text
stringlengths
56
1.16k
[2023-09-01 17:24:04,738::train::INFO] [train] Iter 00495 | loss 3.4816 | loss(rot) 2.6309 | loss(pos) 0.3832 | loss(seq) 0.4675 | grad 3.1828 | lr 0.0010 | time_forward 3.4900 | time_backward 5.2150
[2023-09-01 17:24:13,324::train::INFO] [train] Iter 00496 | loss 3.5291 | loss(rot) 1.3362 | loss(pos) 1.7527 | loss(seq) 0.4401 | grad 6.8860 | lr 0.0010 | time_forward 3.4290 | time_backward 5.1540
[2023-09-01 17:24:22,426::train::INFO] [train] Iter 00497 | loss 2.4267 | loss(rot) 1.5007 | loss(pos) 0.6286 | loss(seq) 0.2974 | grad 3.0702 | lr 0.0010 | time_forward 3.6890 | time_backward 5.4090
[2023-09-01 17:24:25,321::train::INFO] [train] Iter 00498 | loss 3.5862 | loss(rot) 0.0151 | loss(pos) 3.5685 | loss(seq) 0.0026 | grad 5.7937 | lr 0.0010 | time_forward 1.3050 | time_backward 1.5860
[2023-09-01 17:24:28,114::train::INFO] [train] Iter 00499 | loss 2.1623 | loss(rot) 0.2209 | loss(pos) 1.9031 | loss(seq) 0.0383 | grad 5.6557 | lr 0.0010 | time_forward 1.3360 | time_backward 1.4540
[2023-09-01 17:24:38,280::train::INFO] [train] Iter 00500 | loss 2.7801 | loss(rot) 2.6491 | loss(pos) 0.1178 | loss(seq) 0.0132 | grad 2.8357 | lr 0.0010 | time_forward 4.1820 | time_backward 5.9810
[2023-09-01 17:24:45,119::train::INFO] [train] Iter 00501 | loss 2.6028 | loss(rot) 2.3725 | loss(pos) 0.1756 | loss(seq) 0.0547 | grad 2.3695 | lr 0.0010 | time_forward 2.9240 | time_backward 3.9120
[2023-09-01 17:24:47,981::train::INFO] [train] Iter 00502 | loss 3.4236 | loss(rot) 3.0060 | loss(pos) 0.4131 | loss(seq) 0.0045 | grad 4.8038 | lr 0.0010 | time_forward 1.3890 | time_backward 1.4690
[2023-09-01 17:24:50,892::train::INFO] [train] Iter 00503 | loss 2.8320 | loss(rot) 0.0156 | loss(pos) 2.8164 | loss(seq) 0.0000 | grad 5.8841 | lr 0.0010 | time_forward 1.4980 | time_backward 1.4110
[2023-09-01 17:24:59,003::train::INFO] [train] Iter 00504 | loss 3.0010 | loss(rot) 1.9757 | loss(pos) 0.5724 | loss(seq) 0.4528 | grad 3.9839 | lr 0.0010 | time_forward 3.4780 | time_backward 4.6290
[2023-09-01 17:25:08,241::train::INFO] [train] Iter 00505 | loss 3.5137 | loss(rot) 2.5519 | loss(pos) 0.5096 | loss(seq) 0.4522 | grad 4.5594 | lr 0.0010 | time_forward 3.8750 | time_backward 5.3610
[2023-09-01 17:25:18,574::train::INFO] [train] Iter 00506 | loss 3.4878 | loss(rot) 3.1161 | loss(pos) 0.3716 | loss(seq) 0.0001 | grad 2.7450 | lr 0.0010 | time_forward 4.2170 | time_backward 6.1130
[2023-09-01 17:25:28,568::train::INFO] [train] Iter 00507 | loss 3.0496 | loss(rot) 2.3079 | loss(pos) 0.4752 | loss(seq) 0.2666 | grad 3.9087 | lr 0.0010 | time_forward 4.2720 | time_backward 5.7180
[2023-09-01 17:25:38,628::train::INFO] [train] Iter 00508 | loss 2.8778 | loss(rot) 2.2831 | loss(pos) 0.3543 | loss(seq) 0.2403 | grad 5.4959 | lr 0.0010 | time_forward 4.1000 | time_backward 5.9560
[2023-09-01 17:25:48,262::train::INFO] [train] Iter 00509 | loss 2.8180 | loss(rot) 2.1774 | loss(pos) 0.5568 | loss(seq) 0.0838 | grad 6.2779 | lr 0.0010 | time_forward 4.2160 | time_backward 5.4140
[2023-09-01 17:25:56,789::train::INFO] [train] Iter 00510 | loss 3.6168 | loss(rot) 0.0158 | loss(pos) 3.6011 | loss(seq) 0.0000 | grad 5.4056 | lr 0.0010 | time_forward 3.5290 | time_backward 4.9940
[2023-09-01 17:26:05,739::train::INFO] [train] Iter 00511 | loss 3.2241 | loss(rot) 2.9693 | loss(pos) 0.2034 | loss(seq) 0.0514 | grad 3.7024 | lr 0.0010 | time_forward 3.7960 | time_backward 5.1510
[2023-09-01 17:26:08,485::train::INFO] [train] Iter 00512 | loss 3.7432 | loss(rot) 0.0461 | loss(pos) 3.6971 | loss(seq) 0.0000 | grad 5.5060 | lr 0.0010 | time_forward 1.3250 | time_backward 1.4170
[2023-09-01 17:26:18,611::train::INFO] [train] Iter 00513 | loss 3.3225 | loss(rot) 2.4141 | loss(pos) 0.4285 | loss(seq) 0.4799 | grad 3.6938 | lr 0.0010 | time_forward 4.0880 | time_backward 6.0350
[2023-09-01 17:26:21,476::train::INFO] [train] Iter 00514 | loss 3.0725 | loss(rot) 2.2253 | loss(pos) 0.3847 | loss(seq) 0.4626 | grad 4.3406 | lr 0.0010 | time_forward 1.3750 | time_backward 1.4860
[2023-09-01 17:26:30,076::train::INFO] [train] Iter 00515 | loss 3.4459 | loss(rot) 1.9381 | loss(pos) 0.9914 | loss(seq) 0.5163 | grad 4.1848 | lr 0.0010 | time_forward 3.8480 | time_backward 4.7480
[2023-09-01 17:26:40,381::train::INFO] [train] Iter 00516 | loss 2.7097 | loss(rot) 1.8734 | loss(pos) 0.3163 | loss(seq) 0.5200 | grad 3.4201 | lr 0.0010 | time_forward 4.2200 | time_backward 6.0820
[2023-09-01 17:26:49,295::train::INFO] [train] Iter 00517 | loss 2.0962 | loss(rot) 0.8533 | loss(pos) 0.8637 | loss(seq) 0.3793 | grad 5.0507 | lr 0.0010 | time_forward 3.8530 | time_backward 5.0570
[2023-09-01 17:26:58,074::train::INFO] [train] Iter 00518 | loss 2.1266 | loss(rot) 0.2741 | loss(pos) 1.8218 | loss(seq) 0.0308 | grad 4.6415 | lr 0.0010 | time_forward 3.7470 | time_backward 5.0290
[2023-09-01 17:27:07,107::train::INFO] [train] Iter 00519 | loss 3.2156 | loss(rot) 2.2183 | loss(pos) 0.6134 | loss(seq) 0.3840 | grad 5.2168 | lr 0.0010 | time_forward 3.7020 | time_backward 5.3270
[2023-09-01 17:27:16,862::train::INFO] [train] Iter 00520 | loss 3.4996 | loss(rot) 3.0232 | loss(pos) 0.4669 | loss(seq) 0.0095 | grad 4.9230 | lr 0.0010 | time_forward 3.9210 | time_backward 5.8310
[2023-09-01 17:27:19,779::train::INFO] [train] Iter 00521 | loss 2.5371 | loss(rot) 1.0620 | loss(pos) 0.9191 | loss(seq) 0.5561 | grad 6.4540 | lr 0.0010 | time_forward 1.4650 | time_backward 1.4490
[2023-09-01 17:27:28,483::train::INFO] [train] Iter 00522 | loss 2.9058 | loss(rot) 2.5782 | loss(pos) 0.3277 | loss(seq) 0.0000 | grad 5.9519 | lr 0.0010 | time_forward 3.6780 | time_backward 5.0220
[2023-09-01 17:27:37,502::train::INFO] [train] Iter 00523 | loss 3.1765 | loss(rot) 2.1327 | loss(pos) 0.5993 | loss(seq) 0.4445 | grad 5.2788 | lr 0.0010 | time_forward 3.6340 | time_backward 5.3810
[2023-09-01 17:27:46,276::train::INFO] [train] Iter 00524 | loss 2.9693 | loss(rot) 1.9363 | loss(pos) 0.5063 | loss(seq) 0.5267 | grad 3.9634 | lr 0.0010 | time_forward 3.5500 | time_backward 5.2200
[2023-09-01 17:27:54,872::train::INFO] [train] Iter 00525 | loss 3.3977 | loss(rot) 2.9237 | loss(pos) 0.2414 | loss(seq) 0.2327 | grad 2.6164 | lr 0.0010 | time_forward 3.6050 | time_backward 4.9890
[2023-09-01 17:28:05,294::train::INFO] [train] Iter 00526 | loss 3.5588 | loss(rot) 2.7597 | loss(pos) 0.5953 | loss(seq) 0.2038 | grad 4.6701 | lr 0.0010 | time_forward 4.2330 | time_backward 6.1860
[2023-09-01 17:28:15,562::train::INFO] [train] Iter 00527 | loss 2.5670 | loss(rot) 1.4982 | loss(pos) 0.6722 | loss(seq) 0.3965 | grad 4.1468 | lr 0.0010 | time_forward 4.1300 | time_backward 6.1340
[2023-09-01 17:28:25,602::train::INFO] [train] Iter 00528 | loss 2.3244 | loss(rot) 1.4135 | loss(pos) 0.4320 | loss(seq) 0.4789 | grad 2.7987 | lr 0.0010 | time_forward 4.0870 | time_backward 5.9510
[2023-09-01 17:28:35,772::train::INFO] [train] Iter 00529 | loss 3.6419 | loss(rot) 3.2743 | loss(pos) 0.3134 | loss(seq) 0.0542 | grad 4.5123 | lr 0.0010 | time_forward 4.1330 | time_backward 6.0330
[2023-09-01 17:28:38,585::train::INFO] [train] Iter 00530 | loss 2.7100 | loss(rot) 1.8669 | loss(pos) 0.3575 | loss(seq) 0.4856 | grad 2.2972 | lr 0.0010 | time_forward 1.4660 | time_backward 1.3440
[2023-09-01 17:28:41,517::train::INFO] [train] Iter 00531 | loss 2.4293 | loss(rot) 0.8038 | loss(pos) 1.2447 | loss(seq) 0.3808 | grad 4.2903 | lr 0.0010 | time_forward 1.3880 | time_backward 1.5400
[2023-09-01 17:28:49,818::train::INFO] [train] Iter 00532 | loss 3.5941 | loss(rot) 3.1770 | loss(pos) 0.3382 | loss(seq) 0.0789 | grad 5.4145 | lr 0.0010 | time_forward 3.5060 | time_backward 4.7910
[2023-09-01 17:29:00,134::train::INFO] [train] Iter 00533 | loss 2.4357 | loss(rot) 0.4006 | loss(pos) 2.0032 | loss(seq) 0.0319 | grad 6.2728 | lr 0.0010 | time_forward 4.2020 | time_backward 6.1120
[2023-09-01 17:29:03,098::train::INFO] [train] Iter 00534 | loss 3.8136 | loss(rot) 3.4325 | loss(pos) 0.3779 | loss(seq) 0.0031 | grad 3.8993 | lr 0.0010 | time_forward 1.3770 | time_backward 1.5690
[2023-09-01 17:29:05,799::train::INFO] [train] Iter 00535 | loss 4.0641 | loss(rot) 2.7660 | loss(pos) 0.7182 | loss(seq) 0.5799 | grad 5.8761 | lr 0.0010 | time_forward 1.3160 | time_backward 1.3820
[2023-09-01 17:29:14,545::train::INFO] [train] Iter 00536 | loss 2.1813 | loss(rot) 0.0954 | loss(pos) 2.0689 | loss(seq) 0.0170 | grad 3.8216 | lr 0.0010 | time_forward 3.6640 | time_backward 5.0780
[2023-09-01 17:29:24,897::train::INFO] [train] Iter 00537 | loss 2.7641 | loss(rot) 1.7584 | loss(pos) 0.5638 | loss(seq) 0.4418 | grad 4.0334 | lr 0.0010 | time_forward 4.4400 | time_backward 5.9080
[2023-09-01 17:29:27,284::train::INFO] [train] Iter 00538 | loss 3.0702 | loss(rot) 2.3181 | loss(pos) 0.2183 | loss(seq) 0.5338 | grad 2.3646 | lr 0.0010 | time_forward 1.0960 | time_backward 1.2770
[2023-09-01 17:29:36,098::train::INFO] [train] Iter 00539 | loss 3.0983 | loss(rot) 2.4302 | loss(pos) 0.3325 | loss(seq) 0.3356 | grad 4.2811 | lr 0.0010 | time_forward 4.0720 | time_backward 4.7350
[2023-09-01 17:29:45,398::train::INFO] [train] Iter 00540 | loss 3.0337 | loss(rot) 2.6683 | loss(pos) 0.3071 | loss(seq) 0.0583 | grad 4.0741 | lr 0.0010 | time_forward 3.9130 | time_backward 5.3830
[2023-09-01 17:29:48,220::train::INFO] [train] Iter 00541 | loss 2.1448 | loss(rot) 0.1988 | loss(pos) 1.9157 | loss(seq) 0.0303 | grad 4.6868 | lr 0.0010 | time_forward 1.3740 | time_backward 1.4440
[2023-09-01 17:29:58,103::train::INFO] [train] Iter 00542 | loss 2.6279 | loss(rot) 0.0089 | loss(pos) 2.6180 | loss(seq) 0.0010 | grad 3.5585 | lr 0.0010 | time_forward 4.1700 | time_backward 5.6560
[2023-09-01 17:30:07,250::train::INFO] [train] Iter 00543 | loss 2.3751 | loss(rot) 0.5971 | loss(pos) 1.3823 | loss(seq) 0.3957 | grad 3.8306 | lr 0.0010 | time_forward 3.7750 | time_backward 5.3680
[2023-09-01 17:30:16,989::train::INFO] [train] Iter 00544 | loss 3.2233 | loss(rot) 2.9343 | loss(pos) 0.2571 | loss(seq) 0.0319 | grad 2.9364 | lr 0.0010 | time_forward 4.2880 | time_backward 5.4480
[2023-09-01 17:30:19,424::train::INFO] [train] Iter 00545 | loss 3.7613 | loss(rot) 2.5752 | loss(pos) 0.6955 | loss(seq) 0.4906 | grad 5.2106 | lr 0.0010 | time_forward 1.1870 | time_backward 1.2440
[2023-09-01 17:30:29,610::train::INFO] [train] Iter 00546 | loss 3.2720 | loss(rot) 2.7542 | loss(pos) 0.3600 | loss(seq) 0.1578 | grad 4.7061 | lr 0.0010 | time_forward 4.2160 | time_backward 5.9670
[2023-09-01 17:30:37,625::train::INFO] [train] Iter 00547 | loss 1.9270 | loss(rot) 1.3527 | loss(pos) 0.4469 | loss(seq) 0.1275 | grad 4.0567 | lr 0.0010 | time_forward 3.4810 | time_backward 4.5310
[2023-09-01 17:30:40,599::train::INFO] [train] Iter 00548 | loss 2.9058 | loss(rot) 0.0362 | loss(pos) 2.8625 | loss(seq) 0.0070 | grad 6.9888 | lr 0.0010 | time_forward 1.3680 | time_backward 1.6020
[2023-09-01 17:30:48,618::train::INFO] [train] Iter 00549 | loss 1.2203 | loss(rot) 0.4188 | loss(pos) 0.7497 | loss(seq) 0.0518 | grad 4.0427 | lr 0.0010 | time_forward 3.4020 | time_backward 4.6150
[2023-09-01 17:30:58,765::train::INFO] [train] Iter 00550 | loss 3.0604 | loss(rot) 2.1261 | loss(pos) 0.4598 | loss(seq) 0.4744 | grad 3.1057 | lr 0.0010 | time_forward 4.3000 | time_backward 5.8430
[2023-09-01 17:31:01,645::train::INFO] [train] Iter 00551 | loss 3.2693 | loss(rot) 2.7026 | loss(pos) 0.2142 | loss(seq) 0.3525 | grad 2.6335 | lr 0.0010 | time_forward 1.3740 | time_backward 1.4880
[2023-09-01 17:31:03,985::train::INFO] [train] Iter 00552 | loss 3.1133 | loss(rot) 2.7262 | loss(pos) 0.3821 | loss(seq) 0.0049 | grad 5.2552 | lr 0.0010 | time_forward 1.1050 | time_backward 1.2310
[2023-09-01 17:31:12,272::train::INFO] [train] Iter 00553 | loss 3.1652 | loss(rot) 2.8050 | loss(pos) 0.3572 | loss(seq) 0.0030 | grad 5.2976 | lr 0.0010 | time_forward 3.3900 | time_backward 4.8940
[2023-09-01 17:31:15,143::train::INFO] [train] Iter 00554 | loss 3.2850 | loss(rot) 2.6367 | loss(pos) 0.3396 | loss(seq) 0.3086 | grad 4.8873 | lr 0.0010 | time_forward 1.4040 | time_backward 1.4640
[2023-09-01 17:31:18,037::train::INFO] [train] Iter 00555 | loss 2.5660 | loss(rot) 1.7107 | loss(pos) 0.3649 | loss(seq) 0.4905 | grad 5.1314 | lr 0.0010 | time_forward 1.3890 | time_backward 1.5020
[2023-09-01 17:31:28,499::train::INFO] [train] Iter 00556 | loss 3.5957 | loss(rot) 2.5757 | loss(pos) 0.4718 | loss(seq) 0.5483 | grad 2.9438 | lr 0.0010 | time_forward 4.5970 | time_backward 5.8610
[2023-09-01 17:31:37,853::train::INFO] [train] Iter 00557 | loss 3.7941 | loss(rot) 0.0120 | loss(pos) 3.7802 | loss(seq) 0.0019 | grad 9.0350 | lr 0.0010 | time_forward 3.9370 | time_backward 5.4120
[2023-09-01 17:31:40,679::train::INFO] [train] Iter 00558 | loss 3.0326 | loss(rot) 2.6481 | loss(pos) 0.3205 | loss(seq) 0.0640 | grad 3.5388 | lr 0.0010 | time_forward 1.3110 | time_backward 1.5110
[2023-09-01 17:31:49,224::train::INFO] [train] Iter 00559 | loss 3.1106 | loss(rot) 2.6908 | loss(pos) 0.4149 | loss(seq) 0.0050 | grad 3.7747 | lr 0.0010 | time_forward 3.6520 | time_backward 4.8910
[2023-09-01 17:31:57,802::train::INFO] [train] Iter 00560 | loss 2.4952 | loss(rot) 1.4689 | loss(pos) 0.7126 | loss(seq) 0.3137 | grad 5.2328 | lr 0.0010 | time_forward 3.6840 | time_backward 4.8900
[2023-09-01 17:32:07,664::train::INFO] [train] Iter 00561 | loss 2.8932 | loss(rot) 1.6033 | loss(pos) 0.8741 | loss(seq) 0.4158 | grad 3.4752 | lr 0.0010 | time_forward 4.0180 | time_backward 5.8420
[2023-09-01 17:32:15,484::train::INFO] [train] Iter 00562 | loss 3.7179 | loss(rot) 3.2830 | loss(pos) 0.4348 | loss(seq) 0.0001 | grad 5.8240 | lr 0.0010 | time_forward 3.4640 | time_backward 4.3520
[2023-09-01 17:32:18,293::train::INFO] [train] Iter 00563 | loss 2.6000 | loss(rot) 1.6795 | loss(pos) 0.4216 | loss(seq) 0.4990 | grad 2.7223 | lr 0.0010 | time_forward 1.3570 | time_backward 1.4480
[2023-09-01 17:32:21,135::train::INFO] [train] Iter 00564 | loss 3.5539 | loss(rot) 3.1856 | loss(pos) 0.3683 | loss(seq) 0.0000 | grad 5.2883 | lr 0.0010 | time_forward 1.3170 | time_backward 1.4830
[2023-09-01 17:32:30,458::train::INFO] [train] Iter 00565 | loss 1.9632 | loss(rot) 0.2159 | loss(pos) 1.7036 | loss(seq) 0.0437 | grad 3.3612 | lr 0.0010 | time_forward 4.0290 | time_backward 5.2910
[2023-09-01 17:32:32,999::train::INFO] [train] Iter 00566 | loss 1.8076 | loss(rot) 1.2211 | loss(pos) 0.3764 | loss(seq) 0.2101 | grad 2.8096 | lr 0.0010 | time_forward 1.2110 | time_backward 1.3260
[2023-09-01 17:32:41,606::train::INFO] [train] Iter 00567 | loss 3.1571 | loss(rot) 2.2496 | loss(pos) 0.4108 | loss(seq) 0.4967 | grad 4.5345 | lr 0.0010 | time_forward 3.5240 | time_backward 5.0800
[2023-09-01 17:32:49,783::train::INFO] [train] Iter 00568 | loss 2.4082 | loss(rot) 0.1956 | loss(pos) 2.0699 | loss(seq) 0.1427 | grad 4.5024 | lr 0.0010 | time_forward 3.2870 | time_backward 4.8850
[2023-09-01 17:32:52,472::train::INFO] [train] Iter 00569 | loss 2.6072 | loss(rot) 2.1669 | loss(pos) 0.3431 | loss(seq) 0.0971 | grad 5.1705 | lr 0.0010 | time_forward 1.3220 | time_backward 1.3640
[2023-09-01 17:32:55,231::train::INFO] [train] Iter 00570 | loss 3.5588 | loss(rot) 2.7094 | loss(pos) 0.5350 | loss(seq) 0.3144 | grad 4.9982 | lr 0.0010 | time_forward 1.3060 | time_backward 1.4380
[2023-09-01 17:32:57,652::train::INFO] [train] Iter 00571 | loss 3.0519 | loss(rot) 2.6549 | loss(pos) 0.3970 | loss(seq) 0.0000 | grad 4.5043 | lr 0.0010 | time_forward 1.2130 | time_backward 1.2040
[2023-09-01 17:33:00,488::train::INFO] [train] Iter 00572 | loss 3.6386 | loss(rot) 3.2578 | loss(pos) 0.2495 | loss(seq) 0.1313 | grad 2.8541 | lr 0.0010 | time_forward 1.3450 | time_backward 1.4870
[2023-09-01 17:33:10,527::train::INFO] [train] Iter 00573 | loss 2.4741 | loss(rot) 1.0763 | loss(pos) 1.1704 | loss(seq) 0.2274 | grad 3.4087 | lr 0.0010 | time_forward 4.0310 | time_backward 6.0030
[2023-09-01 17:33:12,883::train::INFO] [train] Iter 00574 | loss 3.7801 | loss(rot) 3.4864 | loss(pos) 0.2445 | loss(seq) 0.0491 | grad 3.0901 | lr 0.0010 | time_forward 1.0880 | time_backward 1.2640
[2023-09-01 17:33:15,807::train::INFO] [train] Iter 00575 | loss 3.5539 | loss(rot) 2.8432 | loss(pos) 0.2455 | loss(seq) 0.4651 | grad 3.5125 | lr 0.0010 | time_forward 1.4640 | time_backward 1.4570
[2023-09-01 17:33:18,853::train::INFO] [train] Iter 00576 | loss 3.3218 | loss(rot) 2.3686 | loss(pos) 0.5932 | loss(seq) 0.3601 | grad 5.1889 | lr 0.0010 | time_forward 1.5950 | time_backward 1.4480
[2023-09-01 17:33:28,481::train::INFO] [train] Iter 00577 | loss 2.8692 | loss(rot) 2.6865 | loss(pos) 0.0901 | loss(seq) 0.0925 | grad 2.6055 | lr 0.0010 | time_forward 3.9810 | time_backward 5.6440
[2023-09-01 17:33:31,394::train::INFO] [train] Iter 00578 | loss 3.7191 | loss(rot) 3.2610 | loss(pos) 0.2594 | loss(seq) 0.1987 | grad 3.9024 | lr 0.0010 | time_forward 1.4220 | time_backward 1.4870
[2023-09-01 17:33:40,594::train::INFO] [train] Iter 00579 | loss 2.1322 | loss(rot) 0.6093 | loss(pos) 1.2635 | loss(seq) 0.2593 | grad 5.3587 | lr 0.0010 | time_forward 4.0100 | time_backward 5.1880
[2023-09-01 17:33:49,840::train::INFO] [train] Iter 00580 | loss 2.2756 | loss(rot) 0.6955 | loss(pos) 1.2165 | loss(seq) 0.3637 | grad 4.4672 | lr 0.0010 | time_forward 3.9050 | time_backward 5.3370
[2023-09-01 17:33:59,511::train::INFO] [train] Iter 00581 | loss 3.2582 | loss(rot) 2.6153 | loss(pos) 0.4817 | loss(seq) 0.1612 | grad 3.8135 | lr 0.0010 | time_forward 3.9400 | time_backward 5.7290
[2023-09-01 17:34:08,639::train::INFO] [train] Iter 00582 | loss 2.9632 | loss(rot) 0.9428 | loss(pos) 1.6130 | loss(seq) 0.4074 | grad 6.8169 | lr 0.0010 | time_forward 3.9000 | time_backward 5.2240
[2023-09-01 17:34:18,442::train::INFO] [train] Iter 00583 | loss 2.5440 | loss(rot) 0.1116 | loss(pos) 2.3930 | loss(seq) 0.0394 | grad 5.5887 | lr 0.0010 | time_forward 3.7560 | time_backward 6.0430
[2023-09-01 17:34:24,867::train::INFO] [train] Iter 00584 | loss 2.0438 | loss(rot) 0.3161 | loss(pos) 1.5152 | loss(seq) 0.2125 | grad 3.0452 | lr 0.0010 | time_forward 2.7240 | time_backward 3.6990
[2023-09-01 17:34:32,703::train::INFO] [train] Iter 00585 | loss 2.2409 | loss(rot) 0.9492 | loss(pos) 1.2105 | loss(seq) 0.0812 | grad 6.3452 | lr 0.0010 | time_forward 3.3440 | time_backward 4.4710
[2023-09-01 17:34:42,463::train::INFO] [train] Iter 00586 | loss 3.3827 | loss(rot) 0.0033 | loss(pos) 3.3793 | loss(seq) 0.0000 | grad 4.5085 | lr 0.0010 | time_forward 3.8240 | time_backward 5.9330
[2023-09-01 17:34:49,321::train::INFO] [train] Iter 00587 | loss 3.3951 | loss(rot) 2.4229 | loss(pos) 0.4691 | loss(seq) 0.5031 | grad 4.4163 | lr 0.0010 | time_forward 2.7960 | time_backward 4.0580
[2023-09-01 17:34:59,598::train::INFO] [train] Iter 00588 | loss 2.9151 | loss(rot) 2.1808 | loss(pos) 0.7085 | loss(seq) 0.0259 | grad 7.4225 | lr 0.0010 | time_forward 4.1820 | time_backward 6.0910
[2023-09-01 17:35:09,419::train::INFO] [train] Iter 00589 | loss 2.6027 | loss(rot) 1.5410 | loss(pos) 0.5485 | loss(seq) 0.5132 | grad 3.3682 | lr 0.0010 | time_forward 3.8140 | time_backward 6.0030
[2023-09-01 17:35:11,874::train::INFO] [train] Iter 00590 | loss 2.6105 | loss(rot) 0.8378 | loss(pos) 1.2926 | loss(seq) 0.4801 | grad 6.0872 | lr 0.0010 | time_forward 1.1360 | time_backward 1.3150
[2023-09-01 17:35:22,123::train::INFO] [train] Iter 00591 | loss 3.6589 | loss(rot) 3.0444 | loss(pos) 0.5238 | loss(seq) 0.0908 | grad 4.5908 | lr 0.0010 | time_forward 4.1000 | time_backward 6.1460
[2023-09-01 17:35:32,173::train::INFO] [train] Iter 00592 | loss 3.4787 | loss(rot) 3.0870 | loss(pos) 0.3649 | loss(seq) 0.0269 | grad 3.7621 | lr 0.0010 | time_forward 4.2200 | time_backward 5.8260
[2023-09-01 17:35:35,071::train::INFO] [train] Iter 00593 | loss 2.7965 | loss(rot) 0.2843 | loss(pos) 2.4850 | loss(seq) 0.0272 | grad 5.4681 | lr 0.0010 | time_forward 1.3840 | time_backward 1.5110
[2023-09-01 17:35:43,376::train::INFO] [train] Iter 00594 | loss 1.6941 | loss(rot) 0.8407 | loss(pos) 0.6907 | loss(seq) 0.1626 | grad 4.7919 | lr 0.0010 | time_forward 3.5430 | time_backward 4.7010