text
stringlengths 37
1.41M
|
---|
#!/usr/bin/env python3
"""
Name: Andrew Krubsack
Email: [email protected]
Description: Midterm Jurassic Park script
"""
print("Name: Andrew Krubsack")
password_database = {}
password_database = {"Username":"dnedry","Password":"please"}
command_database = {}
command_database = {"reboot":"OK. I will reboot all park systems."}
command_database["shutdown"] = "OK. I will shut down all park systems."
command_database["done"] = "I hate all this hacker stuff."
white_rabbit_object = 0
counter = 0
while white_rabbit_object == 0 and counter < 3:
counter += 1
print("Username:")
input_user = input("->")
print("Password:")
input_password = input("->")
# == UserName and Password Logic ======
if (input_user == password_database["Username"]) and \
(input_password == password_database["Password"]):
white_rabbit_object = 1
print("Hi, Dennis. You're still the best hacker in Jurassic Park.")
print("Enter a command")
print("1. reboot")
print("2. shutdown")
print("3. done")
# == Command Logic ============
command = input("->")
if command in command_database.keys():
print(command_database[command])
else:
print("The Lysine Contingency has been put into effect.")
else:
if counter < 3:
print("You didn't say the magic word. {count}")
else:
repeat = "You didn't say the magic word.\n" * 25
print(repeat)
|
class Person:
def __init__(self, name, base_attack, base_deff, base_hp):
self.name = name
self.base_deff = base_deff
self.base_attack = base_attack
self.base_hp = base_hp
def __str__(self):
return self.name
def set_things(self, things):
for thing in things:
self.equip_thing(thing)
def equip_thing(self, item):
print(f'{self.name} получил {item.thing_name}')
if item.t_attack is not None:
self.base_attack = self.base_attack + item.t_attack
if item.t_deff is not None:
self.base_deff = self.base_deff + item.t_deff
if item.t_hp is not None:
self.base_hp = self.base_hp + item.t_hp
print(f'Боец {self.name} получает бонусы:'
f'|Атака:+{item.t_attack}| |Защита:+{item.t_deff}|'
f' |Хп:+{item.t_hp}|')
class Paladin(Person):
def __init__(self, name, base_attack, base_deff, base_hp):
super().__init__(name, base_attack, base_deff, base_hp)
self.base_hp = base_hp * 2
self.base_deff = base_deff * 2
print(f'Боец {self.name} из ордена паладинов прибыл.')
class Warrior(Person):
def __init__(self, name, base_attack, base_deff, base_hp):
super().__init__(name, base_attack, base_deff, base_hp)
self.base_attack = base_attack * 2
print(f'Боец {self.name} из касты войнов прибыл.')
|
"""
Complexity: O(n log n)
Evey iteration of input values takes O(log n) time as inputs gets half
in size for every function call
Formula:
- create two subarrys of half size of input array
- merge the subarrys
"""
def merge_sort(n):
"""
>>> merge_sort([2, 3, 1, 4, 2, 5, 6])
[1, 2, 2, 3, 4, 5, 6]
"""
k = len(n)//2
if len(n) == 1:
return n
a = merge_sort(n[:k])
b = merge_sort(n[k:])
return merge(a, b)
def merge(a, b):
r = []
while a and b:
if a[0] < b[0]:
r.append(a[0])
del a[0]
else:
r.append(b[0])
del b[0]
if a:
r.extend(a)
if b:
r.extend(b)
return r
if __name__ == "__main__":
import sys
r = merge_sort([int(i) for i in sys.argv[1:]])
print(r)
|
#!/usr/bin/python
# to syntax check run
# python -m py_compile <filename>
# import socket library to help us scan for ports
import socket
# the import below is python3 and above
from termcolor import colored
# creating a socket object and assigning it to sock,
# and we are going to use the AF_INET which says it is going
# to be an IPv4 address host that we are going to connect to
# and the SOCK_STREAM represents we are going to use TCP
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# give a 'false' value back after 3 seconds if no response
# is recieved from the ip/port
socket.setdefaulttimeout(3)
# what is the host to connect to
#host = "109.64.40.173"
# what is the port you want to scan
#port = 111
# get user input instead of hard coding the IP or the port
# raw_input for python2 and input for python3
host = input("Please type the IP address you want to scan: ")
# we have to wrap it in an int because it is going to be pure numbers
# that the sock.connect_ex is going to do
#port = int(raw_input("Please type the port you want to scan: "))
def portscanner(port):
if sock.connect_ex((host,port)):
# adding colours so we can see the difference
print(colored("port %d is closed" % (port), 'red'))
else:
print(colored("port %d is open" % (port), 'green'))
# port_scanning the first 1000 ports for the
# give ip address
for port in range(1, 1000):
portscanner(port);
|
class PalindromeChecker:
@staticmethod
def check_palindrome(word):
result = False
odd_letter_set = set()
for letter in word:
if letter in odd_letter_set:
odd_letter_set.remove(letter)
else:
odd_letter_set.add(letter)
if len(odd_letter_set) <= 1:
result = True
return result
|
import constants
MAIN_MENU = """
BASKETBALL TEAM STATS TOOL
---- MENU----
Here are your choices:
1) Display Team Stats
2) Quit
Enter an option >"""
def clean_data(source_data):
""" Takes in the PLAYERS constant
Map the contents of the constant (sorted by experience) into a new dictionary list, cleaning the data as we go.
Returns the new dictionary list of cleaned and sorted data
"""
return [{
'name':player.get('name'),
'guardians':player.get('guardians').split(' and '),
'experience':player.get('experience') == 'YES',
'height':int(player.get('height').split()[0])
} for player in sorted(source_data, key=lambda k: k['experience'])]
def balance_teams(source_teams, players):
""" Takes list of cleaned and sorted players and the TEAMS constant
Populates a dictionary with an entry for each team with the team name and an empty players list
We keep cycling through the teams and step through the players allocating players to team until all players are assigned a team
Returns the populated teams dictionary
"""
teams = []
for team in constants.TEAMS:
teams.append({'team': team, 'players':[]})
player_index = 0
while player_index < len(players):
for team in teams:
team["players"].append(players[player_index])
player_index += 1
return(teams)
def show_team_menu():
""" Prints list of teams with indexes
Prompts users to choose which teams stats to display
"""
team_menu_choice = True
while team_menu_choice:
print("\n")
menu_index = 1
for team in teams:
print(f"{menu_index}) {team['team']}")
menu_index += 1
try:
team_menu_choice = int(input("\nEnter an option >"))
if team_menu_choice > 0 and team_menu_choice <= len(teams):
show_team_stats(team_menu_choice - 1)
break
else:
raise ValueError()
except ValueError:
print("Invalid choice, try again")
def show_team_stats(team_index):
team = teams[team_index]
#team name
print(f"\nTeam: {team['team']} Stats")
print("--------------------")
#total players
total_players = len(team["players"])
print(f'Total players: {total_players}')
total_experienced_players = 0
total_inexperienced_players = 0
for player in team["players"]:
if player['experience'] == True:
total_experienced_players += 1
else:
total_inexperienced_players += 1
#total experienced players
print(f'Total experienced: {total_experienced_players}')
#total inexperienced players
print(f'Total inexperienced: {total_inexperienced_players}')
#average height
total_player_height = 0
for player in team["players"]:
total_player_height = total_player_height + player['height']
average_player_height = round(total_player_height / total_players, 1)
print(f'Average height: {average_player_height}')
#List of players
player_names = [player['name'] for player in team["players"]]
print("\nPlayers on Team:")
print(" " + ", ".join(player_names))
#list of guardians
list_of_guardians = []
list_of_list_of_guardians = [player['guardians'] for player in team["players"]]
for guardians in list_of_list_of_guardians:
for guardian in guardians:
list_of_guardians.append(guardian)
print("\nGuardians:")
print(" " + ", ".join(list_of_guardians))
input("\nPress ENTER to continue...")
if __name__ == "__main__":
players = clean_data(constants.PLAYERS)
teams = balance_teams(constants.TEAMS, players)
main_menu_choice = True
while main_menu_choice:
main_menu_choice = input(MAIN_MENU)
if main_menu_choice == '1':
show_team_menu()
elif main_menu_choice == '2':
main_menu_choice = False
else:
print("You did not make a valid selection")
|
a=int(input("Informe o primeiro número: "))
b=int(input("Informe o segundo número: "))
numero = a+b
if numero > 1:
for i in range (2, numero):
if (numero % i) == 0:
print ("O número",numero,"não é primo.")
break
if (i == (numero - 1)):
print ("O número",numero,"é primo.")
else:
print ("O número",numero,"não é primo.")
|
from matplotlib import pyplot as plt
import numpy as np
import random
# https://blog.csdn.net/your_answer/article/details/79259063
# 遗传算法
def coordinate_init(size):
# 产生坐标字典
coordinate_dict = {}
coordinate_dict[0] = (-size, 0) # 起点是(-size,0)
up = 1
for i in range(1, size + 1): # 顺序标号随机坐标
x = np.random.uniform(-size, size)
if np.random.randint(0, 2) == up:
y = np.sqrt(size ** 2 - x ** 2)
else:
y = -np.sqrt(size ** 2 - x ** 2)
coordinate_dict[i] = (x, y)
coordinate_dict[size + 1] = (-size, 0) # 终点是(-size,0),构成一个圆
return coordinate_dict
def distance_matrix(coordinate_dict, size): # 生成距离矩阵
d = np.zeros((size + 2, size + 2))
for i in range(size + 1):
for j in range(size + 1):
if (i == j):
continue
if (d[i][j] != 0):
continue
x1 = coordinate_dict[i][0]
y1 = coordinate_dict[i][1]
x2 = coordinate_dict[j][0]
y2 = coordinate_dict[j][1]
distance = np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
if (i == 0):
d[i][j] = d[size + 1][j] = d[j][i] = d[j][size + 1] = distance
else:
d[i][j] = d[j][i] = distance
return d
def path_length(d_matrix, path_list, size): # 计算路径长度
length = 0
for i in range(size + 1):
length += d_matrix[path_list[i]][path_list[i + 1]]
return length
def shuffle(my_list): # 起点和终点不能打乱
temp_list = my_list[1:-1]
np.random.shuffle(temp_list)
shuffle_list = my_list[:1] + temp_list + my_list[-1:]
return shuffle_list
def product_len_probability(my_list, d_matrix, size, p_num):
len_list = []
pro_list = []
path_len_pro = []
for path in my_list:
len_list.append(path_length(d_matrix, path, size))
max_len = max(len_list) + 1e-10
gen_best_length = min(len_list)
gen_best_length_index = len_list.index(gen_best_length)
mask_list = np.ones(p_num) * max_len - np.array(len_list)
sum_len = np.sum(mask_list)
for i in range(p_num):
if (i == 0):
pro_list.append(mask_list[i] / sum_len)
elif (i == p_num - 1):
pro_list.append(1)
else:
pro_list.append(pro_list[i - 1] + mask_list[i] / sum_len)
for i in range(p_num):
path_len_pro.append([my_list[i], len_list[i], pro_list[i]])
return my_list[gen_best_length_index], gen_best_length, path_len_pro
def choose_cross(population, p_num):
jump = np.random.random()
if jump < population[0][2]:
return 0
low = 1
high = p_num
mid = int((low + high) / 2)
# 二分搜索
while (low < high):
if jump > population[mid][2]:
low = mid
mid = int((low + high) / 2)
elif jump < population[mid - 1][2]:
high = mid
mid = int((low + high) / 2)
else:
return mid
def veriation(my_list, size): # 变异
ver_1 = np.random.randint(1, size + 1)
ver_2 = np.random.randint(1, size + 1)
while ver_2 == ver_1: # 直到ver_2与ver_1不同
ver_2 = np.random.randint(1, size + 1)
my_list[ver_1], my_list[ver_2] = my_list[ver_2], my_list[ver_1]
return my_list
size = 50
p_num = 100 # 种群个体数量
gen = 2000 # 进化代数
pm = 0.1 # 变异率
coordinate_dict = coordinate_init(size)
# 距离矩阵
d = distance_matrix(coordinate_dict, size)
# 初始点列表
path_list = list(range(size + 2))
population = [0] * p_num # 种群矩阵
# 建立初始种群,随机打乱初始点列表
for i in range(p_num):
population[i] = shuffle(path_list)
gen_best, gen_best_length, population = product_len_probability(population, d, size, p_num)
# print(population) # 这个列表的每一项中有三项,第一项是路径,第二项是长度,第三项是使用时转盘的概率
son_list = [0] * p_num
best_path = gen_best # 最好路径初始化
best_path_length = gen_best_length # 最好路径长度初始化
every_gen_best = []
every_gen_best.append(gen_best_length)
for i in range(gen): # 迭代gen代
son_num = 0
while son_num < p_num: # 产生p_num数量子代,杂交与变异
# 通过二分查找,随机选取父索引和母索引
father_index = choose_cross(population, p_num)
mother_index = choose_cross(population, p_num)
father = population[father_index][0]
mother = population[mother_index][0]
# print("father {}".format(father))
# print("mother {}".format(mother))
son1 = father.copy()
son2 = mother.copy()
prduct_set = np.random.randint(1, p_num + 1)
print("father index {}".format(len(father)))
print(prduct_set)
# 随机选取父列表,母列表的索引值
father_cross_set = set(father[1:prduct_set])
mother_cross_set = set(mother[1:prduct_set])
# print("father cross set {}".format(father_cross_set))
# print("mother cross set {}".format(mother_cross_set))
cross_complete = 1
for j in range(1, size + 1):
# 如果父的子列表元素存在母列表中,使用母元素替换父的子元素
# 操作目的,将父的子列表中的元素按照母列表中的顺序进行排列
if son1[j] in mother_cross_set:
son1[j] = mother[cross_complete]
cross_complete += 1
if cross_complete > prduct_set:
break
if np.random.random() < pm: # 变异
son1 = veriation(son1, size)
son_list[son_num] = son1
son_num += 1
if son_num == p_num: break
cross_complete = 1
for j in range(1, size + 1):
if son2[j] in father_cross_set:
son2[j] = father[cross_complete]
cross_complete += 1
if cross_complete > prduct_set:
break
if np.random.random() < pm: # 变异
son2 = veriation(son2, size)
son_list[son_num] = son2
son_num += 1
gen_best, gen_best_length, population = product_len_probability(son_list, d, size, p_num)
if (gen_best_length < best_path_length):
best_path = gen_best
best_path_length = gen_best_length
every_gen_best.append(gen_best_length)
x = []
y = []
for point in best_path:
x.append(coordinate_dict[point][0])
y.append(coordinate_dict[point][1])
# print(gen_best) # 最后一代最优路径
# print(gen_best_length) # 最后一代最优路径长度
# print(best_path) # 史上最优路径
# print(best_path_length) # 史上最优路径长度
# plt.figure(1)
# plt.subplot(211)
# plt.plot(every_gen_best)
# plt.subplot(212)
# plt.scatter(x, y)
# plt.plot(x, y)
# plt.grid()
# plt.show()
|
#3과5가 출력된다.
#if True :
#if False:
#print("1")
#print("2")
#else:
#print("3")
#else :
#print("4")
#print("5")
#위 코드를 보면, "사실인 상태에서, 거짓이라면 1과 2를 출력하라 아니라면 3을 출력하라" 라고 되어있다.
#그렇다면 거짓이 아닌 사실인 상태이기 때문에 1과 2는 출력되지 않으며, 거짓이 아니기 때문에 3이 출력된다.
#if false의 조건문이 종료된다. if true의 조건문이 유지된 상태, 즉 사실인 상태가 아니라면 4를 출력하라 라고 되어있다.
# 하지만 사실인 상태이기 때문에 4가 출력되지 않으며, if true의 조건문이 종료된다.
#아무런 조건이 걸리지 않은 채 5를 출력하라 라고 되어있으나, 5가 출력된다.
# 따라서 3과 5가 출력되는 값이 보일 것 이다.
|
nums = [1,2,3,4,5]
avg=sum(nums)/len(nums)
print(avg)
# list의 평균값= list의 모든 원소들의 합/ list의 모든 원소의 갯수
#list의 평균값을 avg로 정의함
#list인 nums안에있는 원소들의 합을 구하기 위해 sum 함수를 사용
# 원소의 갯수로 나눠줘야 하기 때문에 원소갯수를 구하는 len 함수를 사용한 뒤 나눠줌
# avg로 정의한 평균값을 출력한다.
|
import abc
import random
class Tombola(abc.ABC):
@abc.abstractmethod
def load(self, iterable):
"""Add items from an iterable"""
@abc.abstractmethod
def pick(self):
"""Remove item at random"""
def loaded(self):
return bool(self.inspect())
def inspect(self):
items = []
while True:
try:
items.append(self.pick())
except LookupError:
break
self.load(items)
return tuple(sorted(items))
class Fake(Tombola):
def pick(self):
return 13
class Struggle:
def __len__(self): return 23
class BingoCage(Tombola):
def __init__(self, items):
self._randomizer = random.SystemRandom()
self._items = []
self.load(items)
def load(self, items):
self._items.extend(items)
self._randomizer.shuffle(self._items)
def pick(self):
try:
return self._items.pop()
except IndexError:
raise LookupError('pick from empty BingoCage')
def __call__(self):
self.pick()
class LotteryBlower(Tombola):
def __init__(self, iterable):
self._balls = list(iterable)
def load(self, iterable):
self._balls.extend(iterable)
def pick(self):
try:
position = random.randrange(len(self._balls))
except ValueError:
raise LookupError('pick from empty BingoCage')
return self._balls.pop(position)
def loaded(self):
return bool(self._balls)
def inspect(self):
return tuple(sorted(self._balls))
@Tombola.register
class TomboList(list):
def pick(self):
if self:
position = random.randrange(len(self))
return self.pop(position)
else:
raise LookupError('pop from empty TomboList')
load = list.extend
def loaded(self):
return bool(self)
def inspect(self):
return tuple(sorted(self))
from collections import abc
print('isinstance(Struggle(), abc.Sized)\n{}\n----------'.format(isinstance(Struggle(), abc.Sized)))
print('issubclass(Struggle, abc.Sized)\n{}\n----------'.format(issubclass(Struggle, abc.Sized)))
Tombola.register(TomboList)
print('issubclass(TomboList, Tombola)\n{}\n----------'.format(issubclass(TomboList, Tombola)))
t = TomboList(range(100))
print('isinstance(t, Tombola)\n{}\n----------'.format(isinstance(t, Tombola)))
print('TomboList is not inherited from Tombola -- TomboList.__mro__\n{}\n----------'.format(TomboList.__mro__))
TEST_FILE = 'tombola_tests.rst'
TEST_MSG = '{0:16} {1.attempted:2} tests, {1.failed:2} failed - {2}'
import doctest
def main(argv):
verbose = '-v' in argv
real_subclasses = Tombola.__subclasses__()
virtual_subclasses = list(Tombola._abc_registry)
print(real_subclasses + virtual_subclasses)
for cls in real_subclasses + virtual_subclasses:
test(cls, verbose)
def test(cls, verbose=False):
print("*******************"*10 + cls.__name__)
res = doctest.testfile(TEST_FILE, globs={'ConcreteTombola': cls},
verbose=verbose,
optionflags=doctest.REPORT_ONLY_FIRST_FAILURE)
tag = 'FAIL' if res.failed else 'OK'
print(TEST_MSG.format(cls.__name__, res, tag))
if __name__ == '__main__':
import sys
main(sys.argv)
# python3 tombola.py -v
|
from collections import abc
my_dict = {}
print('-'*20)
print("instance of abc {}".format(isinstance(my_dict, abc.Mapping)))
print('-'*20)
tt = (1,2,(30,40))
print("tuple is hashable {}".format(hash(tt)))
tf = (1,2,frozenset([30,40]))
print("frozen set is hashable {}".format(hash(tf)))
print('-'*20)
a = dict(one=1,two=2,three=3)
print("building dict {}".format(a))
b = {'one' : 1, 'two': 2, 'three' : 3}
print("building dict {}".format(b))
c = dict(zip(['one', 'two', 'three'], [1,2,3]))
print("building dict {}".format(c))
d = dict([('two', 2), ('one', 1), ('three', 3)])
print("building dict {}".format(d))
e = dict({'three':3, 'one': 1, 'two': 2})
print("building dict {}".format(e))
print("equal dict {}".format(a==b==c==d==e))
print('-'*20)
DIAL_CODES = [
(86, 'China'),
(91, 'India'),
(1, 'United States'),
(62, 'Indonesia'),
(55, 'Brazil'),
(92, 'Pakistan'),
(880, 'Bangladesh'),
(234, 'Nigeria'),
(7, 'Russia'),
(81, 'Japan'),
]
country_code = {country: code for code, country in DIAL_CODES}
print("country_code {}".format(country_code))
print("another code {}".format({code: country.upper() for country, code in country_code.items() if code < 66}))
print('-'*20)
class StrKeyDict0(dict):
def __missing__(self, key):
if isinstance(key, str):
raise KeyError(key)
return self[str(key)]
def get(self, key, default=None):
try:
return self[key]
except KeyError:
return default
def __contains__(self, key):
return key in self.keys() or str(key) in self.keys()
d = StrKeyDict0([('2','two'), ('4','four')])
print("StrKeyDict0 d['2'] {}".format(d['2']))
print("StrKeyDict0 d[4] {}".format(d[4]))
# below will raise exception
# print("StrKeyDict0 d[1] {}".format(d[1]))
print("StrKeyDict0 d.get('2') {}".format(d.get('2')))
print("StrKeyDict0 d.get(4) {}".format(d.get(4)))
print("StrKeyDict0 d.get(1, 'N/A') {}".format(d.get(1, 'N/A')))
print("StrKeyDict0 2 in d {}".format(2 in d))
print("StrKeyDict0 1 in d {}".format(1 in d))
print('-'*20)
import builtins
from collections import ChainMap
pylookups = ChainMap(locals(), globals(), vars(builtins))
print("builtins {}".format(pylookups))
from collections import Counter
ct = Counter('abracadabra')
print("counter {}".format(ct))
ct.update('aaaaazzz')
print("counter {}".format(ct))
print("most common {}".format(ct.most_common(2)))
print('-'*20)
import collections
class StrKeyDict(collections.UserDict):
def __missing__(self, key):
if isinstance(key, str):
raise KeyError(key)
return self[str[key]]
def __contains__(self, key):
return str(key) in self.data
def __setitem__(self, key, item):
self.data[str(key)] = item
d = StrKeyDict([(2,'two'), (4,'four')])
# print("StrKeyDict d[2] {}".format(d[2]))
print("StrKeyDict d['2'] {}".format(d['2']))
print('-'*20)
from types import MappingProxyType
d = {1: 'A'}
d_proxy = MappingProxyType(d)
print("d_proxy {}".format(d_proxy))
print("d_proxy[1] {}".format(d_proxy[1]))
d[2] = 'B'
#any changes will be reflect
print("d_proxy[2] {}".format(d_proxy[2]))
|
def rearrange_digits(input_list):
"""
Rearrange Array Elements so as to form two number such that their sum is maximum.
Args:
input_list(list): Input List
Returns:
(int),(int): Two maximum sums
"""
input_len = len(input_list)
input_freq = [0] * 10
pivot = 1
merge_opt1 = []
merge_opt2 = []
if input_len == 0 or input_len == 1:
return [-1, -1]
if input_len % 2 != 0:
pivot = 2
for num in input_list:
input_freq[num] += 1
for item in range((len(input_freq) - 1), -1, -1):
while input_freq[item]:
if pivot:
merge_opt1.append(str(item))
pivot -= 1
else:
pivot += 1
merge_opt2.append(str(item))
input_freq[item] -= 1
return [int(''.join(merge_opt1)), int(''.join(merge_opt2))]
def test_function(test_case):
output = rearrange_digits(test_case[0])
solution = test_case[1]
if sum(output) == sum(solution):
print("Pass")
else:
print("Fail")
# Normal Cases
test_function([[1, 2, 3, 4, 5], [542, 31]]) # Pass
test_function([[4, 6, 2, 5, 9, 8], [964, 852]]) # Pass
test_function([[1, 2, 3], [31, 2]]) # Pass
# Edge Cases
test_function([[0, 1, 2, 5, 6, 7], [752, 167]]) # Fail
test_function([[1, 9, 1], [10, 1]]) # Fail
test_function([[], []]) # Fail
|
class Group(object):
def __init__(self, _name):
self.name = _name
self.groups = []
self.users = []
def add_group(self, group):
self.groups.append(group)
def add_user(self, user):
self.users.append(user)
def get_groups(self):
return self.groups
def get_users(self):
return self.users
def get_name(self):
return self.name
def is_user_in_group(user, group):
"""
Return True if user is in the group, False otherwise.
Args:
user(str): user name/id
group(class:Group): group to check user membership against
"""
if user == "" or user is None:
return "Set values for user"
if group == "" or group is None:
return "Set values for group"
if not isinstance(group, Group):
return "Invalid group input!"
if user in group.get_users(): # User found
return True
else:
if len(group.get_groups()) == 0: # Keep searching
return False
else:
for sub_group in group.get_groups():
found = is_user_in_group(user, sub_group)
return found
parent = Group("parent")
child = Group("child")
sub_child = Group("subchild")
sub_child_user = "sub_child_user"
sub_child.add_user(sub_child_user)
child.add_group(sub_child)
parent.add_group(child)
# Test
print(is_user_in_group(user="parent_user", group=parent))
#False
print(is_user_in_group(user="child_user", group=parent))
#False
print(is_user_in_group(user="sub_child_user", group=parent))
# True
# Edge Case
print(is_user_in_group(user="other_group", group=parent))
# False
print(is_user_in_group(user="", group=parent))
# Set values for user and group
print(is_user_in_group(user="sub_child_user", group=sub_child_user))
# Invalid group input!
|
friends = ["Peter", "Pete", "Pet", "Hun", "Jade"]
print(friends)
print(friends[1])
friends[1] = "Julie"
print(friends[1:])
lucky_numbers = [4, 3, 2, 7, 13, 23]
#friends.extend(lucky_numbers)
friends.append("Ralph")
friends.insert(1, "Pony")
friends.remove("Pet")
friends.pop()
print(friends)
friends.index("Pony")
friends.sort()
lucky_numbers.reverse()
friends2 = friends.copy()
print(friends2)
|
# tuple is a kind of data structure, similar to a list but with a couple or more differences as below;
# tuples are immutable(cannot modify)
coordinates = (4, 5)
print(coordinates[1])
# coordinates[1] = 10 expected output: TypeError: 'tuple' object does not support item assignment
coordinates_list = [(3, 4), (21, 3), (1, 12)]
|
"""CSC110 Fall 2020 Final Project, Extraction File
Copyright and Usage Information
===============================
This file is provided solely for the personal and private use of Professors and TA's
teaching CSC110 at the University of Toronto St. George campus. All forms of
distribution of this code, whether as given or with any changes, are
expressly prohibited. For more information on copyright for CSC110 materials
please consult the owners.
This file is Copyright (c) 2020 Carson, Kowan, Girish, Howard
"""
import csv
from typing import List, Tuple, Dict
def get_data(filename: str) -> Dict[str, List[Tuple[int, float]]]:
""" Return a dictionary of of country to tuple.
The tuple has two values, a year and carbon emission amount
Preconditions:
- files are csv files
- files follow the format as Canada_-_CO2_emissions.csv file format
- filename is a filepath that leads to a valid csv file outlined above
"""
with open(filename) as file:
reader = csv.reader(file)
# get header for dates
headers = next(reader)
data = next(reader)
country = data[3]
# format data and return it
country_data = {country: [(int(headers[pos]), float(data[pos]))
for pos in range(4, len(headers))]}
return country_data
def get_gdp(filename: str) -> List[float]:
""" Return a list of a countries gdp from 1970 to 2018
The list is ordered from 1970 to 2018 values
Preconditions:
- files are csv files
- files follow the format as Canada_GDP.csv file format
- filename is a filepath that leads to a valid csv file outlined above
"""
gdp_so_far = []
reversed_gdp_so_far = []
with open(filename) as file:
reader = csv.reader(file)
# skip header
next(reader)
data = next(reader)
while 1970 <= int(data[0]) <= 2018:
gdp_so_far.append(data[1])
data = next(reader)
# flip the list so the last item is the first item
while gdp_so_far != []:
reversed_gdp_so_far.append(gdp_so_far.pop())
return reversed_gdp_so_far
if __name__ == '__main__':
import python_ta
python_ta.check_all(config={
'max-line-length': 100,
'extra-imports': ['python_ta.contracts', 'csv'],
'allowed-io': ['get_gdp', 'get_data'],
'disable': ['R1705']
})
import python_ta.contracts
import doctest
doctest.testmod()
|
class Product(object):
def __init__(self, price, item_name, weight, brand, cost):
self.price = price
self.item_name = item_name
self.weight = weight
self.brand = brand
self.cost = cost
self.status = "for sale"
def sell(self):
self.status = "sold"
return self
def addTax(self,num):
self.price = self.price + (self.price * num)
return self
def return_reason(self,reason):
if reason == "defective":
self.status = "defective"
self.price = 0
elif reason == "like new":
self.status = "for sale"
elif reason == "open":
self.status = "used"
self.price = self.price - (self.price * 0.20)
return self
def displayInfo(self):
print "Price:", self.price
print "Name:", self.item_name
print "Weight:", self.weight
print "Brand:", self.brand
print "Cost:", self.cost
print "Status:", self.status
|
class Animal(object):
def __init__(self, name, health):
self.name = name
self.health = health
def walk(self,rep):
self.health -= 1 * rep
return self
def run(self,rep):
self.health -= 5*rep
return self
def displayHealth(self):
print "Health:", self.health
return self
# animal1 = Animal("cat", 20)
# animal1.walk(3).run(2).displayHealth()
class Dog(Animal):
def __init__(self):
self.health = 150
def pet(self):
self.health +=5
return self
# dog1 = Dog()
# dog1.walk(3).run(2).pet().displayHealth()
class Dragon(Animal):
def __init__(self):
self.health = 170
def fly(self):
self.health -= 10
return self
def displayHealth(self):
super(Dragon, self).displayHealth()
print "I am a Dragon"
return self
# dragon1 = Dragon()
# dragon1.fly().displayHealths()
class Cat(Animal):
def __init__(self):
self.health = 10
cat1 = Cat()
cat1.displayHealth()
|
# Main Class
# Rahul Shrestha
# CMPS 470-Spring 2016
# Dr. John W. Burris
# https://github.com/rahulShrestha89/470-Assignment1
# This program implements the DECISION_TREE_LEARNING algorithm.
# Input Description:
# First line: (N) Number of examples
# Second line: (X) Number of attributes (Not including goal predicate)
# Third line: The name of each of the X attributes on a single line, separated by comma.
# Following N lines contain X+1 values containing the data set, separated by comma.
import os
import math
# generator function to map key-value pair
# and holds values respective to attributes
# i.e. attributes with respective example values in a dictionary
def get_examples(examples, attributes):
for value in examples:
yield dict(zip(attributes, value.strip().replace(" ", "").split(',')))
# get the list of Goal Predicate from the examples
# extracted from the input file
def get_goal_predicates():
return [d['Predicate'] for d in examples]
# get the total distribution of goal predicates
# for instance: total number of yes/no
def get_goal_predicate_frequency(goal_predicate_list):
# holds total number of occurrence of goal predicates
frequency = []
# holds the predicate,respective occurrence value in dictionary
goal_predicate_distribution = {}
# count the occurrence and store in the list
for i in range(len(goal_predicate_list)):
frequency.append(get_goal_predicates().count(goal_predicate_list[i]))
# hold the values as (key,value)
zip_pair = zip(goal_predicate_list, frequency)
# assign values to the dictionary
for goal_predicate_list, frequency in zip_pair:
goal_predicate_distribution[goal_predicate_list] = frequency
return goal_predicate_distribution
# get the unique example values of each attribute in a list
def get_unique_example_values():
# stores the unique values of an attribute in a list of lists
unique_example = []
# reads the attributes and its respective example values
for i in range(len(name_of_attributes)-1):
unique_example.append(list(set([d[name_of_attributes[i]] for d in examples])))
return unique_example
# get the frequency of examples
# i.e. occurrence of an attribute value in an example
# get the total distribution of goal predicates
# for instance: total number of yes/no
def get_example_frequency():
# stores the unique values of an attribute in a list of lists
unique_example = get_unique_example_values()
# hold attribute_frequency_dict as a list
# stores as [{ },{ },...{ }]
attribute_frequency_list = []
for i in range(len(unique_example)):
for j in range(len(unique_example[i])):
# stores as { "attribute": value, "predicate_value[0]": occurrence, "predicate_value[1]": occurrence}
attribute_frequency_dict = {name_of_attributes[i]: unique_example[i][j]}
for k in range(len(goal_predicate_list)):
frequency = len([x for x in examples if x['Predicate'] == goal_predicate_list[k] and
x[name_of_attributes[i]] == unique_example[i][j]])
attribute_frequency_dict[goal_predicate_list[k]] = frequency
attribute_frequency_list.append(attribute_frequency_dict)
return attribute_frequency_list
# using entropy to calculate the homogeneity of a sample.
# Entropy is the sum of p(x)log(p(x)) across all the different possible results
# If the sample is completely homogeneous the entropy is zero and
# if the sample is an equally divided it has entropy of one.
# it is based on the overall distribution of predicate
# gets the entropy of the target i.e. the goal predicate
def get_goal_predicate_entropy():
# store the entropy value
predicate_entropy = 0
# store the sum of frequencies
sum_of_frequencies = 0
# store the dictionary with predicate and its frequency
frequency_values = get_goal_predicate_frequency(goal_predicate_list)
for key in frequency_values.keys():
sum_of_frequencies += frequency_values[key]
for key in frequency_values.keys():
predicate_entropy += (-frequency_values[key]/sum_of_frequencies) \
* math.log(frequency_values[key]/sum_of_frequencies, 2)
return predicate_entropy
# gets the entropy of the examples based on their frequency
def get_entropy(attribute, value):
# holds all the info for attributes and its respective goal predicate frequency
data = get_example_frequency()
# finds the dictionary with attribute == value
dic = next(item for item in data if item.get(attribute) == value)
# remove the attribute and value from dictionary
dic.pop(attribute, None)
# stores the entropy value
entropy = 0
# stores the sum of all frequency of an attribute example
total_sum = sum(dic.values())
for i in range(len(goal_predicate_list)):
# check if the frequency is 0
if (dic[goal_predicate_list[i]]) == 0:
entropy += 0
else:
entropy += (-(dic[goal_predicate_list[i]]/total_sum)) * math.log((dic[goal_predicate_list[i]])/total_sum, 2)
return entropy
# Entropy using the frequency table of two attributes
# It is the product of Probability and Entropy value of the attribute
def get_entropy_of_two_attributes(attribute,index):
unique_examples = get_unique_example_values()
# holds the entropy value
entropy = 0
# loop until sub list has values
for k in range(len(unique_examples[index])):
entropy += ((int([d[attribute] for d in examples].count(unique_examples[index][k]))) /
(len(examples))) * (get_entropy(attribute, unique_examples[index][k]))
return entropy
# information gain is based on the decrease in entropy after a data set is split on an attribute
# gain = entropy(goal predicate) - entropy(attribute along with the predicate)
def get_information_gain():
# stores as { "attribute_1": entropy_value_1, "attribute_2": entropy_value_2 }
information_gain_dict = {}
# stores the difference between entropy of predicates in a dictionary
# loop starts with the first attribute
for i in range(len(name_of_attributes)-1):
information_gain_dict[name_of_attributes[i]] = (get_goal_predicate_entropy() -
get_entropy_of_two_attributes(name_of_attributes[i], i))
return information_gain_dict
# find the best attribute based on information gain
# attribute with the largest information gain is the decision node.
def find_best_attribute():
# find key with the highest entropy value
best_attribute = max(get_information_gain(), key=get_information_gain().get)
return best_attribute
# TODO:
# find the most common value for an attribute
def majority():
return 0
# TODO:
def get_values():
return 0
def make_tree(data, attributes, target, recursion):
recursion += 1
# Returns a new decision tree based on the examples given
data = data[:]
vals = [record[attributes.index(target)] for record in data]
default = majority(attributes, data, target)
# If the data set is empty or the attributes list is empty, return the
# default value. When checking the attributes list for emptiness, we
# need to subtract 1 to account for the target attribute.
if not data or (len(attributes) - 1) <= 0:
return default
# If all the records in the data set have the same classification,
# return that classification.
elif vals.count(vals[0]) == len(vals):
return vals[0]
else:
# Choose the next best attribute to best classify our data
best = find_best_attribute()
# Create a new decision tree/node with the best attribute and an empty
# dictionary object--we'll fill that up next.
tree = {best: {}}
# Create a new decision tree/sub-node for each of the values in the
# best attribute field
for val in get_values(data, attributes, best):
# Create a subtree for the current value under the "best" field
example = get_example_frequency(data, attributes, best, val)
new_attr = attributes[:]
new_attr.remove(best)
subtree = make_tree(examples, new_attr, target, recursion)
# Add the new subtree to the empty dictionary object in our new
# tree/node we just created.
tree[best][val] = subtree
return tree
# get the file name from the user
file_name = input("Enter the input file name: ")
# look for file in the directory
try:
fo = open(file_name, "r")
except IOError:
print("Error: can\'t find file or read data.")
else:
print("File found.")
# check if the file is empty
if os.stat(file_name).st_size <= 0:
print("Not enough data in the input file.")
else:
# read and stores the number of examples, attributes.
# as well as the name of attributes, and all examples
with open(file_name, 'r') as file:
number_of_examples = int(file.readline())
number_of_attributes = int(file.readline())
# replace the spaces and use , as delimiter
name_of_attributes = [n for n in (file.readline().strip().replace(" ", "")).split(",")]
name_of_attributes.append("Predicate")
# store all the unfiltered examples as list
all_examples = file.readlines()
# holds all the examples as a list of dictionary
# for instance: dic=[{'name_attributes': respective_example_value_from_the_file},...{}]
examples = list(get_examples(all_examples, name_of_attributes))
# get the values of Predicate from the examples
# set - unordered collection of unique elements
goal_predicate_list = list(set(get_goal_predicates()))
# invoke get_entropy_of_attributes function
get_goal_predicate_entropy()
# gets the best attribute for the tree
print('Finding the best attribute....')
print()
print(' The best attribute for the root node is ' + find_best_attribute())
print()
print('Still a work in progress to get the TRESS!')
|
import random
class GameController:
"""
2048游戏算法代码
"""
__list_2048 = [[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]]
def move_zero(self):
"""
将一行列表的零元素移动到末尾
:return:
"""
for i in range(len(list_row) - 1, -1, -1):
if list_row[i] == 0:
del list_row[i]
list_row.append(0)
def add_adjoin(self):
"""
每行相邻相同数字相加
:return:
"""
self.move_zero()
for i in range(len(self.__list_2048) - 1):
if list_row[i] == list_row[i + 1]:
list_row[i] *= 2
del list_row[i + 1]
list_row.append(0)
def left_shift(self):
"""
左移指令算法
:return:
"""
global list_row
for line in self.__list_2048:
list_row = line
self.add_adjoin()
def right_shift(self):
"""
右移指令算法
:return:
"""
global list_row
for item in self.__list_2048:
list_row = item[::-1]
self.add_adjoin()
item[::] = list_row[::-1]
def matrix_transpose(self):
"""
矩阵转置函数
:return:
"""
for r in range(len(self.__list_2048) - 1):
for c in range(r + 1, len(self.__list_2048)):
self.__list_2048[c][r], self.__list_2048[r][c] = self.__list_2048[r][c], self.__list_2048[c][r]
def up_shift(self):
"""
上移指令算法
:return:
"""
self.matrix_transpose()
self.left_shift()
self.matrix_transpose()
def down_shift(self):
"""
下移指令算法
:return:
"""
self.matrix_transpose()
self.right_shift()
self.matrix_transpose()
def print_interface_of_game(self):
"""
打印界面函数
:return:
"""
for item in self.__list_2048:
print(item[0], item[1], item[2], item[3], sep='\t', end='\n')
def add_2_to_list_2048(self):
"""
每次移动都在0的位置添加一个新的2元素
:return:
"""
list_index_of_0 = []
for r in range(len(self.__list_2048)):
for c in range(len(self.__list_2048)):
if self.__list_2048[r][c] == 0: # 0元素的坐标(r,c)
list_index_of_0.append((r, c))
index_of_0 = random.choice(list_index_of_0) # 随机找到列表中的一个元素
self.__list_2048[index_of_0[0]][index_of_0[1]] = 2 # 添加新的2元素
|
"""
Turbulence gradient temporal power spectra calculation and plotting
:author: Andrew Reeves
:date: September 2016
"""
import numpy
from matplotlib import pyplot
def calc_slope_temporalps(slope_data):
"""
Calculates the temporal power spectra of the loaded centroid data.
Calculates the Fourier transform over the number frames of the centroid
data, then returns the square of the mean of all sub-apertures, for x
and y. This is a temporal power spectra of the slopes, and should adhere
to a -11/3 power law for the slopes in the wind direction, and -14/3 in
the direction tranverse to the wind direction. See Conan, 1995 for more.
The phase slope data should be split into X and Y components, with all X data first, then Y (or visa-versa).
Parameters:
slope_data (ndarray): 2-d array of shape (..., nFrames, nCentroids)
Returns:
ndarray: The temporal power spectra of the data for X and Y components.
"""
n_frames = slope_data.shape[-2]
# Only take half result, as FFT mirrors
tps = abs(numpy.fft.fft(slope_data, axis=-2)[..., :n_frames/2, :])**2
# Find mean across all sub-aps
mean_tps = (abs(tps)**2).mean(-1)
return mean_tps
def get_tps_time_axis(frame_rate, n_frames):
"""
Parameters:
frame_rate (float): Frame rate of detector observing slope gradients (Hz)
n_frames: (int): Number of frames used for temporal power spectrum
Returns:
ndarray: Time values for temporal power spectra plots
"""
t_vals = numpy.fft.fftfreq(n_frames, 1./frame_rate)[:n_frames/2.]
return t_vals
def plot_tps(slope_data, frame_rate):
"""
Generates a plot of the temporal power spectrum/a for a data set of phase gradients
Parameters:
slope_data (ndarray): 2-d array of shape (..., nFrames, nCentroids)
frame_rate (float): Frame rate of detector observing slope gradients (Hz)
Returns:
"""
n_frames = slope_data.shape[-2]
tps = calc_slope_temporalps(slope_data)
t_axis_data = get_tps_time_axis(frame_rate, n_frames)
fig = pyplot.figure()
ax = fig.add_subplot(111)
# plot each power spectrum
for i_ps, ps in enumerate(tps):
ax.semilogy(t_axis_data, ps, label="Spectrum {}".format(i_ps))
ax.legend()
ax.set_xlabel("Frequency (Hz)")
ax.set_ylabel("Power (arbitrary units)")
pyplot.show()
def fit_tps(tps, axis):
"""
Parameters:
tps: The temporal power spectrum to fit
axis: fit parallel or perpendicular to wind direction
Returns:
"""
|
from collections import Counter
input = open("input.txt", "r", encoding="utf-8").read()
phrases = [phrase.split() for phrase in input.splitlines()]
# Part 1
def validPhrases(phrases):
valids = []
for phrase in phrases:
if len(phrase) == len(set(phrase)):
valids.append(phrase)
return len(valids)
print(validPhrases(phrases))
# Part 2
def isAnagram(w1, w2):
cnt1 = Counter()
cnt2 = Counter()
for c in w1:
cnt1[c] += 1
for c in w2:
cnt2[c] += 1
if cnt1 == cnt2:
return True
return False
def validPhrases2(phrases):
valids = []
for phrase in phrases:
valid = True
for i in range(len(phrase)):
for j in range(len(phrase)):
if i != j:
if isAnagram(phrase[i], phrase[j]):
valid = False
break
if not valid:
break
if valid:
valids.append(phrase)
return len(valids)
print(validPhrases2(phrases))
|
import re
input = open("input.txt", "r", encoding="utf-8").read()
rows = input.splitlines()
rs = [row.split("->") for row in rows]
leaves = [elem for elem in rs if len(elem) == 1]
nodes = [elem for elem in rs if len(elem) == 2]
name = re.compile("[a-z]+")
non_roots = [name.findall(node[1]) for node in nodes]
non_roots_flat = [elem for list in non_roots for elem in list]
candidates = [name.search(node[0]).group() for node in nodes]
roots = [elem for elem in candidates if not elem in non_roots_flat]
# part 1
print(roots)
root = roots[0]
# part 2:
# Can be modelled as a graph problem where we fill a field tw (tower weight) for each node and determine wheter
# a given node is balanced base on the tw-values of its children. V is the set of nodes, and adj is the adjacency list of our graph
V = [row.split()[0] for row in rows]
leaves = [name.search(leaf[0]).group() for leaf in leaves]
number = re.compile("\d+")
adj = dict.fromkeys(V)
w = dict.fromkeys(V)
tw = dict.fromkeys(V)
# Filling out weights and adjacency list
for row in rows:
names = name.findall(row)
v = names[0]
w[v] = int(number.search(row).group())
children = [elem for elem in names if elem != names[0]]
adj[v] = children
#Bottom up filling of tw
def balanced(v):
if v in leaves:
tw[v] = w[v]
return True
tw_ = w[v]
child_tws = set()
count = {}
for u in adj[v]:
balanced(u)
child_tws.add(tw[u])
if tw[u] in count:
count[tw[u]] = count[tw[u]] + 1
else:
count[tw[u]] = 1
tw_ += tw[u]
tw[v] = tw_
if len(child_tws) != 1:
# We found a node where children dont have same tower-weight. We print what the weight of the "odd-child-out" should be.
print(v + " was not balanced")
bad_node = [u for u in adj[v] if count[tw[u]] == min(count.values()) ][0]
matchweight = [x for x in child_tws if count[x]==max(count.values())][0]
correct = w[bad_node] + (matchweight-tw[bad_node])
print(bad_node + " should have weight " + str(correct) +" but has weight " + str(w[bad_node]))
return False
return True
balanced(root)
|
num = int(input("Введите целое: "))
mult = 1
while (num != 0):
mult = mult * (num % 10)
num = num // 10
print("Произведение цифр равно: ", mult)
|
from math import*
def funct(p,n,m):
i=15
s=p*(1+(i/100)/(m/12))**(m/(12*n))
print("Стоимость =",s)
p = int(input("сумма вклада ="))
n = int(input("количество лет="))
m = int(input("количество начислений процентов в год ="))
funct(p, n, m)
|
n=int(input("Enter the n: "))
a=[[0 for i in range(n)]for j in range(n)]
for i in range(n):
for j in range(n):
print(a[i][j],end=" ")
print("\r")
'''
lis=[[3, 5, 9], [6, 4, 7], [9, 1, 0]]
print(lis)
print(lis[1][1])
'''
|
#pattern 1 using while
'''
i=1
while(i<=5):
print('*'*i)
i=i+1
'''
#pattern 1 using for
''''
n=int(input("Enter the number: "))
for i in range(1,n+1):
for j in range(i):
print(i,end=" ")
print()
'''
#patern 2 using for
'''
n=int(input("Enter the number: "))
for i in range(n,0,-1):
for j in range(i):
print('*',end=" ")
print()
'''
#pattern 3 using for
'''
n=int(input("Enter the number: "))
for i in range(1,n+1):
for j in range(1,i+1):
print(j,end=" ")
print()
'''
#pattern 4 using for
'''
n=int(input("Enter the number: "))
for i in range(n,0,-1):
for j in range(i):
print(i,end=" ")
print()
'''
#pattern 5 using for
'''
n=int(input("Enter the number: "))
for i in range(1,n+1):
for j in range(n+1-i,0,-1):
print(j,end=" ")
print()
'''
#pattern 6 using for
'''
n=int(input("Enter the number: "))
a=0
for i in range(n,0,-1):
for j in range(i):
a+=1
print(a,end=" ")
print()
'''
#patter 7 using for
'''
n=int(input("Enter the number: "))
a=0
k=1
for i in range(1,n+1):
for j in range(k):
a+=1
print(a,end=" ")
k+=2
print()
'''
#pattern 8 using for
'''
n=int(input("Enter the number: "))
a=0
for i in range(1,n+1):
for j in range(i):
a+=1
print(a,end=" ")
print()
'''
|
#Leap Year
'''
y=int(input("Enter the Year: "))
if y%4==0:
if y%100==0:
if y%400==0:
print("Leap Year")
else:
print("Not a Leap Year")
else:
print("Not a Leap Year")
else:
print("Not a Leap Year")
'''
#prime number
'''
a=[]
sum1=0
for i in range(1,100):
if i>1:
for j in range(1,i):
if j>1:
if i%j==0:
break
else:
a.append(i)
if sum1<50:
sum1=sum1+i
if sum1< 50:
k=sum1
print(k,a)
'''
#
'''
a=list(input("Enter the string: ").split(" "))
b=[]
print("Task One: ",a)
for i in a:
for j in i:
b.append(j)
print(b)
print("".join(b))
'''
#
'''
v=['a','e','i','o','u']
a=list(input("Enter the String: ")
print(a)
for i in a:
for j in i:
if j in v:
j=chr(ord(j)+1)
print(('').join(j),end="")
else:
print(('').join(j),end="")
print(end=" ")
'''
#
'''
n=input("Enter the String: ").split()
print(n)
n[0],n[-1]=n[-1],n[0]
print(n)
print(" ".join(n))
'''
#
'''
s="abcd"
n=int(input())
print(s[n::]+s[0:n])
'''
|
# select only special character in given input
'''
a=input("Enter the statement with special character and numerics: ")
for i in a:
if i.isalpha()==False:
if i.isdigit()==False:
print(i,end="")
'''
# select only alphabet in given input
'''
a=input("Enter the statement with special character and numerics: ").split(" ")
for i in a:
for j in i:
if j.isalpha():
print(j,end="")
print()
'''
'''
a=input("Enter the statement with special character and numerics: ")
for i in a:
if i.isalpha():
print(i,end="")
'''
#select only digit in given input
'''
a=input("Enter the statement with special character and numerics: ")
for i in a:
if i.isdigit():
print(i,end="")
'''
# Give the target and multiply then check the number palindrome then print the highest
'''
i=int(input("Enter the target number: "))
t=0
for n1 in range(i):
for n2 in range(i):
p=str(n1*n2)
r=p[::-1]
if(r==p):
if(int(t)<int(p)):
t=p
a,b=n1,n2
print(a,b,t)
'''
|
# -*- coding: utf -8 -*-
from math import sin
x =float(input("Lietotāj, lūdzu ievadi argumentu (x): "))
y = sin(x)
print ("sin(%.2f) = %.2f"%(x,y))
k = 0
a = (-1)**0*x**1/(1)
S = a
print ("a0 = %6.2f S0 = %6.2f"%(a,S))
k = k +1
a = a * (-1)*x*x/((2*k)*(2*k + 1))
S= S + a
print ("a%d = %6.2f S%d = %6.2f"%(k,a,k,S))
k = k +1
a = a * (-1)*x*x/((2*k)*(2*k + 1))
S =S + a
print ("a%d = %6.2f S%d = %6.2f"%(k,a,k,S))
k = k + 1
a = (-1)*x*x/((2*k)*(2*k + 1))
S = S + a
print ("a%d = %6.2f S%d = %6.2f"%(k,a,k,S))
|
from sklearn.cluster import KMeans
import numpy as np
import matplotlib.pyplot as plt
def read_data(filename):
'''
Parameters
----------
filename : string
file storing comma separated data
Returns
-------
numpy array of data stored in filename. file rows are converted to rows in the np array. The first element of each row is cast
to an int. All other elements are cast to floats
'''
data = []
with open(filename, 'r') as f:
for x in f:
entry = [float(i) for i in x.split(',')]
entry[0] = int(entry[0]) #first element of each line is the class label
data.append(entry)
return np.array(data)
class KMeansClustering(KMeans):
def __init__(self, data, k):
super().__init__(n_clusters=k, random_state=0)
self.fit(data)
def get_centroids(self):
'return np array of shape (n_clusters, n_features) representing the cluster centers'
return self.cluster_centers_
def get_labels(self, data):
'Predict the closest cluster each sample in data belongs to. returns an np array of shape (samples,)'
return self.predict(data)
def total_inertia(self):
'returns the total inertia of all clusters, rounded to 4 decimal points'
return round(self.inertia_, 4)
def plot_try_k_clusters(avg_purities, inertias):
'''
plots the results of try_k_clusters
assumes avg_purities and inertias are lists of equal length
and follow the docstring of try_k_clustesrs
'''
assert type(avg_purities) is list and type(inertias) is list
assert len(avg_purities) == len(inertias)
x=np.arange(len(avg_purities)) + 1
avg_purities = [x*100 for x in avg_purities]
plt.plot(x, avg_purities, 'bo')
plt.title("Average Purity of clusters")
plt.xlabel("Num Clusters")
plt.ylabel("% Purity")
plt.show()
plt.plot(x, inertias, 'rx''')
plt.title("Total Inertia of Clusters")
plt.xlabel("Num Clusters")
plt.ylabel("Total Inertia")
plt.show()
##### END HELPER CODE #####
def prep_dataset(raw_data):
'''
Prepares the raw dataset for clustering. Separate the raw data into sample features and labels
Parameters
----------
raw_data : np array
A np array of shape (num_samples, num_features + 1) The first element of
each row is the class label for that sample. The remaining elements are the sample features
Returns
-------
Tuple of (data, labels)
data : np array of shape (num samples, num_features)
labels : np array of shape (num_samples, ). labels for the data set samples
'''
data = raw_data[:,1:]
labels = raw_data[:,0]
return (data,labels)
def kmeans(data, k):
'''
Run the kmeans clustering algorithm with k clusters on data. Use the KMeansClustering class provided
to run the clustering algorithm.
Parameters
----------
data : a numpy array with shape (N,X), where N is the number of wines and X is the number of features per wine
k : int, number of clusters for kMeans
Returns
-------
a tuple of (labels, inertia)
labels: a size N 1-d numpy array, representing the cluster labels for each data point
inertia: float, the total intertia for the clusters
'''
cluster = KMeansClustering(data,k)
labels = cluster.get_labels(data)
inertia = cluster.total_inertia()
return (labels,inertia)
def scale_data(data):
'''
Scale data features using a MinMax scaling. Each feature should be transformed such that:
f_scaled = (f - f_min) / (f_max - f_min)
where f is the unscaled feature, f_min is the minimum value of that feature across
all samples, and f_max is the maximum value of that feature across all samples.
Note that, for f = f_max, f_scaled = 1. For f = f_min, f_scaled = 0.
Parameters
----------
data : np array of shape (num samples, num features)
Returns
-------
scaled : np array of shape (num samples, num features). Each feature should be individually scaled to the range [0,1].
'''
scaled = (data - data.min(0)) / (data.max(0) - data.min(0))
return scaled
def cluster_purity(clusters, labels):
'''
Find the purity of the clusters. Purity is defined as the proportion of a
cluster that is taken up by the most represented class label within that cluster. If multiple class labels are represented equally,
return the percent composition of either label. Round purity values to the 4 decimal points
Parameters
----------
clusters : np array of shape (num_samples,) with each element being an int
representing the sample's cluster. Values of clusters will be in the range [0,num_clusters]
labels : np array of shape (num_samples,). The class labels for each sample
Returns
-------
purities : list of length num_clusters, purity values for each cluster
'''
num_clusters = len(set(clusters))
dict_clusters = {}
for i in range(num_clusters):
dict_clusters[i] = {}
num_labels = set(labels)
for i in num_labels:
for r in dict_clusters:
dict_clusters[r][i] = 0
for i in range(len(clusters)):
dict_clusters[clusters[i]][labels[i]] += 1
purities = []
for i in dict_clusters:
total = sum(dict_clusters[i].values())
top = max(dict_clusters[i].values())
purity = round(top/total,4)
purities.append(purity)
return purities
#result = ps6.cluster_purity(clusters, labels)
def try_k_clusters(data, labels, ks):
'''
Try kmeans clustering with num_clusters = 1,2,...ks. Return the average cluster purity
Parameters
----------
data : np array of shape (num samples, num features)
labels : np array of shape (num_samples,). The class labels for each sample
ks : int indicating the k values to try. all integer k values will be tried in the range [1,ks]
Returns
-------
A tuple of (avg_purities, inertias)
avg_purities: a list of floats, length ks. The average purity value of all
clusters from kmeans clustering for all k-values in range [1,ks]. Round the average
purity values to 4 decimal points.
avg_purities[i] = average purity score of the i+1 clusters from kmeans clustering with k=i+1.
inertias: a list of floats, length ks. The total inertia values from
kmeans clustering for all k-values in range [1,ks]. Round the total inertia
values to 4 decimal points.
inertias[i] = total inertia of the i+1 clusters from kmeans clustering with k=i+1.
'''
avg_purities = []
inertias = []
for k in range(ks):
clusters, inertia = kmeans(data,k+1)
purities = cluster_purity(clusters,labels)
avg_purity = sum(purities)/len(purities)
avg_purities.append(avg_purity)
inertias.append(inertia)
return (avg_purities,inertias)
if __name__ == "__main__":
pass
#OPTIONAL: Plot average purity and inertia
# file = "wine.data"
# raw_data = read_data(file)
# data, labels = prep_dataset(raw_data)
# scaled_features = scale_data(data)
# k = 10
# avg_purity, inertia = try_k_clusters(scaled_features, labels, k)
# plot_try_k_clusters(avg_purity, inertia)
|
#file for testing python staff like tokenization and so on...
string = " asdasd asd asd "
string1 = "asdm,asdasdj,asdasd asd asd asd,ssdadasd ad "
string = "".join(string.split())
print (string)
|
def isFactor(number, factor):
return number % factor == 0
def smallestFactorOf(number):
for i in range(2,number):
if(isFactor(number, i)):
return i
|
#Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
sum_of_squares = 0
problem_range = range(1, 101)
for i in problem_range:
sum_of_squares += i*i
print(sum_of_squares)
sum_of_range = sum(problem_range)
square_of_sum = sum_of_range*sum_of_range
difference = square_of_sum - sum_of_squares
print(difference)
|
def is_leap(year):
leap = False
if( (year % 4 == 0 and year % 100 != 0) or (year % 100 == 0 and year % 400 == 0)):
leap = True
return leap
if __name__ == '__main__':
year = is_leap(1992)
print year
|
#!/usr/bin/python3
def divisible_by_2(my_list=[]):
if my_list:
list = my_list[:]
for i in range(len(list)):
if (my_list[i] % 2 == 0):
list[i] = True
else:
list[i] = False
return list
|
#!/usr/bin/python3
for i in range(0, 100):
dizaine = i // 10
unite = i % 10
if (unite > dizaine):
if (i == 1):
print("{:02d}".format(i), end="")
else:
print(", {:02d}".format(i), end="")
print()
|
#!/usr/bin/python3
""" Python Network Project """
def find_peak(list):
""" finds a peak in a list of unsorted integers """
peaks = []
if list:
m = list[0]
mpos = 0
for i, elem in enumerate(list):
if elem > m:
m = elem
mpos = i
return list[mpos]
|
from tkinter import *
import math
# x=column
# y=row
def clear():
valueA.delete(0, 'end')
valueB.delete(0, 'end')
valueC.delete(0, 'end')
def calculate():
a=int(valueA.get())
b=int(valueB.get())
c=int(valueC.get())
#x1=((-(b))+ math.sqrt((math.pow(b,2) * (-4) * a * c))) /(2*a)
#x2=((-(b))- math.sqrt((math.pow(b,2) * (-4) * a * c))) /(2*a)
x1 = (-(b) + math.sqrt((b*b)-4*a*c))/(2*a)
x2 = (-(b) - math.sqrt((b*b)-4*a*c))/(2*a)
#x1=(-(b)+(math.sqrt((math.pow(b,2))*-4*a*c)))/2(a)
#x2=(-(b)-(math.sqrt((math.pow(b,2))*-4*a*c)))/2(a)
lblsolution.config(text=f"Solution: X={round(x1,3)} , X={round(x2,3)}")
win=Tk()
win.title("My first Python GUI ")
win.minsize(width=500,height=500)
lbltitel=Label(text="Quadratic Equation Solver")
lbltitel.place(x=170,y=0)
lblA=Label(text="A Value:")
lblA.place(x=30,y=30)
valueA=Entry()
valueA.place(x=90,y=30)
lblB=Label(text="B Value:")
lblB.place(x=30,y=60)
valueB=Entry()
valueB.place(x=90,y=60)
lblC=Label(text="C Value:")
lblC.place(x=30,y=90)
valueC=Entry()
valueC.place(x=90,y=90)
but_slove=Button(text="Slove",command=calculate)
but_slove.place(x=100,y=120)
but_clear=Button(text="Clear",command=clear)
but_clear.place(x=150,y=120)
lblsolution=Label(text="Solution:")
lblsolution.place(x=0,y=150)
win.mainloop()
|
'''
功能:用openpyxl读写excel
Created on 2019年1月21日
@author: Vostory
'''
# coding=utf-8
import openpyxl
filename = r'D:\\PracFolder\\Data\\111.xlsx'
wb = openpyxl.load_workbook(filename) # 读文件
sheets = wb.sheetnames # 获取读文件中所有的sheet,通过名字的方式
print('worksheets is %s' % sheets, type(sheets))
ws = wb[sheets[0]] # 获取第一个sheet内容
# ws = workbook.sheet_by_name(u'Sheet1') # 通过工作表名称获取
# ws= workbook.sheets()[0] # 通过索引顺序获取
# ws= workbook.sheet_by_index(0) # 通过索引顺序获取
print(ws.title) # 获得sheet名称
# 遍历sheet1中所有行row
num_rows = ws.max_row
print(num_rows)
for curr_row in range(num_rows):
for cell1 in list(ws.rows)[curr_row]:
print(cell1.value)
print('row is %s' % curr_row)
# 遍历sheet1中所有列col
num_cols = ws.max_column
print(num_cols)
for curr_col in range(num_cols):
for cell2 in list(ws.columns)[curr_col]:
print(cell2.value)
print('col is %s' % curr_col)
# 遍历sheet1中所有单元格cell
for rown in range(num_rows): # 默认开始下标为0
for coln in range(num_cols): # 默认开始下标为0
cell3 = ws.cell(rown + 1, coln + 1) # 下标必须从1开始
print(cell3)
print('数据读取结束!')
# 写入数据
outwb = openpyxl.Workbook() # 打开一个将要写的excel文件
Sheet1 = outwb.create_sheet('Sheet1') # 在将写的文件创建sheet,且命名为mySheet
print(outwb.sheetnames) # 输出目前所有的工作表名称
ws = outwb.active # 获取当前正在操作的表对象
ws.append(['电影名', '年份', '地区', '剧情类型', '导演', '主演', '评分', '评论人数', '简介'])
saveExcel = "D:\\PracFolder\\Data\\test.xlsx"
outwb.save(saveExcel) # 一定要记得保存
print('数据写入结束!')
|
# Напишите программу, которая будет разрезать большую прямоугольную область на N \times NN×N одинаковых прямоугольных областей.
# Области задаются четырьмя координатами: минимальной широтой, минимальной долготой, максимальной широтой, максимальной долготой.
#
# При выводе области должны быть упорядочены по возрастанию минимальной широты, а в случае равных широт - по возрастанию минимальной долготы.
#
# Гарантируется, что все числа во входных данных положительны.
data_str = input().split()
data = [float(x) for x in data_str]
n = int(input())
d_sh = (data[2] - data[0]) / n
d_dol = (data[3] - data[1]) / n
for i in range(0, n):
for j in range(0, n):
min_sh = data[0] + d_sh * i
max_sh = data[0] + d_sh * (i + 1)
min_dol = data[1] + d_dol * j
max_dol = data[1] + d_dol * (j + 1)
print(min_sh, min_dol, max_sh, max_dol)
|
# В качестве ответа введите все строки наибольшей длины из входного файла, не меняя их порядок.
#
# В данной задаче удобно считать список строк входного файла целиком при помощи метода readlines().
#
# Ссылка на входной файл: https://stepik.org/media/attachments/lesson/258920/input.txt
with open('input6.txt') as file:
text = file.readlines()
maxlen = max(len(line) for line in text)
print(*filter(lambda line: len(line) == maxlen, text))
|
# Ученые нашли табличку с текстом на языке племени Мумба-Юмба.
# Определите, сколько различных слов содержится в этом тексте.
# Словом считается последовательность непробельных символов идущих подряд, слова разделены одним или большим числом пробелов или символами конца строки.
# Большие и маленькие буквы считаются различными.
#
# В этой и последующих задачах этого занятия вам нужно скачать файл по ссылке, запустить свой скрипт на собственном компьютере и ввести только ответ конкретно для этого файла.
#79936
# Ссылка на входные данные https://stepik.org/media/attachments/lesson/258915/input.txt
data = open('input.txt', 'r')
words = set()
for line in data:
words.update(line.split())
print(len(words))
|
# Выведите в обратном порядке содержимое всего файла полностью.
# Для этого считайте файл целиком при помощи метода read().
#
# Ссылка на входной файл: https://stepik.org/media/attachments/lesson/258921/input.txt
data = open('input7.txt', 'r')
u = data.read()
print(u[::-1])
|
from func import delFinish
three = "three "
str_1 = delFinish(three + three + three)
str_2 = delFinish(three * 3)
print(str_1)
print(str_2)
|
#Ex.0025 - Crie um programa que leia um nome e diga se existe 'silva' no mesmo
nome = str(input('Escreva seu nome:'))
print('Existe Silva no nome: {}'.format('SILVA' in nome.upper()))
|
#Faça um programa que leia um número inteiro e mostre na tela o sucessor e seu antecessor.
n = int(input('Digite um valor:'))
print('Analisando o valor de {}, seu antecessor é {} e o seu sucessor é {}'.format(n, (n-1), (n+1)))
|
#Ex.0017 - Faça um programa que leia o comprimento do cateto oposto e do cateto adjacente de um Triângulo Retângulo calcule e mostre o comprimento da Hipotenusa
#Incluindo importação
from math import hypot
o = float(input('Digite o cateto oposto:'))
a = float(input('Digite o cateto adjacente:'))
h = hypot(a, o)
print('resultado:{:.1f}'.format(h))
|
import itertools
import numpy as np
def minimum_distance_v(v1, v2):
vdiff = v2 - v1
if abs(vdiff) < 0.5:
return vdiff
elif v1 > 0.5:
return 1 - abs(vdiff)
else:
return -1 + abs(vdiff)
def minimum_distance_point(p1, p2):
return [minimum_distance_v(v1, v2) for (v1, v2) in zip(p1, p2)]
def max_pair_distance(points):
if len(points) == 1:
return 0.0
pairs = np.array([minimum_distance_point(p1, p2) for p1, p2 in itertools.combinations(points, 2)])
distances = (pairs ** 2).sum(axis=1) ** 0.5
return max(distances)
|
#!/usr/bin/python3
'''
Author: Aastha Shrivastava
PRN: 19030142001
Date modified: 27th JULY 2019
7th August 2019: added exception handling
Description: Program reads file supplied by user, takes an intger value n from user and writes the file contents in new file
without every nth character on each line.
'''
try:
#opening connection to file which user entered
inp_file = open(input("Enter file name"))
out_file = open("tempout.txt", "w")
skip_char = int(input("Enter character number to skip"))
#reading file line by line
for line in inp_file:
start = 0
end = skip_char - 1
#writing the contents to output file and skipping the nth character
while (start <= len(line)):
out_file.write(line[start:end])
start = end + 1
end += skip_char
#possible exceptions program may encounter
except FileNotFoundError:
print("File not found please check the file name and try executing program again")
except TypeError:
print("Character number must be an integer please execute the program again and enter a valid value")
except PermissionError:
print("Permission denied to read/write file")
except FileExistsError:
print("tempout.txt already exists and cannot be overwritten")
except IsADirectoryError:
print("Requested file is a directory")
#closing the file
finally:
try:
inp_file.close()
out_file.close()
except AttributeError:
pass
|
# A simple hangman game written in python
import random
print("Welcome to HangMan")
#List of words
word_list = ["Youva","Jupyter","Speed","Function"]
# Choosing a random word from the list
word = list(random.choice(word_list))
guess_word = ['*']*len(word)
guess_count = len(word)+2
score = 0
# Running game loop till user guesses the correct word or run out of guesses
while(('*' in guess_word) and guess_count>0):
print("Word:%s \tscore:%d \tguesses left:%d"%(''.join(guess_word),score,guess_count))
letter = input("Enter next character:")
guess_count-=1
if(letter in word):
score += word.count(letter)
for idx in range(len(word)):
if word[idx] == letter:
guess_word[idx] = letter
if('*' not in guess_word):
print("Congratulations!! you guessed the word:%s correctly!"%(''.join(guess_word)))
break
else:
print("Sorry you ran out of guesses :(( word was:%s"%(''.join(word)))
|
# Definition for a binary tree node.
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution:
'''Function to create binary search tree from its preorder of elements
'''
def bstFromPreorder(self, preorder: List[int]) -> TreeNode:
if len(preorder) == 0:
return None
root = TreeNode(preorder[0])
for i in preorder[1:]:
temp = root
added = False
while(not added):
if(i<temp.val):
if(temp.left == None):
newNode = TreeNode(i)
temp.left = newNode
added = True
break
temp = temp.left
continue
else:
if(temp.right == None):
newNode = TreeNode(i)
temp.right = newNode
added = True
break
temp = temp.right
continue
return root
|
'''
Description: Program to display a simple slideshow using Tkinter.
'''
from tkinter import *
import time
images=["DSC_0511","DSC_0512"]
def slide():
#while True:
for i in images:
image = PhotoImage(file=i+".JPG.png")
label = Label(image=image)
#label.place(x=0,y=0)
label.pack(fill=BOTH,expand=2)
#time.sleep(5)
fr = Tk()
btn=Button(fr,text="start",command=slide)
btn.pack()
fr.mainloop()
|
from .base import Shape
class Circle(Shape):
def __init__(self, radius, **kwargs):
super().__init__(**kwargs)
self.radius = radius
def draw(self, turtle):
turtle.penup()
turtle.goto(self.center_x, self.center_y - self.radius) # From docs: The center is radius units left of the turtle;
turtle.pendown()
turtle.color(self.color)
turtle.circle(self.radius)
|
people = [{'name': "Мария", 'gender': "female", }, {'name': "Калоян", 'gender': "male", }, ]
def print_person(person: dict):
print("{} ({}) is interested in {}".format(
person['name'],
person['age'],
', '.join(person['interests'])
))
def print_people(people: list):
for person in people:
print_person(person)
try:
print_people(people)
except KeyError as e:
print("Unhandled KeyError exception: " + str(e))
|
# today we are going to learn about lists and for loops and while loops
# Yesterday, we learned about conditions and comparisons.
# today, we will learn about:
# lists
# string
# in/not in
# loops
# hopefully function!
'''
Lists are pretty cool. It's something you could maybe put a high score in.
you create a new list with no content by:
l = list()
You can create a list with content in it by:
l = ['a', 'b', 'c']
A list can hold many different types.
You can access and modify list by using this kind of syntax:
a[1]
x = a[0]
you can get the length of the array by: len(a)
Here are some list methods:
list.append(elem) => add element to end
list.insert(index, elem) => addd elements at the index, shift elements to right)
list.extend(list2) -> adds element of list2 to the end of the list.
list.index(elem) -> searches for the given element from start of list
list.remove(elem) -> removes the element
list.sort() -> sort in place
list.reverse() -> reverse the list in place
list.pop(index) -> removes and return element. if index omitted, opposite of append
Exercise 1: Create a new list called high score. Ask the user for a high score to insert
5 times. After adding all of it, sort it, then reverse it, then print it.
'''
highscore = list()
'''
Exercise 2: Create a list of vocabs. Show the list of vocab to memorize.
Add one more vocab to the list. Then remove the second vocab in the list.
Show me what is in the first index of the vocab list.
'''
'''
Strings are actaully just a list of something called a character.
So we can do many lists operations on strings.
We already know a few String operations
+ (concat)
* (duplicate)
There are some more:
s.lower()/upper() -> lowercase or uppercase of string
s.strip() -> remove whitespace start and end
s.startwith('')/endwith('')
s.find('') -> returns first index of where it is found; otherwise -1
s.replace('old', 'new') -> return a string where all occurrences of 'old' have been replaced
s.split('delim') -> splits the string into an array by the delimeter
s.join(list) -> joins items in list into one string with s as its delimeter.
You can also access the string using list like syntax.
You can also find the length of the string like lists
# Exercise 1: take in 2 3-digit number and 1 4-digit number.
Create a phone number out of it in this format: 123-456-7890
Make sure you verify that it is in that format.
Hint: len, s.isdigit()
# Exercise 2: Take in a name with the following format: Kevin Myungki Kang
and change it to KANG, KEVIN MYUNGKI
so that it can work for driver's license.
'''
'''
in/not in
in and not in is very useful for string and lists.
You can asks python to check if a part of a string is in the bigger string or
an element is in the list as follows:
"a" in "cat" => True
"b" in "cat" => False
3 in [1, 2, 3] => True
4 in [1, 2, 3] => False
Not in just basically does the opposite.
'''
'''
for loops:
in python, we do loops with a list.
the most common way to do it is by using a function called range.
range(2) => [0, 1]
range(1, 5) => [1, 2, 3, 4]
range(1, 14, 7) => [1, 8]
we iterate through this list by:
for i in range(2):
print(i)
Similarly, with a string, we can:
for c in "abcd":
print(c)
this extacts all characters.
Again similarly, with an array, we can:
for e in [1, 2, 3]:
print(e)
Exercise:
Using TrumpTwitter.py, extract all of the Trump's friends
and print out the name of the friends of Trump's with Trump in their names.
# python3 -i TrumpTwitter.py
'''
|
# today we are going to learn about lists and for loops and while loops
# Yesterday, we learned about conditions and comparisons.
# today, we will learn about:
# lists
# string
# in/not in
# loops
# hopefully function!
'''
in/not in
in and not in is very useful for string and lists.
You can asks python to check if a part of a string is in the bigger string or
an element is in the list as follows:
"a" in "cat" => True
"b" in "cat" => False
3 in [1, 2, 3] => True
4 in [1, 2, 3] => False
Not in just basically does the opposite.
'''
# Let's try in and not in out!
"a" in "cat"
"ca" in "cat"
"ca" not in "cat"
3 in [1, 2, 3]
5 in [1, 2, 3]
8 not in [1, 3, 5]
# Where can this be useful?
# in the phone book we built, maybe we wanna parse by the area code.
# or maybe we wanna check if a person's name is in the phone book.
# it is also VERY useful for loops.
'''
for loops:
in python, we do loops with a list.
the most common way to do it is by using a function called range.
range(2) => [0, 1]
range(1, 5) => [1, 2, 3, 4]
range(1, 14, 7) => [1, 8]
we iterate through this list by:
for i in range(2):
print(i)
Similarly, with a string, we can:
for c in "abcd":
print(c)
this extacts all characters.
Again similarly, with an array, we can:
for e in [1, 2, 3]:
print(e)
# python3 -i TrumpTwitter.py
'''
# out of all the loops, for loops are one of the most common.
# we use range most often.
# loops in python basically iterates through lists.
# for i in range(5)
# ^ after every loop, i will be set to 0, then 1, 2, 3, and 4.
# THIS IS VERY USEFUL FOR GOING THROUGH LISTS that we make.
# we can also do this:
# for i in [1, 3, 5]
# often we want to go through lists, so we would just:
# for i in list
# for phone books, we have 2 lists...
# so we can try: for n, num in zip(names, numbers)...
# this will iterate names and numbers together.
# in the phonebook, you can notice we have something called a while loop with a 1.
# how while loop works is:
# while(cond):
# the reason I did while(1) is that anything other than 0 is actually translated to True.
# cuz 0 is false.
'''
Exercise:
Using TrumpTwitter.py, extract all of the Trump's friends
and print out the name of the friends of Trump's with Trump in their names.
'''
'''
Exercise 2:
'''
|
def fib(n):
tail = [0, 1]
for i in range(1, n):
tail.append(sum(tail[-2:]))
return tail[-1]
if __name__ == '__main__':
print(fib(4))
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
import sys
class Solution:
max_sum = -sys.maxsize-1
def maxPathSum(self, root: TreeNode) -> int:
self.max_gain(root)
return self.max_sum
def max_gain(self, node: TreeNode):
if node is None:
return 0
left_max = max(0, self.max_gain(node.left))
right_max = max(0, self.max_gain(node.right))
self.max_sum = max(self.max_sum, left_max + right_max + node.val)
return max(left_max, right_max) + node.val
|
# When a person has a disease, they infect exactly R other people but only on the very next day. No
# person is infected more than once. We want to determine when a total of more than P people have
# had the disease.
p = int(input()) # total people to be infected
n = int(input()) # day 0
r = int(input()) # value of r
total = n
runs = 0
while total <= p:
next = n * r
n = next
total += next
runs += 1
print(runs)
# n people on day 0 infect r people on day 1
# those people infect r people on day 2
|
list1 = [6, 19, 23, 49, 8, 41, 20, 53, 56, 87]
def find_max(itemlist):
if len(itemlist) == 1:
return itemlist[0]
op1 = itemlist[0]
op2 = find_max(itemlist[1:])
if op1 > op2:
return op1
else:
return op2
print(find_max(list1))
|
'''
Question:
Define a class which has at least five methods:
getInteger: to get two integers from console input
printIntegers: to print integers.
addInteger: to add two integers together
subtractInteger: to subtract two integers
powerInteger: to get the power of the first integer to the power of second intger
Also please include simple test function to test the class methods.
Hints:
Use __init__ method to construct some parameters
'''
from math import pow
class InputIntegerOut():
def __init__(self):
self.num1 = 0
self.num2 = 0
def getInteger(self):
self.num1 = int(input("Enter your first integer: "))
self.num2 = int(input("Enter your second integer: "))
def printInteger(self):
print("First integer is", self.num1)
print("Second integer is", self.num2)
def addInteger(self):
print("The sum of these two integers is", self.num1 + self.num2)
def subtractInteger(self):
print("The difference between these two integers is", abs(self.num1-self.num2))
def powerInteger(self):
print("The result of the first integer to the power of the second integer is", pow(self.num1,self.num2))
intSample = InputIntegerOut()
intSample.getInteger()
intSample.printInteger()
intSample.addInteger()
intSample.subtractInteger()
intSample.powerInteger()
|
'''
Question:
Write a program that calculates and prints the value according to the given formula:
Q = Square root of [(2 * C * D)/H]
Following are the fixed values of C and H:
C is 60. H is 10.
D is the variable whose values should be input to your program in a comma-separated sequence.
Example
Let us assume the following comma separated input sequence is given to the program:
100,200,300
The output of the program should be:
11,15,19
Hints:
If the output received is in decimal form, it should be rounded off to its nearest value (for example, if the output received is 26.0,
it should be printed as 26)
In case of input data being supplied to the question, it should be assumed to be a console input.
'''
from math import *
def formula():
C = 60
H = 10
consoleInput = input("Enter your integers: ").split(',')
lst = []
print(consoleInput)
for D in consoleInput:
Q = round(sqrt(2*C*int(D)/H))
lst.append(str(Q))
print(','.join(lst))
formula()
|
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# The following code reads all the Gapminder data into Pandas DataFrames. You'll
# learn about DataFrames next lesson.
path = '/datasets/ud170/gapminder/'
employment = pd.read_csv(path + 'employment_above_15.csv', index_col='Country')
female_completion = pd.read_csv(path + 'female_completion_rate.csv', index_col='Country')
male_completion = pd.read_csv(path + 'male_completion_rate.csv', index_col='Country')
life_expectancy = pd.read_csv(path + 'life_expectancy.csv', index_col='Country')
gdp = pd.read_csv(path + 'gdp_per_capita.csv', index_col='Country')
# The following code creates a Pandas Series for each variable for the United States.
# You can change the string 'United States' to a country of your choice.
employment_us = employment.loc['United States']
female_completion_us = female_completion.loc['United States']
male_completion_us = male_completion.loc['United States']
life_expectancy_us = life_expectancy.loc['United States']
gdp_us = gdp.loc['United States']
# Uncomment the following line of code to see the available country names
print employment.index.values
# Use the Series defined above to create a plot of each variable over time for
# the country of your choice. You will only be able to display one plot at a time
# with each "Test Run".
gdp_us.plot()
employment_us.plot()
female_completion_us.plot()
male_completion_us.plot()
life_expectancy_us.plot()
|
list5 = [1, 2.5, 3, 4.25, 6, 7, 9.5]
res = []
res = list(x for x in list5 if x%2!=0)
# for i in list5:
# if i%2 != 0:
# res.append(i)
print(res)
|
while True:
try:
num1 = input("enter number")
if (len(num1) == 4):
print("enter number is four digit only")
break
except ValueError:
print("Enter number with only four digits")
|
import math
input_values = input("Enter the values in a comma-separated sequence:")
split_values = input_values.split(',')
C = 50
H = 30
for i in split_values:
D = int(i)
Q = math.sqrt((2 * C * D) / H)
print("For D Value of {} result is {}".format(D, Q))
|
#Answer: Yes we can assign a diffterent data type in Python as its dynamic programming.
a = 25.3
print(a)
a = 'Hello'
print(a)
|
lucky_number = 9
counter = 5
while counter > 0:
number = eval(input("Guess the lucky number:"))
if number == lucky_number:
print("Good Guess!")
break
else:
if counter > 1:
print("Try again!")
counter -= 1
if counter == 0:
print("Sorry but that was not very successful!")
|
"""
This program creates a network out of a formatted text file and finds the path of least resistance
(lowest weight edges). To achieve this it uses Kruskal's minimum spanning tree algorithm together with
a breadth first search algorithm.
NETWORK : contains the nodes or "cities" as well as the edges (roads).
PARENT : contains each node's parent node. Used for checking for cycles in the network.
RANK : contains each node's rank. Also used for checking for cycles.
"""
NETWORK = {
'cities': []
}
PARENT = dict()
RANK = dict()
def get_max_altitude(mst, path):
"""retrieves the highest altitude in the path"""
mst.sort(key=lambda x: x[2], reverse=True)
for road in mst:
if road[0] in path and road[1] in path:
return road[2]
def create_adjacency_list(roads):
"""
To make path finding easier this function gets the minimum spanning tree
as an input and returns an an adjacency list.
"""
adj_list = {}
for road in roads:
adj_list[road[0]] = [] # initializing the keys of the adjacency list
adj_list[road[1]] = []
for road in roads: # adds all the adjacency's for each key
adj_list[road[0]].append(road[1])
adj_list[road[1]].append(road[0])
return adj_list
def breadth_first(mst, destination):
"""
This function gets as an input the minimum spanning tree constructed earlier,
as well as the destination it we want to get to. It finds the path between
city 1 and the destination by utilising the breadth first search algorithm.
"""
adj_list = create_adjacency_list(mst) # returns a reformatted version of the MST
explored = []
queue = [[1]]
while queue:
path = queue.pop(0)
city = path[-1]
if city not in explored:
neighbours = adj_list[city] # gets neighbouring nodes for each city
for neighbour in neighbours: # and loops through them while forming
new_path = list(path) # paths for each of them
new_path.append(neighbour)
queue.append(new_path)
if neighbour == destination: # When the algorithm stumbles upon the
return new_path # destination city it returns the shortest path
explored.append(city)
return "There is no path to city: ", destination
def make_set(city):
"""This function is used to initialize each city's values in the PARENT and RANK dictionaries"""
PARENT[city] = city
RANK[city] = 0
def find(city):
"""Finds a city's parent and returns it"""
if PARENT[city] != city:
PARENT[city] = find(PARENT[city])
return PARENT[city]
def union(city1, city2):
"""Combines the sets containing cities 1 and 2 if they don't have common parents"""
root1 = find(city1)
root2 = find(city2)
if root1 != root2:
if RANK[root1] > RANK[root2]:
PARENT[root2] = root1
else:
PARENT[root1] = root2
if RANK[root1] == RANK[root2]:
RANK[root2] += 1
def kruskal():
"""
Kruskal's MST algorithm. First it sorts the set NETWORK['roads'] by weight before utilizing the find()
and union() functions to combine unconnected nodes until every possible node is connected.
"""
roads = list(NETWORK['roads'])
minimum_spanning_tree = set()
for city in NETWORK['cities']: # initializes every city's dictionary values
make_set(city)
roads.sort(key=lambda x: x[2]) # sorts roads by elevation
for road in roads:
city1, city2, altitude = road
if find(city1) != find(city2): # Checks if city1 and city2 have common parents.
union(city1, city2) # If none found it does a union for their sets
minimum_spanning_tree.add(road) # before adding the road to the MST
return sorted(minimum_spanning_tree)
def add_city(city):
"""
adds a city to the NETWORK dictionary
"""
NETWORK['cities'].append(city)
def add_roads(roads):
"""
gets an array containing roads to be added to the NETWORK dictionary
"""
roads_array = []
for i in range(len(roads)):
city1 = int(roads[i][0]) # Gets the values from their predetermined
city2 = int(roads[i][1]) # indexes in each sub-array.
altitude = int(roads[i][2])
roads_array.append((city1, city2, altitude)) # And appends them to a temporary array before pushing
NETWORK['roads'] = roads_array # it back up to the NETWORK dictionary.
def read_network_file(path):
"""
Reads a formatted .txt file, appends it to a list called network_info, gets the number of cities and roads as
well as the destination city from the first and last lines of the document respectively. After this it
slices them away and returns the remaining list to create the network itself.
"""
network_info = [] # useful info about the network
if path.endswith(".txt"):
file = open(path, "r")
for line in file:
line = line.rstrip() # strips trailing newlines
network_info.append(line.split(' ')) # splits the line into chunks,
cities = int(network_info[0][0]) # so it can add it into network_info for later access.
roads = int(network_info[0][1])
destination = int(network_info[roads + 1][0])
network_info = network_info[1:-1] # Now that the useful info has been extracted we can slice it
return cities, roads, destination, network_info # off only the roads remain.
else:
print("Not a .txt file")
|
"""
greedy_3_tree.py
Module that contains the Greedy 3 Tree heuristics definition.
"""
import network
import sys
import utils
import numpy as np
def Greedy3Tree(topology: network.Network):
mid_points = MinDistance3Connected(topology)
mid_point_pairs = MidPoint6Connected(topology, mid_points)
MidPoint12Connected(topology, mid_point_pairs)
MidPointAllConnected(topology, mid_points)
return topology
def MinDistance3Connected(net):
mid_points = []
visited_nodes = [False] * len(net.get_network_graph().nodes)
closest = sys.maxsize
second_closest = sys.maxsize
closest_index = -1
for node_v in net.get_network_graph().nodes(data="coords"):
if not visited_nodes[node_v[0]]:
closest = sys.maxsize
closest_index = -1
second_closest_index = -1
for node_e in net.get_network_graph().nodes(data="coords"):
if node_v[0] is not node_e[0] and not visited_nodes[node_e[0]]:
dist = utils.euclidean_distance(node_v[1], node_e[1])
if dist < closest:
second_closest_index = closest_index
second_closest = closest
closest_index = node_e[0]
closest = dist
else:
if dist < second_closest:
second_closest_index = node_e[0]
second_closest = dist
if closest_index != -1:
net.add_edge(node_v[0], closest_index, weight=1)
visited_nodes[closest_index] = True
visited_nodes[node_v[0]] = True
if second_closest_index != -1:
net.add_edge(node_v[0], second_closest_index, weight=1)
visited_nodes[second_closest_index] = True
mid_points.append(node_v)
return mid_points
def MidPoint6Connected(net, mid_points):
mid_point_pairs = []
visited_nodes = [False] * len(net.get_network_graph().nodes)
closest = sys.maxsize
closest_index = -1
for mid_point in mid_points:
if not visited_nodes[mid_point[0]]:
for node in net.get_node_connected_component(mid_point[0]):
visited_nodes[node] = True
closest_index = -1
closest = sys.maxsize
for node in mid_points:
if mid_point[0] != node[0] and not visited_nodes[node[0]]:
dist = utils.euclidean_distance(mid_point[1], node[1])
if dist < closest:
closest = dist
closest_index = node[0]
if closest_index != -1:
net.add_edge(mid_point[0], closest_index, weight=1)
for node in net.get_node_connected_component(mid_point[0]):
visited_nodes[node] = True
mid_point_pairs.append((mid_point[0], closest_index))
return mid_point_pairs
def MidPoint12Connected(net, mid_point_pairs):
visited_nodes = [False] * len(net.get_network_graph().nodes)
coords = net.get_node_coords()
closest = sys.maxsize
closest_index = (-1, -1)
for pair in mid_point_pairs:
if not visited_nodes[pair[0]]:
closest = sys.maxsize
closest_index = (-1, -1)
for pair_2 in mid_point_pairs:
if pair[0] != pair_2[0] and not visited_nodes[pair_2[0]]:
dist = utils.euclidean_distance(
coords.get(pair[0]), coords.get(pair_2[0])) + \
utils.euclidean_distance(
coords.get(pair[1]), coords.get(pair_2[1]))
if dist < closest:
closest = dist
closest_index = pair_2
if closest_index != (-1, -1):
net.add_edge(pair[0], closest_index[0], weight=1)
net.add_edge(pair[1], closest_index[1], weight=1)
for node in net.get_node_connected_component(pair[0]):
visited_nodes[node] = True
def MidPointAllConnected(net, mid_points):
visited_nodes = [[False] * len(net.get_network_graph().nodes)
for _ in range(len(net.get_connected_subnetwork()))]
for i, subgraph in enumerate(net.get_connected_subnetwork()):
for node in subgraph:
visited_nodes[i][node] = True
for i, subgraph in enumerate(net.get_connected_subnetwork()):
for node in subgraph.nodes:
if len(net.get_node_neighbors(node)) < 3:
for mid_point in mid_points:
if not visited_nodes[i][mid_point[0]]:
net.add_edge(node, mid_point[0], weight=1)
while len(net.get_node_neighbors(node)) < 3:
coords = net.get_node_coords()
closest = sys.maxsize
closest_index = -1
neighbors = list(net.get_node_neighbors(node))
nc_list = np.setdiff1d(
list(net.get_network_graph().nodes), neighbors)
for n in nc_list:
if node != n:
dist = utils.euclidean_distance(coords.get(node),
coords.get(n))
if dist < closest:
closest = dist
closest_index = n
if closest_index != -1:
net.add_edge(node, closest_index, weight=1)
|
# 字符串
str1 = "hello python"
str2 = 'hello world'
print(str1)
print(str1[2])
print(str2)
print(str2[3])
for char in str2:
print(char)
print(len(str2))
|
"""
1. 两数之和
给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。
你可以假设每种输入只会对应一个答案。但是,你不能重复利用这个数组中同样的元素。
示例:
给定 nums = [2, 7, 11, 15], target = 9
因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]
https://leetcode-cn.com/problems/two-sum/
"""
class Solution:
def twoSum(self, nums, target: int):
dictionary = {}
for i, n in enumerate(nums):
if target - n in dictionary:
return [dictionary[target - n], i]
dictionary[n] = i
nums = [2,7,11,15]
target = 9
s = Solution()
print(s.twoSum(nums,target))
|
# 异常
def excption1():
try:
# 不能确定正确执行的代码
num = int(input("请输入一个整数:"))
except:
# 错误的处理代码
print("请输入正确的整数")
print("-" * 50)
def excption2():
"""捕捉错误类型"""
try:
# 提示用户输入一个整数
num = int(input("输入一个整数:"))
# 使用 8 除以用户输入的整数并且输出
result = 8 / num
print(result)
except ZeroDivisionError:
print("除0错误")
except ValueError:
print("请输入正确的整数")
def excption3():
"""捕捉未知异常"""
try:
# 提示用户输入一个整数
num = int(input("输入一个整数:"))
# 使用 8 除以用户输入的整数并且输出
result = 8 / num
print(result)
except ValueError:
print("请输入正确的整数")
except Exception as result:
print("未知错误 %s" % result)
def excption4():
"""完整异常的写法"""
try:
# 提示用户输入一个整数
num = int(input("输入一个整数:"))
# 使用 8 除以用户输入的整数并且输出
result = 8 / num
print(result)
except ValueError:
print("请输入正确的整数")
except Exception as result:
print("未知错误 %s" % result)
else:
print("尝试成功")
finally:
print("无论是否出现错误都会执行的代码")
def excption5():
return int(input("输入整数:"))
def excption6():
return excption5()
def excption7():
# 利用异常的传递性,在主程序捕获异常
try:
print(excption6())
except Exception as result:
print("未知错误 %s" % result)
def excption8():
"""主动抛出异常"""
# 1. 提示用户输入密码
pwd = input("请输入密码:")
# 2. 判断密码长度 >= 8,返回用户输入的密码
if len(pwd) >= 8:
return pwd
# 3. 如果 < 8 主动抛出异常
print("主动抛出异常")
# 1> 创建异常对象 - 可以使用错误信息字符串作为参数
ex = Exception("密码长度不够")
# 2> 主动抛出异常
raise ex
def excption9():
# 提示用户输入密码
try:
print(excption8())
except Exception as result:
print(result)
excption9()
|
"""
给你一份『词汇表』(字符串数组) words 和一张『字母表』(字符串) chars。
假如你可以用 chars 中的『字母』(字符)拼写出 words 中的某个『单词』(字符串),那么我们就认为你掌握了这个单词。
注意:每次拼写时,chars 中的每个字母都只能用一次。
返回词汇表 words 中你掌握的所有单词的 长度之和。
示例 1:
输入:words = ["cat","bt","hat","tree"], chars = "atach"
输出:6
解释:
可以形成字符串 "cat" 和 "hat",所以答案是 3 + 3 = 6。
示例 2:
输入:words = ["hello","world","leetcode"], chars = "welldonehoneyr"
输出:10
解释:
可以形成字符串 "hello" 和 "world",所以答案是 5 + 5 = 10。
提示:
1 <= words.length <= 1000
1 <= words[i].length, chars.length <= 100
所有字符串中都仅包含小写英文字母
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/find-words-that-can-be-formed-by-characters
"""
words = ["cat", "bt", "hat", "tree"]
chars = "atach"
# 53 1
def count_characters(words, chars):
know = 0
for word in words:
keep_chars = chars[:]
for i in word:
if i in keep_chars:
keep_chars = keep_chars.replace(i, "", 1)
else:
break
else:
know += len(word)
return know
print(count_characters(words, chars))
# 53 2
import collections
def count_characters_2(words, chars):
ans = 0
# Counter类计数器 # Counter({'a': 2, 't': 1, 'c': 1, 'h': 1})
cnt = collections.Counter(chars)
for w in words:
# Counter({'c': 1, 'a': 1, 't': 1})
c = collections.Counter(w)
# all() 函数用于判断给定的可迭代参数 iterable 中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False。
if all([c[i] <= cnt[i] for i in c]):
ans += len(w)
return ans
print(count_characters_2(words, chars))
#============================ 2520 ms 13.9 MB 跟53的相比差了20多倍,我太菜了 ==============
def count_characters_3(words, chars):
length = 0
tup_c = tuple(chars[:])
for word in words:
tup_w = tuple(word[:])
count = 0
word_length = len(word)
for w in word:
if(tup_c.count(w) >= tup_w.count(w)):
count += 1
if(count == word_length):
length += word_length
return length
print(count_characters_3(words, chars))
# 先统计各个字符才个数,再比较 比53大佬慢4倍左右 408 ms 13.7 MB
def count_characters_4(words, chars):
length = 0
dictionary_char = get_dictionary(chars)
for word in words:
dictionary_word = get_dictionary(word)
count = 0
word_length = len(word)
for w in word:
if(dictionary_char.get(w,0) >= dictionary_word.get(w,0)):
count += 1
if(count == word_length):
length += word_length
return length
def get_dictionary(chars):
dictionary_char = {}
for c in chars:
count = dictionary_char.get(c,0)
if(count == 0) :
dictionary_char[c] = 1
else:
count += 1
dictionary_char[c] = count
return dictionary_char;
print(count_characters_4(words, chars))
|
import string
file_name = input('Enter the file name (ex. palindromes.txt)> ')
unwanted = string.punctuation + ' '
def is_palindrome(str):
# Remove the unwanted chars
new_str = filter(lambda x: x not in unwanted, str.lower())
if new_str == new_str[::-1]:
return True
with open(file_name, 'r') as f:
for line in f:
# Here I used rstrip to remove the newline (\n) at the end of the line
if is_palindrome(line.rstrip()):
print (line.rstrip())
|
#Write your code below this line 👇
#Hint: Remember to import the random module first. 🎲
import random
print("Welcome. This is a coin toss programme.")
coin_side_chosen = int(input("Type 0 for Heads and 1 for Tails."))
if coin_side_chosen == 0:
print("You chose Heads.")
else:
print("You chose Tails.")
comp_coin_side_chosen = random.randint(0, 1)
if comp_coin_side_chosen == 0:
print("Computer chose Heads.")
else:
print("Computer chose Tails.")
if coin_side_chosen == comp_coin_side_chosen:
print("You Won.")
else:
print("You Lose.")
|
import pygame
# Add your favorite background color
background_colour = (0, 0, 255)
# Set the width and the height of the window
(width, height) = (300, 200)
# set the screen fro pygame to the width and height tuple defined above
screen = pygame.display.set_mode((width, height))
# set the name of the pygame project at the top of the window
pygame.display.set_caption('Tutorial 1')
screen.fill(background_colour)
pygame.display.flip()
running = True
while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
pygame.quit()
|
class Toy():
def __init__(self,color,age):
self.color= color
self.age= age
self.my_dict= {
'name':'Yoyo',
'has_pets':False
}
def __str__(self):
return f'{self.color}'
def __len__(self):
return 5
def __call__(self):
return('yes??')
def __getitem__(self, i):
return self.my_dict[i]
action_figure=Toy("Red",0)
print(action_figure.__str__())
print(str(action_figure))
print(len(action_figure))
print(action_figure())
print(action_figure['name'])
|
# 4.3
## 4.3.1 Intro to network analysis
import networkx as nx
# create an undirected graph
G = nx.Graph()
# add node:
G.add_node(1)
G.add_nodes_from([2,3])
G.add_nodes_from(['u','v'])
# view nodes
G.nodes()
NodeView((1, 2, 3, 'u', 'v'))
# adding edges takes 2 args, the nodes
G.add_edge(1,2)
G.add_edge('u','v')
# you can add edges from nodes that dont exist - Networkx adds those nodes
G.add_edges_from([(1,3),(1,4),(1,5),(1,6)])
G.add_edge('u','w')
G.edges()
EdgeView([(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), ('u', 'v'), ('u', 'w')])
# removing nodes
G.remove_node(2)
G.nodes()
NodeView((1, 3, 'u', 'v', 4, 5, 6, 'w'))
G.remove_nodes_from([4,5])
G.nodes()
NodeView((1, 3, 'u', 'v', 6, 'w'))
# removing edges
G.remove_edge(1,3)
G.edges()
EdgeView([(1, 6), ('u', 'v'), ('u', 'w')])
G.remove_edges_from([(1,2), ('u','v')])
G.edges()
EdgeView([(1, 6), ('u', 'w')])
G.nodes()
NodeView((1, 3, 'u', 'v', 6, 'w'))
# get number of nodes or edges
G.number_of_nodes()
6
G.number_of_edges()
2
## 4.3.3 Graph Visualistaion with NetworkX
## using a built in data set called Karate Club graph
G = nx.karate_club_graph()
# to visualise, import matplot
import matplotlib.pyplot as plt
nx.draw(G)
nx.draw(G, with_labels=True, node_color='lightblue', edge_color='gray')
plt.show()
nx.show()
-----------------------------------------------------------------
rror Traceback (most recent call last)
nput-142-4f04236f4dc5> in <module>()
.show()
rror: module 'networkx' has no attribute 'show'
nx.draw(G, with_labels=True, node_color='lightblue', edge_color='gray')
plt.savefig('karate_graph.pdf')
plt.show()
# Nx stores degrees of nodes in a dict where keys are node IDs and vals are degrees
G.degree()
DegreeView({0: 16, 1: 9, 2: 10, 3: 6, 4: 3, 5: 4, 6: 4, 7: 4, 8: 5, 9: 2, 10: 3, 11: 1, 12: 2, 13: 5, 14: 2, 15: 2, 16: 2, 17: 2, 18: 2, 19: 3, 20: 2, 21: 2, 22: 2, 23: 5, 24: 3, 25: 3, 26: 2, 27: 4, 28: 3, 29: 4, 30: 4, 31: 6, 32: 12, 33: 17})
# to find specific nodes degrees:
G.degree()[33]
17
# or using this notation where the arg is the node:
G.degree(33)
17
# note this fn degree is different and distinguished by the interpreter by the way it is called
# the first degree has no args, the second 1 ard
### 4.3.4 Random Graphs
# simplest random graph model for network is the Erdos-Renyi or the ER graph model
# there are two parameters for a random graph model, N and p.
# N is the number of nodes and p is the probability for any two nodes to be connected by an edge
# so to implement you would go through every possible pair of nodes and with probabiliyt p insert an edge between them.
# consider eaxh pair of nodes once, independently of any other pair and, for example, flip a coin to see if they are connected.
# If the value of p is small typical graphs tend to be sparse having few edges
# large values of p mean the graph is densely connected
# the Nx lib includes an ER graph generator but we will write our own.
# The we would be able to implement a more complex network model of the kind not included in the Nx lib
# to implement the coin flip part we will import a fn from scipy stats
### pseudocode for the random graph generator
#number of nodes, N = 20
#probability of edge, p = 0.2
#create empty graph
#add all nodes in the graph
#loop over all pairs of nodes
# add edge with probability p
N = 20
p = 0.2
G = nx. Graph()
G.add_nodes_from(range(N))
for node1 in G.nodes():
for node2 in G.nodes():
# True == 1
#if bernoulli.rvs(p=p) == True: is the same as:
if bernoulli.rvs(p=p):
G.add_edge(node1, node2)
G.nodes()
NodeView((0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19))
G.number_of_nodes()
20
G.number_of_edges()
72
# Edges seems v high when probability is only 0.2
nx.draw(G)
plt.savefig("random_nx_1")
plt.show
<function matplotlib.pyplot.show(*args, **kw)>
plt.show()
# yep has far to many edges - why?
# We have considered each pair twice - because we consider node1 being 10 and
#node2 being 1 BUT ALSO node1 being 1 and node2 being 10.
G = nx. Graph()
G.add_nodes_from(range(N))
for node1 in G.nodes():
for node2 in G.nodes():
# will also work if use >
if node1 < node2 and bernoulli.rvs(p=p):
G.add_edge(node1, node2)
nx.draw(G)
plt.savefig('random_nx_2')
plt.show()
G.number_of_nodes()
20
G.number_of_edges()
37
# turn into fn:
def er_graph(N, p):
""" Generate a random ER Network Graph """
G = nx. Graph()
G.add_nodes_from(range(N))
for node1 in G.nodes():
for node2 in G.nodes():
if node1 < node2 and bernoulli.rvs(p=p):
G.add_edge(node1, node2)
return G
# Test by calling directly from nx.draw:
nx.draw(er_graph(50, 0.08))
nx.draw(er_graph(50, 0.08), node_size=40, node_color='gray')
plt.savefig('er_final')
plt.show()
|
#Exercise 1
#A cipher is a secret code for a language. In this case study, we will explore a cipher that is reported by contemporary Greek historians to have been used by Julius Caesar to send secret messages to generals during times of war.
#The Caesar cipher shifts each letter of a message to another letter in the alphabet located a fixed distance from the original letter. If our encryption key were 1, we would shift h to the next letter i, i to the next letter j, and so on. If we reach the end of the alphabet, which for us is the space character, we simply loop back to a. To decode the message, we make a similar shift, except we move the same number of steps backwards in the alphabet.
#Over the next five exercises, we will create our own Caesar cipher, as well as a message decoder for this cipher. In this exercise, we will define the alphabet used in the cipher.
#The string library has been imported. Create a string called alphabet consisting of the lowercase letters of the space character space ' ', concatenated with string.ascii_lowercase at the end.
import string
alphabet = ' ' + string.ascii_lowercase
#alphabet has already defined from the last exercise. Create a dictionary with keys consisting of the characters in alphabet, and values consisting of the numbers from 0 to 26.
#Store this as positions.
positions = dict(zip(alphabet, range(27)))
#alphabet and positions have already been defined from previous exercises. Use positions to create an encoded message based on message where each character in message has been shifted forward by 1 position, as defined by positions. Note that you can ensure the result remains within 0-26 using result % 27
#Store this as encoded_message.
message = "hi my name is caesar"
def encode(message, step):
encoded_message = ""
for i in message:
ind = positions[i]
cod = alphabet[ind+step]
encoded_message += cod
return encoded_message
encoded_message = encode(message, 1)
print(encoded_message)
#alphabet, position and message remain defined from previous exercises. In addition, sample code for the previous exercise is provided below. Modify this code to define a function encoding that takes a message as input as well as an int encryption key key to encode a message with the Caesar cipher by shifting each letter in message by key positions.
#Your function should return a string consisting of these encoded letters.
#Use encode to encode message using key = 3, and save the result as encoded_message.
#Print encoded_message
#supplied code
encoding_list = []
for char in message:
position = positions[char]
encoded_position = (position + key) % 27
encoding_list.append(alphabet[encoded_position])
encoded_string = "".join(encoding_list)
# I basically did this in my previous piece of code :)
def encode(message, key):
encoding_list = []
for char in message:
position = positions[char]
encoded_position = (position + key) % 27
encoded = alphabet[encoded_position]
encoding_list.append(encoded)
encoded_string = "".join(encoding_list)
return encoded_string
encoded_message = encode(message, 3)
print(encoded_message)
# this works but mine was nicer
#Note that encoding and encoded_message are already loaded from the previous problem. Use encoding to decode encoded_message using key = -3.
#Store your decoded message as decoded_message.
#Print decoded_message. Does this recover your original message?
#### NOTE that they saved the encoder as ENCODING this time not encode ;)
decoded_message = encoding(encoded_message, -3)
print(decoded_message)
|
import usuarios.conexion as conexion
connect = conexion.conectar() # variable connect llamar metodo conectar que esta dentro de coexion
database = connect[0] #indice cero donde eeta la base de datos
cursor = connect[1] #indice uno donde esta el cursor
class Producto:
def __init__(self,codigo_producto,id_TipoPro, nombreProducto,familia,DNI_provedor,descripcion,cantidad_stock,precio_venta,precio_provedor):
self.codigo_producto = codigo_producto
self.id_TipoPro = id_TipoPro
self.nombreProducto = nombreProducto
self.familia = familia
self.DNI_provedor = DNI_provedor
self.descripcion = descripcion
self.cantidad_stock = cantidad_stock
self.precio_venta = precio_venta
self.precio_provedor = precio_provedor
def guardar (self):
sql = "INSER INTO productos VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,NOW())"
producto =(self.codigo_producto,self.id_TipoPro,self.nombreProducto,self.familia,self.DNI_provedor,self.descripcion,self.cantidad_stock,self.precio_venta,self.precio_provedor)
cursor.execute(sql,producto)
database.commit()
return[cursor.rowcount,self]
#consulta producto existe
def identificar_producto (self): #metodo identificar
sql = "SELECT * FROM tipoproducto WHERE id_TipoPro = %s OR nombreProducto = %s"
#DATOS PARA CONSULTA PRODUCTO
producto = (self.id_TipoPro, self.nombreProducto)
#CONSULTA
cursor.execute(sql, producto)
result = cursor.fetchone()
return result
|
#
# Global settings
#
# Step size for calculation
step = 1/12.
nyears = 14
nstep = int(nyears/float(step))
# Step size for temperature (determines roughly the granularity of reported sensor temperatures)
ts_step = 5 # steps per degree
# time_step_list is a list of each step through the years, for plotting purposes maybe.
# It is size nstep+1
time_step_list = []
time_step_list.append(0)
for i in range(nstep) :
time_step_list.append( time_step_list[-1] + step )
# Used to live in NominalPower
nomsensorT = 0
# Temperature kelvin / celsius conversion
def kelvin(celsius) :
return 273.15 + celsius
|
import unittest
from problem_two import *
class TestPrintDepth(unittest.TestCase):
def test_output(self):
"""
Tests if the value returned from the print_depth function
matchs the expected value.
"""
var1 = {
"key1":1,
"key2":{
"key3":1,
"key4":{
"key5":4,
"user":person_b,
}
}
}
var2 = {"user1": person_a}
self.assertDictEqual(print_depth(var1), {'key1': 1, 'key2': 1, 'key3': 2, 'key4': 2, 'key5': 3, 'user': 3, 'first_name': 5, 'last_name': 5, 'father': 5})
self.assertDictEqual(print_depth(var2), {'user1':1, 'first_name':2, 'last_name':2, 'father':2})
self.assertDictEqual(print_depth({}), {})
def test_input_data(self):
"""
Raises a TypeError if the input data is not a dictionary
"""
self.assertRaises(TypeError, print_depth, [])
self.assertRaises(TypeError, print_depth, 1)
self.assertRaises(TypeError, print_depth, 'test')
|
def get_salary(hours: int) -> int:
res = hours * 84
if hours > 120:
res += (hours - 120) * 84 * 0.15
if hours < 60:
res -= 700
return res
if __name__ == "__main__":
try:
hours = int(input("Pls input the hours of work:"))
print(f"Salary is {get_salary(hours)}")
except Exception as e:
print("The type of input is not integer,and the error is ", e)
|
print("To je program za pretvarjanje enot")
kilometri = int(raw_input("Vnesi stevilo kilometrov: "))
conv_fac = 0.621371
milje = kilometri * conv_fac
print("To je " + str(milje) +" milj")
while True:
answer = raw_input("Zelis narediti novo pretvorbo? (yes/no)")
if answer == "yes":
kilometri = int(raw_input("Vnesi stevilo kilometrov: "))
conv_fac = 0.621371
milje = kilometri * conv_fac
print("To je " + str(milje) + " milj")
elif answer == "no":
print ("adijo")
break
else:
print("napaka, odgovori z yes ali no")
|
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# 「Introduction to Computation and Programming Using Python」の§3.3の例題2
def isIn(short_string, long_string):
m = len(long_string)
n = len(short_string)
for i in range(m):
if long_string[i] == short_string[0]:
flag = True
for j in range(n):
if long_string[i+j] != short_string[j]:
flag = False
break
if flag:
return True
return False
if isIn('test', 'Test test'):
print 'True'
else:
print 'False'
|
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# 「Introduction to Computation and Programming Using Python」の§4.1.2の例題
def printName(firstName, lastName, reverse=False):
if reverse:
print lastName + ', ' + firstName
else:
print firstName, lastName
printName('Olga', 'Puchajerova')
printName('Olga', 'Puchajerova', True)
printName('Olga', 'Puchajerova', False)
printName('Olga', 'Puchajerova', reverse=False)
printName('Olga', lastName='Puchajerova', reverse=False)
printName(lastName='Puchajerova', firstName='Olga', reverse=False)
|
def manhattanDistance(p1, p2):
return abs(p1[0] - p2[0]) + abs(p1[1] - p2[1])
with open("6.txt", "r") as f:
coordinates = []
for line in f.readlines():
current = line.rstrip("\n").split(",")
coordinates.append((int(current[0]), int(current[1])))
areaOwned = {c: [0, False] for c in coordinates}
minX = min(coordinates, key=lambda c: c[0])[0]
maxX = max(coordinates, key=lambda c: c[0])[0]
minY = min(coordinates, key=lambda c: c[1])[1]
maxY = max(coordinates, key=lambda c: c[1])[1]
xRange = range(minX, maxX + 1)
yRange = range(minY, maxY + 1)
def isInfinite(p):
print(p)
return p[0] == minX or p[0] == maxX or p[1] == minY or p[1] == maxY
matrix = [[[((x, y), c, manhattanDistance((x,y),c)) for c in coordinates] for x in xRange] for y in yRange]
for y in range(len(xRange)):
for x in range(len(yRange)):
matrix[x][y].sort(key=lambda p: p[2])
if not areaOwned[matrix[x][y][0][1]][1]:
areaOwned[matrix[x][y][0][1]][1] = isInfinite(matrix[x][y][0][0])
if matrix[x][y][0][2] != matrix[x][y][1][2]:
areaOwned[matrix[x][y][0][1]][0] += 1
print(areaOwned)
print(max(filter(lambda v: not v[1], areaOwned.values())))
|
import pygame
import math
pygame.init()
BLACK = (0,0,0)
WHITE = (255,255,255)
GREEN = (0, 255, 0)
RED = (255, 0, 0)
BLUE = (0,0,255)
PI = 3.141592653
done = False
clock = pygame.time.Clock()
size = (700,500)
screen = pygame.display.set_mode(size)
pygame.display.set_caption("Mr Duguid's Cool Game")
screen.fill(WHITE)
pygame.display.flip()
width = 0
while not done:
for event in pygame.event.get():
if event.type == pygame.QUIT:
done = True
elif event.type == pygame.KEYDOWN:
print("Key Pressed")
width = width +1
screen.fill(WHITE)
pygame.draw.line(screen, GREEN, [0,0], [100,100],width)
y_offset = 0
while y_offset < 100:
pygame.draw.line(screen,RED,[0,10+y_offset],[100,110+y_offset],5)
y_offset = y_offset + 10
for i in range(200):
radians_x = i / 20
radians_y = i / 6
x = int(75 * math.sin(radians_x)) + 200
y = int(75 * math.cos(radians_y)) + 200
pygame.draw.line(screen, BLACK, [x,y], [x+5,y], 5)
pygame.draw.rect(screen,BLACK,[20,20,250,100],2)
pygame.draw.ellipse(screen, BLACK, [20,20,250,100], 2)
pygame.draw.arc(screen, GREEN, [100,100,250,200],PI/2, PI, 2)
pygame.draw.arc(screen, BLACK, [100,100,250,200],0, PI/2, 2)
pygame.draw.arc(screen, RED, [100,100,250,200],2*PI/2, 2*PI, 2)
pygame.draw.arc(screen, BLUE, [100,100,250,200],PI, 3*PI/2, 2)
pygame.draw.polygon(screen, BLACK, [[200,350], [0,400], [200,450], [400,400]],5)
font = pygame.font.SysFont('Calibri',25,True,False)
text = font.render("Some Text",True,GREEN)
screen.blit(text, [500,250])
pygame.display.flip()
clock.tick(60)
print("Got Here")
pygame.quit()
|
from turtle import Turtle
class GameBar(Turtle):
def __init__(self):
super().__init__()
self.speed(0)
self.penup()
self.color('white')
self.hideturtle()
self.goto(0, 260)
def set_points(self, tray_left, tray_right):
self.clear()
self.write(f"Player {tray_left.game_color}: {tray_left.score} "
f"Player {tray_right.game_color}: {tray_right.score}",
align="center",
font=("Calibri", 15, "normal"))
class EndGameBar(Turtle):
def __init__(self):
super().__init__()
self.speed(0)
self.penup()
self.color('red')
self.hideturtle()
self.goto(0, 50)
def end_game(self, tray):
self.clear()
self.write(f"Player {tray.game_color} won with {tray.score} points",
align="center",
font=("Calibri", 30, "italic"))
|
#!/bin/python3
import math
import os
import random
import re
import sys
# Complete the caesarCipher function below.
def caesarCipher(s, k):
q="abcdefghijklmnopqrstuvwxyz"
w = q.upper()
t = ""
for i in s:
if i not in q and i not in w:
t=t+i
else:
if i not in q:
ind = (w.index(i)+k)%len(q)
t=t+w[ind]
else:
ind = (q.index(i)+k)%len(q)
t=t+q[ind]
return t
if __name__ == '__main__':
fptr = open(os.environ['OUTPUT_PATH'], 'w')
n = int(input())
s = input()
k = int(input())
result = caesarCipher(s, k)
fptr.write(result + '\n')
fptr.close()
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Development environment:
# - Python 2.7.5 (32-bit)
# - Windows 7 64-bit machine
import json
from pprint import pprint
def getMovieRatings(jsonFile):
""" Reads movie ratings from json file and returns an object """
with open(jsonFile) as ratingsFile:
ratings = json.load(ratingsFile)
return ratings
# Calculate similarity score
# Two methods: 1. Euclidean distance and 2. Pearson correlation
def calcSimilarityEuclidean(ratings, critic1, critic2):
""" Calculates similarity score using Euclidean distance method """
return 0
def calcSimilarityPearson(ratings, critic1, critic2):
""" Calculates similarity score using Pearson correlation coefficient method """
pass
def movieRecommendations():
""" Movie recommendation program based on ratings of critics """
ratings = getMovieRatings("movie_ratings.json")
for critic in ratings:
print critic
for movie in ratings[critic]:
print ratings[critic][movie]
sim = calcSimilarityEuclidean(ratings, "Mick LaSalle", "Toby")
print sim
def main():
movieRecommendations()
if __name__ == '__main__':
main()
|
#
#3. Delete Operation on Array
#
number_array = [4, 5, 2, 7, 9, 13];
# Lets delete the item in the 3rd position of the original array [4, 5, 2, 7, 9, 13];
print("=========== Initial Array =========")
for idex, item in enumerate(number_array):
print(" Array [", idex , "] ", item)
print("=========== Initial Array =========")
m = 3; #delete the item at the 5th position
n = len(number_array); #assign the array length
j = m #define a variable in the size index to remove
while( j < n) :
number_array[j-1] = number_array[j];
j = j + 1;
n = n - 1; # length will reduce due to the deletion
print("========= Updated Array ============")
for i in range(n):
print(" Array [", i , "] ", number_array[i])
print("========== Updated Array ===========")
# Initial array before insertion: [4, 5, 2, 7, 9, 13];
# result array after insertion: [4, 5, 2, 9, 13];
|
import datetime
class User:
def __init__(self, name, birthday):
self.name = name
self.birthday = birthday
def age(self):
today = datetime.date(2021, 5, 18)
yyyy = int(self.birthday[0:4])
mm = int(self.birthday[4:6])
dd = int(self.birthday[6:8])
dob = datetime.date(yyyy, mm, dd)
age_in_day = (today - dob).days
age_in_year = age_in_day / 365
return int(age_in_year)
user = User('ashu', '19970416')
print('Hello', user.name, 'You are ', user.age(),'years old !')
|
# method to format the list of users
# prints user's title, fan count, likes, and userID
def print_user_data( user_list ):
i = 0
for user in user_list:
print(str(i) + ': ' + user['title'] + " FANS:" + str(user['extraInfo']['fans']) + " LIKES:" + str(
user['extraInfo']['likes']) + " ID:" + str(user['extraInfo']['userId']))
i += 1
# print user data from the hashtag list
def print_user_objects( user_list):
i = 0
for user in user_list:
print(user['userInfo']['user']['nickname'] + " FOLLOWERS:" + str(user['userInfo']['stats']['followerCount']) +
" LIKES:" + str(user['userInfo']['stats']['heart']) + " ID:" + str(user['userInfo']['user']['id']))
i += 1
# gather average, max, and min number of followers from list of users
def hashtag_user_stats( users ):
sum = 0
min = 0
max = 0
for i in range(len(users)):
user=users[i]
follow = user['userInfo']['stats']['followerCount']
sum = sum + follow
if i == 0:
min = follow
max = follow
elif follow < min:
min = follow
elif follow > max:
max = follow
avg = sum / len(users)
return [avg, max, min]
# prints the hashtag data, title and number of views
def print_hashtag( tag_list ):
for tag in tag_list:
print( tag['cardItem']['title'] + ' VIEWS: ' + str( tag['cardItem']['extraInfo']['views']))
# prints the dictionary of TikToks. All data output
def print_tiktoks( tiktok_list):
for tiktok in tiktok_list:
print(tiktok)
# prints the TikTok found, formatted
def print_tiktoks_format( tiktok_list, api):
for tiktok in tiktok_list:
username = tiktok['author']['uniqueId']
print(username + ' UserID: ' + str(tiktok['author']['id']))
user = api.get_user( username )
print(user)
# from a given list of tiktoks, return all user objects
def get_userobj_from_list( tiktok_list, api ):
users = []
for tiktok in tiktok_list:
username = tiktok['author']['uniqueId']
user = api.get_user( username )
users.append(user)
return users
# Collect userIDs from a list of TikTok users
def get_seeds( user_list ):
seed_ids = []
for user in user_list:
seed_ids.append(user['extraInfo']['userId'])
return seed_ids
# Check for unique elements
def is_unique( seed_list, item ):
for value in seed_list:
if item == value:
return False
return True
|
import sqlite3 #enable control of an sqlite database
import csv #facilitates CSV I/O
f="discobandit.db"
db = sqlite3.connect(f) #open if f exists, otherwise create
c = db.cursor() #facilitate db ops
#==========================================================
fObj1 = open("peeps.csv")
fObj2 = open("courses.csv")
d1=csv.DictReader(fObj1)
d2=csv.DictReader(fObj2)
#Q: What can you print here to make each line show only
# a name and its ID?
# eg,
# sasha, 3
q = "CREATE TABLE students (name TEXT, age INTEGER, id INTEGER)"
c.execute(q) #run SQL query
for key in d1:
field1 = key['name']
field2 = key['age']
field3 = key['id']
q = "INSERT INTO students VALUES('" + field1 + "','" +field2 + "','"+ field3+ "');"
c.execute(q)
q = "CREATE TABLE courses (code TEXT, id INTEGER, mark INTEGER)"
c.execute(q)
for key in d2:
field1 = key['code']
field2 = key['id']
field3 = key['mark']
q = "INSERT INTO courses VALUES('" + field1 + "','" + field2 + "','" + field3 + "');"
c.execute(q)
#==========================================================
db.commit() #save changes
db.close() #close database
|
#!/usr/bin/python
# -*- coding:utf-8 -*-
from perceptron import Perceptron
f = lambda x:x
class LinearUnit(Perceptron):
def __init__(self,input_num):
Perceptron.__init__(self,input_num,f)
def get_training_dataset():
input_vecs = [[5],[3],[8],[1.4],[10.1]]
labels = [5500,2300,7600,1800,11400]
return input_vecs,labels
def train_linear_unit():
lu = LinearUnit(1)
input_vecs,labels = get_training_dataset()
lu.train(input_vecs,labels,10,0.01)
return lu
if __name__ == '__main__':
linear_unit = train_linear_unit()
print linear_unit
print 'work 3.4 year,mothly salary = %.2f'%linear_unit.predict([3.4])
print 'work 13.4 year,mothly salary = %.2f'%linear_unit.predict([13.4])
|
import time
from threading import Thread
COUNT = 500_000_000
def countdown(n):
while n > 0:
n -= 1
start = time.time()
t1 = Thread(target=countdown, args=(COUNT//2,))
t2 = Thread(target=countdown, args=(COUNT//2,))
t1.start()
t2.start()
t1.join()
t2.join()
end = time.time()
print("Tempo em segundos:", round((end-start), 2))
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.