text
stringlengths 37
1.41M
|
---|
maior = menor = 0
for x in range(5):
peso = float(input('Informe o peso da {} pessoa'.format(x+1)))
if menor == 0:
menor = peso
maior = peso
elif peso > maior:
maior = peso
elif peso < menor:
menor = peso
print('O maior peso foi {}KG e o menor peso foi {}KG'.format(maior, menor))
|
"""
A decorator for caching properties in classes.
Examples:
>>> class Foo(object):
... @cached_property
... def bar(self):
... print("This message only print once")
... return None
>>> foo = Foo()
>>> foo.bar
This message only print once
>>> foo.bar
"""
import functools
def cached_property(func):
attr = '_cached_' + func.__name__
@property
@functools.wraps(func)
def decorator(self, *args, **kwargs):
if not hasattr(self, attr):
setattr(self, attr, func(self, *args, **kwargs))
return getattr(self, attr)
return decorator
|
#!/usr/bin/env python
"""
This is my implementation of Application #4 from
the Algorithmic thinking course.
created by RinSer
"""
import random
from matplotlib import pyplot as plot
import math
import project4
# File names
HUMAN_EYELESS_PROTEIN = 'HumanEyelessProtein.txt'
FRUITFLY_EYELESS_PROTEIN = 'FruitflyEyelessProtein.txt'
CONSENSUS_PAX_DOMAIN = 'ConsensusPAXDomain.txt'
SCORING_MATRIX = 'PAM50.txt'
def read_protein(file_name):
"""
Helper function to read protein sequence from a file.
Returns the sequence as a string.
"""
protein_file = open(file_name, 'r')
protein_sequence = protein_file.read().rstrip()
protein_file.close()
return protein_sequence
def read_scoring_matrix(file_name):
"""
Helper function to read a scoring matrix from a file.
Returns the scoring matrix as a dictionary.
"""
matrix_file = open(file_name, 'r')
scoring_matrix = dict()
# Read the first line and create a list
column_values = matrix_file.readline().split()
# Read the other lines
for line in matrix_file.readlines():
scores = line.split()
row_value = scores.pop(0)
scoring_matrix[row_value] = dict()
for column_value, score in zip(column_values, scores):
scoring_matrix[row_value][column_value] = int(score)
matrix_file.close()
return scoring_matrix
def remove_dashes(string):
"""
Helper function to remove dashes from a given string.
Returns the string without dashes.
"""
dashless = ''
for character in string:
if character != '-':
dashless += character
return dashless
def compare_strings(string1, string2):
"""
Helper function to compare the characters in two strings of equal size.
Returns the percentage number of equal characters as a floating point number.
"""
number_of_equals = 0
if len(string1) == len(string2):
for idx_c in range(len(string1)):
if string1[idx_c] == string2[idx_c]:
number_of_equals += 1
return number_of_equals/float(len(string1))*100
def generate_null_distribution(seq_x, seq_y, scoring_matrix, num_trials):
"""
Takes as input two sequences seq_x and seq_y, a scoring matrix scoring_matrix, and a number of trials num_trials.
Returns a dictionary that represents an un-normalized distribution.
"""
# Initialize the distribution dictionary
scoring_distribution = dict()
for dummy in range(num_trials):
# Generate a random permutation of the second sequence
list_y = list(seq_y)
random.shuffle(list_y)
rand_y = ''.join(list_y)
# Compute the maximum value score for the local alignment of seq_x and seq_y using the score matrix
current_alignment_matrix = project4.compute_alignment_matrix(seq_x, rand_y, scoring_matrix, False)
score = project4.compute_local_alignment(seq_x, rand_y, scoring_matrix, current_alignment_matrix)[0]
# Add the score to the distribution dictionary
if score in scoring_distribution:
scoring_distribution[score] += 1
else:
scoring_distribution[score] = 1
return scoring_distribution
def read_words_list(file_name):
"""
Helper function to extract the word list from a file.
Returns the list.
"""
words_file = open(file_name, 'r')
words_list = list()
for word in words_file.readlines():
words_list.append(word.rstrip())
words_file.close()
return words_list
def check_spelling(checked_word, dist, word_list):
"""
Iterates through word_list and returns the set of all words that are within edit distance dist of the string checked_word.
"""
scoring_matrix = project4.build_scoring_matrix('abcdefghijklmnopqrstuvwxyz', 2, 1, 0)
within_dist = set()
for word in word_list:
alignment_matrix = project4.compute_alignment_matrix(checked_word, word, scoring_matrix, True)
score = project4.compute_local_alignment(checked_word, word, scoring_matrix, alignment_matrix)[0]
edit_distance = len(checked_word)+len(word)-score
if edit_distance <= dist:
within_dist.add(word)
return within_dist
# Scoring matrix dictionary
ScoringMatrix = read_scoring_matrix(SCORING_MATRIX)
# Extract the proteins' data
HumanEyeless = read_protein(HUMAN_EYELESS_PROTEIN)
FruitflyEyeless = read_protein(FRUITFLY_EYELESS_PROTEIN)
def Question1():
"""
Function to compute the answer for Question #1.
"""
# Compute alignment scores
alignment_matrix = project4.compute_alignment_matrix(HumanEyeless, FruitflyEyeless, ScoringMatrix, False)
# Compute the alignment
eyeless_alignment = project4.compute_local_alignment(HumanEyeless, FruitflyEyeless, ScoringMatrix, alignment_matrix)
print '### Question 1 ###'
print 'Score: ' + str(eyeless_alignment[0])
print eyeless_alignment[1]
print eyeless_alignment[2]
return eyeless_alignment
def Question2():
"""
Function to compute the answer for Question #2.
"""
# Extract the consensus data
consensus_pax = read_protein(CONSENSUS_PAX_DOMAIN)
# Find the local alignments from Question 1
local_alignments = Question1()
human_pax = remove_dashes(local_alignments[1])
fruitfly_pax = remove_dashes(local_alignments[2])
# Compute the global alignments
# For human
humcon_alignment = project4.compute_alignment_matrix(human_pax, consensus_pax, ScoringMatrix, True)
human_global = project4.compute_global_alignment(human_pax, consensus_pax, ScoringMatrix, humcon_alignment)
human_percentage = compare_strings(human_global[1], human_global[2])
# For fruitfly
flycon_alignment = project4.compute_alignment_matrix(fruitfly_pax, consensus_pax, ScoringMatrix, True)
fruitfly_global = project4.compute_global_alignment(fruitfly_pax, consensus_pax, ScoringMatrix, flycon_alignment)
fruitfly_percentage = compare_strings(fruitfly_global[1], fruitfly_global[2])
print '### Question 2 ###'
print 'Human percentage of agreed elements: ' + str(human_percentage) + '%'
print 'Fruit fly percentage of agreed elements: ' + str(fruitfly_percentage) + '%'
def Question4():
"""
Function to draw the answer for Question #4.
"""
scoring_distribution = generate_null_distribution(HumanEyeless, FruitflyEyeless, ScoringMatrix, 1000)
# Generate the distribution bar plot
scores = list()
fractions = list()
for score, fraction in scoring_distribution.iteritems():
scores.append(score)
fractions.append(fraction/1000.0)
plot.bar(scores, fractions, color='r')
plot.title('Null distribution of randomly generated scores.')
plot.xlabel('Score')
plot.ylabel('Fraction of trials total')
plot.savefig('q4.png')
plot.close()
print '### Question 4 ###'
print 'Null distribution bar plot has been saved as the file q4.png'
return scoring_distribution
def Question5():
"""
Function to compute the answer for Question #5.
"""
scoring_distribution = Question4()
# Compute the mean
scores_sum = 0
scores_number = 0
for score, value in scoring_distribution.iteritems():
for dummy in range(value):
scores_sum += score
scores_number += 1
mean = scores_sum/float(scores_number)
print scores_number
# Compute the standard deviation
sum_of_squared_deviations = 0
for score, value in scoring_distribution.iteritems():
for dummy in range(value):
sum_of_squared_deviations += (score - mean)**2
standard_deviation = math.sqrt(sum_of_squared_deviations/float(scores_number))
# Compute the z-value
z_value = (875 - mean)/standard_deviation
# Print the results
print '### Question 5 ###'
print 'Mean = ' + str(mean)
print 'Standard deviation = ' + str(standard_deviation)
print 'Z-value = ' + str(z_value)
return (mean, standard_deviation, z_value)
def Question8():
"""
Function to find the answer for Question #8.
"""
words_list = read_words_list('assets_scrabble_words3.txt')
print '### Question 8 ###'
print check_spelling('humble', 1, words_list)
print check_spelling('firefly', 2, words_list)
# Execution
#Question2()
#Question5()
Question8()
|
"""
Function to draw the graph in_degree distribution plot.
created by RinSer
"""
import matplotlib.pyplot as plot
def draw(graph, plot_file, title, xlabel, ylabel, log=True):
"""
Draws the plot of a given graph.
Returns nothing.
"""
plot.plot(graph.keys(), graph.values(), 'ro')
plot.title(title)
plot.xlabel(xlabel)
plot.ylabel(ylabel)
if log:
plot.xscale('log')
plot.yscale('log')
plot.grid(True)
plot.savefig(plot_file)
plot.close()
|
# -*- coding: utf-8 -*-
from modules import *
def main():
clear()
recipes = get_recipes()
print "RESEPTIT"
while True:
switch = read_input("Kirjoita '1' jos haluat nähdä listan julkaisun mukaan. Kirjoita '2' niin reseptit listataan kategorian mukaan. Kirjoittamalla 'exit' poistuu päävalikkoon.")
if switch == '1' or switch == '2' or switch == 'exit':
break
else:
print "Väärä komento. Yritä uudelleen"
if switch == 'exit': return
elif switch == '1':
if len(recipes) > 0:
list_sort_by_created(recipes)
else:
print "Yhtään reseptiä ei löytynyt"
elif switch == '2':
if len(recipes) > 0:
list_sort_by_category(recipes)
else:
print "Yhtään reseptiä ei löytynyt"
press_to_continue("Palaa takaisin valikkoon painamalla ENTER")
def list_sort_by_created(recipes):
print "Luetellaan luomisjärjestyksessä"
i = 1
for recipe in recipes:
print "%s. %s [%s]" %(i, recipe["name"].encode('utf-8'), recipe["category"].encode('utf-8'))
i += 1
print ""
def list_sort_by_category(recipes):
sortedRecipes = {}
for recipe in recipes:
if recipe["category"] not in sortedRecipes:
sortedRecipes[recipe["category"]] = []
sortedRecipes[recipe["category"]].append(recipe)
for category in sorted(sortedRecipes):
i = 1
print "---%s---" %(category.encode('utf-8'))
for recipe in sortedRecipes[category]:
print "%s. %s" %(i, recipe["name"].encode('utf-8'))
i += 1
print ""
|
from pprint import pprint
from var_dump import var_dump
import string
class WordNode:
characters = 0
def __init__(self):
self.character = None
self.is_word = False
self.count = 0
self.children = {}
WordNode.characters += 1
def addWord(self, this_tree, word_list):
if type(word_list) is str:
word_list = list(word_list)
if type(word_list) is list:
pass
else:
return "Word list isn't a list or string"
if type(this_tree) is not dict:
return "first argument must be a dictionary"
word_list = list(word_list)
if len(word_list):
first_char = word_list.pop(0)
else:
return this_tree
# Is it already at this level?
if first_char not in this_tree:
# Nope, then this object can grab it
this_tree[first_char] = WordNode()
this_tree[first_char].character = first_char
# Is this the end of the word (list) passed in ?
if len(word_list) == 0:
this_tree[first_char].is_word = True
this_tree[first_char].count += 1
return this_tree
else:
next_char = word_list[0]
if first_char in this_tree:
# Pass word list to the node below that matched
this_tree[first_char].addWord(this_tree[first_char].children, word_list)
else:
# Adding the new node
new_node = WordNode()
this_tree[first_char].children[next_char] = new_node.addWord(this_tree[first_char].children, word_list)
return this_tree
@staticmethod
def isWord(node_tree, word=''):
if word:
word = list(word)
if len(word) == 1:
# Word is now one char, we've arrived, but is it a word node?
if (word[0] in node_tree) and (node_tree[word[0]].is_word):
return node_tree[word[0]]
return False
if word[0] in node_tree:
return WordNode.isWord(node_tree[word[0]].children, word[1:])
return False
@staticmethod
def cleanString(word = ''):
response = ''
for c in word:
# TODO move excpetions to config
# TODO can this be done with a map ?
if (c in ["'", '-']) or (c.lower() in string.ascii_lowercase):
response += c
return response
|
"""Solution to problem 8 of IEEEXtreme 10.0."""
def safe_divide(a, b):
"""Do a safe integer division."""
if a % b != 0:
return -1
else:
return a / b
def main():
"""Main application logic."""
line = raw_input().split()
atoms = [int(line[0]), int(line[1]), int(line[2])]
glucose = safe_divide(4 * atoms[0] + atoms[1] - 2 * atoms[2], 24)
dioxide = safe_divide(2 * atoms[2] - atoms[1], 4)
water = safe_divide(atoms[1] + 2 * atoms[2] - 4 * atoms[0], 4)
if glucose < 0 or dioxide < 0 or water < 0:
print "Error"
else:
print "%d %d %d" % (water, dioxide, glucose)
if __name__ == "__main__":
main()
|
# -*- coding: utf-8 -*-
"""
Created on Thu Jan 3 15:02:29 2019
@author: f556085
"""
from functools import reduce
buzz_fizz = lambda x: "Fizz" * ( x % 3 == 0) + "Buzz" *( x % 2 == 0) or str(x)
string_newline_from_list = lambda x,y: x + "\n" + y
resultado = reduce(string_newline_from_list, map(buzz_fizz, range(101)))
print(resultado)
|
import math
import time
import itertools
from src.Surface import Surface
from shapely import geometry
from src.Bucket import Bucket
class Road(Surface):
"""
One of the essential building blocks of the traffic environment. A road has a number of lanes and connects to
an intersection on each of its ends. Road supports the tick-tock simulation methods, requesting next locations
from vehicles driving on it and handling moving them to their next locations. Road handles transferring vehicles
to and from adjacent intersections.
"""
lane_width = 10
def __init__(self, anchor_corner, length, inbound_lanes, outbound_lanes, orientation, speed_limit):
"""
:param anchor_corner: [double, double]
:param length: double
:param inbound_lanes: int
:param outbound_lanes: int
:param orientatino: double (IN RADIANS!)
:param speed_limit: int
"""
self.anchor = anchor_corner
self.length = length
self.inbound_lanes = inbound_lanes
self.outbound_lanes = outbound_lanes
self.lanes = inbound_lanes + outbound_lanes
self.width = self.lanes * self.lane_width
self.orientation = orientation
self.speed_limit = speed_limit
self.bucket_length = 0.2778 * self.speed_limit * 10
self.initial_intersection = None
self.terminal_intersection = None
self.vehicles = []
self.bucket_list = self.initialize_buckets(road_length = self.length,
road_width = self.width,
bucket_length = self.bucket_length,
inbound_lanes = self.inbound_lanes,
outbound_lanes = self.outbound_lanes)
self.surface = self.generate_surface()
self.next_locations = [] # Prevents conflicts with cars being moved onto roads between tick and tock.
self.name = None
self.reporter = None
def tick(self, ticktime_ms):
"""
Performs the vehicle next location getting tick
:param ticktime_ms:
:return:
"""
self.next_locations = self.request_next_locations(ticktime_ms)
return
def tock_positions(self):
"""
Performs the vehicle position updating tock
:return:
"""
self.update_positions()
return
def tock_crashes(self):
"""
Performs the crash detecting and handling tock, files the timestep report with the reporter
:return:
"""
crashes = self.process_collisions()
if self.reporter is not None:
number_of_vehicles = len(self.vehicles)
if len(self.vehicles) > 0:
avg_speed = sum([math.sqrt(v.vx ** 2 + v.vy ** 2) for v in self.vehicles]) / len(self.vehicles)
else:
avg_speed = "NAN"
self.reporter.add_info_road(self.name, number_of_vehicles, avg_speed, crashes)
return
def initialize_buckets(self, road_length, road_width, bucket_length, inbound_lanes, outbound_lanes):
"""
Creates a list of buckets of length equal to 10 seconds of travel at the speed limit
to populate the length of the road.
:param road_length:
:param road_width:
:param bucket_length:
:param inbound_lanes:
:param outbound_lanes:
:return:
"""
number_of_buckets = math.ceil(road_length / bucket_length)
bucket_list = []
for i in range(number_of_buckets):
if i == 0:
head = Bucket(initial_x = i * self.bucket_length, length=bucket_length,
inbound_lanes=inbound_lanes, outbound_lanes=outbound_lanes)
tail = head
bucket_list.append(head)
else:
next = Bucket(initial_x = i * self.bucket_length, length=bucket_length,
inbound_lanes=inbound_lanes, outbound_lanes=outbound_lanes)
next.set_previous_bucket(tail)
tail.set_next_bucket(next)
tail = next
bucket_list.append(tail)
return bucket_list
def generate_surface(self):
"""
Generates the shapely Polygon storing the surface of the road.
:return:
"""
# Points proceed clockwise around the rectangle from the anchor point
# [x, y] formatting
first = self.anchor
second = [first[0] + self.length * math.cos(self.orientation), first[1] + self.length * math.sin(self.orientation)]
third = [second[0] + self.width * math.cos(self.orientation + math.pi / 2), second[1] + self.width * math.sin(self.orientation + math.pi / 2)]
fourth = [first[0] + self.width * math.cos(self.orientation + math.pi / 2), first[1] + self.width * math.sin(self.orientation + math.pi / 2)]
# Reference : https://toblerity.org/shapely/manual.html#polygons
return geometry.Polygon([first, second, third, fourth])
def request_next_locations(self, ticktime_ms):
"""
Produces the next intended location of each car.
:param ticktime_ms:
:return:
"""
current_time = time.time()*1000
next_locations = [[vehicle.compute_next_location(ticktime_ms), vehicle] for vehicle in self.vehicles]
return next_locations
def update_positions(self):
# Update the location of each vehicle by updating it directly or transferring it to a neighboring intersection
for intended_location, vehicle in self.next_locations:
if self.is_local_on_road(intended_location):
vehicle.update_location(intended_location[0], intended_location[1])
self.appropriately_bucket(vehicle, intended_location)
else:
global_location = self.local_to_global_location_conversion(intended_location)
self.transfer(vehicle, global_location)
# Reset the list of cars intending to move
self.next_locations = []
return
def is_local_on_road(self, location):
"""
Takes a local coordinate and returns whether or not it is on the road
:param location:
:return:
"""
location = self.local_to_global_location_conversion(location)
return self.surface.contains(geometry.Point(location[0], location[1]))
def is_global_on_road(self, location):
"""
Takes a global coordinate and returns whether or not it is on the road
:param location:
:return:
"""
return self.surface.contains(geometry.Point(location[0], location[1]))
def local_to_global_location_conversion(self, location):
"""
Turn a local coordinate into its corresponding global coordinate
:param location:
:return:
"""
x = self.anchor[0] + location[0] * math.cos(self.orientation) + location[1] * math.cos(self.orientation + math.pi / 2)
y = self.anchor[1] + location[0] * math.sin(self.orientation) + location[1] * math.sin(self.orientation + math.pi / 2)
return (x, y)
def global_to_local_location_conversion(self, location):
"""
Turn a global coordinate into its corresponding local coordinate
:param location:
:return:
"""
# Recenter so that the anchor is the origin
relative_x = location[0] - self.anchor[0]
relative_y = location[1] - self.anchor[1]
# Rotate counterclockwise by the orientation
local_x = relative_x * math.cos(-self.orientation) - relative_y * math.sin(-self.orientation)
local_y = relative_y * math.cos(-self.orientation) + relative_x * math.sin(-self.orientation)
return (local_x, local_y)
def which_neighbor(self, location):
"""
Takes a global coordinate and returns which, if any of the neighboring intersections contain that coordinate
:param location:
:return:
"""
if self.initial_intersection.is_global_in_intersection(location):
return self.initial_intersection, "initial"
elif self.terminal_intersection.is_global_in_intersection(location):
return self.terminal_intersection, "terminal"
else:
raise ValueError("No neighbor contains that location.")
return
def transfer(self, vehicle, location):
"""
Takes a vehicle and a global location and attempts to relocate the vehicle to that location
:param vehicle:
:param location:
:return:
"""
try:
# Side is "initial" / "terminal"
neighbor, side = self.which_neighbor(location)
vehicle.last_road = self
vehicle.navlist = vehicle.navlist[1:]
if len(vehicle.navlist) > 0:
neighbor.accept_transfer(vehicle, location, self, side)
self.vehicles.remove(vehicle)
except ValueError:
print("A vehicle couldn't be transferred because it requested an invalid destination.")
self.vehicles.remove(vehicle)
return
def accept_transfer(self, vehicle, location):
"""
Takes a vehicle and a global coordinate and places the vehicle onto the road at the local coordinate
corresponding to the global coordinate
:param vehicle:
:param location:
:return:
"""
local_location = self.global_to_local_location_conversion(location)
vehicle.transfer_to_road(self, local_location)
self.appropriately_bucket(vehicle, local_location)
self.vehicles.append(vehicle)
return
def appropriately_bucket(self, vehicle, location):
"""
Takes a vehicle and a local location and ensures that the vehicle is in the bucket corresponding to the location
:param vehicle:
:param location:
:return:
"""
# Remove the vehicle from its current bucket if it exists
if vehicle.get_bucket() is not None:
vehicle.get_bucket().remove(vehicle)
# And place it into the new bucket in which it belongs
bucket = self.bucket_list[math.floor(location[0] / self.bucket_length)]
bucket.add(vehicle)
# And inform the vehicle which bucket it is now in
vehicle.set_bucket(bucket)
return
def process_collisions(self):
"""
Locates those vehicles which have been in a collision and informs them of that fact.
:return:
"""
count = 0
for bucket in self.bucket_list:
preceding = [] if bucket.get_previous_bucket() == None else bucket.get_previous_bucket().get_vehicles()
following = [] if bucket.get_next_bucket() == None else bucket.get_next_bucket().get_vehicles()
current = bucket.get_vehicles()
vehicle_list = preceding + current + following
vehicle_pairs = list(itertools.combinations(vehicle_list, 2))
for (v1, v2) in vehicle_pairs:
if self.have_collided(v1, v2):
count += 1
# I am assuming that vehicles will want to know which vehicle they collided with.
v1.collided(v2)
v2.collided(v1)
# Collided vehicles are simply removed from the road (tow trucks are fast in this universe)
if v1 in self.vehicles:
self.vehicles.remove(v1)
if v2 in self.vehicles:
self.vehicles.remove(v2)
if v1 in preceding:
bucket.get_previous_bucket().remove(v1)
elif v1 in following:
bucket.get_next_bucket().remove(v1)
else:
bucket.remove(v1)
if v2 in preceding:
bucket.get_previous_bucket().remove(v2)
elif v2 in following:
bucket.get_next_bucket().remove(v2)
else:
bucket.remove(v2)
return count
def add_neighboring_intersection(self, intersection, end):
"""
Takes an intersection and an associated end of the road and adds that intersection at that road.
:param intersection:
:param end:
:return:
"""
if end == "initial":
self.initial_intersection = intersection
elif end == "terminal":
self.terminal_intersection = intersection
else:
raise ValueError("Intersection added to an end other than 'initial' or 'terminal'")
return
def set_name(self, name):
self.name = name
def get_name(self):
return self.name
def set_reporter(self, reporter):
self.reporter = reporter
|
def val(n):
if (len(n)>=10 and len(n)<32):
return True
if(n.isupper()):
d=True
if(n.isdigit()):
f=True
p=input("enter password:")
c=val(p)
if(c==True):
print("Valid")
else:
print("Invalid")
|
lst=[]
n=int(input("number of element:"))
for i in range(n):
i=int(input())
lst.append(i)
print(lst)
j=int(input("search:"))
for i in lst:
if(i==j):
print("element at",i)
|
#! usr/bin/env python3
def shuttleSort(array):
"""
Shuttle sort algorithm
Bit like a reverse bubble sort
Higher numbers sink to the bottom
"""
for i in range(1, len(array)):
for j in range(i, 0, -1):
if array[j-1] > array[j]:
temp = array[j-1]
array[j-1] = array[j]
array[j] = temp
return array
unsorted = list(range(11))
unsorted.sort(reverse=True)
print(unsorted)
print(shuttleSort(unsorted))
|
#! usr/bin/env python3
def bubbleSort(array):
"""
Bubble sort algorithm:
Sum of n-1 where n = list.
Max number of swaps per pass == n-1
"""
for i in range(0, len(array)-1):
for j in range(0, len(array)-i):
if array[j+1] > array[j]:
temp = array[j+1]
array[j+1] = array[j]
array[j+1] = temp
return array
unsorted = list(range(11))
unsorted.sort(reverse=True)
print(unsorted)
print(bubbleSort(unsorted))
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# punkcja zachowujaca sie jak print w python3.x
from __future__ import print_function
from sys import maxsize
from Graph import Graph
# rysowanie minimalnego drzewa rozpinającego
import networkx as nx
import matplotlib.pyplot as plt
# algorytm dijkstry, jako argument przyjmuje graf oraz nr wierzchołka stanowiącego źródło
# zwraca słownik, w którym kluczem są wierzchołḱi a wartościami ich odległości od źródła
# wypisuje ścieżki pomiędzy danym wierzchołkiem a źródłem
def dijkstra(graph, source):
prevs={i:None for i in range(graph.vertex)}
dist = {i:maxsize for i in range(graph.vertex)}
dist[source] = 0
S=[]
Q=[i for i in range(graph.vertex)]
while bool(Q):
u = extractMin(Q,dist)
S.append(u)
for v in graph.AL[u]:
if dist[v]>(dist[u]+graph.EV[u][v]):
dist[v] = dist[u]+graph.EV[u][v]
prevs[v] = u
print("\nScieżki pomiędzy poszczególnymi wierzchołkami dla źródła",source,":")
for i in range(graph.vertex):
if(i==source):
continue
w=i
print("from",i , "to", source, end=":\n")
print(i, end=" ")
while prevs[w]!=None:
w=prevs[w]
print("->", w, end=" ")
print()
return dist
def extractMin(Q, dist):
i=Q[0]
for v in Q:
if dist[v]<dist[i]:
i=v
Q.remove(i)
return i
# algorytm konstruujący macierz odległości między wierzchołakami
def distMatrix(graph):
dijkstraLists = [dijkstra(graph, i) for i in range(graph.vertex)]
matrix = [[dijkstraLists[i][j] for j in range(graph.vertex)] for i in range(graph.vertex)]
return matrix
# algorytm wypisujący centrum grafu
def centrum(matrix):
l=sum(matrix[0])
m=0
for i in range(len(matrix)-1):
s=sum(matrix[i+1])
if s<l:
l=s
m=i+1
print("Centrum tego grafu to wierzchołek ", m)
# algorytm wypisujący centrum mini-max grafu
def minimax(matrix):
l=max(matrix[0])
m=0
for i in range(len(matrix)-1):
s=max(matrix[i+1])
if s<l:
l=s
m=i+1
print("Centrum mini-max tego grafu to wierzchołek ", m)
# algorytm prima
class PriorityQueue:
def __init__(self, vertex):
self.d = {i:20 for i in range(vertex)}
def pop(self):
minimum = min(self.d.values())
u=0
for i in self.d:
if self.d[i]==minimum:
u=i
break
self.d.pop(u)
return u
def empty(self):
return self.d
class Prim:
def __init__(self, graph, r):
self.r = r
self.graph = graph
q = PriorityQueue(graph.vertex)
q.d[r] = 0
self.pre = [None for i in range(graph.vertex)]
while q.empty():
u = q.pop()
for v in graph.AL[u]:
if v in q.d and graph.EV[u][v] < q.d[v]:
self.pre[v] = u
q.d[v] = graph.EV[u][v]
def draw(self):
g = nx.Graph()
for i in range(1, len(self.pre)):
j = self.pre[i]
g.add_edge(i, j, w=self.graph.EV[i][j])
pos = nx.shell_layout(g)
nx.draw_networkx_nodes(g, pos, node_size=300)
nx.draw_networkx_edges(g, pos)
nx.draw_networkx_labels(g, pos)
nx.draw_networkx_edge_labels(g, pos)
plt.axis('off')
plt.savefig("Prim.png")
plt.close()
|
#Describe how you could use a single array to implement three stacks
#first stack would be from 0 to n/3-1
#second stack would be from n/3 to 2*n/3-1
#third stack would be from 2*n/3 to n-1
#0 1 2 3 4 5 6
class Node():
data = 0
next = None
def __init__(self,data):
self.data = data
self.next = None
class Stack():
top = Node(0)
def __init__(self,top):
self.top.data = top
self.top.next = None
def push(self,top):
t = Node(top)
t.next = self.top
self.top = t
def pop(self):
if self.top != None :
#delete the top
the_data = self.top.data
self.top = self.top.next
#return the top data
return the_data
else :
return None
array = [4,5,6,7,21,231,43,6]
n = len(array)
i = 1
s1 = Stack(array[0])
#first stack
while i <= n//3:
s1.push(array[i])
i+=1
s2 = Stack(array[i])
while i <= 2*n//3:
s2.push(array[i])
i+=1
s3 = Stack(array[i])
while i < n:
s3.push(array[i])
i+=1
|
#fresher
class Fresher():
canHandleCall = True
#technical lead
class TL():
canHandleCall = True
#project manager
class PM():
canHandleCall = True
class Employees():
freshers = []
def __init__(self,fresher,tl,pm):
self.freshers.append(fresher)
self.tl = tl
self.pm = pm
def addFresher(self,fresh):
self.freshers.append(fresh)
def getCallHandler(self):
i = 0
for fresher in self.freshers:
if fresher.canHandleCall == True:
print("The call was handled by fresher #"+str(i))
fresher.canHandleCall = False
return
i+=1
if self.tl.canHandleCall == True:
print("The call was handled by techlead ")
self.tl.canHandleCall = False
return
if self.pm.canHandleCall == True:
print("The call was handled by project manager ")
self.pm.canHandleCall = False
return
|
class Pawn():
line = 0
column = 0
team = ""
def __init__(self , line , column , team):
self.line = line
self.column = column
self.team = team #white or black
#return a list of possible points where the pawn can move
#on the given board
def GetPossibleMoves(self , board):
possible_moves = []
piece = board[self.line][self.column]
|
#P = float(input(P)
#n = 1
#r = .0821
#T = float(input(T)
from scipy.constants import convert_temperature
from pint import UnitRegistry
ureg = UnitRegistry()
print("Unit Converter")
print()
# pressure = []
# volume = []
# n = 1
# T = []
def CalculateVolume(P, n, T):
R = 0.0821
n = 1
V = (n*R*T)/P
return V
temp = str(input('Enter Temperature with a space and unit (C,F,K): ').upper())
if temp[-1] == 'F':
temp = int(temp[:-1])
T = convert_temperature(temp, 'Fahrenheit', 'Kelvin')
# print(T)
elif temp[-1] == 'C':
temp = int(temp[:-1])
T = convert_temperature(temp, 'Celsius', 'Kelvin')
# print(T)
elif (temp[-1] == 'K' or len(temp.split(' ')) == 1):
if len(temp.split(' ')) == 1:
T = int(temp)
# print(T)
else:
T = int(temp[:-1])
# print(T)
pressure = str(input('Enter Pressure with a space and unit (ATM, inHG, PSI): ').upper())
if pressure.split()[1] == 'PSI':
pressure = int(pressure[:-3])
P = pressure * ureg.psi
# print(P.to(ureg.atm))
P.to(ureg.atm)
elif pressure.split()[1] == 'INHG':
pressure = int(pressure[:-4])
#split removes unit by designating position in input -4 indicates position
P = pressure * ureg.inHg
#print(P.to(ureg.atm))
P.to(ureg.atm)
elif pressure.split()[1] == 'ATM':
pressure = int(pressure[:-3])
P = pressure
else:
print('Enter a valid temperature and unit!')
V = (1*0.0821*T)/P
# print()
print(f'Volume is {V:.2f} in Liters')
|
# https://courses.edx.org/courses/course-v1:MITx+6.00.1x_6+2T2015/courseware/sp13_Week_3/videosequence:Lecture_5/
def recurPowerNew(base, exp):
'''
base: int or float.
exp: int >= 0
returns: int or float; base^exp
'''
if exp == 0:
return 1
elif exp % 2 ==0:
return recurPowerNew((base*base),(exp/2))
else:
return base * recurPowerNew(base, exp-1)
|
# Assume s is a string of lower case characters.
# Write a program that prints the longest substring of s in which the letters occur in alphabetical order.
# For example, if s = 'azcbobobegghakl', then your program should print Longest substring in alphabetical order is: beggh
# In the case of ties, print the first substring. For example, if s = 'abcbcd', then your program should print
# Longest substring in alphabetical order is: abc
# For problems such as these, do not include raw_input statements or define the variable s in any way.
# Our automated testing will provide a value of s for you - so the code you submit in the following box
# should assume s is already defined. If you are confused by this instruction, please review L4 Problems 10 and 11
# before you begin this problem set.
alpha = 'abcdefghijklmnopqrstuvwxyz'
## track the length of the longest alphabetic order substring
## starting from each letter in s
ind = []
for i in range(len(s)):
length = 1
while True:
if i == len(s) - 1:
break
elif alpha.find(s[i]) <= alpha.find(s[i+1]):
length += 1
i += 1
else:
break
ind.append(length)
t=[]
## t is an empty list, it will contain all the substrings in alphabetic order
for start, length in enumerate(ind):
t.append(s[start:start + length])
print max(t, key = len)
|
方法一:递归
我们可以对这两棵树同时进行前序遍历,并将对应的节点进行合并。在遍历时,如果两棵树的当前节点均不为空,我们就将它们的值进行相加,并对它们的左孩子和右孩子进行递归合并;如果其中有一棵树为空,那么我们返回另一颗树作为结果;如果两棵树均为空,此时返回任意一棵树均可(因为都是空)。
class Solution:
def mergeTrees(self, t1: TreeNode, t2: TreeNode) -> TreeNode:
if t2==None:
return t1
if t1==None:
return t2
t1.val += t2.val
t1.left = self.mergeTrees(t1.left,t2.left)
t1.right = self.mergeTrees(t1.right,t2.right)
return t1
时间复杂度:O(N),其中 N 是两棵树中节点个数的较小值。
空间复杂度:O(N),在最坏情况下,会递归 N 层,需要 O(N) 的栈空间。
方法二:迭代
我们首先把两棵树的根节点入栈,栈中的每个元素都会存放两个根节点,并且栈顶的元素表示当前需要处理的节点。在迭代的每一步中,我们取出栈顶的元素并把它移出栈,并将它们的值相加。随后我们分别考虑这两个节点的左孩子和右孩子,如果两个节点都有左孩子,那么就将左孩子入栈;如果只有一个节点有左孩子,那么将其作为第一个节点的左孩子;如果都没有左孩子,那么不用做任何事情。对于右孩子同理。
class Solution:
def mergeTrees(self, t1: TreeNode, t2: TreeNode) -> TreeNode:
if t2==None:
return t1
if t1==None:
return t2
stack = [(t1,t2)]
while stack:
t = stack.pop(0)
if t[1]==None:
continue
t[0].val += t[1].val
if(t[0].left==None):
t[0].left = t[1].left
else:
stack.append((t[0].left,t[1].left))
if(t[0].right==None):
t[0].right = t[1].right
else:
stack.append((t[0].right,t[1].right))
return t1
时间复杂度:O(N),其中 N 是两棵树中节点个数的较小值。
空间复杂度:O(N),在最坏情况下,栈中会存放 N 个节点。
|
class Solution:
def carPooling(self, trips: List[List[int]], capacity: int) -> bool:
max_ = 0
for trip in trips:
max_ = max(trip[2],max_)
line = [0]*max_
for trip in trips:
for i in range(trip[1],trip[2]):
line[i] += trip[0]
for l in line:
if l>capacity:
return False
return True
方法二:(更快)
class Solution:
def carPooling(self, trips: List[List[int]], capacity: int) -> bool:
travel = []
for i in trips:
travel.append([i[1], i[0]])
travel.append([i[2], -i[0]])
travel.sort(key = lambda x:(x[0], x[1])) #注意先下后上
people_in_car = 0
for i in travel:
people_in_car += i[1]
if people_in_car > capacity: return False
return True
|
"""gffpandas depends on the following libraries:
pandas (pd), itertools and defaultdict from collections."""
import pandas as pd
import itertools
from collections import defaultdict
def read_gff3(input_file):
return Gff3DataFrame(input_file)
class Gff3DataFrame(object):
"""Creating 'Gff3DataFrame' class for bundling data
and functionalities together."""
def __init__(self, input_gff_file=None, input_df=None, input_header=None):
"""Create an instance."""
if input_gff_file is not None:
self._gff_file = input_gff_file
self._read_gff3_to_df()
self._read_gff_header()
else:
self._df = input_df
self._header = input_header
def _read_gff3_to_df(self):
""" Create a pd dataframe.
By the pandas library the gff3 file is read and
a pd dataframe with the given column-names is returned """
self._df = pd.read_table(self._gff_file, comment='#',
names=["seq_id", "source", "type", "start",
"end", "score", "strand", "phase",
"attributes"])
return self._df
def _read_gff_header(self):
""" Create a header.
The header of the gff file is read, means all lines,
which start with '#'. """
self._header = ''
for line in open(self._gff_file):
if line.startswith('#'):
self._header += line
else:
break
return self._header
def write_csv(self, csv_file):
""" Create a csv_file.
The pd dataframe is safed as a csv_file. """
self._df.to_csv(csv_file, sep=',', index=False,
header=["seq_id", "source", "type", "start",
"end", "score", "strand", "phase",
"attributes"])
def write_tsv(self, tsv_file):
""" Create a tsv_file.
The pd dataframe is safed as a tsv_file. """
self._df.to_csv(tsv_file, sep='\t', index=False,
header=["seq_id", "source", "type", "start",
"end", "score", "strand", "phase",
"attributes"])
def filter_feature_of_type(self, feature_type):
""" Filtering the pd dataframe by a feature_type.
For this method a feature-type has to be given, as e.x. 'CDS'.
"""
feature_df = self._df
feature_df = feature_df[feature_df.type == feature_type]
return Gff3DataFrame(input_df=feature_df, input_header=self._header)
def filter_by_length(self, min_length: int, max_length: int):
""" Filtering the pd dataframe by the gene_length.
For this method the desired minimal and maximal bp length
have to be given. """
filtered_length = self._df
gene_length = pd.Series(filtered_length.apply(lambda row:
row.end - row.start,
axis=1))
filtered_length = filtered_length[(gene_length >= min_length) &
(gene_length <= max_length)]
return Gff3DataFrame(input_df=filtered_length,
input_header=self._header)
def get_feature_by_attribute(self, attr_tag, attr_value):
""" Filtering the pd dataframe by a attribute.
The 9th column of a gff3-file contains the list of feature
attributes in a tag=value format.
For this mmethod the desired attribute tag as well as the
corresponding value have to be given. If the value is not available
an empty dataframe would be returned."""
attribute_df = self._df.copy()
attribute_df['at_dic'] = attribute_df.attributes.apply(
lambda attributes: dict([key_value_pair.split('=') for
key_value_pair in attributes.split(';')]))
attribute_df['at_dic_keys'] = attribute_df['at_dic'].apply(
lambda at_dic: list(at_dic.keys()))
merged_attribute_list = list(itertools.chain.
from_iterable(attribute_df
['at_dic_keys']))
nonredundant_list = sorted(list(set(merged_attribute_list)))
for atr in nonredundant_list:
attribute_df[atr] = attribute_df['at_dic'].apply(lambda at_dic:
at_dic.get(atr))
filtered_by_attr_df = self._df[(attribute_df[attr_tag] == attr_value)]
return Gff3DataFrame(input_df=filtered_by_attr_df,
input_header=self._header)
def attributes_to_columns(self):
""" Safing each attribute-tag to a single column.
Attribute column will be split to 14 single columns."""
attribute_df = self._df
df_attributes = attribute_df.loc[:, 'seq_id':'attributes']
attribute_df['at_dic'] = attribute_df.attributes.apply(
lambda attributes: dict([key_value_pair.split('=') for
key_value_pair in attributes.split(';')]))
attribute_df['at_dic_keys'] = attribute_df['at_dic'].apply(
lambda at_dic: list(at_dic.keys()))
merged_attribute_list = list(itertools.chain.
from_iterable(attribute_df
['at_dic_keys']))
nonredundant_list = sorted(list(set(merged_attribute_list)))
for atr in nonredundant_list:
df_attributes[atr] = attribute_df['at_dic'].apply(lambda at_dic:
at_dic.get(atr))
return Gff3DataFrame(input_df=df_attributes, input_header=self._header)
def stats_dic(self) -> dict:
""" Gives the following statistics for the data:
The maximal bp-length, minimal bp-length, the count of sense (+) and
antisense (-) strands as well as the count of each available feature.
"""
input_df = self._df
df_w_region = input_df[input_df.type != 'region']
gene_length = pd.Series(df_w_region.apply(lambda row:
row.end - row.start, axis=1))
strand_counts = defaultdict(int)
for key in input_df['strand']:
strand_counts[key] += 1
feature_type_counts = defaultdict(int)
for key in input_df['type']:
feature_type_counts[key] += 1
stats_dic = {
'Maximal_bp_length':
gene_length.max(),
'Minimal_bp_length':
gene_length.min(),
'Counted_strands': strand_counts,
'Counted_feature_types': feature_type_counts
}
return Gff3DataFrame(input_df=stats_dic, input_header=self._header)
def overlaps_with(self, seq_id=None, start=None, end=None,
type=None, strand=None, complement=False):
""" To see which entries overlap with a to comparable feature.
For this method the chromosom accession number has to be given.
The start and end bp position for the to comparable feature have to be
given, as well as optional the feature-type of it and if it is on the
sense (+) or antisense (-) strand.
By selecting 'complement=True', all the feature, which do not overlap
with the to comparable feature will be returned. This is usefull for
finding features which are outside of the given genome region.
Therefore, the bp position of the genome region have to be given. """
overlap_df = self._df
overlap_df = overlap_df[overlap_df.seq_id == seq_id]
if type is not None:
overlap_df = overlap_df[overlap_df.type == type]
if strand is not None:
overlap_df = overlap_df[overlap_df.strand == strand]
if not complement:
overlap_df = overlap_df[((overlap_df.start > start) &
(overlap_df.start < end)) |
((overlap_df.end > start) &
(overlap_df.end < end)) |
((overlap_df.start < start) &
(overlap_df.end > start)) |
((overlap_df.start == start) &
(overlap_df.end == end)) |
((overlap_df.start == start) &
(overlap_df.end > end)) |
((overlap_df.start < start) &
(overlap_df.end == end))]
else:
overlap_df = overlap_df[~(((overlap_df.start > start) &
(overlap_df.start < end)) |
((overlap_df.end > start) &
(overlap_df.end < end)) |
((overlap_df.start < start) &
(overlap_df.end > start)) |
((overlap_df.start == start) &
(overlap_df.end == end)) |
((overlap_df.start == start) &
(overlap_df.end > end)) |
((overlap_df.start < start) &
(overlap_df.end == end)))]
return Gff3DataFrame(input_df=overlap_df, input_header=self._header)
def find_redundant_entries(self, seq_id=None, type=None):
""" Find entries which are redundant.
For this method the chromosom accession number (seq_id) as well as the
feature-type have to be given. Then all entries which are redundant
according to start- and end-position as well as strand-type will be
found."""
input_df = self._df
input_df = input_df[input_df.seq_id == seq_id]
df_gene = input_df[input_df.type == type]
if (df_gene[['end', 'start', 'strand']].duplicated().sum() == 0):
print('No redundant entries found')
else:
duplicate = df_gene.loc[df_gene[['end', 'start',
'strand']].duplicated()]
return Gff3DataFrame(input_df=duplicate, input_header=self._header)
# test_object = read_gff3('NC_016810B.gff')
# data_frame_new = test_object.attributes_to_columns()
# print(data_frame_new._df)
# print(__doc__)
# print(Gff3DataFrame.__doc__)
# print(Gff3DataFrame._read_gff_header.__doc__)
|
from employees import *
import os
class EmployeesManager:
def __init__(self):
self.employees_list = []
def run(self):
self.load_employees() # 1ԱϢ
while True:
# 2ʾܲ˵
self.show_menu()
# 3û빦
try:
menu_num = int(input('ҪĹţ'))
except:
print('1-7ţ')
continue
# 4ûĹִвͬĹ
if menu_num == 1:
self.add_employees() # û1Ա
elif menu_num == 2:
self.del_employees() # û2ɾԱ
elif menu_num == 3:
self.modify_employees() # û3Ա
elif menu_num == 4:
self.search_employees() # û4ѯԱ
elif menu_num == 5:
self.show_employees() # û5ʾԱϢ
elif menu_num == 6:
self.save_employees() # û6ԱϢעǰɾIJDzлļ
elif menu_num == 7:
break # û7˳
else:
print('1-7ţ')
@staticmethod
def show_menu():
print('ѡ¹ܶӦ-------------')
print('1:Ա')
print('2:ɾԱ')
print('3:ԱϢ')
print('4:ѯԱϢ')
print('5:ʾԱϢ')
print('6:ԱϢ')
print('7:˳ϵͳ')
def add_employees(self):
name = input('Name:')
gender = input('Gender: ')
tel = input('Tel: ')
self.employees_list.append(Employees(name, gender, tel))
print(Employees(name, gender, tel))
def del_employees(self):
flag = False
del_name = input('Name:')
for i in range(len(self.employees_list)):
if self.employees_list[i].name == del_name:
del self.employees_list[i]
print("ɾɹ")
flag = True
break
if not flag:
print("")
def modify_employees(self):
flag = False
modify_name = input('Name: ')
for i in range(len(self.employees_list)):
if self.employees_list[i].name == modify_name:
new_gender = input('Gender: ')
new_tel = input('Tel: ')
del self.employees_list[i]
self.employees_list.append(Employees(modify_name, new_gender, new_tel))
print("{}Ա{}绰{}".format(modify_name, new_gender, new_tel))
flag = True
if not flag:
print("")
def search_employees(self):
flag = False
search_name = input('Name: ')
for i in range(len(self.employees_list)):
if self.employees_list[i].name == search_name:
print(self.employees_list[i])
flag = True
if not flag:
print("")
def show_employees(self):
for i in range(len(self.employees_list)):
print(self.employees_list[i])
def save_employees(self):
new_list = []
for i in range(len(self.employees_list)):
new_list.append(self.employees_list[i].name)
new_list.append(self.employees_list[i].gender)
new_list.append(self.employees_list[i].tel)
with open(r'employees.data', 'w', encoding='utf8') as write:
write.write('{}'.format(','.join(new_list)))
print('ɹ')
def load_employees(self):
new_list = []
if os.path.exists('employees.data'):
with open(r'employees.data', 'r+', encoding='utf8') as read:
data = read.read()
for i in data.split(','):
new_list.append(i)
if len(new_list) > 1:
for i in range(len(new_list)):
if i % 3 == 0:
self.employees_list.append(Employees(new_list[i], new_list[i + 1], new_list[i + 2]))
else:
with open(r'employees.data', 'w', encoding='utf8') as W:
pass
|
if 5 > 4:
print("helloworld!")
else:
print("no Hello :(")
my_array = ["vamsi", "sai", "rama", "krishna"]
if "vamsi" in my_array:
print("vamsi listed in array!")
for name in my_array:
print("my name is {0}").format(name)
start = 10
end = 20
inc = 2
for index in range(start, end, inc):
print("my index is {0}".format(index))
|
'''some helpful tools for processing the natural languages'''
import nltk
def avg_word_length(corpus, punctuation=True):
'''Calculate the average word length in a corpus or corpus subset.
Used to answer question 1 and 2 particularly'''
try:
#First try treating the corpus as a word list
word_lengths = [
len(word) for word in set(v.lower()
for v in corpus
if punctuation or v.isalnum())
]
except TypeError:
try:
#We need a third level of recursion if we're actually
#passed a corpus
word_lengths = [
len(word) for word in set(v.lower()
for file in corpus.fileids()
for v in corpus.words(file)
if punctuation or v.isalnum())
]
except TypeError:
print 'Please use a corpus or a list of words'
raise
return sum(word_lengths) * 1.0 / len(word_lengths)
#Question 4, 5, 7 solution
def word_freq(corpus, punctuation=True):
#If the corpus is a list of words, access it directly. Otherwise try to
#treat it like an nltk corpus.
try:
freq_dist = nltk.FreqDist(word.lower()
for word in corpus
if punctuation or word.isalnum())
except TypeError:
freq_dist = nltk.FreqDist(word.lower()
for file in corpus.fileids()
for word in corpus.words(file)
if punctuation or word.isalnum())
return freq_dist
#Used for question 8
def avg_token_length(corpus, punctuation=True):
#If the corpus is a list of words, access it directly. Otherwise
#try to treat it like an nltk corpus.
try:
word_lengths = [len(word) for word in corpus
if punctuation or word.isalnum()]
except TypeError:
#Might be a corpus. Let's give that a shot
try:
word_lengths = [
len(word.lower())
for file in corpus.fileids()
for word in corpus.words(file)
if punctuation or word.isalnum()
]
except TypeError:
print 'corpus needs to be an nltk corpus or a list of words'
raise
return sum(word_lengths) * 1.0 / len(word_lengths)
#Used in question 9
def num_word_types_for_speech(speech_name, punctuation=True):
word_types = set(v.lower()
for v in inaugural.words(speech_name)
if (punctuation or v.isalnum())
and v not in stops)
return len(word_types)
#Used in question 10 and 11
def rank(fd, sample):
'''
Given a sample and a nltk FreqDist, compute the sample's ranking
in the FreqDist based on the number of times that sample occurs
:param fd: nltk.FreqDist used to rank the sample
:type fd: nltk.FreqDist
:param sample: The sample whose rank is to be determined
:type sample: token occuring in fd (string)
'''
#Get the number of times our sample appears in the FreqDist
c = fd[sample]
#Sum over counts of all samples that occured more than c times
#(If our sample were the only sample that occured c times, our rank
#would be p + 1)
p = sum(fd.Nr(r) for r in range(c+1, fd[fd.max()] + 1))
#Calculate the average number of samples that occur
#c times((n + 1) / 2)
#Then calculate the shared rank by adding that to p
return p + ((fd.Nr(c) + 1) / 2.0)
|
print(4*5)
print(5*4.2)
print(20.1/4) # float divided by int gives a float
print(20/3) # int divided by int can result in a float
print(2**2/4-3) # multiple mathetimatical operators appears to follow PEDMAS
print('hello'*2) #produces hello twice
print('hey'+'dude')
|
# 第12章のチャレンジ
# http://tinyurl.com/gpqe62e
# 'りんご'から思い浮かぶ4つの属性を考え,インスタンス変数に持たせて,Appleクラスを定義するプログラム
# 名前,重さ,色,腐る性質をインスタンス変数に持たせる
class Apple:
def __init__(self, n, w, c):
self.name = n
self.weight = w
self.color = c
self.mold = 0
def rot(self, days, temp):
self.mold = days * temp
def sweetness(self):
return 100 / self.weight
# どうやら,変数の型はこの処理で決まるようだ
ap1 = Apple("Orin", 50, "red")
print(ap1.name)
print(ap1.weight)
print(ap1.color)
# 関数的な使い方だね
ap1.rot(14, 3)
print(ap1.mold)
print(ap1.sweetness())
# 円を表すクラスに,面積を計算して返すメソッドを持たせ,結果を出力するプログラム
import math
class Circle:
def __init__(self, r):
self.radius = r
def area(self):
return math.pi * self.radius * self.radius
circle = Circle(5)
print(circle.area())
# 三角形の面積を返すプログラム
class Triangle:
def __init__(self, b, h):
self.bottom = b
self.height = h
def area(self):
return self.bottom * self.height / 2
def change_size(self, b, h):
self.bottom = b
self.height = h
triangle = Triangle(7, 4)
print(triangle.area())
triangle.change_size(10, 5)
print(triangle.area())
# 六角形を表すクラスを定義し,外周の長さを計算して返すメソッドを呼び出し,結果を出力するプログラム
class Hexagon:
def __init__(self, s1, s2, s3, s4, s5, s6):
self.side1 = s1
self.side2 = s2
self.side3 = s3
self.side4 = s4
self.side5 = s5
self.side6 = s6
def calculate_perimeter(self):
return self.side1 + self.side2 + self.side3 + self.side4 + self.side5 + self.side6
hexagon = Hexagon(1, 2, 3, 4, 5, 6)
print(hexagon.calculate_perimeter())
|
# 第3章のチャレンジ
# http://tinyurl.com/zx7o2v9
print('ジオブレイク70S', 'ジオブレイク80S', 'Fレーザー7S')
x = 7
if x < 10:
print('伸びしろですね')
elif 10 <= x <= 25:
print('もっとできるはずさ')
else:
print('慢心ではなく自信を持て!')
print(2020 % 825)
print(2020 // 825)
barth_year = 2000
age = 2020 - barth_year
if age >= 20:
print('もうお酒が飲めるのだ')
else:
print('まだおこちゃまでしょ?')
|
#!/usr/bin/env python
class Animal(object):
pass
class Dog(Animal):
def talk(self):
return "whoof whoof"
class Cat(Animal):
def talk(self):
return "miao"
class Pig(Animal):
def talk(self):
return "oink oink"
def all_animals():
return Animal.__subclasses__()
if __name__ == "__main__":
for animal in all_animals():
print "%s says: %s" % (animal.__name__, animal().talk())
|
#!/usr/bin/env python
# encoding: utf-8
'''Calculate distance of path in .kmz file in Km'''
from collections import namedtuple
from math import sqrt, sin, cos, atan2, radians
from zipfile import ZipFile, BadZipfile
import xml.etree.ElementTree as et
namespaces = {'gx': 'http://www.google.com/kml/ext/2.2'}
Coord = namedtuple('Coord', ['lat', 'lng'])
R = 6371 # Earth radius in km
def elem2coord(elem):
# '35.014666 32.519769 144.1999969482422' -> (35.014666, 32.519769)
lat, lng, _ = [float(v) for v in elem.text.split()]
return Coord(lat, lng)
def sin2(x):
'''sin²(x/2)'''
v = sin(x/2.)
return v * v
def dist(coord1, coord2):
'''Distance between two coordinates
This uses the ‘haversine’ formula to calculate the great-circle
distance between two points – that is, the shortest distance over the
earth’s surface – giving an ‘as-the-crow-flies’ distance between the
points (ignoring any hills they fly over, of course!).
Haversine formula:
a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2)
c = 2 ⋅ atan2( √a, √(1−a) )
d = R ⋅ c
where φ is latitude, λ is longitude, R is earth’s radius (mean radius
= 6,371km);
via http://www.movable-type.co.uk/scripts/latlong.html
'''
lat1, lng1 = radians(coord1.lat), radians(coord1.lng)
lat2, lng2 = radians(coord2.lat), radians(coord2.lng)
a = sin2(abs(lat2 - lat1)) + cos(lat1) * cos(lat2) * sin2(abs(lng2 - lng1))
c = 2 * atan2(sqrt(a), sqrt(1-a))
return R * c
def kmz_dist(file):
'''Calculate distance of all points in .kmz file in Km
file can be either a file name or an open file object.
'''
zfo = ZipFile(file)
fo = zfo.open(zfo.filelist[0].filename)
root = et.parse(fo).getroot()
elems = root.iterfind('.//gx:coord', namespaces=namespaces)
coords = [elem2coord(elem) for elem in elems]
# Shift the coords list and then zip with itself, we'll get a list of
# tuples like [(coord1, coord2), (coord2, coord3) ...]
return sum(dist(c1, c2) for c1, c2 in zip(coords, coords[1:]))
if __name__ == '__main__':
from argparse import ArgumentParser
from sys import stdin
parser = ArgumentParser(description=__doc__)
parser.add_argument('kmz', help='kmz file name', default='-', nargs='?')
args = parser.parse_args()
file = stdin if args.kmz == '-' else args.kmz
try:
print('{:.3f}km'.format(kmz_dist(file)))
except (IOError, BadZipfile) as err:
raise SystemExit('error: {}'.format(err))
|
#!/usr/bin/env python
''' Solving http://projecteuler.net/index.php?section=problems&id=24
Note that Python's 2.6 itertools.permutations return the permutation in order so
we can just write:
from itertools import islice, permutations
print islice(permutations(range(10)), 999999, None).next()
And it'll work much faster :)
'''
from itertools import islice, ifilter
def is_last_permutation(n):
return n == sorted(n, reverse=1)
def next_head(n):
'''Find next number to be 'head'.
It is smallest number if the tail that is bigger than the head.
In the case of (2 4 3 1) it will pick 3 to get the next permutation
of (3 1 2 4)
'''
return sorted(filter(lambda i: i > n[0], n[1:]))[0]
def remove(element, items):
return filter(lambda i: i != element, items)
def next_permutation(n):
if is_last_permutation(n):
return None
sub = next_permutation(n[1:])
if sub:
return [n[0]] + sub
head = next_head(n)
return [head] + sorted([n[0]] + remove(head, n[1:]))
def nth(it, n):
'''Return the n'th element of an iterator'''
return islice(it, n, None).next()
def iterate(func, n):
'''iterate(func, n) -> n, func(n), func(func(n)) ...'''
while 1:
yield n
n = func(n)
def permutations(n):
return ifilter(None, iterate(next_permutation, n))
if __name__ == "__main__":
n = range(10)
m = 1000000
print "Calculateing the %d permutation of %s" % (m, n)
print nth(permutations(n), m-1)
|
#!/usr/bin/env python3
'''
字段:学生姓名 班级 Linux PHP Python
stu1 = {'id':1,'sname':'tom','bj':'1','Linux':100,}
'''
stu_info = []
id = 0
def menu():
print('''
| ----------学生成绩系统--------|
| |
| ==========主功能菜单==========|
| |
| |
| 1.录入学生成绩 |
| 2.查询学生成绩 |
| 3.删除学生的成绩 |
| 4.修改学生的成绩 |
| 5.展示所有学生成绩 |
| 0.退出系统 |
| |
|-------------------------------|
''')
#录入学生成绩
def add_info():
while True:
sname = input('输入学生的姓名:')
if not sname:
print('学生姓名不能为空')
continue
bj = input('输入学生的班级:')
Linux = input('输入Linux成绩:')
PHP = input('输入PHP成绩:')
Python = input('输入Python成绩:')
global id
id += 1
stu = {'id':id,'sname':sname,'bj':bj,'Linux':Linux,'PHP':PHP,'Python':Python}
stu_info.append(stu)
print(stu_info)
key = input('是否继续录入y/n?')
if key == 'y':
continue
else:
break
#显示所有学生的成绩
def show():
'''
遍历列表,获取到每个学生的信息
'''
format_title = '{:^6}{:^12}\t{:^12}{:^12}{:^12}{:^12}'
format_data = '{:^6}{:^13}\t{:^15}{:^13}{:^15}{:^14}'
print(format_title.format('ID','姓名','班级','Linux成绩','PHP成绩','Python成绩'))
for i in stu_info:
id = i.get('id')
sname = i.get('sname')
bj = i.get('bj')
Linux = i.get('Linux')
PHP = i.get('PHP')
Python = i.get('Python')
print(format_data.format(id,sname,bj,Linux,PHP,Python))
def search():
'''
根据名字查询学生的成绩
'''
format_title = '{:^6}{:^12}\t{:^12}{:^12}{:^12}{:^12}'
format_data = '{:^6}{:^13}\t{:^15}{:^13}{:^15}{:^14}'
sname = input('输入要查询学生的姓名:')
print(format_title.format('ID','姓名','班级','Linux成绩','PHP成绩','Python成绩'))
#提取到所有学生的名字
name_list = [stu_info[i].get('sname') for i in range(len(stu_info))]
if sname in name_list:
for i in stu_info:
if sname == i.get('sname'):
id = i.get('id')
sname = i.get('sanme')
bj = i.get('bj')
Linux = i.get('Linux')
PHP = i.get('PHP')
Python = i.get('Python')
print(id,sname,bj,Linux,PHP,Python)
else:
print('学生名字不存在')
def delete():
global id
sname = input('请输入要删除学生得名字:')
if stu_info:
for i in stu_info:
if i['sname'] == sname:
stu_info.remove(i) #删除该字段
print('删除成功')
#修改剩下学生的id id - 1
#for i,v in enumerate(stu_info):
for i in range(len(stu_info)):
id = i + 1
stu_info[i]['id'] = id
if not stu_info:
id = 0
show()
#修改学生信息,只修改学生的成绩
def modify():
sname = input('请输入学生名字:')
global stu_info
for i in stu_info:
if i['sname'] == sname:
id = i.get('id')
stuid = id - 1
sname = i.get('sname')
bj = i.get('bj')
stuNum = i.get('stuNum')
newLinux = input('请输入学生linux成绩:')
newPHP = input('请输入学生php成绩:')
newPython = input('请输入学生python成绩:')
# 将获取到的用户输入的新成绩全部赋值到新的字典
newStudent = {"id":id,"sname":sname,"bj":bj,'stuNum':stuNum,'Linux':newLinux,'PHP':newPHP,'Python':newPython}
stu_info[stuid].update(newStudent) # 将新字典更新到列表同位置下标下
else:
print('学生不存在')
def main():
while True:
menu()
key = input('请选择功能:')
if key == '1':
add_info()
if key == '2':
search()
if key == '3':
delete()
if key == '4':
modify()
if key == '5':
show()
if key == '0':
break
main()
|
"""
RNA Alignment Assignment
Implement each of the functions below using the algorithms covered in class.
You can construct additional functions and data structures but you should not
change the functions' APIs.
You will be graded on the helper function implementations as well as the RNA alignment, although
you do not have to use your helper function.
*** Make sure to comment out any print statement so as not to interfere with the grading script
"""
import sys # DO NOT EDIT THIS
from shared import *
from itertools import product
from math import log
ALPHABET = [TERMINATOR] + BASES
RADIX = 100
def get_suffix_array(s):
"""
Naive implementation of suffix array generation (0-indexed). You do not have to implement the
KS Algorithm. Make this code fast enough so you have enough time in Aligner.__init__ (see bottom).
Input:
s: a string of the alphabet ['A', 'C', 'G', 'T'] already terminated by a unique delimiter '$'
Output: list of indices representing the suffix array
>>> get_suffix_array('GATAGACA$')
[8, 7, 5, 3, 1, 6, 4, 0, 2]
"""
sorted_suffixes = sort_suffixes(s, [(s[i:i+RADIX], i) for i in range(len(s))])
sa = [pair[1] for pair in sorted_suffixes]
return sa
def sort_suffixes(s, suffixes, ranks=None):
if ranks is None:
ranks = {}
sorted_suffixes = sorted(suffixes, key=lambda x: x[0])
else:
sorted_suffixes = sorted(suffixes, key=lambda x: ranks[x])
conflicts = {}
bucket = []
rank = 0
curr_su = None
for i in range(len(sorted_suffixes)):
su, idx = sorted_suffixes[i]
if su != curr_su:
if len(bucket) > 1:
conflicts[rank-1] = bucket
bucket = []
rank = i + 1
curr_su = su
ranks[(su, idx)] = rank
bucket.append((su, idx))
if len(bucket) > 1:
conflicts[rank - 1] = bucket
resolve_conflicts(s, sorted_suffixes, conflicts, ranks)
return sorted_suffixes
def resolve_conflicts(s, sorted_suffixes, conflicts, ranks):
for i, c in conflicts.items():
resolved = [(s[idx-RADIX:idx], idx-RADIX) for su, idx in
sort_suffixes(s, [(s[idx+RADIX:idx+RADIX+RADIX], idx+RADIX) for su, idx in c], ranks)]
for k in range(len(resolved)):
r = resolved[k]
ranks[r] += k
sorted_suffixes[i:i+len(resolved)] = resolved
def get_bwt(s, sa):
"""
Input:
s: a string terminated by a unique delimiter '$'
sa: the suffix array of s
Output:
L: BWT of s as a string
"""
L = ''
for i in sa:
L += s[i - 1]
return L
def get_F(L):
"""
Input: L = get_bwt(s)
Output: F, first column in Pi_sorted
"""
return ''.join(sorted(L))
def get_M(F):
"""
Returns the helper data structure M (using the notation from class). M is a dictionary that maps character
strings to start indices. i.e. M[c] is the first occurrence of "c" in F.
If a character "c" does not exist in F, you may set M[c] = -1
"""
M = {c: -1 for c in ALPHABET}
prev_c = None
for i in range(len(F)):
c = F[i]
if c != prev_c:
M[c] = i
prev_c = c
return M
def get_occ(L):
"""
Returns the helper data structure OCC (using the notation from class). OCC should be a dictionary that maps
string character to a list of integers. If c is a string character and i is an integer, then OCC[c][i] gives
the number of occurrences of character "c" in the bwt string up to and including index i
"""
occ = {c: [0 for _ in range(len(L))] for c in ALPHABET}
for i in range(len(L)):
for char in ALPHABET:
if char == L[i]:
occ[char][i] = occ[char][i - 1] + 1
else:
occ[char][i] = occ[char][i - 1]
return occ
def set_ep(c, M, occ):
indices = sorted(M.values())
try:
return indices[indices.index(M[c]) + 1] - 1
except IndexError:
return len(occ[c]) - 1
def exact_suffix_matches(p, M, occ):
"""
Find the positions within the suffix array sa of the longest possible suffix of p
that is a substring of s (the original string).
Note that such positions must be consecutive, so we want the range of positions.
Input:
p: the pattern string
M, occ: buckets and repeats information used by sp, ep
Output: a tuple (range, length)
range: a tuple (start inclusive, end exclusive) of the indices in sa that contains
the longest suffix of p as a prefix. range=None if no indices matches any suffix of p
length: length of the longest suffix of p found in s. length=0 if no indices matches any suffix of p
An example return value would be ((2, 5), 7). This means that p[len(p) - 7 : len(p)] is
found in s and matches positions 2, 3, and 4 in the suffix array.
>>> s = 'ACGT' * 10 + '$'
>>> sa = get_suffix_array(s)
>>> sa
[40, 36, 32, 28, 24, 20, 16, 12, 8, 4, 0, 37, 33, 29, 25, 21, 17, 13, 9, 5, 1, 38, 34, 30, 26, 22, 18, 14, 10, 6, 2, 39, 35, 31, 27, 23, 19, 15, 11, 7, 3]
>>> L = get_bwt(s, sa)
>>> L
'TTTTTTTTTT$AAAAAAAAAACCCCCCCCCCGGGGGGGGGG'
>>> F = get_F(L)
>>> F
'$AAAAAAAAAACCCCCCCCCCGGGGGGGGGGTTTTTTTTTT'
>>> M = get_M(F)
>>> sorted(M.items())
[('$', 0), ('A', 1), ('C', 11), ('G', 21), ('T', 31)]
>>> occ = get_occ(L)
>>> type(occ) == dict, type(occ['$']) == list, type(occ['$'][0]) == int
(True, True, True)
>>> occ['$']
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> exact_suffix_matches('ACTGA', M, occ)
((1, 11), 1)
>>> exact_suffix_matches('$', M, occ)
((0, 1), 1)
>>> exact_suffix_matches('AA', M, occ)
((1, 11), 1)
"""
curr_range = None
length = len(p)
sp = M[p[length - 1]]
if sp == -1:
return curr_range, 0
ep = set_ep(p[length - 1], M, occ)
for i in range(length - 2, -1, -1):
curr_range = (sp, ep + 1)
sp = M[p[i]] + occ[p[i]][sp - 1]
ep = M[p[i]] + occ[p[i]][ep] - 1
if sp > ep:
return curr_range, length - i - 1
return (sp, ep + 1), length
MIN_INTRON_SIZE = 20
MAX_INTRON_SIZE = 10000
SEPARATOR = '#'
class Aligner:
def __init__(self, genome_sequence, known_genes):
"""
Initializes the aligner. Do all time intensive set up here. i.e. build suffix array.
genome_sequence: a string (NOT TERMINATED BY '$') representing the bases of the of the genome
known_genes: a python set of Gene objects (see shared.py) that represent known genes. You can get the isoforms
and exons from a Gene object
Time limit: 500 seconds maximum on the provided data. Note that our server is probably faster than your machine,
so don't stress if you are close. Server is 1.25 times faster than the i7 CPU on my computer
"""
self.genome = genome_sequence
self.genes = known_genes
self.transcriptome = self.construct_transcriptome()
s = genome_sequence[::-1] + TERMINATOR
self.sa = get_suffix_array(s)
L = get_bwt(s, self.sa)
F = get_F(L)
self.M = get_M(F)
self.occ = get_occ(L)
def construct_transcriptome(self):
transcriptome = []
for gene in self.genes:
for isoform in gene.isoforms:
transcript = []
positions = {}
idx = 0
for exon in isoform.exons:
length = exon.end - exon.start
transcript.append(self.genome[exon.start:exon.end])
positions.update({idx + i: exon.start + i for i in range(length)})
idx += (length + 1)
transcript = SEPARATOR.join(transcript)
transcriptome.append((transcript, positions))
return transcriptome
def find_seeds(self, reversed_read, len_read, len_string, sa, M, occ):
seed_matches = []
mismatches = -1
i = len_read
indices = []
while i > 0:
_range, length = exact_suffix_matches(reversed_read[:i], M, occ)
if _range is None:
mismatches += 1
if mismatches > MAX_NUM_MISMATCHES:
return []
seed_matches.append([(len_read - i, -1, 0)])
length = 1
else:
sp, ep = _range
if len(indices) == 0:
seed_matches.append([(len_read-i, len_string-sa[idx]-length, length) for idx in range(sp, ep)])
indices = [len_string - sa[idx] for idx in range(sp, ep)]
else:
matches = [(len_read - i, len_string - sa[idx] - length, length) for idx in range(sp, ep)
if (len_string - sa[idx] - length) in indices]
if len(matches) > 0:
seed_matches.append(matches)
else:
seed_matches.append([(len_read - i, len_string - sa[sp] - length, length)])
indices = [i + length for i in indices]
mismatches += 1
if mismatches > MAX_NUM_MISMATCHES:
return []
i -= length
return seed_matches
def similarity(self, seq1, seq2):
if len(seq2) < len(seq1):
return MAX_NUM_MISMATCHES
score = 0
for i in range(len(seq1)):
if seq1[i] != seq2[i]:
score += 1
return score
def get_transcriptome_alignment(self, read_sequence, seed_matches, len_read, transcript, positions):
genomic_windows = product(*seed_matches)
best_alignment = []
best_score = -len_read
len_transcipt = len(transcript)
for window in genomic_windows:
alignment = []
score = len_read
mismatches = 0
next_idx = window[0][1]
start_read_idx = window[0][0]
start_genome_idx = positions[window[0][1]]
length = 0
aligned = True
for seed in window:
if next_idx >= len_transcipt:
aligned = False
break
elif transcript[next_idx] == SEPARATOR:
next_idx += 1
read_idx, transcript_idx, len_match = seed
if len_match == 0:
mismatches += 1
if mismatches > MAX_NUM_MISMATCHES:
aligned = False
break
next_idx += 1
score -= 1
length += 1
elif transcript_idx != next_idx:
sim = self.similarity(read_sequence[read_idx:read_idx + len_match],
transcript[next_idx:next_idx + len_match])
if sim + mismatches <= MAX_NUM_MISMATCHES:
transcript_idx = next_idx
mismatches += sim
score -= sim
else:
aligned = False
break
if start_genome_idx + length != positions[transcript_idx]:
alignment.append((start_read_idx, start_genome_idx, length))
start_read_idx = read_idx
start_genome_idx = positions[transcript_idx]
length = 0
next_idx += len_match
length += len_match
if aligned is True:
alignment.append((start_read_idx, start_genome_idx, length))
if len(alignment) > 0 and score > best_score:
best_alignment = alignment
best_score = score
return best_alignment, best_score
def align_transcriptome(self, read_sequence, reversed_read, len_read):
best_alignment = []
best_score = -len_read
for transcript, positions in self.transcriptome:
s = transcript[::-1] + TERMINATOR
sa = get_suffix_array(s)
L = get_bwt(s, sa)
M = get_M(get_F(L))
occ = get_occ(L)
seed_matches = self.find_seeds(reversed_read, len_read, len(transcript), sa, M, occ)
if len(seed_matches) == 0:
continue
alignment, score = self.get_transcriptome_alignment(read_sequence, seed_matches, len_read,
transcript, positions)
if len(alignment) > 0 and score > best_score:
best_alignment = alignment
best_score = score
return best_alignment
def get_genome_alignment(self, read_sequence, seed_matches, len_read):
genomic_windows = product(*seed_matches)
best_alignment = []
best_score = -len_read
for window in genomic_windows:
alignment = []
score = len_read
mismatches = 0
next_idx = window[0][1]
start_read_idx = window[0][0]
start_genome_idx = window[0][1]
length = 0
aligned = True
for seed in window:
read_idx, string_idx, len_match = seed
if len_match == 0:
mismatches += 1
if mismatches > MAX_NUM_MISMATCHES:
aligned = False
break
next_idx += 1
score -= 1
length += 1
elif string_idx != next_idx:
diff = string_idx - next_idx
if MIN_INTRON_SIZE <= diff <= MAX_INTRON_SIZE:
score -= log(diff)
next_idx += diff
alignment.append((start_read_idx, start_genome_idx, length))
start_read_idx = read_idx
start_genome_idx = string_idx
length = 0
else:
sim = self.similarity(read_sequence[read_idx:read_idx + len_match],
self.genome[next_idx:next_idx + len_match])
if sim + mismatches <= MAX_NUM_MISMATCHES:
mismatches += sim
score -= sim
else:
aligned = False
break
next_idx += len_match
length += len_match
if aligned is True:
alignment.append((start_read_idx, start_genome_idx, length))
if len(alignment) > 0 and score > best_score:
best_alignment = alignment
best_score = score
return best_alignment, best_score
def align_genome(self, read_sequence, reversed_read, len_read):
seed_matches = self.find_seeds(reversed_read, len_read, len(self.genome), self.sa, self.M, self.occ)
if len(seed_matches) == 0:
return []
alignment, score = self.get_genome_alignment(read_sequence, seed_matches, len_read)
return alignment
def align(self, read_sequence):
"""
Returns an alignment to the genome sequence. An alignment is a list of pieces.
Each piece consists of a start index in the read, a start index in the genome, and a length
indicating how many bases are aligned in this piece. Note that mismatches are count as "aligned".
Note that <read_start_2> >= <read_start_1> + <length_1>. If your algorithm produces an alignment that
violates this, we will remove pieces from your alignment arbitrarily until consecutive pieces
satisfy <read_start_2> >= <read_start_1> + <length_1>
Return value must be in the form (also see the project pdf):
[(<read_start_1>, <reference_start_1, length_1), (<read_start_2>, <reference_start_2, length_2), ...]
If no good matches are found: return the best match you can find or return []
Time limit: 0.5 seconds per read on average on the provided data.
"""
len_read = len(read_sequence)
reversed_read = read_sequence[::-1]
alignment = self.align_transcriptome(read_sequence, reversed_read, len_read)
if len(alignment) > 0:
print("\nAligned to transcriptome")
print(read_sequence)
print(''.join([self.genome[i:i+l] for _, i, l in alignment]))
print(alignment)
return alignment
alignment = self.align_genome(read_sequence, reversed_read, len_read)
if len(alignment) > 0:
print("\nAligned to genome")
print(read_sequence)
print(''.join([self.genome[i:i + l] for _, i, l in alignment]))
print(alignment)
else:
print("\nUnaligned")
print(read_sequence)
return alignment
|
import turtle
from math import cos,sin
from time import sleep
window = turtle.Screen()
window.bgcolor("#FFFFFF")
mySpirograph = turtle.Turtle()
mySpirograph.hideturtle()
mySpirograph.tracer(0)
mySpirograph.speed(0)
mySpirograph.pensize(2)
myPen = turtle.Turtle()
myPen.hideturtle()
myPen.tracer(0)
myPen.speed(0)
myPen.pensize(3)
myPen.color("#AA00AA")
R = 125
r = 85
d = 125
angle = 0
myPen.penup()
myPen.goto(R-r+d,0)
myPen.pendown()
theta = 0.2
steps = 8 * int(6*3.14/theta)
for t in range(0,steps):
mySpirograph.clear()
mySpirograph.penup()
mySpirograph.setheading(0)
mySpirograph.goto(0,-R)
mySpirograph.color("#999999")
mySpirograph.pendown()
mySpirograph.circle(R)
angle+=theta
x = (R - r) * cos(angle)
y = (R - r) * sin(angle)
mySpirograph.penup()
mySpirograph.goto(x,y-r)
mySpirograph.color("#222222")
mySpirograph.pendown()
mySpirograph.circle(r)
mySpirograph.penup()
mySpirograph.goto(x,y)
mySpirograph.dot(5)
x = (R - r) * cos(angle) + d * cos(((R-r)/r)*angle)
y = (R - r) * sin(angle) - d * sin(((R-r)/r)*angle)
mySpirograph.pendown()
mySpirograph.goto(x,y)
mySpirograph.dot(5)
myPen.goto(mySpirograph.pos())
mySpirograph.getscreen().update()
#sleep(0.05)
sleep(0.02)
#Hide Spirograph
mySpirograph.clear()
mySpirograph.getscreen().update()
|
import pygame as game
import random
import math
from settings import LOGO_IMAGE, BACKGROUND_IMAGE, CONTAINER_SIZE
# FIXME: Maybe there is a better way to store rgb colors than dict?
color = {
"INFECTED": (255, 0, 0), # Red in RGB
"HEALTHY": (0, 0, 255) # Blue in RGB
}
class Container:
""" Main container used for simulations"""
def __init__(self):
self.position = (0,0)
self.size = CONTAINER_SIZE
self.image = game.image.load(BACKGROUND_IMAGE)
# Scale background image to fit container size
self.image = game.transform.scale(self.image, self.size)
@property
def borders(self):
""" Automatically calculate container borders.
:return: dict with borders
"""
return {
"left": self.position[0],
"right": self.position[0] + self.size[0],
"up": self.position[1],
"down": self.position[1] + self.size[1]
}
class Atom:
""" Class representing single atom """
def __init__(self, radius, screen, container):
""" Generate atom
:param radius: radius of an atom
:param screen: reference to main display
:param container: container object where to put atoms
"""
# Start positions on x and y axis
self.x = random.randint(radius, container.size[0]-radius)
self.y = random.randint(radius, container.size[1]-radius)
self.radius = radius
self.color = color['HEALTHY']
self.thickness = 1
self.speed = random.random()
self.angle = random.uniform(0, math.pi*2)
# Main display
self.screen = screen
# Container in which atoms are present
self.container = container
def draw(self):
""" Draw atom on screen """
game.draw.circle(self.screen, self.color, (int(self.x), int(self.y)), self.radius, self.thickness)
def bounce(self):
""" Bounce Atom from the walls """
# Use "Exceeding boundaries" section for calculating new direction
# http://archive.petercollingridge.co.uk/book/export/html/6
if self.x > self.container.size[0] - self.radius:
self.x = 2*(self.container.size[0] - self.radius) - self.x
self.angle = - self.angle
elif self.x < self.radius:
self.x = 2*self.radius - self.x
self.angle = - self.angle
if self.y > self.container.size[1] - self.radius:
self.y = 2*(self.container.size[1] - self.radius) - self.y
self.angle = math.pi - self.angle
elif self.y < self.radius:
self.y = 2*self.radius - self.y
self.angle = math.pi - self.angle
def move(self):
""" Move Atom by one frame """
self.x += math.sin(self.angle) * self.speed
self.y -= math.cos(self.angle) * self.speed
self.bounce()
class App:
""" Main application window """
def __init__(self, radius, number_of_atoms):
""" Generate main game
:param radius: radius of single atom
:param number_of_atoms: number of atoms in container
"""
game.init()
game.display.set_caption("Atom Collisions")
self.logo = game.image.load(LOGO_IMAGE)
game.display.set_icon(self.logo)
self.display = game.display.set_mode(CONTAINER_SIZE)
self.running = True
# FPS clock
self.clock = game.time.Clock()
# Container with atoms
self.container = Container()
# Generate atoms
self.atoms = [Atom(radius, self.display, self.container) for i in range(number_of_atoms)]
def _start(self):
""" Start the simulation """
while self.running:
for event in game.event.get():
if event.type == game.QUIT:
self.running = False
self._tick()
def _tick(self):
""" Frame function - called every frame """
self.display.blit(self.container.image, self.container.position)
for atom in self.atoms:
atom.move()
atom.draw()
game.display.flip()
# Tick frame, increasing tick will result in faster simulation
self.clock.tick(60)
if __name__ == '__main__':
app = App(15, 10)
app._start()
|
"""
COMP30024 Artificial Intelligence, Semester 1 2019
Solution to Project Part A: Searching
Authors:
John Stephenson (587636)
Asil Mian (867252)
"""
import sys
import json
import heapq
from board import Board
from bprint import print_solution
def main():
with open(sys.argv[1]) as file:
data = json.load(file)
board = Board(data)
solution = a_star_search(board)
print_solution(solution)
def a_star_search(board):
"""
search the board for the solution and return the path
leading to the solution if one is found
"""
start = board.initial_state
#stores all visited states
seen = {}
queue = [start]
heapq.heapify(queue)
#while not all pieces are of the board
while queue and not queue[0].is_goal():
parent_state = heapq.heappop(queue)
#add child states to queue if not seen before
for child in parent_state.child_states():
if child in seen:
continue
heapq.heappush(queue, child)
seen[child] = True
#return if solution found
if queue:
return reconstruct_path(queue[0])
else:
return None
def reconstruct_path(end_state):
"""
track back the path to the initial state
from the end_state
"""
actions = []
curr_state = end_state
#add all the moves until initial state is reached
while curr_state.parent_state:
actions.append(curr_state.poslist)
curr_state = curr_state.parent_state
#add the initial state
actions.append(curr_state.poslist)
#return action list in reverse order
return actions[::-1]
# when this module is executed, run the `main` function:
if __name__ == '__main__':
main()
|
import pygame
if __name__ == '__main__':
# try:
n = int(input())
if n <= 0:
raise Exception
size = width, height = 300, 300
pygame.init()
screen = pygame.display.set_mode(size)
pygame.display.set_caption("Ромбики")
w, h = width, height
x, y = 0, 0
rect = pygame.rect.Rect(0, 0, n, n)
rect = pygame.draw.rect(screen, pygame.color.Color("orange"), pygame.rect.Rect(0, 0, n, n))
# for i in range(0, height, n):
# for j in range(0, width, n):
# pygame.draw.rect(screen, pygame.color.Color("orange"), (i, j, n, n))
while pygame.event.wait().type != pygame.QUIT:
pygame.display.flip()
pygame.quit()
# except:
# print("Неправильный формат ввода")
|
#!/bin/python
import sys
from math import log
def main(argv):
n = int(argv[1])
for i in range(n+1):
print('%d: %d' % (i, count_factorial_zeros_iterative(i)))
def count_factorial_zeros(n):
"""Succinctly returns number of trailing zeros in n!"""
if n < 0:
return -1
elif n == 0:
return 0
return sum(int(n/5**i) for i in range(1, int(log(n)/log(5) + 1)))
def count_factorial_zeros_iterative(n):
"""Returns number of trailing zeros in n! by iterating through factors"""
if n < 0:
return -1
zeros = 0
# To count the number of times n! is divisible by 2 and 5
twos_count = 0
fives_count = 0
# Iteratively count for each factor in n!
for i in range(2, n+1):
while (i % 2) == 0:
twos_count += 1
i //= 2
while (i % 5) == 0:
fives_count += 1
i //= 5
# Count the number of times 2 and 5 divides i, add to zeros
while fives_count and twos_count: # counts > 0
zeros += 1
fives_count -= 1
twos_count -= 1
return zeros
if __name__ == '__main__':
main(sys.argv)
|
#!/usr/bin/env python3
# This is an extended Sieve of Erastosthenes, where it generates a complete prime
# factorization of all integers up to some given maximum.
from typing import List
from typing import Dict
def primefaclist(n:int) -> List[Dict[int,int]]:
a = [dict() for i in range(n)]
for p in range(2, len(a)):
if len(a[p]) > 0:
continue
f = p
while f < len(a):
for i in range(f, len(a), f):
if p in a[i]:
a[i][p] += 1
else:
a[i][p] = 1
f *= p
return a
def main():
a = primefaclist(10000)
for i,d in enumerate(a):
print(f"i={i}: ",end='')
for p,e in d.items():
print(f"(p,e)=({p},{e}) ",end='')
print()
if __name__ == '__main__':
main()
|
# will print [22.1, 23.4, 34.0, 23.0]
#temps = [221, 234, 340, -9999, 230]
#new_temps = [temp / 10 for temp in temps if temp != -9999]
# if using else, to get the same results use
#new_temps = [temp / 10 if temp != -9999 else 0 for temp in temps]
#print(new_temps)
def area(a,b):
return a * b
print(area(4,5))
|
from time import sleep
from timer import RepeatedTimer
def hello(name):
print ("Hello %s!" % name)
print ("starting...")
if __name__ == "__main__":
rt = RepeatedTimer(3, hello, "World")
try:
finally:
rt.stop()
|
"""
Count the number of unique words in a file
"""
import argparse
import codecs
import logging
from collections import Counter
from multiprocessing import Pool
logging.basicConfig()
logger = logging.getLogger(__name__)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-i','--input', help='the input corpus', required=True)
args = parser.parse_args()
vocab_counts = Counter()
with codecs.open(args.input, encoding='utf8') as inp:
for l in inp:
vocab_counts.update(l.strip().split())
logger.info(u'Stats for {}'.format(args.input))
logger.info(u'Total vocab size: {}'.format(len(vocab_counts)))
logger.info(u'Top 100 words: {}'.format(vocab_counts.most_common(100)))
|
print("Please select operation -\n "
"1. Add\n "
"2. Subtract\n"
"3. Multiply\n"
"4. Divide\n")
# Take input from the user
select = input("Select operations form 1, 2, 3, 4 :").strip()
number_1 = int(input("Enter first number: ").strip())
number_2 = int(input("Enter second number: ").strip())
# Function to add two numbers
def add(num1, num2):
return num1 + num2
# Function to subtract two numbers
def substract(num1, num2):
return num1 - num2
# Function to multiply two numbers
def multiply(num1, num2):
return num1 * num2
# Function to divide two numbers
def divide(num1, num2):
return num1 / num2
# Calculator logic
if select == '1':
print(add(number_1, number_2))
elif select == '2':
print(substract(number_1, number_2))
elif select == '3':
print(multiply(number_1, number_2))
elif select == '4':
print(divide(number_1, number_2))
else:
print('You have not entered a valid number')
|
import operator
def most_frequent(x):
d = {}
for i in x:
d[i] = x.count(i)
d1 = dict(sorted(d.items(), key=operator.itemgetter(1), reverse=True))
for i in d1:
print(i,'=', d1[i])
x = input("Enter the input string: ")
most_frequent(x)
|
def who_do_you_know():
people = input("Bitch, who do you know?").split(",")
return [person.strip() for person in people]
def ask_user():
person_to find = input("Who you tryna find?")
if person_to_find in who_do_you_know():
print("Yeah, you know that person.")
ask_user();
|
peso = float(input("Qual o seu peso (kg): "))
altura = float(input("Qual a sua altura (m): "))
imc = peso / (altura)**2
print("Seu IMC é de: {:.2f}. E você esta: ".format(imc))
if imc < 18.5:
print("ABAIXO DO PESO.")
elif imc < 25:
print("COM PESO IDEAL.")
elif imc < 30:
print("COM SOBREPESO.")
elif imc < 40:
print("OBESO.")
else:
print("COM OBESIDADE MÓRBIDA.")
|
par = 0
imp = 0
count = 0
for i in range (1,7):
num = int(input("Digite o valor {}: ".format(i)))
if num % 2 == 0:
par +=num
count += 1
#else:
#imp += num
print("A soma dos {} número(s) pares é igual a {}.".format(count,par))
|
import types
from itertools import islice
def group(iterable, n):
"""Splits an iterable set into groups of size n and a group
of the remaining elements if needed.
Args:
iterable (list): The list whose elements are to be split into
groups of size n.
n (int): The number of elements per group.
Returns:
list: The list of groups of size n,
where each group is a list of n elements.
"""
iterable = list(iterable) # handle generator and tuple inputs
mod = len(iterable) % n
build = [iterable[index: index + n] for index in range(0, len(iterable) - mod, n)]
# build = [list(islice(iterable, index, index + n)) for index in range(0, len(iterable) - mod, n)]
if mod:
build.append(iterable[-mod:])
return build
if __name__ == '__main__':
iterable = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
n = 3
ret = group(iterable, n)
print(ret)
|
from itertools import chain
STAR = '*'
def gen_rhombus(width):
"""Create a generator that yields the rows of a rhombus row
by row. So if width = 5 it should generate the following
rows one by one:
gen = gen_rhombus(5)
for row in gen:
print(row)
output:
*
***
*****
***
*
"""
up = range(1, width + 1, 2) if width % 2 != 0 else range(1, width, 2)
down = up[:-1][::-1] # ignore last element of up and reverse sequence
num_stars = chain(up, down)
yield from ['{: ^{width}}'.format(STAR * count, width=width) for count in num_stars]
|
import re
def capitalize_sentences(text: str) -> str:
"""Return text capitalizing the sentences. Note that sentences can end
in dot (.), question mark (?) and exclamation mark (!)"""
sentences = [sentence.strip() for sentence in re.split(r'(?<=[\.\!\?]) |$', text)]
return ' '.join(sentence[0].upper() + sentence[1:] for sentence in sentences if len(sentence) > 0)
|
import re
VOWELS = 'aeiou'
PYTHON = 'python'
def contains_only_vowels(input_str):
"""Receives input string and checks if all chars are
VOWELS. Match is case insensitive."""
# use regex for this one
vowels_found = re.findall(r'[aeiou]', input_str, flags=re.I)
return len(vowels_found) == len(input_str)
def contains_any_py_chars(input_str):
"""Receives input string and checks if any of the PYTHON
chars are in it. Match is case insensitive."""
return any([True for char in input_str if char.upper() in PYTHON.upper()])
def contains_digits(input_str):
"""Receives input string and checks if it contains
one or more digits."""
return re.search(r'\d+', input_str)
|
from operator import mul
from functools import reduce
def get_octal_from_file_permission(rwx: str) -> str:
"""Receive a Unix file permission and convert it to
its octal representation.
In Unix you have user, group and other permissions,
each can have read (r), write (w), and execute (x)
permissions expressed by r, w and x.
Each has a number:
r = 4
w = 2
x = 1
So this leads to the following input/ outputs examples:
rw-r--r-- => 644 (user = 4 + 2, group = 4, other = 4)
rwxrwxrwx => 777 (user/group/other all have 4 + 2 + 1)
r-xr-xr-- => 554 (user/group = 4 + 1, other = 4)
"""
trans_table = {'r': 4, 'w': 2, 'x': 1, '-': 0}
perm_groups = [rwx[i:i+3] for i in range(0, 7, 3)]
to_ocatal_ = lambda rwx: str(sum(trans_table[perm] for perm in rwx))
return ''.join(to_ocatal_(group) for group in perm_groups)
|
import re
def count_indents(text):
"""Takes a string and counts leading white spaces, return int count"""
return re.match(r'^[ ]*', text).end()
|
WHITE, BLACK = ' ', '#'
def create_chessboard(size=8):
"""Create a chessboard with of the size passed in.
Don't return anything, print the output to stdout"""
row = str(WHITE + BLACK) * int(size / 2)
board = [row if count % 2 == 0 else row[::-1] for count in range(size)]
print(*board, sep='\n')
|
#group 13 984165 and 965396
#we set move on valid for using it in the while loop
move='valid'
while move=='valid':
#inputing the moves
goat=str(input('Please enter the move of the goat(w/e):'))
wolf=str(input('Please enter the move of the wolf(w/e):'))
cabbage=str(input('Please enter the move of the cabbage(w/e):'))
man=str(input('Please enter the move of the man(w/e):'))
#putting move invalid if there is made a wrong move so the game is lost
if goat=='e' and wolf=='e':
move='invalid'
if goat=='e' and cabbage=='e':
move='invalid'
print('This move is',move)
#if all the figures are on the other side of the river the game is won and it breaks
if goat=='w' and wolf=='w' and cabbage=='w' and man=='w':
print('The game is won')
break
if man=='e' and goat=='e' and cabbage=='e'and wolf=='e':
move='valid'
if man=='e' and goat=='e' and cabbage=='e':
move='valid'
if man=='e' and goat=='e' and wolf=='e':
move='valid'
|
# This script basically takes as first input a number from 1 to 3, by which the search engine is selected:
# 1 for conjunctive query
# 2 for pages ranked with cosine similarity over TfIdf of query and documents
# 3 for the custom one, that computes a score given by the average distances between the query and documents over the variables Run-time, Release Year, Budget, and number of starring actors.
#Both search engine 2 and 3 run on the set of documents given by the conjunctive query.
#Then, it requires the text input and, for search engine 3, additional inputs for budget, runtime, release year and starring actors.
#The output will be an html file (display.html) saved in the current path (given in Functions.py), and automatically opened in a new tab of the browser.
from utils import *
search_engine = input('Choose the search engine model [1-3] (default is 2) : ')
if search_engine == '1':
Run_SE1()
elif search_engine == '3':
search_engine3()
else:
Run_SE2()
|
aircrafts=[{'x':1,'y':7},{'x':3,'y':5},{'x':4,'y':8},{'x':9,'y':10},{'x':6,'y':12}]
aircraft_number=1
for aircraft in aircrafts:
print "Air-craft Number: ",aircraft_number
print(aircraft['x'])
print(aircraft['y'])
print '\n'
aircraft_number+=1
|
#Python Bank Main
import os
import csv
import statistics
# grabbing the csv file for budget data
csvpath = os.path.join('budget_data.csv')
with open(csvpath, newline='') as csvfile:
# CSV reader specifies delimiter and variable that holds contents
csvreader = csv.reader(csvfile, delimiter=',')
# Read the header row first (skip this step if there is no header)
csv_header = next(csvreader)
# print(f"CSV Header: {csv_header}")
# initialize months at 0 then count for each iteration
months = 0
profit_list = []
month_list = []
for row in csvreader:
months = months + 1
profit_list.append(row[1])
month_list.append(row[0])
print("Total Months: " + str(months))
profit_list = list(map(int, profit_list))
print("Total Profit: $" + str(sum(profit_list)))
# Turns profit_list into integers
profit_list = list(map(int, profit_list))
change_list = []
i = 0
for i in range(len(profit_list) - 1):
change = (profit_list[i] - (profit_list[i + 1])) * -1
change_list.append(change)
print("Average Change: $" + str(round(statistics.mean(change_list),2)))
minpos = change_list.index(min(change_list))
maxpos = change_list.index(max(change_list))
# Need to split the month list string adding '20' and removing the '-'
max_str = str(month_list[maxpos + 1])
min_str = str(month_list[minpos + 1])
# max_str.replace('-',' 20')
final_max = max_str.replace('-','-20')
final_min = min_str.replace('-','-20')
print("Greatest Increase in Profits: " + final_max + " ($" + str((change_list[maxpos])) + ")")
print("Greatest Decrease in Profits: " + final_min + " ($" + str((change_list[minpos])) + ")")
|
a=int(input())
b=int(input())
for i in range(a,b):
i%2==0
print("odd numbers")
|
line = "smile please"
list = line.split(" ")
print("No. of words in the list : "+str(len(list)))
|
list1 = []
list2 = []
list3 = []
n1 = int(input("Total elements in first list : "))
for i in range(n1):
value = int(input("input no : "))
list1.append(value)
n2 = int(input("Total elements in second list : "))
for i in range(n2):
value = int(input("input no : "))
list2.append(value)
if(n1 == n2):
print("same length")
else:
print("Not same length")
if(sum(list1) == sum(list2)):
print("same sum")
else:
print("sum are different")
list3 = [each for each in list1 if each in list2]
print("same members are :",list3)
|
print("enter 3 number/n")
num1=int(input("first number:"))
num2=int(input("second number:"))
num3=int(input("third number:"))
if num1>num3 and num1>num2:
print(num1,"is large")
elif num2>num3:
print(num2,"is large")
else:
print(num3,"is large")
|
import networkx as nx
class SocialGraph():
"""
Creates a graph of twitter friends representing a community
"""
def gen_user_friends_graph(self, user: str, user_friends_getter, social_graph_setter):
"""
Generates a user friends graph for a given user
@param user the user to generate the graph for
@param user_friends_getter the dao to retrieve the given users friends from
@param social_graph_setter the dao to store the computed social graph
"""
user_friends_graph = self.get_user_friends_graph(user, user_friends_getter)
social_graph_setter.store_user_friends_graph(user, user_friends_graph)
return user_friends_graph
def get_user_friends_graph(self, user: str, user_friends_getter) -> nx.Graph:
"""
Constructs the social graph of a given user, assuming that the users local
neighbourhood has already been stored, and is accessible from user_friends_getter
@param user the user to generate the graph for
@param user_friends_getter the dao to retrieve the user's friends from
@return the social graph of the user's local neighbourhood
"""
graph = nx.Graph()
user_friends_list = user_friends_getter.get_friends_by_name(user)
local = [user] + user_friends_list
# Nodes are friends of user
for agent in local:
graph.add_node(agent)
# Edges between user1 and user2 indicate that both users follow each other
li = list(graph.nodes)
for i in range(len(li)):
for j in range(i, len(li)):
user1 = li[i]
user2 = li[j]
user1_friends_list = user_friends_getter.get_friends_by_name(user1)
user2_friends_list = user_friends_getter.get_friends_by_name(user2)
if user1 in user2_friends_list and user2 in user1_friends_list:
graph.add_edge(li[j], li[i])
return graph
|
from typing import List, Dict
from src.model.user import User
class FriendSetter:
"""
An abstract class representing an object that stores all of a users
friends in a datastore
"""
def store_friends(self, user_id: str, friends_ids: List[str]):
raise NotImplementedError("Subclasses should implement this")
|
from typing import List, Dict
from src.model.ranking import Ranking
class RankingSetter:
"""
An abstract class representing an object that stores tweets in a
datastore
"""
def store_ranking(self, ranking: Ranking):
raise NotImplementedError("Subclasses should implement this")
def store_rankings(self, rankings: List[Ranking]) -> None:
for ranking in rankings:
self.store_ranking(ranking)
|
from typing import List, Dict
from src.model.user import User
class UserSetter:
"""
An abstract class representing an object that stores users in a datastore
"""
def store_user(self, user: User):
raise NotImplementedError("Subclasses should implement this")
def store_users(self, users: List[User]):
for user in users:
self.store_user(user)
|
import msds510.util as mod
import csv
import sys
arg_list = sys.argv
#fieldname variable takes the argument list 1
filename = arg_list[1]
lines = []
#use reader as a dictionary which is how the lines will be formatted
with open(filename,'r') as csv_file:
csv_reader = csv.DictReader(csv_file)
#for each line in reader, add line to the name lines
for line in csv_reader:
lines.append(line)
#the conditions to print the content of the record
print('Input Record - {\'year\':' +line['year']+', \'intro\': '+line['full_reserve_avengers_intro']+'}')
print('Date joined - '+str(mod.get_date_joined(str(line['year']),str(line['full_reserve_avengers_intro']))))
print('Days since joined - '+str(mod.days_since_joined(str(line['year']),str(line['full_reserve_avengers_intro']))))
print()
print()
|
#!/usr/local/bin python3
# -*- coding: utf-8 -*-
# https://www.programiz.com/python-programming/global-local-nonlocal-variables
x = "global"
def foo():
#global x #
x = x * 3 # 如果不使用global关键字, 则python 会查找local variable x 并进行赋值,由于没有找到 local variable x而抛出错误
print(x) #即使不使用global,print 也可以访问 全局变量
foo()
'''
Traceback (most recent call last):
File "variable_scope.py", line 9, in <module>
foo()
File "variable_scope.py", line 7, in foo
x = x * 2
UnboundLocalError: local variable 'x' referenced before assignment
'''
|
#!/usr/local/bin python3
# -*- coding: utf-8 -*-
#python 约定使用大写定义常量,例如
JAN = 1
FEB = 2
#好处是简单,缺点是类型是int,并且仍然是变量。
#更好的方法是为这样的枚举类型定义一个class类型,然后,每个常量都是class的一个唯一实例。Python提供了Enum类来实现这个功能:
from enum import Enum
Month = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'))
#这样我们就获得了Month类型的枚举类,可以直接使用Month.Jan来引用一个常量,或者枚举它的所有成员:
for name,member in Month.__members__.items():
print(name, '=>', member, ',', member.value) #value属性则是自动赋给成员的int常量,默认从1开始计数。
#如果需要更精确地控制枚举类型,可以从Enum派生出自定义类:
from enum import unique
@unique #@unique装饰器可以帮助我们检查保证没有重复值。
class Weekday(Enum):
Sun = 0 # Sun的value被设定为0
Mon = 1
Tue = 2
Wed = 3
Thu = 4
Fri = 5
Sat = 6
print(Weekday['Sun']) #用成员名称引用枚举常量
print(Weekday[7]) #可以直接根据value的值获得枚举常量
|
#!/usr/local/bin python3
# -*- coding: utf-8 -*-
#-------------------------------------------------------------------------------------------------------------------------
# slice
#-------------------------------------------------------------------------------------------------------------------------
#L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引0,1,2,正好是3个元素。
print([1,2,3,4][0:3])
#如果第一个索引是0,还可以省略:
print([1,2,3,4][:3])
#类似的,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,试试:
print([1,2,3,4][-1:])
print([1,2,3,4][-3:-1])
print('slice tuple', (1,2,3,4)[1:3])
L = list(range(100)) # start from 0 to 100, 100 omitted
print(L[:10]) # start default to 0
# step
print(L[:10:2])
print(L[:]) # copy list
#slice for string
print('abcdefg'[:5]) # trim end
def trim(s):
if len(s)>0:
return s[1:][:-1]
else:
return s
print(len(trim(' abc ')))
print(trim(' ')=='')
#-------------------------------------------------------------------------------------------------------------------------
# iteration
#-------------------------------------------------------------------------------------------------------------------------
#list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:
from collections import Iterable
d = {'a': 1, 'b': 2, 'c': 3}
for key in d:
print(key)
for value in d.values():
print(value)
for k,v in d.items():
print(k,v)
print(isinstance('abc', Iterable))
print(isinstance(123, Iterable))
#!important
#如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:
for i, value in enumerate(['a','b','c']):
print(i,value)
#-------------------------------------------------------------------------------------------------------------------------
# 列表生成式 list comprehensions, 语法 [] 内编写生成表达式
#-------------------------------------------------------------------------------------------------------------------------
#写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。
print([x*x for x in range(1,11)])
#for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:
print([x*x for x in range(1,11) if x%2==0])
# two layers loop
print([m+n for m in 'abc' for n in 'xyz'])
import os
print([dir for d in os.listdir('.')])
print([k+'=' + v for k,v in {'x': 'A', 'y': 'B', 'z': 'C' }.items()])
print([item for item in ['Hello', 'World', 18, 'Apple', None] if isinstance(item,str)])
#-------------------------------------------------------------------------------------------------------------------------
# generator () 内编写生成表达式
#-------------------------------------------------------------------------------------------------------------------------
#通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,
# 不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
print((x*x for x in range(10))) #<generator object <genexpr> at 0x1022ef630>
g = (x*x for x in range(10)) #<class 'generator'>
print(type(g))
for i in g:
print(i)
#call next(g) to print next value, but need to handl StopIteration error
def fib(max):
n,a,b = 0, 0, 1
while n< max:
print(b)
a,b = b, a + b
n = n +1
return 'done'
#仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
#也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:
def fib(max):
n,a,b = 0, 0, 1
while n< max:
yield b #这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator
#这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。
# 而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
a,b = b, a + b
n = n +1
return 'done'
print(fib(10))
def odd():
print('step 1')
yield 1
print('step 2')
yield 2
print('step 3')
yield 3
o = odd()
print(next(o))
print(next(o))
g = fib(6)
while True:
try:
x = next(g)
print('next:', x)
except StopIteration as e:
print('generator return value', e.value)
break
def triangles():
pass
#-------------------------------------------------------------------------------------------------------------------------
# iterator
#-------------------------------------------------------------------------------------------------------------------------
#我们已经知道,可以直接作用于for循环的数据类型有以下几种:
#一类是集合数据类型,如list、tuple、dict、set、str等;
#一类是generator,包括生成器和带yield的generator function。
#这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。
print(isinstance(1,Iterable))
from collections import Iterator
#可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。
print(isinstance((x for x in range(10)), Iterator)) #
print(isinstance('abc',Iterator)) # false
### 生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。
#你可能会问,为什么list、dict、str等数据类型不是Iterator?
# 这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,
# 直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,
# 只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。
#小结
#凡是可作用于for循环的对象都是Iterable类型;
#凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;
# 集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。
#Python的for循环本质上就是通过不断调用next()函数实现的,例如:
for x in [1,2,3,4]:
pass
#equals to
it = iter([1,2,3,4])
while True:
try:
x = next(it)
except StopIteration:
break
|
"""Python serial number generator."""
class SerialGenerator:
"""Machine to create unique incrementing serial numbers.
>>> serial = SerialGenerator(start=100)
>>> serial.generate()
100
>>> serial.generate()
101
>>> serial.generate()
102
>>> serial.reset()
>>> serial.generate()
100
"""
def __init__(self, start):
'''
initiation method of the class SerialGenerator
__________________________________________________
property is used to operate in the class
self.start = (int or float)
property is used to hold the original start number
self.default = self.start
'''
self.start = start
self.default = self.start
def generate(self):
'''
the method increases the amount of the start number by one time per run
'''
a = self.start
self.start += 1
return a
def reset(self):
'''
the method is used to reset to the original number
'''
self.start = self.default
def __repr__(self):
'''
returns string description of the class
'''
return f'<SerialGenerator start={self.start} next={self.start+1}>'
|
player1 = "1 or 2"
player2 = "2 or 1"
Board = [["_","_","_","_","_","_","_","_","_"],["_","_","_","_","_","_","_","_","_"],["_","_","_","_","_","_","_","_","_"],["_","_","_","_","_","_","_","_","_"],["_","_","_","_","_","_","_","_","_"],["_","_","_","_","_","_","_","_","_"],["_","_","_","_","_","_","_","_","_"],["_","_","_","_","_","_","_","_","_"],["_","_","_","_","_","_","_","_","_"]]
def Battle (b):
for i in range(0,len(b)):
for j in range(0,len(b[i])):
print(" " + b[i][j] + " ",end="")
print(" ")
Battle(Board)
run = True
playernum = 1
numplaced = 0
while run:
print("Player 1: You can position five ships: Carrier(5 spaces), Battleship(4 spaces), Cruiser(3 spaces), Submarine(3 spaces), and Destroyer(2 spaces)")
pieces = input("What piece do you want to pick?")
if(pieces == "Carrier"):
column = int(input("Which column do you want it in?") )
row = int(input("Which row do you want it in?"))
Board[row][column] = "*"
Board[row][column+1] = "*"
Board[row][column+2] = "*"
Board[row][column+3] = "*"
Board[row][column+4] = "*"
numplaced+=1
Battle(Board)
if(pieces == "Battleship"):
column = int(input("Which column do you want it in?") )
row = int(input("Which row do you want it in?"))
Board[row][column] = "*"
Board[row][column+1] = "*"
Board[row][column+2] = "*"
Board[row][column+3] = "*"
numplaced+=2
Battle(Board)
if(pieces == "Cruiser"):
column = int(input("Which column do you want it in?"))
row = int(input("Which row do you want it in?"))
Board[row][column] = "*"
Board[row][column+1] = "*"
Board[row][column+2] = "*"
numplaced+=3
Battle(Board)
if(pieces == "Submarine"):
column = int(input("Which column do you want it in?") )
row = int(input("Which row do you want it in?"))
Board[row][column] = "*"
Board[row][column+1] = "*"
Board[row][column+2] = "*"
numplaced+=4
Battle(Board)
if(pieces == "Destroyer"):
column = int(input("Which column do you want it in?") )
row = int(input("Which row do you want it in?"))
Board[row][column] = "*"
Board[row][column+1] = "*"
numplaced+=5
Battle(Board)
if(numplaced == 5):
run = False
Board2 = [["_","_","_","_","_","_","_","_","_"],["_","_","_","_","_","_","_","_","_"],["_","_","_","_","_","_","_","_","_"],["_","_","_","_","_","_","_","_","_"],["_","_","_","_","_","_","_","_","_"],["_","_","_","_","_","_","_","_","_"],["_","_","_","_","_","_","_","_","_"],["_","_","_","_","_","_","_","_","_"],["_","_","_","_","_","_","_","_","_"]]
Battle(Board2)
playernum = 1
numplaced = 0
while run:
print("Player 2: You can position five ships: Carrier(5 spaces), Battleship(4 spaces), Cruiser(3 spaces), Submarine(3 spaces), and Destroyer(2 spaces)")
pieces = input("What piece do you want to pick?")
if(pieces == "Carrier"):
column = int(input("Which column do you want it in?") )
row = int(input("Which row do you want it in?"))
Board[row][column] = "*"
Board[row][column+1] = "*"
Board[row][column+2] = "*"
Board[row][column+3] = "*"
Board[row][column+4] = "*"
numplaced+=1
Battle(Board2)
if(pieces == "Battleship"):
column = int(input("Which column do you want it in?") )
row = int(input("Which row do you want it in?"))
Board[row][column] = "*"
Board[row][column+1] = "*"
Board[row][column+2] = "*"
Board[row][column+3] = "*"
numplaced+=2
Battle(Board2)
if(pieces == "Cruiser"):
column = int(input("Which column do you want it in?") )
row = int(input("Which row do you want it in?"))
Board[row][column] = "*"
Board[row][column+1] = "*"
Board[row][column+2] = "*"
numplaced+=3
Battle(Board2)
if(pieces == "Submarine"):
column = int(input("Which column do you want it in?") )
row = int(input("Which row do you want it in?"))
Board[row][column] = "*"
Board[row][column+1] = "*"
Board[row][column+2] = "*"
numplaced+=4
Battle(Board2)
if(pieces == "Destroyer"):
column = int(input("Which column do you want it in?") )
row = int(input("Which row do you want it in?"))
Board[row][column] = "*"
Board[row][column+1] = "*"
numplaced+=5
Battle(Board2)
if(numplaced == 5):
run = False
while(run):
first_collumn = input("Player "+str(playernum)+":Which Column would you like to move to?")
ind = eval(first_collumn)
for check in range(9,0):
if(Board[check][ind] is "_"):
if(playernum == 2):
Board[check][ind] = "1"
break
if(playernum == 1):
Board[check][ind] = "2"
break
Battle(Board)
for r in range(0,len(Board)):
for c in range(0,len(Board[r])):
if(c+3<len(Board[r])):
if(Board[r][c] != "_" and Board[r][c] == Board[r][c+1] and Board[r][c] == Board[r][c+2] and Board[r][c] == Board[r][c+3]):
print(Board[r][c]+" wins!")
run=False
if(r+3<len(Board)):
if(Board[r][c] != "_" and Board[r][c] == Board[r+1][c] and Board[r][c] == Board[r+2][c] and Board[r][c] == Board[r+3][c]):
run=False
print(Board[r][c]+" wins!")
if(c-3<len(Board[r]) and r+3<len(Board)):
if(Board[r][c] != "_" and Board[r][c] == Board[r+1][c-1] and Board[r][c] == Board[r+2][r-2] and Board[r][c] == Board[r+3][r-3]):
run=False
print(Board[r][c]+" wins!")
if(c+3<len(Board[r]) and r+3<len(Board)):
if(Board[r][c] != "_" and Board[r][c] == Board[r+1][c+1] and Board[r][c] == Board[r+2][r+2] and Board[r][c] == Board[r+3][c+3]):
run=False
print(Board[r][c]+"wins!")
|
with open("./input.txt") as f:
content = f.readlines()
# you may also want to remove whitespace characters like `\n` at the end of each line
content = [x.strip() for x in content]
# print(content)
def build_path(right,down):
output = ""
current_y = 0
current_x = 0
height = len(content)
width = len(content[0])
while current_y < height:
output += content[current_y][current_x]
current_x = (current_x + right) % width
current_y = current_y + down
return output
#part 1 answer
print(build_path(3,1).count("#"))
#part 2 answer
first = build_path(1,1).count("#")
second = build_path(3,1).count("#")
third = build_path(5,1).count("#")
fourth = build_path(7,1).count("#")
fifth = build_path(1,2).count("#")
print (first * second * third * fourth * fifth)
|
fname = input("Enter file name: ")
fh = open(fname)
lst = list()
for line in fh:
slst = list()
slst = line.split()
for num in range(len(slst)) :
if slst[num] not in lst :
lst.append(slst[num])
lst.sort()
print(lst)
|
"""
This is was Part 1 of a Python Skills Refresher assignment.
"""
import string
def preceding(letter):
alphabet = string.ascii_letters
alphabet_as_list = list(alphabet)
alphabet_as_list.remove('A')
alphabet_as_list.remove('a')
if letter is 'A':
code = chr(int(ord('Z')))
elif letter is 'a':
code = chr(int(ord('z')))
elif letter in alphabet_as_list:
code = chr(int(ord(letter)) - 1)
else:
code = chr(int(ord(letter)))
return(code)
def succeeding(letter):
alphabet = string.ascii_letters
alphabet_as_list = list(alphabet)
alphabet_as_list.remove('Z')
alphabet_as_list.remove('z')
if letter is 'Z':
code = chr(int(ord('A')))
elif letter is 'z':
code = chr(int(ord('a')))
elif letter in alphabet_as_list:
code = chr(int(ord(letter)) + 1)
else:
code = chr(int(ord(letter)))
return(code)
def message_coder(phrase, function):
phrase_characters = list(phrase)
if function is 'preceding':
encoded_string = list()
for i in range(0, len(phrase_characters)):
characters_encoded = preceding(phrase_characters[i])
encoded_string.append(characters_encoded)
print("".join(encoded_string))
elif function is 'succeeding':
encoded_string = list()
for i in range(0, len(phrase_characters)):
characters_encoded = succeeding(phrase_characters[i])
encoded_string.append(characters_encoded)
print("".join(encoded_string))
message_coder('Hello World!', 'preceding')
message_coder('Hello World!', 'succeeding')
|
def reverse_detail(str1):
return str1[-1:] + str1[1:-1] + str1[:1]
print(reverse_detail('ears'))
|
def odd_remove(str1):
str2=""
for st in range(len(str1)):
if st % 2 == 0:
str2 += str1[st]
return str2
print(odd_remove('legs'))
|
# Jordan Leung
# 2/13/2019
# printing out what is given
print("Given: ")
cubes = [num**3 for num in range(1,11)]
print(cubes)
# printing out the first three items
print("The first three items in the list are: ")
print(cubes[:3])
# printing out the middle of the list
print("Three items from the middle of the list are: ")
mid = int(len(cubes)/2)
mid_Start = int(mid - 1)
mid_End = int(mid + 2)
print(cubes[mid_Start:mid_End])
# printing out the last three items in the list
print("The last three iems in the list are: ")
print(cubes[-3:])
# making a copy of a list by slicing and verifying that they are stored seperately
my_fav_foods = ['cookies', 'clams', 'pickles']
friends_foods = my_fav_foods[:]
my_fav_foods.append('okura')
friends_foods.append('buns')
print("My favorite foods include: ")
for food in my_fav_foods:
print(food)
print("My friend's favorite foods include: ")
for food in friends_foods:
print(food)
|
# Jordan Leung
# 2/11/2019
guests = ['Henry', 'Sifu Jeff', 'Tayler', 'Mat']
print(guests)
print(guests[0] + ", " + guests[1] + ", " + guests[2] + ", and " + guests[3] + " are invited to this family dinner!")
print("But I just realized that not everyone on the list are part of my family...")
print(guests[0] + " and " + guests[1] + 'need to be replaced')
# modifying family names
guests[0] = "Dad"
guests[1] = "Mom"
print(guests)
# add family members
print("Now adding other family members...")
guests.insert(2,'Preston')
guests.insert(3,'Kaden')
print(guests)
# Just immediate family
print("Now the boss wants just the immediate family...sorry cuz")
guests.remove("Mat")
guests.remove("Tayler")
print(guests)
|
print("Mary had a little lamb.")
print("Its fleece was white as %s." % 'snow') #전체 괄호 치면 됨
print("And everywhere that Mary went.")
print("." * 10) # what'd that do?
end01 = "C"
end02 = "h"
end03 = "e"
end04 = "e"
end05 = "s"
end06 = "e"
end07 = "b"
end08 = "u"
end09 = "r"
end10 = "g"
end11 = "e"
end12 = "r"
# watch that comma ac the end
print (end01 + end02 + end03 + end04 + end05 + end06, end=' ')
print (end07 + end08 + end09 + end10 + end11 + end12)
|
class Person:
TITLES = ('Dr', 'Mr', 'Mrs', 'Ms')
def __init__(self, title, name, surname, allowed_titles=TITLES):
if title not in allowed_titles:
raise ValueError("%s is not a valid title." % title)
self.title = title
self._name = name
self.__surname = surname
|
"""
Program: employee.py
Author: Spencer Cress
Date: 6/30/2020
"""
import datetime
class Person:
def __init__(self, _last_name, _first_name, _address, _phone_number, _salaried, _salary, _start_date):
"""
:param _last_name: string, employee's last name
:param _first_name: string, employee's first name
:param _address: string, employee's address
:param _phone_number: string, employee's phone number
:param _salaried: boolean, True, False is employee salaried
:param _salary: double, employee's salary, either yearly or hourly
:param _start_date: datetime, employee's start date
"""
self.last_name = _last_name
self.first_name = _first_name
self.address = _address
self.phone_number = _phone_number
self.salaried = _salaried
self.salary = _salary
self.start_date = _start_date
if _salaried is True:
self.salary_statement = "Salaried Employee: $"+str(+_salary)+"/year"
elif _salaried is False:
self.salary_statement = "Hourly Employee: $"+str(_salary)+"/hour"
#year = _start_date.strftime("%Y")
#month = _start_date.strftime("%m")
#day = _start_date.strftime("%d")
def __str__(self):
return "First name: " + str(self.first_name) + "\n" + "Last name: " + str(self.last_name) + "\n"\
+ "Address: " + str(self.address) + "\n" + "Phone Number: " + str(self.phone_number) + "\n" + "Salary: "\
+ str(self.salary) + "\n" + "Start Date: " + str(self.start_date) + "\n"
def __repr__(self):
print(str(self.first_name))
print(str(self.last_name))
print(str(self.address))
print(str(self.phone_number))
print(str(self.salary))
print(str(self.start_date))
def display(self):
"""
:return: a string
"""
return str(self.first_name + " " + self.last_name + "\n" + self.address + "\n" + self.salary_statement +
"\n" + "Start date: " + self.start_date.strftime("%m") + "-" + self.start_date.strftime("%d") +
"-" + self.start_date.strftime("%Y"))
if __name__ == "__main__":
emp = Person('Hall', 'Jackie', '555 5th Street \nMaxwell, Iowa',
'865-1344', False, 9.85, datetime.datetime.now())
print(emp.display())
del emp
|
# -*- coding: utf-8 -*-
"""
Created on Sun Oct 22 00:00:16 2017
@author: ANEESH
"""
import numpy as np
import matplotlib.pyplot as plt
#x = np.random.randn(10,1)
ranges = [i for i in range(1,101)]
angle = [i*np.pi/16 for i in ranges]
radius = [6.5*(104-i) for i in ranges]
x1 = radius*np.cos(angle)
y1 = radius*np.sin(angle)
x2=-1*x1
y2=-1*y1
plt.plot(x1,y1,c='r', label = 'Class 1')
plt.plot(x2,y2,c='b', label = 'Class 2')
plt.title('Not linearly separable')
plt.xlabel('X - axis')
plt.ylabel('Y - axis')
plt.legend(loc='upper right')
plt.show()
|
# Выведите первый и последний элемент списка.
lst = [1, 2, 3, 4, 5, 6, 7]
print(lst[0], lst[-1])
|
# Нужно проверить, все ли числа в последовательности уникальны.
lst1 = [34, 60, 44, 15, 99]
lst2 = [34, 60, 34, 15, 99]
print(len(lst1) == len(set(lst1)))
print(len(lst2) == len(set(lst2)))
|
"""Provides methods for getting user input for Mastermind game."""
import random
class MastermindUI:
def __init__(self):
self.keywords = {'help' : 'help', 'info' : 'info'}
self.color_options = ('black', 'blue', 'green', 'red', 'white', 'yellow')
print('Welcome to Mastermind in Python, written by Daniel Harada')
self.info ='\nIn this game you are trying to break a 4 item code. Each slot in the code will'\
' be filled by a colored peg. If you guess a color in the code in the correct position'\
' you will recieve a black result peg. If you guess the correct color but in an incorrect'\
' location, you will recieve a white result peg. For each peg you guess which is not in the'\
' code, you recieve no result pegs.\n'
print(self.info)
print('If you have any questions, please type "help" or "info" at any time. Good luck!\n')
def helpMe(self, keyword):
help_with_spaces = '\nIn the base game there are 6 color options for code pegs: black, blue, green, red, '\
'white, and yellow, which gives 1,296 possible 4 peg patterns. Adding space as an'\
' option(no peg placed) increases the number of possibilities to 2401. Please enter'\
' "yes" to allow spaces in the codes or "no" to disallow spaces.\n'
help_with_guesses = '\nPlease pick a four color code as your guess. The possible colors are: {}.'\
' Each color in your code should be separated by a space.\n'.format(', '.join(self.color_options))
help_generic = '\nThis is equal to the generic help message. It should not be reached\n'
help_keywords = {'help' : help_generic, 'help with spaces' : help_with_spaces, 'help with guesses' : help_with_guesses, 'info' : self.info}
print(help_keywords[keyword])
def userDecidesIfWithSpaces(self):
self.keywords['help'] = 'help with spaces'
while True:
user_spaces_decision = input('Play with spaces? Yes or No: ').lower()
self.checkForKeywords(user_spaces_decision)
if (user_spaces_decision == 'yes') or (user_spaces_decision == 'no'):
break
self.use_spaces = user_spaces_decision
def checkForKeywords(self, user_input):
if user_input in self.keywords:
self.helpMe(self.keywords[user_input])
return True
def setColorOptions(self):
color_options = ['black', 'blue', 'green', 'red', 'white', 'yellow']
if self.use_spaces == 'yes':
color_options += ['space']
self.color_options = tuple(color_options)
def generateSolution(self):
self.solution_pegs = tuple(random.choice(self.color_options) for x in range(4))
def userInputsGuess(self):
self.keywords['help'] = 'help with guesses'
valid_guess = False
while not valid_guess:
user_input = input('Please enter your guess: ').lower()
if not self.checkForKeywords(user_input):
user_guess = tuple(user_input.split())
valid_guess = validateGuess(user_guess)
self.guess_pegs = user_guess
def validateGuess(user_guess):
if not (set(user_guess) < set(self.color_options)):
print('Guess needs to only include colors from: ', ', '.join(self.color_options))
elif (len(user_guess) != 4):
print('Please enter a 4 color guess, each color separated by a space')
else:
return True
def userDecidesPlayAgain(self):
play_again_TF = {'yes' : True, 'no' : False}
while True:
play_again = input('Would you like to play again? Yes or No: ').lower()
if (play_again == 'yes') or (play_again == 'no'):
break
return play_again_TF[play_again]
if __name__ == '__main__':
thisUI = MastermindUI()
thisUI.userDecidesIfWithSpaces()
thisUI.setColorOptions()
thisUI.generateSolution()
thisUI.userInputsGuess()
play_again = thisUI.userDecidesPlayAgain()
print(thisUI.color_options)
print(thisUI.solution_pegs)
print(thisUI.guess_pegs)
print(play_again)
|
A=[]
B=[]
A= input('enter for list A:')
B= input('enter for list B:')
def fizzbuzz (A,B):
C=len(A)+len(B)
if (C%5==0 and C%3==0):
print( 'fizzbuzz')
elif (C%3==0):
print ('fizz')
elif (C%5==0):
print ('buzz')
else:
print (C)
fizzbuzz(A,B)
|
list=[1,2,3,4,5,6,7,8,9,0]
i = 0
z = []
while i < len(list):
j = 0
x = []
while j < 3:
d = i+j
x.append(d)
j += 1
z.append(x)
i += 3
print(z)
|
import pandas as pd
import seaborn as sns
from sklearn.decomposition import PCA
sns.set(style="white", color_codes=True)
import warnings
import matplotlib.pyplot as plt
warnings.filterwarnings("ignore")
dataset = pd.read_csv('CC.csv')
dataset = dataset.fillna(dataset.mean())
x = dataset.iloc[:,[1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17]]
y = dataset.iloc[:,12]
##building the model
from sklearn.cluster import KMeans
wcss = []
for i in range(1,11):
kmeans = KMeans(n_clusters=i,
max_iter=300, random_state=0)
kmeans.fit(x)
wcss.append(kmeans.inertia_)
plt.plot(range(1,11),wcss)
plt.title('the elbow method')
plt.xlabel('Number of Clusters')
plt.ylabel('Wcss')
plt.show()
nclusters = 3 # this is the k in kmeans
km = KMeans(n_clusters=nclusters)
km.fit(x)
# predict the cluster for each data point
y_cluster_kmeans = km.predict(x)
from sklearn import metrics
score = metrics.silhouette_score(x, y_cluster_kmeans)
print("KMeans:",score)
#PCA
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
# Fit on training set only.
scaler.fit(x)
x_scaler = scaler.transform(x)
pca = PCA(16)
x_pca = pca.fit_transform(x_scaler)
PCA_components = pd.DataFrame(x_pca)
features = range(pca.n_components_)
plt.bar(features, pca.explained_variance_ratio_, color='black')
plt.xlabel('PCA features')
plt.ylabel('variance %')
plt.xticks(features)
plt.show()
top_n_components = 2
x = PCA_components.iloc[:,:top_n_components]
wcss = []
for i in range(1,11):
kmeans = KMeans(n_clusters=i,
max_iter=300, random_state=0)
kmeans.fit(x)
wcss.append(kmeans.inertia_)
plt.plot(range(1,11),wcss)
plt.title('the elbow method')
plt.xlabel('Number of Clusters')
plt.ylabel('Wcss')
plt.show()
nclusters = 3 # this is the k in kmeans
km = KMeans(n_clusters=nclusters)
km.fit(x)
y_cluster_kmeans = km.predict(x)
score = metrics.silhouette_score(x, y_cluster_kmeans)
print("PCA:", score)
plt.scatter(x[0], x[1], c=y_cluster_kmeans, s=50, cmap='viridis')
centers = km.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5);
plt.show()
# df2 = pd.DataFrame(data=x_pca)
# finaldf = pd.concat([df2,dataset[['CREDIT_LIMIT']]],axis=1)
# print(finaldf)
|
#Author: Nithin Prasasd
#Date Created: 28/09/2019
#Program Name: palindrome_permutation.py
#Program Description: (CTCI 1.4) Given a string, write a function to check if it is a
# permutation of a palindrome (not limited to dictionary words).
#Note: case of letters are irrelevant AND ignore non-letters!
#Note: Function is of complexity: O(n) in time, O(1) in space
def palindrome_permutation(str_in):
str_in = str_in.lower()
allowable_chars = list("abcdefghijklmnopqrstuvwxyz")
dict_chars = {}
onezie = False #Set to true if an odd count of characters is found. If more than
# one odd count exists, the string cannot be a palindrome!
#Collect counts of every character in word
for char in str_in:
if char in allowable_chars:
if char in dict_chars.keys():
dict_chars[char] += 1
else:
dict_chars[char] = 1
#Check if more than one onezie exists!
for char in dict_chars.keys():
if dict_chars[char]%2 == 1:
if onezie:
return False
else:
onezie = True
#A max of one onezie exists (one character of this set goes into the center of the
# string, allowing all other characters, for which a pair exists to alternate
# on either side of the string. Thus the remaining string is a palindrome!
return True
def palindrome_permutation_harness(func):
print(func("")) #True
print(func("lru")) #False
print(func("obl!&bol")) #True
print(func("obolLOOB")) #True
print(func("oblo clb")) #True
if __name__ == "__main__":
palindrome_permutation_harness(palindrome_permutation)
|
#Author: Nithin Prasad
#Date Created: 28/09/2019
#Program Name: one_away.py
#Program Description: Given 2 strings, this program checks if they are one away (by
# insert, remove or delete)
#Note: spaces and non-alphabetic characters count, case does not!
#Note: algorithm is of complexity O(n) in time, O(1) in space
def one_away(str1, str2):
str1 = str1.lower()
str2 = str2.lower()
len_diff = abs(len(str1)-len(str2))
len_max = max(len(str1),len(str2))
if len_diff > 1:
#Fails if more than 1 away by remove or delete
return False
#Iterate through both strings by 1 char at a time. If unequality is reached
# at a given index, advance the longest string's index by 1.
#NOTE: here we handle inserts and removes identically (or agnostically)
str_long = None
str_short = None
if len(str1) >= len(str2):
str_long = str1
str_short = str2
else:
str_long = str2
str_short = str1
i = 0 #points through str_L
j = 0 #points through str_S
mirrored = True #See if strings are a mirrored to any given iteration/index of loop
#print("-------------------------------")
#print("<"+str_long+">")
#print("<"+str_short+">")
#NOTE: length 0 strings
while i < len(str_long) and j < len(str_short):
char_long = str_long[i]
char_short = str_short[j]
if char_long != char_short:
#characters seem different ...
if mirrored:
mirrored = False
if len_diff == 0:
#Increment for replacement
i += 1
j += 1
else:
#Increment for inserted string ONLY so that the next iteration,
# we remember to check the new character in the long string with
# the old one in the short string.
i += 1
else:
# 1 character was already different prior
return False
else:
#characters are the same!
i += 1
j += 1
return True
def one_away_harness(func):
print("Testing for function: ",func.__name__)
print(func("","")) #True - base case
print(func(" ","")) #True - base case
print(func("a","")) #True - base case
print(func("a","b")) #True
print(func("a","ab")) #True
print(func("ba","a")) #True
print(func("abca","aca")) #True
print(func("asdfasdf","asdfas")) #False
print(func("asadaf","asabgf")) #False
print(func("abdca","abua")) #False - 0 insert and mod, side by side
if __name__ == "__main__":
one_away_harness(one_away)
|
# 基于灰度的形态学的车牌定位:
# 首先根据车牌区域中丰富的纹理特征,提取车牌图像中垂直方向的边缘并二值化。
# 然后对得到的二值图像进行数学形态学(膨胀、腐烛、幵闭运算等)的运算,使得车牌区域形成一个闭合的连通区域。
# 最后通过车牌的几何特征(高、宽、宽高比等)对得到的候选区域进行筛选,最终得到车牌图像。
import numpy as np
import cv2
__GaussianKernelSize = 5
__closingKernelSize = np.ones((3, 17), np.uint8)
__SobelOperatorSize = 3
ASPECT_RATIO = 44 / 14 # 中国车牌标准高宽比
AREA = 44 * 14 # 中国车牌标准面积
__maxRatio, __minRatio = ASPECT_RATIO * 1.7, ASPECT_RATIO * 0.8
__maxArea, __minArea = AREA * 20, AREA * 5
__maxAngle = 25
def setGaussianKernelSize(size):
global __GaussianKernelSize
__GaussianKernelSize = size
def setClosingKernel(height, width):
global __closingKernelSize
__closingKernelSize = np.ones((height, width), np.uint8)
def setSobelOperatorSize(size):
global __SobelOperatorSize
__SobelOperatorSize = size
def setMinRatio(x):
global __minRatio
__minRatio = ASPECT_RATIO * x
def setMaxRatio(x):
global __maxRatio
__maxRatio = ASPECT_RATIO * x
def setMinArea(x):
global __minArea
__minArea = AREA * x
def setMaxArea(x):
global __maxArea
__maxArea = AREA * x
def setMaxAngle(angle):
global __maxAngle
__maxAngle = angle
# 1.预处理:高斯模糊以减少噪点,灰度化以减少处理难度
def __preprocess(img):
blur = cv2.GaussianBlur(img, (__GaussianKernelSize, __GaussianKernelSize), 0)
gray = cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY)
return gray
# 2.提取边缘:
# 用Sobel算子求X方向导数得竖直方向上边缘,并用Otsu(大津算法)二值化
def __extractEdge(img):
edge = cv2.Sobel(img, cv2.CV_64F, 1, 0, __SobelOperatorSize)
edge_abs = cv2.convertScaleAbs(edge)
ret, binary = cv2.threshold(edge_abs, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
return binary
# 3.数学形态学运算:使得车牌区域形成一个闭合的连通区域
def __morphologicalOperate(img):
close = cv2.morphologyEx(img, cv2.MORPH_CLOSE, __closingKernelSize)
return close
# 4.筛选:
# 求连通区域的最小外接矩形,并从中筛选出符合车牌形状的矩形,最后将候选区域调整成统一形状以输出
def __screen(ori, binary):
image, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
rois = []
for contour in contours:
rect = cv2.minAreaRect(contour)
# 返回的是Box2D结构:包含矩形某角点的坐标(x, y),矩形的宽和高(w, h),以及旋转角度
if __verify(rect):
plate = __adjust(ori, rect)
rois.append(plate)
return rois
# 调整函数:将符合条件的矩形区域进行旋转、缩放等,输出为统一尺寸
def __adjust(ori, rect):
points = cv2.boxPoints(rect).astype(int).reshape(-1, 1, 2)
for point in points: # 在points中找到左上角点坐标
if point[0][0] < rect[0][0] and point[0][1] < rect[0][1]:
x, y = point[0][0], point[0][1]
width, height, angle = int(rect[1][0]), int(rect[1][1]), rect[2]
if width < height:
width, height = height, width
angle += 90
rows, cols = ori.shape[0], ori.shape[1]
rotmat = cv2.getRotationMatrix2D((x, y), angle, 1)
rotated = cv2.warpAffine(ori, rotmat, (cols, rows))
plate = cv2.resize(rotated[y:y + height, x:x + width], (136, 36)) # cv2和numpy索引方式不同
return plate
# 验证函数:通过验证尺寸、高宽比和角度等判断矩形是否符合车牌形状
def __verify(rect):
global __maxRatio, __minRatio, __maxArea, __minArea, __maxAngle
area = rect[1][0] * rect[1][1]
if area < __minArea or area > __maxArea: return False
ratio = rect[1][0] / rect[1][1]
angle = abs(rect[2])
if rect[1][0] < rect[1][1]:
ratio = rect[1][1] / rect[1][0]
angle = 90 - angle
if __minRatio < ratio < __maxRatio and angle < __maxAngle:
return True
return False
def plate_locate(img_address):
ori = cv2.imread(img_address)
gray = __preprocess(ori)
binary = __extractEdge(gray)
close = __morphologicalOperate(binary)
rois = __screen(ori, close)
cv2.imshow("ori", ori)
cv2.imshow("edge", binary)
cv2.imshow("close", close)
for i in range(len(rois)):
cv2.imshow(str(i), rois[i])
cv2.waitKey(0)
# new_address = os.path.join(img_address, "plates",
# img_address.split(".")[0] + "-" + str(i) + ".jpg")
# cv2.imwrite(plate, new_address)
if __name__ == "__main__":
plate_locate(r"C:\Projects\PR\tests\1.jpg")
|
import os
import sys
sys.path.append('.')
import numpy as np
import pandas as pd
import psycopg2
# Import survey data loading script
from src.data.make_survey_dataset import load_data_as_dataframe
### ----- Set up project directory path names to load and save data ----- ###
FILE_DIRECTORY = os.path.split(os.path.realpath(__file__))[0]
SRC_DIRECTORY = os.path.split(FILE_DIRECTORY)[0]
ROOT_DIRECTORY = os.path.split(SRC_DIRECTORY)[0]
SENSITIVE_DATA_DIRECTORY = os.path.join(ROOT_DIRECTORY, '../SENSITIVE')
class BuildSurveyFeatures(object):
"""
Vinyl Me, Please survey cleaning and featurizing class.
Loads survey data from .csv, numerically encodes columns of interest, saves
featurized DataFrame to .csv in secure directory outside of git repo.
"""
def __init__(self):
""" Load survey data and create main DataFrame df and df_col_names."""
self.df, self.df_col_names = load_data_as_dataframe(
filename='2019 Member Survey - Raw Data.csv')
print(f"Loaded survey DataFrame of size {self.df.shape}.\n")
def col_how_much_use_encode(self, data_frame, col_idx_list):
"""Featurizes pandas DataFrame columns.
Numerically encodes the values in pandas DataFrame columns that answer
the following question:
How often do you use/interact with the following Vinyl Me, Please
elements? - Survey columns 133-145
Args:
data_frame: DataFrame with columns to be encoded.
col_idx_list (list of int): Numerical indicies of the columns to be
encoded.
Returns:
DataFrame column with values encoded via the 'use' dictionary
below.
"""
use = {"I don't know about it": 0,
"I don't care about it": 0,
"Used it once": 1,
"Sometimes": 2,
"Frequently": 3}
for col_idx in col_idx_list:
# Filling NaN values with base case.
data_frame.iloc[:, col_idx].fillna("I don't know about it",
inplace=True)
data_frame.iloc[:, col_idx] = [use[val] for val in
data_frame.iloc[:,col_idx]]
print(f"Encoded \"how much use\" columns: {col_idx_list}")
def col_how_often_do_encode(self, data_frame, col_idx_list):
"""Featurizes pandas DataFrame columns.
Numerically encodes the values in pandas DataFrame columns that answer
the following question:
How often you do these things? - Survey columns 415-420
Args:
data_frame: DataFrame with columns to be encoded.
col_idx_list (list of int): Numerical indicies of the columns to be
encoded.
Returns:
DataFrame column with values encoded via the 'freq' dictionary
below.
"""
freq = {'Hardly ever': 0,
'Every few months': 1,
'A few times a month': 2,
'About once a week': 3,
'Several times per week': 4,
'Every day': 5}
for col_idx in col_idx_list:
# Filling NaN values with base case.
data_frame.iloc[:,col_idx].fillna("Hardly ever", inplace=True)
data_frame.iloc[:,col_idx] = [freq[val] for val in
data_frame.iloc[:,col_idx]]
print(f"Encoded \"how often\" columns: {col_idx_list}")
def col_how_long_records_encode(self, data_frame, col_idx_list=[33]):
"""Featurizes pandas DataFrame columns.
Numerically encodes the values in pandas DataFrame columns that answer
the following question:
How long have you been buying records? - Survey column 33
Args:
data_frame: DataFrame with columns to be encoded.
col_idx_list (list of int): Numerical indicies of the columns to be
encoded.
Returns:
DataFrame column with values encoded via the 'length' dictionary
below.
"""
length = {'I just started': 0,
'6 - 12 months': 0.5,
'1-3 years': 1,
'3-5 years': 1.5,
'5-10 years': 2,
'10-15 years': 2.5,
'More than 15 years': 3}
for col_idx in col_idx_list:
# Filling NaN values with base case.
data_frame.iloc[:,col_idx].fillna('I just started', inplace=True)
data_frame.iloc[:,col_idx] = [length[val] for val in
data_frame.iloc[:,col_idx]]
print(f"Encoded \"how long collect records\" column: {col_idx_list}")
def encode_records_own(self, data_frame, col_idx=34):
"""Featurizes pandas DataFrame column.
Numerically encodes (bins and normalizes) the values in pandas
DataFrame columns that answer the following question:
About how many records do you own? - Survey column 34
Args:
data_frame: DataFrame with column to be encoded.
col_idx (int): The numerical index of the column to be encoded.
Returns:
DataFrame column with values encoded on a scale of 0-5, binned to
the nearest whole number, with values at the 90th percentile and up
set to 5.
"""
# Filling NaN values with median number of records owned.
median_num_owned = data_frame.iloc[:,col_idx].median()
data_frame.iloc[:,col_idx].fillna(median_num_owned, inplace=True)
# Setting max at 90th percentile of population to limit outliers.
max_cutoff = np.percentile(data_frame.iloc[:,col_idx].to_numpy(), 90)
data_frame.iloc[:,col_idx] = np.where(
data_frame.iloc[:,col_idx] >= max_cutoff,
max_cutoff,
data_frame.iloc[:,col_idx])
data_frame.iloc[:,col_idx] = (data_frame.iloc[:,col_idx]
/ max_cutoff) * 5
data_frame.iloc[:,col_idx] = data_frame.iloc[:,col_idx].apply(
lambda x: int(x))
print(f"Encoded \"how many records own\" column: {col_idx}")
def col_binary_encode(self, data_frame, col_idx_list):
"""Featurizes pandas DataFrame column.
Numerically encodes the values in pandas DataFrame columns that contain
only two options (yes/no questions).
Args:
data_frame: DataFrame with columns to be encoded.
col_idx_list (list of int): Numerical indicies of the columns to be
encoded.
Returns:
DataFrame column with values encoded as follows:
'str(column title)' --> 1
anything else --> -1
"""
for col_idx in col_idx_list:
label = data_frame.columns.get_level_values(1)[col_idx]
data_frame.iloc[:,col_idx] = data_frame.iloc[:,col_idx].apply(
lambda x: 1 if (str(x) == str(label))
| (x == 1) else -1)
print(f"Binary encoded columns: {col_idx_list}")
def col_age_encode(self, data_frame, col_idx_list=[9]):
"""Featurizes pandas DataFrame column.
Numerically encodes the values in pandas DataFrame columns that answer
the following question:
How old are you? - Survey column 9
Args:
data_frame: DataFrame with columns to be encoded.
col_idx_list (list of int): Numerical indicies of the columns to be
encoded.
Returns:
DataFrame column with values encoded via the 'age' dict below.
"""
age = {'Under 18': 0,
'18-20': 0.5,
'21-24': 1,
'25-34': 1.5,
'35-44': 2,
'45-54': 2.5,
'55-64': 3,
'65+': 3.5}
for col_idx in col_idx_list:
# Filling NaN values with most common age group.
data_frame.iloc[:,col_idx].fillna('25-34', inplace=True)
data_frame.iloc[:,col_idx] = [age[val] for val
in data_frame.iloc[:,col_idx]]
print(f"Encoded \"how old are you\" column: {col_idx}")
def col_gender_encode(self, data_frame, col_idx_list=[10]):
"""Featurizes pandas DataFrame column.
Numerically encodes the values in pandas DataFrame columns that answer
the following question:
To what gender do you identify? - Survey column 10
Args:
data_frame: DataFrame with columns to be encoded.
col_idx_list (list of int): Numerical indicies of the columns to be
encoded.
Returns:
DataFrame column with values encoded as follows:
Male --> 1
Female, Other --> 0
"""
for col_idx in col_idx_list:
data_frame.iloc[:,col_idx] = data_frame.iloc[:,col_idx].apply(
lambda x: 1 if (str(x) == 'Male')
else 0)
print(f"Encoded \"gender identity\" column: {col_idx_list}")
def col_records_month_encode(self, data_frame, col_idx_list=[36]):
"""Featurizes pandas DataFrame column.
Numerically encodes the values in pandas DataFrame columns that answer
the following question:
About how many records do you buy per month? - Survey column 36
Args:
data_frame: DataFrame with columns to be encoded.
col_idx_list (list of int): Numerical indicies of the columns to be
encoded.
Returns:
DataFrame column with values encoded via the 'record_nums'
dictionary below. Note date-type formatting issue with source data.
0 - 1 --> 0-1 --> 0
3-Feb --> 2-3 --> 1
5-Apr --> 4-5 --> 2
10-Jun --> 6-10 --> 3
More than 10 --> More than 10 --> 4
"""
record_nums = {'0 - 1': 0,
'3-Feb': 1,
'5-Apr': 2,
'10-Jun': 3,
'More than 10': 4}
for col_idx in col_idx_list:
# Filling NaN values with base case (0-1 records/month).
data_frame.iloc[:,col_idx].fillna('0 - 1', inplace=True)
data_frame.iloc[:,col_idx] = [record_nums[num] for num
in data_frame.iloc[:,col_idx]]
print(f"Encoded \"records buy per month\" column: {col_idx_list}")
def col_satisfy_encode(self, data_frame, col_idx_list):
"""Featurizes pandas DataFrame column.
Numerically encodes the values in pandas DataFrame columns that answer
the following question:
How satisfied are you with the following? - Survey columns 125 - 132
Args:
data_frame: DataFrame with columns to be encoded.
col_idx_list (list of int): Numerical indicies of the columns to be
encoded.
Returns:
DataFrame column with values encoded via the 'sentiment' dictionary
below.
"""
sentiment = {'Very Satisfied': 2,
'Satisfied': 1,
'Neutral': 0,
'Dissatisfied': -1,
'Very Dissatsified': -2}
for col_idx in col_idx_list:
data_frame.iloc[:,col_idx].fillna('Neutral', inplace=True)
data_frame.iloc[:,col_idx] = [sentiment[rating] for rating
in data_frame.iloc[:,col_idx]]
print(f"Encoded \"how satisfied are you\" columns: {col_idx_list}")
def col_agree_encode(self, data_frame, col_idx_list):
"""Featurizes pandas DataFrame column.
Numerically encodes the values in pandas DataFrame columns that answer
the following question:
How much do you agree with these statements? - Survey columns 180 - 216
Args:
data_frame: DataFrame with columns to be encoded.
col_idx_list (list of int): Numerical indicies of the columns to be
encoded.
Returns:
DataFrame column with values encoded via the 'sentiment' dictionary
below.
"""
sentiment = {'strongly agree': 2,
'agree': 1,
'neutral': 0,
'disagree': -1,
'strongly disagree': -2}
for col_idx in col_idx_list:
# Filling NaN values with base case 'Neutral'.
data_frame.iloc[:,col_idx].fillna('Neutral', inplace=True)
data_frame.iloc[:,col_idx] = [sentiment[str(rating).lower()] for
rating in data_frame.iloc[:,col_idx]]
print(f"Encoded \"how much agree\" columns: {col_idx_list}")
def save_to_csv(self, data_frame, file_name='featurized_survey_data.csv'):
"""Saves DataFrame to .csv.
Saves .csv to SENSITIVE_DATA_DIRECTORY, which must be located outside
of any git repo due to Personally Identifiable Information (PII).
Args:
data_frame: DataFrame to be saved to .csv.
file_name (str): Name of resulting .csv file.
Returns:
DataFrame saved as .csv to SENSITIVE_DATA_DIRECTORY.
"""
featurized_df_filepath = os.path.join(SENSITIVE_DATA_DIRECTORY,
file_name)
data_frame.to_csv(featurized_df_filepath, index=False)
print(f"Saved featurized survey data to {featurized_df_filepath}.")
if __name__ == '__main__':
build_features = BuildSurveyFeatures()
build_features.col_age_encode(build_features.df, col_idx_list=[9])
build_features.col_gender_encode(build_features.df, col_idx_list=[10])
encode_col_list = list(range(17, 33))
build_features.col_binary_encode(build_features.df, encode_col_list)
build_features.col_how_long_records_encode(build_features.df,
col_idx_list=[33])
build_features.encode_records_own(build_features.df, col_idx=34)
build_features.col_records_month_encode(build_features.df,
col_idx_list=[36])
agree_encode_col_list = list(range(63, 83))
build_features.col_agree_encode(build_features.df, agree_encode_col_list)
encode_col_list = list(range(108, 120))
build_features.col_binary_encode(build_features.df, encode_col_list)
satisfy_encode_col_list = list(range(125, 133))
build_features.col_satisfy_encode(build_features.df,
satisfy_encode_col_list)
how_much_use_encode_list = list(range(133, 146))
build_features.col_how_much_use_encode(build_features.df,
how_much_use_encode_list)
agree_encode_col_list = list(range(180, 217))
build_features.col_agree_encode(build_features.df, agree_encode_col_list)
encode_col_list = list(range(406, 414))
build_features.col_binary_encode(build_features.df, encode_col_list)
often_col_list = list(range(415, 422))
build_features.col_how_often_do_encode(build_features.df, often_col_list)
build_features.save_to_csv(build_features.df,
file_name='featurized_survey_data.csv')
|
#-*- coding:utf-8 -*-
# 18) Seja a lista [3, 5, 1, 7, 2, 8, 11, -2, 3 -6, 0].
# Escreva um programa em Python que gere esta lista e apresente seus valores na ordem original e na ordem invertida.
numbers = [3, 5, 1, 7, 2, 8, 11, -2, 3 -6, 0]
print(numbers)
print(numbers[::-1])
|
#-*- coding:utf-8 -*-
# 8) Escreva um programa em Python que escreva na tela os números de 1 a 10. Use a estrutura de repetição for.
numberList = []
for i in range(1,11):
numberList.append(i)
print(f'Lista: {numberList}')
|
#-*- coding:utf-8 -*-
# 11) Escreva um programa em Python que leia repetidamente 5 números do teclado e indique, para cada, se é positivo.
for i in range(1,6):
number = int(input(f'Digite o {i}º número: '))
print(f'Número é {"positivo" if number >= 0 else "negativo"}.')
|
import pprint
birthdays={'Austin':'April 30','Joseph':'August 8','Rozy':'June 04','Hawi':'September 25','Rosa':'October 10'}
while True:
print("Enter Your name:(Blank to quit)")
name=input()
if name=='':
break
if name in birthdays:
print(birthdays[name]+" is the birthday of "+ name)
else:
print("I do not have birthday information for "+name)
print("What is your birthday?")
bday=input()
birthdays[name]=bday
print('Birthday database updated.')
for a in birthdays.values():
print(a)
for b in birthdays.keys():
print(b)
for c in birthdays.items():
print (c)
birthdays.setdefault('color','white')
wewe=input('A sentence you like\n')
wewe=wewe.strip()
count={}
for character in wewe:
count.setdefault(character,0)
count[character]=count[character]+1
pprint.pprint(count)
|
# This program says hello and asks for my name.
print('Hello World!')
print('What is Your Name?')#as for their name
myName = input()
print('it is Good to meetyou, ' + myName)
print('the length of your name is:')
print(len(myName))
print('What is Your age?')# ask for their age
myAge = input()
print('You will be ' +str(int(myAge) + 1) + ' in a year.')
print("Enter you're best Interger")
nt(s)=input()
s=input()
#print(int(s))
if myName=='Austin':
print('You Have Such a Nice Name,'+myName)
else:
print("Si Ungeitwa Jina Ingine")
if int(s)<9:
print('Nice Choice of Interger')
else:
print('Chagua vitu Ndogo haitabadilishwa kuwa food')
if myName=='Austin':
print('Welcome,')
elif int(myAge)>5:
print('You"re not Austin, So we Ni?')
else:
print('Good Bye Hacker')
i=0
while True:
print("ERROR0077, You have just activated wanacry virus in you're system\nEnter you're email to stop the infection from spreading!!!")
#mail=input()
mail=[i]
i=input()
i=i+1
if i==5:
break
|
#This is a guessing game.
import random
secretnumber=random.randint(1,10)
print("I am thinking of a number between 1 AND 10")
# ask the player to guess 5 time.
for guesstaken in range(1,6):
print('Take A guess.')
guess=int(input())
if guess<secretnumber:
print("The guess is too low.")
elif guess>secretnumber:
print("The Guess is Too High.")
else:
break #This condtion is the correct guess
if guess == secretnumber:
print("Good job! You guessed my number in "+ str(guesstaken) +" guesses")
else:
print("Nope. The number I was thinking of was "+ str(secretnumber))
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.