text
stringlengths
37
1.41M
""" # Student class is defined with two different object class student: def __init__(self, name, age, subject_1, subject_2, subject_3): self.name = name self.age = age self.sub1 = subject_1 self.sub2 = subject_2 self.sub3 = subject_3 @staticmethod def marks(numb): res = numb print("The mark is", res) s1 = student("vicky", 24, "Programming", "Database", "Algorithm") print(s1.name) print(s1.age) print(s1.sub1) print(s1.sub2) s1.marks(90) s2 = student("Jay", 25, "IoT", "Networking", "Python") print(s2.name) print(s2.age) print(s2.sub1) print(s2.sub2) print(s2.sub3) s2.marks(100) # In class we have a function to display the results class products: def __init__(self, name, description, price, rating): self.name = name self.des = description self.price = price self.rate = rating def display(self): print(self.name) print(self.des) print(self.price) print(self.rate) p1 = products("Iphone", "This is Iphone X", 25000, [2, 3, 4, 5, 5]) p1.display() p2 = products("Xi", "This is Xi 7", 23500, [2, 4, 3, 2, 5]) p2.display() p3 = products("LENOVO", "This is LENOVO XE", 22900, [2, 5, 5, 2, 5]) p3.display() """ """ # Encapsulation class student: def __init__(self, id, name, std): self.__id = id self.__name = name self.__std = std def display(self): print(self.__id) print(self.__name) print(self.__std) s1 = student(1, "Vicky", "XII") s1.display() s2 = student(2, "John", "XI") # Alternative method to print the private variables print(s2._student__id) print(s2._student__name) print(s2._student__std) """ """ # Encapsualtion using Setter and Getter Method class student: def setId(self,id): self.id = id def getId(self): print(self.id) def setName(self,name): self.name = name def getName(self): print(self.name) s = student() s.setId(100) s.setName("vicky") s.getId() s.getName() s1 = student() s1.setId(101) s1.setName("Peter") s1.getId() s1.getName() """ """ #Inheritance class dog: def __init__(self, speed, sound, behaviour): self.spd = speed self.sound = sound self.behav = behaviour class GermanShepard(dog): def __init__(self, hair, height, speed, sound, behaviour): super().__init__(speed, sound, behaviour) self.hair = hair self.height = height class Labrador(dog): def __init__(self, smart_level, speed, sound, behaviour): #Insted of using Parent class name and self (Dog.) we can use super() super().__init__(speed, sound, behaviour) self.smart = smart_level d=dog("100KM","medium","good") print(d.spd) print(d.behav) print(d.sound) g = GermanShepard("more", "50", "100KM","medium","good") print(g.hair) print(g.height) l = Labrador("High", "100KM","medium","good") print(l.smart) print("Lab", l.behav) """ """ # Polymorphisom class Dog: def __init__(self): pass def sound(self): print("BARK BARK") class Cat: def __init__(self): pass def sound(self): print("Mewoooooooo") def callTalk(obj): obj.sound() d = Dog() callTalk(d) c = Cat() callTalk(c) """
# Machine Learning Project __author__ = 'Eslam Hamouda' import math from _operator import itemgetter import json,sys #Genres Action | Romance | Horror | Mystry | Sci-Fi # dummy dataset copied from the IMDb top 250 film with some fabrications. dataset = dict() # load the dataset from json file. with open("recommendation_dataset.json","r") as dataset_file2: dataset =json.loads(dataset_file2.read()) # calculate the similarity between two films def GetCosSimilarityForGenres(user_film,dataset_film): v1_2, v2_2,v1_x_v2 =0,0,0 for i in range(len(user_film[0])): v1_2 += user_film[0][i] * user_film[0][i] v2_2 += dataset_film[0][i] * dataset_film[0][i] v1_x_v2 += user_film[0][i] * dataset_film[0][i] sim = (v1_x_v2 / (math.sqrt(v1_2) * math.sqrt(v2_2))) return sim # some code used for the GUI of this script. user_film="" if len(sys.argv) > 1 and sys.argv[1] =="-r": # return the recommended films directly given a film name. user_film=sys.argv[2] elif len(sys.argv)>1 and sys.argv[1] =="-list": # return all dataset film names only for f in dataset.keys(): print(f) exit(0) else: user_film = input("Enter the film name :") # in case you run the script without any arguments you will be asked to enter a film name from the dataset. # check if the user film in the dataset or not. if user_film not in dataset.keys(): print("this film is not in the dataset.") exit(0) # get the film vector from the dataset film_attr = dataset[str(user_film)] final_data = list() # for each film in the dataset calculate the similarity between it and the user film. for k,v in dataset.items(): # caculate the similarity based on the film genres. sim_of_gen = GetCosSimilarityForGenres(film_attr,v) # then add the total rating of the film to the score. total_score = (sim_of_gen + v[1]) # don't add the user film itself to avoid recommending it because it's completely similar if k != user_film: final_data.append([k,total_score]) # sort the final data by the total score sorted_data = sorted(final_data,key=itemgetter(1),reverse=True) # recommend the top 3 films for i in range(0,3): print("Film : ",sorted_data[i][0]," | Rate : ", round(sorted_data[i][1],1))
""" Have you ever played "Connect 4"? It's a popular kid's game by the Hasbro company. In this project, your task is create a Connect 4 game in Python. Before you get started, please watch this video on the rules of Connect 4: https://youtu.be/utXzIFEVPjA Author: Ivan Komlev Date: 2020-10-14 GitHub: https://github.com/Ivan-Komlev/Connect-4 """ import sys from termcolor import colored, cprint import os from os import system os.system('color') bgColor='on_white' xOffset=10 columns,rows =9,6 #player1name="" #player2name="" #Clear screen print('\x1b[2J') map = [[0 for i in range(columns)] for j in range(rows)] #map=[[0]*columns] * rows #Rows [Columns] #0 = empty space #1 = red player #2 = green player def printMapElement(r,c): #text = colored(' y:'+str(y)+" ", 'red')#, attrs=['reverse', 'blink']); if map[r][c]==1: cprint(" ", 'blue', "on_red", end=""); elif map[r][c]==2: cprint(" ", 'blue', "on_green", end=""); elif map[r][c]==-1: cprint("><", 'white', "on_red", end=""); elif map[r][c]==-2: cprint("><", 'black', "on_green", end=""); else: cprint(" ", 'blue', bgColor, end=""); return def findAvalableRow(c): for r in range(0,rows): row=rows-r-1 if(map[row][c-1]==0): return row+1 return -1;#column is full def markBlocks(won_blocks,turn): for i in range(0,len(won_blocks)): map[won_blocks[i][0]][won_blocks[i][1]]=-turn return won_blocks def checkIfWon(r,c,turn):# r=1:rows, c=1:columns r_=r-1 # to start from 0 not from 1 c_=c-1 # to start from 0 not from 1 #check horizontals won_blocks=[] count=0 for c_ in range(0,columns): if(map[r_][c_]==turn): won_blocks.append([r_,c_]) count+=1 if count==4: won_blocks=markBlocks(won_blocks,turn) return True; else: count=0 won_blocks=[] #check vertical c_=c-1 # to start from 0 not from 1 won_blocks=[] count=0 for r_ in range(0,rows): if(map[r_][c_]==turn): won_blocks.append([r_,c_]) count+=1 if count==4: won_blocks=markBlocks(won_blocks,turn) return True; else: count=0 won_blocks=[] #check diagonals for r_ in range(0,rows-4+1):#rows-4 -------- dont check the imposible for c_ in range(0,columns-4+1):#columns-4 -------- dont check the imposible won_blocks=[] count=0 #check diagonal left to right c2_=c_ for r2_ in range(r_,r_+4): if(map[r2_][c2_]==turn): print("r2_:"+str(r2_)+"c2_:"+str(c2_)+"Found") won_blocks.append([r2_,c2_]) count+=1 if count==4: won_blocks=markBlocks(won_blocks,turn) return True; else: count=0 won_blocks=[] c2_+=1 if c2_==c_+4: break won_blocks=[] count=0 #check diagonal right to left c3_=columns-c_-1 for r2_ in range(r_,r_+4): if(map[r2_][c3_]==turn): won_blocks.append([r2_,c3_]) count+=1 if count==4: won_blocks=markBlocks(won_blocks,turn) return True; else: count=0 won_blocks=[] c3_-=1 if c3_<0: break return False def drawTheBoard(rows, columns_): columns=columns_*2-1 #Drawing Column numbers print(" "*xOffset,end="") cprint(" ", 'blue', bgColor, end="") for j in range(0, columns): c=(str(int(j/2)+1)+" " if j%2==0 else ' ') cprint(c, 'blue', bgColor, end="") cprint(" ", 'blue', bgColor) #Drawing board top line print(" "*xOffset,end="") cprint(" "+u'\u250c', 'blue', bgColor, end="")#left top corner for j in range(0, columns): c=(u'\u2500'+u'\u2500' if j%2==0 else u'\u252C') cprint(c, 'blue', bgColor, end="") cprint(u'\u2510'+' ', 'blue', bgColor) for i in range(0, rows): print(" "*xOffset,end="") cprint(" "+str(i+1)+u'\u2502', 'blue', bgColor, end="") for j in range(0, columns): if j%2==0: printMapElement(i,int(j/2)) else: cprint(u'\u2502', 'blue', bgColor, end="") cprint(u'\u2502'+' ', 'blue', bgColor) if i<rows-1: print(" "*xOffset,end="") cprint(' '+u'\u251C', 'blue', bgColor, end="") for j in range(0, columns): c=(u'\u2500'+u'\u2500' if j%2==0 else u'\u253C')#line or cross cprint(c, 'blue', bgColor, end="") cprint(u'\u2524'+' ', 'blue', bgColor) #Drawing board bottom line print(" "*xOffset,end="") cprint(" "+u'\u2514', 'blue', bgColor, end="")#left top corner for j in range(0, columns): c=(u'\u2500'+u'\u2500' if j%2==0 else u'\u2534') cprint(c, 'blue', bgColor, end="") cprint(u'\u2518'+' ', 'blue', bgColor) return True; def rules(): print("Welcome to the Connect 4 game.") print("Rules:") print("Enter the column you wish to drop your piece in.") print("When you can connect four pieces vertically, horizontally or diagonally you win") print("Type 'q' to exit the game.") def prompter(): turn=1 #Rules while(True): color=("Red" if turn==1 else 'Green') cprint(color+" player, plase enter the column:", color.lower(), end="") column = input(" ") if column=="": cprint('Column is not a number', 'white', 'on_red') continue try: column=int(column) except (ValueError, TypeError): if(column=='q' or column=='Q'): break else: cprint('Column is not a number', 'white', 'on_red') continue column=int(column) if column>columns or column<1: cprint('Column number is outside of range', 'white', 'on_red') continue r=findAvalableRow(column) if r==-1: #Column is full cprint('Column is full', 'white', 'on_yellow') else: map[r-1][column-1]=turn if checkIfWon(r,column,turn): #Clear screen print('\x1b[2J') drawTheBoard(rows, columns) rules() cprint(color+' won!', 'blue', 'on_white', end="") break #Change player turn+=1 if turn==3: turn=1 #Clear screen print('\x1b[2J') drawTheBoard(rows, columns) rules() print() drawTheBoard(rows, columns) rules() print() prompter() print(" Bye.")
# iterate backwards using char array def urlify(s, length): num_spaces = s[:length].count(' ') url_index = length + 2 * num_spaces - 1 for i in xrange(length - 1, -1, -1): if s[i] == ' ': s[url_index] = '0' s[url_index - 1] = '2' s[url_index - 2] = '%' url_index -= 3 else: s[url_index] = s[i] url_index -= 1
class Dog(): def __init__(self,name): self.name = name def speak(self): return self.name + " says woof!" class Cat(): def __init__(self,name): self.name = name def speak(self): return self.name + " says meow!" niko = Dog("niko") felix = Cat("felix") print(niko.speak())#niko says woof! print(felix.speak())#felix says meow! """ Polymorphism- Both Nico and Felix share the same method name called Speak. However, they are different types here ( <class '__main__.Dog'>, <class '__main__.Cat'> ) """ # Way_1: iterate through different classes and happened to call the same method name for pet in [niko,felix]: print(type(pet)) print(type(pet.speak())) print(pet.speak()) # <class '__main__.Dog'> # <class 'str'> # <class '__main__.Cat'> # <class 'str'> # Way_2 : Pass in some functions, and called method speak() # pet and dog share the same method speak() # pet_speak function takes in different pet object and calls different methods def pet_speak(pet): print(pet.speak()) pet_speak(niko)#niko says woof! pet_speak(felix)#felix says meow!
import math # 1 can of paint can cover 5 square meters of wall wall_height = int(input("Input the height of wall: ")) wall_width = int(input("Input the width of wall: ")) coverage = 5 def paint_calc(height,width,cover): area = height * width num_of_cons = math.ceil(area/cover) print(f"You'll need {num_of_cons} cans of paint") paint_calc(height=wall_height,width=wall_width,cover=coverage)
# https://github.com/Pierian-Data/Complete-Python-3-Bootcamp/blob/master/05-Object%20Oriented%20Programming/02-Object%20Oriented%20Programming%20Homework.ipynb # Problem 1 計算兩座標的距離 & 斜率 # Fill in the Line class methods to accept coordinates as a pair of tuples and return the slope and distance of the line. #solution 1 to problem 1 class Line: def __init__(self,coor1,coor2): self.coor1 = coor1 self.coor2 = coor2 def distance(self): x1,y1 = self.coor1 x2,y2 = self.coor2 return ((x2-x1)**2 + (y2-y1)**2)**0.5 #((x2-x1)的二次方+(y2-y1)的一次方)開根號 開根號相當於0.5次方 def slope(self): x1,y1 = self.coor1 x2,y2 = self.coor2 return (y2-y1)/(x2-x1) c1 = (3,2) c2 = (8,10) myline = Line(c1,c2) print(myline.distance()) print(myline.slope()) #solution 2 to problem 1 class Line02: def __init__(self,coor1,coor2): self.x1,self.y1 = coor1 self.x2,self.y2 = coor2 def distance(self): return ((self.x2-self.x1)**2 + (self.y2-self.y1)**2)**0.5 #((x2-x1)的二次方+(y2-y1)的一次方)開根號 開根號相當於0.5次方 def slope(self): return (self.y2-self.y1)/(self.x2-self.x1) c1 = (3,2)#9.433981132056603 c2 = (8,10)#1.6 myline02 = Line02(c1,c2) print(myline02.distance()) print(myline02.slope()) # Problem 2 計算圓柱體體積(volume)和表面面積 class Cylinder: pi = 3.14 def __init__(self,height=1,radius=1): self.height = height self.radius = radius def volume(self): return self.height * 3.14 * (self.radius)**2 def surface_area(self): top = 3.14 * (self.radius**2) return (top*2) + (self.radius*2*3.14*self.height) #圓周長 = 直徑*3.14 #圓面積 = 半徑*半徑*3.14 #表面面積 上下兩個圓面積+ 長方形面積(半徑*2*3.14*height) # EXAMPLE OUTPUT mycylinder = Cylinder(2,3) print(mycylinder.volume())#56.52 print(mycylinder.surface_area())#94.2
# # Practice_6: Use a Debugger # def mutate(a_list): # b_list = [] # for item in a_list: # new_item = item * 2 # b_list.append(new_item) # print(b_list) # mutate([1,2,3,5,8,13]) """ Use a Debugger 題目分析 def mutate(a_list): b_list = [] for item in a_list: new_item = item * 2 b_list.append(new_item) print(b_list) print(a_list) mutate([1,2,3,5,8,13]) # mutate 是一個function物件,這個function傳入一個叫a_list的list, # 於是mutate這個物件中有新的變數a_list # create b_list 變數,是個空陣列 # 迴圈走訪a_list *2,又產生一個新變數new_item # b_list.append(new_item) 只會將迴圈走訪到的最後一個new_item存入b_list # print(b_list) [26] 故最後印出b_list只會印出陣列中只有一個項目 # print(a_list) [1, 2, 3, 5, 8, 13] 仍舊印出所有陣列項目 """ #Practice_6: solution def mutate(a_list): b_list = [] for item in a_list: new_item = item * 2 b_list.append(new_item) print(b_list)#[2, 4, 6, 10, 16, 26] mutate([1,2,3,5,8,13])
def format_name(f_name,l_name): """Take a first and last name and format it to return the title case version of the name""" if f_name == "" or l_name == "": return "You didn't provide valid inputs." formated_f_name = f_name.title() formated_l_name = l_name.title() #print(f"{formated_f_name} {formated_l_name}") return f"{formated_f_name} {formated_l_name}" formated_string = format_name("AnGELA","YU") print(formated_string)
def func(): return 1 print(func())#1 def hello(): return "Hello" print(hello())#Hello print(type(hello))#<class 'function'> greet = hello print(type(greet)) print(greet())#Hello
""" add_new_country("Russia", 2, ["Moscow", "Saint Petersburg"]) You've visited Russia 2 times. You've been to Moscow and Saint Petersburg. """ travel_log = [ { "country": "France", "visits": 12, "cities": ["Paris","Lille","Dijon"] }, { "country": "Germany", "visits": 5, "cities": ["Berlin","Hamburg","Stuttgart"] }, ] #TODO: Write the function that will allow new countries #to be added to the travel_log. def add_new_country(country_visited,times_visited,cities_visited): new_country = {} #new_country[key] = value new_country["country"] = country_visited new_country["visits"] = times_visited new_country["cities"] = cities_visited travel_log.append(new_country) # way_2 # new_country = {"country":country_visited,"visits":times_visited,"cities":cities_visited} # travel_log.append(new_country) #Do not change the code below add_new_country("Russia", 2, ["Moscow", "Saint Petersburg"]) print(travel_log)
from art import logo print(f"\033[31m{logo}\033[00m") alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] def caesar(plain_text,shift_amount,direction_side): word = "" if direction == "decode": shift_amount *= -1 for item in text: index_number = alphabet.index(item) position = index_number + shift_amount while position > 25: position -=26 letter = alphabet[position] word += letter print(word) end_of_game = False #while game not end while not end_of_game: direction = input("Type 'encode' to encrypt, type 'decode' to decrypt :\n ") text = input("input your message:\n").lower() shift = int(input("type the shift number:\n")) caesar(plain_text=text,shift_amount=shift,direction_side=direction) exit = input("Do you want to exit the game? yes or no ") if exit == "yes": end_of_game = True print("Goodbye")
name = input("What's your character's name? ") print("Your character's name is", name, "\n", end="") game = input("Would you like to begin the game? Enter Yes or No: ") print(game) "Yes" == "yes" "No" == "no" if game == "yes": print(name) elif game == "no": quit() else: print("Please enter yes or no." #Y = char_name #N = quit() #print(game) #if input
#a = '*' #b = 0 #while b < 5: #b = b + 1 #print(a) #a = a + '*' #a = '*' #b = 0 #while b < 5: #b = b + 1 #print(a) #a = a + '*' x = 0 y = 0 r = 25 n = 2*r while y < n: x = 0 while x < n: if (x-r)**2 + (y-r)**2 < r**2: print('*', end="") else: print(' ', end="") x = x + 1 print() y = y + 1 #r = x**2 + y**2 #a = '*' #while x < r: #x = x + x #print(a) #while y < r: #y = y + y #print(a) #b = 4**2 + 6**2 #print(b) #a = '*' #x = 4#y = 6 # x**2 + y**2 < r**2 # print "my string", end="")
def prime(n): l = [0]*n p = 2 while p < n: if l[p] == 0: q = 2*p while q < n: l[q] = 1 q = q + p p = p + 1 result = [] i = 2 while i < n: if l[i] == 0: result.append(i) i = i + 1 return result #print(prime(200))
graph={ 'A':['B','C'], 'B':['D','E'], 'C':['F','G'], 'D':['H','I'], 'E':['J','K'], 'F':['L','M'], 'G':['N','O'], 'H':[], 'I':[], 'J':[], 'K':[], 'L':[], 'M':[], 'N':[], 'O':[], } def dls(start,goal,path,level,maxD): print("\nCurrent level-->",level) print("Goal testing for",start) path.append(start) if start==goal: print("goal test successful") return path print("goal node testing failed") if level==maxD: return False print("\n Expanding the current node",start) for child in graph[start]: if dls(child,goal,path,level+1,maxD): return path path.pop() return False start='A' goal=input("enter the goal node to be found") maxD=int(input("Enter the maximum depth:--")) path=list() res=dls(start,goal,path,0,maxD) if(res): print("path to the goal node found") print("path",path) else: print("no path available in the given depth limit")
#Hello there!!!....myself Rakesh pandey #Building a TicTacToe game!!! import os from time import sleep #define board board=[" "," "," "," "," "," "," "," "," "] def printboard(): print(" ---- " * 3) print("|", board[0], " ", "|", board[1], " ", "|", board[2], " ", "|") print(" ---- " * 3) print("|", board[3], " ", "|", board[4], " ", "|", board[5], " ", "|") print(" ---- " * 3) print("|", board[6], " ", "|", board[7], " ", "|", board[8], " ", "|") print(" ---- " * 3) flag ="X" count=0 while True: if flag=="X": os.system('cls') print("Tic-Tac-Toe game!!!!!") print("Made by RAKESH PANDEY") printboard() #Taking input from user for values of X try: choice = (int(input("enter the position to fill X \n"))-1) except ValueError: print("enter only integer values between 1-9") sleep(1) flag = "1" try: if flag=="1" : flag="X" elif board[choice]==" ": board[choice]="X" flag = "0" count = count+1 else : print("position already occupied choose another") sleep(1) flag="X" except IndexError: print("pagal hai kya.....9 hi spaces hai....enter between 1-9") sleep(1) flag ='X' #Checking condition if X wins xwin = (board[0] == board[1] == board[2] == "X") \ or (board[3] == board[4] == board[5] == "X") \ or (board[6] == board[7] == board[8] == "X") \ or (board[0] == board[3] == board[6] == "X") \ or (board[1] == board[4] == board[7] == "X") \ or (board[2] == board[5] == board[8] == "X") \ or (board[0] == board[4] == board[8] == "X") \ or (board[2] == board[4] == board[6] == "X") #IF x wins asking for playagain or exit !!! if (xwin): os.system('cls') print("Tic-Tac-Toe game!!!!!") print("Made by RAKESH PANDEY") printboard() print("X won....well played...although little advantage of being first turn !!!") sleep(3) play = input("wanna play again??..(yes/no)") if (play == "yes"): board = [" ", " ", " ", " ", " ", " ", " ", " ", " "] flag = "X" count = 0 elif (play == "no"): print("Thanks for playing") sleep(2) break else: print("cant type properly.....u idiot!!!....play nextime!!! byee!!") sleep(2) break #Checking condition for Draw !!!! if (count == 9): os.system('cls') print("Tic-Tac-Toe game!!!!!") print("Made by RAKESH PANDEY") printboard() print("Match drawn....Both were Fantastic") sleep(2) play=input("wanna play again??..(yes/no)") if(play=="yes"): board = [" ", " ", " ", " ", " ", " ", " ", " ", " "] flag="X" count=0 elif (play == "no"): print("Thanks for playing") sleep(2) break else: print("cant type properly.....u idiot!!!....play nextime!!! byee!!") sleep(2) break if flag=="0": os.system('cls') print("Tic-Tac-Toe game!!!!!") print("Made by RAKESH PANDEY") printboard() #Taking input for 0 user !!! try: choice = (int(input("enter the position to fill 0 \n"))-1) except ValueError: print("enter only integer values between 1-9") sleep(1) flag = "1" try: if flag=="1" : flag="0" elif board[choice]==" ": board[choice]="0" flag = "X" count=count+1 else : print("position already occupied choose another") sleep(1) flag="0" except IndexError: print("pagal hai kya.....9 hi spaces hai....enter between 1-9") sleep(1) flag = '0' #Checking condition if 0 wins owin = (board[0] == board[1] == board[2] == "0") \ or (board[3] == board[4] == board[5] == "0") \ or (board[6] == board[7] == board[8] == "0") \ or (board[0] == board[3] == board[6] == "0") \ or (board[1] == board[4] == board[7] == "0") \ or (board[2] == board[5] == board[8] == "0") \ or (board[0] == board[4] == board[8] == "0") \ or (board[2] == board[4] == board[6] == "0") # IF x wins asking for playagain or exit !!! if (owin): os.system('cls') print("Tic-Tac-Toe game!!!!!") print("Made by RAKESH PANDEY") printboard() print("0 won....well played 0 are not always loser") sleep(3) play = input("wanna play again??..(yes/no)") if (play == "yes"): board = [" ", " ", " ", " ", " ", " ", " ", " ", " "] flag = "X" count = 0 elif(play=="no"): print("Thanks for playing") sleep(2) break else: print("cant type properly.....u idiot!!!....play nextime!!! byee!!") sleep(2) break
username=input("enter the user name\t") password=input("Enter the password\t") hidden_password=len(password)*"*" print(f"yeah! your username is {username} \n your secret password is\t{hidden_password}")
# .endswith() => metnin parametrede gönderdiğiniz değer ile bitip bitmediğini True / False değer olarak döner. metin = "murat vuranok" sonuc = metin.endswith("ok") if sonuc: print("metin ok kelimesi ile bitmektedir.") else: print("metin ok kelimesi ile bitmemektedir.") #Ternary kullanımı print("metin ok kelimesi ile bitmektedir.") if sonuc else print("metin ok kelimesi ile bitmemektedir.") #metin ok kelimesi ile bitmektedir.
import datetime now = datetime.datetime.now() print(str(now)) #2019-07-21 10:21:20.236668 print(repr(now)) #datetime.datetime(2019, 7, 21, 10, 22, 2, 890202 class Personel: def __init__(self,isim): self.FirstName = isim def __repr__(self): return "Personel ( '{}', '{}' )".format(self.FirstName,self.FirstName) def __str__(self): return "{}-{}".format(self.FirstName,self.FirstName) per = Personel("Berke") print(str(per)) #Berke-Berke print(repr(per)) #Personel ( 'Berke', 'Berke' ) print(str(per)) #Berke-Berke print(per.__repr__()) #Personel ( 'Berke', 'Berke' ) #developer için devam niteliğinde kod verir. print(per.__str__()) #Berke-Berke #son kullanıcı için çıktı verir.
# Dısarıdan aldığı ismi ve soyisime göre mail adresi oluşturan metot. ([email protected]) # Kulanıcı 2. parametreye değer girmeyebilir. def Mail(a,b = None): mail = "" if b is None: mail ="{}@bilgeadam.com".format(a) else: mail = "{}.{}@bilgeadam.com".format(a,b) print(mail) #isim = input("İlk isminizi giriniz :").lower() #soyisim = input("Soyisminizi giriniz : ").lower() Mail(input("İlk isminizi giriniz :").lower()) Mail(input("İlk isminizi giriniz :").lower(),input("Soyisminizi giriniz : ").lower())
# Mantıksal Operatorler #---------------------- # and => Sorguya katılan her bir koşulun sağlanması # or => Sorguya katılan herhangi bir koşulun sağlanması # not => Sorgula olumsuzlık katar; True ise False, False ise True döndürür. user_name = input("Lütfen kullanıcı adınızı giriniz : ") if user_name == "admin" : # db içerisinde var mı ? password = input("Lütfen şifrenizi adınızı giriniz : ") if password == "123": print("Giriş yaptınız !") else: print("Şifreniz yanlış.") else: print("Kullanıcı adınız yanlış.") user_name = input("Lütfen kullanıcı adınızı giriniz : ") password = input("Lütfen şifrenizi adınızı giriniz : ") if user_name == "admin" and password == "123": print("Tebrikler!") else: print("Kullanıcı bilgilerinizi kontrol ediniz.")
try: number = int(input("Lütfen birinci sayiyi giriniz : ")) number2 = int (input("Lütfen ikinci sayiyi giriniz : ")) toplam = number+number2 fark = number-number2 bolum = number/number2 carpim = number*number2 print("Sayilarin toplamı : ",toplam, "\nSayıların farkı : ",fark, "\nSayıların bölümü : ",bolum, "\nSayıların çarpımı : ",carpim) except (ValueError,SyntaxError): print("Value Error hatası veya Syntax Error hatası") except ZeroDivisionError: print("Zero Division Error hatası") except FileExistsError: print("File Exists Error") except: print("Hata mesajı")
# Tanımlama şekli # Bir dizinin maksimum index değeri, eleman sayısının bir eksi değeridir. sehirler = ["ankara","edirne","eskisehir","istanbul","kars","kayseri","istanbul"] #List # eleman sıra no : 1,2,3,4,5,6,7 # eleman index no : 0,1,2,3,4,5,6 print(sehirler[0]) index = len(sehirler)-1 print(sehirler[index]) print(sehirler[0:4]) # 1. paramatre index değeri, 2.parametre ise verilen index değerinin bir alt değerine kadar yazdırır print(sehirler[:])
#Şifrenin 3 defa yanlış girilmesi durumunda kullanıcıyı uyaran uygulama #password = "abc123" #fail_count = 0 #for i in range(3): # password_user = input("Şifrenizi giriniz : ") # if (password==password_user): # print("Giriş Sağlandı") # break # else: # print("Hatalı şifre girdiniz.") # fail_count+=1 # if(fail_count==3): # print("Şifrenizi 3 kez hatalı girdiniz. Hesabınız bloke edilmiştir.") # break from builtins import print for i in range(3): parola = input("Şifrenizi giriniz : ") if i == 2 : print("Şifrenizi 3 defa yanlış girdiniz.") elif not parola : print("Parola boş geçilemez !!") elif len(parola) in range(3,8): print("Parolanız : ",parola,"olarak belirlenmiştir!") break else: print("WTF")
def fib1(n): """in tabe ozve n om donbale fibonachi ra midahad""" if n==1 or n==2: return 1 return fib1(n-1)+fib1(n-2) list1=[] def fib2(n): """in tabe listi az n ozve avval donbale fibonachi ra midahad""" i=n while n: if fib1(n) not in list1: list1.append(fib1(n)) n -=1 if i>1: list1.append(1) list2=list1.copy() list1.clear() return list2
'069' a=('Germany','France','UK','Spain','Italy') print(a) b=input('\nplease enter one of the vountries above: ') i=0 for name in a: if b.upper()==name.upper(): print(i) i+=1 '070' j=0 c=int(input('now enter a number (from 0 to 4): ')) for value in a: if j==c: print(value) j+=1 '071' sports=['football','hockey'] a=input('whats your favorite sport?: ') sports.append(a) sports.sort() print(sports) '072' list1=['chemistry','physics','math','sports','history','geography'] print(list1) a=input("which one of these don't you like?: ") if a.lower() in list1: list1.remove(a.lower()) print(list1) '073' i=1 dict1={} print('please enter 4 items: ') while(i<=4): a=input('please enter item number '+str(i) + ' : ') dict1[i]=a i+=1 print(dict1) a=input('enter which one you want to get rid of: ') if a in dict1.values(): for key in dict1: if a == dict1[key]: b=key dict1.pop(b) list2=[] for value1 in dict1.values(): list2.append(value1) print(list2) list2.sort() dict2={} l=0 for value in list2: for k in dict1: if dict1[k]==value: l+=1 dict2[l]=value print(dict2) '074' list1=['red','blue','purple','yellow','green','pink','orange','brown','black','grey'] print (list1) a=int(input('please enter starting number:(between 0 and 4) ')) b=int(input('please enter ending number:(between 5 and 9) ')) print(list1[a:b]) '075' list1=[123,542,234,678] for a in list1: print(str(a)+'\n') a=int(input('please enter a three digit number: ')) i=0 if a in list1: while(i<=3): if list1[i]==a: print('the position is:(from 0 to 3) ' + str(i)) i+=1 else: print('this number is not on the list') '076' list1=[] i=3 while i>1: a=input('please enter a name to add to your list: ') list1.append(a) i-=1 e='' i=0 while(e!='no'): a=input('please enter a name to add to your list: ') e=input('do you want to add more people?: ').lower() list1.append(a) for value in list1: i+=1 print('you have invited ' + str(i) + ' people to your party') '077' print(list1) a=input('enter one of the names on the list: ') i=0 for value in list1: if value==a: print('this is the position on the list: '+str(i)) i+=1 b=input('do you still want them on the list?: ') if b.lower()=='no': list1.remove(a) print(list1) '078' list1=['Show1','Show2','Show3','Show4'] print(list1) a=input('enter another TV show: ') b=int(input('where do you want to put it?:(from 0 to 4) ')) list1.insert(b,a) print(list1) '079' nums=[] i=0 while i<=2: a=int(input('enter a number: ')) i+=1 nums.append(a) print(nums) b=input('do you want the last number you entered?: ') if b.lower()=='no': nums.pop() print(nums)
# Comparison of the Kalman filter and the histogram filter. # 06_f_kalman_vs_histogram_filter # Claus Brenner, 29 NOV 2012 from distribution import * from math import sqrt from matplotlib.mlab import normpdf from pylab import plot, show, ylim def move(distribution, delta): """Returns a Distribution that has been moved (x-axis) by the amount of delta.""" """Returns a Distribution that has been moved (x-axis) by the amount of delta.""" d = distribution moved_distribution = Distribution(d.start()+delta,d.values[:]) """when a function pass parameter through the parenthese in inner, we have to use the data from the passed Obeject, rather than just create manutelly, because manutelly created data pass only in this specify case. how? find the class.py about the data extracted way.""" #moved_distribution = Distribution.triangle(d.start()+1+delta,2) # --->>> Insert your code here. return moved_distribution # Replace this by your own result. # --->>> Copy your previous code here. return distribution # Replace this by your own result. def convolve(a, b): """Convolve distribution a and b and return the resulting new distribution.""" # --->>> Copy your previous code here. multi_value = [] Dist_List = [] #d = Distribution() # --->>> Put your code here. """ enumerate() returns a tuple containing a count (from start which defaults to 0) and the values obtained from iterating over iterable. the second way to construct a loop is for value in list, which take directally the value, no more list[i] needed to represent the value""" for i,a_val in enumerate(a.values): for b_val in b.values: multi_value.append(a_val*b_val) Dist_List.append(Distribution(a.start()+b.start()+i,multi_value[:])) """i hier is to move step every loop """ multi_value = []# clear the list to avoid data confused """if you use a container in a loop, remenber to take care, if if the container should be clear after used?""" d = Distribution.sum(Dist_List[:]) return d # Replace this by your own result. return a # Replace this by your own result. def multiply(a, b): """Multiply two distributions and return the resulting distribution.""" multi_value = [] """two kurve which need one for loop can use this way to decide a start and end point""" start = a.start() if a.start()>b.start() else b.start() stop = a.stop() if a.stop()<b.stop() else b.stop() for i in xrange(start,stop): multi_value.append(a.value(i)*b.value(i)) d = Distribution(start,multi_value) Distribution.normalize(d)#the normalize function dont need to write ourself, just #use it, but my way kann return d # --->>> Copy your previous code here. return a # Modify this to return your result. # Helpers. # class Density: def __init__(self, mu, sigma2): self.mu = float(mu) self.sigma2 = float(sigma2) def histogram_plot(prediction, measurement, correction): """Helper to draw all curves in each filter step.""" plot(prediction.plotlists(*arena)[0], prediction.plotlists(*arena)[1], color='#C0C0FF', linestyle='steps', linewidth=5) plot(measurement.plotlists(*arena)[0], measurement.plotlists(*arena)[1], color='#C0FFC0', linestyle='steps', linewidth=5) plot(correction.plotlists(*arena)[0], correction.plotlists(*arena)[1], color='#FFC0C0', linestyle='steps', linewidth=5) def kalman_plot(prediction, measurement, correction): """Helper to draw all curves in each filter step.""" plot([normpdf(x, prediction.mu, sqrt(prediction.sigma2)) for x in range(*arena)], color = 'b', linewidth=2) plot([normpdf(x, measurement.mu, sqrt(measurement.sigma2)) for x in range(*arena)], color = 'g', linewidth=2) plot([normpdf(x, correction.mu, sqrt(correction.sigma2)) for x in range(*arena)], color = 'r', linewidth=2) # # Histogram filter step. # def histogram_filter_step(belief, control, measurement): """Bayes filter step implementation: histogram filter.""" # These two lines is the entire filter! prediction = convolve(belief, control) correction = multiply(prediction, measurement) return (prediction, correction) # # Kalman filter step. # def kalman_filter_step(belief, control, measurement): """Bayes filter step implementation: Kalman filter.""" # --->>> Put your code here. # Prediction. prediction = Density(belief.mu + control.mu, belief.sigma2 + control.sigma2) # hier a=1 # Correction. K = prediction.sigma2/(prediction.sigma2+measurement.sigma2) Mu = prediction.mu+K*(measurement.mu-prediction.mu) Sigma2 = (1- K)*prediction.sigma2 correction = Density(Mu,Sigma2) # Replace return (prediction, correction) # # Main # if __name__ == '__main__': arena = (0,200) Dist = Distribution.gaussian # Distribution.triangle or Distribution.gaussian. # Start position. Well known, so the distribution is narrow. position = Dist(10, 1) # Histogram position_ = Density(10, 1) # Kalman # Controls and measurements. controls = [ Dist(40, 10), Dist(70, 10) ] # Histogram controls_ = [ Density(40, 10**2), Density(70, 10**2) ] # Kalman measurements = [ Dist(60, 10), Dist(140, 20) ] # Histogram measurements_ = [ Density(60, 10**2), Density(140, 20**2) ] # Kalman # This is the filter loop. for i in xrange(len(controls)): # Histogram (prediction, position) = histogram_filter_step(position, controls[i], measurements[i]) histogram_plot(prediction, measurements[i], position) # Kalman (prediction_, position_) = kalman_filter_step(position_, controls_[i], measurements_[i]) kalman_plot(prediction_, measurements_[i], position_) ylim(0.0, 0.06) show()
#coding:utf-8 import random import time def regiun(): '''生成身份证前六位''' #列表里面的都是一些地区的前六位号码 first_list = ['360881','360802','120101','130102','440881','110100','110101','110102','110103','110104','110105','110106','110107','110108','110109','110111'] first = random.choice(first_list) return first def year(): '''生成年份''' now = time.strftime('%Y') #1948为第一代身份证执行年份,now-18直接过滤掉小于18岁出生的年份 second = random.randint(1948,int(now)-18) age = int(now) - second return second def month(): '''生成月份''' three = random.randint(1,12) #月份小于10以下,前面加上0填充 if three < 10: three = '0' + str(three) return three else: return three def day(): '''生成日期''' four = random.randint(1,28) #日期小于10以下,前面加上0填充 if four < 10: four = '0' + str(four) return four else: return four def id_card1(): '''生成身份证后四位''' #后面序号低于相应位数,前面加上0填充 five = random.randint(100,999) first = regiun() second = year() three = month() four = day() temp = str(first)+str(second)+str(three)+str(four)+str(five) temp_list = [] for i in temp: temp_list.append(i) power = [7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2] refNumber = ["1", "0", "X", "9", "8", "7", "6", "5", "4", "3", "2"] result = 0 for i in range(len(power)): result += power[i] * int(temp_list[i]) id_card = temp + refNumber[(result%11)] return id_card #print id_card
try: a = 5/0 print(a) except ZeroDivisionError as err: print('Ты тупой - делишь на ноль') print('123') while True: try: number = int(input("Введите число:")) print("Число умноженное на 5: {0}".format(number*5)) print("10 делим на {0} = {1} ".format(number, 10/number)) break except ValueError: print("Дурак - тебе же сказанно введи ЧИСЛО.\ ЧИСЛО ЧИСЛО Я СКАЗАЛ") except ZeroDivisionError: print('Ты тупой - делишь на ноль. Введи нормальное число') finally: print("Ты все равно тупой") # raise ZeroDivisionError class TupoyError(Exception): pass try: name = input('Введи имя') if name == 'Арсен': raise TupoyError except TupoyError: print('Вы ввели Арсен - это очень прекрасно. Фатальная ошибка')
print("Good boys") p = 5 print(p) b = p print(b, p) p = 'Halid' b = 'Gadzhi' d = "50" p = 5 p = p * 10 p = str(p) + d boo = False h = 'Halid' g = (h + ' ') * 10 print(b[::-1], p, g[:-1]) print(len(h)) str1 = "кошки, собаки,арбузы, грызуны" lis = str1.split(',') print(lis) lis2 = ['halid','gadzhi','isa','aliomar'] print(lis2) str2 = '. '.join(lis2) print(str2) str4 = "lalalalaalalaa\ alaldlasldal" print(str4) stih = """У лукоморье дум зеленый, А ты у нас такой соленый, Вай фай не смог поймать я сам Русалку попросил в вотсап""" print(stih) print(stih.endswith('вотс')) print(stih.lower()) print(stih.replace('соленый','зеленый'))
name = 'Абдурахман' age = 14 coolness = 20.3 print(name + " красавчик " + "Его возраст: " + str(age) + " Он крут на " + str(coolness) + "%") print("%10.7s красавчик. Его возраст %10.5d лет. \ Его крутость %10.2f%%" % (name, age,coolness)) print("{0:ы^20s} красавчик. Его возраст {0} лет. \ Его крутость {0}%".format(name, age, coolness)) real = {'нападающий':'Роналдо','полузащитник':'Абдурахман', 'защитник':'Пеппа','вратарь':'Навас'} print('В реале нападающий - {0[нападающий]}. \ Вратарь - {0[вратарь]}. А еще есть парень - {1}'.format(real, 'Али')) print('{n} {p} {d}'.format(n="Али",p="хороший",d="мужичара")) dog = "Мухта" dog_count = 1 print('У нас {0} {1}{2}'.format(dog_count,dog, 'р' if dog_count == 1 else 'ра'))
import random def get_card(player): while True: yield player.pop() def play(player1,player2): k = 0 global player1_count, player2_count for card1, card2 in zip(get_card(player1), get_card(player2)): k += 2 print(card1,card2) if card1[0] > card2[0]: player1_count += k break elif card1[0] < card2[0]: player2_count += k break m = ["Черви", "Пики", "Бубны","Крести"] deck = [(num, mast) for num in range(2,15) for mast in m] # print(deck) random.shuffle(deck) # print(deck) player1 = deck[:len(deck)//2] player2 = deck[len(deck)//2:] # print(player1,'---',player2) player1_count = 0 player2_count = 0 while True: play(player1, player2) print(player1_count,player2_count) input() if not player1 or not player2: break
menu = { "breakfast": { 'hours': '8:00', 'items': [ 'Яихница','Чай'] }, 'lunch': { 'hours': '12:00', 'items': ['Шамбургер', 'Суп', 'Компот'] } } print(menu) import json menu_json = json.dumps(menu) print(menu_json) with open('menu.json','wt',encoding='utf-8') as f1: f1.write(menu_json) menu2 = json.loads(menu_json) print(menu2) with open('menu.json', 'rt',encoding='utf-8') as f2: menu3 = f2.read() menu3 = json.loads(menu3) print(menu3)
price = {"энергия":1542,"отопление":1542,"горячая вода":92} def show_price(usluga): print("цена на {0} = {1}".format(usluga, price[usluga])) def est_usluga(usluga): if usluga in price: return True else: return False
class Chert: count = 0 @classmethod def show_count(cls): print("У нас на районе {0} черта".format(cls.count)) def __init__(self,name,hair,strengh): self.name = name self.hair = hair self.heeyar = True self.strengh = strengh self.__jaguar = 5 Chert.count += 1 @property def jaguar(self): print("Возвращает колличество ягуара") return self.__jaguar @jaguar.setter def jaguar(self,something): self.__jaguar = something def strike(self,target): if self.__jaguar > 0: print("{0} кидает ягуар в {1}".format(self.name, target)) self.__jaguar -= 1 else: print("Кончилась яга") def __str__(self): return self.name def __len__(self): return self.hair def __iadd__(self, other): self.jaguar += other return self def __lt__(self,other): return self.hair < other.hair said = Chert('chert',100,12) said.strike('бабушку') for i in range(1,13): said.strike('бабушку') print(said.jaguar) said.jaguar += 5 for i in range(1,13): said.strike('бабушку') n = 5 tagir = Chert('Тагуха-Ашшашитн',169,12) tagir += 5 print(tagir.jaguar) print(tagir) print(len(tagir)) print(Chert.count) Chert.show_count() print(said < tagir)
import sqlite3 def create_db(): curs.execute("""CREATE TABLE IF NOT EXISTS questions (type VARCHAR(50) PRIMARY KEY, question VARCHAR(250))""") ins = "INSERT OR REPLACE INTO questions VALUES(?, ?)" curs.execute(ins,('shmot','За шмот поясни?')) curs.execute(ins,('age','Сколько тебе есть?')) curs.execute(ins,('children','Цп есть?')) curs.execute(ins,('location','Откуда ты?')) curs.execute("""CREATE TABLE IF NOT EXISTS peoples (name VARCHAR(50) PRIMARY KEY, shmot VARCHAR(50), age VARCHAR(50), children VARCHAR(50), location VARCHAR(50))""") curs.execute("INSERT OR REPLACE INTO peoples VALUES('Расул','да','да','да','да')") conn.commit() def know_you(name): curs.execute("SELECT name FROM peoples WHERE name = ?",(name,)) raws = curs.fetchall() for raw in raws: if name in raw: print(1) return True else: print(2) return False def show_info(name): curs.execute("SELECT * FROM peoples WHERE name = ?",(name,)) raws = curs.fetchall() print("Я о тебе все знаю. Ты за шмот {0[1]}. Тебе лет {0[2]}. У тебя есть цп {0[3]}. Ты из {0[4]}".format(raws[0])) def add_man(name): pass conn = sqlite3.connect('pahan.db') curs = conn.cursor() create_db() print("Я пахан? А ты?") name = input() if know_you(name): show_info(name) else: add_man(name) curs.close() conn.close()
example=input("Give input: ") def pal(example): b=example[::-1] if example==b: return "True" return "false" print(pal(example))
import mysql.connector # to connect python to a mysql database import requests # will allow us to send HTTP requests to get HTML files from requests import get from bs4 import BeautifulSoup # will help us parse the HTML files import pandas as pd # will help us assemble the data into a DataFrame to clean and analyze it import numpy as np # will add support for mathematical functions and tools for working with arrays import math # to check for nan float values # To make sure we get English-translated titles from all the movies we scrape headers = {"Accept-Language": "en-US, en;q=0.5"} # Requesting the URL to get the contents of the page url = "https://www.imdb.com/search/title/?groups=top_1000&ref_=adv_prv&ref" results = requests.get(url, headers=headers) # Make the content we grabbed easy to read by using BeautifulSoup soup = BeautifulSoup(results.text, "html.parser") # initialize empty lists where we will store our data titles = [] years = [] time = [] imbd_ratings = [] metascores = [] votes = [] us_gross = [] # On the IMBD website, each movie div has the class lister-item mode-advanced. # We will need the scraper to find all of the divs with this class movie_div = soup.find_all('div', class_='lister-item mode-advanced') # We need to loop the scraper to iterate for all movies for container in movie_div: # Add the elements based on their tags in the div name = container.h3.a.text titles.append(name) year = container.h3.find('span', class_='lister-item-year').text years.append(year) runtime = container.find('span', class_='runtime').text if container.p.find('span', class_='runtime') else '-' # Find the runtime, or put a dash if no runtime is listed time.append(runtime) imbd = float(container.strong.text) imbd_ratings.append(imbd) m_score = container.find('span', class_='metascore').text if container.find('span', class_='metascore') else '-1' # I am setting -1 if there is no score because we need to convert this datatype to an int and can't do so with '-' metascores.append(m_score) # Some movies have votes and gross earnings, while others do not. This code block addresses this issue nv = container.find_all('span', attrs={'name': 'nv'}) vote = nv[0].text votes.append(vote) grosses = nv[1].text if len(nv) > 1 else '-' us_gross.append(grosses) # We will build a DataFrame using pandas to store our data in a table. movies = pd.DataFrame({ 'movie': titles, 'year': years, 'timeMin': time, 'imbd': imbd_ratings, 'metascore': metascores, 'votes': votes, 'us_grossMillions': us_gross, }) # Cleaning up the data as everything except for imbd ratings is being stored as an object. # Converting years to an int. movies['year'] = movies['year'].str.extract('(\d+)').astype(int) # Converting time to an int. movies['timeMin'] = movies['timeMin'].str.extract('(\d+)').astype(int) # Converting metascore to an int. movies['metascore'] = movies['metascore'].astype(int) # Converting votes to an int and removing commas movies['votes'] = movies['votes'].str.replace(',', '').astype(int) # Converting gross data to float and removing the dollar signs and the Ms. movies['us_grossMillions'] = movies['us_grossMillions'].map(lambda x: x.lstrip('$').rstrip('M')) movies['us_grossMillions'] = pd.to_numeric(movies['us_grossMillions'], errors='coerce') # movies.to_csv('top50movies.csv') # Adding the movies to a mysql database # Inistializing the connection to the mysql db mydb = mysql.connector.connect( host="localhost", user="james", password="be7crh", database="webscraperdb" ) mycursor = mydb.cursor() # Give each movie a rank. Need this as the rank is the ID in the database. movierank = [] rank_count = 0 for x in movies['movie']: movierank.append(rank_count) rank_count += 1 """ # catch all us_grossMillions that show nan for x in movies['us_grossMillions']: if math.isnan(x): movies['us_grossMillions'][x] = float(-1) """ """ for x in movierank: print("INSERT INTO top_50_movies (place, name, years, timeMin, imbd, metascore, votes, us_grossMillions) VALUES ({}, {}, {}, {}, {}, {}, {}, {})".format(x, movies['movie'][x], movies['year'][x], movies['timeMin'][x], movies['imbd'][x], movies['metascore'][x], movies['votes'][x], movies['us_grossMillions'][x])) """ for x in movierank: if math.isnan(movies['us_grossMillions'][x]): sql = "INSERT INTO top_50_movies (place, name, years, timeMin, imbd, metascore, votes, us_grossMillions) VALUES ({}, '{}', {}, {}, {}, {}, {}, {})".format(x, movies['movie'][x], movies['year'][x], movies['timeMin'][x], movies['imbd'][x], movies['metascore'][x], movies['votes'][x], -1) else: sql = "INSERT INTO top_50_movies (place, name, years, timeMin, imbd, metascore, votes, us_grossMillions) VALUES ({}, '{}', {}, {}, {}, {}, {}, {})".format(x, movies['movie'][x], movies['year'][x], movies['timeMin'][x], movies['imbd'][x], movies['metascore'][x], movies['votes'][x], movies['us_grossMillions'][x]) mycursor.execute(sql) mydb.commit() print(mycursor.rowcount, "record inserted.")
# Listing_8-4.py # Copyright Warren & Carter Sande, 2013 # Released under MIT license http://www.opensource.org/licenses/mit-license.php # Version $version ---------------------------- # A loop using range() for looper in range (1, 5): print looper, "times 8 =", looper * 8 # 运行为times 8 = 8 # times 8 = 16 # times 8 = 24 # times 8 = 32
""" Write a function that computes the volume of a sphere given its radius. Formula is 4/3 pi r^3 """ from math import pi def vol(rad): return (4/3)*pi*(rad**3) print(vol(2)) """ Write a function that checks whether a number is in a given range (inclusive of high and low) """ def ran_check(num,low,high): return num>=low and num<=high def ran_check1(num,low,high): return num in range(low,high+1) print(ran_check(3,2,7)) print(ran_check1(3,2,7)) """ Write a Python function that accepts a string and calculates the number of upper case letters and lower case letters. """ s = 'Hello Mr. Rogers, how are you this fine Tuesday?' def up_low(s): print(f'Original string : {s}') u,l = 0,0 for char in s: if char.isupper(): u+=1 elif char.islower(): l+=1 else: pass return u,l count = up_low(s) print(f'No. of Lower case Characters : {count[0]}') print(f'No. of Lower case Characters : {count[1]}') def up_low1(s): print(f'Original string : {s}') dict = {'upper':0, 'lower':0} for char in s: if char.isupper(): dict['upper']+=1 elif char.islower(): dict['lower']+=1 else: pass return dict count = up_low1(s) print(f'No. of Lower case Characters : {count["upper"]}') print(f'No. of Lower case Characters : {count["lower"]}') """ Write a Python function that takes a list and returns a new list with unique elements of the first list. """ sample_list = [1,1,1,1,2,2,3,3,3,3,4,5] def unique_list(lst): unique = [] for item in lst: if item not in unique: unique.append(item) return unique print( unique_list(sample_list) ) def unique_list1(lst): return list(set(lst)) print( unique_list1(sample_list) ) """ Write a Python function to multiply all the numbers in a list. """ sample_list = [1, 2, 3, -4] def multiply(lst): prod = 1 for num in sample_list: prod *= num return prod print( multiply(sample_list) ) """ Write a Python function that checks whether a word or phrase is palindrome or not. """ def palindrome(s): s = s.replace(' ','') half_length = int(len(s)/2) for i in range(0, half_length): for j in range(len(s)-1, half_length+2, -1): if s[i].lower() != s[j].lower(): return False return True print(palindrome('madam madam')) def palindrome1(s): s = s.replace(' ','') return s==s[::-1] print(palindrome1('madam madam')) """ Write a Python function to check whether a string is pangram or not. (Assume the string passed in does not have any punctuation) """ import string def ispangram(str1, alphabet = string.ascii_lowercase): alphaset = set(alphabet) str1 = str1.replace(' ','') str1 = str1.lower() str1 = set(str1) return str1 == alphaset print(ispangram('The quick brown fox jumps over the lazy dog')) print(ispangram('This is random'))
""" SPY GAME: Write a function that takes in a list of integers and returns True if it contains 007 in order spy_game([1,2,4,0,0,7,5]) --> True spy_game([1,0,2,4,0,5,7]) --> True spy_game([1,7,2,0,4,5,0]) --> False """ from os import truncate def spy_game(nums): code = [0,0,7,'x'] for num in nums: if num == code[0]: code.pop(0) return len(code) == 1 print(spy_game([1,2,4,0,0,7,5])) print(spy_game([1,0,2,4,0,5,7])) print(spy_game([1,7,2,0,4,5,0])) """ COUNT PRIMES: Write a function that returns the number of prime numbers that exist up to and including a given number count_primes(100) --> 25 """ import time start_time = time.time() def count_primes(num): primes = [2] # already added 2 to prime list. Can chack only for odd prime numbers then x = 3 if num < 2: # for the case of num = 0 or 1 return 0 while x <= num: for y in primes: # test all odd factors up to x-1 TRICK if x%y == 0: x += 2 break else: primes.append(x) x += 2 print(primes) return len(primes) print(count_primes(100)) print("Process finished --- %s seconds ---" % (time.time() - start_time)) """ PRINT BIG: Write a function that takes in a single letter, and returns a 5x5 representation of that letter¶ print_big('a') out: * * * ***** * * * * HINT: Consider making a dictionary of possible patterns, and mapping the alphabet to specific 5-line combinations of patterns. For purposes of this exercise, it's ok if your dictionary stops at "E". """ def print_big(letter): patterns = {1:' * ', 2:' * * ', 3:'* *', 4:'*****', 5:'**** ', 6:' * ', 7:' * ', 8:'* * ', 9:'* '} alphabet = {'A':[1,2,4,3,3], 'B':[5,3,5,3,5], 'C':[4,9,9,9,4], 'D':[5,3,3,3,5], 'E':[4,9,4,9,4]} for pattern in alphabet[letter.upper()]: print(patterns[pattern]) print_big('b')
"""Create a dictionary and perform some modifications to it""" birthmonths = { 'Radhila' : 'August', 'Akash' : 'March', 'Anjali' : 'Jan', 'Saahil' : 'April' } print('Anjali\'s birth month is:', birthmonths['Anjali']) del birthmonths['Radhila'] print('The number of contents in the dictionary is:', (len(birthmonths))) birthmonths['Preeti'] = 'Feb' birthmonths['San'] = 'July' for x,y in birthmonths.items(): print('Wish {} in {}'.format(x,y))
#!/Users/Radhika/Documents/Udemy/anaconda/bin/python """WAP that prints the numbers from 1 to 100, but - for multiples of 3 print “Fizz” instead of the number and - for the multiples of 5 print “Buzz” and - for numbers which are multiples of both 3 and 5 print “FizzBuzz”""" for x in range (1,100+1): if ((x % 3) == 0) and ((x % 5) == 0): print("FizzBuzz") elif ((x % 5) == 0): print("Buzz") elif ((x % 3) == 0): print("Fizz") else: print(x)
def celsius_to_fahrenheit(celsius): fahrenheit = celsius * 9/5 + 32 print("{}°C to {}°F".format(celsius, fahrenheit)) def fahrenheit_to_celsius(fahrenheit): celsius = (fahrenheit - 32) * 5/9 print("{}°F to {}°C".format(fahrenheit, celsius)) def menu(): print("Program do konwersji temperatury w różnych skalach. Jaką konwersje chcesz wykonać?") print("1) Stopnie Celsjusza na Fahrenheita") print("2) Stopnie Fahrenheita na Celsjusza") while True: try: user_options = int(input("Wybierz: ")) except ValueError: print("Musisz podać numer opcji!") continue if not 1 <= user_options <= 2: print("Nie istnieje taka opcja.") continue else: break while True: try: value = float(input("Podaj wartość: ")) except ValueError: print("Musisz podać liczbę!") continue break if user_options == 1: celsius_to_fahrenheit(value) elif user_options == 2: fahrenheit_to_celsius(value) menu()
class MailChimpBaseException(Exception): pass class MailChimpError(MailChimpBaseException): """ Represents an error returned from the MailChimp API. """ def __init__(self, message, code): MailChimpBaseException.__init__(self, message) self.code = code class MailChimpGroupingNotFound(MailChimpBaseException): """ A specified grouping name was not found in the mailchimp list. """ pass class MailChimpEmailNotFound(MailChimpBaseException): """ A specified email address was not found in the mailchimp list. """ pass class MailChimpEmailUnsubscribed(MailChimpBaseException): pass
import sys import math def draw(l1,l2,w1,w2): for i in range(len(w2)): o=[] for j in range(len(w1)): if i == l2: o.append(w1[j]) elif j == l1: o.append(w2[i]) else: o.append(" ") print(' '.join(o)) # Auto-generated code below aims at helping you parse # the standard input according to the problem statement. w1,w2 = input().split() w1 = w1.upper() w2 = w2.upper() br = False for i in range(len(w1)): for j in range(len(w2)): if w1[i] == w2[j]: draw(i,j,w1,w2) br = True break if br: break
#!/usr/bin/python2 """ Reads one or more hex encoded values from a file (split by newlines), writes them to the specified subdir using the SHA1 of the contents as the file name. """ import os import sys import hashlib def main(args=None): if args is None: args = sys.argv if len(args) != 3: print("Usage: %s input_file target_dir" % (args[0])) return 1 input_file = args[1] target_dir = args[2] for vec in open(input_file).readlines(): vec = vec.strip() vec_bin = vec.decode('hex') sha1 = hashlib.sha1() sha1.update(vec_bin) hash = sha1.hexdigest() out_file = open(os.path.join(target_dir, hash), 'w') out_file.write(vec_bin) if __name__ == '__main__': sys.exit(main())
# receive integer number = int(input()) # write a function if the number is perf or not def is_number_perfect(num=number): is_perfect = False if num < 0: return "It's not so perfect." summary_of_divisors = 0 for numbers in range(1, num): if num % numbers == 0: summary_of_divisors += numbers if summary_of_divisors == num: return "We have a perfect number!" else: return "It's not so perfect." print(is_number_perfect())
distance_in_meters = int(input()) kilometres = distance_in_meters / 1000 print(f"{kilometres:.2f}")
data = input() targeted_cities = {} # {'Tortuga': [345000, 1250], 'Santo Domingo': [240000, 630], 'Havana': [410000, 1100]} while not data == "Sail": city, population, gold = data.split("||") population = int(population) gold = int(gold) if city in targeted_cities: targeted_cities[city][0] += population targeted_cities[city][1] += gold else: targeted_cities[city] = [population, gold] data = input() event = input() while not event == "End": command = event.split("=>") action = command[0] if action == "Plunder": town = command[1] people = int(command[2]) gold = int(command[3]) print(f"{town} plundered! {gold} gold stolen, {people} citizens killed.") targeted_cities[town][0] -= people targeted_cities[town][1] -= gold if targeted_cities[town][0] <= 0 or targeted_cities[town][1] <= 0: print(f"{town} has been wiped off the map!") targeted_cities.pop(town) elif action == "Prosper": town = command[1] gold_added = int(command[2]) if gold_added < 0: print("Gold added cannot be a negative number!") event = input() continue targeted_cities[town][1] += gold_added print(f"{gold_added} gold added to the city treasury. {town} now has {targeted_cities[town][1]} gold.") event = input() if len(targeted_cities) > 0: print(f"Ahoy, Captain! There are {len(targeted_cities)} wealthy settlements to go to:") targeted_cities = dict(sorted(targeted_cities.items(), key=lambda kvp: (- kvp[1][1], kvp[0]))) for town in targeted_cities: people = targeted_cities[town][0] gold = targeted_cities[town][1] print(f"{town} -> Population: {people} citizens, Gold: {gold} kg") else: print("Ahoy, Captain! All targets have been plundered and destroyed!")
student_academy = {} n = int(input()) sum_of_grades = 0 best_students = {} for _ in range(n): student_name = input() grade = float(input()) if student_name not in student_academy: student_academy[student_name] = [] student_academy[student_name].append(grade) for student, grades in student_academy.items(): for grade in grades: sum_of_grades += grade avg = sum_of_grades / len(grades) if avg < 4.50: del student else: best_students[student] = avg sum_of_grades = 0 sorted_best_students = sorted(best_students.items(), key=lambda kvp: kvp[1], reverse=True) for hui, grade in sorted_best_students: print(f"{hui} -> {grade:.2f} ") # 5 # John # 5.5 # John # 4.5 # Alice # 6 # Alice # 3 # George # 5
percent_number = int(input()) def loading_bar(percent=percent_number): list_of_percents = [] list_of_percent_in_str = "" if percent < 100: for number in range(1, percent + 1): if number % 10 == 0: list_of_percents.append("%") for element in list_of_percents: list_of_percent_in_str += element while len(list_of_percent_in_str) < 10: list_of_percent_in_str += "." else: for number in range(1, percent + 1): if number % 10 == 0: list_of_percents.append("%") for element in list_of_percents: list_of_percent_in_str += element print(f"{percent}% Complete!") print(f"[{list_of_percent_in_str}]") if len(list_of_percents) < 10: while len(list_of_percents) < 10: list_of_percents.append(".") print(f"{percent}% [{list_of_percent_in_str}]") print("Still loading...") return exit() print(loading_bar())
first = int(input()) second = int(input()) third = int(input()) forth = int(input()) summary = first + second summary1 = int(summary / third) result = summary1 * forth print(f"{result:.0f}")
list_of_employee_happiness = list(map(lambda num: int(num), input().split(" "))) # [1, 2, 3, 4, 2, 1] happiness_improvement_factor = int(input()) multiplying_happiness = list(map(lambda num: num * happiness_improvement_factor, list_of_employee_happiness)) # [3, 6, 9, 12, 6, 3] filtered = list(filter(lambda num: num >= (sum(multiplying_happiness) / len(multiplying_happiness)), multiplying_happiness)) # [9,12] if len(filtered) >= len(multiplying_happiness) / 2: print(f"Score: {len(filtered)}/{len(multiplying_happiness)}. Employees are happy!") else: print(f"Score: {len(filtered)}/{len(multiplying_happiness)}. Employees are not happy!")
first_number = int(input()) second_number = int(input()) def factorial_division(num1=first_number, num2=second_number): first_number_factorial = 1 second_number_factorial = 1 for number1 in range(1, num1 + 1): first_number_factorial *= number1 for number2 in range(1, num2 + 1): second_number_factorial *= number2 final_result = first_number_factorial / second_number_factorial print(f"{final_result:.2f}") return exit() print(factorial_division())
n_in_str = input() result = n_in_str.split(" ") numbers_list = [] opposite_list = [] for index in result: numbers_list.append(int(index)) for numbers in numbers_list: opposite_list.append(numbers * (-1)) print(opposite_list)
our_neighborhood = list(map(int, input().split("@"))) # 10, 10, 10, 2 command = input() cupid_location = 0 house_count = 0 is_mission_successful = True while not command == "Love!": jump = command.split()[0] length_of_jump = command.split()[1] cupid_location += int(length_of_jump) if cupid_location > len(our_neighborhood) - 1: cupid_location = 0 our_neighborhood[cupid_location] -= 2 if our_neighborhood[cupid_location] == 0: print(f"Place {cupid_location} has Valentine's day.") if our_neighborhood[cupid_location] < 0: our_neighborhood[cupid_location] = 0 print(f"Place {cupid_location} already had Valentine's day.") command = input() print(f"Cupid's last position was {cupid_location}.") for house in our_neighborhood: if house != 0: house_count += 1 is_mission_successful = False if is_mission_successful: print("Mission was successful.") else: print(f"Cupid has failed {house_count} places.")
test_data = [ [1], [1, 2], [3, 4] ] def backtrack(data, data_index, result=[], current_res=[], target_len=3): if len(current_res) == target_len: result.append(','.join(map(str, current_res))) return if data_index >= len(data): return for i in range(len(data[data_index])): current_res.append(data[data_index][i]) backtrack(data, data_index + 1, result, current_res, target_len) current_res.pop() return result print(backtrack(test_data, 0))
#!/usr/bin/python def trims(s): while s[:1] == ' ': s = s[1:] while s[-1:] == ' ': s = s[:-1] return s # print(trims(' heloo '))
class Matrices: def matrix(self, rows): rows = int(rows) # let's hope there won't be wrong column input return [[float(j) for j in input().split()] for i in range(rows)] def multiply_by_const(self): rows, columns = input('Enter size of matrix: ').split() print('Enter matrix:') matr = self.matrix(rows) multip = int(input('Enter constant: ')) prod = [] for row in range(int(rows)): prod.append([matr[row][column] * multip for column in range(int(columns))]) print('The result is:\n') for _ in prod: print(*_) def muliply_matr(self): rows_1, columns_1 = input('Enter size of first matrix: ').split() print('Enter first matrix:') matr_1 = self.matrix(rows_1) rows_2, columns_2 = input('Enter size of second matrix: ').split() print('Enter second matrix:') matr_2 = self.matrix(rows_2) if int(columns_1) != int(rows_2): print('The operation cannot be performed.\n') return 0 prod = [[0 for j in range(int(columns_2))] for i in range(int(rows_1))] # iterate through rows of matr_1 for i in range(len(matr_1)): # iterate through columns of matr_2 for j in range(len(matr_2[0])): # iterate through rows of matr_2 for k in range(len(matr_2)): prod[i][j] += matr_1[i][k] * matr_2[k][j] for _ in prod: print(*_) def add_matrices(self): rows_1, columns_1 = input('Enter size of first matrix: ').split() print('Enter first matrix:') matr_1 = self.matrix(rows_1) rows_2, columns_2 = input('Enter size of second matrix: ').split() print('Enter second matrix:') matr_2 = self.matrix(rows_2) if rows_2 != rows_1 or columns_2 != columns_1: print('The operation cannot be performed.\n') return 0 summ = [] for row in range(int(rows_1)): summ.append([matr_1[row][column] + matr_2[row][column] for column in range(int(columns_1))]) print('The result is:\n') for _ in summ: print(*_) def transpose(self, choice): rows, columns = input('Enter size of matrix: ').split() print('Enter matrix:') matr = self.matrix(rows) if choice == '1': matr = self.main_diagonal(matr) elif choice == '2': matr = self.side_diagonal(matr) elif choice == '3': matr = self.vertical_line(matr) elif choice == '4': matr = self.horizontal_line(matr) else: print('Sorry, no such operation') return 0 print('The result is:') for _ in matr: print(*_) # on main diagonal # def transposeMatrix(m): # return map(list, zip(*m)) def main_diagonal(self, matrix): # result = [] # # iterate through rows # for i in range(len(X)): # # iterate through columns # for j in range(len(X[0])): # result[j][i] = X[i][j] return [[matrix[column][row] for column in range(len(matrix[0]))] for row in range(len(matrix))] def side_diagonal(self, matrix): # reverse and then same as main diagonal and then again reverse matrix = [[matrix[row][-column] for column in range(1, len(matrix[0]) + 1)] for row in range(len(matrix))] matrix = [[matrix[column][row] for column in range(len(matrix[0]))] for row in range(len(matrix))] return [[matrix[row][-column] for column in range(1, len(matrix[0]) + 1)] for row in range(len(matrix))] def vertical_line(self, matrix): return [[matrix[row][-column] for column in range(1, len(matrix[0]) + 1)] for row in range(len(matrix))] def horizontal_line(self, matrix): return [[matrix[-row][column] for column in range(len(matrix[0]))] for row in range(1, len(matrix) + 1)] def determinant_recursive(self, matrix, total=0): # Section 1: store indices in list for row referencing indices = list(range(len(matrix))) if len(matrix) == 1: return matrix[0][0] # Section 2: when at 2x2 submatrices recursive calls end if len(matrix) == 2 and len(matrix[0]) == 2: val = matrix[0][0] * matrix[1][1] - matrix[1][0] * matrix[0][1] return val # Section 3: define submatrix for focus column and # call this function for fc in indices: # A) for each focus column, ... # find the submatrix ... copy_matrix = matrix[:] # B) make a copy, and ... copy_matrix = copy_matrix[1:] # ... C) remove the first row height = len(copy_matrix) # D) for i in range(height): # E) for each remaining row of submatrix ... # remove the focus column elements copy_matrix[i] = copy_matrix[i][0:fc] + copy_matrix[i][fc + 1:] sign = (-1) ** (fc % 2) # F) # G) pass submatrix recursively sub_det = self.determinant_recursive(copy_matrix) # H) total all returns from recursion total += sign * matrix[0][fc] * sub_det return total # and yeah, this doesn't cover 1 1 case # not gonna lie, didn't quite get it, but i'll just save, so i could use it in future # def determinant_fast(self, matrix): # # Section 1: Establish n parameter and copy A # n = len(matrix) # copy = matrix[:] # # # Section 2: Row ops on A to get in upper triangle form # for fd in range(n): # A) fd stands for focus diagonal # for i in range(fd + 1, n): # B) only use rows below fd row # if copy[fd][fd] == 0: # C) if diagonal is zero ... # copy[fd][fd] == 1.0e-18 # change to ~zero # # D) cr stands for "current row" # crScaler = copy[i][fd] / copy[fd][fd] # # E) cr - crScaler * fdRow, one element at a time # for j in range(n): # copy[i][j] = copy[i][j] - crScaler * copy[fd][j] # # # Section 3: Once copy is in upper triangle form ... # product = 1.0 # for i in range(n): # # ... product of diagonals is determinant # product *= copy[i][i] # # return product # i geuss cheating, but, whatever, it would take too much time to invent the bike, when i could just analyse it def getMatrixMinor(self, m, i, j): return [row[:j] + row[j + 1:] for row in (m[:i] + m[i + 1:])] def getMatrixDeternminant(self, m): # base case for 2x2 matrix if len(m) == 2: return m[0][0] * m[1][1] - m[0][1] * m[1][0] determinant = 0 for c in range(len(m)): determinant += ((-1) ** c) * m[0][c] * self.getMatrixDeternminant(self.getMatrixMinor(m, 0, c)) return determinant def getMatrixInverse(self, m): determinant = self.getMatrixDeternminant(m) # special case for 2x2 matrix: if len(m) == 2: return [[m[1][1] / determinant, -1 * m[0][1] / determinant], [-1 * m[1][0] / determinant, m[0][0] / determinant]] # find matrix of cofactors cofactors = [] for r in range(len(m)): cofactorRow = [] for c in range(len(m)): minor = self.getMatrixMinor(m, r, c) cofactorRow.append(((-1) ** (r + c)) * self.getMatrixDeternminant(minor)) cofactors.append(cofactorRow) cofactors = self.main_diagonal(cofactors) for r in range(len(cofactors)): for c in range(len(cofactors)): cofactors[r][c] = cofactors[r][c] / determinant for i in cofactors: print(*i) def menu(self): while True: choice = input("""1. Add matrices 2. Multiply matrix by a constant 3. Multiply matrices 4. Transpose matrix 5. Calculate a determinant 6. Inverse matrix 0. Exit Your choice: """) if choice == '1': self.add_matrices() elif choice == '2': self.multiply_by_const() elif choice == '3': self.muliply_matr() elif choice == '4': choice = input("""\n1. Main diagonal 2. Side diagonal 3. Vertical line 4. Horizontal line Your choice: """) self.transpose(choice) elif choice == '5': rows, columns = input('Enter size of matrix: ').split() print('Enter matrix:') matr = self.matrix(rows) print('The result is:', self.determinant_recursive(matr), sep='\n') elif choice == '6': rows, columns = input('Enter size of matrix: ').split() print('Enter matrix:') matr = self.matrix(rows) self.getMatrixInverse(matr) elif choice == '0': break else: print('Sorry, no such choice\n') Matrices().menu()
""" Given a string S, return the "reversed" string where all characters that are not a letter stay in the same place, and all letters reverse their positions. Example 1: Input: "ab-cd" Output: "dc-ba" Example 2: Input: "a-bC-dEf-ghIj" Output: "j-Ih-gfE-dCba" Example 3: Input: "Test1ng-Leet=code-Q!" Output: "Qedo1ct-eeLg=ntse-T!" Note: S.length <= 100 33 <= S[i].ASCIIcode <= 122 S doesn't contain \ or " """ # 2020-9-17 class Solution: def reverseOnlyLetters(self, S: str) -> str: tmpSeq = [0 for _ in range(len(S))] characterRecord = [] for i, c in enumerate(S): if c.isalpha(): characterRecord.append(c) else: tmpSeq[i] = c # print(characterRecord) for i, c in enumerate(tmpSeq): if c == 0: tmpSeq[i] = characterRecord.pop() return "".join(tmpSeq) def reverseOnlyLetters2(self, S: str) -> str: stack = [] for i, c in enumerate(S): if c.isalpha(): stack.append(c) ret = [] for i, c in enumerate(S): if c.isalpha(): ret.append(stack.pop()) else: ret.append(c) return "".join(ret) # test S = "Test1ng-Leet=code-Q!" test = Solution() res = test.reverseOnlyLetters2(S) print(res == "Qedo1ct-eeLg=ntse-T!")
# coding:utf-8 """ 685. Redundant Connection II Hard 769 210 Add to List Share In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) for which all other nodes are descendants of this node, plus every node has exactly one parent, except for the root node which has no parents. The given input is a directed graph that started as a rooted tree with N nodes (with distinct values 1, 2, ..., N), with one additional directed edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed. The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] that represents a directed edge connecting nodes u and v, where u is a parent of child v. Return an edge that can be removed so that the resulting graph is a rooted tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. Example 1: Input: [[1,2], [1,3], [2,3]] Output: [2,3] Explanation: The given directed graph will be like this: 1 / \ v v 2-->3 Example 2: Input: [[1,2], [2,3], [3,4], [4,1], [1,5]] Output: [4,1] Explanation: The given directed graph will be like this: 5 <- 1 -> 2 ^ | | v 4 <- 3 Note: The size of the input 2D-array will be between 3 and 1000. Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array. """ # 2020-7-28 class Solution(object): def findRedundantDirectedConnection(self, edges): """ :type edges: List[List[int]] :rtype: List[int] """ canA = [-1, -1] canB = [-1, -1] fa = [0 for i in range(len(edges)+1)] for edge in edges: if fa[edge[1]] == 0: fa[edge[1]] = edge[0] else: canA[0] = fa[edge[1]] canA[1] = edge[1] canB[0] = fa[edge[0]] canB[1] = edge[1] edge[1] = 0 # print(canA, canB) fa = [i for i in range(len(edges)+1)] for edge in edges: if edge[1] == 0: continue child, father = edge[1], edge[0] if self.find(fa, father) == child: if canA[0] == -1: return edge return canA fa[child] = father return canB def find(self, fa, x): while x != fa[x]: fa[x] = fa[fa[x]] x = fa[x] return x edgesCollections = [ [[1,2], [2,3], [3,4], [4,1], [1,5]], [[1,2], [1,3], [2,3]] ] test = Solution() for edges in edgesCollections: ret = test.findRedundantDirectedConnection(edges) print(ret)
# Quiz 1 - Plot J(theta_0, theta_1) import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D # the error function def J(a, b): # test data data = np.array([[0.5, 0.9], [0.3, 0.7], [1.1, 2.3], [2.0, 4.3], [3.5, 6.8], [4.1, 8], [0, 0.1], [5.8, 11]]) temp = 0 for i in data: temp += (a + b * i[0] - i[1]) ** 2 return temp / (2 * len(data)) def main(): # make a 3-D plot fig = plt.figure() ax = fig.add_subplot(111, projection='3d') #create range of x, y, and z theta_0 = np.linspace(-3, 5, 30) theta_1 = np.linspace(0, 3, 30) X, Y = np.meshgrid(theta_0, theta_1) Z = J(X, Y) # plot and label the graph surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm) ax.set_xlabel('theta_0') ax.set_ylabel('theta_1') ax.set_zlabel('J') fig.colorbar(surf, shrink=0.5, aspect=5) plt.show() if __name__ == "__main__": main()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jul 17 10:53:15 2019 @author: andrewpauling """ def snowfall(idx): """ snowfall from maykut and untersteiner 1971 """ snow = 0 if idx <= 118 or idx >= 301: snow = 2.79e-4 elif idx >= 119 and idx <= 149: snow = 1.61e-3 elif idx > 229: snow = 4.16e-3 else: snow = 0.0 return snow
import threading lock=threading.Lock() #创建一个线程锁(互斥锁) num=100 #买票 def sale(name): lock.acquire() #设置锁 global num if num>0: num=num-1 print(name,"卖出一张票,还剩",num,"张票") lock.release() #释放锁 #程序执行时,程序本身就是一个线程,叫主线程 #手动创建的线程,叫子线程 #主线程的执行中,不会等待子线程执行完毕,就会直接执行后面的代码 #售票窗口(2个线程) while 1==1: if num>0: ta=threading.Thread(target=sale,args=("A窗口",)) tb=threading.Thread(target=sale,args=("B窗口",)) ta.start() tb.start() ta.join() #等待子线程执行完毕之后再执行主线程后面的内容 tb.join() #等待子线程执行完毕之后再执行主线程后面的内容 else: break print("票已经卖完")
# -------------------------Python 运算符------------------------------- # 什么是运算符? # 本章节主要说明Python的运算符。举个简单的例子 4 +5 = 9 。 例子中,4 和 5 被称为操作数,"+" 称为运算符。 # Python语言支持以下类型的运算符: # 算术运算符 # 比较(关系)运算符 # 赋值运算符 # 逻辑运算符 # 位运算符 # 成员运算符 # 身份运算符 # 运算符优先级 # ------Python算术运算符------ # 以下假设变量: a=10,b=20: # + 加 - 两个对象相加 a + b 输出结果 30 # - 减 - 得到负数或是一个数减去另一个数 a - b 输出结果 -10 # * 乘 - 两个数相乘或是返回一个被重复若干次的字符串 a * b 输出结果 200 # / 除 - x除以y b / a 输出结果 2 # % 取模 - 返回除法的余数 b % a 输出结果 0 # ** 幂 - 返回x的y次幂 a**b 为10的20次方, 输出结果 100000000000000000000 # // 取整除 - 返回商的整数部分(向下取整) >>> 9//2 4 >>> -9//2 -5 # a = 21 # b = 10 # c = 0 # c = a + b # print ("1 - 21 + 10 的值为:", c) # c = a - b # print ("2 - 21 - 10 的值为:", c ) # c = a * b # print ("3 - 21 * 10 的值为:", c ) # c = a / b # print ("4 - 21 / 10 的值为:", c) # c = a % b # print ("5 - 21 % 10 的值为:", c) # # 修改变量 a 、b 、c # a = 2 # b = 3 # c = a**b # print ("6 - 2**3 的值为:", c) # a = 10 # b = 5 # c = a//b # print ("7 - 10//5 的值为:", c) # -------Python比较运算符------ # 以下假设变量a为10,变量b为20: # == 等于 - 比较对象是否相等 (a == b) 返回 False。 # != 不等于 - 比较两个对象是否不相等 (a != b) 返回 true. # <> 不等于 - 比较两个对象是否不相等。python3 已废弃。 (a <> b) 返回 true。这个运算符类似 != 。 # > 大于 - 返回x是否大于y (a > b) 返回 False。 # < 小于 - 返回x是否小于y。所有比较运算符返回1表示真,返回0表示假。这分别与特殊的变量True和False等价。 (a < b) 返回 true。 # >= 大于等于 - 返回x是否大于等于y。 (a >= b) 返回 False。 # <= 小于等于 - 返回x是否小于等于y。 (a <= b) 返回 true。 # a = 21 # b = 10 # c = 0 # if a == b : # print ("1 - a 等于 b") # else: # print ("1 - a 不等于 b") # if a != b : # print ("2 - a 不等于 b") # else: # print ("2 - a 等于 b") # if a < b : # print ("4 - a 小于 b") # else: # print ("4 - a 大于等于 b") # if a > b : # print ("5 - a 大于 b") # else: # print ("5 - a 小于等于 b") # # 修改变量 a 和 b 的值 # a = 5 # b = 20 # if a <= b : # print ("6 - a 小于等于 b") # else: # print ("6 - a 大于 b") # if b >= a : # print ("7 - b 大于等于 a") # else: # print ("7 - b 小于 a") # ------Python赋值运算符------ # = 简单的赋值运算符 c = a + b 将 a + b 的运算结果赋值为 c # += 加法赋值运算符 c += a 等效于 c = c + a # -= 减法赋值运算符 c -= a 等效于 c = c - a # *= 乘法赋值运算符 c *= a 等效于 c = c * a # /= 除法赋值运算符 c /= a 等效于 c = c / a # %= 取模赋值运算符 c %= a 等效于 c = c % a # **= 幂赋值运算符 c **= a 等效于 c = c ** a # //= 取整除赋值运算符 c //= a 等效于 c = c // a # a = 21 # b = 10 # c = 0 # c = a + b # print ("1 - a + b 的值为:", c) # c += a # print ("2 - c += a 的值为:", c) # c *= a # print ("3 - c *= a 的值为:", c) # c /= a # print ("4 - c /= a 的值为:", c) # c = 2 # c %= a # print ("5 - c %= a 的值为:", c) # c **= a # print ("6 - c **= a 的值为:", c) # c //= a # print ("7 - c //= a 的值为:", c) # ------Python位运算符------ # 下表中变量 a 为 60,b 为 13,二进制格式如下: # a = 0011 1100 # b = 0000 1101 # ----------------- # a&b = 0000 1100 # a|b = 0011 1101 # a^b = 0011 0001 # ~a = 1100 0011 # & 按位与运算符:参与运算的两个值,如果两个相应位都为1,则该位的结果为1,否则为0 (a & b) 输出结果 12 ,二进制解释: 0000 1100 # | 按位或运算符:只要对应的二个二进位有一个为1时,结果位就为1。 (a | b) 输出结果 61 ,二进制解释: 0011 1101 # ^ 按位异或运算符:当两对应的二进位相异时,结果为1 (a ^ b) 输出结果 49 ,二进制解释: 0011 0001 # ~ 按位取反运算符:对数据的每个二进制位取反,即把1变为0,把0变为1 。~x 类似于 -x-1 (~a ) 输出结果 -61 ,二进制解释: 1100 0011,在一个有符号二进制数的补码形式。 # << 左移动运算符:运算数的各二进位全部左移若干位,由 << 右边的数字指定了移动的位数,高位丢弃,低位补0。 a << 2 输出结果 240 ,二进制解释: 1111 0000 # >> 右移动运算符:把">>"左边的运算数的各二进位全部右移若干位,>> 右边的数字指定了移动的位数 a >> 2 输出结果 15 ,二进制解释: 0000 1111 # a = 60 # 60 = 0011 1100 # b = 13 # 13 = 0000 1101 # c = 0 # c = a & b; # 12 = 0000 1100 # print ("1 - a & b 的值为:", c) # c = a | b; # 61 = 0011 1101 # print ("2 - a | b 的值为:", c) # c = a ^ b; # 49 = 0011 0001 # print ("3 - a ^ b 的值为:", c) # c = ~a; # -61 = 1100 0011 # print ("4 - ~a 的值为:", c) # c = a << 2; # 240 = 1111 0000 # print ("5 - a << 2 的值为:", c) # c = a >> 2; # 15 = 0000 1111 # print ("6 - a >> 2 的值为:", c) # ------Python逻辑运算符------ # Python语言支持逻辑运算符,以下假设变量 a 为 10, b为 20 # and x and y 布尔"与" - 如果 x 为 False,x and y 返回 False,否则它返回 y 的计算值。 (a and b) 返回 20。 # or x or y 布尔"或" - 如果 x 是非 0,它返回 x 的值,否则它返回 y 的计算值。 (a or b) 返回 10。 # not not x 布尔"非" - 如果 x 为 True,返回 False 。如果 x 为 False,它返回 True。 not(a and b) 返回 False # a = 10 # b = 20 # if a and b : # print ("1 - 变量 a 和 b 都为 true") # else: # print ("1 - 变量 a 和 b 有一个不为 true") # if a or b : # print ("2 - 变量 a 和 b 都为 true,或其中一个变量为 true") # else: # print ("2 - 变量 a 和 b 都不为 true") # # 修改变量 a 的值 # a = 0 # if a and b : # print ("3 - 变量 a 和 b 都为 true") # else: # print ("3 - 变量 a 和 b 有一个不为 true") # if a or b : # print ("4 - 变量 a 和 b 都为 true,或其中一个变量为 true") # else: # print ("4 - 变量 a 和 b 都不为 true") # if not( a and b ): # print ("5 - 变量 a 和 b 都为 false,或其中一个变量为 false") # else: # print ("5 - 变量 a 和 b 都为 true") # ------Python成员运算符------ # 除了以上的一些运算符之外,Python还支持成员运算符,测试实例中包含了一系列的成员,包括字符串,列表或元组。 # in 如果在指定的序列中找到值返回 True,否则返回 False。 x 在 y 序列中 , 如果 x 在 y 序列中返回 True。 # not in 如果在指定的序列中没有找到值返回 True,否则返回 False。 x 不在 y 序列中 , 如果 x 不在 y 序列中返回 True。 # a = 10 # b = 20 # list = [1, 2, 3, 4, 5 ]; # if ( a in list ): # print ("1 - 变量 a 在给定的列表中 list 中") # else: # print ("1 - 变量 a 不在给定的列表中 list 中") # if ( b not in list ): # print ("2 - 变量 b 不在给定的列表中 list 中") # else: # print ("2 - 变量 b 在给定的列表中 list 中") # # 修改变量 a 的值 # c = 2 # if ( c in list ): # print ("3 - 变量 c 在给定的列表中 list 中") # else: # print ("3 - 变量 c 不在给定的列表中 list 中") # ------Python身份运算符------ # 身份运算符用于比较两个对象的存储单元 # is is 是判断两个标识符是不是引用自一个对象 x is y, 类似 id(x) == id(y) , 如果引用的是同一个对象则返回 True,否则返回 False # is not is not 是判断两个标识符是不是引用自不同对象 x is not y , 类似 id(a) != id(b)。如果引用的不是同一个对象则返回结果 True,否则返回 False。 # a = 20 # b = 20 # if ( a is b ): # print ("1 - a 和 b 有相同的标识") # else: # print ("1 - a 和 b 没有相同的标识") # if ( a is not b ): # print ("2 - a 和 b 没有相同的标识") # else: # print ("2 - a 和 b 有相同的标识") # # 修改变量 b 的值 # c = 30 # if ( a is c ): # print ("3 - a 和 c 有相同的标识") # else: # print ("3 - a 和 c 没有相同的标识") # if ( a is not c ): # print ("4 - a 和 c 没有相同的标识") # else: # print ("4 - a 和 c 有相同的标识") # ------Python运算符优先级------ # ** 指数 (最高优先级) # ~ + - 按位翻转, 一元加号和减号 (最后两个的方法名为 +@ 和 -@) # * / % // 乘,除,取模和取整除 # + - 加法减法 # >> << 右移,左移运算符 # & 位 'AND' # ^ | 位运算符 # <= < > >= 比较运算符 # <> == != 等于运算符 # = %= /= //= -= += *= **= 赋值运算符 # is is not 身份运算符 # in not in 成员运算符 # not and or 逻辑运算符 a = 20 b = 10 c = 15 d = 5 e = 0 e = (a + b) * c / d #( 30 * 15 ) / 5 print ("(a + b) * c / d 运算结果为:", e) e = ((a + b) * c) / d # (30 * 15 ) / 5 print ("((a + b) * c) / d 运算结果为:", e) e = (a + b) * (c / d); # (30) * (15/5) print ("(a + b) * (c / d) 运算结果为:", e) e = a + (b * c) / d; # 20 + (150/5) print ("a + (b * c) / d 运算结果为:", e)
"""Contains a tool for converting decimal numbers to binary strings""" def dec2bin(x, num_dig, wrap_in_quotes=True): s = bin(x) s = s.replace("0b", "") assert(num_dig >= len(s)) if len(s) < num_dig: num_zeros = num_dig - len(s) s = "0" * num_zeros + s if wrap_in_quotes: return '"' + s + '"' return s def test_dec2bin(): x = dec2bin(8, 12, False) assert(x == "000000001000") x = dec2bin(13, 16, False) assert(x == "0000000000001101") x = dec2bin(255, 24, False) assert(x == "000000000000000011111111") x = dec2bin(255, 24, True) assert(x == '"000000000000000011111111"')
''' Created on 11.01.2018 @author: tfuss001 ''' def dreh(lst): if len(lst) == 1: return lst else: print(str(lst[1:]) + "+" + str(lst[0])) return dreh(lst[1:]) +[lst[0]] lst=[1,2,3,4,5] print(dreh(lst))
# Copyright (c) Vera Galstyan Jan 2018 numbers = list(range(1,10)) for number in numbers: if number == 1: print("1st") elif number == 2: print("2nd") elif number == 3: print("3rd") else: print(str(number) + "th")
""" Axis class ========== Axis is a named ordered collection of values. For these doctests to run we are going to import numcube.Axis and numpy. >>> from numcube import Axis >>> import numpy as np Creation -------- To create an Axis object, you have to supply it with name and values. Name must be a string, values must be convertible to one-dimensional numpy array. The values should be of the same type, otherwise they are converted to the most flexible type. - initialized by explicit values: (note: dtype=object is not necessary, it is here to pass the doctests below in both Python 2 and Python 3) >>> months = Axis("month", ["jan", "feb", "mar", "apr", "may", "jun", "jul", "aug", "sep", "oct", "nov", "dec"]) >>> months Axis('month', ['jan' 'feb' 'mar' 'apr' 'may' 'jun' 'jul' 'aug' 'sep' 'oct' 'nov' 'dec']) - initialized from a range: >>> years = Axis("year", range(2010, 2020)) >>> years Axis('year', [2010 2011 2012 2013 2014 2015 2016 2017 2018 2019]) Properties ---------- - 'name' returns a string >>> months.name 'month' - 'values' returns a numpy array note: this is commented out since this test is not portable between Python 2 and Python 3 #>>> months.values # doctest: +NORMALIZE_WHITESPACE array(['jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec']) - str(years) converts the axis to its string representation >>> str(years) "Axis('year', [2010 2011 2012 2013 2014 2015 2016 2017 2018 2019])" - len(axis) returns the number of values >>> len(months) 12 Slicing, indexing, filtering ---------------------------- The returned object is also Axis with the same name and subset of values. >>> months[0:4] Axis('month', ['jan' 'feb' 'mar' 'apr']) >>> months[-1] Axis('month', ['dec']) >>> months[::2] Axis('month', ['jan' 'mar' 'may' 'jul' 'sep' 'nov']) When accessing values by their indices, you have to provide double square brackets! >>> months[[0, 2, 4]] Axis('month', ['jan' 'mar' 'may']) The values can be repeated using repeated indices. >>> months[[1, 2, 1, 2]] Axis('month', ['feb' 'mar' 'feb' 'mar']) To filter axis by index, you can also use method take(), which is similar to numpy.take(). >>> months.take([0, 2, 4]) Axis('month', ['jan' 'mar' 'may']) You can filter the axis by using logical values in a numpy array. >>> years[np.array([True, False, True, False, True, False, True, False, True, False])] Axis('year', [2010 2012 2014 2016 2018]) The previous example was not very useful by itself. But numpy array of logical values is the result of logical expression with axis values. Now this is much more useful. >>> years[years.values % 2 == 0] # even years Axis('year', [2010 2012 2014 2016 2018]) >>> years[(years.values >= 2013) & (years.values <= 2016)] # note the single '&', do not confuse with C/C++ '&&' style Axis('year', [2013 2014 2015 2016]) To filter axis by logical values, you can also use method compress(), which is similar to numpy.compress(). In this case you do not need to convert logical values to numpy array. >>> years.compress([True, False, True, False, True, False, True, False, True, False]) Axis('year', [2010 2012 2014 2016 2018]) Renaming -------- We can rename the axis. Renaming returns a new axis (do not forget to assign it to a new variable!), the original axis remains unchanged. >>> m = months.rename("M") >>> m Axis('M', ['jan' 'feb' 'mar' 'apr' 'may' 'jun' 'jul' 'aug' 'sep' 'oct' 'nov' 'dec']) This is the original axis, still with the old name: >>> months Axis('month', ['jan' 'feb' 'mar' 'apr' 'may' 'jun' 'jul' 'aug' 'sep' 'oct' 'nov' 'dec']) Sorting ------- Sorting is one of the places where numcube API and numpy API differs. Numcube sorting returns a copy of the axis which is analogy to numpy.sort(array) function. On the other hand array.sort() sorts the array in-place. The reason is that numcube aims to support immutability as much as possible. >>> persons = Axis("person", ["Steve", "John", "Alex", "Peter", "Linda"]) >>> sorted_persons = persons.sort() >>> sorted_persons Axis('person', ['Alex' 'John' 'Linda' 'Peter' 'Steve']) if __name__ == "__main__": import doctest doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE) """
#!/usr/bin/env python3 """deep NN performing binary classififcation""" import numpy as np class DeepNeuralNetwork: """Deep Neural Network Class""" def __init__(self, nx, layers): """nx is number of input values""" if type(nx) is not (int): raise TypeError("nx must be an integer") if nx < 1: raise ValueError("nx must be a positive integer") """layers list reping num nodes in each layer""" if type(layers) is not (list) or len(layers) <= 0: raise TypeError("layers must be a list of positive integers") self.L = len(layers) self.nx = nx self.cache = {} self.weights = {} for i_lyr in range(self.L): mWts = "W" + str(i_lyr + 1) mB = "b" + str(i_lyr + 1) if type(layers[i_lyr]) is not (int) or layers[i_lyr] < 1: raise TypeError("layers must be a list of positive integers") self.weights[mB] = np.zeros((layers[i_lyr], 1)) if i_lyr == 0: self.weights[mWts] = (np.random.randn(layers[i_lyr], nx) * np.sqrt(2 / nx)) else: self.weights[mWts] = (np.random.randn(layers[i_lyr], layers[i_lyr - 1]) * np.sqrt(2 / layers[i_lyr - 1]))
#!/usr/bin/env python3 """function calculates the integral of a polynomial""" def poly_integral(poly, C=0): """function calculates the integral of a polynomial""" coIndex = 0 dePoly = [] try: if len(poly) < 1: return None except TypeError: return None # code checking if C is int if not (type(C) is int or type(C) is float): return None coIndex = 0 for p, coef in enumerate(poly): if not (type(coef) is int or type(coef) is float): return None if coef != 0: coIndex = p + 1 # print("{}, {}".format(coef, coIndex)) # change code to C + integral of poly # for pow, coef in enumerate(poly): # i_pow = coef_whole(coef / (pow + 1)) # dePoly = ([C] + [i_pow]) dePoly = [C] + [coef_whole(coef / (exp + 1)) for exp, coef in enumerate(poly)] # print("{}".format(dePoly)) return dePoly[:coIndex + 1] def coef_whole(num): """If a coefficient is a whole number represent as an int""" if num.is_integer(): return int(num) else: return num
#!/usr/bin/env python3 """function adds two arrays, element-wise""" def add_arrays(arr1, arr2): """add arrays if same size""" if len(arr1) != len(arr2): return (None) newList = [] for i in range(len(arr1)): newList.append(arr1[i] + arr2[i]) return (newList)
#!/usr/bin/env python3 """ calculates the specificity each class in a confusion matrix """ import numpy as np def specificity(confusion): """ confusion is a confusion numpy.ndarray of shape (classes, classes) classes is the number of classes """ for m in range(confusion.shape[0]): negfp = np.delete(confusion, m, 1) negfn = np.delete((negfp), m, 0) tNFP = np.delete(confusion, m, 0).sum() return negfn / tNFP
#!/usr/bin/env python3 """ Initialize cluster centroids for K-means """ import numpy as np def initialize(X, k): """ Initialize cluster centroid for K-means :param X: np.ndarray, shape(n, d) contains data set used for K-means :param k: pos integer containing the num clusters :return: np.ndarray, of shape (k, d) """ if type(X) != np.ndarray or len(X.shape) != 2: return None if type(k) != int or k <= 0 or k >= X.shape[0]: return None n, d = X.shape min_X = X.min(axis=0) max_X = X.max(axis=0) return np.random.uniform(min_X, max_X, size=(k, d))
#!/usr/bin/env python3 """ Function determines if a markov chain is absorbing """ import numpy as np def absorbing(P): """ determines if a markov chain is an absorbing chain :param P: np.ndarray, (n,n), transition matrix n: num of states in the markov chain :return: True or False """ if not isinstance(P, np.ndarray) or (len(P.shape) != 2): return False if P.shape[0] != P.shape[1] or P.shape[0] < 1: return False if ((np.where(P < 0, 1, 0).any() or not np.where(np.isclose(P.sum(axis=1), 1), 1, 0).any())): # long if statement use double parens return False if (np.all(np.diag(P) == 1)): # absorbing proven if matrix diagnol all = 1 return True if not (np.any(np.diagonal(P) == 1)): # if the diagnol returned is not all 1s return False return False for i in (range(P.shape[0])):3 # account for the transitioning from state i to state j for j in (range(P.shape[1])): # verify above NUll does not apply if ((i == j) and (i + 1 < len(P))): # prob of transitionin from i to j and j to i if (P[i][j + 1] == 0 and P[i + j][j] == 0): return False return True
#!/usr/bin/env python3 """ function that calculates cost of NN using L2 """ import numpy as np def l2_reg_cost(cost, lambtha, weights, L, m): """ cost: cost of the network without L2 regularization lambtha: regularization parameter weights: dictionary of weights and biases (numpy.ndarrays) of NN L: num layers in NN m: num data points used """ weights_sum = 0 for key, num in weights.items(): # weights id a key value dict if (key[0] == "W"): num = weights[key] weights_sum += np.linalg.norm(num) L2_Cost = (cost + (lambtha / (2 * m)) * weights_sum) return(L2_Cost)
#!/usr/bin/env python3 """ calculates the marginal probability of obtaining the data """ import numpy as np from scipy import math, special def intersection(x, n, P, Pr): """ calculates the intersection of obtaining this data with the various hypothetical probabilities """ factor = math.factorial factNX = (factor(n) / (factor(x) * factor(n - x))) likelihood = factNX * (P**x) * ((1 - P)**(n - x)) return likelihood * Pr def marginal(x, n, P, Pr): """ calculates the marginal probability of obtaining the data """ return np.sum(intersection(x, n, P, Pr)) def posterior(x, n, P, Pr): """ calculates the posterior probability for the various hypothetical probabilities of developing severe side effects given the data """ return intersection(x, n, P, Pr) / marginal(x, n, P, Pr) def posterior(x, n, p1, p2): """ calculates the posterior probability that the probability of developing severe side effects falls within a specific range given the data: :param x: num of patients with sever side effects :param n: tot num patients observed :param p1: lower bound range :param p2: upper bound range :return: posterior probability that p is within the range [p1, p2] given x and n """ if not isinstance(n, int) or n < 1: raise ValueError("n must be a positive integer") if not isinstance(x, int) or x < 0: m = "x must be an integer that is greater than or equal to 0" raise ValueError(m) if x > n: raise ValueError("x cannot be greater than n") if not isinstance(p1, float) or p1 < 0 or p1 > 1: raise ValueError("p1 must be a float in the range [0, 1]") if not isinstance(p2, float) or p2 < 0 or p2 > 1: raise ValueError("p2 must be a float in the range [0, 1]") if p2 <= p1: raise ValueError("p2 must be greater than p1") inter = intersection(x, n, p1, p2) return ((special.expn(inter, p2)) / (special.expn(inter, p1)))
#!/usr/bin/env python3 """function normalizes(standardizes) a matrix""" import numpy as np def normalize(X, m, s): """ X is numpy.ndarray of shape (d, nx) to normalize m is numpy.ndarray of shape (nx,) contains features of X s is numpy.ndarray of shape (nx,) contains Std Dev of X d id the num of data points nx is num of features """ normX = (X - m) / s return (normX)
#!/usr/bin/env python3 """ Function that calculates the definiteness of a matrix """ import numpy as np def definiteness(matrix): """ calculates definiteness of a matrix :param matrix: list of lists :return: the string: Positive definite, Positive semi-definite, Negative semi-definite, Negative definite, or Indefinite """ # check if np.ndarray if not isinstance(matrix, np.ndarray): raise TypeError("matrix must be a numpy.ndarray") # check if symmetrical if not np.all(np.transpose(matrix) == matrix): return None if len(matrix.shape) != 2: return None if (matrix.shape[0] != matrix.shape[1]): return None definite = (np.linalg.eigvals(matrix)) if all(definite == 0): return None if all(definite > 0): return "Positive definite" if all(definite < 0): return "Negative definite" if any(definite > 0) and any(definite == 0): return "Positive semi-definite" if any(definite < 0) and any(definite == 0): return "Negative semi-definite" elif not (any(definite < 0) and any(definite == 0) and any(definite > 0)): return "Indefinite" else: return "None" def transpose_matrix(matrix): """ transpose given matrix :param matrix: list of lists :return: transposed matrix """ return [[row[m] for row in matrix] for m in range(len(matrix[0]))]
#!/usr/bin/env python3 import numpy as np import matplotlib.pyplot as plt np.random.seed(5) student_grades = np.random.normal(68, 15, 50) """data format""" bin_edges = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100] plt.hist(student_grades, align='mid', bins=bin_edges, edgecolor='black') """graph design""" plt.ylabel('Number of Students') plt.xlabel('Grades') plt.title('Project A') plt.xlim(0, 100) plt.xticks(bin_edges) plt.ylim(0, 30) plt.show()
#!/usr/bin/env python3 """Class represents a binomial distribution""" class Binomial: """Class represents a binomial distribution""" def __init__(self, data=None, n=1, p=0.5): """Binomial distribution""" if data is None: if n <= 0: raise ValueError("n must be a positive value") if p <= 0 or p >= 1: raise ValueError("p must be greater than 0 and less than 1") self.n = int(n) self.p = float(p) else: if type(data) is not list: raise TypeError("data must be a list") if len(data) < 2: raise ValueError("data must contain multiple values") mean = sum(data) / len(data) vari = sum([(m - mean) ** 2 for m in data]) / len(data) self.p = -1 * (vari / mean - 1) n = mean / self.p self.n = round(n) self.p *= n / self.n def pmf(self, k): """Calculates value of PMF for given number k""" if type(k) is not int: k = int(k) if k > self.n or k < 0: return 0 return (m_factorial(self.n) / m_factorial(k) / m_factorial(self.n - k) * self.p ** k * (1 - self.p) ** (self.n - k)) def cdf(self, k): """Calculates value CDF for given number k """ c_prob = 0 if type(k) is not int: k = int(k) if k > self.n or k < 0: return 0 for m in range(0, k + 1): c_prob += self.pmf(m) return c_prob def m_factorial(m): """factorial of m""" if m == 1 or m == 0: return 1 else: return m * m_factorial(m-1)
#!/usr/bin/env python3 """Class represents a normal distribution""" class Normal: """Class represents a normal distribution""" def __init__(self, data=None, mean=0., stddev=1.): """Normal Distribution""" if data is None: if stddev <= 0: raise ValueError("stddev must be a positive value") self.mean = float(mean) self.stddev = float(stddev) else: if type(data) is not list: raise TypeError("data must be a list") if len(data) < 2: raise ValueError("data must contain multiple values") self.mean = float(sum(data) / len(data)) self.stddev = float((sum([(x - self.mean) ** 2 for x in data]) / (len(data))) ** .5) def z_score(self, x): """Calculates z-score of x-value""" return (x - self.mean) / self.stddev def x_value(self, z): """Calculates x-value of z-score""" return z * self.stddev + self.mean def pdf(self, x): """Calculates value of pdf at x""" return (pow(2.7182818285, ((x - self.mean) ** 2 / (-2 * self.stddev ** 2))) / (2 * 3.1415926536 * self.stddev ** 2) ** .5) def cdf(self, x): """Calculates value of CDF for x-value""" m = (x - self.mean) / (self.stddev * 2 ** .5) return (1 + (m - m ** 3 / 3 + m ** 5 / 10 - m ** 7 / 42 + m ** 9 / 216) * 2 / 3.1415926536 ** .5) / 2
#!/usr/bin/env python3 """ Write script that displays the up coming launch""" import requests if __name__ == '__main__': # need url url = "https://api.spacexdata.com/v4/launches/upcoming" # request url launchData = requests.get(url).json() # set date type for unbound value comparison date = float('inf') # set for loop to iterate through launches for idx, launch in enumerate(launchData): if date > launch["date_unix"]: date = launch["date_unix"] launchIdx = idx # get data based on launchData[launchIdx] upLaunch = launchData[launchIdx] # name name = upLaunch["name"] # date in local time dateLocal = upLaunch["date_local"] # rocket: need url, request.get, json, rocket name rocket = upLaunch["rocket"] rocketUrl = "https://api.spacexdata.com/v4/rockets/{}".format(rocket) rocketData = requests.get(rocketUrl).json() rocketName = rocketData["name"] # launch pad: need url, request.get, json, launch pad name launchPad = upLaunch["launchpad"] launchPadUrl = "https://api.spacexdata.com/v4/launchpads/{}".\ format(launchPad) launchPadData = requests.get(launchPadUrl).json() launchPadName = launchPadData["name"] # launch pad locality launchPadLoc = launchPadData["locality"] # Print name, (date in local time), rocket name, # launch pad name, (lunch pad locality) print("{} ({}) {} - {} ({})".format(name, dateLocal, rocketName, launchPadName, launchPadLoc))
# https://www.hackerrank.com/challenges/python-string-formatting def print_formatted(number): # your code goes here l = len(bin(number)[2:]) for i in range(1,number+1): i_octal = oct(i)[2:] i_hex = hex(i)[2:].swapcase() i_bi = bin(i)[2:] i_str = str(i) print(i_str.rjust(l),i_octal.rjust(l),i_hex.rjust(l),i_bi.rjust(l)) if __name__ == '__main__': n = int(input()) print_formatted(n)
import random s=["самовар", "весна", "лето"] w=random.choice(s) word=list(w) l=random.choice(w) lett=word.index(l) word[lett]='?' print(''.join(word)) a=input('Введите букву:') if a==l: print('Победа!') print('Слово:', w) else: print('Увы!Попробуйте в другой раз.') print('Слово:', w)
#Se crea la clase padre, donde ésta misma tomará posteriormente los métodos para las clases hijas . class Juego: __vidas = 0 #Método constructor, el cual contiene la palabra init, seguida de sus respectivos atributos, con sus reglas para crear el mismo método. def __init__(self, vidas): self.__vidas = vidas #Método llamado Juega, con su respectivo retorno. def Juega(self): return 0 #Método que se utiliza para restarle vidas al usuario, en cada una de las oportunidades de las que tiene y se equivoca. def QuitarVida(self): self.__vidas = self.__vidas - 1 if (self.__vidas>0): return 0 else: return False #Clase JuegaAdivinaNumero con sus respectivos atributos. class JuegaAdivinaNumero(Juego): __numeroAdivinar = 0 __intentos = 0 #Método que se utiliza para actualizar el método del jugador. def ActualizarRecord(self): self.__intentos = self.__intentos+1 #Segundo método constructor, junto a su estructura. def __init__(self, vidas, numeroAdivinar): super().__init__(vidas) self.__numeroAdivinar = numeroAdivinar #Método Juega junto al bucle while donde se realizan una serie de condiciones poara evaluar las vidas, el récord, y los intentos del jugador (usuario). def Juega(self): while True: numero = int(input("Escribe el numero a adivinar")) if (numero==self.__numeroAdivinar): print("Acertaste!") self.ActualizarRecord() print("Intentos: ", self.__intentos) break else: if self.QuitarVida(): if numero > self.__numeroAdivinar: #Mensaje que se manda al usuario para hacerle saber que el número que debe adivinar, es menor que el que ingresó. print("Intentalo de nuevo. El numero a adivinar es menor") # Mensaje que se manda al usuario para hacerle saber que el número que debe adivinar, es mayor que el que ingresó. else: print("Intentalo de nuevo. El numero a adivinar es mayor") else: self.ActualizarRecord() print("Intentos: ", self.__intentos) break #Pruebas unitarias que ayudan a la ejecución del programa. if __name__=='__main__': import doctest doctest.testmod()
import random # controlled by player class Rocket(object): ver_velocity = 0 hor_velocity = 0 max_speed = 3 def __init__(self, x, y): self.weapon = 'red' self.x = x self.y = y def move(self, ver, hor): if ver != 0 or self.ver_velocity !=0: if ver != 0 and abs(self.ver_velocity) < self.max_speed: self.ver_velocity += ver else: self.ver_velocity -= self.ver_velocity/abs(self.ver_velocity) if hor != 0 or self.hor_velocity != 0: if hor != 0 and abs(self.hor_velocity) < self.max_speed: self.hor_velocity += hor else: self.hor_velocity -= self.hor_velocity/abs(self.hor_velocity) self.x += self.hor_velocity self.y += self.ver_velocity class Projectile(object): def __init__(self, x, y, power, ver, hor,type): self.ver_velocity = ver self.hor_velocity = hor self.power = power self.x = x self.y = y def move(self): self.x += self.hor_velocity self.y += self.ver_velocity class Weapon(Rocket): def __init__(self): self.type = "red" self.power = 1 def fire(self): if self.type == "red": if self.power == 1: drawer.projectiles.append(Projectile(self.x,self.y,-4,0,'red')) elif self.power == 2: drawer.projectiles.append(Projectile(self.x+2, self.y, -4, 0,'red')) drawer.projectiles.append(Projectile(self.x-2, self.y, -4, 0,'red')) elif self.power == 3: drawer.projectiles.append(Projectile(self.x+3, self.y, -4, 0,'red')) drawer.projectiles.append(Projectile(self.x, self.y, -4, 0,'red')) drawer.projectiles.append(Projectile(self.x-3, self.y, -4, 0,'red')) elif self.type == "green": pass class Drawer(object): rockets = [] projectiles = [] drawer = Drawer()
import os #used for path making import io #used for encoding option when writing from make_articles_dico import make_articles_dico from scrape_article_content import scrape_article_content papers_dico = {"huffingtonpost" : 'http://huffingtonpost.com'} def scraping(papers_dico): #make_articles_dico=fct : (paper_name, papers_dico) as (str,dict) -> dict #scrape_article_content = fct : (article_url) as str -> str #Makes a file for each article from each newspaper for paper_name in list(papers_dico) : articles_dico=make_articles_dico(paper_name, papers_dico) #Returns a dictionary {article_name : article_url} print(articles_dico) #à enlever if not os.path.exists(paper_name): #Checks if a folder named after the newspaper exists os.makedirs(paper_name) print("%s in the making" %paper_name) #à enlever articles_list = "%s/articles_list.txt" %paper_name output_list = io.open(articles_list, "w", encoding="utf8") for article_name in list(articles_dico) : output_list.write(papername + "\n") file_name = "%s\%s.txt" %(paper_name, article_name) content=scrape_article_content(articles_dico[article_name]) #Returns the body of the article output = io.open(file_name,"w", encoding="utf8") output.write(content) output.close() output_list.close()
#!/usr/bin/env python # coding: utf-8 # # Lab 07: The Internet # # - **Name**: Colton R. Crum # - **Netid**: ccrum # ## Activity 1: SpeedTest # # For the first activity, you are to measure the speed of various networking technologies by using the [SpeedTest] website. You are to use the following three connection types: # # 1. **Wired connection from your laptop or a lab machine** # # 2. **Wireless connection from your laptop** # # 3. **Cellular connection from your phone (make sure you are using 4G/LTE and not WiFi)** # # # To test the speed of each connection, simply go to the website on the appropriate device: www.speedtest.net and hit the `Go` button. This will measure your **Ping**, **Download**, and **Upload** speeds to generate a result such as: # # <img src="https://www.speedtest.net/result/8129841449.png"> # <img src="https://www.speedtest.net/result/8129848300.png"> # # [SpeedTest]: https://www.speedtest.net/ # ### Speed Tests # # Run the [SpeedTest] on each connection type a few times to get a representative sample and then complete the table below: # # | Connection Type | Ping (ms) | Download (Mbps) | Upload (Mbps) | # |-----------------|-----------|-----------------|---------------| # | Wireless | 1 | 91.49 | 80.59 | # | Wired | 1 | 843.90 | 931.06 | # | Cellular | 27 | 40.40 | 5.12 | # # <center><font color="red"></font></center> # # [SpeedTest]: https://www.speedtest.net/ # ### Analysis # # After completing the table above with your speed tests, analyze the results by answering the following questions: # # 1. Which connection type had the best **latency**? Explain. # # <font color="red">The wired desktop connection and the wireless connection both had the best latency, at 1 ms. Latency is a measure of delay, or how quickly the service responds to my request. </font> # # 2. Which connection type had the best **bandwidth**? Explain. # # <font color="red">The wired desktop connection had the best bandwidth, at 843.90 Mbps download and 931.06 Mbps upload. It had almost ten times more bandwidth than a wireless connection, and over twenty times more than my cellular connection. This measures the amount or capacity of data we can transfer over a period of time. The wireless connection and cellular connection are slower than the wired connection because wireless connections are slowed down by interference from other devices emitting radio waves. </font> # # 3. What difference (if any) did you notice between **download** and **upload** speeds? Discuss why this could be. # # <font color="red">On the cellular and wireless connections, the download speed was faster than the upload speed, and sometimes a lot more (8 times greater for cellular). However, with the wired connection, the upload speed was faster. These connections carry upstream and downstream data, and the bandwidth being used on both channels changes with the amount of traffic. At Notre Dame, there would be more students on a wireless connection, making a wired connection not only faster because of the wire, but also since less bandwidth is being used by other users. This would account for some of the differences between upload and download speeds. </font> # # 4. Overall, which connection type was the **best**? Explain. # # <font color="red">The wired connection was the best overall. It had the fastest latency, and largest bandwidth, making it a superior connection to any of the others.</font> # ## Activity 2: Bandwidth and Latency # # For the second activity, you are to write two functions that you can utilize to perform your own **bandwidth** and **latency** measurements. The first is `measure_bandwidth`, which uses [requests] to download data from a web server, while the second is `measure_latency` which uses a low-level [socket] to connect to a remote server. For timing, we will use Python's [time] module: # # current_time = time.time() # # [requests]: http://docs.python-requests.org/en/master/ # [socket]: https://docs.python.org/3/library/socket.html # [time]: https://docs.python.org/3/library/time.html # ### Measure Bandwidth # In[26]: import requests import time def measure_bandwidth(url): ''' Measure bandwidth by doing the following: 1. Record start time. 2. Download data specified by url. 3. Record end time. 4. Compute bandwidth: bandwidth = (Amount of Data / Elapsed Time) / 2**20 ''' start_time = time.time() response = requests.get(url) end_time = time.time() bandwidth = ((len(response.content) / ((end_time) - (start_time)) / (2**20))) return bandwidth # In[70]: URLS = { 'Slack': 'https://downloads.slack-edge.com/releases_x64/SlackSetup.exe', 'Discord' : 'https://dl.discordapp.net/apps/win/0.0.305/DiscordSetup.exe', 'Firefox': 'https://download-installer.cdn.mozilla.net/pub/firefox/releases/66.0/linux-x86_64/en-US/firefox-66.0.tar.bz2' } for url in URLS: print('Downloaded {} with bandwidth of {:.2f} MBps'.format(url, measure_bandwidth(URLS[url]))) # ### Measure Latency # In[71]: import socket import time def measure_latency(domain): ''' Measure latency by doing the following: 1. Create streaming internet socket. 2. Record start time. 3. Connect to specified domain at port 80. 4. Record end time. 5. Compute latency: latency = Elapsed Time * 1000 ''' s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) start_time = time.time() s.connect((domain, 80)) end_time = time.time() latency = (((end_time) - (start_time)) *1000) return latency # In[72]: DOMAINS = [ 'facebook.com', 'cnn.com', 'google.com', 'nd.edu', 'amazon.co.uk', 'baidu.com', 'europa.eu', 'yahoo.co.jp', ] # In[69]: for domain in DOMAINS: print('Connection to {} has latency of {:.2f} ms'.format(domain, measure_latency(domain))) # ### Analysis # # After writing the `measure_bandwidth` and `measure_latency` functions above and testing them, answer the following questions: # # 1. Which applications had the best bandwidth? How do these bandwidth measurements compare to the ones you had in Activity 1? What explains the differences? # # <font color="red">Discord had the best bandwidth at 6.18 MBps, followed by Firefox and Slack, 3.36 MBps and 1.33 MBps respectively. These bandwidths are far worse than the ones in activity 1. This is because we never tested bandwidth for downloading something in activity 1, whereas this activity was a real world test of bandwidth, even against downloads from different urls.</font> # # 2. Which domains had the best latency? Which ones had the worst latency? What explains these differences? # # <font color="red">CNN.com had the best latency at 8.01 ms, and yahoolco.jp had the worst latency at 296.45 ms. CNN is located in the United States, making the distance much shorter than Yahoo Japan, where its servers are located in Asia. This distance affects the responsiveness of the service. </font> # ## Activity 3: EggHead's Adventure # # For the last activity, you are play the following educational game created by the [Office of Digital Learning] as an experiment: # # - [Introduction to Networks](https://s3.us-east-2.amazonaws.com/cs4all/cs4all-game/story_html5.html) # # - [Network Toolkit](https://s3.us-east-2.amazonaws.com/cs4all/Network-toolkit/story_html5.html) # # Once you have completed the game, please fill out the following [survey](https://goo.gl/forms/AfUJ5b4cQfVqwCof1). # # [Office of Digital Learning]: https://online.nd.edu/
def main(): message = 'GUVF VF ZL FRPERG ZRFFNTR' letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' for key in range(len(letters)): translated = '' for symbol in message: if symbol in letters: num = letters.find(symbol) num = num - key if num < 0: num = num + len(letters) translated = translated + letters[num] #prueba con cada índice, todas las posibilidades else: translated = translated + symbol print('Key #%s: %s' % (key,translated)) #import <filename> #<filename>.main()
# -*- coding: utf-8 -*- """ Created on Fri Aug 29 10:11:50 2014 @author: 11111042 """ def buscar(n): list1 = ["Life","The Universe","Everything","Jack","Jill","Life","Jill"] count = 0 for i in range(1,len(list1)): if count<len(list1) and list1[count]!=n: count = count + 1 if count<len(list1): print list[count] else: print "Not found"
# -*- coding: utf-8 -*- """ Created on Wed Oct 22 10:01:03 2014 @author: 11111042 """ def quickSort(lista): menorLista = [] pivotLista = [] mayorLista = [] if len(lista) <= 1: return lista else: pivot = lista[0] for i in lista: if i < pivot: menorLista.append(i) elif i > pivot: mayorLista.append(i) else: pivotLista.append(i) menorLista = quickSort(menorLista) mayorLista = quickSort(mayorLista) return menorLista + pivotLista + mayorLista #no cambia la lista, sino retorna una nueva lista def mergeSort(lista, inicio, fin): if inicio < fin: mitad = (inicio+fin)/2 mergeSort(lista, inicio, mitad) mergeSort(lista, mitad+1, fin) merge(lista, inicio, mitad, fin) #no retorna una nueva lista, sino cambia la lista def merge(listaT, inicio, mitad, fin): #listaT = lista temporal #listaTO = lista temporal ordenada listaTO = [] indice1 = inicio indice2 = mitad+1 while indice1 <= mitad and indice2 <= fin: if listaT[indice1] < listaT[indice2]: listaTO.append(listaT[indice1]) indice1 = indice1+1 else: listaTO.append(listaT[indice2]) indice2 = indice2+1 while indice1 <= mitad: listaTO.append(listaT[indice1]) indice1 = indice1+1 while indice2 <= fin: listaTO.append(listaT[indice2]) indice2 = indice2+1 for i, value in enumerate(listaTO): listaT[inicio+i] = value def main(): lista1 = [4,1,2,5,3,9,7,6,8,0] lista2 = [9,2,6,1,7,3,8,0,5,4] print "Quick Sort :", quickSort(lista1) mergeSort(lista2, 0, len(lista2)-1) print "Merge Sort :", lista2 if __name__=="__main__": main()
# -*- coding: cp1252 -*- def main(): nombre = input("Ingrese su nombre: ") password = input("Ingrese su clave: ") if nombre == "Andrea" and password == "12345": print ("Bienvenida", nombre) elif nombre == "Fred" and password == "Rock": #else_ if es lo mismo que elif print ("Bienvenido", nombre) else: print ("No está en lista") if __name__=="__main__": main()
# -*- coding: utf-8 -*- """ Created on Wed Oct 15 10:20:52 2014 @author: 11111042 """ def buscarSecuencial(lista, n): listaAuxiliar = [] for i in range(0,len(lista)): if lista[i] == n: listaAuxiliar.append(i) return listaAuxiliar def buscarRecursivo(lista, n, indice): if indice == 1: return -1 else: if lista[indice] == n: return indice else: return buscarRecursivo(lista, n, indice-1) def main(): lista = [10,15,8,4,8] print buscarSecuencial(lista, 8) #indice = len(lista)-1 #print buscarRecursivo(lista, 1, indice) if __name__=="__main__": main()
from weatbag import words class Tile: def __init__(self): self.challenge_completed = False self.minutes = "40" def describe(self): print("You see two children who you notice now are a boy and a girl.\n" "They are playing and running around a raft.\n") if not self.challenge_completed: self.challenge() else: print("\nThe children will take you to the western island!") def challenge(self): print("You ask them to give it to you." "The little boy laughs and replies: \n" "So you think you are brave enough to go to that island? " "Very well, but we cannot give you our raft. " "What we can do is transport you there ourselves. But first you " "must answer this:\n\n" "Ignore weight and weather variables and listen carefully.\n" "It takes me exactly one hour to transport a person to " "the island.\n" "It takes my sister double that time.\n" "If we combine our power, " "how many minutes will it take to transport you to the island?\n" "For your answer, type a number followed by 'minutes'.\n") def action(self, player, do): if not self.challenge_completed: try: if do[1] == "minutes": if do[0] == self.minutes: print("Your answer has pleased me and my sister! " "\nLet's go!") print("The brother and sister will take you to the " "island.") self.challenge_completed = True else: print("We're afraid this is not the correct answer. " "Try another one.") elif (do[0] in words.take) and (do[1] == "sister" or do[1] == "girl"): print("You bastard! Let my sister down!\n" "What kind of an asshole are you? " "Taking advantage of little children?\n" "We will transport you for free.\n") print("The brother and sister will take you " "to the island!") self.challenge_completed = True elif (do[0] in words.take) and (do[1] == "brother" or do[1] == "boy"): print("You bastard, put me down!\n" "We will trasnport you for free!\n") print("The brother and sister will take you " "to the island!") self.challenge_completed = True elif (do[0] in words.take) and not self.challenge_completed: print("I told you we won't give you our raft, " "you have to find the correct amount of time!\n") except: print("Please try typing a number, like '42 minutes'\n.") else: print("Sorry, I don't understand.") def leave(self, player, direction): if direction == "w" and not self.challenge_completed: print ("You can't go there by swimming, that part is full of " "electric eels.") return False else: return True
import projection_virtual_side def sort_asterix(pattern, convert=str): """ Function to create a sorting function for a given pattern using a callable to convert what ever is found with asterix. Parameters ---------- pattern : str Pattern to sort for. If there is no asterix in the pattern, the `convert` will be called on the whole pattern. If there is *one* asterix in the pattern, `convert` will be called on what ever is in the asterix. If there are multiple asterix in the pattern, `convert` will be call consecutivly (NOT IMPLEMENTED YET). convert : Callable, optional Some callable which should be applied. Default is `str`. Returns ------- func : callable Function that converts a given argument. TODO ---- * Implement multiple asterix * go to index based slicing """ n_asterix = pattern.count('*') if n_asterix == 0: return lambda x: convert(x) elif n_asterix == 1: i = pattern.find('*') return lambda x: convert(x.replace(pattern[:i], '').replace(pattern[ i +1:], '')) else: raise UserWarning('Not implemented yet') # import re # for i in re.finditer('\*', pattern):
# -*- coding: utf-8 -*- """ Created on Thu Sep 6 17:00:45 2018 @author: wmy """ import numpy as np import matplotlib.pyplot as plt import scipy.io import math import sklearn import sklearn.datasets from opt_utils import load_params_and_grads, initialize_parameters, \ forward_propagation, backward_propagation from opt_utils import compute_cost, predict, predict_dec, \ plot_decision_boundary, load_dataset from testCases import * class DeepNeuralNetwork(): def __init__(self, name, layer_list): self.name = name self.Parameters_Init(layer_list) # it will be used when plot the costs picture self.iteration_unit = 1000 print("You created a deep neural network named '" + self.name + "'") print('The layer list is ' + str(self.layer_list)) pass def Parameters_Init(self, layer_list): self.layer_list = layer_list[:] np.random.seed(3) self.parameters = {} # number of layers in the network self.L = len(layer_list) - 1 for l in range(1, self.L + 1): self.parameters['W' + str(l)] = np.random.randn(layer_list[l], \ layer_list[l-1]) * np.sqrt(2 / layer_list[l-1]) self.parameters['b' + str(l)] = np.zeros((layer_list[l], 1)) assert(self.parameters['W' + str(l)].shape == (layer_list[l], \ layer_list[l-1])) assert(self.parameters['b' + str(l)].shape == (layer_list[l], 1)) return self.parameters def Sigmoid(self, x): s = 1 / (1 + np.exp(-x)) return s def ReLU(self, x): s = np.maximum(0, x) return s def Forward_Propagation(self, X): # copy the dataset X (or A0) self.dataset = {} self.dataset['X'] = X[:] # the number of datasets self.m = X.shape[1] # the caches for hidden and output layers self.caches = [] assert(self.L == len(self.parameters) // 2) A_now = X for l in range(1, self.L): A_prev = A_now W = self.parameters['W' + str(l)] b = self.parameters['b' + str(l)] Z = np.dot(W, A_prev) + b A_now = self.ReLU(Z) # cache : (Zl, Al, Wl, bl) cache = (Z, A_now, W, b) self.caches.append(cache) WL = self.parameters['W' + str(self.L)] bL = self.parameters['b' + str(self.L)] ZL = np.dot(WL, A_now) + bL # the output layer use sigmoid activation function self.AL = self.Sigmoid(ZL) cache = (ZL, self.AL, WL, bL) self.caches.append(cache) # check the shape assert(self.AL.shape == (1, X.shape[1])) return self.AL, self.caches def Compute_Cost(self, Y): assert(self.m == Y.shape[1]) # - (y * log(a) + (1-y) * log(1-a)) logprobs = np.multiply(-np.log(self.AL),Y) + \ np.multiply(-np.log(1 - self.AL), 1 - Y) # the average of the loss function cost = 1.0/self.m * np.nansum(logprobs) cost = np.squeeze(cost) assert(cost.shape == ()) self.cost = cost return self.cost def Backward_Propagation(self, Y): # copy the dataset Y self.dataset['Y'] = Y[:] self.grads = {} assert(self.L == len(self.caches)) assert(self.m == self.AL.shape[1]) m = self.m # the number of layers L = self.L Y = Y.reshape(self.AL.shape) (ZL, AL, WL, bL) = self.caches[-1] (ZL_prev, AL_prev, WL_prev, bL_prev) = self.caches[-2] # compute the grads of layer L self.grads['dZ' + str(L)] = AL - Y self.grads['dW' + str(L)] = 1.0/m * \ np.dot(self.grads['dZ' + str(L)], AL_prev.T) self.grads['db' + str(L)] = 1.0/m * \ np.sum(self.grads['dZ' + str(L)], axis=1, keepdims = True) for l in reversed(range(L - 1)): # the layer l + 1 current_cache = self.caches[l] (Z_current, A_current, W_current, b_current) = current_cache if l != 0: before_cache = self.caches[l - 1] (Z_before, A_before, W_before, b_before) = before_cache else: # A0 A_before = self.dataset['X'] behind_cache = self.caches[l + 1] (Z_behind, A_behind, W_behind, b_behind) = behind_cache # compute the grads of layer l + 1 dA = np.dot(W_behind.T, self.grads['dZ' + str(l + 2)]) dZ = np.multiply(dA, np.int64(A_current > 0)) dW = 1.0/m * np.dot(dZ, A_before.T) db = 1.0/m * np.sum(dZ, axis=1, keepdims = True) self.grads['dA' + str(l + 1)] = dA self.grads['dZ' + str(l + 1)] = dZ self.grads['dW' + str(l + 1)] = dW self.grads['db' + str(l + 1)] = db return self.grads def Update_Parameters(self, learning_rate): assert(self.L == len(self.parameters) // 2) L = self.L for l in range(L): # W = W - a * dW self.parameters["W" + str(l + 1)] = self.parameters["W" + str(l + 1)] - \ learning_rate * self.grads["dW" + str(l + 1)] # b = b - a * db self.parameters["b" + str(l + 1)] = self.parameters["b" + str(l + 1)] - \ learning_rate * self.grads["db" + str(l + 1)] return self.parameters def Train(self, X, Y, iterations = 3000, learning_rate = 0.0075, print_cost = False): self.learning_rate = learning_rate self.costs = [] self.Forward_Propagation(X) cost = self.Compute_Cost(Y) print ("Cost after iteration %i: %f" %(0, cost)) self.Query(X, Y) self.costs.append(cost) for i in range(1, iterations+1): self.Forward_Propagation(X) cost = self.Compute_Cost(Y) self.Backward_Propagation(Y) self.Update_Parameters(learning_rate) if print_cost and i % (10*self.iteration_unit) == 0: print ("Cost after iteration %i: %f" %(i, cost)) self.Query(X, Y) if i % self.iteration_unit == 0: self.costs.append(cost) print('finished!') self.PlotCosts() return self.costs def Query(self, X, Y): m = X.shape[1] p = np.zeros((1,m), dtype = np.int) probs, caches = self.Forward_Propagation(X) for i in range(0, probs.shape[1]): if probs[0,i] > 0.5: p[0,i] = 1 else: p[0,i] = 0 #print("Accuracy: " + str(100*np.sum((p == Y)/m)) + '%') print("Accuracy: " + str(100 * np.mean((p[0,:] == Y[0,:]))) + '%') return p def Predict(self, X): m = X.shape[1] p = np.zeros((1,m), dtype = np.int) probs, caches = self.Forward_Propagation(X) for i in range(0, probs.shape[1]): if probs[0,i] > 0.5: p[0,i] = 1 else: p[0,i] = 0 return p def PlotCosts(self): plt.plot(np.squeeze(self.costs)) plt.ylabel('cost') plt.xlabel('iterations (per ' + str(self.iteration_unit) + ')') plt.title("Learning rate =" + str(self.learning_rate)) plt.show() def Dropout_Init(self, keep_prob_list): self.keep_prob_list = keep_prob_list pass def Forward_Propagation_Dropout(self, X): # choose the random seed np.random.seed(1) # copy the dataset X (or A0) self.dataset = {} self.dataset['X'] = X[:] self.m = X.shape[1] # the caches for hidden and output layers self.caches = [] self.D = {} assert(self.L == len(self.parameters) // 2) A_now = X for l in range(1, self.L): A_prev = A_now W = self.parameters['W' + str(l)] b = self.parameters['b' + str(l)] Z = np.dot(W, A_prev) + b A_now = self.ReLU(Z) # dropout self.D['D' + str(l)] = np.random.rand(A_now.shape[0], \ A_now.shape[1]) self.D['D' + str(l)] = (self.D['D' + str(l)] < \ self.keep_prob_list[l - 1]) A_now = A_now * self.D['D' + str(l)] A_now = A_now / self.keep_prob_list[l - 1] # cache : (Zl, Al, Wl, bl) cache = (Z, A_now, W, b) self.caches.append(cache) WL = self.parameters['W' + str(self.L)] bL = self.parameters['b' + str(self.L)] ZL = np.dot(WL, A_now) + bL # the output layer use sigmoid activation function self.AL = self.Sigmoid(ZL) cache = (ZL, self.AL, WL, bL) self.caches.append(cache) # check the shape assert(self.AL.shape == (1, X.shape[1])) return self.AL, self.caches def Backward_Propagation_Dropout(self, Y): # copy the dataset Y self.dataset['Y'] = Y[:] self.grads = {} assert(self.L == len(self.caches)) assert(self.m == self.AL.shape[1]) m = self.m # the number of layers L = self.L Y = Y.reshape(self.AL.shape) (ZL, AL, WL, bL) = self.caches[-1] (ZL_prev, AL_prev, WL_prev, bL_prev) = self.caches[-2] # compute the grads of layer L self.grads['dZ' + str(L)] = AL - Y self.grads['dW' + str(L)] = 1.0/m * \ np.dot(self.grads['dZ' + str(L)], AL_prev.T) self.grads['db' + str(L)] = 1.0/m * \ np.sum(self.grads['dZ' + str(L)], axis=1, keepdims = True) for l in reversed(range(L - 1)): # the layer l + 1 current_cache = self.caches[l] (Z_current, A_current, W_current, b_current) = current_cache if l != 0: before_cache = self.caches[l - 1] (Z_before, A_before, W_before, b_before) = before_cache else: # A0 A_before = self.dataset['X'] behind_cache = self.caches[l + 1] (Z_behind, A_behind, W_behind, b_behind) = behind_cache # compute the grads of layer l + 1 dA = np.dot(W_behind.T, self.grads['dZ' + str(l + 2)]) # dropout dA = dA * self.D['D' + str(l + 1)] dA = dA / self.keep_prob_list[l] # dropout finished dZ = np.multiply(dA, np.int64(A_current > 0)) dW = 1.0/m * np.dot(dZ, A_before.T) db = 1.0/m * np.sum(dZ, axis=1, keepdims = True) self.grads['dA' + str(l + 1)] = dA self.grads['dZ' + str(l + 1)] = dZ self.grads['dW' + str(l + 1)] = dW self.grads['db' + str(l + 1)] = db return self.grads def Train_Dropout(self, X, Y, keep_prob_list, iterations = 3000, learning_rate = 0.0075, print_cost = False): self.Dropout_Init(keep_prob_list) self.learning_rate = learning_rate self.costs = [] self.Forward_Propagation(X) cost = self.Compute_Cost(Y) print ("Cost after iteration %i: %f" %(0, cost)) self.Query(X, Y) self.costs.append(cost) for i in range(1, iterations+1): self.Forward_Propagation_Dropout(X) cost = self.Compute_Cost(Y) self.Backward_Propagation_Dropout(Y) self.Update_Parameters(learning_rate) if print_cost and i % (10*self.iteration_unit) == 0: print ("Cost after iteration %i: %f" %(i, cost)) self.Query(X, Y) if i % self.iteration_unit == 0: self.costs.append(cost) print('finished!') self.PlotCosts() return self.costs def L2_Regularization_Init(self, lambda_list): self.lambda_list = lambda_list[:] pass def Compute_Cost_L2_Regularization(self, Y): m = Y.shape[1] cross_entropy_cost = self.Compute_Cost(Y) L2_regularization_cost = 0.0 for l in range(1, self.L + 1): Wl = self.parameters['W' + str(l)] L2_regularization_cost += 1.0/m * \ self.lambda_list[l - 1]/2 * np.sum(np.square(Wl)) cost = cross_entropy_cost + L2_regularization_cost cost = np.squeeze(cost) assert(cost.shape == ()) self.cost = cost return self.cost def Backward_Propagation_L2_Regularization(self, Y): # copy the dataset Y self.dataset['Y'] = Y[:] self.grads = {} assert(self.L == len(self.caches)) assert(self.m == self.AL.shape[1]) m = self.m # the number of layers L = self.L Y = Y.reshape(self.AL.shape) (ZL, AL, WL, bL) = self.caches[-1] (ZL_prev, AL_prev, WL_prev, bL_prev) = self.caches[-2] # compute the grads of layer L self.grads['dZ' + str(L)] = AL - Y # L2 regularization self.grads['dW' + str(L)] = 1.0/m * \ np.dot(self.grads['dZ' + str(L)], AL_prev.T) self.grads['dW' + str(L)] += self.lambda_list[-1] / m * WL # L2 regularization finished self.grads['db' + str(L)] = 1.0/m * \ np.sum(self.grads['dZ' + str(L)], axis=1, keepdims = True) for l in reversed(range(L - 1)): # the layer l + 1 current_cache = self.caches[l] (Z_current, A_current, W_current, b_current) = current_cache if l != 0: before_cache = self.caches[l - 1] (Z_before, A_before, W_before, b_before) = before_cache else: # A0 A_before = self.dataset['X'] behind_cache = self.caches[l + 1] (Z_behind, A_behind, W_behind, b_behind) = behind_cache # compute the grads of layer l + 1 dA = np.dot(W_behind.T, self.grads['dZ' + str(l + 2)]) dZ = np.multiply(dA, np.int64(A_current > 0)) # L2 regularization dW = 1.0/m * np.dot(dZ, A_before.T) dW += self.lambda_list[l] / m * W_current # L2 regularization finished db = 1.0/m * np.sum(dZ, axis=1, keepdims = True) self.grads['dA' + str(l + 1)] = dA self.grads['dZ' + str(l + 1)] = dZ self.grads['dW' + str(l + 1)] = dW self.grads['db' + str(l + 1)] = db return self.grads def Train_L2_Regularization(self, X, Y, lambda_list, iterations = 3000, learning_rate = 0.0075, print_cost = False): self.L2_Regularization_Init(lambda_list) self.learning_rate = learning_rate self.costs = [] self.Forward_Propagation(X) cost = self.Compute_Cost_L2_Regularization(Y) print ("Cost after iteration %i: %f" %(0, cost)) self.Query(X, Y) self.costs.append(cost) for i in range(1, iterations + 1): self.Forward_Propagation(X) cost = self.Compute_Cost_L2_Regularization(Y) self.Backward_Propagation_L2_Regularization(Y) self.Update_Parameters(learning_rate) if print_cost and i % (10*self.iteration_unit) == 0: print ("Cost after iteration %i: %f" %(i, cost)) self.Query(X, Y) if i % self.iteration_unit == 0: self.costs.append(cost) print('finished!') self.PlotCosts() return self.costs def J(self, X, Y, parameters): # the number of datasets m = X.shape[1] assert(self.L == len(parameters) // 2) A_now = X for l in range(1, self.L): A_prev = A_now W = parameters['W' + str(l)] b = parameters['b' + str(l)] Z = np.dot(W, A_prev) + b A_now = self.ReLU(Z) pass WL = parameters['W' + str(self.L)] bL = parameters['b' + str(self.L)] ZL = np.dot(WL, A_now) + bL # the output layer use sigmoid activation function AL = self.Sigmoid(ZL) # check the shape assert(AL.shape == (1, X.shape[1])) # Cost logprobs = np.multiply(-np.log(AL),Y) + \ np.multiply(-np.log(1 - AL), 1 - Y) cost = 1.0/m * np.sum(logprobs) return cost def Dictionary_To_Vector(self, parameters): keys = [] count = 0 for l in range(1, self.L + 1): for key in ['W' + str(l), 'b' + str(l)]: new_vector = np.reshape(parameters[key], (-1,1)) keys = keys + [key]*new_vector.shape[0] if count == 0: theta = new_vector else: theta = np.concatenate((theta, new_vector), axis=0) count = count + 1 return theta, keys def Vector_To_Dictionary(self, theta): parameters = {} star = 0 for l in range(1, self.L + 1): parameters['W' + str(l)] = \ theta[star:star + self.parameters['W' + str(l)].shape[0] * \ self.parameters['W' + str(l)].shape[1]].reshape(self.parameters['W' + str(l)].shape) star = star + self.parameters['W' + str(l)].shape[0] * \ self.parameters['W' + str(l)].shape[1] parameters['b' + str(l)] = \ theta[star:star + self.parameters['b' + str(l)].shape[0] * \ self.parameters['b' + str(l)].shape[1]].reshape(self.parameters['b' + str(l)].shape) star = star + self.parameters['b' + str(l)].shape[0] * \ self.parameters['b' + str(l)].shape[1] return parameters def Gradients_To_Vector(self, gradients): count = 0 for l in range(1, self.L + 1): for key in ['dW' + str(l), 'db' + str(l)]: new_vector = np.reshape(gradients[key], (-1,1)) if count == 0: theta = new_vector else: theta = np.concatenate((theta, new_vector), axis=0) count = count + 1 pass pass return theta def Gradient_Check(self, parameters, gradients, X, Y, epsilon = 1e-7): # Set-up variables parameters_values, _ = self.Dictionary_To_Vector(parameters) grad = self.Gradients_To_Vector(gradients) num_parameters = parameters_values.shape[0] J_plus = np.zeros((num_parameters, 1)) J_minus = np.zeros((num_parameters, 1)) gradapprox = np.zeros((num_parameters, 1)) # Compute gradapprox for i in range(num_parameters): # J plus thetaplus = np.copy(parameters_values) thetaplus[i][0] += epsilon J_plus[i]= self.J(X, Y, self.Vector_To_Dictionary(thetaplus)) # J minus thetaminus = np.copy(parameters_values) thetaminus[i][0] -= epsilon J_minus[i] = self.J(X, Y, self.Vector_To_Dictionary(thetaminus)) # Compute gradapprox[i] gradapprox[i] = (J_plus[i] - J_minus[i]) / (2 * epsilon) pass numerator = np.linalg.norm(grad - gradapprox) denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox) difference = numerator / denominator if difference > 1e-7: print ("\033[93m" + "There is a mistake in the backward propagation! difference = " + str(difference) + "\033[0m") else: print ("\033[92m" + "Your backward propagation works perfectly fine! difference = " + str(difference) + "\033[0m") return difference def Check_The_Gradient(self, X, Y, epsilon = 1e-7): print('Gradient checking...please wait.') self.Forward_Propagation(X) self.Backward_Propagation(Y) parameters = self.parameters gradients = self.grads difference = self.Gradient_Check(parameters, gradients, X, Y, epsilon = epsilon) return difference def Random_Mini_Batches(self, X, Y, mini_batch_size = 64, seed = 0): np.random.seed(seed) m = X.shape[1] mini_batches = [] # Step 1: Shuffle (X, Y) permutation = list(np.random.permutation(m)) shuffled_X = X[:, permutation] shuffled_Y = Y[:, permutation].reshape((1,m)) # Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case. # number of mini batches of size mini_batch_size in your partitionning num_complete_minibatches = math.floor(m/mini_batch_size) for k in range(0, num_complete_minibatches): mini_batch_X = shuffled_X[:, k * mini_batch_size : (k+1) * mini_batch_size] mini_batch_Y = shuffled_Y[:, k * mini_batch_size : (k+1) * mini_batch_size] mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) # Handling the end case (last mini-batch < mini_batch_size) if m % mini_batch_size != 0: mini_batch_X = shuffled_X[:, num_complete_minibatches * mini_batch_size: ] mini_batch_Y = shuffled_Y[:, num_complete_minibatches * mini_batch_size: ] mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) return mini_batches def Initialize_Velocity(self): self.v = {} for l in range(1, self.L + 1): self.v["dW" + str(l)] = np.zeros((self.parameters['W' + str(l)].shape[0], \ self.parameters['W' + str(l)].shape[1])) self.v["db" + str(l)] = np.zeros((self.parameters['b' + str(l)].shape[0], \ self.parameters['b' + str(l)].shape[1])) return self.v def Update_Parameters_Momentum(self, beta, learning_rate): for l in range(1, self.L + 1): # compute velocities self.v["dW" + str(l)] = beta * self.v['dW' + str(l)] + \ (1 - beta) * self.grads['dW' + str(l)] self.v["db" + str(l)] = beta * self.v['db' + str(l)] + \ (1 - beta) * self.grads['db' + str(l)] # update parameters self.parameters["W" + str(l)] = self.parameters["W" + str(l)] - \ learning_rate * self.v["dW" + str(l)] self.parameters["b" + str(l)] = self.parameters["b" + str(l)] - \ learning_rate * self.v["db" + str(l)] return self.parameters, self.v def Initialize_Adam(self): self.v = {} self.s = {} # Initialize v, s. Input: "parameters". Outputs: "v, s". for l in range(1, self.L + 1): self.v["dW" + str(l)] = np.zeros((self.parameters["W" + str(l)].shape[0], \ self.parameters["W" + str(l)].shape[1])) self.v["db" + str(l)] = np.zeros((self.parameters["b" + str(l)].shape[0], \ self.parameters["b" + str(l)].shape[1])) self.s["dW" + str(l)] = np.zeros((self.parameters["W" + str(l)].shape[0], \ self.parameters["W" + str(l)].shape[1])) self.s["db" + str(l)] = np.zeros((self.parameters["b" + str(l)].shape[0], \ self.parameters["b" + str(l)].shape[1])) return self.v, self.s def Update_Parameters_Adam(self, t, learning_rate = 0.01, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8): self.v_corrected = {} self.s_corrected = {} # Perform Adam update on all parameters for l in range(1, self.L + 1): # Moving average of the gradients. Inputs: "v, grads, beta1". Output: "v". self.v["dW" + str(l)] = beta1 * self.v["dW" + str(l)] + (1 - beta1) * self.grads['dW' + str(l)] self.v["db" + str(l)] = beta1 * self.v["db" + str(l)] + (1 - beta1) * self.grads['db' + str(l)] # Compute bias-corrected first moment estimate. Inputs: "v, beta1, t". Output: "v_corrected". self.v_corrected["dW" + str(l)] = self.v["dW" + str(l)] / (1 - beta1 ** t) self.v_corrected["db" + str(l)] = self.v["db" + str(l)] / (1 - beta1 ** t) # Moving average of the squared gradients. Inputs: "s, grads, beta2". Output: "s". self.s["dW" + str(l)] = beta2 * self.s["dW" + str(l)] + (1 - beta2) * (self.grads['dW' + str(l)] ** 2) self.s["db" + str(l)] = beta2 * self.s["db" + str(l)] + (1 - beta2) * (self.grads['db' + str(l)] ** 2) # Compute bias-corrected second raw moment estimate. Inputs: "s, beta2, t". Output: "s_corrected". self.s_corrected["dW" + str(l)] = self.s["dW" + str(l)] / (1 - beta2 ** t) self.s_corrected["db" + str(l)] = self.s["db" + str(l)] / (1 - beta2 ** t) # Update parameters. Inputs: "parameters, learning_rate, v_corrected, s_corrected, epsilon". Output: "parameters". self.parameters["W" + str(l)] = self.parameters["W" + str(l)] - learning_rate * self.v_corrected["dW" + str(l)] / (np.sqrt(self.s_corrected["dW" + str(l)]) + epsilon) self.parameters["b" + str(l)] = self.parameters["b" + str(l)] - learning_rate * self.v_corrected["db" + str(l)] / (np.sqrt(self.s_corrected["db" + str(l)]) + epsilon) return self.parameters, self.v, self.s def Train_Gradient_Descent(self, X, Y, learning_rate = 0.0007, mini_batch_size = 64, epsilon = 1e-8, num_epochs = 10000, print_cost = True): self.costs = [] self.learning_rate = learning_rate self.Forward_Propagation(X) cost = self.Compute_Cost(Y) print ("Cost after iteration %i: %f" %(0, cost)) self.Query(X, Y) self.costs.append(cost) seed = 10 for i in range(1, num_epochs + 1): seed = seed + 1 minibatches = self.Random_Mini_Batches(X, Y, mini_batch_size, seed) for minibatch in minibatches: (minibatch_X, minibatch_Y) = minibatch self.Forward_Propagation(minibatch_X) cost = self.Compute_Cost(minibatch_Y) self.Backward_Propagation(minibatch_Y) self.Update_Parameters(learning_rate) if print_cost and i % (10*self.iteration_unit) == 0: print ("Cost after iteration %i: %f" %(i, cost)) self.Query(X, Y) if i % self.iteration_unit == 0: self.costs.append(cost) print('finished!') self.PlotCosts() return self.costs def Train_Momentum(self, X, Y, learning_rate = 0.0007, mini_batch_size = 64, beta = 0.9, epsilon = 1e-8, num_epochs = 10000, print_cost = True): self.costs = [] self.learning_rate = learning_rate self.Forward_Propagation(X) cost = self.Compute_Cost(Y) print ("Cost after iteration %i: %f" %(0, cost)) self.Query(X, Y) self.costs.append(cost) # Initialize the optimizer self.Initialize_Velocity() seed = 10 for i in range(1, num_epochs + 1): seed = seed + 1 minibatches = self.Random_Mini_Batches(X, Y, mini_batch_size, seed) for minibatch in minibatches: (minibatch_X, minibatch_Y) = minibatch self.Forward_Propagation(minibatch_X) cost = self.Compute_Cost(minibatch_Y) self.Backward_Propagation(minibatch_Y) self.Update_Parameters_Momentum(beta=beta, learning_rate=learning_rate) if print_cost and i % (10*self.iteration_unit) == 0: print ("Cost after iteration %i: %f" %(i, cost)) self.Query(X, Y) if i % self.iteration_unit == 0: self.costs.append(cost) print('finished!') self.PlotCosts() return self.costs def Train_Adam(self, X, Y, learning_rate = 0.0007, mini_batch_size = 64, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8, num_epochs = 10000, print_cost = True): self.costs = [] self.learning_rate = learning_rate self.Forward_Propagation(X) cost = self.Compute_Cost(Y) print ("Cost after iteration %i: %f" %(0, cost)) self.Query(X, Y) self.costs.append(cost) # Initialize the optimizer self.Initialize_Adam() t = 0 seed = 10 # Optimization loop for i in range(1, num_epochs + 1): seed = seed + 1 minibatches = self.Random_Mini_Batches(X, Y, mini_batch_size, seed) for minibatch in minibatches: # Select a minibatch (minibatch_X, minibatch_Y) = minibatch self.Forward_Propagation(minibatch_X) cost = self.Compute_Cost(minibatch_Y) self.Backward_Propagation(minibatch_Y) # Adam counter t = t + 1 self.Update_Parameters_Adam(t, learning_rate, beta1, beta2, epsilon) if print_cost and i % (10*self.iteration_unit) == 0: print ("Cost after iteration %i: %f" %(i, cost)) self.Query(X, Y) if i % self.iteration_unit == 0: self.costs.append(cost) print('finished!') self.PlotCosts() return self.costs pass train_X, train_Y = load_dataset() plt.show() a = DeepNeuralNetwork("Model without optimization", [train_X.shape[0], 10, 3, 1]) for i in range(1500): a.Forward_Propagation(train_X) a.Backward_Propagation(train_Y) a.Update_Parameters(0.35) if i % 50 == 0: plt.title("Model without optimization") axes = plt.gca() axes.set_xlim([-1.5,2.5]) axes.set_ylim([-1,1.5]) plot_decision_boundary(lambda x: a.Predict(x.T), train_X, np.squeeze(train_Y)) plt.show() a.Query(train_X, train_Y)
# by eric # 2018-08-16 # inspired by cheetah software import numpy as np import matplotlib.pyplot as plt from math import pi, sin def circular(y0, yf, x): if (x<0) | (x>1): print('phase out of range') y = y0 + (yf - y0) * (sin((x - 0.5)*pi) + 1)/2 return y class FootSwingTrajectory: def __init__(self): self._p0 = np.zeros(3) self._pf = np.zeros(3) self._p = np.zeros(3) self._height = 0 def setInitialPosition(self, p0): self._p0 = p0 def setFinalPosition(self, pf): self._pf = pf def setHeight(self, h): self._height = h def computeSwingTrajectoryCircular(self, phase): # x轨迹 self._p[0] = circular(self._p0[0], self._pf[0], phase) # y轨迹 self._p[1] = circular(self._p0[1], self._pf[1], phase) # 高度轨迹 if phase < 0.5: zp = circular(self._p0[2], (self._p0[2]+self._height), 2*phase) else: zp = circular((self._p0[2]+self._height), self._pf[2], (2*phase-1)) self._p[2] = zp def main(): """ test circular() """ y0 = 0 yf = 1 t = [] y = [] for x in range(10): t.append(0.1*x) y.append(circular(y0,yf,(0.1*x))) plt.figure(1) plt.plot(t,y) plt.show() """ test FootSwingTrajectory """ fsTra = FootSwingTrajectory() tmp1 = np.zeros(3) tmp2 = np.zeros(3) tmp1[0] = 0 tmp1[1] = 0.5 tmp1[2] = 0 fsTra.setInitialPosition(tmp1) print(fsTra._p0) tmp2[0] = 1 tmp2[1] = 0.5 tmp2[2] = -0.1 fsTra.setFinalPosition(tmp2) fsTra.setHeight(0.2) print(fsTra._p0) print(fsTra._pf) print(fsTra._height) tt = [] xx = [] yy = [] zz = [] for idx in range(10): phase = 0.1*idx fsTra.computeSwingTrajectoryCircular(phase) tt.append(phase) xx.append(fsTra._p[0]) yy.append(fsTra._p[1]) zz.append(fsTra._p[2]) plt.figure(2) plt.plot(tt,xx) plt.figure(3) plt.plot(tt,yy) plt.figure(4) plt.plot(tt,zz) plt.show() if __name__ == '__main__': main()