Weijie1996 commited on
Commit
0a2fb97
·
verified ·
1 Parent(s): 60a05fe

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -1
README.md CHANGED
@@ -23,6 +23,14 @@ The dataset used in this example is `Weijie1996/load_timeseries`, which contains
23
  - `target`
24
  - `category`
25
 
 
 
 
 
 
 
 
 
26
  ## Requirements
27
 
28
  - Python 3.6+
@@ -58,4 +66,15 @@ df = df.compute()
58
  2 NL_1 2013-01-01 02:00:00 0.103173 60m
59
  3 NL_1 2013-01-01 03:00:00 0.101686 60m
60
  4 NL_1 2013-01-01 04:00:00 0.099632 60m
61
- ```
 
 
 
 
 
 
 
 
 
 
 
 
23
  - `target`
24
  - `category`
25
 
26
+ ## Data Sources
27
+
28
+ The research uses raw data from the following open-source databases:
29
+
30
+ - **Netherlands Smart Meter Data**: [Liander Open Data](https://www.liander.nl/partners/datadiensten/open-data/data)
31
+ - **UK Smart Meter Data**: [London Datastore](https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households)
32
+ - **Germany Smart Meter Data**: [Open Power System Data](https://data.open-power-system-data.org/household_data/2020-04-15)
33
+
34
  ## Requirements
35
 
36
  - Python 3.6+
 
66
  2 NL_1 2013-01-01 02:00:00 0.103173 60m
67
  3 NL_1 2013-01-01 03:00:00 0.101686 60m
68
  4 NL_1 2013-01-01 04:00:00 0.099632 60m
69
+ ```
70
+
71
+ ## Related Work
72
+
73
+ This dataset has been utilized in the following research studies:
74
+
75
+ 1. **Comparative Assessment of Generative Models for Transformer- and Consumer-Level Load Profiles Generation**
76
+ - GitHub Repository: [Generative Models for Customer Profile Generation](https://github.com/xiaweijie1996/Generative-Models-for-Customer-Profile-Generation)
77
+
78
+ 2. **A Flow-Based Model for Conditional and Probabilistic Electricity Consumption Profile Generation and Prediction**
79
+ - GitHub Repository: [Full Convolutional Profile Flow](https://github.com/xiaweijie1996/Full-Convolutional-Profile-Flow?tab=readme-ov-file)
80
+