text
stringlengths
37
1.41M
input1=input("Enter a String: ") def remove_odd_index(input1): res='' for i in input1[::2]: res+=i return res val=remove_odd_index(input1) print(val)
import math from queue import Queue # Spatial distance between two positions def distance(pos1, pos2): x1, y1 = pos1 x2, y2 = pos2 return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2) # Shortest path distance (BFS) between two positions on the board def board_distance(pos1, pos2, board): bfs_queue = Queue() seen_set = set() bfs_queue.put((pos1, 0)) seen_set.add(pos1) actions = [(-1, 0), (1, 0), (0, -1), (0, 1)] while not bfs_queue.empty(): curr_pos, dist = bfs_queue.get() if curr_pos == pos2: return dist for action in actions: dx, dy = action x, y = curr_pos # Note that here, we assume that pursuers can move to any # non-obstacle space (i.e. that multiple pursuers can be at # the same location) next_pos = (x + dx, y + dy) if next_pos not in seen_set and (board[x + dx][y + dy] != '|'): bfs_queue.put((next_pos, dist + 1)) seen_set.add(next_pos) return None class Evader: def __init__(self, x, y, board): self.x = x self.y = y self.board = board # decode action def move(self, a): if a == 1: return -1, 0 # left elif a == 2: return 1, 0 # right elif a == 3: return 0, -1 # down elif a == 4: return 0, 1 # up return 0, 0 # invalid action # action def action(self, a): dx, dy = self.move(a) if (self.board[self.x + dx][self.y + dy] != '|'): self.x += dx self.y += dy # try action but don't actually update the evader's position def try_action(self, a): dx, dy = self.move(a) x = self.x y = self.y if (self.board[self.x + dx][self.y + dy] != '|'): x += dx y += dy return x, y # policy # The evader takes the action that would maximizes the distance # to the closest pursuer def policy(self, pursuer_positions): actions = [(-1, 0), (1, 0), (0, -1), (0, 1)] max_distance = None max_distance_action = None for a in range(1, 5): # Try each action x, y = self.try_action(a) min_pursuer_distance = None # Compute distance to closest pursuer after taking the action for pursuer_position in pursuer_positions: dist_pursuer = distance(pursuer_position, (x, y)) # dist_pursuer = board_distance(pursuer_position, (x, y), self.board) if min_pursuer_distance is None or dist_pursuer < min_pursuer_distance: min_pursuer_distance = dist_pursuer # Update maximum distance to closest pursuer and corresponding action if max_distance is None or min_pursuer_distance > max_distance: max_distance = min_pursuer_distance max_distance_action = a return max_distance_action # return postion of the evader def getPos(self): return self.x, self.y # print current position def print(self): print(self.x, self.y)
import pickle import struct f = open('Stu.txt','w') n = input('Please input the number of stus:') s = struct.pack('i',n) f.write(s) s2 = 'Number Name High Level Maths Lineral Math Computer Introduction' print len(s2) f.write(s2) i = 0 while i < n: num = input('Please input No.' + str(i+1) + 's number(11 bits):') name = input('Please input No.' + str(i+1) + 's name(3 words):') hlm = input('Please input No.' + str(i+1) + 's High level Maths:') lm = input('Please input No.' + str(i+1) + 's Lineral Math:') ci = input('Please input No.' + str(i+1) + 's CI:') s = int(num) + str(name) s = s + struct.pack('fff',hlm,lm,ci) f.write(s) i = i + 1 f.close()
#yield2 rows = [3,17] def cols(): yield 56 yield 2 yield 1 r = ((i,j) for i in rows for j in cols()) for e in r : print e #ļwri,''te import os f = open('h.txt','w+') x = ['1\n','2\n','3\n','4\n','5\n','6\n'] #for e in x : # f.write(e+os.linesep) f.writelines(x) f.close() #argvargc鿴 import sys print 'you enter ', len(sys.argv), 'arguments' print 'they are ' , str(sys.argv) #osos.path ģʾıдݡļݡĿ¼ļ· import os for tmp in ('/tmp',r'c:\tmp') : if os.path.isdir(tmp): break else : print 'no temp directory available' tmp = '' if tmp : os.chdir(tmp) c = os.getcwd() print '*** current temporary directory ***' print c print '*** creating example directionary ***' os.mkdir('example') os.chdir('example') c = os.getcwd() print '*** new working directory ***' print c print '*** original directory listing ***' print os.listdir(c) print '*** creating test file ***' f = open('test','w') f.write('f\n') f.write('u\n') f.write('c\n') f.write('k\n') f.close() print '*** updated directory listing ***' print os.listdir(c) print "*** renaming 'test' to 'filetest.txt'" os.rename('test','filetest') print '*** updated directory listing ***' print os.listdir(c) path = os.path.join(c,os.listdir(c)[0]) print '*** full file pathname ***' print path print '*** (pathname,basename) == ***' print os.path.split(path) print '*** (filename,extension) == ***' print os.path.splitext(os.path.basename(path)) print '*** displaying file contents ***' f = open(path) for e in f : print e f.close() print '*** deleting test file ***' os.remove(path) print '*** updated directory listing ***' print os.listdir(c) os.chdir(os.pardir) print '*** deleting test directory ***' os.rmdir('example') print '*** done ***'
# -*- coding:utf-8 -*- '''最短子数组 对于一个数组,请设计一个高效算法计算需要排序的最短子数组的长度。 给定一个int数组A和数组的大小n,请返回一个二元组,代表所求序列的长度。(原序列位置从0开始标号,若原序列有序,返回0)。保证A中元素均为正整数。 测试样例: [1,4,6,5,9,10],6 返回:2 ''' class Subsequence: def shortestSubsequence(self, A, n): # write code here minA = 0 right = 0 for i in range(n): if A[i] > minA: minA = A[i] elif A[i] < minA: right = i maxA = 100000 left = n-1 for i in range(n-1, -1, -1): if A[i] < maxA: maxA = A[i] elif A[i] > maxA: left = i return max(right-left+1, 0)
def sum(numbers): total = 0 for x in range(0, len(numbers)): total = total + numbers[x] return total def dot_product(A, B): dot = [] if len(A) == len(B): for x in range(0, len(A)): num = A[x] * B[x] dot.append(num) else: return None return sum(dot)
# 1B1.py # Sandis Mālnieks 193RIC058 from numpy import * # Importē skaitlisko metožu bibliotēkas funkcijas from matplotlib import pyplot as plt x = linspace(0, 7, 70) # Trešais arguments ir ģenerējamo elementu skaits y = sin(x) plt.grid() plt.xlabel('x') plt.ylabel('f(x)') plt.title('Funkcija $sin(x)$') plt.plot(x, y, color = "#006400") y = x # f(x) = x plt.plot(x, y) y = x - pow(x,2)/math.factorial(3) plt.plot(x, y) y = x - pow(x,2)/math.factorial(3)+pow(x,5)/math.factorial(5) plt.plot(x, y) y = x - pow(x,2)/math.factorial(3)+pow(x,5)/math.factorial(5)-pow(x,7)/math.factorial(7) plt.plot(x, y) plt.show()
from numpy import exp,array,random,dot def sigmoid(x,derivative=False): if derivative==True: return x*(1-x) return 1/(1+exp(-x)) if __name__ == '__main__': training_set_inputs = array([[0, 0, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]]) training_set_outputs = array([[0, 1, 1, 0]]).T random.seed(1) synaptic_weights0 = 2*random.random((3,1)) - 1 print(synaptic_weights0) l1=[] for i in range(600000): l0=training_set_inputs l1=sigmoid(dot(l0,synaptic_weights0)) #print("l1 ",l1) error=(training_set_outputs-l1) #print("error",error*sigmoid(l1,True)) adjust=dot(l0.T,error*sigmoid(l1,True)) #print('adjust',adjust) synaptic_weights0+=adjust if i%100000==0: print("new synaptic_weights0 ",synaptic_weights0) print(l1)
""" Design an algorithm to encode a list of strings to a string. The encoded string is then sent over the network and is decoded back to the original list of strings. Please implement encode and decode """ class Solution: """ @param: strs: a list of strings @return: encodes a list of strings to a single string. """ """ word -> :; : -> :: """ def encode(self, strs): # write your code here encodes = [] for str1 in strs: if str1 == ':': encodes.append('::') else: encodes.append(str1) encodes.append(':;') return "".join(encodes) """ @param: str: A string @return: dcodes a single string to a list of strings """ def decode(self, str): # write your code here strs = [] decode = [] i = 0 while i < len(str) - 1: if str[i] == ':': if str[i + 1] == ':': strs.append(str[i]) i += 2 elif str[i + 1] == ';': strs.append("".join(decode)) decode = [] i += 2 else: decode.append(str[i]) i += 1 return strs
""" Example 1: Input: ["i", "love", "leetcode", "i", "love", "coding"], k = 2 Output: ["i", "love"] Explanation: "i" and "love" are the two most frequent words. Note that "i" comes before "love" due to a lower alphabetical order. Example 2: Input: ["the", "day", "is", "sunny", "the", "the", "the", "sunny", "is", "is"], k = 4 Output: ["the", "is", "sunny", "day"] Explanation: "the", "is", "sunny" and "day" are the four most frequent words, with the number of occurrence being 4, 3, 2 and 1 respectively. """ class Solution(object): def topKFrequent(self, words, k): """ :type words: List[str] :type k: int :rtype: List[str] """ dir = {} for i in words: if i in dir: dir[i] += 1 else: dir[i] = 1 heap = [] # heapq.heapify(heap) for key in dir: heapq.heappush(heap, (-dir[key], key)) aws = [] for i in range(k): aws.append(heapq.heappop(heap)[1]) # aws.sort() return aws
x = 0 def a(): x = 0 x +=1 print x print "a" x +=1 print x yield 99 x +=1 print x print "a2" x +=1 print x yield 98 x +=1 print x b = a() b #print x print "``````````" print b.next() #print x #b.next() #print x print b print "``````````" for i in b: print i
import math def odd(n): return n % 2 == 1 def generate_odd(): n = 3 while True: yield n n = n + 2 count = 1 prime_list = [2,] for candidate_prime in generate_odd(): is_prime = True for test in prime_list: if test > math.sqrt(candidate_prime): break else: if candidate_prime % test == 0: is_prime = False if is_prime == True: prime_list.append(candidate_prime) count = count + 1 if count >= 1000: break for item in prime_list: print item,
def twoSum(nums, target): """ :type nums: List[int] :type target: int :rtype: List[int] """ h = {} i = 0 for num in nums: n = target - num if n not in h: h[num] = i i+=1 else: return [h[n],i] nums = [2, 7, 11, 15] target = 9 print(twoSum(nums,target))
''' 96. Unique Binary Search Trees Question: https://leetcode.com/problems/unique-binary-search-trees/ Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n? Input: 3 Output: 5 Explanation: Given n = 3, there are a total of 5 unique BST's: 1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3 Solution: Dynamic Programming - DP[i] = Number of structures using i nodes - Given a root node, all values < root goes to the left half and all values > root goes to the right half - Hence for example #nodes = 4, #nodes for left subtree and right subtree can be (0, 3), (1, 2), (2, 1) and (3, 0) - here 0 corresponds to empty tree - Hence dp[4] = dp[3]*dp[0]+dp[2]*dp[1]+dp[1]*dp[2]+dp[0]*dp[3] Created on Jun 1, 2019 @author: smaiya ''' class Solution: def numTrees(self, n): dp = [0 for i in range(n+1)] dp[0]=dp[1]=1 for i in range(2, n+1): for j in range(i): dp[i] += dp[j]*dp[i-1-j] return dp[n]
''' 394. Decode String Question: Given an encoded string, return it's decoded string. The encoding rule is: k[encoded_string], where the encoded_string inside the square brackets is being repeated exactly k times. Note that k is guaranteed to be a positive integer. s = "3[a]2[bc]", return "aaabcbc". s = "3[a2[c]]", return "accaccacc". s = "2[abc]3[cd]ef", return "abcabccdcdcdef". Solution: Use stack Created on May 12, 2019 @author: smaiya ''' class Solution: def decodeString(self, s): num, pattern = '', '' num_stack, pattern_stack = [], [] for c in s: if c.isdigit(): num+=c if c.isalpha(): pattern+=c if c=='[': num_stack.append(num) pattern_stack.append(pattern) num, pattern = '', '' if c==']': n = num_stack.pop() p = pattern_stack.pop() pattern = p+pattern*int(n) return pattern
''' Inorder traversal def inorderTraversal(self, A): if A is None: return None self.inorderTraversal(A.left) self.inorderTraversal.append(A.val) self.inorderTraversal(A.right) return self.postorderList Created on Jul 3, 2018 @author: smaiya ''' # Definition for a binary tree node class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: # @param A : root node of tree # @return a list of integers def inorderTraversal(self, A): stack = [] node = A inOrder_list = list() while stack or node: if node: stack.append(node) node = node.left else: node = stack.pop() inOrder_list.append(node.val) node = node.right return inOrder_list a = Solution() node1, node2, node3, node4, node5 = TreeNode(1), TreeNode(2), TreeNode(3), TreeNode(4), TreeNode(5) node6, node7, node8, node9 = TreeNode(6), TreeNode(7), TreeNode(8), TreeNode(9) node1A, node2A, node3A, node4A, node5A = TreeNode(1), TreeNode(2), TreeNode(3), TreeNode(4), TreeNode(5) node6A, node7A, node8A, node9A = TreeNode(6), TreeNode(7), TreeNode(8), TreeNode(9) root = node4 node4.left = node2 node4.right = node6 node2.left = node1 node2.right = node3 node6.right = node7 node3.right = node9 out = a.inorderTraversal(root) print('In Order Traversal = ', out)
''' 3. Longest Substring Without Repeating Characters Q: Longest Substring Without Repeating Characters Input: "pwwkew" Output: 3 Explanation: The answer is "wke", with the length of 3. Note that the answer must be a substring, "pwke" is a subsequence and not a substring. Solution: Store the latest index of the character in a hasmap If new letter is present in the hashmap, then update the start of substring. Update the max length and hashmap Solution 2: Store the current sub string in hashmap and its index as value. If new letter is present in the hashmap, then remove all the letters that came before that letter from the hashmap ''' class Solution: # @param A : string # @return an integer def lengthOfLongestSubstring(self, s): ans, start, n = 0, 0, len(s) map = dict() for i, char in enumerate(s): if char in map: start = max(start, map[char]) ans = max(ans, i-start+1) map[char] = i+1 return ans def lengthOfLongestSubstring_2(self, A): curr_len, max_len = 0, 0 substring_char = dict() for i, char in enumerate(A): print (substring_char, char, curr_len, max_len) if char in substring_char: to_remove = A[i-curr_len:substring_char[char]] curr_len -= len(to_remove) for char_to_remove in to_remove: if char_to_remove in substring_char: del substring_char[char_to_remove] else: curr_len += 1 max_len = curr_len if curr_len>max_len else max_len substring_char[char] = i return max_len a = Solution() inp = 'abcabcbb' inp = 'bbbbbbb' inp = 'abcbxysz' inp = 'abcddaxybs' inp = 'bbtablud' #inp = ' ' #inp = 'aaaaaa cbd' #inp = 'abcdefeabcds' op = a.lengthOfLongestSubstring(inp) print ('Length of Longest Substring = ', op)
''' 61. Rotate List Given the head of a linked list, rotate the list to the right by k places. Input: head = [1,2,3,4,5], k = 2 Output: [4,5,1,2,3] Input: head = [0,1,2], k = 4 Output: [2,0,1] ''' # Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: # @param A : head node of linked list # @param B : integer # @return the head node in the linked list def rotateRight(self, A, B): if A is None: return A n = 0 Atemp = A while Atemp: n+=1 Atail = Atemp Atemp = Atemp.next rotate = B%n if rotate ==0: return A Atemp = A count = 1 while count<n-rotate: Atemp = Atemp.next count+=1 A_right_shift = Atemp.next Atemp.next = None Atail.next = A return A_right_shift class LinkedList: def __init__(self, head=None): self.head = head def add_node(self, data): new_node = ListNode(data) new_node.next = self.head self.head = new_node def list_print(self): node = self.head while node: print(node.val) node = node.next a = Solution() (input, n) = ([5, 4, 3, 2 ,1], 2) (input, n) = ([5, 4, 3, 2 ,1], 0) (input, n) = ([5, 4, 3, 2 ,1], 5) (input, n) = ([5, 4, 3, 2 ,1], 8) ll = LinkedList() for i in input: ll.add_node(i) print ("Input LL: ") ll.list_print() output = a.rotateRight(ll.head, n) print ("Output LL: ") while output != None: print(output.val) output = output.next
''' 56. Merge Intervals Question: Given a collection of intervals, merge all overlapping intervals. Given [1,3],[2,6],[8,10],[15,18], return [1,6],[8,10],[15,18] Solution: - Sort the interval based on the interval start - Starting from the first interval, keep checking if it overlaps with the following intervals and merge them. - Add the merged interval to the output list the moment an interval doesnt overlap with the current merged interval - If interval i doesnt overlap with i-1, then i+1 doesnt overlap either Created on Jun 30, 2018 @author: smaiya ''' # Definition for an interval. class Interval: def __init__(self, s=0, e=0): self.start = s self.end = e class Solution: # @param intervals, a list of Intervals # @return a list of Interval def merge(self, intervals): sorted_intervals = sorted(intervals, key=lambda interval:interval.start, reverse=False) merged_intervals = list() first = True for interval in sorted_intervals: if first: curr_start, curr_end, first = interval.start, interval.end, False continue if interval.start <= curr_end: curr_end = interval.end if interval.end>curr_end else curr_end else: new_interval = Interval(curr_start, curr_end) merged_intervals.append(new_interval) curr_start, curr_end = interval.start, interval.end new_interval = Interval(curr_start, curr_end) merged_intervals.append(new_interval) return merged_intervals a = Solution() inp = list() inp.append(Interval(1, 3)) inp.append(Interval(2, 7)) inp.append(Interval(3, 5)) inp.append(Interval(1, 2)) inp.append(Interval(9, 10)) inp.append(Interval(12, 16)) inp.append(Interval(13, 15)) inp.append(Interval(12, 14)) inp.append(Interval(21, 22)) out = a.merge(inp) print('Merged Invervals: ') for interval in out: print ('[', interval.start, interval.end, ']')
''' Created on Jun 30, 2018 Given an array, find the nearest smaller element G[i] for every element A[i] in the array such that the element has an index smaller than i. Input : A : [4, 5, 2, 10, 8] Return : [-1, 4, -1, 2, 2] Input : A : [3, 2, 1] Return : [-1, -1, -1] @author: smaiya ''' class Solution: # @param A : list of integers # @return a list of integers def prevSmaller(self, A): n = len(A) prev_smaller = None for i in range(n): # Initialize the first element as -1 if prev_smaller is None: prev_smaller = [-1] else: # If previous element is smaller, then prev_smaller[i] = A[i-1] if A[i] > A[i-1]: prev_smaller.append(A[i-1]) else: # Else, search in the prev_smaller list for the next smaller element count = i-1 while prev_smaller[count] != -1 and prev_smaller[count]>=A[i]: count-=1 prev_smaller.append(prev_smaller[count]) return prev_smaller a = Solution() inp = [4, 5, 2, 10, 8] inp = [3, 2, 1] inp = [4, 2, 1, 7, 6, 8, 7, 5] inp = [7, 1, 4, 8, 3, 2, 5, 9, 8] inp = [1, 1, 1, 1] inp = [8, 23, 22, 16, 22, 7, 7, 27, 35, 27, 32, 20, 5, 1, 35, 28, 20, 6, 16, 26, 48, 34 ] out = a.prevSmaller(inp) print ('Nearest Smaller Element = ', out)
''' 399. Evaluate Division Question: Equations are given in the format A / B = k, where A and B are variables represented as strings, and k is a real number (floating point number). Given some queries, return the answers. If the answer does not exist, return -1.0 Given a / b = 2.0, b / c = 3.0. queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ? . return [6.0, 0.5, -1.0, 1.0, -1.0 ]. Solution: - Store the equations as a graph. - Each node connected to its denominator with the quotient stored as the value - For each a/b, also store b/a - Additionally store a self loop to check for a/a = 1 - To get the answer for the query, start with the numerator and do a breadth first search till you reach the denominator (keeping track of visited nodes) - Store the cumulative product and push it to the queue along with the node Created on May 7, 2019 @author: smaiya ''' class Solution: def calcEquation(self, equations, values, queries): # Create the division table table = {} for eq, val in zip(equations, values): num, den, ans = eq[0], eq[1], val # Storing a/b if num in table: table[num].append([den, ans]) else: table[num] = [[den, ans]] # Storing b/a if den in table: table[den].append([num, 1/ans]) else: table[den] = [[num, 1/ans]] # Storing a/a for var in table: table[var].append([var, 1.0]) solution = [-1 for i in range(len(queries))] for idx, q in enumerate(queries): visited = {} # Eliminating x/x queries if x is not provided among the equations if q[0] not in table: continue queue = [[q[0], 1.0]] while queue: node, val = queue.pop(0) visited[node]=1 if node==q[1]: solution[idx]=val break for den, quotient in table[node]: if den not in visited: queue.append([den, val*quotient]) return solution
''' 743. Network Delay Time Question: There are N network nodes, labelled 1 to N. Given times, a list of travel times as directed edges times[i] = (u, v, w), where u is the source node, v is the target node, and w is the time it takes for a signal to travel from source to target. Now, we send a signal from a certain node K. How long will it take for all nodes to receive the signal? If it is impossible, return -1. Solution: Use Dijkstra Algorithm with Heap (min heap) - Maintain visited node list and the corresponding time to travel to that node - Pop the node with the smallest time (top node of the heap) and extend it to all its neighbors and add those to the heap Created on May 8, 2019 @author: smaiya ''' from collections import defaultdict import heapq class Solution: def networkDelayTime(self, times, N, K): network = defaultdict(list) for t in times: network[t[0]].append([t[1], t[2]]) heap = [(0, K)] visited = {} while heap: t, node = heapq.heappop(heap) # Pop the node at the top of the heap with minimum travel time if node not in visited: visited[node] = t for dest in network[node]: heapq.heappush(heap, (t+dest[1], dest[0])) # Add all values into the heap. Only the node with minimum time will be considered return max(visited.values()) if len(visited)==N else -1
''' Sadhana Amazon Assessment: 6/1/2018 Question: find the most frequented word excluding words from 'ignore_list' ''' import re class Solution: # @param A : integer # @return an integer def mostFrequentWord(self, A, B): exclude_map = dict() for words in B: exclude_map[words.lower()] = 1 literature_map = dict() inp_word_list = re.split('[^a-zA-Z]+', A) max_count = 0 for words in inp_word_list: words = words.lower() if words not in exclude_map: literature_map[words] = literature_map.get(words, 0)+1 max_count = max(max_count, literature_map[words]) most_frequent_word_list = list() for words in literature_map: if literature_map[words] == max_count: most_frequent_word_list.append(words) return most_frequent_word_list a = Solution() inp1 = 'Jack and jill went to the market to get some cheese. Jack\'s and Jill\'s cheese is tasty' inp2 = ['is', 'a', 'are', 'to'] str = a.mostFrequentWord(inp1, inp2) print ('Most Frequent Word = ', str)
''' Question: Number of inversions (swaps) required to make the array sorted E.g., Input: [2, 4, 1, 3, 5] Output = 3 Solution: Dynamic Programming. O(nlogn) for sorting - D(n) = D(n-1) + x where D(n) = number of swaps required to make the first n array sorted x = number of elements in the (n-1) elements that are greater than x - Maintain a sorted array of (n-1). Inserting the n-th element = O(log n) ''' class Solution: # @param A : list of integers # @return an integer def countInversions(self, A): n = len(A) A_sorted = []; num_inversions = 0 A_sorted.append(A[0]) for idx in range(1, n): num_inversions += len([1 for i in A_sorted if i>A[idx]]) # Can be optimized to run in log N using Binary Search A_sorted.append(A[idx]) A_sorted.sort() return num_inversions a = Solution() #inp = [3, 2, 1, 0, 4, 6, 7, 8, 10] #inp = [1, 3, 6, 7, 2, 11, 13, 12, 5, 2, 3, 4] inp = [2, 4, 1, 3, 5] #inp = [2, 1, 1, 1, 1] str = a.countInversions(inp) print ('Number of Inversions = ', str)
''' 128. Longest Consecutive Sequence # Uber Phone Interview 6/28/2018 Given an unsorted array of integers nums, return the length of the longest consecutive elements sequence. You must write an algorithm that runs in O(n) time. Input: nums = [100,4,200,1,3,2] Output: 4 Explanation: The longest consecutive elements sequence is [1, 2, 3, 4]. Therefore its length is 4. Input: nums = [0,3,7,2,5,8,4,6,0,1] Output: 9 Solution: - Use a Hashmap. - For each number as key, store start and end values of the interval it falls to - Update the start and end every time a number is added to the interval Better Solution: - Store all array elements in a hashmap - For all elements in the array arr[i] - Check if it is the starting point of an interval (or subsequence) by checking if arr[i]-1 is present in the hash map - if true, then keep checking if arr[i]+1, 2.. are present in the hashmap and thereby maintaining a the interval count ''' class Solution: # @param A : list of integers # @return an integer def longestConsecutive(self, A): n = len(A) if n <= 1: return n numbers = dict() max_range = 0 for num in A: if num not in numbers: start = numbers[num-1][0] if num-1 in numbers else num end = numbers[num+1][1] if num+1 in numbers else num numbers[start] = numbers[end] = numbers[num] = [start, end] curr_range = end-start+1 max_range = curr_range if curr_range>max_range else max_range return max_range a = Solution() inp = [3, 2, 1, 0, 4, 6, 7, 8, 10] inp = [1, 3, 6, 7, 2, 11, 13, 12, 5, 2, 3, 4] str = a.longestRange(inp) print ('Longest Range = ', str)
''' 871. Minimum Number of Refueling Stops Question: A car travels from a starting position to a destination which is target miles east of the starting position. Along the way, there are gas stations. Each station[i] represents a gas station that is station[i][0] miles east of the starting position, and has station[i][1] liters of gas. The car starts with an infinite tank of gas, which initially has startFuel liters of fuel in it. It uses 1 liter of gas per 1 mile that it drives.When the car reaches a gas station, it may stop and refuel, transferring all the gas from the station into the car. What is the least number of refueling stops the car must make in order to reach its destination? If it cannot reach the destination, return -1. Solution: - When driving past a gas station, store all the fuel capacity. - Upon running out of fuel, fill from the the largest gas station that we have passed - Use max_heap to store the fueling capacity of each station that we pass - Keep track of the the 'tank', the current fuel. Once we reach a station but have negative fuel, add capacities of the largest gas stations that we have driven past until the tank is > 0 - If this process fails, then retun -1 Created on May 27, 2019 @author: smaiya ''' import heapq class Solution: def minRefuelStops(self, target, startFuel, stations): max_heap = [] stations.append([target, float('Inf')]) # Adding the target station that we have to drive to stops = 0 # Number of station stops for refueling prev = 0 tank = startFuel for location, fuel in stations: tank -= (location-prev) # Each station, update the tank (current fuel content) while tank<0 and max_heap: # If we run out of fuel, fill starting from the largest gas station that we have passed tank+=-heapq.heappop(max_heap) stops+=1 if tank<0: # Inspite of refueling from all gas stations we have passed by, if we still have <0 tank then return -1 return -1 heapq.heappush(max_heap, -fuel) # Store the station capacity in a max_heap that we are passing by prev = location return stops
''' 121. Best Time to Buy and Sell Stock Question: What is the max profit you can make given the price array of a stock E.g., A = [2, 1, 10, 9, 2, 6, 5] ==> Answer = 10-1 = 9 Solution: Dynamic Programming Dn = max profit at time n Dn+1 = max(Dn, x(n+1) - curr_min) ''' class Solution: def maxProfit(self, A): n = len(A) if n<2: return 0 max_profit = 0 Dn = max(max_profit, A[1]-A[0]) D1 = Dn min_price = min(A[1], A[0]) for i in range(2, n): Dn = max(D1, A[i]-min_price) D1 = Dn min_price = min(min_price, A[i]) return Dn a = Solution() inp = [2, 1, 2, 9, 2, 6, 5] inp = [5, 3, 2, 1] inp = [5, 4, 1, 2, 2, 5] inp = [5, 4] inp = [4, 5] inp = [5, 4, 6] str = a.maxProfit(inp) print ('Max Profit = ', str)
''' 2049. Count Nodes With the Highest Score There is a binary tree rooted at 0 consisting of n nodes. The nodes are labeled from 0 to n - 1. You are given a 0-indexed integer array parents representing the tree, where parents[i] is the parent of node i. Since node 0 is the root, parents[0] == -1. Each node has a score. To find the score of a node, consider if the node and the edges connected to it were removed. The tree would become one or more non-empty subtrees. The size of a subtree is the number of the nodes in it. The score of the node is the product of the sizes of all those subtrees. Return the number of nodes that have the highest score. Input: parents = [-1,2,0,2,0] 0 / \ 2 4 / \ 3 1 Output: 3 Explanation: - The score of node 0 is: 3 * 1 = 3 - The score of node 1 is: 4 = 4 - The score of node 2 is: 1 * 1 * 2 = 2 - The score of node 3 is: 4 = 4 - The score of node 4 is: 4 = 4 The highest score is 4, and three nodes (node 1, node 3, and node 4) have the highest score. Solution: - Post order traversal since child nodes are processed before parent nodes - dfs returns the number of nodes in the subtree - if node is leaf node, then score = total number of nodes in the tree - 1 - if node is root, then score = num nodes in left tree * num nodes in right tree - for any other node, score = num nodes in left tree * num nodes in right tree * num rest of the nodes - 1 Created on June 11, 2022 @author: smaiya ''' import math class Solution: def countHighestScoreNodes(self, parents): self.max_score = 0 self.count = 0 self.children = {} self.n = len(parents) for i, p in enumerate(parents): if p>=0: if p in self.children: self.children[p].append(i) else: self.children[p] = [i] self.dfs(0) return self.count def dfs(self, node): children = self.children[node] if node in self.children else [] subtree_size = [] for c in children: n = self.dfs(c) subtree_size.append(n) if children: rest_size = self.n - sum(subtree_size) - 1 subtree_prod = math.prod(subtree_size) score = subtree_prod if node==0 else rest_size * subtree_prod else: score = self.n-1 if score > self.max_score: self.max_score, self.count = score, 1 elif score==self.max_score: self.count+=1 return sum(subtree_size)+1 parents = [-1,2,0,2,0] ans = Solution().countHighestScoreNodes(parents) print('Count highest score nodes = ', ans)
''' Preorder Traversal def preorderTraversal(self, A): if A is None: return None self.preOrderList.append(A.val) self.preorderTraversal(A.left) self.preorderTraversal(A.right) return self.preOrderList Created on Jul 3, 2018 @author: smaiya ''' # Definition for a binary tree node class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: # @param A : root node of tree # @return a list of integers def __init__(self): self.preOrderList = list() def preorderTraversal(self, A): if A is None: return None preOrderList = []; stack = [A] while stack: curr_node = stack.pop() preOrderList.append(curr_node.val) if curr_node.right: stack.append(curr_node.right) if curr_node.left: stack.append(curr_node.left) return preOrderList # Preorder traversal using recursion def preorderTraversal_recursive(self, A): if A is None: return None self.preOrderList.append(A.val) self.preorderTraversal_recursive(A.left) self.preorderTraversal_recursive(A.right) return self.preOrderList a = Solution() root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(3) out = a.preorderTraversal(root) print('Preorder Traversal: ', out)
''' Created on Jul 7, 2018 shortest unique prefix to represent each word in the list. Input: [zebra, dog, duck, dove] Output: {z, dog, du, dov} This is a tree question. Can be solved using Trie. @author: smaiya ''' class Solution: # @param A : list of strings # @return a list of strings def prefix(self, A): prefix_dict = dict() for word in A: n = len(word) for i in range(n): prefix_dict[word[:i+1]] = prefix_dict.get(word[:i+1], 0)+1 shortest_prefix = []; for word in A: n = len(word) for i in range(n): if prefix_dict[word[:i+1]] == 1: shortest_prefix.append(word[:i+1]) break return shortest_prefix a = Solution() inp = ['zebra', 'dog', 'duck', 'dove'] str = a.prefix(inp) print ('Shortest Unique Prefix = ', str)
''' 147. Insertion Sort List Given the head of a singly linked list, sort the list using insertion sort, and return the sorted list's head. The steps of the insertion sort algorithm: Insertion sort iterates, consuming one input element each repetition and growing a sorted output list. At each iteration, insertion sort removes one element from the input data, finds the location it belongs within the sorted list and inserts it there. It repeats until no input elements remain. Input: head = [4,2,1,3] Output: [1,2,3,4] ''' # Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: # @param A : head node of linked list # @return the head node in the linked list def insertionSortList(self, A): if A.next is None: return A Ahead, Asort_prev, Asort = A, A, A.next while Asort: Atemp = Ahead if Atemp.val > Asort.val: Asort_prev.next = Asort.next Asort.next = Atemp Ahead = Asort Asort = Asort_prev.next else: while Atemp.next != Asort and Atemp.next.val<Asort.val: Atemp = Atemp.next if Atemp.next == Asort: Asort_prev = Asort Asort = Asort.next else: Asort_prev.next = Asort.next Asort.next = Atemp.next Atemp.next = Asort Asort = Asort_prev.next return Ahead class LinkedList: def __init__(self, head=None): self.head = head def add_node(self, data): new_node = ListNode(data) new_node.next = self.head self.head = new_node def list_print(self): node = self.head while node: print(node.val) node = node.next a = Solution() input = [4, 2, 7, 8, 1, 3, 5, 6] #input = [3, 5, 6] input = [4, 4, 7, 1, 1, 3, 5, 6] ll = LinkedList() for i in input: ll.add_node(i) print ("Input LL: ") ll.list_print() output = a.insertionSortList(ll.head) print ("Output LL: ") count = 0 while output != None and count < 10: print(output.val) output = output.next count+=1
''' 287. Find the Duplicate Number Question: https://leetcode.com/problems/find-the-duplicate-number/ Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), prove that at least one duplicate number must exist. Assume that there is only one duplicate number, find the duplicate one. Input: [1,3,4,2,2] Output: 2 - You must not modify the array (assume the array is read only). - You must use only constant, O(1) extra space. - There is only one duplicate number in the array, but it could be repeated more than once. Solution: Floyd's Tortoise and Hare (Cycle Detection) - Identical to finding entrance of the linked list cycle algorithm - First use a slow and a fast pointer to find the intersection location - Then find the entrance to the cycle by continuing the slow pointer and using a new pointer which starts from the beginning Created on Jun 1, 2019 @author: smaiya ''' class Solution: def findDuplicate(self, nums): if not nums: return slow, fast = nums[0], nums[0] while True: slow=nums[slow] fast=nums[nums[fast]] if slow==fast: break # Finding the entrance to the cycle ptr1, ptr2 = nums[0], slow while ptr1!=ptr2: ptr1, ptr2 = nums[ptr1], nums[ptr2] return ptr1
''' 131. Palindrome Partitioning Given a string s, partition s such that every substring of the partition is a palindrome. Return all possible palindrome partitioning of s. A palindrome string is a string that reads the same backward as forward. Input: s = "aab" Output: [["a","a","b"],["aa","b"]] Solution - Use dfs - Start searching for a palindrome from the start - If found add it into a temp list and search for the next starting from the next index - Add the temp list into the final result array if the string ending with the last index is a palindrome Created on July 18, 2022 @author: smaiya ''' from typing import Dict, Any, List from collections import defaultdict class Solution: def partition(self, s: str) -> List[List[str]]: self.result = [] self.n = len(s) self.dfs(s, 0, []) return self.result def is_palindrome(self, s): for i in range(len(s)): if s[i] != s[len(s)-i-1]: return False return True def dfs(self, s, idx, temp_result): if idx==self.n: self.result.append(temp_result.copy()) return for i in range(idx+1, self.n+1): sub = s[idx:i] if self.is_palindrome(sub): temp_result.append(sub) self.dfs(s, i, temp_result) temp_result.pop() s = "aab" ans = Solution().partition(s)
''' 2265. Count Nodes Equal to Average of Subtree Given the root of a binary tree, return the number of nodes where the value of the node is equal to the average of the values in its subtree. Note: The average of n elements is the sum of the n elements divided by n and rounded down to the nearest integer. Input: root = [4,8,5,0,1,null,6] 4 / \ 8 5 / \ \ 0 1 6 Output: 5 Explanation: For the node with value 4: The average of its subtree is (4 + 8 + 5 + 0 + 1 + 6) / 6 = 24 / 6 = 4. For the node with value 5: The average of its subtree is (5 + 6) / 2 = 11 / 2 = 5. For the node with value 0: The average of its subtree is 0 / 1 = 0. For the node with value 1: The average of its subtree is 1 / 1 = 1. For the node with value 6: The average of its subtree is 6 / 1 = 6. Solution: - Post order traversal processing the child nodes before parent nodes - dfs returns total and the number of nodes in the subtree - calculate the average of the subtree = sum of total of the child nodes/number of nodes in the subtree Created on June 11, 2022 @author: smaiya ''' class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def averageOfSubtree(self, root): if root is None: return 0 self.result = 0 self.dfs(root) return self.result def dfs(self, node): if node is None: return 0, 0 left_total, left_n = self.dfs(node.left) right_total, right_n = self.dfs(node.right) total = left_total + right_total + node.val n = left_n + right_n + 1 avg = total // n if avg == node.val: self.result+=1 return total, n
''' 162. Find Peak Element Question: A peak element is an element that is greater than its neighbors. Idx 0 and n-1 have just 1 neighbor Given an input array nums, where nums[i] != nums[i+1], find a peak element and return its index. The array may contain multiple peaks, in that case return the index to any one of the peaks is fine. You may imagine that nums[-1] = nums[n] = -infty. ==> There definitely is a peak element Input: nums = [1,2,1,3,5,6,4] Output: 1 or 5 Explanation: Your function can return either index number 1 where the peak element is 2, or index number 5 where the peak element is 6. Solution: Binary Search in O(logn) - Go to mid index. If nums[mid] > nums[mid+1], then there is a peak in the left half, hence hi=mid Created on Apr 7, 2019 @author: smaiya ''' class Solution: def findPeakElement(self, nums): lo, hi = 0, len(nums) - 1 while lo < hi: mid = lo + hi >> 1 if nums[mid] > nums[mid+1]: hi = mid else: lo = mid + 1 return lo
from datetime import date from datetime import datetime today = date.today() dateList = [] # User story 1 - all dates should be before current date def DatebeforeCurrentDate(indi, fam): print("User story 1 - All dates should be before current date") print(" ") for i in indi: # Checking death dates are before current dates and NA if str(i["DEAT"]) == "NA": pass elif i["DEAT"].date() > today: print(" Wrong death dates ") # Checking for Birth dates are before current Date if str(i["BIRT"]) == "NA": pass elif i["BIRT"].date() > today: print(" These dates are after the current date: " + str(i["NAME"]) + str(i["BIRT"].date())) for j in fam: if j["MARR"].date() > today: print(" Marriage date " + str(j["MARR"].date()) + " cannot be after current date " + str(today)) if str(j["DIV"]) == "NA": pass elif j["DIV"].date() > today: print(" Divorce date " + str(j["DIV"].date()) +" cannot be after the current date " + str(today)) print(" ") print(" User stroy 1 ends ") print(" ") # User story 10 - Marriage should be after 14 years of age def MarriageAfter14(indi, fam): print("User story 10 - Marriage should be after 14 years of age") print(" ") for j in fam: for i in indi: if i["INDI"] == j["WIFE"]: days = 365.2425 age = int(((j["MARR"].date()) - (i["BIRT"].date())).days / days) if age > 14: pass else: print("Invalid marriage date ") if i["INDI"] == j["HUSB"]: days = 365.2425 age = int(((j["MARR"].date()) - (i["BIRT"].date())).days / days) if age > 14: pass else: print(" Invalid marriage date ") print(" ") print(" User story 10 Completed ") print(" ")
import math class Rectangle: def __init__(self, a, b): self.width = a self.height = b @property def area(self): return self.width * self.height @area.setter def area(self, value): ratio = math.sqrt(value / self.area) self.width = self.width * ratio self.height = self.height * ratio @property def perimeter(self): return 2 * (self.width + self.height) @perimeter.setter def perimeter(self, value): ratio = value / self.area self.width = self.width * ratio self.height = self.height * ratio rect = Rectangle(1, 5) print(rect.width, rect.height, rect.area, rect.perimeter) rect.area = 20 print(rect.width, rect.height, rect.area, rect.perimeter) rect.perimeter = 40 print(rect.width, rect.height, rect.area, rect.perimeter)
lst = [1, 2, 3, 4, 5, 6, 7, 8, 9] # sub list sub_list = lst[1:8] # lst[1:-1] print(sub_list) # sub list w/ steps sub_list = lst[1:8:2] # lst[1:-1:2] print(sub_list) sub_list = lst[8:1:-1] print(sub_list) sub_list = lst[::] print(sub_list)
import math class Square: def __init__(self, a): self.side = a self.__area = self.side * self.side @property def area(self): return self.__area @area.setter def area(self, value): self.side = math.sqrt(value) self.__area = self.side * self.side sq1 = Square(10) print(sq1.side, sq1.area) sq1.area = 400 print(sq1.side, sq1.area)
import sqlite3 class Singleton: instance = None def __new__(cls, *args, **kwargs): if cls.instance is None: cls.instance = super().__new__(cls) cls.instance.initialized = False return cls.instance def __init__(self): if not self.initialized: self.conn = sqlite3.connect("./db.sqlite") self.initialized = True a = Singleton() b = Singleton() c = Singleton() d = Singleton() e = Singleton() a.conn.execute("CREATE TABLE IF NOT EXISTS person (name TEXT, age INTEGER)") b.conn.execute("INSERT INTO person (name, age) VALUES ('Jack', 24)") c.conn.execute("INSERT INTO person (name, age) VALUES ('Joe', 30)") rows = d.conn.execute("SELECT * FROM person") for row in rows: print(row)
text = "April is the cruelest month." if len(text) % 2 == 0: print(text.upper()) if len(text) % 2 == 1: print(text.lower())
# Time complexity: O(n^2) # Space Complexity: O(n) # Algorithm: Sort the words and then for each word if the string upto previous character is in a set then place the word in the set. # Sort the set and return max value (with min lexical order) class Solution: def longestWord(self, words: List[str]) -> str: sorted_words = sorted(words) word_set = set() for i in sorted_words: (len(i[:-1]) == 0 or (i[:-1] in word_set)) and word_set.add(i) count = 0 result = "" for i in sorted(word_set): if len(i) > count: result = i count = len(i) return result
#!/usr/bin/env python3 def word_stats(file_directory, num): f = open(file_directory, "r") contents = f.read() list_of_things_in_txt = list(contents) #puts all the separate letters into a list list_of_characters = [] for char in list_of_things_in_txt: if char.isalnum() or char == " ": #if its a letter or number or space, append to new list list_of_characters.append(char.lower()) all_words = ("".join(list_of_characters)) #join them back together as words using space as separator all_word_list = all_words.split(" ") #split them back again into a list of actual words count = {} for word in all_word_list: count[word] = count.get(word, 0) + 1 #dictionary to count the occurence of each word sorted_descending_dictionary = sorted(count.items(), key=lambda x: x[1], reverse=True) #sort dictionary by descending order return sorted_descending_dictionary[0:num] #return top 5 by splicing if __name__ == "__main__": print(word_stats("/Users/AaronKo/w1d2/article.txt", 5))
#programa que imprime todos os numeros pares de 0 a 20. Quando chegar no 5 parar o codigo i= 0 while i <= 20: print(i) if (i == 5): break i += 1
h = ['head', 'body', 'left leg', 'right leg', 'left arm', 'right arm'] word = 'candy' word_length = len(word) dashes = '' for i in word: dashes += '- ' print(dashes) u = input('Letter? ').lower() while if u.lower() in word: print('True') else: print('You guessed wrong!') print(h[0])
i=1 c=0 n=int(input("enter a number")) while c<n: f=0 j=1 while j<=i: if i%j==0: f=f+1 j=j+1 if f==2: print(i) c=c+1 i=i+1
#!/bin/env python # Created on March 25, 2020 # by Keith Cherkauer # # This script serves as the solution set for assignment-10 on descriptive # statistics and environmental informatics. See the assignment documention # and repository at: # https://github.com/Environmental-Informatics/assignment-10.git for more # details about the assignment. # #Modified by Miriam Stevens #May 04, 2020 #Modified from the template to calcualte monthly and annual stream flow metrics #Calculates monthly and annual averages #Saves annual and monthly metrics CSV files #Saves annual and monthly averages to txt files # import pandas as pd import scipy.stats as stats import numpy as np def ReadData( fileName ): """This function takes a filename as input, and returns a dataframe with raw data read from that file in a Pandas DataFrame. The DataFrame index should be the year, month and day of the observation. DataFrame headers should be "agency_cd", "site_no", "Date", "Discharge", "Quality". The "Date" column should be used as the DataFrame index. The pandas read_csv function will automatically replace missing values with np.NaN, but needs help identifying other flags used by the USGS to indicate no data is availabiel. Function returns the completed DataFrame, and a dictionary designed to contain all missing value counts that is initialized with days missing between the first and last date of the file.""" # define column names colNames = ['agency_cd', 'site_no', 'Date', 'Discharge', 'Quality'] # open and read the file DataDF = pd.read_csv(fileName, header=1, names=colNames, delimiter=r"\s+",parse_dates=[2], comment='#', na_values=['Eqp']) DataDF = DataDF.set_index('Date') # quantify the number of missing values MissingValues = DataDF["Discharge"].isna().sum() MissingValues_dict = {'Missing Values': MissingValues} # replace negative values with nan DataDF.loc[DataDF['Discharge'] < 0, 'Discharge'] = np.NaN return( DataDF, MissingValues ) def ClipData( DataDF, startDate, endDate ): """This function clips the given time series dataframe to a given range of dates. Function returns the clipped dataframe and and the number of missing values.""" #clip data DataDF = DataDF.loc[startDate:endDate] # quantify the number of missing values MissingValues = DataDF["Discharge"].isnull().sum() return( DataDF, MissingValues ) def CalcTqmean(Qvalues): """This function computes the Tqmean of a series of data, typically a 1 year time series of streamflow, after filtering out NoData values. Tqmean is the fraction of time that daily streamflow exceeds mean streamflow for each year. Tqmean is based on the duration rather than the volume of streamflow. The routine returns the Tqmean value for the given data array.""" # count number of values greater than mean vals_gt_mean = (Qvalues > Qvalues.mean()).sum() Tqmean = vals_gt_mean / len(Qvalues) return ( Tqmean ) def CalcRBindex(Qvalues): """This function computes the Richards-Baker Flashiness Index (R-B Index) of an array of values, typically a 1 year time series of streamflow, after filtering out the NoData values. The index is calculated by dividing the sum of the absolute values of day-to-day changes in daily discharge volumes (pathlength) by total discharge volumes for each year. The routine returns the RBindex value for the given data array.""" # absolute difference between values Dtd_abs_diff = Qvalues.diff().abs() # sum of differences pathlength = Dtd_abs_diff.sum() # total annual discharge discharge_tot = Qvalues.sum() RBindex = pathlength/discharge_tot return ( RBindex ) def Calc7Q(Qvalues): """This function computes the seven day low flow of an array of values, typically a 1 year time series of streamflow, after filtering out the NoData values. The index is calculated by computing a 7-day moving average for the annual dataset, and picking the lowest average flow in any 7-day period during that year. The routine returns the 7Q (7-day low flow) value for the given data array.""" val7Q = Qvalues.rolling(7).mean().min() return ( val7Q ) def CalcExceed3TimesMedian(Qvalues): """This function computes the number of days with flows greater than 3 times the annual median flow. The index is calculated by computing the median flow from the given dataset (or using the value provided) and then counting the number of days with flow greater than 3 times that value. The routine returns the count of events greater than 3 times the median annual flow value for the given data array.""" median_flow = Qvalues.median() median3x = (Qvalues > 3*median_flow).sum() return ( median3x ) def GetAnnualStatistics(DataDF): """This function calculates annual descriptive statistcs and metrics for the given streamflow time series. Values are retuned as a dataframe of annual values for each water year. Water year, as defined by the USGS, starts on October 1.""" colNames = ['site_no','Mean Flow', 'Peak Flow', 'Median Flow', 'Coeff Var',\ 'Skew', 'Tqmean', 'R-B Index', '7Q', '3xMedian'] # define index as dates of ressmpled data. # data is resampled annually with end of year in September annualIndex = DataDF.resample('AS-OCT').mean().index # create empty dataframe WYDataDF = pd.DataFrame(data=0, index=annualIndex, columns=colNames) # resample data WYData = DataDF.resample('AS-OCT') #add metrics to dataframe WYDataDF['site_no'] = WYData['site_no'].min() WYDataDF['Mean Flow'] = WYData['Discharge'].mean() WYDataDF['Peak Flow'] = WYData['Discharge'].max() WYDataDF['Median Flow'] = WYData['Discharge'].median() WYDataDF['Coeff Var'] = WYData['Discharge'].std() / WYData['Discharge'].mean()*100 WYDataDF['Skew'] = WYData['Discharge'].skew() WYDataDF['Tqmean'] = WYData['Discharge'].apply(lambda x: CalcTqmean(x)) WYDataDF['R-B Index'] = WYData['Discharge'].apply(lambda x: CalcRBindex(x)) WYDataDF['7Q'] = WYData['Discharge'].apply(lambda x: Calc7Q(x)) WYDataDF['3xMedian'] = WYData['Discharge'].apply(lambda x: CalcExceed3TimesMedian(x)) return ( WYDataDF ) def GetMonthlyStatistics(DataDF): """This function calculates monthly descriptive statistics and metrics for the given streamflow time series. Values are returned as a dataframe of monthly values for each year.""" colNames = ['site_no','Mean Flow', 'Coeff Var', 'Tqmean', 'R-B Index'] # define index as dates of ressmpled data. # data is resampled monthly monthlyIndex = DataDF.resample('MS').mean().index # create empty dataframe MoDataDF = pd.DataFrame(data=0, index=monthlyIndex, columns=colNames) # resample data MoData = DataDF.resample('MS') #add metrics to dataframe MoDataDF['site_no'] = MoData['site_no'].min() MoDataDF['Mean Flow'] = MoData['Discharge'].mean() MoDataDF['Coeff Var'] = MoData['Discharge'].std() / MoData['Discharge'].mean()*100 MoDataDF['Tqmean'] = MoData['Discharge'].apply(lambda x: CalcTqmean(x)) MoDataDF['R-B Index'] = MoData.apply({'Discharge': lambda x: CalcRBindex(x)}) return ( MoDataDF ) def GetAnnualAverages(WYDataDF): """This function calculates annual average values for all statistics and metrics. The routine returns an array of mean values for each metric in the original dataframe.""" AnnualAverages = WYDataDF.mean() return( AnnualAverages ) def GetMonthlyAverages(MoDataDF): """This function calculates annual average monthly values for all statistics and metrics. The routine returns an array of mean values for each metric in the original dataframe.""" MonthlyAverages = MoDataDF.groupby(MoDataDF.index.month).mean() return( MonthlyAverages ) # the following condition checks whether we are running as a script, in which # case run the test code, otherwise functions are being imported so do not. # put the main routines from your code after this conditional check. if __name__ == '__main__': # define filenames as a dictionary # NOTE - you could include more than jsut the filename in a dictionary, # such as full name of the river or gaging site, units, etc. that would # be used later in the program, like when plotting the data. fileName = { "Wildcat": "WildcatCreek_Discharge_03335000_19540601-20200315.txt", "Tippe": "TippecanoeRiver_Discharge_03331500_19431001-20200315.txt" } # define blank dictionaries (these will use the same keys as fileName) DataDF = {} MissingValues = {} WYDataDF = {} MoDataDF = {} AnnualAverages = {} MonthlyAverages = {} # process input datasets for file in fileName.keys(): print( "\n", "="*50, "\n Working on {} \n".format(file), "="*50, "\n" ) DataDF[file], MissingValues[file] = ReadData(fileName[file]) print( "-"*50, "\n\nRaw data for {}...\n\n".format(file), DataDF[file].describe(), "\n\nMissing values: {}\n\n".format(MissingValues[file])) # clip to consistent period DataDF[file], MissingValues[file] = ClipData( DataDF[file], '1969-10-01', '2019-09-30' ) print( "-"*50, "\n\nSelected period data for {}...\n\n".format(file), DataDF[file].describe(), "\n\nMissing values: {}\n\n".format(MissingValues[file])) # calculate descriptive statistics for each water year WYDataDF[file] = GetAnnualStatistics(DataDF[file]) # calcualte the annual average for each stistic or metric AnnualAverages[file] = GetAnnualAverages(WYDataDF[file]) print("-"*50, "\n\nSummary of water year metrics...\n\n", WYDataDF[file].describe(), "\n\nAnnual water year averages...\n\n", AnnualAverages[file]) # calculate descriptive statistics for each month MoDataDF[file] = GetMonthlyStatistics(DataDF[file]) # calculate the annual averages for each statistics on a monthly basis MonthlyAverages[file] = GetMonthlyAverages(MoDataDF[file]) print("-"*50, "\n\nSummary of monthly metrics...\n\n", MoDataDF[file].describe(), "\n\nAnnual Monthly Averages...\n\n", MonthlyAverages[file]) # save outputs # annual metrics to csv a_Wildcat = WYDataDF['Wildcat'] a_Wildcat['Station'] = 'Wildcat' a_Tippe = WYDataDF['Tippe'] a_Tippe['Station'] = 'Tippe' annualTable = a_Wildcat.append(a_Tippe) annualTable.to_csv('Annual_Metrics.csv', sep = ',', index=True) # monthly metrics to csv m_Wildcat = MoDataDF['Wildcat'] m_Wildcat['Station'] = 'Wildcat' m_Tippe = MoDataDF['Tippe'] m_Tippe['Station'] = 'Tippe' m_Wildcat = m_Wildcat.append(m_Tippe) m_Wildcat.to_csv('Monthly_Metrics.csv', sep = ',', index=True) # annual averages to txt aav_Wildcat = AnnualAverages['Wildcat'] aav_Wildcat['Station'] = 'Wildcat' aav_Tippe = AnnualAverages['Tippe'] aav_Tippe['Station'] = 'Tippe' aav_Wildcat = aav_Wildcat.append(aav_Tippe) aav_Wildcat.to_csv('Average_Annual_Metrics.txt', sep = '\t', index=True) # monthly metrics to txt mav_Wildcat = MonthlyAverages['Wildcat'] mav_Wildcat['Station'] = 'Wildcat' mav_Tippe = MonthlyAverages['Tippe'] mav_Tippe['Station'] = 'Tippe' mav_Wildcat = mav_Wildcat.append(mav_Tippe) mav_Wildcat.to_csv('Average_Monthly_Metrics.txt', sep = '\t', index=True)
def sum(x, y): # print(x+y) return x + y print(sum(4, 5)) # default Parameter # keyword Argument def more_num(a, b=7, c=10): print("a is", a, "b is", b, "c is ", c) more_num(2) # pass statment def dream_home(): pass # varArgs parameter def total_numbers(a=7, *numbers, **phonebook): # the single astric is for tuple and the dounle astric is for dict print("My fav nummber is ", a) for num in numbers: print("num", num) for name, phone_number in phonebook.items(): print(name, phone_number) total_numbers(7, 1, 2, 3, Jane=2222, John=4444, Angela=5555) # Anonymous Function(Lambda) def a(b): return b + 4 """" also the same a = lambda b: b +4 print(a(4)) this called anaymoous function """ print(a(4)) def c(d, e): return d + e """ c = lambda d,e : d + e print(c(7,8)) """ print(c(7, 8)) def new_number(n): return lambda f: f * n double_num = new_number(2) print(double_num(20))
from itertools import cycle import tkinter as tk class App(tk.Tk): # TK window/label adjust to size of images def __init__(self, image_file, x, y, delay): tk.Tk.__init__(self) self.geometry("+{}+{}".format(x, y)) self.delay = delay self.pictures = cycle((tk.PhotoImage(file=image), image) for image in image_file) self.pictures_display = tk.Label(self) self.pictures_display.pack() def show_slides(self): # cycle through the images and display them img_object, img_name = next(self.pictures) self.pictures_display.config(image=img_object) self.title(img_name) self.after(self.delay, self.show_slides) def run(self): self.mainloop() # set milliseconds time between slides delay = 3500 # get a series of gif images you have in the working folder # or use full path, or set diretory to wher ther images are image_file = [ "1.gif", "2.gif", "3.gif", "4.gif", "5.gif", "6.gif", "7.gif" ] x = 100 y = 50 app = App(image_file, x, y, delay) app.show_slides() app.run()
# class Point: # def draw(self): # print("draw") # point = Point() # print(type(point)) # print(isinstance(point, Point)) # creating new constructure class Point: # class level attribute are accessinle all level of the class. default_color = "red" def __init__(self, x, y): self.x = x self.y = y def draw(self): print(f"Point ({self.x},{self.y})") Point.default_color = "yellow" point = Point(1, 2) # print(point.x) point.draw() print(point.default_color) print(Point.default_color) # class and attribute refrence another = Point(3, 4) another.draw()
import sqlite3 class DataCliente: def __init__(self): self.conn = sqlite3.connect('basedata.db') self.cursor = self.conn.cursor() def insertItems(self, code, name, supp, price, cant): sql = "INSERT INTO clientes (name, phone, mail, adress, reference ) VALUES(?,?,?,?,?)" params = (code, name, price, supp, cant) self.cursor.execute(sql, params) self.conn.commit() def returnOneItem(self, ejm): sql = "SELECT * FROM clientes WHERE phone = '{}'".format(ejm) self.cursor.execute(sql) return self.cursor.fetchone() def returnAllElements(self): sql = "SELECT * FROM clientes ORDER BY id" self.cursor.execute(sql) return self.cursor.fetchall() def delete(self, ejm): sql = "DELETE FROM clientes WHERE phone = '{}'".format(ejm) self.cursor.execute(sql) self.conn.commit() def updateItem(self, elem, pls): sql = "UPDATE clientes SET name ='{}', phone='{}', mail='{}', adress='{}', reference='{}' WHERE phone = '{}'".format(elem[0], elem[1], elem[2], elem[3], elem[4], pls) self.cursor.execute(sql) self.conn.commit()
""" Validate national code method for Iranian national ID Codes """ # Standard library imports import re def validate(national_code): if national_code is None: return False if type(national_code) != str: return False national_code = national_code.replace('_','').replace('-','').replace(' ','') valid_national_code_pattern = "[0-9]{10}" invalid_codes = ( "0000000000", "1111111111", "2222222222", "3333333333", "4444444444", "5555555555", "6666666666", "7777777777", "8888888888", "9999999999") if national_code in invalid_codes: return False if len(national_code) != 10: return False if re.search(valid_national_code_pattern,national_code) is None: return False checksum_digit = national_code[9] main_digits = national_code[:9] i = 10 sum = 0 for n in main_digits: sum = sum + (int(n) * i) i -= 1 remainder = sum % 11 if not((remainder < 2 and remainder == checksum_digit) or (remainder >= 2 and ((11 - remainder) == int(checksum_digit)))): return False return True
# Do relevant imports import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import cv2 from moviepy.editor import VideoFileClip def grayscale(img): """Applies the Grayscale transform This will return an image with only one color channel but NOTE: to see the returned image as grayscale (assuming your grayscaled image is called 'gray') you should call plt.imshow(gray, cmap='gray')""" return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Or use BGR2GRAY if you read an image with cv2.imread() # return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) def grayToColor(img): return cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) def canny(img, low_threshold, high_threshold): """Applies the Canny transform""" return cv2.Canny(img, low_threshold, high_threshold) def gaussian_blur(img, kernel_size): """Applies a Gaussian Noise kernel""" return cv2.GaussianBlur(img, (kernel_size, kernel_size), 0) def region_of_interest(img, vertices): """ Applies an image mask. Only keeps the region of the image defined by the polygon formed from `vertices`. The rest of the image is set to black. """ # defining a blank mask to start with mask = np.zeros_like(img) # defining a 3 channel or 1 channel color to fill the mask with depending on the input image if len(img.shape) > 2: channel_count = img.shape[2] # i.e. 3 or 4 depending on your image ignore_mask_color = (255,) * channel_count else: ignore_mask_color = 255 # filling pixels inside the polygon defined by "vertices" with the fill color cv2.fillPoly(mask, vertices, ignore_mask_color) # returning the image only where mask pixels are nonzero masked_image = cv2.bitwise_and(img, mask) return masked_image def draw_lines(img, lines, color=[255, 0, 0], thickness=2): """ NOTE: this is the function you might want to use as a starting point once you want to average/extrapolate the line segments you detect to map out the full extent of the lane (going from the result shown in raw-lines-example.mp4 to that shown in P1_example.mp4). Think about things like separating line segments by their slope ((y2-y1)/(x2-x1)) to decide which segments are part of the left line vs. the right line. Then, you can average the position of each of the lines and extrapolate to the top and bottom of the lane. This function draws `lines` with `color` and `thickness`. Lines are drawn on the image inplace (mutates the image). If you want to make the lines semi-transparent, think about combining this function with the weighted_img() function below """ for line in lines: for x1, y1, x2, y2 in line: cv2.line(img, (x1, y1), (x2, y2), color, thickness) def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap): """ `img` should be the output of a Canny transform. Returns an image with hough lines drawn. """ lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap) line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8) draw_lines(line_img, lines) return line_img # Python 3 has support for cool math symbols. def weighted_img(img, initial_img, α=0.8, β=1., λ=0.): """ `img` is the output of the hough_lines(), An image with lines drawn on it. Should be a blank image (all black) with lines drawn on it. `initial_img` should be the image before any processing. The result image is computed as follows: initial_img * α + img * β + λ NOTE: initial_img and img must be the same shape! """ return cv2.addWeighted(initial_img, α, img, β, λ) # Define the Hough transform parameters rho = 2 theta = np.pi/90 threshold = 15 min_line_length = 200 max_line_gap = 150 # Define the canny edge detection parameters blur_kernel = 13 canny_low_threshold = 50 canny_high_threshold = 150 # Define the detection horizon y_cut = .62 # The coordinates of the lines global prev_bottom_left_x global prev_bottom_right_x global prev_top_left_x global prev_top_right_x prev_bottom_left_x = 0 prev_bottom_right_x = 0 prev_top_left_x = 0 prev_top_right_x = 0 # This function processes each frame from the video individually def process_image(image): global prev_bottom_left_x global prev_bottom_right_x global prev_top_left_x global prev_top_right_x imshape = image.shape vertices = np.array([[ (0, imshape[0]), (imshape[1] * .45, imshape[0] * y_cut), (imshape[1] * .55, imshape[0] * y_cut), (imshape[1], imshape[0]) ]], dtype=np.int32) ## Conversion to grayscale and blurring gray = gaussian_blur(grayscale(image),blur_kernel) ## Increase contrast highlights = (gray[:,:] > 180) gray[highlights] = 255 edges = canny(gray,canny_low_threshold,canny_high_threshold) masked = region_of_interest(edges, vertices) lines = cv2.HoughLinesP(masked, rho, theta, threshold, np.array([]), min_line_length, max_line_gap) line_image = np.copy(image)*0 # Iterate over the output "lines" and draw lines on the blank left_x = [] left_y = [] right_x = [] right_y = [] if lines is not None: for line in lines: for x1, y1, x2, y2 in line: slope = np.abs((y2 - y1) / (x2 - x1)) if(slope > .5): if (x1 < x2 and y1 > y2) or (x2 < x1 and y2 > y1) : # left line left_x.append(x1) left_x.append(x2) left_y.append(y1) left_y.append(y2) else: # right line right_x.append(x1) right_x.append(x2) right_y.append(y1) right_y.append(y2) top_left_y = int(imshape[0] * y_cut) if(len(left_x) and len(left_y)): left_slope, left_intersect = np.polyfit(left_x, left_y, 1) bottom_left_x = int((imshape[0] - left_intersect) / left_slope) top_left_x = int((top_left_y - left_intersect) / left_slope) prev_bottom_left_x = bottom_left_x prev_top_left_x = top_left_x else: bottom_left_x = prev_bottom_left_x top_left_x = prev_top_left_x top_right_y = int(imshape[0] * y_cut) if (len(right_x) and len(right_y)): right_slope, right_intersect = np.poly1d(np.polyfit(right_x, right_y, 1)) bottom_right_x = int((imshape[0] - right_intersect) / right_slope) top_right_x = int((top_right_y - right_intersect) / right_slope) prev_bottom_right_x = bottom_right_x prev_top_right_x = top_right_x else: bottom_right_x = prev_bottom_right_x top_right_x = prev_top_right_x draw_lines(line_image, [[[bottom_left_x, imshape[0], top_left_x, top_left_y], [bottom_right_x, imshape[0], top_right_x, top_right_y]]], thickness=10) # Create a "color" binary image to combine with line image ##color_edges = np.dstack((masked, masked, masked)) # Draw the lines on the edge image full_image = cv2.addWeighted(image, 0.7 , line_image, 1, 0) return full_image white_output = 'solidYellowLeft-output.mp4' clip1 = VideoFileClip("solidYellowLeft.mp4") white_clip = clip1.fl_image(process_image) #NOTE: this function expects color images!! white_clip.write_videofile(white_output, audio=False,fps=25,codec='mpeg4')
import time import pandas as pd from datetime import timedelta CITY_DATA = {'chicago': 'chicago.csv', 'new york city': 'new_york_city.csv', 'washington': 'washington.csv'} MONTHS = { 'january': 1, 'february': 2, 'march': 3, 'april': 4, 'may': 5, 'june': 6 } DAYS = { 'monday': 0, 'tuesday': 1, 'wednesday': 2, 'thursday': 3, 'friday': 4, 'saturday': 5, 'sunday': 6 } def get_filters(): """ Asks user to specify a city, month, and day to analyze. Returns: (str) city - name of the city to analyze (str) month - name of the month to filter by, or "all" to apply no month filter (str) day - name of the day of week to filter by, or "all" to apply no day filter """ print('Hello! Let\'s explore some US bikeshare data!') # get user input for city (chicago, new york city, washington) city = input_validator("Please choose one of the followings cities: Chicago, New York City, Washington \ncity: ", "city").lower() filter_choice = input_validator("Please choose a time filter: month, day or none for no time filter \nfilter: ", "filter") if filter_choice == "month": # get user input for month (january, february, ... , june) month = input_validator("Please choose a month: January, February, March, April, May, June \nmonth: ", "month").lower() day = None elif filter_choice == "day": # get user input for day of week (monday, tuesday, ... sunday) day = input_validator("Please choose a day: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday or Sunday \nday: ", "day").lower() month = None else: month = None day = None print('-'*40) return city, month, day def input_validator(input_str, type): """ Validates user input based on the type of input (e.g. month, day, filter) Returns: (input_value) - user input value """ while True: input_value = input(input_str) try: if type == "month": result = validate_month(input_value) if type == "day": result = validate_day(input_value) if type == "filter": result = validate_filter_choice(input_value) if type == "city": result = validate_city(input_value) if type == "answer": result = validate_yes_no_answer(input_value) if not result: raise Exception("Please type one of the values above") except Exception as error: print(error) continue break return input_value def validate_city(city): for key, value in CITY_DATA.items(): if key == city.lower(): return True return False def validate_filter_choice(filter_choice): filter_options = ['month', 'day', 'none'] return True if filter_choice.lower() in filter_options else False def validate_month(month): for key, value in MONTHS.items(): if key == month.lower(): return True return False def validate_day(day): for key, value in DAYS.items(): if key == day.lower(): return True return False def validate_yes_no_answer(answer): answer_options = ['yes', 'no'] return True if answer.lower() in answer_options else False def get_dict_key(value, dict_list): for key, val in dict_list.items(): if val == value: return key def load_data(city, month=None, day=None): """ Loads data for the specified city and filters by month and day if applicable. Args: (str) city - name of the city to analyze (str) month - name of the month to filter by, or "all" to apply no month filter (str) day - name of the day of week to filter by, or "all" to apply no day filter Returns: df - Pandas DataFrame containing city data filtered by month and day """ df = pd.read_csv(CITY_DATA[city]) df['month'] = pd.to_datetime(df['Start Time']).dt.month df['week day'] = pd.to_datetime(df['Start Time']).dt.dayofweek """ Return Data Frame with month filter """ if month != None: month_filter = df[df['month'] == MONTHS[month.lower()]] return month_filter elif day != None: day_filter = df[df['week day'] == DAYS[day.lower()]] return day_filter else: return df def time_stats(df): """Displays statistics on the most frequent times of travel.""" print('\nCalculating The Most Frequent Times of Travel...\n') start_time = time.time() # display the most common month most_common_month = df['month'].value_counts().idxmax() # display the most common day of week most_common_week_day = df['week day'].value_counts().idxmax() # display the most common start hour df['hour'] = pd.to_datetime(df['Start Time']).dt.hour most_common_hour = df['hour'].value_counts().idxmax() print("Most common month: {}".format(get_dict_key(most_common_month, MONTHS).title())) print("Most common week day: {}".format(get_dict_key(most_common_week_day, DAYS).title())) print("Most common hour: {} (24h format)".format(most_common_hour)) print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40) def station_stats(df): """Displays statistics on the most popular stations and trip.""" print('\nCalculating The Most Popular Stations and Trip...\n') start_time = time.time() # display most commonly used start station most_common_start_station = df['Start Station'].value_counts().idxmax() # display most commonly used end station most_common_end_station = df['End Station'].value_counts().idxmax() # display most frequent combination of start station and end station trip df['Start and End Station Combo'] = df['Start Station'].map(str) + ' - ' + df['End Station'].map(str) most_common_start_end_stations_combo = df['Start and End Station Combo'].value_counts().idxmax() print("Most common Start station: {}".format(most_common_start_station)) print("Most common End station: {}".format(most_common_end_station)) print("Most common Start - End Station Combination: {}".format(most_common_start_end_stations_combo)) print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40) def trip_duration_stats(df): """Displays statistics on the total and average trip duration.""" print('\nCalculating Trip Duration...\n') start_time = time.time() # display total travel time total_travel_time_seconds = df['Trip Duration'].sum() total_travel_time_hours_mins = timedelta(seconds=int(total_travel_time_seconds)) # display mean travel time mean_travel_time_seconds = df['Trip Duration'].mean() mean_travel_time_hours_mins = timedelta(seconds=int(mean_travel_time_seconds)) print("Total travel time: {} (h/m)".format(total_travel_time_hours_mins)) print("Average travel time: {} (h/m)".format(mean_travel_time_hours_mins)) print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40) def user_stats(df): """Displays statistics on bikeshare users.""" print('\nCalculating User Stats...\n') start_time = time.time() # Display counts of user types count_user_type = df['User Type'].value_counts() print("User Type counts:\n{}".format(count_user_type)) # Display counts of gender if "Gender" in df.columns: count_gender = df['Gender'].value_counts() print("\nUser Gender counts:\n{}".format(count_gender)) else: print("Unable to get count for Gender") if "Birth Year" in df.columns: # Display earliest, most recent, and most common year of birth earliest_birth = df['Birth Year'].min() most_recent_birth = df['Birth Year'].max() most_common_birth = df['Birth Year'].value_counts().idxmax() print("\nEarliest birth year: {}, most recent birth year: {}, and most common birth year: {}".format(earliest_birth, most_recent_birth, most_common_birth)) else: print("Unable to get results for Birth Year") print("\nThis took %s seconds." % (time.time() - start_time)) print('-'*40) def print_raw_data(df): """ Asks the user whether s/he wants to see raw data. If yes, the script will print 5 rows each time the user types yes. """ raw_data_answer = input_validator("\nWould you like to view raw data? Type yes or no. \n", "answer") if raw_data_answer.lower() != "yes": return df start_count = 0 while True: end_count = start_count + 5 print(df.iloc[start_count:end_count]) more_raw_data_answer = input_validator("\nWould you like to view additional raw data? Type yes or no. \n", "answer") if more_raw_data_answer.lower() == "yes": start_count += 5 continue break def main(): while True: city, month, day = get_filters() df = load_data(city, month, day) time_stats(df) station_stats(df) trip_duration_stats(df) user_stats(df) print_raw_data(df) restart = input_validator("\nWould you like to restart? Type yes or no.\n", "answer") if restart.lower() != 'yes': break if __name__ == "__main__": main()
#!/usr/bin/env python """This program grabs a joke from the internet and if you like it, saves it in a file. You can look at the jokes you liked""" __author__ = "Ken Vanden Branden" __license__ = "GPL" __version__ = "1.0.0" __email__ = "[email protected]" import requests # To make http requests import sys # to exit the programm import urllib3 #to disable certificate check on web requests import json #to parse the jokes coming from the joke-website. urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) jokesUri = "https://v2.jokeapi.dev/joke/Programming" infinite_loop = True #infinite loop variable to redraw the menu until user exits #Grabbing the joke def get_Joke(jokeUri): uri = jokeUri print(uri) try: #print("\n---\nGET %s?%s"%(jokeUri)) resp = requests.get(uri,verify=False) return resp except: print("Status: %s" % resp.status_code) print("Response: %s" % resp.text) sys.exit() #Parsing the joke def parse_Joke(data): joke = data if joke["type"] == "twopart": jokeresp = "Question:\n {} \n\n\n\n\n\n\n\n\n\nAnswer:\n {} \n".format(joke["setup"],joke["delivery"]) return jokeresp else: jokeresp = "Joke:\n {} \n".format(joke["joke"]) return jokeresp #Providing simple menu for the user def menu(): multiline_menu= "Menu\n" \ "1: Do you want to hear a joke?\n"\ "2: Let me show you the jokes you liked\n"\ "3: Exit\n"\ "Your choice: " val = input(multiline_menu) return val #Handling user input. def menuchoice(val): if val == "1": resp = get_Joke(jokesUri) json_data = resp.json() responsemessage = parse_Joke(json_data) print(responsemessage) savejoke(responsemessage) elif val =="2": readjoke() elif val =="3": print("Thank you for laughing, goodbye!") sys.exit() else: print("Print this is not a correct choice, please try again\n") # Save jokes to a file def savejoke(writejoke): responsemessage = writejoke question = input("Do you want to save the joke? y/n: ") if question =="y": print("Saving joke...\n") with open("savedjokes.txt",'a') as file: file.write(writejoke) elif question =="n": print("OK, back to main menu it is then...\n") else: print("Please answer with y or n:") savejoke(responsemessage) # Read joke from the file. def readjoke(): print("Here are the jokes you liked: \n") try: with open("savedjokes.txt",'r') as file: data = file.read() print(data) except: print("Can't read or find \"savedjokes.txt\" You probably didn't save any jokes yet.\n") #Start of the programm while infinite_loop: val = menu() menuchoice(val)
# Ex.4 - Variables and Names # - Write a comment above each line explaining to yourself in English what it does. # - Read the .py file backwardç # - Read the .py file out loud, saying even the characters cars = 100 space_in_a_car = 4.0 drivers = 30 passengers = 90 cars_not_driven = cars - drivers cars_driven = drivers carpool_capacity = cars_driven * space_in_a_car average_passengers_per_car = passengers / cars_driven print("There are",cars,"cars avaiable.") print("There are only",drivers,"drivers avaiable.") print("There will be",cars_not_driven,"Empty cars today.") print("We can transport",carpool_capacity,"people today.") print("We have",passengers,"to carpool today.") print("We need to put about",average_passengers_per_car, "in each car.")
trip = float(input()) puzzle_number = int(input()) doll_number = int(input()) teddy_bear_number = int(input()) minion_number = int(input()) truck_number = int(input()) puzzle_price = 2.60 doll_price = 3 teddy_bear_price = 4.10 minion_price = 8.20 truck_price = 2 total_toy_sum = (puzzle_number * puzzle_price) + (doll_number * doll_price) + (teddy_bear_number * teddy_bear_price) + (minion_number * minion_price) + (truck_number * truck_price) toy_total_number = puzzle_number + doll_number + teddy_bear_number + minion_number + truck_number if toy_total_number >= 50: total_toy_sum -= total_toy_sum * 0.25 rent = total_toy_sum * 0.10 profit = total_toy_sum - rent if profit >= trip: print(f'Yes! {profit - trip:.2f} lv left.') else: print(f'Not enough money! {trip - profit:.2f} lv needed.')
first_number = int(input()) second_number = int(input()) for i in range(first_number, second_number + 1): number = i even_sum = 0 odd_sum = 0 for position in range(1, 7): digit = number % 10 number = number // 10 if position % 2 == 0: even_sum += digit else: odd_sum += digit if even_sum == odd_sum: print(f'{i}', end=' ')
n = int(input()) bus_price = 0 truck_price = 0 train_price = 0 total_weight = 0 total_weight_bus = 0 total_weight_truck = 0 total_weight_train = 0 average_weight = 0 for load in range(1, n + 1): weight = int(input()) if weight <= 3: bus_price = 200 total_weight_bus += weight elif 4 <= weight <= 11: truck_price = 175 total_weight_truck += weight elif weight >= 12: train_price = 120 total_weight_train += weight total_weight += weight average_weight = (bus_price * total_weight_bus + truck_price * total_weight_truck + train_price * total_weight_train) / total_weight print(f'{average_weight:.2f}') print(f'{total_weight_bus / total_weight * 100:.2f}%') print(f'{total_weight_truck / total_weight * 100:.2f}%') print(f'{total_weight_train / total_weight * 100:.2f}%')
number_dogs = int(input()) number_animals = int(input()) dog_food_price = 2.5 animal_food_price = 4 result = number_dogs * dog_food_price + number_animals * animal_food_price print(f'{result} lv')
import math number_magnolii = int(input()) number_zumbuli = int(input()) number_roses = int(input()) number_cactus = int(input()) gift_price = float(input()) price_magnolii = 3.25 price_zumbuli = 4 price_roses = 3.50 price_cactus = 8 total_sales = (number_magnolii * price_magnolii) + (number_zumbuli * price_zumbuli) + (number_roses * price_roses) + (number_cactus * price_cactus) tax = total_sales * 0.05 profit = total_sales - tax diff = abs(profit - gift_price) if profit >= gift_price: print(f'She is left with {math.floor(diff)} leva.') else: print(f'She will have to borrow {math.ceil(diff)} leva.')
n = int(input()) numbers_sum = 0 for i in range(n): current_number = int(input()) numbers_sum += current_number print(numbers_sum)
days_count = int(input()) bakers_count = int(input()) cakes_count = int(input()) waffles_count = int(input()) pancakes_count = int(input()) cake_price = 45 waffles_price = 5.80 pancakes_price = 3.20 money_per_day = ((cake_price * cakes_count) + (waffles_count * waffles_price) + (pancakes_count * pancakes_price)) * bakers_count income = money_per_day * days_count profit = income - (income * 1/8) print(profit)
exam_hour = int(input()) exam_minutes = int(input()) arrival_hour = int(input()) arrival_minutes = int(input()) exam_time = exam_hour * 60 + exam_minutes arrival_time = arrival_hour * 60 + arrival_minutes diff = arrival_time - exam_time state = '' if diff < -30: state = 'Early' elif diff <= 0: state = 'On time' else: state = 'Late' result = '' if diff != 0: hours = abs(diff) // 60 minutes = abs(diff) % 60 if hours > 0: if diff < 0: result = f'{hours}:{minutes:02d} hours before the start' else: result = f'{hours}:{minutes:02d} hours after the start' else: if diff < 0: result = f'{minutes} minutes before the start' else: result = f'{minutes} minutes after the start' print(f'{state}') if diff != 0: print(f'{result}')
season = input() distance = float(input()) price_per_km = 0 if distance <= 5000: if season == 'Spring' or season == 'Autumn': price_per_km = 0.75 elif season == 'Summer': price_per_km = 0.90 else: price_per_km = 1.05 elif 5000 < distance <= 10000: if season == 'Spring' or season == 'Autumn': price_per_km = 0.95 elif season == 'Summer': price_per_km = 1.10 else: price_per_km = 1.25 elif 10000 < distance <= 20000: price_per_km = 1.45 total_money = price_per_km * distance * 4 salary = total_money - total_money * 0.1 print(f'{salary:.2f}')
import math days = int(input()) available_food = int(input()) dog_food = float(input()) cat_food = float(input()) turtle_food = float(input()) total_dog = days * dog_food total_cat = days * cat_food total_turtle = days * turtle_food / 1000 total_food_needed = total_dog + total_cat + total_turtle diff = abs(total_food_needed - available_food) if available_food >= total_food_needed: print(f'{math.floor(diff)} kilos of food left.') else: print(f'{math.ceil(diff)} more kilos of food are needed.')
pages_count = int(input()) pages_per_hour = int(input()) days_count = int(input()) total_time = pages_count / pages_per_hour total_hours = total_time / days_count print(total_hours)
money = float(input()) months = int(input()) interest_rate = float(input()) interest = money * interest_rate / 100 interest_per_month = interest / 12 total_money = money + (months * interest_per_month) print(total_money)
budget = float(input()) video_cards = int(input()) processors = int(input()) ram_memory = int(input()) price_video_card = 250 total_video_card = price_video_card * video_cards price_processor = total_video_card * 0.35 total_processor = price_processor * processors price_ram_memory = total_video_card * 0.1 total_ram_memory = price_ram_memory * ram_memory total = total_video_card + total_processor + total_ram_memory if video_cards > processors: total -= total * 0.15 diff = abs(total - budget) if total <= budget: print(f'You have {diff:.2f} leva left!') else: print(f'Not enough money! You need {diff:.2f} leva more!')
x1 = float(input()) y1 = float(input()) x2 = float(input()) y2 = float(input()) x = float(input()) y = float(input()) if (x == x1 or x == x2) and (y1 <= y <= y2): print(f'Border') elif (y == y1 or y == y2) and (x1 <= x <= x2): print(f'Border') else: print(f'Inside / Outside')
name = input() sum_grades = 0 average_grade = 0 level = 0 while True: annual_grade = float(input()) if annual_grade < 4: grade = float(input()) if annual_grade < 4: level += 1 print(f'{name} has been excluded at {level} grade') break else: level += 1 sum_grades += annual_grade average_grade = sum_grades / level if level == 12: print(f'{name} graduated. Average grade: {average_grade:.2f}') break
#This class models a board for the game. Includes the functionality #for making moves class PentagoBoard: def __init__(self, newState = []): if newState == []: self.state = [["-" for x in range(6)] for y in range(6)] else: self.state = [[newState[y][x] for x in range(0, 6)] for y in range(0,6)] #place a token on the board def place(self, player, location = (0, 0)): self.state[location[0]][location[1]] = player #remove a token from the board def remove(self, location = (0,0)): self.state[location[0]][location[1]] = "-" #print the current state of the board and write to the output file def printBoard(self, out): print("+-------+-------+") out.write("+-------+-------+\n") for x in range(6): line = "| " for y in range(6): line += self.state[x][y] + " " if y==2 or y==5: line += "| " print(line) out.write(line + "\n") if x == 2 or x == 5: print("+-------+-------+") out.write("+-------+-------+\n") #check if the board is full def boardFull(self): for ls in self.state: for el in ls: if el == "-": return False return True #Check if a particular square on the board is empty def squareEmpty(self, square)->bool: start = self.squareToIdx(square) end = start[1] start = start[0] for y in range(start[0], end[0] + 1): for x in range(start[1], end[1] + 1): if self.state[y][x] != "-": return False return True #rotate a particular square on the board left or right def rotateSquare(self, square, dir): if(self.squareEmpty(square) or dir == "*"):#dont do anything if trying to rotate an empty square return start = self.squareToIdx(square) end = start[1] start = start[0] addnum = 1 if(dir == "L"):#swap start/end positions so square is read upside down and backwards #when this is turned right, it is functionally the same as rotating left temp = start start = end end = temp addnum = -1 rows = [["", "", ""], ["", "", ""], ["", "", ""]] ridx = 0 cidx = 0 for y in range(start[0], end[0] + addnum, addnum): #copy the elements that are going to be flipped for x in range(start[1], end[1] + addnum, addnum): rows[ridx][cidx] = self.state[y][x] self.state[y][x] = "-" cidx += 1 ridx += 1 cidx = 0 ridx = 0 cidx = 0 if(dir == "L"): #restore original start and end positions if left temp = start start = end end = temp for c in range(end[1], start[1] - 1, -1): #read rows of copy into columns of board, from last column to first for d in range(start[0], end[0] + 1): #this essentially flips the board self.state[d][c] = rows[ridx][cidx] cidx += 1 ridx += 1 cidx = 0 #get the indexes of the start and end positions of a square, used by rotate function def squareToIdx(self, square): start = [0, 0] end = [0, 0] #determine where the start and end points of the square are, based on square number if square == 1: end = [2,2] elif square == 2: start = [0,3] end = [2,5] elif square == 3: start = [3,0] end = [5,2] else: start = [3,3] end = [5,5] return [start, end]
''' * Python program to use contours to count the objects in an image. * * usage: python Contours.py <filename> <threshold> ''' import cv2, sys # read command-line arguments filename = sys.argv[1] t = int(sys.argv[2]) # read original image image = cv2.imread(filename = filename) # create binary image gray = cv2.cvtColor(src = image, code = cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(src = gray, ksize = (5, 5), sigmaX = 0) (t, binary) = cv2.threshold(src = blur, thresh = t, maxval = 255, type = cv2.THRESH_BINARY) # find contours (_, contours, _) = cv2.findContours(image = binary, mode = cv2.RETR_EXTERNAL, method = cv2.CHAIN_APPROX_SIMPLE) # print table of contours and sizes print("Found %d objects." % len(contours)) for (i, c) in enumerate(contours): print("\tSize of contour %d: %d" % (i, len(c))) # draw contours over original image cv2.drawContours(image = image, contours = contours, contourIdx = -1, color = (0, 0, 255), thickness = 5) # display original image with contours cv2.namedWindow(winname = "output", flags = cv2.WINDOW_NORMAL) cv2.imshow(winname = "output", mat = image) cv2.waitKey(delay = 0)
""" * Program to practice with skimage drawing methods. """ import random import numpy as np import skimage from skimage.viewer import ImageViewer # create the black canvas image = np.zeros(shape=(600, 800, 3), dtype="uint8") viewer = ImageViewer(image) viewer.show() # mask = np.ones(shape=image.shape[0:2], dtype="bool") # WRITE YOUR CODE TO DRAW ON THE IMAGE HERE rr1, cc1 = skimage.draw.circle(300, 400, radius=100) image[rr1, cc1] = [128, 25, 128] # display the results # Display constructed mask viewer = ImageViewer(image) viewer.show()
''' * Python script to demonstrate Laplacian edge detection. * * usage: python LaplacianEdge.py <filename> <kernel-size> <threshold> ''' import cv2 import numpy as np import sys # read command-line arguments filename = sys.argv[1] k = int(sys.argv[2]) t = int(sys.argv[3]) # load and display original image img = cv2.imread(filename, cv2.IMREAD_GRAYSCALE) cv2.namedWindow("original", cv2.WINDOW_NORMAL) cv2.imshow("original", img) cv2.waitKey(0) # blur image and use simple inverse binary thresholding to create # a binary image blur = cv2.GaussianBlur(img, (k, k), 0) (t, binary) = cv2.threshold(blur, t, 255, cv2.THRESH_BINARY_INV) # WRITE YOUR CODE HERE # perform Laplacian edge detection # cv2.Laplacian() takes two parameters, the input image, and the data # type used for the output image. Use the cv2.Laplacian() method to # detect the edges in the binary image, storing the result in an image # named edge. # WRITE YOUR CODE HERE # Convert the edge image back to 8 bit unsigned integer data type. # display edges cv2.namedWindow("edges", cv2.WINDOW_NORMAL) cv2.imshow("edges", edge) cv2.waitKey(0)
import re def validating_name(name): regex_name=re.compile(r'^(Mr\.|Mrs\.|Ms\.) (?P<First>[A-Z][A-Za-z]+)(?P<Second> [A-Z][A-Za-z]+)*( [A-Z][A-Za-z]+)*$') res=regex_name.fullmatch(name) if res: print(res.group()) print(res.group("First")) print(res.group('Second')) else: print("Invalid") validating_name('Mr. Albus Severus Potter') validating_name('nnnnnnMr. Albus Severus Pottermmm') validating_name('Mr. Potter')
def list_less_than_ten(): a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] b = [] for element in a: if element < 5: b.append(element) print b def divisors(): number = int(raw_input("Enter a number: ")) divisor_list = [] divisor_range = list(range(1,number+1)) for element in divisor_range: if number % element == 0: divisor_list.append(element) print divisor_list def list_overlap(): a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] c = [] for element in a: if element in b: if element not in c: c.append(element) print c
import numpy as np """ This entire code base has been developed by Baijayanta Roy at Medium-Article. The code can be found at {https://github.com/BaijayantaRoy/Medium-Article}. I do NOT claim any rights for this code as it has NOT been developed by me. However, the code is under the GNU GENERAL PUBLIC LICENSE, thus, it is free to copy and distribute. """ class Node: """ A node class for A* Pathfinding parent is parent of the current Node position is current position of the Node in the maze g is cost from start to current Node h is heuristic based estimated cost for current Node to end Node f is total cost of present node i.e. : f = g + h """ def __init__(self, parent=None, position=None): self.parent = parent self.position = position self.g = 0 self.h = 0 self.f = 0 def __eq__(self, other): return self.position == other.position #This function return the path of the search def return_path(current_node,maze): path = [] no_rows, no_columns = np.shape(maze) # here we create the initialized result maze with -1 in every position result = [[-1 for i in range(no_columns)] for j in range(no_rows)] current = current_node while current is not None: path.append(current.position) current = current.parent # Return reversed path as we need to show from start to end path path = path[::-1] start_value = 0 # we update the path of start to end found by A-star serch with every step incremented by 1 for i in range(len(path)): result[path[i][0]][path[i][1]] = start_value start_value += 1 return result def search(maze, cost, start, end): """ Returns a list of tuples as a path from the given start to the given end in the given maze :param maze: :param cost :param start: :param end: :return: """ # Create start and end node with initized values for g, h and f start_node = Node(None, tuple(start)) start_node.g = start_node.h = start_node.f = 0 end_node = Node(None, tuple(end)) end_node.g = end_node.h = end_node.f = 0 # Initialize both yet_to_visit and visited list # in this list we will put all node that are yet_to_visit for exploration. # From here we will find the lowest cost node to expand next yet_to_visit_list = [] # in this list we will put all node those already explored so that we don't explore it again visited_list = [] # Add the start node yet_to_visit_list.append(start_node) # Adding a stop condition. This is to avoid any infinite loop and stop # execution after some reasonable number of steps outer_iterations = 0 max_iterations = (len(maze) // 2) ** 10 # what squares do we search . serarch movement is left-right-top-bottom #(4 movements) from every positon move = [[-1, 0 ], # go up [ 0, -1], # go left [ 1, 0 ], # go down [ 0, 1 ]] # go right """ 1) We first get the current node by comparing all f cost and selecting the lowest cost node for further expansion 2) Check max iteration reached or not . Set a message and stop execution 3) Remove the selected node from yet_to_visit list and add this node to visited list 4) Perofmr Goal test and return the path else perform below steps 5) For selected node find out all children (use move to find children) a) get the current postion for the selected node (this becomes parent node for the children) b) check if a valid position exist (boundary will make few nodes invalid) c) if any node is a wall then ignore that d) add to valid children node list for the selected parent For all the children node a) if child in visited list then ignore it and try next node b) calculate child node g, h and f values c) if child in yet_to_visit list then ignore it d) else move the child to yet_to_visit list """ #find maze has got how many rows and columns no_rows, no_columns = np.shape(maze) # Loop until you find the end while len(yet_to_visit_list) > 0: # Every time any node is referred from yet_to_visit list, counter of limit operation incremented outer_iterations += 1 # Get the current node current_node = yet_to_visit_list[0] current_index = 0 for index, item in enumerate(yet_to_visit_list): if item.f < current_node.f: current_node = item current_index = index # if we hit this point return the path such as it may be no solution or # computation cost is too high if outer_iterations > max_iterations: print ("giving up on pathfinding too many iterations") return return_path(current_node,maze) # Pop current node out off yet_to_visit list, add to visited list yet_to_visit_list.pop(current_index) visited_list.append(current_node) # test if goal is reached or not, if yes then return the path if current_node == end_node: return return_path(current_node,maze) # Generate children from all adjacent squares children = [] for new_position in move: # Get node position node_position = (current_node.position[0] + new_position[0], current_node.position[1] + new_position[1]) # Make sure within range (check if within maze boundary) if (node_position[0] > (no_rows - 1) or node_position[0] < 0 or node_position[1] > (no_columns -1) or node_position[1] < 0): continue # Make sure walkable terrain if maze[node_position[0]][node_position[1]] != 0: continue # Create new node new_node = Node(current_node, node_position) # Append children.append(new_node) # Loop through children for child in children: # Child is on the visited list (search entire visited list) if len([visited_child for visited_child in visited_list if visited_child == child]) > 0: continue # Create the f, g, and h values child.g = current_node.g + cost ## Heuristic costs calculated here, this is using eucledian distance child.h = (((child.position[0] - end_node.position[0]) ** 2) + ((child.position[1] - end_node.position[1]) ** 2)) child.f = child.g + child.h # Child is already in the yet_to_visit list and g cost is already lower if len([i for i in yet_to_visit_list if child == i and child.g > i.g]) > 0: continue # Add the child to the yet_to_visit list yet_to_visit_list.append(child) if __name__ == '__main__': maze = [[0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 1, 0, 1, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0]] start = [0, 0] # starting position end = [4,5] # ending position cost = 1 # cost per movement path = search(maze,cost, start, end) print(path)
# На вход программе подается последовательность чисел, заканчивающихся нулем. # Сам ноль не входит в последовательность. Найти среднее значение последовательности. # Для округления использовать функцию round(x, n). Где x - число, n - количество знаков после запятой. # Формат входных данных # Последовательность чисел, заканчивающихся нулем. Одно число в строку. # Формат выходных данных # Одно число — среднее значение. Округлить до двух цифр после запятой. debug = False TESTS = [([4, 8, 5], 5.67)] def find_average(numbers: list): numbers_sum = 0 for i in numbers: numbers_sum += i average = numbers_sum / len(numbers) return round(average, 2) if __name__ == '__main__': for test in TESTS: testing_function = find_average result = testing_function(test[0]) assert result == test[1], "Ожидаемый ответ: {0}, полученный овет: {1}".format(test[1], result) parameters = [] while True: item = int(input()) if item != 0: parameters.append(item) else: break print(find_average(parameters))
def sum_numbers(n: int): """ Отдает сумму цифр входящего числа. :param n: :return: """ num_str = str(n) num_sum = 0 for char in num_str: num_sum += int(char) return num_sum def test_sum_numbers(): assert sum_numbers(123) == 6, 'Not pass' assert sum_numbers(963) == 18, 'Not pass' assert sum_numbers(253) == 10, 'Not pass' assert sum_numbers(853) == 16, 'Not pass' assert sum_numbers(179) == 17, 'Not pass' if __name__ == '__main__': test_sum_numbers() test_num = int(input()) print(sum_numbers(test_num))
# Ограничение по времени работы программы: 1 секунда. # Ограничение по памяти: 32 мегабайта. # Ввод из стандартного потока ввода(с клавиатуры). # Вывод в стандартный поток вывода(на экран). # Вычислите XOR от двух чисел. # Входные данные # Два целых шестнадцатеричных числа меньших FF. # Выходные данные # Побитовый XOR этих чисел в шестнадцетиричном виде debug = False TESTS = [(['1', '23'], '22'), (['f0', '0f'], 'ff')] def calc_xor(numbers: list): a = int(numbers[0], 16) b = int(numbers[1], 16) rezult = '{0:x}'.format(a ^ b) return rezult if __name__ == '__main__': for test in TESTS: testing_function = calc_xor result = testing_function(test[0]) assert result == test[1], "Ожидаемый ответ: {0}, полученный овет: {1}".format( test[1], result) parameters = input().split() print(calc_xor(parameters))
def cipher(text, shift, encrypt=True): """ Each letter is replaced by a letter some fixed number of positions down the alphabet. Parameters --- text: string value that you wish to encrypt or decrypt shift: integer value of how many number positions down the alphabet you would like to shift the string encrypt: boolean value that is 1 if you wish to encrypt or 0 if you wish to decrypt Returns --- string value that has been encrypted or decrypted Examples --- from cipher_eat2153 import cipher_eat2153 >>> cipher_eat2153.cipher(text = 'yoda', shift = 1, encrypt = True) ['zpeb'] >>> """ alphabet = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' new_text = '' for c in text: index = alphabet.find(c) if index == -1: new_text += c else: new_index = index + shift if encrypt == True else index - shift new_index %= len(alphabet) new_text += alphabet[new_index:new_index+1] return new_text
from store_data import data as store_data from view import show_stocks def update_product_detail(): pass def remove_products(): pass def add_products_to_store(*args, category=None): if category is None: category = input("Enter the product category(fruits, grocery, stationary): ") item = {} price = 0 if not args: product = input("Enter the product name: ") price = float(input(f"Enter price of {product}: ")) quantity = int(input(f"Enter the quantity of {product}: ")) expiry_date = input(f"Enter the expiry date of {product}: ") product_data = {'price': price, 'stock': quantity, 'expiry_date': expiry_date} item = {product: product_data} else: for product in args: value = float(input(f"Enter price of {product}: ")) quantity = int(input(f"Enter the quantity of {product}: ")) expiry_date = input(f"Enter the expiry date of {product}: ") product_data = {'price': value, 'stock': quantity, 'expiry_date': expiry_date} one_product = {product: product_data} item.update(one_product) price = price + value if category == 'fruits': fruits = store_data[0] fruits.update(item) if category == 'stationary': stationary = store_data[1] stationary.update(item) if category == 'grocery': grocery = store_data[2] grocery.update(item) show_stocks(category) return price def validate_product_expiry(): alert_product_expiry() def alert_product_unavailability(): pass def alert_product_expiry(): pass def get_data(): return store_data if __name__ == '__main__': add_products_to_store('Pencil', category='stationary') get_data()
#!/usr/bin/env python def day_1(file) -> int: diff1 = diff3 = 0 input_list = [] with open(file, "r") as f: for line in f: line = line.strip("\n") input_list.append(int(line)) input_list.sort() previous = 0 for i in input_list: if i - previous == 1: diff1 += 1 elif i - previous == 3: diff3 += 1 previous = i return diff1 * (diff3 + 1) if __name__ == '__main__': assert day_1("test_input.txt") == 220 print(day_1("input.txt"))
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def deleteDuplicates(self, head: ListNode) -> ListNode: cur_node = head while cur_node and cur_node.next: pre_node = cur_node.next if cur_node.val == pre_node.val: cur_node.next = pre_node.next else: cur_node = pre_node return head
# Sum square difference # ------------------------------------------------- # # First square all the numbers from 1 to 100. Then # sum all the numbers and square them. Then # substract the two results from each other. # ------------------------------------------------- # squared, result, sum = 0,0,0 for i in range(1,101): squared+=(i*i) sum+=i result = (sum*sum)-squared print "Project Euler #6" print "The difference between the sum of the squares and the square of the sum is", result
# Summation of primes # ------------------------------------------------- # # Reuse isPrime from Euler_7. While number is less # than 2000000 check if the number is prime, if it is # then add it to result. # ------------------------------------------------- # num, result=1,0 def isPrime(n): if n==1: return False elif n<4: return True elif n%2==0: return False elif n<9: return True else: d = 3 while d * d <= n: if n%d == 0: return False d += 2 return True while num < 2000000: if isPrime(num): result+= num num+=1 print "Project Euler #10" print "What is the sum of primes below two million?", result
import pygame import random import sys import math from pygame.locals import * gridSize = 10 letters = ['A', 'B', 'C', 'D', 'E' ,'F', 'G', 'H' ,'I','J'] class Grid(): def __init__(self): self.size = gridSize self.pieces = [] self.grid = self.gridMe() self.coord = [] a = aircraftCarrier() b = battleShip() c = Submarine() d = Cruiser() e = Destroyer() self.pieces.append(a) self.pieces.append(b) self.pieces.append(c) self.pieces.append(d) self.pieces.append(e) self.playerNumber = 0 self.getPieces() def gridMe(self): grid = [[0 for x in range(self.size)] for x in range(self.size)] for i in range(0,self.size): for j in range(0,self.size): grid[i][j] = 0 return grid def getPieces(self): self.displayGrid() for p in self.pieces: go = True while(go == True): head = input("Please choose where the head of the "+ p.name +" will be? (letter first)\n") p.alignment = int(input("1) Vertical\n2) Horizontal\n")) a = str(head[0]) b = int(head[1]) b = b-1 c = letters.index(a) if (c,b) not in self.coord: self.coord.append((c,b)) go = False else: print("Not a valid placement, please try again") p.head.append((c,b)) p.fillPiece() def displayGrid(self): print(' 1 2 3 4 5 6 7 8 9 10') j=0 for i in self.grid: print(letters[j] + ' ' + str(i)) j+= 1 ## self.grid = self.lockGrid() ## def lockGrid(self): ## grid = [[0 for x in range(self.size)] for x in range(self.size)] ## for i in range(0,self.size): ## for j in range(0,self.size): ## grid[i][j] = 0 ## for x,y in self.teamA: ## grid[x][y] = 3 # 3 is where a ship is ## return grid class Piece(): def __init__(self): self.positions = [] self.head = [] self.alignment = 0 self.placed = False self.destroyed = False def fillPiece(self): x,y = self.head[0] for i in range(0,self.size): if self.alignment == 1: self.positions.append((x,y+i)) else: self.positions.append((x+i,y)) class aircraftCarrier(Piece): def __init__(self): super(aircraftCarrier, self).__init__() self.size = 5 self.name = 'Aircraft Carrier' self.color = [255,0,0] class battleShip(Piece): def __init__(self): super(battleShip, self).__init__() self.size = 4 self.name = 'Battleship' self.color = [200,50,50] class Submarine(Piece): def __init__(self): super(Submarine, self).__init__() self.size = 3 self.name = 'Submarine' self.color = [50,200,50] class Cruiser(Piece): def __init__(self): super(Cruiser, self).__init__() self.size = 3 self.name = 'Cruiser' self.color = [50,100,0] class Destroyer(Piece): def __init__(self): super(Destroyer, self).__init__() self.size = 2 self.name = 'Destroyer' self.color = [50,50,50] player1Grid = Grid() player1Grid.playerNumber=1 for piece in player1Grid.pieces: print(piece.positions) player2Grid = Grid() player2Grid.playerNumber=1 ##a = ((1,2),(3,4)) ##b = ((4,5),(6,2)) ##grid = Grid(a,b) ##choose = int(input("1 ) 2 Player\n2) Against Cpu\n")) ##if choose == 1: ##elif choose == 2: ##else : ## print("Sorry that wasn't a choice") ## sys.exit()
""" OpenCV中图像像素读写操作 Python中的像素遍历与访问 - 数组遍历 """ import cv2 as cv src = cv.imread("../images/beauty.jpg") cv.namedWindow("image",cv.WINDOW_AUTOSIZE) cv.imshow("image",src) # 获取彩色图片的高 宽 通道数 h,w,ch = src.shape # 遍历像素值,对像素取反 for row in range(h): for col in range(w): b,g,r = src[row,col] b = 255 - b g = 255 - g r = 255 - r src[row, col] = [b, g, r] cv.imshow("output",src) cv.waitKey(0) cv.destroyAllWindows()
t = int(input()) for _ in range(t): n = int(input()) grid = [] for i in range(n): l = list(input()) l = sorted(l) grid.append("".join([x for x in l])) flag = 0 for i in range(len(grid[0])): temp = [] for j in range(n): temp.append(grid[j][i]) if(temp != sorted(temp)): print("NO") flag = 1 break if(flag == 0): print("YES")
from tkinter import * from PIL import Image, ImageTk imagenary_tech_root = Tk() #create a basic gui #gui logic #width x height - gemetory imagenary_tech_root.geometry("700x334") #imagenary_tech_root.minsize(300,100) #minimize- width,height #imagenary_tech_root.maxsize(566,300) #maxsize-width,height a = Label(text="HAPPY BIRTHDAY") a.pack() #for jpg images image = Image.open("photo.jpg") photo = ImageTk.PhotoImage(image) a1_label =Label(image=photo) a1_label.pack() imagenary_tech_root.mainloop()
from tkinter import * import tkinter.messagebox as tmsg root= Tk() root.geometry("450x300") root.title("Slider Gui") def getdollar(): print(f"we have credited{myslider2.get()} dollars to your bank account") a=tmsg.showinfo("Amount credited ",f"{myslider2.get()} dollars to your bank account") #myslider = Scale(root,from_=0,to=100) vertical scaler #myslider.pack() Label(root,text ="How many dollars do you want?",font="bold",fg="red",bg="grey").pack() myslider2 = Scale(root,from_=0,to=100,orient=HORIZONTAL,tickinterval=50) #myslider2.set(30) #initial value Button(root,text="Get Dollars",padx=10,pady=10,font=30,bg="yellow",command=getdollar).pack() myslider2.pack() root.mainloop()
''' devolver los indices de dos numeros que sumados entre si son iguales a un target. suponer que solo hay una respuesta. suponer que no se va a usar el mismo numero. ejemplo: nums = [2,7,11,15] target = 9 if nums[0] + nums[1] == target return --> [0,1] ''' def twoSum(nums, target): for i in range(len(nums)): for n in range(len(nums)): if nums[i] != nums[n] and nums[i] + nums[n] == target: # un opcion para calcular la condicion return [i,n] return 'no hay suma de dos numeros que cumpla la condicion' def twoSum2(nums,target): for i in range(len(nums)): for n in range(len(nums)): if nums[i] != n and nums[n] == target - nums[i]: # otra opcion para calcular la condicion return [i,n] return 'no hay suma de dos numeros que cumpla la condicion' print(twoSum([2,7,11,15],9)) print(twoSum2([2,7,11,15],9))
from sys import exit from random import shuffle LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def getRandomKey()-> str: key = list(LETTERS) shuffle(key) return "".join(key) def checkValidKey(key: str)-> None: key_list = list(key) key_list.sort() if key_list != list(LETTERS): exit("Error in key!") def getFinalMessage(key: str,message: str,mode: str)-> str: final_msg = "" str_A, str_B = LETTERS, key if mode.lower().startswith('d'): str_A, str_B = str_B, str_A for char in message: if char.upper() in str_A: idx_char = str_A.find(char.upper()) if char.isupper(): final_msg += str_B[idx_char].upper() else: final_msg += str_B[idx_char].lower() else: final_msg += char return final_msg def main()-> None: msg = input("Enter message:\n>>> ") key = input("Generate Key? (y/n):\n>>> ") mode = input("Encrypt (e) / Decrypt (d):\n>>> ") if mode.lower().startswith('e') and key.lower().startswith('y'): key = getRandomKey() else: key = input("Enter key:\n>>> ") checkValidKey(key) print(f"Key: {key} Message: {getFinalMessage(key,msg,mode.lower()[0])}") if __name__ == "__main__": main()
from copy import deepcopy import numpy as np import pandas as pd import sys ''' In this problem you write your own K-Means Clustering code. Your code should return a 2d array containing the centers. ''' # Configure the path to data data_dir = 'data/data/iris.data' # Import the dataset df = pd.read_table(data_dir, delimiter=',') X = df[['V1', 'V2', 'V3', 'V4']].as_matrix() # Make 3 clusters k = 3 # Initial Centroids C = [[2., 0., 3., 4.], [1., 2., 1., 3.], [0., 2., 1., 0.]] C = np.array(C) print("Initial Centers: ") print(C) def distance(data_point, center): """Compute distance between data point and corresponding center. Args: data_point(list): single data point. center(list): corresponding center. Returns: distance between data point and corresponding center. """ return np.linalg.norm(data_point - center) def assign_cluster(data, centers): """Assign cluster index to each of data point. Args: data(np.ndarray): data points centers(np.ndarray): centers Returns: index(list): index of which cluster each of data points belongs to """ index = [] num_center = centers.shape[0] for point in data: dist = [] for i in range(num_center): dist.append(distance(point, centers[i])) index.append(np.argmin(dist)) return index def update_center(X, indx): """Update centers for data points. Args: data(np.ndarray): data points. old_index(list): The previous/current index. Returns: new_centers(np.ndarray): new centers after updating. """ newCenters = [] for clusterNumber in range(0, k): Cluster = X[[i for i, find in enumerate(indx) if find == clusterNumber]] centroid = Cluster.mean(axis=0) newCenters.append(centroid) return np.array(newCenters) def k_means(C): """Perform K-Means Algorithm on dataset. Args: C(np.ndarray): initial centers. """ # Write your code here! # Get the initial cluster of data points C = np.array(C) indexofcluster = assign_cluster(X, C) old_dist = 0 while (True): new_centers = update_center(X, indexofcluster) new_indexofcluster = assign_cluster(X, new_centers) dist = 0 for i in range(X.shape[0]): dist += distance(X[i], new_centers[new_indexofcluster[i]]) if abs(dist - old_dist) < 10e-3: break else: old_dist = dist indexofcluster = new_indexofcluster return new_centers new_centers = k_means(C) print("New centers: ") print(new_centers)
# Expanding circle by timer ################################################### # Student should add code where relevant to the following. import simplegui WIDTH = 200 HEIGHT = 200 radius = 1 # Timer handler def tick(): global radius radius += 1 # Draw handler def draw(canvas): canvas.draw_circle([WIDTH / 2, HEIGHT / 2], radius, 1, "White", "White") # Create frame and timer frame = simplegui.create_frame("Expanding circle", 200, 200) frame.set_draw_handler(draw) timer = simplegui.create_timer(100, tick) # Start timer frame.start() timer.start()
present_value = 1000 annual_rate = 7 years = 10 future_value = present_value * (1 + 0.01 * annual_rate) ** years print "The future value of $" + str(present_value) + " in " + str(years), print "years at an annual rate of " + str(annual_rate) + "% is $" + str(future_value) + "."
def circle_circumference(radius): return 2 * 3.14 * radius def test(radius): print "A circle with a radius of " + str(radius), print "inches has a circumference of", print str(circle_circumference(radius)) + " inches." test(8) test(3) test(12.9)
def rectangle_perimeter(width,height): return 2*(width+height) def test(width, height): print "A rectangle " + str(width) + " inches wide and " + str(height), print "inches high has a perimeter of", print str(rectangle_perimeter(width, height)) + " inches." test(4, 7) test(7, 4) test(10, 10)
# Compute the circumference of a circle, given the length of its radius. ################################################### # Circle circumference formula # Student should enter statement on the next line. r=8 circumf=2*3.14*r print circumf ################################################### # Expected output # Student should look at the following comments and compare to printed output. #50.24