text
stringlengths
56
1.16k
[2023-10-25 18:28:21,390::train::INFO] [train] Iter 598964 | loss 0.2776 | loss(rot) 0.0986 | loss(pos) 0.1506 | loss(seq) 0.0283 | grad 3.6503 | lr 0.0000 | time_forward 3.5090 | time_backward 5.1300
[2023-10-25 18:28:28,866::train::INFO] [train] Iter 598965 | loss 0.2192 | loss(rot) 0.1840 | loss(pos) 0.0288 | loss(seq) 0.0064 | grad 2.9840 | lr 0.0000 | time_forward 3.1590 | time_backward 4.3130
[2023-10-25 18:28:31,696::train::INFO] [train] Iter 598966 | loss 0.4725 | loss(rot) 0.0680 | loss(pos) 0.0866 | loss(seq) 0.3179 | grad 2.9734 | lr 0.0000 | time_forward 1.3220 | time_backward 1.5040
[2023-10-25 18:28:39,813::train::INFO] [train] Iter 598967 | loss 0.1371 | loss(rot) 0.0819 | loss(pos) 0.0262 | loss(seq) 0.0290 | grad 2.6680 | lr 0.0000 | time_forward 3.5320 | time_backward 4.5810
[2023-10-25 18:28:48,405::train::INFO] [train] Iter 598968 | loss 1.6366 | loss(rot) 1.0976 | loss(pos) 0.0639 | loss(seq) 0.4751 | grad 5.7089 | lr 0.0000 | time_forward 3.5350 | time_backward 5.0540
[2023-10-25 18:28:57,068::train::INFO] [train] Iter 598969 | loss 0.5371 | loss(rot) 0.2297 | loss(pos) 0.0776 | loss(seq) 0.2297 | grad 2.4698 | lr 0.0000 | time_forward 3.5570 | time_backward 5.1030
[2023-10-25 18:29:05,853::train::INFO] [train] Iter 598970 | loss 1.1546 | loss(rot) 0.2134 | loss(pos) 0.9394 | loss(seq) 0.0018 | grad 11.5118 | lr 0.0000 | time_forward 3.6620 | time_backward 5.1210
[2023-10-25 18:29:08,311::train::INFO] [train] Iter 598971 | loss 0.5448 | loss(rot) 0.0181 | loss(pos) 0.5173 | loss(seq) 0.0094 | grad 7.2485 | lr 0.0000 | time_forward 1.1920 | time_backward 1.2620
[2023-10-25 18:29:16,909::train::INFO] [train] Iter 598972 | loss 0.2984 | loss(rot) 0.1108 | loss(pos) 0.0644 | loss(seq) 0.1232 | grad 2.2517 | lr 0.0000 | time_forward 3.5540 | time_backward 5.0410
[2023-10-25 18:29:22,721::train::INFO] [train] Iter 598973 | loss 0.4070 | loss(rot) 0.0942 | loss(pos) 0.2156 | loss(seq) 0.0972 | grad 4.9005 | lr 0.0000 | time_forward 2.4450 | time_backward 3.3640
[2023-10-25 18:29:25,449::train::INFO] [train] Iter 598974 | loss 1.4099 | loss(rot) 1.3415 | loss(pos) 0.0384 | loss(seq) 0.0301 | grad 5.6356 | lr 0.0000 | time_forward 1.2930 | time_backward 1.4220
[2023-10-25 18:29:28,318::train::INFO] [train] Iter 598975 | loss 0.4425 | loss(rot) 0.0269 | loss(pos) 0.4105 | loss(seq) 0.0051 | grad 3.5806 | lr 0.0000 | time_forward 1.3220 | time_backward 1.5230
[2023-10-25 18:29:36,827::train::INFO] [train] Iter 598976 | loss 0.7615 | loss(rot) 0.6928 | loss(pos) 0.0401 | loss(seq) 0.0286 | grad 4.0804 | lr 0.0000 | time_forward 3.4920 | time_backward 5.0140
[2023-10-25 18:29:39,102::train::INFO] [train] Iter 598977 | loss 0.2252 | loss(rot) 0.0350 | loss(pos) 0.0243 | loss(seq) 0.1659 | grad 1.5836 | lr 0.0000 | time_forward 1.0410 | time_backward 1.2300
[2023-10-25 18:29:45,376::train::INFO] [train] Iter 598978 | loss 0.1606 | loss(rot) 0.1123 | loss(pos) 0.0305 | loss(seq) 0.0178 | grad 2.1042 | lr 0.0000 | time_forward 2.6900 | time_backward 3.5810
[2023-10-25 18:29:53,005::train::INFO] [train] Iter 598979 | loss 0.2651 | loss(rot) 0.0942 | loss(pos) 0.1329 | loss(seq) 0.0380 | grad 3.2077 | lr 0.0000 | time_forward 3.2580 | time_backward 4.3680
[2023-10-25 18:30:01,430::train::INFO] [train] Iter 598980 | loss 0.9446 | loss(rot) 0.5508 | loss(pos) 0.1010 | loss(seq) 0.2928 | grad 3.3684 | lr 0.0000 | time_forward 3.5270 | time_backward 4.8950
[2023-10-25 18:30:09,320::train::INFO] [train] Iter 598981 | loss 0.2455 | loss(rot) 0.2031 | loss(pos) 0.0174 | loss(seq) 0.0251 | grad 1.9120 | lr 0.0000 | time_forward 3.3840 | time_backward 4.5030
[2023-10-25 18:30:17,873::train::INFO] [train] Iter 598982 | loss 0.9801 | loss(rot) 0.8774 | loss(pos) 0.0463 | loss(seq) 0.0565 | grad 2.2476 | lr 0.0000 | time_forward 3.5120 | time_backward 5.0370
[2023-10-25 18:30:25,083::train::INFO] [train] Iter 598983 | loss 1.6338 | loss(rot) 0.8464 | loss(pos) 0.4733 | loss(seq) 0.3141 | grad 4.6106 | lr 0.0000 | time_forward 3.0040 | time_backward 4.2020
[2023-10-25 18:30:32,838::train::INFO] [train] Iter 598984 | loss 2.1439 | loss(rot) 1.6878 | loss(pos) 0.1108 | loss(seq) 0.3453 | grad 5.2672 | lr 0.0000 | time_forward 3.3300 | time_backward 4.4230
[2023-10-25 18:30:35,662::train::INFO] [train] Iter 598985 | loss 0.9435 | loss(rot) 0.2516 | loss(pos) 0.1449 | loss(seq) 0.5470 | grad 5.1999 | lr 0.0000 | time_forward 1.2970 | time_backward 1.5240
[2023-10-25 18:30:43,029::train::INFO] [train] Iter 598986 | loss 0.1087 | loss(rot) 0.0610 | loss(pos) 0.0155 | loss(seq) 0.0322 | grad 1.5134 | lr 0.0000 | time_forward 3.1760 | time_backward 4.1870
[2023-10-25 18:30:45,761::train::INFO] [train] Iter 598987 | loss 0.2777 | loss(rot) 0.0354 | loss(pos) 0.0134 | loss(seq) 0.2289 | grad 1.6403 | lr 0.0000 | time_forward 1.2980 | time_backward 1.4300
[2023-10-25 18:30:54,405::train::INFO] [train] Iter 598988 | loss 0.9234 | loss(rot) 0.4673 | loss(pos) 0.1089 | loss(seq) 0.3472 | grad 3.1333 | lr 0.0000 | time_forward 3.7020 | time_backward 4.9390
[2023-10-25 18:31:01,901::train::INFO] [train] Iter 598989 | loss 0.6726 | loss(rot) 0.2278 | loss(pos) 0.1597 | loss(seq) 0.2852 | grad 4.6521 | lr 0.0000 | time_forward 3.2120 | time_backward 4.2810
[2023-10-25 18:31:10,513::train::INFO] [train] Iter 598990 | loss 0.7157 | loss(rot) 0.0282 | loss(pos) 0.6827 | loss(seq) 0.0048 | grad 4.7544 | lr 0.0000 | time_forward 3.7430 | time_backward 4.8660
[2023-10-25 18:31:18,303::train::INFO] [train] Iter 598991 | loss 0.2494 | loss(rot) 0.0467 | loss(pos) 0.0205 | loss(seq) 0.1822 | grad 1.8782 | lr 0.0000 | time_forward 3.3430 | time_backward 4.4440
[2023-10-25 18:31:27,250::train::INFO] [train] Iter 598992 | loss 0.3717 | loss(rot) 0.1231 | loss(pos) 0.0657 | loss(seq) 0.1829 | grad 2.2768 | lr 0.0000 | time_forward 3.6530 | time_backward 5.2920
[2023-10-25 18:31:35,789::train::INFO] [train] Iter 598993 | loss 0.2240 | loss(rot) 0.0770 | loss(pos) 0.0870 | loss(seq) 0.0600 | grad 2.9056 | lr 0.0000 | time_forward 3.5580 | time_backward 4.9770
[2023-10-25 18:31:38,455::train::INFO] [train] Iter 598994 | loss 1.7948 | loss(rot) 0.0074 | loss(pos) 1.7862 | loss(seq) 0.0012 | grad 13.8859 | lr 0.0000 | time_forward 1.2770 | time_backward 1.3860
[2023-10-25 18:31:41,170::train::INFO] [train] Iter 598995 | loss 2.3259 | loss(rot) 1.8269 | loss(pos) 0.1456 | loss(seq) 0.3534 | grad 3.6904 | lr 0.0000 | time_forward 1.2910 | time_backward 1.4050
[2023-10-25 18:31:49,754::train::INFO] [train] Iter 598996 | loss 0.3212 | loss(rot) 0.1037 | loss(pos) 0.1637 | loss(seq) 0.0538 | grad 2.6125 | lr 0.0000 | time_forward 3.5070 | time_backward 5.0740
[2023-10-25 18:31:52,453::train::INFO] [train] Iter 598997 | loss 0.6040 | loss(rot) 0.4870 | loss(pos) 0.0408 | loss(seq) 0.0762 | grad 2.5441 | lr 0.0000 | time_forward 1.2920 | time_backward 1.4030
[2023-10-25 18:31:55,177::train::INFO] [train] Iter 598998 | loss 1.9873 | loss(rot) 1.7733 | loss(pos) 0.1076 | loss(seq) 0.1064 | grad 8.2815 | lr 0.0000 | time_forward 1.3210 | time_backward 1.3980
[2023-10-25 18:32:03,798::train::INFO] [train] Iter 598999 | loss 0.9981 | loss(rot) 0.9808 | loss(pos) 0.0107 | loss(seq) 0.0066 | grad 3.3299 | lr 0.0000 | time_forward 3.6200 | time_backward 4.9980
[2023-10-25 18:32:10,861::train::INFO] [train] Iter 599000 | loss 0.3431 | loss(rot) 0.1902 | loss(pos) 0.0181 | loss(seq) 0.1348 | grad 3.2475 | lr 0.0000 | time_forward 2.9810 | time_backward 4.0790
[2023-10-25 18:32:58,524::train::INFO] [val] Iter 599000 | loss 1.2267 | loss(rot) 0.6577 | loss(pos) 0.3539 | loss(seq) 0.2151
[2023-10-25 18:33:01,686::train::INFO] [train] Iter 599001 | loss 0.2617 | loss(rot) 0.1094 | loss(pos) 0.0577 | loss(seq) 0.0947 | grad 2.8419 | lr 0.0000 | time_forward 1.2870 | time_backward 1.4590
[2023-10-25 18:33:10,664::train::INFO] [train] Iter 599002 | loss 1.1400 | loss(rot) 0.6569 | loss(pos) 0.1335 | loss(seq) 0.3497 | grad 4.2021 | lr 0.0000 | time_forward 3.9810 | time_backward 4.9750
[2023-10-25 18:33:12,879::train::INFO] [train] Iter 599003 | loss 0.5661 | loss(rot) 0.2093 | loss(pos) 0.3229 | loss(seq) 0.0339 | grad 4.2844 | lr 0.0000 | time_forward 1.0080 | time_backward 1.2040
[2023-10-25 18:33:21,229::train::INFO] [train] Iter 599004 | loss 0.4647 | loss(rot) 0.1056 | loss(pos) 0.3384 | loss(seq) 0.0207 | grad 3.6399 | lr 0.0000 | time_forward 3.3830 | time_backward 4.9530
[2023-10-25 18:33:23,999::train::INFO] [train] Iter 599005 | loss 0.9287 | loss(rot) 0.3364 | loss(pos) 0.5587 | loss(seq) 0.0336 | grad 7.4988 | lr 0.0000 | time_forward 1.3290 | time_backward 1.4380
[2023-10-25 18:33:31,816::train::INFO] [train] Iter 599006 | loss 0.5721 | loss(rot) 0.1143 | loss(pos) 0.1667 | loss(seq) 0.2911 | grad 3.8388 | lr 0.0000 | time_forward 3.2770 | time_backward 4.5350
[2023-10-25 18:33:39,271::train::INFO] [train] Iter 599007 | loss 0.4259 | loss(rot) 0.2039 | loss(pos) 0.0281 | loss(seq) 0.1939 | grad 2.7240 | lr 0.0000 | time_forward 3.2150 | time_backward 4.2370
[2023-10-25 18:33:41,188::train::INFO] [train] Iter 599008 | loss 0.4246 | loss(rot) 0.0838 | loss(pos) 0.0878 | loss(seq) 0.2530 | grad 4.5474 | lr 0.0000 | time_forward 0.8790 | time_backward 1.0350
[2023-10-25 18:33:48,917::train::INFO] [train] Iter 599009 | loss 0.6179 | loss(rot) 0.2620 | loss(pos) 0.0311 | loss(seq) 0.3248 | grad 4.0731 | lr 0.0000 | time_forward 3.3610 | time_backward 4.3660
[2023-10-25 18:33:55,703::train::INFO] [train] Iter 599010 | loss 0.5204 | loss(rot) 0.3283 | loss(pos) 0.0544 | loss(seq) 0.1377 | grad 12.0001 | lr 0.0000 | time_forward 2.9030 | time_backward 3.8790
[2023-10-25 18:34:03,890::train::INFO] [train] Iter 599011 | loss 0.6734 | loss(rot) 0.4431 | loss(pos) 0.1942 | loss(seq) 0.0362 | grad 3.3977 | lr 0.0000 | time_forward 3.3750 | time_backward 4.8090
[2023-10-25 18:34:10,000::train::INFO] [train] Iter 599012 | loss 1.6165 | loss(rot) 1.4888 | loss(pos) 0.0590 | loss(seq) 0.0688 | grad 4.3271 | lr 0.0000 | time_forward 2.6300 | time_backward 3.4770
[2023-10-25 18:34:18,380::train::INFO] [train] Iter 599013 | loss 0.7973 | loss(rot) 0.0456 | loss(pos) 0.7476 | loss(seq) 0.0041 | grad 10.5115 | lr 0.0000 | time_forward 3.4480 | time_backward 4.9290
[2023-10-25 18:34:25,878::train::INFO] [train] Iter 599014 | loss 0.1250 | loss(rot) 0.0213 | loss(pos) 0.0871 | loss(seq) 0.0166 | grad 2.1583 | lr 0.0000 | time_forward 3.2240 | time_backward 4.2720
[2023-10-25 18:34:33,021::train::INFO] [train] Iter 599015 | loss 0.5542 | loss(rot) 0.5091 | loss(pos) 0.0210 | loss(seq) 0.0241 | grad 2.7549 | lr 0.0000 | time_forward 3.0440 | time_backward 4.0960
[2023-10-25 18:34:41,648::train::INFO] [train] Iter 599016 | loss 0.1412 | loss(rot) 0.1124 | loss(pos) 0.0276 | loss(seq) 0.0011 | grad 3.0401 | lr 0.0000 | time_forward 3.5940 | time_backward 5.0290
[2023-10-25 18:34:44,509::train::INFO] [train] Iter 599017 | loss 0.6415 | loss(rot) 0.0990 | loss(pos) 0.2152 | loss(seq) 0.3274 | grad 3.3793 | lr 0.0000 | time_forward 1.2910 | time_backward 1.5670
[2023-10-25 18:34:47,216::train::INFO] [train] Iter 599018 | loss 0.9875 | loss(rot) 0.0405 | loss(pos) 0.9332 | loss(seq) 0.0138 | grad 10.5670 | lr 0.0000 | time_forward 1.2690 | time_backward 1.4360
[2023-10-25 18:34:49,994::train::INFO] [train] Iter 599019 | loss 0.3465 | loss(rot) 0.1013 | loss(pos) 0.2205 | loss(seq) 0.0247 | grad 5.8399 | lr 0.0000 | time_forward 1.3170 | time_backward 1.4580
[2023-10-25 18:34:57,157::train::INFO] [train] Iter 599020 | loss 0.7899 | loss(rot) 0.0666 | loss(pos) 0.1432 | loss(seq) 0.5801 | grad 4.3651 | lr 0.0000 | time_forward 3.0780 | time_backward 4.0810
[2023-10-25 18:35:04,618::train::INFO] [train] Iter 599021 | loss 0.6466 | loss(rot) 0.0276 | loss(pos) 0.6150 | loss(seq) 0.0040 | grad 6.3317 | lr 0.0000 | time_forward 3.1940 | time_backward 4.2650
[2023-10-25 18:35:06,812::train::INFO] [train] Iter 599022 | loss 0.4164 | loss(rot) 0.3833 | loss(pos) 0.0103 | loss(seq) 0.0228 | grad 2.4607 | lr 0.0000 | time_forward 1.0150 | time_backward 1.1760
[2023-10-25 18:35:15,206::train::INFO] [train] Iter 599023 | loss 1.8502 | loss(rot) 1.7747 | loss(pos) 0.0755 | loss(seq) 0.0000 | grad 9.2329 | lr 0.0000 | time_forward 3.5810 | time_backward 4.8100
[2023-10-25 18:35:22,270::train::INFO] [train] Iter 599024 | loss 0.2474 | loss(rot) 0.0520 | loss(pos) 0.1799 | loss(seq) 0.0156 | grad 4.2741 | lr 0.0000 | time_forward 3.0250 | time_backward 4.0340
[2023-10-25 18:35:30,856::train::INFO] [train] Iter 599025 | loss 1.2228 | loss(rot) 0.3764 | loss(pos) 0.5746 | loss(seq) 0.2718 | grad 6.8785 | lr 0.0000 | time_forward 3.5660 | time_backward 5.0170
[2023-10-25 18:35:39,306::train::INFO] [train] Iter 599026 | loss 0.2832 | loss(rot) 0.1716 | loss(pos) 0.0981 | loss(seq) 0.0135 | grad 3.4978 | lr 0.0000 | time_forward 3.5110 | time_backward 4.9350
[2023-10-25 18:35:47,612::train::INFO] [train] Iter 599027 | loss 0.7678 | loss(rot) 0.4191 | loss(pos) 0.0569 | loss(seq) 0.2918 | grad 4.1189 | lr 0.0000 | time_forward 3.4510 | time_backward 4.8530
[2023-10-25 18:35:50,347::train::INFO] [train] Iter 599028 | loss 0.9397 | loss(rot) 0.5520 | loss(pos) 0.0557 | loss(seq) 0.3320 | grad 2.9064 | lr 0.0000 | time_forward 1.2880 | time_backward 1.4430
[2023-10-25 18:35:58,814::train::INFO] [train] Iter 599029 | loss 0.3490 | loss(rot) 0.0915 | loss(pos) 0.0367 | loss(seq) 0.2208 | grad 2.9184 | lr 0.0000 | time_forward 3.4100 | time_backward 5.0550
[2023-10-25 18:36:07,415::train::INFO] [train] Iter 599030 | loss 0.5588 | loss(rot) 0.4744 | loss(pos) 0.0431 | loss(seq) 0.0412 | grad 2.5247 | lr 0.0000 | time_forward 3.5360 | time_backward 5.0610
[2023-10-25 18:36:09,054::train::INFO] [train] Iter 599031 | loss 0.9969 | loss(rot) 0.0870 | loss(pos) 0.7633 | loss(seq) 0.1465 | grad 8.9506 | lr 0.0000 | time_forward 0.7360 | time_backward 0.9000
[2023-10-25 18:36:16,988::train::INFO] [train] Iter 599032 | loss 0.4693 | loss(rot) 0.0225 | loss(pos) 0.4464 | loss(seq) 0.0004 | grad 7.2536 | lr 0.0000 | time_forward 3.3970 | time_backward 4.5340
[2023-10-25 18:36:24,118::train::INFO] [train] Iter 599033 | loss 0.3772 | loss(rot) 0.0768 | loss(pos) 0.0489 | loss(seq) 0.2516 | grad 2.8210 | lr 0.0000 | time_forward 3.0250 | time_backward 4.1020
[2023-10-25 18:36:31,438::train::INFO] [train] Iter 599034 | loss 0.6885 | loss(rot) 0.2445 | loss(pos) 0.1737 | loss(seq) 0.2703 | grad 3.0112 | lr 0.0000 | time_forward 3.1770 | time_backward 4.1400
[2023-10-25 18:36:34,192::train::INFO] [train] Iter 599035 | loss 0.4589 | loss(rot) 0.0580 | loss(pos) 0.1974 | loss(seq) 0.2035 | grad 4.2094 | lr 0.0000 | time_forward 1.2840 | time_backward 1.4660
[2023-10-25 18:36:36,858::train::INFO] [train] Iter 599036 | loss 0.2444 | loss(rot) 0.1298 | loss(pos) 0.0233 | loss(seq) 0.0913 | grad 1.7876 | lr 0.0000 | time_forward 1.2750 | time_backward 1.3890
[2023-10-25 18:36:44,361::train::INFO] [train] Iter 599037 | loss 0.4037 | loss(rot) 0.3658 | loss(pos) 0.0377 | loss(seq) 0.0003 | grad 3.2662 | lr 0.0000 | time_forward 3.2630 | time_backward 4.2360
[2023-10-25 18:36:52,039::train::INFO] [train] Iter 599038 | loss 0.3315 | loss(rot) 0.0685 | loss(pos) 0.0304 | loss(seq) 0.2327 | grad 1.7813 | lr 0.0000 | time_forward 3.2970 | time_backward 4.3790
[2023-10-25 18:37:00,468::train::INFO] [train] Iter 599039 | loss 0.4997 | loss(rot) 0.0708 | loss(pos) 0.0847 | loss(seq) 0.3442 | grad 3.1580 | lr 0.0000 | time_forward 3.4500 | time_backward 4.9750
[2023-10-25 18:37:03,205::train::INFO] [train] Iter 599040 | loss 0.4354 | loss(rot) 0.3958 | loss(pos) 0.0228 | loss(seq) 0.0168 | grad 21.4165 | lr 0.0000 | time_forward 1.3070 | time_backward 1.4260
[2023-10-25 18:37:06,434::train::INFO] [train] Iter 599041 | loss 0.3603 | loss(rot) 0.3308 | loss(pos) 0.0285 | loss(seq) 0.0011 | grad 2.8027 | lr 0.0000 | time_forward 1.4540 | time_backward 1.7730
[2023-10-25 18:37:13,347::train::INFO] [train] Iter 599042 | loss 0.8601 | loss(rot) 0.1615 | loss(pos) 0.6875 | loss(seq) 0.0111 | grad 8.1507 | lr 0.0000 | time_forward 2.9440 | time_backward 3.9660
[2023-10-25 18:37:16,697::train::INFO] [train] Iter 599043 | loss 2.4955 | loss(rot) 2.4193 | loss(pos) 0.0699 | loss(seq) 0.0062 | grad 3.8246 | lr 0.0000 | time_forward 1.5260 | time_backward 1.8200
[2023-10-25 18:37:23,086::train::INFO] [train] Iter 599044 | loss 0.6520 | loss(rot) 0.4190 | loss(pos) 0.0168 | loss(seq) 0.2162 | grad 4.0753 | lr 0.0000 | time_forward 2.7170 | time_backward 3.6610
[2023-10-25 18:37:30,541::train::INFO] [train] Iter 599045 | loss 0.3940 | loss(rot) 0.1141 | loss(pos) 0.2556 | loss(seq) 0.0242 | grad 3.9783 | lr 0.0000 | time_forward 3.1610 | time_backward 4.2700
[2023-10-25 18:37:38,967::train::INFO] [train] Iter 599046 | loss 1.9481 | loss(rot) 1.6289 | loss(pos) 0.0990 | loss(seq) 0.2202 | grad 4.3818 | lr 0.0000 | time_forward 3.5020 | time_backward 4.9210
[2023-10-25 18:37:46,025::train::INFO] [train] Iter 599047 | loss 0.1899 | loss(rot) 0.1054 | loss(pos) 0.0664 | loss(seq) 0.0181 | grad 2.7356 | lr 0.0000 | time_forward 3.0260 | time_backward 4.0300
[2023-10-25 18:37:54,488::train::INFO] [train] Iter 599048 | loss 1.1136 | loss(rot) 0.4401 | loss(pos) 0.1500 | loss(seq) 0.5236 | grad 4.3824 | lr 0.0000 | time_forward 3.4600 | time_backward 4.9990
[2023-10-25 18:38:01,735::train::INFO] [train] Iter 599049 | loss 0.7903 | loss(rot) 0.4972 | loss(pos) 0.0490 | loss(seq) 0.2442 | grad 3.2333 | lr 0.0000 | time_forward 3.1080 | time_backward 4.1360
[2023-10-25 18:38:04,900::train::INFO] [train] Iter 599050 | loss 2.1880 | loss(rot) 1.7568 | loss(pos) 0.0569 | loss(seq) 0.3744 | grad 3.6335 | lr 0.0000 | time_forward 1.4520 | time_backward 1.7100
[2023-10-25 18:38:12,543::train::INFO] [train] Iter 599051 | loss 2.0371 | loss(rot) 1.3639 | loss(pos) 0.2134 | loss(seq) 0.4598 | grad 4.4214 | lr 0.0000 | time_forward 3.2090 | time_backward 4.4190
[2023-10-25 18:38:19,577::train::INFO] [train] Iter 599052 | loss 0.2547 | loss(rot) 0.2268 | loss(pos) 0.0279 | loss(seq) 0.0000 | grad 2.6054 | lr 0.0000 | time_forward 3.0200 | time_backward 4.0120
[2023-10-25 18:38:28,030::train::INFO] [train] Iter 599053 | loss 1.3348 | loss(rot) 0.6402 | loss(pos) 0.0824 | loss(seq) 0.6121 | grad 5.7468 | lr 0.0000 | time_forward 3.5090 | time_backward 4.9400
[2023-10-25 18:38:36,320::train::INFO] [train] Iter 599054 | loss 1.1272 | loss(rot) 0.5578 | loss(pos) 0.2443 | loss(seq) 0.3251 | grad 3.2806 | lr 0.0000 | time_forward 3.6390 | time_backward 4.6490
[2023-10-25 18:38:39,008::train::INFO] [train] Iter 599055 | loss 0.6671 | loss(rot) 0.1240 | loss(pos) 0.4235 | loss(seq) 0.1196 | grad 2.5788 | lr 0.0000 | time_forward 1.2570 | time_backward 1.4280
[2023-10-25 18:38:41,725::train::INFO] [train] Iter 599056 | loss 0.4396 | loss(rot) 0.0204 | loss(pos) 0.4171 | loss(seq) 0.0021 | grad 7.2440 | lr 0.0000 | time_forward 1.3110 | time_backward 1.4030
[2023-10-25 18:38:50,053::train::INFO] [train] Iter 599057 | loss 1.3673 | loss(rot) 0.6253 | loss(pos) 0.2468 | loss(seq) 0.4952 | grad 4.1615 | lr 0.0000 | time_forward 3.6000 | time_backward 4.7070
[2023-10-25 18:38:58,578::train::INFO] [train] Iter 599058 | loss 0.3155 | loss(rot) 0.1655 | loss(pos) 0.0246 | loss(seq) 0.1254 | grad 2.5851 | lr 0.0000 | time_forward 3.5110 | time_backward 5.0120
[2023-10-25 18:39:00,832::train::INFO] [train] Iter 599059 | loss 2.1928 | loss(rot) 0.0033 | loss(pos) 2.1895 | loss(seq) 0.0000 | grad 22.9937 | lr 0.0000 | time_forward 1.0380 | time_backward 1.2120
[2023-10-25 18:39:08,764::train::INFO] [train] Iter 599060 | loss 0.8110 | loss(rot) 0.7503 | loss(pos) 0.0607 | loss(seq) 0.0000 | grad 5.9751 | lr 0.0000 | time_forward 3.4390 | time_backward 4.4900
[2023-10-25 18:39:10,988::train::INFO] [train] Iter 599061 | loss 3.2166 | loss(rot) 0.0026 | loss(pos) 3.2140 | loss(seq) 0.0000 | grad 18.2247 | lr 0.0000 | time_forward 1.0230 | time_backward 1.1970
[2023-10-25 18:39:18,942::train::INFO] [train] Iter 599062 | loss 1.5895 | loss(rot) 0.8814 | loss(pos) 0.1670 | loss(seq) 0.5411 | grad 2.7558 | lr 0.0000 | time_forward 3.4370 | time_backward 4.5130