Dataset Viewer
Search is not available for this dataset
id
stringlengths 4
12
| datetime
timestamp[ns] | target
float64 0
804
⌀ | category
stringclasses 3
values |
|---|---|---|---|
GE_1
| 2015-05-21T15:45:00 | 0.157 |
15m
|
GE_1
| 2015-05-21T16:00:00 | 0.273 |
15m
|
GE_1
| 2015-05-21T16:15:00 | 0.311 |
15m
|
GE_1
| 2015-05-21T16:30:00 | 0.28 |
15m
|
GE_1
| 2015-05-21T16:45:00 | 0.265 |
15m
|
GE_1
| 2015-05-21T17:00:00 | 0.446 |
15m
|
GE_1
| 2015-05-21T17:15:00 | 0.231 |
15m
|
GE_1
| 2015-05-21T17:30:00 | 0.187 |
15m
|
GE_1
| 2015-05-21T17:45:00 | 0.164 |
15m
|
GE_1
| 2015-05-21T18:00:00 | 0.161 |
15m
|
GE_1
| 2015-05-21T18:15:00 | 0.164 |
15m
|
GE_1
| 2015-05-21T18:30:00 | 0.138 |
15m
|
GE_1
| 2015-05-21T18:45:00 | 0.12 |
15m
|
GE_1
| 2015-05-21T19:00:00 | 0.15 |
15m
|
GE_1
| 2015-05-21T19:15:00 | 0.18 |
15m
|
GE_1
| 2015-05-21T19:30:00 | 0.113 |
15m
|
GE_1
| 2015-05-21T19:45:00 | 0.137 |
15m
|
GE_1
| 2015-05-21T20:00:00 | 0.133 |
15m
|
GE_1
| 2015-05-21T20:15:00 | 0.137 |
15m
|
GE_1
| 2015-05-21T20:30:00 | 0.12 |
15m
|
GE_1
| 2015-05-21T20:45:00 | 0.12 |
15m
|
GE_1
| 2015-05-21T21:00:00 | 0.182 |
15m
|
GE_1
| 2015-05-21T21:15:00 | 0.063 |
15m
|
GE_1
| 2015-05-21T21:30:00 | 0.115 |
15m
|
GE_1
| 2015-05-21T21:45:00 | 0.082 |
15m
|
GE_1
| 2015-05-21T22:00:00 | 0.073 |
15m
|
GE_1
| 2015-05-21T22:15:00 | 0.08 |
15m
|
GE_1
| 2015-05-21T22:30:00 | 0.08 |
15m
|
GE_1
| 2015-05-21T22:45:00 | 0.08 |
15m
|
GE_1
| 2015-05-21T23:00:00 | 0.078 |
15m
|
GE_1
| 2015-05-21T23:15:00 | 0.069 |
15m
|
GE_1
| 2015-05-21T23:30:00 | 0.101 |
15m
|
GE_1
| 2015-05-21T23:45:00 | 0.072 |
15m
|
GE_1
| 2015-05-22T00:00:00 | 0.08 |
15m
|
GE_1
| 2015-05-22T00:15:00 | 0.078 |
15m
|
GE_1
| 2015-05-22T00:30:00 | 0.062 |
15m
|
GE_1
| 2015-05-22T00:45:00 | 0.08 |
15m
|
GE_1
| 2015-05-22T01:00:00 | 0.067 |
15m
|
GE_1
| 2015-05-22T01:15:00 | 0.083 |
15m
|
GE_1
| 2015-05-22T01:30:00 | 0.087 |
15m
|
GE_1
| 2015-05-22T01:45:00 | 0.073 |
15m
|
GE_1
| 2015-05-22T02:00:00 | 0.088 |
15m
|
GE_1
| 2015-05-22T02:15:00 | 0.07 |
15m
|
GE_1
| 2015-05-22T02:30:00 | 0.072 |
15m
|
GE_1
| 2015-05-22T02:45:00 | 0.08 |
15m
|
GE_1
| 2015-05-22T03:00:00 | 0.068 |
15m
|
GE_1
| 2015-05-22T03:15:00 | 0.092 |
15m
|
GE_1
| 2015-05-22T03:30:00 | 0.098 |
15m
|
GE_1
| 2015-05-22T03:45:00 | 0.082 |
15m
|
GE_1
| 2015-05-22T04:00:00 | 0.125 |
15m
|
GE_1
| 2015-05-22T04:15:00 | 0.088 |
15m
|
GE_1
| 2015-05-22T04:30:00 | 0.143 |
15m
|
GE_1
| 2015-05-22T04:45:00 | 0.117 |
15m
|
GE_1
| 2015-05-22T05:00:00 | 0.153 |
15m
|
GE_1
| 2015-05-22T05:15:00 | 0.176 |
15m
|
GE_1
| 2015-05-22T05:30:00 | 0.266 |
15m
|
GE_1
| 2015-05-22T05:45:00 | 0.419 |
15m
|
GE_1
| 2015-05-22T06:00:00 | 0.459 |
15m
|
GE_1
| 2015-05-22T06:15:00 | 0.56 |
15m
|
GE_1
| 2015-05-22T06:30:00 | 1.019 |
15m
|
GE_1
| 2015-05-22T06:45:00 | 1.046 |
15m
|
GE_1
| 2015-05-22T07:00:00 | 1.068 |
15m
|
GE_1
| 2015-05-22T07:15:00 | 0.805 |
15m
|
GE_1
| 2015-05-22T07:30:00 | 1.544 |
15m
|
GE_1
| 2015-05-22T07:45:00 | 1.645 |
15m
|
GE_1
| 2015-05-22T08:00:00 | 2.473 |
15m
|
GE_1
| 2015-05-22T08:15:00 | 2.046 |
15m
|
GE_1
| 2015-05-22T08:30:00 | 1.987 |
15m
|
GE_1
| 2015-05-22T08:45:00 | 1.718 |
15m
|
GE_1
| 2015-05-22T09:00:00 | 1.674 |
15m
|
GE_1
| 2015-05-22T09:15:00 | 1.69 |
15m
|
GE_1
| 2015-05-22T09:30:00 | 0.82 |
15m
|
GE_1
| 2015-05-22T09:45:00 | 1.208 |
15m
|
GE_1
| 2015-05-22T10:00:00 | 1.278 |
15m
|
GE_1
| 2015-05-22T10:15:00 | 1.088 |
15m
|
GE_1
| 2015-05-22T10:30:00 | 0.779 |
15m
|
GE_1
| 2015-05-22T10:45:00 | 1.162 |
15m
|
GE_1
| 2015-05-22T11:00:00 | 1.537 |
15m
|
GE_1
| 2015-05-22T11:15:00 | 1.742 |
15m
|
GE_1
| 2015-05-22T11:30:00 | 1.762 |
15m
|
GE_1
| 2015-05-22T11:45:00 | 1.217 |
15m
|
GE_1
| 2015-05-22T12:00:00 | 0.346 |
15m
|
GE_1
| 2015-05-22T12:15:00 | 0.442 |
15m
|
GE_1
| 2015-05-22T12:30:00 | 0.697 |
15m
|
GE_1
| 2015-05-22T12:45:00 | 0.69 |
15m
|
GE_1
| 2015-05-22T13:00:00 | 0.348 |
15m
|
GE_1
| 2015-05-22T13:15:00 | 0.94 |
15m
|
GE_1
| 2015-05-22T13:30:00 | 1.143 |
15m
|
GE_1
| 2015-05-22T13:45:00 | 1.429 |
15m
|
GE_1
| 2015-05-22T14:00:00 | 1.35 |
15m
|
GE_1
| 2015-05-22T14:15:00 | 0.918 |
15m
|
GE_1
| 2015-05-22T14:30:00 | 0.979 |
15m
|
GE_1
| 2015-05-22T14:45:00 | 1.318 |
15m
|
GE_1
| 2015-05-22T15:00:00 | 1.231 |
15m
|
GE_1
| 2015-05-22T15:15:00 | 0.754 |
15m
|
GE_1
| 2015-05-22T15:30:00 | 0.475 |
15m
|
GE_1
| 2015-05-22T15:45:00 | 0.584 |
15m
|
GE_1
| 2015-05-22T16:00:00 | 0.529 |
15m
|
GE_1
| 2015-05-22T16:15:00 | 0.313 |
15m
|
GE_1
| 2015-05-22T16:30:00 | 0.403 |
15m
|
End of preview. Expand
in Data Studio
Timeseries Data Processing
This repository contains a script for loading and processing time series data using the datasets library and converting it to a pandas DataFrame for further analysis.
Dataset
The dataset used contains time series data with the following features:
id: Identifier for the dataset, formatted asCountry_Number of Household(e.g.,GE_1for Germany, household 1).datetime: Timestamp indicating the date and time of the observation.target: Energy consumption measured in kilowatt-hours (kWh).category: The resolution of the time series (e.g., 15 minutes, 30 minutes, 60 minutes).
Data Sources
The research uses raw data from the following open-source databases:
- Netherlands Smart Meter Data: Liander Open Data
- UK Smart Meter Data: London Datastore
- Germany Smart Meter Data: Open Power System Data
- Australian Smarter Data:Smart-Grid Smart-City Customer Trial Data
Requirements
- Python 3.6+
datasetslibrarypandaslibrary
You can install the required libraries using pip:
python -m pip install "dask[complete]" # Install everything
Usage
The following example demonstrates how to load the dataset and convert it to a pandas DataFrame.
import dask.dataframe as dd
# read parquet file
df = dd.read_parquet("hf://datasets/Weijie1996/load_timeseries/30m_resolution_ge/ge_30m.parquet")
# change to pandas dataframe
df = df.compute()
Output
id datetime target category
0 NL_1 2013-01-01 00:00:00 0.117475 60m
1 NL_1 2013-01-01 01:00:00 0.104347 60m
2 NL_1 2013-01-01 02:00:00 0.103173 60m
3 NL_1 2013-01-01 03:00:00 0.101686 60m
4 NL_1 2013-01-01 04:00:00 0.099632 60m
Related Work
This dataset has been utilized in the following research studies:
Comparative Assessment of Generative Models for Transformer- and Consumer-Level Load Profiles Generation
- GitHub Repository: Generative Models for Customer Profile Generation
A Flow-Based Model for Conditional and Probabilistic Electricity Consumption Profile Generation and Prediction
- GitHub Repository: Full Convolutional Profile Flow
- Downloads last month
- 14