DATA - NAMED PLACEHOLDERS
# New data is stored in variables and is inserted into the query strings using parameters
# Results are gethered by the row and are printed by using list locations
import sqlite3 as lite
import sys
uId = 4
con = lite.connect('test.db')
with con:
cur = con.cursor()
cur.execute("SELECT Name, Price FROM Cars WHERE Id = :Id", {"Id": uId})
con.commit()
row = cur.fetchone()
print row[0], row[1]
|
## CREATES AND INSERTS DATA INTO DATABASE
# Assigns all data to be inserted into a list of tuples
# Table is destroyed if already exists and new one created
# executemany is used to insert all data from 'cars' list by using a parameterized string
import sqlite3 as lite
import sys
cars = (
(1, 'Audi', 52642),
(2, 'Mercedes', 57127),
(3, 'Skoda', 9000),
(4, 'Volvo', 29000),
(5, 'Bentley', 350000),
(6, 'Citroen', 21000),
(7, 'Hummer', 41400),
(8, 'Volkswagen', 21600)
)
con = lite.connect('test.db')
with con:
cur = con.cursor()
cur.execute("DROP TABLE IF EXISTS Cars")
cur.execute("CREATE TABLE Cars(Id INT, Name TEXT, Price INT)")
cur.executemany("INSERT INTO Cars VALUES (?, ?, ?)", cars)
|
## RETRIEVE DATA FROM DATABASE - DICTIONARY
# Sets cursor to a dictionary style cursor
# Grabs data in all rows at once and prints row by row using the column id's (dictionary keys) through for loop
import sqlite3 as lite
con = lite.connect('test.db')
with con:
con.row_factory = lite.Row
cur = con.cursor()
cur.execute("SELECT * FROM Cars")
rows = cur.fetchall()
for row in rows:
print "%s %s %s" % (row["Id"], row["Name"], row["Price"])
|
class BankAccount(object):
def __init__(self, object):
self.name = object
self.balance = 0
def make_deposit(self, amount):
self.balance = (self.balance + amount)
def make_withdrawal(self, amount):
if self.balance > amount:
self.balance -= amount
else:
print('insufficient funds. choose a smaller amount')
def check_balance(self, amount):
self.balance = (self.balance - amount)
if self.balance < 0:
print('insufficient funds')
else:
print(self.balance)
def is_balance_positive(self):
if self.balance < 0:
print('you do not have a positive balance')
# christian=BankAccount('christian')
# christian.make_deposit(800)
# print(christian.check_balance(1000))
# print(christian.__dict__)
|
#Escreva um programa que receba notas de um aluno (0 - 10), caso
#a nota digitada esteja fora dessa intervalo peça para o professor digitar
#novamente.
while True:
nota_aluno = int(input('Digite a nota do aluno: '))
if nota_aluno >= 0 and nota_aluno <= 10:
print(f'Nota armazenada com sucesso {nota_aluno}')
break
print('Nota inválida digite novamente')
|
class Block:
def __init__(self):
self.block = [None]*800 #each element will be either 0 or 1
class DiskA:
def __init__(self):
self.disk = [Block() for i in range(200)]
class DiskB:
def __init__(self):
self.disk = [Block() for i in range(300)]
def API_for_write(block_No, data):
if(block_No <= 200):
#read and write from diska
diska.disk[block_No-1] = data
print diska.disk[block_No-1]
# print diska
else:
#read and write from diskb
diskb.disk[block_No-201] = data
print diskb.disk[block_No-201]
def API_for_read(block_No):
if(block_No <= 200):
#read and write from diska
return diska.disk[block_No-1]
# print diska
else:
#read and write from diskb
return diskb.disk[block_No-201]
diska = DiskA()
diskb = DiskB()
API_for_write(1 , "mamm")
API_for_write(200, "ww")
print API_for_read(88)
# print diska.disk
# s = stru()
# s.a = 10
|
# coding: utf-8
import numpy as np
import matplotlib.pyplot as plt
import random
# public symbols
__all__ = ['Perceptron']
class Perceptron(object):
"""
Perceptron class
"""
def __init__(self):
self.N = None
self.d = None
self.w = None
self.rho = 0.5
def fit(self, X, label):
self.N = X.shape[0]
self.d = X.shape[1]
self.w = np.random.rand(self.d+1)[:, np.newaxis]
# initialize
np.random.seed()
while True:
#for i in range(100):
data_index_list = list(range(self.N))
random.shuffle(data_index_list)
misses = 0
for n in data_index_list:
predict = calculate_value(self.w, X[n,:])
label_value = label[n,:].sum()
# perceptron learning rule
if predict != label_value:
self.w += label_value * self.rho * phi(X[n,:])
misses += 1
# learning finish when all data points are correctly classified
print(misses)
if misses == 0:
break
def predict(self, X):
"""
predict label
"""
n_samples = X.shape[0]
n_features = X.shape[1]
label_predict = np.array([1 if hyperplane(self.w, x) > 0 else -1 for x in X])[:, np.newaxis]
return label_predict
def phi(x):
# vertical vector
return np.concatenate(([1], x))[:, np.newaxis]
def hyperplane(w, x):
return np.dot(w.T, phi(x))
def calculate_value(w, X_n):
# assumes shape (1, 1), so use sum()
return np.sign(hyperplane(w, X_n).sum()).astype(np.int64)
def draw_graph(X, weight, label, perceptron):
if perceptron.d == 2:
xmax, xmin, ymax, ymin = 3, -3, 3, -3
seq = np.arange(xmin, xmax, 0.02)
xlist, ylist = np.meshgrid(seq, seq)
zlist = np.array([[calculate_value(weight, np.array([x_elem, y_elem])) for x_elem, y_elem in zip(x, y)] for x, y in zip(xlist, ylist)])
# draw true separation hyperplane
plt.pcolor(xlist, ylist, zlist, alpha=0.2, edgecolors='white')
label_reshape = label.reshape(len(label))
plt.plot(X[label_reshape== 1,0], X[label_reshape== 1,1], 'o', color='red')
plt.plot(X[label_reshape== -1,0], X[label_reshape== -1,1], 'o', color='blue')
# draw separation hyperplane based on the trained weight
plain_x = np.linspace(xmin, xmax, 5)
w_0, w_1, w_2 = perceptron.w[0], perceptron.w[1], perceptron.w[2]
# (w_0)*(x_0) + (w_1)*(x_1) + (w_2)*(x_2) = 0 where x_0 = 1
plain_y = - (w_1/w_2) * plain_x - (w_0/w_2)
plt.plot(plain_x, plain_y, 'r-', color='black')
plt.xlim(xmin, xmax)
plt.ylim(ymin, ymax)
plt.show()
|
# 1. Получите текст из файла.
import re
with open('text.txt', 'r', encoding='UTF-8') as f:
text = f.read()
print(text)
# 2. Разбейте текст на предложения.
#разбиваем текст на предложения и записываем в файл text2.txt (эксперимент)
pattern2 = re.compile('(?<=\w[.!?])( |\n)')
text_list = pattern2.split(text)
for t in text_list:
print(t)
with open('text2.txt', 'w', encoding='UTF-8') as f1:
print(*text_list, file=f1, sep="\n")
# 3. Найдите самую используемую форму слова, состоящую из 4 букв и более, на русском языке.
pattern3 = re.compile('([а-яА-ЯёЁ]{4,})')
text_list3 = pattern3.findall(text)
result = {i: text_list3.count(i) for i in text_list3};
max_rezult = max(result.values())
print(result)
print(max_rezult)
print("3 задание ",{word:kol for word, kol in result.items() if kol == max_rezult})
# 4. Отберите все ссылки.
pattern4 = re.compile('([\w+\.]{1,}[ru/][\w+\.]{1,}|[\w+\.]{1,}ru)')
text_list4 = pattern4.findall(text)
print("4 задание ",text_list4)
# 5. Ссылки на страницы какого домена встречаются чаще всего?
text1 = text.lower()
text_list5 = re.findall('\w+\.ru',text1)
result5 = {i: text_list5.count(i) for i in text_list5};
max_rezult5 = max(result5.values())
print(text_list5)
print(result5)
print(max_rezult5)
print("5 задание ",{domen:kol for domen, kol in result5.items() if kol == max_rezult5})
# 6. Замените все ссылки на текст «Ссылка отобразится после регистрации».
# Исключила Mail.ru - эксперимент
pattern6 = re.compile(' ([a-z0-9]+[\.]){1,}ru[/\w+]{0,}')
text_list6 = pattern6.sub('"Ссылка отобразится после регистрации"',text)
print("6 задание ",text_list6)
|
import math as m
num=int(input(""))
r=0
sum=0
temp=num
for i in range(1,num+1):
r=num%10
sum+=m.pow(r,3)
num=num//10
#print(r)
#s=m.pow(r,3)
#print(s)
#sum=sum+s
#print(int(sum))
if(temp==sum):
print("Arom Strong Number")
else:
print("not")
|
shoes = ['nike', 'reebok', 'adidas', 'puma']
print(shoes)
print(shoes[0])
print(shoes[0].title())
print(shoes[-1])
message = f"My first shoe brand was {shoes[0].title()}."
print(message)
# Adding to a list
shoes.append('fila')
print(shoes)
shoes = [] # Adding elements to an empty list
shoes.append('nike')
shoes.append('reebok')
shoes.append('adidas')
shoes.append('puma')
print(shoes)
# Inserting into a list
shoes.insert(0, 'fila')
print(shoes)
# Removing an item from a list
del shoes[0]
print(shoes)
popped_shoe = shoes.pop() # "pops" off last item in list
print(shoes)
print(popped_shoe)
print(f"The last shoe I owned was a {popped_shoe.title()}.")
first_owned = shoes.pop(0)
print(f"The first shoe I owned was a {first_owned.title()}.")
shoes = ['nike', 'reebok', 'adidas', 'puma']
print(shoes)
shoes.remove('reebok')
print(shoes)
# Sorting a list permanently
shoes = ['nike', 'reebok', 'adidas', 'puma']
shoes.sort()
print(shoes)
shoes.sort(reverse=True)
print(shoes)
# Sorting a list temporarily
print("\nHere is the sorted list:")
print(sorted(shoes))
# Printing list in reverse order
shoes = ['nike', 'reebok', 'adidas', 'puma']
print("\nHere is the reverse list:")
print(shoes)
shoes.reverse()
print(shoes)
|
with open('pi_digits.txt') as file_object:
contents = file_object.read()
print(contents.rstrip())
print("\n")
# Reading line by line
filename = 'pi_digits.txt'
with open(filename) as file_object:
for line in file_object:
print(line.rstrip())
print("\n")
# Making a list of lines from a File
filename = 'pi_digits.txt'
with open(filename) as file_object:
lines = file_object.readlines() # readlines() method takes each line from the file and stores it in a list
print(lines)
for line in lines:
print(line.rstrip())
print("\n")
# Working with a File's Contents
filename = 'pi_digits.txt'
with open(filename) as file_object:
lines = file_object.readlines()
pi_string = ''
for line in lines:
pi_string += line.rstrip()
print(pi_string)
print(f"The amount of characters in this text: {len(pi_string)}")
|
# 4.6 Write a program to prompt the user for hours and rate per hour using input to compute gross pay.
# Pay should be the normal rate for hours up to 40 and time-and-a-half for the hourly rate
# for all hours worked above 40 hours. Put the logic to do the computation of pay in a function called computepay()
# and use the function to do the computation. The function should return a value.
# Use 45 hours and a rate of 10.50 per hour to test the program (the pay should be 498.75).
# You should use input to read a string and float() to convert the string to a number.
# Do not worry about error checking the user input unless you want to - you can assume the user types numbers properly.
# Do not name your variable sum or use the sum() function.
def computepay(h,r):
if(h <= 40):
gp = h * r
else:
extraHour = h - 40
extraHourPay = extraHour * ( r * 1.5)
normalHourPay = 40 * r
gp = extraHourPay + normalHourPay
return gp
hrs = input("Enter Hours:")
rph = input("Enter rate per hour:")
try:
hours = float(hrs)
ratePerHour = float(rph)
p = computepay(hours, ratePerHour)
print("Pay",p)
except:
print('Problem found')
148/4 = 37
60/ 37= 1.62
= ects per credit* 148cr
= total ects
|
# print('hi')
# x = 2
# print(x)
# x = x + 2
# print(x)
# Using conditional statement
# x = 2
# if x < 5:
# print('smaller')
# else:
# print('bigger')
# # While loop
# # i = 10
# # while( i > 0):
# # print(i)
# # i = i-1
# # print('Boom')
# # array
# a = [ 10, 20 ]
# i = 0
# while( i < len(a) ):
# print(a[i])
# i = i + 1
# print('Boom')
# take input
# nam = input('zia');
# print('welcome Mr.','asdasd', nam);
# europe usa lift problem
# inp = input('europe floor: ')
# print('Europe floor', inp)
# usf = int(inp) + 1
# print('USA floor', usf)
# print("123" + "abc")
Spam = 2
x = int(98.6)
print(x)
|
# cook your dish here
#Solved by ROSHAN-RAUT in PYTHON ON 9-8-2020
from copy import deepcopy
for test in range(int(input())):
str = list(input())
pat = list(input())
for i in pat:
str.remove(i)
str.sort()
deep = deepcopy(str)
deep.append(pat[0])
deep = sorted(deep,reverse=True)
if pat[0] not in str:
print(''.join(str[0:len(deep) - deep.index(pat[0]) - 1])+''.join(pat)+
''.join(str[len(deep) - deep.index(pat[0])-1:]))
else:
ans = ''.join(str[0:str.index(pat[0])]) +''.join(pat)+''.join(str[str.index(pat[0]):])
print(min(ans,''.join(str[0:len(deep) - deep.index(pat[0]) - 1]) + ''.join(pat) + ''.join(str[len(deep) - deep.index(pat[0])-1:])))
|
sample1 = [x**x for x in range(10)]
sample2 = [[x*n for n in range(5)] for x in range(10)]
sample3 = {x: x**x for x in range(5)}
if __name__ == '__main__':
print('sample 1:', sample1)
print('sample 2:', sample2)
print('sample 3:', sample3)
|
print('Hello World')
class FileName(object):
def __init__(self, filename):
self.filename = filename
self._get_file_name_info()
def _get_file_name_info(self):
file_str = ''.join(self.filename.split('.')[0:-1])
self._file_type = self.filename.split('.')[-1]
self._file_number_str = self._get_ending_number(file_str)
self._file_number = int(self._file_number_str)
self._file_base_str = file_str[:-len(self._file_number_str)]
def _get_ending_number(self, str):
res = ''
print str
for char in reversed(str):
if char.isdigit():
print char
res += char
else:
return res[::-1]
def get_next_file_names(self):
new_file_name = self._file_base_str + str(self._file_number + 1) + \
'.' + self._file_type
format_str = '0' + str(len(self._file_number_str)) + 'd'
number_str = ("{0:" + format_str + '}').format(self._file_number + 1)
new_file_name_with_leading_zeros = self._file_base_str + \
number_str + '.' + self._file_type
return new_file_name, new_file_name_with_leading_zeros
def get_previous_file_names(self):
new_file_name = self._file_base_str + str(self._file_number - 1) + \
'.' + self._file_type
format_str = '0' + str(len(self._file_number_str)) + 'd'
number_str = ("{0:" + format_str + '}').format(self._file_number - 1)
new_file_name_with_leading_zeros = self._file_base_str + \
number_str + '.' + self._file_type
return new_file_name, new_file_name_with_leading_zeros
test1 = FileName('Fe7C3_150_1000.spe')
print test1.get_next_file_names()
print test1.get_previous_file_names()
|
#This is to use argument
from sys import argv
#This explains the components
script, filename = argv
#This gives open command to open the sample file
txt = open(filename)
#These prints the words in sanple file
print "Here's your file %r:" % filename
print txt.read()
#This uses raw input to open file again
print "Type the filename again:"
file_again = raw_input(">")
txt_again = open(file_again)
print txt_again.read()
|
import math, random
from collections import Counter
import matplotlib.pyplot as plt
def bucketize(point,bucket_size):
return bucket_size*math.floor(point/bucket_size)
def make_histogram (points, bucket_size):
return Counter(bucketize(point,bucket_size) for point in points)
def plot_histogram(points,bucket_size,title=""):
histogram=make_histogram(points,bucket_size)
plt.bar(histogram.keys(),histogram.values(),width=bucket_size)
plt.title(title)
plt.show()
random.seed(0)
#uniform=[200*random.random()-100 for _ in range(10000)]
plot_histogram([1,1,2,2,2,3,3,10,10,8,8,11,12,13,1,0,1,1,1],2)
|
def rotate_string(s,rotateBy):
# we calculate the displacement
# required for the string and then
# slice and join the string
if len(s)==0:
return
x=len(s)-rotateBy
s=s[x:]+s[0:x]
print "Rotated String is"
print s
if __name__=="__main__":
s = input("Enter the string\n")
rotateBy = input("Enter a rotateby value\n")
rotate_string(s,rotateBy)
|
import sys
import collections
def check_palindrome(s):
odd_count = 0
freq = collections.Counter()
for c in s:
if c != ' ':
freq[c] += 1
odd_count += -1 if freq[c]%2==0 else 1
return odd_count < 2
if __name__ == '__main__':
for line in sys.stdin.readlines():
line = line.strip()
print("{} is a permutation of a palindrome? :: {}".format(line, check_palindrome(line)))
print()
|
import queue
class Edge:
def __init__(self, p, n, c=0):
self.previous = p
self.next = n
self.cost = c
class Graph:
def __init__(self, size):
self.num_nodes = size
self.adjacency_list = [list() for x in range(size)]
def add_edge(self, p, n, c=0):
self.adjacency_list[p].append(Edge(p, n, c))
self.adjacency_list[n].append(Edge(n, p, c))
def __str__(self):
string = list()
for i, lst in enumerate(self.adjacency_list):
string.append(f'{i}-')
for edge in lst:
string.append(f'->{edge.next}')
string.append('\n')
return ''.join(map(str, string))
def bfs_traversal(self, start):
string = list()
q = queue.Queue()
visited = [False for x in range(self.num_nodes)]
q.put((start, 1))
while not q.empty():
node, level = q.get()
if not visited[node]:
visited[node] = True
string.append(f'->({node}, {level})')
for edge in self.adjacency_list[node]:
q.put((edge.next, level + 1))
return ''.join(map(str, string))
def dfs_traversal(self, start):
string = list()
q = queue.LifoQueue()
visited = [False for x in range(self.num_nodes)]
q.put((start, 1))
while not q.empty():
node, level = q.get()
if not visited[node]:
visited[node] = True
string.append(f'->({node}, {level})')
for edge in self.adjacency_list[node]:
q.put((edge.next, level + 1))
return ''.join(map(str, string))
if __name__ == '__main__':
num_graphs = int(input())
for i in range(num_graphs):
nodes, edges = map(int, input().split())
graph = Graph(nodes)
for j in range(edges):
p, n = map(int, input().split('-'))
graph.add_edge(p, n)
print(f'-- Graph --\n{str(graph)}')
for i in [0, 6, 3, 7]:
print(f'-- BFS Traversal --\n{graph.bfs_traversal(i)}')
for i in [0, 6, 3, 7]:
print(f'-- DFS Traversal --\n{graph.dfs_traversal(i)}')
|
import sys
import collections
def check_permutation_hash(s1, s2):
if len(s1) is not len(s2):
return False
hashmap = collections.Counter(s1)
for c in s2:
if hashmap[c] < 1:
return False
hashmap[c] -= 1
return True
def check_permutation_sort(s1, s2):
if len(s1) is not len(s2):
return False
s1 = sorted(s1)
s2 = sorted(s2)
for i, c in enumerate(s1):
if c is not s2[i]:
return False
return True
if __name__ == '__main__':
for line in sys.stdin.readlines():
args = tuple(line.split())
print("{} and {} are permutations? :: {}".format(*args, check_permutation_hash(*args)))
print("{} and {} are permutations? :: {}".format(*args, check_permutation_sort(*args)))
print()
|
def mergesort(lst):
if len(lst) <= 1:
return lst
lst_1 = mergesort(lst[:len(lst)//2])
lst_2 = mergesort(lst[len(lst)//2:])
lst_sorted = []
ptr_1 = 0
ptr_2 = 0
while ptr_1 < len(lst_1) or ptr_2 < len(lst_2):
if ptr_1 == len(lst_1):
lst_sorted.append(lst_2[ptr_2])
ptr_2 += 1
continue
if ptr_2 == len(lst_2):
lst_sorted.append(lst_1[ptr_1])
ptr_1 += 1
continue
else:
if lst_2[ptr_2] < lst_1[ptr_1]:
lst_sorted.append(lst_2[ptr_2])
ptr_2 += 1
else:
lst_sorted.append(lst_1[ptr_1])
ptr_1 += 1
return lst_sorted
if __name__ == '__main__':
num_tests = int(input())
for x in range(num_tests):
l = list(map(int, input().split()))
print(f"Test {x+1}:\n{l}\n{mergesort(l)}")
|
"""
Module defines basic logical building blocks for writing rules
"""
#boolean logic
def implies(a,b):
return (not a) or b
def xor(a,b):
return (a and not b) or (not a and b)
def iff(a,b):
return implies(a,b) and implies(b,a)
#tuple logic
def eq(a,b, attr):
return _op( a, b, attr, lambda s,t: s == t)
def neq(a,b, attr):
return _op( a, b, attr, lambda s,t: s != t)
def gt(a,b, attr):
return _op( a, b, attr, lambda s,t: s > t)
def lt(a,b, attr):
return _op( a, b, attr, lambda s,t: s < t)
def _op(a , b, attr, comparator):
if isinstance(a, tuple) and \
isinstance(b, tuple):
return comparator(a[attr], b[attr])
elif isinstance(a, tuple):
return comparator(a[attr],b)
else:
return comparator(a,b[attr])
#format operators
def isFloat(a,attr):
try:
float(a[attr])
return True
except:
return False
|
#!usr/bin/env python
#-*- coding: utf-8 -*-
funcionario = input()
horas = input()
valor_hora = input()
print "NUMBER = " + str(funcionario)
print "SALARY = U$ {:0.2f}".format(valor_hora * horas)
|
# Merge sort algorithm
#
# This merge sort uses naturally sorted fragments and merges each of two following fragments
# It is done iteratively
def next_fragment(A, i):
j = i+1
while j < len(A) and A[j-1] <= A[j]: j += 1
return A[i:j]
def merge(B, C):
i = j = k = 0
M = [None] * (len(B) + len(C))
while i < len(B) and j < len(C):
if B[i] < C[j]:
M[k] = B[i]
i += 1
else:
M[k] = C[j]
j += 1
k += 1
while i < len(B):
M[k] = B[i]
i += 1
k += 1
while j < len(C):
M[k] = C[j]
j += 1
k += 1
return M
def merge_sort(A):
while True:
i = 0
while i < len(A):
start = i
B = next_fragment(A, i)
i += len(B)
C = next_fragment(A, i)
i += len(C)
M = merge(B, C)
for j in range(i-start): A[j+start] = M[j]
if len(C) == 0: break
A = [1,2,31,4,6,321,2,3,43,2,2,3]
merge_sort(A)
print(A)
|
import random
class Node:
def __init__ (self, val):
self.val = val
self.next = None
def add_number (self, val): # test function
temp = self.next
self.next = Node(val)
self.next.next = temp
class TwoLists:
def __init__ (self, even, odd):
self.even = even
self.odd = odd
def split (linked_list):
even_head = Node(-1); odd_head = Node(-1) # create sentinel nodes
even = even_head; odd = odd_head
while linked_list != None:
if linked_list.val %2 == 0:
even.next = linked_list
even = even.next
else:
odd.next = linked_list
odd = odd.next
linked_list = linked_list.next
odd.next = even.next = None
return TwoLists(even_head.next, odd_head.next) # remove sentinel nodes by returning next nodes
def output (two_lists): # test function
print("Odd:", end=" ")
while two_lists.odd != None:
print(two_lists.odd.val, end=" ")
two_lists.odd = two_lists.odd.next
print("\nEven:", end=" ")
while two_lists.even != None:
print(two_lists.even.val, end=" ")
two_lists.even = two_lists.even.next
print()
linked_list = Node(3)
for _ in range(100): linked_list.add_number(random.randint(1,1000))
output(split(linked_list))
|
def insertion_sort(A):
for i in range(len(A)):
key = A[i]
k = i-1
while k >= 0 and A[k] > key:
A[k+1] = A[k]
k -= 1
A[k+1] = key
def bucket_sort(A):
n = len(A)
m = len(A) // 2 # should be propotional to len(A)
max_value = max(A)
buckets = [[] for _ in range(m+1)] # subset of [0, max_value]
for num in A: buckets[int(num / max_value * m)].append(num)
for bucket in buckets: insertion_sort(bucket)
i = 0
B = []
for bucket in buckets:
B[i:] = bucket
i += len(bucket)
A[:] = B
A = [5,3,2.7,10.2, 0, 21.37, 5.3, 15.6, 21.36, 2.1]
bucket_sort(A)
print(A)
|
import math
n = int(input('n = '))
b = 2
while n > 1 and b <= math.sqrt(n) :
if n %b == 0 :
print (b, end = ' ')
n = n // b
else :
b += 1
if n > 1 : print(n)
|
def count_unique(list):
"""Count the number of distinct elements in a list.
The list can contain any kind of elements, including duplicates and nulls in any order.
:param list: list of elements to find distinct elements of
:return: the number of distinct elements in list
Examples:
>>> count_unique(['a','b','b','b','a','c','c'])
3
>>> count_unique(['a','a','a','a'])
1
>>> count_unique([ ])
0
"""
unique = []
for char in list[::]:
if char not in unique:
unique.append(char)
return len(unique)
def binary_search(list, element):
"""Search element sorted in list by repeatedly dividing search interval in half.
If the value of the search key is less than the list in the middle of the interval,
narrow the interval to the lower half. Otherwise narrow it to the upper half.
Repeatedly check until the value is found or the interval is empty.
:param list: List of elements to find sorted element
:param element: The value that we want to check whether it is in the list or not
:return: The position(index) of element in the list.
Examples:
>>> binary_search([2,4,6,1,3],3)
2
>>> binary_search([1],2) is None
True
>>> binary_search([1,2,3,6,8,4,80],None)
Traceback (most recent call last):
'''
TypeError: Search element must not be none
"""
list.sort()
first = 0
last = len(list) - 1
count = 0
if element == None:
raise TypeError("Search element must not be none")
while first < last:
midpoint = (first + last) // 2
if list[midpoint] == element:
position = midpoint
return position
else:
if list[midpoint] < element:
count += 1
if list[midpoint + count] == element:
return midpoint + count
else:
count += 1
if list[midpoint - count] == element:
return midpoint - count
|
__author__ = 'Mike'
import abc
class AbstractConnection(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def send_obj(self, message_obj):
"""
Serializes the provided message, and sends it along the connection.
"""
return
@abc.abstractmethod
def recv_obj(self):
"""
Retrieves a serialized object from whatever the input stream is, and
converts it to a Message object. If there is any file data coming with
the message, this will need to retrieve it and pack it into the message
as well. OR provide a mechanism for reading the data piece by piece.
I don't really know how websocket file transfer is going to work yet, so
maybe do that FIRST
"""
# fixme ^^^^ the part about ws:// file transfer.
return
@abc.abstractmethod
def recv_next_data(self, length):
"""
Retrieves the next data[length] from this connection.
So, a websock will keep grabing messages until length == length
but what if one message gets you nBytes > length??
THEN ITS PROBABLY BAD.
:param length: length of the data to return. Might be a little more?
:return:
"""
return
@abc.abstractmethod
def send_next_data(self, data):
"""
Sends the specified data down the connection. It just does it.
No regard for what the data is or how it happens.
:param data: data to send
:return:
"""
return
@abc.abstractmethod
def close(self):
"""
closes the connection.
"""
return
"""
OKAY SO HERES THE DEAL.
Whenever we would be retrieving file data, we always go:
"What's the message? oh cool, length of file data, lemme just
while loop to pull the data."
So, now its basically the same.
We'll recv_obj -> see that there is file data coming,
and while loop to pull it all down.
And similar for the sending of files. Very #fuckitshipit.
"""
|
from mpmath import *
from sympy import degree
from sympy import *
from sympy.abc import x
import numpy as np
import cmath
print("Entere the polynomial whose roots you want to find\n")
print("if you want to find roots of a(x^2) + b(x) + c then enter ' a*(x**2) + b*x + c '\n\n")
fun= raw_input("polynomial--> ").strip()
fun=sympify(fun)
fun=Poly(fun,x)
deg=degree(fun)
co=fun.all_coeffs()
co_r=[]
for i in co:
co_r.append(i)
co_r.reverse()
def bergie_vieta(p,tol):
p0=p
while(np.abs(fun.subs(x,p0))>tol):
b=co[0]
c=co[0]
for i in range(1,deg):
b=co[i]+ (p0*b)
c=b + (p0*c)
b= co[deg] + (p0*b)
p0=p0-(b/c)
return p0
def bairstow(a,r,s,g,roots,tolerance):
if(g<1):
return None
if((g==1) and (a[1]<>0)):
roots.append(float(-a[0])/float(a[1]))
return None
if(g==2):
D = (a[1]**2.0)-(4.0)*(a[2])*(a[0])
X1 = (-a[1] - cmath.sqrt(D))/(2.0*a[2])
X2 = (-a[1] + cmath.sqrt(D))/(2.0*a[2])
roots.append(X1)
roots.append(X2)
return None
n = len(a)
b = [0]*len(a)
c = [0]*len(a)
b[n-1] = a[n-1]
b[n-2] = a[n-2] + r*b[n-1]
i = n - 3
while(i>=0):
b[i] = a[i] + r*b[i+1] + s*b[i+2]
i = i - 1
c[n-1] = b[n-1]
c[n-2] = b[n-2] + r*c[n-1]
i = n - 3
while(i>=0):
c[i] = b[i] + r*c[i+1] + s*c[i+2]
i = i - 1
Din = ((c[2]*c[2])-(c[3]*c[1]))**(-1.0)
r = r + (Din)*((c[2])*(-b[1])+(-c[3])*(-b[0]))
s = s + (Din)*((-c[1])*(-b[1])+(c[2])*(-b[0]))
if(abs(b[0])>tolerance or abs(b[1])>tolerance):
return bairstow(a,r,s,g,roots)
if (g>=3):
Dis = ((-r)**(2.0))-((4.0)*(1.0)*(-s))
X1 = (r - (cmath.sqrt(Dis)))/(2.0)
X2 = (r + (cmath.sqrt(Dis)))/(2.0)
roots.append(X1)
roots.append(X2)
return bairstow(b[2:],r,s,g-2,roots)
k=0
roots=[]
print("for bergie vieta method enter 1 \n for bairstow method enter 2\n\n")
number=int(raw_input("choice--> "))
if number==1:
p=float(raw_input("enter the initial guess-->"))
tole=float(raw_input("enter the tolerance(eg:0.0000001)-->"))
print("root is " +str(float(bergie_vieta(p,tole))))
if number==2:
p=raw_input("enter the initial p-->")
q=raw_input("enter the initial q-->")
tol=raw_input("enter the tolerance(eg:0.0000001)-->")
bairstow(co_r,p,q,deg,roots,tol)
print "\nROOTS ARE: \n"
for r in roots:
print "R" + str(k) + " = " + str(r)
k += 1
|
import random
import characters
import time
import string
class BattlePrep():
def __init__(self): # take int for total enemies
begin = 1
end = random.randint(2,10)
suspense = range(begin, end)
timeString = '.'*end
print (timeString)
for i in suspense:
time.sleep(0.5)
end = end-1
timeString = '.'*end
print(timeString)
class BattleSetup(BattlePrep):
def __init__(self, player, total):
print("You hear something coming closer...")
print("")
super(BattleSetup, self).__init__()
self.player = player
enemyCount = 0
enemyName = random.choice(characters.GenerateEnemyList()) # need better way to do this >.<
enemyString = "{}".format(enemyName)
enemyNamed = enemyString[19:]
enemyFinal = enemyNamed.strip("'>")
enemy = enemyName(random.choice([True, False]), random.choice([True, False]), "{}".format(enemyFinal),random.randint(1,10),random.randint(1,99), random.randint(0,1), random.randint(0,400), random.randint(0,1))
print("")
print ("{} Appeared!!!".format(enemyFinal))
print("")
while enemy.health > 0:
print("")
print("[ e:Attack | s:Retreat \n"
"[ i:Inventory | p:Player Info \n"
"[v:Assess Enemy]")
print("")
answer = input(">>> ")
if answer == "e":
print("")
print("You Attacked {}".format(enemyFinal))
print("")
player.attacks(player, enemy)
print("")
print("{} health damaged to {}".format(enemyFinal, enemy.health))
if answer == "p":
print("")
player.card()
if answer == "v":
enemy.avatar()
|
import json
# example dictionary to save as JSON
data = {
"first_name": "John",
"last_name": "Doe",
"email": "[email protected]",
"salary": 1499.9, # just to demonstrate we can use floats as well
"age": 17,
"is_real": False, # also booleans!
"titles": ["The Unknown", "Anonymous"] # also lists!
}
# save JSON file
# 1st option
with open("data1.json", "w") as f:
json.dump(data, f)
#kapws etsi mporeis na grapseis ena .json arxeio
|
#import plt and np
from matplotlib import pyplot as plt
import numpy as np
#load file located in data/sunspots.txt and call it `data` with float data type
data = np.loadtxt('data/sunspots.txt', dtype= float)
#assign first column as t
t = data[:,0]
#convert t into month that starts from Jan, 1749; use timedelta library
import datetime as dt
start = dt.date(1749, 1, 1)
month = []
#this for loop converts the first column into proper dates
for i in t:
time = dt.timedelta(i)
month.append(start + dt.timedelta(i*365/12))
#assign second column as count
count = data[:,1]
#plot up to first 1000 data points as instructed
plt.plot(month[:1000],count[:1000], 'b-') #b- means blue line
#add labels
plt.xlabel("Time")
plt.ylabel("Sunspot Counts")
#optional: add grid
plt.grid(True)
#show plot
plt.show()
|
#!/usr/bin/env python
# coding:utf-8
# Copyright (C) dirlt
# class Solution(object):
# def findSubstring(self, s, words):
# """
# :type s: str
# :type words: List[str]
# :rtype: List[int]
# """
# nw = len(words[0]) * len(words)
# if len(s) < nw: return []
# sign_set = set()
# import itertools
# for xs in itertools.permutations(words):
# sign = 0
# x = ''.join(xs)
# for c in x:
# sign = sign * 32 + ord(c)
# print 'x = {}, sign = {}'.format(x, sign)
# sign_set.add(sign)
# sign = 0
# res = []
# base = 32 ** (nw - 1)
# for idx in range(0, nw):
# sign = sign * 32 + ord(s[idx])
# if sign in sign_set:
# res.append(0)
# for idx in range(nw, len(s)):
# sign -= ord(s[idx - nw]) * base
# sign = sign * 32 + ord(s[idx])
# if sign in sign_set:
# res.append(idx - nw + 1)
# return res
class Solution(object):
def findSubstring(self, s, words):
"""
:type s: str
:type words: List[str]
:rtype: List[int]
"""
words.sort()
sws = ''.join(words)
nw = len(words[0]) * len(words)
if len(s) < nw: return []
pf_sign = sum(map(lambda x: ord(x), ''.join(words)))
res = []
sign = 0
for idx in range(0, nw):
sign = sign + ord(s[idx])
if sign == pf_sign: res.append(0)
for idx in range(nw, len(s)):
sign = sign - ord(s[idx - nw]) + ord(s[idx])
if sign == pf_sign: res.append(idx - nw + 1)
def post_check(idx):
xs = []
for i in range(0, len(words)):
xs.append(s[idx + i*len(words[0]): idx + (i+1)*len(words[0])])
xs.sort()
ss = ''.join(xs)
return ss == sws
# words_dict = {}
# for w in words:
# words_dict[w] = words_dict.get(w, 0) + 1
# words_set = set(words)
# for i in range(len(words)):
# ss = s[idx + i * len(words[0]) : idx + (i+1)*len(words[0])]
# if ss not in words_dict or words_dict[ss] == 0:
# return False
# words_dict[ss] -= 1
# return True
res = filter(lambda idx: post_check(idx), res)
return res
# class Solution(object):
# def findSubstring(self, s, words):
# """
# :type s: str
# :type words: List[str]
# :rtype: List[int]
# """
# words.sort()
# sws = ''.join(words)
# # print sws
# nw = len(words) * len(words[0])
# res = []
# for i in range(0, len(s) - nw + 1):
# ss = s[i: i + nw]
# xs = []
# for j in range(0, len(words)):
# xs.append(ss[j*len(words[0]): (j+1)*len(words[0])])
# xs.sort()
# # print xs
# sxs = ''.join(xs)
# if sxs == sws:
# res.append(i)
# return res
if __name__ == '__main__':
s = Solution()
print s.findSubstring("barfoothefoobarman", ["foo", 'bar'])
print s.findSubstring("wordgoodgoodgoodbestword",["word","good","best","good"])
|
#!/usr/bin/env python
# coding:utf-8
# Copyright (C) dirlt
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def recoverTree(self, root):
"""
:type root: TreeNode
:rtype: void Do not return anything, modify root in-place instead.
"""
def min_node(root):
if not root: return None
l = min_node(root.left)
r = min_node(root.right)
x = root
if l and l.val < x.val: x = l
if r and r.val < x.val: x = r
return x
def max_node(root):
if not root: return None
l = max_node(root.left)
r = max_node(root.right)
x = root
if l and l.val > x.val: x = l
if r and r.val > x.val: x = r
return x
def fx(root):
if not root: return
lmax = max_node(root.left)
rmin = min_node(root.right)
if lmax and rmin and lmax.val > rmin.val:
lmax.val, rmin.val = rmin.val, lmax.val
elif lmax and lmax.val > root.val:
lmax.val, root.val = root.val, lmax.val
elif rmin and rmin.val < root.val:
rmin.val, root.val = root.val, rmin.val
fx(root.left)
fx(root.right)
fx(root)
|
#!/usr/bin/env python
# coding:utf-8
# Copyright (C) dirlt
class Solution(object):
def rotate(self, matrix):
"""
:type matrix: List[List[int]]
:rtype: void Do not return anything, modify matrix in-place instead.
"""
m = matrix
n = len(matrix)
for i in range(0, n / 2):
for j in range(i, n - 1 - i):
# print (i, j), (j, n-1-i), (n-1-i, n-1-j), (n-1-j, i)
v = m[n-1-j][i]
m[n-1-j][i] = m[n-1-i][n-1-j]
m[n-1-i][n-1-j] = m[j][n-1-i]
m[j][n-1-i] = m[i][j]
m[i][j] = v
if __name__ == '__main__':
s = Solution()
m = [[1,2],[3,4]]
s.rotate(m)
print m
m = [[1,2,3],[4,5,6],[7,8,9]]
s.rotate(m)
print m
m = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
s.rotate(m)
print m
|
#!/usr/bin/env python
# coding:utf-8
# Copyright (C) dirlt
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def pathSum(self, root, sum):
"""
:type root: TreeNode
:type sum: int
:rtype: List[List[int]]
"""
if not root: return []
st = []
res = []
root.parent = None
st.append((root, sum, 0))
while st:
(r, v, d) = st.pop()
if not r:
continue
if r.left is None and r.right is None:
if r.val == v:
t = r
path = []
while t:
path.append(t.val)
t = t.parent
res.append(path[::-1])
continue
if d == 0:
st.append((r, v, d + 1))
ln = r.left
if ln: ln.parent = r
st.append((ln, v - r.val, 0))
elif d == 1:
rn = r.right
if rn: rn.parent = r
st.append((rn, v - r.val, 0))
return res
|
#!/usr/bin/env python
# coding:utf-8
# Copyright (C) dirlt
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def generateTrees(self, n):
"""
:type n: int
:rtype: List[TreeNode]
"""
if n == 0: return []
st = []
for i in range(n + 1):
st.append([])
st[0].append(None)
def copy_tree(t, off = 0):
if not t: return None
l = copy_tree(t.left, off)
r = copy_tree(t.right, off)
x = TreeNode(t.val + off)
x.left = l
x.right = r
return x
for i in range(1, n + 1):
for j in range(0, i):
# j+1 in middle.
ls = st[j]
rs = st[i-1-j]
for l in ls:
for r in rs:
t = TreeNode(j+1)
t.left = l
t.right = copy_tree(r, j+1)
st[i].append(t)
return st[n]
|
#!/usr/bin/env python
# coding:utf-8
# Copyright (C) dirlt
class Solution(object):
def combine(self, n, k):
"""
:type n: int
:type k: int
:rtype: List[List[int]]
"""
res = []
def f(idx, r):
if len(r) == k:
res.append(r[:])
return
rest = k - len(r)
for i in range(idx, n - rest + 1):
r.append(i + 1)
f(i + 1, r)
r.pop()
r = []
f(0, r)
return res
if __name__ == '__main__':
s = Solution()
print s.combine(4, 2)
|
#!/usr/bin/env python
# coding:utf-8
# Copyright (C) dirlt
class Solution(object):
def searchInsert(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: int
"""
(s, e) = (0, len(nums) - 1)
while s <= e:
m = (s + e) / 2
if nums[m] == target:
return m
elif nums[m] < target:
s = m + 1
else:
e = m - 1
return s
|
#!/usr/bin/env python
# coding:utf-8
# Copyright (C) dirlt
class Solution(object):
def fullJustify(self, words, maxWidth):
"""
:type words: List[str]
:type maxWidth: int
:rtype: List[str]
"""
gp = []
r = []
wc = 0
for w in words:
# at least len(r)-1 spaces to separate words.
if (wc + len(w) + len(r) - 1) < maxWidth:
r.append(w)
wc += len(w)
else:
gp.append(r)
r = [w]
wc = len(w)
gp.append(r)
gp2 = []
for r in gp[:-1]:
wc = sum(map(len, r))
rest = maxWidth - wc
if len(r) == 1:
s = r[0] + ' ' * rest
else:
avg = rest / (len(r) - 1)
left = rest - avg * (len(r) - 1)
if left:
s = (' ' * (1 + avg)).join(r[:left]) + ' ' * (1 + avg) + (' ' * avg).join(r[left:])
else:
s = (' ' * avg).join(r)
gp2.append(s)
wc = sum(map(len, gp[-1]))
rest = maxWidth - wc - len(gp[-1]) + 1
gp2.append(' '.join(gp[-1]) + ' ' * rest)
return gp2
if __name__ == '__main__':
s = Solution()
# print s.fullJustify(["This", "is", "an", "example", "of", "text", "justification."], 16)
# print s.fullJustify(["What","must","be","shall","be."], 12)
print s.fullJustify(["Don't","go","around","saying","the","world","owes","you","a","living;","the","world","owes","you","nothing;","it","was","here","first."], 30)
|
#!/usr/bin/env python
# coding:utf-8
# Copyright (C) dirlt
class Solution(object):
def search(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: int
"""
p = self.locate_pivot(nums)
a = self.bs_locate(nums, 0, p, target)
if a != -1: return True
a = self.bs_locate(nums, p + 1, len(nums) - 1, target)
if a != -1: return True
return False
def bs_locate(self, nums, s, e, target):
while s <= e:
m = (s + e) / 2
if nums[m] == target:
return m
elif nums[m] > target:
e = m - 1
else:
s = m + 1
return -1
# # pivot is a[i] > a[i-1] and a[i] > a[i+1]
# def locate_pivot(self, nums):
# (s, e) = (0, len(nums) - 1)
# # make sure 3 elements.
# while (e - s) >= 2:
# # print (s, e)
# m = (s + e) / 2
# # 100 percent sure.
# if ((m - 1) >= 0 and nums[m] > nums[m - 1]) and \
# ((m + 1) < len(nums) and nums[m] > nums[m + 1]):
# return m
# if nums[m] > nums[e]:
# s = m
# else:
# e = m
# # special cases.
# if (e - s) == 1:
# if nums[s] < nums[e]: return e
# else: return s
# else:
# return s
# TOOD(yan): FIX ME. not O(lgN)
def locate_pivot(self, nums):
p = 1
while p < len(nums):
if nums[p-1] > nums[p]:
return p-1
p += 1
return len(nums) / 2
|
import csv
import os
budgetpath = os.path.join('AMELIA-budget_data.csv')
with open(budgetpath, newline = '') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
rowCount = 0
header = next(csv_reader)
monthCount = 0 #for counting how many months
netTotal = 0 #to hold the total of all the amounts
month = "" #to hold the current month for i
amount = 0 # tohold the amount for the current i
lastAmount = 0 #to hold the amount for the previous i
deltas = {} #to hold all of the deltas
delta = 0 #to determine the change in amount from last month to current month
averageDelta = 0 #to hold the average month to month change
greatestAmount = 0 #to hold the highest amount
greatestMonth = "" #to hold the month of the highest amount
lowestAmount = 0 #to hold the lowest amount
lowestMonth = "" #to hold the month of the latest amount
for row in csv_reader:
#define the current variables
month = row[0]
amount = int(row[1])
#count the months (one per row)
monthCount += 1
#add amount to the running total CORRECT
netTotal = netTotal + amount
# test print(f"Total {netTotal}")
if rowCount >= 1:
#calculate the change from last month
delta = amount - lastAmount #how do we set the previous amount?
# test print(f"Delta {delta}")
#add the change to the list of changes
deltas[month] = delta
#set lastAmount
lastAmount = amount
rowCount +=1
# determine the greatest or lowest amount
# test print(f"Deltas {deltas}")
greatestAmount = max(deltas.values())
lowestAmount = min(deltas.values())
greatestMonth = [month for month,amount in deltas.items() if amount == greatestAmount][0]
lowestMonth = [month for month,amount in deltas.items() if amount == lowestAmount][0]
#calculate the average month to month change WRONG
averageDelta = sum(deltas.values())/len(deltas)
#print findings
print("Financial Analysis")
print("----------------------------")
print(f"Total Months: {monthCount}")
print(f"Total: ${netTotal}")
print(f"Average Change: ${averageDelta}")
print(f"Greatest Increase in Profits: {greatestMonth} (${greatestAmount})")
print(f"Greatest Decrease in Profits: {lowestMonth} (${lowestAmount})")
#write output to file
#open files
f = open('AMELIA-budget_summary.txt', 'w')
#write to file
f.write("Financial Analysis\n----------------------------\nTotal Months: "+repr(monthCount)+"\nTotal: $"+repr(netTotal)+"\nAverage Change: $"+repr(averageDelta)+"\nGreatest Increase in Profits: "+repr(greatestMonth)+" ($"+repr(greatestAmount)+"\nGreatest Decrease in Profits: "+repr(lowestMonth)+" ($"+repr(lowestAmount)+")") #this will put the info in the file
#close file
f.close()
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
This is a basic calculator that can do four operations; addition, subtraction, summation and division.
"""
def addition(a, b):
""" Addition Operator """
return a + b
def subtraction(a, b):
""" Subtraction Operator """
return a - b
def summation(a, b):
""" Summation Operator """
return a * b
def division(a, b):
""" Division Operator """
if b == 0:
raise ValueError("Divison by Zero!")
return a / b
|
# Print an introduction. Mention typing q to quit.
# Get some user input
# In each round (until the user types q to quit):
# Generate the computer's move. Make use of some kind of random behavior.
# Use some logic to determine who wins.
# Let the player know who wins.
# Any long term score keeping needs to happen here if it's happening at all.
# Get next user input.
# After user quits, print some goodbye message.
|
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats
from sklearn.metrics import mean_squared_error, r2_score, explained_variance_score
from sklearn.linear_model import LinearRegression, LassoLars, TweedieRegressor
from sklearn.feature_selection import f_regression, SelectKBest, RFE
from sklearn.preprocessing import PolynomialFeatures
from math import sqrt
import warnings
warnings.filterwarnings('ignore')
def plot_residuals(df, y, yhat):
'''
This function takes in a dataframe, the y target variable
and the yhat (model predictions) and creates columns for residuals
and baseline residuals. It returns a graph of both residual columns.
'''
# create a residual column
df['residual'] = (yhat - y)
# create a residual baseline column
df['residual_baseline'] = (y.mean() - y)
fig, ax = plt.subplots(figsize=(13,7))
ax.hist(df.residual_baseline, label='baseline residuals', alpha=.6)
ax.hist(df.residual, label='model residuals', alpha=.6)
ax.legend()
def regression_errors(df, y, yhat):
'''
Takes in a dataframe, a ytarget and yprediction and returns SSE, MSE, RMSE, ESS, TSS and R2
'''
SSE = mean_squared_error(y, yhat)*len(df)
MSE = mean_squared_error(y, yhat)
RMSE = sqrt(mean_squared_error(y, yhat))
ESS = sum((yhat - y.mean())**2)
TSS = sum((y - y.mean())**2)
# compute explained variance
R2 = ESS / TSS
print('SSE is:', SSE)
print('ESS is:', ESS)
print('TSS is:', TSS)
print('R2 is:', R2)
print('MSE is:', MSE)
print('RMSE is:', RMSE)
def baseline_mean_errors(df, y, yhat_baseline):
'''
Takes in a dataframe, ytarget and ypred_baseline and returns SSE, MSE, RMSE
'''
SSE_baseline = mean_squared_error(y, yhat_baseline)*len(df)
MSE_baseline = mean_squared_error(y, yhat_baseline)
RMSE_baseline = sqrt(mean_squared_error(y, yhat_baseline))
print('Baseline SSE is:', SSE_baseline)
print('Baseline MSE is:', MSE_baseline)
print('Baseline RMSE is:', RMSE_baseline)
def better_than_baseline(df, y, yhat, yhat_baseline):
'''
Takes in a dataframe, ytarget, y_pred and ypred_baseline and returns which performed better.
'''
RMSE = sqrt(mean_squared_error(y, yhat))
RMSE_baseline = sqrt(mean_squared_error(y, yhat_baseline))
if RMSE < RMSE_baseline:
print('The model performs better than the baseline')
elif RMSE > RMSE_baseline:
print('The baseline performs better than the model')
else:
print('error, it is possible they are equal')
return RMSE, RMSE_baseline
# KBEST FUNCTION
def select_kbest(X_train_scaled, y_train, no_features):
'''
This function takes in scaled data and number of features and returns the top features
'''
# using kbest
f_selector = SelectKBest(score_func=f_regression, k=no_features)
# fit
f_selector.fit(X_train_scaled, y_train)
# display the two most important features
mask = f_selector.get_support()
return X_train_scaled.columns[mask]
## RFE FUNCTION
def rfe(X_train_scaled, y_train, no_features):
'''
This function takes in scaled data and number of features and returns the top features
'''
# now using recursive feature elimination
lm = LinearRegression()
rfe = RFE(estimator=lm, n_features_to_select=no_features)
rfe.fit(X_train_scaled, y_train)
# returning the top chosen features
return X_train_scaled.columns[rfe.support_]
|
"""
Resources represent attributes that can be used or consumed as a resource, such
as health, mana, rocket power, etc.
"""
from attribute import Attribute
from resource_constants import AttributeType
from save_wrapper import save_attr
class Resource(object):
"""
Properties:
name (string) - name of the attribute
min (Attribute) - attribute value floor
max (Attribute) - attribute value ceiling
recharge_interval (number) - interval between recharges in seconds
recharge_rate (number) - how much to increase the current value by, for
each recharge interval
will_charge (boolean) - if recharging is enabled
cur_val (number) - current value of the resource
attrobj (Attribute objref) - Evennia database attribute direct object
reference, used to save changes to the handler
"""
def __init__(self, attrobj, name="resource", cur_val=0, min=None,
max=None, recharge_interval=60, recharge_rate=1):
self.name = name
self._cur_val = cur_val
self._min = Attribute(attrobj, **min)
self._max = Attribute(attrobj, **max)
self.recharge_rate = recharge_rate
self.recharge_interval = recharge_interval
self.will_recharge = False
self.attrobj = attrobj
@property
def max_modifiers(self):
return self._max.modifiers
@property
def min_modifiers(self):
return self._min.modifiers
@property
def max(self):
return self._max.cur_val
@property
def min(self):
return self._min.cur_val
@property
def percentage(self):
return self.cur_val / self.max
@property
def cur_val(self):
return self._cur_val
@cur_val.setter
def cur_val(self, other):
if other > self.max.cur_val:
self._cur_val = self.max
elif other < self.min.cur_val:
self._cur_val = self.min
else:
self._cur_val = other
def get_mod(self, attr_type, desc, **kwargs):
"""Get modifier based on attribute type, description, and filters.
Arguments:
attr_type (AttributeType) - what type of attribute we are adding
modifier to
desc (string) - name of the modifier
kwargs (dict) - any filters we want to filter the result by
Returns: Modifier
"""
if attr_type == AttributeType.MAX:
return self.max_modifiers.get(desc, **kwargs)
if attr_type == AttributeType.MIN:
return self.min_modifiers.get(desc, **kwargs)
assert 0, "invalid attr_type {}".format(attr_type)
@save_attr
def add_mod(self, attr_type, **kwargs):
"""Add a modifier to the resource's min, or max, based on attr type.
Arguments:
attr_type (string) - what type of attribute we are adding modifier to
kwargs - filter arguments used to grab modifier
Returns: None
"""
if attr_type == AttributeType.MAX:
self.max_modifiers.add(**kwargs)
elif attr_type == AttributeType.MIN:
self.min_modifiers.add(**kwargs)
else:
assert 0, "invalid attr_type {}".format(attr_type)
@save_attr
def remove_mod(self, attr_type, modifier):
"""Remove a modifier from the resource min/max based on attr_type.
Arguments:
attr_type (string) - what type of attribute we are adding modifier to
modifier (Modifier) - modifier to remove
Returns: None
"""
if attr_type == AttributeType.MAX:
self.max_modifiers.remove(modifier)
elif attr_type == AttributeType.MIN:
self.min_modifiers.remove(modifier)
else:
assert 0, "invalid attr_type {}".format(attr_type)
def serialize(self):
"""Serialize for storage.
Arguments: None
Returns: dict
"""
return {
"min": self._min.serialize(),
"max": self._max.serialize(),
"will_recharge": self.will_recharge,
"cur_val": self.cur_val,
"recharge_rate": self.recharge_rate,
"recharge_interval": self.recharge_interval
}
@save_attr
def restore(self):
"""Restore resource to the max.
Arguments: None
Returns: None
"""
self.cur_val = self.max
@save_attr
def deplete(self):
"""Deplete resource to the minimum.
Arguments: None
Returns: None
"""
self.cur_val = self.min
@save_attr
def recharge(self):
"""Recharge the resource by the recharge rate.
Arguments: None
Returns: None
"""
self.cur += self.recharge_rate
@save_attr
def toggle_recharge_on(self):
"""Enable recharging for this resource.
Arguments: None
Returns: None
"""
self.will_recharge = True
@save_attr
def toggle_recharge_off(self):
"""Disable recharging for this resource.
Arguments: None
Returns: None
"""
self.will_recharge = False
|
import sys
sys.path.insert(0, 'D:\github-projects\data-structures\shared')
from node import Node
# Binary heap: implementation of a max heap
# Definition:
# Parent node: must be greater than each of its children
# Insert: insert a new node at the leftmost available leaf
# and percolateUp() until the new node satisfies the parent requirement
class BinaryHeap:
def __init__(self,data):
self.root = Node(data)
self.nodeCount = 1
def insert(self, data):
leaf = self.getLeaf(self.root)
# Percolate new node up heap
percolateUp(leaf, data)
self.nodeCount += 1
def getLeaf(self, node):
if not node:
return
if node.left:
getLeaf(node.left)
if node.right:
getLeaf(node.right)
return node
# Percolate new node up the heap until it satisfies min-heap requirements
def percolateUp(parent, newNode):
# If data is greater than parent, we can insert
if newNode.data > parent.data:
if not parent.left:
parent.left = newNode
elif not parent.right:
parent.right = newNode
else:
print("Error: parent for percolate has no available children")
return
# Else swap with parent
else:
newNode.parent = parent.parent
parent.parent = newNode
newNode.
|
__author__ = "Charles Engen"
class WordWizard:
def __init__(self):
self.name = "Word Wizard"
def _remove_vowels_spell(self, word):
return "".join([letter for letter in word if letter.lower() not in "aeiou"])
def _cast_spell(self, *spell):
words = []
for word in spell:
words.append(self._remove_vowels_spell(word))
return words
def __call__(self, *args, **kwargs):
print(
"I will change your words! For the better of course. See: ",
*self._cast_spell(*args)
)
def __str__(self):
return "My name is %s, nice to meet you!" % self.name
|
documents = [
{"type": "passport", "number": "2207 876234", "name": "Василий Гупкин"},
{"type": "invoice", "number": "11-2", "name": "Геннадий Покемонов"},
{"type": "insurance", "number": "10006", "name": "Аристарх Павлов"}
]
directories = {
'1': ['2207 876234', '11-2'],
'2': ['10006'],
'3': []
}
# p [people]
def get_name_by_document_number(user_input):
for doc in documents:
if doc["number"] == user_input:
return doc["name"]
return user_input
# s [self]
def get_shelf_by_document_number(user_input):
for key, value in directories.items():
if user_input in value:
return key
return user_input
# l [list]
def show_documents_list():
for doc in documents:
return f'{doc["type"]} "{doc["number"]}" "{doc["name"]}"'
# a [add]
def add_document_and_put_on_shelf(input_number, input_name, input_type, input_shelf, notice=f'Полки с таким номером не существует'):
for doc in documents:
if doc["number"] == input_number:
return f'Документ с номером: {input_number} уже существует'
for key, value in directories.items():
if input_number not in value and input_shelf in key:
notice = f'Документ {input_number} добавлен на полку {input_shelf}'
documents.append({"type": {input_type}, "number": {input_number}, "name": {input_name}})
directories[input_shelf].append(input_number)
return notice
# d [delete]
def delete_document_and_put_off_shelf(input_number, notice=f'Документа с таким номером не существует'):
for doc in documents:
if doc["number"] == input_number:
documents.remove(doc)
for value in directories.values():
if input_number in value:
value.remove(input_number)
notice = f'Документ с номером: {input_number} удален'
return notice
# m [move]
def delete_document_from_one_shelf_and_put_on_another_shelf(input_number, input_shelf, notice=f'Документа и полки с таким номером не существует'):
for key, value in directories.items():
if input_number not in value:
notice = f'Документа с таким номером не существует'
elif input_shelf not in key:
notice = f'Полки с таким номером не существует'
elif input_number in value and input_shelf in key:
value.remove(input_number)
directories[input_shelf].append(input_number)
notice = f'Документа с номером {input_number} удален с полки {key} и перемещен на полку {input_shelf}'
return notice
# as (add shelf)
def add_shelf(input_shelf, notice=f'Полка с таким номером уже существует'):
if input_shelf not in directories.keys():
directories[input_shelf] = []
notice = f'Полка с номером {input_shelf} создана'
return notice
|
import pandas as pd
import plotly.express as px
df = pd.read_csv("line_chart.csv")
fig = px.line(df,x ='Year',y = 'Per capita income', color = "Country" )
fig.show()
|
import random
import time
no_of_rolls = int(input("How many dice? "))
min = 1
max = 6
# a = random.randint(min,max)
# b = random.randint(min,max)
# c = a + b
roll_again = "yes"
while roll_again == "yes" or roll_again == "y":
print("Rolling the dices...")
time.sleep(1)
print("The values are...")
time.sleep(1)
a = random.randint(min,max)
b = random.randint(min,max)
c = a + b
if no_of_rolls == 1:
print(a)
elif no_of_rolls == 2:
print(a)
print(b)
print(f'Sum of the values is {c}')
else:
print('wrong input')
no_of_rolls = int(input("How many dices? "))
roll_again = input("Roll again? ")
# if roll_again == False:
# break
|
'''
Created on 28 dec. 2016
@author: radi961
'''
from _functools import reduce
from src import test
def combine(*args):
combinedList = []
inputLists = []
for list in args:
inputLists.append(list)
while not lists_empty(inputLists):
pop_lists(inputLists, combinedList)
return combinedList
def lists_empty(inputLists):
empty = True
for list in inputLists:
if (len(list)):
empty = False
break
return empty
def pop_lists(inputLists, combinedList):
for list in inputLists:
if (len(list)):
combinedList.append(list.pop(0))
if __name__ == "__main__":
print(combine(['r', {'d': 7}, {'w': 9}, {'w': 9}, 1, 1, 8, 'r'], [7, {'r': 9}, 'd', 7, 'w'], ['w', 7, {'o': 6}, 1, {'c': 1}, 7, 1], [7, 'd', 8, 8, {'w': 9}], [1, 'd', 1, 1, {'d': 7}]))
test.assert_equals(combine(['a', 'b', 'c'], [1, 2, 3]), ['a', 1, 'b', 2, 'c', 3])
test.assert_equals(combine(['a', 'b', 'c'], [1, 2, 3, 4, 5]), ['a', 1, 'b', 2, 'c', 3, 4, 5])
test.assert_equals(combine(['a', 'b', 'c'], [1, 2, 3, 4, 5], [6, 7], [8]),['a', 1, 6, 8, 'b', 2, 7, 'c', 3, 4, 5])
test.assert_equals(combine([{ 'a': 1 }, { 'b': 2 }], [1, 2]),[{"a":1},1,{"b":2},2])
test.assert_equals(combine([{ 'a': 2, 'b':1 }, { 'a': 1, 'b': 2 }], [1, 2, 3, 4],[5,6],[7]), [{"a":2,"b":1},1,5,7,{"a":1,"b":2},2,6,3,4])
|
"""
Contains the Cube class.
"""
from itertools import product
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from cfop.algorithms.tools import alg_to_code
from cfop.algorithms.alg_dicts import PARAM_DICT, TURN_DICT
class Cube:
"""
Cube class which creates an object repreenting a 3x3 Rubik's cube in some
specific permutation as described below.
The permutation of the cube is stored as a dict with 27 entries. Each entry
represents one cubie of the cube (a cubie is a solid piece of the cube, so
3x3x3=27 cubies) with the key as a 3-tuple for the coordinate (e.g. (x, y,
z)) and the value as a 3 element list of the color for each coordinate. The
6 centers will have two 0's in the 3-tuple and two empty strings in the
list, the 8 corners will have one 0 in the 3-tuple and one empty string in
the list and the 12 corners will have no 0's or empty strings.
A permutation is inputted as a 6 element list. Each element represents a
face. This is done so in the order: Up, Left, Front, Right, Back, Down
which was inspired by a memo technique for BLD solving using OP corners and
M2 edges. The string of each element are the 9 stickers of that face
starting in the upper left and going right and then repeating for the
remaining two rows.
This permutation is translated into the dict by the _convert_perm method
to make the input of custom permuations simpler.
Parameters:
perm - (default 0) The permuation of the cube as described above. If no
perm is given, a solved cube is assumed with a white Up face and
green Front face. Perm can also be given as a dict that does not
need to be converted.
"""
def __init__(self, perm=0):
if isinstance(perm, dict):
self.perm = perm
else:
if perm == 0:
perm = ['wwwwwwwww', 'ooooooooo', 'ggggggggg',
'rrrrrrrrr', 'bbbbbbbbb', 'yyyyyyyyy']
self.perm = self._convert_perm(perm)
@staticmethod
def _convert_perm(perm):
"""
Converts the permuation from a six element list of
nine char strings representing the stickers on each
face to a 26 length dict for where each key is a
cubie coordinate and each value are the sticker
colors.
"""
# Turn each string into a 2D list where each element
# is a 3-element list representing one row of
# stickers on the cube
converted_perm = []
for side in perm:
face_list, row_str = [], ''
for n, sticker in enumerate(side):
row_str += sticker
if not (n + 1) % 3:
face_list.append(list(row_str))
row_str = ''
converted_perm.append(face_list)
# Create dict to put in the colors
r = range(-1, 2)
cube_dict = {coord: ['', '', ''] for coord in product(r, r, r)}
cube_dict.pop((0, 0, 0))
# Adding colors to dict, it's messy and unintuitive,
# I know. I should make it better looking
for cubie in cube_dict:
if cubie[0] == 1:
i, j, k = 3, abs(cubie[1] - 1), abs(cubie[2] - 1)
cube_dict[cubie][0] = converted_perm[i][j][k]
if cubie[0] == -1:
i, j, k = 1, abs(cubie[1] - 1), cubie[2] + 1
cube_dict[cubie][0] = converted_perm[i][j][k]
if cubie[1] == 1:
i, j, k = 0, cubie[2] + 1, cubie[0] + 1
cube_dict[cubie][1] = converted_perm[i][j][k]
if cubie[1] == -1:
i, j, k = 5, abs(cubie[2] - 1), cubie[0] + 1
cube_dict[cubie][1] = converted_perm[i][j][k]
if cubie[2] == 1:
i, j, k = 2, abs(cubie[1] - 1), cubie[0] + 1
cube_dict[cubie][2] = converted_perm[i][j][k]
if cubie[2] == -1:
i, j, k = 4, abs(cubie[1] - 1), abs(cubie[0] - 1)
cube_dict[cubie][2] = converted_perm[i][j][k]
return cube_dict
def turn_rotate(self, ttype, side, dl=False):
"""
Will turn or rotate the cube by 'ttype' on face
'side'.
Parameters:
ttype - The type of rotation. Can be 'cw' for
clockwise, 'ccw' for counterclockwise or 'dt'
for a double turn
side - The side of the face to turn or the rotation
to do. Can be 'u', 'l', 'f', 'r', 'b', 'd',
'm', 'x', 'y' or 'z'
dl - (default False) Will do a double layer turn of
'side'. This will not work with the middle slice
'm' or rotations 'x', 'y', 'z'
"""
if ttype not in ['cw', 'ccw', 'dt']:
raise Exception(("A ttype of '{}' was used ").format(ttype) +
"which is not 'cw', 'ccw' or 'dt'.")
if side in ['m', 'x', 'y', 'z'] and dl:
raise Exception('A double layer turn was chosen ' +
("with a side of '{}'. ").format(side) +
'If dl=True, side must be' +
"'u', 'l', 'f', 'r', 'b' or 'd'.")
if side not in ['u', 'l', 'f', 'r', 'b', 'd', 'm', 'x', 'y', 'z']:
raise Exception('An incorrect side of {} was chosen'.format(side) +
'It is not the middle slice or a rotation.')
# Checks if it's a rotation or turn
rotate = side in ['x', 'y', 'z']
# Finds equivalent face to turn
if side in ['x', 'y', 'z', 'm']:
equiv_face = {'x': 'r', 'y': 'u', 'z': 'f', 'm': 'l'}
face = equiv_face[side]
else:
face = side
# Get the right parameters for the cubie rotation
p = PARAM_DICT[ttype][face]
new_coords = {}
# Choose correct layers to rotate
if dl:
turning_layers = [0, p[1]]
elif side == 'm':
turning_layers = [0]
elif rotate:
turning_layers = [-1, 0, 1]
else:
turning_layers = [p[1]]
for cubie, colors in self.perm.copy().items():
if cubie[p[0]] in turning_layers:
new_coords[(p[2]*cubie[p[3]],
p[4]*cubie[p[5]],
p[6]*cubie[p[7]])] = \
[colors[p[3]], colors[p[5]], colors[p[7]]]
# Updates the coordinates and colors
self.perm.update(new_coords)
def apply_alg(self, alg, alg_input=False):
"""
Applies the algorithm alg to the cube. The alg can
either be written as a cubing algorithm or as the
code syntax.
Parameters:
alg - Algorithm to apply to the cube
alg_input - (default False) If True, will assume alg is
written in cubing notation. If False,
will assume alg is written as the
coding syntax
"""
if alg_input:
alg = alg_to_code(alg)
for turn in alg:
self.turn_rotate(*TURN_DICT[turn])
def graph_cube(self, gap_color='k', gap_width=2, bg_color='w',
w='ghostwhite', y='gold', g='forestgreen',
b='midnightblue', r='crimson', o='darkorange'):
"""
Graphs the cube for easy visualization with optional arguments for
visual preference
Parameters:
gap_color - (default 'k') The color of the gap between all of the
stickers
gap_width - (default 2) The width of the gap between of the stickers.
bg_color - (default 'w') The background color of the plot
w - (default ghostwhite) The color of the white stickers
y - (default gold) The color of the yellow stickers
g - (default forestgreen) The color of the green stickers
b - (default midnightblue) The color of the blue stickers
r - (default crimson) The color of the red stickers
o - (default darkorange) The color of the orange stickers
"""
X, Y = np.meshgrid([0, 1], [0, 1])
Z = np.array([[0.5, 0.5], [0.5, 0.5]])
# Creating the color scheme for each cubie
colors = {'w': w, 'y': y, 'g': g, 'b': b, 'r': r, 'o': o, '': ''}
perm_colors = {}
for cubie in self.perm:
c = self.perm[cubie]
perm_colors[cubie] = [colors[c[0]], colors[c[1]], colors[c[2]]]
# Create figure for plot
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_xlim(-1, 2)
ax.set_ylim(-1, 2)
ax.set_zlim(-1, 2)
ax.set_facecolor(bg_color)
ax.axis('off')
# Will create square of appropriate color at appropriate coordinate
for cubie in perm_colors:
if cubie[0] != 0:
ax.plot_surface(Y + cubie[2], Z + cubie[0] * 1.5, X + cubie[1],
edgecolors=gap_color, linewidth=gap_width,
color=perm_colors[cubie][0])
if cubie[1] != 0:
ax.plot_surface(Y + cubie[2], X + cubie[0], Z + cubie[1] * 1.5,
edgecolors=gap_color, linewidth=gap_width,
color=perm_colors[cubie][1])
if cubie[2] != 0:
ax.plot_surface(Z + cubie[2] * 1.5, X + cubie[0], Y + cubie[1],
edgecolors=gap_color, linewidth=gap_width,
color=perm_colors[cubie][2])
plt.show()
|
import numpy as np
def cubic(shape, spacing=1, connectivity=6, node_prefix='node', edge_prefix='edge'):
r"""
Generate a simple cubic lattice
Parameters
----------
shape : array_like
The number of unit cells in each direction. A unit cell has 1 vertex
at its center.
spacing : array_like or float
The size of a unit cell in each direction. If an scalar is given it is
applied in all 3 directions.
Returns
-------
network : dict
A dictionary containing ``coords`` and ``conns`` of a cubic network with the
specified spacing and connectivity.
"""
# Take care of 1D/2D networks
shape = np.array(shape, ndmin=1)
shape = np.concatenate((shape, [1] * (3 - shape.size))).astype(int)
arr = np.atleast_3d(np.empty(shape))
spacing = np.float64(spacing)
if spacing.size == 2:
spacing = np.concatenate((spacing, [1]))
spacing = np.ones(3, dtype=float) * np.array(spacing, ndmin=1)
z = np.tile(np.arange(shape[2]), shape[0] * shape[1])
y = np.tile(np.repeat(np.arange(shape[1]), shape[2]), shape[0])
x = np.repeat(np.arange(shape[0]), shape[1] * shape[2])
points = (np.vstack([x, y, z]).T).astype(float) + 0.5
idx = np.arange(arr.size).reshape(arr.shape)
face_joints = [(idx[:, :, :-1], idx[:, :, 1:]),
(idx[:, :-1], idx[:, 1:]),
(idx[:-1], idx[1:])]
corner_joints = [(idx[:-1, :-1, :-1], idx[1:, 1:, 1:]),
(idx[:-1, :-1, 1:], idx[1:, 1:, :-1]),
(idx[:-1, 1:, :-1], idx[1:, :-1, 1:]),
(idx[1:, :-1, :-1], idx[:-1, 1:, 1:])]
edge_joints = [(idx[:, :-1, :-1], idx[:, 1:, 1:]),
(idx[:, :-1, 1:], idx[:, 1:, :-1]),
(idx[:-1, :, :-1], idx[1:, :, 1:]),
(idx[1:, :, :-1], idx[:-1, :, 1:]),
(idx[1:, 1:, :], idx[:-1, :-1, :]),
(idx[1:, :-1, :], idx[:-1, 1:, :])]
if connectivity == 6:
joints = face_joints
elif connectivity == 6 + 8:
joints = face_joints + corner_joints
elif connectivity == 6 + 12:
joints = face_joints + edge_joints
elif connectivity == 12 + 8:
joints = edge_joints + corner_joints
elif connectivity == 6 + 8 + 12:
joints = face_joints + corner_joints + edge_joints
else:
raise Exception("Invalid connectivity. Must be 6, 14, 18, 20 or 26.")
tails, heads = np.array([], dtype=int), np.array([], dtype=int)
for T, H in joints:
tails = np.concatenate((tails, T.flatten()))
heads = np.concatenate((heads, H.flatten()))
pairs = np.vstack([tails, heads]).T
# NOTE: pairs is already sorted for connectivity = 6
if connectivity != 6:
pairs = np.sort(pairs, axis=1)
d = {}
d[f"{node_prefix}.coords"] = points * spacing
d[f"{edge_prefix}.conns"] = pairs
return d
|
"""
Basic Math
==========
"""
import logging
import numpy as np
logger = logging.getLogger(__name__)
__all__ = [
'blank',
'clip',
'constant',
'difference',
'fraction',
'invert',
'normalize',
'scaled',
'summation',
'product',
]
def blank(target):
"""Blank model used in PNM format, acting as a placeholder"""
pass
def invert(target, prop):
r"""
Inverts the given array
Parameters
----------
target : Base
The object which this model is associated with. This controls the
length of the calculated array, and also provides access to other
necessary properties.
prop : str
Dictionary key pointing the values to invert
"""
return 1.0/target[prop]
def difference(target, props):
r"""
Subtracts elements 1:N in `props` from element 0
Parameters
----------
target : OpenPNM dict
The object to which the model is associated
props : list
A list of dict keys containing the values to operate on. If the first
element is A, and the next are B and C, then the results is A - B - C.
"""
A = target[props[0]]
for B in props[1:]:
A = A - target[B]
return A
def fraction(target, numerator, denominator):
r"""
Calculates the ratio between two values
Parameters
----------
target : Base
The object which this model is associated with. This controls the
length of the calculated array, and also provides access to other
necessary properties.
numerator : str
Dictionary key pointing the numerator values
denominator : str
Dictionary key pointing the denominator values
"""
x = target[numerator]
y = target[denominator]
return x/y
def summation(target, props=[]):
r"""
Sums the values in the given arrays
Parameters
----------
target : Base
The object which this model is associated with. This controls the
length of the calculated array, and also provides access to other
necessary properties.
props : list of dictionary keys
The dictionary keys pointing the arrays whose elements should be summed
"""
vals = np.zeros_like(target[props[0]])
for item in props:
vals += target[item]
return vals
def normalize(target, prop, xmin=0, xmax=1):
r"""
Normalizes the given array between the supplied limits
Parameters
----------
target : Base
The object which this model is associated with. This controls the
length of the calculated array, and also provides access to other
necessary properties.
xmin : float
Lower limit of the re-scaled data
xmax : float
Upper limit of the re-scaled data
"""
vals = target[prop]
# Scale to 0 to 1
vals = (vals - vals.min())/(vals.max() - vals.min())
vals = vals*(xmax - xmin) + xmin
return vals
def clip(target, prop, xmax, xmin=0):
r"""
Clips the given array within the supplied limits
Parameters
----------
target : Base
The object which this model is associated with. This controls the
length of the calculated array, and also provides access to other
necessary properties.
xmin : float
Values below this limit will be replaced with ``xmin``.
xmax : float
Values above this limit will be replaced with ``xmax``.
"""
vals = np.clip(target[prop], xmin, xmax)
return vals
def constant(target, value):
r"""
Places the given constant value into the target object
Parameters
----------
target : Base
The object which this model is associated with. This controls the
length of the calculated array, and also provides access to other
necessary properties.
value : scalar
The numerical value to apply
Returns
-------
value : ndarray
Array containing constant values equal to ``value``.
Notes
-----
This model is mostly useless and for testing purposes, but might be used
to 'reset' an array back to a default value.
"""
return value
def product(target, props):
r"""
Calculates the product of multiple property values
Parameters
----------
target : Base
The object which this model is associated with. This controls the
length of the calculated array, and also provides access to other
necessary properties.
props : list[str]
The name of the arguments to be used for the product.
Returns
-------
value : ndarray
Array containing product values of ``target[props[0]]``,
``target[props[1]]``, etc.
"""
value = np.ones_like(target[props[0]])
for item in props:
value *= target[item]
return value
def scaled(target, prop, factor):
r"""
Scales an existing value by a factor.
Useful for constricting some throat property.
Parameters
----------
target : Base
The object which this model is associated with. This controls the
length of the calculated array, and also provides access to other
necessary properties.
prop : str
The dictionary key of the array containing the values to be scaled.
factor : str
The factor by which the values should be scaled.
Returns
-------
value : ndarray
Array containing ``target[prop]`` values scaled by ``factor``.
"""
value = target[prop]*factor
return value
|
#! /usr/bin/env python3
# vendredi 15 février 2019, 08:21:33 (UTC+0100)
# Écrivez un programme qui affiche la température la plus proche de 0 parmi les données d'entrée. Si deux nombres sont aussi proches de zéro, alors l'entier positif sera considéré comme étant le plus proche de zéro (par exemple, si les températures sont -5 et 5, alors afficher 5).
# mardi 19 février 2019, 20:30:30 (UTC+0100)
# vsn publique, pour que ThomBog en profite
bavard = False # messages pour lamise au point
n = int(input('nb de données ? '))
print('{} données à lire'.format(n))
assert n > 0
# première val.
ppz = int(input('première valeur ? ')) # plus proche de zéro, le résultat, type int
pin = ppz < 0 # ppz is negative
if bavard:
print('ppz = {}'.format(ppz))
print('pin = {}'.format(pin))
print('list(range(1, n)) = {}'.format(list(range(1, n))))
# valeurs suivantes
for i in range(1, n):
print('i = {}'.format(i))
v = eval(input('valeur no {} (à partir de 0) ? '.format(i))) # eval() mieux que int()
if abs(v) > abs(ppz):
continue
elif abs(v) == abs(ppz):
if pin and v > 0:
ppz = v
else:
pass # ?
else:
ppz = v
print('*** ppz = {}'.format(ppz))
|
import shutil
import os.path
import os
def augmented_move(target_folder, *filenames, verbose=False, **specific):
"""The first argument is a target folder,
and the default behavior is to move all remaining non-keyword argument files into
that folder. Then there is a keyword-only argument, verbose, which tells us whether
to print information on each file processed. Finally, we can supply a dictionary
containing actions to perform on specific filenames; the default behavior is to move
the file, but if a valid string action has been specified in the keyword arguments, it can
be ignored or copied instead. Notice the ordering of the parameters in the function;
first the positional argument is specified, then the *filenames list, then any specific
keyword-only arguments, and finally, a **specific dictionary to hold remaining
keyword arguments."""
def print_verbose(message, filename):
'''print the message only if verbose is enabled'''
if verbose:
print(message.format(filename))
def to_absolute_path(filename):
cwd = os.getcwd()
return cwd + '/path1/' + filename
for filename in filenames:
target_path = os.path.join(target_folder, filename)
if filename in specific:
if specific[filename] == 'ignore':
print_verbose("Ignoring {0}", filename)
elif specific[filename] == 'copy':
print_verbose("Copying {0}", filename)
shutil.copyfile(to_absolute_path(filename), target_path)
else:
print_verbose("Moving {0}", filename)
shutil.move(to_absolute_path(filename), to_absolute_path(target_path))
if __name__ == '__main__':
augmented_move("path2", "one", "two")
augmented_move("path2", "three", verbose=True)
augmented_move("path2", "four", "five", "six", four="copy", five="ignore")
|
# // Time Complexity : O(n)
# // Space Complexity : O(1)
# // Did this code successfully run on Leetcode : Yes
# // Three line explanation of solution in plain english
# first iterate through the array and generate a product from the left hand side of the element
# next, generate the product from right hand side and keep multiplying in-place with the product obtained from left hand side array
# // Your code here along with comments explaining your approach
class Solution:
def productExceptSelf(self, nums: List[int]) -> List[int]:
if not nums or len(nums)==0:
return [0]
res = [None]*len(nums)
prod = 1
# calculate product from left side
for x in range(len(nums)):
res[x] = prod
prod = prod * nums[x]
# calculate product from right and multiply with that of existing product from left
prod=1
for x in range(len(nums)-1, -1, -1):
res[x] *= prod
prod *= nums[x]
return res
|
import math
class Primes:
"""Class that generates primes up to specified number
Uses Sieve of Eratosthenes to generate the list of primes
>>> primes = Primes(20)
>>> [prime for prime in primes]
[2, 3, 5, 7, 11, 13, 17, 19]
"""
def __init__(self, up_to: int):
"""Generates a list of prime numbers up to given number
>>> primes = Primes(10)
>>> for prime in primes:
... print(prime)
2
3
5
7
"""
self._sieve = [True] * (up_to + 1)
self._sieve[:2] = [False] * 2 # mark 0 and 1 not prime
for index, prime in enumerate(self._sieve):
if not prime:
continue
if index > math.ceil(up_to // 2):
break
for non_prime in range(index * 2, up_to + 1, index):
self._sieve[non_prime] = False
self._prime_list = [index for index, prime in enumerate(self._sieve) if prime]
self._prime_set = set(self._prime_list)
self._len = len(self._prime_set)
def __iter__(self):
""" Iterate over prime numbers
>>> primes = Primes(8)
>>> for prime in primes:
... print(prime)
2
3
5
7
"""
for prime in self._prime_list:
yield prime
def __reversed__(self):
""" Iterate over primes starting at end
>>> primes = Primes(8)
>>> for prime in reversed(primes):
... print(prime)
7
5
3
2
"""
for prime in reversed(self._prime_list):
yield prime
def __contains__(self, item: int):
"""Returns whether given number is prime
>>> primes = Primes(50)
>>> 7 in primes
True
>>> 8 in primes
False
"""
return item in self._prime_set
def __len__(self):
"""Gets number of primes in object
>>> primes = Primes(50)
>>> len(primes)
15
"""
return self._len
def __getitem__(self, pos):
"""Gets prime at position
>>> primes = Primes(50)
>>> primes[0]
2
>>> primes[0:4]
[2, 3, 5, 7]
"""
return self._prime_list[pos]
def is_prime(self, potential_prime: int) -> bool:
"""Checks if a given input number is prime
>>> primes = Primes(100)
>>> primes.is_prime(11)
True
>>> primes.is_prime(12)
False
"""
return potential_prime in self
def largest_prime(self) -> int:
"""Returns largest prime number in list of primes
>>> primes = Primes(30)
>>> primes.largest_prime()
29
"""
return self._prime_list[-1]
|
n = int(input('Insira o número o qual você queira ver o fatorial: '))
c = n-1
f = n
while c != 1:
f = f*c
c = c-1
print('O fatorial de {} é igual a {}'.format(n, f))
|
import random
n = int(input("""========JOKENPÔ========
Escolha a sua opção:
[1]Pedra
[2]Papel
[3]Tesoura
"""))
ncp = random.randrange(1,3)
if n == ncp:
print('Empate!')
elif n == 1 and ncp == 2:
print('Jogador perdeu para o computador: Pedra vs Papel!')
elif n == 1 and ncp == 3:
print('Jogador ganhou do computador: Pedra vs Tesoura!')
elif n == 2 and ncp == 1:
print('Jogador ganhou do computador: Papel vs Pedra!')
elif n == 2 and ncp == 3:
print('Jogador perdeu para o computador: Papel vs Tesoura!')
elif n == 3 and ncp == 1:
print('Jogador perdeu para o computador: Tesoura vs Pedra!')
elif n == 3 and ncp == 2:
print('Jogador ganhou do computador: Tesoura vs Papel!')
|
s = 0
for c in range(0, 6):
si = int(input('Digite um valor: ' ))
if (si%2) == 0:
s += si
print('A soma de todos os valores pares é: {}'.format(s))
|
def leiaInt(n):
num = (input(n))
while num.isdigit() != True:
print('ERRO! Digite um número inteiro válido')
num = input('Digite um número: ')
if num.isdigit() == True:
break
return(num)
#Programa Principal
n = leiaInt('Digite um número: ')
print(f'Você acabou de digitar o número {n}')
|
import math
while True:
print("""--------------------
--CAIXA ELETRÔNICO--
--------------------""")
v = int(input('Qual é o valor que você quer sacar? '))
vr = v
if (v/50) >= 1:
print(f'Total de {math.floor((v)/50)} cédulas de R$50')
vr = v%50
if ((vr)/20) >= 1:
print(f'Total de {math.floor((vr)/20)} cédulas de R$20')
vr = vr%20
if ((vr)/10) >= 1:
print(f'Total de {math.floor((vr)/10)} cédulas de R$10')
vr = vr%10
if ((vr)/5) >= 1:
print(f'Total de {math.floor((vr)/5)} cédulas de R$5')
vr = vr%5
if ((vr)/1) >= 1:
print(f'Total de {math.floor((vr)/1)} cédulas de R$1')
fim = str(input('Quer sacar de novo? [S/N]: '))
if fim in ('Nn'):
break
|
n1 = float(input('Insira a primeira nota: '))
n2 = float(input('Insira a segunda nota: '))
m = (n1+n2)/2
if m < 5.0:
print('Reprovado')
elif m >= 5 and m < 7:
print ('Recuperação')
else:
print('Aprovado')
|
gols = []
total = 0
jogador = {}
jogador['nome'] = str(input('Nome do Jogador: '))
partidas = int(input('Quantas partidas Joelson jogou? '))
for c in range(0, partidas):
gols.append(int(input(f'Quantos gols na partida {c}? ')))
total += gols[c]
jogador['gols'] = gols
jogador['total'] = total
print('-='*30)
print(jogador)
print('-='*30)
for k, v in jogador.items():
print(f'O campo {k} tem o valor {v}')
print('-='*30)
print(f'O jogador {jogador["nome"]} jogou {partidas} partidas.')
for c in range(0, partidas):
print(f' =>Na partida {c}, fez {gols[c]} gols.')
print(f'Foi um total de {jogador["total"]} gols.')
|
pilha = []
conte = 0
contf = 0
exp = str(input('Digite a expressão: '))
for c, v in enumerate(exp):
if v == ('('):
pilha.append(v)
elif v == (')'):
pilha.append(v)
pa = pilha.count('(')
pf = pilha.count(')')
for c, v in enumerate(pilha):
if c == 0 and v!= ('('):
conte += 1
print('Começou errado')
break
elif v == ('('):
for c, v in enumerate(pilha):
if v == (')'):
contf += 1
pilha.remove(')')
break
if pa != pf:
conte+=1
elif pa != contf:
conte += 1
print(pa)
print(pf)
print(conte)
print(contf)
if conte == 0:
print('Parabéns! Sua expressão está certa')
elif conte > 0:
print('Sua expressão está errada')
|
cont = ()
lista = []
while True:
valor = int(input('Insira um valor: '))
lista.append(valor)
cont = str(input('Quer continuar [S]/[N]'))
if cont in ('Nn'):
break
lista.sort(reverse=True)
print(f'Foram inseridos {len(lista)} valores \n A lista em ordem decrescente: \n {lista}')
if 5 in lista:
print('O valor 5 está na lista')
else:
print('O valor 5 está ausente na lista')
|
#Sanjidah Abdullah
#[email protected]
template = "If it VERB1 like a NOUN and VERB2 like a NOUN, it probably is a NOUN."
noun = input("Enter a noun: ")
template = template.replace("NOUN", noun)
verb1 = input("Enter a verb: ")
template = template.replace("VERB1", verb1)
verb2 = input("Enter another verb: ")
template = template.replace("VERB2", verb2)
print("New sentence: ", template)
|
#Sanjidah Abdullah
#[email protected]
import folium
import pandas as pd
inFile = input('Enter CSV file name: ')
outputFile = input('Enter output file: ')
#Read in the CSV file into a dataframe:
fileName = pd.read_csv(inFile)
print(fileName["TIME"])
#Set up a new map object, centered at Hunter College,
#zoomed in enough to see city outline.
map1 = folium.Map(location=[40.768731, -73.964915],
tiles="Cartodb Positron",
zoom_start = 10)
for index,row in fileName.iterrows():
lat = row["LATITUDE"]
lon = row["LONGITUDE"]
name = row["TIME"]
#Add a marker for our randomly chosen landmark to the map.
newMarker = folium.Marker([lat, lon], popup=name)
newMarker.add_to(map1)
map1.save(outfile = outputFile)
|
#Sanjidah Abdullah
#[email protected]
insulin = input("Enter a DNA string: ")
#Compute the length
length = len(insulin)
print("Length is", length)
#Compute the GC-content:
numC = insulin.count('C')
numG = insulin.count('G')
gc = (numC + numG) / length
print("GC-content is", gc)
#Compute the position of first G:
positionG = insulin.find('G')
print("First G found at position", positionG)
#Compute the position of first C:
positionC = insulin.find('C')
print("First C found at position", positionC)
|
#Sanjidah Abdullah
#[email protected]
import matplotlib.pyplot as plt
import numpy as np
pic = input("Enter file name: ")
ca = plt.imread(pic) #Read in image
countSnow = 0 #Number of pixels that are almost white
t = 0.75 #Threshold for almost white-- can adjust between 0.0 and 1.0
#For every pixel:
for i in range(ca.shape[0]):
for j in range(ca.shape[1]):
#Check if red, green, and blue are > t:
if (ca[i,j,0] > t) and (ca[i,j,1] > t) and (ca[i,j,2] > t):
countSnow = countSnow + 1
print("Snow count is", countSnow)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.