text
stringlengths
37
1.41M
def baseConverter(decNumber,base): digits = "0123456789ABCDEF" newString = "" while decNumber > 0: rem = decNumber % base decNumber = decNumber // base newString = digits[rem] + newString return newString print("Decimal to binary:", baseConverter(1001,2)) print("Decimal to hexadecimal:", baseConverter(1001,16)) print("Decimal to octal:", baseConverter(1001,8)) def octal_to_decimal(number): i = 1 decimal = 0 while (number != 0): reminder = number % 10 number /= 10 decimal += reminder * i i *= 8 return decimal print("Octal to decimal:", octal_to_decimal(144)) print("Octal to octal:", baseConverter(octal_to_decimal(144),2)) print("Octal to hexadecimal:", baseConverter(octal_to_decimal(144),16)) def binary_to_decimal(bin): bin=str(bin) n=len(bin) res=0 for i in range(1,n+1): res = res + int(bin[i-1])*2**(n-i) return res print("Binary to decimal:", binary_to_decimal(1101)) print("Binary to octal:", baseConverter(binary_to_decimal(1101),8)) print("Binary to hexadecimal:", baseConverter(binary_to_decimal(1101),16)) def hex_to_decimal(hex): n=len(hex) res=0 b=0 for i in range(0,n): if hex[i] == "A": b = 10 elif hex[i] == "B": b = 11 elif hex[i] == "C": b = 12 elif hex[i] == "D": b = 13 elif hex[i] == "E": b = 14 elif hex[i] == "F": b = 15 else: if hex[i].isalpha(): break else: b = hex[i] res = res + int(b) * 16**((n-1)-i) return res print("Hexadecimal to decimal:", hex_to_decimal("3E9")) print("Hexadecimal to octal:", baseConverter(hex_to_decimal("3E9"),8)) print("Hexadecimal to binary:", baseConverter(hex_to_decimal("3E9"),2))
# Python3 program to find maximum difference # between node and its ancestor _MIN = -2147483648 _MAX = 2147483648 # Helper function that allocates a new # node with the given data and None left # and right poers. class newNode: # Constructor to create a new node def __init__(self, key): self.key = key self.left = None self.right = None """ Recursive function to calculate maximum ancestor-node difference in binary tree. It updates value at 'res' to store the result. The returned value of this function is minimum value in subtree rooted with 't' """ def maxDiffUtil(t, res): """ Returning Maximum value if node is not there (one child case) """ if (t == None): return _MAX, res """ If leaf node then just return node's value """ if (t.left == None and t.right == None): return t.key, res """ Recursively calling left and right subtree for minimum value """ a, res = maxDiffUtil(t.left, res) b, res = maxDiffUtil(t.right, res) val = min(a, b) """ Updating res if (node value - minimum value from subtree) is bigger than res """ res = max(res, t.key - val) """ Returning minimum value got so far """ return min(val, t.key), res """ This function mainly calls maxDiffUtil() """ def maxDiff(root): # Initialising result with minimum value res = _MIN x, res = maxDiffUtil(root, res) return res # Driver Code if __name__ == '__main__': root = newNode(8) root.left = newNode(15) root.left.left = newNode(1) root.left.right = newNode(6) root.left.right.left = newNode(4) root.left.right.right = newNode(7) root.right = newNode(10) root.right.right = newNode(14) root.right.right.left = newNode(13) print("Maximum difference between a node and", "its ancestor is :", maxDiff(root))
def partition(lst, start, end): pos = start # condition was obsolete, loop won't # simply run for empty range for i in range(start, end): # i must be between start and end-1 if lst[i] < lst[end]: # in your version it always goes from 0 lst[i],lst[pos] = lst[pos],lst[i] pos += 1 lst[pos],lst[end] = lst[end],lst[pos] # you forgot to put the pivot # back in its place return pos def quick_sort_recursive(lst, start, end): if start < end: # this is enough to end recursion pos = partition(lst, start, end) quick_sort_recursive(lst, start, pos - 1) quick_sort_recursive(lst, pos + 1, end) # you don't need to return the list # it's modified in place example = [3,45,1,2,34] quick_sort_recursive(example, 0, len(example) - 1) print(example)
# Binary Tree Traversal: O(n) complexity class Node: def __init__(self ,key): self.data = key self.left = None self.right = None # Iterative Method to print the height of binary tree def printLevelOrder(root): # Base Case if root is None: return # Create an empty queue for level order traversal using queue queue = [] # Enqueue Root and initialize height queue.append(root) while(len(queue) > 0): # Print front of queue and remove it from queue print(queue[0].data), node = queue.pop(0) #Enqueue left child if node.left is not None: queue.append(node.left) # Enqueue right child if node.right is not None: queue.append(node.right) # Iterative function for inorder tree traversal using stack def inOrder(root): # Set current to root of binary tree current = root s = [] # initialze stack done = 0 while(not done): # Reach the left most Node of the current Node if current is not None: # Place pointer to a tree node on the stack # before traversing the node's left subtree s.append(current) current = current.left # BackTrack from the empty subtree and visit the Node # at the top of the stack; however, if the stack is # empty you are done else: if(len(s) >0 ): current = s.pop() print(current.data), # We have visited the node and its left # subtree. Now, it's right subtree's turn current = current.right else: done = 1 # Iterative function for preorder tree traversal using stack def preOrder(root): # Set current to root of binary tree current = root s = [] # initialze stack done = 0 while(not done): # Reach the left most Node of the current Node if current is not None: print(current.data), # Place pointer to a tree node on the stack # before traversing the node's left subtree s.append(current) current = current.left # BackTrack from the empty subtree and visit the Node # at the top of the stack; however, if the stack is # empty you are done else: if(len(s) >0): current = s.pop() # We have visited the node and its left # subtree. Now, it's right subtree's turn current = current.right else: done = 1 def peek(stack): if len(stack) > 0: return stack[-1] return None # A iterative function to do postorder traversal using stack def postOrder(root): # Check for empty tree if root is None: return stack = [] while(True): while (root): # Push root's right child and then root to stack if root.right is not None: stack.append(root.right) stack.append(root) # Set root as root's left child root = root.left # Pop an item from stack and set it as root root = stack.pop() # If the popped item has a right child and the # right child is not processed yet, then make sure # right child is processed before root if (root.right is not None and peek(stack) == root.right): stack.pop() # Remove right child from stack stack.append(root) # Push root back to stack root = root.right # change root so that the # righ childis processed next # Else print root's data and set root as None else: print(root.data), root = None if (len(stack) <= 0): break root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) print("Level Order Traversal:") printLevelOrder(root) print("Inorder Traversal:") inOrder(root) print("Preorder Traversal:") preOrder(root) print("Postorder Traversal:") postOrder(root)
#!/usr/bin/env python3 from inspect import signature def curry(fn): num_args = len(signature(fn).parameters) def init(*args, **kwargs): def call(*more_args, **more_kwargs): all_args = args + more_args all_kwargs = dict(**kwargs, **more_kwargs) if len(all_args) + len(all_kwargs) >= num_args: return fn(*all_args, **all_kwargs) else: return init(*all_args, **all_kwargs) return call return init() def f(a, b, c): return a + b + c g = curry(f) a = g(2)(4)(6) print(f'a = {a}') @curry def sum(a, b, c, d): return a + b + c + d print(sum(1)(2, 4)(3)) print(sum(1, 2, 3)(4)) print(sum(1, 2, 3, 4))
#!/usr/bin/env python3 # Exercise # Using a generator expression, define a generator for the series: # (0, 2).. (1, 3).. (2, 4).. (4, 6).. (5, 7) # This is a "generator expression" g = ((a, b) for a, b in zip(range(0, 6), range(2, 8)) if a != 3) for i in g: print(i) # This is a "list comprehension"" g = [(a, b) for a, b in zip(range(0, 6), range(2, 8)) if a != 3] for i in g: print(i)
#!/usr/bin/env python3 class Foo: def __init__(self, x=0, name=None): self.x = x self.name = name def __repr__(self): return '{} -> x = {}'.format(self.name, self.x) # AFAICT, the type annotations have no bearing at runtime. They # are only relevant to the static type checker, so returning # a float from a function that returns int is not a runtime error. def foo(obj: Foo) -> int: return obj.x + 3.3 if __name__ == '__main__': x = Foo(5, "doug") print(x) a = foo(x) print(a)
#!/usr/bin/env python2.7 from collections import namedtuple Thing = namedtuple('Thingy', ['one', 'two']) a = Thing('foo','bar') c, b = a print "a=", a # a is a Thingy print "b=", b # b is 'bar' print "c=", c # c is 'foo' print "a.one = ", a.one print "a.two = ", a.two # Note that the naming of the fields can also done with a # string containing a space or comma separated list SThing = namedtuple('Thingy', 'one, two') a = SThing(5, 6) print('a.one = {}'.format(a.one))
#!/usr/bin/env python3 import itertools a = (1, 2, 3, 4) b = ("a", "b", "c") # Stop when b is exhausted (similar to python2's itertools.izip) for i in zip(a, b): print(i) # Fill in short lists with NULL (in python3, this is izip_longest) for i in itertools.zip_longest(a, b): print(i) for i, (a, b) in enumerate(zip(a, b)): print(i, a, b)
#!/usr/bin/env python3 """ https://docs.python.org/3/glossary.html#term-sequence An iterable which supports efficient element access using integer indices via the __getitem__() special method and defines a __len__() method that returns the length of the sequence. Some built-in sequence types are list, str, tuple, and bytes. """ a = "abcdef" for i, c in enumerate(a): print(f"i = {i}, c = {c}")
#!/usr/bin/env python from operator import itemgetter # Sort tuple by 2nd index student_tuples = [ ('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10), ] # sort by .[2] a = sorted(student_tuples, key=lambda student: student[2]) print('sorted by age:') for x in a: print(x) # sort by .[1], then by .[2] a = sorted(student_tuples, key=itemgetter(1,2)) print('sorted by grade, then age:') for x in a: print(x) # For named attributes, use operator.attrgetter class foo: def __init__(self, a, b): self.a = a self.b = b # define __lt__ to get sort method for free def __lt__(self, other): return self.a < other.a def __repr__(self): return f'{self.a}' a = [foo(1,2), foo(5,6), foo(2,3)] a.sort() print(a)
""" THIS IS MEANT TO BE THE REVERSE OF bomb_baby.py's SOLUTION instead of starting from 1,1 and searching downwards, start from tm, tf and work backwards towards 1,1 If 1,1 is reachable, return the shortest number of moves to get there If 1,1 is NOT reachable, return "impossible" TUTORIALS USED: https://www.youtube.com/watch?v=7QcoJjSVT38 https://www.youtube.com/watch?v=5MpT0EcOIyM&t=192s """ import copy import time #import numpy as np import logging logging.basicConfig(filename='bomb_baby_reverse_log', level=logging.DEBUG) def solution(m, f): tm = long(m) tf = long(f) '''# if one of the targets (m or f) is greater than the other by one, it exists. # it exists in the tree at the level of the smaller target value if tm == tf - 1 or tf == tm - 1: return str(min(tm, tf)) # otherwise, if both values are 1, it exists at 0 depth of the tree elif tm == tf and tf == 1: return str(0) # otherwise, if one of the values equal to half of the other, it will not exist in the tree elif tm == tf / 2 or tf == tm / 2: return "impossible" # otherwise if one of the values is 1, and the other is any number greater than it, it exists # at depth level of (larger value)-1 elif min(tm, tf) == 1 and max(tm, tf) > 1: return str(max(tm, tf) - 1)''' # the initial depth limit of the IDDFS is 0 depth_limit = 0 # the root of the tree to be generated in the search is the target value pair (depth=0) root = ((tm, tf), 0) # initialize the "failed" boolean flag to False failed = False '''BEGIN ITERATIVE-DEEPENING DEPTH-FIRST SEARCH''' # this list will be used to store the unique values at the maximum depth level of a given # depth-limited DFS first_encounters = [] while not failed: # print() # print('depth_limit = {}'.format(depth_limit)) # time.sleep(2) '''BEGIN DEPTH-BOUNDED DEPTH-FIRST SEARCH''' # perform a depth-bounded search if depth_limit == 0: # if depth limit is zero, check if the input == 1,1 if (1, 1) == root[0]: # if the input == 1,1 return 0 as the depth return root[1] else: if depth_limit == 1: # if the depth limit is 1, set the first_encounters list to contain only the root first_encounters = [root] # the previous_first_encounters list keeps track of all of the newly encountered sets from the last # iteration of the loop, which will be used (in the following loop) to calculate the values in the next # depth layer of the tree previous_first_encounters = copy.deepcopy(first_encounters) # empty out first_encounters in preparation for beginning to search a new depth layer first_encounters = [] # use the newly encountered values from the previous depth layer to generate the values in this current # depth layer # while there are still values left to process, do the following for each... while len(previous_first_encounters) > 0: # remove a tree node from the stack, to be processed node = previous_first_encounters.pop() # assign the values to their own variables for easy access later mach = long(node[0][0]) facula = long(node[0][1]) # assign the depth value to its own variable, for easy access later node_depth = node[1] '''DETERMINE WHETHER OR NOT A NODE IS THE GOAL NODE''' # the goal node is (1,1) if (mach, facula) == (1, 1): # if this node is the goal node, return the depth at which it was found within the tree as a string return str(node_depth) else: # if this is not the goal node, do the following... # if the node is not at the deepest point allowed in the search... if node_depth < depth_limit: # increment the node_depth # this variable now represents the depth of the soon-to-be-generated child nodes node_depth += 1 # keep track of how many of the child nodes will be pushed to the stack # (0 <= pushed_nodes <= 2) pushed_nodes = 0 '''LEFT CHILD NODE''' # if the left child's smallest value will be >= 1 (if the child node's values are valid) AND... # if the depth of the left child is equal to the depth_limit (if the node is in the newest, # and therefore un-explored depth layer)... if mach - facula >= 1 and node_depth == depth_limit: # generate the left child node node_to_push = ((mach - facula, facula), node_depth) # push the left child node to the stack of newly encountered nodes first_encounters.append(node_to_push) # increment the pushed_nodes counter by one, because a node was pushed to the stack pushed_nodes += 1 # delete the node_to_push to save on memory del node_to_push '''RIGHT CHILD NODE''' # if the right child's smallest value will be >= 1 (if the child node's values are valid) AND... # if the depth of the right child is equal to the depth_limit (if the node is in the newest, # and therefore un-explored depth layer)... if facula - mach >= 1 and node_depth == depth_limit: # generate the right child node node_to_push = ((mach, facula - mach), node_depth) # push the right child node to the stack of newly encountered nodes first_encounters.append(node_to_push) # increment the pushed_nodes counter by one, because a node was pushed to the stack pushed_nodes += 1 # delete the node_to_push to save on memory del node_to_push # if there were no VALID newly encountered nodes, stop searching. if len(first_encounters) == 0: failed = True '''END DEPTH-BOUNDED SEARCH''' depth_limit += 1 return "impossible" def solution2(M, F): def trace_backwards(mach, facula, depth): print(mach, facula) if mach == 1 and facula > 1: return str(depth + facula - 1) elif mach > 1 and facula == 1: return str(depth + mach - 1) elif mach == 1 and facula == 1: return str(depth) elif mach == facula or max(mach, facula) % min(mach, facula) == 0: return 'impossible' else: if mach > facula: goes_into_times = mach//facula return trace_backwards(mach-facula*goes_into_times, facula, depth+goes_into_times) elif facula > mach: goes_into_times = facula//mach return trace_backwards(mach, facula-mach*goes_into_times, depth+goes_into_times) tm, tf = long(M), long(F) return trace_backwards(tm, tf, 0) print(solution2('8', '3')) '''print('4, 7...') print(solution('4', '7')) time.sleep(2) print('2, 1...') print(solution('2', '1')) time.sleep(2) print('2, 4...') print(solution('2', '4')) time.sleep(2) print('10, 12...') print(solution('10', '12')) time.sleep(2) print('10, 11...') print(solution('10', '11')) time.sleep(2) print('13, 21...') print(solution('13', '21')) time.sleep(2) print('123, 456...') print(solution('123', '456')) time.sleep(2) print('1234, 567...') print(solution('1234', '567')) print('1234, 5678...') print(solution('1234', '5678')) time.sleep(2) print('10000, 10000') print(solution('10000', '10000')) time.sleep(2) print('10000, 9999') print(solution('10000', '9999')) time.sleep(2) print('10**5, (10**5)-1') print(solution(str(10 ** 5), str((10 ** 5 - 1)))) time.sleep(2) print('10**50, (10**50)-1') print(solution(str(10 ** 50), str((10 ** 50) - 1))) time.sleep(2) print('10**50, 10**5') print(solution(str(10 ** 50), str(10 ** 5)))'''
import numpy as np x = np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3]]) print(x.shape) y = np.expand_dims(x, axis=2) print(y.shape) print(y) z = np.concatenate([y] * 3, 2) print(z)
from datetime import * def date_converter(date_string): dates = date_string.split("-") date_item = [int(item) for item in dates] try: new_date = date(date_item[0],date_item[1],date_item[2]) return new_date except ValueError: return date(9030,12,30) def period_start_dates(last_period, cycle_averages,start_str, end_str): last_period_date = date_converter(last_period) end_date = date_converter(end_str) start_date = date_converter(start_str) if last_period_date>start_date: return {"error":"date not in range"} if start_date>end_date: return {"error":"date not in range"} date_list = [] while last_period_date < end_date : cycle_average = timedelta(days=cycle_averages) last_period_date = last_period_date + cycle_average if start_date <= last_period_date <= end_date: date_list.append(last_period_date) return date_list
#!/usr/bin/env python3 def prime(n): i = 2; if n <= 1: return False while i * i <= n: if n % i == 0: return False i = i + 1 return True def main(): sum = 2 for i in range(3, 2000001, 2): if prime(i): # print(i) sum += i # print(sum) print(("result is %d\n" % sum)) if __name__ == "__main__": main()
#!/usr/bin/env python3 # # $ python3 14.py |sort -k2 -nr|head # 837799 524 # 626331 508 # 939497 506 # 704623 503 # 927003 475 # 910107 475 # 511935 469 # 796095 467 # 767903 467 # 970599 457 # def count(num): c = 0 while True: if num <= 1: break if num % 2 == 0: num = num / 2 else: num = num * 3 + 1 c += 1 return c def main(): for i in range(800000, 1000000): print((i, count(i))) if __name__ == "__main__": main()
#################################################################################################### ## A simple feed forward network using tensorflow and some of its visualization tools ##Architecture ## 2 hidden layers 1 input and 1 output layers ## input layer : 10 neurons corresponding to season, mnth,holiday,weekday,workingday, weathersit, temp, atemp, hum, windspeed ##hidden layers with 5 and 3 neurons respectively ##output neuron. This is a regression type of problem where the output value predicts the answer "cnt" in the dataset. #################################################################################################### import tensorflow as tf import numpy as np import pandas as pd from sklearn.utils import shuffle from matplotlib import pyplot as plt #preprocessing the data path="day.csv" dataset=pd.read_csv(path) costHistory=[] learningRate=0.5 totalepoch=3000 samplesize=90 dataset=dataset.drop(['instant','dteday','casual','registered','yr'],axis=1) #factors being used are season, mnth,holiday,workingday, weathersit, temp, atemp, hum, windspeed, cnt dataset=shuffle(dataset) ####create tensor graph #create placeholder to inject input to the tensorgraph X=tf.placeholder(dtype="float",shape=[None,10],name="x-input") Y=tf.placeholder(dtype="float",shape=[None,1],name='output') weights={'w1':tf.Variable(tf.random_uniform([10,5],minval=1,maxval=9)), 'w2':tf.Variable(tf.random_uniform([5,1],minval=1,maxval=9))} #weights and biases as a dictionary biases={'b1':tf.Variable(tf.constant(0.5)), 'b2':tf.Variable(tf.constant(0.3))} layer1_output=tf.nn.relu6(tf.matmul(X,weights['w1'])) layer2_output=tf.nn.sigmoid(tf.matmul(layer1_output,weights['w2'])) cost=tf.reduce_sum(tf.pow((Y-layer2_output),1),axis=1) optimizer=tf.train.GradientDescentOptimizer(learning_rate=learningRate).minimize(cost) #run the graph init=tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for epoch in range(0,totalepoch): trainingSample = dataset.sample(samplesize) cnt = np.asarray(trainingSample['cnt']).reshape([samplesize,1]) trainingSample.drop(['cnt'], axis=1) inparray=np.asarray([trainingSample['season'],trainingSample['mnth'],trainingSample['holiday'],trainingSample['weekday'],trainingSample['workingday'],trainingSample['weathersit'],trainingSample['temp'],trainingSample['atemp'],trainingSample['hum'],trainingSample['windspeed']]) inparray=inparray.transpose() #print(inparray.shape) #print(cnt.shape) sess.run(optimizer,feed_dict={X:inparray,Y:cnt}) cst =sess.run(cost,feed_dict={X:inparray,Y:cnt}) costHistory.append(cst) plt.plot(range(len(costHistory)), costHistory) plt.show()
### Small: Single hotel # The goal of the small exercise is to get practice with the syntax for querying and manipulating the data in a single, nested dictionary. # Write functions to: # - is_vacant(which_hotel, '101') # - check if a room is occupied # - check_in('101', guest_dictionary) # - assign a person to a room # - check_out('101') # - returns the person dictionary in that room # Please look back at any notes or slides for how to perform any of these actions. ### # if hotel['101'] == {}: # print(f'Room 101 is vacant.') # Create dictionary for each additional guest hotel = { '101': { 'guest': { 'name': 'Peggy Sue', 'phone': '3331234', } }, '102': {}, '103': {}, '104': {}, '105': {}, } # Creates a guest dictionary guest1 = { 'name': 'Tracy Ellis', 'phone': '3331234', } # if hotel['101'] == {}: # print(True) # else: # print(False) # Creates a function call to check if a room is vacant def is_vacant(which_hotel, room_number): if which_hotel[room_number] == {}: return f'Room {room_number} is vacant.' else: return f'Room {room_number} is occupied' # Defines a function that adds a guest to a specific room def check_in(room_number, guest_dictionary): hotel[room_number]['guest'] = guest_dictionary # Defines a function that returns the guest dictionary for room number def check_out(room_number): return f'{hotel[room_number]["guest"]}' print(is_vacant(hotel, '102')) check_in('102', guest1) print(check_out('102'))
#!/bin/python3 import math import os import random import re import sys # Complete the plusMinus function below. def plusMinus(arr): m=0 p=0 z=0 for i in arr: if i <0: m=m+1 elif i>0: p=p+1 else: z=z+1 sum=float(p+m+z) print(float(p/sum)) print(m/sum) print(z/sum) n = int(input()) arr = list(map(int, input().rstrip().split())) plusMinus(arr)
import re import requests from bs4 import BeautifulSoup from requests import Response class GitHubConnector: """Class to access the GitHub API.""" def __init__(self, oauthToken: str = None) -> None: """Initalizes the class. Parameters: oauthToken (str): The personal access token needed to access the GitHub API. Returns: None: The class is initalized. """ self.token = oauthToken def openConnection(self, url: str) -> Response: """Sends a request to a GitHub API endpoint. Configures all of the headers prior to sending the request. Parameters: url (str): The GitHub API endpoint that is to be accessed. Returns: Reponse: The response data sent back to the application from the GitHub API endpoint. """ headers = { "Accept": "application/vnd.github.v3+json", "User-Agent": "Metrics-Dashboard", "Authorization": "token {}".format(self.token), } return requests.get(url=url, headers=headers) def parseResponseHeaders(self, response: Response) -> dict: """Get specific information from the response headers. The data that is carred about is the rate limit and reset, as well as the next and last pages of the request if the response has been truncated. Parameters: response (Response): The response object sent back to the application from a request. Returns: dict: A dictionary of key-value pairs that only has the important information needed for the application to function properly. """ def _findLastPage() -> int: """Finds the last page within the header data. Returns: int: Returns the value of the last page of a request. """ try: links = response.headers["Link"].split(",") for link in links: if link.find('rel="last"') != -1: try: return int("".join(re.findall("&page=([0-9]+)>", link))) except ValueError: return int("".join(re.findall("&page=([0-9]+)&", link))) return -1 except KeyError: return -1 return { "Status-Code": response.status_code, "X-RateLimit-Limit": response.headers["X-RateLimit-Limit"], "X-RateLimit-Remaining": response.headers["X-RateLimit-Remaining"], "X-RateLimit-Reset": response.headers["X-RateLimit-Reset"], "Last-Page": _findLastPage(), } def returnRateLimit(self) -> int: """Gets the current rate limit of the oauthToken. Returns: int: The current rate limit of the oauthToken provided to the application. """ headers = { "Accept": "application/vnd.github.v3+json", "User-Agent": "Metrics-Dashboard", "Authorization": "token {}".format(self.token), } data = requests.get( url="https://api.github.com/rate_limit", headers=headers ).json() return data["resources"]["core"]["remaining"] class GitHubCommitWebScraper: """Class to scrape HTML content from GitHub commit pages.""" def __init__(self) -> None: """Initalizes the class.""" pass def openConnection(self, url: str) -> BeautifulSoup: """Creates a BeautifulSoup object that is stored as a class variable. Parameters: url: A string that is formatted: https://github.com/{user}/{repo}/{commit}. Will be accessed via a GET request and its HTML content will be made availible as a BeautifulSoup object accessible via the *soup* class variable. Returns: An instance of a BeautifulSoup Web Scraper. """ resp = requests.get(url=url).text return BeautifulSoup(markup=resp, features="html.parser")
# a = ['d', 's', 'a'] # b = ''.join(a) # print(b) # c = {1,2,3,4} # d = {4,5,6,7,8} # print(c & d) # a = [1,2,3,4,5,5,5,5,7] # b = set(a) # a = list(b) # print(a) # phone_book = {'서울': '02', '경기': '031', '인청': '032'} # print(phone_book.items()) # for i in range(2, 10): # print('{}단'.format(i)) # for j in range(1, 10): # print(f'{i} x {j} = {i*j}') # word = input() # vowels = 0 # consonants = 0 # for i in word: # if i in 'aeiou': # vowels += 1 # else: # consonants += 1 # print(vowels, consonants) # classroom = ['Kim', 'Hong', 'kang'] # print(list(enumerate(classroom, start=1))) # basket_items = {'apples': 4, 'oranges': 19, 'kites': 3, 'sandwiches': 8} # fruits = ['apples', 'oranges', 'pears', 'peaches', 'grapes', 'bananas'] # fruit_num = 0 # fruit_numx = 0 # for k, v in basket_items.items(): # if k in fruits: # fruit_num += v # else: # fruit_numx += v # print(fruit_num, fruit_numx) # city = { # '서울': [-6, -10, 5], # '대전': [-3, -5, 2], # '광주': [0, -2, 10], # '부산': [2, -2, 9], # } # cold = 0 # hot = 0 # count = 0 # hot_city = "" # cold_city = "" # for k, v in city.items(): # if max(v) > hot: # hot = max(v) # hot_city = k # if min(v) < cold: # cold = min(v) # cold_city = k # print(hot, hot_city, cold, cold_city) # words = "hI! Everyone, I'm kim" # print(words.swapcase()) # print('woooooowooo'.replace('o', '', 2)) # caffe = ['starbucks', 'tomntoms', 'hollys'] # caffe.append(['asfds']) # caffe.extend(['adasfd']) # print(caffe) # print(dir(list)) # numbers = [2, 5, 4, 1, 7, 5] # result = sorted(numbers, reverse=True) # numbers.sort(reverse=True) # print(result) # return값 # print(numbers) # 원본 # import random # a = random.sample(numbers, 2) # print(a) my_dict = {'apple': '사과', 'banana': '바나나'} a= my_dict.get('melon', True) print(a)
import numpy as np def get_n_click(bid, customer): """Function that returns a stochastic number of daily clicks of new users (i.e., that have never clicked before these ads) as a function depending on the bid""" alpha = 1 beta = 1 if customer == 1: alpha = 100 # 300 beta = 0.8 # 0.02 elif customer == 2: alpha = 120 # 500 beta = 0.2 # 0.003 elif customer == 3: alpha = 70 beta = 0.06 # 0.02 """ n = -1 while n < 0: param = np.tanh(np.random.normal(loc=bid, scale=0.6 * np.tanh(bid)) * beta) n_click = alpha * param n = n_click""" param = np.tanh(np.random.normal(loc=bid, scale=0.6 * np.tanh(bid)) * beta) n_click = alpha * param return n_click def get_cost_x_click(bid): """Function that returns a stochastic cost per click as a function of the bid""" #cost_per_click = 0 #while cost_per_click < 0: cost_per_click = np.random.normal(loc=np.log(bid+1)/8, scale=0.01*np.tanh(bid), size=None) return cost_per_click # class 1: TT # class 2: TF # class 3: FF def conv_rate(price, customer): """Function that is a conversion rate providing the probability that a user will buy the item given a price""" alpha = 1 if customer == 1: alpha = - 0.25 elif customer == 2: alpha = - 0.5 elif customer == 3: alpha = - 1.5 conv = np.exp(alpha*price) return conv
# -*- coding: utf-8 -*- """ Created on Thu Jan 25 16:44:35 2018 @author: D16129083 """ coverPrice = input("What's the price of the cover book: ") numberOfCopies = input("How many copies do you need: ") discount = 0.4 initialShipping = 3.0 extraShipping = 0.75 totalCover = (float(coverPrice) - (float(coverPrice) * discount)) * int(numberOfCopies) totalExtraShipping = (int(numberOfCopies) - 1) * extraShipping total = totalCover + initialShipping + totalExtraShipping print("The total of the order is", total) # Item 9 - The total wholesale cost fot 60 copies is 945.4499999999999
# -*- coding: utf-8 -*- """ Created on Mon Jan 29 15:30:30 2018 @author: D16129083 """ # This method checks if the value inputed by the user is a number, otherwise it # calls the method again def get_user_input(title): input_value = input(title) if isInt(input_value) or isFloat(input_value): return input_value else: print('Please type a value with the right format.') return get_user_input(title) # This method checks if some value is a float def isFloat(value): try: float(value) return True except ValueError: return False # This method checks if some value is an int def isInt(value): try: int(value) return True except ValueError: return False # All calculations happens here based on the user's info def calculation(age, weight, height): dog_years = int(age) / 7 weight_on_moon = float(weight) * .17 weight_on_sun = float(weight) * 27.07 weight_in_pounds = float(weight) / 0.45359237 height_in_inches = float(height) * 0.39370079 bmi = float(weight) / float(height) ** 2 * 10000 return dog_years, weight_on_moon, weight_on_sun, weight_in_pounds, height_in_inches, bmi def main(): # Here all the information are gatheed from the user age = get_user_input('What is your age? ') weight = get_user_input('What is you weight in kgs? ') height = get_user_input('What is your height in cms? ') info = calculation(age, weight, height) # All the infomation are displayed using the print statement print('-'*60) print('Your age in dog years is', format(info[0], '.0f')) print('Your weight on the moon is ' + format(info[1], '.1f') + ' kgs and '+ format(info[2], '.1f') + ' kgs on the sun.') print('Your weight in pounds is ' + format(info[3], '.1f') + ' pounds.') print('Your height in inches is ' + format(info[4], '.0f') + ' inches.') print('You BMI (Body Mass Index) is ' + format(info[5], '.1f')) print('-'*60) main()
'''WIDGETS AND GIZMOS''' w=int(input('Enter number of widgets = ')) g=int(input('Enter number of gizmos = ')) widget_weight=w*75 gizmos_weight=g*112 total_weight=widget_weight+gizmos_weight print(''' Widgets = %d Gizmos = %d Widget weight = %d Gizmos weight = %d ------------------------------------ Total weight = %d '''%(w,g,widget_weight,gizmos_weight,total_weight))
'''DISTANCE UNITS''' f=float(input('Enter the distance in feet: ')) i=f*12 y=f*0.333333 m=f*0.000189394 print(''' Distance in feets= %f Distance in inche= %f Distance in yard = %f Distance in miles= %f''' %(f,i,y,m))
'''REPALCING A WORD IN PYTHON ''' str='HELLO TO ALL PYTHON COMMUNITY' print('Original String : %s'%(str)) print('String after replacement : %s'%(str.replace('PYTHON','PYTHON 3.6')))
'''CELL PHONE BILL''' mint=int(input('Enter total minute:')) msg=int(input('Enter total message sent:')) print('Base charge = $15') amint=0 amsg=0 if mint>50: amint=(mint-50)*.25 print('Additional minute charge = $%.2f'%(amint)) if msg>50: amsg=(msg-50)*.15 print('Additional message charge = $%.2f'%(amsg)) print('911 charge = $0.44') total=15+amint+amsg+.44 print('Total charge = $%.2f'%(total)) tax=.05*total print('Tax = $%.2f'%(tax)) print('Final amount to be payed = $%.2f'%(total+tax))
'''input a number k and an array There is an array find all possible pairs of numbers which when added is divisible by the number k output count of successfully divisible pairs''' arr=[] divisible=[] count=0 print('Enter the array elements:') l=input() while l!='': arr.append(int(l)) l=input() k=int(input('Enter a number:')) i=0 l=len(arr) while i!=l: j=i+1 while j!=l: num=arr[i]+arr[j] if num%k==0: divisible.append(num) count=count=count+1 j=j+1 i=i+1 print('Number of elements divisible by :',count) '''TESTCASES ------------------------------------------------------------ Enter the array elements: 3 5 7 2 Enter a number:4 Number of elements divisible are: 2 --------------------------------------------------------------- Enter the array elements: 2 3 4 2 Enter a number:5 Number of elements divisible are: 2 '''
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data", one_hot = True) n_nodes_hl1= 500 n_nodes_hl2= 500 n_nodes_hl3= 500 num_class = 10 batch_size = 100 x = tf.placeholder('float', [None, 784]) y = tf.placeholder('float') def NN_model(data): hidden_1_layer = {'weights': tf.Variable(tf.random_normal([784,n_nodes_hl1])), 'biases': tf.Variable(tf.random_normal([n_nodes_hl1]))} hidden_2_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1,n_nodes_hl2])), 'biases': tf.Variable(tf.random_normal([n_nodes_hl2]))} hidden_3_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2,n_nodes_hl3])), 'biases': tf.Variable(tf.random_normal([n_nodes_hl3]))} output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1, num_class])), 'biases': tf.Variable(tf.random_normal([num_class]))} l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']) , hidden_1_layer['biases']) l1 = tf.nn.relu(l1) l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']) , hidden_2_layer['biases']) l2 = tf.nn.relu(l2) l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']) , hidden_3_layer['biases']) l3 = tf.nn.relu(l3) output = tf.matmul(l3, output_layer['weights']) + output_layer['biases'] return output def train_NN(x): prediction = NN_model(x) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=prediction, logits= y)) optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(cost) n_epochs = 10 with tf.Session() as sess: sess.run(tf.initialize_all_variables()) for epoch in range(n_epochs): epoch_loss =0 for _ in range(int(mnist.train.num_examples/batch_size)): epoch_x,epoch_y = mnist.train.next_batch(batch_size) _ , c = sess.run([optimizer, cost], feed_dict = {x:x, y:y}) epoch_loss += c print ('Epoch', epoch, 'completed out of', n_epochs, 'loss:', epoch_loss) correct_answer = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_answer, 'float')) # print ('Accuracy': accuracy.eval({x:mnist.test.images, y:mnist.test.labels})) train_NN(x)
#Write methods to implement the multiply, subtract, and divide operations for #integers. Use only the add operator. def multiply(a,b): result =0 count=0 while count<b: result=result+a count=count+1 return result
##Given a positive integer, print the next smallest and the next largest number ##that have the same number of 1 bits in their binary representation. def _getNext(n): """ Trick is to flip a 1 to 0 and a 0 to 1. To get the next biggest number, what you do is 1. Get the FIRST NON-TRAILING 0 when you read from right to left Mark that point as p. 2. Get the count of 1's (c1) and 0's (c0) to the right of p 2.5. if c1+c0==32 or ==0, return -1 3. Flip the 0 at p (c1+c0) to 1 4. Clear out all the bits to the right of p 5. Add c1-1 ones at the right-most end """ c=n c0=0 c1=1 while c&1==0 and c!=0: c0+=1 c=c>>1 while c&1==1 and c!=0: c1+=1 c=c>>1 #if number is 111..11000..000, no number bigger w/ same # of ones if c0+c1==31 or c0+c1==0: return -1 p=c0+c1 n=n^(1<<p) #set p to 1 n=n&~((1<<p)-1) #set everything after p to 0 n=n^((1<<(c1-1))-1) return n def _getPrevious(n): """ Just like getNext but the opposite. :D p is FIRST NON-TRAILING 1 """ c=n c0=0 c1=0 while c&1==1: c1+=1 c=c>>1 if c==0: #check if n was 1111..1111 or 00000..0011...111 return -1 while c&1==0 and c!=0: c0+=1 c=c>>1 p=c0+c1 n=n<<~(1<<(p+1)-1) #clear from p onwards n=n^((1<<(c1+1)-1)<<(c0-1)) return n def getPrevNext(n): a=_getNext(n) b=_getPrevious(n) return [a,b]
##Write a method to replace all spaces in a string with'%20'. You may assume that ##the string has sufficient space at the end of the string to hold the additional ##characters, and that you are given the "true" length of the string. #Method1: Using built-in function def replace1(string): string=string.replace(" ","%20") return string
##4.4 Given a binary tree, design an algorithm which creates a linked list of all the ##nodes at each depth (e.g., if you have a tree with depth D, you'll have D linked ##lists). def BTtoLL(node): if node==None: return LL=[] current=LinkedList(node) while current.size()!=0: LL.append(current) parent=current temp=parent current=LinkedList() while temp: if temp.left: current.insert(temp.left) if temp.right: current.insert(temp.right) temp=temp.next toDel=current current=current.next toDel.next=None return LL
##4.6 Write an algorithm to find the 'next'node (i.e., in-order successor) of a given node ##in a binary search tree. You may assume that each node has a link to its parent. def next_node(node): if node==None: return if node.right: return fetchLeftMost(node.right) cur=node par=cur.parent while par!=None and par.right==cur: cur=par par=par.parent return par def fetchLeftMost(node): if node==None: return while node.left: node=node.left return node
def countWaysBookWay(n): if n<0: return 0 elif n==0: return 1 else: return countWaysBookWay(n-1)+countWaysBookWay(n-2)+countWaysBookWay(n-3)
##9.3 A magic index in an array A [0. . .n-1] is defined to be an index such that A[i] ##= i. Given a sorted array of distinct integers, write a method to find a magic ##index, if one exists, in array A. """ Brute force would be to iterate through array and check index against value in array Since values are sorted and distict, this can be solved using a binary search approach """ def magicIndex(array, start, end): if start>end or start<0 or end>len(array)-1: return -1 mid=(start+end)/2 if array[mid]==mid: return mid elif array[mid]>mid: return magicIndex(array, start, mid) else: return magicIndex(array, mid+1, end)
from barcode import EAN13 # a type of format from barcode.writer import ImageWriter #to save the barcode as a png file def barcode_create(file_name, digits): with open(file_name, 'wb') as f: #write in binary mode #numbers written in barcode where the last one is automatically generated EAN13(digits, writer=ImageWriter()).write(f) if __name__ == "__main__": #Command to run: python3 barcode_creation.py file_name = "workshop_barcode.png" digits = "346297563925697" barcode_create(file_name, digits)
""" This script uses logistic regression to provide prediction probabilities to each individual entry """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os class Classifier: def __init__(self, dataset, trainpath, testpath, x_train, y_train): """ Initializes the Classifier class with the following parameters Argument -------- dataset : string Name of the dataset on which user wants to run Classifier trainpath : string Local path of the csv file that contains the training dataset testpath : string Local path of the csv file that contains the testing dataset y_train : string Name of target column """ self.dataset = dataset self.trainpath = trainpath self.testpath = testpath def log_reg(self): """ Uses logistic regression to get prediction scores """ train = pd.read_csv(self.trainpath) test = pd.read_csv(self.testpath) train_copy = train.copy() test_copy = test.copy() test[y_train] = 0 # combining train and test datasets combi = pd.concat([train, test]) # checking the shape of the combined dataset print(combi.shape) # Imputing the missing values in train dataset head_train= list(train_copy) for i in head_train: train[i].fillna(train[i].mode()[0], inplace = True) train.isnull().any() # Imputing the missing values in test dataset head_test= list(test_copy) for i in head_test: test[i].fillna(test[i].mode()[0], inplace = True) test.isnull().any() train = train.drop(columns = 'Loan_ID') test = test.drop(columns = 'Loan_ID') # checking the new shapes print(train.shape) print(test.shape) x = train.drop('Loan_Status', axis = 1) y = train.Loan_Status print(x.shape) print(y.shape) # converting categorical variables into numerical values # One Hot Encoding x = pd.get_dummies(x) train = pd.get_dummies(train) test = pd.get_dummies(test) # checking the new shape print(x.shape) # splitting x and y from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, random_state = 0) # LOGISTIC REGRESSION from sklearn.linear_model import LogisticRegression import math model = LogisticRegression() model.fit(x_train, y_train) y_pred1 = model.predict(x_test) y_pred = model.predict_proba(x_test) print("Training Accuracy :", model.score(x_train, y_train)) print("Testing Accuracy :", model.score(x_test, y_test)) train = pd.read_csv(self.trainpath) train = train.drop(train.index[0:429]) LS = train['Loan_Status'] train = train.drop('Loan_Status', axis = 1) train['Loan_Status'] = 10*np.around(y_pred[:,1], decimals=1) train['Actual_Status'] = LS train.to_csv("new_loan.csv")
"""nombre = input("Cual es tu nombre?\n") print("Hola "+nombre) edad =int(input("Cuál es tu edad?\n")) edad = edad -10 print(edad) Mentira= False Verdad = True print(Mentira or Verdad)""" """Diccionario ={"paella":"comida"} print(Diccionario["paella"]) A=input("Entrada diccionario\n") B=input("Entrada descripción\n") Diccionario[A]=B print(Diccionario[A])""" """ numero = int(input("Numero: ")) if numero>-3 and numero<0: print("pertenece") elif numero<6 and numero>=3: print("pertence") else: print("no pertence") """ """ n = int(input("Numero: ")) i=0 for x in range(2,n): if n % x==0: i+=1 if i!=0: print(f"{n}no es primo") else: print(f"{n}es primo") """ """ frase = input() print(frase.count("a")) n=0 for i in range(len(frase)): if frase[i]=="a": n+=1 print(n) """ """ usuarios = {"juanito":1245613, "eva":9109201, "santi":9239367} usuario = input() if usuario in usuarios: print(usuarios[usuario]) else: print("no encontrado") """ """ Usuarios={"Fitzgerald":"111mKj","Laura":"CasarDE","Adam":"lololo1212","Bob":"ee3345","Emma":"333kjf"} A=input("Introduzca su usuario\n") if A in Usuarios: B=input("Introduzca contraseña\n") if B==Usuarios[A]: print("Contraseña correcta\n") else: print("Contraseña errónea\n") else: print("Usuario no existente\n") """ """ def correo(email): n=len(email) B=False if "@" in email: if email[n-4:n]==".com": B=True return B print(correo("[email protected]")) """ """ def esprimo(n): if n<2: return False else: for i in range(2,n): if n%i == 0: return False return True def factorial(n): B=1 for i in range(1,n+1): B=i*B return B """ # El enunciado está mal redactado, en la primera parte se pide hacer un programa que calcule el factorial de un numero. # En la segunda parte se nos pide que el script responda a si un número es factorial o no # Haré la primera variante import Comprobar N=int(input("Introduzca un número entero\n")) print("¿EL número introducido es primo?:\n",Comprobar.esprimo(N)) print("El factorial del número introducido es\n",Comprobar.factorial(N))
from collections import deque antrian = deque([1,2,3,4,5]) print('data sekarang: ',antrian) # menambahkan data antrian.append(6) print('data masuk: ',6) print('data sekarang: ',antrian) # mengurangi data out = antrian.popleft() print('data keluar: ',out) print('data sekarang: ',antrian) out = antrian.popleft() print('data keluar: ',out) print('data sekarang: ',antrian) # menambah data antrian.append(8) print('data masuk: ',8) print('data sekarang: ',antrian) # cek ukuran antrian print(len(antrian))
from driveable import Driveable class Vehicle(Driveable): def __init__(self, gas_tank, engine, wheels): self.gas_tank = gas_tank self.engine = engine self.wheels = wheels.get_count() self.speed = 0 def get_wheels_count(self): if self.wheels == 0: print("Корабель немає коліс") else: print('Кількість коліс ' + str(self.wheels)) def accelerate(self): self.speed = self.speed + self.gas_tank.get() print('Присторення до ' + str(self.speed) + 'км/год') def turn(self, side): print('Поворот на ' + str(side)) def brake(self): while self.speed != 0: self.speed = self.speed - (self.speed / 2) if self.speed == 1: self.speed = 0 break print('Швидкість: ' + str(self.speed) + 'км/год') break print('stop')
# https://www.codingame.com/ide/puzzle/codingame-sponsored-contest import sys import math def get_distance(pos1, pos2): distance = math.pow(pos1[0] - pos2[0], 2) + math.pow(pos1[1] - pos2[1], 2) print("{}{}:{}".format(pos1, pos2, distance), file=sys.stderr) return distance def get_closest_player(my_pos, others_pos): min_distance = 99999999 nearest_pos = () for pos in others_pos: distance = get_distance(my_pos, pos) if distance < min_distance: nearest_pos = pos min_distance = distance return nearest_pos def get_all_next_pos(players_pos): p = [1, -1] all_pos = [] for pos in players_pos: for index, value in enumerate(pos): for v in p: new_pos = list(pos) new_pos[index] = value + v all_pos.append(tuple(new_pos)) # print("All possible pos:{}".format(all_pos), file=sys.stderr) return all_pos def get_next_pos(pos, direction): col_delta = row_delta = 0 if direction == "left": col_delta = -1 elif direction == "right": col_delta = 1 elif direction == "up": row_delta = -1 else: row_delta = 1 new_row = pos[0] + row_delta new_col = pos[1] + col_delta return new_row, new_col col_num = int(input()) row_num = int(input()) players_num = int(input()) print("{} {} {}".format(col_num, row_num, players_num), file=sys.stderr) direct_sequence = ["left", "down", "right", "up"] command_map = {"left": "C", "down": "A", "right": "D", "up": "E", "still": "B"} my_foot_print = [] # game loop while True: players_pos = [] my_pos = () # decode allowed directions allowed_directions = [] for i in range(4): input_direction = input() if input_direction == "_": allowed_directions.append(direct_sequence[i]) print(allowed_directions, file=sys.stderr) # add players data to defined variable for i in range(players_num): row, col = [int(j) for j in input().split()] players_pos.append((row, col)) my_pos = players_pos.pop() my_foot_print.append(my_pos) print(players_pos, file=sys.stderr) print(my_pos, file=sys.stderr) # start to calculate what is the next step closest_player = get_closest_player(my_pos, players_pos) # used by the longest distance strategy longest_distance = 1 # used by the longest distance strategy longest_direction = "" # used by the longest distance strategy next_move = "still" # if all strategy are not valid, keep still candidate_directions = [] # every strategy have its own weights, final selection based on the weights all_possible_pos = get_all_next_pos(players_pos) # used to check whether next move will conflict with others # start to check every direction for d in allowed_directions: print("checking:{}".format(d), file=sys.stderr) candidate_directions.append(d) # calculate new pos for current direction new_row, new_col = get_next_pos(my_pos, d) # just skip it since this will cause end of the game if (new_row, new_col) in all_possible_pos: print("conflict!", file=sys.stderr) candidate_directions.remove(d) continue # skip these point in history, but still keep these in candidate since it is still the available options if (new_row, new_col) not in my_foot_print: distance_to_new_pos = get_distance(closest_player, (new_row, new_col)) if distance_to_new_pos > longest_distance: longest_direction = d longest_distance = distance_to_new_pos else: print("in foot_print!", file=sys.stderr) print("longest_direction:{}".format(longest_direction), file=sys.stderr) # just use longest_direction next_move = longest_direction if longest_direction != "" else next_move # no longest_direction but still have some valid direction if len(candidate_directions) > 0 and next_move == "still": next_move = candidate_directions[0] print(next_move, file=sys.stderr) print(command_map[next_move])
def findMedianSortedArrays(nums1, nums2): """ :type nums1: List[int] :type nums2: List[int] :rtype: float """ added = sorted(nums1 + nums2) added_len = len(added) half = added_len // 2 median = 0 if added_len % 2: median = added[half] else: median = 0.5 * (added[half] + added[half-1]) return median print(findMedianSortedArrays([1,2],[3,4]))
import sys import math def print_debug(msg): print("{}".format(msg), file=sys.stderr) def list_to_str(list1): str_list = ' '.join(str(e) for e in list1[-2:]) return str_list class Graph(): def __init__(self, graph_dict=None): """ initializes a graph object If no dictionary or None is given, an empty dictionary will be used """ if graph_dict == None: graph_dict = {} self.__graph_dict = graph_dict self.weights = {} self.edges = graph_dict def get_nodes(self): """ returns the nodes of a graph """ return list(self.__graph_dict.keys()) def get_edges(self): """ returns the edges of a graph """ return self.__generate_edges() def __generate_edges(self): """ A static method generating the edges of the graph "graph". Edges are represented as sets with one (a loop back to the vertex) or two vertices """ edges = [] for node in self.__graph_dict: for neighbor in self.__graph_dict[node]: if {neighbor, node} not in edges: edges.append({node, neighbor}) return edges def __str__(self): res = "nodes: " for k in self.__graph_dict: res += str(k) + " " res += "\nlinks: " for link in self.__generate_links(): res += str(link) + " " return res def add_edge(self, from_node, to_node, weight): # Note: assumes edges are bi-directional self.edges[from_node].append(to_node) self.edges[to_node].append(from_node) self.weights[(from_node, to_node)] = weight self.weights[(to_node, from_node)] = weight def add_node(self, node): """ If the vertex "vertex" is not in self.__graph_dict, a key "vertex" with an empty list as a value is added to the dictionary. Otherwise nothing has to be done. """ if node not in self.__graph_dict: self.__graph_dict[node] = [] def find_path(self, start_node, end_node, path=[]): """ find a path from start_node to end_node in graph """ graph = self.__graph_dict path = path + [start_node] if start_node == end_node: return path if start_node not in graph: return None for node in graph[start_node]: if node not in path: extended_path = self.find_path(node, end_node, path) if extended_path: return extended_path return None def find_all_paths(self, start_node, end_node, path=[]): """ find all paths from start_node to end_node in graph """ graph = self.__graph_dict path = path + [start_node] if start_node == end_node: return [path] if start_node not in graph: return [] paths = [] for node in graph[start_node]: if node not in path: extended_paths = self.find_all_paths(node, end_node, path) for p in extended_paths: paths.append(p) return paths def find_shortest_path(self, start_node, end_node, path=[]): graph = self.__graph_dict path = path + [start_node] if start_node == end_node: return path if start_node not in graph.keys(): return None shortest = None for node in graph[start_node]: if node not in path: newpath = self.find_shortest_path(node, end_node, path) if newpath: if not shortest or len(newpath) < len(shortest): shortest = newpath return shortest def dijsktra(self, initial, end): # whose value is a tuple of (previous node, weight) shortest_paths = {initial: (None, 0)} current_node = initial visited = set() while current_node != end: visited.add(current_node) destinations = self.edges[current_node] weight_to_current_node = shortest_paths[current_node][1] for next_node in destinations: weight = self.weights[(current_node, next_node)] + weight_to_current_node if next_node not in shortest_paths: shortest_paths[next_node] = (current_node, weight) else: current_shortest_weight = shortest_paths[next_node][1] if current_shortest_weight > weight: shortest_paths[next_node] = (current_node, weight) next_destinations = {node: shortest_paths[node] for node in shortest_paths if node not in visited} if not next_destinations: return "Route Not Possible" # next node is the destination with the lowest weight current_node = min(next_destinations, key=lambda k: next_destinations[k][1]) # Work back through destinations in shortest path path = [] while current_node is not None: path.append(current_node) next_node = shortest_paths[current_node][0] current_node = next_node # Reverse path path = path[::-1] return path # Auto-generated code below aims at helping you parse # the standard input according to the problem statement. # n: the total number of nodes in the level, including the gateways # l: the number of links # e: the number of exit gateways n, l, e = [int(i) for i in input().split()] graph = Graph() # add empty nodes for i in range(n): graph.add_node(i) # add edges for each node, current weigh is set to 1 for i in range(l): # n1: N1 and N2 defines a link between these nodes n1, n2 = [int(j) for j in input().split()] weight = 1 graph.add_edge(n1, n2, weight) gates = [] # collect the gateway node into gates for i in range(e): ei = int(input()) # the index of a gateway node gates.append(ei) print_debug('gates:{}'.format(gates)) #print_debug('nodes:{}'.format(graph.get_nodes())) # game loop while True: current_node = int(input()) # The index of the node on which the Skynet agent is positioned this turn escape_paths = [] for gate_node in gates: shortest_path_to_gate = graph.dijsktra(current_node, gate_node) print_debug('node({}) to gate({}):{}'.format(current_node, gate_node, shortest_path_to_gate)) escape_paths.append(shortest_path_to_gate) # find the shortest path between gates cut_path = [] for path in escape_paths: if len(path) < len(cut_path) or len(cut_path) == 0: cut_path = path print(list_to_str(cut_path))
# https://www.codingame.com/ide/puzzle/defibrillators import sys import math def distance(pos_a: tuple, pos_b: tuple) -> float: # pos is tuple (lon, lat) in degrees lon_a = math.radians(pos_a[0]) lat_a = math.radians(pos_a[1]) lon_b = math.radians(pos_b[0]) lat_b = math.radians(pos_b[1]) x = (lon_b - lon_a) * math.cos((lat_a + lat_b)/2) y = lat_b - lat_a d = math.sqrt(math.pow(x, 2) + math.pow(y, 2)) * 6371 return d lon = float(input().replace(',', '.')) lat = float(input().replace(',', '.')) n = int(input()) user_pos = (lon, lat) closest_d = 6371 closest_name = "" for i in range(n): defib = input().split(';') d = distance(user_pos, (float(defib[4].replace(',', '.')), float(defib[5].replace(',', '.')))) if d < closest_d: closest_d = d closest_name = defib[1] print(closest_name)
import random import string import sys def get_letter(): alphabet = string.ascii_letters + " !'." return random.choice(alphabet) def create_chromosome(size): chromosome = "" for _ in range(size): chromosome += get_letter() return chromosome def get_answer(): answer = 'This is a robot!' return answer def is_answer(answer): # print(answer) if answer == get_answer(): return True return False def get_score(chrom): key = get_answer() score = 0 for i in range(len(key)): if i < len(chrom) and chrom[i] == key[i]: score += 1 return score/len(key) def score(chrom): return get_score(chrom) def get_mean_score(population): total_score = 0 for chrom in population: total_score += score(chrom) return total_score/len(population) def selection(chromosomes_list): GRADED_RETAIN_PERCENT = 0.3 # percentage of retained best fitting individuals # percentage of retained remaining individuals (randomly selected) NONGRADED_RETAIN_PERCENT = 0.2 selected_chromesomes = [] chromo_score = {} for chromosome in chromosomes_list: chromo_score[chromosome] = score(chromosome) sorted_chromesome_list = [k for k in sorted( chromo_score, key=chromo_score.get, reverse=True)] best_fitting_count = int(GRADED_RETAIN_PERCENT * len(chromosomes_list)) random_count = int(NONGRADED_RETAIN_PERCENT * len(chromosomes_list)) selected_chromesomes += sorted_chromesome_list[:best_fitting_count] selected_chromesomes += random.choices( population=sorted_chromesome_list[best_fitting_count+1:], k=random_count) return selected_chromesomes def crossover(parent1, parent2): # * Select half of the parent genetic material # * child = half_parent1 + half_parent2 # * Return the new chromosome # * Genes should not be moved child = parent1[:int(len(parent1)/2)] + parent2[int(len(parent2)/2):] return child def mutation(chrom): # * Random gene mutation : a character is replaced index = random.randint(0, len(chrom)) new_chrom = "" for i in range(len(chrom)): if i == index: new_chrom += get_letter() else: new_chrom += chrom[i] return new_chrom def create_population(pop_size, chrom_size): # use the previously defined create_chromosome(size) function population = [] for _ in range(pop_size): chrom = create_chromosome(chrom_size) population.append(chrom) return population def generation(population): # selection # use the selection(population) function created on exercise 2 #print("population:{}".format(population), file=sys.stderr) select = selection(population) #print("selected:{}".format(select), file=sys.stderr) # reproduction # As long as we need individuals in the new population, fill it with children children = [] while len(children) < len(select): # crossover rand_nums = random.choices(population=range(0, len(select)), k=2) #print("rand_nums:{}".format(rand_nums), file=sys.stderr) parent1 = select[rand_nums[0]] # randomly selected parent2 = select[rand_nums[1]] # randomly selected # use the crossover(parent1, parent2) function created on exercise 2 #print("patent1:{},parent2:{}".format(parent1,parent2), file=sys.stderr) child = crossover(parent1, parent2) #print("child:{}".format(child), file=sys.stderr) # mutation # use the mutation(child) function created on exercise 2 child = mutation(child) #print("mutated child:{}".format(child), file=sys.stderr) children.append(child) # return the new generation #print("children:{}".format(children), file=sys.stderr) return select + children def algorithm(): chrom_size = len(get_answer()) population_size = 10 # create the base population population = create_population(population_size, chrom_size) #print("base population:{}".format(population), file=sys.stderr) answers = [] # while a solution has not been found : while not answers: # create the next generation population = generation(population) # display the average score of the population (watch it improve) print(get_mean_score(population), file=sys.stderr) # check if a solution has been found for chrom in population: if is_answer(chrom): answers.append(chrom) print(answers) algorithm()
# https://www.codingame.com/ide/puzzle/scrabble import sys import math # Auto-generated code below aims at helping you parse # the standard input according to the problem statement. def get_score(letter): scores = [ ("eaionrtlsu", 1), ("dg", 2), ("bcmp", 3), ("fhvwy", 4), ("k", 5), ("jx", 8), ("qz", 10), ] for chars, v in scores: if letter in chars: return v n = int(input()) words = [] for i in range(n): words.append(input()) letters = input() biggest_point = 0 word = "" for w in words: print("checking {}".format(w), file=sys.stderr) skip = False total = 0 temp_letters = letters for c in w: if c not in temp_letters: total = 0 skip = True break else: total += get_score(c) index_l = temp_letters.index(c) temp_letters = temp_letters[:index_l] + temp_letters[index_l+1:] print("total={}".format(total), file=sys.stderr) if skip: continue if total > biggest_point: biggest_point = total word = w print("current:{}, {}".format(word, biggest_point), file=sys.stderr) print(word)
import sys def cal_next(r: int) -> int: for d in str(r): r += int(d) return r # r_1 = int(input()) # r_2 = int(input()) r_1 = 32 r_2 = 47 while r_1 != r_2: if r_1 > r_2: r_2 = cal_next(r_2) else: r_1 = cal_next(r_1) print("r1:{}".format(r_1), file=sys.stderr) print("r2:{}".format(r_2), file=sys.stderr) print(r_1)
class Timer: def __init__(self, target, interval, time_func, sleep_func): self.start_time = time_func() self.end_time = self.start_time + target if target else None self.intermediate_time = self.start_time + interval self.interval = interval self.time_func = time_func self.sleep_func = sleep_func def __iter__(self): self.intermediate_time = self.start_time + self.interval return self def __next__(self): if self.expired(): raise StopIteration() while not self.update(): self.sleep_func(self.intermediate_time - self.time_func()) return self.time_func() - self.start_time def update(self): if self.time_func() > self.intermediate_time: self.intermediate_time += self.interval return True return False def expired(self): return self.end_time and (self.end_time == self.start_time or self.end_time < self.intermediate_time)
perguntas = { 'Pergunta 1': { 'pergunta': 'Quanto é 2+2? ', 'respostas': {'a': '1', 'b': '5', 'c': '4'}, 'respostas_certa': 'c', }, 'Pergunta 2': { 'pergunta': 'Quanto é 20-7? ', 'respostas': {'a': '1', 'b': '5', 'c': '13'}, 'respostas_certa': 'c', }, 'Pergunta 3': { 'pergunta': 'Quanto é 12/2? ', 'respostas': {'a': '1', 'b': '6', 'c': '4'}, 'respostas_certa': 'b', }, 'Pergunta 4': { 'pergunta': 'Quanto é 2*5? ', 'respostas': {'a': '10', 'b': '5', 'c': '4'}, 'respostas_certa': 'a', }, } print() respostas_certas = 0 for pk, pv in perguntas.items(): print(f'{pk}: {pv["pergunta"]}') print('Escolha uma das opções abaixo: ') for rk, rv in pv['respostas'].items(): print(f'[{rk}]: {rv}') resposta_usuario = input('Sua resposta: ') if resposta_usuario == pv['respostas_certa']: print('EHHHH! Você acertou!!!') respostas_certas += 1 else: print('AHHHH Não! Você errou!!!') print() qtd_perguntas = len(perguntas) procentagem_acerto = respostas_certas / qtd_perguntas * 100 print(f'Você acertou {procentagem_acerto}% das perguntas.')
# Tipos de Dados """ str - string - textos int - inteiro - 123456789 -> 99999999 float - real/ponto flutuante - 10.50 1.5 - 10.99 bool - booleano/logico - True/False """ print('Marcelo', type('Marcelo')) print(True, type(True)) print(10, type(10)) print(10.1, type(10.1)) # type casting print('Marcelo', type('Marcelo'), bool('Marcelo')) # String: nome print('Marcelo', type('Marcelo')) # Idade: int print(29, type(29)) # Altura: float print(1.75, type(1.75)) # É maior de idade 10 > 20 print(29 > 18, type(29 > 18))
variavel = 'valor' def func(): print(variavel) # Não da pra alterar valor de variaveis globais de dentro da função def func2(): # global variavel -> Não é uma boa pratica de programação variavel = 'Outro valor' print(variavel) func() func2()
# While # while True: # Loop infinite # nome = input('Qual é o seu nome? ') # print(f'Olá {nome}') # break # x = 0 # while x < 10: # if x == 3: # x += 1 # continue # print(x) # x += 1 # x = 0 # while x < 10: # y = 0 # while y < 5: # print(f'X vale {x} e Y vale {y}') # y += 1 # x += 1 while True: print() num_1 = input('Qual e o numero: ') num_2 = input('Qual e o outro numero: ') operador = input('Qual e o operador: ') sair = input('Deseja sair? [s]im ou [n]ão: ') if sair == 's': break if not num_1.isnumeric() or not num_2.isnumeric(): print('Voce precisa digitar um numero') continue num_1 = int(num_1) num_2 = int(num_2) # + - / * if operador == '+': print(num_1 + num_2) elif operador == '-': print(num_1 - num_2) elif operador == '/': print(num_1 / num_2) elif operador == '*': print(num_1 * num_2) else: print('Operador inválido')
from datetime import datetime import csv """ Converts time into datetime format """ def convert_time(time): return datetime.strptime(time, "%Y-%m-%d %H:%M:%S.%f") """ Calculates the difference in times in terms of seconds """ def time_diff(start, end): return (convert_time(end) - convert_time(start)).total_seconds() """ Loads a csv file, converting timestamps to time intervals """ def load_csv(filename): f = csv.reader(open(filename)) labels = {} num = 0 for label in f.next(): labels[label] = num num += 1 prev_time = None cur = None data = [] prev = None for row in f: if prev is None: prev = row[0] continue features = [float(x) for x in row[1:]] features.insert(0,time_diff(prev, row[0])) prev = row[0] data.append(features) return (labels, data) """ Gets a list of features and their classification """ def get_features(data, i): '''prev = data[0] ys = [] for d in data[1:]: ys.append(d[i] - prev[i]) prev = d return data[:-1], ys''' return data[:-1], [x[i] for x in data[1:]]
""" This script generates a word cloud from the article words. Uploads it to Imgur and returns back the url. """ import os import random import numpy as np import requests import wordcloud from PIL import Image import config MASK_FILE = "./assets/cloud.png" FONT_FILE = "./assets/sofiapro-light.otf" IMAGE_PATH = "./temp.png" COLORMAPS = ["spring", "summer", "autumn", "Wistia"] mask = np.array(Image.open(MASK_FILE)) def generate_word_cloud(text): """Generates a word cloud and uploads it to Imgur. Parameters ---------- text : str The text to be converted into a word cloud. Returns ------- str The url generated from the Imgur API. """ wc = wordcloud.WordCloud(background_color="#222222", max_words=2000, mask=mask, contour_width=2, colormap=random.choice(COLORMAPS), font_path=FONT_FILE, contour_color="white") wc.generate(text) wc.to_file(IMAGE_PATH) image_link = upload_image(IMAGE_PATH) os.remove(IMAGE_PATH) return image_link def upload_image(image_path): """Uploads an image to Imgur and returns the permanent link url. Parameters ---------- image_path : str The path of the file to be uploaded. Returns ------- str The url generated from the Imgur API. """ url = "https://api.imgur.com/3/image" headers = {"Authorization": "Client-ID " + config.IMGUR_CLIENT_ID} files = {"image": open(IMAGE_PATH, "rb")} with requests.post(url, headers=headers, files=files) as response: # We extract the new link from the response. image_link = response.json()["data"]["link"] return image_link
# -*- coding: utf-8 -*- """ Created on Mon Nov 17 07:45:24 2014 @author: Dr. Olivier Wertz """ from __future__ import print_function from __future__ import absolute_import __all__ = ["Orbit"] import math import numpy as np from astropy import constants as const from astropy.time import Time import matplotlib.pyplot as plt from .Toolbox import timeConverter from .KeplerSolver import MarkleyKESolver class Orbit: """ Create a numerical model of a planet orbit. Parameters ----------- semiMajorAxis: float The semi-major axis in AU. eccentricity: float (0 <= e < 1) inclinaison: float The inclination in deg. longitudeAscendingNode: float The longitude of the ascending node in deg. periastron: float The argument of periastron in deg. periastronTime: float or str The time for periastron passage. This parameter can be given in iso format (str) or directly in JD (float) dStar: float Distance between the star and Earth in pc. starMass: float The mass of the star given in solar masses. period: float The orbital period of the planet in year. Notes ----- Let us note that a, p and mStar are linked by the 3rd Kepler law: a^3 / P^2 = G (mStar + mPlanet) / (4 pi^2) . Since we neglect mPlanet in comparision with mStar, only two parameters (among a, p and mStar) need to be defined. """ def __init__(self,semiMajorAxis = 0, period = 0, starMass = 0, eccentricity = 0, inclinaison = 0, longitudeAscendingNode = 0, periastron = 0, periastronTime = "2000-01-01 00:00:00.0", dStar = 1): #add planetTypeParameters in order to initialize the parameters according to a particular family of planet """ The constructor of the class """ # -------------------------------------------------------------------------------------------------------------------------------------------------------------- # Depending on which parameters (among semiMajorAxis, period and starMass) the user has initialized, we fix or calculate the others from the 3rd Kepler law # -------------------------------------------------------------------------------------------------------------------------------------------------------------- if semiMajorAxis == 0 and period == 0 and starMass == 0: # No parameters initialized by the user ==> Earth orbit parameters are chosen starMass, period, semiMajorAxis = (1.,1.,1.) elif semiMajorAxis != 0: if period == 0 and starMass == 0: # only semiMajorAxis has been initialized by the user ==> we fix period and calculate starMass period = 1 starMassKg = (np.power(semiMajorAxis * const.au.value,3) / np.power(period * (365.*24*3600),2)) * 4 * np.power(np.pi,2) / const.G.value starMass = starMassKg / const.M_sun.value elif period == 0 and starMass != 0: # semiMajorAxis and starMass have been initialized by the user ==> we calculate period periodSecSquared = (np.power(semiMajorAxis * const.au.value,3) / (starMass * const.M_sun.value)) * 4 * np.power(np.pi,2) / const.G.value period = np.power(periodSecSquared,1./2.) / (365.*24*3600) elif period != 0 and starMass == 0: # semiMajorAxis and period have been initialized by the user ==> we calculate starMass starMassKg = (np.power(semiMajorAxis * const.au.value,3) / np.power(period * (365.*24*3600),2)) * 4 * np.power(np.pi,2) / const.G.value starMass = starMassKg / const.M_sun.value else: # all parameters have been initialized by the user. One need to check the physical consistency of the parameters aCube = np.power(period * (365.*24*3600),2) * const.G.value / (4 * np.power(np.pi,2)) * (starMass * const.M_sun.value) aTest = np.power(aCube,1./3.) / const.au.value # in AU comp = np.abs(aTest - semiMajorAxis) / aTest * 100 if comp > 3.5: print("Warning:: the values given for the semiMajorAxis, period and starMass are not consistent with") print("the 3rd Kepler law (error larger than {0}%). You might reconsider these values".format(int(np.floor(comp*10))/10.)) elif period != 0: if semiMajorAxis == 0 and starMass == 0: # only period has been initialized by the user ==> we fix semiMajorAxis and calculate starMass semiMajorAxis = 0 starMassKg = (np.power(semiMajorAxis * const.au.value,3) / np.power(period * (365.*24*3600),2)) * 4 * np.power(np.pi,2) / const.G.value starMass = starMassKg / const.M_sun.value elif semiMajorAxis == 0 and starMass != 0: # period and starMass have been initialized by the user ==> we calculate semiMajorAxis semiMajorAxisMCube = np.power(period * (365.*24*3600),2) * const.G.value / (4 * np.power(np.pi,2)) * (starMass * const.M_sun.value) semiMajorAxis= np.power(semiMajorAxisMCube,1./3.) / const.au.value # in AU elif starMass != 0: # only starMass has been initialized by the user ==> we fix period and calculate semiMajorAxis period = 1 semiMajorAxisMCube = np.power(period * (365.*24*3600),2) * const.G.value / (4 * np.power(np.pi,2)) * (starMass * const.M_sun.value) semiMajorAxis= np.power(semiMajorAxisMCube,1./3.) / const.au.value # in AU else: print("Did I forget a case ?") if isinstance(periastronTime, str): periastronTime = Time(periastronTime,format='iso',scale='utc').jd # ----------------------------- # Main part of the constructor # ----------------------------- self.daysInOneYear = 365. #number of days of 24hrs in one year (earth's orbit: 365.256363004 days of 24hrs) self.__semiMajorAxis = semiMajorAxis self.__period = period self.__starMass = starMass self.__eccentricity = eccentricity self.__inclinaison = math.radians(inclinaison) self.__longitudeAscendingNode = math.radians(longitudeAscendingNode) self.__periastron = math.radians(periastron) self.dStar = dStar self.__periastronTime = periastronTime # ----------------------------- # Attribut Setters and Getters # ----------------------------- # TODO: property !!!! # def _get_semiMajorAxis(self): # return self.__semiMajorAxis # def _set_semiMajorAxis(self,newParam): # self.__semiMajorAxis = newParam # def _get_period(self): # return self.__period # def _set_period(self,newParam): # self.__period = newParam # def _get_starMass(self): # return self.__starMass # def _set_starMass(self,newParam): # self.__starMass = newParam # def _get_eccentricity(self): # return self.__eccentricity # def _set_eccentricity(self,newParam): # self.__eccentricity = newParam # def _get_inclinaison(self): # return math.degrees(self.__inclinaison) # def _set_inclinaison(self,newParam): # self.__inclinaison = math.radians(newParam) # def _get_longitudeAscendingNode(self): # return math.degrees(self.__longitudeAscendingNode) # def _set_longitudeAscendingNode(self,newParam): # self.__longitudeAscendingNode = math.radians(newParam) # def _get_periastron(self): # return math.degrees(self.__periastron) # def _set_periastron(self,newParam): # self.__periastron = math.radians(newParam) # def _get_periastronTime(self): # return self.__periastronTime # def _set_periastronTime(self,newParam): # self.__periastronTime = Time(newParam,format='iso',scale='utc').jd # -------- # Methods # -------- # ------------------------------------------------------------------------------------------------------------------------------------------ # # ------------------------------------------------------------------------------------------------------------------------------------------ def whichParameters(self): #TODO : add periastronTime, ... """ Summary:: Return a dict-type object which contains the orbital parameters Arguments:: None Return:: dict-type """ return {"semiMajorAxis" : self.__semiMajorAxis, "period" : self.__period, "starMass" : self.__starMass,\ "eccentricity" : self.__eccentricity, "inclinaison" : self.__inclinaison, "longitudeAscendingNode" : self.__longitudeAscendingNode,\ "periastron" : self.__periastron, "periatronTime" : self.__periastronTime} # ------------------------------------------------------------------------------------------------------------------------------------------ # # ------------------------------------------------------------------------------------------------------------------------------------------ def positionOnOrbit(self,trueAnomaly=0,pointOfView="earth",unit="au"): """ Summary:: Calculation of the position x and y of the planet from the use of the orbital parameters. The position of the star is (0,0) Arguments:: - trueAnomaly: value(s) of the true anomaly in degree (default 0). Multi-dimension requires np.array - pointOfView: representation of the orbit viewed from the 'earth' (default) or 'face-on' - unit: x and y positions given in 'au' (default) or 'arcsec' Return:: dict-type variable {"decPosition": |ndarray, size->pointNumber| , "raPosition" : |ndarray, size->pointNumber} """ try: if pointOfView.lower() == "earth": pov = 1 elif pointOfView.lower() == "face-on": pov = 0 else: print("The pointOfView argument must be 'earth' or 'face-on'.") print("As a consequence, the default value has been chosen => 'earth'") pov = 1 except AttributeError: print("The pointOfView argument requires a string-type input ('earth' or 'face-on')") print("As a consequence, the default value has been chosen => 'earth'") pov = 1 try: if unit.lower() == "au": uni = 1 elif unit.lower() == "arcsec": uni = 0 else: print("The unit argument must be 'au' or 'arcsec'.") print("As a consequence, the default value has been chosen => 'au'") uni = 1 except AttributeError: print("The unit argument requires a string-type input ('au' or 'arcsec')") print("As a consequence, the default value has been chosen => 'au'") uni = 1 v = trueAnomaly r = self.__semiMajorAxis * (1 - np.power(self.__eccentricity,2)) / (1 + self.__eccentricity * np.cos(v)) if uni == 0: # r will be converted in arcsec thanks to the earth - star distance (dStar). # The latter, which is initially expressed in pc, is converted in au. # Finally, r is converted in arcsec r = (r / (self.dStar * const.pc.value / const.au.value)) * (180 / np.pi) * 3600 x = r * (np.cos(self.__periastron + v) * np.cos(self.__longitudeAscendingNode) - np.sin(self.__periastron + v) * np.cos(self.__inclinaison * pov) * np.sin(self.__longitudeAscendingNode)) y = r * (np.cos(self.__periastron + v) * np.sin(self.__longitudeAscendingNode) + np.sin(self.__periastron + v) * np.cos(self.__inclinaison * pov) * np.cos(self.__longitudeAscendingNode)) x = np.round(x,7) # We only need 7 floating point numbers y = np.round(y,7) # return {"decPosition" : x, "raPosition" : y} # ------------------------------------------------------------------------------------------------------------------------------------------ # # ------------------------------------------------------------------------------------------------------------------------------------------ def fullOrbit(self,pointNumber=100,pointOfView="earth",unit="au"): """ Summary:: Calculation of the full orbit of the planet based on the orbital parameters. The position of the star is (0,0) Arguments:: - pointNumber: number of points which compose the orbit (default 100) - pointOfView: representation of the orbit viewed from the 'earth' (default) or 'face-on' - unit: x and y positions given in 'au' (default) or 'arcsec' Return:: dict-type variable {"decPosition": |ndarray, size->pointNumber| , "raPosition" : |ndarray, size->pointNumber} """ return Orbit.positionOnOrbit(self,np.linspace(0,2*np.pi,pointNumber),pointOfView,unit) # ------------------------------------------------------------------------------------------------------------------------------------------ # # ------------------------------------------------------------------------------------------------------------------------------------------ def showOrbit(self,pointOfView="earth",unit="au",addPosition=[], addPoints=[], lim=None, show=True, link=False, figsize=(10,10), title=None, display=True, save=(False,str()), output=False, addPosition_options={}, invert_xaxis=True, invert_yaxis=False, cardinal=(False,''), **kwargs): """ Under construction """ if isinstance(addPosition,list) == False: raise ValueError("The type of the parameter 'addPosition' is {}. It should be a list containing str or float/int.".format(type(addPosition))) o = Orbit.fullOrbit(self,300,pointOfView,unit) if output == 'only' or output == 'onlyAll': k = 0 if output == 'onlyAll': for pos in addPosition: if type(pos) == str: pos = timeConverter(time=pos) ta1 = Orbit.trueAnomaly(self,pos) elif (type(pos) == float or type (pos) == int or type(pos) == np.float64) and pos > 360: # it this case, the pos value should correspond to the JD time associated to a position ta1 = Orbit.trueAnomaly(self,pos) else: # we consider pos as the value of the true anomaly (already in radian) ta1 = pos pointtemp = Orbit.positionOnOrbit(self,ta1,pointOfView,unit) if k == 0: point = np.array([pointtemp['raPosition'],pointtemp['decPosition']]) elif k != 0: point = np.vstack((point,np.array([pointtemp['raPosition'],pointtemp['decPosition']]))) k += 1 return (o,point) else: return o p = Orbit.positionOnOrbit(self,0,pointOfView,unit) # position of the periapsis an = Orbit.positionOnOrbit(self,-self.__periastron + np.array([0,np.pi]),pointOfView,unit) # position of the ascending node ############ ## FIGURE ## ############ if lim is None: lim1 = np.floor(13.*np.max(np.abs(o["decPosition"]))) / 10. lim2 = np.floor(13.*np.max(np.abs(o["raPosition"]))) / 10. lim = np.max([lim1,lim2]) lim = [(-lim,lim),(-lim,lim)] plt.figure(figsize = figsize) plt.hold(True) plt.plot(0,0,'ko') # plot the star if show: orbit_color = kwargs.pop('color',(1-0/255.,1-97/255.,1-255/255.)) plt.plot(o["raPosition"],o["decPosition"], color=orbit_color, linewidth=2) # plot the orbit plt.plot(p["raPosition"],p["decPosition"],'gs') # plot the position of the periapsis plt.plot(an["raPosition"],an["decPosition"],"k--") plt.xlim((lim[0][0],lim[0][1])) plt.ylim((lim[1][0],lim[1][1])) plt.xticks(size=20) plt.yticks(size=20) plt.axes().set_aspect('equal') # Ticks # xticks_bounds = [np.ceil(lim[0][0]*10),np.floor(lim[0][1]*10)] # xticks = np.arange(xticks_bounds[0]/10.,xticks_bounds[1]/10.,0.1) # plt.xticks(xticks,xticks,size=20) # # yticks_bounds = [np.ceil(lim[1][0]*10),np.floor(lim[1][1]*10)] # yticks = np.arange(np.floor(yticks_bounds[0]/10.),np.floor(yticks_bounds[1]/10.),0.1) # plt.yticks(yticks,yticks,size=20) # Title if title != None: plt.title(title[0], fontsize=title[1])#, fontweight='bold') # Unit if unit == 'au': plt.xlabel("x' (AU)") plt.ylabel("y' (AU)") else: plt.xlabel("RA ({0})".format(unit), fontsize=20) plt.ylabel("DEC ({0})".format(unit), fontsize=20) pointTemp = [np.zeros([len(addPosition)]) for j in range(2)]; # Add position addPosition_marker = addPosition_options.pop('marker','s') addPosition_markerfc = addPosition_options.pop('markerfacecolor','g') for k, pos in enumerate(addPosition): # for all the element in the list-type addPosition, we check the type of the element. if type(pos) == str: # if it's a str which give a date, we need to call trueAnomaly pos = timeConverter(time=pos) ta1 = Orbit.trueAnomaly(self,pos) elif (type(pos) == float or type (pos) == int or type(pos) == np.float64) and pos > 360: # it this case, the pos value should correspond to the JD time associated to a position ta1 = Orbit.trueAnomaly(self,pos) else: # we consider pos as the value of the true anomaly (already in radian) ta1 = pos point = Orbit.positionOnOrbit(self,ta1,pointOfView,unit) plt.plot(point["raPosition"], point["decPosition"], marker=addPosition_marker, markerfacecolor=addPosition_markerfc, **addPosition_options) pointTemp[0][k] = point["raPosition"] pointTemp[1][k] = point["decPosition"] # Add points if addPoints and len(addPoints) == 2: # test whether the list is empty using the implicit booleanness of the empty sequence (empty sequence are False) plt.plot(addPoints[0], addPoints[1],'b+') elif addPoints and len(addPoints) == 4: plt.plot(addPoints[0], addPoints[1],'ko') plt.errorbar(addPoints[0],addPoints[1], xerr = addPoints[2], yerr = addPoints[3], fmt = 'k.') if link: link_color = kwargs.pop('link_color','r') for j in range(len(pointTemp[0])): plt.plot([pointTemp[0][j],addPoints[0][j]], [pointTemp[1][j],addPoints[1][j]], color=link_color) # Axis invert if invert_xaxis: plt.gca().invert_xaxis() if invert_yaxis: plt.gca().invert_yaxis() # Cardinal if cardinal[0]: x_length = (lim[0][1] - lim[0][0])/8. y_length = x_length if cardinal[1] == 'br': cardinal_center = [lim[0][0],lim[1][0]] # bottom right elif cardinal[1] == 'bl': cardinal_center = [lim[0][1]-1.5*x_length,lim[1][0]] plt.plot([cardinal_center[0]+x_length/4.,cardinal_center[0]+x_length], [cardinal_center[1]+y_length/4.,cardinal_center[1]+y_length/4.], 'k', linewidth=1) plt.plot([cardinal_center[0]+x_length/4.,cardinal_center[0]+x_length/4.], [cardinal_center[1]+y_length/4.,cardinal_center[1]+y_length], 'k', linewidth=1) plt.text(cardinal_center[0]+x_length+x_length/3., cardinal_center[1]+y_length/4.-y_length/12, '$E$', fontsize=20) plt.text(cardinal_center[0]+x_length/4.+x_length/8, cardinal_center[1]+y_length+y_length/6., '$N$', fontsize=20) # Save if save[0]: plt.savefig(save[1]+'.pdf') if display: plt.show() if output: return o # ------------------------------------------------------------------------------------------------------------------------------------------ # # ------------------------------------------------------------------------------------------------------------------------------------------ def trueAnomaly(self,time): # TODO :: 1) tenir compte du format de time et self_periastronTime. 2) prendre en charge les array de time """ Under construction Summary:: Return the true anomaly of the planet at a given time according to the orbit parameters and the time for passage to periastron Arguments:: time: observation time at which we want to calculate the true anomaly. The format can be either ISO (e.g. '2000-01-01 00:00:00.0') or JD (e.g. 2451544.5) Return:: """ if isinstance(time,float) == False and isinstance(time,int) == False: time = Time(time,format='iso',scale='utc').jd # conversion in JD meanAnomaly = (2*np.pi * ((time-self.__periastronTime)/self.daysInOneYear) / self.__period) % (2*np.pi) ks = MarkleyKESolver() # call the Kepler equation solver eccentricAnomaly = ks.getE(meanAnomaly,self.__eccentricity) mA1 = 2 * math.atan(math.sqrt((1+self.__eccentricity)/(1-self.__eccentricity)) * math.tan(eccentricAnomaly / 2)) # TODO il faut tester l'unicité de la solution return mA1 % (2*np.pi) # ------------------------------------------------------------------------------------------------------------------------------------------ # # ------------------------------------------------------------------------------------------------------------------------------------------ def eccentricAnomaly(self,x): # TODO :: 1) tenir compte du format de time et self_periastronTime. 2) prendre en charge les array de time """ Under construction Summary:: Arguments:: Return:: """ if x == 0: return 0 elif x > 1: x = x-2 wrap = True else: wrap = False beta = 7*np.pi**2/60. gamma = 7./(3.*beta)*(1-2*(beta-1)*(1+self.__eccentricity)) - 1 x2 = 3./4.-self.__eccentricity/(2**(1./2.)*np.pi) F = 1/(self.__eccentricity * (1 - (3./4.)**2 * (beta -(beta - 1)*x2**2)) / (1 + (3./7.)*beta*(3./4.)**2 * (1+gamma*x2**2))) alpha = x2**(-4)*(24/np.pi**2*(1-self.__eccentricity)**3+self.__eccentricity*x2**2)*(1+x2**2)/(1-x2**2)*((1-4*x2/3.)*F-1) fx = 1 + alpha * x**4/(24/np.pi**2*(1-self.__eccentricity)**3+self.__eccentricity*x**2) *(1-x**2)/(1+x**2) f0 = -x f1 = 1 - self.__eccentricity*fx f2 = -(3./7.)*beta*x*(1+gamma*x**2) f3 = self.__eccentricity*fx*(beta-(beta-1)*x**2) + (3./7.)*beta*(1+gamma*x**2) p = (1./3.) * (f1/f3 - (1./3.)*(f2/f3)**2) q = (1./2.) * ((1./3.)*f2*f1/f3**2 - f0/f3 - (2./27.)*(f2/f3)**3) cp = 1 + (p**3/q**2 + 1)**(1./2.) cm = 1 - (p**3/q**2 + 1)**(1./2.) if q >= 0: qsigne = 1 else: qsigne = -1 q = -q if cm >= 0: cmsigne = 1 else: cmsigne = -1 cm = -cm if cp >= 0: cpsigne = 1 else: cpsigne = -1 cp = -cp temp = qsigne*q**(1./3.) * (cpsigne*cp**(1./3.) + cmsigne*cm**(1./3.)) y = -(1./3.) * f2/f3 + temp if wrap: return 2+y else: return y # ------------------------------------------------------------------------------------------------------------------------------------------ # # ------------------------------------------------------------------------------------------------------------------------------------------ def timeFromTrueAnomaly(self, givenTrueAnomaly, output = 'iso'): """ Under construction Summary:: Arguments:: Return:: """ if givenTrueAnomaly > 2*np.pi: givenTrueAnomaly = math.radians(givenTrueAnomaly) cosE = (self.__eccentricity+np.cos(givenTrueAnomaly))/(self.__eccentricity*np.cos(givenTrueAnomaly)+1) sinE = np.sin(givenTrueAnomaly)/np.sqrt(1-self.__eccentricity**2)*(1-self.__eccentricity*cosE) eccAnomaly =2*np.arctan(np.tan(givenTrueAnomaly/2.)/np.sqrt((1+self.__eccentricity)/(1-self.__eccentricity))) if np.sin(eccAnomaly) != sinE or np.cos(eccAnomaly) != cosE: eccAnomaly = np.mod(eccAnomaly+np.pi,2*np.pi) date = np.mod(eccAnomaly - self.__eccentricity * sinE, 2*np.pi)/(2*np.pi)*(self.__period*self.daysInOneYear) + self.__periastronTime if output == 'jd': return date elif output == 'iso': return timeConverter(time=date,output='iso') # ------------------------------------------------------------------------------------------------------------------------------------------ # # ------------------------------------------------------------------------------------------------------------------------------------------ def randomPositions(self,timeStart,timeEnd,number,layout='uniform',outputFormat='iso',pointOfView='earth'): """ Under construction Summary:: Arguments:: Return:: """ timeStartJD = Time(timeStart,format='iso',scale='utc').jd timeEndJD = Time(timeEnd,format='iso',scale='utc').jd if timeStartJD > timeEndJD: print("timeStart should be < than timeEnd. The times have been automatically inverted") timeStart, timeEnd = timeEnd, timeStart timeStartJD, timeEndJD = timeEndJD, timeStartJD if layout == 'uniform': timeJDSequence = np.linspace(timeStartJD,timeEndJD,number) elif layout == 'random': timeJDSequence = timeStartJD + np.random.rand(1,number)[0] * (timeEndJD - timeStartJD) if outputFormat == 'iso': timeJDSequence = Time(timeJDSequence,format='jd',scale='utc').iso.tolist() elif outputFormat == 'jd': timeJDSequence = timeJDSequence.tolist() k = 0 trueAnomalySequence = np.zeros(len(timeJDSequence)) for z in timeJDSequence: trueAnomalySequence[k] = Orbit.trueAnomaly(self,z) k += 1 positionSequence = Orbit.positionOnOrbit(self,trueAnomalySequence,pointOfView,'arcsec') result = {'timePosition' : timeJDSequence} result.update(positionSequence) return result # ------------------------------------------------------------------------------------------------------------------------------------------ # # ------------------------------------------------------------------------------------------------------------------------------------------ def chiSquare(self,obs,error={}): # This method has been added in the class StatisticMCMC and should be used from that way """ Under construction Summary:: Arguments:: Return:: """ if len(error) == 0: error = {'decError' : np.ones(obs['decPosition'].size), 'raError' : np.ones(obs['raPosition'].size)} timeSequence = obs['timePosition'] obsPositionSequence = {'decPosition' : obs['decPosition'], 'raPosition' : obs['raPosition']} # TODO: old version. Now I should use list comprehension k = 0 trueAnomalySequence = np.zeros(len(timeSequence)) for i in timeSequence: trueAnomalySequence[k] = Orbit.trueAnomaly(self,i) k += 1 modelPositionSequence = Orbit.positionOnOrbit(self,trueAnomalySequence,'earth','arcsec') chi2Dec = np.sum(np.power(np.abs(obsPositionSequence['decPosition'] - modelPositionSequence['decPosition']) / error['decError'] , 2)) chi2Ra = np.sum(np.power(np.abs(obsPositionSequence['raPosition'] - modelPositionSequence['raPosition']) / error['raError'] , 2)) return chi2Dec+chi2Ra # ------------------------------------------------------------------------------------------------------------------------------------------ # # ------------------------------------------------------------------------------------------------------------------------------------------ # def transit(self, inclination, periastron, periastronTime): # if np.abs(inclination - 90) > 0.1: # return False # else: # taEarthTransit = np.mod(270 - periastron,360) # gives the true anomaly of the transit or occultation # taEarthOccu = np.mod(90 - periastron,360) # ------------------------------------------------------------------------------------------------------------------------------------------ # # ------------------------------------------------------------------------------------------------------------------------------------------ def period(self, semiMajorAxis = 1, starMass = 1): """ """ periodSecSquared = (np.power(semiMajorAxis * const.au.value,3) / (starMass * const.M_sun.value)) * 4 * np.power(np.pi,2) / const.G.value period = np.power(periodSecSquared,1./2.) / (365.*24*3600) return period # ------------------------------------------------------------------------------------------------------------------------------------------ def semimajoraxis(self, period = 1, starMass = 1): """ """ aAUcubic = const.G.value * (starMass * const.M_sun.value) / (4 * np.power(np.pi,2)) * (period * 365.*24*3600)**2 a = np.power(aAUcubic,1./3.) / const.au.value return a
# D:\Users\Administrator\Anaconda3\python.exe # -*- coding: UTF-8 -*- # @Author : Steve # @File : 07_Queue.py # @Software: PyCharm # @Time : 2020-11-17 上午 11:32 class Queue(object): """队列""" def __init__(self): self.__list = [] def is_empty(self): """判断一个队列是否为空""" return self.__list == [] def size(self): """返回队列的大小""" return len(self.__list) def enqueue(self,item): """往队列中添加一个item元素""" # 以列表末尾为队列尾部 self.__list.append(item) """ 1.入队操作较多时,选用顺序表尾部添加,入队append()时间复杂度为O(1) 2.出队操作较多时,选用顺序表头部添加,出队pop()时间复杂度为O(1) """ def dequeue(self): """从队列头部删除一个元素""" self.__list.pop(0) if __name__ == '__main__': q = Queue() print(q.is_empty()) q.enqueue(1) q.enqueue(2) q.enqueue(3) q.enqueue(4) print(q.size()) print(q.dequeue())
# D:\Users\Administrator\Anaconda3\python.exe # -*- coding: UTF-8 -*- # @Author : Steve # @File : 17_归并排序.py # @Software: PyCharm # @Time : 2020-11-17 下午 11:31 def merge_sort(alist): """归并排序""" if len(alist) <= 1: return alist # 递归拆分,拆分成单个元素时结束递归 mid = len(alist) // 2 left_li = merge_sort(alist[:mid]) right_li = merge_sort(alist[mid:]) # 合并 left_point, right_point = 0, 0 result = [] while left_point < len(left_li) and right_point < len(right_li): if left_li[left_point] < right_li[right_point]: result.append(left_li[left_point]) left_point += 1 else: result.append(right_li[right_point]) right_point += 1 # 退出循环时,一个数组为空,最后把另一个数组的剩余部分添加到result过来即可 result += left_li[left_point:] result += right_li[right_point:] return result if __name__ == '__main__': test_list = [504, 2, 48, 119, 16, 157, 63, 148, 50, 48] print("merge_sort:", merge_sort(test_list))
# Definition for a binary tree node # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: # @param A : root node of tree # @param B : integer # @return a list of list of integers solutions = [] def pathSumUtil(self, root, req_sum, current_path ): if root==None: return current_path.append(root.val) # print(current_path) if root.left==None and root.right ==None: if req_sum == root.val: self.solutions.append(current_path) # print(current_path,self.solutions) return else: return self.pathSumUtil(root.left,req_sum-root.val,list(current_path)) self.pathSumUtil(root.right,req_sum-root.val,list(current_path)) def pathSum(self, A, B): dummy = [] self.solutions = [] self.pathSumUtil(A,B,list(dummy)) return self.solutions
import numpy as np from layers import * from fast_layers import * from layer_utils import * from util import * class Transformer(object): ''' A multilayer perceptron whose purpose is to transform input images by applying a nonlinear transformation. We constrain the output by imposing a penalty for correlation between it and the original input image. ''' def __init__(self, input_dim=32*32*3, hidden_dim=1000, use_batchnorm=True, weight_scale=1e-3, reg=0.0, dtype=np.float32): ''' Initialize the transformer network as a multilayer perceptron from the input space back into it. The hidden dimension, or "code" dimension, is typically smaller than the input dimension, so we are using a trick similar to autoencoders, but instead of reconstructing the input, we try to apply a useful transformation to it. The structure of this network is: affine - relu - affine. Note that there is no softmax input: input_dim: the number of input nodes to the network (CIFAR-10 size by default) hidden_dim: the number of nodes in the hidden layer of the netowork use_batchnorm: whether or not to use batch normalization weight_scale: the scale about which to initialize model parameters reg: hyperparameter penalizing the magnitude of model parameters dtype: data type of the input to the network ''' self.use_batchnorm = use_batchnorm self.params = {} self.reg = reg self.dtype = dtype # initializing weights, biases self.params['W1'] = np.random.normal(loc=0, scale=weight_scale, size=(input_dim, hidden_dim)) self.params['b1'] = np.zeros(hidden_dim) self.params['W2'] = np.random.normal(loc=0, scale=weight_scale, size=(hidden_dim, input_dim)) self.params['b2'] = np.zeros(input_dim) # initializing gammas, betas self.params['gamma1'] = np.ones((hidden_dim)) self.params['beta1'] = np.zeros((hidden_dim)) # setting batchnorm parameters self.bn_params = [] if self.use_batchnorm: self.bn_params = [{'mode': 'train'} for i in xrange(1)] # setting correct datatype for k, v in self.params.iteritems(): self.params[k] = v.astype(dtype) def forward(self, X): ''' Forward pass of the network. We are simply passing the input through an affine - relu - affine structure. input: X: minibatch array of input data, of shape (N, d_1, ..., d_k) output: transformed minibatch input data ''' # setting the network operation mode mode = 'test' # initializing cache dictionary self.cache = {} # adding input minibatch array to cache self.cache['X'] = X # are we using batchnorm? if so... if self.use_batchnorm: for bn_param in self.bn_params: bn_param[mode] = mode # compute first layer's hidden unit activations and apply nonlinearity (thanks to layer_utils module) hidden, self.cache['hidden'] = affine_norm_relu_forward(X, self.params['W1'], self.params['b1'], self.params['gamma1'], self.params['beta1'], self.bn_params[0]) # compute second layer's hidden unit activations transform, self.cache['output'] = affine_forward(hidden, self.params['W2'], self.params['b2']) # we returned the transformed input return transform def backward(self, transform, loss, dtransform): ''' Computing loss and gradient for a minibatch of data. This will simply be the loss and gradient passed back from the discriminator network, combined with the correlation loss we define between the input and output of this network. input: transform: the output of the network from the forward pass loss: the loss output from the discriminator network (we want to maximize the log of this!) dtransform: the gradient of the tranform output from the forward pass y: Array of labels, of shape (N,). y[i] gives the label for X[i] output: If y is None, then run a test-time forward pass of the fully-connected network, and output the transformed image. If y is not None, then run a training-time forward and backward pass and return a tuple of: Scalar value giving the loss Dictionary with the same keys as self.params, mapping parameter names to gradients of the loss with respect to those parameters. ''' # initializing variables for loss and gradients (we try to maximize the log # loss of the discriminator model as in the Goodfellow paper) grads = {} # adding correlation loss between the original input and the transformed input X = self.cache['X'] X = X.reshape(transform.shape) # TODO: figure out how to incorporate the correlation loss... # corr_loss, dout = correlation_loss(X, transform) # dtransform += dout # adding regularization loss to the total loss # this is calculated by summing over all squared weights of the network loss += 0.5 * (self.reg * (np.sum(np.square(self.params['W1'])) + np.sum(np.square(self.params['W2'])))) # computing the gradient of the weights of each layer with respect to the upstream gradient of the class predictions dhidden, grads['W2'], grads['b2'] = affine_backward(dtransform, self.cache['output']) dinput, grads['W1'], grads['b1'], grads['gamma1'], grads['beta1'] = affine_norm_relu_backward(dhidden, self.cache['hidden']) # adding regularization to the weight gradients (using its derivative w/ respect to the weights) grads['W1'] += self.reg * self.params['W1'] grads['W2'] += self.reg * self.params['W2'] # returning the calculated loss and gradients return loss, grads
from datetime import datetime class UserID (object): """ Constructor """ def __init__(self, name): """ Construct a new object. :param name: STRING, The user name. startDate: The date of the account was created. """ self.__username = name self.__startDate = datetime.now().date().today() # This attributes will not be change ever once it has been initialized. """ Methods """ def getName(self): """ Gets the name of the user. :return: the username of the user. """ return self.__username def setName(self, newName): """ Change the user's username. :param newName: The new username that will replaced. :return: None """ self.__username = newName def getStartDate(self): """ Gets the birth of the account. :return: The date of the time the account was created. """ return self.__startDate """ TEST CASES FOR UserID CLASS """ if __name__ == '__main__': actor = UserID("Adrian") name = actor.getName() if name != "Adrian": print("Error: self.username expected value is (Adrian)") print(" value got is,", actor.getName()) exit() actor.setName("Maicaella") updatedName = actor.getName() if updatedName != "Maicaella": print("Error: self.username does not change to (Maicaella)") print(" the value is still,", actor.getName()) exit() time = actor.getStartDate() if time != actor.getStartDate(): print("Error: getStartDate() does not match to self.startDate") print(" the value is,", actor.getStartDate()) exit() print("**** TEST COMPLETE ****")
# generate a random derangement of a range # ref http://local.disia.unifi.it/merlini/papers/Derangements.pdf # http://stackoverflow.com/questions/25200220/generate-a-random-derangement-of-a-list import random def random_derangement(n): while True: v = range(n) for j in range(n - 1, -1, -1): p = random.randint(0, j) if v[p] == j: break else: v[j], v[p] = v[p], v[j] else: if v[0] != 0: return tuple(v) # demo N = 4 # enumerate all derangements for testing import itertools counter = {} for p in itertools.permutations(range(N)): if all(p[i] != i for i in p): counter[p] = 0 # final values should be close to M M = 5000 for _ in range(M*len(counter)): # generate a random derangement p = random_derangement(N) # is it really? assert p in counter # ok, record it counter[p] += 1 # the distribution looks uniform for p, c in sorted(counter.items()): print p, c
''' 利用parse模块模拟post请求 分析百度词典 分析步骤: 1. 打开F12 2. 尝试输入单词girl,发现每敲一个字母后都有请求 3. 请求地址是 http://fanyi.baidu.com/sug 4. 利用NetWork-All-Hearders,查看,发现FormData的值是 kw:girl 5. 检查返回内容格式,发现返回的是json格式内容==>需要用到json包 ''' from urllib import request, parse # 负责处理json格式的模块 import json import chardet ''' 大致流程是: 1. 利用data构造内容,然后urlopen打开 2. 返回一个json格式的结果 3. 结果就应该是girl的释义 ''' baseurl = 'http://fanyi.baidu.com/sug' # 存放用来模拟form的数据一定是dict格式 data = { # girl是翻译输入的英文内容,应该是由用户输入,此处使用硬编码 'kw': 'refactor' } # 需要使用parse模块对data进行编码 data = parse.urlencode(data).encode("utf-8") #print(type(data)) # 我们需要构造一个请求头,请求头部应该至少包含传入的数据的长度 # request要求传入的请求头是一个dict格式 headers = { # 因为使用post,至少应该包含content-length 字段 'Content-Length':len(data) } # 可以直接尝试发出请求 # rsp = request.urlopen(baseurl, data=data) # 或通过request发送带headers的请求 # 这是构造一个Request的实例 req = request.Request(url=baseurl, data=data, headers=headers) # req.add_header("User-Agent","````") #注:可以通过add_header()添加头 # 因为已经构造了一个Request的请求实例,则所有的请求信息都可以封装在Request实例中 # urlopen可以打开URL 而URL,可以是字符串或Request对象 rsp = request.urlopen(req) json_data = rsp.read() # 利用 chardet自动检测 cs = chardet.detect(json_data) #print(type(cs)) #print(cs) json_data = json_data.decode(cs.get("encoding", "utf-8")) #print( type(json_data)) #print(json_data) # 把json字符串转化成字典 json_data = json.loads(json_data) #print(type(json_data)) #print(json_data) for item in json_data['data']: print(item['k'], "--", item['v'])
#! /usr/bin/env python # To check presence of alphanumeric, alphabets, digits in a string. str1 = raw_input().strip() alnum = False alpha = False digit = False lower = False upper = False for ch in str1: if (ch >= 'a' and ch <= 'z'): alnum = True lower = True alpha = True if (ch >= '0' and ch <= '9'): alnum = True digit = True if (ch >= 'A' and ch <= 'Z'): alnum = True upper = True alpha = True print alnum print alpha print digit print lower print upper
#! /usr/bin/env python # capitalize each word in a sentence. str1 = raw_input().strip() str1 = str1 + " " for i in range(0,len(str1)): if str1[i-1] == ' ': str1 = str1[:i] + str1[i].upper() + str1[i+1:] print str1
n=int(input("Enter the number of terms : ")) result = list(map(lambda x: 2**x,range(n))) print("The total number of terms are : ",n) for i in range(n): print("2^",i,"=",result[i])
from tkinter import * root=Tk() #Window Appearancw root.title("House") c=Canvas(root,bg='white',height=700,width=1500) #----------------------------------House Front------------------------------------------------ c.create_polygon(600,250,700,150,800,250,800,400,600,400,width=2,fill="yellow",outline='black') c.create_rectangle(650,275,750,390,fill="pink")#------------------House door-------------------------- c.create_polygon(800,250,900,150,1000,250,1000,400,800,400,width=2,fill="blue",outline='black')#-------------------house side------------------------------------ c.create_rectangle(850,275,900,327,fill="grey")#----------------------------Window------------------------------------- c.create_polygon(700,150,800,250,1000,250,900,150,width=2,fill="brown",outline='black') c.create_oval(680,180,725,250, width=0.5, fill='red')#--------------------------circlr above the door------------------------------------------------------------ c.pack() root.mainloop()
#WAP to convert the number from decimal to binary using Reccursion def Convert(n): if n > 1: Convert(n//2) print(n%2,end = ' ') a=int(input("Enter the decimal number to conver into Binary : ")) Convert(a)
mylist=[] #emptylist mylist=[1,2,3,4] #list of integers print(mylist) mylist=[1,"Heello",3.6] print(mylist) mylist=[1,[1,8,9,8,[1.89,87,],(4,5,6)]] #nested list print(mylist) mylist=(1,2,5,[5,6],8) #list inside the tuple print(mylist) a=["mouse",['a']]; print(a); a=['maa','iiiiggggugg','l','a','n','h','a',['c','o']] print(a[0]) #print first element of the list print(a[2]) #print third element of the list print(a[0][1]) #print the first elemnet of the zeroth element print(a[1][4]) #print the fourth element of the first element print(a[-1]) print(a[-5]) even=[1,2,4,6,8] #mistake values even[0]=0 #update the mistakes print(even) even.append(10) #Append a element print(even) even.extend((10,12,14,16)) #extend a tuple or a list print(even) print(even+[17,18,20]) #other ways of appending print(even*2); #multiply the elemnts of the list even.insert(1,6) #insrt elements in the list by giving index and value print(even); print(even[5:9]); #display the eements in the middle del even[2]; #delete one element that was 2 from the list print(even); del even[5:9] #delete multiple elements in the given range print(even) even.remove(8) print(even) print(even.pop(1)); #pop the given element print(even.pop()); #pop the last element even.clear() #delete all the element print(even) even=[1,2,4,6,8] print(even) even[:2]=[] # delete the elemeentss print(even) print(even.index(6)) #find out the index #print(even.sort()) even.sort() #sort the elements in the ascending order print(even) even.reverse() #reverse a string print(even) m=even.copy(); print(m) pow2=[2**x for x in range(20)] print(pow2) pow2=[2**x for x in range(20) if x>5 and x<8] print(pow2) lastname=['Aswani','kulchandani','hotchandani','mulchandani'] print("%s" % lastname[1]) print("%s" % lastname[0][2])
#Converting given given temperature in Fahrenheit into degree Celsius. temperature_in_farhrenheit = float(input("Enter temperature in fahrenheit:")) celsius = (temperature_in_farhrenheit - 32) * 5 / 9 print("Temperature in celsius: " , celsius)
""" Write a Python function which accepts a string and returns a string made of the first 2 and the last 2 characters of the given string. If the string length is less than 2, return -1. Note: If the string length is equal to 2, consider the 2 characters to be the first as well as the last two characters. Sample Input Expected Output w3resource w3ce w3 w3w3 A -1 """ def new_string(string): if len(string)<2: return -1 else: return string[0:2]+string[-2:] print(new_string('abacus')) print(new_string('vi')) print(new_string('v'))
list1=[5,4,15,3,1,0] print(list1) for i in range(len(list1)): min_val=min(list1) min_ind=list1.index(min_val) list1[i],list1[min_ind]=list1[min_ind],list1[i] print(list1)
class TreeNode: def __init__(self, data): self.data = data self.left = None self.right = None class BinaryTree: def __init__(self, data=None): self.root = None if data: self.root = TreeNode(data) def insert(self, data): current = self.root # a pointer to the current node parent = None # suppose, the parent of the new node is None while current: parent = current # update the parent if data > current.data: current = current.right else: current = current.left if self.root is None: self.root = TreeNode(data) elif data > parent.data: parent.right = TreeNode(data) else: parent.left = TreeNode(data) def inorder(self, current): if current is None: return self.inorder(current.left) print(current.data) self.inorder(current.right) def print_inorder(self): self.inorder(self.root) btree = BinaryTree(1) btree.insert(7) btree.insert(3) btree.insert(4) btree.insert(5) btree.print_inorder()
""" Example: Given an array of distinct integer values, count the number of pairs of integers that have given difference k. For example, given the array {1, 7, 5, 9, 2, 12, 3} and the difference k = 2, there are four pairs with difference 2: (1, 3), (3, 5), (5, 7), (7, 9). """ def diff_k(arr=[], k=2): dictionary = {} index = 0 for val in arr: dictionary[val] = index index += 1 checked = {} # empty dictionary for values whether they are processed or not for val in arr: checked[val] = False for val in dictionary: if val - k in dictionary and checked[val-k] is False: print(val, ",", val - k) if val + k in dictionary and checked[val+k] is False: print(val, ",", val + k) checked[val] = True arr = [1, 7, 5, 9, 2, 12, 3] k = 2 diff_k(arr, k)
from CipherInterface import * import math # The enigma cipher in this implementation takes in a key that is 26x3 characters lone # this is then translated into 26 character keys for each rotor # each rotor key should only contain 1 of each character in the alphabet # the rotor will translate a single character across its key # the enigma class will create 3 instances of the rotor and translate each # character of plaintext across each rotor in order to encrypt and backwards # to decrypt class Rotor(CipherInterface): alphabet = "abcdefghijklmnopqrstuvwxyz" def __init__(self): CipherInterface.__init__(self) self.position = 0 self.array_in = [] self.array_out = [] def setKey(self, key): self.key = key for i in range(0, 26): self.array_in.append(i) self.array_out.append(self.key.index(self.alphabet[i])) # sets the position to the index of the char def setPos(self, posChar): self.position = self.alphabet.index(posChar) # encrypts 1 character at a time def encrypt(self, plaintext): # set the location input to the index of the letter plus the rotation loc_in = self.alphabet.index(plaintext) + self.position if loc_in > 25: loc_in = loc_in - 26 # set the location output of the rotor to the index of the input plus the position loc_out = self.array_out.index(loc_in) + self.position if loc_out > 25: loc_out = loc_out - 26 # set the ciphertext to the letter at the location out ciphertext = self.alphabet[loc_out] return ciphertext # decrypt 1 character at a time def decrypt(self, ciphertext): # set the location out side loc_out = self.alphabet.index(ciphertext) - self.position if loc_out > 25: loc_out = loc_out - 26 loc_in = self.array_out[loc_out] - self.position if loc_in > 25: loc_in = loc_in - 26 plaintext = self.alphabet[loc_in] return plaintext # rotate the rotor # if the rotation makes a full circle then return true, else return false def rotate(self): # rotate the rotor self.position = self.position + 1 if self.position > 25: self.position = 0 return True else: return False class Enigma(CipherInterface): # this implementation of the Enigma Cipher assumes a start place of A A A # on all of the roters alphabet = "abcdefghijklmnopqrstuvwxyz" rotors = [] def setKey(self, key): self.key = key # create the list of rotors self.rotors.append(Rotor()) self.rotors.append(Rotor()) self.rotors.append(Rotor()) # static rotor keys self.rotors[0].setKey("dkvqfibjwpescxhtmyauolrgzn") self.rotors[1].setKey("uolqfdkvescxhzntmyaibjwprg") self.rotors[2].setKey("lrescxgzndkvqfimyauobjwpht") # set the starting position of the rotors to that of the key self.rotors[0].setPos(self.key[:1]) self.rotors[1].setPos(self.key[1:2]) self.rotors[2].setPos(self.key[2:3]) # Encrpyts the plaintext using the Railfence cipher def encrypt(self, plaintext): ciphertext = "" # for each character in the plaintext for c in plaintext: # if its a space if c == " ": # append a space ciphertext = ciphertext + c else: # if its not a space # encrypt the character on each roter for r in range(0, len(self.rotors)): c = self.rotors[r].encrypt(c) # rotate the rotors for r in range(0, len(self.rotors)): # if the rotor does not make a full rotation dont rotate the next rotor if not self.rotors[r].rotate(): break ciphertext = ciphertext + c return ciphertext # Decrypts the ciphertext using the Railfence cipher def decrypt(self, ciphertext): plaintext = "" # for each character in the ciphertext for c in ciphertext: # if its a space if c == " ": # append a space plaintext = plaintext + c else: # if its not a space # decrypt the character on each rotor in reverse for r in range(0, len(self.rotors)): c = self.rotors[len(self.rotors) - r - 1].decrypt(c) # rotate the rotors for r in range(0, len(self.rotors)): # if the rotor does not make a full rotation dont rotate the next rotor if not self.rotors[r].rotate(): break plaintext = plaintext + c return plaintext
class Worker: def __init__(self, surname, experience, hourly_wag, hours_work): self.surname = surname self.experience = max(experience, 0) self.hourly_wage = max(hourly_wag, 0) self.hours_work = max(hours_work, 0) self.salary = self.calculate_salary(self.hours_work, self.hourly_wage) self.premium = round(self.calculate_premium(self.experience, self.salary)) @staticmethod def calculate_premium(experience, salary): if experience < 1: return 0 elif experience < 3: return salary * 0.05 elif experience < 5: return salary * 0.08 else: return salary * 0.15 @staticmethod def calculate_salary(hours_work, hourly_wage): return hours_work * hourly_wage def __str__(self): return "Surname: " + str(self.surname) + \ "\nExperience: " + str(self.experience) + "\n" + \ str(self.surname) + " has worked: " + str(self.hourly_wage) + " hours\n" + \ "Salary: " + str(self.salary) + "\n" + "Premy: " + str(self.premium) def in_file(self): file_name = self.surname + ".txt" with open(file_name, "w") as file: file.write(self.__str__()) print("Information about", self.surname, "was written in file", file_name) surname = input("Enter surname: ") experience = int(input("Enter experience: ")) hourly_wage = int(input("Enter hourly wage: ")) hours_work = int(input("Enter how much worker worked: ")) worker = Worker(surname, experience, hourly_wage, hours_work) print() print(worker) print() worker.in_file()
def sumDigits(number) : sum = 0; while(number > 0) : sum += int(number%10) number = number /10 print(sum) if __name__ == "__main__": number = int(input("Enter a number")) sumDigits(number)
def Add(number1 , number2) : print("Addition is :: ",number1 + number2) def Sub(number1 , number2) : print("Substraction is :: ",number1 - number2) def Mult(number1 , number2) : print("Multiplication is :: ",number1 * number2) def Div(number1,number2) : print("Division is ::",number1/number2)
from __future__ import print_function import math z = 0 a = [] def series(i): x = z x = 0 for n in range(i+1): x += 10 * (((math.cos((1 + 2.3 * n) / 3)) * 3) + 6) # x += 0 + (10 * n) # x += 250 - (4.5 * n) print(x) def sequence(i): b = a b = [] for n in range(i+1): c = 10*(((math.cos((1+2.3*n)/3))*3)+6) b.append(c) one_decimals = ["%.1f" % c for c in b] print(*one_decimals, sep = '\n') # choose sequence or serie # diplay choices def display_choices(): print("\n\n*Starting off with x = 0") print("[1]sequence") print("[2]series") def decision(choice): if choice == 1: sequence(int(input("Enter the term number: "))) elif choice == 2: series(int(input("Enter the term number: "))) else: print("Error!") while True: display_choices() decision(input("Enter a choice: "))
z = 0 a = [] def series(i): x = z x = 0 for n in range(i): x += enter_formula() print("\n", x) def sequence(i): b = a b = [] for n in range(i): c = enter_formula() b.append(c) print("\n", b) # choose sequence or serie # diplay choices def display_choices(): print("\n\n[1]sequence") print("[2]series") def decision(choice): if choice == 1: sequence(input("Enter the term number: ")) elif choice == 2: series(input("Enter the term number: ")) else: print("Error!") def enter_formula(): formula = raw_input("\n*The term number must be n.\nEnter a formula: ") for i in formula: if i in ("1", "2", "3", "4", "5", "6", "7", "8", "9", "0"): int(i) while True: display_choices() decision(input("Enter a choice: "))
#Program: reader.py #Authors: Calvin Brown, Chad Gilmer #Description: Reades a file in and does things on it like ls, stat, and info of the file import sys import os import struct from Utilities import * from lsInfo import * from statInfo import * from info import * from read import * from changeDirectory import * fileName = sys.argv[1] #Loops until quit directory = "" newTup = ("",0) lastDirectory = ("",0) while True: userInput = input("/"+directory+"] ") if userInput == "quit": print("Bye!") break elif userInput == "info": #This will give info of the file you passed in, in the arguments printInfo(fileName) elif "cd" in userInput: #if "cd .." in userInput: #Couldn't end up getting this working # newTup = changeDir(lastDirectory[0],fileName, lastDirectory[1]) # continue fileToStat = userInput.split() if(len(fileToStat) <= 1): print("Please enter cd <dir> to go to it") elif(len(fileToStat) > 1): fileToStat = fileToStat[1] newTup = changeDir(fileToStat,fileName, newTup[1]) if(newTup[0] == ""): continue directory = newTup[0][0] elif "stat" in userInput: #This is the STAT function, This ~semi~ needs the ls function since the ls can get info about the first clustor of data, and then we can get info on that from finding those files in the ls module. fileToStat = userInput.split() if(len(fileToStat) <= 1): print("Please enter stat <filename> to get the statistics of it") elif(len(fileToStat) > 1): fileToStat = fileToStat[1] runToStat(fileToStat,fileName, newTup[1]) elif userInput == "ls": doLs(fileName, newTup[1]) elif "read" in userInput: inputList = userInput.split() readFile(inputList[1],inputList[2],inputList[3],fileName, newTup[1])
""" Part 4 - Class Report: Generate Products and report on them """ import random from acme import Product # Variable Definitions for use throughout code ADJECTIVES = ['Awesome', 'Shiny', 'Impressive', 'Portable', 'Improved'] NOUNS = ['Anvil', 'Catapult', 'Disguise', 'Mousetrap', '???'] def generate_products(number_of_products=30): # Variable definitions for this function products = [] counter = 0 while(counter < number_of_products): name = random.choice(ADJECTIVES) + ' ' + random.choice(NOUNS) price = random.randint(5, 100) weight = random.randint(5, 100) flammability = random.uniform(0.0, 2.5) products.append(Product(name, price, weight, flammability)) counter += 1 return products def inventory_report(products): # Variable Definitions unique_products = [] count_unique_products = 0 avg_price = 0 avg_weight = 0 avg_flammability = 0 # Create a list of unique product names to count for product in products: if product.name not in unique_products: unique_products.append(product.name) count_unique_products = len(unique_products) # Calculate the averages using generator expressions. avg_price = (sum(product.price for product in products) / float(len(products))) avg_weight = (sum(product.weight for product in products) / float(len(products))) avg_flammability = (sum(product.flammability for product in products) / float(len(products))) # Print the Report results print('ACME CORPORATION OFFICIAL INVENTORY REPORT') print(f'Unique product names: {count_unique_products}') print(f'Average price: {avg_price}') print(f'Average weight: {avg_weight}') print(f'Average flammability: {avg_flammability}') if __name__ == '__main__': inventory_report(generate_products())
#import requests from goose import Goose import urllib from bs4 import BeautifulSoup """ this function visits the link to the article and extracts the article text For more on requests: http://docs.python-requests.org/en/master/user/quickstart/ http://web.stanford.edu/~zlotnick/TextAsData/Web_Scraping_with_Beautiful_Soup.html """ #def get_article(url): # r = urllib.urlopen(url).read() # soup = BeautifulSoup(r) # type(soup) # print soup.prettify()[0:1000] # title = url + '.txt' # f = open('hello.txt', 'w') #f.write(article.encode('utf-8')) #f.close() def get_article(url): #url = 'http://edition.cnn.com/2012/02/22/world/europe/uk-occupy-london/index.html?hpt=ieu_c2' g = Goose() article = g.extract(url=url) #print article.title return article.cleaned_text
print('enter any number ') number = int(input()) n = 1 while True : print(number,'*',n,'=',number*n) n = n + 1 if n >= 11: break print('end')
maths = int(input('enter the markas of maths: ')) phy = int(input('enter the markas of physics: ')) chem = int(input('enter the markas of chemistry: ')) bio = int(input('enter the markas of bio: ')) m = int(input('enter the markas of computer: ')) per = (maths+phy+chem+bio+m)/5 print('percentage: ',per) if per>=90 : print('A') elif per<90 and per>=80 : print('B') elif per<80 and per>=70 : print('C') elif per<70 and per>=60 : print('D') elif per<60 and per>=50 : print('E') else: print('F')
#def factorial(x): # if x==1: # return 1 # return x * factorial(x-1) #result = factorial(3) #print(result) def factorial(x): if x==1: return 1 result = factorial(x-1) return x * result result =factorial(3) print(result)
# class method and static method class Person: def __init__(self,name,age): self.name = name self.age = age def get_name(self): return self.name def get_age(self): return self.age @classmethod def object_by_year(cls,name,year): return cls(name,2019-year) @staticmethod def is_adult(age): if age>=18: return True else: return False p1 = Person("lala",4) p2 = Person.object_by_year("sonu",2000) print(p1.get_name(),p1.get_age(),Person.is_adult(p1.age)) print(p2.get_name(),p2.get_age(),Person.is_adult(p2.age))
#!/usr/bin/python """ main routine of the intro cutter. 1 - extract a wav file with the intro from the given video, position and duration must be known and set in conf.py 2 - make a fingerprint from the extracted wav file 3 - iterate all video files in the given directory 3a - extract first half of the audio track of the video, the intro is not gonna be in the seconds half, right? 3b - look for the position in the audio track that best match the fingerprint 3c - create a new video file cutting out the matched position + duration 4 - log and clean up """ from __future__ import print_function from fingerprint import make_fingerprint, find_fingerprint_in_file from ffmpeg import make_tmp_filename as tmp, ext, extract_audio_chunk, get_video_duration, remove_chunk_from_video from conf import * # extract the audio of the intro and make a fingerprint of it print("extracting intro song...") intro_wav = extract_audio_chunk(INTRO_VIDEO_FILE, tmp() + '.wav', INTRO_START_S, INTRO_DURATION_S) print("making intro fingerprint...") fp = make_fingerprint(intro_wav) k = AUDIO_FRAME_RATE / float(AUDIO_WINDOW_SIZE) fp_duration_seconds = len(fp) / k # iterate all video file log = '\n*** matched intro ***\n{:<12} time\n'.format('match value') matches = [] videos = [x for x in sorted(os.listdir(INPUT_DIR)) if ext(x)[1:].lower() in VIDEO_EXT] for i, video in enumerate(videos): print("processing video {} of {} {}...".format(i+1, len(videos), video)) # extract the audio only for the first half of the video duration = get_video_duration(os.path.join(INPUT_DIR, video)) / 2 target_wav = extract_audio_chunk(os.path.join(INPUT_DIR, video), tmp() + ".wav", 0, duration) # compare the fingerprint with the audio extracted from the video match = find_fingerprint_in_file(fp, target_wav) #log += 'index {:9} - value {:18} {:06.2f}s - {}\n'.format(match[0], match[1], match[0] / k, video) log += '{:<12} {:06.2f}s - {}\n'.format(match[1], match[0] / k, video) input_video = os.path.join(INPUT_DIR, video) output_video = os.path.join(OUTPUT_DIR, OUTPUT_PREFIX+video) matches.append((input_video, output_video, int(match[0] / k), fp_duration_seconds, match[1])) #print("matches:\n{}".format('\n'.join(['{} - {} {}'.format() for i, x in enumerate(matches)]))) with open('log.txt', 'w') as f: f.write(log) print(log) proceed = raw_input("proceed to cut the videos? (y/n)?").lower() == 'y' if proceed: for i, ele in enumerate(matches): print("removing intro from video {} of {} {}...".format(i+1, len(videos), videos[i])) remove_chunk_from_video(*ele[:-1]) if CLEAN_TMP: for ele in os.listdir(TMP_DIR): os.remove(os.path.join(TMP_DIR, ele))
def get_hills(n,arr): hill = 0 for i in range(1,n-1): if arr[i]>arr[i+1] and arr[i]>arr[i-1]: hill+=1 return hill def get_valleys(n,arr): valley=0 for i in range(1,n-1): if arr[i]<arr[i+1] and arr[i]<arr[i-1]: valley+=1 return valley def solution(n,arr): ans = get_hills(n,arr)+get_valleys(n,arr) for i in range(1,n-1): if arr[i]>arr[i+1] and arr[i]>arr[i-1]: return ans t = int(input()) for i in range(t): n = int(input()) arr = list(map(int,input().split())) print(solution(n,arr))
import base64 import numpy as np import random import rsa import math #TODO create function that allows user to enter a message, also allows the user to enter two separate "e" values # and then will use the rsa public key generation function to generate a modulus N. Calculates the ciphertexts. def userInput(): e1 = int(input("Enter an e value: ")) e2 = int(input("Enter a second e value: ")) if math.gcd(e1, e2) != 1: raise ValueError("e1 and e2 must be coprime!") message = encrypt(input("Enter the message: ")) pubk,_ = rsa.newkeys(nbits = 2048) print("Your modulus is: %d" % pubk.n) c1 = (message**e1) % pubk.n c2 = (message**e2) % pubk.n print(decrypt(attack(c1,c2,e1,e2,pubk.n)).decode("utf-8")) def modinv(a, m): #This portion calculates the extended Euclidian Algorithm (EGCD) #We make a list of quotients used to divide the number as it will be used when the algorithm works its way up quotients = list() b = m #This porition obtains the GCD for the two numbers a,b and appends b/a floored (i.e. b//a) to quotients list while a != 0: quotients.append(b//a) #a becomes b%a, and and b becomes a, these operations occur until a gcd is found (i.e a ==0) a, b = b%a, a #we set g equal to the gcd, and then set x = 0 and y = 1 as we are going to work our way back up #obtaining the final x,y such that ax + by = 1 gcd, x, y = b,0,1 for i in range(len(quotients)-1,-1,-1): x,y = y - quotients[i] * x, x return x % m, y #this function takes in the ciphertext, computes the egcd of the exponents to obtain s1 and s2 such that #e1*s1 + e2*s2 = 1, and return the product of C1^e1*s1 + C2^e2*s2 def attack(c1, c2, e1, e2, N): if math.gcd(e1, e2) != 1: raise ValueError("e1 and e2 must be coprime!") s1,s2 = modinv(e1,e2) #Equation C1^s1 + C2^s2 = M1^e1*s1 + M2^e2*s2 return (pow(c1,s1,N) * pow(c2,s2,N)) % N def encrypt(message): m_int = int(base64.b64encode(message.encode("ASCII")).hex(),base = 16) return m_int # The decrypted ciphertext needs to be the resulting message after undergoing the # common modulus attack algorithm. Ciphertext must be an int! def decrypt(ciphertext): plaintext = base64.b64decode(bytes.fromhex(hex(ciphertext)[2:]).decode("ASCII")) return plaintext def main(): print('~~~~~~~~~~ Starting Common Modulus Attack ~~~~~~~~~~') #Original values from the problem on the website message = attack(239450055536579126410433057119955568243208878037441558052345538060429910227864196906345427754000499641521575512944473380047865623679664401229365345208068050995600248796358129950676950842724758743044543343426938845678892776396315240898265648919893384723100132425351735921836372375270138768751862889295179915967, 138372640918712441635048432796183745163164033759933692015738688043514876808030419408866658926149572619049975479533518038543123781439635367988204599740411304464710538234675409552954543439980522243416932759834006973717964032712098473752496471182275216438174279723470286674311474283278293265668947915374771552561, 3, 65537, 402394248802762560784459411647796431108620322919897426002417858465984510150839043308712123310510922610690378085519407742502585978563438101321191019034005392771936629869360205383247721026151449660543966528254014636648532640397857580791648563954248342700568953634713286153354659774351731627683020456167612375777) print('~~~~~~~~~~ Common Modulus Attack Finished! ~~~~~~~~~~') print('\nPlaintext message:\n%s' % decrypt(message).decode("utf-8")) userInput() main()
#!/usr/bin/env python # -*- coding: utf-8 -*- import re import json import pdb import os one_word_conjunction = ['y', 'a', 'e', 'o', 'u'] char_end_allowed = ['a', 'e', 'o', 'u', 'n', 'r', 's', 'l'] def pegar_tripletas(w1, w2, w3): separados = w1 + " " + w2 + " " + w3 if len(w1) > 1: if len(w2) > 1: return separados else: if w2 in one_word_conjunction: if w2 == 'e' or w2 == 'u': if (w2 == 'e' and w3[0].lower() == 'i') or (w2 == 'u' and w3[0].lower() == 'o'): return separados else: return w1 + " " + w2 + w3 else: return separados else: return w1 + " " + w2 + w3 else: if len(w3) > 1: if len(w2) > 1: if w1 in one_word_conjunction: return separados else: return w1 + w2 + " " + w3 else: if w1 == 'y': if w2 == 'a': return separados else: return w1 + " " + w2 + w3 elif w2 not in char_end_allowed: return w1 + w2 + w3 else: if w1 in ['a', 'e', 'o', 'u']: return w1 + w2 + " " + w3 else: return w1 + w2 + " " + w3 else: if len(w2) > 1: if w1 in one_word_conjunction: return separados else: return w1 + w2 + " " + w3 else: return w1 + w2 + w3 def limpiar_porcentajes(x): return x.group(0)[:-1] def elimina_raros(texto): texto_limpio = re.sub(u'[^\xf1\xe1\xe9\xed\xf3\xfa\w\,\.\-\s\%\¿\?\(\)]', '', texto) texto_limpio = re.sub('[^0-9\s]\s*%', limpiar_porcentajes, texto_limpio) return texto_limpio def separar(x): return x.group(0) + " " def quitar_espacios(text): words = text.split() new_text = "" if len(words) < 3: return text for i in range(len(words)-2): w1 = words[i] w2 = words[i+1] w3 = words[i+2] if i != 0: if w3 not in pegar_tripletas(w1, w2, w3).split(): new_text += w3 else: new_text += " " + w3 else: new_text += pegar_tripletas(w1, w2, w3) new_text = re.sub('([0-9]+|%)', separar, new_text) return new_text #Elimina las mayusculas de una palabra def separa_mayus(palabra): try: string_error = re.search('[a-zñ][A-Z]', palabra).group(0) fixed_string = string_error[0] + " " + string_error[1] return palabra.replace(string_error, fixed_string) except: return palabra #Elimina las mayusculas intermedias en todo el texto def elimina_mayus(texto): todas = texto.split() todas_limpias = list(map(lambda x: separa_mayus(x), todas)) return " ".join(todas_limpias) def elimina_letras_sueltas(texto): words = texto.split() texto_limpio = "" for word in words: if len(word) ==1 and re.search('[a-zñ]', word) is not None and word not in one_word_conjunction: texto_limpio += "" else: texto_limpio += word + " " return texto_limpio def known(words): """ Descarta si P(C)=0 """ return set(w for w in words if w in NWORDS) def known_edits2(word): """ Calcula el P(W/C) ----- distancia=2 y se descarta si P(C)=0 """ return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in NWORDS) alphabet = u'abcdefghijklmnopqrstuvwxyz\xf1\xe1\xe9\xed\xf3\xfa' def edits1(word): """ Calcula el P(W/C) ----- distancia=1 """ s = [(word[:i], word[i:]) for i in range(len(word) + 1)] deletes= [a + b[1:] for a, b in s if b] transposes = [a + b[1] + b[0] + b[2:] for a, b in s if len(b) > 1] replaces= [a + c + b[1:] for a, b in s for c in alphabet if b] inserts= [a + c + b for a, b in s for c in alphabet] return set(deletes + transposes + replaces + inserts) def correct(word): """ funcion principal """ if len(re.findall("[^0-9\,\.\-\s\%\¿\?\(\)]", word)) == 0: return word else: first_letter = "" candidates = known([word.lower()]) or known(edits1(word.lower())) or known_edits2(word.lower()) or [word.lower()] candidato = max(candidates, key = NWORDS.get) if word[0].isupper(): answer = word[0] + candidato[1:] return answer else: return candidato def limpiar_linea(sentence): linea = sentence.replace(",", " , ").replace(".", " . ").replace("¿", " ¿ ").replace("?", " ? ").replace("(", " ( ").replace(")", " ) ") linea_limpia = elimina_letras_sueltas(elimina_mayus(quitar_espacios(elimina_raros(linea)))) linea_corregida = " ".join([correct(x) for x in linea_limpia.split()]) linea_corregida = linea_corregida.replace(" , ", ",").replace(" . ", ".").replace(" ? ", "?").replace(" ( ", "(").replace(" ) ", ")") return linea_corregida #abre el archivo de corpus with open("Preprocesamiento_I/corpus.json", 'r') as f: NWORDS = json.load(f) with open("data/nombres.txt", 'r') as f: lines = f.readlines() for line in lines: line=line.rstrip('\n') tmp=line.split('/') nombre=tmp[len(tmp)-1] with open( line, 'r') as fread: lineas_texto = [x.strip() for x in fread.readlines() if len(x.strip()) > 0] #print(lineas_texto) with open("data/limpios/"+nombre , 'a') as fwrite: for linea in lineas_texto: fwrite.write(limpiar_linea(linea).encode('utf-8'))
# Takes in a FEN-string and returns a boardMatrix on the following format: # (yes this convertion looses some information about the game that is not relevant for drawing the board) # [['r', 'n', 'b', 'q', 'k', 'b', 'n', 'r'], # ['p', 'p', 'p', 'p', 'p', 'p', 'p', 'p'], # [' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '], # [' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '], # [' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '], # [' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '], # ['P', 'P', 'P', 'P', 'P', 'P', 'P', 'P'], # ['R', 'N', 'B', 'Q', 'K', 'B', 'N', 'R']] def getBoardMatrix(fen): exception = Exception(f"FEN-string is not valid: {fen}") rows = fen.strip(" ").split(" ")[0].split("/") boardMatrix = [] for row in rows: toAppend = [] for char in row: if char in [str(n) for n in range(1, 9)]: toAppend += [" " for i in range(int(char))] elif char in ["r", "n", "b", "q", "k", "p", "R", "N", "B", "Q", "K", "P"]: toAppend.append(char) else: raise exception if len(toAppend) != 8: raise exception boardMatrix.append(toAppend) if len(boardMatrix) != 8: raise exception return boardMatrix # Takes in a FEN-string and returns: # - "w" if white is in the move # - "b" if black is in the move def getPlayerInMove(fen): return fen.split(" ")[1].lower()
from Board import * from tkinter import * myBoard = Board() myBoard.createBoard("easy.txt") #myBoard.printBoard() myEntries = [] root = Tk() #create entries and assign them a stringVar for row in range(9): myEntries.append([]) for col in range(9): entry = Entry(root, width = 2, justify = "center", font = "Helvetica 20 bold") entry.insert(END, str(myBoard.board[row][col])) if str(myBoard.board[row][col]) != '': entry.config(state = DISABLED) entry.grid(row = row, column = col, padx = 2, pady = 2) myEntries[row].append(entry) #print(myEntries) def submit(): validValues = {"1", "2", "3", "4", "5", "6", "7", "8", "9"} for row in range(9): for col in range(9): entry = myEntries[row][col] if entry.get() in validValues: myBoard.board[row][col] = entry.get() else: Label(root, text = "Invalid Value").grid(row = 10, column = 0, columnspan=9) return if myBoard.isSolved(): Label(root, text = "Solved!!").grid(row = 10, column = 0, columnspan=9) else: Label(root, text = "Wrong").grid(row = 10, column = 0, columnspan=9) submitButton = Button(root, text = "Submit", command = submit) submitButton.grid(row = 9, column = 3, columnspan=3) def getEntry(row, col): entry = myEntries[row][col] return entry root.mainloop()
import tensorflow as tf #importing tensor flow librarry hello = tf.constant('hello,Muneeba') # storing a strong as constant sess = tf.Session() # creating a tensorflow session print(sess.run(hello)) # sess.run is responsible for running the session #PLACEHOLDERS #Placeholders are the terminals/data point through which we will be feeding data into the network we will build. Its like gate point for our input and output data. inputs=tf.placeholder('float',[None,2],name='Input') #the data type that will feed to the placeholder is float , 2nd parameter is the shape of input. targets=tf.placeholder('float',name='Target') #Now lets say we don’t know how many input set we are going to feed at the same time. it can be 1 it can be 100 sets at a time. So we specify that with None. #if we set the input shape of the placeholder as [None,3] then it will be able to take any sets of data in a single shot. that is what we did in out earlier code. #In the second case I didn’t select any shape, in this case it will accept any shape. but there is a chance of getting error in runtime if the data the network is ## expecting has a different shape than the data we provided in the placeholder. #the third parameter name will help us to identify nodes on tenoorboard #VARIABLES #Variables in tensorflow are different from regular variables, unlike placeholders we will never set any specific values in these, nor use it for storing any data. weight1=tf.Variable(tf.random_normal(shape=[2,3],stddev=0.02),name="Weight1") biases1=tf.Variable(tf.random_normal(shape=[3],stddev=0.02),name="Biases1") #it has only output connections no input. that is it is the inpyt itself #in this case we initialized the first one as 2×3 matrix with random values with variation of +/- 0.02. for the shape the first one is the number of input connection ## that the layer will receive. and the 2nd one is the number of output connection that the layer will produce for the next layer. hLayer=tf.matmul(inputs,weight1) hLayer=hLayer+biases1 #So here is two matrix operations first one is matrix multiplications of inputs and the weights1 matrix which will produce the output without bias. and in the next line #we did matrix addition which basically performed an element by element additions. hLayer=tf.sigmoid(hLayer, name='hActivation') #writing an activation function #creating the output layer weight2=tf.Variable(tf.random_normal(shape=[3,1],stddev=0.02),name="Weight2") biases2=tf.Variable(tf.random_normal(shape=[1],stddev=0.02),name="Biases2") #As we can see the output layer has only 1 neuron and the previous hidden layer had 3 neurons. #So the weight matrix has 3 input and 1 output thus the shape is [3,1]. and the bias has only one neuron to connect to thus bias shape in [1] output=tf.matmul(hLayer,weight2) output=output+biases2 output=tf.sigmoid(output, name='outActivation') #cost=tf.nn.softmax_cross_entropy_with_logits(logits=output,labels=targets) # update tf.nn.softmax_cross_entropy_with_logits is for classification problems only # we will be using tf.squared_difference() cost=tf.squared_difference(targets, output) cost=tf.reduce_mean(cost) optimizer=tf.train.AdamOptimizer().minimize(cost) #tf.squared_difference takes two input fitsr is the target value and second is the predicted value. #SESSION #generating inputs import numpy as np inp=[[0,0],[0,1],[1,0],[1,1]] out=[[0],[1],[1],[0]] inp=np.array(inp) out=np.array(out) epochs=4000 # number of time we want to repeat with tf.Session() as sess: tf.global_variables_initializer().run() for i in range(epochs): error,_ =sess.run([cost,optimizer],feed_dict={inputs: inp,targets:out}) print(i,error) with tf.Session() as sess: tf.global_variables_initializer().run() for i in range(epochs): error,_ =sess.run([cost,optimizer],feed_dict={inputs: inp,targets:out}) print(i,error) while True: a = input("type 1st input :") b = input("type 2nd input :") inp=[[a,b]] inp=np.array(inp) prediction=sess.run([output],feed_dict={inputs: inp}) print(prediction) aver = tf.train.Saver() with tf.Session() as sess: tf.global_variables_initializer().run() for i in range(epochs): error,_ =sess.run([cost,optimizer],feed_dict={inputs: inp,targets:out}) print(i,error) saver.save(sess, "model.ckpt") # saving the session with file name "model.ckpt" saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, "model.ckpt") while True: a = input("type 1st input :") b = input("type 2nd input :") inp=[[a,b]] inp=np.array(inp) prediction=sess.run([output],feed_dict={inputs: inp}) print(prediction)
from random import shuffle from card import Card from player import Player def generate_deck(): """Generate a deck of cards. Returns: a new deck containing 52 cards """ deck = [] order = list(range(1,53)) shuffle(order) #shuffles the order randomly for i in order:#puts card in the deck card = Card(i % 13, i % 4) deck.append(card) return deck def deal_card(player, deck): """gets a card out of the deck, to hand over to player Parameters: player: obj -- object of player deck: list -- list of the deck """ player.cards.append(deck.pop()) def check_winner(player, house, bet): """Check who won the game by going through the different scenarios and dertimining who won """ #Handles blackjack if house.calc_card_value() == 21: print("House got blackjack!") if player.calc_card_value() == 21: print(player.player_name + " got blackjack!") if house.calc_card_value() > 21: print(player.player_name + " won") player.deposit(bet) elif player.calc_card_value() > house.calc_card_value(): print(player.player_name + " won") player.deposit(bet) elif player.calc_card_value() == house.calc_card_value(): print("Tie!") else: print('House won') player.withdraw(bet) def play_game(player, house, deck, bet): """ Game functionality; deals cards, handles hit and pass, checks if player busts Parameters: player: obj -- player object house: obj -- house object deck: list -- list of deck bet: int -- placed bet """ #deals 2 cards to the player, and one for the dealer deal_card(house, deck) deal_card(player, deck) deal_card(player, deck) #prints the current card on the table player.print_current_cards() house.print_current_cards() bust = False #get user input. #if user busts, bust is set to True, and the player looses their bet #if the user decides to hit, they are dealt another card. And the game continues while True: action = input('press h to hit or s to stand') #deals a new card if user decides to hit if action == 'h': deal_card(player, deck) player.print_current_cards() #if the user decides to stand, it breaks out of the foor loop, and starts to deal cards to house elif action == 's': player.print_current_cards() break #checks if the user busts if player.calc_card_value() > 21: player.print_current_cards() print(player.player_name + ' busts') bust = True break if bust: player.withdraw(bet) else: #computers turn if the user decides to stand #by the rules of blackjack, the dealer stands at 17 while house.calc_card_value() < 17: deal_card(house, deck) house.print_current_cards() if not bust: check_winner(player, house, bet) #Prints the current amount for players account print(f'{player.player_name} you now have {player.bet_account} in your account') def get_player_name(): """Gets the name of the player""" while True: name = input('What is your name?').capitalize() if name is not "": #check that name is not empty return name else: print("You need to type a name!") def get_deposit_amount(): """Gets the amount the player wants to deposit """ while True: try: deposit = int(input('How much do you want to deposit?')) if deposit > 0: #check if the deposit is positive and bigger than 0 return deposit else: print("You need to deposit more than 0") except ValueError: print("Not a valid deposit") def main(): """Initial setup. Gets player name and how much they wants to deposit, starts game """ #Print welcome message print("-------------------------------------------") print("Welcome to this python blackjack game!") print("if you dont know the rules, go read them.") print("Otherwise - Have fun!") print("-------------------------------------------") print() #get player name and deposit name = get_player_name() deposit = get_deposit_amount() #creates objects of player and house player = Player(bet_account = deposit, player_name = name) house = Player(bet_account = 10000000, player_name = "House") stop = False while not stop: deck = generate_deck() player.cards = [] house.cards = [] try: bet = int(input('How much do you want to bet?')) if bet <= player.bet_account and bet > 0: #starts the game play_game(player,house,deck,bet) else: print("Bet cannot be bigger than what you have, and cannot be 0") except ValueError: print("Not a valid bet") want_to_stop = input('To stop write ¨s¨, to try again press enter') if want_to_stop == "s": stop = True if __name__ == '__main__': main()
# First of all I need to create a class that will initialize also a dictionay # created using classe and PPO class Budg_calculator : def __init__ (self, amount): self.available = amount # this is the initial amount self.budgets = {} self.expenditure = {} self.first_budget = amount #added in order to offer a synthesis in the end def add_budget (self, name, amount): if name in self.budgets : raise ValueError("Already Existent Voice") if amount > self.available : raise ValueError("Non Sufficient Funds") self.budgets[name] = amount self.available -= amount self.expenditure[name] = 0 return self.available def spend (self, name, amount ): if name not in self.expenditure: print ("this voice is not admitted") self.expenditure[name] += amount budgeted = self.budgets[name] spent = self.expenditure[name] return budgeted - spent return self.expenditure # added def print_summary (self): print ("Budget" + " "*25 + "Expected" + " "*25 + "Spent" + " "*25 + "Residual") print (" - - - - - - - - - - - - - - - - - - - - -") total_budgeted = 0 total_spent = 0 total_remaining = 0 for name in self.budgets : print (name + len("Budget")*" " + " "*(25-len(name)) + str((self.budgets[name]) )\ + len("Expected")*" " + 25 * " " + str(dispo.expenditure[name]) # here I have to calculate the residual as difference of # budgets and expenditure + 25 * " " + str( self.budgets[name] - dispo.expenditure[name] ))] total_spent += self.expenditure[name] print(" Initial budget: " + str(self.first_budget )) print(" Effective expenses: " + str(total_spent ) ) print(" Savings: " + str(self.first_budget - total_spent) )
class Pegawai: kenaikanGaji = 1.05 def __init__(self, nama, email, gaji): self.namaPegawai = nama self.emailPegawai = email + 'gmail.com' self.gajiPegawai = gaji def gajiCalculateMontly(self): self.gajiPegawai = self.gajiPegawai * 30 return self.gajiPegawai def naikJabatanPegawai(self): self.gajiPegawai = float(self.gajiPegawai * self.kenaikanGaji) return self.gajiPegawai # ini merupakan contoh dari dunder biasanya method dunder (double underscore) yang paling banyak digunakan adalah # dunder biasanya digunakan untuk overloading function yang sudah built-in didalam python. # method __init__, __str__, __add__ dan __repr__ # __str__ digunakan untuk membuat objek untuk bisa dibaca oleh user def __str__(self): return "Nama Pegawai : {} \nEmail : {}\nGajiPegawai : {}".format(self.namaPegawai,self.emailPegawai,self.gajiPegawai) # __repr__ digunakan untuk membuat objek untuk bisa dibaca oleh developer lain, # maka dari itu ouput dari __repr__ dapat berupa kodingan dari objeknya sendiri. def __repr__(self): return "Pegawai('{}','{}',{})".format(self.namaPegawai,self.emailPegawai,self.gajiPegawai) # digunakan untuk menembahkan gaji dari 2 instance # disini parameternya menerima dua instance dari kelas Pegawai # dan menambahkan jumlah gaji dari mereka. def __add__(self, other): return self.gajiPegawai + other.gajiPegawai # digunakan untuk mengetahui panjang dari karakter namaPegawai def __len__(self): return len(self.namaPegawai) pegawai1 = Pegawai("Moahmmad", "Sesuatu", 2000) pegawai2 = Pegawai("Solihin", "Sesuatuhal", 2001) print(Pegawai.__add__(pegawai1, pegawai2)) print(pegawai1.__len__()) print(pegawai1.__str__()) print(pegawai1.__repr__())
# Text 1 # Time period: 200 BC import random country_list = ['K*zakh-stan', 'K@z@kh-land', 'Qaz*qStepp*'] country_description = ['big', 'empty', 'large', 'enourmous', 'abanoded'] human_adjective = ['bold', 'crazy', 'creative', 'primitive'] country_name = random.choice(country_list) group_name = ['Saka', 'Skythian', 'Massagetae'] print("Once upon a time, a country named %s was born..." % country_name) print("The land so %s, only the %s could explore." % (random.choice(country_description), random.choice(human_adjective))) print("Nevertheless, the %s people persisted." % random.choice(group_name))
# EJ (Mercy) Emelike # May 26, 2016 # Homework 2 #LISTS # 0) make list numbers = [22, 90, 0, -10, 3, 22, 48] # 1) print list print(numbers) # 2) print 4th element of list print(numbers[3]) # 3) print sum of 2nd and 4th element print(numbers[1] + numbers[3]) # 4) print 2nd largest value numbers_sorted = sorted(numbers) print (numbers_sorted[5]) # 5) print last element of the original unsorted list print(numbers[6]) # 6) for number in numbers: if number < 10 and number % 2 == 0 and number != -10: new_number = ((number * 30) + 6) - 1 print(new_number) elif number < 10 and number % 2 != 0 and number != -10: new_number = (number*30) - 1 print(new_number) elif number < 10 and number % 2 == 0 and number == -10: new_number = ((number * 30) + 6) print(new_number) elif number > 10 and number < 50 and number != -10: new_number = (number - 1) print(new_number) elif number > 50 and number != -10: new_number = (number - 10) - 1 print(new_number) else: print(number) # 7) sum the result of each of the numbers divided by two new_numbers = [number/2 for number in numbers] sum_numbers = sum(new_numbers) print (sum_numbers) # 8) DICTIONARIES movie = {'title': 'Finding Nemo', 'year': '2003', 'director': 'Andrew Stanton', 'budget': 94000000, 'revenue': 936700000 } print ('My favorite movie is', movie['title'], 'which was released in', movie['year'], 'and was directed by', movie['director']) #9 difference = movie['revenue'] - movie['budget'] print(difference) # 10) if movie['revenue'] < movie['budget']: print ('it was a flop.') elif movie['revenue'] >= movie['budget'] * 5: print ('that was a good investment') # 11) populations = {'Manhattan': 1600000, 'Brooklyn': 2600000, 'Bronx': 1400000, 'Queens': 2300000, 'Staten Island': 470000} # 12) print(populations['Brooklyn']) # 13) tot_pop = sum(populations.values()) print (tot_pop) # 14) pct_Mnhttn = (populations['Manhattan'] / tot_pop)*100 print(pct_Mnhttn)