id
int64
0
7.97k
query
stringlengths
1.29k
1.31k
answer
stringclasses
2 values
choices
sequencelengths
2
2
gold
int64
0
1
text
stringlengths
374
399
1,000
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.919, V2: 0.375, V3: 0.812, V4: -0.975, V5: 2.117, V6: -0.583, V7: 1.058, V8: -0.362, V9: -0.473, V10: -0.771, V11: -1.271, V12: 0.054, V13: 1.147, V14: -0.073, V15: 0.492, V16: -0.155, V17: -0.965, V18: 0.232, V19: 0.050, V20: 0.273, V21: 0.207, V22: 0.621, V23: -0.640, V24: 0.100, V25: 1.224, V26: -0.009, V27: -0.181, V28: -0.166, Amount: 4.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.919, V2: 0.375, V3: 0.812, V4: -0.975, V5: 2.117, V6: -0.583, V7: 1.058, V8: -0.362, V9: -0.473, V10: -0.771, V11: -1.271, V12: 0.054, V13: 1.147, V14: -0.073, V15: 0.492, V16: -0.155, V17: -0.965, V18: 0.232, V19: 0.050, V20: 0.273, V21: 0.207, V22: 0.621, V23: -0.640, V24: 0.100, V25: 1.224, V26: -0.009, V27: -0.181, V28: -0.166, Amount: 4.490.
1,001
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.174, V2: 0.024, V3: 0.522, V4: 1.262, V5: -0.475, V6: -0.355, V7: -0.098, V8: -0.001, V9: 0.674, V10: -0.150, V11: -1.208, V12: -0.146, V13: -1.026, V14: 0.125, V15: -0.015, V16: -0.114, V17: -0.146, V18: -0.300, V19: 0.185, V20: -0.161, V21: -0.291, V22: -0.761, V23: -0.010, V24: -0.011, V25: 0.502, V26: -0.522, V27: 0.029, V28: 0.026, Amount: 29.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.174, V2: 0.024, V3: 0.522, V4: 1.262, V5: -0.475, V6: -0.355, V7: -0.098, V8: -0.001, V9: 0.674, V10: -0.150, V11: -1.208, V12: -0.146, V13: -1.026, V14: 0.125, V15: -0.015, V16: -0.114, V17: -0.146, V18: -0.300, V19: 0.185, V20: -0.161, V21: -0.291, V22: -0.761, V23: -0.010, V24: -0.011, V25: 0.502, V26: -0.522, V27: 0.029, V28: 0.026, Amount: 29.990.
1,002
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.771, V2: -0.265, V3: -1.521, V4: 1.511, V5: 0.962, V6: -0.379, V7: 1.913, V8: -0.160, V9: -0.556, V10: -1.248, V11: -0.677, V12: -1.087, V13: -0.833, V14: -1.632, V15: 0.814, V16: 0.412, V17: 1.469, V18: 1.102, V19: 0.258, V20: 0.930, V21: 0.072, V22: -0.593, V23: 1.207, V24: 0.085, V25: -1.193, V26: -0.990, V27: 0.191, V28: 0.387, Amount: 385.030.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.771, V2: -0.265, V3: -1.521, V4: 1.511, V5: 0.962, V6: -0.379, V7: 1.913, V8: -0.160, V9: -0.556, V10: -1.248, V11: -0.677, V12: -1.087, V13: -0.833, V14: -1.632, V15: 0.814, V16: 0.412, V17: 1.469, V18: 1.102, V19: 0.258, V20: 0.930, V21: 0.072, V22: -0.593, V23: 1.207, V24: 0.085, V25: -1.193, V26: -0.990, V27: 0.191, V28: 0.387, Amount: 385.030.
1,003
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.891, V2: -0.252, V3: -0.306, V4: 1.611, V5: -0.501, V6: -0.303, V7: -0.274, V8: 0.027, V9: 1.289, V10: -0.003, V11: -1.384, V12: 0.355, V13: -0.963, V14: -0.108, V15: -1.085, V16: -0.448, V17: 0.052, V18: -0.879, V19: 0.139, V20: -0.314, V21: -0.517, V22: -1.255, V23: 0.439, V24: -0.118, V25: -0.366, V26: -1.101, V27: 0.050, V28: -0.029, Amount: 25.090.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.891, V2: -0.252, V3: -0.306, V4: 1.611, V5: -0.501, V6: -0.303, V7: -0.274, V8: 0.027, V9: 1.289, V10: -0.003, V11: -1.384, V12: 0.355, V13: -0.963, V14: -0.108, V15: -1.085, V16: -0.448, V17: 0.052, V18: -0.879, V19: 0.139, V20: -0.314, V21: -0.517, V22: -1.255, V23: 0.439, V24: -0.118, V25: -0.366, V26: -1.101, V27: 0.050, V28: -0.029, Amount: 25.090.
1,004
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.145, V2: 1.288, V3: 1.080, V4: 0.198, V5: -0.632, V6: -0.575, V7: 0.200, V8: 0.427, V9: 0.304, V10: -0.247, V11: -1.157, V12: 0.107, V13: -0.497, V14: -0.016, V15: -0.628, V16: -0.391, V17: 0.269, V18: -0.319, V19: 0.298, V20: 0.029, V21: -0.002, V22: 0.223, V23: -0.096, V24: 0.424, V25: -0.082, V26: 0.360, V27: 0.208, V28: 0.195, Amount: 14.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.145, V2: 1.288, V3: 1.080, V4: 0.198, V5: -0.632, V6: -0.575, V7: 0.200, V8: 0.427, V9: 0.304, V10: -0.247, V11: -1.157, V12: 0.107, V13: -0.497, V14: -0.016, V15: -0.628, V16: -0.391, V17: 0.269, V18: -0.319, V19: 0.298, V20: 0.029, V21: -0.002, V22: 0.223, V23: -0.096, V24: 0.424, V25: -0.082, V26: 0.360, V27: 0.208, V28: 0.195, Amount: 14.990.
1,005
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.302, V2: -0.607, V3: -0.682, V4: -1.905, V5: 1.327, V6: 3.436, V7: -1.145, V8: 0.959, V9: 1.671, V10: -1.023, V11: -0.191, V12: 0.631, V13: 0.032, V14: -0.031, V15: 1.447, V16: -0.122, V17: -0.651, V18: 0.618, V19: 0.928, V20: 0.006, V21: -0.064, V22: -0.081, V23: -0.073, V24: 1.018, V25: 0.664, V26: -0.671, V27: 0.097, V28: 0.029, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.302, V2: -0.607, V3: -0.682, V4: -1.905, V5: 1.327, V6: 3.436, V7: -1.145, V8: 0.959, V9: 1.671, V10: -1.023, V11: -0.191, V12: 0.631, V13: 0.032, V14: -0.031, V15: 1.447, V16: -0.122, V17: -0.651, V18: 0.618, V19: 0.928, V20: 0.006, V21: -0.064, V22: -0.081, V23: -0.073, V24: 1.018, V25: 0.664, V26: -0.671, V27: 0.097, V28: 0.029, Amount: 1.000.
1,006
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.187, V2: -0.986, V3: -2.800, V4: -1.934, V5: 1.973, V6: 3.135, V7: -0.835, V8: 0.694, V9: -0.635, V10: 0.805, V11: 0.065, V12: -0.414, V13: -0.083, V14: 0.172, V15: 0.102, V16: 0.551, V17: 0.307, V18: -1.994, V19: 0.698, V20: 0.045, V21: 0.030, V22: -0.011, V23: 0.223, V24: 0.712, V25: 0.021, V26: -0.259, V27: -0.023, V28: -0.068, Amount: 22.370.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.187, V2: -0.986, V3: -2.800, V4: -1.934, V5: 1.973, V6: 3.135, V7: -0.835, V8: 0.694, V9: -0.635, V10: 0.805, V11: 0.065, V12: -0.414, V13: -0.083, V14: 0.172, V15: 0.102, V16: 0.551, V17: 0.307, V18: -1.994, V19: 0.698, V20: 0.045, V21: 0.030, V22: -0.011, V23: 0.223, V24: 0.712, V25: 0.021, V26: -0.259, V27: -0.023, V28: -0.068, Amount: 22.370.
1,007
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.629, V2: 0.130, V3: 1.113, V4: 0.088, V5: 0.269, V6: -0.287, V7: -0.100, V8: -0.035, V9: 0.422, V10: -0.127, V11: -1.346, V12: -0.218, V13: 0.270, V14: -0.288, V15: 0.853, V16: -0.050, V17: -0.338, V18: 0.419, V19: 0.764, V20: -0.119, V21: 0.335, V22: 1.204, V23: -0.094, V24: -0.329, V25: -0.718, V26: 0.741, V27: -0.033, V28: 0.235, Amount: 5.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.629, V2: 0.130, V3: 1.113, V4: 0.088, V5: 0.269, V6: -0.287, V7: -0.100, V8: -0.035, V9: 0.422, V10: -0.127, V11: -1.346, V12: -0.218, V13: 0.270, V14: -0.288, V15: 0.853, V16: -0.050, V17: -0.338, V18: 0.419, V19: 0.764, V20: -0.119, V21: 0.335, V22: 1.204, V23: -0.094, V24: -0.329, V25: -0.718, V26: 0.741, V27: -0.033, V28: 0.235, Amount: 5.990.
1,008
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.112, V2: 0.169, V3: 0.466, V4: -0.755, V5: 1.390, V6: -0.166, V7: 0.528, V8: 0.228, V9: -0.421, V10: -1.071, V11: 0.853, V12: 0.540, V13: 0.494, V14: -1.244, V15: -0.492, V16: 0.771, V17: 0.126, V18: 0.754, V19: 0.035, V20: 0.527, V21: -0.067, V22: -0.410, V23: -0.088, V24: 0.149, V25: 0.805, V26: 0.635, V27: 0.079, V28: 0.025, Amount: 84.920.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.112, V2: 0.169, V3: 0.466, V4: -0.755, V5: 1.390, V6: -0.166, V7: 0.528, V8: 0.228, V9: -0.421, V10: -1.071, V11: 0.853, V12: 0.540, V13: 0.494, V14: -1.244, V15: -0.492, V16: 0.771, V17: 0.126, V18: 0.754, V19: 0.035, V20: 0.527, V21: -0.067, V22: -0.410, V23: -0.088, V24: 0.149, V25: 0.805, V26: 0.635, V27: 0.079, V28: 0.025, Amount: 84.920.
1,009
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.480, V2: 1.353, V3: 1.225, V4: 0.237, V5: -0.736, V6: -1.102, V7: -0.011, V8: 0.762, V9: -0.610, V10: -1.033, V11: -0.613, V12: 0.365, V13: -0.071, V14: 0.744, V15: 0.429, V16: 0.669, V17: -0.347, V18: -0.113, V19: -1.035, V20: -0.373, V21: 0.047, V22: -0.314, V23: 0.083, V24: 0.649, V25: -0.330, V26: -0.845, V27: -0.244, V28: -0.009, Amount: 15.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.480, V2: 1.353, V3: 1.225, V4: 0.237, V5: -0.736, V6: -1.102, V7: -0.011, V8: 0.762, V9: -0.610, V10: -1.033, V11: -0.613, V12: 0.365, V13: -0.071, V14: 0.744, V15: 0.429, V16: 0.669, V17: -0.347, V18: -0.113, V19: -1.035, V20: -0.373, V21: 0.047, V22: -0.314, V23: 0.083, V24: 0.649, V25: -0.330, V26: -0.845, V27: -0.244, V28: -0.009, Amount: 15.000.
1,010
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.621, V2: 3.226, V3: 0.088, V4: -1.546, V5: 0.897, V6: 0.612, V7: 1.493, V8: -0.714, V9: 3.045, V10: 5.776, V11: 1.343, V12: 0.629, V13: 1.284, V14: -2.145, V15: 0.770, V16: -0.291, V17: -1.602, V18: -0.417, V19: -0.004, V20: 2.516, V21: -0.999, V22: -0.731, V23: -0.197, V24: -1.386, V25: 0.634, V26: 0.096, V27: 1.103, V28: 0.131, Amount: 17.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.621, V2: 3.226, V3: 0.088, V4: -1.546, V5: 0.897, V6: 0.612, V7: 1.493, V8: -0.714, V9: 3.045, V10: 5.776, V11: 1.343, V12: 0.629, V13: 1.284, V14: -2.145, V15: 0.770, V16: -0.291, V17: -1.602, V18: -0.417, V19: -0.004, V20: 2.516, V21: -0.999, V22: -0.731, V23: -0.197, V24: -1.386, V25: 0.634, V26: 0.096, V27: 1.103, V28: 0.131, Amount: 17.990.
1,011
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.102, V2: -0.154, V3: -0.388, V4: 0.934, V5: 0.642, V6: 1.150, V7: -0.005, V8: 0.249, V9: 0.208, V10: 0.026, V11: -0.458, V12: 0.417, V13: -0.340, V14: 0.263, V15: -0.611, V16: 0.008, V17: -0.588, V18: 0.150, V19: 0.553, V20: -0.003, V21: -0.125, V22: -0.337, V23: -0.347, V24: -1.698, V25: 0.822, V26: -0.229, V27: 0.017, V28: 0.000, Amount: 81.280.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.102, V2: -0.154, V3: -0.388, V4: 0.934, V5: 0.642, V6: 1.150, V7: -0.005, V8: 0.249, V9: 0.208, V10: 0.026, V11: -0.458, V12: 0.417, V13: -0.340, V14: 0.263, V15: -0.611, V16: 0.008, V17: -0.588, V18: 0.150, V19: 0.553, V20: -0.003, V21: -0.125, V22: -0.337, V23: -0.347, V24: -1.698, V25: 0.822, V26: -0.229, V27: 0.017, V28: 0.000, Amount: 81.280.
1,012
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.741, V2: 1.723, V3: -1.517, V4: -0.839, V5: 0.817, V6: -0.086, V7: 0.168, V8: 0.921, V9: -0.557, V10: -0.838, V11: 0.257, V12: 1.217, V13: 1.223, V14: -0.509, V15: -1.013, V16: 0.872, V17: 0.154, V18: 0.379, V19: 0.240, V20: 0.021, V21: -0.270, V22: -0.803, V23: 0.094, V24: -0.289, V25: -0.227, V26: 0.155, V27: 0.082, V28: 0.003, Amount: 0.410.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.741, V2: 1.723, V3: -1.517, V4: -0.839, V5: 0.817, V6: -0.086, V7: 0.168, V8: 0.921, V9: -0.557, V10: -0.838, V11: 0.257, V12: 1.217, V13: 1.223, V14: -0.509, V15: -1.013, V16: 0.872, V17: 0.154, V18: 0.379, V19: 0.240, V20: 0.021, V21: -0.270, V22: -0.803, V23: 0.094, V24: -0.289, V25: -0.227, V26: 0.155, V27: 0.082, V28: 0.003, Amount: 0.410.
1,013
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.392, V2: -0.738, V3: 0.615, V4: -0.873, V5: -0.937, V6: 0.207, V7: -1.135, V8: 0.138, V9: -0.314, V10: 0.572, V11: -0.881, V12: -0.931, V13: 0.241, V14: -0.431, V15: 1.448, V16: 1.440, V17: 0.042, V18: -1.006, V19: 0.182, V20: 0.071, V21: 0.351, V22: 1.002, V23: -0.174, V24: -0.729, V25: 0.460, V26: 0.033, V27: 0.052, V28: 0.013, Amount: 11.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.392, V2: -0.738, V3: 0.615, V4: -0.873, V5: -0.937, V6: 0.207, V7: -1.135, V8: 0.138, V9: -0.314, V10: 0.572, V11: -0.881, V12: -0.931, V13: 0.241, V14: -0.431, V15: 1.448, V16: 1.440, V17: 0.042, V18: -1.006, V19: 0.182, V20: 0.071, V21: 0.351, V22: 1.002, V23: -0.174, V24: -0.729, V25: 0.460, V26: 0.033, V27: 0.052, V28: 0.013, Amount: 11.000.
1,014
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.772, V2: -1.352, V3: -0.150, V4: -0.901, V5: -5.262, V6: 2.388, V7: 3.634, V8: -0.682, V9: -2.982, V10: 0.967, V11: 0.872, V12: -1.507, V13: -0.191, V14: -0.040, V15: 0.840, V16: -0.420, V17: 0.644, V18: 1.185, V19: 1.857, V20: 0.081, V21: -0.124, V22: 0.162, V23: 0.666, V24: 0.005, V25: -0.321, V26: -0.010, V27: 0.445, V28: -0.115, Amount: 1015.930.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.772, V2: -1.352, V3: -0.150, V4: -0.901, V5: -5.262, V6: 2.388, V7: 3.634, V8: -0.682, V9: -2.982, V10: 0.967, V11: 0.872, V12: -1.507, V13: -0.191, V14: -0.040, V15: 0.840, V16: -0.420, V17: 0.644, V18: 1.185, V19: 1.857, V20: 0.081, V21: -0.124, V22: 0.162, V23: 0.666, V24: 0.005, V25: -0.321, V26: -0.010, V27: 0.445, V28: -0.115, Amount: 1015.930.
1,015
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.638, V2: 1.042, V3: 0.729, V4: -0.075, V5: -0.403, V6: -1.433, V7: 0.653, V8: 0.254, V9: -0.360, V10: -0.827, V11: -0.630, V12: -0.542, V13: -2.096, V14: 0.946, V15: -0.183, V16: -0.598, V17: 0.588, V18: -0.772, V19: 0.233, V20: -0.329, V21: -0.085, V22: -0.368, V23: 0.064, V24: 0.842, V25: -0.440, V26: 0.293, V27: -0.060, V28: 0.077, Amount: 8.650.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.638, V2: 1.042, V3: 0.729, V4: -0.075, V5: -0.403, V6: -1.433, V7: 0.653, V8: 0.254, V9: -0.360, V10: -0.827, V11: -0.630, V12: -0.542, V13: -2.096, V14: 0.946, V15: -0.183, V16: -0.598, V17: 0.588, V18: -0.772, V19: 0.233, V20: -0.329, V21: -0.085, V22: -0.368, V23: 0.064, V24: 0.842, V25: -0.440, V26: 0.293, V27: -0.060, V28: 0.077, Amount: 8.650.
1,016
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.346, V2: 1.070, V3: -0.653, V4: -0.492, V5: 0.749, V6: -0.949, V7: 0.753, V8: 0.079, V9: 0.061, V10: -0.720, V11: -0.760, V12: -0.222, V13: -0.321, V14: -0.868, V15: -0.194, V16: 0.368, V17: 0.460, V18: -0.179, V19: -0.236, V20: -0.052, V21: -0.335, V22: -0.843, V23: 0.187, V24: 0.618, V25: -0.438, V26: 0.073, V27: -0.197, V28: -0.212, Amount: 8.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.346, V2: 1.070, V3: -0.653, V4: -0.492, V5: 0.749, V6: -0.949, V7: 0.753, V8: 0.079, V9: 0.061, V10: -0.720, V11: -0.760, V12: -0.222, V13: -0.321, V14: -0.868, V15: -0.194, V16: 0.368, V17: 0.460, V18: -0.179, V19: -0.236, V20: -0.052, V21: -0.335, V22: -0.843, V23: 0.187, V24: 0.618, V25: -0.438, V26: 0.073, V27: -0.197, V28: -0.212, Amount: 8.990.
1,017
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.498, V2: 0.877, V3: 2.417, V4: -0.124, V5: 0.209, V6: -0.257, V7: 0.565, V8: -0.289, V9: 1.410, V10: -1.165, V11: 0.427, V12: -2.220, V13: 2.344, V14: 1.119, V15: 0.572, V16: -0.366, V17: 0.315, V18: 0.347, V19: 0.465, V20: 0.098, V21: -0.296, V22: -0.354, V23: -0.307, V24: -0.098, V25: 0.273, V26: -0.727, V27: -0.072, V28: -0.145, Amount: 2.120.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.498, V2: 0.877, V3: 2.417, V4: -0.124, V5: 0.209, V6: -0.257, V7: 0.565, V8: -0.289, V9: 1.410, V10: -1.165, V11: 0.427, V12: -2.220, V13: 2.344, V14: 1.119, V15: 0.572, V16: -0.366, V17: 0.315, V18: 0.347, V19: 0.465, V20: 0.098, V21: -0.296, V22: -0.354, V23: -0.307, V24: -0.098, V25: 0.273, V26: -0.727, V27: -0.072, V28: -0.145, Amount: 2.120.
1,018
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.090, V2: -0.130, V3: 1.238, V4: 1.109, V5: -0.796, V6: 0.467, V7: -0.793, V8: 0.406, V9: 0.640, V10: 0.007, V11: 1.098, V12: 0.666, V13: -0.951, V14: 0.167, V15: 0.277, V16: 0.219, V17: -0.325, V18: 0.233, V19: -0.424, V20: -0.223, V21: 0.058, V22: 0.286, V23: 0.029, V24: -0.014, V25: 0.258, V26: -0.384, V27: 0.077, V28: 0.022, Amount: 1.180.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.090, V2: -0.130, V3: 1.238, V4: 1.109, V5: -0.796, V6: 0.467, V7: -0.793, V8: 0.406, V9: 0.640, V10: 0.007, V11: 1.098, V12: 0.666, V13: -0.951, V14: 0.167, V15: 0.277, V16: 0.219, V17: -0.325, V18: 0.233, V19: -0.424, V20: -0.223, V21: 0.058, V22: 0.286, V23: 0.029, V24: -0.014, V25: 0.258, V26: -0.384, V27: 0.077, V28: 0.022, Amount: 1.180.
1,019
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.586, V2: 0.162, V3: 0.309, V4: -1.547, V5: -0.537, V6: 0.045, V7: 0.381, V8: 0.405, V9: -1.960, V10: 0.016, V11: 0.232, V12: -0.411, V13: 0.209, V14: 0.375, V15: -0.200, V16: 1.675, V17: -0.195, V18: -0.781, V19: 1.618, V20: 0.357, V21: -0.116, V22: -0.946, V23: 0.312, V24: -0.904, V25: -0.031, V26: -0.630, V27: -0.163, V28: -0.050, Amount: 149.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.586, V2: 0.162, V3: 0.309, V4: -1.547, V5: -0.537, V6: 0.045, V7: 0.381, V8: 0.405, V9: -1.960, V10: 0.016, V11: 0.232, V12: -0.411, V13: 0.209, V14: 0.375, V15: -0.200, V16: 1.675, V17: -0.195, V18: -0.781, V19: 1.618, V20: 0.357, V21: -0.116, V22: -0.946, V23: 0.312, V24: -0.904, V25: -0.031, V26: -0.630, V27: -0.163, V28: -0.050, Amount: 149.900.
1,020
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.967, V2: -0.451, V3: -0.267, V4: 0.514, V5: -0.799, V6: -0.506, V7: -0.639, V8: -0.013, V9: 1.533, V10: -0.163, V11: -1.068, V12: 0.271, V13: -0.275, V14: -0.117, V15: 0.570, V16: 0.053, V17: -0.443, V18: 0.179, V19: -0.277, V20: -0.248, V21: 0.192, V22: 0.796, V23: 0.121, V24: -0.069, V25: -0.117, V26: -0.205, V27: 0.042, V28: -0.038, Amount: 11.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.967, V2: -0.451, V3: -0.267, V4: 0.514, V5: -0.799, V6: -0.506, V7: -0.639, V8: -0.013, V9: 1.533, V10: -0.163, V11: -1.068, V12: 0.271, V13: -0.275, V14: -0.117, V15: 0.570, V16: 0.053, V17: -0.443, V18: 0.179, V19: -0.277, V20: -0.248, V21: 0.192, V22: 0.796, V23: 0.121, V24: -0.069, V25: -0.117, V26: -0.205, V27: 0.042, V28: -0.038, Amount: 11.500.
1,021
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.042, V2: -0.848, V3: -1.222, V4: -0.721, V5: -0.691, V6: -0.403, V7: -1.032, V8: 0.086, V9: -0.135, V10: 0.245, V11: 1.287, V12: -0.375, V13: -0.411, V14: -1.812, V15: -0.268, V16: 1.905, V17: 1.145, V18: 0.136, V19: 0.482, V20: 0.101, V21: 0.301, V22: 0.790, V23: 0.111, V24: 0.652, V25: -0.195, V26: -0.145, V27: 0.011, V28: -0.010, Amount: 49.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.042, V2: -0.848, V3: -1.222, V4: -0.721, V5: -0.691, V6: -0.403, V7: -1.032, V8: 0.086, V9: -0.135, V10: 0.245, V11: 1.287, V12: -0.375, V13: -0.411, V14: -1.812, V15: -0.268, V16: 1.905, V17: 1.145, V18: 0.136, V19: 0.482, V20: 0.101, V21: 0.301, V22: 0.790, V23: 0.111, V24: 0.652, V25: -0.195, V26: -0.145, V27: 0.011, V28: -0.010, Amount: 49.990.
1,022
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.043, V2: 0.886, V3: 0.303, V4: -0.585, V5: 0.426, V6: -1.124, V7: 1.033, V8: -0.224, V9: -0.088, V10: -0.420, V11: -0.870, V12: 0.291, V13: 0.292, V14: 0.057, V15: -0.435, V16: -0.109, V17: -0.422, V18: -0.786, V19: -0.089, V20: -0.020, V21: -0.256, V22: -0.547, V23: 0.068, V24: 0.047, V25: -0.481, V26: 0.137, V27: 0.249, V28: 0.098, Amount: 3.590.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.043, V2: 0.886, V3: 0.303, V4: -0.585, V5: 0.426, V6: -1.124, V7: 1.033, V8: -0.224, V9: -0.088, V10: -0.420, V11: -0.870, V12: 0.291, V13: 0.292, V14: 0.057, V15: -0.435, V16: -0.109, V17: -0.422, V18: -0.786, V19: -0.089, V20: -0.020, V21: -0.256, V22: -0.547, V23: 0.068, V24: 0.047, V25: -0.481, V26: 0.137, V27: 0.249, V28: 0.098, Amount: 3.590.
1,023
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.405, V2: 0.119, V3: 0.604, V4: -1.803, V5: 0.065, V6: 0.777, V7: 1.498, V8: -0.097, V9: 0.207, V10: -0.826, V11: -0.538, V12: 0.231, V13: 0.187, V14: -0.289, V15: -1.069, V16: 1.515, V17: -1.835, V18: 0.434, V19: -0.428, V20: -0.550, V21: -0.335, V22: -0.715, V23: 0.178, V24: -1.396, V25: -0.165, V26: 0.098, V27: -0.196, V28: 0.121, Amount: 215.390.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.405, V2: 0.119, V3: 0.604, V4: -1.803, V5: 0.065, V6: 0.777, V7: 1.498, V8: -0.097, V9: 0.207, V10: -0.826, V11: -0.538, V12: 0.231, V13: 0.187, V14: -0.289, V15: -1.069, V16: 1.515, V17: -1.835, V18: 0.434, V19: -0.428, V20: -0.550, V21: -0.335, V22: -0.715, V23: 0.178, V24: -1.396, V25: -0.165, V26: 0.098, V27: -0.196, V28: 0.121, Amount: 215.390.
1,024
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.271, V2: 0.900, V3: 1.564, V4: 0.519, V5: 0.138, V6: -0.267, V7: 0.547, V8: -0.016, V9: -0.721, V10: -0.292, V11: -0.026, V12: 0.310, V13: 0.715, V14: 0.170, V15: 1.534, V16: -0.499, V17: 0.196, V18: -0.735, V19: 0.636, V20: 0.109, V21: -0.097, V22: -0.238, V23: 0.081, V24: 0.101, V25: -0.707, V26: 0.184, V27: 0.140, V28: 0.151, Amount: 9.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.271, V2: 0.900, V3: 1.564, V4: 0.519, V5: 0.138, V6: -0.267, V7: 0.547, V8: -0.016, V9: -0.721, V10: -0.292, V11: -0.026, V12: 0.310, V13: 0.715, V14: 0.170, V15: 1.534, V16: -0.499, V17: 0.196, V18: -0.735, V19: 0.636, V20: 0.109, V21: -0.097, V22: -0.238, V23: 0.081, V24: 0.101, V25: -0.707, V26: 0.184, V27: 0.140, V28: 0.151, Amount: 9.990.
1,025
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.630, V2: 0.300, V3: 1.978, V4: -1.071, V5: 0.310, V6: -1.183, V7: 0.601, V8: -0.309, V9: -0.069, V10: -0.654, V11: -0.309, V12: 0.118, V13: 0.467, V14: -0.291, V15: 0.612, V16: 0.421, V17: -0.720, V18: -0.391, V19: -0.453, V20: 0.112, V21: -0.055, V22: -0.126, V23: -0.067, V24: 0.449, V25: -0.377, V26: 0.710, V27: -0.159, V28: -0.106, Amount: 3.840.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.630, V2: 0.300, V3: 1.978, V4: -1.071, V5: 0.310, V6: -1.183, V7: 0.601, V8: -0.309, V9: -0.069, V10: -0.654, V11: -0.309, V12: 0.118, V13: 0.467, V14: -0.291, V15: 0.612, V16: 0.421, V17: -0.720, V18: -0.391, V19: -0.453, V20: 0.112, V21: -0.055, V22: -0.126, V23: -0.067, V24: 0.449, V25: -0.377, V26: 0.710, V27: -0.159, V28: -0.106, Amount: 3.840.
1,026
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.956, V2: -0.493, V3: -1.556, V4: -0.132, V5: 0.415, V6: 0.282, V7: -0.092, V8: 0.037, V9: 0.883, V10: -0.078, V11: -0.018, V12: 0.929, V13: -0.057, V14: 0.254, V15: -0.816, V16: -0.081, V17: -0.635, V18: 0.093, V19: 0.900, V20: -0.071, V21: -0.140, V22: -0.332, V23: 0.088, V24: -0.194, V25: 0.005, V26: -0.088, V27: -0.042, V28: -0.059, Amount: 60.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.956, V2: -0.493, V3: -1.556, V4: -0.132, V5: 0.415, V6: 0.282, V7: -0.092, V8: 0.037, V9: 0.883, V10: -0.078, V11: -0.018, V12: 0.929, V13: -0.057, V14: 0.254, V15: -0.816, V16: -0.081, V17: -0.635, V18: 0.093, V19: 0.900, V20: -0.071, V21: -0.140, V22: -0.332, V23: 0.088, V24: -0.194, V25: 0.005, V26: -0.088, V27: -0.042, V28: -0.059, Amount: 60.000.
1,027
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.278, V2: -0.899, V3: -0.147, V4: -2.845, V5: -0.999, V6: -1.056, V7: -0.276, V8: -0.200, V9: 0.167, V10: -0.595, V11: 2.043, V12: 1.834, V13: 0.920, V14: 0.453, V15: 1.257, V16: -2.736, V17: 0.290, V18: 1.116, V19: 0.223, V20: -0.396, V21: -0.329, V22: -0.381, V23: 0.000, V24: 0.217, V25: 0.504, V26: -0.870, V27: 0.084, V28: 0.021, Amount: 49.590.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.278, V2: -0.899, V3: -0.147, V4: -2.845, V5: -0.999, V6: -1.056, V7: -0.276, V8: -0.200, V9: 0.167, V10: -0.595, V11: 2.043, V12: 1.834, V13: 0.920, V14: 0.453, V15: 1.257, V16: -2.736, V17: 0.290, V18: 1.116, V19: 0.223, V20: -0.396, V21: -0.329, V22: -0.381, V23: 0.000, V24: 0.217, V25: 0.504, V26: -0.870, V27: 0.084, V28: 0.021, Amount: 49.590.
1,028
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.251, V2: 1.256, V3: -0.774, V4: -0.491, V5: 0.708, V6: -0.884, V7: 0.662, V8: 0.274, V9: -0.337, V10: -1.085, V11: -0.721, V12: 0.473, V13: 0.895, V14: -0.861, V15: -0.363, V16: 0.424, V17: 0.480, V18: -0.265, V19: -0.233, V20: -0.001, V21: -0.281, V22: -0.790, V23: 0.155, V24: 0.580, V25: -0.364, V26: 0.112, V27: 0.101, V28: 0.013, Amount: 10.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.251, V2: 1.256, V3: -0.774, V4: -0.491, V5: 0.708, V6: -0.884, V7: 0.662, V8: 0.274, V9: -0.337, V10: -1.085, V11: -0.721, V12: 0.473, V13: 0.895, V14: -0.861, V15: -0.363, V16: 0.424, V17: 0.480, V18: -0.265, V19: -0.233, V20: -0.001, V21: -0.281, V22: -0.790, V23: 0.155, V24: 0.580, V25: -0.364, V26: 0.112, V27: 0.101, V28: 0.013, Amount: 10.990.
1,029
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.145, V2: -0.717, V3: -1.352, V4: -0.635, V5: -0.413, V6: -0.583, V7: -0.468, V8: -0.124, V9: -0.770, V10: 1.157, V11: 0.677, V12: 0.146, V13: -0.391, V14: 0.564, V15: -0.073, V16: -1.185, V17: -0.455, V18: 1.702, V19: -0.724, V20: -0.602, V21: -0.094, V22: 0.202, V23: 0.161, V24: 0.778, V25: -0.110, V26: 0.741, V27: -0.075, V28: -0.068, Amount: 10.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.145, V2: -0.717, V3: -1.352, V4: -0.635, V5: -0.413, V6: -0.583, V7: -0.468, V8: -0.124, V9: -0.770, V10: 1.157, V11: 0.677, V12: 0.146, V13: -0.391, V14: 0.564, V15: -0.073, V16: -1.185, V17: -0.455, V18: 1.702, V19: -0.724, V20: -0.602, V21: -0.094, V22: 0.202, V23: 0.161, V24: 0.778, V25: -0.110, V26: 0.741, V27: -0.075, V28: -0.068, Amount: 10.990.
1,030
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.064, V2: -0.009, V3: -1.049, V4: 0.413, V5: -0.100, V6: -1.207, V7: 0.220, V8: -0.365, V9: 0.461, V10: 0.058, V11: -0.643, V12: 0.723, V13: 0.592, V14: 0.170, V15: -0.019, V16: -0.133, V17: -0.315, V18: -0.938, V19: 0.139, V20: -0.193, V21: -0.283, V22: -0.654, V23: 0.336, V24: 0.061, V25: -0.281, V26: 0.194, V27: -0.067, V28: -0.059, Amount: 0.890.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.064, V2: -0.009, V3: -1.049, V4: 0.413, V5: -0.100, V6: -1.207, V7: 0.220, V8: -0.365, V9: 0.461, V10: 0.058, V11: -0.643, V12: 0.723, V13: 0.592, V14: 0.170, V15: -0.019, V16: -0.133, V17: -0.315, V18: -0.938, V19: 0.139, V20: -0.193, V21: -0.283, V22: -0.654, V23: 0.336, V24: 0.061, V25: -0.281, V26: 0.194, V27: -0.067, V28: -0.059, Amount: 0.890.
1,031
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.988, V2: -1.080, V3: -0.907, V4: -0.200, V5: -0.710, V6: -0.063, V7: -0.545, V8: -0.050, V9: -0.070, V10: 0.770, V11: -0.135, V12: 1.229, V13: 0.487, V14: -0.379, V15: -2.523, V16: -1.981, V17: 0.156, V18: 0.735, V19: 0.333, V20: -0.476, V21: -0.680, V22: -1.249, V23: 0.252, V24: -0.399, V25: -0.299, V26: 0.393, V27: -0.040, V28: -0.060, Amount: 68.290.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.988, V2: -1.080, V3: -0.907, V4: -0.200, V5: -0.710, V6: -0.063, V7: -0.545, V8: -0.050, V9: -0.070, V10: 0.770, V11: -0.135, V12: 1.229, V13: 0.487, V14: -0.379, V15: -2.523, V16: -1.981, V17: 0.156, V18: 0.735, V19: 0.333, V20: -0.476, V21: -0.680, V22: -1.249, V23: 0.252, V24: -0.399, V25: -0.299, V26: 0.393, V27: -0.040, V28: -0.060, Amount: 68.290.
1,032
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.409, V2: 1.550, V3: 0.859, V4: 0.863, V5: -0.732, V6: -0.724, V7: 0.014, V8: 0.938, V9: -1.064, V10: -0.291, V11: 1.066, V12: 0.271, V13: -1.468, V14: 1.462, V15: 0.540, V16: 0.231, V17: 0.112, V18: 0.221, V19: 0.904, V20: -0.126, V21: -0.323, V22: -1.359, V23: 0.113, V24: 0.410, V25: 0.140, V26: -0.736, V27: -0.143, V28: -0.109, Amount: 25.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.409, V2: 1.550, V3: 0.859, V4: 0.863, V5: -0.732, V6: -0.724, V7: 0.014, V8: 0.938, V9: -1.064, V10: -0.291, V11: 1.066, V12: 0.271, V13: -1.468, V14: 1.462, V15: 0.540, V16: 0.231, V17: 0.112, V18: 0.221, V19: 0.904, V20: -0.126, V21: -0.323, V22: -1.359, V23: 0.113, V24: 0.410, V25: 0.140, V26: -0.736, V27: -0.143, V28: -0.109, Amount: 25.900.
1,033
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.002, V2: -3.740, V3: -0.373, V4: -1.890, V5: 2.434, V6: 3.357, V7: -1.669, V8: 1.733, V9: -0.575, V10: -0.691, V11: -0.777, V12: -0.283, V13: 0.018, V14: -0.340, V15: -0.842, V16: 0.914, V17: 0.553, V18: -1.352, V19: 0.582, V20: 1.380, V21: 0.458, V22: -0.215, V23: 0.575, V24: 0.699, V25: -0.119, V26: -0.379, V27: 0.000, V28: -0.328, Amount: 280.010.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.002, V2: -3.740, V3: -0.373, V4: -1.890, V5: 2.434, V6: 3.357, V7: -1.669, V8: 1.733, V9: -0.575, V10: -0.691, V11: -0.777, V12: -0.283, V13: 0.018, V14: -0.340, V15: -0.842, V16: 0.914, V17: 0.553, V18: -1.352, V19: 0.582, V20: 1.380, V21: 0.458, V22: -0.215, V23: 0.575, V24: 0.699, V25: -0.119, V26: -0.379, V27: 0.000, V28: -0.328, Amount: 280.010.
1,034
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.128, V2: -1.088, V3: -0.768, V4: -1.116, V5: -0.728, V6: 0.028, V7: -1.039, V8: 0.069, V9: -0.091, V10: 0.872, V11: 0.054, V12: -0.088, V13: 0.206, V14: -0.282, V15: -0.395, V16: 1.758, V17: -0.489, V18: -0.671, V19: 1.285, V20: 0.063, V21: -0.042, V22: -0.207, V23: 0.224, V24: -1.066, V25: -0.408, V26: -0.444, V27: 0.001, V28: -0.055, Amount: 41.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.128, V2: -1.088, V3: -0.768, V4: -1.116, V5: -0.728, V6: 0.028, V7: -1.039, V8: 0.069, V9: -0.091, V10: 0.872, V11: 0.054, V12: -0.088, V13: 0.206, V14: -0.282, V15: -0.395, V16: 1.758, V17: -0.489, V18: -0.671, V19: 1.285, V20: 0.063, V21: -0.042, V22: -0.207, V23: 0.224, V24: -1.066, V25: -0.408, V26: -0.444, V27: 0.001, V28: -0.055, Amount: 41.000.
1,035
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.608, V2: -1.680, V3: 0.811, V4: 0.094, V5: 0.943, V6: -0.759, V7: -0.825, V8: 0.822, V9: 0.028, V10: -0.714, V11: 0.531, V12: 0.686, V13: -0.177, V14: 0.610, V15: 0.365, V16: 0.423, V17: -0.579, V18: 1.214, V19: 0.258, V20: 0.904, V21: 0.581, V22: 0.689, V23: 0.038, V24: 0.778, V25: 0.042, V26: -0.214, V27: 0.264, V28: -0.198, Amount: 126.510.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.608, V2: -1.680, V3: 0.811, V4: 0.094, V5: 0.943, V6: -0.759, V7: -0.825, V8: 0.822, V9: 0.028, V10: -0.714, V11: 0.531, V12: 0.686, V13: -0.177, V14: 0.610, V15: 0.365, V16: 0.423, V17: -0.579, V18: 1.214, V19: 0.258, V20: 0.904, V21: 0.581, V22: 0.689, V23: 0.038, V24: 0.778, V25: 0.042, V26: -0.214, V27: 0.264, V28: -0.198, Amount: 126.510.
1,036
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.091, V2: 1.071, V3: 1.009, V4: 0.267, V5: 0.104, V6: -0.986, V7: 0.954, V8: -0.356, V9: -0.397, V10: 0.396, V11: -0.049, V12: 0.508, V13: 1.096, V14: -0.068, V15: 1.010, V16: -0.256, V17: -0.214, V18: -0.807, V19: 0.881, V20: 0.165, V21: -0.448, V22: -1.063, V23: 0.073, V24: 0.400, V25: -0.859, V26: -0.111, V27: -0.469, V28: -0.273, Amount: 39.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.091, V2: 1.071, V3: 1.009, V4: 0.267, V5: 0.104, V6: -0.986, V7: 0.954, V8: -0.356, V9: -0.397, V10: 0.396, V11: -0.049, V12: 0.508, V13: 1.096, V14: -0.068, V15: 1.010, V16: -0.256, V17: -0.214, V18: -0.807, V19: 0.881, V20: 0.165, V21: -0.448, V22: -1.063, V23: 0.073, V24: 0.400, V25: -0.859, V26: -0.111, V27: -0.469, V28: -0.273, Amount: 39.950.
1,037
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.772, V2: 0.363, V3: 2.709, V4: 1.478, V5: 0.187, V6: 0.933, V7: 0.767, V8: -0.616, V9: 1.604, V10: 0.921, V11: -0.850, V12: 0.055, V13: -0.730, V14: -1.714, V15: -1.180, V16: -1.988, V17: 0.708, V18: -1.159, V19: 1.322, V20: 0.186, V21: -0.539, V22: -0.298, V23: -0.012, V24: 0.076, V25: -0.450, V26: -0.575, V27: -0.692, V28: -0.642, Amount: 15.600.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.772, V2: 0.363, V3: 2.709, V4: 1.478, V5: 0.187, V6: 0.933, V7: 0.767, V8: -0.616, V9: 1.604, V10: 0.921, V11: -0.850, V12: 0.055, V13: -0.730, V14: -1.714, V15: -1.180, V16: -1.988, V17: 0.708, V18: -1.159, V19: 1.322, V20: 0.186, V21: -0.539, V22: -0.298, V23: -0.012, V24: 0.076, V25: -0.450, V26: -0.575, V27: -0.692, V28: -0.642, Amount: 15.600.
1,038
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.070, V2: 0.204, V3: -2.504, V4: 0.275, V5: 0.796, V6: -1.127, V7: 0.501, V8: -0.221, V9: -0.064, V10: -0.051, V11: 1.180, V12: -0.294, V13: -1.900, V14: 0.073, V15: -0.034, V16: 0.269, V17: 0.501, V18: 0.477, V19: 0.019, V20: -0.272, V21: 0.046, V22: 0.103, V23: 0.073, V24: 0.617, V25: 0.150, V26: 0.571, V27: -0.118, V28: -0.062, Amount: 2.830.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.070, V2: 0.204, V3: -2.504, V4: 0.275, V5: 0.796, V6: -1.127, V7: 0.501, V8: -0.221, V9: -0.064, V10: -0.051, V11: 1.180, V12: -0.294, V13: -1.900, V14: 0.073, V15: -0.034, V16: 0.269, V17: 0.501, V18: 0.477, V19: 0.019, V20: -0.272, V21: 0.046, V22: 0.103, V23: 0.073, V24: 0.617, V25: 0.150, V26: 0.571, V27: -0.118, V28: -0.062, Amount: 2.830.
1,039
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.888, V2: -3.006, V3: 1.870, V4: 0.969, V5: 3.087, V6: -2.819, V7: -2.015, V8: 0.450, V9: 0.038, V10: -0.086, V11: 0.979, V12: 0.583, V13: -0.751, V14: 0.520, V15: -0.033, V16: 0.641, V17: -0.967, V18: 0.934, V19: -0.948, V20: 0.725, V21: 0.641, V22: 0.703, V23: 0.646, V24: 0.489, V25: -0.483, V26: -0.607, V27: 0.065, V28: 0.262, Amount: 19.940.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.888, V2: -3.006, V3: 1.870, V4: 0.969, V5: 3.087, V6: -2.819, V7: -2.015, V8: 0.450, V9: 0.038, V10: -0.086, V11: 0.979, V12: 0.583, V13: -0.751, V14: 0.520, V15: -0.033, V16: 0.641, V17: -0.967, V18: 0.934, V19: -0.948, V20: 0.725, V21: 0.641, V22: 0.703, V23: 0.646, V24: 0.489, V25: -0.483, V26: -0.607, V27: 0.065, V28: 0.262, Amount: 19.940.
1,040
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.300, V2: -0.682, V3: 0.622, V4: -0.694, V5: -1.340, V6: -0.859, V7: -0.735, V8: 0.033, V9: -0.780, V10: 0.814, V11: 1.398, V12: -0.688, V13: -1.650, V14: 0.391, V15: 0.259, V16: 1.444, V17: 0.150, V18: -0.942, V19: 0.834, V20: 0.012, V21: -0.037, V22: -0.400, V23: 0.147, V24: 0.477, V25: 0.108, V26: -0.507, V27: -0.009, V28: 0.015, Amount: 33.140.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.300, V2: -0.682, V3: 0.622, V4: -0.694, V5: -1.340, V6: -0.859, V7: -0.735, V8: 0.033, V9: -0.780, V10: 0.814, V11: 1.398, V12: -0.688, V13: -1.650, V14: 0.391, V15: 0.259, V16: 1.444, V17: 0.150, V18: -0.942, V19: 0.834, V20: 0.012, V21: -0.037, V22: -0.400, V23: 0.147, V24: 0.477, V25: 0.108, V26: -0.507, V27: -0.009, V28: 0.015, Amount: 33.140.
1,041
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.156, V2: -0.143, V3: -0.508, V4: -0.498, V5: -2.141, V6: 1.865, V7: 3.473, V8: -0.282, V9: -0.045, V10: -1.732, V11: 0.705, V12: -0.054, V13: -0.425, V14: -1.135, V15: -0.121, V16: 1.152, V17: -0.163, V18: 1.241, V19: 0.070, V20: 0.063, V21: -0.207, V22: -0.550, V23: 0.565, V24: 0.199, V25: -0.504, V26: -0.742, V27: 0.344, V28: 0.052, Amount: 750.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.156, V2: -0.143, V3: -0.508, V4: -0.498, V5: -2.141, V6: 1.865, V7: 3.473, V8: -0.282, V9: -0.045, V10: -1.732, V11: 0.705, V12: -0.054, V13: -0.425, V14: -1.135, V15: -0.121, V16: 1.152, V17: -0.163, V18: 1.241, V19: 0.070, V20: 0.063, V21: -0.207, V22: -0.550, V23: 0.565, V24: 0.199, V25: -0.504, V26: -0.742, V27: 0.344, V28: 0.052, Amount: 750.900.
1,042
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -12.477, V2: -11.690, V3: -4.326, V4: 1.957, V5: -5.550, V6: 1.795, V7: 2.675, V8: 1.114, V9: -0.481, V10: -1.186, V11: 0.918, V12: 0.951, V13: 0.600, V14: 0.700, V15: -0.375, V16: 2.345, V17: 1.265, V18: -1.627, V19: -0.533, V20: 0.732, V21: 0.021, V22: -1.007, V23: -4.200, V24: 0.224, V25: -0.357, V26: -0.493, V27: 1.119, V28: -1.744, Amount: 1157.320.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -12.477, V2: -11.690, V3: -4.326, V4: 1.957, V5: -5.550, V6: 1.795, V7: 2.675, V8: 1.114, V9: -0.481, V10: -1.186, V11: 0.918, V12: 0.951, V13: 0.600, V14: 0.700, V15: -0.375, V16: 2.345, V17: 1.265, V18: -1.627, V19: -0.533, V20: 0.732, V21: 0.021, V22: -1.007, V23: -4.200, V24: 0.224, V25: -0.357, V26: -0.493, V27: 1.119, V28: -1.744, Amount: 1157.320.
1,043
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.174, V2: 0.517, V3: -0.519, V4: 1.122, V5: 0.365, V6: -0.294, V7: 0.030, V8: 0.141, V9: -0.121, V10: -0.515, V11: 1.513, V12: -0.192, V13: -1.501, V14: -0.853, V15: 0.818, V16: 0.662, V17: 0.882, V18: 0.917, V19: -0.561, V20: -0.197, V21: -0.026, V22: -0.070, V23: -0.130, V24: -0.480, V25: 0.585, V26: -0.290, V27: 0.038, V28: 0.038, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.174, V2: 0.517, V3: -0.519, V4: 1.122, V5: 0.365, V6: -0.294, V7: 0.030, V8: 0.141, V9: -0.121, V10: -0.515, V11: 1.513, V12: -0.192, V13: -1.501, V14: -0.853, V15: 0.818, V16: 0.662, V17: 0.882, V18: 0.917, V19: -0.561, V20: -0.197, V21: -0.026, V22: -0.070, V23: -0.130, V24: -0.480, V25: 0.585, V26: -0.290, V27: 0.038, V28: 0.038, Amount: 1.000.
1,044
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.485, V2: 1.480, V3: 0.958, V4: 2.542, V5: 2.153, V6: 0.182, V7: 1.899, V8: -0.587, V9: -1.816, V10: 1.128, V11: -1.443, V12: -0.701, V13: 0.114, V14: -0.245, V15: -1.650, V16: 0.153, V17: -0.887, V18: -0.650, V19: -1.210, V20: -0.036, V21: -0.069, V22: 0.091, V23: -0.464, V24: 0.573, V25: 0.379, V26: -0.057, V27: -0.403, V28: -0.327, Amount: 7.850.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.485, V2: 1.480, V3: 0.958, V4: 2.542, V5: 2.153, V6: 0.182, V7: 1.899, V8: -0.587, V9: -1.816, V10: 1.128, V11: -1.443, V12: -0.701, V13: 0.114, V14: -0.245, V15: -1.650, V16: 0.153, V17: -0.887, V18: -0.650, V19: -1.210, V20: -0.036, V21: -0.069, V22: 0.091, V23: -0.464, V24: 0.573, V25: 0.379, V26: -0.057, V27: -0.403, V28: -0.327, Amount: 7.850.
1,045
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.316, V2: 1.039, V3: -1.328, V4: -2.654, V5: 1.396, V6: -1.465, V7: 1.394, V8: -1.198, V9: 0.754, V10: -0.194, V11: -0.977, V12: 0.347, V13: 0.024, V14: 0.097, V15: -1.144, V16: -0.604, V17: -0.551, V18: -0.886, V19: -0.846, V20: -0.248, V21: 0.756, V22: 0.591, V23: 0.164, V24: 0.755, V25: -0.122, V26: 0.486, V27: 0.248, V28: -0.189, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.316, V2: 1.039, V3: -1.328, V4: -2.654, V5: 1.396, V6: -1.465, V7: 1.394, V8: -1.198, V9: 0.754, V10: -0.194, V11: -0.977, V12: 0.347, V13: 0.024, V14: 0.097, V15: -1.144, V16: -0.604, V17: -0.551, V18: -0.886, V19: -0.846, V20: -0.248, V21: 0.756, V22: 0.591, V23: 0.164, V24: 0.755, V25: -0.122, V26: 0.486, V27: 0.248, V28: -0.189, Amount: 1.000.
1,046
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.960, V2: 2.137, V3: -0.613, V4: -1.977, V5: 1.817, V6: -0.843, V7: 2.491, V8: -1.302, V9: 1.687, V10: 3.309, V11: 0.782, V12: -0.514, V13: -1.151, V14: -0.664, V15: -0.224, V16: -0.913, V17: -1.330, V18: 0.072, V19: 0.316, V20: 1.249, V21: -0.317, V22: 0.570, V23: -0.599, V24: -0.796, V25: 0.831, V26: 0.158, V27: 0.067, V28: -0.504, Amount: 0.770.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.960, V2: 2.137, V3: -0.613, V4: -1.977, V5: 1.817, V6: -0.843, V7: 2.491, V8: -1.302, V9: 1.687, V10: 3.309, V11: 0.782, V12: -0.514, V13: -1.151, V14: -0.664, V15: -0.224, V16: -0.913, V17: -1.330, V18: 0.072, V19: 0.316, V20: 1.249, V21: -0.317, V22: 0.570, V23: -0.599, V24: -0.796, V25: 0.831, V26: 0.158, V27: 0.067, V28: -0.504, Amount: 0.770.
1,047
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.090, V2: -0.110, V3: 0.762, V4: -2.568, V5: -0.091, V6: -1.034, V7: 1.607, V8: -0.137, V9: 0.130, V10: -1.743, V11: 0.955, V12: 0.127, V13: -1.607, V14: 0.924, V15: 0.355, V16: -0.228, V17: -0.498, V18: 0.266, V19: 0.926, V20: 0.323, V21: -0.146, V22: -0.952, V23: 0.209, V24: -0.052, V25: 0.539, V26: -0.369, V27: -0.097, V28: 0.051, Amount: 198.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.090, V2: -0.110, V3: 0.762, V4: -2.568, V5: -0.091, V6: -1.034, V7: 1.607, V8: -0.137, V9: 0.130, V10: -1.743, V11: 0.955, V12: 0.127, V13: -1.607, V14: 0.924, V15: 0.355, V16: -0.228, V17: -0.498, V18: 0.266, V19: 0.926, V20: 0.323, V21: -0.146, V22: -0.952, V23: 0.209, V24: -0.052, V25: 0.539, V26: -0.369, V27: -0.097, V28: 0.051, Amount: 198.000.
1,048
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.317, V2: 0.316, V3: -0.050, V4: 0.498, V5: 0.016, V6: -0.599, V7: 0.051, V8: -0.136, V9: 0.128, V10: -0.274, V11: -0.860, V12: -0.176, V13: 0.120, V14: -0.288, V15: 1.183, V16: 0.735, V17: -0.296, V18: 0.006, V19: 0.120, V20: -0.071, V21: -0.346, V22: -1.005, V23: 0.029, V24: -0.503, V25: 0.320, V26: 0.147, V27: -0.026, V28: 0.022, Amount: 0.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.317, V2: 0.316, V3: -0.050, V4: 0.498, V5: 0.016, V6: -0.599, V7: 0.051, V8: -0.136, V9: 0.128, V10: -0.274, V11: -0.860, V12: -0.176, V13: 0.120, V14: -0.288, V15: 1.183, V16: 0.735, V17: -0.296, V18: 0.006, V19: 0.120, V20: -0.071, V21: -0.346, V22: -1.005, V23: 0.029, V24: -0.503, V25: 0.320, V26: 0.147, V27: -0.026, V28: 0.022, Amount: 0.990.
1,049
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.184, V2: -0.416, V3: 1.242, V4: 0.999, V5: -0.891, V6: 0.741, V7: -0.883, V8: 0.257, V9: 1.628, V10: -0.498, V11: -1.990, V12: 0.871, V13: 0.590, V14: -1.214, V15: -1.659, V16: -0.367, V17: 0.118, V18: -0.405, V19: 0.822, V20: -0.060, V21: -0.258, V22: -0.233, V23: -0.131, V24: -0.370, V25: 0.517, V26: 0.437, V27: 0.047, V28: 0.019, Amount: 13.180.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.184, V2: -0.416, V3: 1.242, V4: 0.999, V5: -0.891, V6: 0.741, V7: -0.883, V8: 0.257, V9: 1.628, V10: -0.498, V11: -1.990, V12: 0.871, V13: 0.590, V14: -1.214, V15: -1.659, V16: -0.367, V17: 0.118, V18: -0.405, V19: 0.822, V20: -0.060, V21: -0.258, V22: -0.233, V23: -0.131, V24: -0.370, V25: 0.517, V26: 0.437, V27: 0.047, V28: 0.019, Amount: 13.180.
1,050
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.305, V2: -0.082, V3: -1.108, V4: -0.640, V5: 2.003, V6: 3.251, V7: -0.534, V8: 0.802, V9: -0.039, V10: -0.017, V11: -0.017, V12: 0.073, V13: 0.047, V14: 0.420, V15: 1.255, V16: 0.648, V17: -0.897, V18: -0.092, V19: 0.286, V20: 0.039, V21: -0.313, V22: -1.086, V23: 0.102, V24: 0.998, V25: 0.344, V26: 0.215, V27: -0.038, V28: 0.012, Amount: 9.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.305, V2: -0.082, V3: -1.108, V4: -0.640, V5: 2.003, V6: 3.251, V7: -0.534, V8: 0.802, V9: -0.039, V10: -0.017, V11: -0.017, V12: 0.073, V13: 0.047, V14: 0.420, V15: 1.255, V16: 0.648, V17: -0.897, V18: -0.092, V19: 0.286, V20: 0.039, V21: -0.313, V22: -1.086, V23: 0.102, V24: 0.998, V25: 0.344, V26: 0.215, V27: -0.038, V28: 0.012, Amount: 9.990.
1,051
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.875, V2: -1.285, V3: 0.873, V4: 0.948, V5: -1.574, V6: 1.530, V7: -1.961, V8: 0.578, V9: 0.963, V10: 0.749, V11: -0.218, V12: 1.636, V13: 0.960, V14: -1.385, V15: -2.459, V16: -1.610, V17: -0.041, V18: 1.857, V19: -0.703, V20: -0.565, V21: -0.172, V22: 0.501, V23: 0.213, V24: 0.710, V25: -0.248, V26: -0.527, V27: 0.158, V28: -0.012, Amount: 25.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.875, V2: -1.285, V3: 0.873, V4: 0.948, V5: -1.574, V6: 1.530, V7: -1.961, V8: 0.578, V9: 0.963, V10: 0.749, V11: -0.218, V12: 1.636, V13: 0.960, V14: -1.385, V15: -2.459, V16: -1.610, V17: -0.041, V18: 1.857, V19: -0.703, V20: -0.565, V21: -0.172, V22: 0.501, V23: 0.213, V24: 0.710, V25: -0.248, V26: -0.527, V27: 0.158, V28: -0.012, Amount: 25.000.
1,052
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.821, V2: 1.598, V3: -0.202, V4: 0.957, V5: 1.739, V6: -1.222, V7: 1.057, V8: 0.027, V9: -1.307, V10: -1.892, V11: 2.664, V12: -0.241, V13: -0.870, V14: -3.113, V15: 0.479, V16: 0.763, V17: 2.885, V18: 1.572, V19: -0.760, V20: 0.074, V21: -0.014, V22: -0.118, V23: -0.324, V24: -0.118, V25: 0.331, V26: -0.315, V27: 0.117, V28: 0.174, Amount: 2.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.821, V2: 1.598, V3: -0.202, V4: 0.957, V5: 1.739, V6: -1.222, V7: 1.057, V8: 0.027, V9: -1.307, V10: -1.892, V11: 2.664, V12: -0.241, V13: -0.870, V14: -3.113, V15: 0.479, V16: 0.763, V17: 2.885, V18: 1.572, V19: -0.760, V20: 0.074, V21: -0.014, V22: -0.118, V23: -0.324, V24: -0.118, V25: 0.331, V26: -0.315, V27: 0.117, V28: 0.174, Amount: 2.490.
1,053
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.053, V2: 0.662, V3: -0.193, V4: 1.204, V5: 0.493, V6: -0.759, V7: 1.152, V8: -0.456, V9: -0.735, V10: 0.255, V11: -0.772, V12: -0.120, V13: 0.094, V14: 0.506, V15: 0.771, V16: -1.787, V17: 0.945, V18: -0.428, V19: 2.839, V20: 0.192, V21: 0.149, V22: 0.687, V23: -0.132, V24: 0.100, V25: -0.561, V26: 0.952, V27: 0.068, V28: 0.203, Amount: 77.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.053, V2: 0.662, V3: -0.193, V4: 1.204, V5: 0.493, V6: -0.759, V7: 1.152, V8: -0.456, V9: -0.735, V10: 0.255, V11: -0.772, V12: -0.120, V13: 0.094, V14: 0.506, V15: 0.771, V16: -1.787, V17: 0.945, V18: -0.428, V19: 2.839, V20: 0.192, V21: 0.149, V22: 0.687, V23: -0.132, V24: 0.100, V25: -0.561, V26: 0.952, V27: 0.068, V28: 0.203, Amount: 77.000.
1,054
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.342, V2: 0.969, V3: 1.250, V4: -0.415, V5: 0.662, V6: -0.833, V7: 1.290, V8: -0.528, V9: -0.495, V10: -0.423, V11: -0.496, V12: 0.536, V13: 1.175, V14: -0.317, V15: -0.020, V16: -0.446, V17: -0.298, V18: -0.866, V19: 0.578, V20: 0.105, V21: -0.330, V22: -0.749, V23: -0.287, V24: 0.084, V25: 0.533, V26: 0.360, V27: -0.414, V28: -0.288, Amount: 1.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.342, V2: 0.969, V3: 1.250, V4: -0.415, V5: 0.662, V6: -0.833, V7: 1.290, V8: -0.528, V9: -0.495, V10: -0.423, V11: -0.496, V12: 0.536, V13: 1.175, V14: -0.317, V15: -0.020, V16: -0.446, V17: -0.298, V18: -0.866, V19: 0.578, V20: 0.105, V21: -0.330, V22: -0.749, V23: -0.287, V24: 0.084, V25: 0.533, V26: 0.360, V27: -0.414, V28: -0.288, Amount: 1.980.
1,055
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.113, V2: -0.910, V3: -0.600, V4: -0.484, V5: -0.898, V6: -0.364, V7: -0.821, V8: -0.101, V9: -0.003, V10: 0.795, V11: -1.591, V12: -0.043, V13: 0.670, V14: -0.271, V15: 0.400, V16: -0.897, V17: -0.498, V18: 1.050, V19: -0.546, V20: -0.513, V21: -0.653, V22: -1.356, V23: 0.414, V24: -0.705, V25: -0.671, V26: 0.272, V27: -0.018, V28: -0.041, Amount: 34.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.113, V2: -0.910, V3: -0.600, V4: -0.484, V5: -0.898, V6: -0.364, V7: -0.821, V8: -0.101, V9: -0.003, V10: 0.795, V11: -1.591, V12: -0.043, V13: 0.670, V14: -0.271, V15: 0.400, V16: -0.897, V17: -0.498, V18: 1.050, V19: -0.546, V20: -0.513, V21: -0.653, V22: -1.356, V23: 0.414, V24: -0.705, V25: -0.671, V26: 0.272, V27: -0.018, V28: -0.041, Amount: 34.950.
1,056
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -4.194, V2: -0.051, V3: -2.636, V4: 0.525, V5: 2.140, V6: 3.194, V7: -2.399, V8: -0.626, V9: -0.896, V10: -0.606, V11: -0.710, V12: 0.542, V13: 0.191, V14: 1.577, V15: 1.287, V16: 0.846, V17: -0.167, V18: 0.592, V19: 0.900, V20: -1.440, V21: -1.631, V22: 0.818, V23: 1.828, V24: 1.022, V25: 0.453, V26: -0.258, V27: -0.272, V28: -0.928, Amount: 19.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -4.194, V2: -0.051, V3: -2.636, V4: 0.525, V5: 2.140, V6: 3.194, V7: -2.399, V8: -0.626, V9: -0.896, V10: -0.606, V11: -0.710, V12: 0.542, V13: 0.191, V14: 1.577, V15: 1.287, V16: 0.846, V17: -0.167, V18: 0.592, V19: 0.900, V20: -1.440, V21: -1.631, V22: 0.818, V23: 1.828, V24: 1.022, V25: 0.453, V26: -0.258, V27: -0.272, V28: -0.928, Amount: 19.990.
1,057
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.047, V2: -0.124, V3: -1.084, V4: 0.431, V5: -0.219, V6: -1.233, V7: 0.146, V8: -0.297, V9: 0.648, V10: 0.091, V11: -0.854, V12: 0.064, V13: -0.647, V14: 0.419, V15: 0.118, V16: -0.074, V17: -0.244, V18: -0.784, V19: 0.145, V20: -0.256, V21: -0.292, V22: -0.759, V23: 0.344, V24: 0.027, V25: -0.326, V26: 0.197, V27: -0.077, V28: -0.060, Amount: 8.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.047, V2: -0.124, V3: -1.084, V4: 0.431, V5: -0.219, V6: -1.233, V7: 0.146, V8: -0.297, V9: 0.648, V10: 0.091, V11: -0.854, V12: 0.064, V13: -0.647, V14: 0.419, V15: 0.118, V16: -0.074, V17: -0.244, V18: -0.784, V19: 0.145, V20: -0.256, V21: -0.292, V22: -0.759, V23: 0.344, V24: 0.027, V25: -0.326, V26: 0.197, V27: -0.077, V28: -0.060, Amount: 8.990.
1,058
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.249, V2: -0.364, V3: -0.648, V4: 1.476, V5: -4.222, V6: 3.122, V7: 5.323, V8: -0.852, V9: -0.863, V10: -0.918, V11: -0.948, V12: -0.618, V13: 0.293, V14: -0.045, V15: 1.005, V16: -1.073, V17: 0.714, V18: 0.200, V19: 2.857, V20: 0.540, V21: 0.031, V22: 0.516, V23: 0.382, V24: 0.792, V25: 0.766, V26: 1.007, V27: 0.366, V28: -0.191, Amount: 1143.550.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.249, V2: -0.364, V3: -0.648, V4: 1.476, V5: -4.222, V6: 3.122, V7: 5.323, V8: -0.852, V9: -0.863, V10: -0.918, V11: -0.948, V12: -0.618, V13: 0.293, V14: -0.045, V15: 1.005, V16: -1.073, V17: 0.714, V18: 0.200, V19: 2.857, V20: 0.540, V21: 0.031, V22: 0.516, V23: 0.382, V24: 0.792, V25: 0.766, V26: 1.007, V27: 0.366, V28: -0.191, Amount: 1143.550.
1,059
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.327, V2: -1.297, V3: -0.800, V4: 1.264, V5: -0.077, V6: 0.372, V7: 0.671, V8: 0.049, V9: -0.165, V10: 0.044, V11: 0.429, V12: -0.336, V13: -1.830, V14: 1.132, V15: 0.622, V16: 0.269, V17: -0.536, V18: 0.347, V19: -0.214, V20: 0.681, V21: 0.252, V22: -0.385, V23: -0.568, V24: -0.868, V25: 0.498, V26: -0.320, V27: -0.087, V28: 0.071, Amount: 469.600.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.327, V2: -1.297, V3: -0.800, V4: 1.264, V5: -0.077, V6: 0.372, V7: 0.671, V8: 0.049, V9: -0.165, V10: 0.044, V11: 0.429, V12: -0.336, V13: -1.830, V14: 1.132, V15: 0.622, V16: 0.269, V17: -0.536, V18: 0.347, V19: -0.214, V20: 0.681, V21: 0.252, V22: -0.385, V23: -0.568, V24: -0.868, V25: 0.498, V26: -0.320, V27: -0.087, V28: 0.071, Amount: 469.600.
1,060
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.963, V2: -0.392, V3: -2.405, V4: -1.138, V5: 0.665, V6: -1.180, V7: 0.786, V8: -1.406, V9: -1.235, V10: 0.687, V11: -1.438, V12: -0.589, V13: -0.632, V14: 0.940, V15: -0.819, V16: -2.121, V17: 0.009, V18: 0.707, V19: -1.308, V20: -0.579, V21: 0.879, V22: 0.312, V23: -0.194, V24: 0.667, V25: -0.420, V26: 0.733, V27: 0.258, V28: 0.428, Amount: 153.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.963, V2: -0.392, V3: -2.405, V4: -1.138, V5: 0.665, V6: -1.180, V7: 0.786, V8: -1.406, V9: -1.235, V10: 0.687, V11: -1.438, V12: -0.589, V13: -0.632, V14: 0.940, V15: -0.819, V16: -2.121, V17: 0.009, V18: 0.707, V19: -1.308, V20: -0.579, V21: 0.879, V22: 0.312, V23: -0.194, V24: 0.667, V25: -0.420, V26: 0.733, V27: 0.258, V28: 0.428, Amount: 153.490.
1,061
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.911, V2: 0.841, V3: -0.025, V4: 0.012, V5: 0.218, V6: -0.727, V7: -0.061, V8: 0.500, V9: -0.127, V10: 0.190, V11: -1.274, V12: 0.456, V13: 1.373, V14: 0.174, V15: 0.931, V16: 0.744, V17: -0.581, V18: -0.174, V19: 0.536, V20: -0.949, V21: -0.495, V22: -0.579, V23: 0.776, V24: -0.560, V25: 0.267, V26: 0.150, V27: -0.084, V28: -0.203, Amount: 11.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.911, V2: 0.841, V3: -0.025, V4: 0.012, V5: 0.218, V6: -0.727, V7: -0.061, V8: 0.500, V9: -0.127, V10: 0.190, V11: -1.274, V12: 0.456, V13: 1.373, V14: 0.174, V15: 0.931, V16: 0.744, V17: -0.581, V18: -0.174, V19: 0.536, V20: -0.949, V21: -0.495, V22: -0.579, V23: 0.776, V24: -0.560, V25: 0.267, V26: 0.150, V27: -0.084, V28: -0.203, Amount: 11.990.
1,062
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.240, V2: -0.552, V3: 0.803, V4: -0.127, V5: -0.970, V6: 0.271, V7: -0.973, V8: 0.372, V9: 1.235, V10: -0.149, V11: -0.075, V12: -0.341, V13: -2.155, V14: 0.151, V15: -0.095, V16: 0.705, V17: -0.495, V18: 0.653, V19: 0.850, V20: -0.183, V21: -0.150, V22: -0.370, V23: -0.023, V24: -0.484, V25: 0.117, V26: 1.032, V27: -0.053, V28: -0.008, Amount: 3.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.240, V2: -0.552, V3: 0.803, V4: -0.127, V5: -0.970, V6: 0.271, V7: -0.973, V8: 0.372, V9: 1.235, V10: -0.149, V11: -0.075, V12: -0.341, V13: -2.155, V14: 0.151, V15: -0.095, V16: 0.705, V17: -0.495, V18: 0.653, V19: 0.850, V20: -0.183, V21: -0.150, V22: -0.370, V23: -0.023, V24: -0.484, V25: 0.117, V26: 1.032, V27: -0.053, V28: -0.008, Amount: 3.490.
1,063
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.928, V2: -1.537, V3: 0.977, V4: -0.829, V5: -0.098, V6: 0.146, V7: 0.951, V8: -0.648, V9: 0.085, V10: 1.043, V11: 0.090, V12: -0.725, V13: -1.742, V14: -0.420, V15: -0.620, V16: -1.732, V17: -0.528, V18: 1.619, V19: 0.262, V20: -0.653, V21: -0.837, V22: -1.150, V23: 0.514, V24: -0.526, V25: -1.266, V26: -0.878, V27: -0.398, V28: -0.272, Amount: 218.190.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.928, V2: -1.537, V3: 0.977, V4: -0.829, V5: -0.098, V6: 0.146, V7: 0.951, V8: -0.648, V9: 0.085, V10: 1.043, V11: 0.090, V12: -0.725, V13: -1.742, V14: -0.420, V15: -0.620, V16: -1.732, V17: -0.528, V18: 1.619, V19: 0.262, V20: -0.653, V21: -0.837, V22: -1.150, V23: 0.514, V24: -0.526, V25: -1.266, V26: -0.878, V27: -0.398, V28: -0.272, Amount: 218.190.
1,064
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -4.115, V2: -3.701, V3: -0.030, V4: -1.452, V5: 2.233, V6: -0.847, V7: 1.128, V8: -0.910, V9: -0.347, V10: 0.873, V11: 0.291, V12: -0.224, V13: -0.023, V14: -0.557, V15: -0.733, V16: -0.872, V17: -1.481, V18: 1.841, V19: -1.323, V20: -2.850, V21: -0.886, V22: 0.912, V23: 1.596, V24: 0.272, V25: 1.181, V26: -0.133, V27: 0.173, V28: -0.454, Amount: 158.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -4.115, V2: -3.701, V3: -0.030, V4: -1.452, V5: 2.233, V6: -0.847, V7: 1.128, V8: -0.910, V9: -0.347, V10: 0.873, V11: 0.291, V12: -0.224, V13: -0.023, V14: -0.557, V15: -0.733, V16: -0.872, V17: -1.481, V18: 1.841, V19: -1.323, V20: -2.850, V21: -0.886, V22: 0.912, V23: 1.596, V24: 0.272, V25: 1.181, V26: -0.133, V27: 0.173, V28: -0.454, Amount: 158.000.
1,065
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.373, V2: 0.932, V3: 1.326, V4: -0.136, V5: 0.030, V6: -0.647, V7: 0.591, V8: 0.053, V9: -0.127, V10: -0.266, V11: -1.108, V12: -1.036, V13: -1.427, V14: 0.419, V15: 1.054, V16: 0.416, V17: -0.486, V18: -0.001, V19: 0.212, V20: 0.010, V21: -0.280, V22: -0.813, V23: -0.069, V24: -0.176, V25: -0.181, V26: 0.107, V27: 0.255, V28: 0.112, Amount: 1.780.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.373, V2: 0.932, V3: 1.326, V4: -0.136, V5: 0.030, V6: -0.647, V7: 0.591, V8: 0.053, V9: -0.127, V10: -0.266, V11: -1.108, V12: -1.036, V13: -1.427, V14: 0.419, V15: 1.054, V16: 0.416, V17: -0.486, V18: -0.001, V19: 0.212, V20: 0.010, V21: -0.280, V22: -0.813, V23: -0.069, V24: -0.176, V25: -0.181, V26: 0.107, V27: 0.255, V28: 0.112, Amount: 1.780.
1,066
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.217, V2: -0.695, V3: 0.700, V4: -1.340, V5: -0.580, V6: 0.594, V7: -0.016, V8: 0.216, V9: -0.974, V10: 0.360, V11: 0.140, V12: -1.021, V13: -0.828, V14: -0.102, V15: -0.127, V16: 1.113, V17: 0.076, V18: 0.023, V19: 1.896, V20: 0.526, V21: 0.537, V22: 1.204, V23: 0.203, V24: 0.284, V25: -0.565, V26: -0.018, V27: 0.149, V28: 0.199, Amount: 159.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.217, V2: -0.695, V3: 0.700, V4: -1.340, V5: -0.580, V6: 0.594, V7: -0.016, V8: 0.216, V9: -0.974, V10: 0.360, V11: 0.140, V12: -1.021, V13: -0.828, V14: -0.102, V15: -0.127, V16: 1.113, V17: 0.076, V18: 0.023, V19: 1.896, V20: 0.526, V21: 0.537, V22: 1.204, V23: 0.203, V24: 0.284, V25: -0.565, V26: -0.018, V27: 0.149, V28: 0.199, Amount: 159.000.
1,067
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.089, V2: -0.939, V3: -1.591, V4: -0.764, V5: -0.437, V6: -0.228, V7: -0.979, V8: 0.046, V9: 0.275, V10: 0.080, V11: -1.140, V12: -1.650, V13: -0.879, V14: -1.907, V15: 0.611, V16: 1.901, V17: 1.222, V18: -0.118, V19: 0.398, V20: 0.105, V21: 0.210, V22: 0.498, V23: 0.029, V24: -0.105, V25: -0.112, V26: -0.077, V27: 0.009, V28: -0.006, Amount: 69.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.089, V2: -0.939, V3: -1.591, V4: -0.764, V5: -0.437, V6: -0.228, V7: -0.979, V8: 0.046, V9: 0.275, V10: 0.080, V11: -1.140, V12: -1.650, V13: -0.879, V14: -1.907, V15: 0.611, V16: 1.901, V17: 1.222, V18: -0.118, V19: 0.398, V20: 0.105, V21: 0.210, V22: 0.498, V23: 0.029, V24: -0.105, V25: -0.112, V26: -0.077, V27: 0.009, V28: -0.006, Amount: 69.990.
1,068
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.032, V2: 0.048, V3: -2.033, V4: 1.039, V5: 0.909, V6: -0.150, V7: 0.415, V8: -0.095, V9: 0.155, V10: 0.460, V11: -0.117, V12: 0.102, V13: -1.411, V14: 0.913, V15: -1.043, V16: -0.213, V17: -0.621, V18: 0.317, V19: 0.395, V20: -0.292, V21: 0.040, V22: 0.186, V23: -0.057, V24: 0.063, V25: 0.503, V26: -0.504, V27: -0.037, V28: -0.072, Amount: 17.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.032, V2: 0.048, V3: -2.033, V4: 1.039, V5: 0.909, V6: -0.150, V7: 0.415, V8: -0.095, V9: 0.155, V10: 0.460, V11: -0.117, V12: 0.102, V13: -1.411, V14: 0.913, V15: -1.043, V16: -0.213, V17: -0.621, V18: 0.317, V19: 0.395, V20: -0.292, V21: 0.040, V22: 0.186, V23: -0.057, V24: 0.063, V25: 0.503, V26: -0.504, V27: -0.037, V28: -0.072, Amount: 17.500.
1,069
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.146, V2: 1.055, V3: -0.412, V4: -0.562, V5: 0.979, V6: -0.728, V7: 0.977, V8: -0.098, V9: -0.085, V10: -0.849, V11: -0.627, V12: 0.025, V13: 0.260, V14: -1.064, V15: -0.217, V16: 0.271, V17: 0.396, V18: -0.326, V19: -0.290, V20: 0.026, V21: -0.336, V22: -0.796, V23: 0.091, V24: 0.507, V25: -0.424, V26: 0.119, V27: 0.228, V28: 0.084, Amount: 1.880.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.146, V2: 1.055, V3: -0.412, V4: -0.562, V5: 0.979, V6: -0.728, V7: 0.977, V8: -0.098, V9: -0.085, V10: -0.849, V11: -0.627, V12: 0.025, V13: 0.260, V14: -1.064, V15: -0.217, V16: 0.271, V17: 0.396, V18: -0.326, V19: -0.290, V20: 0.026, V21: -0.336, V22: -0.796, V23: 0.091, V24: 0.507, V25: -0.424, V26: 0.119, V27: 0.228, V28: 0.084, Amount: 1.880.
1,070
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.023, V2: -0.739, V3: 0.149, V4: 1.725, V5: -2.265, V6: 1.425, V7: 2.760, V8: 0.412, V9: -1.071, V10: -0.832, V11: 1.150, V12: 1.013, V13: 0.167, V14: 0.566, V15: -0.516, V16: -0.817, V17: 0.549, V18: 0.052, V19: 0.745, V20: 1.670, V21: 0.513, V22: 0.380, V23: 1.660, V24: 0.152, V25: 0.190, V26: -0.275, V27: 0.044, V28: 0.188, Amount: 753.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.023, V2: -0.739, V3: 0.149, V4: 1.725, V5: -2.265, V6: 1.425, V7: 2.760, V8: 0.412, V9: -1.071, V10: -0.832, V11: 1.150, V12: 1.013, V13: 0.167, V14: 0.566, V15: -0.516, V16: -0.817, V17: 0.549, V18: 0.052, V19: 0.745, V20: 1.670, V21: 0.513, V22: 0.380, V23: 1.660, V24: 0.152, V25: 0.190, V26: -0.275, V27: 0.044, V28: 0.188, Amount: 753.990.
1,071
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.146, V2: 1.149, V3: 0.374, V4: 2.368, V5: 1.839, V6: 1.211, V7: 1.031, V8: 0.012, V9: -1.593, V10: 1.167, V11: -0.725, V12: -0.424, V13: -0.023, V14: -0.037, V15: -1.839, V16: 1.186, V17: -1.635, V18: 0.792, V19: -1.127, V20: -0.098, V21: 0.289, V22: 0.971, V23: -0.408, V24: -0.344, V25: 0.071, V26: 0.154, V27: -0.135, V28: -0.194, Amount: 10.620.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.146, V2: 1.149, V3: 0.374, V4: 2.368, V5: 1.839, V6: 1.211, V7: 1.031, V8: 0.012, V9: -1.593, V10: 1.167, V11: -0.725, V12: -0.424, V13: -0.023, V14: -0.037, V15: -1.839, V16: 1.186, V17: -1.635, V18: 0.792, V19: -1.127, V20: -0.098, V21: 0.289, V22: 0.971, V23: -0.408, V24: -0.344, V25: 0.071, V26: 0.154, V27: -0.135, V28: -0.194, Amount: 10.620.
1,072
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.876, V2: -0.015, V3: 2.816, V4: 1.252, V5: -0.762, V6: 0.918, V7: 0.595, V8: 0.026, V9: 0.547, V10: -0.678, V11: -1.355, V12: 0.413, V13: 0.651, V14: -1.170, V15: -0.638, V16: -0.679, V17: 0.120, V18: 0.140, V19: 1.057, V20: 0.563, V21: 0.011, V22: 0.263, V23: 0.007, V24: 0.064, V25: 0.447, V26: -0.212, V27: -0.072, V28: -0.118, Amount: 178.040.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.876, V2: -0.015, V3: 2.816, V4: 1.252, V5: -0.762, V6: 0.918, V7: 0.595, V8: 0.026, V9: 0.547, V10: -0.678, V11: -1.355, V12: 0.413, V13: 0.651, V14: -1.170, V15: -0.638, V16: -0.679, V17: 0.120, V18: 0.140, V19: 1.057, V20: 0.563, V21: 0.011, V22: 0.263, V23: 0.007, V24: 0.064, V25: 0.447, V26: -0.212, V27: -0.072, V28: -0.118, Amount: 178.040.
1,073
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.657, V2: 1.207, V3: 1.026, V4: 0.813, V5: -0.008, V6: -0.176, V7: 0.228, V8: 0.543, V9: -1.080, V10: -0.307, V11: 1.399, V12: 0.790, V13: -0.217, V14: 0.932, V15: 0.527, V16: -0.354, V17: 0.093, V18: 0.147, V19: 0.284, V20: -0.155, V21: 0.291, V22: 0.748, V23: -0.085, V24: 0.238, V25: -0.373, V26: -0.333, V27: 0.064, V28: 0.082, Amount: 1.230.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.657, V2: 1.207, V3: 1.026, V4: 0.813, V5: -0.008, V6: -0.176, V7: 0.228, V8: 0.543, V9: -1.080, V10: -0.307, V11: 1.399, V12: 0.790, V13: -0.217, V14: 0.932, V15: 0.527, V16: -0.354, V17: 0.093, V18: 0.147, V19: 0.284, V20: -0.155, V21: 0.291, V22: 0.748, V23: -0.085, V24: 0.238, V25: -0.373, V26: -0.333, V27: 0.064, V28: 0.082, Amount: 1.230.
1,074
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.835, V2: -0.357, V3: -0.948, V4: 0.472, V5: -0.257, V6: -0.130, V7: -0.564, V8: 0.086, V9: 0.735, V10: -0.368, V11: 1.287, V12: 1.082, V13: 0.729, V14: -1.416, V15: -0.053, V16: 0.969, V17: 0.150, V18: 1.108, V19: -0.290, V20: 0.057, V21: 0.270, V22: 0.819, V23: 0.063, V24: 0.743, V25: -0.231, V26: 0.578, V27: -0.024, V28: -0.011, Amount: 70.030.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.835, V2: -0.357, V3: -0.948, V4: 0.472, V5: -0.257, V6: -0.130, V7: -0.564, V8: 0.086, V9: 0.735, V10: -0.368, V11: 1.287, V12: 1.082, V13: 0.729, V14: -1.416, V15: -0.053, V16: 0.969, V17: 0.150, V18: 1.108, V19: -0.290, V20: 0.057, V21: 0.270, V22: 0.819, V23: 0.063, V24: 0.743, V25: -0.231, V26: 0.578, V27: -0.024, V28: -0.011, Amount: 70.030.
1,075
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.139, V2: 0.467, V3: 1.136, V4: -1.104, V5: 0.168, V6: 0.669, V7: -0.130, V8: 0.778, V9: -1.573, V10: -0.207, V11: -0.604, V12: -0.415, V13: -0.913, V14: 0.483, V15: -0.938, V16: -0.662, V17: -0.757, V18: 2.237, V19: -1.331, V20: -0.652, V21: -0.263, V22: -0.595, V23: -0.344, V24: -0.078, V25: 0.753, V26: -0.637, V27: -0.064, V28: -0.029, Amount: 20.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.139, V2: 0.467, V3: 1.136, V4: -1.104, V5: 0.168, V6: 0.669, V7: -0.130, V8: 0.778, V9: -1.573, V10: -0.207, V11: -0.604, V12: -0.415, V13: -0.913, V14: 0.483, V15: -0.938, V16: -0.662, V17: -0.757, V18: 2.237, V19: -1.331, V20: -0.652, V21: -0.263, V22: -0.595, V23: -0.344, V24: -0.078, V25: 0.753, V26: -0.637, V27: -0.064, V28: -0.029, Amount: 20.900.
1,076
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.681, V2: -0.563, V3: -0.562, V4: -2.308, V5: 1.773, V6: 4.191, V7: 0.543, V8: 0.834, V9: -1.568, V10: -0.193, V11: -0.342, V12: -0.992, V13: -0.246, V14: -0.163, V15: -0.275, V16: -0.083, V17: 0.824, V18: -1.362, V19: 1.534, V20: 0.712, V21: 0.465, V22: 1.000, V23: -0.147, V24: 0.773, V25: 1.132, V26: 0.400, V27: -0.025, V28: 0.047, Amount: 213.770.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.681, V2: -0.563, V3: -0.562, V4: -2.308, V5: 1.773, V6: 4.191, V7: 0.543, V8: 0.834, V9: -1.568, V10: -0.193, V11: -0.342, V12: -0.992, V13: -0.246, V14: -0.163, V15: -0.275, V16: -0.083, V17: 0.824, V18: -1.362, V19: 1.534, V20: 0.712, V21: 0.465, V22: 1.000, V23: -0.147, V24: 0.773, V25: 1.132, V26: 0.400, V27: -0.025, V28: 0.047, Amount: 213.770.
1,077
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.287, V2: -1.256, V3: -2.331, V4: 0.462, V5: 0.105, V6: -0.196, V7: 0.413, V8: -0.078, V9: 0.845, V10: -0.830, V11: 0.683, V12: 0.462, V13: -0.748, V14: -1.069, V15: -0.633, V16: 0.413, V17: 0.694, V18: 0.850, V19: 0.478, V20: 0.598, V21: -0.008, V22: -0.724, V23: -0.171, V24: 0.164, V25: -0.178, V26: -0.153, V27: -0.092, V28: 0.036, Amount: 388.820.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.287, V2: -1.256, V3: -2.331, V4: 0.462, V5: 0.105, V6: -0.196, V7: 0.413, V8: -0.078, V9: 0.845, V10: -0.830, V11: 0.683, V12: 0.462, V13: -0.748, V14: -1.069, V15: -0.633, V16: 0.413, V17: 0.694, V18: 0.850, V19: 0.478, V20: 0.598, V21: -0.008, V22: -0.724, V23: -0.171, V24: 0.164, V25: -0.178, V26: -0.153, V27: -0.092, V28: 0.036, Amount: 388.820.
1,078
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.210, V2: -3.498, V3: 2.315, V4: 0.694, V5: 1.670, V6: -1.293, V7: -1.451, V8: 0.518, V9: 1.449, V10: -0.935, V11: 2.270, V12: -1.733, V13: 1.551, V14: 1.541, V15: -0.164, V16: 0.816, V17: -0.095, V18: 1.013, V19: -1.599, V20: 1.247, V21: 0.716, V22: 0.853, V23: 1.221, V24: 0.144, V25: -0.510, V26: 0.192, V27: -0.082, V28: 0.234, Amount: 295.630.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.210, V2: -3.498, V3: 2.315, V4: 0.694, V5: 1.670, V6: -1.293, V7: -1.451, V8: 0.518, V9: 1.449, V10: -0.935, V11: 2.270, V12: -1.733, V13: 1.551, V14: 1.541, V15: -0.164, V16: 0.816, V17: -0.095, V18: 1.013, V19: -1.599, V20: 1.247, V21: 0.716, V22: 0.853, V23: 1.221, V24: 0.144, V25: -0.510, V26: 0.192, V27: -0.082, V28: 0.234, Amount: 295.630.
1,079
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.051, V2: 0.160, V3: 0.027, V4: -1.762, V5: 0.198, V6: -1.221, V7: 0.941, V8: -0.447, V9: -1.464, V10: 0.095, V11: -1.073, V12: 0.342, V13: 1.782, V14: -0.162, V15: -0.565, V16: -1.292, V17: -0.712, V18: 1.052, V19: -1.771, V20: -0.446, V21: 0.075, V22: 0.724, V23: 0.067, V24: 0.038, V25: -0.966, V26: 0.495, V27: 0.185, V28: 0.252, Amount: 50.660.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.051, V2: 0.160, V3: 0.027, V4: -1.762, V5: 0.198, V6: -1.221, V7: 0.941, V8: -0.447, V9: -1.464, V10: 0.095, V11: -1.073, V12: 0.342, V13: 1.782, V14: -0.162, V15: -0.565, V16: -1.292, V17: -0.712, V18: 1.052, V19: -1.771, V20: -0.446, V21: 0.075, V22: 0.724, V23: 0.067, V24: 0.038, V25: -0.966, V26: 0.495, V27: 0.185, V28: 0.252, Amount: 50.660.
1,080
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.724, V2: 1.046, V3: -0.174, V4: 0.265, V5: -0.336, V6: -0.582, V7: -0.314, V8: 1.076, V9: 0.414, V10: -1.702, V11: -0.573, V12: 0.194, V13: -0.386, V14: -2.060, V15: -0.783, V16: 0.461, V17: 2.116, V18: 0.156, V19: -1.137, V20: -0.095, V21: -0.038, V22: 0.101, V23: 0.053, V24: -0.037, V25: 0.247, V26: 0.513, V27: 0.203, V28: -0.140, Amount: 25.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.724, V2: 1.046, V3: -0.174, V4: 0.265, V5: -0.336, V6: -0.582, V7: -0.314, V8: 1.076, V9: 0.414, V10: -1.702, V11: -0.573, V12: 0.194, V13: -0.386, V14: -2.060, V15: -0.783, V16: 0.461, V17: 2.116, V18: 0.156, V19: -1.137, V20: -0.095, V21: -0.038, V22: 0.101, V23: 0.053, V24: -0.037, V25: 0.247, V26: 0.513, V27: 0.203, V28: -0.140, Amount: 25.000.
1,081
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.467, V2: 1.158, V3: 1.865, V4: 2.506, V5: 0.166, V6: 0.042, V7: 0.548, V8: -0.033, V9: -0.891, V10: 0.378, V11: -0.998, V12: 0.301, V13: 0.745, V14: -0.432, V15: -0.884, V16: -0.329, V17: 0.036, V18: -0.371, V19: 0.187, V20: -0.015, V21: 0.072, V22: 0.409, V23: -0.168, V24: 0.442, V25: -0.306, V26: 0.056, V27: 0.051, V28: 0.163, Amount: 11.680.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.467, V2: 1.158, V3: 1.865, V4: 2.506, V5: 0.166, V6: 0.042, V7: 0.548, V8: -0.033, V9: -0.891, V10: 0.378, V11: -0.998, V12: 0.301, V13: 0.745, V14: -0.432, V15: -0.884, V16: -0.329, V17: 0.036, V18: -0.371, V19: 0.187, V20: -0.015, V21: 0.072, V22: 0.409, V23: -0.168, V24: 0.442, V25: -0.306, V26: 0.056, V27: 0.051, V28: 0.163, Amount: 11.680.
1,082
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.973, V2: -0.560, V3: -0.299, V4: 0.156, V5: -0.302, V6: 0.657, V7: -1.043, V8: 0.146, V9: 2.440, V10: -0.243, V11: 0.615, V12: -1.709, V13: 2.394, V14: 1.151, V15: -0.612, V16: 1.212, V17: -0.671, V18: 1.195, V19: 0.278, V20: -0.080, V21: -0.132, V22: -0.052, V23: 0.119, V24: -1.407, V25: -0.467, V26: 0.504, V27: -0.047, V28: -0.062, Amount: 39.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.973, V2: -0.560, V3: -0.299, V4: 0.156, V5: -0.302, V6: 0.657, V7: -1.043, V8: 0.146, V9: 2.440, V10: -0.243, V11: 0.615, V12: -1.709, V13: 2.394, V14: 1.151, V15: -0.612, V16: 1.212, V17: -0.671, V18: 1.195, V19: 0.278, V20: -0.080, V21: -0.132, V22: -0.052, V23: 0.119, V24: -1.407, V25: -0.467, V26: 0.504, V27: -0.047, V28: -0.062, Amount: 39.000.
1,083
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -5.301, V2: 3.596, V3: -3.742, V4: -1.525, V5: -0.499, V6: 3.447, V7: -3.377, V8: 4.870, V9: -0.641, V10: -1.778, V11: -1.173, V12: 1.039, V13: 0.310, V14: 1.159, V15: 0.597, V16: 1.617, V17: 1.743, V18: 0.909, V19: -0.779, V20: -0.501, V21: 0.493, V22: 0.273, V23: -0.035, V24: 0.656, V25: 0.972, V26: 0.778, V27: -1.183, V28: -0.323, Amount: 11.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -5.301, V2: 3.596, V3: -3.742, V4: -1.525, V5: -0.499, V6: 3.447, V7: -3.377, V8: 4.870, V9: -0.641, V10: -1.778, V11: -1.173, V12: 1.039, V13: 0.310, V14: 1.159, V15: 0.597, V16: 1.617, V17: 1.743, V18: 0.909, V19: -0.779, V20: -0.501, V21: 0.493, V22: 0.273, V23: -0.035, V24: 0.656, V25: 0.972, V26: 0.778, V27: -1.183, V28: -0.323, Amount: 11.000.
1,084
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.876, V2: -0.675, V3: -0.433, V4: 0.763, V5: -0.511, V6: 0.307, V7: -0.655, V8: 0.073, V9: 1.506, V10: -0.156, V11: -1.386, V12: 0.882, V13: 0.727, V14: -0.739, V15: -0.937, V16: -0.341, V17: -0.099, V18: -0.240, V19: -0.021, V20: -0.052, V21: 0.246, V22: 1.041, V23: -0.012, V24: 0.719, V25: 0.064, V26: 0.561, V27: -0.004, V28: -0.036, Amount: 59.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.876, V2: -0.675, V3: -0.433, V4: 0.763, V5: -0.511, V6: 0.307, V7: -0.655, V8: 0.073, V9: 1.506, V10: -0.156, V11: -1.386, V12: 0.882, V13: 0.727, V14: -0.739, V15: -0.937, V16: -0.341, V17: -0.099, V18: -0.240, V19: -0.021, V20: -0.052, V21: 0.246, V22: 1.041, V23: -0.012, V24: 0.719, V25: 0.064, V26: 0.561, V27: -0.004, V28: -0.036, Amount: 59.990.
1,085
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.477, V2: -0.186, V3: 2.126, V4: -1.068, V5: -1.119, V6: 0.813, V7: -0.927, V8: 0.328, V9: 0.470, V10: 0.246, V11: -2.167, V12: -0.678, V13: 0.215, V14: -1.693, V15: -1.494, V16: 0.730, V17: 0.517, V18: -0.906, V19: 1.481, V20: 0.228, V21: 0.130, V22: 0.728, V23: -0.340, V24: -0.548, V25: 0.222, V26: -0.032, V27: 0.082, V28: 0.093, Amount: 14.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.477, V2: -0.186, V3: 2.126, V4: -1.068, V5: -1.119, V6: 0.813, V7: -0.927, V8: 0.328, V9: 0.470, V10: 0.246, V11: -2.167, V12: -0.678, V13: 0.215, V14: -1.693, V15: -1.494, V16: 0.730, V17: 0.517, V18: -0.906, V19: 1.481, V20: 0.228, V21: 0.130, V22: 0.728, V23: -0.340, V24: -0.548, V25: 0.222, V26: -0.032, V27: 0.082, V28: 0.093, Amount: 14.900.
1,086
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.357, V2: 1.156, V3: 1.201, V4: -0.143, V5: 0.341, V6: -0.444, V7: 0.676, V8: 0.033, V9: -0.796, V10: -0.374, V11: 1.379, V12: 1.077, V13: 1.172, V14: -0.468, V15: 0.098, V16: 0.624, V17: -0.423, V18: 0.331, V19: 0.315, V20: 0.202, V21: -0.222, V22: -0.548, V23: -0.083, V24: -0.018, V25: -0.111, V26: 0.071, V27: 0.249, V28: 0.087, Amount: 2.580.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.357, V2: 1.156, V3: 1.201, V4: -0.143, V5: 0.341, V6: -0.444, V7: 0.676, V8: 0.033, V9: -0.796, V10: -0.374, V11: 1.379, V12: 1.077, V13: 1.172, V14: -0.468, V15: 0.098, V16: 0.624, V17: -0.423, V18: 0.331, V19: 0.315, V20: 0.202, V21: -0.222, V22: -0.548, V23: -0.083, V24: -0.018, V25: -0.111, V26: 0.071, V27: 0.249, V28: 0.087, Amount: 2.580.
1,087
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.000, V2: -0.295, V3: 1.308, V4: 1.258, V5: -0.968, V6: 0.460, V7: -0.782, V8: 0.424, V9: 0.791, V10: -0.055, V11: 1.109, V12: 0.693, V13: -1.289, V14: 0.120, V15: -0.151, V16: -0.018, V17: -0.078, V18: 0.069, V19: -0.357, V20: -0.183, V21: 0.033, V22: 0.180, V23: 0.029, V24: 0.203, V25: 0.235, V26: -0.408, V27: 0.073, V28: 0.029, Amount: 35.970.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.000, V2: -0.295, V3: 1.308, V4: 1.258, V5: -0.968, V6: 0.460, V7: -0.782, V8: 0.424, V9: 0.791, V10: -0.055, V11: 1.109, V12: 0.693, V13: -1.289, V14: 0.120, V15: -0.151, V16: -0.018, V17: -0.078, V18: 0.069, V19: -0.357, V20: -0.183, V21: 0.033, V22: 0.180, V23: 0.029, V24: 0.203, V25: 0.235, V26: -0.408, V27: 0.073, V28: 0.029, Amount: 35.970.
1,088
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.100, V2: 2.184, V3: -3.424, V4: 1.969, V5: 0.002, V6: -1.703, V7: -0.053, V8: 0.941, V9: 0.981, V10: -1.643, V11: 0.709, V12: -3.231, V13: 0.982, V14: -1.142, V15: 0.438, V16: 1.387, V17: 3.897, V18: 2.132, V19: -0.507, V20: -0.064, V21: -0.294, V22: -0.645, V23: 0.047, V24: -0.527, V25: -0.312, V26: -0.396, V27: 0.169, V28: -0.204, Amount: 89.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.100, V2: 2.184, V3: -3.424, V4: 1.969, V5: 0.002, V6: -1.703, V7: -0.053, V8: 0.941, V9: 0.981, V10: -1.643, V11: 0.709, V12: -3.231, V13: 0.982, V14: -1.142, V15: 0.438, V16: 1.387, V17: 3.897, V18: 2.132, V19: -0.507, V20: -0.064, V21: -0.294, V22: -0.645, V23: 0.047, V24: -0.527, V25: -0.312, V26: -0.396, V27: 0.169, V28: -0.204, Amount: 89.990.
1,089
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.836, V2: 0.808, V3: 1.930, V4: 1.394, V5: 0.084, V6: 0.154, V7: 0.985, V8: 0.049, V9: -1.088, V10: -0.129, V11: -1.244, V12: -0.465, V13: 0.388, V14: -0.134, V15: 0.134, V16: 1.233, V17: -1.204, V18: 0.345, V19: -1.561, V20: 0.157, V21: 0.251, V22: 0.416, V23: -0.006, V24: -0.138, V25: 0.101, V26: -0.065, V27: 0.046, V28: 0.128, Amount: 125.130.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.836, V2: 0.808, V3: 1.930, V4: 1.394, V5: 0.084, V6: 0.154, V7: 0.985, V8: 0.049, V9: -1.088, V10: -0.129, V11: -1.244, V12: -0.465, V13: 0.388, V14: -0.134, V15: 0.134, V16: 1.233, V17: -1.204, V18: 0.345, V19: -1.561, V20: 0.157, V21: 0.251, V22: 0.416, V23: -0.006, V24: -0.138, V25: 0.101, V26: -0.065, V27: 0.046, V28: 0.128, Amount: 125.130.
1,090
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.908, V2: -0.869, V3: 1.085, V4: -1.125, V5: -0.136, V6: -1.675, V7: 0.739, V8: -0.452, V9: -1.020, V10: 0.420, V11: -0.415, V12: 0.000, V13: 0.266, V14: -0.324, V15: -0.777, V16: -1.912, V17: 0.105, V18: 0.532, V19: -1.278, V20: 0.146, V21: -0.218, V22: -0.215, V23: 0.482, V24: 0.938, V25: -0.605, V26: 0.769, V27: 0.104, V28: 0.036, Amount: 143.800.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.908, V2: -0.869, V3: 1.085, V4: -1.125, V5: -0.136, V6: -1.675, V7: 0.739, V8: -0.452, V9: -1.020, V10: 0.420, V11: -0.415, V12: 0.000, V13: 0.266, V14: -0.324, V15: -0.777, V16: -1.912, V17: 0.105, V18: 0.532, V19: -1.278, V20: 0.146, V21: -0.218, V22: -0.215, V23: 0.482, V24: 0.938, V25: -0.605, V26: 0.769, V27: 0.104, V28: 0.036, Amount: 143.800.
1,091
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.263, V2: 0.450, V3: 0.678, V4: 0.812, V5: -0.295, V6: -0.914, V7: 0.054, V8: -0.356, V9: 1.143, V10: -0.473, V11: 0.938, V12: -1.483, V13: 3.190, V14: 1.428, V15: 0.159, V16: 0.217, V17: 0.237, V18: -0.419, V19: -0.329, V20: -0.056, V21: -0.394, V22: -0.831, V23: 0.132, V24: 0.348, V25: 0.236, V26: 0.052, V27: -0.048, V28: 0.015, Amount: 2.580.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.263, V2: 0.450, V3: 0.678, V4: 0.812, V5: -0.295, V6: -0.914, V7: 0.054, V8: -0.356, V9: 1.143, V10: -0.473, V11: 0.938, V12: -1.483, V13: 3.190, V14: 1.428, V15: 0.159, V16: 0.217, V17: 0.237, V18: -0.419, V19: -0.329, V20: -0.056, V21: -0.394, V22: -0.831, V23: 0.132, V24: 0.348, V25: 0.236, V26: 0.052, V27: -0.048, V28: 0.015, Amount: 2.580.
1,092
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.428, V2: -0.974, V3: -2.529, V4: 0.266, V5: 0.986, V6: 0.406, V7: 0.796, V8: -0.093, V9: -0.026, V10: -0.055, V11: -0.071, V12: 0.281, V13: -0.192, V14: 0.904, V15: 1.194, V16: -1.187, V17: 0.548, V18: -1.983, V19: -1.233, V20: 0.294, V21: 0.331, V22: 0.456, V23: -0.105, V24: -0.275, V25: -0.078, V26: 0.652, V27: -0.124, V28: -0.035, Amount: 300.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.428, V2: -0.974, V3: -2.529, V4: 0.266, V5: 0.986, V6: 0.406, V7: 0.796, V8: -0.093, V9: -0.026, V10: -0.055, V11: -0.071, V12: 0.281, V13: -0.192, V14: 0.904, V15: 1.194, V16: -1.187, V17: 0.548, V18: -1.983, V19: -1.233, V20: 0.294, V21: 0.331, V22: 0.456, V23: -0.105, V24: -0.275, V25: -0.078, V26: 0.652, V27: -0.124, V28: -0.035, Amount: 300.000.
1,093
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.408, V2: 0.542, V3: 0.722, V4: -2.000, V5: 0.202, V6: -0.441, V7: 0.432, V8: -0.040, V9: -1.481, V10: -0.428, V11: 1.086, V12: -0.098, V13: 0.507, V14: -1.544, V15: -0.954, V16: 1.622, V17: 0.763, V18: -0.795, V19: 0.900, V20: 0.117, V21: -0.226, V22: -0.797, V23: -0.054, V24: -0.540, V25: -0.354, V26: -0.676, V27: -0.011, V28: 0.138, Amount: 19.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.408, V2: 0.542, V3: 0.722, V4: -2.000, V5: 0.202, V6: -0.441, V7: 0.432, V8: -0.040, V9: -1.481, V10: -0.428, V11: 1.086, V12: -0.098, V13: 0.507, V14: -1.544, V15: -0.954, V16: 1.622, V17: 0.763, V18: -0.795, V19: 0.900, V20: 0.117, V21: -0.226, V22: -0.797, V23: -0.054, V24: -0.540, V25: -0.354, V26: -0.676, V27: -0.011, V28: 0.138, Amount: 19.950.
1,094
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.131, V2: -0.099, V3: -0.131, V4: 1.049, V5: 0.306, V6: 0.783, V7: -0.110, V8: 0.279, V9: 0.331, V10: 0.072, V11: -0.132, V12: 0.050, V13: -1.482, V14: 0.495, V15: -0.543, V16: -0.113, V17: -0.325, V18: 0.086, V19: 0.359, V20: -0.161, V21: -0.121, V22: -0.298, V23: -0.234, V24: -1.179, V25: 0.725, V26: -0.256, V27: 0.018, V28: -0.003, Amount: 45.460.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.131, V2: -0.099, V3: -0.131, V4: 1.049, V5: 0.306, V6: 0.783, V7: -0.110, V8: 0.279, V9: 0.331, V10: 0.072, V11: -0.132, V12: 0.050, V13: -1.482, V14: 0.495, V15: -0.543, V16: -0.113, V17: -0.325, V18: 0.086, V19: 0.359, V20: -0.161, V21: -0.121, V22: -0.298, V23: -0.234, V24: -1.179, V25: 0.725, V26: -0.256, V27: 0.018, V28: -0.003, Amount: 45.460.
1,095
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.580, V2: -0.982, V3: -0.830, V4: 0.119, V5: -0.438, V6: -0.166, V7: -0.098, V8: -0.164, V9: 0.951, V10: -0.338, V11: -0.676, V12: 1.245, V13: 1.997, V14: -0.298, V15: 0.911, V16: 0.422, V17: -0.844, V18: -0.202, V19: -0.040, V20: 0.431, V21: -0.014, V22: -0.426, V23: 0.155, V24: 0.504, V25: -0.488, V26: -0.325, V27: -0.032, V28: 0.014, Amount: 244.640.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.580, V2: -0.982, V3: -0.830, V4: 0.119, V5: -0.438, V6: -0.166, V7: -0.098, V8: -0.164, V9: 0.951, V10: -0.338, V11: -0.676, V12: 1.245, V13: 1.997, V14: -0.298, V15: 0.911, V16: 0.422, V17: -0.844, V18: -0.202, V19: -0.040, V20: 0.431, V21: -0.014, V22: -0.426, V23: 0.155, V24: 0.504, V25: -0.488, V26: -0.325, V27: -0.032, V28: 0.014, Amount: 244.640.
1,096
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.058, V2: 0.058, V3: 1.485, V4: -1.344, V5: -1.296, V6: -0.728, V7: -0.893, V8: 0.847, V9: -1.006, V10: -0.474, V11: -1.027, V12: 0.076, V13: 0.986, V14: -0.462, V15: -0.891, V16: 1.224, V17: 0.597, V18: -1.189, V19: 0.121, V20: 0.023, V21: 0.372, V22: 0.927, V23: -0.538, V24: 0.484, V25: 0.688, V26: -0.084, V27: 0.052, V28: -0.190, Amount: 59.740.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.058, V2: 0.058, V3: 1.485, V4: -1.344, V5: -1.296, V6: -0.728, V7: -0.893, V8: 0.847, V9: -1.006, V10: -0.474, V11: -1.027, V12: 0.076, V13: 0.986, V14: -0.462, V15: -0.891, V16: 1.224, V17: 0.597, V18: -1.189, V19: 0.121, V20: 0.023, V21: 0.372, V22: 0.927, V23: -0.538, V24: 0.484, V25: 0.688, V26: -0.084, V27: 0.052, V28: -0.190, Amount: 59.740.
1,097
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.087, V2: 0.887, V3: 0.112, V4: -0.825, V5: 0.684, V6: -0.471, V7: 0.898, V8: -0.057, V9: -0.240, V10: -0.147, V11: 0.505, V12: 0.813, V13: 0.181, V14: 0.218, V15: -1.041, V16: 0.139, V17: -0.765, V18: -0.243, V19: 0.285, V20: -0.025, V21: -0.209, V22: -0.494, V23: 0.013, V24: -0.468, V25: -0.488, V26: 0.137, V27: 0.111, V28: 0.080, Amount: 3.560.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.087, V2: 0.887, V3: 0.112, V4: -0.825, V5: 0.684, V6: -0.471, V7: 0.898, V8: -0.057, V9: -0.240, V10: -0.147, V11: 0.505, V12: 0.813, V13: 0.181, V14: 0.218, V15: -1.041, V16: 0.139, V17: -0.765, V18: -0.243, V19: 0.285, V20: -0.025, V21: -0.209, V22: -0.494, V23: 0.013, V24: -0.468, V25: -0.488, V26: 0.137, V27: 0.111, V28: 0.080, Amount: 3.560.
1,098
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.561, V2: -0.998, V3: 0.227, V4: -1.434, V5: -1.370, V6: -0.765, V7: -0.972, V8: -0.179, V9: -1.705, V10: 1.464, V11: -1.042, V12: -1.415, V13: -0.117, V14: -0.198, V15: 0.679, V16: -0.224, V17: 0.368, V18: 0.205, V19: -0.051, V20: -0.365, V21: -0.257, V22: -0.370, V23: -0.015, V24: -0.157, V25: 0.431, V26: -0.173, V27: 0.025, V28: 0.014, Amount: 10.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.561, V2: -0.998, V3: 0.227, V4: -1.434, V5: -1.370, V6: -0.765, V7: -0.972, V8: -0.179, V9: -1.705, V10: 1.464, V11: -1.042, V12: -1.415, V13: -0.117, V14: -0.198, V15: 0.679, V16: -0.224, V17: 0.368, V18: 0.205, V19: -0.051, V20: -0.365, V21: -0.257, V22: -0.370, V23: -0.015, V24: -0.157, V25: 0.431, V26: -0.173, V27: 0.025, V28: 0.014, Amount: 10.000.
1,099
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.187, V2: 0.585, V3: 0.104, V4: 2.384, V5: 0.118, V6: -0.553, V7: 0.350, V8: -0.041, V9: -1.064, V10: 0.955, V11: 0.881, V12: -0.313, V13: -1.776, V14: 1.045, V15: -0.312, V16: 0.604, V17: -0.634, V18: 0.198, V19: -0.585, V20: -0.262, V21: 0.017, V22: -0.087, V23: -0.096, V24: 0.295, V25: 0.645, V26: 0.056, V27: -0.054, V28: -0.004, Amount: 2.470.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.187, V2: 0.585, V3: 0.104, V4: 2.384, V5: 0.118, V6: -0.553, V7: 0.350, V8: -0.041, V9: -1.064, V10: 0.955, V11: 0.881, V12: -0.313, V13: -1.776, V14: 1.045, V15: -0.312, V16: 0.604, V17: -0.634, V18: 0.198, V19: -0.585, V20: -0.262, V21: 0.017, V22: -0.087, V23: -0.096, V24: 0.295, V25: 0.645, V26: 0.056, V27: -0.054, V28: -0.004, Amount: 2.470.