text
stringlengths
37
1.41M
def bubblesort(a): j = 0 while j != (len(a)-1): j = 0 for i in range(0, (len(a)-1)): first = a[i] second = a[i+1] if first > second: a[i] = second a[i+1] = first else: j = j+1 print (a) return a a = [9,2,7,1,6,3,7,8] bubblesort(a)
class Road(): def __init__(self, length=1000, curve=0): self.length = length self.curve = curve def road_loop(self, car_list, car, next_car): if next_car.position[0] - 5 < 6: car.position[0] = 1000 car.speed = 0 else: car.position[0] -= 1000 car_list.insert(0, car_list.pop()) car.collision_check(next_car) return car_list
import os import random def clear_output(): if os.name == 'nt': os.system('cls') else: os.system('clear') suits = ('Hearts', 'Diamonds', 'Spades', 'Clubs') ranks = ('Two', 'Three', 'Four', 'Five', 'Six', 'Seven', 'Eight', 'Nine', 'Ten', 'Jack', 'Queen', 'King', 'Ace') values = {'Two':2, 'Three':3, 'Four':4, 'Five':5, 'Six':6, 'Seven':7, 'Eight':8, 'Nine':9, 'Ten':10, 'Jack':10, 'Queen':10, 'King':10, 'Ace':11} values_visual = {'Two':'2 ', 'Three':'3 ', 'Four':'4 ', 'Five':'5 ', 'Six':'6 ', 'Seven':'7 ', 'Eight':'8 ', 'Nine':'9 ', 'Ten':'10', 'Jack':'J ', 'Queen':'Q ', 'King':'K ', 'Ace':'A '} class Card: def __init__(self,rank,suit): self.rank = rank self.suit = suit def __str__(self): return self.rank + ' of ' + self.suit class Deck: def __init__(self): self.deck = [] # start with an empty list for rank in ranks: for suit in suits: self.deck.append(Card(rank,suit)) # build Card objects and add them to the list def __str__(self): deck_comp = '' # start with an empty string for card in self.deck: deck_comp += '\n '+card.__str__() # add each Card object's print string return deck_comp def shuffle(self): random.shuffle(self.deck) def deal(self): single_card = self.deck.pop() return single_card class Hand: def __init__(self): self.cards = [] self.value = 0 self.aces = 0 # add an attribute to keep track of aces self.tens = 0 def add_card(self,card): self.cards.append(card) self.value += values[card.rank] if card.rank == 'Ace': self.aces += 1 # add to self.aces elif card.rank == 'Ten' or card.rank == 'Jack' or card.rank == 'Queen' or card.rank == 'King': self.tens += 1 def adjust_for_ace(self): while self.value > 21 and self.aces: self.value -= 10 self.aces -= 1 class Chips: def __init__(self,total=100): self.total = total self.bet = 0 def win_blackjack_bet(self): self.total += round(self.bet * 1.5) def win_bet(self): self.total += self.bet def lose_bet(self): self.total -= self.bet def take_bet(chips): while True: try: chips.bet = int(input('How many chips would you like to bet? ')) except ValueError: print('Please enter a whole number.') else: if chips.bet > chips.total: print("Sorry, your bet can't exceed " + str(chips.total)) elif chips.bet <= 0: print('Please place a bet.') else: break def hit(deck,hand): hand.add_card(deck.deal()) hand.adjust_for_ace() def hit_or_stand(deck,hand): global playing # to control an upcoming while loop while True: x = input("\nWould you like to Hit or Stand? Enter h or s: ") if x == 'h': hit(deck,hand) # hit() function defined above clear_output() break elif x == 's': print("Player stands. Dealer is playing.") playing = False clear_output() break else: print("Sorry, please enter h or s.") continue def check_for_blackjack(player): if len(player.cards) == 2: if player.tens == 1 and player.aces == 1: return True else: return False else: return False def show_dealer_some(dealer): print("\nDealer's Hand:") print(" ------- ") print(" | {} | ".format(values_visual[dealer.cards[1].rank])) print(" | | ") print(" ---| | ") print(" | ? | | ") print(" | | {}| ".format(values_visual[dealer.cards[1].rank])) print(" | ------- ") print(" | | ") print(" | ? | ") print(" ------- ") print(" {} ".format(dealer.cards[1])) print(" {} \n".format("? of ?")) def show_dealer_all(dealer): if len(dealer.cards) == 2: print("\nDealer's Hand:") print(" ------- ") print(" | {} | ".format(values_visual[dealer.cards[1].rank])) print(" | | ") print(" ---| | ") print(" | {}| | ".format(values_visual[dealer.cards[0].rank])) print(" | | {}| ".format(values_visual[dealer.cards[1].rank])) print(" | ------- ") print(" | | ") print(" | {}| ".format(values_visual[dealer.cards[0].rank])) print(" ------- ") print(" {} ".format(dealer.cards[1])) print(" {} \n".format(dealer.cards[0])) elif len(dealer.cards) == 3: print("\nDealer's Hand:") print(" ------- ") print(" | {} |".format(values_visual[dealer.cards[2].rank])) print(" | |") print(" ---| |") print(" | {}| |".format(values_visual[dealer.cards[1].rank])) print(" | | {}|".format(values_visual[dealer.cards[2].rank])) print(" ---| ------- ") print(" | {}| | ".format(values_visual[dealer.cards[0].rank])) print(" | | {}| ".format(values_visual[dealer.cards[1].rank])) print(" | ------- ") print(" | | ") print(" | {}| ".format(values_visual[dealer.cards[0].rank])) print(" ------- ") print(" {} ".format(dealer.cards[2])) print(" {} ".format(dealer.cards[1])) print(" {} \n".format(dealer.cards[0])) elif len(dealer.cards) == 4: print("\nDealer's Hand:") print(" ------- ") print(" | {} |".format(values_visual[dealer.cards[3].rank])) print(" | |") print(" ---| |") print(" | {}| |".format(values_visual[dealer.cards[2].rank])) print(" | | {}|".format(values_visual[dealer.cards[3].rank])) print(" ---| ------- ") print(" | {}| |".format(values_visual[dealer.cards[1].rank])) print(" | | {}|".format(values_visual[dealer.cards[2].rank])) print(" ---| ------- ") print(" | {}| | ".format(values_visual[dealer.cards[0].rank])) print(" | | {}| ".format(values_visual[dealer.cards[1].rank])) print(" | ------- ") print(" | | ") print(" | {}| ".format(values_visual[dealer.cards[0].rank])) print(" ------- ") print(" {} ".format(dealer.cards[3])) print(" {} ".format(dealer.cards[2])) print(" {} ".format(dealer.cards[1])) print(" {} \n".format(dealer.cards[0])) else: print("\nDealer's Hand: \n") for card in dealer_hand.cards: print(" " + str(card)) def show_player_all(player): if len(player.cards) == 2: print(" ------- ") print(" | {} | ".format(values_visual[player.cards[1].rank])) print(" | | ") print(" ---| | ") print(" | {}| | ".format(values_visual[player.cards[0].rank])) print(" | | {}| ".format(values_visual[player.cards[1].rank])) print(" | ------ ") print(" | | ") print(" | {}| ".format(values_visual[player.cards[0].rank])) print(" ------- ") print(" {} ".format(player.cards[1])) print(" {} ".format(player.cards[0])) print("\n Current Bet: {}".format(player_chips.bet)) print(" Total Chips: {}".format(player_chips.total)) print("\nPlayer's Hand:") elif len(player.cards) == 3: print(" ------- ") print(" | {} |".format(values_visual[player.cards[2].rank])) print(" | |") print(" ---| |") print(" | {}| |".format(values_visual[player.cards[1].rank])) print(" | | {}|".format(values_visual[player.cards[2].rank])) print(" ---| ------- ") print(" | {}| | ".format(values_visual[player.cards[0].rank])) print(" | | {}| ".format(values_visual[player.cards[1].rank])) print(" | ------- ") print(" | | ") print(" | {}| ".format(values_visual[player.cards[0].rank])) print(" ------- ") print(" {} ".format(player.cards[2])) print(" {} ".format(player.cards[1])) print(" {} ".format(player.cards[0])) print("\n Current Bet: {}".format(player_chips.bet)) print(" Total Chips: {}".format(player_chips.total)) print("\nPlayer's Hand:") elif len(player.cards) == 4: print(" ------- ") print(" | {} | ".format(values_visual[player.cards[3].rank])) print(" | | ") print(" ---| | ") print(" | {}| | ".format(values_visual[player.cards[2].rank])) print(" | | {}| ".format(values_visual[player.cards[3].rank])) print(" ---| ------- ") print(" | {}| | ".format(values_visual[player.cards[1].rank])) print(" | | {}| ".format(values_visual[player.cards[2].rank])) print(" ---| ------- ") print(" | {}| | ".format(values_visual[player.cards[0].rank])) print(" | | {}| ".format(values_visual[player.cards[1].rank])) print(" | ------- ") print(" | | ") print(" | {}| ".format(values_visual[player.cards[0].rank])) print(" ------- ") print(" {} ".format(player.cards[3])) print(" {} ".format(player.cards[2])) print(" {} ".format(player.cards[1])) print(" {} ".format(player.cards[0])) print("\n Current Bet: {}".format(player_chips.bet)) print(" Total Chips: {}".format(player_chips.total)) print("\nPlayer's Hand:") else: print("\nPlayer's Hand: \n") for card in player_hand.cards: print(" " + str(card)) def player_busts(player,dealer,chips): print("\nPlayer busts!") chips.lose_bet() def player_wins_blackjack(player,dealer,chips): print("\nPlayer wins Blackjack!") chips.win_blackjack_bet() def player_wins(player,dealer,chips): print("\nPlayer wins!") chips.win_bet() def dealer_busts(player,dealer,chips): print("\nDealer busts!") chips.win_bet() def dealer_wins(player,dealer,chips): print("\nDealer wins!") chips.lose_bet() def push(player,dealer): print("\nDealer and Player tie! It's a push.") game_on = True intro = True deal_cards = False playing = False while game_on: while intro: clear_output() print("\nWelcome to Blackjack!") print("\nThis version of Blackjack does not allow splits.") print("The Dealer hits until 17 or more.") print("A winning blackjack pays 3:2.") print("\nYour starting amount of chips is: 100") player_chips = Chips() deal_cards = True break while deal_cards: # create & shuffle the deck, deal two cards to each player deck = Deck() deck.shuffle() player_hand = Hand() player_hand.add_card(deck.deal()) player_hand.add_card(deck.deal()) dealer_hand = Hand() dealer_hand.add_card(deck.deal()) dealer_hand.add_card(deck.deal()) # prompt the Player for their bet take_bet(player_chips) clear_output() # show cards (but keep one dealer card hidden) show_dealer_some(dealer_hand) show_player_all(player_hand) playing = True break while playing: # recall this variable from our hit_or_stand function # prompt Player to Hit or Stand hit_or_stand(deck,player_hand) clear_output() # show cards (but keep one dealer card hidden) show_dealer_some(dealer_hand) show_player_all(player_hand) # if player's hand exceeds 21, run player_busts() and break out of loop if player_hand.value > 21: clear_output() player_busts(player_hand,dealer_hand,player_chips) break # if player hasn't busted, play dealer's hand until dealer reaches 17 if player_hand.value <= 21: while dealer_hand.value < 17: hit(deck,dealer_hand) # run different winning scenarios clear_output() # check if player got blackjack if check_for_blackjack(player_hand): if dealer_hand.value != 21: player_wins_blackjack(player_hand,dealer_hand,player_chips) else: push(player_hand,dealer_hand) # dealer busts elif dealer_hand.value > 21: dealer_busts(player_hand,dealer_hand,player_chips) # dealer wins elif dealer_hand.value > player_hand.value: dealer_wins(player_hand,dealer_hand,player_chips) # player wins elif dealer_hand.value < player_hand.value: player_wins(player_hand,dealer_hand,player_chips) # push else: push(player_hand,dealer_hand) # show all hands & player's total chips show_dealer_all(dealer_hand) show_player_all(player_hand) # if player busts, ask if they want to play again if player_chips.total == 0: print("\nSorry, you ran out of chips!") print("Game Over!\n") # if player ran out of chips, ask if they want to play again while player_chips.total == 0: x = input("Play again? Enter y or n: ") if x == 'y' or x == 'n': break else: print("Please try again.") # go back to the intro if x == 'y': intro = True continue # exit game else: print("Thanks for playing!") break else: # if player still has chips, ask if they want to keep playing while player_chips.total > 0: x = input("Do you want to play another hand? Enter y or n: ") if x == 'y' or x == 'n': break else: print("Please try again.") # skip the intro & deal another hand if x == 'y': intro = False deal_cards = True continue #exit game else: print("Thanks for playing!") break
# -*- encoding: utf-8 -*- ''' @File : 定长数组实现队列.py @Time : 2020/06/08 17:47:40 @Author : windmzx @Version : 1.0 @Desc : For leetcode template ''' # here put the import lib from typing import List class MyQueue: def __init__(self, size): super().__init__() self.head = 0 self.tail = 0 self.size = 0 self.cap = size self.array = [0 for i in range(size)] def add(self, num): if self.size >= self.cap: raise Exception("no space") else: self.array[self.tail] = num self.size += 1 self.tail = (self.tail+1) % self.cap def addhead(self, num): if self.size >= self.cap: raise Exception("no space") else: self.array[self.head-1] = num self.size += 1 self.head -= 1 if self.head < 0: self.head = self.head+self.cap def lpop(self): if self.size <= 0: raise Exception("no enough money") else: num = self.array[self.head] self.head = (self.head+1) % self.cap self.size -= 1 return num def rpop(self): if self.size <= 0: raise Exception("no enough money") else: num = self.array[self.tail-1] self.tail -= 1 if self.tail < 0: self.tail += self.cap self.size -= 1 return num if __name__ == "__main__": x = MyQueue(3) x.add(1) x.add(2) x.addhead(3) print(x.lpop()) print(x.rpop()) x.add(4) x.lpop() x.add(5) x.lpop() x.add(6) x.lpop() print(x)
# -*- encoding: utf-8 -*- ''' @File : 面试题59 - II. 队列的最大值.py @Time : 2020/05/09 11:41:43 @Author : windmzx @Version : 1.0 @Desc : For leetcode template ''' # here put the import lib from typing import List import queue import queue class MaxQueue: def __init__(self): self.maxqueue = queue.deque() self.queue = queue.Queue() def max_value(self) -> int: if not self.maxqueue: return -1 return self.maxqueue[0] def push_back(self, value: int) -> None: while self.maxqueue and self.maxqueue[-1] < value: self.maxqueue.pop() self.maxqueue.append(value) self.queue.put(value) def pop_front(self) -> int: # Your MaxQueue object will be instantiated and called as such: # obj = MaxQueue() # param_1 = obj.max_value() # obj.push_back(value) # param_3 = obj.pop_front() if not self.maxqueue: return -1 res = self.queue.get() if res == self.maxqueue[0]: self.maxqueue.popleft() if __name__ == "__main__": x = MaxQueue() print(x.push_back(1)) print(x.push_back(2)) print(x.push_back(3)) print(x.max_value()) print(x.push_back(4)) print(x.max_value()) print(x.pop_front()) print(x.max_value())
# -*- encoding: utf-8 -*- ''' @File : 面试题12. 矩阵中的路径.py @Time : 2020/06/07 14:44:02 @Author : windmzx @Version : 1.0 @Desc : For leetcode template ''' # here put the import lib from typing import List class Solution: def exist(self, board: List[List[str]], word: str) -> bool: m = len(board) n = len(board[0]) def dfs(i, j, index): if index == len(word): return True if i < 0 or j < 0 or i >= m or j >= n or board[i][j] == '#' or board[i][j]!=word[index]: return False temp = board[i][j] board[i][j] = '#' res = dfs(i+1, j, index+1) or dfs(i-1, j, index + 1) or dfs(i, j+1, index+1) or dfs(i, j-1, index+1) board[i][j] = temp return res for i in range(m): for j in range(n): if word[0] == board[i][j]: if dfs(i, j, 0): return True return False if __name__ == "__main__": x = Solution() print(x.exist( [["A", "B", "C", "E"], ["S", "F", "C", "S"], ["A", "D", "E", "E"]], "ABCDE" ))
# Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def hasCycle(self, head: ListNode) -> bool: if head is None: return False p1=head p2=p1.next while p2!=p1: if p1.next is None or p1.next.next is None: return False p1=p1.next p2=p2.next.next return True
# Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: res = 0 def diameterOfBinaryTree(self, root: TreeNode) -> int: def helper(root): if root is None: return 0 leftlen = helper(root.left) rightlen = helper(root.right) self.res = max(self.res, leftlen+rightlen+1) return max(leftlen, rightlen)+1 helper(root) return self.res-1 if __name__ == "__main__": x=Solution() root=TreeNode(1) root.left=TreeNode(2) root.right=TreeNode(3) # root.left.left=TreeNode(4) # root.left.right=TreeNode(5) print(x.diameterOfBinaryTree(root))
# -*- encoding: utf-8 -*- ''' @File : 110. 平衡二叉树.py @Time : 2020/04/27 21:12:31 @Author : windmzx @Version : 1.0 @Desc : For leetcode template ''' # here put the import lib from typing import List # Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def isBalanced(self, root: TreeNode) -> bool: if root is None: return True def helper(root) -> int: if root is None: return 0 lefth = helper(root.left) righth = helper(root.right) if lefth == -1 or righth == -1: return -1 if abs(lefth-righth) > 1: return -1 else: return max(lefth, righth)+1 h = helper(root) if h != -1: return True return False if __name__ == "__main__": x = Solution() root = TreeNode(4) root.left = TreeNode(2) root.left.left = TreeNode(1) root.left.right = TreeNode(3) root.right = TreeNode(6) root.right.left = TreeNode(5) print(x.isBalanced(root))
from typing import List class Solution: def largestRectangleArea(self, heights: List[int]) -> int: maxarea=0 heights=[0]+heights+[0] stack=[] for i in range(len(heights)): # 栈顶元素大于当前元素 while stack and heights[stack[-1]] > heights[i]: temp=stack.pop() maxarea=max(maxarea,(i-stack[-1]-1)*heights[temp]) stack.append(i) return maxarea if __name__ == "__main__": x=Solution() print(x.largestRectangleArea([1]))
# -*- encoding: utf-8 -*- ''' @File : 88. 合并两个有序数组.py @Time : 2020/04/23 09:24:45 @Author : windmzx @Version : 1.0 @Desc : For leetcode template ''' # here put the import lib from typing import List class Solution: def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None: """ Do not return anything, modify nums1 in-place instead. """ index=m+n-1 i=m-1 j=n-1 while i>=0 and j>=0: if nums1[i]>nums2[j]: nums1[index]=nums1[i] index-=1 i-=1 else: nums1[index]=nums2[j] j-=1 index-=1 while i>=0: nums1[index]=nums1[i] index-=1 i-=1 while j>=0: nums1[index]=nums2[j] j-=1 index-=1 if __name__ == "__main__": x=Solution() print()
class Solution: def isAdditiveNumber(self, num: str) -> bool: length=len(num) def isactive(num1,num2,k): num3=num1+num2 index=k+1 while index<=length: if str(int(num[k:index]))==num[k:index] and int(num[k:index])==num3: num1=num2 num2=num3 num3=num1+num2 return index==length or isactive(num1, num2, index) else: index+=1 return False for i in range(1,length//2+1): for j in range(1,length//2+1): num1=int(num[:i]) if str(int(num[i:i+j]))!=num[i:i+j]: continue num2=int(num[i:i+j]) if isactive(num1,num2, i+j): return True return False if __name__ == "__main__": x=Solution() print(x.isAdditiveNumber("1203"))
from typing import List class Solution: def reconstructQueue(self, people: List[List[int]]) -> List[List[int]]: flag=True while flag: flag=False for i in range(1,len(people)): a1=people[i-1] a2=people[i] if a1[0]<a2[0]: flag=True people[i]=a1 people[i-1]=a2 elif a1[0]==a2[0]: if a1[1]>a2[1]: flag=True people[i]=a1 people[i-1]=a2 res=[] for p in people: res.insert(p[1],p) return res if __name__ == "__main__": x=Solution() in1=[[7,0], [4,4], [7,1], [5,0], [6,1], [5,2]] res=x.reconstructQueue(in1) print(res)
from typing import List class Solution: def isValidSudoku(self, board: List[List[str]]) -> bool: def check(row, col): com = board[row][col] for i in range(row//3*3, row//3*3+3): for j in range(col//3*3, col//3*3+3): if i == row and j == col: continue if board[i][j] != '.' and board[i][j] == com: return False # for j in range(-row,0): # if row+j<0 or row+j>=9 or col+j<0 or col+j>=9: # pass # else: # if board[row+j][col+j]!='.' and board[row+j][col+j]==com: # return False # for j in range(1,9-row): # if row+j<0 or row+j>=9 or col+j<0 or col+j>=9: # pass # else: # if board[row+j][col+j]!='.' and board[row+j][col+j]==com: # return False # for j in range(-row,0): # if row+j<0 or row+j>=9 or col-j<0 or col-j>=9: # pass # else: # if board[row+j][col+j]!='.' and board[row+j][col-j]==com: # return False # for j in range(1,9-row): # if row+j<0 or row+j>=9 or col-j<0 or col-j>=9: # pass # else: # if board[row+j][col+j]!='.' and board[row+j][col-j]==com: # return False for j in range(0,9): if j==col:continue if board[row][j]!='.' and board[row][j]==com: return False for j in range(0, 9): if j == row: continue if board[j][col] != '.' and board[j][col] == com: return False return True for i in range(9): for j in range(9): if board[i][j] != '.': if not check(i, j): return False return True if __name__ == "__main__": x = Solution() print(x.isValidSudoku( [ ["7", ".", ".", ".", "4", ".", ".", ".", "."], [".", ".", ".", "8", "6", "5", ".", ".", "."], [".", "1", ".", "2", ".", ".", ".", ".", "."], [".", ".", ".", ".", ".", "9", ".", ".", "."], [".", ".", ".", ".", "5", ".", "5", ".", "."], [".", ".", ".", ".", ".", ".", ".", ".", "."], [".", ".", ".", ".", ".", ".", "2", ".", "."], [".", ".", ".", ".", ".", ".", ".", ".", "."], [".", ".", ".", ".", ".", ".", ".", ".", "."]] ))
from typing import List class Solution: def removeInvalidParentheses(self, s: str) -> List[str]: def isvaild(s:str): count=0 for i in s: if i=='(': count+=1 elif i==')': count-=1 if count<0: return False if count==0: return True return False if isvaild(s): return [s] level={s} while 1: vaild=list(filter(isvaild,level)) if vaild : return vaild nextlevel=set() for item in level: for i in range(len(item)): if item[i] in "()": nextlevel.add(item[:i]+item[i+1:]) level= nextlevel if __name__ == "__main__": x=Solution() s=x.removeInvalidParentheses("") print(s)
help(open) #справка по работе функции open() f = open("files/Толстой.txt", mode="rb") #открыть файл Толстой.txt, лежащий в папке files, лежащей в одной папке с питоновским файлом f.read(20) #считать первые 20 байт data = open("files/Толстой.txt", mode="rb").read() #считать файл print(type(data)) #узнать тип перменной data (он будет списком байтов) print(data[19]) #вывести значение 20-го байта файла print("ab\n12") print(r"ab\n12") #сравните работу программы с r и без него f = open("files/Толстой.txt", mode="rb") f.read(20) print(f.name) print(f.readable()) print(f.tell()) print(f.writable()) print(f.seekable()) print(f.mode) f = open("files/Толстой.txt", encoding="utf-8") print(f.read(100)) print(f.tell()) print(f.seek(1245)) print(f.read(100)) print(f.tell()) print(f.seek(1246)) print(f.read(1)) f = open("files/Толстой.txt", encoding="utf8") data = f.read() print('Type: %s, length: %d' % (type(data), len(data))) f.close() f = open("files/Толстой.txt", encoding="utf8") for i in range(7): print(f.readline(), end="") f.close() #считать все строки файла f = open("files/Толстой.txt", encoding="utf8") lines = f.readlines() print('Type: %s, length: %d' % (type(lines), len(lines))) print(lines[10]) f.close() f = open("files/Толстой.txt", encoding="utf8") for number, line in enumerate(f): print(line) if number > 8: break f.close() #записать в файл example.txt значения синусов для чисел 0, 1, ..., 9 с двумя знаками после запятой from math import sin f = open("files/example2.txt", 'w') for i in range(10): print("%0.2f" % sin(i), file=f) f.close() from PyQt5.QtWidgets import QApplication, QWidget from PyQt5.QtWidgets import QPushButton, QLineEdit, QLabel, QFileDialog from PyQt5.QtGui import QPixmap import sys SCREEN_SIZE = [400, 400] class Example(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): self.setGeometry(400, 400, *SCREEN_SIZE) self.setWindowTitle('Отображение картинки') ## Изображение fname = QFileDialog.getOpenFileName(self, 'Выбрать картинку', '', "Картинка(*.png)")[0] self.pixmap = QPixmap(fname) self.image = QLabel(self) self.image.move(80, 60) self.image.resize(250, 250) self.image.setPixmap(self.pixmap) if __name__ == '__main__': app = QApplication(sys.argv) ex = Example() ex.show() sys.exit(app.exec()) ================================================= from PyQt5.QtGui import QPen from math import pi, cos, sin from PyQt5.QtCore import Qt import sys from PyQt5.QtWidgets import QWidget, QApplication from PyQt5.QtGui import QPainter, QColor SCREEN_SIZE = [600, 600] class Example(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): self.setGeometry(300, 300, *SCREEN_SIZE) self.setWindowTitle('Рисование') self.show() def paintEvent(self, event): qp = QPainter() qp.begin(self) self.drawStar(qp) qp.end() def drawFlag(self,qp): qp.setBrush(QColor(255, 255, 255)) qp.drawRect(30, 30, 480, 120) qp.setBrush(QColor(0, 0, 255)) qp.drawRect(30, 150, 480, 120) qp.setBrush(QColor(255, 0, 0)) qp.drawRect(30, 270, 480, 120) def xs(self,x): return x + SCREEN_SIZE[0] // 2 def ys(self,y): return SCREEN_SIZE[1] // 2 - y def drawStar(self,qp): # Задаем длину стороны и количество углов RAD = 100 p = 5 # Считаем координаты и переводим их в экранные nodes = [(RAD * cos(i * 2 * pi / p), RAD * sin(i * 2 * pi / p)) for i in range(p)] nodes2 = [(self.xs(node[0]), self.ys(node[1])) for node in nodes] # Рисуем пятиугольник for i in range(-1, len(nodes2) - 1): qp.drawLine(*nodes2[i], *nodes2[i + 1]) # Изменяем цвет линии pen = QPen(Qt.red, 2) qp.setPen(pen) # Рисуем звезду for i in range(-2, len(nodes2) - 2): qp.drawLine(*nodes2[i], *nodes2[i + 2]) if __name__ == '__main__': app = QApplication(sys.argv) ex = Example() sys.exit(app.exec_()) ============================================ from PIL import Image, ImageFilter def motion_blur(n): im = Image.open('image.jpg') im = im.transpose(Image.ROTATE_270) im = im.filter(ImageFilter.GaussianBlur(n)) im.save('res.jpg')
import numpy as np # ------------------- # SELECTION OPERATORS # ------------------- class Selection_Proportionate: ''' Proportionate selection operator ***WARNING***: This operator will NOT give the expected results cases where fitness values can be negative. Another operator must be used in this case. Possible implementation TRICK: When you have negative values, you could try to find the smallest fitness value in your population and add its opposite to every value. This way you will no longer have negative values, while the differences between fitness values will remain the same. ''' pass class Selection_Stochastic_Universal_Sampling: pass class Selection_Ranking: ''' Ranking selection operator ''' pass class Selection_Fitness_Scaling: pass class Selection_Tournament: ''' Tournament selection operator: 1. Random uniform select of K individuals 2. Select the fittest of these K individuals 3. Repeat 1., 2. until the reach the desired number of individuals ''' def __init__(self, selection_params): ''' Parameters ---------- selection_parameters includes: - selective pressure K, used to select number of individual per tournament. The higher K, the more probability the best individuals will be selected (-> loss of diversity). A recommended value is 2. ''' self.K = selection_params["K"] def select(self, population): ''' Parameters ---------- - The current population instance Return ------ - a numpy array, selection of individuals to serve for reproduction (crossover) ''' selection_idxs = [] for _ in range(population.size): # Select K individuals by index idxs = np.random.choice(range(population.size), size=self.K, replace=False) # Get the best individual (best fitness) by argsort-ing the # fitness vector (population.fitness) # we are expecting minimisation problem, best fitness is index 0 best_idx = idxs[np.argsort(population.fitness[idxs])[0]] selection_idxs.append(best_idx) # Return the selected individuals return(population.individuals[np.array(selection_idxs)]) # ------------------- # CROSSOVER OPERATORS # ------------------- class Crossover_Ordered: ''' Ordered crossover operator: Loop for nb_offsprings to be generated 1. Select (uniform random) two parents from the entire population 2. Roll a (uniform!) dice ! If probability is < than crossover_proba then perform crossover. Else the two parents are kept as if for the next generation. 3. Select (uniform random) two crossover points that defines a sequence of genes to crossover 4. Copy sequence from parent1 to child2 and parent2 to child1 5. Complete child1 sequence with parent1, child2 with parent2 ''' def __init__(self, crossover_params): ''' - the crossover probability - the width of the sequence of genes to crossover ''' self.crossover_proba = crossover_params["crossover_proba"] self.max_width = crossover_params["sequence_max_width"] def crossover(self, parents, nb_offsprings): ''' Perform the crossover Parameters ---------- - all parents that have been selected for crossover as numpy ndarray - the number of offsprings to generate. That depends on the ratio of elite individuals that will be kept for next generation. Return ------ - the offsprings as a numpy ndarray ''' rng = np.random.default_rng() parents_size = parents.shape[0] dim = parents.shape[1] current_nb_offsprings = 0 while current_nb_offsprings < nb_offsprings: # randomly (uniform) select two parents # by selecting two indexes from the # parents array (with no repetition) parents_idx = rng.choice(parents_size, size=2, replace=False) parent1 = parents[parents_idx][0] parent2 = parents[parents_idx][1] # Probability of performing crossover # if < self.crossover_proba perform cross over # for these 2 parents if rng.uniform() < self.crossover_proba: # randomly (uniform) select two crossover points # distant within [2, self.max_witdh] invalid_sequence = True while invalid_sequence: seq = np.sort(rng.choice(dim, size=2, replace=False)) if ((seq[1] - seq[0]) <= self.max_width) and\ ((seq[1] - seq[0]) > 1): invalid_sequence = False # initialise a child1, child2 array child1 = -1*np.ones(dim, dtype=np.int32) child2 = -1*np.ones(dim, dtype=np.int32) # copy the genes between crossover points # from parents1 to child2 and parents2 to child1 child1[seq[0]:seq[1]] = parent2[seq[0]:seq[1]] child2[seq[0]:seq[1]] = parent1[seq[0]:seq[1]] # complete the child1 with parent1 and child2 with # parent2 child1 = self.complete_sequence(child1, parent1, seq, dim) child2 = self.complete_sequence(child2, parent2, seq, dim) # else, we keep parents as-is for next generation else: child1 = np.copy(parent1) child2 = np.copy(parent2) # adding children to the array of offsprings if current_nb_offsprings == 0: offsprings = child1 offsprings = np.concatenate((offsprings, child2), axis=0) current_nb_offsprings = current_nb_offsprings + 2 elif current_nb_offsprings <= (nb_offsprings - 2): offsprings = np.concatenate((offsprings, child1), axis=0) offsprings = np.concatenate((offsprings, child2), axis=0) current_nb_offsprings = current_nb_offsprings + 2 else: offsprings = np.concatenate((offsprings, child1), axis=0) current_nb_offsprings = current_nb_offsprings + 1 # reshape offsprings to a (self.nb_offsprings, dimension) # array offsprings = offsprings.reshape(-1, dim) return(offsprings) def complete_sequence(self, child, parent, cx_point, d): idx_child = idx_parent = cx_point[1] not_complete = True # complete upper range of the sequence first while not_complete: # for idx in range(cx_point[1], dim): if parent[idx_parent] not in child: child[idx_child] = parent[idx_parent] if idx_child == (d-1): idx_child = 0 else: idx_child = idx_child + 1 if idx_parent == (d-1): idx_parent = 0 else: idx_parent = idx_parent + 1 # testing if sequence is complete # i.e. idx_child = cx_point[0] if idx_child == cx_point[0]: not_complete = False return(child) # ------------------ # MUTATION OPERATORS # ------------------ class Mutation_Swap: ''' The Swap Mutation operator: Two genes are randomly selected and swapped together. ''' def __init__(self, mutation_params): ''' Parameters: ----------- - the mutation probability ''' self.mutation_proba = mutation_params["mutation_proba"] def mutate(self, offsprings): ''' Perform the swap mutation for all offsprings 1. roll a (uniform!) dice ! If probability is < than mutation_proba then perform mutation. 2. select (random uniform) two genes (indices) 3. swap them Parameters ---------- - the offsprings (as a numpy array) on which to apply the mutation Return ------ - the modified offsprings (althought not necessary as mutation is done inplace) ''' rng = np.random.default_rng() nb_offsprings = offsprings.shape[0] dim = offsprings.shape[1] for i in range(nb_offsprings): # Probability of performing mutation # if < self.mutation_proba perform mutation # else NO mutation for this offspring if rng.uniform() < self.mutation_proba: idxs = rng.choice(dim, size=2, replace=False) temp = offsprings[i][idxs[0]] offsprings[i][idxs[0]] = offsprings[i][idxs[1]] offsprings[i][idxs[1]] = temp return(offsprings) class Mutation_Inversion: ''' The Inversion Mutation operator: A sequence of genes is randomly selected and inversed ''' def __init__(self, mutation_params): ''' Parameters: ----------- - the mutation probability - the width of the sequence of genes on which to apply inversion ''' self.mutation_proba = mutation_params["mutation_proba"] self.max_width = mutation_params["sequence_max_width"] def mutate(self, offsprings): ''' Perform the inversion mutation for all offsprings 1. roll a (uniform!) dice ! If probability is < than mutation_proba then perform mutation. 2. Select (random uniform) a sequence of genes to inverse 3. Inverse them Parameters ---------- - The offsprings (as a numpy array) on which to apply the mutation Return ------ - the modified offsprings (althought not necessary as mutation is done inplace) ''' rng = np.random.default_rng() nb_offsprings = offsprings.shape[0] dim = offsprings.shape[1] for i in range(nb_offsprings): # !!! # By ordering the random choice of index, we somehow # prevent inversion happening on the array bounds, # i.e. inversion on say indexes 8.9.0.1 -> 1.0.9.8 # will never happen. # The effect on the quality of this operator is unknown. # In theory, it will be better to also allow these # types of inversion, i.e. considering the array as a # circular array # Probability of performing mutation # if < self.mutation_proba perform mutation # else NO mutation for this offspring if rng.uniform() < self.mutation_proba: # Find a sequence of gene to inverse invalid_sequence = True while invalid_sequence: seq = np.sort(rng.choice(dim, size=2, replace=False)) if ((seq[1] - seq[0]) <= self.max_width) and\ ((seq[1] - seq[0]) > 1): invalid_sequence = False # Inverse the sequence inplace offsprings[i][seq[0]:seq[1]] = \ offsprings[i][seq[0]:seq[1]][::-1] return(offsprings) def mutate_x(self, offsprings): rng = np.random.default_rng() nb_offsprings = offsprings.shape[0] dim = offsprings.shape[1] for i in range(nb_offsprings): # Probability of performing mutation # if < self.mutation_proba perform mutation # else NO mutation for this offspring if rng.uniform() < self.mutation_proba: # Find a sequence of gene to inverse invalid_sequence = True while invalid_sequence: seq = rng.choice(dim, size=2, replace=False) g1 = seq[0] g2 = seq[1] if (abs(g1 - g2) <= self.max_width) and\ (abs(g1 - g2) > 1): invalid_sequence = False # if gene1 position is > gene2 position, we need # to build the sequence to inverse first, that is # offspring[g1:] + oggspring[:g2] # then inverse it and insert/replace in offspring # at the correct position if g1 > g2: # Build the reverse sequence seq1 = offsprings[i][g1:] seq2 = offsprings[i][:g2] seq_to_reverse = np.concatenate((seq1, seq2)) seq1_size = seq1.shape[0] # insert at the correct position offsprings[i][g1:] = seq_to_reverse[::-1][:seq1_size] offsprings[i][:g2] = seq_to_reverse[::-1][seq1_size:] else: # Inverse the sequence inplace offsprings[i][g1:g2] = offsprings[i][g1:g2][::-1] return(offsprings) class Mutation_Scramble: ''' The Scramble (or Shuffle) Mutation operator: A sequence of genes is randomly selected and shuffled ''' def __init__(self, mutation_params): ''' Parameters: ----------- - the mutation probability - the width of the sequence of genes on which to apply shuffling ''' self.mutation_proba = mutation_params["mutation_proba"] self.max_width = mutation_params["sequence_max_width"] def mutate(self, offsprings): ''' Perform the scramble mutation for all offsprings 1. roll a (uniform!) dice ! If probability is < than mutation_proba then perform mutation. 2. Select (random uniform) a sequence of genes to scramble 3. shuffle them Parameters ---------- - The offsprings (as a numpy array) on which to apply the mutation Return ------ - the modified offsprings (althought not necessary as mutation is done inplace) ''' rng = np.random.default_rng() nb_offsprings = offsprings.shape[0] dim = offsprings.shape[1] for i in range(nb_offsprings): # !!! # Similarly to the Mutation Inversion operator, # by ordering the random choice of index, we somehow # prevent shuffling happening on the array bounds, # i.e. shuffling on say indexes 8.9.0.1 -> 9.1.0.8 # will never happen. # The effect on the quality of this operator is unknown. # In theory, it will be better to also allow these # types of shuffling, i.e. considering the array as a # circular array # Probability of performing mutation # if < self.mutation_proba perform mutation # else NO mutation for this offspring if rng.uniform() < self.mutation_proba: # Find a sequence of gene to shuffle invalid_sequence = True while invalid_sequence: seq = np.sort(rng.choice(dim, size=2, replace=False)) if ((seq[1] - seq[0]) <= self.max_width) and\ ((seq[1] - seq[0]) > 1): invalid_sequence = False # Shuffle the sequence inplace rng.shuffle(offsprings[i][seq[0]:seq[1]]) return(offsprings) def mutate_x(self, offsprings): ''' Perform the scramble mutation for all offsprings 1. roll a (uniform!) dice ! If probability is < than mutation_proba then perform mutation. 2. Select (random uniform) a sequence of genes to scramble 3. shuffle them Parameters ---------- - The offsprings (as a numpy array) on which to apply the mutation Return ------ - the modified offsprings (althought not necessary as mutation is done inplace) ''' rng = np.random.default_rng() nb_offsprings = offsprings.shape[0] dim = offsprings.shape[1] for i in range(nb_offsprings): # !!! # Similarly to the Mutation Inversion operator, # by ordering the random choice of index, we somehow # prevent shuffling happening on the array bounds, # i.e. shuffling on say indexes 8.9.0.1 -> 9.1.0.8 # will never happen. # The effect on the quality of this operator is unknown. # In theory, it will be better to also allow these # types of shuffling, i.e. considering the array as a # circular array # Probability of performing mutation # if < self.mutation_proba perform mutation # else NO mutation for this offspring if rng.uniform() < self.mutation_proba: # Find a sequence of gene to shuffle invalid_sequence = True while invalid_sequence: seq = np.sort(rng.choice(dim, size=2, replace=False)) if ((seq[1] - seq[0]) <= self.max_width) and\ ((seq[1] - seq[0]) > 1): invalid_sequence = False # Shuffle the sequence inplace rng.shuffle(offsprings[i][seq[0]:seq[1]]) return(offsprings)
import unittest from morse_translator.translator import Translator, TranslationException from morse_translator.dictionary import Dictionary class TranslatorTests(unittest.TestCase): def setUp(self): self.translator = Translator() def test_constructor(self): """ Ensure the constructor returns non-null object of type Translator. And its property, dictionary, is non-null and of type Dictionary. """ self.assertIsNotNone(self.translator) self.assertIsInstance(self.translator, Translator) self.assertIsNotNone(self.translator.dictionary) self.assertIsInstance(self.translator.dictionary, Dictionary) def test_to_morse_with_valid_input(self): """ Ensure to_morse is evaluating correctly with valid inputs. Fail if an error is raised. """ well_formed_input = "Hello world" expected_result = ". . . . . . _ _ _ . _ _ _ _ _ _ . _ _ _ _ _ . _ . . _ _ _ _ . ." with self.assertRaises(TranslationException): result = self.translator.to_morse(well_formed_input) self.assertEquals(expected_result, result) def test_to_morse_with_invalid_input(self): """ Ensure to_morse throws an error with invalid inputs. Fail if no error was raised. """ invalid_input = "H! th#r3" with self.assertRaises(TranslationException): self.translator.to_morse(invalid_input) def test_exception_attributes(self): """ Ensure our error handling is functioning as intended. It should contain the first character that execution failed with. """ invalid_input = "H! th#r3" with self.assertRaises(TranslationException) as e: self.translator.to_morse(invalid_input) exception = e.exception self.assertEquals(exception.expr, invalid_input) self.assertEquals(exception.entry, invalid_input[1]) self.assertEquals(exception.msg, "Key not found.") def main(): unittest.main() if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 # Created by: Lily Liu # Created on: Oct 2021 # This program will convert °C to °F def fahrenheit(): # This function will convert °C to °F # input user_temp = input("Enter a temperature (°C) : ") # process & output try: user_temp = int(user_temp) f_temp = round((9 / 5) * user_temp + 32, 2) print("{0}°C is equal to {1}°F".format(user_temp, f_temp)) except (Exception): print("Invalid input") def main(): # call functions fahrenheit() print("\nDone.") if __name__ == "__main__": main()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 10 12:21:55 2020 @author: nmbice """ from fol_syntax_semantics import parse, tokenize, evaluate, Model import re import string #model = Model({1,2,3}) #model.interp = {'L': {(1,2), (2,1), (3,1)}, 'E': {2}, 'P': {}, 'G': {(2,1), (3,1), (3,2)}, '=': {(1,1), (2,2), (3,3)}, \ # '1': 1, '2': 2, '3': 3, 'N': {1,2,3}} #print (evaluate('(Ux=(x,x) ^ (XyG(2,y) > =(2,2)))', model)) #this is the evaluator program, which requests a string from the user as input and either outputs the #truth-value of the corresponding logical formula or constructs a model def evaluator(): while True: e = input('%') if e == 'model': print ('Please specify the domain of your model, with objects separated by commas.') d = input('%') if len(d) == 0: print ('A model must have a non-empty domain.') pass else: dom = d.split(',') model = Model(set([eval(x) for x in dom])) interpreting = True while interpreting == True: print ('Please specify an expression to interpret. Type "done" when there are no more expressions to interpret.') exp = input('%') if exp == 'done': break print ('Please specify its interpretation, using commas to separate elements.') i = input('%') r = re.compile(r'(?:[^,(]|\([^)]*\))+') inter = r.findall(i) if (len(exp) == 1 and (exp.islower() or exp in string.digits)) or \ (len(exp) > 1 and (exp[0].islower() or exp[0] in string.digits)): model.interp[exp] = eval(inter[0]) else: model.interp[exp] = set([eval(x) for x in inter]) print('Current variables are {}. Would you like to add additional variables? Type "yes" or "no".'.format(model.all_vars)) v = input('%') if v == 'yes': print ('Input new variables, separated by commas.') new_vars = input('%') if new_vars == '': pass new_vars = new_vars.split(',') for var in new_vars: model.all_vars.add(var) #print (model.domain, model.interp, model.all_vars) else: pass elif e == 'exit': break elif e == 'evaluate': #here we use our parser to determine the appropriate syntax tree and then run its eval method and print #the truth-value of the inputted sentence relative to the model print ('Please input the sentence to be evaluated relative to the specified model.') s = input('%') try: print (str(parse(tokenize(s))) + ': ', evaluate(s, model)) #if the user inputted an improper string, they will get an error message and the program will continue to run except AttributeError: print ('That is not a well-formed sentence.') except UnboundLocalError: print ('Model has not been defined.') else: print ('Please input "model", "evaluate", or "exit".') pass if __name__ == '__main__': evaluator()
""" Script for importing students by course in Canvas. """ from security import canvas_key import csv import requests from datetime import datetime def course_students(course_id: int): """ Takes in a course's ID, and returns a list of students in the course, containing dictionaries with their name and Quercus ID. """ url = 'https://q.utoronto.ca/api/v1/courses/' + str(course_id) + '/students' + '?access_token=' + canvas_key r = requests.get(url) convert = r.json() trimmed_list = [] for student in convert: trimmed_dict = {} trimmed_dict["sortable_name"] = student["sortable_name"] trimmed_dict["id"] = student["id"] trimmed_list.append(trimmed_dict) return trimmed_list def student_list_to_csv(student_list, file_name: str): """ Takes in list of students as input, and writes to a CSV file with given name. (If the file doesn't exist, it creates it). CSV file contains info on students. """ mydate = datetime.now() formatteddate = mydate.strftime("%b%d%Y") dated_file = file_name + "_" + formatteddate file = dated_file + '.csv' with open(file, mode='w') as student_file: student_writer = csv.writer(student_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) student_writer.writerow(["Full Name", "First Name", "Last Name", "Quercus ID"]) for student in student_list: student_name = student["sortable_name"] split_name = student_name.split(", ") last_name, first_name = split_name[0], split_name[1] student_id = student["id"] student_writer.writerow([student_name, first_name, last_name, student_id]) def course_students_csv(course_id: int, file_name: str): """ Takes in a the ID of a course as an int, and returns a CSV file with file_name as desired name, containing information about the students enrolled in the course: Student's full name, first name, last name, and Quercus ID. """ student_list = course_students(course_id) student_list_to_csv(student_list, file_name) course_students_csv(69069, "csc258test")
import numpy as np import math # import functools class Geometry: @staticmethod def distance(point): # shape=(2, ) 支持非ndarray return np.hypot(*point) @staticmethod def distances(points): # shape=(n, 2) or (2, ) 必须为ndarray return np.hypot(*points.T) @classmethod def distance_p2seg(cls, p, p1, p2): """点到线段的最短距离""" p2p1, pp1 = p2 - p1, p - p1 d = np.dot(p2p1, pp1) if d <= 0.: return cls.distance(pp1) d2 = np.dot(p2p1, p2p1) if d >= d2: return cls.distance(p - p2) return cls.distance(pp1 - p2p1 * d / d2) @classmethod def distance_p2arc(cls, p, center, radius, start, extent): """点到圆弧的最短距离,类比点到线段的距离""" # 中间区域的点,在pp1之上,在pp2之下,p1为圆弧起点,p2为圆弧终点,逆时针 assert radius > 0. # 端点 p1 = center + radius*np.array([np.cos(start), np.sin(start)]) end = start + extent p2 = center + radius*np.array([np.cos(end), np.sin(end)]) if extent < 0.: # 顺时针,调整为逆时针 p1, p2 = p2, p1 # print('p1: {}, p2: {}'.format(p1, p2)) cp1 = p1 - center cp2 = p2 - center cp = p - center cross1 = np.cross(cp1, cp) cross2 = np.cross(cp, cp2) if cross1 > 0. and cross2 > 0.: # 中间区域 dis = abs(radius-cls.distance(cp)) else: dis1 = cls.distance(p-p1) dis2 = cls.distance(p-p2) dis = min(dis1, dis2) # print(cross1, cross2) return dis class Trajectory: """过度封装会导致无法批量运算/矩阵运算""" LINE, ARC = 0, 1 def __init__(self): self.traj_type = None self.traj = None def line2(self, start_pos, end_pos): self.traj_type = self.LINE self.traj = start_pos, end_pos def line(self, start_pos, delta_pos): self.traj_type = self.LINE self.traj = start_pos, start_pos+delta_pos def arc(self, start_pos, start_dir, radius, delta_dir): """ delta_dir: 弧以顺时针为正,即右转 radius: 有向半径,逆时针为负 """ self.traj_type = self.ARC center = start_pos + radius * np.array([np.sin(start_dir), -np.cos(start_dir)]) start = start_dir + math.pi / 2 if radius < 0.: start -= math.pi extent = -delta_dir self.traj = center, abs(radius), start, extent def __call__(self): return self.traj
# Crie um pacote chamado utilidadesCeV que tenha dois módulos internos chamados moeda e dado # Transfira todas as funções utilizadas nos DESAFIOS 107, 108 e 109 para o primeiro pacote e mantenha tudo funcionando from utilitiescev import currency price = float(input('Digite o preço: R$ ')) rateOfIncrease = int(input('Digite a taxa de aumento: ')) rateOfDecrease = int(input('Digite a taxa de redução: ')) currency.resume(price, rateOfIncrease, rateOfDecrease)
# Escreva um programa que pergunte o salário de um funcionário e calcule o valor de seu aumento # Para salários superiores a R$ 1.250,00, calcule um aumento de 10% # Para os inferiores ou iguais o aumento é de R$ 15% currentSalary = float(input('Qual é o salário do funcionário? R$ ')) if currentSalary > 1250: percentageIncrease = 10 else: percentageIncrease = 15 newSalary = currentSalary + (currentSalary * percentageIncrease / 100) print('Quem ganhava R$ {:.2f}, com aumento de {}%, passa a ganhar R$ {:.2f} agora' .format(currentSalary, percentageIncrease, newSalary))
# Faça um programa que ajude um jogador da MEGA SENA a criar palpites # O programa vai perguntar quantos jogos serão gerados e vai sortear 6 números entre 1 e 60 para cada jogo, cadastrando tudo em uma lista composta # Resolução proposta pelo professor # from random import randint # from time import sleep # # list = [] # games = [] # print('-' * 30) # print(f'{"JOGA NA MEGA SENA":^30}') # print('-' * 30) # quantity = int(input('Quantos jogos você quer que eu sorteie? ')) # total = 1 # while total <= quantity: # counter = 0 # while True: # num = randint(1, 60) # if num not in list: # list.append(num) # counter += 1 # if counter >= 6: # break # list.sort() # games.append(list[:]) # list.clear() # total += 1 # print('-=' * 4, f' SORTEANDO {quantity} JOGOS ', '-=' * 4) # for i, l in enumerate(games): # print(f'Jogo {i + 1}: {l}') # sleep(1) # print('-=' * 5, ' < BOA SORTE! > ', '-=' * 5) from time import sleep from random import sample numbersMegaSena = [] gamesMegaSena = [] for number in range(1, 61): numbersMegaSena.append(number) print('-' * 30) print(f'{"JOGA NA MEGA SENA":^30}') print('-' * 30) quantityGames = int(input('Quantos jogos você quer que eu sorteie? ')) print() print('-=' * 4, f' SORTEANDO {quantityGames:2} JOGOS ', '-=' * 4) for i in range(1, quantityGames + 1): gamesMegaSena.append(sample(numbersMegaSena, 6)) print(f'Jogo {i}: {sorted(gamesMegaSena[i - 1])}') sleep(1) print('-=' * 5, ' < BOA SORTE! > ', '-=' * 5)
def increase(value, rate): increased = value + (value * rate / 100) return increased def decrease(value, rate): decreased = value - (value * rate / 100) return decreased def double(value): doubled = value * 2 return doubled def half(value): halved = value / 2 return halved
# Crie um programa que vai ler vários números e colocar em uma lista # Depois disso, crie duas listas extras que vão conter apenas os valores pares e o valores ímpares digitados, respectivamente # Ao final, mostre o conteúdo das três listas geradas listFull = [] listPairs = [] listOdd = [] while True: proceed = ' ' listFull.append(int(input('Digite um número: '))) while proceed not in 'SN': proceed = str(input('Quer continuar? [S/N]: ')).strip().upper()[0] if proceed == 'N': break for number in listFull: if number % 2 == 0: listPairs.append(number) else: listOdd.append(number) print() print('-=' * 30) print(f'A lista completa é {listFull}') print(f'A lista de pares é {listPairs}') print(f'A lista de ímpares é {listOdd}')
# Elabore um programa que calcule o valor a ser pago por um produto, considerando o seu preço normal e condição de pagamento: # - À vista dinheiro/cheque: 10% de desconto # - À vista no cartão: 5% de desconto # - Em até 2x no cartão: preço normal # - 3x ou mais no cartão: 20% de juros from sys import exit colors = { 'clear': '\033[m', 'txtRedBold': '\033[1:31m', 'txtYellowBold': '\033[1:33m', 'txtBlueBold': '\033[1:34m', } print('{}' .format(colors['txtYellowBold']) + '{:=^40}' .format(' LOJAS LIMA ') + '{}' .format(colors['clear']) + '\n') purchasePrice = float(input('Preço das compras: R$ ')) print('\n{}' .format(colors['txtBlueBold']) + '{:^30}' .format('FORMAS DE PAGAMENTO:') + '{}' .format(colors['clear'])) print('[1] À vista no dinheiro/cheque') print('[2] À vista no cartão') print('[3] 2x no cartão') print('[4] 3x ou mais no cartão') paymentMethod = int(input('\nEscolha uma opção: ')) if paymentMethod == 1: discountRate = 10 finalPrice = purchasePrice - (purchasePrice / 100 * discountRate) print('\nCom o pagamento à vista no dinheiro/cheque, ganhou {}% de desconto' .format(discountRate), end='') elif paymentMethod == 2: discountRate = 5 finalPrice = purchasePrice - (purchasePrice / 100 * discountRate) print('\nCom o pagamento à vista no cartão, ganhou {}% de desconto' .format(discountRate), end='') elif paymentMethod == 3: finalPrice = purchasePrice parcelQuantity = 2 parcelValue = finalPrice / parcelQuantity print('\nSua compra será parcelada em {}x de R$ {:.2f} SEM JUROS' .format(parcelQuantity, parcelValue), end='') elif paymentMethod == 4: increaseRate = 20 finalPrice = purchasePrice + (purchasePrice / 100 * increaseRate) parcelQuantity = int(input('\nQuantas parcelas? ')) parcelValue = finalPrice / parcelQuantity print('\nSua compra será parcelada em {}x de R$ {:.2f} COM JUROS' .format(parcelQuantity, parcelValue), end='') else: print('\n{}Opção de pagamento inválida! Tente novamente.{}' .format(colors['txtRedBold'], colors['clear'])) exit(0) print('\nSua compra de R$ {:.2f} vai custar R$ {:.2f} no final' .format(purchasePrice, finalPrice))
# Crie um programa que leia o nome e o preço de vários produtos # O programa deverá perguntar se o usuário vai continuar # No final, mostre: # A) Qual é o total gasto na compra # B) Quantos produtos custam mais de R$ 1000 # C) Qual é o nome do produto mais barato colors = { 'clear': '\033[m', 'txtGreenNormal': '\033[0:32m', 'txtBlueNormal': '\033[0:34m', 'txtYellowBold': '\033[1:33m', } print('{}' .format(colors['txtYellowBold'])) print('-' * 40) print('{:^40}' .format('LOJA SUPER BARATÃO')) print('-' * 40) print('{}' .format(colors['clear'])) purchaseSum = counterProducts = counterProductsOverThousand = 0 productNameCheapest = ' ' while True: proceed = ' ' productName = str(input('Nome do Produto: ')).strip() price = float(input('Preço: R$ ')) counterProducts += 1 purchaseSum += price if counterProducts == 1 or price < priceLowest: priceLowest = price productNameCheapest = productName if price > 1000: counterProductsOverThousand += 1 while proceed not in 'SN': proceed = str(input('Quer continuar? [S/N]: ')).strip().upper()[0] if proceed == 'N': break print('-' * 36) print('{}' .format(colors['txtYellowBold'])) print('{:-^40}' .format(' FIM DO PROGRAMA ')) print('{}' .format(colors['clear'])) print(f'O total da compra foi {colors.get("txtGreenNormal")}R$ {purchaseSum:.2f}{colors.get("clear")}') if counterProductsOverThousand == 0: print('Não há produto custando mais de R$ 1000.00') elif counterProductsOverThousand == 1: print(f'Temos {counterProductsOverThousand} produto custando mais de R$ 1000.00') else: print(f'Temos {counterProductsOverThousand} produtos custando mais de R$ 1000.00') print(f'O produto mais barato foi {colors.get("txtBlueNormal")}{productNameCheapest}{colors.get("clear")} que custa R$ {priceLowest:.2f}')
# Desenvolva um programa que leia o nome, idade e sexo de 4 pessoas # No final do programa, mostre: # A média de idade do grupo # Qual é o nome do homem mais velho # Quantas mulheres tem menos de 20 anos from sys import exit counterAge = 0 olderManAge = 0 counterWoman = 0 for i in range(1, 5): print('\n----- {}ª PESSOA -----' .format(i)) name = str(input('Nome: ')).strip() age = int(input('Idade: ')) sex = str(input('Sexo [M/F]: ')).strip().upper() counterAge += age if sex != 'M' and sex != 'F': print('\nSexo informado é inválido! Tente novamente.') exit(0) if sex == 'M': if age > olderManAge: olderManAge = age olderManName = name if sex == 'F': if age < 20: counterWoman += 1 averageAge = counterAge / 4 print('\nA média de idade do grupo é de {} anos' .format(averageAge)) if olderManAge == 0: print('Não há homem no grupo informado') else: print('O homem mais velho tem {} anos e se chama {}' .format(olderManAge, olderManName)) if counterWoman == 0: print('Não há mulher com menos de 20 anos' .format(counterWoman)) elif counterWoman == 1: print('Ao todo há {} mulher com menos de 20 anos' .format(counterWoman)) else: print('Ao todo há {} mulheres com menos de 20 anos' .format(counterWoman))
# Refaça o DESAFIO 035 dos triângulos, acrescentando o recurso de mostrar que tipo de triângulo será formado: # - Equilátero: todos os lados iguais # - Isósceles: dois lados iguais # - Escaleno: todos os lados diferentes print('-=' * 12) print('Analisador de Triângulos') print('-=' * 12) n1 = float(input('Primeiro segmento: ')) n2 = float(input('Segundo segmento: ')) n3 = float(input('Terceiro segmento: ')) if n1 < n2 + n3 and n2 < n1 + n3 and n3 < n1 + n2: print('\nOs segmentos acima PODEM formar um triângulo ', end='') if n1 == n2 == n3: print('EQUILÁTERO') elif n1 != n2 != n3 != n1: print('ESCALENO') else: print('ISÓSCELES') else: print('\nOs segmentos acima NÃO PODEM formar triângulo')
# Faça um programa que leia uma frase pelo teclado e mostre: # Quantas vezes aparece a letra "A" # Em que posição ela aparece a primeira vez # Em que posição ela aparece a última vez phrase = str(input('Digite uma frase: ')).strip() print('Na frase digitada, a letra "A" aparece {} vezes' .format(phrase.upper().count('A'))) print('A primeira letra "A" aparece na posição {}' .format(phrase.upper().find('A') + 1)) print('A última letra "A" aparece na posição {}' .format(phrase.upper().rfind('A') + 1))
# Refaça o DESAFIO 009, mostrando a tabuada de um número que o usuário escolher, só que agora utilizando um laço for n = int(input('Digite um número para ver sua tabuada: ')) print('\nTABUADA DE {}' .format(n)) for i in range(1, 11): print('{} x {:>2} = {}' .format(n, i, (n * i)))
# Modifique as funções que foram criadas no DESAFIO 107 para que elas aceitem um parâmetro a mais, informando se o valor # retornado por elas vai ser ou não formatado pela função moeda(), desenvolvida no DESAFIO 108 import currency price = float(input('\nDigite o preço: R$ ')) print(f'A metade de {currency.currency(price)} é {currency.half(price, formatted=True)}') print(f'O dobro de {currency.currency(price)} é {currency.double(price, True)}') print(f'Aumentando 10%, temos {currency.increase(price, 10, formatted=True)}') print(f'Reduzindo 13%, temos {currency.decrease(price, 13, True)}')
# Faça um programa que tenha uma função chamada área(), que receba as dimensões de um terreno retangular (largura e # comprimento) e mostre a área do terreno def area(width, length): print(f'A área de um terreno {width}m x {length}m é de {width * length:.1f}m²') print(' Controle de Terrenos') print('-' * 22) w = float(input('LARGURA (m): ')) l = float(input('COMPRIMENTO (m): ')) print() area(w, l)
# Crie um programa que faça o computador jogar Jokenpô com você from sys import exit from time import sleep from random import randint options = ('PEDRA', 'PAPEL', 'TESOURA') # Jogada do computador numberRandom = randint(0, 2) computerChoice = options[numberRandom] # Jogada do jogador print('''Suas opções: [ 0 ] PEDRA [ 1 ] PAPEL [ 2 ] TESOURA''') numberChoice = int(input('\nQual é a sua jogada? ')) if numberChoice < 0 or numberChoice > 2: print('\nJogada inválida! Tente novamente.') exit(0) playerChoice = options[numberChoice] print('\nJO') sleep(1) print('KEN') sleep(1) print('PO!!!\n') print('-=' * 12) print('Computador jogou {}' .format(computerChoice)) print('Jogador jogou {}' .format(playerChoice)) print('-=' * 12) # Verifica ganhador if computerChoice == playerChoice: print('\nEMPATE') exit(0) else: if computerChoice == 'PEDRA': if playerChoice == 'PAPEL': winner = 'JOGADOR' elif playerChoice == 'TESOURA': winner = 'COMPUTADOR' elif computerChoice == 'PAPEL': if playerChoice == 'PEDRA': winner = 'COMPUTADOR' elif playerChoice == 'TESOURA': winner = 'JOGADOR' elif computerChoice == 'TESOURA': if playerChoice == 'PEDRA': winner = 'JOGADOR' elif playerChoice == 'PAPEL': winner = 'COMPUTADOR' print('\n{} VENCE' .format(winner))
def sum_mul(choice, *args): if choice == "sum": result = 0 for i in args: result=result+i elif choice =="sub": result = args[0] for i in args[1:]: result=result-i elif choice == "mul": result =1 for i in args: result = result*i elif choice == "div": result = args[0] for i in args[1:]: result = result/i return result result4 = sum_mul('sum',1,2,3) result1 = sum_mul('sub',1,2,3) result2 = sum_mul('mul',1,2,3) result3 = sum_mul('div',1,2,3) print(result4) print(result1) print(result2) print(result3)
""" PROBLEM Check Permutation: * Given two strings,write a method to decide if one is a permutation of the other. """ """ Notes: * Bit manipulation trick: If all characters in s1 have a corresponding match in s2, then they are a permutaion of each other * Base case should be communicated with the inteviewer clearly: Should having empty strings for s1 and s2 return True or False? 0 also has a value in permutation (0! exists), so here we consider this case to return True. * Time Complexity: O(N), N: length of string * Space Complexity: O(1) -> bit manipulation to the rescue """ def check_permutation(s1: str, s2: str) -> bool: if len(s1) != len(s2): return False xor = 0 for i in range(len(s1)): xor ^= ord(s1[i]) xor ^= ord(s2[i]) if xor == 0: return True else: return False """ Notes: * Alternatively, you can use a hash map as discussed in this chapter * Time Complexity: O(N), N: length of traversed strings * Space Complexity: O(1) -> Bit vector has constant size """ def check_permutation_alternative(s1: str, s2: str) -> bool: if len(s1) != len(s2): return False hash_map = [0] * 128 for i in range(len(s1)): index = ord(s1[i]) hash_map[index] += 1 for i in range(len(s2)): index = ord(s2[i]) hash_map[index] -= 1 if hash_map[index] < 0: return False return True if __name__ == '__main__': print("TEST CASE #1 : %r" % (check_permutation('abcDe', 'ebDca'))) print("TEST CASE #2 : %r" % (check_permutation('abcDe', 'ebca'))) print("TEST CASE #3 : %r" % (check_permutation('abcDe', 'ebFca'))) print("TEST CASE #4 : %r" % (check_permutation('', ''))) print("TEST CASE #5 : %r" % (check_permutation('a', 'e')))
""" PROBLEM Palindrome Permutation: * Given a string, write a function to check if it is a permutation of a palin­drome. * A palindrome is a word or phrase that is the same forwards and backwards. * A permutation is a rearrangement of letters. * The palindrome does not need to be limited to just dictionary words. """ """ Notes: * Bit manipulation trick for finding corresponding characters * Time Complexity: O(N), 3 passes over the string in the worst case -> O(3*N) = O(N) * Space Complexity: O(1) """ def palindrome_permutation(s : str) -> bool: xor = 0 s = s.lower() for c in s: if c != ' ': xor ^= ord(c) if xor == 0: return True elif chr(xor) in s: return True else: return False if __name__ == '__main__': print("TEST CASE #1 : %r" % (palindrome_permutation('Tact Coa'))) print("TEST CASE #2 : %r" % (palindrome_permutation('Tact CoaB'))) print("TEST CASE #3 : %r" % (palindrome_permutation('Tact Coa '))) print("TEST CASE #4 : %r" % (palindrome_permutation(''))) print("TEST CASE #5 : %r" % (palindrome_permutation('T')))
""" PROBLEM Stack of Plates: * Imagine a (literal) stack of plates. If the stack gets too high, it might topple. * Therefore, in real life, we would likely start a new stack when the previous stack exceeds some threshold. * Implement a data structure SetOfStacks that mimics this. SetOfStacks should be composed of several stacks and should create a new stack once the previous one exceeds capacity. * SetOfStacks.push() and SetOfStacks.pop() should behave identically to a single stack (that is, pop () should return the same values as it would if there were just a single stack). FOLLOW UP * Implement a function popAt (int index) which performs a pop operation on a specific sub-stack. """ class StackNode: def __init__(self, x): self.data = x self.next = None class SetOfStacks: def __init__(self, node_limit=5): self.stacks = [] self.node_count = 0 self.node_limit = node_limit self.top = None def is_empty(self): return len(self.stacks) == 0 def push(self, item): node = StackNode(item) if self.node_count < self.node_limit: if self.node_count == 0: self.stacks.append(node) else: node.next = self.top self.node_count += 1 else: self.stacks.append(node) self.node_count = 1 self.top = node self.stacks[-1] = node def pop(self): if self.node_count == 0: print("Stack is empty, pop() cannot be performed.", end='\n\n') elif self.node_count == 1: self.stacks = self.stacks[:-1] if(len(self.stacks) > 0): self.node_count = 5 self.top = self.stacks[-1] else: self.node_count = 0 else: self.top = self.top.next self.stacks[-1] = self.top self.node_count -= 1 # TO-DO: Define pop at def pop_at(self): pass def pretty_print(stacks): print("****START-SET-OF-STACKS****") for s in stacks: print("---START-STACK---") while s: print(" -----") print(" | |") print(" | " + str(s.data) + " |") print(" | |") print(" -----") s = s.next print("---END-STACK---") print("*****END-SET-OF-STACKS*****", end='\n\n') if __name__ == '__main__': s = SetOfStacks() s.push(1) s.push(2) s.push(3) s.push(4) pretty_print(s.stacks) s.pop() s.pop() pretty_print(s.stacks) s.push(3) s.push(4) s.push(5) s.push(4) s.push(4) s.push(5) s.push(6) s.push(7) pretty_print(s.stacks) s.pop() s.pop() s.pop() s.pop() s.pop() s.pop() pretty_print(s.stacks) s.pop() s.pop() s.pop() s.pop() pretty_print(s.stacks) s.pop() pretty_print(s.stacks)
""" PROBLEM Animal Shelter: * An animal shelter, which holds only dogs and cats, operates on a strictly "first in, first out" basis. * People must adopt either the "oldest" (based on arrival time) of all animals at the shelter, or they can select whether they would prefer a dog or a cat (and will receive the oldest animal of that type). * They cannot select which specific animal they would like. * Create the data structures to maintain this system and implement operations such as enqueue, dequeueAny, dequeueDog, and dequeueCat. * You may use the built-in Linked list data structure. """ import time class ListNode: def __init__(self, x): self.type = x self.arrival = time.time() self.next = None def print(self): node = self print("| %s - Arrived at: %d | " % (node.type, node.arrival)) node = node.next while(node): print("-> | %s - Arrived at: %d| " % (node.type, node.arrival)) node = node.next print() class AnimalShelter(): def __init__(self): self.head = None self.last = None def enqueue(self, s : str): node = ListNode(s) if not self.head: self.head = node self.last = self.head else: self.last.next = node self.last = self.last.next def dequeue_any(self): node = self.head self.head = self.head.next return node def dequeue_dog(self): node = self.head prev = None while(node and node.type != 'dog'): prev = node node = node.next if node: if prev: # Previous node exits, update accordingly prev.next = node.next else: # Previous node does not exist, returned node is the head self.head = head.next if not node.next: # Node is the last node self.last = prev return node else: print("There are currently no dogs in the animal shelter.") return None def dequeue_cat(self): node = self.head prev = None while(node and node.type != 'cat'): prev = node node = node.next if node: if prev: # Previous node exits, update accordingly prev.next = node.next else: # Previous node does not exist, returned node is the head self.head = head.next if not node.next: # Node is the last node self.last = prev return node else: print("There are currently no cats in the animal shelter.") return None if __name__ == '__main__': a = AnimalShelter() a.enqueue('cat') time.sleep(1) a.enqueue('dog') time.sleep(1) a.enqueue('cat') time.sleep(1) a.enqueue('cat') time.sleep(1) a.enqueue('cat') time.sleep(1) a.enqueue('cat') time.sleep(1) a.enqueue('dog') time.sleep(1) a.enqueue('dog') a.head.print() a.dequeue_dog() a.head.print() a.dequeue_dog() a.head.print() a.dequeue_dog() a.head.print() a.enqueue('cat') a.head.print() a.dequeue_any() a.head.print() a.dequeue_dog()
# Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None class Solution(object): def mergeKLists(self, lists): """ :type lists: List[ListNode] :rtype: ListNode """ if not lists: return [] return self.mergeSort(0,len(lists)-1,lists) def mergeSort(self,left,right,lists): if left >= right: return lists[left] mid = left + (right - left) // 2 leftArray = self.mergeSort(left,mid,lists) rightArray = self.mergeSort(mid+1,right,lists) return self.merge(leftArray,rightArray) def merge(self,l1,l2): root = cur = ListNode(1) while l1 and l2: if l1.val < l2.val: cur.next = l1 l1 = l1.next else: cur.next = l2 l2 = l2.next cur = cur.next if l1: cur.next = l1 if l2: cur.next = l2 return root.next
# In Python3, addition can be done very easily with numbers and strings 7 + 2 # By writing 7+2 it directly gives the addition output # Strings :- 'Hello' + 'World' # Above code will merge 2 strings and gives output HelloWorld
""" Created by: Gavin Ng Read README for more information about python-turnip in general and its associated files """ # File Imports import trends import printer # Setup for Cycles cycleconverter = ["Monday AM","Monday PM","Tuesday AM","Tuesday PM","Wednesday AM","Wednesday PM","Thursday AM","Thursday PM","Friday AM","Friday PM","Saturday AM","Saturday PM"] cyclepoints = {"Monday AM" : None,"Monday PM" : None,"Tuesday AM" : None,"Tuesday PM" : None,"Wednesday AM" : None,"Wednesday PM" : None,"Thursday AM" : None,"Thursday PM" : None,"Friday AM" : None,"Friday PM" : None,"Saturday AM" : None,"Saturday PM" : None} cycleconvertercounter = 0 # Initial Buy Price Input while True: try:buy_price = int(input("How much did you initially pay for each turnip? ")) except ValueError: print("Turnip Prices are in integer form") if buy_price >= 90 and buy_price <= 110: break else: print("Turnip buy prices are in the range of 90-110 bells") # Dictionary Populator for cycle in range(len(cyclepoints)): cycleprompt = input("Do you know the buy price of "+cycleconverter[cycle]+"? (y/n)") if cycleprompt.casefold() == 'y': while True: try: cyclepoints[cycleconverter[cycle]] = int(input("What is the buy price of "+cycleconverter[cycle]+"?")) except ValueError: print("Please input your turnip price in integer form") if cyclepoints[cycleconverter[cycle]] <= 660 and cyclepoints[cycleconverter[cycle]] > 9: break else: print("Invalid Input. It is impossible to have a turnip price less than 9 bells or over 660 bells") elif cycleprompt.casefold() == 'n': break else: print("Invalid input\n") break # Trend Determinatior Using Initial Buy Price and Cycle Datapoints trendtype = trends.trendanalysis(buy_price,cyclepoints) # Range Output According to Trend Type cycleoutput = [] if trendtype == 'random': output = trends.random(buy_price, cyclepoints) cycleoutput.append(output[0]) cycleoutput.append(output[1]) elif trendtype == 'decreasing': output = trends.decreasing(buy_price, cyclepoints) cycleoutput.append(output[0]) cycleoutput.append(output[1]) elif trendtype == 'small_spike': output = trends.small_spike(buy_price, cyclepoints) cycleoutput.append(output[0]) cycleoutput.append(output[1]) elif trendtype == 'large_spike': output = trends.large_spike(buy_price, cyclepoints) cycleoutput.append(output[0]) cycleoutput.append(output[1]) elif trendtype == None: output = trends.inconclusive(buy_price,cyclepoints) cycleoutput.append(output[0]) cycleoutput.append(output[1]) # Generate Output Using printer.py (WIP) printer.fileprinter(buy_price, cycleoutput,cycleconverter, cyclepoints)
class Atividade09(): def input(self, string, numRep): print(string * numRep) validator = Atividade09() string = input("Digite a palavra que deseja repetir") numRep = int(input("Digite a quantidade de repetições que deseja")) validator.input(string,numRep)
def hashFunc(piece): words = piece.split(" ") #splitting string into words colour = words[0] shape = words[1] poleNum = 0 for i in range(0, 3): poleNum += ord(colour[i]) - 96 poleNum += ord(shape[i]) - 96 return poleNum
# Numbers - Tax Calculator (WIP) """ 1) User inputs amount. 2) User inputs whether service charge is included. Default 10%. 3) Returns full price. 4) Optional: Splitting of bill by number of people. 5) Optional: Rounding of split bill to nearest dollar. """ # Imports import subprocess # Sets default variables GST = 0.07 SvcCharge = 0.10 # Function - Clears screen def cls(): subprocess.call("cls", shell = True) # Function - Converts from decimal to percentage def convertToPercent(input): output = input * 100 return output # Function - Converts from percentage to decimal def convertToDecimal(input): output = input / 100 return output # Function - Settings def progSettings(): global GST global SvcCharge settingsLoop = True while settingsLoop == True: cls() print "Tax Calculator - Settings\n" print "GST - {0:.2%}\nService charge - {1:.2%}\n".format(GST,SvcCharge) try: newGST = int(raw_input("\nPlease enter a number from 1 to 100, to set the percentage of GST.\n")) GST = convertToDecimal(float(newGST)) newSvcCharge = int(raw_input("\nPlease enter a number from 1 to 100, to set the percentage of service charge.\n")) SvcCharge = convertToDecimal(float(newSvcCharge)) except ValueError: print "Please input whole numbers only!" raw_input() settingsLoop = False # Loops until user goes to settings or provides a proper input. inputLoop = True while inputLoop == True: # Information for users cls() print "Tax calculator - Main\n" print "GST - {0:.2%}\nService charge - {1:.2%}\n".format(GST,SvcCharge) print "Input the cost directly, or type 'settings' to change the percentages.\n" # Requests input and acts accordingly. userInput = raw_input(">>> ") if userInput == "settings": progSettings() else: # Makes sure input is a float, continue if so, loop if not. try: userInputFloat = float(userInput) except ValueError: print "\nPlease enter a valid number.\n" raw_input() else: inputLoop = False # Input accepted, determine if split. inputLoop = True while inputLoop == True: # Clears and displays some values. cls() print "Tax calculator - Details\n" print "GST - {0:.2%}\nService charge - {1:.2%}".format(GST,SvcCharge) print "Amount entered - {0:.2f}\n".format(userInputFloat) userInput = raw_input("\nIs the total cost going to be split? (Y/N) ") if userInput.lower() == "y": splitCost = True inputLoop = False elif userInput.lower() == "n": splitCost = False inputLoop = False else: print "\nPlease only enter either 'y' for YES, or 'n' for NO." raw_input() # If split, requests how much to split into. Skips this part otherwise. if splitCost == True: inputLoop = True while inputLoop == True: cls() print "Tax calculator - Details\n" print "GST - {0:.2%}\nService charge - {1:.2%}".format(GST,SvcCharge) print "Amount entered - {0:.2f}\n".format(userInputFloat) try: userInput = int(raw_input("How many parts should the final cost be split into? ")) except ValueError: print "Please enter numbers only!" raw_input() else: splitNumber = userInput inputLoop = False # Starts calculations cls() print "Tax calculator - Calculations\n" print "Original cost - ${0:.2f}".format(userInputFloat) print "GST - {0:.2%}\nService charge - {1:.2%}\n".format(GST,SvcCharge) print "GST costs ${0:.2f}".format(userInputFloat * GST) print "Service charge costs ${0:.2f}".format(userInputFloat * SvcCharge) print "Additional costs add up to a total of ${0:.2f}\n".format(userInputFloat * GST + userInputFloat * SvcCharge) print "The total is ${0:.2f}".format(userInputFloat + userInputFloat * GST + userInputFloat * SvcCharge) # Add-on if cost is to be split if splitCost == True: print "The cost per part is ${0:.2f}".format((userInputFloat + userInputFloat * GST + userInputFloat * SvcCharge)/splitNumber) raw_input("End of program")
#Text - Pig latin (Sentence) #Current solution was is to add 'ay' to the end of each word, shift the first letter back, then add the '-'. #Further reading has revealed that pig latin is not as simple as it looks. #Both consonants and consonant clusters at the start of words are shifted back. #Vowels are not shifted back, and -ay is just appended to the end. #This can be resolved by simply comparing the first letter to a list of consonants and vowels to see which one it matches. #Consonant clusters can be detected by removing everything up to the first vowel. #This is more complicated and I can't be arsed to do it because screw pig latin. sentence = raw_input("Type something: ") if sentence == "": print "Nothing was typed." else: list_sentence = list(sentence) #Converts to list is_looping = True word_start_index = 0 word_end_index = 0 previous_isalnum = False counter = 0 while is_looping == True: if counter > len(list_sentence): is_looping = False print "".join(list_sentence) elif counter == len(list_sentence) or\ list_sentence[counter].isalnum() == False and\ previous_isalnum == True: #End of a word word_end_index = counter list_sentence.insert(word_end_index, "y") list_sentence.insert(word_end_index, "a") list_sentence.insert((word_end_index-1), list_sentence.pop(word_start_index)) list_sentence.insert((word_end_index-1), "-") previous_isalnum = False counter += 4 elif list_sentence[counter].isalnum() == True and\ previous_isalnum == False: #Start of a word word_start_index = counter previous_isalnum = True counter += 1 elif list_sentence[counter].isalnum() == True and\ previous_isalnum == True: #Cont of a word counter += 1
# # Complete the 'print_full_name' function below. # # The function is expected to return a STRING. # The function accepts following parameters: # 1. STRING first # 2. STRING last # from string import Template def getStringFromTemplate(templateObj,varDict): return templateObj.substitute(varDict) FULLNAME_TEMPLATE = Template('Hello $first $last! You just delved into python.'); def print_full_name(first, last): # Write your code here print(getStringFromTemplate(FULLNAME_TEMPLATE,{'first': first, 'last': last})) if __name__ == '__main__': first_name = input() last_name = input() print_full_name(first_name, last_name)
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution(object): def rightSideView(self, root): """ :type root: TreeNode :rtype: List[int] """ if(root==None): return []; qu = []; qu.append({ "node": root, "level": 0 }) rv = []; while(len(qu)>0): curr = qu.pop(0) if(curr["node"].right!=None): qu.append({ "node": curr["node"].right, "level": curr["level"]+1 }) if(curr["node"].left!=None): qu.append({ "node": curr["node"].left, "level": curr["level"]+1 }) if(len(rv)==curr["level"]): rv.append(curr["node"].val); # else: # rv[curr["level"]] = curr["node"].val; return rv;
if __name__ == '__main__': x = int(raw_input()) y = int(raw_input()) z = int(raw_input()) n = int(raw_input()) list3d = [[a,b,c] for a in range(0,x+1) for b in range(0,y+1) for c in range(0,z+1)] def checkForSum(arr): if (arr[0]+arr[1]+arr[2])==n: return False else: return True filteredList = filter(checkForSum,list3d) print(filteredList)
from zoo import Zoo from animal import Animal class SimulateZoo: DAYS_IN_WEEK = 7 DAYS_IN_MONTH = 30 DAYS_IN_YEAR = 365 def __init__(self, zoo): self.zoo = zoo def simulate(self, command): command[1] = int(command[1]) if command[2] == "years": days = command[1] * SimulateZoo.DAYS_IN_YEAR elif command[2] == "weeks": days = command[1] * SimulateZoo.DAYS_IN_WEEK elif command[2] == "months": days = command[1] * SimulateZoo.DAYS_IN_MONTH else: days = command[1] for day in range(days): for animal in self.zoo.animals: animal.eat(5) animal.age += 1 if animal.age == animal.life_expectancy: print("{} {} died!".format(animal.name, animal.species)) self.zoo.die(animal) outcome = self.zoo.calculate_outcome() if outcome > self.zoo.budget: print("Bankrupt!") else: self.zoo.budget -= outcome newborns = self.zoo.reproduce() if len(newborns) > 0: print(newborns) self.zoo.calculate_income() print(self.zoo) def move_to_habitat(self, species, name): for animal in self.zoo.animals: if animal.name == name and animal.species == species: self.zoo.animals.remove(animal) def get_input(self): command = input("Enter command> ") command = command.split(" ") return command def interface(self): command = self.get_input() while command[0] != "exit": if command[0] == "see_animals": print(self.zoo) command = self.get_input() elif command[0] == "accomodate": species = command[0] name = command[1] age = command[2] weight = command[3] gender = "" new_animal = Animal(species, age, name, gender, weight) gender = new_animal.determine_gender() new_animal.gender = gender self.zoo.accomodate(new_animal) elif command[0] == "move_to_habitat": self.move_to_habitat(command[1], command[2]) command = self.get_input() elif command[0] == "simulate": self.simulate(command) command = self.get_input() else: print("Bad input!") command = self.get_input() else: print("Goodbye!") def main(): park = Zoo([], 10, 10) park.load_zoo("test_dogs.txt") simulation = SimulateZoo(park) simulation.interface() if __name__ == '__main__': main()
from datetime import datetime from functools import reduce from util import contains, write_to_file def generate_output(key, value_tuple): date_str = value_tuple[1].strftime("%Y-%m-%d %H:%M:%S") return "{}\t{}\t{}\n".format(key, date_str, str(value_tuple[0])) def calculate_busiest_time(key_values_dict, key_value): key, value = key_value.strip().split("\t", 1) entries, date, time = value.strip().split('\t') entries_num = float(entries) entry_time = datetime.strptime(date + "T" + time, "%Y-%m-%dT%H:%M:%S") keys = list(key_values_dict) current_count = key_values_dict[key] if contains(keys, key) else (0.0, datetime(1970,1,1)) entry_high = current_count if current_count[0] > entries_num or (current_count[0] == entries_num and current_count[1] > entry_time) else (entries_num, entry_time) key_values_dict[key] = entry_high return key_values_dict def reducer(ridership_file): ''' Write a reducer that will compute the busiest date and time (that is, the date and time with the most entries) for each turnstile unit. Ties should be broken in favor of datetimes that are later on in the month of May. You may assume that the contents of the reducer will be sorted so that all entries corresponding to a given UNIT will be grouped together. The reducer should print its output with the UNIT name, the datetime (which is the DATEn followed by the TIMEn column, separated by a single space), and the number of entries at this datetime, separated by tabs. For example, the output of the reducer should look like this: R001 2011-05-11 17:00:00 31213.0 R002 2011-05-12 21:00:00 4295.0 R003 2011-05-05 12:00:00 995.0 R004 2011-05-12 12:00:00 2318.0 R005 2011-05-10 12:00:00 2705.0 R006 2011-05-25 12:00:00 2784.0 R007 2011-05-10 12:00:00 1763.0 R008 2011-05-12 12:00:00 1724.0 R009 2011-05-05 12:00:00 1230.0 R010 2011-05-09 18:00:00 30916.0 ... ... Since you are printing the output of your program, printing a debug statement will interfere with the operation of the grader. Instead, use the logging module, which we've configured to log to a file printed when you click "Test Run". For example: logging.info("My debugging message") Note that, unlike print, logging.info will take only a single argument. So logging.info("my message") will work, but logging.info("my","message") will not. ''' with open(ridership_file) as ridership_data: output_filename = "./subway_busiest_hour.txt" ridership_dict = reduce(calculate_busiest_time, [data for data in ridership_data], {}) [write_to_file(output_filename, generate_output(k, v)) for k, v in ridership_dict.items()] if __name__ == "__main__": reducer("./subway_ridership_by_hour_and_unit.txt")
#!/usr/bin/env python3 import itertools # encrypted key1, key2 and flag (from scrambledeggs.txt) ekey1 = 'xtfsyhhlizoiyx' ekey2 = 'eudlqgluduggdluqmocgyukhbqkx' eflag = 'lvvrafwgtocdrdzfdqotiwvrcqnd' scramble_map = ['v', 'r', 't', 'p', 'w', 'g', 'n', 'c', 'o', 'b', 'a', 'f', 'm', 'i', 'l', 'u', 'h', 'z', 'd', 'q', 'j', 'y', 'x', 'e', 'k', 's'] # result of the evaluation of (sys.maxsize % 28) for 64-bit machines randsize = 7 # to choose whether or not to swap key1 and key2 swapkeys = True # write the resulting flag combinations to a file outfile = 'results.txt' # reverse enc1, but provide n def dec1(text, n): assert(0 <= n < 28) return text[-n:] + text[:-n] # reverse enc2 def dec2(text): # map each character of text to the character of order : # index of text[i] in scramble_map + ord('a') return ''.join(chr(scramble_map.index(char) + ord('a')) for char in text) # recover key2 from the encrypted key2 (the part where random chars are appended to key2) def recover_key2(ekey2): assert(len(ekey2) == 28) # the random characters are the 14 first k = ekey2[:14] # the list of `a`s alist = list(map(ord, ekey2[14:])) res = '' for i in range(14): # we simply compute c using linear equations c = alist[i] - ord(k[i]) + ord('a') # since all characters are ascii lowercase # this check helps avoiding multiple potential values if not ord('a') <= c <= ord('z'): c += 122 - 97 res += chr(c) return res # undo the big double loop def unloop(key1, key2, flag): key1, key2, flag = list(key1), list(key2), list(flag) assert (len(key1) == len(key2) == 14) for j in range(2): # we make sure the range is from 27 to 14, not 14 to 27 for i in range(27, 13, -1): # taking advantage of python's built-in way to swap values # rather than using a temp variable index = (ord(key1[i-14]) - ord('a')) % 14 key2[index], key2[i-14] = key2[i-14], key2[index] index = (ord(key2[i-14]) - ord('a')) % 28 flag[i], flag[index] = flag[index], flag[i] for i in range(13, -1, -1): index = (ord(key2[i]) - ord('a')) % 14 key1[index], key1[i] = key1[i], key1[index] index = (ord(key1[i]) - ord('a')) % 28 flag[i], flag[index] = flag[index], flag[i] return ''.join(key1), ''.join(key2), ''.join(flag) if __name__ == '__main__': # generate the combinations of 3 `n`s using itertools.product combinations = [p for p in itertools.product(range(randsize+1), repeat=3)] key1 = ekey1 key2 = recover_key2(dec2(ekey2)) flag = dec2(eflag) if swapkeys: key1, key2 = key2, key1 original = flag, key1, key2 results = [] for c in combinations: flag = dec1(dec1(dec1(flag, c[0]), c[1]), c[2]) key1, key2, flag = unloop(key1, key2, flag) if dec2(dec2(key2)) == key1: for n in range(randsize + 1): flag = dec1(flag, n) results.append(flag) flag, key1, key2 = original with open(outfile, 'w') as f: f.write('\n'.join(results)) f.close()
# -*- coding: utf-8 -*- def steffensen(f, x0, tol): if tol <= 0: print("illegal value for tolerance") return for i in range(1, 1000): y0 = f(x0) x = x0 - y0 * y0 / (f(x0 + y0) - y0) if abs(x - x0) < tol: print("found root", x, "in", i, "iteration(s)") return x0 = x print("failed to converge in 1K iterations") def steffensen_atk(f, x0, tol): """This function takes as inputs: a fixed point iteration function, f, and initial guess to the fixed point, p0, and a tolerance, tol. This function will calculate and return the fixed point, p, that makes the expression f(x) = p true to within the desired tolerance, tol. """ if tol <= 0: print("illegal value for tolerance") return # do a large, but finite, number of iterations for i in range(1, 1000): x1 = f(x0) # calculate the next two guesses for the fixed point x2 = f(x1) # use Aitken's delta squared method to find a better approximation to # p0 x = x2 - (x2 - x1) * (x2 - x1) / (x2 - 2 * x1 + x0) if abs(x - x0) < tol: print("found root", x, "after", i, "iteration(s)") return x0 = x print("failed to converge in 1K iterations")
#using machine and utime Micropython libraries import machine import utime buzzer = machine.Pin(2,machine.Pin.OUT) #The buzzer is attached to pin D4 on the NodeMCU motor = machine.PWM(machine.Pin(14), freq = 50) #The motor driver is attached to pin D5 on the NodeMCU #time parameters defined as empty arrays first_release_time = [] hours_until_release = [] #This function defines what happens in the event of a pill release def pill_release(): motor.duty(200) utime.sleep(3.75) motor.duty(0) buzzer.value(1) utime.sleep(2) buzzer.value(0) n = 1 #n is a factor that is used in definint the release_time varible first_release_time = 10 #defines how long to wait before releasing the first pill hours_until_release = 10 #defines how often the medication must be taken number_of_pills = 20 #defines the number of pills at the start did_first_action = False #an extra condition that corrects for delays in timing #main loop of the code. A pill is released after user-specified intervals while True: current_time = utime.ticks_ms() release_time = first_release_time + hours_until_release*n motor.duty(0) buzzer.value(0) if current_time/3600000 >= first_release_time and did_first_action == False: pill_release() did_first_action = True utime.sleep(hours_until_release*3600 - 5.75) if current_time/3600000 >= release_time and did_first_action == True: pill_release() n = n + 1 utime.sleep(hours_until_release*3600 - 5.75) if n > (number_of_pills - 1): buzzer.value(1) utime.sleep(2) buzzer.value(0) utime.sleep(1) buzzer.value(1) utime.sleep(2) buzzer.value(0) utime.sleep(1) buzzer.value(1) utime.sleep(2) buzzer.value(0) break
############################ dAY 7 ######################## ############################ hANGMAN pROJECT ################## #Step 1 import random stages = [''' +---+ | | O | /|\ | / \ | | ========= ''', ''' +---+ | | O | /|\ | / | | ========= ''', ''' +---+ | | O | /|\ | | | ========= ''', ''' +---+ | | O | /| | | | =========''', ''' +---+ | | O | | | | | ========= ''', ''' +---+ | | O | | | | ========= ''', ''' +---+ | | | | | | ========= '''] word_list = ["pakistan","srilanka","india"] choosen_word = random.choice(word_list) display = [] gameOver = True lives = 6 for i in choosen_word: display.append("_") while gameOver: if "_" in display: user_inp = input("guess a letter\n").lower() for position in range(0,len(choosen_word)): if user_inp == choosen_word[position]: display[position] = user_inp print(f"{' '.join(display)}") if user_inp not in choosen_word: lives -=1 print(stages[lives]) if lives == 0: print("you loose") break else: gameOver = False print("you win")
# Python 3 - Polling radio buttons tkinter program # Author: J.Smith # Import tkinter library from tkinter import * import tkinter.messagebox as box # A window window = Tk() window.title('Radio Button Example') # Frame to contain widgets frame = Frame(window) # String variable to store a selection book = StringVar() # Three radio button widgets radio_1 = Radiobutton(frame, text = "HTML5", variable = book, value = "HTML5 in Easy Steps") radio_2 = Radiobutton(frame, text = "CSS", variable = book, value = "CSS in Easy Steps") radio_3 = Radiobutton(frame, text = "JS", variable = book, value = "JavaScript in Easy Steps") # Set default radio button radio_1.select() # Function to show selection def dialog(): box.showinfo('Selection', 'Your choice: \n' + book.get()) # Button to run the function btn = Button(frame, text = "Choose", command = dialog) # Pack all the elements together btn.pack(side = RIGHT, padx = 5) radio_1.pack(side = LEFT) radio_2.pack(side = LEFT) radio_3.pack(side = LEFT) frame.pack(padx = 30, pady= 30) # Maintain the current window window.mainloop()
x= int(input("Digite el primer numero: ")) y= int(input("Digite el segundo numero: ")) def resta(x,y,): return x-y def multiplicacion(x,y): return x*y def division(x,y): return x//y def divisionres(x,y): return x%y print("La resta de tus dos numero es: ", resta (x,y)) print("La multiplicacion de tus dos numero es: ", multiplicacion(x,y)) print("La division de tus dos numero es: ", division(x,y)) print("El residuo de la divison de tus dos numero es: ", divisionres(x,y))
numero1= int(input("En que numero comienza la lista: ")) numero2= int(input("En que numero termina la lista: ")) lista=list(range(numero1,numero2+1)) for n in lista: inverso_n=int(str(n)[::-1]) suma=inverso_n+n inverso_checa=int(str(suma)[::-1]) if n==inverso_n: print(n,"es palindromo") elif(suma==inverso_checa): print(n,"No es un numero Lychrel") else: print(n,"Es un numero Lychrel")
import random contador=0 respuesta=0 n=random.randint(0,101) while respuesta!=n: respuesta=0 respuesta = int(input("Intente adivinar el numero: ")) if respuesta>n: contador=contador+1 print(respuesta," es mayor, intenta con otro numero mas pequeño") elif respuesta<n: contador=contador+1 print(respuesta," es menor, intenta con otro numero mas grande") else: print("has acertado el numero, lo has intentado: ",contador," veces")
def adding_natural(): sum_of=0 for x in range(1,number+1): sum_of+=x sum_of=sum_of**(2) return sum_of def mult_natural(): multi=0 for x in range(1,number+1): multi= multi + (x**(2)) return multi try: print("Choose your number") number=eval(input()) print(adding_natural()-mult_natural()) except: print("An error occured")
import numpy as np class Perceptron(object): # constructor for creating object of class perceptron def __init__(self, no_of_inputs, epoch=20, learning_rate=0.01): # epoch determines, how many times each training example would pass through perceptron self.epoch = epoch # learning rate defines that how much change is acceptable between previous and new weights self.learning_rate = learning_rate self.weights = np.zeros(no_of_inputs + 1) def predict(self, inputs): # following line is computing the equation (X1*W1) + (X2*2) + b summation = np.dot(inputs, self.weights[1:]) + self.weights[0] if summation >= 0: activation = 1 else: activation = 0 return activation def train(self, training_inputs, labels): for _ in range(self.epoch): for inputs, label in zip(training_inputs, labels): prediction = self.predict(inputs) # Following lines are readjusting the weights and bias # If the difference is -ve, new weight will be less than previous one # If the difference is +ve, new weight will be greater than previous one self.weights[1:] += self.learning_rate * (label - prediction) * inputs self.weights[0] += self.learning_rate * (label - prediction) print("learning rate", self.learning_rate, self.weights[1:]) training_inputs = [] training_inputs.append(np.array([1, 1])) training_inputs.append(np.array([1, 0])) training_inputs.append(np.array([0, 1])) training_inputs.append(np.array([0, 0])) labels = np.array([1, 0, 0, 0]) perceptron = Perceptron(2) perceptron.train(training_inputs, labels) inputs = np.array([0.5, 0.8]) print(perceptron.predict(inputs)) inputs = np.array([1.5, 0.5]) print(perceptron.predict(inputs))
koniec_przedzialu = int(input("Podaj koniec przedzialu: ")) lista = [] lista_new = [] def stworzliste(koniec_przedzialu): for i in range (2,koniec_przedzialu+1): minimum = min(i,koniec_przedzialu) lista.append(minimum) stworzliste(koniec_przedzialu) print ("Podany przedzial zawiera liczby:") print (lista) print("Z tego przedzialu liczby pierwsze to:") def program(argument,lista): print(argument) lista_new = [] for j in range (0, len(lista)): if int(lista[j]) % argument != 0: lista_new.append(int(lista[j])) for k in range (0,len(lista_new)): lista[k] = lista_new[k] argument = int(lista[0]) wielkosclisty = int(len(lista_new)) if wielkosclisty > 0: program(argument,lista[0:len(lista_new)]) else: print('koniec') program(2,lista)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Questão 1 Modele o problema do Restaurante (mencionado no capítulo 18 do livro texto) para ser resolvido por meio de árvore de decisão e por meio de KNN (com k = 1 e com k = 5). Este código trata só de arvores de devisão """ import pandas as pd from sklearn.preprocessing import LabelEncoder, StandardScaler from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier, export from sklearn.metrics import confusion_matrix, accuracy_score dados = pd.read_csv("restaurante.csv") # Fazendo um preprocessamento do dados # Coloca na variavel entrada só as colunas referentes ao atrubutos entradas = dados.iloc[:, 0:10].values classe = dados.iloc[:, 10].values # transforma as variáves categoricas em numéricas labelencoder_entradas = LabelEncoder() entradas[:, 0] = labelencoder_entradas.fit_transform(entradas[:, 0]) entradas[:, 1] = labelencoder_entradas.fit_transform(entradas[:, 1]) entradas[:, 2] = labelencoder_entradas.fit_transform(entradas[:, 2]) entradas[:, 3] = labelencoder_entradas.fit_transform(entradas[:, 3]) entradas[:, 4] = labelencoder_entradas.fit_transform(entradas[:, 4]) entradas[:, 5] = labelencoder_entradas.fit_transform(entradas[:, 5]) entradas[:, 6] = labelencoder_entradas.fit_transform(entradas[:, 6]) entradas[:, 7] = labelencoder_entradas.fit_transform(entradas[:, 7]) entradas[:, 8] = labelencoder_entradas.fit_transform(entradas[:, 8]) entradas[:, 9] = labelencoder_entradas.fit_transform(entradas[:, 9]) classe = labelencoder_entradas.fit_transform(classe) # Normalizado os dados usando a média e o desvio padrão scaler = StandardScaler() entradas = scaler.fit_transform(entradas) #Didvisão dos dados em tetes e treinamento. entradas_treinamento, entradas_teste, classe_treinamento, classe_teste = train_test_split(entradas, classe, test_size=0.30, random_state=0) # Instnacioando o classificar da arvores de devisão # Vai gerar uma arrvores de decisão de acordo com o criterio a entropia classificador = DecisionTreeClassifier(criterion='entropy') classificador.fit(entradas_treinamento, classe_treinamento) #print(classificador.feature_importances_) # Visualização da arvore export.export_graphviz( classificador, out_file = 'arvore.dot', feature_names = ['Alternativa', 'Bar', 'Sex/Sab', 'Faminto', 'Clientes', 'Preço', 'Chovendo', 'Reserva', 'Tipo', 'Espera estimada'], class_names = ['Sim', 'Não'], filled = True, leaves_parallel=True ) # Usa a base de teste para ver o resultado resultado_teste = classificador.predict(entradas_teste) # Verificando a quantidade de acerto nos testes precisao = accuracy_score(classe_teste, resultado_teste) print(precisao)
# The script intends to read data from the excel file def read(): import requests from requests.exceptions import MissingSchema import xlrd #stores the name of the sites from the excel as a list sites=[] # Hardcode the location of the excel file here file_location=r'C:\Users\pankaj lamba\Desktop\PBL2/csv.xlsx' # Opens the excel file workbook=xlrd.open_workbook(file_location) # Opens the FIRST sheet sheet=workbook.sheet_by_index(0) # Counts the Number of row in the sheet n=sheet.nrows for i in range (1,n): #Converts the name of the sites into an URL # Stores the URL of the sites into the list site='http://www.'+sheet.cell_value(i,0) try: request = requests.get(site) if request.status_code == 200: sites.append(site) except: pass return(sites) x=read() print(x)
import tkinter as tk from tkinter import * import math class paceCalculator: #**def clear_search(event): #self.entTime.delete(0, END) #***def clear_search2(event): #self.entDS.delete(0, END) def __init__(self): self.root = tk.Tk() self.root.configure(background = "navy") self.root.geometry('400x400') self.labTitle = tk.Label(self.root,text = "Pace Calculator") self.labTitle.grid(row = 2, column = 0, columnspan = 2) self.labTime = tk.Label(self.root, text = "Enter Time in Seconds: ") self.labTime.grid(row = 3, column = 0) self.entTime = tk.Entry(self.root, background = "light grey") self.entTime.grid(row = 3, column = 1) #self.entTime.insert(0,"Enter Time in Seconds") #self.entTime.bind("<Button-1>", clear_search) self.labDS = tk.Label(self.root, text = "Enter Distance Swam: ") self.labDS.grid(row = 4, column = 0, padx = 10, pady = 10) self.entDS = tk.Entry(self.root, background = "light grey") self.entDS.grid(row = 4, column = 1, padx = 10, pady = 10) #**self.entDS.insert(0,"Enter Distance in Meters") #***self.entDS.bind("<Button-1>", clear_search2) self.DDLabel = Label(self.root, text = "Select Distance: ") self.DDLabel.grid(row = 5 , column = 0, sticky = "E") OPTIONS = [ "25", "50", "100", "200", ] self.var = tk.StringVar(self.root) self.var.set(OPTIONS[0]) self.dropDownMenu = tk.OptionMenu(self.root,self.var, OPTIONS[0], OPTIONS[1], OPTIONS[2], OPTIONS[3]) self.dropDownMenu.grid(row = 5 , column = 1, sticky = "W") d self.btnCalc = tk.Button(self.root, text = "Calculate",command= self.calculate) self.btnCalc.grid(row = 6 , column = 0, columnspan = 2) self.output = tk.Text(self.root, height = 10, width=50, relief=tk.GROOVE) self.output.config(state="disabled") self.output.grid(row = 8, column = 0, columnspan = 2) self.root.mainloop() def calculate(self): print("Calculating") t = float(self.entTime.get()) d = float(self.entDS.get()) c = float(self.var.get()) r = math.ceil((t/d)*c) outputValue = "When "+str(t)+" seconds is taken to swim "+str(d)+" meters, the pace per "+str(c)+"meters is:" + str(r) + " seconds per " + str(c) self.output.config(state = "normal") self.output.delete(1.0,tk.END) self.output.insert(tk.INSERT,outputValue) self.output.config(state="disabled") print(str(r) + "Seconds per" + str(c)) paceCalculator()
#!/usr/bin/python import csv from twython import Twython from twython import TwythonStreamer class TwitterStream(TwythonStreamer): ''' Implements twitter api using the TwythonStreamer subclass. ''' def on_success(self, data): ''' required 'TwythonStreamer' method called when twitter returns data. ''' tweet_data = process_tweet(data) self.save_to_csv(tweet_data) def on_error(self, status_code, data): ''' required 'TwythonStreamer' method called when twitter returns an error. ''' print(status_code, data) self.disconnect() def save_to_csv(self, tweet): ''' optional 'TwythonStreamer' method to store tweets into a file. ''' with open(r'saved_tweets.csv', 'a') as file: writer = csv.writer(file) writer.writerow(list(tweet.values()))
# coding: utf-8 # # Project for Neural Networks lecture # # ## Deep Learning # # ## Project: Build a CIFAR10 Recognition Classifier # ![LeNet Architecture](lenet.png) # Source: Yan LeCun # # In this project, I will use deep neural networks and convolutional neural networks to classify CIFAR10 dataset from [http://www.cs.toronto.edu/~kriz/cifar.html](http://www.cs.toronto.edu/~kriz/cifar.html). # # # ## Step 0: Load The Data - code from: https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/cifar10.py # In[50]: ######################################################################## # # Functions for downloading the CIFAR-10 data-set from the internet # and loading it into memory. # # Implemented in Python 3.5 # # Usage: # 1) Set the variable data_path with the desired storage path. # 2) Call maybe_download_and_extract() to download the data-set # if it is not already located in the given data_path. # 3) Call load_class_names() to get an array of the class-names. # 4) Call load_training_data() and load_test_data() to get # the images, class-numbers and one-hot encoded class-labels # for the training-set and test-set. # 5) Use the returned data in your own program. # # Format: # The images for the training- and test-sets are returned as 4-dim numpy # arrays each with the shape: [image_number, height, width, channel] # where the individual pixels are floats between 0.0 and 1.0. # ######################################################################## # # This file is part of the TensorFlow Tutorials available at: # # https://github.com/Hvass-Labs/TensorFlow-Tutorials # # Published under the MIT License. See the file LICENSE for details. # # Copyright 2016 by Magnus Erik Hvass Pedersen # ######################################################################## import numpy as np import pickle import os import download from dataset import one_hot_encoded ######################################################################## # Directory where you want to download and save the data-set. # Set this before you start calling any of the functions below. data_path = "data/CIFAR-10/" # URL for the data-set on the internet. data_url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" ######################################################################## # Various constants for the size of the images. # Use these constants in your own program. # Width and height of each image. img_size = 32 # Number of channels in each image, 3 channels: Red, Green, Blue. num_channels = 3 # Length of an image when flattened to a 1-dim array. img_size_flat = img_size * img_size * num_channels # Number of classes. num_classes = 10 ######################################################################## # Various constants used to allocate arrays of the correct size. # Number of files for the training-set. _num_files_train = 5 # Number of images for each batch-file in the training-set. _images_per_file = 10000 # Total number of images in the training-set. # This is used to pre-allocate arrays for efficiency. _num_images_train = _num_files_train * _images_per_file ######################################################################## # Private functions for downloading, unpacking and loading data-files. def _get_file_path(filename=""): """ Return the full path of a data-file for the data-set. If filename=="" then return the directory of the files. """ return os.path.join(data_path, "cifar-10-batches-py/", filename) def _unpickle(filename): """ Unpickle the given file and return the data. Note that the appropriate dir-name is prepended the filename. """ # Create full path for the file. file_path = _get_file_path(filename) print("Loading data: " + file_path) with open(file_path, mode='rb') as file: # In Python 3.X it is important to set the encoding, # otherwise an exception is raised here. data = pickle.load(file, encoding='bytes') return data def _convert_images(raw): """ Convert images from the CIFAR-10 format and return a 4-dim array with shape: [image_number, height, width, channel] where the pixels are floats between 0.0 and 1.0. """ # Convert the raw images from the data-files to floating-points. # raw_float = np.array(raw, dtype=float) / 255.0 # raw_float = np.array(raw, dtype=float) # Reshape the array to 4-dimensions. # images = raw_float.reshape([-1, num_channels, img_size, img_size]) images = raw.reshape([-1, num_channels, img_size, img_size]) # Reorder the indices of the array. images = images.transpose([0, 2, 3, 1]) return images def _load_data(filename): """ Load a pickled data-file from the CIFAR-10 data-set and return the converted images (see above) and the class-number for each image. """ # Load the pickled data-file. data = _unpickle(filename) # Get the raw images. raw_images = data[b'data'] # Get the class-numbers for each image. Convert to numpy-array. cls = np.array(data[b'labels']) # Convert the images. images = _convert_images(raw_images) return images, cls ######################################################################## # Public functions that you may call to download the data-set from # the internet and load the data into memory. def maybe_download_and_extract(): """ Download and extract the CIFAR-10 data-set if it doesn't already exist in data_path (set this variable first to the desired path). """ download.maybe_download_and_extract(url=data_url, download_dir=data_path) def load_class_names(): """ Load the names for the classes in the CIFAR-10 data-set. Returns a list with the names. Example: names[3] is the name associated with class-number 3. """ # Load the class-names from the pickled file. raw = _unpickle(filename="batches.meta")[b'label_names'] # Convert from binary strings. names = [x.decode('utf-8') for x in raw] return names def load_training_data(): """ Load all the training-data for the CIFAR-10 data-set. The data-set is split into 5 data-files which are merged here. Returns the images, class-numbers and one-hot encoded class-labels. """ # Pre-allocate the arrays for the images and class-numbers for efficiency. images = np.zeros(shape=[_num_images_train, img_size, img_size, num_channels], dtype=float) cls = np.zeros(shape=[_num_images_train], dtype=int) # Begin-index for the current batch. begin = 0 # For each data-file. for i in range(_num_files_train): # Load the images and class-numbers from the data-file. images_batch, cls_batch = _load_data(filename="data_batch_" + str(i + 1)) # Number of images in this batch. num_images = len(images_batch) # End-index for the current batch. end = begin + num_images # Store the images into the array. images[begin:end, :] = images_batch # Store the class-numbers into the array. cls[begin:end] = cls_batch # The begin-index for the next batch is the current end-index. begin = end return images, cls, one_hot_encoded(class_numbers=cls, num_classes=num_classes) def load_test_data(): """ Load all the test-data for the CIFAR-10 data-set. Returns the images, class-numbers and one-hot encoded class-labels. """ images, cls = _load_data(filename="test_batch") return images, cls, one_hot_encoded(class_numbers=cls, num_classes=num_classes) ######################################################################## # In[66]: class_names = load_class_names() # In[51]: maybe_download_and_extract() # In[52]: X, y, one_hot_y_train = load_training_data() # In[53]: from sklearn.model_selection import train_test_split X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2, random_state=42) # In[55]: X_test, y_test, one_hot_y_test = load_test_data() # --- # # ## Step 1: Dataset Summary & Exploration # # ### Provide a Basic Summary of the Data Set Using Python, Numpy and/or Pandas # In[56]: # Number of training examples n_train = len(X_train) # Number of validation examples n_validation = len(X_valid) # Number of testing examples. n_valid = len(X_valid) # Number of testing examples. n_test = len(X_test) # What's the shape of an traffic sign image? image_shape = X_train[0].shape # How many unique classes/labels there are in the dataset. n_classes = len(set(y_train)) print("Number of training examples =", n_train) print("Number of validation examples =", n_valid) print("Number of testing examples =", n_test) print("Image data shape =", image_shape) print("Number of classes =", n_classes) # ### Include an exploratory visualization of the dataset # Visualize the CIFAR10 Dataset using the pickled file(s): images and distribution of classes in each dataset. # In[69]: # Randomly choose indices to represent which datapoints we choose from the training set import math import numpy as np import random import matplotlib.pyplot as plt def plot_images(num, x, y, path): num_images = num indices = np.random.choice(list(range(len(x))), size=num_images, replace=False) # Obtain the images and labels images = x[indices] labels = y[indices] for i, image in enumerate(images): plt.rcParams["figure.figsize"] = [15, 5] plt.subplot(2, math.ceil(num_images/2.), i+1) plt.imshow(image) plt.title('%s' % class_names[labels[i]]) plt.tight_layout() plt.savefig(path) plt.show() # In[73]: plot_images(10, X_train/255, y_train, 'writeup_images/examples_X_train.jpg') # In[82]: # Count frequency of each label def namestr(obj, namespace): return [name for name in namespace if namespace[name] is obj] def plot_hist(y, path): labels, counts = np.unique(y, return_counts=True) # Plot the histogram plt.rcParams["figure.figsize"] = [15, 5] axes = plt.gca() axes.set_xlim([-1,10]) plt.bar(labels, counts, tick_label=labels, width=0.8, align='center') plt.title('Distribution of classes on {} data'.format(namestr(y, globals()))) plt.savefig(path) plt.show() # ### Plot histogram of the train dataset # In[83]: plot_hist(y_train, 'writeup_images/hist_y_train.jpg') # ### Plot histogram of the validation dataset # In[84]: # Count frequency of each label plot_hist(y_valid,'writeup_images/hist_y_valid.jpg') # ### Plot histogram of the test dataset # In[85]: # Count frequency of each label plot_hist(y_test,'writeup_images/hist_y_test.jpg') # ---- # # ## Step 2: Design and Test a Model Architecture # # In this part I will design and implement a deep learning model that learns to recognize categories in dataset. # # The implementation shown in the [LeNet-5](http://yann.lecun.com/exdb/lenet/) is a solid starting point. # There are various aspects to consider when thinking about this problem: # # - Neural network architecture (is the network over or underfitting?) # - Play around preprocessing techniques (normalization, rgb to grayscale, etc) # - Number of examples per label (some have more than others). # - Generate fake data. # # Here is an example of a [published baseline model on this problem](http://yann.lecun.com/exdb/publis/pdf/sermanet-ijcnn-11.pdf). # ### Pre-process the Data Set (normalization, grayscale, etc.) # Minimally, the image data should be normalized so that the data has mean zero and equal variance. For image data, `(pixel - 128)/ 128` is a quick way to approximately normalize the data and can be used in this project. # # Other pre-processing steps are optional. You can try different techniques to see if it improves performance. # In[140]: def center_normalize(data): """Center normalize images""" data = data.astype('float32') data -= 128. data /= 128. return data def convert_to_grey(data): images_grey = np.average(data, axis=3) images_grey = np.expand_dims(images_grey, axis=3) return images_grey def undo_normalize(data): return (data*128 + 128)/255 # In[87]: X_train = center_normalize(X_train) X_valid = center_normalize(X_valid) X_test = center_normalize(X_test) # In[88]: plot_images(10, X_train, y_train, 'writeup_images/examples_X_train_normalized.jpg') # ### Model Architecture # # ### Input # The LeNet architecture accepts a 32x32xC image as input, where C is the number of color channels. Since traffic signs images are RGB, and converting them to greyscale (C=1) didn't improve accuracy, I set C equals 3. # # ### Architecture: # **Layer 1: Convolutional.** The output shape should be 28x28x6. # # **Activation.** Your choice of activation function. I used ReLU activation (https://en.wikipedia.org/wiki/Rectifier_(neural_networks). # # **Pooling.** The output shape should be 14x14x6. # # --- # **Layer 2: Convolutional.** The output shape should be 10x10x16. # # **Activation.** Your choice of activation function. Again, I used ReLU activation. # # **Pooling.** The output shape should be 5x5x16. # # **Flatten.** Flatten the output shape of the final pooling layer such that it's 1D instead of 3D. The easiest way to do is by using `tf.contrib.layers.flatten`, which is already imported for you. # # --- # **Layer 3: Fully Connected.** This should have 120 outputs. # # **Activation.** ReLU activation. # # **Regularization.** I used dropout regularization with probabilty of dropout equals 50% # # --- # **Layer 4: Fully Connected.** This should have 84 outputs. # # **Activation.** ReLU activation. # # **Regularization.** I used dropout regularization with probabilty of dropout equals 50% # # --- # **Layer 5: Fully Connected (Logits).** This should have 43 outputs. # # ### Output # Return the result of the 2nd fully connected layer. # In[89]: import tensorflow as tf from sklearn.utils import shuffle EPOCHS = 40 BATCH_SIZE = 128 # In[90]: x = tf.placeholder(tf.float32, (None, 32, 32, 3)) y = tf.placeholder(tf.int32, (None)) keep_prob = tf.placeholder(tf.float32) one_hot_y = tf.one_hot(y, n_classes) # In[91]: from tensorflow.contrib.layers import flatten # Arguments used for tf.truncated_normal, randomly defines variables for the weights and biases for each layer mu = 0 sigma = 0.1 conv1_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 3, 6), mean = mu, stddev = sigma)) conv1_b = tf.Variable(tf.zeros(6)) conv2_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 6, 16), mean = mu, stddev = sigma)) conv2_b = tf.Variable(tf.zeros(16)) fc1_W = tf.Variable(tf.truncated_normal(shape=(400, 120), mean = mu, stddev = sigma)) fc1_b = tf.Variable(tf.zeros(120)) fc2_W = tf.Variable(tf.truncated_normal(shape=(120, 84), mean = mu, stddev = sigma)) fc2_b = tf.Variable(tf.zeros(84)) fc3_W = tf.Variable(tf.truncated_normal(shape=(84, n_classes), mean = mu, stddev = sigma)) fc3_b = tf.Variable(tf.zeros(n_classes)) # In[92]: def LeNet(x, dropout): # SOLUTION: Layer 1: Convolutional. Input = 32x32x3. Output = 28x28x6. conv1 = tf.nn.conv2d(x, conv1_W, strides=[1, 1, 1, 1], padding='VALID') + conv1_b # SOLUTION: Activation. conv1 = tf.nn.relu(conv1) # SOLUTION: Pooling. Input = 28x28x6. Output = 14x14x6. conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') # SOLUTION: Layer 2: Convolutional. Output = 10x10x16. conv2 = tf.nn.conv2d(conv1, conv2_W, strides=[1, 1, 1, 1], padding='VALID') + conv2_b # SOLUTION: Activation. conv2 = tf.nn.relu(conv2) # SOLUTION: Pooling. Input = 10x10x16. Output = 5x5x16. conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') # SOLUTION: Flatten. Input = 5x5x16. Output = 400. fc0 = flatten(conv2) # SOLUTION: Layer 3: Fully Connected. Input = 400. Output = 120. fc1 = tf.matmul(fc0, fc1_W) + fc1_b # SOLUTION: Activation. fc1 = tf.nn.relu(fc1) fc1 = tf.nn.dropout(fc1, dropout) # SOLUTION: Layer 4: Fully Connected. Input = 120. Output = 84. fc2 = tf.matmul(fc1, fc2_W) + fc2_b # SOLUTION: Activation. fc2 = tf.nn.relu(fc2) fc2 = tf.nn.dropout(fc2, dropout) # SOLUTION: Layer 5: Fully Connected. Input = 84. Output = 43. logits = tf.matmul(fc2, fc3_W) + fc3_b return logits # ### Train, Validate and Test the Model # A validation set can be used to assess how well the model is performing. A low accuracy on the training and validation # sets imply underfitting. A high accuracy on the training set but low accuracy on the validation set implies overfitting. # # #### I used regularization for the second time: L2 regulatization prevents model from overfitting. Values of Learning rate and L2 hyperparam was chosen experimentally. # In[93]: ### Train your model here. ### Calculate and report the accuracy on the training and validation set. ### Once a final model architecture is selected, ### the accuracy on the test set is calculated and reported as well. rate = 0.0007 l2_param = 0.007 logits = LeNet(x, keep_prob) cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=one_hot_y, logits=logits) loss_operation = tf.reduce_mean(cross_entropy + l2_param*(tf.nn.l2_loss(conv1_W) + tf.nn.l2_loss(conv1_b) + tf.nn.l2_loss(conv2_W) + tf.nn.l2_loss(conv2_b) + tf.nn.l2_loss(fc1_W) + tf.nn.l2_loss(fc1_b) + tf.nn.l2_loss(fc2_W) + tf.nn.l2_loss(fc2_b) + tf.nn.l2_loss(fc3_W) + tf.nn.l2_loss(fc3_b))) optimizer = tf.train.AdamOptimizer(learning_rate = rate) training_operation = optimizer.minimize(loss_operation) # In[94]: correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(one_hot_y, 1)) accuracy_operation = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) saver = tf.train.Saver() def evaluate(X_data, y_data): num_examples = len(X_data) total_loss = 0 total_accuracy = 0 sess = tf.get_default_session() for offset in range(0, num_examples, BATCH_SIZE): batch_x, batch_y = X_data[offset:offset+BATCH_SIZE], y_data[offset:offset+BATCH_SIZE] loss, accuracy = sess.run([loss_operation, accuracy_operation], feed_dict={x: batch_x, y: batch_y, keep_prob: 1.}) total_accuracy += (accuracy * len(batch_x)) total_loss += (loss * len(batch_x)) return total_loss / num_examples, total_accuracy / num_examples # ### Main part of the implementation. Here I am training the model on batches over all epochs (which takes a lot of time). Then the model is saved. # In[95]: # Arrays below store data to plot loss and accuracy over epochs. validation_loss_arr = [] training_loss_arr = [] validation_accuracy_arr = [] training_accuracy_arr = [] with tf.Session() as sess: sess.run(tf.global_variables_initializer()) num_examples = len(X_train) print("Training...") print() for i in range(EPOCHS): X_train, y_train = shuffle(X_train, y_train) X_valid, y_valid = shuffle(X_valid, y_valid) for offset in range(0, num_examples, BATCH_SIZE): end = offset + BATCH_SIZE batch_x, batch_y = X_train[offset:end], y_train[offset:end] sess.run(training_operation, feed_dict={x: batch_x, y: batch_y, keep_prob: 0.5}) validation_loss, validation_accuracy = evaluate(X_valid, y_valid) training_loss, training_accuracy = evaluate(X_train, y_train) validation_loss_arr.append(validation_loss) training_loss_arr.append(training_loss) validation_accuracy_arr.append(validation_accuracy) training_accuracy_arr.append(training_accuracy) print("EPOCH {} ...".format(i+1)) print("Train Accuracy = {:.3f}".format(training_accuracy)) print("Validation Accuracy = {:.3f}".format(validation_accuracy)) print("Train Loss = {:.3f}".format(training_loss)) print("Validation Loss = {:.3f}".format(validation_loss)) print() saver.save(sess, './traffic_signs.chkp') print("Model saved") print("Done") # #### Measuer the accuracy on test data. # In[96]: with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint('.')) test_loss, test_accuracy = evaluate(X_test, y_test) print("Test Accuracy = {:.3f}".format(test_accuracy)) print("Test Loss = {:.3f}".format(test_loss)) # #### Plot the accuracy # In[97]: plt.plot(training_accuracy_arr, 'b') # training accuracy plt.plot(validation_accuracy_arr, 'r') # validation accuracy plt.rcParams["figure.figsize"] = [10, 5] plt.title('Train (blue) and Validation (red) Accuracies over Epochs') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.show() # #### Plot the loss # In[98]: plt.plot(training_loss_arr, 'b') # training loss plt.plot(validation_loss_arr, 'r') # validation loss plt.rcParams["figure.figsize"] = [10, 5] plt.title('Train (blue) and Validation (red) Loss over Epochs') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.show() # --- # # ## Step 3: Run a Model on few Test Images # # ### Load and Output the Images # In[150]: indices = np.random.choice(list(range(len(X_test))), size=10, replace=False) # Obtain the images and labels test = X_test[indices] labels = y_test[indices] # ### Predict the Sign Type for Each Image # In[151]: predictions = tf.argmax(logits, 1) sm = tf.nn.softmax(logits) top_k_val, top_k_idx = tf.nn.top_k(sm, k=5) def predict_cifar10(X_data): sess = tf.get_default_session() logit_results, prediction_results, top_k_vals, top_k_idxs, softmax_results = sess.run([logits, predictions, top_k_val, top_k_idx, sm], feed_dict={x: X_data, keep_prob: 1.}) return logit_results, prediction_results, top_k_vals, top_k_idxs, softmax_results # In[152]: with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint('.')) logit_results, prediction_results, top_k_vals, top_k_idxs, softmax_results = predict_cifar10(test) final_preds = [class_names[pred] for pred in prediction_results] # #### Print predictions on sample images # In[153]: print('Predictions on traffic sign images:\n') for i in range(traffic_signs.shape[0]): print('{:30} :(Prediction) {}'.format(class_names[labels[i]], final_preds[i])) # ### Output Top 5 Softmax Probabilities For Test images # In[167]: ### Print out the top five softmax probabilities for the predictions on the German traffic sign images found on the web. ### Feel free to use as many code cells as needed. def pred_certainty_str(top_k_val, top_k_idx): # Convert top k indices into strings top_k_pred = [class_names[idx] for idx in top_k_idx] pcs = '' for i in range(5): pcs += '{}: {:.2f}%\n'.format(top_k_pred[i].replace('\n', ''), top_k_val[i] * 100) return pcs def plot_images2(path): for i, image in enumerate(test): plt.rcParams["figure.figsize"] = [15, 9] plt.subplot(2, 5, i+1) plt.imshow(undo_normalize(image)) plt.title('%s' % class_names[labels[i]]) plt.xlabel(pred_certainty_str(top_k_vals[i], top_k_idxs[i])) plt.tight_layout() plt.savefig(path) plt.show() # In[168]: plot_images2('writeup_images/examples_5_softmax.jpg') # In[ ]:
from keras.layers import Input, Dense, Flatten from keras.models import Model def model(input_shape=(150,150,3)): # Input layer inputs = Input(shape=input_shape) # Hidden & output layers x = Dense(32, activation='relu')(inputs) x = Dense(32, activation='relu')(x) x = Flatten()(x) predictions = Dense(2, activation='softmax')(x) return Model(inputs=inputs, outputs=predictions)
unos=int(raw_input("Unesi broj izmedu 1 i 100:")) for unos in range(1,unos+1): if unos%15==0: print "FizzBuzz" elif unos%5==0: print "Buzz" elif unos%3==0: print "Fizz" else: print unos
#!/usr/bin/env python3 import sys def main(args): print("Hello world!") pos=(0,0) x=0 up=(0,1) down=(0,-1) left=(1,0) right=(-1,0) dir=[up,left,down,right] for i in argv[1]: if (i=='L'): x+=1 elif (i=='R'): x-=1 if (x==4): x=0 if (x==-1): x=3 if (i!='O' and i!='L' and i!='R'): pos+=dir return 0 if __name__ == "__main__": main(sys.argv)
import csv, os # Function to grab the CSV files and prep them for the CSV Reader. def filelist(*files): for f in files: global fname fname = os.path.basename(f) # Assign the file names to the fname variable. with open(f) as fobj: next(fobj) for line in fobj: yield line # Write the data from the collected CSV files into a new CSV file. writer = csv.writer(open('docs/merged.csv', 'wb')) writer.writerow(['email_hash', 'category', 'filename']) try: for row in csv.reader(filelist('docs/clothing.csv', 'docs/accessories.csv', 'docs/household_cleaners.csv')): row.append(fname) # Append the new filename column. writer.writerow(row) print row except csv.Error as e: sys.exit('line %d: %s' % (reader.line_num, e))
# -*- coding: utf-8 -*- """ Created on Mon Mar 15 10:22:11 2021 @author: Jarrod Daniels """ import string ### takes a single integer as input and returns the sum of the integers from zero to the input parameter. def add_it_up(int): total = 0 num_list = list(range(1, int+1)) for num in num_list: total += num print(total) return total add_it_up(5) """ Creates a basic ceasar cypher that takes in a lower case string and returns the string shifted N times """ def c_cypher(str, n): return_string = '' alphabet_string = string.ascii_lowercase alphabet_list = list(alphabet_string) for letter in str: if letter == ' ': return_string += ' ' else: index_to_ref = alphabet_list.index(letter)+4 if index_to_ref > 26: index_to_ref -= 26 return_string += alphabet_list[index_to_ref] print(return_string) return(return_string) example_string = "holland lopz" n = 5 c_cypher(example_string, n) # Other implementation using minimal functions def caesar(plain_text, shift_num): letters = string.ascii_lowercase mask = letters[shift_num:] + letters[:shift_num] trantab = str.maketrans(letters, mask) print(plain_text.translate(trantab)) caesar(example_string, 4)
# # Script to generate puzzles based on Raymond Smullyan's # 'Alice in the Forest of Forgetfulness' puzzles from # 'What is the Name of this Book?' # # first we define the days of the week daysOfWeek = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] # if we say one of several days was yesterday, return the possible days for 'today' def fromYesterdays(yesterdays): return [daysOfWeek[(daysOfWeek.index(day) + 1) % (len(daysOfWeek))] for day in yesterdays] # if we say one of several days will be tomorrow, return the possible days for 'today' def fromTomorrows(tomorrows): return [daysOfWeek[(daysOfWeek.index(day) - 1) % (len(daysOfWeek))] for day in tomorrows] # The Lion and the Unicorn lie on certain days lionLying =['Monday', 'Tuesday', 'Wednesday'] unicornLying = ['Thursday', 'Friday','Saturday'] # given a list of days, what are the other days of the week? def otherDays(days): return [day for day in daysOfWeek if day not in days] # we can find when the Lion and Unicorn are truthful lionTruthful = otherDays(lionLying) unicornTruthful = otherDays(unicornLying) # return the days of the week that are common to both lists def intersect(a, b): return [item for item in a if item in b] # return the days of the week that appear in either list def union(a, b): return list(a) + [item for item in b if item not in a] # create sets of statements that the creatures can make def annotatedVariations(base): today = {'description': base['actor'] + ' told ' + base['state'] + ' today', 'days': base['days']} tomorrow = {'description': base['actor'] + ' will tell ' + base['state'] + ' tomorrow', 'days': fromTomorrows(base['days'])} yesterday = {'description': base['actor'] +' told ' + base['state'] + ' yesterday', 'days': fromYesterdays(base['days'])} return [today, tomorrow, yesterday] def individualDays(): return [{'description': 'Today is ' + d, 'days':[d]} for d in daysOfWeek] def weekAndWeekend(): weekend = ['Saturday', 'Sunday'] return [{'description': 'Today is a weekday', 'days': otherDays(weekend)}, {'description': 'It is the weekend', 'days': weekend}] allAnnotated = []; allAnnotated.extend(annotatedVariations({'actor': 'Lion', 'state': 'lies', 'days': lionLying})) allAnnotated.extend(annotatedVariations({'actor': 'Lion', 'state': 'truths', 'days': lionTruthful})) allAnnotated.extend(annotatedVariations({'actor': 'Unicorn', 'state': 'lies', 'days': unicornLying})) allAnnotated.extend(annotatedVariations({'actor': 'Unicorn', 'state': 'truths', 'days': unicornTruthful})) allAnnotated.extend(individualDays()) allAnnotated.extend(weekAndWeekend()) def validPuzzle(lionStatement, unicornStatement): puzzle = {}; lionPositive = intersect(lionStatement['days'], lionTruthful) lionNegative = intersect(otherDays(lionStatement['days']), lionLying) lionDays = union(lionPositive, lionNegative) unicornPositive = intersect(unicornStatement['days'], unicornTruthful) unicornNegative = intersect(otherDays(unicornStatement['days']),unicornLying) unicornDays = union(unicornPositive, unicornNegative) validDays = intersect(lionDays, unicornDays) if (len(validDays) != 1): return puzzle if ('Lion' in lionStatement['description']): puzzle['lion'] = ("The Lion says: " + lionStatement['description'].replace("Lion", "I") + '.') else: puzzle['lion'] = ("The Lion says: " + lionStatement['description'] + '.') if ('Unicorn' in unicornStatement['description']): puzzle['unicorn'] = ("The Unicorn says: " + unicornStatement['description'].replace("Unicorn", "I") + '.') else: puzzle['unicorn'] = ("The Unicorn says: " + unicornStatement['description'] + '.') puzzle['solution'] = validDays[0] puzzle['explanation'] = explanation1("Lion",lionStatement['days'], lionLying, lionPositive, lionNegative, lionDays) puzzle['explanation'] = puzzle['explanation'] + " " puzzle['explanation'] = puzzle['explanation'] + explanation1("Unicorn",unicornStatement['days'], unicornLying, unicornPositive, unicornNegative, unicornDays) puzzle['explanation'] = puzzle['explanation'] + " Based on what both are saying, the only day it could be is " + validDays[0] +"." return puzzle def prettyList(list, conj): isFirst = True; result = "" count = 1 size = len(list) for s in list: if not isFirst and size > 2: result += ", " isFirst = False if count == size and size > 1: if (size == 2): result += " " result += conj + " " count = count +1 result += s return result def explanation1(actor, statement, lieDays, daysIfTrue, daysIfFalse, unionDays): exp1 = actor +" says today" if len(statement) == 1: exp1 += " is " + statement[0] else: exp1 += " could be " + prettyList(statement, "or") exp1 += ". We know that " + actor + " lies on " + prettyList(lieDays, "and") exp1 += ". So if "+ actor + " is telling the truth it can" if (len(daysIfTrue) == 0): exp1 += " not be any day (so they must be lying)" elif (len(daysIfTrue) == 1): exp1 += " only be " + daysIfTrue[0] else: exp1 += " be " + prettyList(daysIfTrue, "or") exp1 += ", and if "+ actor + " is lying, it can" if (len(daysIfFalse) == 0): exp1 += " not be any day (so they must be telling the truth)" elif (len(daysIfFalse) == 1): exp1 += " only be " + daysIfFalse[0] else: exp1 += " be " + prettyList(daysIfFalse, "or") exp1 += ". All told, from what " + actor + " says, it could" if (len(unionDays) == 1): exp1 += " only be " + unionDays[0] else: exp1 += " be " + prettyList(unionDays, "or") exp1 += "." return exp1 def jsonForPuzzle(puzzle): json = '{"lion": "' + puzzle['lion'] +'",' + "\n" json += '"unicorn": "' + puzzle['unicorn'] +'",' + "\n" json += '"solution": "' + puzzle['solution'] +'",' + "\n" json += '"explanation": "' + puzzle['explanation'] +'",' + "\n" json += '"id": "' + str(puzzle['id']) +'"}' return json counter = 0 validPuzzles = [] for s1 in allAnnotated: for s2 in allAnnotated: puzzle = validPuzzle(s1,s2) if(len(puzzle) > 0): counter = counter + 1 puzzle['id'] = counter validPuzzles.append(jsonForPuzzle(puzzle)) result = "[" first = True for p in validPuzzles: if not first: result += ", \n" else: first = False result += p result += "]" f = open("../data/forest.json","w") f.write( result ) f.close()
# Problem Set 4A # Name: <your name here> # Collaborators: # Time Spent: x:xx def get_permutations_count(n): if n==1: return 1 else: return n*get_permutations_count(n-1) def permutation(lst): # If lst is empty then there are no permutations if len(lst) == 0: return [] # If there is only one element in lst then, only # one permuatation is possible if len(lst) == 1: return [lst] # Find the permutations for lst if there are # more than 1 characters l = [] # empty list that will store current permutation # Iterate the input(lst) and calculate the permutation for i in range(len(lst)): m = lst[i] print('M=',m) # Extract lst[i] or m from the list. remLst is # remaining list remLst = lst[:i] + lst[i+1:] print('Remainin list=',remLst) # Generating all permutations where m is first # element for p in permutation(remLst): print('P is=',p) l.append([m] + p) print('Final list=',l) return l # Driver program to test above function if __name__ == '__main__': # #EXAMPLE # example_input = 'abc' # print('Input:', example_input) # print('Expected Output:', ['abc', 'acb', 'bac', 'bca', 'cab', 'cba']) # print('Actual Output:', get_permutations(example_input)) # # Put three example test cases here (for your sanity, limit your inputs # to be three characters or fewer as you will have n! permutations for a # sequence of length n) pass #delete this line and replace with your code here permutation_string='abcd' print('Current permutation string is: ',permutation_string) letters=list(permutation_string) print('Converting string to a list for permutations: ',letters) n=len(permutation_string) print('Number of permutations will be: ',get_permutations_count(n)) for p in permutation(letters): print(p )
# def build_shift_dict(self, shift): # shift_dict={} # alphabeth=['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z','a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # if 26<shift<1: # print('Your shift is out of legal range. Try again with shift from 1 to 25 inclusive') # else: # for i in range(len(alphabeth)): # print(i) # s={} # s.update({'A':'C'}) # s.update({'B':'C'}) # print(s) # self_text='Victor Semenov!' # shift=25 # shift_dict={} # alphabeth_capitals=['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z','A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'] # alphabeth_small=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z','a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # if shift>26 or shift<1: # print('Your shift is out of legal range. Try again with shift from 1 to 25 inclusive') # else: # for i,j in enumerate(alphabeth_capitals): # shift_dict.update({alphabeth_capitals[i]:alphabeth_capitals[i+shift]}) # if i==25: # break # for i,j in enumerate(alphabeth_small): # shift_dict.update({alphabeth_small[i]:alphabeth_small[i+shift]}) # if i==25: # break # x=shift_dict # print(x) # #return shift_dict # def apply_shift(self_text, shift): # ''' # Applies the Caesar Cipher to self.message_text with the input shift. # Creates a new string that is self.message_text shifted down the # alphabet by some number of characters determined by the input shift # shift (integer): the shift with which to encrypt the message. # 0 <= shift < 26 # Returns: the message text (string) in which every character is shifted # down the alphabet by the input shift # ''' # encrypted='' # temp=[] # for char in self_text: # if char in shift_dict: # # print(shift_dict[char]) # temp.append(shift_dict[char]) # # print(temp) # else: # # print(char) # temp.append(char) # # print(temp) # encrypted=''.join(temp) # print(encrypted) # apply_shift(self_text, shift) # def load_words(file_name): # ''' # file_name (string): the name of the file containing # the list of words to load # Returns: a list of valid words. Words are strings of lowercase letters. # Depending on the size of the word list, this function may # take a while to finish. # ''' # print("Loading word list from file...") # # inFile: file # inFile = open(file_name, 'r') # # wordlist: list of strings # wordlist = [] # for line in inFile: # wordlist.extend([word.lower() for word in line.split(' ')]) # print(" ", len(wordlist), "words loaded.") # return wordlist # def is_word(word_list, word): # ''' # Determines if word is a valid word, ignoring # capitalization and punctuation # word_list (list): list of words in the dictionary. # word (string): a possible word. # Returns: True if word is in word_list, False otherwise # Example: # >>> is_word(word_list, 'bat') returns # True # >>> is_word(word_list, 'asdf') returns # False # ''' # word = word.lower() # word = word.strip(" !@#$%^&*()-_+={}[]|\:;'<>?,./\"") # return word in word_list # word_list=load_words('words.txt') # self_text='Uhbsnq Rdldmnu!' # def decrypt_message(self_text): # final=[] # list_of_string=[] # decrypted='' # temp=[] # shift_dict={} # alphabeth_capitals=['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z','A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'] # alphabeth_small=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z','a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # shift=0 # while shift<=25: # for i,j in enumerate(alphabeth_capitals): # shift_dict.update({alphabeth_capitals[i]:alphabeth_capitals[i+shift]}) # if i==25: # break # for i,j in enumerate(alphabeth_small): # shift_dict.update({alphabeth_small[i]:alphabeth_small[i+shift]}) # if i==25: # break # for char in self_text: # if char in shift_dict: # temp.append(shift_dict[char]) # else: # temp.append(char) # decrypted=''.join(temp) # final.append(temp) # shift+=1 # temp=[] # list_of_string.append(decrypted) # wordfin=[] # for i,j in enumerate(list_of_string): # word=list_of_string[i].split() # for key,value in enumerate(word): # if is_word(word_list, word[key])==True: # wordfin.append(word[key]) # decrypted=''.join(wordfin) # wordfin=[] # print(decrypted) # decrypt_message(self_text) class Message(object): def __init__(self, text): self.message_text=text def get_message_text(self): # return self.message_text print(self.message_text) class PlaintextMessage(Message): def __init__(self, text, shift): Message.__init__(self, text) self.shift=shift def get_shift(self): # return self.shift print(self.shift) def test_self(self): print('test') text=str(input('enter text :')) shift=int(input('enter shift: ')) c=PlaintextMessage(text, shift) c.get_shift() c.get_message_text()
import pandas as pd import csv #MINIMUM_YEAR = 5 MINIMUM_YEAR = 6 #MINIMUM_YEAR = 7 def load_wine_dataset_sheet(wine_data_set_file): """ Returns the wine dataset workbook file. Parameter: wine_data_set_file: The excel file containing the wine dataset. Returns: workbook_file: The workbook of the excel wine dataset. """ # Load the Excel document workbook_file = pd.read_excel(wine_data_set_file, "Sheet1") return workbook_file def check_if_wine_is_drinkable_or_not(wine_data_sheet): """ Checks if a wine is drinkable or Held. Parameter: wine_data_set_file: The excel file containing the wine dataset. Returns: None """ hold_wine_list = list() drink_wine_list = list() no_wine_data_list = list() wine_dict = dict() for wine in wine_data_sheet.itertuples(index=False, name="Wine"): wine_dict = wine._asdict() drinkable_from = wine_dict["From"] manufacutred_year = wine_dict["Year"] if isinstance(drinkable_from, int): years_to_decide_to_drink_or_not = drinkable_from - manufacutred_year if years_to_decide_to_drink_or_not >= MINIMUM_YEAR: wine_data = { "Years To Decide To Drink or Not": years_to_decide_to_drink_or_not } wine_dict.update(wine_data) hold_wine_list.append(wine_dict) elif years_to_decide_to_drink_or_not < MINIMUM_YEAR: wine_data = { "Years To Decide To Drink or Not": years_to_decide_to_drink_or_not } wine_dict.update(wine_data) drink_wine_list.append(wine_dict) else: pass else: wine_data = { "Year": manufacutred_year, } wine_dict.update(wine_data) no_wine_data_list.append(wine_dict) # Calls write to excel and csv function to write the data to excel and csv. write_to_excel_and_csv(hold_wine_list,drink_wine_list, no_wine_data_list) def write_to_excel_and_csv(hold_list, drink_list, no_data_list): """ Writes list of hold, drink and no_wine data to a new excel file. Parameter: hold_list: List containing a dictionary of wines that can be held. drink_list: List containing a dictionary of wines that should be drunk. no_wine_data: List containing a dictionary of wines that should be drink now. Returns: None """ hold_data = pd.DataFrame.from_dict(hold_list) drink_data = pd.DataFrame.from_dict(drink_list) no_data = pd.DataFrame.from_dict(no_data_list) hold_data.columns = [column.strip().replace('_', ' ') for column in hold_data.columns] drink_data.columns = [column.strip().replace('_', ' ') for column in drink_data.columns] no_data.columns = [column.strip().replace('_', ' ') for column in no_data.columns] hold_data.to_excel('hold_data.xlsx', index=False) hold_data.to_csv("hold.csv", index=False) drink_data.to_excel("drink.xlsx", index=False) drink_data.to_csv("drink.csv", index=False) no_data.to_excel("no_data.xlsx", index=False) no_data.to_csv("no_data.csv", index=False) def main(): """ Defines the main entry point of the script. """ # Declare a constant to store the excel file name. CLEANED_WINE_DATASET_FILE = "cleaned_drink_duration_dataset_binary_attributes.xlsx" # Loads and read file from excel cleaned_data_sheet = load_wine_dataset_sheet(CLEANED_WINE_DATASET_FILE) # Determines which wines are drinkable check_if_wine_is_drinkable_or_not(cleaned_data_sheet) # Check if the file name is main, if the name is main run the script else do not run the script. if __name__ == "__main__": main()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Sep 18 13:28:49 2018 @author: paul """ import copy class Solution: def __init__(self, places, graph): """ places: a list containing the indices of attractions to visit p1 = places[0] pm = places[-1] """ self.g = 0 # current cost self.graph = graph self.visited = [places[0]] # list of already visited attractions self.not_visited = copy.deepcopy(places[1:]) # list of attractions not yet visited def __str__(self): return "v = " + str(self.visited) + " " + "g = " + str(self.g) def add(self, idx): """ Adds the point in position idx of not_visited list to the solution """ self.g += self.graph[self.visited[-1], self.not_visited[idx]] self.visited.append(self.not_visited[idx]) del self.not_visited[idx] def swap(self, i, j): # permute la position de deux noeuds dans la solution # i et j ne doivent pas etre egaux a 0 ou a len(s.visited) # on met a jour le cout total if i>j: i, j = j, i p_im1 = self.visited[i-1] p_ip1 = self.visited[i+1] p_i = self.visited[i] p_jm1 = self.visited[j-1] try: p_jp1 = self.visited[j+1] except: print("exception") print(j) print(len(self.visited)) p_j = self.visited[j] # on doit differencier le cas ou i+1 = j # on retire les couts initiaux self.g -= self.graph[p_im1,p_i] + self.graph[p_i,p_ip1] self.g -= self.graph[p_jm1,p_j] + self.graph[p_j,p_jp1] if i+1 == j: self.g += self.graph[p_i,p_ip1] # on permute les elements self.visited[i], self.visited[j] = self.visited[j], self.visited[i] # on somme les couts des nouveaux chemins p_im1 = self.visited[i-1] p_ip1 = self.visited[i+1] p_i = self.visited[i] p_jm1 = self.visited[j-1] p_jp1 = self.visited[j+1] p_j = self.visited[j] self.g += self.graph[p_im1,p_i] + self.graph[p_i,p_ip1] + self.graph[p_jm1,p_j] + self.graph[p_j,p_jp1] if i+1 == j: self.g -= self.graph[p_i,p_ip1]
import re rex = '[0-9]+' pattern = re.compile(rex) s = 'John was born in 1970, he joined SEAL force at the age of 30. John was killed in action in 2016.' print(pattern.findall(s))
""" 作者:徐飞 时间:2019 版本:04 功能:汇率转换 """ def main(): """ 主函数 """ ratio = eval(input('请输入汇率值:')) money = input("请输入带单位的货币金额:") money_unite = money[-3:] money_value = eval(money[:-3]) if money_unite == 'CNY': exchange_rate = 1 / ratio elif money_unite == 'USD': exchange_rate = ratio else: exchange_rate = -1 if exchange_rate != -1: # 调用函数 out_currency = lambda x, y: x * y out_money = out_currency(money_value, exchange_rate) print(out_money) else: print('暂不支持该货币!') if __name__ == '__main__': main()
""" 作者:徐飞 时间:2019 版本:02 功能:汇率转换 """ money = input("请输入带单位的货币金额:") money_unite = money[-3:] money_value = eval(money[:-3]) ratio = eval(input("请输入汇率:")) if money_unite == 'CNY': usd = money_value / ratio print("所得美元金额:", usd) elif money_unite == 'USD': rmb = money_value * ratio print("所得人民币金额:", rmb) else: print('暂不支持该种货币!')
from tkinter import * import ReadThread import Paddle import Ball import math import random class PongGame(): def __init__(self): #Start the reader thread self.readerThread = ReadThread.MyThread(10) self.readerThread.setName("Reader") self.readerThread.start() #Frame parameters self.width = 1200; self.height = 600; self.borderWidth = 10; #Paddle parameters self.paddlesDistance = self.width / 120; self.paddleThickness = self.width / 40; self.paddleLength = 5 * self.height / 24; self.paddleMinPos = self.borderWidth + self.paddleLength / 2 self.paddleMaxPos = self.height - self.borderWidth - self.paddleLength / 2 #Ball parameters self.ballRadius = self.width / 100 self.ballPosX = self.width / 2 self.ballPosY = self.height / 2 self.ballSpeed = 10 #Start the tkinter context self.root = Tk() self.root.title("Pong") self.canvas = Canvas(self.root, width = self.width, height = self.height, bg='#101010') self.debugText = self.canvas.create_text(50, 50, text="", fill="#EEEEEE") #Debug text, to print current values of the sensors self.canvas.focus_set() self.root.protocol("WM_DELETE_WINDOW", self.close) #Set a custom close function to be able to stop the reader thread on closing the frame #The 2 paddles self.paddleLeft = Paddle.Paddle(self.canvas, self.paddlesDistance, self.paddleThickness, self.paddleLength, self.height / 2, self.paddleMinPos, self.paddleMaxPos) self.paddleRight = Paddle.Paddle(self.canvas, self.width - self.paddlesDistance - self.paddleThickness, self.paddleThickness, self.paddleLength, self.height / 2, self.paddleMinPos, self.paddleMaxPos) #The ball self.ball = Ball.Ball(self.canvas, self.ballPosX, self.ballPosY, self.ballRadius, -math.pi/3, self.ballSpeed) #The values of the sensors self.sensor1 = 0 self.sensor2 = 0 self.update() self.root.mainloop() #Update the game def update(self): #Update the debug text to the current sensor values if self.readerThread.isRead1 == False: self.sensor1 = self.readerThread.getSensors(1) print(self.sensor1) self.canvas.itemconfigure(self.debugText, text="Sensor 1 : " + str(self.sensor1) + "\nSensor 2 : " + str(self.sensor2)) self.paddleLeft.update(self.sensor1) if self.readerThread.isRead2 == False: self.sensor2 = self.readerThread.getSensors(2) self.paddleRight.update(self.sensor2) self.ball.update(self.width, self.height, self.paddleLeft, self.paddleRight) self.canvas.pack() self.root.after(10, self.update) #Custom close method : stop the reader thread and stop the TKinter frame def close(self): self.readerThread.stop() self.root.destroy() ########################### game = PongGame() #Start the pong game # def pascal(n): # line = [1] # for k in range(n): # line.append(line[k] * (n-k) / (k+1)) # return line # print pascal(8)
""" 6. Faça um Programa que peça o raio de um círculo, calcule e mostre sua área. """ from math import pi raio_circulo = float(input("Digite o raio do círculo: ")) area_circulo = pi * (raio_circulo ** 2) print(f"A área do círculo é: {area_circulo:.2f} m2")
""" Faça um Programa que pergunte quanto você ganha por hora e o número de horas trabalhadas no mês. Calcule e mostre o total do seu salário no referido mês. """ valor_hora = float(input("Quanto você recebe por hora? R$ ")) numero_horas_mes = float(input("Quantas horas você trabalha por mês? ")) salario = valor_hora * numero_horas_mes print(f"O salário a receber é igual a R${salario:.2f}")
def exchange(money): return money* 9.912 if __name__ == "__main__": money = float(input('请输入要转化的人民币,退出输入0:')) while money: print('{0}元人民币={1}俄罗斯卢布'.format(money,exchange(money))) money = float(input('请输入要转化的人民币,退出输入0:'))
edad = int(input("cuantos años tienes?\n")) eleccion = input("a que quieres cambiar tu edad?\ndias horas segundos\n") if eleccion == "dias": dias = edad * 365 print("tienes" , dias , "dias de edad") elif eleccion == "horas": horas = (edad * 365) * 24 print("tienes" , horas , "horas de edad") elif eleccion == "segundos": segundos = ((edad * 365) * 24) * 3600 print ("tienes" , segundos , "segundos de edad")
#Program that does left factoring on production rules #Function to accept rules def accept_rules(): rules = {} non_terminals = [] y = 'y' while (y == 'y'): string = input("Enter production rule : ") for i in range(len(string)): if string[i] == '=': antecedent = string[0:i] non_terminals.append(antecedent) get_cons = string[i+1:] consequent = get_cons.split('|') #Creating key value pair rules[antecedent] = consequent y = input("Continue?y/n : ") return rules, non_terminals #Function for getting the terminals in production rules. def get_terminals(rules): normalised_text = '(terminal)' normalised_list = [] terminals = [] rules_copy = rules.copy() for i in rules.keys(): get_list = rules[i] for element in get_list: copy = element for index in range(len(element)): #Normalizing the non_terminal by replacing it with the string normalized_text. #Makes it easier for comparison purposes if element[index].islower(): copy = element[0:index] + normalised_text + element[(index+1):] normalised_list.append(copy) terminals.append(element[index]) rules_copy[i] = normalised_list normalised_list = [] #Returns the list of terminals present in the production rules and the dictionary of rules with normalized terminals. return terminals, rules_copy def get_term_nonterm_from_rule(rules, antecedent, terminals, non_terminals): get_consequent = rules[antecedent] term_store = '' non_term_store = '' for i in get_consequent: for j in i: if j in terminals: term_store = term_store + j + '|' elif j.isupper() and (j not in non_term_store): non_term_store = non_term_store + j return non_term_store, term_store[:len(term_store)-1] #slicing to remove the last | present in the string. #Function that does left factoring def left_factoring(rules, rules_norm, terminals, non_terminals): copy_rules = rules.copy() for antecedent in rules_norm.keys(): get_consequent = rules_norm[antecedent] flag = True if len(get_consequent) > 1 : store = get_consequent[0] #Loop to check if the consequents are similar. Normalizing the terminals helps in this comparison. for element in range(1, len(get_consequent)): temp = get_consequent[element] if temp != store: flag = False break if flag == True: non_term, term = get_term_nonterm_from_rule(rules, antecedent, terminals, non_terminals) copy_rules[antecedent+'\''] = term.split('|') copy_rules[antecedent] = antecedent + '\'' + non_term return copy_rules #Control function def main(): rules, non_terminals = accept_rules() terminals, rules_norm = get_terminals(rules) #print (rules, non_terminals, terminals, rules_norm) new_rules = left_factoring(rules, rules_norm, terminals, non_terminals) print ("After left factoring : ") print (new_rules) main()
game_board = [] n = 3 end_game = False player1 = True def create_game_board(): for i in range(n): tmp = [] for j in range(n): tmp.append(" ") game_board.append(tmp[:]) def print_game_board(): for i in range(0, 3): print(" {0} | {1} | {2}".format(game_board[i][0], game_board[i][1], game_board[i][2])) if i != 2: print(' ---------') def input_player(): global player1 move = input("Player {0}: Please, make your move (x, y): ".format(1 if player1 else 2)) xy = move.split(",") x = int(xy[0]) y = int(xy[1]) if x > 2 or y > 2: print("Invalid position!") elif game_board[x][y] == " ": game_board[x][y] = "X" if player1 else "O" player1 = not player1 else: print("This position has already been fill") def player_win(): for i in range(0,3): if game_board[i][0] == game_board[i][1] and game_board[i][1] == game_board[i][2]: return game_board[i][0] == "X" or game_board[i][0] == "O"; for i in range(0,3): if game_board[0][i] == game_board[1][i] and game_board[1][i] == game_board[2][i]: return game_board[0][i] == "X" or game_board[0][i] == "O"; return False def main(): global end_game create_game_board() while not end_game: print() print_game_board() print() input_player() if player_win(): end_game = True print_game_board() print("Player {0} win!".format("1" if not player1 else "2")) main()
name = raw_input("Enter Name:") for i in range(1,11): print i print "Hello, "+ name
# Given two arrays write a function to find out if two arrays have the # same frequency of digits # Examples one = [[1,2,3,4], [1,2,3,4]] # [1,2,3,4], [1,4,5,6] = two # [1,2,3,4], [1,4,4,2] = three # [1,2,3,4], [1,4,3,2] = four # [1,2,3,4,5], [1,2,3,4] = five # Create frequency dictionary for first array # loop through numbers in the array def create_frequency(array): frequency_dict = {} # loop through numbers in the array for num in array: # if num exists in array already, add one to its value, else create key value pair with value set to 1 if num in frequency_dict: frequency_dict[num] += 1 else: frequency_dict[num] = 1 # return the frequency dictionary for that array return frequency_dict def compare_frequencies(combined_array): if len(combined_array[0]) != len(combined_array[1]): return False # create frequency dict for first array first_frequency = create_frequency(combined_array[0]) # create frequency dict for second array second_frequency = create_frequency(combined_array[1]) # loop through keys in the first frequency dict for key in first_frequency: # if that key doesn't exist in second frequency dict, return False try: if second_frequency[key]: pass except: return False # if key does exist in second frequency, check that the values match if first_frequency[key] != second_frequency[key]: return False # if all of the above do not evaluate to false, return True return True print((compare_frequencies(one)))
#!/usr/bin/env python #coding:utf8 ################################################################ # function: this script provides functions for other programs # history : 2019.07.25 V1.0 # author : gaoyuanyong ############################################################### import numpy as np import csv import math from math import sin,radians,cos,asin,sqrt import parameter # function class function: def __int__(self): pass def SphereDistance(lon1, lat1, lon2, lat2): # This function compute the great-circle distance # between (lat1, lon1) and (lat2, lon2) on # a sphere with given radius. radius = 6371.0 # radius of Earth, unit:KM # degree to radians lon1, lat1,lon2, lat2 = map(radians,[lon1, lat1,lon2, lat2]) dlon = lon2 -lon1 dlat = lat2 -lat1 arg = sin(dlat*0.5)**2 + \ cos(lat1)*cos(lat2)*sin(dlon*0.5)**2 dist = 2.0 * radius * asin(sqrt(arg)) return dist def getAzimuth(lon1, lat1, lon2, lat2): # This function compute the azimuth from A(lat1, lon1) to # B(lat2, lon2) on lats and lons on degree lon1, lat1, lon2, lat2 = map(radians,[lon1,lat1,lon2,lat2]) cosC = cos(90-lat2)*cos(90-lat1) + \ sin(90-lat2)*sin(90-lat1)*cos(lon2-lon1) sinC = sqrt(1-cosC*cosC) if abs(sinC) < 1e-10: print(lon1, lat1, lon2, lat2) sinC = 0.0001 arg1 = (sin(90-lat2)*sin(lon2-lon1))/sinC A = asin(arg1) A = A*180/math.pi if lat2 >= lat1: if lon2 >= lon1: Azimuth = A # print("1") else: Azimuth = 360 + A # print("2") else: Azimuth = 180 - A #print("3/4") return Azimuth if __name__ == '__main__': print("funcion name :","SphereDistance") print("funcion name :","getAzimuth")
password = "mulualem03" trials = 0 while password != "password": # if the values of the two operands are not equal if trials == 5: print("Terminate") break; else: password = input("Enter password: ") trials += 1 if password == "password": print("Welcome In")
class Times: def __init__(self, nome, estado): self.nome = nome self.estado = estado class Pilha(object): def __init__(self): self.dados = [] def empilha(self, elemento): self.dados.append(elemento) def desempilha(self): if not self.vazia(): return self.dados.pop(-1) def vazia(self): return len(self.dados) == 0 def imprimir(self): if len(self.dados) == 0: print('Pilha vazia.') else: print(self.dados) ############################ t1 = Times('Grêmio','RS') t2 = Times('Internacional','RS') t3 = Times('Santos','SP') t4 = Times('Vasco','RJ') pilha = Pilha() pilha.empilha(t1.nome) pilha.imprimir() input() pilha.empilha(t2.nome) pilha.imprimir() input() pilha.empilha(t3.nome) pilha.imprimir() input() pilha.desempilha() pilha.imprimir() input() pilha.empilha(t4.nome) pilha.imprimir() input() pilha.desempilha() pilha.imprimir() input()
''' Created on Feb 16, 2016 @author: sumkuma2 ''' """ Python Identity Operators: Identity operators compare the memory locations of two objects. There are two Identity operators explained below: Operator | Description ------------------------------------------------------ 1) Is | Evaluates to true if the variables on either side of the operator point to the same object and false otherwise. Example : x is y, here is results in 1 if id(x) equals id(y). 2) is not | Evaluates to false if the variables on either side of the operator point to the same object and true otherwise. Example: x is not y, here is not results in 1 if id(x) is not equal to id(y). """ a = 20 b = 20 if ( a is b ): print "Line 1 - a and b have same identity" else: print "Line 1 - a and b do not have same identity" if ( id(a) == id(b) ): print "Line 2 - a and b have same identity" else: print "Line 2 - a and b do not have same identity" b = 30 if ( a is b ): print "Line 3 - a and b have same identity" else: print "Line 3 - a and b do not have same identity" if ( a is not b ): print "Line 4 - a and b do not have same identity" else: print "Line 4 - a and b have same identity"
list1= ['phusics','mathemetics',2341,9876] list2= [1,2,3,4,5,6,7] print "\n Before modification",list1 print "Value at index position 2 before insertion: ",list1[2] list1[2]='chemestry' print "Value at index position 2 after insertion: ",list1[2] print "\n After modification",list1 print "lenght of list2",len(list2) list3 = list1 + list2 print "Element of list3 after concatenation of list1 and list2 :",list3 '''Negative count of list from right''' print "8th value of list3 from right :",list3[-8] print "Compares elements of both lists : list1 and list2:: ",cmp(list1,list3) print "Max value in the list3 :",max(list2) #print list2[4]
#import exceptions #its a module under which All Exceptions class are defined #print dir(exceptions) #print help(exceptions) # User defined Exceptions class class ShortInput(Exception): '''Short input exception class ''' def __init__(self,length,atleast): '''Initializing ShortInput Calss''' self.length=length #object variable self.atleast=atleast print "Short Input Exception:, Input Should be minimum 6byte" #obj = ShortInput(3,9) try: s=raw_input("Enter some data:") if len(s) <6: raise ShortInput(len(s),6) except ShortInput,sie: print "You entered %s bytes expected %s bytes"%(sie.length,sie.atleast) else: print "Your data is %s"%s
import re #use of (r) raw string and boudary character s=''' Mobile 9844816548 email [email protected] 8861733377 [email protected],[email protected]''' print re.findall('\\b\d{10}\\b',s) # print re.findall(r'\b\d{10}\b',s) # r is to escape all special symbol in the string s=''' Mobile 9844816548 \n\t email [email protected] 8861733377 [email protected]\n\t,[email protected]''' print s #used r(raw string) to escape special symbol from string s=r''' Mobile 9844816548 \n\t email [email protected] 8861733377 [email protected]\n\t,[email protected]''' print s #extract email address from given string s=''' Mobile 9844816548 \n\t email [email protected] 8861733377 [email protected]\n\t,[email protected]''' print re.findall(r'\b[\w.]+@\w+.\w{2,3}\b',s) print re.findall(r'\b[\w.]+@\w+.\w{2,3}\b',s).__len__()
''' Created on Feb 16, 2016 @author: sumkuma2 ''' # Sample for loop using a List ## define a list shuttles = ['columbia', 'endeavour', 'challenger', 'discovery', 'atlantis', 'enterprise', 'pathfinder' ] ## Read shuttles list and store the value of each element into var shuttle and display on screen for shuttle in shuttles: print shuttle print "------------------------------------------------------------------------------------" ''' To print index and its value, try enumerate(). It simplify a commonly used looping methods. It provides all iterable collections with the same advantage that iteritems() affords to dictionaries -- a compact, readable, reliable index notation: ''' # A list of shuttles , to print index and value using enumerate function #shuttles = ['columbia', 'endeavour', 'challenger', 'discovery', 'atlantis', 'enterprise', 'pathfinder' ] ## Read shuttles list and enumerate into index and value for index, value in enumerate(shuttles): print index, value
''' Created on Feb 14, 2016 @author: sumkuma2 ''' ''' Accessing Command Line Arguments: The Python sys module provides access to any command-line arguments via the sys.argv. This serves two purpose: sys.argv is the list of command-line arguments. len(sys.argv) is the number of command-line arguments. Here sys.argv[0] is the program ie. script name. ''' import sys; print "\n Number of command line arguments passed",len(sys.argv); print "\n Argument List :",str(sys.argv) for arg_position in range (len(sys.argv)): print "\n arg:",sys.argv[arg_position]