text
stringlengths
56
1.16k
[2023-10-25 15:23:49,183::train::INFO] [train] Iter 597265 | loss 0.5376 | loss(rot) 0.5071 | loss(pos) 0.0299 | loss(seq) 0.0006 | grad 3.6637 | lr 0.0000 | time_forward 3.9250 | time_backward 4.7930
[2023-10-25 15:23:56,143::train::INFO] [train] Iter 597266 | loss 0.5722 | loss(rot) 0.2379 | loss(pos) 0.0656 | loss(seq) 0.2688 | grad 3.0773 | lr 0.0000 | time_forward 3.0710 | time_backward 3.8860
[2023-10-25 15:24:05,195::train::INFO] [train] Iter 597267 | loss 0.6513 | loss(rot) 0.0123 | loss(pos) 0.6384 | loss(seq) 0.0005 | grad 11.5627 | lr 0.0000 | time_forward 3.7910 | time_backward 5.2580
[2023-10-25 15:24:12,948::train::INFO] [train] Iter 597268 | loss 0.4180 | loss(rot) 0.1406 | loss(pos) 0.1718 | loss(seq) 0.1056 | grad 3.6733 | lr 0.0000 | time_forward 3.3500 | time_backward 4.3990
[2023-10-25 15:24:21,656::train::INFO] [train] Iter 597269 | loss 0.2241 | loss(rot) 0.1993 | loss(pos) 0.0237 | loss(seq) 0.0011 | grad 1.9672 | lr 0.0000 | time_forward 3.7700 | time_backward 4.9340
[2023-10-25 15:24:30,968::train::INFO] [train] Iter 597270 | loss 0.1782 | loss(rot) 0.1339 | loss(pos) 0.0235 | loss(seq) 0.0208 | grad 1.9805 | lr 0.0000 | time_forward 4.2520 | time_backward 5.0570
[2023-10-25 15:24:34,162::train::INFO] [train] Iter 597271 | loss 0.2990 | loss(rot) 0.1355 | loss(pos) 0.0475 | loss(seq) 0.1161 | grad 15.1877 | lr 0.0000 | time_forward 1.4620 | time_backward 1.7280
[2023-10-25 15:24:42,127::train::INFO] [train] Iter 597272 | loss 0.8433 | loss(rot) 0.5856 | loss(pos) 0.0570 | loss(seq) 0.2007 | grad 3.2292 | lr 0.0000 | time_forward 3.4630 | time_backward 4.5000
[2023-10-25 15:24:45,076::train::INFO] [train] Iter 597273 | loss 0.8023 | loss(rot) 0.5998 | loss(pos) 0.1880 | loss(seq) 0.0144 | grad 4.8137 | lr 0.0000 | time_forward 1.3180 | time_backward 1.6270
[2023-10-25 15:24:56,710::train::INFO] [train] Iter 597274 | loss 1.6022 | loss(rot) 1.5661 | loss(pos) 0.0342 | loss(seq) 0.0019 | grad 4.9637 | lr 0.0000 | time_forward 5.7640 | time_backward 5.8680
[2023-10-25 15:25:05,595::train::INFO] [train] Iter 597275 | loss 0.4930 | loss(rot) 0.1551 | loss(pos) 0.1809 | loss(seq) 0.1570 | grad 3.5049 | lr 0.0000 | time_forward 3.6390 | time_backward 5.2430
[2023-10-25 15:25:08,482::train::INFO] [train] Iter 597276 | loss 0.9651 | loss(rot) 0.3530 | loss(pos) 0.1135 | loss(seq) 0.4986 | grad 3.7318 | lr 0.0000 | time_forward 1.4530 | time_backward 1.4300
[2023-10-25 15:25:19,259::train::INFO] [train] Iter 597277 | loss 0.6300 | loss(rot) 0.2160 | loss(pos) 0.1335 | loss(seq) 0.2805 | grad 2.4378 | lr 0.0000 | time_forward 5.5740 | time_backward 5.1770
[2023-10-25 15:25:22,111::train::INFO] [train] Iter 597278 | loss 0.2727 | loss(rot) 0.1392 | loss(pos) 0.0444 | loss(seq) 0.0891 | grad 2.4261 | lr 0.0000 | time_forward 1.3310 | time_backward 1.5180
[2023-10-25 15:25:28,223::train::INFO] [train] Iter 597279 | loss 0.4623 | loss(rot) 0.1022 | loss(pos) 0.0445 | loss(seq) 0.3155 | grad 2.1414 | lr 0.0000 | time_forward 2.7770 | time_backward 3.3320
[2023-10-25 15:25:42,041::train::INFO] [train] Iter 597280 | loss 0.1813 | loss(rot) 0.0828 | loss(pos) 0.0225 | loss(seq) 0.0759 | grad 1.8723 | lr 0.0000 | time_forward 5.8940 | time_backward 7.9210
[2023-10-25 15:25:51,735::train::INFO] [train] Iter 597281 | loss 0.9098 | loss(rot) 0.5599 | loss(pos) 0.0555 | loss(seq) 0.2944 | grad 22.9151 | lr 0.0000 | time_forward 4.4240 | time_backward 5.2670
[2023-10-25 15:26:01,300::train::INFO] [train] Iter 597282 | loss 1.2079 | loss(rot) 0.2790 | loss(pos) 0.5232 | loss(seq) 0.4057 | grad 5.7104 | lr 0.0000 | time_forward 4.2050 | time_backward 5.3580
[2023-10-25 15:26:11,444::train::INFO] [train] Iter 597283 | loss 0.6976 | loss(rot) 0.6638 | loss(pos) 0.0338 | loss(seq) 0.0000 | grad 7.8450 | lr 0.0000 | time_forward 4.6930 | time_backward 5.4470
[2023-10-25 15:26:14,968::train::INFO] [train] Iter 597284 | loss 0.7800 | loss(rot) 0.7459 | loss(pos) 0.0250 | loss(seq) 0.0091 | grad 18.8421 | lr 0.0000 | time_forward 1.6790 | time_backward 1.8420
[2023-10-25 15:26:26,386::train::INFO] [train] Iter 597285 | loss 0.4970 | loss(rot) 0.1067 | loss(pos) 0.1555 | loss(seq) 0.2348 | grad 3.1207 | lr 0.0000 | time_forward 6.1880 | time_backward 5.2260
[2023-10-25 15:26:33,566::train::INFO] [train] Iter 597286 | loss 0.3413 | loss(rot) 0.2739 | loss(pos) 0.0674 | loss(seq) 0.0001 | grad 18.8816 | lr 0.0000 | time_forward 3.2460 | time_backward 3.9300
[2023-10-25 15:26:36,428::train::INFO] [train] Iter 597287 | loss 0.4657 | loss(rot) 0.0844 | loss(pos) 0.0239 | loss(seq) 0.3574 | grad 2.3387 | lr 0.0000 | time_forward 1.4150 | time_backward 1.4430
[2023-10-25 15:26:38,905::train::INFO] [train] Iter 597288 | loss 0.5640 | loss(rot) 0.2013 | loss(pos) 0.3430 | loss(seq) 0.0197 | grad 4.5921 | lr 0.0000 | time_forward 1.1150 | time_backward 1.3340
[2023-10-25 15:26:47,044::train::INFO] [train] Iter 597289 | loss 0.4650 | loss(rot) 0.3019 | loss(pos) 0.0190 | loss(seq) 0.1442 | grad 2.6423 | lr 0.0000 | time_forward 3.3510 | time_backward 4.7850
[2023-10-25 15:26:55,458::train::INFO] [train] Iter 597290 | loss 0.6236 | loss(rot) 0.0456 | loss(pos) 0.5606 | loss(seq) 0.0175 | grad 5.4787 | lr 0.0000 | time_forward 3.4030 | time_backward 5.0080
[2023-10-25 15:27:01,917::train::INFO] [train] Iter 597291 | loss 0.7487 | loss(rot) 0.0830 | loss(pos) 0.6551 | loss(seq) 0.0106 | grad 13.5427 | lr 0.0000 | time_forward 2.9120 | time_backward 3.5420
[2023-10-25 15:27:10,472::train::INFO] [train] Iter 597292 | loss 0.2167 | loss(rot) 0.1923 | loss(pos) 0.0237 | loss(seq) 0.0007 | grad 14.1518 | lr 0.0000 | time_forward 3.4030 | time_backward 5.1490
[2023-10-25 15:27:20,027::train::INFO] [train] Iter 597293 | loss 0.7133 | loss(rot) 0.5035 | loss(pos) 0.0303 | loss(seq) 0.1796 | grad 2.1626 | lr 0.0000 | time_forward 3.8260 | time_backward 5.7260
[2023-10-25 15:27:29,888::train::INFO] [train] Iter 597294 | loss 2.1383 | loss(rot) 1.8401 | loss(pos) 0.0641 | loss(seq) 0.2341 | grad 4.4711 | lr 0.0000 | time_forward 4.5800 | time_backward 5.2780
[2023-10-25 15:27:32,687::train::INFO] [train] Iter 597295 | loss 1.0700 | loss(rot) 0.9789 | loss(pos) 0.0185 | loss(seq) 0.0726 | grad 2.8911 | lr 0.0000 | time_forward 1.4230 | time_backward 1.3730
[2023-10-25 15:27:40,560::train::INFO] [train] Iter 597296 | loss 0.5246 | loss(rot) 0.4667 | loss(pos) 0.0106 | loss(seq) 0.0472 | grad 2.4968 | lr 0.0000 | time_forward 3.4910 | time_backward 4.3780
[2023-10-25 15:27:43,202::train::INFO] [train] Iter 597297 | loss 0.3816 | loss(rot) 0.0828 | loss(pos) 0.0598 | loss(seq) 0.2391 | grad 2.1009 | lr 0.0000 | time_forward 1.2790 | time_backward 1.3610
[2023-10-25 15:27:54,151::train::INFO] [train] Iter 597298 | loss 1.0606 | loss(rot) 1.0222 | loss(pos) 0.0353 | loss(seq) 0.0032 | grad 20.8793 | lr 0.0000 | time_forward 6.0040 | time_backward 4.9410
[2023-10-25 15:28:00,936::train::INFO] [train] Iter 597299 | loss 0.5966 | loss(rot) 0.1198 | loss(pos) 0.0875 | loss(seq) 0.3893 | grad 3.1109 | lr 0.0000 | time_forward 2.9430 | time_backward 3.8390
[2023-10-25 15:28:06,344::train::INFO] [train] Iter 597300 | loss 0.3418 | loss(rot) 0.0945 | loss(pos) 0.2188 | loss(seq) 0.0285 | grad 4.1336 | lr 0.0000 | time_forward 2.3160 | time_backward 3.0900
[2023-10-25 15:28:09,517::train::INFO] [train] Iter 597301 | loss 0.5673 | loss(rot) 0.1882 | loss(pos) 0.3431 | loss(seq) 0.0360 | grad 2.2969 | lr 0.0000 | time_forward 1.4570 | time_backward 1.7000
[2023-10-25 15:28:12,166::train::INFO] [train] Iter 597302 | loss 0.3902 | loss(rot) 0.1318 | loss(pos) 0.0653 | loss(seq) 0.1932 | grad 2.4953 | lr 0.0000 | time_forward 1.2670 | time_backward 1.3680
[2023-10-25 15:28:23,391::train::INFO] [train] Iter 597303 | loss 1.0126 | loss(rot) 0.2906 | loss(pos) 0.2227 | loss(seq) 0.4993 | grad 6.0032 | lr 0.0000 | time_forward 5.6930 | time_backward 5.5300
[2023-10-25 15:28:30,971::train::INFO] [train] Iter 597304 | loss 0.6124 | loss(rot) 0.1208 | loss(pos) 0.2891 | loss(seq) 0.2025 | grad 2.9037 | lr 0.0000 | time_forward 3.2650 | time_backward 4.3120
[2023-10-25 15:28:37,108::train::INFO] [train] Iter 597305 | loss 1.4680 | loss(rot) 1.3343 | loss(pos) 0.0487 | loss(seq) 0.0849 | grad 4.9494 | lr 0.0000 | time_forward 2.6820 | time_backward 3.4520
[2023-10-25 15:28:47,164::train::INFO] [train] Iter 597306 | loss 1.2810 | loss(rot) 1.2373 | loss(pos) 0.0327 | loss(seq) 0.0110 | grad 4.5632 | lr 0.0000 | time_forward 5.3340 | time_backward 4.7180
[2023-10-25 15:28:55,161::train::INFO] [train] Iter 597307 | loss 0.9073 | loss(rot) 0.5226 | loss(pos) 0.0640 | loss(seq) 0.3206 | grad 4.3881 | lr 0.0000 | time_forward 3.3130 | time_backward 4.6800
[2023-10-25 15:28:57,792::train::INFO] [train] Iter 597308 | loss 1.1589 | loss(rot) 0.0707 | loss(pos) 1.0866 | loss(seq) 0.0016 | grad 10.5590 | lr 0.0000 | time_forward 1.2720 | time_backward 1.3560
[2023-10-25 15:29:05,244::train::INFO] [train] Iter 597309 | loss 1.5711 | loss(rot) 1.5448 | loss(pos) 0.0260 | loss(seq) 0.0003 | grad 5.6243 | lr 0.0000 | time_forward 3.2560 | time_backward 4.1930
[2023-10-25 15:29:07,958::train::INFO] [train] Iter 597310 | loss 0.8789 | loss(rot) 0.4351 | loss(pos) 0.1056 | loss(seq) 0.3382 | grad 4.1456 | lr 0.0000 | time_forward 1.2550 | time_backward 1.4560
[2023-10-25 15:29:15,186::train::INFO] [train] Iter 597311 | loss 1.0484 | loss(rot) 0.5093 | loss(pos) 0.2556 | loss(seq) 0.2835 | grad 2.7655 | lr 0.0000 | time_forward 3.0770 | time_backward 4.1490
[2023-10-25 15:29:17,975::train::INFO] [train] Iter 597312 | loss 1.7559 | loss(rot) 1.2481 | loss(pos) 0.1024 | loss(seq) 0.4054 | grad 6.3939 | lr 0.0000 | time_forward 1.3060 | time_backward 1.4800
[2023-10-25 15:29:25,910::train::INFO] [train] Iter 597313 | loss 0.2352 | loss(rot) 0.0739 | loss(pos) 0.0463 | loss(seq) 0.1151 | grad 2.5651 | lr 0.0000 | time_forward 3.2530 | time_backward 4.6770
[2023-10-25 15:29:33,205::train::INFO] [train] Iter 597314 | loss 0.4937 | loss(rot) 0.1693 | loss(pos) 0.0280 | loss(seq) 0.2965 | grad 2.3606 | lr 0.0000 | time_forward 3.1250 | time_backward 4.1670
[2023-10-25 15:29:38,247::train::INFO] [train] Iter 597315 | loss 0.4167 | loss(rot) 0.1121 | loss(pos) 0.0296 | loss(seq) 0.2749 | grad 2.2128 | lr 0.0000 | time_forward 2.1910 | time_backward 2.8480
[2023-10-25 15:29:40,804::train::INFO] [train] Iter 597316 | loss 0.5130 | loss(rot) 0.2837 | loss(pos) 0.1380 | loss(seq) 0.0913 | grad 3.3054 | lr 0.0000 | time_forward 1.1880 | time_backward 1.3630
[2023-10-25 15:29:43,492::train::INFO] [train] Iter 597317 | loss 0.2029 | loss(rot) 0.0785 | loss(pos) 0.0770 | loss(seq) 0.0473 | grad 2.5083 | lr 0.0000 | time_forward 1.3150 | time_backward 1.3710
[2023-10-25 15:29:49,358::train::INFO] [train] Iter 597318 | loss 0.9763 | loss(rot) 0.5938 | loss(pos) 0.0653 | loss(seq) 0.3171 | grad 3.3388 | lr 0.0000 | time_forward 2.5770 | time_backward 3.2830
[2023-10-25 15:29:55,287::train::INFO] [train] Iter 597319 | loss 3.3673 | loss(rot) 0.0051 | loss(pos) 3.3622 | loss(seq) 0.0000 | grad 27.8728 | lr 0.0000 | time_forward 2.5930 | time_backward 3.3340
[2023-10-25 15:30:03,203::train::INFO] [train] Iter 597320 | loss 1.7044 | loss(rot) 1.2492 | loss(pos) 0.0807 | loss(seq) 0.3745 | grad 7.3305 | lr 0.0000 | time_forward 3.2760 | time_backward 4.6360
[2023-10-25 15:30:05,971::train::INFO] [train] Iter 597321 | loss 1.1218 | loss(rot) 0.6220 | loss(pos) 0.1248 | loss(seq) 0.3751 | grad 4.1070 | lr 0.0000 | time_forward 1.3020 | time_backward 1.4630
[2023-10-25 15:30:13,459::train::INFO] [train] Iter 597322 | loss 1.3845 | loss(rot) 1.3606 | loss(pos) 0.0203 | loss(seq) 0.0036 | grad 4.4570 | lr 0.0000 | time_forward 3.1760 | time_backward 4.3090
[2023-10-25 15:30:21,405::train::INFO] [train] Iter 597323 | loss 0.1969 | loss(rot) 0.0762 | loss(pos) 0.0768 | loss(seq) 0.0439 | grad 2.7121 | lr 0.0000 | time_forward 3.3320 | time_backward 4.6110
[2023-10-25 15:30:29,339::train::INFO] [train] Iter 597324 | loss 0.2342 | loss(rot) 0.0702 | loss(pos) 0.0851 | loss(seq) 0.0790 | grad 3.9539 | lr 0.0000 | time_forward 3.2770 | time_backward 4.6530
[2023-10-25 15:30:32,241::train::INFO] [train] Iter 597325 | loss 0.5238 | loss(rot) 0.4948 | loss(pos) 0.0125 | loss(seq) 0.0165 | grad 5.0492 | lr 0.0000 | time_forward 1.5360 | time_backward 1.3630
[2023-10-25 15:30:39,505::train::INFO] [train] Iter 597326 | loss 0.9725 | loss(rot) 0.9200 | loss(pos) 0.0526 | loss(seq) 0.0000 | grad 5.9107 | lr 0.0000 | time_forward 3.2140 | time_backward 4.0450
[2023-10-25 15:30:42,171::train::INFO] [train] Iter 597327 | loss 1.2757 | loss(rot) 0.4161 | loss(pos) 0.0797 | loss(seq) 0.7799 | grad 4.8222 | lr 0.0000 | time_forward 1.2800 | time_backward 1.3830
[2023-10-25 15:30:49,144::train::INFO] [train] Iter 597328 | loss 0.4432 | loss(rot) 0.3228 | loss(pos) 0.0243 | loss(seq) 0.0961 | grad 3.3343 | lr 0.0000 | time_forward 3.0580 | time_backward 3.9110
[2023-10-25 15:30:55,928::train::INFO] [train] Iter 597329 | loss 1.4491 | loss(rot) 0.6322 | loss(pos) 0.3212 | loss(seq) 0.4957 | grad 3.2822 | lr 0.0000 | time_forward 2.7700 | time_backward 4.0110
[2023-10-25 15:31:03,902::train::INFO] [train] Iter 597330 | loss 0.4057 | loss(rot) 0.3785 | loss(pos) 0.0258 | loss(seq) 0.0014 | grad 3.0330 | lr 0.0000 | time_forward 3.2970 | time_backward 4.6740
[2023-10-25 15:31:06,585::train::INFO] [train] Iter 597331 | loss 0.2437 | loss(rot) 0.2247 | loss(pos) 0.0190 | loss(seq) 0.0000 | grad 3.2216 | lr 0.0000 | time_forward 1.2900 | time_backward 1.3900
[2023-10-25 15:31:09,344::train::INFO] [train] Iter 597332 | loss 0.2127 | loss(rot) 0.0591 | loss(pos) 0.0879 | loss(seq) 0.0657 | grad 3.1441 | lr 0.0000 | time_forward 1.3240 | time_backward 1.4320
[2023-10-25 15:31:17,285::train::INFO] [train] Iter 597333 | loss 0.9536 | loss(rot) 0.5760 | loss(pos) 0.0241 | loss(seq) 0.3535 | grad 3.4627 | lr 0.0000 | time_forward 3.2830 | time_backward 4.6560
[2023-10-25 15:31:24,618::train::INFO] [train] Iter 597334 | loss 0.5674 | loss(rot) 0.0581 | loss(pos) 0.1811 | loss(seq) 0.3281 | grad 5.1984 | lr 0.0000 | time_forward 3.1890 | time_backward 4.1400
[2023-10-25 15:31:29,987::train::INFO] [train] Iter 597335 | loss 1.1303 | loss(rot) 0.6243 | loss(pos) 0.2317 | loss(seq) 0.2742 | grad 3.5473 | lr 0.0000 | time_forward 2.2890 | time_backward 3.0770
[2023-10-25 15:31:37,348::train::INFO] [train] Iter 597336 | loss 0.4758 | loss(rot) 0.2692 | loss(pos) 0.0725 | loss(seq) 0.1342 | grad 3.8532 | lr 0.0000 | time_forward 3.1620 | time_backward 4.1830
[2023-10-25 15:31:40,495::train::INFO] [train] Iter 597337 | loss 0.4829 | loss(rot) 0.0656 | loss(pos) 0.4078 | loss(seq) 0.0095 | grad 4.4474 | lr 0.0000 | time_forward 1.4350 | time_backward 1.7100
[2023-10-25 15:31:47,739::train::INFO] [train] Iter 597338 | loss 2.1048 | loss(rot) 1.3524 | loss(pos) 0.2789 | loss(seq) 0.4735 | grad 10.7837 | lr 0.0000 | time_forward 3.2020 | time_backward 4.0270
[2023-10-25 15:31:55,892::train::INFO] [train] Iter 597339 | loss 0.2297 | loss(rot) 0.1883 | loss(pos) 0.0402 | loss(seq) 0.0011 | grad 2.5828 | lr 0.0000 | time_forward 3.3410 | time_backward 4.8080
[2023-10-25 15:32:03,092::train::INFO] [train] Iter 597340 | loss 1.3293 | loss(rot) 1.0309 | loss(pos) 0.0706 | loss(seq) 0.2278 | grad 3.9855 | lr 0.0000 | time_forward 3.0790 | time_backward 4.1180
[2023-10-25 15:32:09,972::train::INFO] [train] Iter 597341 | loss 0.2191 | loss(rot) 0.0711 | loss(pos) 0.0933 | loss(seq) 0.0547 | grad 2.8108 | lr 0.0000 | time_forward 2.9750 | time_backward 3.9020
[2023-10-25 15:32:16,959::train::INFO] [train] Iter 597342 | loss 4.3293 | loss(rot) 0.0053 | loss(pos) 4.3241 | loss(seq) 0.0000 | grad 30.8649 | lr 0.0000 | time_forward 3.0550 | time_backward 3.9280
[2023-10-25 15:32:19,788::train::INFO] [train] Iter 597343 | loss 0.2877 | loss(rot) 0.1483 | loss(pos) 0.0614 | loss(seq) 0.0780 | grad 2.7258 | lr 0.0000 | time_forward 1.3360 | time_backward 1.4900
[2023-10-25 15:32:26,872::train::INFO] [train] Iter 597344 | loss 0.6409 | loss(rot) 0.0119 | loss(pos) 0.6256 | loss(seq) 0.0033 | grad 18.6258 | lr 0.0000 | time_forward 3.0250 | time_backward 4.0550
[2023-10-25 15:32:34,493::train::INFO] [train] Iter 597345 | loss 0.1404 | loss(rot) 0.1120 | loss(pos) 0.0148 | loss(seq) 0.0136 | grad 2.2153 | lr 0.0000 | time_forward 3.4450 | time_backward 4.1740
[2023-10-25 15:32:41,042::train::INFO] [train] Iter 597346 | loss 0.7956 | loss(rot) 0.7671 | loss(pos) 0.0278 | loss(seq) 0.0006 | grad 3.1158 | lr 0.0000 | time_forward 2.8070 | time_backward 3.7390
[2023-10-25 15:32:49,221::train::INFO] [train] Iter 597347 | loss 0.6999 | loss(rot) 0.4745 | loss(pos) 0.0284 | loss(seq) 0.1970 | grad 2.0441 | lr 0.0000 | time_forward 3.4220 | time_backward 4.7530
[2023-10-25 15:32:51,936::train::INFO] [train] Iter 597348 | loss 0.1850 | loss(rot) 0.0834 | loss(pos) 0.0288 | loss(seq) 0.0728 | grad 1.7391 | lr 0.0000 | time_forward 1.3020 | time_backward 1.4100
[2023-10-25 15:32:58,728::train::INFO] [train] Iter 597349 | loss 2.4326 | loss(rot) 1.9382 | loss(pos) 0.1050 | loss(seq) 0.3894 | grad 4.1808 | lr 0.0000 | time_forward 2.9430 | time_backward 3.8440
[2023-10-25 15:33:04,480::train::INFO] [train] Iter 597350 | loss 0.6181 | loss(rot) 0.2750 | loss(pos) 0.1367 | loss(seq) 0.2064 | grad 4.5927 | lr 0.0000 | time_forward 2.5640 | time_backward 3.1850
[2023-10-25 15:33:12,428::train::INFO] [train] Iter 597351 | loss 0.9526 | loss(rot) 0.1180 | loss(pos) 0.5123 | loss(seq) 0.3222 | grad 3.7496 | lr 0.0000 | time_forward 3.4340 | time_backward 4.5100
[2023-10-25 15:33:19,201::train::INFO] [train] Iter 597352 | loss 0.3487 | loss(rot) 0.1461 | loss(pos) 0.1023 | loss(seq) 0.1003 | grad 3.5423 | lr 0.0000 | time_forward 2.9470 | time_backward 3.8230
[2023-10-25 15:33:27,169::train::INFO] [train] Iter 597353 | loss 0.3308 | loss(rot) 0.1575 | loss(pos) 0.0483 | loss(seq) 0.1250 | grad 2.5338 | lr 0.0000 | time_forward 3.3060 | time_backward 4.6590
[2023-10-25 15:33:33,464::train::INFO] [train] Iter 597354 | loss 1.3548 | loss(rot) 1.2185 | loss(pos) 0.1274 | loss(seq) 0.0088 | grad 32.5332 | lr 0.0000 | time_forward 2.7610 | time_backward 3.5320
[2023-10-25 15:33:35,932::train::INFO] [train] Iter 597355 | loss 0.7556 | loss(rot) 0.7131 | loss(pos) 0.0419 | loss(seq) 0.0006 | grad 11.3799 | lr 0.0000 | time_forward 1.2250 | time_backward 1.2390
[2023-10-25 15:33:42,707::train::INFO] [train] Iter 597356 | loss 0.4539 | loss(rot) 0.1604 | loss(pos) 0.0358 | loss(seq) 0.2577 | grad 2.7406 | lr 0.0000 | time_forward 2.9680 | time_backward 3.8040
[2023-10-25 15:33:50,616::train::INFO] [train] Iter 597357 | loss 1.3757 | loss(rot) 1.0308 | loss(pos) 0.0697 | loss(seq) 0.2752 | grad 3.6384 | lr 0.0000 | time_forward 3.4460 | time_backward 4.4590
[2023-10-25 15:33:53,282::train::INFO] [train] Iter 597358 | loss 1.0735 | loss(rot) 0.7657 | loss(pos) 0.1381 | loss(seq) 0.1697 | grad 3.8483 | lr 0.0000 | time_forward 1.2820 | time_backward 1.3810
[2023-10-25 15:33:55,962::train::INFO] [train] Iter 597359 | loss 0.7824 | loss(rot) 0.5675 | loss(pos) 0.0424 | loss(seq) 0.1725 | grad 2.4102 | lr 0.0000 | time_forward 1.3020 | time_backward 1.3760
[2023-10-25 15:34:02,624::train::INFO] [train] Iter 597360 | loss 0.3990 | loss(rot) 0.1008 | loss(pos) 0.2953 | loss(seq) 0.0029 | grad 6.8768 | lr 0.0000 | time_forward 2.8970 | time_backward 3.7610
[2023-10-25 15:34:10,511::train::INFO] [train] Iter 597361 | loss 0.4864 | loss(rot) 0.0096 | loss(pos) 0.4754 | loss(seq) 0.0013 | grad 9.6234 | lr 0.0000 | time_forward 3.2640 | time_backward 4.6190
[2023-10-25 15:34:16,754::train::INFO] [train] Iter 597362 | loss 0.1923 | loss(rot) 0.1646 | loss(pos) 0.0265 | loss(seq) 0.0011 | grad 3.3286 | lr 0.0000 | time_forward 2.6950 | time_backward 3.5440
[2023-10-25 15:34:24,690::train::INFO] [train] Iter 597363 | loss 0.2536 | loss(rot) 0.2380 | loss(pos) 0.0120 | loss(seq) 0.0035 | grad 2.5197 | lr 0.0000 | time_forward 3.3150 | time_backward 4.6180
[2023-10-25 15:34:31,416::train::INFO] [train] Iter 597364 | loss 0.6293 | loss(rot) 0.1560 | loss(pos) 0.1092 | loss(seq) 0.3641 | grad 3.6869 | lr 0.0000 | time_forward 2.9010 | time_backward 3.8220