text
stringlengths 56
1.16k
|
---|
[2023-09-01 17:59:08,683::train::INFO] [train] Iter 00795 | loss 1.6468 | loss(rot) 0.5450 | loss(pos) 0.7943 | loss(seq) 0.3075 | grad 4.8092 | lr 0.0010 | time_forward 1.3690 | time_backward 1.4520
|
[2023-09-01 17:59:16,485::train::INFO] [train] Iter 00796 | loss 3.2182 | loss(rot) 2.8946 | loss(pos) 0.3173 | loss(seq) 0.0064 | grad 3.6781 | lr 0.0010 | time_forward 3.3930 | time_backward 4.4050
|
[2023-09-01 17:59:18,889::train::INFO] [train] Iter 00797 | loss 1.9159 | loss(rot) 0.7748 | loss(pos) 0.6651 | loss(seq) 0.4761 | grad 3.9193 | lr 0.0010 | time_forward 1.1530 | time_backward 1.2470
|
[2023-09-01 17:59:27,347::train::INFO] [train] Iter 00798 | loss 3.5189 | loss(rot) 3.1522 | loss(pos) 0.3666 | loss(seq) 0.0001 | grad 5.3418 | lr 0.0010 | time_forward 3.7080 | time_backward 4.7470
|
[2023-09-01 17:59:35,873::train::INFO] [train] Iter 00799 | loss 1.9345 | loss(rot) 0.3305 | loss(pos) 1.5598 | loss(seq) 0.0442 | grad 4.6984 | lr 0.0010 | time_forward 3.5690 | time_backward 4.9540
|
[2023-09-01 17:59:45,938::train::INFO] [train] Iter 00800 | loss 2.5205 | loss(rot) 1.4756 | loss(pos) 0.4940 | loss(seq) 0.5509 | grad 3.8209 | lr 0.0010 | time_forward 3.9690 | time_backward 6.0920
|
[2023-09-01 17:59:55,818::train::INFO] [train] Iter 00801 | loss 3.2229 | loss(rot) 2.4515 | loss(pos) 0.2907 | loss(seq) 0.4807 | grad 4.6027 | lr 0.0010 | time_forward 3.8820 | time_backward 5.9940
|
[2023-09-01 18:00:04,931::train::INFO] [train] Iter 00802 | loss 2.5520 | loss(rot) 0.0484 | loss(pos) 2.4976 | loss(seq) 0.0059 | grad 4.6498 | lr 0.0010 | time_forward 3.8630 | time_backward 5.2470
|
[2023-09-01 18:00:13,880::train::INFO] [train] Iter 00803 | loss 3.9068 | loss(rot) 3.7253 | loss(pos) 0.1814 | loss(seq) 0.0000 | grad 2.9872 | lr 0.0010 | time_forward 3.8880 | time_backward 5.0580
|
[2023-09-01 18:00:23,924::train::INFO] [train] Iter 00804 | loss 1.9281 | loss(rot) 1.1954 | loss(pos) 0.4239 | loss(seq) 0.3089 | grad 3.3025 | lr 0.0010 | time_forward 4.0920 | time_backward 5.9490
|
[2023-09-01 18:00:32,814::train::INFO] [train] Iter 00805 | loss 2.0831 | loss(rot) 0.4891 | loss(pos) 1.4765 | loss(seq) 0.1175 | grad 4.9886 | lr 0.0010 | time_forward 3.8160 | time_backward 5.0700
|
[2023-09-01 18:00:39,018::train::INFO] [train] Iter 00806 | loss 3.7818 | loss(rot) 2.9158 | loss(pos) 0.4602 | loss(seq) 0.4058 | grad 3.9351 | lr 0.0010 | time_forward 2.7510 | time_backward 3.4480
|
[2023-09-01 18:00:41,443::train::INFO] [train] Iter 00807 | loss 2.4718 | loss(rot) 0.3592 | loss(pos) 2.0701 | loss(seq) 0.0425 | grad 6.0893 | lr 0.0010 | time_forward 1.2040 | time_backward 1.2170
|
[2023-09-01 18:00:48,851::train::INFO] [train] Iter 00808 | loss 3.0915 | loss(rot) 2.8724 | loss(pos) 0.2075 | loss(seq) 0.0116 | grad 2.8753 | lr 0.0010 | time_forward 3.0110 | time_backward 4.3940
|
[2023-09-01 18:00:56,953::train::INFO] [train] Iter 00809 | loss 1.4739 | loss(rot) 0.7556 | loss(pos) 0.5622 | loss(seq) 0.1561 | grad 3.7349 | lr 0.0010 | time_forward 3.2650 | time_backward 4.8330
|
[2023-09-01 18:01:05,938::train::INFO] [train] Iter 00810 | loss 2.8239 | loss(rot) 2.5642 | loss(pos) 0.2131 | loss(seq) 0.0466 | grad 3.2187 | lr 0.0010 | time_forward 3.8220 | time_backward 5.1590
|
[2023-09-01 18:01:08,706::train::INFO] [train] Iter 00811 | loss 3.4075 | loss(rot) 2.8016 | loss(pos) 0.5562 | loss(seq) 0.0497 | grad 3.5591 | lr 0.0010 | time_forward 1.3070 | time_backward 1.4580
|
[2023-09-01 18:01:11,558::train::INFO] [train] Iter 00812 | loss 3.0008 | loss(rot) 2.0584 | loss(pos) 0.5572 | loss(seq) 0.3852 | grad 5.0942 | lr 0.0010 | time_forward 1.3750 | time_backward 1.4730
|
[2023-09-01 18:01:14,431::train::INFO] [train] Iter 00813 | loss 3.8548 | loss(rot) 2.6354 | loss(pos) 0.8344 | loss(seq) 0.3850 | grad 5.4556 | lr 0.0010 | time_forward 1.3760 | time_backward 1.4930
|
[2023-09-01 18:01:17,450::train::INFO] [train] Iter 00814 | loss 3.5591 | loss(rot) 3.2350 | loss(pos) 0.3079 | loss(seq) 0.0161 | grad 3.2432 | lr 0.0010 | time_forward 1.5170 | time_backward 1.4990
|
[2023-09-01 18:01:27,784::train::INFO] [train] Iter 00815 | loss 3.0179 | loss(rot) 2.7015 | loss(pos) 0.1028 | loss(seq) 0.2136 | grad 2.7537 | lr 0.0010 | time_forward 4.4300 | time_backward 5.9010
|
[2023-09-01 18:01:35,410::train::INFO] [train] Iter 00816 | loss 3.0795 | loss(rot) 2.3880 | loss(pos) 0.3065 | loss(seq) 0.3850 | grad 4.2291 | lr 0.0010 | time_forward 3.3440 | time_backward 4.2780
|
[2023-09-01 18:01:44,234::train::INFO] [train] Iter 00817 | loss 3.0993 | loss(rot) 1.6705 | loss(pos) 0.9221 | loss(seq) 0.5068 | grad 3.8699 | lr 0.0010 | time_forward 3.7850 | time_backward 5.0350
|
[2023-09-01 18:01:54,314::train::INFO] [train] Iter 00818 | loss 1.9502 | loss(rot) 0.8321 | loss(pos) 0.8177 | loss(seq) 0.3004 | grad 3.0234 | lr 0.0010 | time_forward 4.1380 | time_backward 5.9380
|
[2023-09-01 18:02:02,090::train::INFO] [train] Iter 00819 | loss 3.9503 | loss(rot) 3.2706 | loss(pos) 0.3480 | loss(seq) 0.3317 | grad 2.5548 | lr 0.0010 | time_forward 3.1010 | time_backward 4.6720
|
[2023-09-01 18:02:11,582::train::INFO] [train] Iter 00820 | loss 1.8065 | loss(rot) 0.7506 | loss(pos) 0.8157 | loss(seq) 0.2403 | grad 2.7971 | lr 0.0010 | time_forward 4.3070 | time_backward 5.1810
|
[2023-09-01 18:02:20,809::train::INFO] [train] Iter 00821 | loss 2.4550 | loss(rot) 2.0753 | loss(pos) 0.2506 | loss(seq) 0.1291 | grad 3.5494 | lr 0.0010 | time_forward 4.0600 | time_backward 5.1640
|
[2023-09-01 18:02:30,929::train::INFO] [train] Iter 00822 | loss 2.2415 | loss(rot) 1.2305 | loss(pos) 0.5186 | loss(seq) 0.4924 | grad 2.9647 | lr 0.0010 | time_forward 4.1180 | time_backward 6.0000
|
[2023-09-01 18:02:33,778::train::INFO] [train] Iter 00823 | loss 2.2217 | loss(rot) 0.8386 | loss(pos) 1.2467 | loss(seq) 0.1364 | grad 6.3383 | lr 0.0010 | time_forward 1.3680 | time_backward 1.4770
|
[2023-09-01 18:02:43,164::train::INFO] [train] Iter 00824 | loss 3.3683 | loss(rot) 3.0508 | loss(pos) 0.3031 | loss(seq) 0.0144 | grad 3.2917 | lr 0.0010 | time_forward 3.9560 | time_backward 5.3970
|
[2023-09-01 18:02:52,099::train::INFO] [train] Iter 00825 | loss 3.2254 | loss(rot) 2.1052 | loss(pos) 0.5969 | loss(seq) 0.5233 | grad 5.1374 | lr 0.0010 | time_forward 3.7610 | time_backward 5.1710
|
[2023-09-01 18:03:00,355::train::INFO] [train] Iter 00826 | loss 3.7690 | loss(rot) 3.3510 | loss(pos) 0.3658 | loss(seq) 0.0522 | grad 4.8976 | lr 0.0010 | time_forward 3.5910 | time_backward 4.6620
|
[2023-09-01 18:03:02,695::train::INFO] [train] Iter 00827 | loss 3.1219 | loss(rot) 0.6078 | loss(pos) 2.4536 | loss(seq) 0.0604 | grad 4.8854 | lr 0.0010 | time_forward 1.0760 | time_backward 1.2600
|
[2023-09-01 18:03:11,101::train::INFO] [train] Iter 00828 | loss 3.4934 | loss(rot) 2.9729 | loss(pos) 0.5050 | loss(seq) 0.0154 | grad 4.5377 | lr 0.0010 | time_forward 3.5840 | time_backward 4.8180
|
[2023-09-01 18:03:20,780::train::INFO] [train] Iter 00829 | loss 2.4063 | loss(rot) 1.8218 | loss(pos) 0.1002 | loss(seq) 0.4844 | grad 2.3871 | lr 0.0010 | time_forward 4.0480 | time_backward 5.6270
|
[2023-09-01 18:03:30,267::train::INFO] [train] Iter 00830 | loss 2.3137 | loss(rot) 2.0144 | loss(pos) 0.1272 | loss(seq) 0.1721 | grad 3.3087 | lr 0.0010 | time_forward 4.0290 | time_backward 5.4540
|
[2023-09-01 18:03:39,315::train::INFO] [train] Iter 00831 | loss 1.7380 | loss(rot) 1.0342 | loss(pos) 0.3436 | loss(seq) 0.3603 | grad 2.3181 | lr 0.0010 | time_forward 3.7000 | time_backward 5.3440
|
[2023-09-01 18:03:49,154::train::INFO] [train] Iter 00832 | loss 3.2015 | loss(rot) 2.3476 | loss(pos) 0.3981 | loss(seq) 0.4558 | grad 3.4187 | lr 0.0010 | time_forward 3.8710 | time_backward 5.9650
|
[2023-09-01 18:03:57,536::train::INFO] [train] Iter 00833 | loss 2.3375 | loss(rot) 1.4700 | loss(pos) 0.4483 | loss(seq) 0.4192 | grad 4.4703 | lr 0.0010 | time_forward 3.4390 | time_backward 4.9390
|
[2023-09-01 18:04:00,385::train::INFO] [train] Iter 00834 | loss 1.2887 | loss(rot) 0.2314 | loss(pos) 1.0246 | loss(seq) 0.0327 | grad 4.6469 | lr 0.0010 | time_forward 1.3530 | time_backward 1.4930
|
[2023-09-01 18:04:03,091::train::INFO] [train] Iter 00835 | loss 3.4500 | loss(rot) 2.9052 | loss(pos) 0.4018 | loss(seq) 0.1430 | grad 4.9401 | lr 0.0010 | time_forward 1.3000 | time_backward 1.3680
|
[2023-09-01 18:04:11,979::train::INFO] [train] Iter 00836 | loss 4.2173 | loss(rot) 0.0084 | loss(pos) 4.2085 | loss(seq) 0.0004 | grad 6.0534 | lr 0.0010 | time_forward 3.8020 | time_backward 5.0420
|
[2023-09-01 18:04:21,125::train::INFO] [train] Iter 00837 | loss 2.0562 | loss(rot) 0.7538 | loss(pos) 0.9109 | loss(seq) 0.3915 | grad 5.1056 | lr 0.0010 | time_forward 3.9810 | time_backward 5.1620
|
[2023-09-01 18:04:29,753::train::INFO] [train] Iter 00838 | loss 3.1293 | loss(rot) 2.4516 | loss(pos) 0.6777 | loss(seq) 0.0000 | grad 6.1302 | lr 0.0010 | time_forward 3.6000 | time_backward 5.0240
|
[2023-09-01 18:04:39,449::train::INFO] [train] Iter 00839 | loss 2.2102 | loss(rot) 0.8436 | loss(pos) 0.9966 | loss(seq) 0.3700 | grad 5.7598 | lr 0.0010 | time_forward 3.9590 | time_backward 5.7330
|
[2023-09-01 18:04:47,473::train::INFO] [train] Iter 00840 | loss 2.2282 | loss(rot) 0.8053 | loss(pos) 0.9981 | loss(seq) 0.4247 | grad 4.4594 | lr 0.0010 | time_forward 3.3790 | time_backward 4.6420
|
[2023-09-01 18:04:57,790::train::INFO] [train] Iter 00841 | loss 1.3157 | loss(rot) 0.3096 | loss(pos) 0.9424 | loss(seq) 0.0637 | grad 4.8452 | lr 0.0010 | time_forward 4.1330 | time_backward 6.1800
|
[2023-09-01 18:05:04,047::train::INFO] [train] Iter 00842 | loss 3.9296 | loss(rot) 2.5589 | loss(pos) 0.8930 | loss(seq) 0.4777 | grad 7.9480 | lr 0.0010 | time_forward 2.4870 | time_backward 3.7670
|
[2023-09-01 18:05:06,832::train::INFO] [train] Iter 00843 | loss 3.2035 | loss(rot) 2.5282 | loss(pos) 0.6720 | loss(seq) 0.0033 | grad 5.9207 | lr 0.0010 | time_forward 1.3140 | time_backward 1.4430
|
[2023-09-01 18:05:15,711::train::INFO] [train] Iter 00844 | loss 3.3790 | loss(rot) 2.8529 | loss(pos) 0.4533 | loss(seq) 0.0728 | grad 6.1422 | lr 0.0010 | time_forward 3.7500 | time_backward 5.1250
|
[2023-09-01 18:05:18,030::train::INFO] [train] Iter 00845 | loss 3.2383 | loss(rot) 2.9671 | loss(pos) 0.2712 | loss(seq) 0.0000 | grad 3.5103 | lr 0.0010 | time_forward 1.0790 | time_backward 1.2360
|
[2023-09-01 18:05:26,638::train::INFO] [train] Iter 00846 | loss 3.3634 | loss(rot) 2.9376 | loss(pos) 0.2905 | loss(seq) 0.1354 | grad 3.4527 | lr 0.0010 | time_forward 3.6390 | time_backward 4.9660
|
[2023-09-01 18:05:34,906::train::INFO] [train] Iter 00847 | loss 2.4614 | loss(rot) 1.6053 | loss(pos) 0.3607 | loss(seq) 0.4954 | grad 4.5286 | lr 0.0010 | time_forward 3.5610 | time_backward 4.7030
|
[2023-09-01 18:05:37,781::train::INFO] [train] Iter 00848 | loss 3.7006 | loss(rot) 2.5849 | loss(pos) 0.5774 | loss(seq) 0.5382 | grad 3.7001 | lr 0.0010 | time_forward 1.3440 | time_backward 1.5270
|
[2023-09-01 18:05:46,260::train::INFO] [train] Iter 00849 | loss 1.9601 | loss(rot) 1.1119 | loss(pos) 0.6550 | loss(seq) 0.1932 | grad 3.5245 | lr 0.0010 | time_forward 3.5860 | time_backward 4.8480
|
[2023-09-01 18:05:53,303::train::INFO] [train] Iter 00850 | loss 2.3051 | loss(rot) 0.0158 | loss(pos) 2.2874 | loss(seq) 0.0019 | grad 3.2964 | lr 0.0010 | time_forward 3.0620 | time_backward 3.9780
|
[2023-09-01 18:05:55,633::train::INFO] [train] Iter 00851 | loss 2.8482 | loss(rot) 2.0450 | loss(pos) 0.3081 | loss(seq) 0.4952 | grad 2.7695 | lr 0.0010 | time_forward 1.1270 | time_backward 1.1970
|
[2023-09-01 18:06:04,253::train::INFO] [train] Iter 00852 | loss 1.9217 | loss(rot) 0.5795 | loss(pos) 1.3068 | loss(seq) 0.0353 | grad 3.7489 | lr 0.0010 | time_forward 3.6050 | time_backward 5.0120
|
[2023-09-01 18:06:13,391::train::INFO] [train] Iter 00853 | loss 2.2488 | loss(rot) 0.3877 | loss(pos) 1.6590 | loss(seq) 0.2020 | grad 5.2613 | lr 0.0010 | time_forward 3.8680 | time_backward 5.2670
|
[2023-09-01 18:06:23,200::train::INFO] [train] Iter 00854 | loss 3.5747 | loss(rot) 2.7896 | loss(pos) 0.5778 | loss(seq) 0.2073 | grad 6.1253 | lr 0.0010 | time_forward 3.9920 | time_backward 5.8130
|
[2023-09-01 18:06:32,975::train::INFO] [train] Iter 00855 | loss 4.4906 | loss(rot) 3.2393 | loss(pos) 1.1239 | loss(seq) 0.1274 | grad 9.4380 | lr 0.0010 | time_forward 4.1620 | time_backward 5.6090
|
[2023-09-01 18:06:35,791::train::INFO] [train] Iter 00856 | loss 3.5910 | loss(rot) 2.9521 | loss(pos) 0.6389 | loss(seq) 0.0000 | grad 6.9789 | lr 0.0010 | time_forward 1.3260 | time_backward 1.4860
|
[2023-09-01 18:06:38,800::train::INFO] [train] Iter 00857 | loss 3.6803 | loss(rot) 3.1213 | loss(pos) 0.3251 | loss(seq) 0.2339 | grad 4.1194 | lr 0.0010 | time_forward 1.5250 | time_backward 1.4640
|
[2023-09-01 18:06:48,309::train::INFO] [train] Iter 00858 | loss 2.4470 | loss(rot) 1.7051 | loss(pos) 0.2593 | loss(seq) 0.4827 | grad 3.2402 | lr 0.0010 | time_forward 3.9490 | time_backward 5.5540
|
[2023-09-01 18:06:50,683::train::INFO] [train] Iter 00859 | loss 3.2381 | loss(rot) 2.7779 | loss(pos) 0.2829 | loss(seq) 0.1773 | grad 4.6570 | lr 0.0010 | time_forward 1.1690 | time_backward 1.2030
|
[2023-09-01 18:06:58,778::train::INFO] [train] Iter 00860 | loss 2.1743 | loss(rot) 0.0307 | loss(pos) 2.1401 | loss(seq) 0.0035 | grad 4.4226 | lr 0.0010 | time_forward 3.4480 | time_backward 4.6430
|
[2023-09-01 18:07:06,922::train::INFO] [train] Iter 00861 | loss 4.6495 | loss(rot) 0.0076 | loss(pos) 4.6419 | loss(seq) 0.0000 | grad 4.8005 | lr 0.0010 | time_forward 3.4200 | time_backward 4.7210
|
[2023-09-01 18:07:10,721::train::INFO] [train] Iter 00862 | loss 3.2429 | loss(rot) 1.4622 | loss(pos) 1.3553 | loss(seq) 0.4255 | grad 3.9072 | lr 0.0010 | time_forward 1.6430 | time_backward 2.1530
|
[2023-09-01 18:07:13,577::train::INFO] [train] Iter 00863 | loss 1.3630 | loss(rot) 0.2093 | loss(pos) 0.8058 | loss(seq) 0.3478 | grad 3.2469 | lr 0.0010 | time_forward 1.3840 | time_backward 1.4400
|
[2023-09-01 18:07:23,239::train::INFO] [train] Iter 00864 | loss 2.7905 | loss(rot) 2.4006 | loss(pos) 0.1522 | loss(seq) 0.2377 | grad 2.5859 | lr 0.0010 | time_forward 4.0350 | time_backward 5.6240
|
[2023-09-01 18:07:26,077::train::INFO] [train] Iter 00865 | loss 3.8097 | loss(rot) 2.7982 | loss(pos) 0.8217 | loss(seq) 0.1898 | grad 3.9915 | lr 0.0010 | time_forward 1.3790 | time_backward 1.4550
|
[2023-09-01 18:07:28,914::train::INFO] [train] Iter 00866 | loss 3.1543 | loss(rot) 1.3557 | loss(pos) 1.3900 | loss(seq) 0.4086 | grad 6.3432 | lr 0.0010 | time_forward 1.3730 | time_backward 1.4610
|
[2023-09-01 18:07:31,800::train::INFO] [train] Iter 00867 | loss 4.0257 | loss(rot) 3.3035 | loss(pos) 0.6449 | loss(seq) 0.0772 | grad 7.2793 | lr 0.0010 | time_forward 1.4150 | time_backward 1.4680
|
[2023-09-01 18:07:39,859::train::INFO] [train] Iter 00868 | loss 3.7504 | loss(rot) 3.2813 | loss(pos) 0.4247 | loss(seq) 0.0444 | grad 5.4899 | lr 0.0010 | time_forward 3.4260 | time_backward 4.5850
|
[2023-09-01 18:07:49,971::train::INFO] [train] Iter 00869 | loss 2.6188 | loss(rot) 1.4171 | loss(pos) 0.5918 | loss(seq) 0.6098 | grad 3.3410 | lr 0.0010 | time_forward 4.1110 | time_backward 5.9970
|
[2023-09-01 18:07:59,606::train::INFO] [train] Iter 00870 | loss 3.1624 | loss(rot) 2.9003 | loss(pos) 0.2621 | loss(seq) 0.0000 | grad 4.0757 | lr 0.0010 | time_forward 3.6720 | time_backward 5.9590
|
[2023-09-01 18:08:07,543::train::INFO] [train] Iter 00871 | loss 3.0960 | loss(rot) 2.5768 | loss(pos) 0.2778 | loss(seq) 0.2414 | grad 3.1102 | lr 0.0010 | time_forward 3.3230 | time_backward 4.6110
|
[2023-09-01 18:08:09,858::train::INFO] [train] Iter 00872 | loss 1.8139 | loss(rot) 0.0822 | loss(pos) 1.7220 | loss(seq) 0.0097 | grad 4.7956 | lr 0.0010 | time_forward 1.0780 | time_backward 1.2330
|
[2023-09-01 18:08:19,424::train::INFO] [train] Iter 00873 | loss 1.9515 | loss(rot) 0.0320 | loss(pos) 1.9118 | loss(seq) 0.0076 | grad 4.7547 | lr 0.0010 | time_forward 3.7350 | time_backward 5.8270
|
[2023-09-01 18:08:22,194::train::INFO] [train] Iter 00874 | loss 2.1441 | loss(rot) 0.2414 | loss(pos) 1.8617 | loss(seq) 0.0410 | grad 5.3184 | lr 0.0010 | time_forward 1.3040 | time_backward 1.4630
|
[2023-09-01 18:08:31,939::train::INFO] [train] Iter 00875 | loss 3.5036 | loss(rot) 2.9856 | loss(pos) 0.5177 | loss(seq) 0.0003 | grad 6.8102 | lr 0.0010 | time_forward 4.0250 | time_backward 5.6820
|
[2023-09-01 18:08:34,785::train::INFO] [train] Iter 00876 | loss 3.7947 | loss(rot) 3.1792 | loss(pos) 0.5468 | loss(seq) 0.0687 | grad 5.2761 | lr 0.0010 | time_forward 1.3830 | time_backward 1.4610
|
[2023-09-01 18:08:44,839::train::INFO] [train] Iter 00877 | loss 3.4275 | loss(rot) 2.3160 | loss(pos) 0.5347 | loss(seq) 0.5768 | grad 5.1706 | lr 0.0010 | time_forward 4.3200 | time_backward 5.7310
|
[2023-09-01 18:08:54,604::train::INFO] [train] Iter 00878 | loss 3.4768 | loss(rot) 3.0071 | loss(pos) 0.4604 | loss(seq) 0.0093 | grad 3.9604 | lr 0.0010 | time_forward 3.9740 | time_backward 5.7870
|
[2023-09-01 18:09:01,329::train::INFO] [train] Iter 00879 | loss 2.9108 | loss(rot) 1.6456 | loss(pos) 0.9222 | loss(seq) 0.3431 | grad 4.5490 | lr 0.0010 | time_forward 2.9360 | time_backward 3.7760
|
[2023-09-01 18:09:11,213::train::INFO] [train] Iter 00880 | loss 3.3393 | loss(rot) 1.8973 | loss(pos) 0.9838 | loss(seq) 0.4582 | grad 6.6488 | lr 0.0010 | time_forward 4.1610 | time_backward 5.6990
|
[2023-09-01 18:09:14,000::train::INFO] [train] Iter 00881 | loss 1.9824 | loss(rot) 0.0240 | loss(pos) 1.9574 | loss(seq) 0.0010 | grad 5.8640 | lr 0.0010 | time_forward 1.3730 | time_backward 1.4120
|
[2023-09-01 18:09:16,815::train::INFO] [train] Iter 00882 | loss 2.8135 | loss(rot) 1.4556 | loss(pos) 0.9105 | loss(seq) 0.4474 | grad 3.2841 | lr 0.0010 | time_forward 1.3410 | time_backward 1.4310
|
[2023-09-01 18:09:19,645::train::INFO] [train] Iter 00883 | loss 3.0506 | loss(rot) 1.8325 | loss(pos) 0.7333 | loss(seq) 0.4848 | grad 3.8176 | lr 0.0010 | time_forward 1.3800 | time_backward 1.4470
|
[2023-09-01 18:09:22,399::train::INFO] [train] Iter 00884 | loss 1.9139 | loss(rot) 0.9817 | loss(pos) 0.5280 | loss(seq) 0.4042 | grad 3.7761 | lr 0.0010 | time_forward 1.3190 | time_backward 1.4300
|
[2023-09-01 18:09:31,686::train::INFO] [train] Iter 00885 | loss 2.8063 | loss(rot) 1.3490 | loss(pos) 0.9068 | loss(seq) 0.5505 | grad 4.5140 | lr 0.0010 | time_forward 4.0370 | time_backward 5.2460
|
[2023-09-01 18:09:34,464::train::INFO] [train] Iter 00886 | loss 2.3359 | loss(rot) 0.4836 | loss(pos) 1.8345 | loss(seq) 0.0178 | grad 5.7387 | lr 0.0010 | time_forward 1.3320 | time_backward 1.4430
|
[2023-09-01 18:09:37,528::train::INFO] [train] Iter 00887 | loss 3.0820 | loss(rot) 2.3640 | loss(pos) 0.3933 | loss(seq) 0.3246 | grad 4.9827 | lr 0.0010 | time_forward 1.5780 | time_backward 1.4840
|
[2023-09-01 18:09:46,143::train::INFO] [train] Iter 00888 | loss 2.1445 | loss(rot) 1.5485 | loss(pos) 0.3124 | loss(seq) 0.2835 | grad 2.8350 | lr 0.0010 | time_forward 3.7610 | time_backward 4.8500
|
[2023-09-01 18:09:55,003::train::INFO] [train] Iter 00889 | loss 3.6874 | loss(rot) 2.6894 | loss(pos) 0.5003 | loss(seq) 0.4977 | grad 3.4407 | lr 0.0010 | time_forward 3.6140 | time_backward 5.2430
|
[2023-09-01 18:10:05,019::train::INFO] [train] Iter 00890 | loss 2.2536 | loss(rot) 1.2048 | loss(pos) 0.8785 | loss(seq) 0.1703 | grad 4.3999 | lr 0.0010 | time_forward 4.0350 | time_backward 5.9780
|
[2023-09-01 18:10:13,537::train::INFO] [train] Iter 00891 | loss 3.0503 | loss(rot) 2.7078 | loss(pos) 0.3422 | loss(seq) 0.0003 | grad 4.1733 | lr 0.0010 | time_forward 3.6390 | time_backward 4.8770
|
[2023-09-01 18:10:16,300::train::INFO] [train] Iter 00892 | loss 1.2878 | loss(rot) 0.0723 | loss(pos) 1.2014 | loss(seq) 0.0141 | grad 4.5025 | lr 0.0010 | time_forward 1.3150 | time_backward 1.4440
|
[2023-09-01 18:10:25,989::train::INFO] [train] Iter 00893 | loss 3.5931 | loss(rot) 2.8318 | loss(pos) 0.7512 | loss(seq) 0.0101 | grad 7.8397 | lr 0.0010 | time_forward 3.7890 | time_backward 5.8970
|
[2023-09-01 18:10:35,501::train::INFO] [train] Iter 00894 | loss 3.7334 | loss(rot) 2.6274 | loss(pos) 0.9510 | loss(seq) 0.1550 | grad 10.3487 | lr 0.0010 | time_forward 3.7720 | time_backward 5.7360
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.