text
stringlengths
5
22M
id
stringlengths
12
177
metadata
dict
__index_level_0__
int64
0
1.37k
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import time from collections import OrderedDict from options.train_options import TrainOptions from data.data_loader import CreateDataLoader from models.mapping_model import Pix2PixHDModel_Mapping import util.util as util from util.visualizer import Visualizer import os import numpy as np import torch import torchvision.utils as vutils from torch.autograd import Variable import datetime import random opt = TrainOptions().parse() visualizer = Visualizer(opt) iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt') if opt.continue_train: try: start_epoch, epoch_iter = np.loadtxt(iter_path , delimiter=',', dtype=int) except: start_epoch, epoch_iter = 1, 0 visualizer.print_save('Resuming from epoch %d at iteration %d' % (start_epoch-1, epoch_iter)) else: start_epoch, epoch_iter = 1, 0 if opt.which_epoch != "latest": start_epoch=int(opt.which_epoch) visualizer.print_save('Notice : Resuming from epoch %d at iteration %d' % (start_epoch - 1, epoch_iter)) opt.start_epoch=start_epoch ### temp for continue train unfixed decoder data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() dataset_size = len(dataset) * opt.batchSize print('#training images = %d' % dataset_size) model = Pix2PixHDModel_Mapping() model.initialize(opt) path = os.path.join(opt.checkpoints_dir, opt.name, 'model.txt') fd = open(path, 'w') if opt.use_skip_model: fd.write(str(model.mapping_net)) fd.close() else: fd.write(str(model.netG_A)) fd.write(str(model.mapping_net)) fd.close() if opt.isTrain and len(opt.gpu_ids) > 1: model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids) total_steps = (start_epoch-1) * dataset_size + epoch_iter display_delta = total_steps % opt.display_freq print_delta = total_steps % opt.print_freq save_delta = total_steps % opt.save_latest_freq ### used for recovering training for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1): epoch_s_t=datetime.datetime.now() epoch_start_time = time.time() if epoch != start_epoch: epoch_iter = epoch_iter % dataset_size for i, data in enumerate(dataset, start=epoch_iter): iter_start_time = time.time() total_steps += opt.batchSize epoch_iter += opt.batchSize # whether to collect output images save_fake = total_steps % opt.display_freq == display_delta ############## Forward Pass ###################### #print(pair) losses, generated = model(Variable(data['label']), Variable(data['inst']), Variable(data['image']), Variable(data['feat']), infer=save_fake) # sum per device losses losses = [ torch.mean(x) if not isinstance(x, int) else x for x in losses ] loss_dict = dict(zip(model.module.loss_names, losses)) # calculate final loss scalar loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5 loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat',0) + loss_dict.get('G_VGG',0) + loss_dict.get('G_Feat_L2', 0) +loss_dict.get('Smooth_L1', 0)+loss_dict.get('G_Feat_L2_Stage_1',0) #loss_G = loss_dict['G_Feat_L2'] ############### Backward Pass #################### # update generator weights model.module.optimizer_mapping.zero_grad() loss_G.backward() model.module.optimizer_mapping.step() # update discriminator weights model.module.optimizer_D.zero_grad() loss_D.backward() model.module.optimizer_D.step() ############## Display results and errors ########## ### print out errors if i == 0 or total_steps % opt.print_freq == print_delta: errors = {k: v.data if not isinstance(v, int) else v for k, v in loss_dict.items()} t = (time.time() - iter_start_time) / opt.batchSize visualizer.print_current_errors(epoch, epoch_iter, errors, t,model.module.old_lr) visualizer.plot_current_errors(errors, total_steps) ### display output images if save_fake: if not os.path.exists(opt.outputs_dir + opt.name): os.makedirs(opt.outputs_dir + opt.name) imgs_num = 5 if opt.NL_use_mask: mask=data['inst'][:imgs_num] mask=mask.repeat(1,3,1,1) imgs = torch.cat((data['label'][:imgs_num], mask,generated.data.cpu()[:imgs_num], data['image'][:imgs_num]), 0) else: imgs = torch.cat((data['label'][:imgs_num], generated.data.cpu()[:imgs_num], data['image'][:imgs_num]), 0) imgs=(imgs+1.)/2.0 ## de-normalize try: image_grid = vutils.save_image(imgs, opt.outputs_dir + opt.name + '/' + str(epoch) + '_' + str(total_steps) + '.png', nrow=imgs_num, padding=0, normalize=True) except OSError as err: print(err) if epoch_iter >= dataset_size: break # end of epoch epoch_e_t=datetime.datetime.now() iter_end_time = time.time() print('End of epoch %d / %d \t Time Taken: %s' % (epoch, opt.niter + opt.niter_decay, str(epoch_e_t-epoch_s_t))) ### save model for this epoch if epoch % opt.save_epoch_freq == 0: print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps)) model.module.save('latest') model.module.save(epoch) np.savetxt(iter_path, (epoch+1, 0), delimiter=',', fmt='%d') ### instead of only training the local enhancer, train the entire network after certain iterations if (opt.niter_fix_global != 0) and (epoch == opt.niter_fix_global): model.module.update_fixed_params() ### linearly decay learning rate after certain iterations if epoch > opt.niter: model.module.update_learning_rate()
Bringing-Old-Photos-Back-to-Life/Global/train_mapping.py/0
{ "file_path": "Bringing-Old-Photos-Back-to-Life/Global/train_mapping.py", "repo_id": "Bringing-Old-Photos-Back-to-Life", "token_count": 2535 }
161
# TEXT ENCODER CONFIG text_model: 'gpt2' transformer_embed_dim: 768 freeze_text_encoder_weights: True # AUDIO ENCODER CONFIG audioenc_name: 'HTSAT' out_emb: 768 sampling_rate: 44100 duration: 7 fmin: 50 fmax: 8000 n_fft: 1024 hop_size: 320 mel_bins: 64 window_size: 1024 # PROJECTION SPACE CONFIG d_proj: 1024 temperature: 0.003 # TRAINING AND EVALUATION CONFIG batch_size: 128 num_classes: 527 # CLAPCAP CONFIG clapcap_model: 'ClapCaption' text_decoder: 'gpt2' prefix_length: 40 prefix_length_clip: 40 mapping_type: 'transformer' num_layers: 8 normalize_prefix: True freeze_gpt_weights: True
CLAP/msclap/configs/config_clapcap.yml/0
{ "file_path": "CLAP/msclap/configs/config_clapcap.yml", "repo_id": "CLAP", "token_count": 240 }
162
.. role:: hidden :class: hidden-section .. _Criterions: Criterions ========== Criterions compute the loss function given the model and batch, roughly:: loss = criterion(model, batch) .. automodule:: fairseq.criterions :members: .. autoclass:: fairseq.criterions.FairseqCriterion :members: :undoc-members: .. autoclass:: fairseq.criterions.adaptive_loss.AdaptiveLoss :members: :undoc-members: .. autoclass:: fairseq.criterions.composite_loss.CompositeLoss :members: :undoc-members: .. autoclass:: fairseq.criterions.cross_entropy.CrossEntropyCriterion :members: :undoc-members: .. autoclass:: fairseq.criterions.label_smoothed_cross_entropy.LabelSmoothedCrossEntropyCriterion :members: :undoc-members:
COCO-LM/fairseq/docs/criterions.rst/0
{ "file_path": "COCO-LM/fairseq/docs/criterions.rst", "repo_id": "COCO-LM", "token_count": 284 }
163
Tutorial: Classifying Names with a Character-Level RNN ====================================================== In this tutorial we will extend fairseq to support *classification* tasks. In particular we will re-implement the PyTorch tutorial for `Classifying Names with a Character-Level RNN <https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html>`_ in fairseq. It is recommended to quickly skim that tutorial before beginning this one. This tutorial covers: 1. **Preprocessing the data** to create dictionaries. 2. **Registering a new Model** that encodes an input sentence with a simple RNN and predicts the output label. 3. **Registering a new Task** that loads our dictionaries and dataset. 4. **Training the Model** using the existing command-line tools. 5. **Writing an evaluation script** that imports fairseq and allows us to interactively evaluate our model on new inputs. 1. Preprocessing the data ------------------------- The original tutorial provides raw data, but we'll work with a modified version of the data that is already tokenized into characters and split into separate train, valid and test sets. Download and extract the data from here: `tutorial_names.tar.gz <https://dl.fbaipublicfiles.com/fairseq/data/tutorial_names.tar.gz>`_ Once extracted, let's preprocess the data using the :ref:`fairseq-preprocess` command-line tool to create the dictionaries. While this tool is primarily intended for sequence-to-sequence problems, we're able to reuse it here by treating the label as a "target" sequence of length 1. We'll also output the preprocessed files in "raw" format using the ``--dataset-impl`` option to enhance readability: .. code-block:: console > fairseq-preprocess \ --trainpref names/train --validpref names/valid --testpref names/test \ --source-lang input --target-lang label \ --destdir names-bin --dataset-impl raw After running the above command you should see a new directory, :file:`names-bin/`, containing the dictionaries for *inputs* and *labels*. 2. Registering a new Model -------------------------- Next we'll register a new model in fairseq that will encode an input sentence with a simple RNN and predict the output label. Compared to the original PyTorch tutorial, our version will also work with batches of data and GPU Tensors. First let's copy the simple RNN module implemented in the `PyTorch tutorial <https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html#creating-the-network>`_. Create a new file named :file:`fairseq/models/rnn_classifier.py` with the following contents:: import torch import torch.nn as nn class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RNN, self).__init__() self.hidden_size = hidden_size self.i2h = nn.Linear(input_size + hidden_size, hidden_size) self.i2o = nn.Linear(input_size + hidden_size, output_size) self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden): combined = torch.cat((input, hidden), 1) hidden = self.i2h(combined) output = self.i2o(combined) output = self.softmax(output) return output, hidden def initHidden(self): return torch.zeros(1, self.hidden_size) We must also *register* this model with fairseq using the :func:`~fairseq.models.register_model` function decorator. Once the model is registered we'll be able to use it with the existing :ref:`Command-line Tools`. All registered models must implement the :class:`~fairseq.models.BaseFairseqModel` interface, so we'll create a small wrapper class in the same file and register it in fairseq with the name ``'rnn_classifier'``:: from fairseq.models import BaseFairseqModel, register_model # Note: the register_model "decorator" should immediately precede the # definition of the Model class. @register_model('rnn_classifier') class FairseqRNNClassifier(BaseFairseqModel): @staticmethod def add_args(parser): # Models can override this method to add new command-line arguments. # Here we'll add a new command-line argument to configure the # dimensionality of the hidden state. parser.add_argument( '--hidden-dim', type=int, metavar='N', help='dimensionality of the hidden state', ) @classmethod def build_model(cls, args, task): # Fairseq initializes models by calling the ``build_model()`` # function. This provides more flexibility, since the returned model # instance can be of a different type than the one that was called. # In this case we'll just return a FairseqRNNClassifier instance. # Initialize our RNN module rnn = RNN( # We'll define the Task in the next section, but for now just # notice that the task holds the dictionaries for the "source" # (i.e., the input sentence) and "target" (i.e., the label). input_size=len(task.source_dictionary), hidden_size=args.hidden_dim, output_size=len(task.target_dictionary), ) # Return the wrapped version of the module return FairseqRNNClassifier( rnn=rnn, input_vocab=task.source_dictionary, ) def __init__(self, rnn, input_vocab): super(FairseqRNNClassifier, self).__init__() self.rnn = rnn self.input_vocab = input_vocab # The RNN module in the tutorial expects one-hot inputs, so we can # precompute the identity matrix to help convert from indices to # one-hot vectors. We register it as a buffer so that it is moved to # the GPU when ``cuda()`` is called. self.register_buffer('one_hot_inputs', torch.eye(len(input_vocab))) def forward(self, src_tokens, src_lengths): # The inputs to the ``forward()`` function are determined by the # Task, and in particular the ``'net_input'`` key in each # mini-batch. We'll define the Task in the next section, but for # now just know that *src_tokens* has shape `(batch, src_len)` and # *src_lengths* has shape `(batch)`. bsz, max_src_len = src_tokens.size() # Initialize the RNN hidden state. Compared to the original PyTorch # tutorial we'll also handle batched inputs and work on the GPU. hidden = self.rnn.initHidden() hidden = hidden.repeat(bsz, 1) # expand for batched inputs hidden = hidden.to(src_tokens.device) # move to GPU for i in range(max_src_len): # WARNING: The inputs have padding, so we should mask those # elements here so that padding doesn't affect the results. # This is left as an exercise for the reader. The padding symbol # is given by ``self.input_vocab.pad()`` and the unpadded length # of each input is given by *src_lengths*. # One-hot encode a batch of input characters. input = self.one_hot_inputs[src_tokens[:, i].long()] # Feed the input to our RNN. output, hidden = self.rnn(input, hidden) # Return the final output state for making a prediction return output Finally let's define a *named architecture* with the configuration for our model. This is done with the :func:`~fairseq.models.register_model_architecture` function decorator. Thereafter this named architecture can be used with the ``--arch`` command-line argument, e.g., ``--arch pytorch_tutorial_rnn``:: from fairseq.models import register_model_architecture # The first argument to ``register_model_architecture()`` should be the name # of the model we registered above (i.e., 'rnn_classifier'). The function we # register here should take a single argument *args* and modify it in-place # to match the desired architecture. @register_model_architecture('rnn_classifier', 'pytorch_tutorial_rnn') def pytorch_tutorial_rnn(args): # We use ``getattr()`` to prioritize arguments that are explicitly given # on the command-line, so that the defaults defined below are only used # when no other value has been specified. args.hidden_dim = getattr(args, 'hidden_dim', 128) 3. Registering a new Task ------------------------- Now we'll register a new :class:`~fairseq.tasks.FairseqTask` that will load our dictionaries and dataset. Tasks can also control how the data is batched into mini-batches, but in this tutorial we'll reuse the batching provided by :class:`fairseq.data.LanguagePairDataset`. Create a new file named :file:`fairseq/tasks/simple_classification.py` with the following contents:: import os import torch from fairseq.data import Dictionary, LanguagePairDataset from fairseq.tasks import FairseqTask, register_task @register_task('simple_classification') class SimpleClassificationTask(LegacyFairseqTask): @staticmethod def add_args(parser): # Add some command-line arguments for specifying where the data is # located and the maximum supported input length. parser.add_argument('data', metavar='FILE', help='file prefix for data') parser.add_argument('--max-positions', default=1024, type=int, help='max input length') @classmethod def setup_task(cls, args, **kwargs): # Here we can perform any setup required for the task. This may include # loading Dictionaries, initializing shared Embedding layers, etc. # In this case we'll just load the Dictionaries. input_vocab = Dictionary.load(os.path.join(args.data, 'dict.input.txt')) label_vocab = Dictionary.load(os.path.join(args.data, 'dict.label.txt')) print('| [input] dictionary: {} types'.format(len(input_vocab))) print('| [label] dictionary: {} types'.format(len(label_vocab))) return SimpleClassificationTask(args, input_vocab, label_vocab) def __init__(self, args, input_vocab, label_vocab): super().__init__(args) self.input_vocab = input_vocab self.label_vocab = label_vocab def load_dataset(self, split, **kwargs): """Load a given dataset split (e.g., train, valid, test).""" prefix = os.path.join(self.args.data, '{}.input-label'.format(split)) # Read input sentences. sentences, lengths = [], [] with open(prefix + '.input', encoding='utf-8') as file: for line in file: sentence = line.strip() # Tokenize the sentence, splitting on spaces tokens = self.input_vocab.encode_line( sentence, add_if_not_exist=False, ) sentences.append(tokens) lengths.append(tokens.numel()) # Read labels. labels = [] with open(prefix + '.label', encoding='utf-8') as file: for line in file: label = line.strip() labels.append( # Convert label to a numeric ID. torch.LongTensor([self.label_vocab.add_symbol(label)]) ) assert len(sentences) == len(labels) print('| {} {} {} examples'.format(self.args.data, split, len(sentences))) # We reuse LanguagePairDataset since classification can be modeled as a # sequence-to-sequence task where the target sequence has length 1. self.datasets[split] = LanguagePairDataset( src=sentences, src_sizes=lengths, src_dict=self.input_vocab, tgt=labels, tgt_sizes=torch.ones(len(labels)), # targets have length 1 tgt_dict=self.label_vocab, left_pad_source=False, # Since our target is a single class label, there's no need for # teacher forcing. If we set this to ``True`` then our Model's # ``forward()`` method would receive an additional argument called # *prev_output_tokens* that would contain a shifted version of the # target sequence. input_feeding=False, ) def max_positions(self): """Return the max input length allowed by the task.""" # The source should be less than *args.max_positions* and the "target" # has max length 1. return (self.args.max_positions, 1) @property def source_dictionary(self): """Return the source :class:`~fairseq.data.Dictionary`.""" return self.input_vocab @property def target_dictionary(self): """Return the target :class:`~fairseq.data.Dictionary`.""" return self.label_vocab # We could override this method if we wanted more control over how batches # are constructed, but it's not necessary for this tutorial since we can # reuse the batching provided by LanguagePairDataset. # # def get_batch_iterator( # self, dataset, max_tokens=None, max_sentences=None, max_positions=None, # ignore_invalid_inputs=False, required_batch_size_multiple=1, # seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=1, # data_buffer_size=0, disable_iterator_cache=False, # ): # (...) 4. Training the Model --------------------- Now we're ready to train the model. We can use the existing :ref:`fairseq-train` command-line tool for this, making sure to specify our new Task (``--task simple_classification``) and Model architecture (``--arch pytorch_tutorial_rnn``): .. note:: You can also configure the dimensionality of the hidden state by passing the ``--hidden-dim`` argument to :ref:`fairseq-train`. .. code-block:: console > fairseq-train names-bin \ --task simple_classification \ --arch pytorch_tutorial_rnn \ --optimizer adam --lr 0.001 --lr-shrink 0.5 \ --max-tokens 1000 (...) | epoch 027 | loss 1.200 | ppl 2.30 | wps 15728 | ups 119.4 | wpb 116 | bsz 116 | num_updates 3726 | lr 1.5625e-05 | gnorm 1.290 | clip 0% | oom 0 | wall 32 | train_wall 21 | epoch 027 | valid on 'valid' subset | valid_loss 1.41304 | valid_ppl 2.66 | num_updates 3726 | best 1.41208 | done training in 31.6 seconds The model files should appear in the :file:`checkpoints/` directory. 5. Writing an evaluation script ------------------------------- Finally we can write a short script to evaluate our model on new inputs. Create a new file named :file:`eval_classifier.py` with the following contents:: from fairseq import checkpoint_utils, data, options, tasks # Parse command-line arguments for generation parser = options.get_generation_parser(default_task='simple_classification') args = options.parse_args_and_arch(parser) # Setup task task = tasks.setup_task(args) # Load model print('| loading model from {}'.format(args.path)) models, _model_args = checkpoint_utils.load_model_ensemble([args.path], task=task) model = models[0] while True: sentence = input('\nInput: ') # Tokenize into characters chars = ' '.join(list(sentence.strip())) tokens = task.source_dictionary.encode_line( chars, add_if_not_exist=False, ) # Build mini-batch to feed to the model batch = data.language_pair_dataset.collate( samples=[{'id': -1, 'source': tokens}], # bsz = 1 pad_idx=task.source_dictionary.pad(), eos_idx=task.source_dictionary.eos(), left_pad_source=False, input_feeding=False, ) # Feed batch to the model and get predictions preds = model(**batch['net_input']) # Print top 3 predictions and their log-probabilities top_scores, top_labels = preds[0].topk(k=3) for score, label_idx in zip(top_scores, top_labels): label_name = task.target_dictionary.string([label_idx]) print('({:.2f})\t{}'.format(score, label_name)) Now we can evaluate our model interactively. Note that we have included the original data path (:file:`names-bin/`) so that the dictionaries can be loaded: .. code-block:: console > python eval_classifier.py names-bin --path checkpoints/checkpoint_best.pt | [input] dictionary: 64 types | [label] dictionary: 24 types | loading model from checkpoints/checkpoint_best.pt Input: Satoshi (-0.61) Japanese (-1.20) Arabic (-2.86) Italian Input: Sinbad (-0.30) Arabic (-1.76) English (-4.08) Russian
COCO-LM/fairseq/docs/tutorial_classifying_names.rst/0
{ "file_path": "COCO-LM/fairseq/docs/tutorial_classifying_names.rst", "repo_id": "COCO-LM", "token_count": 6519 }
164
#!/bin/bash if [ $# -ne 5 ]; then echo "usage: $0 [dataset=wmt14/full] [langpair=en-de] [databin] [bpecode] [model]" exit fi DATASET=$1 LANGPAIR=$2 DATABIN=$3 BPECODE=$4 MODEL=$5 SRCLANG=$(echo $LANGPAIR | cut -d '-' -f 1) TGTLANG=$(echo $LANGPAIR | cut -d '-' -f 2) BPEROOT=examples/backtranslation/subword-nmt/subword_nmt if [ ! -e $BPEROOT ]; then BPEROOT=subword-nmt/subword_nmt if [ ! -e $BPEROOT ]; then echo 'Cloning Subword NMT repository (for BPE pre-processing)...' git clone https://github.com/rsennrich/subword-nmt.git fi fi sacrebleu -t $DATASET -l $LANGPAIR --echo src \ | sacremoses tokenize -a -l $SRCLANG -q \ | python $BPEROOT/apply_bpe.py -c $BPECODE \ | fairseq-interactive $DATABIN --path $MODEL \ -s $SRCLANG -t $TGTLANG \ --beam 5 --remove-bpe --buffer-size 1024 --max-tokens 8000 \ | grep ^H- | cut -f 3- \ | sacremoses detokenize -l $TGTLANG -q \ | sacrebleu -t $DATASET -l $LANGPAIR
COCO-LM/fairseq/examples/backtranslation/sacrebleu.sh/0
{ "file_path": "COCO-LM/fairseq/examples/backtranslation/sacrebleu.sh", "repo_id": "COCO-LM", "token_count": 450 }
165
#!/bin/bash # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. SPM_ENCODE=flores/scripts/spm_encode.py DATA=data_tmp SPM_MODEL=criss_checkpoints/sentence.bpe.model DICT=criss_checkpoints/dict.txt download_data() { CORPORA=$1 URL=$2 if [ -f $CORPORA ]; then echo "$CORPORA already exists, skipping download" else echo "Downloading $URL" wget $URL -O $CORPORA --no-check-certificate || rm -f $CORPORA if [ -f $CORPORA ]; then echo "$URL successfully downloaded." else echo "$URL not successfully downloaded." rm -f $CORPORA fi fi } if [[ -f flores ]]; then echo "flores already cloned" else git clone https://github.com/facebookresearch/flores fi mkdir -p $DATA download_data $DATA/wikipedia_en_ne_si_test_sets.tgz "https://github.com/facebookresearch/flores/raw/master/data/wikipedia_en_ne_si_test_sets.tgz" pushd $DATA pwd tar -vxf wikipedia_en_ne_si_test_sets.tgz popd for lang in ne_NP si_LK; do datadir=$DATA/${lang}-en_XX-flores rm -rf $datadir mkdir -p $datadir TEST_PREFIX=$DATA/wikipedia_en_ne_si_test_sets/wikipedia.test python $SPM_ENCODE \ --model ${SPM_MODEL} \ --output_format=piece \ --inputs ${TEST_PREFIX}.${lang:0:2}-en.${lang:0:2} ${TEST_PREFIX}.${lang:0:2}-en.en \ --outputs $datadir/test.bpe.${lang}-en_XX.${lang} $datadir/test.bpe.${lang}-en_XX.en_XX # binarize data fairseq-preprocess \ --source-lang ${lang} --target-lang en_XX \ --testpref $datadir/test.bpe.${lang}-en_XX \ --destdir $datadir \ --srcdict ${DICT} \ --joined-dictionary \ --workers 4 done
COCO-LM/fairseq/examples/criss/download_and_preprocess_flores_test.sh/0
{ "file_path": "COCO-LM/fairseq/examples/criss/download_and_preprocess_flores_test.sh", "repo_id": "COCO-LM", "token_count": 719 }
166
# Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019) This page includes instructions for training models described in [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](https://arxiv.org/abs/1909.02074). ## Training a joint alignment-translation model on WMT'18 En-De ##### 1. Extract and preprocess the WMT'18 En-De data ```bash ./prepare-wmt18en2de_no_norm_no_escape_no_agressive.sh ``` ##### 2. Generate alignments from statistical alignment toolkits e.g. Giza++/FastAlign. In this example, we use FastAlign. ```bash git clone [email protected]:clab/fast_align.git pushd fast_align mkdir build cd build cmake .. make popd ALIGN=fast_align/build/fast_align paste bpe.32k/train.en bpe.32k/train.de | awk -F '\t' '{print $1 " ||| " $2}' > bpe.32k/train.en-de $ALIGN -i bpe.32k/train.en-de -d -o -v > bpe.32k/train.align ``` ##### 3. Preprocess the dataset with the above generated alignments. ```bash fairseq-preprocess \ --source-lang en --target-lang de \ --trainpref bpe.32k/train \ --validpref bpe.32k/valid \ --testpref bpe.32k/test \ --align-suffix align \ --destdir binarized/ \ --joined-dictionary \ --workers 32 ``` ##### 4. Train a model ```bash fairseq-train \ binarized \ --arch transformer_wmt_en_de_big_align --share-all-embeddings \ --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 --activation-fn relu\ --lr 0.0002 --lr-scheduler inverse_sqrt --warmup-updates 4000 --warmup-init-lr 1e-07 \ --dropout 0.3 --attention-dropout 0.1 --weight-decay 0.0 \ --max-tokens 3500 --label-smoothing 0.1 \ --save-dir ./checkpoints --log-interval 1000 --max-update 60000 \ --keep-interval-updates -1 --save-interval-updates 0 \ --load-alignments --criterion label_smoothed_cross_entropy_with_alignment \ --fp16 ``` Note that the `--fp16` flag requires you have CUDA 9.1 or greater and a Volta GPU or newer. If you want to train the above model with big batches (assuming your machine has 8 GPUs): - add `--update-freq 8` to simulate training on 8x8=64 GPUs - increase the learning rate; 0.0007 works well for big batches ##### 5. Evaluate and generate the alignments (BPE level) ```bash fairseq-generate \ binarized --gen-subset test --print-alignment \ --source-lang en --target-lang de \ --path checkpoints/checkpoint_best.pt --beam 5 --nbest 1 ``` ##### 6. Other resources. The code for: 1. preparing alignment test sets 2. converting BPE level alignments to token level alignments 3. symmetrizing bidirectional alignments 4. evaluating alignments using AER metric can be found [here](https://github.com/lilt/alignment-scripts) ## Citation ```bibtex @inproceedings{garg2019jointly, title = {Jointly Learning to Align and Translate with Transformer Models}, author = {Garg, Sarthak and Peitz, Stephan and Nallasamy, Udhyakumar and Paulik, Matthias}, booktitle = {Conference on Empirical Methods in Natural Language Processing (EMNLP)}, address = {Hong Kong}, month = {November}, url = {https://arxiv.org/abs/1909.02074}, year = {2019}, } ```
COCO-LM/fairseq/examples/joint_alignment_translation/README.md/0
{ "file_path": "COCO-LM/fairseq/examples/joint_alignment_translation/README.md", "repo_id": "COCO-LM", "token_count": 1128 }
167
#!/usr/bin/env bash # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. CWD=`pwd` INSTALL_PATH=$CWD/tokenizers/thirdparty MOSES=$INSTALL_PATH/mosesdecoder if [ ! -d $MOSES ]; then echo 'Cloning Moses github repository (for tokenization scripts)...' git clone https://github.com/moses-smt/mosesdecoder.git $MOSES cd $MOSES # To deal with differences in handling ' vs " git checkout 03578921cc1a03402 cd - fi WMT16_SCRIPTS=$INSTALL_PATH/wmt16-scripts if [ ! -d $WMT16_SCRIPTS ]; then echo 'Cloning Romanian tokenization scripts' git clone https://github.com/rsennrich/wmt16-scripts.git $WMT16_SCRIPTS fi KYTEA=$INSTALL_PATH/kytea if [ ! -f $KYTEA/bin/kytea ]; then git clone https://github.com/neubig/kytea.git $KYTEA cd $KYTEA autoreconf -i ./configure --prefix=`pwd` make make install cd .. fi export MECAB=$INSTALL_PATH/mecab-0.996-ko-0.9.2 if [ ! -f $MECAB/bin/mecab ]; then cd $INSTALL_PATH curl -LO https://bitbucket.org/eunjeon/mecab-ko/downloads/mecab-0.996-ko-0.9.2.tar.gz tar zxfv mecab-0.996-ko-0.9.2.tar.gz cd mecab-0.996-ko-0.9.2/ ./configure --prefix=`pwd` make make install cd .. curl -LO https://bitbucket.org/eunjeon/mecab-ko-dic/downloads/mecab-ko-dic-2.1.1-20180720.tar.gz tar zxfv mecab-ko-dic-2.1.1-20180720.tar.gz cd mecab-ko-dic-2.1.1-20180720/ ./autogen.sh ./configure --prefix=`pwd` --with-dicdir=$MECAB/lib/mecab/dic/mecab-ko-dic --with-mecab-config=$MECAB/bin/mecab-config make sh -c 'echo "dicdir=$MECAB/lib/mecab/dic/mecab-ko-dic" > $MECAB/etc/mecabrc' make install cd $CWD fi INDIC_RESOURCES_PATH=$INSTALL_PATH/indic_nlp_resources if [ ! -d $INDIC_RESOURCES_PATH ]; then echo 'Cloning indic_nlp_resources' git clone https://github.com/anoopkunchukuttan/indic_nlp_resources.git $INDIC_RESOURCES_PATH fi if [ ! -f $INSTALL_PATH/seg_my.py ]; then cd $INSTALL_PATH wget http://lotus.kuee.kyoto-u.ac.jp/WAT/my-en-data/wat2020.my-en.zip unzip wat2020.my-en.zip # switch to python3 cat wat2020.my-en/myseg.py |sed 's/^sys.std/###sys.std/g' | sed 's/### sys/sys/g' | sed 's/unichr/chr/g' > seg_my.py cd $CWD fi pip install pythainlp sacrebleu indic-nlp-library
COCO-LM/fairseq/examples/m2m_100/install_dependecies.sh/0
{ "file_path": "COCO-LM/fairseq/examples/m2m_100/install_dependecies.sh", "repo_id": "COCO-LM", "token_count": 1106 }
168
from typing import NamedTuple, List from urllib.parse import urlparse import os, sys import subprocess from subprocess import check_call, check_output import glob import wget import re import multiprocessing as mp from functools import partial import pathlib from collections import OrderedDict WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None) if WORKDIR_ROOT is None or not WORKDIR_ROOT.strip(): print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."') sys.exit(-1) # scripts and data locations CWD = os.getcwd() UTILS = f"{CWD}/utils" MOSES = f"{UTILS}/mosesdecoder" SGM_TOOL = f'{MOSES}/scripts/ems/support/input-from-sgm.perl' TMX2CORPUS = f"{UTILS}/tmx2corpus" TMX_TOOL = f'python {TMX2CORPUS}/tmx2corpus.py' to_data_path = f'{WORKDIR_ROOT}/wmt' download_to = f'{to_data_path}/downloads' manually_downloads = f'{to_data_path}/downloads' extract_to = f'{to_data_path}/extracted' #DESTDIR=${WORKDIR_ROOT}/ML50/raw/ raw_data = f'{WORKDIR_ROOT}/ML50/raw' #### class DLDataset(NamedTuple): name: str train_urls: List[str] valid_urls: List[str] test_urls: List[str] train_files_patterns: List[str] = [] valid_files_patterns: List[str] = [] test_files_patterns: List[str] = [] def bar_custom(current, total, width=80): print("Downloading: %d%% [%d / %d] Ks" % (current / total * 100, current / 1000, total / 1000), end='\r') def get_downloaded_file(dl_folder, url): if isinstance(url, tuple): url, f = url else: url_f = urlparse(url) # f = os.path.split(url_f.path)[-1] f = '_'.join(url_f.path.split('/')[1:]) return url, f"{dl_folder}/{f}" def download_parts_and_combine(dl_folder, urls, filename): parts = [] for url_record in urls: url, part_file = get_downloaded_file(dl_folder, url_record) if os.path.exists(part_file): print(f'{part_file} has already been downloaded so skip') else: part_file = wget.download(url, part_file, bar=bar_custom) parts.append(part_file) def get_combine_cmd(parts): #default as tar.gz.?? return f'cat {" ".join(parts)} > {filename}' combine_cmd = get_combine_cmd(parts) call(combine_cmd, debug=True) return filename def download_a_url(dl_folder, url): url, filename = get_downloaded_file(dl_folder, url) if os.path.exists(filename): print(f'{filename} has already been downloaded so skip') return filename print(f'downloading {url} to {filename}') if isinstance(url, list) or isinstance(url, tuple): download_parts_and_combine(dl_folder, url, filename) else: wget.download(url, filename, bar=bar_custom) print(f'dowloaded: {filename}') return filename def download_files(dl_folder, urls, completed_urls={}): for url_record in urls: url, _ = get_downloaded_file(dl_folder, url_record) filename = download_a_url(dl_folder, url_record) completed_urls[str(url)] = filename return completed_urls def check_need_manual_downalod(dl_folder, to_manually_download_urls): to_be_manually_dowloaded = [] manually_completed_urls = {} for url_record, instruction in to_manually_download_urls: url, filename = get_downloaded_file(dl_folder, url_record) if not os.path.exists(filename): print(f'{url} need to be download manually, please download it manually following {instruction}; and copy it to {filename}') to_be_manually_dowloaded.append((url, filename)) else: manually_completed_urls[url] = filename # if len(to_be_manually_dowloaded) > 0: # raise ValueError('Missing files that need to be downloaded manually; stop the process now.') return to_be_manually_dowloaded def download_dataset(to_folder, dl_dataset, completed_urls={}): download_files(to_folder, dl_dataset.train_urls, completed_urls) download_files(to_folder, dl_dataset.valid_urls, completed_urls) download_files(to_folder, dl_dataset.test_urls, completed_urls) print('completed downloading') return completed_urls def call(cmd, debug=False): if debug: print(cmd) check_call(cmd, shell=True) def get_extract_name(file_path): path = os.path.split(file_path) return path[-1] + '_extract' #.split('.')[0] def extract_file(downloaded_file, extract_folder, get_extract_name=get_extract_name, debug=False): extract_name = get_extract_name(downloaded_file) extract_to = f'{extract_folder}/{extract_name}' os.makedirs(extract_to, exist_ok=True) if os.path.exists(f'{extract_to}/DONE'): print(f'{downloaded_file} has already been extracted to {extract_to} so skip') return extract_to def get_extract_cmd(filename): if filename.endswith('.tgz') or filename.endswith('tar.gz'): return f'tar xzfv {filename} -C {extract_to}' elif filename.endswith('.gz.tar'): return f'tar xfv {filename} -C {extract_to}; (cd {extract_to}; gzip -d *.gz; [ $? -eq 0 ] || gzip -d */*.gz)' elif filename.endswith('.tar'): return f'tar xfv {filename} -C {extract_to}' elif filename.endswith('.gz'): return f'cp {filename} {extract_to}; (cd {extract_to}; gzip -d *.gz)' elif filename.endswith('.zip'): return f'unzip {filename} -d {extract_to}' extract_cmd = get_extract_cmd(downloaded_file) print(f'extracting {downloaded_file}') if isinstance(extract_cmd, list): for c in extract_cmd: call(c, debug=debug) else: call(extract_cmd, debug=debug) call(f'echo DONE > {extract_to}/DONE') return extract_to def extract_all_files( completed_urls, extract_folder, get_extract_name=get_extract_name, completed_extraction={}, debug=False): extracted_folders = OrderedDict() for url, downloaded_file in set(completed_urls.items()): if downloaded_file in completed_extraction: print(f'{downloaded_file} is already extracted; so skip') continue folder = extract_file(downloaded_file, extract_folder, get_extract_name, debug) extracted_folders[url] = folder return extracted_folders def my_glob(folder): for p in [f'{folder}/*', f'{folder}/*/*', f'{folder}/*/*/*']: for f in glob.glob(p): yield f def sgm2raw(sgm, debug): to_file = sgm[0:len(sgm) - len('.sgm')] if os.path.exists(to_file): debug and print(f'{sgm} already converted to {to_file}; so skip') return to_file cmd = f'{SGM_TOOL} < {sgm} > {to_file}' call(cmd, debug) return to_file def tmx2raw(tmx, debug): to_file = tmx[0:len(tmx) - len('.tmx')] to_folder = os.path.join(*os.path.split(tmx)[:-1]) if os.path.exists(f'{to_folder}/bitext.en'): debug and print(f'{tmx} already extracted to {to_file}; so skip') return to_file cmd = f'(cd {to_folder}; {TMX_TOOL} {tmx})' call(cmd, debug) return to_file CZENG16_REGEX = re.compile(r'.*?data.plaintext-format/0[0-9]train$') WMT19_WIKITITLES_REGEX = re.compile(r'.*?wikititles-v1.(\w\w)-en.tsv.gz') TSV_REGEX = re.compile(r'.*?(\w\w)-(\w\w).tsv$') def cut_wikitles(wiki_file, debug): # different languages have different file names: if wiki_file.endswith('wiki/fi-en/titles.fi-en'): to_file1 = f'{wiki_file}.fi' to_file2 = f'{wiki_file}.en' BACKSLASH = '\\' cmd1 = f"cat {wiki_file} | sed 's/|||/{BACKSLASH}t/g' |cut -f1 |awk '{{$1=$1}};1' > {to_file1}" cmd2 = f"cat {wiki_file} | sed 's/|||/{BACKSLASH}t/g' |cut -f2 |awk '{{$1=$1}};1' > {to_file2}" # elif WMT19_WIKITITLES_REGEX.match(wiki_file): # src = WMT19_WIKITITLES_REGEX.match(wiki_file).groups()[0] # to_file1 = f'{wiki_file}.{src}' # to_file2 = f'{wiki_file}.en' # cmd1 = f"cat {wiki_file} | cut -f1 |awk '{{$1=$1}};1' > {to_file1}" # cmd2 = f"cat {wiki_file} | cut -f2 |awk '{{$1=$1}};1' > {to_file2}" else: return None if os.path.exists(to_file1) and os.path.exists(to_file2): debug and print(f'{wiki_file} already processed to {to_file1} and {to_file2}; so skip') return wiki_file call(cmd1, debug=debug) call(cmd2, debug=debug) return wiki_file def cut_tsv(file, debug): m = TSV_REGEX.match(file) if m is None: raise ValueError(f'{file} is not matching tsv pattern') src = m.groups()[0] tgt = m.groups()[1] to_file1 = f'{file}.{src}' to_file2 = f'{file}.{tgt}' cmd1 = f"cat {file} | cut -f1 |awk '{{$1=$1}};1' > {to_file1}" cmd2 = f"cat {file} | cut -f2 |awk '{{$1=$1}};1' > {to_file2}" if os.path.exists(to_file1) and os.path.exists(to_file2): debug and print(f'{file} already processed to {to_file1} and {to_file2}; so skip') return file call(cmd1, debug=debug) call(cmd2, debug=debug) return file def convert_file_if_needed(file, debug): if file.endswith('.sgm'): return sgm2raw(file, debug) elif file.endswith('.tmx'): return tmx2raw(file, debug) elif file.endswith('wiki/fi-en/titles.fi-en'): return cut_wikitles(file, debug) # elif WMT19_WIKITITLES_REGEX.match(file): # return cut_wikitles(file, debug) elif file.endswith('.tsv'): return cut_tsv(file, debug) elif CZENG16_REGEX.match(file): return convert2czeng17(file, debug) else: return file def convert_files_if_needed(extracted_foldrs, my_glob=my_glob, debug=False): return { url: list(sorted(set(convert_file_if_needed(f, debug)) for f in sorted(set(my_glob(folder))))) for url, folder in extracted_foldrs.items() } def match_patt(file_path, file_pattern, src, tgt, lang): return file_pattern.format(src=src, tgt=tgt, lang=lang) in file_path def match_patts(file_path, file_patterns, src, tgt, lang): for file_pattern in file_patterns: params = { k: v for k, v in [('src', src), ('tgt', tgt), ('lang', lang)] if k in file_pattern} matching = file_pattern.format(**params) if isinstance(file_pattern, tuple): pattern, directions = file_pattern if f'{src}-{tgt}' in directions and matching in file_path: return True else: if matching in file_path: return True return False def extracted_glob(extracted_folder, file_patterns, src, tgt, lang): def get_matching_pattern(file_pattern): params = { k: v for k, v in [('src', src), ('tgt', tgt), ('lang', lang)] if '{' + k + '}' in file_pattern } file_pattern = re.sub(r'{src:(.*?)}', r'\1' if lang == src else '', file_pattern) file_pattern = re.sub(r'{tgt:(.*?)}', r'\1' if lang == tgt else '', file_pattern) file_pattern = file_pattern.format(**params) return file_pattern for file_pattern in file_patterns: if isinstance(file_pattern, tuple): file_pattern, lang_pairs = file_pattern if f'{src}-{tgt}' not in lang_pairs: continue # print('working on pattern: ', file_pattern, lang_pairs ) matching_pattern = get_matching_pattern(file_pattern) if matching_pattern is None: continue glob_patterns = f'{extracted_folder}/{matching_pattern}' # print('glob_patterns: ', glob_patterns) for f in glob.glob(glob_patterns): yield f # for debug usage def all_extracted_files(split, src, tgt, extracted_folders, split_urls): def get_url(url): if isinstance(url, tuple): url, downloaded_file = url return url return [ f for url in split_urls for f in my_glob(extracted_folders[str(get_url(url))]) ] def concat_files(split, src, tgt, extracted_folders, split_urls, path_patterns, to_folder, debug=False): # if debug: # print('extracted files to be filtered by patterns: ', # '\n\t'.join(sorted(all_extracted_files(split, src, tgt, extracted_folders, split_urls)))) for lang in [src, tgt]: to_file = f'{to_folder}/{split}.{src}-{tgt}.{lang}' s_src, s_tgt, s_lang = src.split('_')[0], tgt.split('_')[0], lang.split('_')[0] files = [] for url in split_urls: if isinstance(url, tuple): url, downloaded_file = url if str(url) not in extracted_folders: print(f'warning: {url} not in extracted files') for extracted_file in set( extracted_glob( extracted_folders[str(url)], path_patterns, s_src, s_tgt, s_lang)): files.append(extracted_file) if len(files) == 0: print('warning: ', f'No files found for split {to_file}') continue files = sorted(set(files)) print(f'concating {len(files)} files into {to_file}') cmd = ['cat'] + [f'"{f}"' for f in files] + [f'>{to_file}'] cmd = " ".join(cmd) call(cmd, debug=debug) UTILS = os.path.join(pathlib.Path(__file__).parent, 'utils') LID_MODEL = f'{download_to}/lid.176.bin' LID_MULTI = f'{UTILS}/fasttext_multi_filter.py' def lid_filter(split, src, tgt, from_folder, to_folder, debug=False): if not os.path.exists(LID_MODEL): call(f'wget -nc https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin -O {LID_MODEL}') from_prefix = f'{from_folder}/{split}.{src}-{tgt}' to_prefix = f'{to_folder}/{split}.{src}-{tgt}' if os.path.exists(f'{from_prefix}.{src}') and os.path.exists(f'{from_prefix}.{tgt}'): s_src, s_tgt = src.split('_')[0], tgt.split('_')[0] cmd = ( f'python {LID_MULTI} --model {LID_MODEL} --inputs {from_prefix}.{src} {from_prefix}.{tgt} ' f'--langs {s_src} {s_tgt} --outputs {to_prefix}.{src} {to_prefix}.{tgt}' ) print(f'filtering {from_prefix}') call(cmd, debug=debug) def concat_into_splits(dl_dataset, src, tgt, extracted_folders, to_folder, debug): to_folder_tmp = f"{to_folder}_tmp" os.makedirs(to_folder_tmp, exist_ok=True) concat_files('train', src, tgt, extracted_folders, split_urls=dl_dataset.train_urls, path_patterns=dl_dataset.train_files_patterns, to_folder=to_folder_tmp, debug=debug) lid_filter('train', src, tgt, to_folder_tmp, to_folder, debug) concat_files('valid', src, tgt, extracted_folders, split_urls=dl_dataset.valid_urls, path_patterns=dl_dataset.valid_files_patterns, to_folder=to_folder, debug=debug) concat_files('test', src, tgt, extracted_folders, split_urls=dl_dataset.test_urls, path_patterns=dl_dataset.test_files_patterns, to_folder=to_folder, debug=debug) def download_multi(dl_folder, extract_folder, urls, num_processes=8, debug=False): pool = mp.Pool(processes=num_processes) download_f = partial(download_a_url, dl_folder) downloaded_files = pool.imap_unordered(download_f, urls) pool.close() pool.join() BLEU_REGEX = re.compile("^BLEU\\S* = (\\S+) ") def run_eval_bleu(cmd): output = check_output(cmd, shell=True, stderr=subprocess.STDOUT).decode("utf-8").strip() print(output) bleu = -1.0 for line in output.strip().split('\n'): m = BLEU_REGEX.search(line) if m is not None: bleu = m.groups()[0] bleu = float(bleu) break return bleu def check_wmt_test_bleu(raw_folder, wmt_lang_pairs): not_matchings = [] for wmt, src_tgts in wmt_lang_pairs: for src_tgt in src_tgts: print(f'checking test bleus for: {src_tgt} at {wmt}') src, tgt = src_tgt.split('-') ssrc, stgt = src[:2], tgt[:2] if os.path.exists(f'{raw_folder}/test.{tgt}-{src}.{src}'): # reversed direction may have different test set test_src = f'{raw_folder}/test.{tgt}-{src}.{src}' else: test_src = f'{raw_folder}/test.{src}-{tgt}.{src}' cmd1 = f'cat {test_src} | sacrebleu -t "{wmt}" -l {stgt}-{ssrc}; [ $? -eq 0 ] || echo ""' test_tgt = f'{raw_folder}/test.{src}-{tgt}.{tgt}' cmd2 = f'cat {test_tgt} | sacrebleu -t "{wmt}" -l {ssrc}-{stgt}; [ $? -eq 0 ] || echo ""' bleu1 = run_eval_bleu(cmd1) if bleu1 != 100.0: not_matchings.append(f'{wmt}:{src_tgt} source side not matching: {test_src}') bleu2 = run_eval_bleu(cmd2) if bleu2 != 100.0: not_matchings.append(f'{wmt}:{src_tgt} target side not matching: {test_tgt}') return not_matchings def download_and_extract( to_folder, lang_pairs, dl_dataset, to_manually_download_urls, completed_urls={}, completed_extraction={}, debug=False): dl_folder = f'{to_folder}/downloads' extract_folder = f'{to_folder}/extracted' raw_folder = f'{to_folder}/raw' lid_filtered = f'{to_folder}/lid_filtered' os.makedirs(extract_folder, exist_ok=True) os.makedirs(raw_folder, exist_ok=True) os.makedirs(lid_filtered, exist_ok=True) to_be_manually_dowloaded = check_need_manual_downalod(dl_folder, to_manually_download_urls) completed_urls = download_dataset( dl_folder, dl_dataset, completed_urls) if debug: print('completed urls: ', completed_urls) extracted_folders = extract_all_files( completed_urls, extract_folder=extract_folder, completed_extraction=completed_extraction, debug=debug) if debug: print('download files have been extracted to folders: ', extracted_folders) converted_files = convert_files_if_needed(extracted_folders, debug=False) for src_tgt in lang_pairs: print(f'working on {dl_dataset.name}: {src_tgt}') src, tgt = src_tgt.split('-') concat_into_splits(dl_dataset, src=src, tgt=tgt, extracted_folders=extracted_folders, to_folder=raw_folder, debug=debug) print('completed data into: ', raw_folder) def download_czang16(download_to, username=None): wgets = [ f'wget --user={username} --password=czeng -P {download_to} http://ufallab.ms.mff.cuni.cz/~bojar/czeng16-data/data-plaintext-format.{i}.tar' for i in range(10)] cmds = [] for i, cmd in enumerate(wgets): filename = f'{download_to}/data-plaintext-format.{i}.tar' if os.path.exists(filename): print(f'{filename} has already been downloaded; so skip') continue cmds.append(cmd) if cmds and username is None: raise ValueError('No czeng username is given; please register at http://ufal.mff.cuni.cz/czeng/czeng16 to obtain username to download') for cmd in cmds: call(cmd) print('done with downloading czeng1.6') def download_czeng17_script(download_to, extract_folder, debug=False): url = 'http://ufal.mff.cuni.cz/czeng/download.php?f=convert_czeng16_to_17.pl.zip' filename = f'{download_to}/convert_czeng16_to_17.pl.zip' extract_to = f'{extract_folder}/{get_extract_name(filename)}' script_path = f'{extract_to}/convert_czeng16_to_17.pl' if not os.path.exists(script_path): wget.download(url, filename, bar=bar_custom) extract_to = extract_file(f'{download_to}/convert_czeng16_to_17.pl.zip', extract_folder, get_extract_name=get_extract_name, debug=debug) return script_path czeng17_script_path = "" def convert2czeng17(file, debug): en_file = f'{file}.en' cs_file = f'{file}.cs' if not os.path.exists(en_file) or not os.path.exists(cs_file): cs_cmd = f'cat {file} | perl {czeng17_script_path} | cut -f3 > {cs_file}' en_cmd = f'cat {file} | perl {czeng17_script_path} | cut -f4 > {en_file}' call(cs_cmd, debug) call(en_cmd, debug) else: print(f'already extracted: {en_file} and {cs_file}') return file def extract_czeng17(extract_folder, debug=False): url = 'http://ufal.mff.cuni.cz/czeng/download.php?f=convert_czeng16_to_17.pl.zip' filename = f'{download_to}/convert_czeng16_to_17.pl.zip' extract_to = f'{extract_folder}/{get_extract_name(filename)}' script_path = f'{extract_to}/convert_czeng16_to_17.pl' if not os.path.exists(script_path): wget.download(url, filename, bar=bar_custom) extract_to = extract_file(f'{download_to}/convert_czeng16_to_17.pl.zip', extract_folder, get_extract_name=get_extract_name, debug=debug) return script_path ######### # definitions of wmt data sources # for es-en # Punctuation in the official test sets will be encoded with ASCII characters (not complex Unicode characters) as much as possible. You may want to normalize your system's output before submission. You are able able to use a rawer version of the test sets that does not have this normalization. # script to normalize punctuation: http://www.statmt.org/wmt11/normalize-punctuation.perl wmt13_es_en = DLDataset( name='wmt13_es-en', train_urls=[ 'http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz', 'http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz', 'http://www.statmt.org/wmt13/training-parallel-un.tgz', 'http://www.statmt.org/wmt13/training-parallel-nc-v8.tgz', ], valid_urls=[ ('http://www.statmt.org/wmt13/dev.tgz', 'wmt13_dev.tgz') ], test_urls=[ ('http://www.statmt.org/wmt13/test.tgz', 'wmt13_test.tgz') ], train_files_patterns=[ ('*/europarl-v7.{src}-{tgt}.{lang}', ['es-en']), ('*commoncrawl.{src}-{tgt}.{lang}', ['es-en']), ('*/news-commentary-v8.{src}-{tgt}.{lang}', ['es-en']), ('un/*undoc.2000.{src}-{tgt}.{lang}', ['es-en']), ] , valid_files_patterns=[ ('dev/newstest2012.{lang}', ['es-en']) ], test_files_patterns=[ ('test/newstest*.{lang}', ['es-en']) ], ) wmt14_de_fr_en = DLDataset( name='wmt14_de_fr_en', train_urls=[ 'http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz', 'http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz', 'http://www.statmt.org/wmt13/training-parallel-un.tgz', 'http://www.statmt.org/wmt14/training-parallel-nc-v9.tgz', ('http://www.statmt.org/wmt10/training-giga-fren.tar', 'training-giga-fren.gz.tar'), #it is actuall a gz.tar ], valid_urls=[ ('http://www.statmt.org/wmt14/dev.tgz', 'wmt14_dev.tgz'), ], test_urls=[ ('http://www.statmt.org/wmt14/test-full.tgz', 'wmt14_test_full.tgz'), # cleaned test sets ], train_files_patterns=[ ('*/europarl-v7.{src}-{tgt}.{lang}', ['fr-en', 'de-en']), ('*commoncrawl.{src}-{tgt}.{lang}', ['fr-en', 'de-en']), ('*/*news-commentary-v9.{src}-{tgt}.{lang}', ['fr-en', 'de-en']), ('un/undoc.2000.{src}-{tgt}.{lang}', ['fr-en']), ('*giga-{src}{tgt}*{lang}', ['fr-en']) ], valid_files_patterns=[ ('dev/newstest2013.{lang}', ['fr-en', 'de-en']) ], test_files_patterns=[ ('test-full/newstest*{src}{tgt}-{src:src}{tgt:ref}.{lang}', ['en-de', 'de-en', 'fr-en', 'en-fr']), ], ) # pip install git+https://github.com/amake/tmx2corpus.git wmt16_ro_en = DLDataset( name='wmt16_ro-en', train_urls=[ ('http://data.statmt.org/wmt16/translation-task/training-parallel-ep-v8.tgz', 'wmt16_training-parallel-ep-v8.tgz'), ('http://opus.nlpl.eu/download.php?f=SETIMES/v2/tmx/en-ro.tmx.gz', 'en-ro.tmx.gz'), ], valid_urls=[ ('http://data.statmt.org/wmt16/translation-task/dev-romanian-updated.tgz', 'wmt16_dev.tgz') ], test_urls=[ ('http://data.statmt.org/wmt16/translation-task/test.tgz', 'wmt16_test.tgz') ], train_files_patterns=[ ('*/*europarl-v8.{src}-{tgt}.{lang}', ['ro-en']), ('bitext.{lang}', ['ro-en']) #setimes from tmux ] , valid_files_patterns=[ ('dev/newsdev2016*{src}{tgt}*.{lang}', ['ro-en', 'ro-en']) ], test_files_patterns=[ ('test/newstest*{src}{tgt}*.{lang}', ['ro-en', 'en-ro']) ], ) cwmt_wmt_instruction = 'cwmt download instruction at: http://nlp.nju.edu.cn/cwmt-wmt' wmt17_fi_lv_tr_zh_en_manual_downloads = [ # fake urls to have unique keys for the data ( ('http://nlp.nju.edu.cn/cwmt-wmt/CASIA2015.zip', 'CASIA2015.zip'), cwmt_wmt_instruction), ( ('http://nlp.nju.edu.cn/cwmt-wmt/CASICT2011.zip', 'CASICT2011.zip'), cwmt_wmt_instruction), ( ('http://nlp.nju.edu.cn/cwmt-wmt/CASICT2015.zip', 'CASICT2015.zip'), cwmt_wmt_instruction), ( ('http://nlp.nju.edu.cn/cwmt-wmt/Datum2015.zip', 'Datum2015.zip'), cwmt_wmt_instruction), ( ('http://nlp.nju.edu.cn/cwmt-wmt/Datum2017.zip', 'Datum2017.zip'), cwmt_wmt_instruction), ( ('http://nlp.nju.edu.cn/cwmt-wmt/NEU2017.zip', 'NEU2017.zip'), cwmt_wmt_instruction), ] wmt17_fi_lv_tr_zh_en = DLDataset( name='wmt17_fi_lv_tr_zh_en', train_urls=[ ('http://data.statmt.org/wmt17/translation-task/training-parallel-ep-v8.tgz', 'wmt17_training-parallel-ep-v8.tgz'), 'http://data.statmt.org/wmt17/translation-task/training-parallel-nc-v12.tgz', 'http://www.statmt.org/wmt15/wiki-titles.tgz', ('http://opus.nlpl.eu/download.php?f=SETIMES/v2/tmx/en-tr.tmx.gz', 'en-tr.tmx.gz'), ('http://data.statmt.org/wmt17/translation-task/rapid2016.tgz', 'wmt17_rapid2016.tgz'), 'http://data.statmt.org/wmt17/translation-task/leta.v1.tgz', 'http://data.statmt.org/wmt17/translation-task/dcep.lv-en.v1.tgz', 'http://data.statmt.org/wmt17/translation-task/books.lv-en.v1.tgz', (('https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-zh.tar.gz.00', 'https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-zh.tar.gz.01',), 'UNv1.0.en-zh.tar.gz'), #manually download files: ('http://nlp.nju.edu.cn/cwmt-wmt/CASIA2015.zip', 'CASIA2015.zip'), ('http://nlp.nju.edu.cn/cwmt-wmt/CASICT2011.zip', 'CASICT2011.zip'), ('http://nlp.nju.edu.cn/cwmt-wmt/CASICT2015.zip', 'CASICT2015.zip'), ('http://nlp.nju.edu.cn/cwmt-wmt/Datum2015.zip', 'Datum2015.zip'), ('http://nlp.nju.edu.cn/cwmt-wmt/Datum2017.zip', 'Datum2017.zip'), ('http://nlp.nju.edu.cn/cwmt-wmt/NEU2017.zip', 'NEU2017.zip'), ], valid_urls=[ ('http://data.statmt.org/wmt17/translation-task/dev.tgz', 'wmt17_dev.tgz'), ], test_urls=[ #NEW: Improved translations for zh test sets ('http://data.statmt.org/wmt17/translation-task/test-update-1.tgz', 'wmt17_test_zh_en.tgz'), ('http://data.statmt.org/wmt17/translation-task/test.tgz', 'wmt17_test_others.tgz') ], train_files_patterns=[ ('casict*/cas*{src:ch}{tgt:en}.txt', ['zh-en', 'zh-en'] ), ('casia*/cas*{src:ch}{tgt:en}.txt', ['zh-en', 'zh-en'] ), ('dataum*/Book*{src:cn}{tgt:en}.txt', ['zh-en', 'zh-en']), ('neu*/NEU*{src:cn}{tgt:en}.txt', ['zh-en', 'zh-en'] ), ('*/*UNv1.0.en-zh.{src:zh}{tgt:en}', ['zh-en']), ('training/*news-commentary-v12.{src}-{tgt}.{lang}', ['zh-en', ]), ('*/*europarl-v8.{src}-{tgt}.{lang}', ['fi-en', 'lv-en']), ('wiki/fi-en/titles.{src}-{tgt}.{lang}', ['fi-en', ]), ('rapid2016.{tgt}-{src}.{lang}', ['fi-en', 'lv-en']), ('*/leta.{lang}', ['lv-en']), ('*/dcep.{lang}', ['lv-en']), ('*/farewell.{lang}', ['lv-en']), ('bitext.{lang}', ['tr-en']), ] , valid_files_patterns=[ ('dev/newsdev2017*{src}{tgt}-{src:src}{tgt:ref}.{lang}', [ 'fi-en', 'lv-en', 'tr-en', 'zh-en', 'en-fi', 'en-lv', 'en-tr', 'en-zh' ]), ('dev/newstest2016*{src}{tgt}-{src:src}{tgt:ref}.{lang}', [ 'fi-en', 'tr-en', 'en-fi', 'en-tr', ]), ], test_files_patterns=[ ('test/newstest2017-{src}{tgt}-{src:src}{tgt:ref}.{lang}', [ 'fi-en', 'lv-en', 'tr-en', 'en-fi', 'en-lv', 'en-tr', ]), ('newstest2017-{src}{tgt}-{src:src}{tgt:ref}.{lang}', [ 'zh-en', 'en-zh' ]), ], ) czeng_instruction = 'download instruction at: http://ufal.mff.cuni.cz/czeng/czeng16' #alternative: use the prepared data but detokenize it? wmt18_cs_et_en_manual_downloads = [ #for cs, need to register and download; Register and download CzEng 1.6. #Better results can be obtained by using a subset of sentences, released under a new version name CzEng 1.7. # ((f'http://ufallab.ms.mff.cuni.cz/~bojar/czeng16-data/data-plaintext-format.{i}.tar', # f'data-plaintext-format.{i}.tar'), czeng_instruction) # for i in range(10) ] wmt18_cs_et_en = DLDataset( name='wmt18_cs_et_en', train_urls=[ 'http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz', 'http://data.statmt.org/wmt18/translation-task/training-parallel-ep-v8.tgz', 'https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-cs.zipporah0-dedup-clean.tgz', 'https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-et.zipporah0-dedup-clean.tgz', 'http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz', 'http://data.statmt.org/wmt18/translation-task/training-parallel-nc-v13.tgz', ('http://data.statmt.org/wmt18/translation-task/rapid2016.tgz', 'wmt18_rapid2016.tgz'), # (tuple( # (f'http://ufallab.ms.mff.cuni.cz/~bojar/czeng16-data/data-plaintext-format.{i}.tar', # f'data-plaintext-format.{i}.tar') # for i in range(10) # ), # 'czeng16_data_plaintext.gz.tar'), ], valid_urls=[ ('http://data.statmt.org/wmt18/translation-task/dev.tgz', 'wmt18_dev.tgz'), ], test_urls=[ ('http://data.statmt.org/wmt18/translation-task/test.tgz', 'wmt18_test.tgz'), ], train_files_patterns=[ # ('*/*europarl-v7.{src}-{tgt}.{lang}', ['cs-en']), ('*/*europarl-v8.{src}-{tgt}.{lang}', ['et-en']), # ('*paracrawl-release1.{tgt}-{src}.zipporah0-dedup-clean.{lang}', ['cs-en', 'et-en']), ('*paracrawl-release1.{tgt}-{src}.zipporah0-dedup-clean.{lang}', ['et-en']), # ('*commoncrawl.{src}-{tgt}.{lang}', ['cs-en']), # ('*/news-commentary-v13.{src}-{tgt}.{lang}', ['cs-en']), # ('data.plaintext-format/*train.{lang}', ['cs-en']), ('rapid2016.{tgt}-{src}.{lang}', ['et-en']), ] , valid_files_patterns=[ ('dev/newsdev2018*{src}{tgt}-{src:src}{tgt:ref}.{lang}', ['et-en']), # ('dev/newstest2017*{src}{tgt}-{src:src}{tgt:ref}.{lang}', ['cs-en']) ], test_files_patterns=[ ('test/newstest2018-{src}{tgt}-{src:src}{tgt:ref}.{lang}', # ['cs-en', 'et-en']), ['et-en']), ] ) ru_en_yandex_instruction = 'Yandex Corpus download instruction at: https://translate.yandex.ru/corpus?lang=en' wmt19_ru_gu_kk_lt_manual_downloads = [ (('https://translate.yandex.ru/corpus?lang=en', 'wmt19_1mcorpus.zip'), ru_en_yandex_instruction) ] wmt19_ru_gu_kk_lt = DLDataset( name='wmt19_ru_gu_kk_lt', train_urls=[ 'http://www.statmt.org/europarl/v9/training/europarl-v9.lt-en.tsv.gz', 'https://s3.amazonaws.com/web-language-models/paracrawl/release3/en-lt.bicleaner07.tmx.gz', 'https://s3.amazonaws.com/web-language-models/paracrawl/release1/paracrawl-release1.en-ru.zipporah0-dedup-clean.tgz', 'http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz', 'http://data.statmt.org/news-commentary/v14/training/news-commentary-v14-wmt19.en-kk.tsv.gz', 'http://data.statmt.org/news-commentary/v14/training/news-commentary-v14.en-ru.tsv.gz', 'http://data.statmt.org/wikititles/v1/wikititles-v1.kk-en.tsv.gz', 'http://data.statmt.org/wikititles/v1/wikititles-v1.ru-en.tsv.gz', 'http://data.statmt.org/wikititles/v1/wikititles-v1.kk-en.tsv.gz', 'http://data.statmt.org/wikititles/v1/wikititles-v1.lt-en.tsv.gz', 'http://data.statmt.org/wikititles/v1/wikititles-v1.gu-en.tsv.gz', (('https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-ru.tar.gz.00', 'https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-ru.tar.gz.01', 'https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-ru.tar.gz.02',), 'wmt19_UNv1.0.en-ru.tar.gz'), 'https://tilde-model.s3-eu-west-1.amazonaws.com/rapid2016.en-lt.tmx.zip', ('https://translate.yandex.ru/corpus?lang=en', 'wmt19_1mcorpus.zip'), ], valid_urls=[ ('http://data.statmt.org/wmt19/translation-task/dev.tgz', 'wmt19_dev.tgz'), ], test_urls=[ ('http://data.statmt.org/wmt19/translation-task/test.tgz', 'wmt19_test.tgz'), ], train_files_patterns=[ ('*europarl-v9.{src}-{tgt}.tsv.{lang}', ['lt-en']), #paracrawl ('*paracrawl-release1.{tgt}-{src}.zipporah0-dedup-clean.{lang}', ['ru-en']), ('bitext.{lang}', ['lt-en',]), ('*commoncrawl.{src}-{tgt}.{lang}', ['ru-en',]), ('*news-commentary-v14-wmt19.{tgt}-{src}.tsv.{lang}', ['kk-en', ]), ('*news-commentary-v14.{tgt}-{src}.tsv.{lang}', ['ru-en']), #yandex ('corpus.{tgt}_{src}.1m.{lang}', ['ru-en']), ('wikititles_v1_wikititles-v1.{src}-{tgt}.tsv.{lang}', ['ru-en', 'kk-en', 'lt-en', 'gu-en']), ('*/UNv1.0.{tgt}-{src}.{lang}', ['ru-en']), #rapid ('bitext.{lang}', ['lt-en']) ], valid_files_patterns=[ ('dev/newsdev2019*{src}{tgt}-{src:src}{tgt:ref}.{lang}', ['gu-en', 'kk-en', 'lt-en']), ('dev/newstest2018*{src}{tgt}-{src:src}{tgt:ref}.{lang}', ['ru-en']), ], test_files_patterns=[ ('sgm/newstest2019-{src}{tgt}-{src:src}{tgt:ref}.{lang}', ['ru-en', 'gu-en', 'kk-en', 'lt-en', 'en-ru', 'en-gu', 'en-kk', 'en-lt']), ] ) ######### if __name__ == "__main__": # speed up the downloads with multiple processing dl_folder = f'{to_data_path}/downloads' extract_folder = f'{to_data_path}/extracted' urls = [ url for dataset in [wmt13_es_en, wmt14_de_fr_en, wmt16_ro_en, wmt18_cs_et_en, wmt19_ru_gu_kk_lt] for urls in [dataset.train_urls, dataset.valid_urls, dataset.test_urls] for url in urls ] urls = set(urls) download_multi(dl_folder, extract_folder, urls, num_processes=8, debug=True) # check manually downlaods to_manually_download_urls = ( wmt17_fi_lv_tr_zh_en_manual_downloads + wmt18_cs_et_en_manual_downloads + wmt19_ru_gu_kk_lt_manual_downloads ) to_be_manually_dowloaded = check_need_manual_downalod(dl_folder, to_manually_download_urls) if len(to_be_manually_dowloaded) > 0: print('Missing files that need to be downloaded manually; stop the process now.') exit(-1) completed_urls = {} completed_extraction = {} def work_on_wmt(directions, wmt_data): download_and_extract( to_data_path, directions, wmt_data, to_manually_download_urls=to_manually_download_urls, completed_urls=completed_urls, completed_extraction=completed_extraction, debug=True) work_on_wmt( ['es_XX-en_XX'], wmt13_es_en,) work_on_wmt( [ 'fr_XX-en_XX', 'en_XX-fr_XX', # 'en_XX-de_DE', 'de_DE-en_XX', ], wmt14_de_fr_en,) work_on_wmt( ['ro_RO-en_XX', 'en_XX-ro_XX'], wmt16_ro_en,) work_on_wmt( [ # 'zh_CN-en_XX', 'lv_LV-en_XX', 'fi_FI-en_XX', 'tr_TR-en_XX', #in case the reversed directions have different train/valid/test data # 'en_XX-zh_CN', 'en_XX-lv_LV', 'en_XX-fi_FI', 'en_XX-tr_TR', ], wmt17_fi_lv_tr_zh_en, ) # czeng17_script_path = download_czeng17_script(download_to, extract_to, debug=False) # cz_username = None work_on_wmt( [ # 'cs_CZ-en_XX', 'et_EE-en_XX'], wmt18_cs_et_en,) work_on_wmt( [ # 'ru_RU-en_XX', 'en_XX-ru_RU', 'gu_IN-en_XX', 'kk_KZ-en_XX', 'lt_LT-en_XX', #in case the reversed directions have different train/valid/test data 'en_XX-gu_IN', 'en_XX-kk_KZ', 'en_XX-lt_LT' ], wmt19_ru_gu_kk_lt,) not_matching = check_wmt_test_bleu( f'{to_data_path}/raw', [ ('wmt13', ['es_XX-en_XX']), ('wmt14/full', ['fr_XX-en_XX',]), ('wmt16', ['ro_RO-en_XX',]), # ('wmt17/improved', ['zh_CN-en_XX']), ('wmt17', [ 'lv_LV-en_XX', 'fi_FI-en_XX', 'tr_TR-en_XX']), ('wmt18', ['cs_CZ-en_XX', 'et_EE-en_XX']), ('wmt19', ['gu_IN-en_XX', 'kk_KZ-en_XX', 'lt_LT-en_XX']), #'ru_RU-en_XX', ] ) if len(not_matching) > 0: print('the following datasets do not have matching test datasets:\n\t', '\n\t'.join(not_matching))
COCO-LM/fairseq/examples/multilingual/data_scripts/download_wmt19_and_before.py/0
{ "file_path": "COCO-LM/fairseq/examples/multilingual/data_scripts/download_wmt19_and_before.py", "repo_id": "COCO-LM", "token_count": 18741 }
169
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from contextlib import redirect_stdout from fairseq import options from fairseq_cli import generate from examples.noisychannel import rerank_options, rerank_utils def score_bw(args): if args.backwards1: scorer1_src = args.target_lang scorer1_tgt = args.source_lang else: scorer1_src = args.source_lang scorer1_tgt = args.target_lang if args.score_model2 is not None: if args.backwards2: scorer2_src = args.target_lang scorer2_tgt = args.source_lang else: scorer2_src = args.source_lang scorer2_tgt = args.target_lang rerank1_is_gen = ( args.gen_model == args.score_model1 and args.source_prefix_frac is None ) rerank2_is_gen = ( args.gen_model == args.score_model2 and args.source_prefix_frac is None ) ( pre_gen, left_to_right_preprocessed_dir, right_to_left_preprocessed_dir, backwards_preprocessed_dir, lm_preprocessed_dir, ) = rerank_utils.get_directories( args.data_dir_name, args.num_rescore, args.gen_subset, args.gen_model_name, args.shard_id, args.num_shards, args.sampling, args.prefix_len, args.target_prefix_frac, args.source_prefix_frac, ) score1_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.model1_name, target_prefix_frac=args.target_prefix_frac, source_prefix_frac=args.source_prefix_frac, backwards=args.backwards1, ) if args.score_model2 is not None: score2_file = rerank_utils.rescore_file_name( pre_gen, args.prefix_len, args.model2_name, target_prefix_frac=args.target_prefix_frac, source_prefix_frac=args.source_prefix_frac, backwards=args.backwards2, ) if args.right_to_left1: rerank_data1 = right_to_left_preprocessed_dir elif args.backwards1: rerank_data1 = backwards_preprocessed_dir else: rerank_data1 = left_to_right_preprocessed_dir gen_param = ["--batch-size", str(128), "--score-reference", "--gen-subset", "train"] if not rerank1_is_gen and not os.path.isfile(score1_file): print("STEP 4: score the translations for model 1") model_param1 = [ "--path", args.score_model1, "--source-lang", scorer1_src, "--target-lang", scorer1_tgt, ] gen_model1_param = [rerank_data1] + gen_param + model_param1 gen_parser = options.get_generation_parser() input_args = options.parse_args_and_arch(gen_parser, gen_model1_param) with open(score1_file, "w") as f: with redirect_stdout(f): generate.main(input_args) if ( args.score_model2 is not None and not os.path.isfile(score2_file) and not rerank2_is_gen ): print("STEP 4: score the translations for model 2") if args.right_to_left2: rerank_data2 = right_to_left_preprocessed_dir elif args.backwards2: rerank_data2 = backwards_preprocessed_dir else: rerank_data2 = left_to_right_preprocessed_dir model_param2 = [ "--path", args.score_model2, "--source-lang", scorer2_src, "--target-lang", scorer2_tgt, ] gen_model2_param = [rerank_data2] + gen_param + model_param2 gen_parser = options.get_generation_parser() input_args = options.parse_args_and_arch(gen_parser, gen_model2_param) with open(score2_file, "w") as f: with redirect_stdout(f): generate.main(input_args) def cli_main(): parser = rerank_options.get_reranking_parser() args = options.parse_args_and_arch(parser) score_bw(args) if __name__ == "__main__": cli_main()
COCO-LM/fairseq/examples/noisychannel/rerank_score_bw.py/0
{ "file_path": "COCO-LM/fairseq/examples/noisychannel/rerank_score_bw.py", "repo_id": "COCO-LM", "token_count": 2012 }
170
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file defines example configuration arguments for quantizing # a transformer model with product quantization # Number of Centroids for Product Quantization, by default 256 (byte-aligned) n_centroids: Linear: key: in_features value: {"*": 256} Embedding: key: embedding_dim value: {"*": 256} # Block Sizes for Product Quantization # We suggest: 8 for FFN, 4 for ATTN, 4 for embedding projections, 8 for embeddings block_sizes: Linear: key: fuzzy_name value: {fc: 8, attn: 4, emb: 4} Embedding: key: fuzzy_name value: {emb: 8} # Layers to Quantize Sequentially # We suggest: first FFN, then EMB, then ATTN layers_to_quantize: - decoder\\.layers\\.\d+\\.fc[12] - decoder\\.embed_tokens\\.embeddings\\.[012]\\.[01] - decoder\\.layers\\.\d+\\.self_attn\\.(k_proj|v_proj|q_proj|out_proj)
COCO-LM/fairseq/examples/quant_noise/transformer_quantization_config.yaml/0
{ "file_path": "COCO-LM/fairseq/examples/quant_noise/transformer_quantization_config.yaml", "repo_id": "COCO-LM", "token_count": 401 }
171
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq import utils from fairseq.criterions import LegacyFairseqCriterion, register_criterion from fairseq.data import encoders @register_criterion("wsc") class WSCCriterion(LegacyFairseqCriterion): def __init__(self, args, task): super().__init__(args, task) if self.args.save_predictions is not None: self.prediction_h = open(self.args.save_predictions, "w") else: self.prediction_h = None self.bpe = encoders.build_bpe(args.bpe) self.tokenizer = encoders.build_tokenizer(args.tokenizer) def __del__(self): if self.prediction_h is not None: self.prediction_h.close() @staticmethod def add_args(parser): """Add criterion-specific arguments to the parser.""" parser.add_argument("--wsc-margin-alpha", type=float, metavar="A", default=1.0) parser.add_argument("--wsc-margin-beta", type=float, metavar="B", default=0.0) parser.add_argument( "--wsc-cross-entropy", action="store_true", help="use cross entropy formulation instead of margin loss", ) parser.add_argument( "--save-predictions", metavar="FILE", help="file to save predictions to" ) def get_masked_input(self, tokens, mask): masked_tokens = tokens.clone() masked_tokens[mask] = self.task.mask return masked_tokens def get_lprobs(self, model, tokens, mask): logits, _ = model(src_tokens=self.get_masked_input(tokens, mask)) lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float) scores = lprobs.gather(2, tokens.unsqueeze(-1)).squeeze(-1) mask = mask.type_as(scores) scores = (scores * mask).sum(dim=-1) / mask.sum(dim=-1) return scores def get_loss(self, query_lprobs, cand_lprobs): if self.args.wsc_cross_entropy: return F.cross_entropy( torch.cat([query_lprobs, cand_lprobs]).unsqueeze(0), query_lprobs.new([0]).long(), ) else: return ( -query_lprobs + self.args.wsc_margin_alpha * (cand_lprobs - query_lprobs + self.args.wsc_margin_beta).clamp(min=0) ).sum() def forward(self, model, sample, reduce=True): # compute loss and accuracy loss, nloss = 0.0, 0 ncorrect, nqueries = 0, 0 for i, label in enumerate(sample["labels"]): query_lprobs = self.get_lprobs( model, sample["query_tokens"][i].unsqueeze(0), sample["query_masks"][i].unsqueeze(0), ) cand_lprobs = self.get_lprobs( model, sample["candidate_tokens"][i], sample["candidate_masks"][i], ) pred = (query_lprobs >= cand_lprobs).all().item() if label is not None: label = 1 if label else 0 ncorrect += 1 if pred == label else 0 nqueries += 1 if label: # only compute a loss for positive instances nloss += 1 loss += self.get_loss(query_lprobs, cand_lprobs) id = sample["id"][i].item() if self.prediction_h is not None: print("{}\t{}\t{}".format(id, pred, label), file=self.prediction_h) if nloss == 0: loss = torch.tensor(0.0, requires_grad=True) sample_size = nqueries if nqueries > 0 else 1 logging_output = { "loss": utils.item(loss.data) if reduce else loss.data, "ntokens": sample["ntokens"], "nsentences": sample["nsentences"], "sample_size": sample_size, "ncorrect": ncorrect, "nqueries": nqueries, } return loss, sample_size, logging_output @staticmethod def aggregate_logging_outputs(logging_outputs): """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) agg_output = { "loss": loss_sum / sample_size / math.log(2), "ntokens": ntokens, "nsentences": nsentences, "sample_size": sample_size, } ncorrect = sum(log.get("ncorrect", 0) for log in logging_outputs) nqueries = sum(log.get("nqueries", 0) for log in logging_outputs) if nqueries > 0: agg_output["accuracy"] = ncorrect / float(nqueries) return agg_output @register_criterion("winogrande") class WinograndeCriterion(WSCCriterion): def forward(self, model, sample, reduce=True): # compute loss and accuracy query_lprobs = self.get_lprobs( model, sample["query_tokens"], sample["query_masks"], ) cand_lprobs = self.get_lprobs( model, sample["candidate_tokens"], sample["candidate_masks"], ) pred = query_lprobs >= cand_lprobs loss = self.get_loss(query_lprobs, cand_lprobs) sample_size = sample["query_tokens"].size(0) ncorrect = pred.sum().item() logging_output = { "loss": utils.item(loss.data) if reduce else loss.data, "ntokens": sample["ntokens"], "nsentences": sample["nsentences"], "sample_size": sample_size, "ncorrect": ncorrect, "nqueries": sample_size, } return loss, sample_size, logging_output
COCO-LM/fairseq/examples/roberta/wsc/wsc_criterion.py/0
{ "file_path": "COCO-LM/fairseq/examples/roberta/wsc/wsc_criterion.py", "repo_id": "COCO-LM", "token_count": 2907 }
172
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. class SubwordSplitter(object): def process_line(self, string): raise NotImplementedError def split(self, string): raise NotImplementedError class NoneWordSplitter(object): def __init__(self, model): pass def split(self, string): return [string] def process_line(self, string): return [string] def finished_word(self, string): return True def merge(self, list_of_string): return "".join(list_of_string) def last_full_word_step(self, tokens, step): return len(tokens) def end_idx_last_full_word(self, tokens): return len(tokens) class BPEWordSplitter(object): # TODO: lock back here def __init__(self, model_path): super().__init__() from subword_nmt.apply_bpe import BPE with open(model_path) as f: self.model = BPE(f) def split(self, string): return self.model.process_line(string).split() def end_idx_last_full_word(self, tokens): # Begin of word indices bow_indices = [0] + [i + 1 for i, t in enumerate(tokens[1:]) if t[-2:] != "@@"] if len(bow_indices) < 2: return 0 else: return bow_indices[-1] def merge(self, list_of_string): return " ".join([item.replace("@@", "") for item in list_of_string]) class SentencePieceModelWordSplitter(object): def __init__(self, model_path): super().__init__() import sentencepiece as spm self.model = spm.SentencePieceProcessor() self.model.Load(model_path) def split(self, string): return self.model.EncodeAsPieces(string) def end_idx_last_full_word(self, tokens): # Begin of word indices bow_indices = [i for i, t in enumerate(tokens) if t[0] == "\u2581"] if len(bow_indices) < 2: return 0 else: return bow_indices[-1] def merge(self, list_of_string): return self.model.DecodePieces(list_of_string) SPLITTER_DICT = { None: NoneWordSplitter, "BPE": BPEWordSplitter, "SentencePieceModel": SentencePieceModelWordSplitter, }
COCO-LM/fairseq/examples/simultaneous_translation/eval/agents/word_splitter.py/0
{ "file_path": "COCO-LM/fairseq/examples/simultaneous_translation/eval/agents/word_splitter.py", "repo_id": "COCO-LM", "token_count": 1005 }
173
# @package hydra.sweeper _target_: hydra_plugins.hydra_ax_sweeper.ax_sweeper.AxSweeper max_batch_size: null ax_config: max_trials: 100 early_stop: minimize: true max_epochs_without_improvement: 10 epsilon: 1.0e-05 experiment: name: ${dataset.gen_subset} objective_name: wer minimize: true parameter_constraints: null outcome_constraints: null status_quo: null client: verbose_logging: false random_seed: null params: decoding.decoder.lmweight: type: range bounds: [0.0, 5.0] decoding.decoder.wordscore: type: range bounds: [-5.0, 5.0]
COCO-LM/fairseq/examples/speech_recognition/hydra/conf/hydra/sweeper/ax.yaml/0
{ "file_path": "COCO-LM/fairseq/examples/speech_recognition/hydra/conf/hydra/sweeper/ax.yaml", "repo_id": "COCO-LM", "token_count": 271 }
174
[[Back]](..) # S2T Example: Speech Translation (ST) on Multilingual TEDx [Multilingual TEDx](https://arxiv.org/abs/2102.01757) is multilingual corpus for speech recognition and speech translation. The data is derived from TEDx talks in 8 source languages with translations to a subset of 5 target languages. ## Data Preparation [Download](http://openslr.org/100/) and unpack Multilingual TEDx data to a path `${MTEDX_ROOT}/${LANG_PAIR}`, then preprocess it with ```bash # additional Python packages for S2T data processing/model training pip install pandas torchaudio soundfile sentencepiece # Generate TSV manifests, features, vocabulary # and configuration for each language python examples/speech_to_text/prep_mtedx_data.py \ --data-root ${MTEDX_ROOT} --task asr \ --vocab-type unigram --vocab-size 1000 python examples/speech_to_text/prep_mtedx_data.py \ --data-root ${MTEDX_ROOT} --task st \ --vocab-type unigram --vocab-size 1000 # Add vocabulary and configuration for joint data # (based on the manifests and features generated above) python examples/speech_to_text/prep_mtedx_data.py \ --data-root ${MTEDX_ROOT} --task asr --joint \ --vocab-type unigram --vocab-size 8000 python examples/speech_to_text/prep_mtedx_data.py \ --data-root ${MTEDX_ROOT} --task st --joint \ --vocab-type unigram --vocab-size 8000 ``` The generated files (manifest, features, vocabulary and data configuration) will be added to `${MTEDX_ROOT}/${LANG_PAIR}` (per-language data) and `MTEDX_ROOT` (joint data). ## ASR #### Training Spanish as example: ```bash fairseq-train ${MTEDX_ROOT}/es-es \ --config-yaml config_asr.yaml --train-subset train_asr --valid-subset valid_asr \ --save-dir ${ASR_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-epoch 200 \ --task speech_to_text --criterion label_smoothed_cross_entropy --report-accuracy \ --arch s2t_transformer_xs --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt \ --warmup-updates 10000 --clip-norm 10.0 --seed 1 --dropout 0.3 --label-smoothing 0.1 \ --load-pretrained-encoder-from ${PRETRAINED_ENCODER} \ --skip-invalid-size-inputs-valid-test \ --keep-last-epochs 10 --update-freq 8 --patience 10 ``` For joint model (using ASR data from all 8 languages): ```bash fairseq-train ${MTEDX_ROOT} \ --config-yaml config_asr.yaml \ --train-subset train_es-es_asr,train_fr-fr_asr,train_pt-pt_asr,train_it-it_asr,train_ru-ru_asr,train_el-el_asr,train_ar-ar_asr,train_de-de_asr \ --valid-subset valid_es-es_asr,valid_fr-fr_asr,valid_pt-pt_asr,valid_it-it_asr,valid_ru-ru_asr,valid_el-el_asr,valid_ar-ar_asr,valid_de-de_asr \ --save-dir ${MULTILINGUAL_ASR_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-epoch 200 \ --task speech_to_text --criterion label_smoothed_cross_entropy --report-accuracy \ --arch s2t_transformer_s --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt \ --warmup-updates 10000 --clip-norm 10.0 --seed 1 --dropout 0.3 --label-smoothing 0.1 \ --skip-invalid-size-inputs-valid-test \ --keep-last-epochs 10 --update-freq 8 --patience 10 \ --ignore-prefix-size 1 ``` where `MULTILINGUAL_ASR_SAVE_DIR` is the checkpoint root path. We set `--update-freq 8` to simulate 8 GPUs with 1 GPU. You may want to update it accordingly when using more than 1 GPU. For multilingual models, we prepend target language ID token as target BOS, which should be excluded from the training loss via `--ignore-prefix-size 1`. #### Inference & Evaluation ```bash CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt python scripts/average_checkpoints.py \ --inputs ${ASR_SAVE_DIR} --num-epoch-checkpoints 10 \ --output "${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}" fairseq-generate ${MTEDX_ROOT}/es-es \ --config-yaml config_asr.yaml --gen-subset test --task speech_to_text \ --path ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME} --max-tokens 50000 --beam 5 \ --skip-invalid-size-inputs-valid-test \ --scoring wer --wer-tokenizer 13a --wer-lowercase --wer-remove-punct --remove-bpe # For models trained on joint data CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt python scripts/average_checkpoints.py \ --inputs ${MULTILINGUAL_ASR_SAVE_DIR} --num-epoch-checkpoints 10 \ --output "${MULTILINGUAL_ASR_SAVE_DIR}/${CHECKPOINT_FILENAME}" for LANG in es fr pt it ru el ar de; do fairseq-generate ${MTEDX_ROOT} \ --config-yaml config_asr.yaml --gen-subset test_${LANG}-${LANG}_asr --task speech_to_text \ --prefix-size 1 --path ${MULTILINGUAL_ASR_SAVE_DIR}/${CHECKPOINT_FILENAME} \ --max-tokens 40000 --beam 5 \ --skip-invalid-size-inputs-valid-test \ --scoring wer --wer-tokenizer 13a --wer-lowercase --wer-remove-punct --remove-bpe done ``` #### Results | Data | --arch | Params | Es | Fr | Pt | It | Ru | El | Ar | De | |--------------|--------------------|--------|------|------|------|------|------|-------|-------|-------| | Monolingual | s2t_transformer_xs | 10M | 46.4 | 45.6 | 54.8 | 48.0 | 74.7 | 109.5 | 104.4 | 111.1 | ## ST #### Training Es-En as example: ```bash fairseq-train ${MTEDX_ROOT}/es-en \ --config-yaml config_st.yaml --train-subset train_st --valid-subset valid_st \ --save-dir ${ST_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-epoch 200 \ --task speech_to_text --criterion label_smoothed_cross_entropy --report-accuracy \ --arch s2t_transformer_xs --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt \ --warmup-updates 10000 --clip-norm 10.0 --seed 1 --dropout 0.3 --label-smoothing 0.1 \ --load-pretrained-encoder-from ${PRETRAINED_ENCODER} \ --skip-invalid-size-inputs-valid-test \ --keep-last-epochs 10 --update-freq 8 --patience 10 ``` For multilingual model (all 12 directions): ```bash fairseq-train ${MTEDX_ROOT} \ --config-yaml config_st.yaml \ --train-subset train_el-en_st,train_es-en_st,train_es-fr_st,train_es-it_st,train_es-pt_st,train_fr-en_st,train_fr-es_st,train_fr-pt_st,train_it-en_st,train_it-es_st,train_pt-en_st,train_pt-es_st,train_ru-en_st \ --valid-subset valid_el-en_st,valid_es-en_st,valid_es-fr_st,valid_es-it_st,valid_es-pt_st,valid_fr-en_st,valid_fr-es_st,valid_fr-pt_st,valid_it-en_st,valid_it-es_st,valid_pt-en_st,valid_pt-es_st,valid_ru-en_st \ --save-dir ${MULTILINGUAL_ST_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-epoch 200 \ --task speech_to_text --criterion label_smoothed_cross_entropy --report-accuracy \ --arch s2t_transformer_s --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt \ --warmup-updates 10000 --clip-norm 10.0 --seed 1 --dropout 0.3 --label-smoothing 0.1 \ --skip-invalid-size-inputs-valid-test \ --keep-last-epochs 10 --update-freq 8 --patience 10 \ --ignore-prefix-size 1 \ --load-pretrained-encoder-from ${PRETRAINED_ENCODER} ``` where `ST_SAVE_DIR` (`MULTILINGUAL_ST_SAVE_DIR`) is the checkpoint root path. The ST encoder is pre-trained by ASR for faster training and better performance: `--load-pretrained-encoder-from <(JOINT_)ASR checkpoint path>`. We set `--update-freq 8` to simulate 8 GPUs with 1 GPU. You may want to update it accordingly when using more than 1 GPU. For multilingual models, we prepend target language ID token as target BOS, which should be excluded from the training loss via `--ignore-prefix-size 1`. #### Inference & Evaluation Average the last 10 checkpoints and evaluate on the `test` split: ```bash CHECKPOINT_FILENAME=avg_last_10_checkpoint.pt python scripts/average_checkpoints.py \ --inputs ${ST_SAVE_DIR} --num-epoch-checkpoints 10 \ --output "${ST_SAVE_DIR}/${CHECKPOINT_FILENAME}" fairseq-generate ${MTEDX_ROOT}/es-en \ --config-yaml config_st.yaml --gen-subset test --task speech_to_text \ --path ${ST_SAVE_DIR}/${CHECKPOINT_FILENAME} \ --max-tokens 50000 --beam 5 --scoring sacrebleu --remove-bpe # For multilingual models python scripts/average_checkpoints.py \ --inputs ${MULTILINGUAL_ST_SAVE_DIR} --num-epoch-checkpoints 10 \ --output "${MULTILINGUAL_ST_SAVE_DIR}/${CHECKPOINT_FILENAME}" for LANGPAIR in es-en es-fr es-pt fr-en fr-es fr-pt pt-en pt-es it-en it-es ru-en el-en; do fairseq-generate ${MTEDX_ROOT} \ --config-yaml config_st.yaml --gen-subset test_${LANGPAIR}_st --task speech_to_text \ --prefix-size 1 --path ${MULTILINGUAL_ST_SAVE_DIR}/${CHECKPOINT_FILENAME} \ --max-tokens 40000 --beam 5 \ --skip-invalid-size-inputs-valid-test \ --scoring sacrebleu --remove-bpe done ``` For multilingual models, we force decoding from the target language ID token (as BOS) via `--prefix-size 1`. #### Results | Data | --arch | Params | Es-En | Es-Pt | Es-Fr | Fr-En | Fr-Es | Fr-Pt | Pt-En | Pt-Es | It-En | It-Es | Ru-En | El-En | |--------------|--------------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Bilingual | s2t_transformer_xs | 10M | 7.0 | 12.2 | 1.7 | 8.9 | 10.6 | 7.9 | 8.1 | 8.7 | 6.4 | 1.0 | 0.7 | 0.6 | | Multilingual | s2t_transformer_s | 31M | 12.3 | 17.4 | 6.1 | 12.0 | 13.6 | 13.2 | 12.0 | 13.7 | 10.7 | 13.1 | 0.6 | 0.8 | ## Citation Please cite as: ``` @misc{salesky2021mtedx, title={Multilingual TEDx Corpus for Speech Recognition and Translation}, author={Elizabeth Salesky and Matthew Wiesner and Jacob Bremerman and Roldano Cattoni and Matteo Negri and Marco Turchi and Douglas W. Oard and Matt Post}, year={2021}, } @inproceedings{wang2020fairseqs2t, title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq}, author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino}, booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations}, year = {2020}, } @inproceedings{ott2019fairseq, title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling}, author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli}, booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations}, year = {2019}, } ``` [[Back]](..)
COCO-LM/fairseq/examples/speech_to_text/docs/mtedx_example.md/0
{ "file_path": "COCO-LM/fairseq/examples/speech_to_text/docs/mtedx_example.md", "repo_id": "COCO-LM", "token_count": 3958 }
175
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Scoring script for computing pairwise BLEU and multi-ref BLEU over a set of candidate hypotheses. See `"Mixture Models for Diverse Machine Translation: Tricks of the Trade" (Shen et al., 2019) <https://arxiv.org/abs/1902.07816>`_. """ import argparse import random import sys from itertools import chain import numpy as np from sacrebleu import compute_bleu, corpus_bleu as _corpus_bleu def main(): parser = argparse.ArgumentParser(sys.argv[0]) parser.add_argument( "--sys", nargs="*", default="", metavar="FILE", help="path to system output" ) parser.add_argument("--ref", default="", metavar="FILE", help="path to references") parser.add_argument( "--output", default="", metavar="FILE", help="print outputs into a pretty format", ) args = parser.parse_args() if args.sys: src, tgt, hypos, log_probs = load_sys(args.sys) print("pairwise BLEU: %.2f" % pairwise(hypos)) if args.output: merge(src, tgt, hypos, log_probs, args.output) if args.ref: _, _, refs = load_ref(args.ref) if args.sys: multi_ref(refs, hypos) else: intra_ref(refs) def dictolist(d): a = sorted(d.items(), key=lambda i: i[0]) return [i[1] for i in a] def load_sys(paths): src, tgt, hypos, log_probs = {}, {}, {}, {} for path in paths: with open(path) as f: for line in f: line = line.rstrip() # S: source # T: target # D: detokenized system output if line.startswith(("S-", "T-", "D-")): i = int(line[line.find("-") + 1 : line.find("\t")]) if line.startswith("S-"): src[i] = line.split("\t")[1] if line.startswith("T-"): tgt[i] = line.split("\t")[1] if line.startswith("D-"): if i not in hypos: hypos[i] = [] log_probs[i] = [] hypos[i].append(line.split("\t")[2]) log_probs[i].append(float(line.split("\t")[1])) return dictolist(src), dictolist(tgt), dictolist(hypos), dictolist(log_probs) def load_ref(path): with open(path) as f: lines = f.readlines() src, tgt, refs = [], [], [] i = 0 while i < len(lines): if lines[i].startswith("S-"): src.append(lines[i].split("\t")[1].rstrip()) i += 1 elif lines[i].startswith("T-"): tgt.append(lines[i].split("\t")[1].rstrip()) i += 1 else: a = [] while i < len(lines) and lines[i].startswith("R"): a.append(lines[i].split("\t")[1].rstrip()) i += 1 refs.append(a) return src, tgt, refs def merge(src, tgt, hypos, log_probs, path): with open(path, "w") as f: for s, t, hs, lps in zip(src, tgt, hypos, log_probs): f.write(s + "\n") f.write(t + "\n") f.write("\n") for h, lp in zip(hs, lps): f.write("\t%f\t%s\n" % (lp, h.strip())) f.write("------------------------------------------------------\n") def corpus_bleu(sys_stream, ref_streams): bleu = _corpus_bleu(sys_stream, ref_streams, tokenize="none") return bleu.score def sentence_bleu(hypothesis, reference): bleu = _corpus_bleu(hypothesis, reference) for i in range(1, 4): bleu.counts[i] += 1 bleu.totals[i] += 1 bleu = compute_bleu( bleu.counts, bleu.totals, bleu.sys_len, bleu.ref_len, smooth_method="exp", ) return bleu.score def pairwise(sents): _ref, _hypo = [], [] for s in sents: for i in range(len(s)): for j in range(len(s)): if i != j: _ref.append(s[i]) _hypo.append(s[j]) return corpus_bleu(_hypo, [_ref]) def multi_ref(refs, hypos): _ref, _hypo = [], [] ref_cnt = 0 assert len(refs) == len(hypos) # count number of refs covered for rs, hs in zip(refs, hypos): a = set() for h in hs: s = [sentence_bleu(h, r) for r in rs] j = np.argmax(s) _ref.append(rs[j]) _hypo.append(h) best = [k for k in range(len(rs)) if s[k] == s[j]] a.add(random.choice(best)) ref_cnt += len(a) print("#refs covered: %.2f" % (ref_cnt / len(refs))) # transpose refs and hypos refs = list(zip(*refs)) hypos = list(zip(*hypos)) # compute multi-ref corpus BLEU (leave-one-out to be comparable to intra_ref) k = len(hypos) m = len(refs) flat_hypos = [hypos[j][i] for i in range(len(hypos[0])) for j in range(k)] duplicated_refs = [[ref for ref in refs_i for _ in range(k)] for refs_i in refs] loo_bleus = [] for held_out_ref in range(m): remaining_refs = ( duplicated_refs[:held_out_ref] + duplicated_refs[held_out_ref + 1 :] ) assert len(remaining_refs) == m - 1 loo_bleus.append(corpus_bleu(flat_hypos, remaining_refs)) print("average multi-reference BLEU (leave-one-out): %.2f" % np.mean(loo_bleus)) def intra_ref(refs): print("ref pairwise BLEU: %.2f" % pairwise(refs)) refs = list(zip(*refs)) m = len(refs) concat_h = [] concat_rest = [[] for j in range(m - 1)] for i, h in enumerate(refs): rest = refs[:i] + refs[i + 1 :] concat_h.append(h) for j in range(m - 1): concat_rest[j].extend(rest[j]) concat_h = list(chain.from_iterable(concat_h)) bleu = corpus_bleu(concat_h, concat_rest) print("multi-reference BLEU (leave-one-out): %.2f" % bleu) if __name__ == "__main__": main()
COCO-LM/fairseq/examples/translation_moe/score.py/0
{ "file_path": "COCO-LM/fairseq/examples/translation_moe/score.py", "repo_id": "COCO-LM", "token_count": 3146 }
176
# WMT 19 This page provides pointers to the models of Facebook-FAIR's WMT'19 news translation task submission [(Ng et al., 2019)](https://arxiv.org/abs/1907.06616). ## Pre-trained models Model | Description | Download ---|---|--- `transformer.wmt19.en-de` | En->De Ensemble | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.ensemble.tar.gz) `transformer.wmt19.de-en` | De->En Ensemble | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.ensemble.tar.gz) `transformer.wmt19.en-ru` | En->Ru Ensemble | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.ensemble.tar.gz) `transformer.wmt19.ru-en` | Ru->En Ensemble | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.ensemble.tar.gz) `transformer_lm.wmt19.en` | En Language Model | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.en.tar.gz) `transformer_lm.wmt19.de` | De Language Model | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.de.tar.gz) `transformer_lm.wmt19.ru` | Ru Language Model | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.ru.tar.gz) ## Pre-trained single models before finetuning Model | Description | Download ---|---|--- `transformer.wmt19.en-de` | En->De Single, no finetuning | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.ffn8192.tar.gz) `transformer.wmt19.de-en` | De->En Single, no finetuning | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.ffn8192.tar.gz) `transformer.wmt19.en-ru` | En->Ru Single, no finetuning | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.ffn8192.tar.gz) `transformer.wmt19.ru-en` | Ru->En Single, no finetuning | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.ffn8192.tar.gz) ## Example usage (torch.hub) #### Requirements We require a few additional Python dependencies for preprocessing: ```bash pip install fastBPE sacremoses ``` #### Translation ```python import torch # English to German translation en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de', checkpoint_file='model1.pt:model2.pt:model3.pt:model4.pt', tokenizer='moses', bpe='fastbpe') en2de.translate("Machine learning is great!") # 'Maschinelles Lernen ist großartig!' # German to English translation de2en = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.de-en', checkpoint_file='model1.pt:model2.pt:model3.pt:model4.pt', tokenizer='moses', bpe='fastbpe') de2en.translate("Maschinelles Lernen ist großartig!") # 'Machine learning is great!' # English to Russian translation en2ru = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-ru', checkpoint_file='model1.pt:model2.pt:model3.pt:model4.pt', tokenizer='moses', bpe='fastbpe') en2ru.translate("Machine learning is great!") # 'Машинное обучение - это здорово!' # Russian to English translation ru2en = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.ru-en', checkpoint_file='model1.pt:model2.pt:model3.pt:model4.pt', tokenizer='moses', bpe='fastbpe') ru2en.translate("Машинное обучение - это здорово!") # 'Machine learning is great!' ``` #### Language Modeling ```python # Sample from the English LM en_lm = torch.hub.load('pytorch/fairseq', 'transformer_lm.wmt19.en', tokenizer='moses', bpe='fastbpe') en_lm.sample("Machine learning is") # 'Machine learning is the future of computing, says Microsoft boss Satya Nadella ...' # Sample from the German LM de_lm = torch.hub.load('pytorch/fairseq', 'transformer_lm.wmt19.de', tokenizer='moses', bpe='fastbpe') de_lm.sample("Maschinelles lernen ist") # 'Maschinelles lernen ist das A und O (neues-deutschland.de) Die Arbeitsbedingungen für Lehrerinnen und Lehrer sind seit Jahren verbesserungswürdig ...' # Sample from the Russian LM ru_lm = torch.hub.load('pytorch/fairseq', 'transformer_lm.wmt19.ru', tokenizer='moses', bpe='fastbpe') ru_lm.sample("машинное обучение это") # 'машинное обучение это то, что мы называем "искусственным интеллектом".' ``` ## Citation ```bibtex @inproceedings{ng2019facebook}, title = {Facebook FAIR's WMT19 News Translation Task Submission}, author = {Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}, booktitle = {Proc. of WMT}, year = 2019, } ```
COCO-LM/fairseq/examples/wmt19/README.md/0
{ "file_path": "COCO-LM/fairseq/examples/wmt19/README.md", "repo_id": "COCO-LM", "token_count": 1900 }
177
/** * Copyright 2017-present, Facebook, Inc. * All rights reserved. * * This source code is licensed under the license found in the * LICENSE file in the root directory of this source tree. */ /* This code is partially adpoted from https://github.com/1ytic/pytorch-edit-distance */ #include "edit_dist.h" #include <torch/types.h> #ifndef TORCH_CHECK #define TORCH_CHECK AT_CHECK #endif #define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor") #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous") #define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x) torch::Tensor LevenshteinDistance( torch::Tensor source, torch::Tensor target, torch::Tensor source_length, torch::Tensor target_length) { CHECK_INPUT(source); CHECK_INPUT(target); CHECK_INPUT(source_length); CHECK_INPUT(target_length); return LevenshteinDistanceCuda(source, target, source_length, target_length); } torch::Tensor GenerateDeletionLabel( torch::Tensor source, torch::Tensor operations) { CHECK_INPUT(source); CHECK_INPUT(operations); return GenerateDeletionLabelCuda(source, operations); } std::pair<torch::Tensor, torch::Tensor> GenerateInsertionLabel( torch::Tensor target, torch::Tensor operations) { CHECK_INPUT(target); CHECK_INPUT(operations); return GenerateInsertionLabelCuda(target, operations); } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("levenshtein_distance", &LevenshteinDistance, "Levenshtein distance"); m.def("generate_deletion_labels", &GenerateDeletionLabel, "Generate Deletion Label"); m.def("generate_insertion_labels", &GenerateInsertionLabel, "Generate Insertion Label"); }
COCO-LM/fairseq/fairseq/clib/libnat_cuda/binding.cpp/0
{ "file_path": "COCO-LM/fairseq/fairseq/clib/libnat_cuda/binding.cpp", "repo_id": "COCO-LM", "token_count": 680 }
178
# @package _group_ quantize_targets: true extractor_mode: layer_norm layer_norm_first: true final_dim: 768 latent_temp: [2.0,0.1,0.999995] encoder_layerdrop: 0.0 dropout_input: 0.0 dropout_features: 0.0 dropout: 0.0 attention_dropout: 0.0 conv_bias: true encoder_layers: 24 encoder_embed_dim: 1024 encoder_ffn_embed_dim: 4096 encoder_attention_heads: 16 feature_grad_mult: 1.0
COCO-LM/fairseq/fairseq/config/model/wav2vec2/wav2vec2_large.yaml/0
{ "file_path": "COCO-LM/fairseq/fairseq/config/model/wav2vec2/wav2vec2_large.yaml", "repo_id": "COCO-LM", "token_count": 163 }
179
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import math import os import torch import torch.nn.functional as F from fairseq import metrics, utils from fairseq.criterions import FairseqCriterion, register_criterion from fairseq.data.squad import SquadResult, compute_predictions_logits, squad_evaluate @register_criterion('squad') class SquadCriterion(FairseqCriterion): def __init__(self, task): super().__init__(task) self.head_name = 'question_answering_head' @staticmethod def add_args(parser): # fmt: off parser.add_argument('--n-best-size', default=20, type=int, help="The number of n-best predictions") parser.add_argument('--max-answer-length', default=30, type=int, help="The maximum length of the generated answer") parser.add_argument('--version-2-with-negative', action='store_true') def forward(self, model, sample, reduce=True): features, _ = model( **sample['net_input'], features_only=True, classification_head_name=None, ) p_mask = sample['targets']['p_mask'] if self.training: start_positions = sample['targets']['starts'] end_positions = sample['targets']['ends'] loss = model.classification_heads[self.head_name].forward(features, start_positions, end_positions, p_mask) else: loss = torch.zeros(1, dtype=torch.float, device=features.device, requires_grad=True) outputs = model.classification_heads[self.head_name].forward(features, p_mask=p_mask) sample_size = sample['nsentences'] logging_output = { 'loss': utils.item(loss.data) if reduce else loss.data, 'ntokens': sample['ntokens'], 'nsentences': sample['nsentences'], 'sample_size': sample_size, } if not self.training: logging_output['start_logits'] = outputs[0].detach() logging_output['end_logits'] = outputs[1].detach() logging_output['index'] = sample['id'] return loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs): loss = sum(log.get('loss', 0) for log in logging_outputs) ntokens = sum(log.get('ntokens', 0) for log in logging_outputs) nsentences = sum(log.get('nsentences', 0) for log in logging_outputs) sample_size = sum(log.get('sample_size', 0) for log in logging_outputs) metrics.log_scalar('loss', loss / sample_size / math.log(2)) metrics.log_scalar('ntokens', ntokens) metrics.log_scalar('nsentences', nsentences) metrics.log_scalar('sample_size', sample_size) def context_metrics(self, logging_outputs): if self.training: return all_results = [] task = self.task for log in logging_outputs: start_logits = log['start_logits'] end_logits = log['end_logits'] indices = log['index'] for i in range(start_logits.size(0)): index = int(indices[i]) unique_id = task.eval_features[index].unique_id result = SquadResult(unique_id, start_logits[i].float().cpu().tolist(), end_logits[i].float().cpu().tolist(), ) all_results.append(result) output_prediction_file = os.path.join(self.args.save_dir, "predictions.json") output_nbest_file = os.path.join(self.args.save_dir, "nbest_predictions.json") output_null_log_odds_file = os.path.join(self.args.save_dir, "null_odds.json") if self.args.version_2_with_negative: output_null_log_odds_file = os.path.join(self.args.save_dir, "null_odds.json") else: output_null_log_odds_file = None predictions, null_scores = compute_predictions_logits( task.eval_examples, task.eval_features, all_results, n_best_size=self.args.n_best_size, max_answer_length=self.args.max_answer_length, do_lower_case=False, output_prediction_file=output_prediction_file, output_nbest_file=output_nbest_file, output_null_log_odds_file=output_null_log_odds_file, verbose_logging=False, version_2_with_negative=self.args.version_2_with_negative, null_score_diff_threshold=0.0, tokenizer=task.tokenizer, ) # TODO: implement xlnet's beam search solution # predictions = compute_predictions_log_probs( # task.eval_examples, # task.eval_features, # all_results, # n_best_size=self.args.n_best_size, # max_answer_length=self.args.max_answer_length, # output_prediction_file=output_prediction_file, # output_nbest_file=output_nbest_file, # output_null_log_odds_file=output_null_log_odds_file, # start_n_top=self.args.start_n_top, # end_n_top=self.args.end_n_top, # version_2_with_negative=self.args.version_2_with_negative, # tokenizer=task.tokenizer, # verbose_logging=False, # ) eval_result = squad_evaluate(task.eval_examples, predictions, null_scores) print(eval_result)
COCO-LM/fairseq/fairseq/criterions/squad_criterion.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/criterions/squad_criterion.py", "repo_id": "COCO-LM", "token_count": 2600 }
180
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from . import BaseWrapperDataset class ColorizeDataset(BaseWrapperDataset): """ Adds 'colors' property to net input that is obtained from the provided color getter for use by models """ def __init__(self, dataset, color_getter): super().__init__(dataset) self.color_getter = color_getter def collater(self, samples): base_collate = super().collater(samples) if len(base_collate) > 0: base_collate["net_input"]["colors"] = torch.tensor( list(self.color_getter(self.dataset, s["id"]) for s in samples), dtype=torch.long, ) return base_collate
COCO-LM/fairseq/fairseq/data/colorize_dataset.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/colorize_dataset.py", "repo_id": "COCO-LM", "token_count": 333 }
181
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from typing import Optional from fairseq.data.encoders import register_bpe from fairseq.dataclass import FairseqDataclass @dataclass class BertBPEConfig(FairseqDataclass): bpe_cased: bool = field(default=False, metadata={"help": "set for cased BPE"}) bpe_vocab_file: Optional[str] = field( default=None, metadata={"help": "bpe vocab file"} ) @register_bpe("bert", dataclass=BertBPEConfig) class BertBPE(object): def __init__(self, cfg): try: from transformers import BertTokenizer except ImportError: raise ImportError( "Please install transformers with: pip install transformers" ) if cfg.bpe_vocab_file: self.bert_tokenizer = BertTokenizer( cfg.bpe_vocab_file, do_lower_case=not cfg.bpe_cased ) else: vocab_file_name = ( "bert-base-cased" if cfg.bpe_cased else "bert-base-uncased" ) self.bert_tokenizer = BertTokenizer.from_pretrained(vocab_file_name) def encode(self, x: str) -> str: return " ".join(self.bert_tokenizer.tokenize(x)) def decode(self, x: str) -> str: return self.bert_tokenizer.clean_up_tokenization( self.bert_tokenizer.convert_tokens_to_string(x.split(" ")) ) def is_beginning_of_word(self, x: str) -> bool: return not x.startswith("##")
COCO-LM/fairseq/fairseq/data/encoders/hf_bert_bpe.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/encoders/hf_bert_bpe.py", "repo_id": "COCO-LM", "token_count": 716 }
182
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Dict, List, Tuple import numpy as np import torch from fairseq.data import Dictionary, FairseqDataset, data_utils from fairseq.data.concat_dataset import ConcatDataset from fairseq.data.legacy.block_pair_dataset import BlockPairDataset from fairseq.data.token_block_dataset import TokenBlockDataset class MaskedLMDataset(FairseqDataset): """ A wrapper Dataset for masked language modelling. The dataset wraps around TokenBlockDataset or BlockedPairDataset and creates a batch where the input blocks are masked according to the specified masking probability. Additionally the batch can also contain sentence level targets if this is specified. Args: dataset: Dataset which generates blocks of data. Only BlockPairDataset and TokenBlockDataset are supported. sizes: Sentence lengths vocab: Dictionary with the vocabulary and special tokens. pad_idx: Id of padding token in dictionary mask_idx: Id of mask token in dictionary classif_token_idx: Id of classification token in dictionary. This is the token associated with the sentence embedding (Eg: CLS for BERT) sep_token_idx: Id of separator token in dictionary (Eg: SEP in BERT) seed: Seed for random number generator for reproducibility. shuffle: Shuffle the elements before batching. has_pairs: Specifies whether the underlying dataset generates a pair of blocks along with a sentence_target or not. Setting it to True assumes that the underlying dataset generates a label for the pair of sentences which is surfaced as sentence_target. The default value assumes a single block with no sentence target. segment_id: An optional segment id for filling in the segment labels when we are in the single block setting (Eg: XLM). Default is 0. masking_ratio: specifies what percentage of the blocks should be masked. masking_prob: specifies the probability of a given token being replaced with the "MASK" token. random_token_prob: specifies the probability of a given token being replaced by a random token from the vocabulary. """ def __init__( self, dataset: FairseqDataset, sizes: np.ndarray, vocab: Dictionary, pad_idx: int, mask_idx: int, classif_token_idx: int, sep_token_idx: int, seed: int = 1, shuffle: bool = True, has_pairs: bool = True, segment_id: int = 0, masking_ratio: float = 0.15, masking_prob: float = 0.8, random_token_prob: float = 0.1, ): # Make sure the input datasets are the ones supported assert ( isinstance(dataset, TokenBlockDataset) or isinstance(dataset, BlockPairDataset) or isinstance(dataset, ConcatDataset) ), ( "MaskedLMDataset only wraps TokenBlockDataset or BlockPairDataset or " "ConcatDataset" ) self.dataset = dataset self.sizes = np.array(sizes) self.vocab = vocab self.pad_idx = pad_idx self.mask_idx = mask_idx self.classif_token_idx = classif_token_idx self.sep_token_idx = sep_token_idx self.shuffle = shuffle self.seed = seed self.has_pairs = has_pairs self.segment_id = segment_id self.masking_ratio = masking_ratio self.masking_prob = masking_prob self.random_token_prob = random_token_prob # If we have only one block then sizes needs to be updated to include # the classification token if not has_pairs: self.sizes = self.sizes + 1 def __getitem__(self, index: int): # if has_pairs, then expect 2 blocks and a sentence target if self.has_pairs: (block_one, block_two, sentence_target) = self.dataset[index] else: block_one = self.dataset[index] return { "id": index, "block_one": block_one, "block_two": block_two if self.has_pairs else None, "sentence_target": sentence_target if self.has_pairs else None, } def __len__(self): return len(self.dataset) def _mask_block( self, sentence: np.ndarray, mask_idx: int, pad_idx: int, dictionary_token_range: Tuple, ): """ Mask tokens for Masked Language Model training Samples mask_ratio tokens that will be predicted by LM. Note:This function may not be efficient enough since we had multiple conversions between np and torch, we can replace them with torch operators later. Args: sentence: 1d tensor to be masked mask_idx: index to use for masking the sentence pad_idx: index to use for masking the target for tokens we aren't predicting dictionary_token_range: range of indices in dictionary which can be used for random word replacement (e.g. without special characters) Return: masked_sent: masked sentence target: target with words which we are not predicting replaced by pad_idx """ masked_sent = np.copy(sentence) sent_length = len(sentence) mask_num = math.ceil(sent_length * self.masking_ratio) mask = np.random.choice(sent_length, mask_num, replace=False) target = np.copy(sentence) for i in range(sent_length): if i in mask: rand = np.random.random() # replace with mask if probability is less than masking_prob # (Eg: 0.8) if rand < self.masking_prob: masked_sent[i] = mask_idx # replace with random token if probability is less than # masking_prob + random_token_prob (Eg: 0.9) elif rand < (self.masking_prob + self.random_token_prob): # sample random token from dictionary masked_sent[i] = np.random.randint( dictionary_token_range[0], dictionary_token_range[1] ) else: target[i] = pad_idx return masked_sent, target def _collate(self, samples: List[Dict], pad_idx: int, eos_idx: int): """ Does the heavy lifting for creating a batch from the input list of examples. The logic is as follows: 1. Mask the input blocks. In case has_pair is True then we have 2 blocks to mask. 2. Prepend the first masked block tensor with the special token used as sentence embedding. Eg: CLS in BERT. This happens irrespective of the value of has_pair. 3. If has_pair is True, then append the first masked block with the special separator token (eg: SEP for BERT) and compute segment label accordingly. In this case, also append the second masked block with this special separator token and compute its segment label. 4. For the targets tensor, prepend and append with padding index accordingly. 5. Concatenate all tensors. """ if len(samples) == 0: return {} # To ensure determinism, we reset the state of the PRNG after every # batch based on the seed and the first id of the batch. This ensures # that across epochs we get the same mask for the same example. This # is needed for reproducibility and is how BERT does masking # TODO: Can we add deteminism without this constraint? with data_utils.numpy_seed(self.seed + samples[0]["id"]): for s in samples: # token range is needed for replacing with random token during # masking token_range = (self.vocab.nspecial, len(self.vocab)) # mask according to specified probabilities. masked_blk_one, masked_tgt_one = self._mask_block( s["block_one"], self.mask_idx, self.pad_idx, token_range, ) tokens = np.concatenate([[self.classif_token_idx], masked_blk_one]) targets = np.concatenate([[self.pad_idx], masked_tgt_one]) segments = np.ones(len(tokens)) * self.segment_id # if has_pairs is True then we need to add the SEP token to both # the blocks after masking and re-compute segments based on the new # lengths. if self.has_pairs: tokens_one = np.concatenate([tokens, [self.sep_token_idx]]) targets_one = np.concatenate([targets, [self.pad_idx]]) masked_blk_two, masked_tgt_two = self._mask_block( s["block_two"], self.mask_idx, self.pad_idx, token_range ) tokens_two = np.concatenate([masked_blk_two, [self.sep_token_idx]]) targets_two = np.concatenate([masked_tgt_two, [self.pad_idx]]) # block + 1 sep + 1 special (CLS) segments_one = np.zeros(len(tokens_one)) # block + 1 sep segments_two = np.ones(len(tokens_two)) tokens = np.concatenate([tokens_one, tokens_two]) targets = np.concatenate([targets_one, targets_two]) segments = np.concatenate([segments_one, segments_two]) s["source"] = torch.LongTensor(tokens) s["segment_labels"] = torch.LongTensor(segments) s["lm_target"] = torch.LongTensor(targets) def merge(key): return data_utils.collate_tokens( [s[key] for s in samples], pad_idx, eos_idx, left_pad=False ) return { "id": torch.LongTensor([s["id"] for s in samples]), "ntokens": sum(len(s["source"]) for s in samples), "net_input": { "src_tokens": merge("source"), "segment_labels": merge("segment_labels"), }, "lm_target": merge("lm_target"), "sentence_target": torch.LongTensor([s["sentence_target"] for s in samples]) if self.has_pairs else None, "nsentences": len(samples), } def collater(self, samples: List[Dict]): """Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate Returns: dict: a mini-batch of data """ return self._collate(samples, self.vocab.pad(), self.vocab.eos()) def num_tokens(self, index: int): """ Return the number of tokens in a sample. This value is used to enforce max-tokens during batching. """ return self.sizes[index] def size(self, index: int): """ Return an example's size as a float or tuple. This value is used when filtering a dataset with max-positions. """ return self.sizes[index] def ordered_indices(self): """ Return an ordered list of indices. Batches will be constructed based on this order. """ if self.shuffle: return np.random.permutation(len(self)) else: order = [np.arange(len(self))] order.append(self.sizes) return np.lexsort(order) @property def supports_prefetch(self): return getattr(self.dataset, "supports_prefetch", False) def prefetch(self, indices): self.dataset.prefetch(indices)
COCO-LM/fairseq/fairseq/data/legacy/masked_lm_dataset.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/legacy/masked_lm_dataset.py", "repo_id": "COCO-LM", "token_count": 5552 }
183
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from fairseq.data import data_utils class WordNoising(object): """Generate a noisy version of a sentence, without changing words themselves.""" def __init__(self, dictionary, bpe_cont_marker="@@", bpe_end_marker=None): self.dictionary = dictionary self.bpe_end = None if bpe_cont_marker: self.bpe_end = np.array( [ not self.dictionary[i].endswith(bpe_cont_marker) for i in range(len(self.dictionary)) ] ) elif bpe_end_marker: self.bpe_end = np.array( [ self.dictionary[i].endswith(bpe_end_marker) for i in range(len(self.dictionary)) ] ) self.get_word_idx = ( self._get_bpe_word_idx if self.bpe_end is not None else self._get_token_idx ) def noising(self, x, lengths, noising_prob=0.0): raise NotImplementedError() def _get_bpe_word_idx(self, x): """ Given a list of BPE tokens, for every index in the tokens list, return the index of the word grouping that it belongs to. For example, for input x corresponding to ["how", "are", "y@@", "ou"], return [[0], [1], [2], [2]]. """ # x: (T x B) bpe_end = self.bpe_end[x] if x.size(0) == 1 and x.size(1) == 1: # Special case when we only have one word in x. If x = [[N]], # bpe_end is a scalar (bool) instead of a 2-dim array of bools, # which makes the sum operation below fail. return np.array([[0]]) # do a reduce front sum to generate word ids word_idx = bpe_end[::-1].cumsum(0)[::-1] word_idx = word_idx.max(0)[None, :] - word_idx return word_idx def _get_token_idx(self, x): """ This is to extend noising functions to be able to apply to non-bpe tokens, e.g. word or characters. """ x = torch.t(x) word_idx = np.array([range(len(x_i)) for x_i in x]) return np.transpose(word_idx) class WordDropout(WordNoising): """Randomly drop input words. If not passing blank_idx (default is None), then dropped words will be removed. Otherwise, it will be replaced by the blank_idx.""" def __init__( self, dictionary, default_dropout_prob=0.1, bpe_cont_marker="@@", bpe_end_marker=None, ): super().__init__(dictionary, bpe_cont_marker, bpe_end_marker) self.default_dropout_prob = default_dropout_prob def noising(self, x, lengths, dropout_prob=None, blank_idx=None): if dropout_prob is None: dropout_prob = self.default_dropout_prob # x: (T x B), lengths: B if dropout_prob == 0: return x, lengths assert 0 < dropout_prob < 1 # be sure to drop entire words word_idx = self.get_word_idx(x) sentences = [] modified_lengths = [] for i in range(lengths.size(0)): # Since dropout probabilities need to apply over non-pad tokens, # it is not trivial to generate the keep mask without consider # input lengths; otherwise, this could be done outside the loop # We want to drop whole words based on word_idx grouping num_words = max(word_idx[:, i]) + 1 # ith example: [x0, x1, ..., eos, pad, ..., pad] # We should only generate keep probs for non-EOS tokens. Thus if the # input sentence ends in EOS, the last word idx is not included in # the dropout mask generation and we append True to always keep EOS. # Otherwise, just generate the dropout mask for all word idx # positions. has_eos = x[lengths[i] - 1, i] == self.dictionary.eos() if has_eos: # has eos? keep = np.random.rand(num_words - 1) >= dropout_prob keep = np.append(keep, [True]) # keep EOS symbol else: keep = np.random.rand(num_words) >= dropout_prob words = x[: lengths[i], i].tolist() # TODO: speed up the following loop # drop words from the input according to keep new_s = [ w if keep[word_idx[j, i]] else blank_idx for j, w in enumerate(words) ] new_s = [w for w in new_s if w is not None] # we need to have at least one word in the sentence (more than the # start / end sentence symbols) if len(new_s) <= 1: # insert at beginning in case the only token left is EOS # EOS should be at end of list. new_s.insert(0, words[np.random.randint(0, len(words))]) assert len(new_s) >= 1 and ( not has_eos # Either don't have EOS at end or last token is EOS or (len(new_s) >= 2 and new_s[-1] == self.dictionary.eos()) ), "New sentence is invalid." sentences.append(new_s) modified_lengths.append(len(new_s)) # re-construct input modified_lengths = torch.LongTensor(modified_lengths) modified_x = torch.LongTensor( modified_lengths.max(), modified_lengths.size(0) ).fill_(self.dictionary.pad()) for i in range(modified_lengths.size(0)): modified_x[: modified_lengths[i], i].copy_(torch.LongTensor(sentences[i])) return modified_x, modified_lengths class WordShuffle(WordNoising): """Shuffle words by no more than k positions.""" def __init__( self, dictionary, default_max_shuffle_distance=3, bpe_cont_marker="@@", bpe_end_marker=None, ): super().__init__(dictionary, bpe_cont_marker, bpe_end_marker) self.default_max_shuffle_distance = 3 def noising(self, x, lengths, max_shuffle_distance=None): if max_shuffle_distance is None: max_shuffle_distance = self.default_max_shuffle_distance # x: (T x B), lengths: B if max_shuffle_distance == 0: return x, lengths # max_shuffle_distance < 1 will return the same sequence assert max_shuffle_distance > 1 # define noise word scores noise = np.random.uniform( 0, max_shuffle_distance, size=(x.size(0), x.size(1)), ) noise[0] = -1 # do not move start sentence symbol # be sure to shuffle entire words word_idx = self.get_word_idx(x) x2 = x.clone() for i in range(lengths.size(0)): length_no_eos = lengths[i] if x[lengths[i] - 1, i] == self.dictionary.eos(): length_no_eos = lengths[i] - 1 # generate a random permutation scores = word_idx[:length_no_eos, i] + noise[word_idx[:length_no_eos, i], i] # ensure no reordering inside a word scores += 1e-6 * np.arange(length_no_eos.item()) permutation = scores.argsort() # shuffle words x2[:length_no_eos, i].copy_( x2[:length_no_eos, i][torch.from_numpy(permutation)] ) return x2, lengths class UnsupervisedMTNoising(WordNoising): """ Implements the default configuration for noising in UnsupervisedMT (github.com/facebookresearch/UnsupervisedMT) """ def __init__( self, dictionary, max_word_shuffle_distance, word_dropout_prob, word_blanking_prob, bpe_cont_marker="@@", bpe_end_marker=None, ): super().__init__(dictionary) self.max_word_shuffle_distance = max_word_shuffle_distance self.word_dropout_prob = word_dropout_prob self.word_blanking_prob = word_blanking_prob self.word_dropout = WordDropout( dictionary=dictionary, bpe_cont_marker=bpe_cont_marker, bpe_end_marker=bpe_end_marker, ) self.word_shuffle = WordShuffle( dictionary=dictionary, bpe_cont_marker=bpe_cont_marker, bpe_end_marker=bpe_end_marker, ) def noising(self, x, lengths): # 1. Word Shuffle noisy_src_tokens, noisy_src_lengths = self.word_shuffle.noising( x=x, lengths=lengths, max_shuffle_distance=self.max_word_shuffle_distance, ) # 2. Word Dropout noisy_src_tokens, noisy_src_lengths = self.word_dropout.noising( x=noisy_src_tokens, lengths=noisy_src_lengths, dropout_prob=self.word_dropout_prob, ) # 3. Word Blanking noisy_src_tokens, noisy_src_lengths = self.word_dropout.noising( x=noisy_src_tokens, lengths=noisy_src_lengths, dropout_prob=self.word_blanking_prob, blank_idx=self.dictionary.unk(), ) return noisy_src_tokens class NoisingDataset(torch.utils.data.Dataset): def __init__( self, src_dataset, src_dict, seed, noiser=None, noising_class=UnsupervisedMTNoising, **kwargs ): """ Wrap a :class:`~torch.utils.data.Dataset` and apply noise to the samples based on the supplied noising configuration. Args: src_dataset (~torch.utils.data.Dataset): dataset to wrap. to build self.src_dataset -- a LanguagePairDataset with src dataset as the source dataset and None as the target dataset. Should NOT have padding so that src_lengths are accurately calculated by language_pair_dataset collate function. We use language_pair_dataset here to encapsulate the tgt_dataset so we can re-use the LanguagePairDataset collater to format the batches in the structure that SequenceGenerator expects. src_dict (~fairseq.data.Dictionary): source dictionary seed (int): seed to use when generating random noise noiser (WordNoising): a pre-initialized :class:`WordNoising` instance. If this is None, a new instance will be created using *noising_class* and *kwargs*. noising_class (class, optional): class to use to initialize a default :class:`WordNoising` instance. kwargs (dict, optional): arguments to initialize the default :class:`WordNoising` instance given by *noiser*. """ self.src_dataset = src_dataset self.src_dict = src_dict self.seed = seed self.noiser = ( noiser if noiser is not None else noising_class( dictionary=src_dict, **kwargs, ) ) def __getitem__(self, index): """ Returns a single noisy sample. Multiple samples are fed to the collater create a noising dataset batch. """ src_tokens = self.src_dataset[index] src_lengths = torch.LongTensor([len(src_tokens)]) src_tokens = src_tokens.unsqueeze(0) # Transpose src tokens to fit expected shape of x in noising function # (batch size, sequence length) -> (sequence length, batch size) src_tokens_t = torch.t(src_tokens) with data_utils.numpy_seed(self.seed + index): noisy_src_tokens = self.noiser.noising(src_tokens_t, src_lengths) # Transpose back to expected src_tokens format # (sequence length, 1) -> (1, sequence length) noisy_src_tokens = torch.t(noisy_src_tokens) return noisy_src_tokens[0] def __len__(self): """ The length of the noising dataset is the length of src. """ return len(self.src_dataset) @property def supports_prefetch(self): return self.src_dataset.supports_prefetch def prefetch(self, indices): if self.src_dataset.supports_prefetch: self.src_dataset.prefetch(indices)
COCO-LM/fairseq/fairseq/data/noising.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/noising.py", "repo_id": "COCO-LM", "token_count": 5932 }
184
from .squad_extractor import SquadExample, SquadFeature, read_squad_examples, squad_convert_examples_to_features from .basic_tokenizer import BasicTokenizer from .squad_metrics import SquadResult, compute_predictions_logits, squad_evaluate
COCO-LM/fairseq/fairseq/data/squad/__init__.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/data/squad/__init__.py", "repo_id": "COCO-LM", "token_count": 67 }
185
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .distributed_timeout_wrapper import DistributedTimeoutWrapper from .fully_sharded_data_parallel import fsdp_enable_wrap, fsdp_wrap, FullyShardedDataParallel from .legacy_distributed_data_parallel import LegacyDistributedDataParallel from .module_proxy_wrapper import ModuleProxyWrapper from .tpu_distributed_data_parallel import TPUDistributedDataParallel __all__ = [ "DistributedTimeoutWrapper", "fsdp_enable_wrap", "fsdp_wrap", "FullyShardedDataParallel", "LegacyDistributedDataParallel", "ModuleProxyWrapper", "TPUDistributedDataParallel", ]
COCO-LM/fairseq/fairseq/distributed/__init__.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/distributed/__init__.py", "repo_id": "COCO-LM", "token_count": 238 }
186
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, register_model_architecture, ) from fairseq.modules import ( AdaptiveSoftmax, DynamicConv, FairseqDropout, LayerNorm, LightweightConv, MultiheadAttention, PositionalEmbedding, ) @register_model("lightconv") class LightConvModel(FairseqEncoderDecoderModel): """ LightConv and DynamicConv model from `"Pay Less Attention with Lightweight and Dynamic Convolutions" (Wu, et al, 2019) <https://openreview.net/pdf?id=SkVhlh09tX>`_. To use LightConv please set ``--encoder-conv-type lightweight --decoder-conv-type lightweight`` To use DynamicConv please set ``--encoder-conv-type dynamic --decoder-conv-type dynamic`` Args: encoder (LightConvEncoder): the encoder decoder (LightConvDecoder): the decoder The LightConv model provides the following named architectures and command-line arguments: .. argparse:: :ref: fairseq.models.lightconv_parser :prog: """ @classmethod def hub_models(cls): # fmt: off def moses_subword(path): return { 'path': path, 'tokenizer': 'moses', 'bpe': 'subword_nmt', } return { 'lightconv.no_glu.iwslt14.de-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/iwslt14.de-en.lightconv.tar.gz'), 'dynamicconv.no_glu.iwslt14.de-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/iwslt14.de-en.dynamicconv.tar.gz'), 'lightconv.no_glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv.tar.gz'), 'dynamicconv.no_glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv.tar.gz'), 'lightconv.glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv-glu.tar.gz'), 'dynamicconv.glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv-glu.tar.gz'), 'lightconv.glu.wmt17.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv-glu.tar.gz'), 'dynamicconv.glu.wmt17.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv-glu.tar.gz'), 'lightconv.glu.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt14.en-fr.joined-dict.lightconv-glu.tar.gz'), 'dynamicconv.glu.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt14.en-fr.joined-dict.dynamicconv-glu.tar.gz'), 'lightconv.glu.wmt17.zh-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt17.zh-en.lightconv-glu.tar.gz'), 'dynamicconv.glu.wmt17.zh-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt17.zh-en.dynamicconv-glu.tar.gz'), } # fmt: on def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" parser.add_argument( "--dropout", type=float, metavar="D", help="dropout probability" ) parser.add_argument( "--attention-dropout", type=float, metavar="D", help="dropout probability for attention weights", ) parser.add_argument( "--relu-dropout", type=float, metavar="D", help="dropout probability after ReLU in FFN", ) parser.add_argument( "--input-dropout", type=float, metavar="D", help="dropout probability of the inputs", ) parser.add_argument( "--encoder-embed-path", type=str, metavar="STR", help="path to pre-trained encoder embedding", ) parser.add_argument( "--encoder-embed-dim", type=int, metavar="N", help="encoder embedding dimension", ) parser.add_argument( "--encoder-conv-dim", type=int, metavar="N", help="encoder embedding dimension", ) parser.add_argument( "--encoder-ffn-embed-dim", type=int, metavar="N", help="encoder embedding dimension for FFN", ) parser.add_argument( "--encoder-layers", type=int, metavar="N", help="num encoder layers" ) parser.add_argument( "--encoder-attention-heads", type=int, metavar="N", help="num encoder attention heads or LightConv/DynamicConv heads", ) parser.add_argument( "--encoder-normalize-before", action="store_true", help="apply layernorm before each encoder block", ) parser.add_argument( "--encoder-learned-pos", action="store_true", help="use learned positional embeddings in the encoder", ) parser.add_argument( "--decoder-embed-path", type=str, metavar="STR", help="path to pre-trained decoder embedding", ) parser.add_argument( "--decoder-embed-dim", type=int, metavar="N", help="decoder embedding dimension", ) parser.add_argument( "--decoder-conv-dim", type=int, metavar="N", help="decoder embedding dimension", ) parser.add_argument( "--decoder-ffn-embed-dim", type=int, metavar="N", help="decoder embedding dimension for FFN", ) parser.add_argument( "--decoder-layers", type=int, metavar="N", help="num decoder layers" ) parser.add_argument( "--decoder-attention-heads", type=int, metavar="N", help="num decoder attention heads or LightConv/DynamicConv heads", ) parser.add_argument( "--decoder-learned-pos", action="store_true", help="use learned positional embeddings in the decoder", ) parser.add_argument( "--decoder-normalize-before", action="store_true", help="apply layernorm before each decoder block", ) parser.add_argument( "--share-decoder-input-output-embed", action="store_true", help="share decoder input and output embeddings", ) parser.add_argument( "--share-all-embeddings", action="store_true", help="share encoder, decoder and output embeddings" " (requires shared dictionary and embed dim)", ) parser.add_argument( "--adaptive-softmax-cutoff", metavar="EXPR", help="comma separated list of adaptive softmax cutoff points. " "Must be used with adaptive_loss criterion", ), parser.add_argument( "--adaptive-softmax-dropout", type=float, metavar="D", help="sets adaptive softmax dropout for the tail projections", ) """LightConv and DynamicConv arguments""" parser.add_argument( "--encoder-kernel-size-list", type=lambda x: utils.eval_str_list(x, int), help='list of kernel size (default: "[3,7,15,31,31,31,31]")', ) parser.add_argument( "--decoder-kernel-size-list", type=lambda x: utils.eval_str_list(x, int), help='list of kernel size (default: "[3,7,15,31,31,31]")', ) parser.add_argument( "--encoder-glu", type=utils.eval_bool, help="glu after in proj" ) parser.add_argument( "--decoder-glu", type=utils.eval_bool, help="glu after in proj" ) parser.add_argument( "--encoder-conv-type", default="dynamic", type=str, choices=["dynamic", "lightweight"], help="type of convolution", ) parser.add_argument( "--decoder-conv-type", default="dynamic", type=str, choices=["dynamic", "lightweight"], help="type of convolution", ) parser.add_argument("--weight-softmax", default=True, type=utils.eval_bool) parser.add_argument( "--weight-dropout", type=float, metavar="D", help="dropout probability for conv weights", ) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if not hasattr(args, "max_source_positions"): args.max_source_positions = 1024 if not hasattr(args, "max_target_positions"): args.max_target_positions = 1024 src_dict, tgt_dict = task.source_dictionary, task.target_dictionary def build_embedding(dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb if args.share_all_embeddings: if src_dict != tgt_dict: raise RuntimeError( "--share-all-embeddings requires a joined dictionary" ) if args.encoder_embed_dim != args.decoder_embed_dim: raise RuntimeError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path ): raise RuntimeError( "--share-all-embeddings not compatible with --decoder-embed-path" ) encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = build_embedding( tgt_dict, args.decoder_embed_dim, args.decoder_embed_path ) encoder = LightConvEncoder(args, src_dict, encoder_embed_tokens) decoder = LightConvDecoder(args, tgt_dict, decoder_embed_tokens) return LightConvModel(encoder, decoder) class LightConvEncoder(FairseqEncoder): """ LightConv encoder consisting of *args.encoder_layers* layers. Each layer is a :class:`LightConvEncoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): encoding dictionary embed_tokens (torch.nn.Embedding): input embedding """ def __init__(self, args, dictionary, embed_tokens): super().__init__(dictionary) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) embed_dim = embed_tokens.embedding_dim self.padding_idx = embed_tokens.padding_idx self.max_source_positions = args.max_source_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) self.embed_positions = ( PositionalEmbedding( args.max_source_positions, embed_dim, self.padding_idx, learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) self.layers = nn.ModuleList([]) self.layers.extend( [ LightConvEncoderLayer( args, kernel_size=args.encoder_kernel_size_list[i] ) for i in range(args.encoder_layers) ] ) self.register_buffer("version", torch.Tensor([2])) self.normalize = args.encoder_normalize_before if self.normalize: self.layer_norm = LayerNorm(embed_dim) def forward(self, src_tokens, **unused): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` """ # embed tokens and positions x = self.embed_scale * self.embed_tokens(src_tokens) if self.embed_positions is not None: x += self.embed_positions(src_tokens) x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) # compute padding mask encoder_padding_mask = src_tokens.eq(self.padding_idx) if not encoder_padding_mask.any(): encoder_padding_mask = None # encoder layers for layer in self.layers: x = layer(x, encoder_padding_mask) if self.normalize: x = self.layer_norm(x) return { "encoder_out": x, # T x B x C "encoder_padding_mask": encoder_padding_mask, # B x T } def reorder_encoder_out(self, encoder_out, new_order): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ if encoder_out["encoder_out"] is not None: encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select( 1, new_order ) if encoder_out["encoder_padding_mask"] is not None: encoder_out["encoder_padding_mask"] = encoder_out[ "encoder_padding_mask" ].index_select(0, new_order) return encoder_out def max_positions(self): """Maximum input length supported by the encoder.""" if self.embed_positions is None: return self.max_source_positions return min(self.max_source_positions, self.embed_positions.max_positions) class LightConvDecoder(FairseqIncrementalDecoder): """ LightConv decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`LightConvDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs. Default: ``False`` """ def __init__( self, args, dictionary, embed_tokens, no_encoder_attn=False, final_norm=True ): super().__init__(dictionary) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.share_input_output_embed = args.share_decoder_input_output_embed input_embed_dim = embed_tokens.embedding_dim embed_dim = args.decoder_embed_dim output_embed_dim = args.decoder_output_dim padding_idx = embed_tokens.padding_idx self.max_target_positions = args.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) # todo: try with input_embed_dim self.project_in_dim = ( Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.embed_positions = ( PositionalEmbedding( args.max_target_positions, embed_dim, padding_idx, learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) self.layers = nn.ModuleList([]) self.layers.extend( [ LightConvDecoderLayer( args, no_encoder_attn, kernel_size=args.decoder_kernel_size_list[i] ) for i in range(args.decoder_layers) ] ) self.adaptive_softmax = None self.project_out_dim = ( Linear(embed_dim, output_embed_dim, bias=False) if embed_dim != output_embed_dim and not args.tie_adaptive_weights else None ) if args.adaptive_softmax_cutoff is not None: self.adaptive_softmax = AdaptiveSoftmax( len(dictionary), output_embed_dim, utils.eval_str_list(args.adaptive_softmax_cutoff, type=int), dropout=args.adaptive_softmax_dropout, adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None, factor=args.adaptive_softmax_factor, tie_proj=args.tie_adaptive_proj, ) elif not self.share_input_output_embed: self.embed_out = nn.Parameter( torch.Tensor(len(dictionary), output_embed_dim) ) nn.init.normal_(self.embed_out, mean=0, std=output_embed_dim ** -0.5) self.register_buffer("version", torch.Tensor([2])) self.normalize = args.decoder_normalize_before and final_norm if self.normalize: self.layer_norm = LayerNorm(embed_dim) def forward( self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (Tensor, optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` Returns: tuple: - the last decoder layer's output of shape `(batch, tgt_len, vocab)` - the last decoder layer's attention weights of shape `(batch, tgt_len, src_len)` """ # embed positions positions = ( self.embed_positions( prev_output_tokens, incremental_state=incremental_state, ) if self.embed_positions is not None else None ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) attn = None inner_states = [x] # decoder layers for layer in self.layers: x, attn = layer( x, encoder_out["encoder_out"] if encoder_out is not None else None, encoder_out["encoder_padding_mask"] if encoder_out is not None else None, incremental_state, ) inner_states.append(x) if self.normalize: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) if self.adaptive_softmax is None: # project back to size of vocabulary if self.share_input_output_embed: x = F.linear(x, self.embed_tokens.weight) else: x = F.linear(x, self.embed_out) return x, {"attn": attn, "inner_states": inner_states} def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions) def buffered_future_mask(self, tensor): dim = tensor.size(0) if ( not hasattr(self, "_future_mask") or self._future_mask is None or self._future_mask.device != tensor.device ): self._future_mask = torch.triu( utils.fill_with_neg_inf(tensor.new(dim, dim)), 1 ) if self._future_mask.size(0) < dim: self._future_mask = torch.triu( utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1 ) return self._future_mask[:dim, :dim] class LightConvEncoderLayer(nn.Module): """Encoder layer block. Args: args (argparse.Namespace): parsed command-line arguments kernel_size: kernel size of the convolution """ def __init__(self, args, kernel_size=0): super().__init__() self.embed_dim = args.encoder_embed_dim self.conv_dim = args.encoder_conv_dim padding_l = ( kernel_size // 2 if kernel_size % 2 == 1 else ((kernel_size - 1) // 2, kernel_size // 2) ) if args.encoder_glu: self.linear1 = Linear(self.embed_dim, 2 * self.conv_dim) self.act = nn.GLU() else: self.linear1 = Linear(self.embed_dim, self.conv_dim) self.act = None if args.encoder_conv_type == "lightweight": self.conv = LightweightConv( self.conv_dim, kernel_size, padding_l=padding_l, weight_softmax=args.weight_softmax, num_heads=args.encoder_attention_heads, weight_dropout=args.weight_dropout, ) elif args.encoder_conv_type == "dynamic": self.conv = DynamicConv( self.conv_dim, kernel_size, padding_l=padding_l, weight_softmax=args.weight_softmax, num_heads=args.encoder_attention_heads, weight_dropout=args.weight_dropout, ) else: raise NotImplementedError self.linear2 = Linear(self.conv_dim, self.embed_dim) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.relu_dropout_module = FairseqDropout( args.relu_dropout, module_name=self.__class__.__name__ ) self.input_dropout_module = FairseqDropout( args.input_dropout, module_name=self.__class__.__name__ ) self.normalize_before = args.encoder_normalize_before self.fc1 = Linear(self.embed_dim, args.encoder_ffn_embed_dim) self.fc2 = Linear(args.encoder_ffn_embed_dim, self.embed_dim) self.layer_norms = nn.ModuleList([LayerNorm(self.embed_dim) for _ in range(2)]) def forward(self, x, encoder_padding_mask): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. Returns: encoded output of shape `(batch, src_len, embed_dim)` """ residual = x x = self.maybe_layer_norm(0, x, before=True) x = self.input_dropout_module(x) x = self.linear1(x) if self.act is not None: x = self.act(x) if encoder_padding_mask is not None: x = x.masked_fill(encoder_padding_mask.transpose(0, 1).unsqueeze(2), 0) x = self.conv(x) x = self.linear2(x) x = self.dropout_module(x) x = residual + x x = self.maybe_layer_norm(0, x, after=True) residual = x x = self.maybe_layer_norm(1, x, before=True) x = F.relu(self.fc1(x)) x = self.relu_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = residual + x x = self.maybe_layer_norm(1, x, after=True) return x def maybe_layer_norm(self, i, x, before=False, after=False): assert before ^ after if after ^ self.normalize_before: return self.layer_norms[i](x) else: return x def extra_repr(self): return ( "dropout={}, relu_dropout={}, input_dropout={}, normalize_before={}".format( self.dropout_module.p, self.relu_dropout_module.p, self.input_dropout_module.p, self.normalize_before, ) ) class LightConvDecoderLayer(nn.Module): """Decoder layer block. Args: args (argparse.Namespace): parsed command-line arguments no_encoder_attn (bool, optional): whether to attend to encoder outputs. Default: ``False`` kernel_size: kernel size of the convolution """ def __init__(self, args, no_encoder_attn=False, kernel_size=0): super().__init__() self.embed_dim = args.decoder_embed_dim self.conv_dim = args.decoder_conv_dim if args.decoder_glu: self.linear1 = Linear(self.embed_dim, 2 * self.conv_dim) self.act = nn.GLU() else: self.linear1 = Linear(self.embed_dim, self.conv_dim) self.act = None if args.decoder_conv_type == "lightweight": self.conv = LightweightConv( self.conv_dim, kernel_size, padding_l=kernel_size - 1, weight_softmax=args.weight_softmax, num_heads=args.decoder_attention_heads, weight_dropout=args.weight_dropout, ) elif args.decoder_conv_type == "dynamic": self.conv = DynamicConv( self.conv_dim, kernel_size, padding_l=kernel_size - 1, weight_softmax=args.weight_softmax, num_heads=args.decoder_attention_heads, weight_dropout=args.weight_dropout, ) else: raise NotImplementedError self.linear2 = Linear(self.conv_dim, self.embed_dim) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.relu_dropout_module = FairseqDropout( args.relu_dropout, module_name=self.__class__.__name__ ) self.input_dropout_module = FairseqDropout( args.input_dropout, module_name=self.__class__.__name__ ) self.normalize_before = args.decoder_normalize_before self.conv_layer_norm = LayerNorm(self.embed_dim) if no_encoder_attn: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = MultiheadAttention( self.embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, encoder_decoder_attention=True, ) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim) self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim) self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim) self.need_attn = True def forward( self, x, encoder_out, encoder_padding_mask, incremental_state, prev_conv_state=None, prev_attn_state=None, conv_mask=None, conv_padding_mask=None, ): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. Returns: encoded output of shape `(batch, src_len, embed_dim)` """ residual = x x = self.maybe_layer_norm(self.conv_layer_norm, x, before=True) if prev_conv_state is not None: if incremental_state is None: incremental_state = {} self.conv._set_input_buffer(incremental_state, prev_conv_state) x = self.input_dropout_module(x) x = self.linear1(x) if self.act is not None: x = self.act(x) x = self.conv(x, incremental_state=incremental_state) x = self.linear2(x) x = self.dropout_module(x) x = residual + x x = self.maybe_layer_norm(self.conv_layer_norm, x, after=True) attn = None if self.encoder_attn is not None: residual = x x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, before=True) if prev_attn_state is not None: if incremental_state is None: incremental_state = {} prev_key, prev_value = prev_attn_state saved_state = {"prev_key": prev_key, "prev_value": prev_value} self.encoder_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=(not self.training and self.need_attn), ) x = self.dropout_module(x) x = residual + x x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, after=True) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = F.relu(self.fc1(x)) x = self.relu_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = residual + x x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) return x, attn def maybe_layer_norm(self, layer_norm, x, before=False, after=False): assert before ^ after if after ^ self.normalize_before: return layer_norm(x) else: return x def make_generation_fast_(self, need_attn=False, **kwargs): self.need_attn = need_attn def extra_repr(self): return ( "dropout={}, relu_dropout={}, input_dropout={}, normalize_before={}".format( self.dropout_module.p, self.relu_dropout_module.p, self.input_dropout_module.p, self.normalize_before, ) ) def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m @register_model_architecture("lightconv", "lightconv") def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 7) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.relu_dropout = getattr(args, "relu_dropout", 0.0) args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.encoder_conv_dim = getattr(args, "encoder_conv_dim", args.encoder_embed_dim) args.decoder_conv_dim = getattr(args, "decoder_conv_dim", args.decoder_embed_dim) args.encoder_kernel_size_list = getattr( args, "encoder_kernel_size_list", [3, 7, 15, 31, 31, 31, 31] ) args.decoder_kernel_size_list = getattr( args, "decoder_kernel_size_list", [3, 7, 15, 31, 31, 31] ) if len(args.encoder_kernel_size_list) == 1: args.encoder_kernel_size_list = ( args.encoder_kernel_size_list * args.encoder_layers ) if len(args.decoder_kernel_size_list) == 1: args.decoder_kernel_size_list = ( args.decoder_kernel_size_list * args.decoder_layers ) assert ( len(args.encoder_kernel_size_list) == args.encoder_layers ), "encoder_kernel_size_list doesn't match encoder_layers" assert ( len(args.decoder_kernel_size_list) == args.decoder_layers ), "decoder_kernel_size_list doesn't match decoder_layers" args.encoder_glu = getattr(args, "encoder_glu", True) args.decoder_glu = getattr(args, "decoder_glu", True) args.input_dropout = getattr(args, "input_dropout", 0.1) args.weight_dropout = getattr(args, "weight_dropout", args.attention_dropout) @register_model_architecture("lightconv", "lightconv_iwslt_de_en") def lightconv_iwslt_de_en(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) args.encoder_layers = getattr(args, "encoder_layers", 7) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4) args.decoder_layers = getattr(args, "decoder_layers", 6) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.weight_dropout = getattr(args, "weight_dropout", 0.1) args.encoder_glu = getattr(args, "encoder_glu", False) args.decoder_glu = getattr(args, "decoder_glu", False) args.input_dropout = getattr(args, "input_dropout", 0.0) base_architecture(args) @register_model_architecture("lightconv", "lightconv_wmt_en_de") def lightconv_wmt_en_de(args): base_architecture(args) @register_model_architecture("lightconv", "lightconv_wmt_en_de_big") def lightconv_wmt_en_de_big(args): args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.dropout = getattr(args, "dropout", 0.3) base_architecture(args) @register_model_architecture("lightconv", "lightconv_wmt_en_fr_big") def lightconv_wmt_en_fr_big(args): args.dropout = getattr(args, "dropout", 0.1) lightconv_wmt_en_de_big(args) @register_model_architecture("lightconv", "lightconv_wmt_zh_en_big") def lightconv_wmt_zh_en_big(args): args.dropout = getattr(args, "dropout", 0.2) args.attention_dropout = getattr(args, "attention_dropout", 0.2) args.weight_dropout = getattr(args, "weight_dropout", 0.2) lightconv_wmt_en_de_big(args)
COCO-LM/fairseq/fairseq/models/lightconv.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/models/lightconv.py", "repo_id": "COCO-LM", "token_count": 18801 }
187
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F from fairseq import utils from fairseq.iterative_refinement_generator import DecoderOut from fairseq.models import register_model, register_model_architecture from fairseq.models.nat import FairseqNATDecoder, FairseqNATModel, ensemble_decoder from fairseq.models.transformer import Embedding from fairseq.modules.transformer_sentence_encoder import init_bert_params def _mean_pooling(enc_feats, src_masks): # enc_feats: T x B x C # src_masks: B x T or None if src_masks is None: enc_feats = enc_feats.mean(0) else: src_masks = (~src_masks).transpose(0, 1).type_as(enc_feats) enc_feats = ( (enc_feats / src_masks.sum(0)[None, :, None]) * src_masks[:, :, None] ).sum(0) return enc_feats def _argmax(x, dim): return (x == x.max(dim, keepdim=True)[0]).type_as(x) def _uniform_assignment(src_lens, trg_lens): max_trg_len = trg_lens.max() steps = (src_lens.float() - 1) / (trg_lens.float() - 1) # step-size # max_trg_len index_t = utils.new_arange(trg_lens, max_trg_len).float() index_t = steps[:, None] * index_t[None, :] # batch_size X max_trg_len index_t = torch.round(index_t).long().detach() return index_t @register_model("nonautoregressive_transformer") class NATransformerModel(FairseqNATModel): @property def allow_length_beam(self): return True @staticmethod def add_args(parser): FairseqNATModel.add_args(parser) # length prediction parser.add_argument( "--src-embedding-copy", action="store_true", help="copy encoder word embeddings as the initial input of the decoder", ) parser.add_argument( "--pred-length-offset", action="store_true", help="predicting the length difference between the target and source sentences", ) parser.add_argument( "--sg-length-pred", action="store_true", help="stop the gradients back-propagated from the length predictor", ) parser.add_argument( "--length-loss-factor", type=float, help="weights on the length prediction loss", ) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): decoder = NATransformerDecoder(args, tgt_dict, embed_tokens) if getattr(args, "apply_bert_init", False): decoder.apply(init_bert_params) return decoder def forward( self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs ): # encoding encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) # length prediction length_out = self.decoder.forward_length( normalize=False, encoder_out=encoder_out ) length_tgt = self.decoder.forward_length_prediction( length_out, encoder_out, tgt_tokens ) # decoding word_ins_out = self.decoder( normalize=False, prev_output_tokens=prev_output_tokens, encoder_out=encoder_out, ) return { "word_ins": { "out": word_ins_out, "tgt": tgt_tokens, "mask": tgt_tokens.ne(self.pad), "ls": self.args.label_smoothing, "nll_loss": True, }, "length": { "out": length_out, "tgt": length_tgt, "factor": self.decoder.length_loss_factor, }, } def forward_decoder(self, decoder_out, encoder_out, decoding_format=None, **kwargs): step = decoder_out.step output_tokens = decoder_out.output_tokens output_scores = decoder_out.output_scores history = decoder_out.history # execute the decoder output_masks = output_tokens.ne(self.pad) _scores, _tokens = self.decoder( normalize=True, prev_output_tokens=output_tokens, encoder_out=encoder_out, step=step, ).max(-1) output_tokens.masked_scatter_(output_masks, _tokens[output_masks]) output_scores.masked_scatter_(output_masks, _scores[output_masks]) if history is not None: history.append(output_tokens.clone()) return decoder_out._replace( output_tokens=output_tokens, output_scores=output_scores, attn=None, history=history, ) def initialize_output_tokens(self, encoder_out, src_tokens): # length prediction length_tgt = self.decoder.forward_length_prediction( self.decoder.forward_length(normalize=True, encoder_out=encoder_out), encoder_out=encoder_out, ) max_length = length_tgt.clamp_(min=2).max() idx_length = utils.new_arange(src_tokens, max_length) initial_output_tokens = src_tokens.new_zeros( src_tokens.size(0), max_length ).fill_(self.pad) initial_output_tokens.masked_fill_( idx_length[None, :] < length_tgt[:, None], self.unk ) initial_output_tokens[:, 0] = self.bos initial_output_tokens.scatter_(1, length_tgt[:, None] - 1, self.eos) initial_output_scores = initial_output_tokens.new_zeros( *initial_output_tokens.size() ).type_as(encoder_out["encoder_out"][0]) return DecoderOut( output_tokens=initial_output_tokens, output_scores=initial_output_scores, attn=None, step=0, max_step=0, history=None, ) def regenerate_length_beam(self, decoder_out, beam_size): output_tokens = decoder_out.output_tokens length_tgt = output_tokens.ne(self.pad).sum(1) length_tgt = ( length_tgt[:, None] + utils.new_arange(length_tgt, 1, beam_size) - beam_size // 2 ) length_tgt = length_tgt.view(-1).clamp_(min=2) max_length = length_tgt.max() idx_length = utils.new_arange(length_tgt, max_length) initial_output_tokens = output_tokens.new_zeros( length_tgt.size(0), max_length ).fill_(self.pad) initial_output_tokens.masked_fill_( idx_length[None, :] < length_tgt[:, None], self.unk ) initial_output_tokens[:, 0] = self.bos initial_output_tokens.scatter_(1, length_tgt[:, None] - 1, self.eos) initial_output_scores = initial_output_tokens.new_zeros( *initial_output_tokens.size() ).type_as(decoder_out.output_scores) return decoder_out._replace( output_tokens=initial_output_tokens, output_scores=initial_output_scores ) class NATransformerDecoder(FairseqNATDecoder): def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): super().__init__( args, dictionary, embed_tokens, no_encoder_attn=no_encoder_attn ) self.dictionary = dictionary self.bos = dictionary.bos() self.unk = dictionary.unk() self.eos = dictionary.eos() self.encoder_embed_dim = args.encoder_embed_dim self.sg_length_pred = getattr(args, "sg_length_pred", False) self.pred_length_offset = getattr(args, "pred_length_offset", False) self.length_loss_factor = getattr(args, "length_loss_factor", 0.1) self.src_embedding_copy = getattr(args, "src_embedding_copy", False) self.embed_length = Embedding(256, self.encoder_embed_dim, None) @ensemble_decoder def forward(self, normalize, encoder_out, prev_output_tokens, step=0, **unused): features, _ = self.extract_features( prev_output_tokens, encoder_out=encoder_out, embedding_copy=(step == 0) & self.src_embedding_copy, ) decoder_out = self.output_layer(features) return F.log_softmax(decoder_out, -1) if normalize else decoder_out @ensemble_decoder def forward_length(self, normalize, encoder_out): enc_feats = encoder_out["encoder_out"][0] # T x B x C if len(encoder_out["encoder_padding_mask"]) > 0: src_masks = encoder_out["encoder_padding_mask"][0] # B x T else: src_masks = None enc_feats = _mean_pooling(enc_feats, src_masks) if self.sg_length_pred: enc_feats = enc_feats.detach() length_out = F.linear(enc_feats, self.embed_length.weight) return F.log_softmax(length_out, -1) if normalize else length_out def extract_features( self, prev_output_tokens, encoder_out=None, early_exit=None, embedding_copy=False, **unused ): """ Similar to *forward* but only return features. Inputs: prev_output_tokens: Tensor(B, T) encoder_out: a dictionary of hidden states and masks Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs the LevenshteinTransformer decoder has full-attention to all generated tokens """ # embedding if embedding_copy: src_embd = encoder_out["encoder_embedding"][0] if len(encoder_out["encoder_padding_mask"]) > 0: src_mask = encoder_out["encoder_padding_mask"][0] else: src_mask = None src_mask = ( ~src_mask if src_mask is not None else prev_output_tokens.new_ones(*src_embd.size()[:2]).bool() ) x, decoder_padding_mask = self.forward_embedding( prev_output_tokens, self.forward_copying_source( src_embd, src_mask, prev_output_tokens.ne(self.padding_idx) ), ) else: x, decoder_padding_mask = self.forward_embedding(prev_output_tokens) # B x T x C -> T x B x C x = x.transpose(0, 1) attn = None inner_states = [x] # decoder layers for i, layer in enumerate(self.layers): # early exit from the decoder. if (early_exit is not None) and (i >= early_exit): break x, attn, _ = layer( x, encoder_out["encoder_out"][0] if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0) else None, encoder_out["encoder_padding_mask"][0] if ( encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0 ) else None, self_attn_mask=None, self_attn_padding_mask=decoder_padding_mask, ) inner_states.append(x) if self.layer_norm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x, {"attn": attn, "inner_states": inner_states} def forward_embedding(self, prev_output_tokens, states=None): # embed positions positions = ( self.embed_positions(prev_output_tokens) if self.embed_positions is not None else None ) # embed tokens and positions if states is None: x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) else: x = states if positions is not None: x += positions x = self.dropout_module(x) decoder_padding_mask = prev_output_tokens.eq(self.padding_idx) return x, decoder_padding_mask def forward_copying_source(self, src_embeds, src_masks, tgt_masks): length_sources = src_masks.sum(1) length_targets = tgt_masks.sum(1) mapped_inputs = _uniform_assignment(length_sources, length_targets).masked_fill( ~tgt_masks, 0 ) copied_embedding = torch.gather( src_embeds, 1, mapped_inputs.unsqueeze(-1).expand( *mapped_inputs.size(), src_embeds.size(-1) ), ) return copied_embedding def forward_length_prediction(self, length_out, encoder_out, tgt_tokens=None): enc_feats = encoder_out["encoder_out"][0] # T x B x C if len(encoder_out["encoder_padding_mask"]) > 0: src_masks = encoder_out["encoder_padding_mask"][0] # B x T else: src_masks = None if self.pred_length_offset: if src_masks is None: src_lengs = enc_feats.new_ones(enc_feats.size(1)).fill_( enc_feats.size(0) ) else: src_lengs = (~src_masks).transpose(0, 1).type_as(enc_feats).sum(0) src_lengs = src_lengs.long() if tgt_tokens is not None: # obtain the length target tgt_lengs = tgt_tokens.ne(self.padding_idx).sum(1).long() if self.pred_length_offset: length_tgt = tgt_lengs - src_lengs + 128 else: length_tgt = tgt_lengs length_tgt = length_tgt.clamp(min=0, max=255) else: # predict the length target (greedy for now) # TODO: implementing length-beam pred_lengs = length_out.max(-1)[1] if self.pred_length_offset: length_tgt = pred_lengs - 128 + src_lengs else: length_tgt = pred_lengs return length_tgt @register_model_architecture( "nonautoregressive_transformer", "nonautoregressive_transformer" ) def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.apply_bert_init = getattr(args, "apply_bert_init", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) # --- special arguments --- args.sg_length_pred = getattr(args, "sg_length_pred", False) args.pred_length_offset = getattr(args, "pred_length_offset", False) args.length_loss_factor = getattr(args, "length_loss_factor", 0.1) args.src_embedding_copy = getattr(args, "src_embedding_copy", False) @register_model_architecture( "nonautoregressive_transformer", "nonautoregressive_transformer_wmt_en_de" ) def nonautoregressive_transformer_wmt_en_de(args): base_architecture(args)
COCO-LM/fairseq/fairseq/models/nat/nonautoregressive_transformer.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/models/nat/nonautoregressive_transformer.py", "repo_id": "COCO-LM", "token_count": 8210 }
188
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import logging import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.modules import ( LayerNorm, ) class PoolerLogits(nn.Module): """ Compute SQuAD start logits from sequence hidden states. Args: config (:class:`~transformers.PretrainedConfig`): The config used by the model, will be used to grab the :obj:`hidden_size` of the model. """ def __init__(self, hidden_size): super().__init__() self.dense = nn.Linear(hidden_size, 1) self.dense.weight.data.normal_(mean=0.0, std=0.02) self.dense.bias.data.zero_() def forward( self, hidden_states, p_mask = None ): """ Args: hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`): The final hidden states of the model. p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`): Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked. Returns: :obj:`torch.FloatTensor`: The start logits for SQuAD. """ x = self.dense(hidden_states).squeeze(-1) if p_mask is not None: x.masked_fill_(p_mask, float('-inf')) return x class SQuADHead(nn.Module): def __init__(self, hidden_size): super().__init__() self.start_logits = PoolerLogits(hidden_size) self.end_logits = PoolerLogits(hidden_size) def forward( self, hidden_states, start_positions=None, end_positions=None, p_mask = None, ): """ Args: hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`): Final hidden states of the model on the sequence tokens. start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Positions of the first token for the labeled span. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Positions of the last token for the labeled span. is_impossible (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Whether the question has a possible answer in the paragraph or not. p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`): Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked. Returns: """ start_logits = self.start_logits(hidden_states, p_mask=p_mask) end_logits = self.end_logits(hidden_states, p_mask=p_mask) if start_positions is not None and end_positions is not None: def loss_fct(logits, targets): return F.nll_loss( F.log_softmax( logits.view(-1, logits.size(-1)), dim=-1, dtype=torch.float32, ), targets.view(-1), reduction='sum', ) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) * 0.5 return total_loss else: return start_logits, end_logits
COCO-LM/fairseq/fairseq/models/squad/squad_head.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/models/squad/squad_head.py", "repo_id": "COCO-LM", "token_count": 1742 }
189
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import torch import torch.nn.functional as F logger = logging.getLogger(__name__) def _cross_entropy_pytorch(logits, target, ignore_index=None, reduction="mean"): lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float32) return F.nll_loss( lprobs, target, ignore_index=ignore_index, reduction=reduction, ) try: import fused_xentropy_cuda logger.info("using fused cross entropy") class SoftmaxCrossEntropyLoss(torch.autograd.Function): @staticmethod def forward(ctx, logits, labels, padding_idx=0, half_to_float=False): losses, max_log_sum_exp = fused_xentropy_cuda.forward( logits, labels, half_to_float) if padding_idx >= 0: losses.masked_fill_(labels==padding_idx, 0) ctx.save_for_backward(logits, max_log_sum_exp, labels, torch.LongTensor([padding_idx])) return losses @staticmethod def backward(ctx, grad_loss): logits, max_log_sum_exp, labels, padding_idx = ctx.saved_tensors if not grad_loss.is_contiguous(): grad_loss = grad_loss.contiguous() padding_idx = padding_idx.item() if padding_idx >= 0: grad_loss.masked_fill_(labels==padding_idx, 0) grad_logits = fused_xentropy_cuda.backward( grad_loss.contiguous(), logits, max_log_sum_exp, labels) return grad_logits, None, None, None def cross_entropy(logits, target, ignore_index=-100, reduction="mean"): if logits.device == torch.device("cpu"): return _cross_entropy_pytorch(logits, target, ignore_index, reduction) else: half_to_float = (logits.dtype == torch.half) or (logits.dtype == torch.bfloat16) losses = SoftmaxCrossEntropyLoss.apply( logits, target, ignore_index, half_to_float, ) if reduction == "sum": return losses.sum() elif reduction == "mean": if ignore_index >= 0: return losses.sum() / target.ne(ignore_index).sum() else: return losses.mean() elif reduction == "none": return losses else: raise NotImplementedError except ImportError: def cross_entropy(logits, target, ignore_index=-100, reduction="mean"): return _cross_entropy_pytorch(logits, target, ignore_index, reduction)
COCO-LM/fairseq/fairseq/modules/cross_entropy.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/modules/cross_entropy.py", "repo_id": "COCO-LM", "token_count": 1287 }
190
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch class GradMultiply(torch.autograd.Function): @staticmethod def forward(ctx, x, scale): ctx.scale = scale res = x.new(x) return res @staticmethod def backward(ctx, grad): return grad * ctx.scale, None
COCO-LM/fairseq/fairseq/modules/grad_multiply.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/modules/grad_multiply.py", "repo_id": "COCO-LM", "token_count": 160 }
191
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn from .learned_positional_embedding import LearnedPositionalEmbedding from .sinusoidal_positional_embedding import SinusoidalPositionalEmbedding def PositionalEmbedding( num_embeddings: int, embedding_dim: int, padding_idx: int, learned: bool = False, ): if learned: # if padding_idx is specified then offset the embedding ids by # this index and adjust num_embeddings appropriately # TODO: The right place for this offset would be inside # LearnedPositionalEmbedding. Move this there for a cleaner implementation. if padding_idx is not None: num_embeddings = num_embeddings + padding_idx + 1 m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) if padding_idx is not None: nn.init.constant_(m.weight[padding_idx], 0) else: m = SinusoidalPositionalEmbedding( embedding_dim, padding_idx, init_size=num_embeddings + padding_idx + 1, ) return m
COCO-LM/fairseq/fairseq/modules/positional_embedding.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/modules/positional_embedding.py", "repo_id": "COCO-LM", "token_count": 509 }
192
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from ..ops import emulate_int class IntEmbedding(nn.Module): """ Quantized counterpart of the nn.Embedding module that applies QuantNoise during training. Args: - num_embeddings: number of tokens - embedding_dim: embedding dimension - p: amount of noise to inject (0 = no quantization, 1 = quantize all the weights) - bits: number of bits - method: choose among {"tensor", "histogram", "channel"} - update_step: recompute scale and zero_point every update_steps iterations Remarks: - We use the straight-through estimator so that the gradients back-propagate nicely in the network, this is implemented with the detach() trick - Parameters scale and zero_point are recomputed every update_step forward pass to reduce the overhead - At test time, the weights are fully quantized """ def __init__( self, num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, p=0, update_step=1000, bits=8, method="histogram", ): super(IntEmbedding, self).__init__() self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim if padding_idx is not None: if padding_idx > 0: assert ( padding_idx < self.num_embeddings ), "Padding_idx must be within num_embeddings" elif padding_idx < 0: assert ( padding_idx >= -self.num_embeddings ), "Padding_idx must be within num_embeddings" padding_idx = self.num_embeddings + padding_idx self.padding_idx = padding_idx self.max_norm = max_norm self.norm_type = norm_type self.scale_grad_by_freq = scale_grad_by_freq if _weight is None: self.weight = nn.Parameter(torch.Tensor(num_embeddings, embedding_dim)) self.reset_parameters() else: assert list(_weight.shape) == [ num_embeddings, embedding_dim, ], "Shape of weight does not match num_embeddings and embedding_dim" self.weight = nn.Parameter(_weight) self.sparse = sparse # quantization parameters self.p = p self.bits = bits self.method = method self.update_step = update_step self.counter = 0 def reset_parameters(self): nn.init.normal_(self.weight) if self.padding_idx is not None: with torch.no_grad(): self.weight[self.padding_idx].fill_(0) def forward(self, input): # train with QuantNoise and evaluate the fully quantized network p = self.p if self.training else 1 # update parameters every 1000 iterations if self.counter % self.update_step == 0: self.scale = None self.zero_point = None self.counter += 1 # quantize weight weight_quantized, self.scale, self.zero_point = emulate_int( self.weight.detach(), bits=self.bits, method=self.method, scale=self.scale, zero_point=self.zero_point, ) # mask to apply noise mask = torch.zeros_like(self.weight) mask.bernoulli_(1 - p) noise = (weight_quantized - self.weight).masked_fill(mask.bool(), 0) # using straight-through estimator (STE) clamp_low = -self.scale * self.zero_point clamp_high = self.scale * (2 ** self.bits - 1 - self.zero_point) weight = ( torch.clamp(self.weight, clamp_low.item(), clamp_high.item()) + noise.detach() ) # return output output = F.embedding( input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) return output def extra_repr(self): s = "{num_embeddings}, {embedding_dim}" if self.padding_idx is not None: s += ", padding_idx={padding_idx}" if self.max_norm is not None: s += ", max_norm={max_norm}" if self.norm_type != 2: s += ", norm_type={norm_type}" if self.scale_grad_by_freq is not False: s += ", scale_grad_by_freq={scale_grad_by_freq}" if self.sparse is not False: s += ", sparse=True" s += "quant_noise={p}, bits={bits}, method={method}" return s.format(**self.__dict__)
COCO-LM/fairseq/fairseq/modules/quantization/scalar/modules/qemb.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/modules/quantization/scalar/modules/qemb.py", "repo_id": "COCO-LM", "token_count": 2331 }
193
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import torch logger = logging.getLogger(__name__) class NanDetector: """ Detects the first NaN or Inf in forward and/or backward pass and logs, together with the module name """ def __init__(self, model, forward=True, backward=True): self.bhooks = [] self.fhooks = [] self.forward = forward self.backward = backward self.named_parameters = list(model.named_parameters()) self.reset() for name, mod in model.named_modules(): mod.__module_name = name self.add_hooks(mod) def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_traceback): # Dump out all model gnorms to enable better debugging norm = {} gradients = {} for name, param in self.named_parameters: if param.grad is not None: grad_norm = torch.norm(param.grad.data, p=2, dtype=torch.float32) norm[name] = grad_norm.item() if torch.isnan(grad_norm).any() or torch.isinf(grad_norm).any(): gradients[name] = param.grad.data if len(gradients) > 0: logger.info("Detected nan/inf grad norm, dumping norms...") logger.info(f"norms: {norm}") logger.info(f"gradients: {gradients}") self.close() def add_hooks(self, module): if self.forward: self.fhooks.append(module.register_forward_hook(self.fhook_fn)) if self.backward: self.bhooks.append(module.register_backward_hook(self.bhook_fn)) def reset(self): self.has_printed_f = False self.has_printed_b = False def _detect(self, tensor, name, backward): err = None if ( torch.is_floating_point(tensor) # single value tensors (like the loss) will not provide much info and tensor.numel() >= 2 ): with torch.no_grad(): if torch.isnan(tensor).any(): err = "NaN" elif torch.isinf(tensor).any(): err = "Inf" if err is not None: err = f"{err} detected in output of {name}, shape: {tensor.shape}, {'backward' if backward else 'forward'}" return err def _apply(self, module, inp, x, backward): if torch.is_tensor(x): if isinstance(inp, tuple) and len(inp) > 0: inp = inp[0] err = self._detect(x, module.__module_name, backward) if err is not None: if torch.is_tensor(inp) and not backward: err += ( f" input max: {inp.max().item()}, input min: {inp.min().item()}" ) has_printed_attr = "has_printed_b" if backward else "has_printed_f" logger.warning(err) setattr(self, has_printed_attr, True) elif isinstance(x, dict): for v in x.values(): self._apply(module, inp, v, backward) elif isinstance(x, list) or isinstance(x, tuple): for v in x: self._apply(module, inp, v, backward) def fhook_fn(self, module, inp, output): if not self.has_printed_f: self._apply(module, inp, output, backward=False) def bhook_fn(self, module, inp, output): if not self.has_printed_b: self._apply(module, inp, output, backward=True) def close(self): for hook in self.fhooks + self.bhooks: hook.remove()
COCO-LM/fairseq/fairseq/nan_detector.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/nan_detector.py", "repo_id": "COCO-LM", "token_count": 1799 }
194
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" import importlib import os from fairseq import registry from fairseq.optim.lr_scheduler.fairseq_lr_scheduler import ( # noqa FairseqLRScheduler, LegacyFairseqLRScheduler, ) from omegaconf import DictConfig ( build_lr_scheduler_, register_lr_scheduler, LR_SCHEDULER_REGISTRY, LR_SCHEDULER_DATACLASS_REGISTRY, ) = registry.setup_registry( "--lr-scheduler", base_class=FairseqLRScheduler, default="fixed" ) def build_lr_scheduler(cfg: DictConfig, optimizer): return build_lr_scheduler_(cfg, optimizer) # automatically import any Python files in the optim/lr_scheduler/ directory for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): file_name = file[: file.find(".py")] importlib.import_module("fairseq.optim.lr_scheduler." + file_name)
COCO-LM/fairseq/fairseq/optim/lr_scheduler/__init__.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/optim/lr_scheduler/__init__.py", "repo_id": "COCO-LM", "token_count": 392 }
195
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from fairseq.modules.quantization import pq, quantization_options, scalar from omegaconf import DictConfig logger = logging.getLogger(__name__) def quantize_model_scalar(model, model_cfg: DictConfig): quant_noise_scalar = getattr(model_cfg, "quant_noise_scalar", 0) or 0 if quant_noise_scalar > 0: # quantize_model edits the model in place scalar.quantize_model_(model, p=quant_noise_scalar, bits=8, update_step=1000) return model class Quantizer(object): def __init__(self, config_path, max_epoch, max_update): try: import yaml except ImportError: raise ImportError("Please install yaml with: pip install yaml") # parse config if config_path: with open(config_path) as config_file: config = quantization_options.parse_config_yaml( yaml.safe_load(config_file) ) else: config = quantization_options.parse_config_yaml({}) self.n_centroids_config = config["n_centroids"] self.block_sizes_config = config["block_sizes"] self.layers_to_quantize = config["layers_to_quantize"] # We assume that training will run for a fixed number of epochs # (or updates) and that we should train for equal durations # between iterations of PQ. num_iterations = len(self.layers_to_quantize) if max_epoch > 0: assert max_epoch % num_iterations == 0, ( "for iterative PQ, --max-epoch (={}) must be evenly divisible by " "len(layers_to_quantize) (={})".format(max_epoch, num_iterations) ) self.epoch_schedule = max_epoch // num_iterations else: self.epoch_schedule = None if max_update > 0: assert max_update % num_iterations == 0, ( "for iterative PQ, --max-update (={}) must be evenly divisible by " "len(layers_to_quantize) (={})".format(max_update, num_iterations) ) self.update_schedule = max_update // num_iterations else: self.update_schedule = None assert (self.epoch_schedule is not None) ^ ( self.update_schedule is not None ), "for iterative PQ, cannot specify both --max-update and --max-epoch" # 0 is a special value for quantization step, which will force # the first call to begin_epoch() to call step() self.quantization_step = 0 def set_trainer(self, trainer): self.trainer = trainer self.size_tracker = pq.SizeTracker(self.trainer.get_model()) def step(self): """Move to the next stage of quantization.""" if self.quantization_step >= len(self.layers_to_quantize): # Maybe we just finished the last training step or we loaded # a checkpoint for an iterative PQ model which previously # finished training. Either way, don't quantize again. return logger.info( "quantizing model (step={}; layers_to_quantize[step]={})".format( self.quantization_step, self.layers_to_quantize[self.quantization_step] ) ) quantized_layers = pq.quantize_model_( self.trainer.get_model(), self.size_tracker, self.layers_to_quantize, self.block_sizes_config, self.n_centroids_config, step=self.quantization_step, ) logger.info("quantized layers: {}".format(quantized_layers)) logger.info(self.size_tracker) self.quantization_step += 1 # reintialize the Trainer since model parameters have changed self.trainer.reinitialize() def begin_epoch(self, epoch): """Called at the beginning of each epoch (epochs start at 1).""" if ( ( self.epoch_schedule is not None and epoch > 0 and (epoch - 1) % self.epoch_schedule == 0 ) # we always step once in the beginning, even if using # update-based quantization or self.quantization_step == 0 ): self.step() def step_update(self, num_updates): """Called at the end of each step.""" if ( self.update_schedule is not None and num_updates > 0 and num_updates % self.update_schedule == 0 ): self.step() def state_dict(self): return { "n_centroids_config": self.n_centroids_config, "block_sizes_config": self.block_sizes_config, "layers_to_quantize": self.layers_to_quantize, "epoch_schedule": self.epoch_schedule, "update_schedule": self.update_schedule, "quantization_step": self.quantization_step, } def load_state_dict(self, state_dict): self.n_centroids_config = state_dict["n_centroids_config"] self.block_sizes_config = state_dict["block_sizes_config"] self.layers_to_quantize = state_dict["layers_to_quantize"] self.epoch_schedule = state_dict["epoch_schedule"] self.update_schedule = state_dict["update_schedule"] self.quantization_step = state_dict["quantization_step"]
COCO-LM/fairseq/fairseq/quantization_utils.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/quantization_utils.py", "repo_id": "COCO-LM", "token_count": 2488 }
196
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools import logging import os import numpy as np from fairseq import tokenizer, utils from fairseq.data import ConcatDataset, Dictionary, data_utils, indexed_dataset from fairseq.data.legacy.block_pair_dataset import BlockPairDataset from fairseq.data.legacy.masked_lm_dataset import MaskedLMDataset from fairseq.data.legacy.masked_lm_dictionary import BertDictionary from fairseq.tasks import LegacyFairseqTask, register_task logger = logging.getLogger(__name__) @register_task("legacy_masked_lm") class LegacyMaskedLMTask(LegacyFairseqTask): """ Task for training Masked LM (BERT) model. Args: dictionary (Dictionary): the dictionary for the input of the task """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument( "data", help="colon separated path to data directories list, \ will be iterated upon during epochs in round-robin manner", ) parser.add_argument( "--tokens-per-sample", default=512, type=int, help="max number of total tokens over all segments" " per sample for BERT dataset", ) parser.add_argument( "--break-mode", default="doc", type=str, help="mode for breaking sentence" ) parser.add_argument("--shuffle-dataset", action="store_true", default=False) def __init__(self, args, dictionary): super().__init__(args) self.dictionary = dictionary self.seed = args.seed @classmethod def load_dictionary(cls, filename): return BertDictionary.load(filename) @classmethod def build_dictionary( cls, filenames, workers=1, threshold=-1, nwords=-1, padding_factor=8 ): d = BertDictionary() for filename in filenames: Dictionary.add_file_to_dictionary( filename, d, tokenizer.tokenize_line, workers ) d.finalize(threshold=threshold, nwords=nwords, padding_factor=padding_factor) return d @property def target_dictionary(self): return self.dictionary @classmethod def setup_task(cls, args, **kwargs): """Setup the task.""" paths = utils.split_paths(args.data) assert len(paths) > 0 dictionary = BertDictionary.load(os.path.join(paths[0], "dict.txt")) logger.info("dictionary: {} types".format(len(dictionary))) return cls(args, dictionary) def load_dataset(self, split, epoch=1, combine=False): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ loaded_datasets = [] paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] logger.info("data_path", data_path) for k in itertools.count(): split_k = split + (str(k) if k > 0 else "") path = os.path.join(data_path, split_k) ds = indexed_dataset.make_dataset( path, impl=self.args.dataset_impl, fix_lua_indexing=True, dictionary=self.dictionary, ) if ds is None: if k > 0: break else: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, data_path) ) with data_utils.numpy_seed(self.seed + k): loaded_datasets.append( BlockPairDataset( ds, self.dictionary, ds.sizes, self.args.tokens_per_sample, break_mode=self.args.break_mode, doc_break_size=1, ) ) logger.info( "{} {} {} examples".format(data_path, split_k, len(loaded_datasets[-1])) ) if not combine: break if len(loaded_datasets) == 1: dataset = loaded_datasets[0] sizes = dataset.sizes else: dataset = ConcatDataset(loaded_datasets) sizes = np.concatenate([ds.sizes for ds in loaded_datasets]) self.datasets[split] = MaskedLMDataset( dataset=dataset, sizes=sizes, vocab=self.dictionary, pad_idx=self.dictionary.pad(), mask_idx=self.dictionary.mask(), classif_token_idx=self.dictionary.cls(), sep_token_idx=self.dictionary.sep(), shuffle=self.args.shuffle_dataset, seed=self.seed, )
COCO-LM/fairseq/fairseq/tasks/legacy_masked_lm.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/tasks/legacy_masked_lm.py", "repo_id": "COCO-LM", "token_count": 2454 }
197
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import re SPACE_NORMALIZER = re.compile(r"\s+") def tokenize_line(line): line = SPACE_NORMALIZER.sub(" ", line) line = line.strip() return line.split()
COCO-LM/fairseq/fairseq/tokenizer.py/0
{ "file_path": "COCO-LM/fairseq/fairseq/tokenizer.py", "repo_id": "COCO-LM", "token_count": 116 }
198
#ifndef TORCH_CHECK #define TORCH_CHECK AT_CHECK #endif #ifdef VERSION_GE_1_3 #define DATA_PTR data_ptr #else #define DATA_PTR data #endif
COCO-LM/fairseq/fused_ops/csrc/compat.h/0
{ "file_path": "COCO-LM/fairseq/fused_ops/csrc/compat.h", "repo_id": "COCO-LM", "token_count": 59 }
199
pip install --user --editable . pip install --user sentencepiece if [ -d fused_ops ] then pip install --user --editable fused_ops fi
COCO-LM/fairseq/install.sh/0
{ "file_path": "COCO-LM/fairseq/install.sh", "repo_id": "COCO-LM", "token_count": 47 }
200
-- Copyright (c) Facebook, Inc. and its affiliates. -- -- This source code is licensed under the MIT license found in the -- LICENSE file in the root directory of this source tree. -- -- Usage: convert_model.lua <model_epoch1.th7> require 'torch' local fairseq = require 'fairseq' model = torch.load(arg[1]) function find_weight_norm(container, module) for _, wn in ipairs(container:listModules()) do if torch.type(wn) == 'nn.WeightNorm' and wn.modules[1] == module then return wn end end end function push_state(dict, key, module) if torch.type(module) == 'nn.Linear' then local wn = find_weight_norm(model.module, module) assert(wn) dict[key .. '.weight_v'] = wn.v:float() dict[key .. '.weight_g'] = wn.g:float() elseif torch.type(module) == 'nn.TemporalConvolutionTBC' then local wn = find_weight_norm(model.module, module) assert(wn) local v = wn.v:float():view(wn.viewOut):transpose(2, 3) dict[key .. '.weight_v'] = v dict[key .. '.weight_g'] = wn.g:float():view(module.weight:size(3), 1, 1) else dict[key .. '.weight'] = module.weight:float() end if module.bias then dict[key .. '.bias'] = module.bias:float() end end encoder_dict = {} decoder_dict = {} combined_dict = {} function encoder_state(encoder) luts = encoder:findModules('nn.LookupTable') push_state(encoder_dict, 'embed_tokens', luts[1]) push_state(encoder_dict, 'embed_positions', luts[2]) fcs = encoder:findModules('nn.Linear') assert(#fcs >= 2) local nInputPlane = fcs[1].weight:size(1) push_state(encoder_dict, 'fc1', table.remove(fcs, 1)) push_state(encoder_dict, 'fc2', table.remove(fcs, #fcs)) for i, module in ipairs(encoder:findModules('nn.TemporalConvolutionTBC')) do push_state(encoder_dict, 'convolutions.' .. tostring(i - 1), module) if nInputPlane ~= module.weight:size(3) / 2 then push_state(encoder_dict, 'projections.' .. tostring(i - 1), table.remove(fcs, 1)) end nInputPlane = module.weight:size(3) / 2 end assert(#fcs == 0) end function decoder_state(decoder) luts = decoder:findModules('nn.LookupTable') push_state(decoder_dict, 'embed_tokens', luts[1]) push_state(decoder_dict, 'embed_positions', luts[2]) fcs = decoder:findModules('nn.Linear') local nInputPlane = fcs[1].weight:size(1) push_state(decoder_dict, 'fc1', table.remove(fcs, 1)) push_state(decoder_dict, 'fc2', fcs[#fcs - 1]) push_state(decoder_dict, 'fc3', fcs[#fcs]) table.remove(fcs, #fcs) table.remove(fcs, #fcs) for i, module in ipairs(decoder:findModules('nn.TemporalConvolutionTBC')) do if nInputPlane ~= module.weight:size(3) / 2 then push_state(decoder_dict, 'projections.' .. tostring(i - 1), table.remove(fcs, 1)) end nInputPlane = module.weight:size(3) / 2 local prefix = 'attention.' .. tostring(i - 1) push_state(decoder_dict, prefix .. '.in_projection', table.remove(fcs, 1)) push_state(decoder_dict, prefix .. '.out_projection', table.remove(fcs, 1)) push_state(decoder_dict, 'convolutions.' .. tostring(i - 1), module) end assert(#fcs == 0) end _encoder = model.module.modules[2] _decoder = model.module.modules[3] encoder_state(_encoder) decoder_state(_decoder) for k, v in pairs(encoder_dict) do combined_dict['encoder.' .. k] = v end for k, v in pairs(decoder_dict) do combined_dict['decoder.' .. k] = v end torch.save('state_dict.t7', combined_dict)
COCO-LM/fairseq/scripts/convert_model.lua/0
{ "file_path": "COCO-LM/fairseq/scripts/convert_model.lua", "repo_id": "COCO-LM", "token_count": 1368 }
201
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from torch import nn from fairseq.distributed import ModuleProxyWrapper from .utils import objects_are_equal class MockDDPWrapper(nn.Module): """A simple wrapper with an interface similar to DistributedDataParallel.""" def __init__(self, module): super().__init__() self.module = module def forward(self, x): return self.module(x) class Model(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(5, 10) self.xyz = "hello" def forward(self, x): return self.linear(x) def get_xyz(self): return self.xyz class TestModuleProxyWrapper(unittest.TestCase): def _get_module(self): module = Model() wrapped_module = MockDDPWrapper(module) wrapped_module = ModuleProxyWrapper(wrapped_module) return wrapped_module, module def test_getattr_forwarding(self): wrapped_module, module = self._get_module() assert module.xyz == "hello" assert module.get_xyz() == "hello" assert wrapped_module.xyz == "hello" wrapped_module.xyz = "world" assert wrapped_module.xyz == "world" assert module.get_xyz() == "hello" def test_state_dict(self): wrapped_module, module = self._get_module() assert objects_are_equal(wrapped_module.state_dict(), module.state_dict()) def test_load_state_dict(self): wrapped_module, module = self._get_module() wrapped_module.load_state_dict(module.state_dict()) input = torch.rand(4, 5) torch.testing.assert_allclose(wrapped_module(input), module(input)) def test_forward(self): wrapped_module, module = self._get_module() input = torch.rand(4, 5) torch.testing.assert_allclose(wrapped_module(input), module(input)) if __name__ == "__main__": unittest.main()
COCO-LM/fairseq/tests/distributed/test_module_proxy_wrapper.py/0
{ "file_path": "COCO-LM/fairseq/tests/distributed/test_module_proxy_wrapper.py", "repo_id": "COCO-LM", "token_count": 817 }
202
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from fairseq.data import Dictionary from fairseq.modules import CharacterTokenEmbedder class TestCharacterTokenEmbedder(unittest.TestCase): def test_character_token_embedder(self): vocab = Dictionary() vocab.add_symbol("hello") vocab.add_symbol("there") embedder = CharacterTokenEmbedder( vocab, [(2, 16), (4, 32), (8, 64), (16, 2)], 64, 5, 2 ) test_sents = [["hello", "unk", "there"], ["there"], ["hello", "there"]] max_len = max(len(s) for s in test_sents) input = torch.LongTensor(len(test_sents), max_len + 2).fill_(vocab.pad()) for i in range(len(test_sents)): input[i][0] = vocab.eos() for j in range(len(test_sents[i])): input[i][j + 1] = vocab.index(test_sents[i][j]) input[i][j + 2] = vocab.eos() embs = embedder(input) assert embs.size() == (len(test_sents), max_len + 2, 5) self.assertAlmostEqual(embs[0][0], embs[1][0]) self.assertAlmostEqual(embs[0][0], embs[0][-1]) self.assertAlmostEqual(embs[0][1], embs[2][1]) self.assertAlmostEqual(embs[0][3], embs[1][1]) embs.sum().backward() assert embedder.char_embeddings.weight.grad is not None def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess((t1 - t2).abs().max(), 1e-6) if __name__ == "__main__": unittest.main()
COCO-LM/fairseq/tests/test_character_token_embedder.py/0
{ "file_path": "COCO-LM/fairseq/tests/test_character_token_embedder.py", "repo_id": "COCO-LM", "token_count": 757 }
203
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import tempfile import unittest import torch from fairseq.data.dictionary import Dictionary from fairseq.models.lstm import LSTMModel from fairseq.tasks.fairseq_task import LegacyFairseqTask DEFAULT_TEST_VOCAB_SIZE = 100 class DummyTask(LegacyFairseqTask): def __init__(self, args): super().__init__(args) self.dictionary = get_dummy_dictionary() if getattr(self.args, "ctc", False): self.dictionary.add_symbol("<ctc_blank>") self.src_dict = self.dictionary self.tgt_dict = self.dictionary @property def source_dictionary(self): return self.src_dict @property def target_dictionary(self): return self.dictionary def get_dummy_dictionary(vocab_size=DEFAULT_TEST_VOCAB_SIZE): dummy_dict = Dictionary() # add dummy symbol to satisfy vocab size for id, _ in enumerate(range(vocab_size)): dummy_dict.add_symbol("{}".format(id), 1000) return dummy_dict def get_dummy_task_and_parser(): """ to build a fariseq model, we need some dummy parse and task. This function is used to create dummy task and parser to faciliate model/criterion test Note: we use FbSpeechRecognitionTask as the dummy task. You may want to use other task by providing another function """ parser = argparse.ArgumentParser( description="test_dummy_s2s_task", argument_default=argparse.SUPPRESS ) DummyTask.add_args(parser) args = parser.parse_args([]) task = DummyTask.setup_task(args) return task, parser class TestJitLSTMModel(unittest.TestCase): def _test_save_and_load(self, scripted_module): with tempfile.NamedTemporaryFile() as f: scripted_module.save(f.name) torch.jit.load(f.name) def assertTensorEqual(self, t1, t2): t1 = t1[~torch.isnan(t1)] # can cause size mismatch errors if there are NaNs t2 = t2[~torch.isnan(t2)] self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertEqual(t1.ne(t2).long().sum(), 0) def test_jit_and_export_lstm(self): task, parser = get_dummy_task_and_parser() LSTMModel.add_args(parser) args = parser.parse_args([]) args.criterion = "" model = LSTMModel.build_model(args, task) scripted_model = torch.jit.script(model) self._test_save_and_load(scripted_model) def test_assert_jit_vs_nonjit_(self): task, parser = get_dummy_task_and_parser() LSTMModel.add_args(parser) args = parser.parse_args([]) args.criterion = "" model = LSTMModel.build_model(args, task) model.eval() scripted_model = torch.jit.script(model) scripted_model.eval() idx = len(task.source_dictionary) iter = 100 # Inject random input and check output seq_len_tensor = torch.randint(1, 10, (iter,)) num_samples_tensor = torch.randint(1, 10, (iter,)) for i in range(iter): seq_len = seq_len_tensor[i] num_samples = num_samples_tensor[i] src_token = (torch.randint(0, idx, (num_samples, seq_len)),) src_lengths = torch.randint(1, seq_len + 1, (num_samples,)) src_lengths, _ = torch.sort(src_lengths, descending=True) # Force the first sample to have seq_len src_lengths[0] = seq_len prev_output_token = (torch.randint(0, idx, (num_samples, 1)),) result = model(src_token[0], src_lengths, prev_output_token[0], None) scripted_result = scripted_model( src_token[0], src_lengths, prev_output_token[0], None ) self.assertTensorEqual(result[0], scripted_result[0]) self.assertTensorEqual(result[1], scripted_result[1]) if __name__ == "__main__": unittest.main()
COCO-LM/fairseq/tests/test_lstm_jitable.py/0
{ "file_path": "COCO-LM/fairseq/tests/test_lstm_jitable.py", "repo_id": "COCO-LM", "token_count": 1747 }
204
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import json import os import random import sys from io import StringIO import torch import torch.nn.functional as F from fairseq import options, utils from fairseq.data import Dictionary from fairseq.data.language_pair_dataset import collate from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, ) from fairseq.models.fairseq_encoder import EncoderOut from fairseq.tasks import LegacyFairseqTask from fairseq_cli import generate, interactive, preprocess, train, validate def dummy_dictionary(vocab_size, prefix="token_"): d = Dictionary() for i in range(vocab_size): token = prefix + str(i) d.add_symbol(token) d.finalize(padding_factor=1) # don't add extra padding symbols return d def dummy_dataloader( samples, padding_idx=1, eos_idx=2, batch_size=None, ): if batch_size is None: batch_size = len(samples) # add any missing data to samples for i, sample in enumerate(samples): if "id" not in sample: sample["id"] = i # create dataloader dataset = TestDataset(samples) dataloader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, collate_fn=(lambda samples: collate(samples, padding_idx, eos_idx)), ) return iter(dataloader) def sequence_generator_setup(): # construct dummy dictionary d = dummy_dictionary(vocab_size=2) eos = d.eos() w1 = 4 w2 = 5 # construct source data src_tokens = torch.LongTensor([[w1, w2, eos], [w1, w2, eos]]) src_lengths = torch.LongTensor([2, 2]) args = argparse.Namespace() unk = 0.0 args.beam_probs = [ # step 0: torch.FloatTensor( [ # eos w1 w2 # sentence 1: [0.0, unk, 0.9, 0.1], # beam 1 [0.0, unk, 0.9, 0.1], # beam 2 # sentence 2: [0.0, unk, 0.7, 0.3], [0.0, unk, 0.7, 0.3], ] ), # step 1: torch.FloatTensor( [ # eos w1 w2 prefix # sentence 1: [1.0, unk, 0.0, 0.0], # w1: 0.9 (emit: w1 <eos>: 0.9*1.0) [0.0, unk, 0.9, 0.1], # w2: 0.1 # sentence 2: [0.25, unk, 0.35, 0.4], # w1: 0.7 (don't emit: w1 <eos>: 0.7*0.25) [0.00, unk, 0.10, 0.9], # w2: 0.3 ] ), # step 2: torch.FloatTensor( [ # eos w1 w2 prefix # sentence 1: [0.0, unk, 0.1, 0.9], # w2 w1: 0.1*0.9 [ 0.6, unk, 0.2, 0.2, ], # w2 w2: 0.1*0.1 (emit: w2 w2 <eos>: 0.1*0.1*0.6) # sentence 2: [ 0.60, unk, 0.4, 0.00, ], # w1 w2: 0.7*0.4 (emit: w1 w2 <eos>: 0.7*0.4*0.6) [0.01, unk, 0.0, 0.99], # w2 w2: 0.3*0.9 ] ), # step 3: torch.FloatTensor( [ # eos w1 w2 prefix # sentence 1: [ 1.0, unk, 0.0, 0.0, ], # w2 w1 w2: 0.1*0.9*0.9 (emit: w2 w1 w2 <eos>: 0.1*0.9*0.9*1.0) [ 1.0, unk, 0.0, 0.0, ], # w2 w1 w1: 0.1*0.9*0.1 (emit: w2 w1 w1 <eos>: 0.1*0.9*0.1*1.0) # sentence 2: [ 0.1, unk, 0.5, 0.4, ], # w2 w2 w2: 0.3*0.9*0.99 (emit: w2 w2 w2 <eos>: 0.3*0.9*0.99*0.1) [ 1.0, unk, 0.0, 0.0, ], # w1 w2 w1: 0.7*0.4*0.4 (emit: w1 w2 w1 <eos>: 0.7*0.4*0.4*1.0) ] ), ] task = TestTranslationTask.setup_task(args, d, d) model = task.build_model(args) tgt_dict = task.target_dictionary return tgt_dict, w1, w2, src_tokens, src_lengths, model def create_dummy_data(data_dir, num_examples=100, maxlen=20, alignment=False): def _create_dummy_data(filename): data = torch.rand(num_examples * maxlen) data = 97 + torch.floor(26 * data).int() with open(os.path.join(data_dir, filename), "w") as h: offset = 0 for _ in range(num_examples): ex_len = random.randint(1, maxlen) ex_str = " ".join(map(chr, data[offset : offset + ex_len])) print(ex_str, file=h) offset += ex_len def _create_dummy_alignment_data(filename_src, filename_tgt, filename): with open(os.path.join(data_dir, filename_src), "r") as src_f, open( os.path.join(data_dir, filename_tgt), "r" ) as tgt_f, open(os.path.join(data_dir, filename), "w") as h: for src, tgt in zip(src_f, tgt_f): src_len = len(src.split()) tgt_len = len(tgt.split()) avg_len = (src_len + tgt_len) // 2 num_alignments = random.randint(avg_len // 2, 2 * avg_len) src_indices = torch.floor(torch.rand(num_alignments) * src_len).int() tgt_indices = torch.floor(torch.rand(num_alignments) * tgt_len).int() ex_str = " ".join( [ "{}-{}".format(src, tgt) for src, tgt in zip(src_indices, tgt_indices) ] ) print(ex_str, file=h) _create_dummy_data("train.in") _create_dummy_data("train.out") _create_dummy_data("valid.in") _create_dummy_data("valid.out") _create_dummy_data("test.in") _create_dummy_data("test.out") if alignment: _create_dummy_alignment_data("train.in", "train.out", "train.align") _create_dummy_alignment_data("valid.in", "valid.out", "valid.align") _create_dummy_alignment_data("test.in", "test.out", "test.align") def preprocess_lm_data(data_dir): preprocess_parser = options.get_preprocessing_parser() preprocess_args = preprocess_parser.parse_args( [ "--only-source", "--trainpref", os.path.join(data_dir, "train.out"), "--validpref", os.path.join(data_dir, "valid.out"), "--testpref", os.path.join(data_dir, "test.out"), "--destdir", data_dir, ] ) preprocess.main(preprocess_args) def preprocess_translation_data(data_dir, extra_flags=None): preprocess_parser = options.get_preprocessing_parser() preprocess_args = preprocess_parser.parse_args( [ "--source-lang", "in", "--target-lang", "out", "--trainpref", os.path.join(data_dir, "train"), "--validpref", os.path.join(data_dir, "valid"), "--testpref", os.path.join(data_dir, "test"), "--thresholdtgt", "0", "--thresholdsrc", "0", "--destdir", data_dir, ] + (extra_flags or []), ) preprocess.main(preprocess_args) def preprocess_summarization_data(data_dir, extra_flags=None): preprocess_parser = options.get_preprocessing_parser() preprocess_args = preprocess_parser.parse_args( [ "--source-lang", "in", "--target-lang", "out", "--trainpref", os.path.join(data_dir, "train"), "--validpref", os.path.join(data_dir, "valid"), "--testpref", os.path.join(data_dir, "test"), "--thresholdtgt", "0", "--thresholdsrc", "0", "--joined-dictionary", "--destdir", data_dir, ] + (extra_flags or []), ) preprocess.main(preprocess_args) def create_laser_data_and_config_json(data_dir): src_langs = ["de", "fr", "ru", "tr", "zh"] tgt_langs = ["en", "es"] config_json = {} config_train_json = [] src_vocab = None tgt_vocab = None for src_lang in src_langs: for tgt_lang in tgt_langs: langpair_folder = f"{src_lang}-{tgt_lang}" langpair_path = os.path.join(data_dir, langpair_folder) os.mkdir(langpair_path) create_dummy_data(langpair_path) preprocess_translation_data(langpair_path, ["--dataset-impl", "cached"]) src_vocab = os.path.join(langpair_path, "dict.in.txt") tgt_vocab = os.path.join(langpair_path, "dict.out.txt") config_train_json.append( { "id": 0 if tgt_lang == "en" else 1, "src": os.path.join(langpair_path, "train.in-out.in"), "tgt": os.path.join(langpair_path, "train.in-out.out"), } ) config_json["src_vocab"] = src_vocab config_json["tgt_vocab"] = tgt_vocab config_json["train"] = config_train_json with open(os.path.join(data_dir, "laserconfig.json"), "w") as config_file: json.dump(config_json, config_file) return config_file def train_translation_model( data_dir, arch, extra_flags=None, task="translation", run_validation=False, lang_flags=None, extra_valid_flags=None, ): if lang_flags is None: lang_flags = [ "--source-lang", "in", "--target-lang", "out", ] train_parser = options.get_training_parser() train_args = options.parse_args_and_arch( train_parser, [ "--task", task, data_dir, "--save-dir", data_dir, "--arch", arch, "--optimizer", "nag", "--lr", "0.05", "--max-tokens", "500", "--max-epoch", "1", "--no-progress-bar", "--distributed-world-size", "1", "--num-workers", "0", ] + lang_flags + (extra_flags or []), ) train.main(train_args) if run_validation: # test validation validate_parser = options.get_validation_parser() validate_args = options.parse_args_and_arch( validate_parser, [ "--task", task, data_dir, "--path", os.path.join(data_dir, "checkpoint_last.pt"), "--valid-subset", "valid", "--max-tokens", "500", "--no-progress-bar", "--num-workers", "0", ] + lang_flags + (extra_valid_flags or []), ) validate.main(validate_args) def generate_main(data_dir, extra_flags=None, path=None): if extra_flags is None: extra_flags = [ "--print-alignment", ] if path is None: path = os.path.join(data_dir, "checkpoint_last.pt") generate_parser = options.get_generation_parser() generate_args = options.parse_args_and_arch( generate_parser, [ data_dir, "--path", path, "--beam", "3", "--batch-size", "64", "--max-len-b", "5", "--gen-subset", "valid", "--no-progress-bar", "--num-workers", "0", ] + (extra_flags or []), ) # evaluate model in batch mode generate.main(generate_args) # evaluate model interactively generate_args.buffer_size = 0 generate_args.input = "-" generate_args.batch_size = None orig_stdin = sys.stdin sys.stdin = StringIO("h e l l o\n") interactive.main(generate_args) sys.stdin = orig_stdin class TestDataset(torch.utils.data.Dataset): def __init__(self, data): super().__init__() self.data = data self.sizes = None def __getitem__(self, index): return self.data[index] def __len__(self): return len(self.data) class TestTranslationTask(LegacyFairseqTask): def __init__(self, args, src_dict, tgt_dict, model): super().__init__(args) self.src_dict = src_dict self.tgt_dict = tgt_dict self.model = model @classmethod def setup_task(cls, args, src_dict=None, tgt_dict=None, model=None): return cls(args, src_dict, tgt_dict, model) def build_model(self, args): return TestModel.build_model(args, self) @property def source_dictionary(self): return self.src_dict @property def target_dictionary(self): return self.tgt_dict class TestModel(FairseqEncoderDecoderModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @classmethod def build_model(cls, args, task): encoder = TestEncoder(args, task.source_dictionary) decoder = TestIncrementalDecoder(args, task.target_dictionary) return cls(encoder, decoder) class TestEncoder(FairseqEncoder): def __init__(self, args, dictionary): super().__init__(dictionary) self.args = args def forward(self, src_tokens, src_lengths=None, **kwargs): return EncoderOut( encoder_out=src_tokens, encoder_padding_mask=None, encoder_embedding=None, encoder_states=None, src_tokens=None, src_lengths=None, ) def reorder_encoder_out(self, encoder_out, new_order): return EncoderOut( encoder_out=encoder_out.encoder_out.index_select(0, new_order), encoder_padding_mask=None, encoder_embedding=None, encoder_states=None, src_tokens=None, src_lengths=None, ) class TestIncrementalDecoder(FairseqIncrementalDecoder): def __init__(self, args, dictionary): super().__init__(dictionary) assert hasattr(args, "beam_probs") or hasattr(args, "probs") args.max_decoder_positions = getattr(args, "max_decoder_positions", 100) self.args = args def forward(self, prev_output_tokens, encoder_out=None, incremental_state=None): if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] bbsz = prev_output_tokens.size(0) vocab = len(self.dictionary) src_len = encoder_out.encoder_out.size(1) tgt_len = prev_output_tokens.size(1) # determine number of steps if incremental_state is not None: # cache step number step = utils.get_incremental_state(self, incremental_state, "step") if step is None: step = 0 utils.set_incremental_state(self, incremental_state, "step", step + 1) steps = [step] else: steps = list(range(tgt_len)) # define output in terms of raw probs if hasattr(self.args, "probs"): assert ( self.args.probs.dim() == 3 ), "expected probs to have size bsz*steps*vocab" probs = self.args.probs.index_select(1, torch.LongTensor(steps)) else: probs = torch.FloatTensor(bbsz, len(steps), vocab).zero_() for i, step in enumerate(steps): # args.beam_probs gives the probability for every vocab element, # starting with eos, then unknown, and then the rest of the vocab if step < len(self.args.beam_probs): probs[:, i, self.dictionary.eos() :] = self.args.beam_probs[step] else: probs[:, i, self.dictionary.eos()] = 1.0 # random attention attn = torch.rand(bbsz, tgt_len, src_len) dev = prev_output_tokens.device return probs.to(dev), {"attn": [attn.to(dev)]} def get_normalized_probs(self, net_output, log_probs, _): # the decoder returns probabilities directly probs = net_output[0] if log_probs: return probs.log() else: return probs def max_positions(self): return self.args.max_decoder_positions class TestReshapingEncoder(FairseqEncoder): def __init__(self, args, dictionary): super().__init__(dictionary) self.args = args def forward(self, src_tokens, src_lengths=None, **kwargs): b_sz, t_sz = src_tokens.shape padding_needed = t_sz % 2 x = src_tokens if padding_needed > 0: padding_needed = 2 - padding_needed x = F.pad(x, (0, padding_needed)) return EncoderOut( encoder_out=x.view(b_sz, -1, 2), encoder_padding_mask=None, encoder_embedding=None, encoder_states=None, src_tokens=None, src_lengths=None, ) def reorder_encoder_out(self, encoder_out, new_order): return EncoderOut( encoder_out=encoder_out.encoder_out.index_select(0, new_order), encoder_padding_mask=None, encoder_embedding=None, encoder_states=None, src_tokens=None, src_lengths=None, ) class TestReshapingModel(FairseqEncoderDecoderModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @classmethod def build_model(cls, args, task): encoder = TestReshapingEncoder(args, task.source_dictionary) decoder = TestIncrementalDecoder(args, task.target_dictionary) return cls(encoder, decoder) class TestAdditionalInputEncoder(FairseqEncoder): def __init__(self, args, dictionary): super().__init__(dictionary) self.args = args def forward(self, src_tokens, src_lengths=None, **kwargs): assert "fancy_other_input" in kwargs assert kwargs["fancy_other_input"] is not None return EncoderOut( encoder_out=src_tokens, encoder_padding_mask=None, encoder_embedding=None, encoder_states=None, src_tokens=None, src_lengths=None, ) def reorder_encoder_out(self, encoder_out, new_order): return EncoderOut( encoder_out=encoder_out.encoder_out.index_select(0, new_order), encoder_padding_mask=None, encoder_embedding=None, encoder_states=None, src_tokens=None, src_lengths=None, ) class TestAdditionalInputModel(FairseqEncoderDecoderModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @classmethod def build_model(cls, args, task): encoder = TestAdditionalInputEncoder(args, task.source_dictionary) decoder = TestIncrementalDecoder(args, task.target_dictionary) return cls(encoder, decoder) def forward(self, src_tokens, src_lengths, prev_output_tokens, **kwargs): encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, **kwargs ) return decoder_out
COCO-LM/fairseq/tests/utils.py/0
{ "file_path": "COCO-LM/fairseq/tests/utils.py", "repo_id": "COCO-LM", "token_count": 10743 }
205
#!/bin/bash pip install --user bcolz mxnet tensorboardX matplotlib easydict opencv-python einops --no-cache-dir -U | cat pip install --user scikit-image imgaug PyTurboJPEG --no-cache-dir -U | cat pip install --user scikit-learn --no-cache-dir -U | cat pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 -f https://download.pytorch.org/whl/torch_stable.html --no-cache-dir -U | cat pip install --user termcolor imgaug prettytable --no-cache-dir -U | cat pip install --user timm==0.3.4 --no-cache-dir -U | cat pip install mmcv-full==1.3.0 --user --no-cache-dir -U | cat
CSWin-Transformer/segmentation/install_req.sh/0
{ "file_path": "CSWin-Transformer/segmentation/install_req.sh", "repo_id": "CSWin-Transformer", "token_count": 225 }
206
default_language_version: python: python3 ci: autofix_prs: true autoupdate_commit_msg: "[pre-commit.ci] pre-commit suggestions" autoupdate_schedule: quarterly repos: - repo: https://github.com/pre-commit/pre-commit-hooks rev: v4.3.0 hooks: # list of supported hooks: https://pre-commit.com/hooks.html - id: trailing-whitespace - id: end-of-file-fixer - id: check-case-conflict - id: debug-statements - id: detect-private-key - id: check-added-large-files args: ["--maxkb=5000", "--enforce-all"] exclude: | (?x)^( )$ - repo: https://github.com/asottile/pyupgrade rev: v2.37.1 hooks: - id: pyupgrade args: [--py37-plus] name: Upgrade code # python formatting - repo: https://github.com/psf/black rev: 22.6.0 hooks: - id: black name: Format code args: ["--line-length=120"] - repo: https://github.com/hadialqattan/pycln rev: v2.0.4 # Possible releases: https://github.com/hadialqattan/pycln/releases hooks: - id: pycln args: [--all] # ref: https://github.com/microsoft/vscode-isort] - repo: https://github.com/pycqa/isort rev: 5.10.1 hooks: - id: isort name: isort (python) args: [--profile, "black"]
ClimaX/.pre-commit-config.yaml/0
{ "file_path": "ClimaX/.pre-commit-config.yaml", "repo_id": "ClimaX", "token_count": 616 }
207
datadir: /data/CMIP6/AWI-ESM name: 10m_v_component_of_wind cmip_name: vas era_name: v10 run: r1i1p1f1 res: - 1.40625 # - 5.625
ClimaX/snakemake_configs/AWI-ESM/config_10m_v_component_of_wind.yml/0
{ "file_path": "ClimaX/snakemake_configs/AWI-ESM/config_10m_v_component_of_wind.yml", "repo_id": "ClimaX", "token_count": 71 }
208
datadir: /data/CMIP6/HAMMOZ name: geopotential cmip_name: zg era_name: z run: r1i1p1f1 version: v20190628 res: - 1.40625 # - 5.625
ClimaX/snakemake_configs/HAMMOZ/config_geopotential.yml/0
{ "file_path": "ClimaX/snakemake_configs/HAMMOZ/config_geopotential.yml", "repo_id": "ClimaX", "token_count": 70 }
209
datadir: /data/CMIP6/TaiESM1 server_prefix: https://esgf.ceda.ac.uk/thredds/fileServer/esg_cmip6/CMIP6/CMIP name: geopotential cmip_name: zg era_name: z run: r1i1p1f1 res: - 1.40625 # - 5.625
ClimaX/snakemake_configs/TaiESM1/config_geopotential.yml/0
{ "file_path": "ClimaX/snakemake_configs/TaiESM1/config_geopotential.yml", "repo_id": "ClimaX", "token_count": 102 }
210
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os from climax.global_forecast.datamodule import GlobalForecastDataModule from climax.global_forecast.module import GlobalForecastModule from pytorch_lightning.cli import LightningCLI def main(): # Initialize Lightning with the model and data modules, and instruct it to parse the config yml cli = LightningCLI( model_class=GlobalForecastModule, datamodule_class=GlobalForecastDataModule, seed_everything_default=42, save_config_overwrite=True, run=False, auto_registry=True, parser_kwargs={"parser_mode": "omegaconf", "error_handler": None}, ) os.makedirs(cli.trainer.default_root_dir, exist_ok=True) normalization = cli.datamodule.output_transforms mean_norm, std_norm = normalization.mean, normalization.std mean_denorm, std_denorm = -mean_norm / std_norm, 1 / std_norm cli.model.set_denormalization(mean_denorm, std_denorm) cli.model.set_lat_lon(*cli.datamodule.get_lat_lon()) cli.model.set_pred_range(cli.datamodule.hparams.predict_range) cli.model.set_val_clim(cli.datamodule.val_clim) cli.model.set_test_clim(cli.datamodule.test_clim) # fit() runs the training cli.trainer.fit(cli.model, datamodule=cli.datamodule) # test the trained model cli.trainer.test(cli.model, datamodule=cli.datamodule, ckpt_path="best") if __name__ == "__main__": main()
ClimaX/src/climax/global_forecast/train.py/0
{ "file_path": "ClimaX/src/climax/global_forecast/train.py", "repo_id": "ClimaX", "token_count": 579 }
211
import glob import os import click import numpy as np import xarray as xr from tqdm import tqdm from climax.utils.data_utils import DEFAULT_PRESSURE_LEVELS, NAME_TO_VAR def extract_one_year(path, year, variables, len_to_extract, np_vars, normalize_mean, normalize_std): for var in variables: ps = glob.glob(os.path.join(path, var, f"*{year}*.nc")) ds = xr.open_mfdataset(ps, combine="by_coords", parallel=True) # dataset for a single variable code = NAME_TO_VAR[var] lat = ds.lat.values lon = ds.lon.values if len(ds[code].shape) == 3: # surface level variables ds[code] = ds[code].expand_dims("val", axis=1) # remove the last 24 hours if this year has 366 days np_vars[var] = ds[code].to_numpy()[:len_to_extract] if len(np_vars[var]) < len_to_extract: n_missing_data = len_to_extract - len(np_vars[var]) np_vars[var] = np.concatenate((np_vars[var], np_vars[var][-n_missing_data:]), axis=0) var_mean_yearly = np_vars[var].mean(axis=(0, 2, 3)) var_std_yearly = np_vars[var].std(axis=(0, 2, 3)) if var not in normalize_mean: normalize_mean[var] = [var_mean_yearly] normalize_std[var] = [var_std_yearly] else: normalize_mean[var].append(var_mean_yearly) normalize_std[var].append(var_std_yearly) else: # multiple-level variables, only use a subset assert len(ds[code].shape) == 4 all_levels = ds["plev"][:].to_numpy() / 100 # 92500 --> 925 all_levels = all_levels.astype(int) all_levels = np.intersect1d(all_levels, DEFAULT_PRESSURE_LEVELS) for level in all_levels: ds_level = ds.sel(plev=[level * 100.0]) # level = int(level / 100) # 92500 --> 925 # remove the last 24 hours if this year has 366 days np_vars[f"{var}_{level}"] = ds_level[code].to_numpy()[:len_to_extract] if len(np_vars[f"{var}_{level}"]) < len_to_extract: n_missing_data = len_to_extract - len(np_vars[f"{var}_{level}"]) np_vars[f"{var}_{level}"] = np.concatenate((np_vars[f"{var}_{level}"], np_vars[f"{var}_{level}"][-n_missing_data:]), axis=0) var_mean_yearly = np_vars[f"{var}_{level}"].mean(axis=(0, 2, 3)) var_std_yearly = np_vars[f"{var}_{level}"].std(axis=(0, 2, 3)) if var not in normalize_mean: normalize_mean[f"{var}_{level}"] = [var_mean_yearly] normalize_std[f"{var}_{level}"] = [var_std_yearly] else: normalize_mean[f"{var}_{level}"].append(var_mean_yearly) normalize_std[f"{var}_{level}"].append(var_std_yearly) return np_vars, normalize_mean, normalize_std, lat, lon def aggregate_mean_std(normalize_mean, normalize_std): for var in normalize_mean.keys(): normalize_mean[var] = np.stack(normalize_mean[var], axis=0) normalize_std[var] = np.stack(normalize_std[var], axis=0) mean, std = normalize_mean[var], normalize_std[var] # var(X) = E[var(X|Y)] + var(E[X|Y]) variance = (std**2).mean(axis=0) + (mean**2).mean(axis=0) - mean.mean(axis=0) ** 2 std = np.sqrt(variance) # E[X] = E[E[X|Y]] mean = mean.mean(axis=0) normalize_mean[var] = mean normalize_std[var] = std return normalize_mean, normalize_std def nc2np(dataset, path, variables, years, hours_per_year, num_shards_per_year, save_dir): os.makedirs(os.path.join(save_dir, "train"), exist_ok=True) normalize_mean = {} normalize_std = {} lat, lon = None, None for year in tqdm(years): np_vars = {} len_to_extract = hours_per_year if year == '201001010600-201501010000' and (dataset == 'hammoz' or dataset == 'tai'): # special case, only 7304 points len_to_extract = 7300 else: len_to_extract = hours_per_year np_vars, normalize_mean, normalize_std, lat, lon = extract_one_year( path, year, variables, len_to_extract, np_vars, normalize_mean, normalize_std ) if lat is None or lon is None: lat = lat lon = lon num_shards = num_shards_per_year if year == '201001010600-201501010000' and dataset == 'tai': # only 7300 points num_shards = num_shards // 2 if year == '201001010600-201501010000' and dataset == 'hammoz': num_shards = num_shards // 4 assert len_to_extract % num_shards == 0 num_hrs_per_shard = len_to_extract // num_shards for shard_id in range(num_shards): start_id = shard_id * num_hrs_per_shard end_id = start_id + num_hrs_per_shard sharded_data = {k: np_vars[k][start_id:end_id] for k in np_vars.keys()} np.savez( os.path.join(save_dir, "train", f"{year}_{shard_id}.npz"), **sharded_data, ) normalize_mean, normalize_std = aggregate_mean_std(normalize_mean, normalize_std) np.savez(os.path.join(save_dir, "normalize_mean.npz"), **normalize_mean) np.savez(os.path.join(save_dir, "normalize_std.npz"), **normalize_std) np.save(os.path.join(save_dir, "lat.npy"), lat) np.save(os.path.join(save_dir, "lon.npy"), lon) @click.command() @click.option("--dataset", type=str, default='mpi') @click.option("--path", type=click.Path(exists=True)) @click.option("--num_shards", type=int, default=10) ## recommended: 10 shards for MPI, 20 for tai, 2 for awi, 40 for hammoz, 2 for cmcc (must keep the same ratio to be able to train on multi gpus) @click.option("--save_dir", type=click.Path(exists=False)) def main( dataset, path, num_shards, save_dir ): os.makedirs(save_dir, exist_ok=True) if dataset == 'mpi': hours_per_year = 7300 year_strings = [f"{y}01010600-{y+5}01010000" for y in range(1850, 2015, 5)] variables = [ "2m_temperature", "10m_u_component_of_wind", "10m_v_component_of_wind", "geopotential", "specific_humidity", "temperature", "u_component_of_wind", "v_component_of_wind", ] elif dataset == 'tai': hours_per_year = 14600 year_strings = [ '185001010000-186001010000', '186001010600-187001010000', '187001010600-188001010000', '188001010600-189001010000', '189001010600-190001010000', '190001010600-191001010000', '191001010600-192001010000', '192001010600-193001010000', '193001010600-194001010000', '194001020000-195001010000', '195001010600-196001010000', '196001010600-197001010000', '197001010600-198001010000', '198001010600-199001010000', '199001010600-200001010000', '200001010600-201001010000', '201001010600-201501010000' ] variables = [ "2m_temperature", "geopotential", "specific_humidity", "temperature", "u_component_of_wind", "v_component_of_wind", ] elif dataset == 'awi': hours_per_year = 1460 year_strings = [f'{y}01010600-{y+1}01010000' for y in range(1850, 2015, 1)] variables = [ "2m_temperature", "10m_u_component_of_wind", "10m_v_component_of_wind", "geopotential", "specific_humidity", "temperature", "u_component_of_wind", "v_component_of_wind", ] elif dataset == 'hammoz': hours_per_year = 29200 year_strings = [ '185001010600-187001010000', '187001010600-189001010000', '189001010600-191001010000', '191001010600-193001010000', '193001010600-195001010000', '195001010600-197001010000', '197001010600-199001010000', '199001010600-201001010000', '201001010600-201501010000' ] variables = [ "2m_temperature", "10m_u_component_of_wind", "10m_v_component_of_wind", "geopotential", "specific_humidity", "temperature", "u_component_of_wind", "v_component_of_wind", ] elif dataset == 'cmcc': hours_per_year = 1460 year_strings = [f'{y}01010600-{y+1}01010000' for y in range(1850, 2015, 1)] variables = [ "geopotential", "temperature", "u_component_of_wind", "v_component_of_wind", ] else: raise NotImplementedError(f'{dataset} is not supported') assert hours_per_year % num_shards == 0 nc2np( dataset=dataset, path=path, variables=variables, years=year_strings, hours_per_year=hours_per_year, num_shards_per_year=num_shards, save_dir=save_dir ) if __name__ == "__main__": main()
ClimaX/src/data_preprocessing/nc2np_equally_cmip6.py/0
{ "file_path": "ClimaX/src/data_preprocessing/nc2np_equally_cmip6.py", "repo_id": "ClimaX", "token_count": 4993 }
212
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch from models.networks.base_network import BaseNetwork from models.networks.loss import * from models.networks.discriminator import * from models.networks.generator import * from models.networks.ContextualLoss import * from models.networks.correspondence import * from models.networks.ops import * import util.util as util def find_network_using_name(target_network_name, filename, add=True): target_class_name = target_network_name + filename if add else target_network_name module_name = 'models.networks.' + filename network = util.find_class_in_module(target_class_name, module_name) assert issubclass(network, BaseNetwork), \ "Class %s should be a subclass of BaseNetwork" % network return network def modify_commandline_options(parser, is_train): opt, _ = parser.parse_known_args() netG_cls = find_network_using_name(opt.netG, 'generator') parser = netG_cls.modify_commandline_options(parser, is_train) if is_train: netD_cls = find_network_using_name(opt.netD, 'discriminator') parser = netD_cls.modify_commandline_options(parser, is_train) return parser def create_network(cls, opt): net = cls(opt) net.print_network() if len(opt.gpu_ids) > 0: assert(torch.cuda.is_available()) net.cuda() net.init_weights(opt.init_type, opt.init_variance) return net def define_G(opt): netG_cls = find_network_using_name(opt.netG, 'generator') return create_network(netG_cls, opt) def define_D(opt): netD_cls = find_network_using_name(opt.netD, 'discriminator') return create_network(netD_cls, opt) def define_Corr(opt): netCoor_cls = find_network_using_name(opt.netCorr, 'correspondence') return create_network(netCoor_cls, opt)
CoCosNet-v2/models/networks/__init__.py/0
{ "file_path": "CoCosNet-v2/models/networks/__init__.py", "repo_id": "CoCosNet-v2", "token_count": 679 }
213
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch import torch.nn.functional as F import models.networks as networks import util.util as util class Pix2PixModel(torch.nn.Module): @staticmethod def modify_commandline_options(parser, is_train): networks.modify_commandline_options(parser, is_train) return parser def __init__(self, opt): super().__init__() self.opt = opt self.FloatTensor = torch.cuda.FloatTensor if self.use_gpu() \ else torch.FloatTensor self.ByteTensor = torch.cuda.ByteTensor if self.use_gpu() \ else torch.ByteTensor self.alpha = 1 self.net = torch.nn.ModuleDict(self.initialize_networks(opt)) # set loss functions if opt.isTrain: self.vggnet_fix = networks.correspondence.VGG19_feature_color_torchversion(vgg_normal_correct=opt.vgg_normal_correct) self.vggnet_fix.load_state_dict(torch.load('models/vgg19_conv.pth')) self.vggnet_fix.eval() for param in self.vggnet_fix.parameters(): param.requires_grad = False self.vggnet_fix.to(self.opt.gpu_ids[0]) self.contextual_forward_loss = networks.ContextualLoss_forward(opt) self.criterionGAN = networks.GANLoss( opt.gan_mode, tensor=self.FloatTensor, opt=self.opt) self.criterionFeat = torch.nn.L1Loss() self.MSE_loss = torch.nn.MSELoss() if opt.which_perceptual == '5_2': self.perceptual_layer = -1 elif opt.which_perceptual == '4_2': self.perceptual_layer = -2 # Entry point for all calls involving forward pass # of deep networks. We used this approach since DataParallel module # can't parallelize custom functions, we branch to different # routines based on |mode|. def forward(self, data, mode, GforD=None, alpha=1): input_label, input_semantics, real_image, self_ref, ref_image, ref_label, ref_semantics = self.preprocess_input(data, ) self.alpha = alpha generated_out = {} if mode == 'generator': g_loss, generated_out = self.compute_generator_loss(input_label, input_semantics, real_image, ref_label, ref_semantics, ref_image, self_ref) out = {} out['fake_image'] = generated_out['fake_image'] out['input_semantics'] = input_semantics out['ref_semantics'] = ref_semantics out['warp_out'] = None if 'warp_out' not in generated_out else generated_out['warp_out'] out['warp_mask'] = None if 'warp_mask' not in generated_out else generated_out['warp_mask'] out['adaptive_feature_seg'] = None if 'adaptive_feature_seg' not in generated_out else generated_out['adaptive_feature_seg'] out['adaptive_feature_img'] = None if 'adaptive_feature_img' not in generated_out else generated_out['adaptive_feature_img'] out['warp_cycle'] = None if 'warp_cycle' not in generated_out else generated_out['warp_cycle'] out['warp_i2r'] = None if 'warp_i2r' not in generated_out else generated_out['warp_i2r'] out['warp_i2r2i'] = None if 'warp_i2r2i' not in generated_out else generated_out['warp_i2r2i'] return g_loss, out elif mode == 'discriminator': d_loss = self.compute_discriminator_loss( input_semantics, real_image, GforD, label=input_label) return d_loss elif mode == 'inference': out = {} with torch.no_grad(): out = self.inference(input_semantics, ref_semantics=ref_semantics, ref_image=ref_image, self_ref=self_ref) out['input_semantics'] = input_semantics out['ref_semantics'] = ref_semantics return out else: raise ValueError("|mode| is invalid") def create_optimizers(self, opt): G_params, D_params = list(), list() G_params += [{'params': self.net['netG'].parameters(), 'lr': opt.lr*0.5}] G_params += [{'params': self.net['netCorr'].parameters(), 'lr': opt.lr*0.5}] if opt.isTrain: D_params += list(self.net['netD'].parameters()) if opt.weight_domainC > 0 and opt.domain_rela: D_params += list(self.net['netDomainClassifier'].parameters()) if opt.no_TTUR: beta1, beta2 = opt.beta1, opt.beta2 G_lr, D_lr = opt.lr, opt.lr else: beta1, beta2 = 0, 0.9 G_lr, D_lr = opt.lr / 2, opt.lr * 2 optimizer_G = torch.optim.Adam(G_params, lr=G_lr, betas=(beta1, beta2), eps=1e-3) optimizer_D = torch.optim.Adam(D_params, lr=D_lr, betas=(beta1, beta2)) return optimizer_G, optimizer_D def save(self, epoch): util.save_network(self.net['netG'], 'G', epoch, self.opt) util.save_network(self.net['netD'], 'D', epoch, self.opt) util.save_network(self.net['netCorr'], 'Corr', epoch, self.opt) if self.opt.weight_domainC > 0 and self.opt.domain_rela: util.save_network(self.net['netDomainClassifier'], 'DomainClassifier', epoch, self.opt) ############################################################################ # Private helper methods ############################################################################ def initialize_networks(self, opt): net = {} net['netG'] = networks.define_G(opt) net['netD'] = networks.define_D(opt) if opt.isTrain else None net['netCorr'] = networks.define_Corr(opt) net['netDomainClassifier'] = networks.define_DomainClassifier(opt) if opt.weight_domainC > 0 and opt.domain_rela else None if not opt.isTrain or opt.continue_train: net['netG'] = util.load_network(net['netG'], 'G', opt.which_epoch, opt) if opt.isTrain: net['netD'] = util.load_network(net['netD'], 'D', opt.which_epoch, opt) net['netCorr'] = util.load_network(net['netCorr'], 'Corr', opt.which_epoch, opt) if opt.weight_domainC > 0 and opt.domain_rela: net['netDomainClassifier'] = util.load_network(net['netDomainClassifier'], 'DomainClassifier', opt.which_epoch, opt) if (not opt.isTrain) and opt.use_ema: net['netG'] = util.load_network(net['netG'], 'G_ema', opt.which_epoch, opt) net['netCorr'] = util.load_network(net['netCorr'], 'netCorr_ema', opt.which_epoch, opt) return net #return netG_stage1, netD_stage1, netG, netD, netE, netCorr # preprocess the input, such as moving the tensors to GPUs and # transforming the label map to one-hot encoding # |data|: dictionary of the input data def preprocess_input(self, data): if self.opt.dataset_mode == 'celebahq': glasses = data['label'][:,1::2,:,:].long() data['label'] = data['label'][:,::2,:,:] glasses_ref = data['label_ref'][:,1::2,:,:].long() data['label_ref'] = data['label_ref'][:,::2,:,:] if self.use_gpu(): glasses = glasses.cuda() glasses_ref = glasses_ref.cuda() elif self.opt.dataset_mode == 'celebahqedge': input_semantics = data['label'].clone().cuda().float() data['label'] = data['label'][:,:1,:,:] ref_semantics = data['label_ref'].clone().cuda().float() data['label_ref'] = data['label_ref'][:,:1,:,:] elif self.opt.dataset_mode == 'deepfashion': input_semantics = data['label'].clone().cuda().float() data['label'] = data['label'][:,:3,:,:] ref_semantics = data['label_ref'].clone().cuda().float() data['label_ref'] = data['label_ref'][:,:3,:,:] # move to GPU and change data types if self.opt.dataset_mode != 'deepfashion': data['label'] = data['label'].long() if self.use_gpu(): data['label'] = data['label'].cuda() data['image'] = data['image'].cuda() data['ref'] = data['ref'].cuda() data['label_ref'] = data['label_ref'].cuda() if self.opt.dataset_mode != 'deepfashion': data['label_ref'] = data['label_ref'].long() data['self_ref'] = data['self_ref'].cuda() # create one-hot label map if self.opt.dataset_mode != 'celebahqedge' and self.opt.dataset_mode != 'deepfashion': label_map = data['label'] bs, _, h, w = label_map.size() nc = self.opt.label_nc + 1 if self.opt.contain_dontcare_label \ else self.opt.label_nc input_label = self.FloatTensor(bs, nc, h, w).zero_() input_semantics = input_label.scatter_(1, label_map, 1.0) label_map = data['label_ref'] label_ref = self.FloatTensor(bs, nc, h, w).zero_() ref_semantics = label_ref.scatter_(1, label_map, 1.0) if self.opt.dataset_mode == 'celebahq': assert input_semantics[:,-3:-2,:,:].sum().cpu().item() == 0 input_semantics[:,-3:-2,:,:] = glasses assert ref_semantics[:,-3:-2,:,:].sum().cpu().item() == 0 ref_semantics[:,-3:-2,:,:] = glasses_ref return data['label'], input_semantics, data['image'], data['self_ref'], data['ref'], data['label_ref'], ref_semantics def get_ctx_loss(self, source, target): contextual_style5_1 = torch.mean(self.contextual_forward_loss(source[-1], target[-1].detach())) * 8 contextual_style4_1 = torch.mean(self.contextual_forward_loss(source[-2], target[-2].detach())) * 4 contextual_style3_1 = torch.mean(self.contextual_forward_loss(F.avg_pool2d(source[-3], 2), F.avg_pool2d(target[-3].detach(), 2))) * 2 if self.opt.use_22ctx: contextual_style2_1 = torch.mean(self.contextual_forward_loss(F.avg_pool2d(source[-4], 4), F.avg_pool2d(target[-4].detach(), 4))) * 1 return contextual_style5_1 + contextual_style4_1 + contextual_style3_1 + contextual_style2_1 return contextual_style5_1 + contextual_style4_1 + contextual_style3_1 def compute_generator_loss(self, input_label, input_semantics, real_image, ref_label=None, ref_semantics=None, ref_image=None, self_ref=None): G_losses = {} generate_out = self.generate_fake( input_semantics, real_image, ref_semantics=ref_semantics, ref_image=ref_image, self_ref=self_ref) if 'loss_novgg_featpair' in generate_out and generate_out['loss_novgg_featpair'] is not None: G_losses['no_vgg_feat'] = generate_out['loss_novgg_featpair'] if self.opt.warp_cycle_w > 0: if not self.opt.warp_patch: ref = F.avg_pool2d(ref_image, self.opt.warp_stride) else: ref = ref_image G_losses['G_warp_cycle'] = F.l1_loss(generate_out['warp_cycle'], ref) * self.opt.warp_cycle_w if self.opt.two_cycle: real = F.avg_pool2d(real_image, self.opt.warp_stride) G_losses['G_warp_cycle'] += F.l1_loss(generate_out['warp_i2r2i'], real) * self.opt.warp_cycle_w if self.opt.warp_self_w > 0: # real = F.avg_pool2d(real_image, self.opt.warp_stride) # warp = F.avg_pool2d(generate_out['warp_out'], self.opt.warp_stride) sample_weights = (self_ref[:, 0, 0, 0] / (sum(self_ref[:, 0, 0, 0]) + 1e-5)).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) G_losses['G_warp_self'] = torch.mean(F.l1_loss(generate_out['warp_out'], real_image, reduce=False) * sample_weights) * self.opt.warp_self_w pred_fake, pred_real, seg, fake_cam_logit, real_cam_logit = self.discriminate( input_semantics, generate_out['fake_image'], real_image) G_losses['GAN'] = self.criterionGAN(pred_fake, True, for_discriminator=False) * self.opt.weight_gan if not self.opt.no_ganFeat_loss: num_D = len(pred_fake) GAN_Feat_loss = self.FloatTensor(1).fill_(0) for i in range(num_D): # for each discriminator # last output is the final prediction, so we exclude it num_intermediate_outputs = len(pred_fake[i]) - 1 for j in range(num_intermediate_outputs): # for each layer output unweighted_loss = self.criterionFeat( pred_fake[i][j], pred_real[i][j].detach()) GAN_Feat_loss += unweighted_loss * self.opt.lambda_feat / num_D G_losses['GAN_Feat'] = GAN_Feat_loss fake_features = self.vggnet_fix(generate_out['fake_image'], ['r12', 'r22', 'r32', 'r42', 'r52'], preprocess=True) sample_weights = (self_ref[:, 0, 0, 0] / (sum(self_ref[:, 0, 0, 0]) + 1e-5)).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0] loss = 0 for i in range(len(generate_out['real_features'])): loss += weights[i] * util.weighted_l1_loss(fake_features[i], generate_out['real_features'][i].detach(), sample_weights) G_losses['fm'] = loss * self.opt.lambda_vgg * self.opt.fm_ratio feat_loss = util.mse_loss(fake_features[self.perceptual_layer], generate_out['real_features'][self.perceptual_layer].detach()) G_losses['perc'] = feat_loss * self.opt.weight_perceptual G_losses['contextual'] = self.get_ctx_loss(fake_features, generate_out['ref_features']) * self.opt.lambda_vgg * self.opt.ctx_w if self.opt.warp_mask_losstype != 'none': ref_label = F.interpolate(ref_label.float(), scale_factor=0.25, mode='nearest').long().squeeze(1) gt_label = F.interpolate(input_label.float(), scale_factor=0.25, mode='nearest').long().squeeze(1) weights = [] for i in range(ref_label.shape[0]): ref_label_uniq = torch.unique(ref_label[i]) gt_label_uniq = torch.unique(gt_label[i]) zero_label = [it for it in gt_label_uniq if it not in ref_label_uniq] weight = torch.ones_like(gt_label[i]).float() for j in zero_label: weight[gt_label[i] == j] = 0 weight[gt_label[i] == 0] = 0 #no loss from unknown class weights.append(weight.unsqueeze(0)) weights = torch.cat(weights, dim=0) #G_losses['mask'] = (F.cross_entropy(warp_mask, gt_label, reduce =False) * weights.float()).sum() / (weights.sum() + 1e-5) * self.opt.weight_mask G_losses['mask'] = (F.nll_loss(torch.log(generate_out['warp_mask'] + 1e-10), gt_label, reduce =False) * weights).sum() / (weights.sum() + 1e-5) * self.opt.weight_mask #self.fake_image = fake_image return G_losses, generate_out def compute_discriminator_loss(self, input_semantics, real_image, GforD, label=None): D_losses = {} with torch.no_grad(): #fake_image, _, _, _, _ = self.generate_fake(input_semantics, real_image, VGG_feat=False) fake_image = GforD['fake_image'].detach() fake_image.requires_grad_() pred_fake, pred_real, seg, fake_cam_logit, real_cam_logit = self.discriminate( input_semantics, fake_image, real_image) D_losses['D_Fake'] = self.criterionGAN(pred_fake, False, for_discriminator=True) * self.opt.weight_gan D_losses['D_real'] = self.criterionGAN(pred_real, True, for_discriminator=True) * self.opt.weight_gan return D_losses def encode_z(self, real_image): mu, logvar = self.net['netE'](real_image) z = self.reparameterize(mu, logvar) return z, mu, logvar def generate_fake(self, input_semantics, real_image, ref_semantics=None, ref_image=None, self_ref=None): generate_out = {} #print(ref_image.max()) ref_relu1_1, ref_relu2_1, ref_relu3_1, ref_relu4_1, ref_relu5_1 = self.vggnet_fix(ref_image, ['r12', 'r22', 'r32', 'r42', 'r52'], preprocess=True) coor_out = self.net['netCorr'](ref_image, real_image, input_semantics, ref_semantics, alpha=self.alpha) generate_out['ref_features'] = [ref_relu1_1, ref_relu2_1, ref_relu3_1, ref_relu4_1, ref_relu5_1] generate_out['real_features'] = self.vggnet_fix(real_image, ['r12', 'r22', 'r32', 'r42', 'r52'], preprocess=True) if self.opt.CBN_intype == 'mask': CBN_in = input_semantics elif self.opt.CBN_intype == 'warp': CBN_in = coor_out['warp_out'] elif self.opt.CBN_intype == 'warp_mask': CBN_in = torch.cat((coor_out['warp_out'], input_semantics), dim=1) generate_out['fake_image'] = self.net['netG'](input_semantics, warp_out=CBN_in) generate_out = {**generate_out, **coor_out} return generate_out def inference(self, input_semantics, ref_semantics=None, ref_image=None, self_ref=None): generate_out = {} coor_out = self.net['netCorr'](ref_image, None, input_semantics, ref_semantics, alpha=self.alpha) if self.opt.CBN_intype == 'mask': CBN_in = input_semantics elif self.opt.CBN_intype == 'warp': CBN_in = coor_out['warp_out'] elif self.opt.CBN_intype == 'warp_mask': CBN_in = torch.cat((coor_out['warp_out'], input_semantics), dim=1) generate_out['fake_image'] = self.net['netG'](input_semantics, warp_out=CBN_in) generate_out = {**generate_out, **coor_out} return generate_out # Given fake and real image, return the prediction of discriminator # for each fake and real image. def discriminate(self, input_semantics, fake_image, real_image): fake_concat = torch.cat([input_semantics, fake_image], dim=1) real_concat = torch.cat([input_semantics, real_image], dim=1) # In Batch Normalization, the fake and real images are # recommended to be in the same batch to avoid disparate # statistics in fake and real images. # So both fake and real images are fed to D all at once. fake_and_real = torch.cat([fake_concat, real_concat], dim=0) seg = None discriminator_out, seg, cam_logit = self.net['netD'](fake_and_real) pred_fake, pred_real = self.divide_pred(discriminator_out) fake_cam_logit, real_cam_logit = None, None if self.opt.D_cam > 0: fake_cam_logit = torch.cat([it[:it.shape[0]//2] for it in cam_logit], dim=1) real_cam_logit = torch.cat([it[it.shape[0]//2:] for it in cam_logit], dim=1) #fake_cam_logit, real_cam_logit = self.divide_pred(cam_logit) return pred_fake, pred_real, seg, fake_cam_logit, real_cam_logit # Take the prediction of fake and real images from the combined batch def divide_pred(self, pred): # the prediction contains the intermediate outputs of multiscale GAN, # so it's usually a list if type(pred) == list: fake = [] real = [] for p in pred: fake.append([tensor[:tensor.size(0) // 2] for tensor in p]) real.append([tensor[tensor.size(0) // 2:] for tensor in p]) else: fake = pred[:pred.size(0) // 2] real = pred[pred.size(0) // 2:] return fake, real def get_edges(self, t): edge = self.ByteTensor(t.size()).zero_() edge[:, :, :, 1:] = edge[:, :, :, 1:] | (t[:, :, :, 1:] != t[:, :, :, :-1]) edge[:, :, :, :-1] = edge[:, :, :, :-1] | (t[:, :, :, 1:] != t[:, :, :, :-1]) edge[:, :, 1:, :] = edge[:, :, 1:, :] | (t[:, :, 1:, :] != t[:, :, :-1, :]) edge[:, :, :-1, :] = edge[:, :, :-1, :] | (t[:, :, 1:, :] != t[:, :, :-1, :]) return edge.float() def reparameterize(self, mu, logvar): std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return eps.mul(std) + mu def use_gpu(self): return len(self.opt.gpu_ids) > 0 def compute_D_seg_loss(self, out, gt): fake_seg, real_seg = self.divide_pred([out]) fake_seg_loss = F.cross_entropy(fake_seg[0][0], gt) real_seg_loss = F.cross_entropy(real_seg[0][0], gt) down_gt = F.interpolate(gt.unsqueeze(1).float(), scale_factor=0.5, mode='nearest').squeeze().long() fake_seg_loss_down = F.cross_entropy(fake_seg[0][1], down_gt) real_seg_loss_down = F.cross_entropy(real_seg[0][1], down_gt) seg_loss = fake_seg_loss + real_seg_loss + fake_seg_loss_down + real_seg_loss_down return seg_loss
CoCosNet/models/pix2pix_model.py/0
{ "file_path": "CoCosNet/models/pix2pix_model.py", "repo_id": "CoCosNet", "token_count": 9946 }
214
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from .utils import (remove_comments_and_docstrings, tree_to_token_index, index_to_code_token, tree_to_variable_index) from .DFG import DFG_python,DFG_java,DFG_ruby,DFG_go,DFG_php,DFG_javascript,DFG_csharp
CodeBERT/CodeReviewer/code/evaluator/CodeBLEU/parser/__init__.py/0
{ "file_path": "CodeBERT/CodeReviewer/code/evaluator/CodeBLEU/parser/__init__.py", "repo_id": "CodeBERT", "token_count": 155 }
215
import os import torch import logging import argparse import random import numpy as np from tqdm import tqdm import multiprocessing import time from itertools import cycle from torch.utils.data import DataLoader, SequentialSampler, RandomSampler from torch.utils.data.distributed import DistributedSampler from transformers import AdamW, get_linear_schedule_with_warmup from models import build_or_load_gen_model from configs import add_args, set_seed, set_dist from torch.nn.parallel import DistributedDataParallel as DDP import torch.distributed as dist from utils import CommentClsDataset, SimpleClsDataset from sklearn.metrics import classification_report logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger = logging.getLogger(__name__) def get_loader(data_file, args, tokenizer, pool): def fn(features): return features logger.info(f"Start data file {data_file}.") if args.raw_input: dataset = SimpleClsDataset(tokenizer, pool, args, data_file) else: dataset = CommentClsDataset(tokenizer, pool, args, data_file) sampler = RandomSampler(dataset) dataloader = DataLoader(dataset, sampler=sampler, batch_size=args.eval_batch_size, num_workers=args.cpu_count, collate_fn=fn) logger.info(f"Finish data files {data_file}.") return dataset, sampler, dataloader def eval_epoch_acc(args, eval_dataloader, model, tokenizer): # Start evaluating model logger.info(" " + "***** Running acc evaluation *****") logger.info(" Batch size = %d", args.eval_batch_size) model.eval() local_rank = 0 pred, gold = [], [] with torch.no_grad(): for step, examples in enumerate(tqdm(eval_dataloader), 1): if step == 1: ex = examples[0] logger.info(f"batch size: {len(examples)}") logger.info(f"example source: {tokenizer.convert_ids_to_tokens(ex.source_ids)}") logger.info(f"example target: {ex.y}") source_ids = torch.tensor( [ex.source_ids for ex in examples], dtype=torch.long ).to(local_rank) source_mask = source_ids.ne(tokenizer.pad_id) logits = model( cls=True, input_ids=source_ids, labels=None, attention_mask=source_mask ) prediction = torch.argmax(logits, dim=-1).cpu().numpy() pred.extend(prediction) gold.extend([ex.y for ex in examples]) logger.info("\n" + classification_report(gold, pred, digits=4)) logger.info(f"Target positive percentage: {sum(gold) / len(gold)}") return def main(args): dist.init_process_group(backend="nccl") local_rank = dist.get_rank() % args.gpu_per_node args.global_rank = local_rank + args.node_index * args.gpu_per_node args.local_rank = local_rank args.world_size = dist.get_world_size() logger.warning("Process rank: %s, global rank: %s, world size: %s, bs: %s", args.local_rank, args.global_rank, \ torch.distributed.get_world_size(), \ args.eval_batch_size) torch.cuda.set_device(local_rank) set_seed(args) config, model, tokenizer = build_or_load_gen_model(args) model = DDP(model.cuda(), device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True) pool = multiprocessing.Pool(args.cpu_count) data_file = args.eval_file set_seed(args) _, _, dataloader = get_loader(data_file, args, tokenizer, pool) # WARNING: this is a iterator, to save memory model.eval() eval_epoch_acc(args, dataloader, model, tokenizer) if __name__ == "__main__": parser = argparse.ArgumentParser() args = add_args(parser) args.cpu_count = multiprocessing.cpu_count() # remove long tokenization warning. ref: https://github.com/huggingface/transformers/issues/991 logging.getLogger("transformers.tokenization_utils_base").setLevel(logging.ERROR) logger.info(args) main(args) logger.info("Test finished.") # torch.multiprocessing.spawn(main, args=(args,), nprocs=torch.cuda.device_count())
CodeBERT/CodeReviewer/code/run_test_cls.py/0
{ "file_path": "CodeBERT/CodeReviewer/code/run_test_cls.py", "repo_id": "CodeBERT", "token_count": 1766 }
216
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import logging import sys from sklearn.metrics import recall_score,precision_score,f1_score def read_answers(filename): answers={} with open(filename) as f: for line in f: line=line.strip() idx1,idx2,label=line.split() answers[(idx1,idx2)]=int(label) return answers def read_predictions(filename): predictions={} with open(filename) as f: for line in f: line=line.strip() idx1,idx2,label=line.split() predictions[(idx1,idx2)]=int(label) return predictions def calculate_scores(answers,predictions): y_trues,y_preds=[],[] for key in answers: if key not in predictions: logging.error("Missing prediction for ({},{}) pair.".format(key[0],key[1])) sys.exit() y_trues.append(answers[key]) y_preds.append(predictions[key]) scores={} scores['Recall']=recall_score(y_trues, y_preds) scores['Prediction']=precision_score(y_trues, y_preds) scores['F1']=f1_score(y_trues, y_preds) return scores def main(): import argparse parser = argparse.ArgumentParser(description='Evaluate leaderboard predictions for BigCloneBench dataset.') parser.add_argument('--answers', '-a',help="filename of the labels, in txt format.") parser.add_argument('--predictions', '-p',help="filename of the leaderboard predictions, in txt format.") args = parser.parse_args() answers=read_answers(args.answers) predictions=read_predictions(args.predictions) scores=calculate_scores(answers,predictions) print(scores) if __name__ == '__main__': main()
CodeBERT/GraphCodeBERT/clonedetection/evaluator/evaluator.py/0
{ "file_path": "CodeBERT/GraphCodeBERT/clonedetection/evaluator/evaluator.py", "repo_id": "CodeBERT", "token_count": 729 }
217
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch import torch.nn as nn import torch from torch.autograd import Variable import copy import torch.nn.functional as F from torch.nn import CrossEntropyLoss, MSELoss class Model(nn.Module): def __init__(self, encoder,config,tokenizer,args): super(Model, self).__init__() self.encoder = encoder self.config=config self.tokenizer=tokenizer self.args=args def forward(self, input_ids=None,p_input_ids=None,n_input_ids=None,labels=None): bs,_ = input_ids.size() input_ids = torch.cat((input_ids,p_input_ids,n_input_ids),0) outputs = self.encoder(input_ids,attention_mask=input_ids.ne(1))[0] outputs = (outputs * input_ids.ne(1)[:,:,None]).sum(1)/input_ids.ne(1).sum(1)[:,None] outputs = torch.nn.functional.normalize(outputs, p=2, dim=1) outputs = outputs.split(bs,0) prob_1 = (outputs[0]*outputs[1]).sum(-1)*20 prob_2 = (outputs[0]*outputs[2]).sum(-1)*20 temp = torch.cat((outputs[0],outputs[1]),0) temp_labels = torch.cat((labels,labels),0) prob_3 = torch.mm(outputs[0],temp.t())*20 mask = labels[:,None]==temp_labels[None,:] prob_3 = prob_3*(1-mask.float())-1e9*mask.float() prob = torch.softmax(torch.cat((prob_1[:,None],prob_2[:,None],prob_3),-1),-1) loss = torch.log(prob[:,0]+1e-10) loss = -loss.mean() return loss,outputs[0]
CodeBERT/UniXcoder/downstream-tasks/clone-detection/POJ-104/model.py/0
{ "file_path": "CodeBERT/UniXcoder/downstream-tasks/clone-detection/POJ-104/model.py", "repo_id": "CodeBERT", "token_count": 751 }
218
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from concurrent.futures import as_completed, ProcessPoolExecutor import numpy as np import scipy import tqdm import os import copy import functools from utils import Tools, FilePathBuilder, CONSTANTS class SimilarityScore: @staticmethod def cosine_similarity(embedding_vec1, embedding_vec2): return 1 - scipy.spatial.distance.cosine(embedding_vec1, embedding_vec2) @staticmethod def jaccard_similarity(list1, list2): set1 = set(list1) set2 = set(list2) intersection = len(set1.intersection(set2)) union = len(set1.union(set2)) return float(intersection) / union class CodeSearchWorker: def __init__(self, repo_embedding_lines, query_embedding_lines, output_path, sim_scorer, max_top_k, log_message): self.repo_embedding_lines = repo_embedding_lines # list self.query_embedding_lines = query_embedding_lines # list self.max_top_k = max_top_k self.sim_scorer = sim_scorer self.output_path = output_path self.log_message = log_message def _is_context_after_hole(self, repo_embedding_line, query_line): hole_fpath_tuple = tuple(query_line['metadata']['fpath_tuple']) context_is_not_after_hole = [] for metadata in repo_embedding_line['metadata']: if tuple(metadata['fpath_tuple']) != hole_fpath_tuple: context_is_not_after_hole.append(True) continue # now we know that the repo line is in the same file as the hole if metadata['end_line_no'] <= query_line['metadata']['context_start_lineno']: context_is_not_after_hole.append(True) continue context_is_not_after_hole.append(False) return not any(context_is_not_after_hole) def _find_top_k_context(self, query_line): top_k_context = [] query_embedding = np.array(query_line['data'][0]['embedding']) for repo_embedding_line in self.repo_embedding_lines: if self._is_context_after_hole(repo_embedding_line, query_line): continue repo_line_embedding = np.array(repo_embedding_line['data'][0]['embedding']) similarity_score = self.sim_scorer(query_embedding, repo_line_embedding) top_k_context.append((repo_embedding_line, similarity_score)) top_k_context = sorted(top_k_context, key=lambda x: x[1], reverse=False)[-self.max_top_k:] return top_k_context def run(self): query_lines_with_retrieved_results = [] for query_line in self.query_embedding_lines: new_line = copy.deepcopy(query_line) top_k_context = self._find_top_k_context(new_line) new_line['top_k_context'] = top_k_context query_lines_with_retrieved_results.append(new_line) Tools.dump_pickle(query_lines_with_retrieved_results, self.output_path) class CodeSearchWrapper: def __init__(self, vectorizer, benchmark, repos, window_sizes, slice_sizes): self.vectorizer = vectorizer if vectorizer == 'one-gram': self.sim_scorer = SimilarityScore.jaccard_similarity self.vector_path_builder = FilePathBuilder.one_gram_vector_path elif vectorizer == 'ada002': self.sim_scorer = SimilarityScore.cosine_similarity self.vector_path_builder = FilePathBuilder.ada002_vector_path self.max_top_k = 20 # store 20 top k context for the prompt construction (top 10) self.repos = repos self.window_sizes = window_sizes self.slice_sizes = slice_sizes self.benchmark = benchmark def _run_parallel(self, query_window_path_builder, prediction_path_template=None): workers = [] for window_size in self.window_sizes: for slice_size in self.slice_sizes: for repo in self.repos: if prediction_path_template: query_window_path = query_window_path_builder( prediction_path_template.format(window_size=window_size, slice_size=slice_size), repo, window_size ) else: query_window_path = query_window_path_builder(repo, window_size) query_line_path = self.vector_path_builder(query_window_path) repo_window_path = FilePathBuilder.repo_windows_path(repo, window_size, slice_size) repo_embedding_path = self.vector_path_builder(repo_window_path) output_path = FilePathBuilder.retrieval_results_path(query_line_path, repo_embedding_path, self.max_top_k) repo_embedding_lines = Tools.load_pickle(repo_embedding_path) query_embedding_lines = Tools.load_pickle(query_line_path) log_message = f'repo: {repo}, window: {window_size}, slice: {slice_size} {self.vectorizer}, max_top_k: {self.max_top_k}' worker = CodeSearchWorker(repo_embedding_lines, query_embedding_lines, output_path, self.sim_scorer, self.max_top_k, log_message) workers.append(worker) # process pool with ProcessPoolExecutor(max_workers=os.cpu_count()) as executor: futures = {executor.submit(worker.run, ) for worker in workers} for future in tqdm.tqdm(as_completed(futures), total=len(futures)): future.result() def search_baseline_and_ground(self): query_line_path_temp = functools.partial(FilePathBuilder.search_first_window_path, self.benchmark, CONSTANTS.rg) self._run_parallel(query_line_path_temp) query_line_path_temp = functools.partial(FilePathBuilder.search_first_window_path, self.benchmark, CONSTANTS.gt) self._run_parallel(query_line_path_temp) def search_prediction(self, mode, prediction_path_template): query_line_path_temp = functools.partial(FilePathBuilder.gen_first_window_path, self.benchmark, mode) self._run_parallel(query_line_path_temp, prediction_path_template)
CodeT/RepoCoder/search_code.py/0
{ "file_path": "CodeT/RepoCoder/search_code.py", "repo_id": "CodeT", "token_count": 2776 }
219
#!/usr/bin/env bash uninstall() { # Path to Codex CLI source local CODEX_CLI_PATH="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && cd .. && pwd )" # Path to OpenAI API settings local OPENAI_RC_FILE="$CODEX_CLI_PATH/src/openaiapirc" # Path to Bash settings loaded when a Bash session starts local BASH_RC_FILE="$HOME/.codexclirc" # Remove the plugin loaded by .bashrc rm -f $BASH_RC_FILE # Remove credentials and other personal settings rm -f $OPENAI_RC_FILE # Remove key binding (works only for sourced script calls) if [ $SOURCED -eq 1 ]; then bind -r "\C-g" fi echo "Codex CLI has been removed." } # Detect if the script is sourced (return 0 2>/dev/null) && SOURCED=1 || SOURCED=0 uninstall unset SOURCED
Codex-CLI/scripts/bash_cleanup.sh/0
{ "file_path": "Codex-CLI/scripts/bash_cleanup.sh", "repo_id": "Codex-CLI", "token_count": 306 }
220
#!/usr/bin/env python # -*- coding: utf-8 -*- """ File: test_large_face_list_face.py Description: Unittests for Large Face List Face section of the Cognitive Face API. """ import unittest import cognitive_face as CF from . import util class TestFaceList(unittest.TestCase): """Unittests for Large Face List Face section.""" def test_face(self): """Unittests for `large_face_list_face.add`, `large_face_list_face.update` and `large_face_list_face.delete`.""" image = '{}PersonGroup/Family1-Dad/Family1-Dad3.jpg'.format( util.BASE_URL_IMAGE) res = CF.large_face_list_face.add(image, util.DataStore.large_face_list_id) print(res) self.assertIsInstance(res, dict) util.wait() persisted_face_id = res['persistedFaceId'] res = CF.large_face_list_face.update(util.DataStore.large_face_list_id, persisted_face_id, "TempUserData") print(res) self.assertIsInstance(res, dict) util.wait() res = CF.large_face_list_face.delete(util.DataStore.large_face_list_id, persisted_face_id) print(res) self.assertIsInstance(res, dict) util.wait() def test_get(self): """Unittests for `large_face_list_face.get`.""" res = CF.large_face_list_face.get( util.DataStore.large_face_list_id, util.DataStore.large_face_list_face_id['Dad'][0]) print(res) self.assertIsInstance(res, dict) util.wait() def test_list(self): """Unittest for `large_face_list_face.list`.""" res = CF.large_face_list_face.list(util.DataStore.large_face_list_id) print(res) self.assertIsInstance(res, list) util.wait()
Cognitive-Face-Python/cognitive_face/tests/test_large_face_list_face.py/0
{ "file_path": "Cognitive-Face-Python/cognitive_face/tests/test_large_face_list_face.py", "repo_id": "Cognitive-Face-Python", "token_count": 909 }
221
#!/usr/bin/env python # -*- coding: utf-8 -*- """ File: panel_find_similar.py Description: Find Similar Panel for Python SDK sample. """ import os import uuid import wx import wx.lib.scrolledpanel as scrolled import util import model from view import base class FindSimilarPanel(base.MyPanel): """FindSimilar Panel.""" def __init__(self, parent): super(FindSimilarPanel, self).__init__(parent) self.large_face_list_id = str(uuid.uuid1()) self.face_paths = [] self.detected_face_paths = [] self.faces = {} self.persisted_faces = {} self.vsizer = wx.BoxSizer(wx.VERTICAL) self.panel = scrolled.ScrolledPanel(self) self.hsizer = wx.BoxSizer() self.hsizer.AddStretchSpacer() self.hvsizer = wx.BoxSizer(wx.VERTICAL) self.hvsizer.SetMinSize((util.INNER_PANEL_WIDTH, -1)) label = ('Find faces that are similar to a given face (the query ' 'face).\nClick "Load Candidate Faces" to select a folder ' 'containing images of the faces you want to compare to the ' 'query face.\nNext, click "Open Query Face" to select the ' 'query face image.\nScroll down to see the results ' 'displayed under the query face.\n') self.static_text = wx.StaticText(self.panel, label=label) self.static_text.Wrap(util.INNER_PANEL_WIDTH) self.hvsizer.Add(self.static_text, 0, wx.ALL, 0) self.vhsizer = wx.BoxSizer() self.lsizer = wx.BoxSizer(wx.VERTICAL) self.lsizer.SetMinSize((util.MAX_IMAGE_SIZE, -1)) flag = wx.EXPAND | wx.ALIGN_CENTER | wx.ALL self.btn_folder = wx.Button(self.panel, label='Load Candidate Faces') self.lsizer.Add(self.btn_folder, 0, flag, 5) self.Bind(wx.EVT_BUTTON, self.OnChooseFolder, self.btn_folder) flag = wx.ALIGN_CENTER | wx.ALL self.grid = base.MyGridStaticBitmap(self.panel, 0, 4, 0, 0) self.lsizer.Add(self.grid, 0, flag, 5) self.vhsizer.Add(self.lsizer, 1, wx.EXPAND) self.vhsizer.AddSpacer(90) self.rsizer = wx.BoxSizer(wx.VERTICAL) self.rsizer.SetMinSize((util.MAX_IMAGE_SIZE, -1)) flag = wx.EXPAND | wx.ALIGN_CENTER | wx.ALL self.btn_file = wx.Button(self.panel, label='Open Query Face') self.rsizer.Add(self.btn_file, 0, flag, 5) self.Bind(wx.EVT_BUTTON, self.OnChooseImage, self.btn_file) flag = wx.ALIGN_CENTER | wx.ALL self.bitmap = base.MyStaticBitmap(self.panel) self.rsizer.Add(self.bitmap, 0, flag, 5) self.result = base.FindSimilarsResult(self.panel) self.rsizer.Add(self.result, 0, wx.EXPAND) self.vhsizer.Add(self.rsizer, 1, wx.EXPAND) self.hvsizer.Add(self.vhsizer) self.hsizer.Add(self.hvsizer) self.hsizer.AddStretchSpacer() self.hsizer.Layout() self.panel.SetSizer(self.hsizer) self.panel.Layout() self.panel.SetupScrolling(scroll_x=False) self.vsizer.Add(self.panel, 3, wx.EXPAND) self.log = base.MyLog(self) self.vsizer.Add(self.log, 1, wx.EXPAND) self.SetSizerAndFit(self.vsizer) self.btn_file.Disable() def OnChooseFolder(self, evt): """Choose Folder.""" large_face_list_exists = False try: self.log.log(( 'Request: List {} will be used to build a person database. ' 'Checking whether the list exists.').format( self.large_face_list_id)) print(dir(util.CF)) print(util.CF.__file__) util.CF.large_face_list.get(self.large_face_list_id) large_face_list_exists = True self.log.log( 'Response: List {} exists.'.format( self.large_face_list_id)) except util.CF.CognitiveFaceException as exp: if exp.code != 'LargeFaceListNotFound': self.log.log('Response: {}. {}'.format(exp.code, exp.msg)) return else: self.log.log( 'Response: List {} did not exist previously.' .format(self.large_face_list_id)) if large_face_list_exists: text = ( 'Requires a clean up for list "{0}" before setting up a new' 'list. Click OK to proceed, list "{0}" will be cleared.' ).format(self.large_face_list_id) title = 'Warning' style = wx.YES_NO | wx.ICON_WARNING result = wx.MessageBox(text, title, style) if result == wx.YES: util.CF.large_face_list.delete(self.large_face_list_id) self.large_face_list_id = str(uuid.uuid1()) else: return dlg = wx.DirDialog(self) if dlg.ShowModal() == wx.ID_OK: path = dlg.GetPath() del self.face_paths[:] for root, dirs, files in os.walk(path): if files: self.face_paths.extend( [os.path.join(root, filename) for filename in files]) self.panel.SetupScrolling(scroll_x=False) self.log.log('Request: Preparing, detecting faces in chosen folder.') self.btn_folder.Disable() self.btn_file.Disable() self.persisted_faces.clear() del self.detected_face_paths[:] util.CF.large_face_list.create(self.large_face_list_id) for path in self.face_paths: try: res = util.CF.large_face_list_face.add( path, self.large_face_list_id) self.log.log( 'Response: Success. Add with Persisted Face Id {}'.format( res['persistedFaceId'])) except util.CF.CognitiveFaceException as exp: self.log.log(( '[Error] Add "{}" to List {}: Code: {}, ' 'Message: {}').format( path, self.large_face_list_id, exp.code, exp.msg)) continue self.detected_face_paths.append(path) face = model.Face(res, path) self.persisted_faces[face.persisted_id] = face self.log.log('Response: Success. Total {0} faces are detected.'.format( len(self.persisted_faces))) self.log.log( 'Request: Training List: "{0}"'.format(self.large_face_list_id)) res = util.CF.large_face_list.train(self.large_face_list_id) self.grid.set_paths(self.detected_face_paths) self.btn_folder.Enable() self.btn_file.Enable() def OnChooseImage(self, evt): """Choose Image.""" util.CF.util.wait_for_large_face_list_training(self.large_face_list_id) self.log.log( 'Response: Success. List "{0}" training process is Succeeded'. format(self.large_face_list_id)) dlg = wx.FileDialog(self, wildcard=util.IMAGE_WILDCARD) if dlg.ShowModal() != wx.ID_OK: return path = dlg.GetPath() self.bitmap.set_path(path) self.log.log('Detecting faces in {}'.format(path)) self.faces.clear() res = util.CF.face.detect(path) for entry in res: face = model.Face(entry, path) self.faces[face.id] = face util.draw_bitmap_rectangle(self.bitmap, self.faces.values()) self.log.log( 'Success. Detected {} face(s) in {}'.format(len(self.faces), path)) res_tot = { 'matchPerson': {}, 'matchFace': {}, } for face_id in self.faces: self.log.log(( 'Request: Finding similar faces in Person Match Mode for ' 'face {}').format(face_id)) for mode in ('matchPerson', 'matchFace'): res_tot[mode][face_id] = [] res = util.CF.face.find_similars( face_id, large_face_list_id=self.large_face_list_id, mode=mode) self.log.log( 'Response: Found {} similar faces for face {} in {} mode'. format(len(res), face_id, mode)) for entry in res: persisted_id = entry['persistedFaceId'] confidence = entry['confidence'] res_tot[mode][face_id].append( (self.persisted_faces[persisted_id], confidence)) self.result.set_data(self.faces, res_tot) self.panel.SetupScrolling(scroll_x=False)
Cognitive-Face-Python/sample/view/panel_find_similar.py/0
{ "file_path": "Cognitive-Face-Python/sample/view/panel_find_similar.py", "repo_id": "Cognitive-Face-Python", "token_count": 4383 }
222
export CUDA_VISIBLE_DEVICES=6 python t5_run_train.py \ --model_name_or_path t5-base \ --subtask Mod \ --method ContrastExp \ --train_file pretrain_contrast \ --max_steps 100000 \ --save_steps 100000 \ --batch_size 8 \ --ebatch_size 16 \ --gas 1 \ --seed 1 \ --set set1
ContextualSP/abstraction_probing/code/t5_code/Mod_ContrastExp_pretrain.sh/0
{ "file_path": "ContextualSP/abstraction_probing/code/t5_code/Mod_ContrastExp_pretrain.sh", "repo_id": "ContextualSP", "token_count": 106 }
223
import argparse from data_utils import load_data, load_score_file from data_utils.metrics import calc_metrics from experiments.exp_def import TaskDefs parser = argparse.ArgumentParser() parser.add_argument( "--task_def", type=str, default="experiments/glue/glue_task_def.yml" ) parser.add_argument("--task", type=str) parser.add_argument("--std_input", type=str) parser.add_argument("--score", type=str) def generate_golds_predictions_scores(sample_id_2_pred_score_seg_dic, sample_objs): sample_id_2_label_dic = {} for sample_obj in sample_objs: sample_id, label = sample_obj["uid"], sample_obj["label"] sample_id_2_label_dic[sample_id] = label assert set(sample_id_2_label_dic.keys()) == set( sample_id_2_pred_score_seg_dic.keys() ) golds = [] predictions = [] scores = [] for sample_id, label in sample_id_2_label_dic.items(): golds.append(label) pred, score_seg = sample_id_2_pred_score_seg_dic[sample_id] predictions.append(pred) scores.extend(score_seg) return golds, predictions, scores args = parser.parse_args() task_def_path = args.task_def task_defs = TaskDefs(task_def_path) task_def = task_defs.get_task_def(args.task) n_class = task_def.n_class sample_id_2_pred_score_seg_dic = load_score_file(args.score, n_class) data_type = task_def.data_type task_type = task_def.task_type label_mapper = task_def.label_vocab sample_objs = load_data(args.std_input, data_type, task_type, label_mapper) golds, predictions, scores = generate_golds_predictions_scores( sample_id_2_pred_score_seg_dic, sample_objs ) metrics = calc_metrics(task_def.metric_meta, golds, predictions, scores) print(metrics)
ContextualSP/adaptershare/calc_metrics.py/0
{ "file_path": "ContextualSP/adaptershare/calc_metrics.py", "repo_id": "ContextualSP", "token_count": 697 }
224
import os import argparse import random from sys import path path.append(os.getcwd()) from experiments.common_utils import dump_rows from data_utils.task_def import DataFormat from data_utils.log_wrapper import create_logger logger = create_logger(__name__, to_disk=True, log_file="domain_prepro.log") def load_scitail(file): """Loading data of scitail""" rows = [] cnt = 0 with open(file, encoding="utf8") as f: for line in f: blocks = line.strip().split("\t") assert len(blocks) > 2 if blocks[0] == "-": continue sample = { "uid": str(cnt), "premise": blocks[0], "hypothesis": blocks[1], "label": blocks[2], } rows.append(sample) cnt += 1 return rows def load_snli(file, header=True): rows = [] cnt = 0 with open(file, encoding="utf8") as f: for line in f: if header: header = False continue blocks = line.strip().split("\t") assert len(blocks) > 10 if blocks[-1] == "-": continue lab = blocks[-1] if lab is None: import pdb pdb.set_trace() sample = { "uid": blocks[0], "premise": blocks[7], "hypothesis": blocks[8], "label": lab, } rows.append(sample) cnt += 1 return rows def parse_args(): parser = argparse.ArgumentParser( description="Preprocessing GLUE/SNLI/SciTail dataset." ) parser.add_argument("--seed", type=int, default=13) parser.add_argument("--root_dir", type=str, default="data") parser.add_argument( "--old_glue", action="store_true", help="whether it is old GLUE, refer official GLUE webpage for details", ) args = parser.parse_args() return args def main(args): is_old_glue = args.old_glue root = args.root_dir assert os.path.exists(root) ###################################### # SNLI/SciTail Tasks ###################################### scitail_train_path = os.path.join(root, "SciTail/tsv_format/scitail_1.0_train.tsv") scitail_dev_path = os.path.join(root, "SciTail/tsv_format/scitail_1.0_dev.tsv") scitail_test_path = os.path.join(root, "SciTail/tsv_format/scitail_1.0_test.tsv") snli_train_path = os.path.join(root, "SNLI/train.tsv") snli_dev_path = os.path.join(root, "SNLI/dev.tsv") snli_test_path = os.path.join(root, "SNLI/test.tsv") ###################################### # Loading DATA ###################################### scitail_train_data = load_scitail(scitail_train_path) scitail_dev_data = load_scitail(scitail_dev_path) scitail_test_data = load_scitail(scitail_test_path) logger.info("Loaded {} SciTail train samples".format(len(scitail_train_data))) logger.info("Loaded {} SciTail dev samples".format(len(scitail_dev_data))) logger.info("Loaded {} SciTail test samples".format(len(scitail_test_data))) snli_train_data = load_snli(snli_train_path) snli_dev_data = load_snli(snli_dev_path) snli_test_data = load_snli(snli_test_path) logger.info("Loaded {} SNLI train samples".format(len(snli_train_data))) logger.info("Loaded {} SNLI dev samples".format(len(snli_dev_data))) logger.info("Loaded {} SNLI test samples".format(len(snli_test_data))) canonical_data_suffix = "canonical_data" canonical_data_root = os.path.join(root, canonical_data_suffix) if not os.path.isdir(canonical_data_root): os.mkdir(canonical_data_root) # BUILD SciTail scitail_train_fout = os.path.join(canonical_data_root, "scitail_train.tsv") scitail_dev_fout = os.path.join(canonical_data_root, "scitail_dev.tsv") scitail_test_fout = os.path.join(canonical_data_root, "scitail_test.tsv") dump_rows( scitail_train_data, scitail_train_fout, DataFormat.PremiseAndOneHypothesis ) dump_rows(scitail_dev_data, scitail_dev_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(scitail_test_data, scitail_test_fout, DataFormat.PremiseAndOneHypothesis) logger.info("done with scitail") # BUILD SNLI snli_train_fout = os.path.join(canonical_data_root, "snli_train.tsv") snli_dev_fout = os.path.join(canonical_data_root, "snli_dev.tsv") snli_test_fout = os.path.join(canonical_data_root, "snli_test.tsv") dump_rows(snli_train_data, snli_train_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(snli_dev_data, snli_dev_fout, DataFormat.PremiseAndOneHypothesis) dump_rows(snli_test_data, snli_test_fout, DataFormat.PremiseAndOneHypothesis) logger.info("done with snli") if __name__ == "__main__": args = parse_args() main(args)
ContextualSP/adaptershare/experiments/domain_adaptation/domain_prepro.py/0
{ "file_path": "ContextualSP/adaptershare/experiments/domain_adaptation/domain_prepro.py", "repo_id": "ContextualSP", "token_count": 2238 }
225
ner: data_format: Seqence dropout_p: 0.3 enable_san: False labels: - O - B-MISC - I-MISC - B-PER - I-PER - B-ORG - I-ORG - B-LOC - I-LOC - X - CLS - SEP metric_meta: - SeqEval n_class: 12 loss: SeqCeCriterion kd_loss: MseCriterion adv_loss: SymKlCriterion split_names: - train - dev - test task_type: SeqenceLabeling pos: data_format: Seqence dropout_p: 0.1 enable_san: False labels: - ',' - \ - ':' - '.' - "''" - '"' - ( - ) - $ - CC - CD - DT - EX - FW - IN - JJ - JJR - JJS - LS - MD - NN - NNP - NNPS - NNS - NN|SYM - PDT - POS - PRP - PRP$ - RB - RBR - RBS - RP - SYM - TO - UH - VB - VBD - VBG - VBN - VBP - VBZ - WDT - WP - WP$ - WRB - X - CLS - SEP metric_meta: - SeqEval n_class: 49 loss: SeqCeCriterion loss: SeqCeCriterion kd_loss: MseCriterion adv_loss: SymKlCriterion split_names: - train - dev - test task_type: SeqenceLabeling chunk: data_format: Seqence dropout_p: 0.1 enable_san: False labels: - B-ADJP - B-ADVP - B-CONJP - B-INTJ - B-LST - B-NP - B-PP - B-PRT - B-SBAR - B-VP - I-ADJP - I-ADVP - I-CONJP - I-INTJ - I-LST - I-NP - I-PP - I-SBAR - I-VP - O - X - CLS - SEP metric_meta: - SeqEval n_class: 23 loss: SeqCeCriterion loss: SeqCeCriterion kd_loss: MseCriterion adv_loss: SymKlCriterion split_names: - train - dev - test task_type: SeqenceLabeling
ContextualSP/adaptershare/experiments/ner/ner_task_def.yml/0
{ "file_path": "ContextualSP/adaptershare/experiments/ner/ner_task_def.yml", "repo_id": "ContextualSP", "token_count": 807 }
226
# coding=utf-8 # Copyright (c) Microsoft. All rights reserved. from copy import deepcopy import torch from torch.nn import Parameter from functools import wraps class EMA: def __init__(self, gamma, model): super(EMA, self).__init__() self.gamma = gamma self.shadow = {} self.model = model self.setup() def setup(self): for name, para in self.model.named_parameters(): if para.requires_grad: self.shadow[name] = para.clone() def cuda(self): for k, v in self.shadow.items(): self.shadow[k] = v.cuda() def update(self): for name, para in self.model.named_parameters(): if para.requires_grad: self.shadow[name] = ( 1.0 - self.gamma ) * para + self.gamma * self.shadow[name] def swap_parameters(self): for name, para in self.model.named_parameters(): if para.requires_grad: temp_data = para.data para.data = self.shadow[name].data self.shadow[name].data = temp_data def state_dict(self): return self.shadow # Adapted from # https://github.com/pytorch/pytorch/blob/master/torch/nn/utils/weight_norm.py # and https://github.com/salesforce/awd-lstm-lm/blob/master/weight_drop.py def _norm(p, dim): """Computes the norm over all dimensions except dim""" if dim is None: return p.norm() elif dim == 0: output_size = (p.size(0),) + (1,) * (p.dim() - 1) return p.contiguous().view(p.size(0), -1).norm(dim=1).view(*output_size) elif dim == p.dim() - 1: output_size = (1,) * (p.dim() - 1) + (p.size(-1),) return p.contiguous().view(-1, p.size(-1)).norm(dim=0).view(*output_size) else: return _norm(p.transpose(0, dim), 0).transpose(0, dim) def _dummy(*args, **kwargs): # We need to replace flatten_parameters with a nothing function return class WeightNorm(torch.nn.Module): def __init__(self, weights, dim): super(WeightNorm, self).__init__() self.weights = weights self.dim = dim def compute_weight(self, module, name): g = getattr(module, name + "_g") v = getattr(module, name + "_v") return v * (g / _norm(v, self.dim)) @staticmethod def apply(module, weights, dim): # Terrible temporary solution to an issue regarding compacting weights # re: CUDNN RNN if issubclass(type(module), torch.nn.RNNBase): module.flatten_parameters = _dummy if weights is None: # do for all weight params weights = [w for w in module._parameters.keys() if "weight" in w] fn = WeightNorm(weights, dim) for name in weights: if hasattr(module, name): print("Applying weight norm to {} - {}".format(str(module), name)) weight = getattr(module, name) del module._parameters[name] module.register_parameter( name + "_g", Parameter(_norm(weight, dim).data) ) module.register_parameter(name + "_v", Parameter(weight.data)) setattr(module, name, fn.compute_weight(module, name)) module.register_forward_pre_hook(fn) return fn def remove(self, module): for name in self.weights: weight = self.compute_weight(module) delattr(module, name) del module._parameters[name + "_g"] del module._parameters[name + "_v"] module.register_parameter(name, Parameter(weight.data)) def __call__(self, module, inputs): for name in self.weights: setattr(module, name, self.compute_weight(module, name)) def weight_norm(module, weights=None, dim=0): WeightNorm.apply(module, weights, dim) return module
ContextualSP/adaptershare/module/my_optim.py/0
{ "file_path": "ContextualSP/adaptershare/module/my_optim.py", "repo_id": "ContextualSP", "token_count": 1761 }
227
import argparse from data_utils import load_score_file from experiments.exp_def import TaskDefs parser = argparse.ArgumentParser() parser.add_argument( "--task_def", type=str, default="experiments/glue/glue_task_def.yml" ) parser.add_argument("--task", type=str) parser.add_argument( "--add_soft_label", action="store_true", help="without this option, we replace hard label with soft label", ) parser.add_argument("--std_input", type=str) parser.add_argument("--score", type=str) parser.add_argument("--std_output", type=str) args = parser.parse_args() task_def_path = args.task_def task = args.task task_defs = TaskDefs(task_def_path) n_class = task_defs.get_task_def(task).n_class sample_id_2_pred_score_seg_dic = load_score_file(args.score, n_class) with open(args.std_output, "w", encoding="utf-8") as out_f: for line in open(args.std_input, encoding="utf-8"): fields = line.strip("\n").split("\t") sample_id = fields[0] target_score_idx = 1 # TODO: here we assume binary classification task score = sample_id_2_pred_score_seg_dic[sample_id][1][target_score_idx] if args.add_soft_label: fields = fields[:2] + [str(score)] + fields[2:] else: fields[1] = str(score) out_f.write("\t".join(fields)) out_f.write("\n")
ContextualSP/adaptershare/prepare_distillation_data.py/0
{ "file_path": "ContextualSP/adaptershare/prepare_distillation_data.py", "repo_id": "ContextualSP", "token_count": 554 }
228
# %% from collections import defaultdict import os import json from dataclasses import dataclass, field from enum import Enum from typing import List, Dict import pandas as pd # %% class NLBindingType(int, Enum): Null = 0 Table = 1 # table in DB Column = 2 # table column header Value = 3 # 1) Cell value in given table 2) Number|DateTime|String, which may not exist in given table Function = 4 # Aggregation, such as MAX, MIN, AVG, ... Operator = 5 # Comparsion operator, such as ==, >, <=, starts_with, contains... def __str__(self) -> str: return ['', 'Tbl', 'Col', 'Val', 'Func', 'Op'][self.value] @dataclass class NLBindingToken: text: str # original text of binding token type: NLBindingType # binding type value: str # unique value, which means we can use 'type' and 'value' to find a unique entity (table/column/value, ...) def __str__(self) -> str: if self.type == NLBindingType.Null: return self.text return "{}/[{}::{}]".format(self.text, str(self.type), self.value) @dataclass class NLBindingExample: unique_id: str table_id: str question: str binding_tokens: List[NLBindingToken] tag: str = field(default="") def to_json(self) -> Dict: pass @property def question_tokens(self) -> List[str]: return [x.text for x in self.binding_tokens] @property def serialized_string(self): items = [] items.append(self.unique_id) # items.append(self.table_id) items.append(" ".join([str(x) for x in self.binding_tokens])) return '\t'.join(items) # %% keywords = defaultdict(set) def parse_squall_align_token(token: str, align_label: str, align_value: object) -> NLBindingToken: if align_label == 'None': return NLBindingToken(text=token, type=NLBindingType.Null, value=None) if align_label == 'Column': assert isinstance(align_value, str), align_value return NLBindingToken(text=token, type=NLBindingType.Column, value=align_value) if align_label == 'Keyword': assert isinstance(align_value, list), align_value keywords[align_value[0]].add(align_value[1]) return NLBindingToken(text=token, type=NLBindingType.Function, value="_".join(align_value)) if align_label == 'Literal': return NLBindingToken(text=token, type=NLBindingType.Value, value=token) raise NotImplementedError() def load_squall_data(path: str): raw_examples = json.load(open(path, 'r', encoding='utf-8')) print('load {} examples from {} over.'.format(len(raw_examples), path)) binding_examples = [] for raw_example in raw_examples: question_tokens = raw_example['nl'] assert len(question_tokens) == len(raw_example['nl_ralign']) binding_tokens = [] for i, (align_label, align_value) in enumerate(raw_example['nl_ralign']): binding_tokens += [parse_squall_align_token(question_tokens[i], align_label, align_value)] binding_example = NLBindingExample( unique_id="WTQ_Squall__{}".format(raw_example['nt']), table_id="WTQ_Squall_{}".format(raw_example['tbl']), question=" ".join(question_tokens), binding_tokens=binding_tokens ) binding_examples += [binding_example] df = pd.DataFrame( data=[[ex.unique_id, ex.table_id, " ".join([str(x) for x in ex.binding_tokens])] for ex in binding_examples], columns=['id', 'table_id', 'binding_tokens'], ) return binding_examples, df dev_examples, dev_df = load_squall_data(r'../data/squall/dev-0.json') # %% for key, val in keywords.items(): print(key, val) # %% dev_df.to_csv(r'../data/squall/dev.binding.csv', index=False, decimal='\t') # %%
ContextualSP/awakening_latent_grounding/scripts/binding_annotate.squall.py/0
{ "file_path": "ContextualSP/awakening_latent_grounding/scripts/binding_annotate.squall.py", "repo_id": "ContextualSP", "token_count": 1538 }
229
{ "random_seed": 42, "numpy_seed": 42, "pytorch_seed": 42, "dataset_reader": { "type": "rewrite", "lazy": false, "super_mode": "before", "joint_encoding": true, "extra_stop_words": [ "of", "about", "the", "any", "for" ] }, "model": { "type": "rewrite", "word_embedder": { "tokens": { "type": "embedding", "embedding_dim": 100, "trainable": true, "padding_index": 0 } }, "text_encoder": { "type": "lstm", "input_size": 100, "hidden_size": 300, "bidirectional": true, "num_layers": 1 }, "inp_drop_rate": 0.1, "out_drop_rate": 0.1, "feature_sel": 115, "loss_weights": [ 0.3, 0.3, 0.4 ], "super_mode": "before", "enable_training_log": true, "unet_down_channel": 128 }, "iterator": { "type": "basic", "batch_size": 12 }, "validation_iterator": { "type": "basic", "batch_size": 12 }, "trainer": { "num_epochs": 100, "cuda_device": 0, "patience": 10, "validation_metric": "+EM", "optimizer": { "type": "adam", "lr": 2e-4, "weight_decay": 1e-5 }, "num_serialized_models_to_keep": 10, "should_log_learning_rate": true } }
ContextualSP/incomplete_utterance_rewriting/configs/task.jsonnet/0
{ "file_path": "ContextualSP/incomplete_utterance_rewriting/configs/task.jsonnet", "repo_id": "ContextualSP", "token_count": 604 }
230
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # Author: Qian Liu (SivilTaram) # Original Repo: https://github.com/microsoft/ContextualSP from typing import List from typing import Tuple import nltk from allennlp.training.metrics.metric import Metric from nltk.translate.bleu_score import corpus_bleu from overrides import overrides from rouge import Rouge from simplediff import diff class SpecialSymbol: context_internal = '[SEP]' end_placeholder = '[END]' @Metric.register('batch_average') class BatchAverage(Metric): """ This :class:`Metric` breaks with the typical ``Metric`` API and just stores values that were computed in some fashion outside of a ``Metric``. If you have some external code that computes the metric for you, for instance, you can use this to report the average result using our ``Metric`` API. """ def __init__(self) -> None: self._total_value = 0.0 self._count = 0 @overrides def __call__(self, values: List): """ Parameters ---------- value : ``float`` The value to average. """ for value in values: self._total_value += value self._count += 1 @overrides def get_metric(self, reset: bool = False): """ Returns ------- The average of all values that were passed to ``__call__``. """ average_value = (self._total_value / self._count if self._count > 0 else 0) if reset: self.reset() return average_value @overrides def reset(self): self._total_value = 0.0 self._count = 0 @Metric.register('f_score') class FScoreMetric(Metric): """ This :class:`Metric` breaks with the typical ``Metric`` API and just stores values that were computed in some fashion outside of a ``Metric``. If you have some external code that computes the metric for you, for instance, you can use this to report the average result using our ``Metric`` API. """ def __init__(self, prefix) -> None: self._total_inter_count = 0.0 self._total_pred_count = 0.0 self._total_ref_count = 0.0 self._prefix = prefix @overrides def __call__(self, inter_list: List, pred_list: List, ref_list: List): for inter_count, pred_count, ref_count in zip(inter_list, pred_list, ref_list): self._total_inter_count += inter_count self._total_pred_count += pred_count self._total_ref_count += ref_count @overrides def get_metric(self, reset: bool = False): """ Returns ------- The average of all values that were passed to ``__call__``. """ precision = (self._total_inter_count / self._total_pred_count if self._total_pred_count > 0 else 0) recall = (self._total_inter_count / self._total_ref_count if self._total_ref_count > 0 else 0) fscore = 2 * precision * recall / (precision + recall) if precision > 0 and recall > 0 else 0 if reset: self.reset() return { '_P' + self._prefix: precision, '_R' + self._prefix: recall, 'F' + self._prefix: fscore } @overrides def reset(self): self._total_ref_count = 0.0 self._total_pred_count = 0.0 self._total_inter_count = 0.0 @Metric.register('corpus_bleu') class CorpusBLEUMetric(Metric): """ This :class:`Metric` breaks with the typical ``Metric`` API and just stores values that were computed in some fashion outside of a ``Metric``. If you have some external code that computes the metric for you, for instance, you can use this to report the average result using our ``Metric`` API. """ def __init__(self) -> None: self._total_reference = [] self._total_prediction = [] @overrides def __call__(self, reference: List[str], prediction: List[str]): ref_list = [[ref.split(' ')] for ref in reference] pred_list = [pred.split(' ') for pred in prediction] self._total_reference.extend(ref_list) self._total_prediction.extend(pred_list) @overrides def get_metric(self, reset: bool = False): """ Returns ------- The average of all values that were passed to ``__call__``. """ if len(self._total_prediction) > 0: bleu1s = corpus_bleu(self._total_reference, self._total_prediction, weights=(1.0, 0.0, 0.0, 0.0)) bleu2s = corpus_bleu(self._total_reference, self._total_prediction, weights=(0.5, 0.5, 0.0, 0.0)) bleu3s = corpus_bleu(self._total_reference, self._total_prediction, weights=(0.33, 0.33, 0.33, 0.0)) bleu4s = corpus_bleu(self._total_reference, self._total_prediction, weights=(0.25, 0.25, 0.25, 0.25)) else: bleu1s = 0 bleu2s = 0 bleu3s = 0 bleu4s = 0 if reset: self.reset() return { '_BLEU1': bleu1s, '_BLEU2': bleu2s, '_BLEU3': bleu3s, 'BLEU4': bleu4s } @overrides def reset(self): self._total_reference = [] self._total_prediction = [] class Scorer(object): @staticmethod def em_score(references, candidates): matches = [] for ref, cand in zip(references, candidates): if ref == cand: matches.append(1) else: matches.append(0) return matches @staticmethod def rouge_score(references, candidates): """ https://github.com/pltrdy/rouge :param references: list string :param candidates: list string :return: """ rouge = Rouge() rouge1s = [] rouge2s = [] rougels = [] for ref, cand in zip(references, candidates): if cand.strip() == '': cand = 'hello' rouge_score = rouge.get_scores(cand, ref) rouge_1 = rouge_score[0]['rouge-1']['f'] rouge_2 = rouge_score[0]['rouge-2']['f'] rouge_l = rouge_score[0]['rouge-l']['f'] rouge1s.append(rouge_1) rouge2s.append(rouge_2) rougels.append(rouge_l) return rouge1s, rouge2s, rougels @staticmethod def restored_count(references, predictions, currents): def score_function(ref_n_gram, pred_n_gram, ref_restore, pred_restore): ref_restore = set(ref_restore) pred_restore = set(pred_restore) ref_n_gram = set([ngram_phrase for ngram_phrase in ref_n_gram if set(ngram_phrase) & ref_restore]) pred_n_gram = set([ngram_phrase for ngram_phrase in pred_n_gram if set(ngram_phrase) & pred_restore]) inter_count = len(ref_n_gram & pred_n_gram) pred_count = len(pred_n_gram) ref_count = len(ref_n_gram) return inter_count, pred_count, ref_count inter_count_1 = [] pred_count_1 = [] ref_count_1 = [] inter_count_2 = [] pred_count_2 = [] ref_count_2 = [] inter_count_3 = [] pred_count_3 = [] ref_count_3 = [] for ref, cand, cur in zip(references, predictions, currents): ref_tokens = ref.split(' ') pred_tokens = cand.split(' ') cur_tokens = cur.split(' ') ref_restore_tokens = [token for token in ref_tokens if token not in cur_tokens] pred_restore_tokens = [token for token in pred_tokens if token not in cur_tokens] if len(ref_restore_tokens) == 0: continue ref_ngram_1 = list(nltk.ngrams(ref_tokens, n=1)) pred_ngram_1 = list(nltk.ngrams(pred_tokens, n=1)) inter_1, pred_1, ref_1 = score_function(ref_ngram_1, pred_ngram_1, ref_restore_tokens, pred_restore_tokens) ref_ngram_2 = list(nltk.ngrams(ref_tokens, n=2)) pred_ngram_2 = list(nltk.ngrams(pred_tokens, n=2)) inter_2, pred_2, ref_2 = score_function(ref_ngram_2, pred_ngram_2, ref_restore_tokens, pred_restore_tokens) ref_ngram_3 = list(nltk.ngrams(ref_tokens, n=3)) pred_ngram_3 = list(nltk.ngrams(pred_tokens, n=3)) inter_3, pred_3, ref_3 = score_function(ref_ngram_3, pred_ngram_3, ref_restore_tokens, pred_restore_tokens) inter_count_1.append(inter_1) pred_count_1.append(pred_1) ref_count_1.append(ref_1) inter_count_2.append(inter_2) pred_count_2.append(pred_2) ref_count_2.append(ref_2) inter_count_3.append(inter_3) pred_count_3.append(pred_3) ref_count_3.append(ref_3) return (inter_count_1, pred_count_1, ref_count_1, inter_count_2, pred_count_2, ref_count_2, inter_count_3, pred_count_3, ref_count_3) def export_word_edit_matrix(context: List, current_sen: List, label_sen: List, super_mode: str = 'before', # if there requires multiple insert, we only # keep the longest one only_one_insert: bool = False): if isinstance(context, str): context_seq = list(context) current_seq = list(current_sen) label_seq = list(label_sen) else: context_seq = context current_seq = current_sen label_seq = label_sen applied_changes = diff(current_seq, label_seq) def sub_finder(cus_list, pattern, used_pos): find_indices = [] for i in range(len(cus_list)): if cus_list[i] == pattern[0] and \ cus_list[i:i + len(pattern)] == pattern \ and i not in used_pos: find_indices.append((i, i + len(pattern))) if len(find_indices) == 0: return 0, 0 else: return find_indices[-1] def cont_sub_finder(cus_list, pattern, used_pos): context_len = len(cus_list) pattern_len = len(pattern) for i in range(context_len): k = i j = 0 temp_indices = [] while j < pattern_len and k < context_len: if cus_list[k] == pattern[j][0] and \ cus_list[k:k + len(pattern[j])] == pattern[j] \ and k not in used_pos: temp_indices.append((k, k + len(pattern[j]))) j += 1 else: k += 1 if j == pattern_len: return zip(*temp_indices) else: return 0, 0 rm_range = None ret_ops = [] context_used_pos = [] current_used_pos = [] pointer = 0 for diff_sample in applied_changes: diff_op = diff_sample[0] diff_content = diff_sample[1] if diff_op == '-': if rm_range is not None: ret_ops.append(['remove', rm_range, []]) start, end = sub_finder(current_seq, diff_content, current_used_pos ) rm_range = [start, end] current_used_pos.extend(list(range(start, end))) elif diff_op == '+': start, end = sub_finder(context_seq, diff_content, context_used_pos) # cannot find the exact match substring, we should identify the snippets if start == 0 and end == 0: inner_diff = diff(diff_content, context_seq) overlap_content = [inner_diff_sample[1] for inner_diff_sample in inner_diff if inner_diff_sample[0] == '='] if len(overlap_content) > 0: # only take one insert if len(overlap_content) == 1 or only_one_insert: overlap_content = sorted(overlap_content, key=lambda x: len(x), reverse=True)[0] start, end = sub_finder(context_seq, overlap_content, context_used_pos) else: start_end_tuple = cont_sub_finder(context_seq, overlap_content, context_used_pos) # start is a list, end is also start, end = start_end_tuple else: start, end = 0, 0 if not (start == 0 and end == 0): if isinstance(start, int): add_ranges = [[start, end]] else: add_ranges = list(zip(start, end)) if rm_range is not None: for add_range in add_ranges: context_used_pos.extend(list(range(add_range[0], add_range[1]))) ret_ops.append(['replace', rm_range, add_range]) rm_range = None else: for add_range in add_ranges: if super_mode in ['before', 'both']: ret_ops.append(['before', [pointer, pointer], add_range]) if super_mode in ['after', 'both']: if pointer >= 1: ret_ops.append(['after', [pointer - 1, pointer - 1], add_range]) elif diff_op == '=': if rm_range is not None: ret_ops.append(['remove', rm_range, []]) start, end = sub_finder(current_seq, diff_content, current_used_pos ) current_used_pos.extend(list(range(start, end))) rm_range = None pointer = end return ret_ops def transmit_seq(cur_str: str, context_str: str, op_seq: List[Tuple[str, Tuple, Tuple]]) -> str: """ Given an operation sequence as `add/replace`, context_start_end, cur_start_end, transmit the generated sequence :param op_seq: :return: """ current_seq = cur_str.split(' ') context_seq = context_str.split(' ') for operation in op_seq: opera_op = operation[0] current_range = operation[1] context_range = operation[2] if opera_op == 'replace': current_seq[current_range[0]:current_range[1]] = context_seq[context_range[0]:context_range[1]] elif opera_op == 'before': current_seq[current_range[0]:current_range[0]] = context_seq[context_range[0]:context_range[1]] elif opera_op == 'after': current_seq[current_range[0] + 1: current_range[0] + 1] = context_seq[context_range[0]:context_range[1]] # remove current_seq ret_str = ' '.join(current_seq).strip() return ret_str def get_class_mapping(super_mode: str): """ Mapping mode into integer :param super_mode: before, after & both :return: """ class_mapping = ['none', 'replace'] if super_mode == 'both': class_mapping.extend(['before', 'after']) else: class_mapping.append(super_mode) return {k: v for v, k in enumerate(class_mapping)}
ContextualSP/incomplete_utterance_rewriting/src/data_utils.py/0
{ "file_path": "ContextualSP/incomplete_utterance_rewriting/src/data_utils.py", "repo_id": "ContextualSP", "token_count": 7736 }
231
# coding: utf-8 import os import json import logging import pickle as pkl import numpy as np from parsers.parser import Parser, IRNetSpiderParser from src.utils.algo_utils import BipartiteGraphSolver from src.utils.visualize_utils import draw_attention_hotmap from src.components.human_simulator import HumanSimulator from src.utils.semql_tree_util import Node as SemQLTree from src.aligner_model import BertAligner from src.data import SpiderSemQLConverter, BertUtil from src.components import NLModifier, QuestionGenerator from src.utils.utils import STOP_WORD_LIST, TEMPLATE_KEYWORDS coterms = [x.strip() for x in open('data/spider/coterms.txt', 'r').readlines()] stopwords = [x.strip() for x in open('data/common/stop_words.txt', 'r').readlines()] coterms += stopwords class SchemaValue: COLUMN_NAME_TYPE = 'column_name' TABLE_NAME_TYPE = 'table_name' AGGR_TYPE = 'aggr' COLUMN_VALUE_TYPE = 'value' NONE_TYPE = 'none' def __init__(self, nl_type, value): self.type = nl_type self.value = value class InteractiveSqlCorrector: EVALUATE_MODE = 0 SIMULATE_MODE = 1 def __init__(self, aligner: BertAligner = None, mode: str = 'evaluate', human_simulator: HumanSimulator = None, align_threshold=0.628): assert mode.lower() in ('evaluate', 'interact'), "Mode must be evaluate or interact" if aligner: self.aligner = aligner else: self.aligner = BertAligner() if mode.lower() == 'evaluate': self.mode = InteractiveSqlCorrector.EVALUATE_MODE else: self.mode = InteractiveSqlCorrector.SIMULATE_MODE if self.mode == InteractiveSqlCorrector.SIMULATE_MODE: if human_simulator is None: raise ValueError('Should pass HumanSimulation object') self.human_simulator = human_simulator logger.info(f'Alignment threshold is set to be {align_threshold}') self.align_threshold = align_threshold self.semql_converter = SpiderSemQLConverter() self.bert_util = BertUtil() self.bipartite_graph_solver = BipartiteGraphSolver() self.question_generator = QuestionGenerator(n_options=3) self.nl_modifier = NLModifier() table_path = 'data/spider/tables.json' self.all_database_info = {_['db_id']: _ for _ in json.load(open(table_path, 'r', encoding='utf-8'))} # conceptnet_path = 'data/concept_net/conceptnet-assertions-5.6.0.csv' # self.schema_linker = SchemaLinker(self.table_path, conceptnet_path) self.nl_to_schema = dict() def start_session(self, example, predict_sql, label='', question_field='question', query_field='query'): # generate input for alignment model question = example[question_field] query = example[query_field] db_id = example['db_id'] # Use ground-truth as parsed result # semql = self.semql_converter.convert_example(example) # semql_tree = SemQLTree.from_statements([str(_) for _ in semql]) # restatement = semql_tree.restatement() db_schemas = self.all_database_info[db_id] table_names = db_schemas['table_names'] column_names = [x[1] for x in db_schemas['column_names'] if x[1] != '*'] schema_names = table_names + column_names + ['average', 'maximum', 'minimum', 'sum'] schema_name_vocab = {token: schema_names.count(token) for token in schema_names} semql_statements = self.semql_converter.convert_sql_to_semql(self.all_database_info[db_id], question, predict_sql) predict_semql: SemQLTree = SemQLTree.from_statements([str(_) for _ in semql_statements]) restatement = predict_semql.restatement() # 1. run aligner model to get alignment scores alignment_matrix, ids, tokens, lengths = self.aligner.calculate_alignment(question.lower(), restatement.lower()) tokens1, tokens2 = self.aligner.split_tokens(tokens, lengths) # if len(tokens1) > len(tokens2): # logger.error("NL longer than restate SQL") # return alignment_matrix = alignment_matrix.squeeze(0).detach().cpu().numpy() # alignment_matrix = self.post_process_alignment(alignment_matrix=alignment_matrix, # col_tokens=tokens1, row_tokens=tokens2, # col_stopwords=STOP_WORD_LIST, row_stopwords=TEMPLATE_KEYWORDS) for i, token in enumerate(tokens2): alignment_matrix[:, i] /= schema_name_vocab.get(token, 1) max_assignment_score, assignment = self.bipartite_graph_solver.find_max(alignment_matrix) # assert (assignment[0] == list(range(lengths[0]))).all() src_aggr_alignment_score = alignment_matrix[assignment[0], assignment[1]] # draw_attention_hotmap(alignment_matrix, tokens1, tokens2) # pkl.dump((alignment_matrix, tokens1, tokens2), open('matrix2.pkl', 'wb')) self.question_generator.refresh(database=db_id, utterance_tokens=tokens1) self.nl_modifier.refresh(database=db_id, utterance=question) # 2. find knowledge span, ask for explanation question_list = [] # exact match replacement long_schema_names = sorted([x for x in schema_names if len(x.split()) >= 2], key=lambda x: -len(x.split())) exact_match_onehot = [0 for _ in range(len(tokens))] for name in long_schema_names: st_char_position = question.lower().find(name) if name != -1: st_position = len(question[:st_char_position].split()) ed_position = st_position + len(name.split()) for _ in range(st_position, ed_position): exact_match_onehot[_] = 1 asked_tokens = [] for position, score in enumerate(src_aggr_alignment_score): asked_token = tokens1[position] if asked_token in coterms or score > self.align_threshold: continue asked_tokens.append(asked_token) if exact_match_onehot[position] == 0: score = score * self._compute_score_rate(asked_token, schema_names) if score < self.align_threshold: if asked_token not in STOP_WORD_LIST: token_question, options = self.get_question(token_idx=position) schema_item = self.get_response(asked_token, options) self.nl_modifier.modify(asked_token, schema_item) # self.nl_to_schema[asked_token] = (schema_value.type, schema_value.value) # 3. reparse the modified NL new_question = self.nl_modifier.get_utterance() return new_question @staticmethod def _compute_score_rate(token, schema_names): cnt = 0 for schema_name in schema_names: if token in schema_name: cnt += 1 return 1.0 / max(cnt, 1) @staticmethod def restatement(node: SemQLTree, with_tag=False): if with_tag: return node.restatement_with_tag() else: return node.restatement() def get_question(self, token_idx): d = self.question_generator.generate_question(token_idx) question = d['question'] options = d['options'] return question, options def get_response(self, token, options) -> SchemaValue: if self.mode == InteractiveSqlCorrector.SIMULATE_MODE: schema_value = SchemaValue(options[0][2], options[0][0]) # todo: delete here else: print(token) print('0: None') print('1: It is a value') for idx, option in enumerate(options): print(f'{idx + 2}: {option[0]}') # response = int(input()) response = 2 if response == 0: schema_value = None elif response == 1: schema_name = '' schema_type = SchemaValue.COLUMN_VALUE_TYPE schema_value = SchemaValue(schema_type, schema_name) else: selected_option = options[response] schema_name = selected_option[0] if selected_option[2] is 'column': schema_type = SchemaValue.COLUMN_NAME_TYPE else: schema_type = SchemaValue.TABLE_NAME_TYPE schema_value = SchemaValue(schema_type, schema_name) return schema_value @staticmethod def post_process_alignment(alignment_matrix, col_tokens, row_tokens, col_stopwords, row_stopwords): weight_matrix = np.ones(alignment_matrix.shape) for idx, col_token in enumerate(col_tokens): if col_token in col_stopwords: weight_matrix[idx, :] = 0.5 for idx, row_token in enumerate(row_tokens): if row_token in row_stopwords: weight_matrix[:, idx] = 0.5 alignment_matrix *= weight_matrix return alignment_matrix def generate_options_for_token(self, db_id, token, top=5): def calculate_span_similarity(span1, span2): set_span1 = set(span1.split()) set_span2 = set(span2.split()) return len(set(set_span1) & set(set_span2)) / len(set_span1 | set_span2) # extract table names and column names from database info database_info = self.all_database_info[db_id] table_names = database_info['table_names'] column_names = [_[1] for _ in database_info['column_names'] if _[1] if not '*'] # compare token with table names and column names names = [(name, 'table') for name in table_names] + [(name, 'column') for name in column_names] names_with_score = [] for name, source in names: score = calculate_span_similarity(token, name) names_with_score.append((name, source, score)) names_with_score = sorted(names_with_score, key=lambda x: x[2], reverse=True) if top != -1: names_with_score = names_with_score[:top] return [(name, source) for name, source, score in names_with_score] def main(): interactive_sql_corrector = InteractiveSqlCorrector(aligner=None, mode='interact', human_simulator=HumanSimulator()) examples = json.load(open('data/spider/dev.json', 'r')) predictions = open('data/parsers/irnet/output_origin.txt', 'r', encoding='utf-8').readlines() assert len(examples) == len(predictions) for i, (example, predict_sql) in enumerate(zip(examples, predictions)): print(i) interactive_sql_corrector.start_session(example, predict_sql) if __name__ == '__main__': logger = logging.getLogger(__name__) main()
ContextualSP/interactive_text_to_sql/src/interactive_sql_corrector.py/0
{ "file_path": "ContextualSP/interactive_text_to_sql/src/interactive_sql_corrector.py", "repo_id": "ContextualSP", "token_count": 4853 }
232
import json import sys import copy from itertools import combinations, permutations import math import argparse from random import shuffle from remove_same import big_file_remove_same import os parser = argparse.ArgumentParser() parser.add_argument("--dataset_prefix", type=str, default='alchemy', help="dataset prefix") parser.add_argument("--root_path", type=str, default='../corpus/', help="dataset prefix") args = parser.parse_args() args.corpus_file = os.path.join(args.root_path, '{}/pretraining_corpus_{}.txt'.format(args.dataset_prefix, args.dataset_prefix)) args.remove_same_file = os.path.join(args.root_path, '{}/temp.txt'.format(args.dataset_prefix)) args.train_source_file = os.path.join(args.root_path, '{}/train.src'.format(args.dataset_prefix)) args.train_target_file = os.path.join(args.root_path, '{}/train.tgt'.format(args.dataset_prefix)) args.dev_source_file = os.path.join(args.root_path, '{}/dev.src'.format(args.dataset_prefix)) args.dev_target_file = os.path.join(args.root_path, '{}/dev.tgt'.format(args.dataset_prefix)) big_file_remove_same(args.corpus_file, args.remove_same_file) with open(args.remove_same_file, 'r') as f: total_data_list = f.readlines() print(len(total_data_list)) shuffle(total_data_list) train_data_list = total_data_list[:-20000] dev_data_list = total_data_list[-20000:] fw_train_src = open(args.train_source_file, 'w') fw_train_tgt = open(args.train_target_file, 'w') fw_dev_src = open(args.dev_source_file, 'w') fw_dev_tgt = open(args.dev_target_file, 'w') for item in train_data_list: try: action, prev_state, current_state = item.split('\t') except: continue src_row = ' SEP '.join([prev_state.strip(), action.strip()]) tgt_row = current_state.strip() fw_train_src.write(src_row) fw_train_src.write('\n') fw_train_tgt.write(tgt_row) fw_train_tgt.write('\n') for item in dev_data_list: try: action, prev_state, current_state = item.split('\t') except: continue src_row = ' SEP '.join([prev_state.strip(), action.strip()]) tgt_row = current_state.strip() fw_dev_src.write(src_row) fw_dev_src.write('\n') fw_dev_tgt.write(tgt_row) fw_dev_tgt.write('\n')
ContextualSP/lemon/corpus_generation/corpus_generation_split_newformat.py/0
{ "file_path": "ContextualSP/lemon/corpus_generation/corpus_generation_split_newformat.py", "repo_id": "ContextualSP", "token_count": 912 }
233
from collections import Mapping from os.path import join import logging from git import Repo, exc as git_exc from gtd.io import IntegerDirectories, Workspace from gtd.log import SyncedMetadata from gtd.utils import Config, cached_property class ExperimentWorkspace(Workspace): def __init__(self, root): super(ExperimentWorkspace, self).__init__(root) for attr in ['config', 'metadata']: self.add_file(attr, '{}.txt'.format(attr)) self.add_dir('checkpoints', 'checkpoints') class Experiment(object): def __init__(self, config, save_dir): """Create experiment. Args: config (Config) save_dir (str) """ self._config = config self._workspace = ExperimentWorkspace(save_dir) @property def config(self): return self._config @property def workspace(self): return self._workspace @cached_property def metadata(self): return SyncedMetadata(self.workspace.metadata) def record_commit(self, src_dir): try: repo = Repo(src_dir) if 'dirty_repo' in self.metadata or 'commit' in self.metadata: raise RuntimeError('A commit has already been recorded.') self.metadata['dirty_repo'] = repo.is_dirty() self.metadata['commit'] = repo.head.object.hexsha.encode('utf-8') except git_exc.InvalidGitRepositoryError as e: # Maybe not a git repo e.g., running on CodaLab self.metadata['dirty_repo'] = False self.metadata['commit'] = 'NONE' def match_commit(self, src_dir): """Check that the current commit matches the recorded commit for this experiment. Raises an error if commits don't match, or if there is dirty state. Args: src_dir (str): path to the Git repository """ if self.metadata['dirty_repo']: raise EnvironmentError('Working directory was dirty when commit was recorded.') repo = Repo(src_dir) if repo.is_dirty(): raise EnvironmentError('Current working directory is dirty.') current_commit = repo.head.object.hexsha.encode('utf-8') exp_commit = self.metadata['commit'] if current_commit != exp_commit: raise EnvironmentError("Commits don't match.\nCurrent: {}\nRecorded: {}".format(current_commit, exp_commit)) class TFExperiment(Experiment): def __init__(self, config, save_dir): super(TFExperiment, self).__init__(config, save_dir) self._workspace.add_dir('tensorboard', 'tensorboard') @cached_property def saver(self): from gtd.ml.utils import Saver return Saver(self.workspace.checkpoints, keep_checkpoint_every_n_hours=5) @cached_property def tb_logger(self): from gtd.ml.utils import TensorBoardLogger return TensorBoardLogger(self.workspace.tensorboard) class Experiments(Mapping): """A map from integers to Experiments.""" def __init__(self, root_dir, src_dir, experiment_factory, default_config_path, check_commit=True): """Create Experiments object. Args: root_dir (str): directory where all experiment data will be stored src_dir (str): a Git repository path (used to check commits) experiment_factory (Callable[[Config, str], Experiment]): a Callable, which takes a Config and a save_dir as arguments, and creates a new Experiment. default_config_path (str): path to a default config, to be used when no config is specified check_commit (bool): if True, checks that current working directory is on same commit as when the experiment was originally created. """ self._int_dirs = IntegerDirectories(root_dir) self._src_dir = src_dir self._exp_factory = experiment_factory self._check_commit = check_commit self._default_config_path = default_config_path def _config_path(self, save_dir): return join(save_dir, 'config.txt') def __getitem__(self, i): """Reload an existing Experiment.""" save_dir = self._int_dirs[i] config = Config.from_file(self._config_path(save_dir)) exp = self._exp_factory(config, save_dir) if self._check_commit: exp.match_commit(self._src_dir) logging.info('Reloaded experiment #{}'.format(i)) return exp def new(self, config=None, name=None): """Create a new Experiment.""" if config is None: config = Config.from_file(self._default_config_path) save_dir = self._int_dirs.new_dir(name=name) cfg_path = self._config_path(save_dir) config.to_file(cfg_path) # save the config exp = self._exp_factory(config, save_dir) exp.record_commit(self._src_dir) logging.info('New experiment created at: {}'.format(exp.workspace.root)) logging.info('Experiment configuration:\n{}'.format(config)) return exp def __iter__(self): return iter(self._int_dirs) def __len__(self): return len(self._int_dirs) def paths(self): return list(self._int_dirs.values())
ContextualSP/lemon/executor/gtd/ml/experiment.py/0
{ "file_path": "ContextualSP/lemon/executor/gtd/ml/experiment.py", "repo_id": "ContextualSP", "token_count": 2133 }
234
from unittest import TestCase import os import numpy as np import pytest import tensorflow as tf from numpy.testing import assert_array_equal, assert_array_almost_equal from tensorflow.python.framework.errors import InvalidArgumentError from gtd.ml.utils import TensorDebugger, clean_session, expand_dims_for_broadcast, broadcast, Saver, \ guarantee_initialized_variables, gather_2d from gtd.tests.ml.test_framework import clean_test_session class TestTensorDebugger(TestCase): def test_tensor_debugger_deps(self): tdb = TensorDebugger() x = tf.constant(3, name='x') z = tf.mul(x, 3, name='z') with tf.control_dependencies([x]): y = tf.constant(8, name='y') deps = tdb.dependency_graph # control dependencies depend on x's output self.assertEqual(deps['y'], {'x:0'}) # each output depends on its op self.assertEqual(deps['y:0'], {'y'}) # downstream ops depend on the output of earlier ops self.assertTrue('x:0' in deps['z']) def test_tensor_debugger_multiple(self): tdb = TensorDebugger() x = tf.constant([1, 2]) tdb.register('x', x) zs = [] for k in range(3): y = tf.constant(k) z = tf.reduce_sum(x * y) # register multiple nodes under the same name tdb.register('y', y) zs.append(z) # 0, (1 + 2), (2 + 4) final = tf.pack(zs) with tf.Session() as sess: results, bp_results = tdb.debug(sess, final, {}) def test(a, b): self.assertTrue(np.array_equal(a, b)) # result correctly passed back test(results, [0, 3, 6]) # values in for loop accumulated as list test(bp_results['y'], [0, 1, 2]) def test_tensor_debugger_exec_path(self): tdb = TensorDebugger() x = tf.constant(5, name='x') y = tf.placeholder(tf.int32, name='y') z = tf.mul(x, y, 'z') w = tf.constant(4, name='w') f = tf.mul(z, w, 'f') g = tf.constant(3, name='g') with tf.control_dependencies([f]): h = tf.constant(11, name='h') # don't register x tdb.register('y', y) tdb.register('z', z) tdb.register('w', w) tdb.register('f', f) tdb.register('g', g, force_run=True) tdb.register('h', h) with tf.Session() as sess: result, bp_results = tdb.debug(sess, f, {y: 2}) # result is a single value, not a list self.assertEqual(result, 40) # excludes x, because not registered. excludes h, because not on execution path. # includes g, because of force_run self.assertEqual(bp_results, {'y': 2, 'z': 10, 'w': 4, 'g': 3}) results, bp_results = tdb.debug(sess, [h, g], {y: 2}) # returns a list self.assertEqual(results, [11, 3]) # includes y, z, w and f because h depends on them through control_dependencies # includes g because of force_run self.assertEqual(bp_results, {'y': 2, 'z': 10, 'f': 40, 'w': 4, 'g': 3}) def test_expand_dims_for_broadcast(): with clean_session(): arr = tf.constant([ [ [1, 2, 3], [4, 5, 6], [4, 5, 6], ], [ [1, 2, 3], [4, 5, 6], [4, 5, 6], ], ], dtype=tf.float32) weights = tf.constant([1, 2], dtype=tf.float32) assert arr.get_shape().as_list() == [2, 3, 3] assert weights.get_shape().as_list() == [2] new_weights = expand_dims_for_broadcast(weights, arr) assert new_weights.eval().shape == (2, 1, 1) bad_weights = tf.constant([1, 2, 3], dtype=tf.float32) bad_new_weights = expand_dims_for_broadcast(bad_weights, arr) with pytest.raises(InvalidArgumentError): bad_new_weights.eval() class TestGather2D(object): @pytest.fixture def x(self): x = tf.constant([ [[1, 2], [2, 2], [3, 3]], [[4, 5], [5, 4], [6, 6]], [[7, 7], [8, 7], [9, 9]], [[0, 8], [1, 1], [2, 2]] ], dtype=tf.int32) return x @pytest.mark.usefixtures('clean_test_session') def test(self, x): i = tf.constant([[0, 2], [3, 0]], dtype=tf.int32) j = tf.constant([[1, 1], [0, 2]], dtype=tf.int32) vals = gather_2d(x, i, j) correct = np.array([ [[2, 2], [8, 7]], [[0, 8], [3, 3]], ], dtype=np.int32) assert_array_almost_equal(correct, vals.eval()) assert vals.get_shape().as_list() == [2, 2, 2] @pytest.mark.usefixtures('clean_test_session') def test_broadcast(self, x): i = tf.constant([[0, 2], [3, 0]], dtype=tf.int32) j = tf.constant([[1, 2]], dtype=tf.int32) # needs to be broadcast up vals = gather_2d(x, i, j) correct = np.array([ [[2, 2], [9, 9]], [[1, 1], [3, 3]], ], dtype=np.int32) assert_array_almost_equal(correct, vals.eval()) def test_broadcast(): with clean_session(): values = tf.constant([ [ [1, 2], [1, 2], ], [ [1, 2], [3, 4], ], [ [5, 6], [7, 8], ] ], dtype=tf.float32) mask = tf.constant([ [1, 0], [1, 1], [0, 1], ], dtype=tf.float32) correct = np.array([ [ [1, 1], [0, 0], ], [ [1, 1], [1, 1], ], [ [0, 0], [1, 1], ] ], dtype=np.float32) assert values.get_shape().as_list() == [3, 2, 2] assert mask.get_shape().as_list() == [3, 2] mask = expand_dims_for_broadcast(mask, values) assert mask.get_shape().as_list() == [3, 2, 1] mask = broadcast(mask, values) assert mask.get_shape().as_list() == [3, 2, 2] mask_val = mask.eval() assert_array_equal(mask_val, correct) class TestSaver(object): @pytest.fixture def v(self): return tf.get_variable('v', shape=[], initializer=tf.constant_initializer(5)) @pytest.mark.usefixtures('clean_test_session') def test_restore(self, tmpdir, v): save_100_path = str(tmpdir.join('weights-100')) save_10_path = str(tmpdir.join('weights-10')) saver = Saver(str(tmpdir)) assign_op = tf.assign(v, 12) sess = tf.get_default_session() guarantee_initialized_variables(sess) assert v.eval() == 5 saver.save(100) # save as step 100 sess.run(assign_op) assert v.eval() == 12 saver.save(10) # save as step 10 saver.restore() # restores from the larger step number by default (100) assert v.eval() == 5 # restored saver.restore(10) # force restore number 10 assert v.eval() == 12 saver.restore(save_100_path) assert v.eval() == 5 # latest should be the largest step number, not necessarily last saved assert saver.latest_checkpoint == save_100_path assert os.path.exists(save_100_path) assert saver.checkpoint_paths == { 10: save_10_path, 100: save_100_path, }
ContextualSP/lemon/executor/gtd/tests/ml/test_utils.py/0
{ "file_path": "ContextualSP/lemon/executor/gtd/tests/ml/test_utils.py", "repo_id": "ContextualSP", "token_count": 4134 }
235
"""Store system evaluation results (e.g., accuracy).""" from collections import OrderedDict from codecs import open from math import sqrt import json import numpy as np import os from scipy.stats import norm class NumberSequenceStat(object): """Stores statistics of a sequence of numbers. This is a reimplementation of fig's StatFig. """ def __init__(self): self.s_count = 0 self.s_min = float('inf') self.s_max = float('-inf') self.s_min_key = None self.s_max_key = None self.s_sum = 0. self.s_sumsq = 0. def add(self, x, key=None): if isinstance(x, NumberSequenceStat): assert not key self.s_count += x.s_count self.s_sum += x.s_sum self.s_sumsq += x.s_sumsq if x.s_min < self.s_min: self.s_min = x.s_min self.s_min_key = x.s_min_key if x.s_max > self.s_max: self.s_max = x.s_max self.s_max_key = x.s_max_key elif isinstance(x, (list, tuple)): x = [float(u) for u in x] self.s_count += len(x) self.s_sum += sum(x) self.s_sumsq += sum(u*u for u in x) min_x = min(x) if min_x < self.s_min: self.s_min = min_x self.s_min_key = key max_x = max(x) if max_x > self.s_max: self.s_max = max_x self.s_max_key = key else: x = float(x) self.s_count += 1 self.s_sum += x self.s_sumsq += x * x if x < self.s_min: self.s_min = x self.s_min_key = key if x > self.s_max: self.s_max = x self.s_max_key = key @property def count(self): return self.s_count @property def mean(self): return self.s_sum / self.s_count @property def sum(self): return self.s_sum @property def variance(self): return self.s_sumsq / self.s_count - self.mean ** 2 @property def stddev(self): return self.variance ** .5 @property def min(self): return self.s_min @property def max(self): return self.s_max @property def min_key(self): return self.s_min_key @property def max_key(self): return self.s_max_key @property def range(self): return self.s_max - self.s_min def __str__(self): if not self.s_count: return "NaN (0)" return "{min}{min_key} << {mean} >> {max}{max_key} ({std} std {count} count)".format( min=FmtD(self.s_min), min_key=('@' + self.s_min_key if self.s_min_key else ''), mean=FmtD(self.mean), std=FmtD(self.stddev), max=FmtD(self.s_max), max_key=('@' + self.s_max_key if self.s_max_key else ''), count=self.s_count) def as_dict(self): if not self.s_count: return {'count': 0} return { 'count': self.s_count, 'min': self.s_min, 'mean': self.mean, 'stddev': self.stddev, 'max': self.s_max, 'sum': self.s_sum, } class BernoulliSequenceStat(NumberSequenceStat): """A NumberSequenceStat which assumes each value in the sequence is drawn i.i.d. from a Bernoulli.""" def __init__(self, number_seq_stat=None): super(BernoulliSequenceStat, self).__init__() if number_seq_stat: self.add(number_seq_stat) def __str__(self): left, right = self.confidence_interval(0.05) ci_str = " 95% CI = [{} - {}]".format(left, right) s = super(BernoulliSequenceStat, self).__str__() return s + ci_str @classmethod def _confidence_interval_by_z_wald(cls, p_hat, n, z): increment = z * sqrt(p_hat * (1 - p_hat) / n) return p_hat - increment, p_hat + increment @classmethod def _confidence_interval_by_z_wilson(cls, p_hat, n, z): """Compute confidence interval for estimate of Bernoulli parameter p. Args: p_hat: maximum likelihood estimate of p n: samples observed z: if z = standard_normal_quantile(1 - alpha/2), then alpha is the probability that the true p falls outside the CI. Uses the Wilson score interval to compute a confidence interval for the true underlying Bernoulli parameter p. Should behave well even when p is close to 0 or 1 and when n is not too large. https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Wilson_score_interval Returns: left, right """ z2 = z**2 n2 = n**2 numerator = lambda sign: p_hat + z2 / (2 * n) + \ sign * z * sqrt(p_hat * (1 - p_hat) / n + z2 / (4 * n2)) denominator = 1 + z2 / n left = numerator(-1.) / denominator right = numerator(1.) / denominator return left, right @classmethod def _confidence_interval_by_alpha(cls, p_hat, n, alpha, method='wald'): """Compute confidence interval for estimate of Bernoulli parameter p. Args: p_hat: maximum likelihood estimate of p n: samples observed alpha: the probability that the true p falls outside the CI Returns: left, right """ prob = 1 - 0.5 * alpha z = norm.ppf(prob) compute_ci = cls._confidence_interval_by_z_wald if method == 'wald' else cls._confidence_interval_by_z_wilson return compute_ci(p_hat, n, z) def confidence_interval(self, alpha): p_hat = self.mean n = self.count return self._confidence_interval_by_alpha(p_hat, n, alpha) def test_bernoulli_confidence_interval(method='wilson', trials=1000, ps=None): """Use this to compare performance of Wald vs Wilson CIs. You should see that Wilson does better for extreme values. Args: method: 'wilson' or 'wald' trials: # trials used to empirically estimate coverage probability """ if ps is None: ps = np.arange(0.05, 0.95, 0.05) n = 200 # observations alpha = 0.1 # desired prob of CI not covering the true p # run simulations to see if the computed CI has the desired coverage prob alpha_hats = [] for p in ps: misses = 0. for _ in range(int(trials)): samples = np.random.random(n) <= p # draw n Bernoulli's p_hat = np.mean(samples) # compute estimate left, right = BernoulliSequenceStat._confidence_interval_by_alpha(p_hat, n, alpha, method=method) if p < left or p > right: misses += 1 alpha_hat = misses / trials alpha_hats.append(alpha_hat) import matplotlib.pyplot as plt plt.plot(ps, alpha_hats) # this line should be close to the constant alpha for all values of p def FmtD(x): """Return a nicely formatted string for number x.""" if abs(x - round(x)) < 1e-40: return str(int(x)) if abs(x) < 1e-3: return "{:.2e}".format(x) return "{:.3f}".format(x) class Evaluation(object): """Stores various statistics.""" def __init__(self): self.stats = OrderedDict() def add(self, name, value, key=None, stat_type=NumberSequenceStat): """Add a statistic. Args: name (string): Name of the metric value (bool, int, or float): The value key (any): (optional) ID of the object that achieves this value """ if name not in self.stats: self.stats[name] = stat_type() stat = self.stats[name] assert isinstance(stat, stat_type) stat.add(value, key=key) def add_micro_macro(self, name, values, key=None): """Add two stats: - micro-averaging: average the values in each sequence first - macro-averaging: average all values together. """ # Micro stat = NumberSequenceStat() stat.add(values) self.add(name + '_micro', stat, key=key) # Macro if stat.count: self.add(name + '_macro', stat.mean, key=key) def add_evaluation(self, evaluation): """Add all statistics from another Evaluation object.""" for name, stat in evaluation.stats.items(): self.add(name, stat) def line_summarize(self, prefix='EVAL', delim=' '): """Return a short one-line summary string.""" stuff = [] for name, stat in self.stats.items(): if not stat.count: stuff.append(name + '=NaN') else: stuff.append(name + '=' + FmtD(stat.mean)) return prefix + ': ' + delim.join(stuff) def summarize(self, buffer, prefix='EVAL'): """Print an extensive summary. Args: buffer: can be a file or a StringIO object """ header = '===== SUMMARY for %s =====' % prefix buffer.write(header) buffer.write('\n') # Padding needed for aligning the key names pad = '{:' + str(max(len(x) for x in self.stats)) + '}' for name, stat in self.stats.items(): buffer.write(('[{}] ' + pad + ' : {}').format(prefix, name, stat)) buffer.write('\n') buffer.write('=' * len(header)) buffer.write('\n') def json_summarize(self, json_filename, step, prefix=None): flags = 'r+' if os.path.exists(json_filename) else 'w+' with open(json_filename, flags) as json_file: text = json_file.read() json_file.seek(0) if len(text) == 0: log = {} else: log = json.loads(text) stats_dict = self.as_dict(prefix) for name, stat in stats_dict.items(): if name in log: log[name].append(stat['mean']) else: log[name] = [stat['mean']] json.dump(log, json_file) json_file.truncate() def tboard_summarize(self, tb_logger, step, prefix=None): """Log evaluation to Tensorboard. Args: tb_logger (TensorBoardLogger) step (int) prefix (basestring) """ for name, stat in self.stats.items(): full_name = '{}_{}'.format(prefix, name) if prefix else name tb_logger.log(full_name, stat.mean, step) def as_dict(self, prefix=None): """Return a dict representation of the Evaluation.""" result = {} for name, stat in self.stats.items(): full_name = '{}_{}'.format(prefix, name) if prefix else name result[full_name] = stat.as_dict() return result
ContextualSP/lemon/executor/strongsup/evaluation.py/0
{ "file_path": "ContextualSP/lemon/executor/strongsup/evaluation.py", "repo_id": "ContextualSP", "token_count": 5294 }
236
from prettytable import PrettyTable from strongsup.results.recipe import RLongCookbook class TableDrawer(object): """Given a list of Entries, draws tables based on some criteria. Args: entries (list[Entry]): the entries name (string): the name of this table (typically the dataset from which the entries come) """ def __init__(self, entries, name): self._entries = entries self._name = name def avg_table(self, final=False): """Returns the ASCII string of the table corresponding to the results for these entries, averaged over all seeds. Args: final (bool): table contains Final results if True, otherwise valid results Returns: string: the table """ entries = sorted(self._entries, key=lambda entry: entry.avg, reverse=True) table = PrettyTable() table.field_names = self._header(final) cookbook = RLongCookbook() for entry in entries: etype_name = cookbook.get_recipe_name( entry.experiment_type.configs, entry.experiment_type.base) if etype_name is None: etype_name = str(entry.experiment_type) name = "{}-{}".format( self._name, truncate(etype_name)) result = entry.avg row = [name] if final: row = row + [result.overall_final_acc] + result.final_accs else: row = row + [result.overall_valid_acc] + result.valid_accs table.add_row(row) return table def all_table(self, final=False): """Table with all the seeds. Args: final (bool): table contains Final results if True, otherwise valid results Returns: string: the table """ rows = sorted(((entry, seed) for entry in self._entries for seed in entry.seeds), key=lambda entry_seed: entry_seed[0].get_value(entry_seed[1]), reverse=True) table = PrettyTable() table.field_names = self._header(final) cookbook = RLongCookbook() for entry, seed in rows: etype_name = cookbook.get_recipe_name( entry.experiment_type.configs, entry.experiment_type.base) if etype_name is None: etype_name = str(entry.experiment_type) name = "{}-{}-{}".format( self._name, truncate(etype_name), seed) result = entry.get_value(seed) row = [name] if final: row = row + [result.overall_final_acc] + result.final_accs else: row = row + [result.overall_valid_acc] + result.valid_accs table.add_row(row) return table # TODO: Clean up... def stddev_table(self, final=False): """Table with stddevs""" entries = sorted(self._entries, key=lambda entry: entry.avg, reverse=True) table = PrettyTable() acc_type = "Final" if final else "Valid" header = ["Experiment Type"] for i in range(1, 6): header.append("{} stddev {} utt".format(acc_type, i)) table.field_names = header cookbook = RLongCookbook() for entry in entries: etype_name = cookbook.get_recipe_name( entry.experiment_type.configs, entry.experiment_type.base) if etype_name is None: etype_name = str(entry.experiment_type) name = "{}-{}".format( self._name, truncate(etype_name)) stddev = entry.var.sqrt() row = [name] if final: row = row + stddev.final_accs else: row = row + stddev.valid_accs table.add_row(row) return table def _header(self, final=False): acc_type = "Final" if final else "Valid" header = ["Experiment Type", "Overall {} Acc".format(acc_type)] for i in range(1, 6): header.append("{} Acc {} utt".format(acc_type, i)) return header def truncate(s): truncate_len = 50 return s[:truncate_len - 3] + "..." if len(s) > truncate_len else s
ContextualSP/lemon/executor/strongsup/results/table_drawer.py/0
{ "file_path": "ContextualSP/lemon/executor/strongsup/results/table_drawer.py", "repo_id": "ContextualSP", "token_count": 2195 }
237
import csv import os from codecs import open from strongsup.example import Context, Example from strongsup.example_factory import ExampleFactory from strongsup.predicate import Predicate from strongsup.utils import EOU from strongsup.tables.value import to_value_list from strongsup.tables.utils import tsv_unescape, tsv_unescape_list, resolve_ptb_brackets from strongsup.tables.world import WikiTableWorld ################################ # WikiTableExampleFactory class WikiTableExampleFactory(ExampleFactory): """Read example from the WikiTableQuestions dataset from a TSV file. The file should contain the following fields: id, utterance, context, targetValue - If the field `tokens` (CoreNLP tokenization) is present, use it instead of `utterance` - If the field `targetCanon` is present, also use it to construct more accurate target values - If supervised = True, the file should also have the field `logicalForm` """ def __init__(self, filename, supervised=False): self._filename = filename self._supervised = supervised @property def examples(self): with open(self._filename, 'r', 'utf8') as fin: header = fin.readline().rstrip('\n').split('\t') for line in fin: record = dict(list(zip(header, line.rstrip('\n').split('\t')))) # Build Example table_path = WikiTableWorld(record['context']) if 'tokens' in record: raw_utterance = resolve_ptb_brackets(tsv_unescape_list(record['tokens'])) else: raw_utterance = tsv_unescape(record['utterance']).split() context = Context(table_path, [raw_utterance]) answer = to_value_list(tsv_unescape_list(record['targetValue']), tsv_unescape_list(record['targetCanon']) if 'targetCanon' in record else None) if not self._supervised: logical_form = None else: logical_form_text = record.get('logicalForm', '') if logical_form_text == 'None': logical_form = None else: logical_form = [] for name in logical_form_text.split(): logical_form.append(Predicate(name, context)) if logical_form[-1] != EOU: logical_form.append(Predicate(EOU, context)) example = Example(context, answer, logical_form) yield example ################################ # Testing purposes if __name__ == '__main__': from dependency.data_directory import DataDirectory factory = WikiTableExampleFactory(os.path.join( DataDirectory.seq_questions, 'random-split-1-dev-processed.tsv')) for i, ex in enumerate(factory.examples): print(ex.context.utterances, ex.answer, ex.logical_form) if i == 10: exit(0)
ContextualSP/lemon/executor/strongsup/tables/example_factory.py/0
{ "file_path": "ContextualSP/lemon/executor/strongsup/tables/example_factory.py", "repo_id": "ContextualSP", "token_count": 1323 }
238
import pytest from strongsup.tables.predicates_computer import ( similarity_ratio, ) class TestEditDistance(object): CASES = [ ('superman', 'superman', 0), ('kitten', 'sitting', 5), ('industry', 'interest', 8), ('to ardo', 'from ardo', 4), ('intend', 'interned', 2), ('saturday', 'sunday', 4), ('abbababb', 'babbabab', 2), ('bababaabba', 'babbabbaba', 4), ('bababaabba', 'baababbaba', 4), ('babadook', 'gagadook', 4), ('mickey', 'icky', 2), ('0000000000', '0000000000', 0), ('0000010000', '0000100000', 2), ] def test_similarity_ratio(self): for s1, s2, key in self.CASES: for threshold in (x * .1 + 1e-3 for x in range(12)): correct = 1 - key * 1. / (len(s1) + len(s2)) correct = correct if correct >= threshold else 0. assert abs(similarity_ratio(s1, s2, threshold) - correct) < 1e-6 # TODO: Test other things
ContextualSP/lemon/executor/strongsup/tests/tables/test_predicates_computer.py/0
{ "file_path": "ContextualSP/lemon/executor/strongsup/tests/tables/test_predicates_computer.py", "repo_id": "ContextualSP", "token_count": 557 }
239
python lemon/run_model_finetune.py \ --dataset-dir lemon_data/dataset/DATASET_PREFIX/bin_large \ --exp-dir OUTPUT_PATH \ --model-path PRE_TRAINED_MODEL_PATH \ --model-arch bart_large \ --total-num-update 10000 \ --batch-size 64 \ --gradient-accumulation 1 \ --warmup-steps 1500 \ --learning-rate 3e-5
ContextualSP/lemon/finetune.sh/0
{ "file_path": "ContextualSP/lemon/finetune.sh", "repo_id": "ContextualSP", "token_count": 146 }
240
## eQASC Evaluator This script evaluates predictions for eQASC predictions against ground truth annotations and produces metrics. Hint: If you are in a hurry and want to simply evaluate your predictions, run the evaluator in Docker. ## Usage The program [evaluator.py](allennlp_reasoning_explainqa/evaluator/evaluator.py) takes three arguments: 1. The filename of a prediction file. 2. The filename of the labels to evaluate against. 3. The filename where metrics will be written. ### Prediction file The predictions file should hold multiple JSON objects, with each object having a score, and a chain ID. For example: ```bash % cat predictions/grc.test.predict | head -n 4 {"score": 0.2023383378982544, "chain_id": "3C44YUNSI1OBFBB8D36GODNOZN9DPA_1_1"} {"score": 0.5158032774925232, "chain_id": "3C44YUNSI1OBFBB8D36GODNOZN9DPA_1_2"} {"score": 0.17925743758678436, "chain_id": "3C44YUNSI1OBFBB8D36GODNOZN9DPA_1_5"} {"score": 0.8793290853500366, "chain_id": "3C44YUNSI1OBFBB8D36GODNOZN9DPA_1_7"} ``` The chain IDs must match those in the labels. (See below.) The file `predictions/grc.test.predict` in this repo contains an example prediction for the test labels. It was made with the script [grc.sh](https://github.com/harsh19/Reasoning-Chains-MultihopQA/blob/evaluator/code/scripts/grc.sh#L43) ### Labels file The labels file holds a single JSON object with keys being chain IDs and values being labels. It looks like this: ``` % cat ../data/chainid_to_label_test.json {"3GM6G9ZBKNWCBXAS7DE3CDBF13STML_1_7": 0, "3GM6G9ZBKNWCBXAS7DE3CDBF13STML_1_8": 0, "3GM6G9ZBKNWCBXAS7DE3CDBF13STML_1_6": 1, ... ``` The file `../data/chainid_to_label_test.json` in this repo contains the labels for test chains. ### Output metrics A "metrics" file will be written that contains evaluation scores. This file holds a single JSON structure with three key-value pairs. The keys are: * `auc_roc` -- This is Area under the ROC curve which measures classification problem at various thresholds settings. The ROC curve is plotted with TPR against the FPR where TPR is on y-axis and FPR is on the x-axis. Value is always between 0 and 1 (with 1 representing the best performance). * `explainP1` -- This is precision@1 metric, which measures the fraction of cases where the highest scoring candidate chain is a valid reasoning explanation. Value is always between 0 and 1 (with 1 representing the best performance). * `explainNDCG` - This is Normalized Discounted Cumulative Gain (https://en.wikipedia.org/wiki/Discounted_cumulative_gain#Normalized_DCG) to measure the ranking performance. Value is between 0 and 1 (with 1 representing the best performance), with highest score 1 when all the valid ranking chains are ranked better than all the invalid reasoning chains. Example: ```bash % cat metrics.json {"auc_roc": 0.8457533894216488, "explainP1": 0.5387978142076503, "explainNDCG": 0.6376201537170901} ``` ## Running in Docker The eQASC evaluator has many dependencies, so if you only want to run the evaluator on a prediction file, this is the easiest way to do so, without setting up a local development environment (Conda) with those dependencies installed. First, build an image with the evaluator: ``` docker build -t eqasc-evaluator . ``` Then run it with the above files like this: ``` docker run \ -v $PWD/predictions:/predictions:ro \ -v $PWD/../data:/labels:ro \ -v /tmp:/output:rw \ --entrypoint python \ eqasc-evaluator \ allennlp_reasoning_explainqa/evaluator/evaluator.py \ /predictions/grc.test.predict \ /labels/chainid_to_label_test.json \ /output/metrics.json ``` This evaluates the file `predictions/grc.test.predict` against the labels in `../data/chainid_to_label_test.json`, and writes the file `/tmp/metrics.json` locally: ``` % cat /tmp/metrics.json {"auc_roc": 0.8457533894216488, "explainP1": 0.5387978142076503, "explainNDCG": 0.6376201537170901} ``` See below for an explanation of the three arguments to the `evaluator.py` script. ## Running locally You'll have to install dependencies with Conda, following the environment.yml file. After you've done that, run the evaluator like this: ```bash % env PYTHONPATH=. python allennlp_reasoning_explainqa/evaluator/evaluator.py predictions/grc.test.predict ../data/labels/chainid_to_label_test.json /tmp/metrics.json ``` This evaluates the file `predictions/grc.test.predict` against the labels in `../data/chainid_to_label_test.json`, and writes the file `/tmp/metrics.json` locally: ``` % cat /tmp/metrics.json {"auc_roc": 0.8457533894216488, "explainP1": 0.5387978142076503, "explainNDCG": 0.6376201537170901} ``` ## Testing The script `test-with-docker.sh` uses the Docker method to exercise the evaluator and confirm expected scores.
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/eqasc/code/README.md/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/eqasc/code/README.md", "repo_id": "ContextualSP", "token_count": 1610 }
241
{"chain_id":"304SM51WA33FD6TGROJ4OS4ZWAQSB9_1_1","score":0.5} {"chain_id":"304SM51WA33FD6TGROJ4OS4ZWAQSB9_1_10","score":0.5} {"chain_id":"304SM51WA33FD6TGROJ4OS4ZWAQSB9_1_2","score":0.5} {"chain_id":"304SM51WA33FD6TGROJ4OS4ZWAQSB9_1_3","score":0.5} {"chain_id":"304SM51WA33FD6TGROJ4OS4ZWAQSB9_1_4","score":0.5} {"chain_id":"304SM51WA33FD6TGROJ4OS4ZWAQSB9_1_5","score":0.5} {"chain_id":"304SM51WA33FD6TGROJ4OS4ZWAQSB9_1_6","score":0.5} {"chain_id":"304SM51WA33FD6TGROJ4OS4ZWAQSB9_1_7","score":0.5} {"chain_id":"304SM51WA33FD6TGROJ4OS4ZWAQSB9_1_8","score":0.5} {"chain_id":"304SM51WA33FD6TGROJ4OS4ZWAQSB9_1_9","score":0.5} {"chain_id":"30BUDKLTXDUCE77PPJ8MWP0SBTB5E2_1_1","score":0.5} {"chain_id":"30BUDKLTXDUCE77PPJ8MWP0SBTB5E2_1_10","score":0.5} {"chain_id":"30BUDKLTXDUCE77PPJ8MWP0SBTB5E2_1_2","score":0.5} {"chain_id":"30BUDKLTXDUCE77PPJ8MWP0SBTB5E2_1_3","score":0.5} {"chain_id":"30BUDKLTXDUCE77PPJ8MWP0SBTB5E2_1_4","score":0.5} {"chain_id":"30BUDKLTXDUCE77PPJ8MWP0SBTB5E2_1_5","score":0.5} {"chain_id":"30BUDKLTXDUCE77PPJ8MWP0SBTB5E2_1_6","score":0.5} {"chain_id":"30BUDKLTXDUCE77PPJ8MWP0SBTB5E2_1_7","score":0.5} {"chain_id":"30BUDKLTXDUCE77PPJ8MWP0SBTB5E2_1_8","score":0.5} {"chain_id":"30BUDKLTXDUCE77PPJ8MWP0SBTB5E2_1_9","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKARHW0_1_1","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKARHW0_1_10","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKARHW0_1_2","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKARHW0_1_3","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKARHW0_1_4","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKARHW0_1_5","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKARHW0_1_6","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKARHW0_1_7","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKARHW0_1_8","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKARHW0_1_9","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKBQHW1_1_1","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKBQHW1_1_10","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKBQHW1_1_2","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKBQHW1_1_3","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKBQHW1_1_4","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKBQHW1_1_5","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKBQHW1_1_6","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKBQHW1_1_7","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKBQHW1_1_8","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIKBQHW1_1_9","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIM9AHWJ_1_1","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIM9AHWJ_1_10","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIM9AHWJ_1_2","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIM9AHWJ_1_3","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIM9AHWJ_1_4","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIM9AHWJ_1_5","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIM9AHWJ_1_6","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIM9AHWJ_1_7","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIM9AHWJ_1_8","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIM9AHWJ_1_9","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIN13WHC_1_1","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIN13WHC_1_10","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIN13WHC_1_2","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIN13WHC_1_3","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIN13WHC_1_4","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIN13WHC_1_5","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIN13WHC_1_6","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIN13WHC_1_7","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIN13WHC_1_8","score":0.5} {"chain_id":"30BXRYBRP4WIB0DBBL317SAIN13WHC_1_9","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9F2PMY_1_1","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9F2PMY_1_10","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9F2PMY_1_2","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9F2PMY_1_3","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9F2PMY_1_4","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9F2PMY_1_5","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9F2PMY_1_6","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9F2PMY_1_7","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9F2PMY_1_8","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9F2PMY_1_9","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9QGMPV_1_1","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9QGMPV_1_10","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9QGMPV_1_2","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9QGMPV_1_3","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9QGMPV_1_4","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9QGMPV_1_5","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9QGMPV_1_6","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9QGMPV_1_7","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9QGMPV_1_8","score":0.5} {"chain_id":"30H4UDGLT2HEJ5HLQW5J73AI9QGMPV_1_9","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP879AX0E_1_1","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP879AX0E_1_10","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP879AX0E_1_2","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP879AX0E_1_3","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP879AX0E_1_4","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP879AX0E_1_5","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP879AX0E_1_6","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP879AX0E_1_7","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP879AX0E_1_8","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP879AX0E_1_9","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP88BW0X8_1_1","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP88BW0X8_1_10","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP88BW0X8_1_2","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP88BW0X8_1_3","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP88BW0X8_1_4","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP88BW0X8_1_5","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP88BW0X8_1_6","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP88BW0X8_1_7","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP88BW0X8_1_8","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP88BW0X8_1_9","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP8K6H0XV_1_1","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP8K6H0XV_1_10","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP8K6H0XV_1_2","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP8K6H0XV_1_3","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP8K6H0XV_1_4","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP8K6H0XV_1_5","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP8K6H0XV_1_6","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP8K6H0XV_1_7","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP8K6H0XV_1_8","score":0.5} {"chain_id":"30IQTZXKAK5MP0C5NIS23JP8K6H0XV_1_9","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SW9MTQHR_1_1","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SW9MTQHR_1_10","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SW9MTQHR_1_2","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SW9MTQHR_1_3","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SW9MTQHR_1_4","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SW9MTQHR_1_5","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SW9MTQHR_1_6","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SW9MTQHR_1_7","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SW9MTQHR_1_8","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SW9MTQHR_1_9","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SWWC2QH3_1_1","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SWWC2QH3_1_10","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SWWC2QH3_1_2","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SWWC2QH3_1_3","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SWWC2QH3_1_4","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SWWC2QH3_1_5","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SWWC2QH3_1_6","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SWWC2QH3_1_7","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SWWC2QH3_1_8","score":0.5} {"chain_id":"30JNVC0OR9JDR3HPZC4VF3SWWC2QH3_1_9","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JFYH0Z1_1_1","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JFYH0Z1_1_10","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JFYH0Z1_1_2","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JFYH0Z1_1_3","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JFYH0Z1_1_4","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JFYH0Z1_1_5","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JFYH0Z1_1_6","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JFYH0Z1_1_7","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JFYH0Z1_1_8","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JFYH0Z1_1_9","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JTWAZ03_1_1","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JTWAZ03_1_10","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JTWAZ03_1_2","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JTWAZ03_1_3","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JTWAZ03_1_4","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JTWAZ03_1_5","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JTWAZ03_1_6","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JTWAZ03_1_7","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JTWAZ03_1_8","score":0.5} {"chain_id":"30LB5CDZNC9BUVCKO0GN045JTWAZ03_1_9","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8DVX2I9_1_1","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8DVX2I9_1_10","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8DVX2I9_1_2","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8DVX2I9_1_3","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8DVX2I9_1_4","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8DVX2I9_1_5","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8DVX2I9_1_6","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8DVX2I9_1_7","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8DVX2I9_1_8","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8DVX2I9_1_9","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8GIRI2W_1_1","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8GIRI2W_1_10","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8GIRI2W_1_2","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8GIRI2W_1_3","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8GIRI2W_1_4","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8GIRI2W_1_5","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8GIRI2W_1_6","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8GIRI2W_1_7","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8GIRI2W_1_8","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8GIRI2W_1_9","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8KTI2IX_1_1","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8KTI2IX_1_10","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8KTI2IX_1_2","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8KTI2IX_1_3","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8KTI2IX_1_4","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8KTI2IX_1_5","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8KTI2IX_1_6","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8KTI2IX_1_7","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8KTI2IX_1_8","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8KTI2IX_1_9","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8T9MI2M_1_1","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8T9MI2M_1_10","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8T9MI2M_1_2","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8T9MI2M_1_3","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8T9MI2M_1_4","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8T9MI2M_1_5","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8T9MI2M_1_6","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8T9MI2M_1_7","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8T9MI2M_1_8","score":0.5} {"chain_id":"30LSNF239UUWVFQO3JWFJXV8T9MI2M_1_9","score":0.5} {"chain_id":"30MVJZJNHMC3QAVT6AWU5LIM19T9J8_1_1","score":0.5} {"chain_id":"30MVJZJNHMC3QAVT6AWU5LIM19T9J8_1_10","score":0.5} {"chain_id":"30MVJZJNHMC3QAVT6AWU5LIM19T9J8_1_2","score":0.5} {"chain_id":"30MVJZJNHMC3QAVT6AWU5LIM19T9J8_1_3","score":0.5} {"chain_id":"30MVJZJNHMC3QAVT6AWU5LIM19T9J8_1_4","score":0.5} {"chain_id":"30MVJZJNHMC3QAVT6AWU5LIM19T9J8_1_5","score":0.5} {"chain_id":"30MVJZJNHMC3QAVT6AWU5LIM19T9J8_1_6","score":0.5} {"chain_id":"30MVJZJNHMC3QAVT6AWU5LIM19T9J8_1_7","score":0.5} {"chain_id":"30MVJZJNHMC3QAVT6AWU5LIM19T9J8_1_8","score":0.5} {"chain_id":"30MVJZJNHMC3QAVT6AWU5LIM19T9J8_1_9","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60ECYNENR_1_1","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60ECYNENR_1_10","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60ECYNENR_1_2","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60ECYNENR_1_3","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60ECYNENR_1_4","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60ECYNENR_1_5","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60ECYNENR_1_6","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60ECYNENR_1_7","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60ECYNENR_1_8","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60ECYNENR_1_9","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60EZ24NEC_1_1","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60EZ24NEC_1_10","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60EZ24NEC_1_2","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60EZ24NEC_1_3","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60EZ24NEC_1_4","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60EZ24NEC_1_5","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60EZ24NEC_1_6","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60EZ24NEC_1_7","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60EZ24NEC_1_8","score":0.5} {"chain_id":"30OG32W0SUAG4WDVTJ48Q60EZ24NEC_1_9","score":0.5} {"chain_id":"3137ONMDKG4AU4W96FRD0MRH0AMGE7_1_1","score":0.5} {"chain_id":"3137ONMDKG4AU4W96FRD0MRH0AMGE7_1_10","score":0.5} {"chain_id":"3137ONMDKG4AU4W96FRD0MRH0AMGE7_1_2","score":0.5} {"chain_id":"3137ONMDKG4AU4W96FRD0MRH0AMGE7_1_3","score":0.5} {"chain_id":"3137ONMDKG4AU4W96FRD0MRH0AMGE7_1_4","score":0.5} {"chain_id":"3137ONMDKG4AU4W96FRD0MRH0AMGE7_1_5","score":0.5} {"chain_id":"3137ONMDKG4AU4W96FRD0MRH0AMGE7_1_6","score":0.5} {"chain_id":"3137ONMDKG4AU4W96FRD0MRH0AMGE7_1_7","score":0.5} {"chain_id":"3137ONMDKG4AU4W96FRD0MRH0AMGE7_1_8","score":0.5} {"chain_id":"3137ONMDKG4AU4W96FRD0MRH0AMGE7_1_9","score":0.5} {"chain_id":"3180JW2OT4BKPNTH3KJDT5DKGY95JJ_1_1","score":0.5} {"chain_id":"3180JW2OT4BKPNTH3KJDT5DKGY95JJ_1_10","score":0.5} {"chain_id":"3180JW2OT4BKPNTH3KJDT5DKGY95JJ_1_2","score":0.5} {"chain_id":"3180JW2OT4BKPNTH3KJDT5DKGY95JJ_1_3","score":0.5} {"chain_id":"3180JW2OT4BKPNTH3KJDT5DKGY95JJ_1_4","score":0.5} {"chain_id":"3180JW2OT4BKPNTH3KJDT5DKGY95JJ_1_5","score":0.5} {"chain_id":"3180JW2OT4BKPNTH3KJDT5DKGY95JJ_1_6","score":0.5} {"chain_id":"3180JW2OT4BKPNTH3KJDT5DKGY95JJ_1_7","score":0.5} {"chain_id":"3180JW2OT4BKPNTH3KJDT5DKGY95JJ_1_8","score":0.5} {"chain_id":"3180JW2OT4BKPNTH3KJDT5DKGY95JJ_1_9","score":0.5} {"chain_id":"31EUONYN2V2FOSZTPOTV5ZO5TLBOVT_1_1","score":0.5} {"chain_id":"31EUONYN2V2FOSZTPOTV5ZO5TLBOVT_1_10","score":0.5} {"chain_id":"31EUONYN2V2FOSZTPOTV5ZO5TLBOVT_1_2","score":0.5} {"chain_id":"31EUONYN2V2FOSZTPOTV5ZO5TLBOVT_1_3","score":0.5} {"chain_id":"31EUONYN2V2FOSZTPOTV5ZO5TLBOVT_1_4","score":0.5} {"chain_id":"31EUONYN2V2FOSZTPOTV5ZO5TLBOVT_1_5","score":0.5} {"chain_id":"31EUONYN2V2FOSZTPOTV5ZO5TLBOVT_1_6","score":0.5} {"chain_id":"31EUONYN2V2FOSZTPOTV5ZO5TLBOVT_1_7","score":0.5} {"chain_id":"31EUONYN2V2FOSZTPOTV5ZO5TLBOVT_1_8","score":0.5} {"chain_id":"31EUONYN2V2FOSZTPOTV5ZO5TLBOVT_1_9","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04WUPLSE_1_1","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04WUPLSE_1_10","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04WUPLSE_1_2","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04WUPLSE_1_3","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04WUPLSE_1_4","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04WUPLSE_1_5","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04WUPLSE_1_6","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04WUPLSE_1_7","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04WUPLSE_1_8","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04WUPLSE_1_9","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04XPKLS0_1_1","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04XPKLS0_1_10","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04XPKLS0_1_2","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04XPKLS0_1_3","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04XPKLS0_1_4","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04XPKLS0_1_5","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04XPKLS0_1_6","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04XPKLS0_1_7","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04XPKLS0_1_8","score":0.5} {"chain_id":"31HQ4X3T3S9RQFFSI18Y2V04XPKLS0_1_9","score":0.5} {"chain_id":"31IBVUNM9SYLIFM0QLA5I5FRBNBFV5_1_1","score":0.5} {"chain_id":"31IBVUNM9SYLIFM0QLA5I5FRBNBFV5_1_10","score":0.5} {"chain_id":"31IBVUNM9SYLIFM0QLA5I5FRBNBFV5_1_2","score":0.5} {"chain_id":"31IBVUNM9SYLIFM0QLA5I5FRBNBFV5_1_3","score":0.5} {"chain_id":"31IBVUNM9SYLIFM0QLA5I5FRBNBFV5_1_4","score":0.5} {"chain_id":"31IBVUNM9SYLIFM0QLA5I5FRBNBFV5_1_5","score":0.5} {"chain_id":"31IBVUNM9SYLIFM0QLA5I5FRBNBFV5_1_6","score":0.5} {"chain_id":"31IBVUNM9SYLIFM0QLA5I5FRBNBFV5_1_7","score":0.5} {"chain_id":"31IBVUNM9SYLIFM0QLA5I5FRBNBFV5_1_8","score":0.5} {"chain_id":"31IBVUNM9SYLIFM0QLA5I5FRBNBFV5_1_9","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV89HRLRO_1_1","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV89HRLRO_1_10","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV89HRLRO_1_2","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV89HRLRO_1_3","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV89HRLRO_1_4","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV89HRLRO_1_5","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV89HRLRO_1_6","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV89HRLRO_1_7","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV89HRLRO_1_8","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV89HRLRO_1_9","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV8MQTLRL_1_1","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV8MQTLRL_1_10","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV8MQTLRL_1_2","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV8MQTLRL_1_3","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV8MQTLRL_1_4","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV8MQTLRL_1_5","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV8MQTLRL_1_6","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV8MQTLRL_1_7","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV8MQTLRL_1_8","score":0.5} {"chain_id":"31LVTDXBL79FP0FF3C8TCLV8MQTLRL_1_9","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN85N5F3K_1_1","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN85N5F3K_1_10","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN85N5F3K_1_2","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN85N5F3K_1_3","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN85N5F3K_1_4","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN85N5F3K_1_5","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN85N5F3K_1_6","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN85N5F3K_1_7","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN85N5F3K_1_8","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN85N5F3K_1_9","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN87Y23FT_1_1","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN87Y23FT_1_10","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN87Y23FT_1_2","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN87Y23FT_1_3","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN87Y23FT_1_4","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN87Y23FT_1_5","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN87Y23FT_1_6","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN87Y23FT_1_7","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN87Y23FT_1_8","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN87Y23FT_1_9","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN8AF53FX_1_1","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN8AF53FX_1_10","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN8AF53FX_1_2","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN8AF53FX_1_3","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN8AF53FX_1_4","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN8AF53FX_1_5","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN8AF53FX_1_6","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN8AF53FX_1_7","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN8AF53FX_1_8","score":0.5} {"chain_id":"31N2WW6R9RP166KH6B4ZZAN8AF53FX_1_9","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVU8ND710_1_1","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVU8ND710_1_10","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVU8ND710_1_2","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVU8ND710_1_3","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVU8ND710_1_4","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVU8ND710_1_5","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVU8ND710_1_6","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVU8ND710_1_7","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVU8ND710_1_8","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVU8ND710_1_9","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVUBEQ71Y_1_1","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVUBEQ71Y_1_10","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVUBEQ71Y_1_2","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVUBEQ71Y_1_3","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVUBEQ71Y_1_4","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVUBEQ71Y_1_5","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVUBEQ71Y_1_6","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVUBEQ71Y_1_7","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVUBEQ71Y_1_8","score":0.5} {"chain_id":"31Q0U3WYDPESHARW1OS4NPVUBEQ71Y_1_9","score":0.5} {"chain_id":"31T4R4OBOSFC4D1UHLHO4LELEWXC7E_1_1","score":0.5} {"chain_id":"31T4R4OBOSFC4D1UHLHO4LELEWXC7E_1_10","score":0.5} {"chain_id":"31T4R4OBOSFC4D1UHLHO4LELEWXC7E_1_2","score":0.5} {"chain_id":"31T4R4OBOSFC4D1UHLHO4LELEWXC7E_1_3","score":0.5} {"chain_id":"31T4R4OBOSFC4D1UHLHO4LELEWXC7E_1_4","score":0.5} {"chain_id":"31T4R4OBOSFC4D1UHLHO4LELEWXC7E_1_5","score":0.5} {"chain_id":"31T4R4OBOSFC4D1UHLHO4LELEWXC7E_1_6","score":0.5} {"chain_id":"31T4R4OBOSFC4D1UHLHO4LELEWXC7E_1_7","score":0.5} {"chain_id":"31T4R4OBOSFC4D1UHLHO4LELEWXC7E_1_8","score":0.5} {"chain_id":"31T4R4OBOSFC4D1UHLHO4LELEWXC7E_1_9","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YK4RPI56_1_1","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YK4RPI56_1_10","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YK4RPI56_1_2","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YK4RPI56_1_3","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YK4RPI56_1_4","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YK4RPI56_1_5","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YK4RPI56_1_6","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YK4RPI56_1_7","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YK4RPI56_1_8","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YK4RPI56_1_9","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD0VI53_1_1","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD0VI53_1_10","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD0VI53_1_2","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD0VI53_1_3","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD0VI53_1_4","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD0VI53_1_5","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD0VI53_1_6","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD0VI53_1_7","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD0VI53_1_8","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD0VI53_1_9","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD10I5A_1_1","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD10I5A_1_10","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD10I5A_1_2","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD10I5A_1_3","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD10I5A_1_4","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD10I5A_1_5","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD10I5A_1_6","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD10I5A_1_7","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD10I5A_1_8","score":0.5} {"chain_id":"31UV0MXWNQBOUC9BL2YDH4YKD10I5A_1_9","score":0.5} {"chain_id":"31Z0PCVWUKETQU3537CETVEPGECT7Z_1_1","score":0.5} {"chain_id":"31Z0PCVWUKETQU3537CETVEPGECT7Z_1_10","score":0.5} {"chain_id":"31Z0PCVWUKETQU3537CETVEPGECT7Z_1_2","score":0.5} {"chain_id":"31Z0PCVWUKETQU3537CETVEPGECT7Z_1_3","score":0.5} {"chain_id":"31Z0PCVWUKETQU3537CETVEPGECT7Z_1_4","score":0.5} {"chain_id":"31Z0PCVWUKETQU3537CETVEPGECT7Z_1_5","score":0.5} {"chain_id":"31Z0PCVWUKETQU3537CETVEPGECT7Z_1_6","score":0.5} {"chain_id":"31Z0PCVWUKETQU3537CETVEPGECT7Z_1_7","score":0.5} {"chain_id":"31Z0PCVWUKETQU3537CETVEPGECT7Z_1_8","score":0.5} {"chain_id":"31Z0PCVWUKETQU3537CETVEPGECT7Z_1_9","score":0.5} {"chain_id":"320DUZ38G7LI5KI1KG24X249GZ5GJO_1_1","score":0.5} {"chain_id":"320DUZ38G7LI5KI1KG24X249GZ5GJO_1_10","score":0.5} {"chain_id":"320DUZ38G7LI5KI1KG24X249GZ5GJO_1_2","score":0.5} {"chain_id":"320DUZ38G7LI5KI1KG24X249GZ5GJO_1_3","score":0.5} {"chain_id":"320DUZ38G7LI5KI1KG24X249GZ5GJO_1_4","score":0.5} {"chain_id":"320DUZ38G7LI5KI1KG24X249GZ5GJO_1_5","score":0.5} {"chain_id":"320DUZ38G7LI5KI1KG24X249GZ5GJO_1_6","score":0.5} {"chain_id":"320DUZ38G7LI5KI1KG24X249GZ5GJO_1_7","score":0.5} {"chain_id":"320DUZ38G7LI5KI1KG24X249GZ5GJO_1_8","score":0.5} {"chain_id":"320DUZ38G7LI5KI1KG24X249GZ5GJO_1_9","score":0.5} {"chain_id":"323Q6SJS8IFG0ERGLWT134OI24RHFZ_1_1","score":0.5} {"chain_id":"323Q6SJS8IFG0ERGLWT134OI24RHFZ_1_10","score":0.5} {"chain_id":"323Q6SJS8IFG0ERGLWT134OI24RHFZ_1_2","score":0.5} {"chain_id":"323Q6SJS8IFG0ERGLWT134OI24RHFZ_1_3","score":0.5} {"chain_id":"323Q6SJS8IFG0ERGLWT134OI24RHFZ_1_4","score":0.5} {"chain_id":"323Q6SJS8IFG0ERGLWT134OI24RHFZ_1_5","score":0.5} {"chain_id":"323Q6SJS8IFG0ERGLWT134OI24RHFZ_1_6","score":0.5} {"chain_id":"323Q6SJS8IFG0ERGLWT134OI24RHFZ_1_7","score":0.5} {"chain_id":"323Q6SJS8IFG0ERGLWT134OI24RHFZ_1_8","score":0.5} {"chain_id":"323Q6SJS8IFG0ERGLWT134OI24RHFZ_1_9","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKMAGDEN_1_1","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKMAGDEN_1_10","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKMAGDEN_1_2","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKMAGDEN_1_3","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKMAGDEN_1_4","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKMAGDEN_1_5","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKMAGDEN_1_6","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKMAGDEN_1_7","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKMAGDEN_1_8","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKMAGDEN_1_9","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKO6IDEJ_1_1","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKO6IDEJ_1_10","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKO6IDEJ_1_2","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKO6IDEJ_1_3","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKO6IDEJ_1_4","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKO6IDEJ_1_5","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKO6IDEJ_1_6","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKO6IDEJ_1_7","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKO6IDEJ_1_8","score":0.5} {"chain_id":"326O153BMIX7IKMI4PQ5U1OKO6IDEJ_1_9","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6UDUSR_1_1","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6UDUSR_1_10","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6UDUSR_1_2","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6UDUSR_1_3","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6UDUSR_1_4","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6UDUSR_1_5","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6UDUSR_1_6","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6UDUSR_1_7","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6UDUSR_1_8","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6UDUSR_1_9","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6VLSUZ_1_1","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6VLSUZ_1_10","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6VLSUZ_1_2","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6VLSUZ_1_3","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6VLSUZ_1_4","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6VLSUZ_1_5","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6VLSUZ_1_6","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6VLSUZ_1_7","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6VLSUZ_1_8","score":0.5} {"chain_id":"32AT8R96GL8U952MRF0ZTIWN6VLSUZ_1_9","score":0.5} {"chain_id":"32EYX73OY08I8Q29CQ0U38RRQ54UR9_1_1","score":0.5} {"chain_id":"32EYX73OY08I8Q29CQ0U38RRQ54UR9_1_10","score":0.5} {"chain_id":"32EYX73OY08I8Q29CQ0U38RRQ54UR9_1_2","score":0.5} {"chain_id":"32EYX73OY08I8Q29CQ0U38RRQ54UR9_1_3","score":0.5} {"chain_id":"32EYX73OY08I8Q29CQ0U38RRQ54UR9_1_4","score":0.5} {"chain_id":"32EYX73OY08I8Q29CQ0U38RRQ54UR9_1_5","score":0.5} {"chain_id":"32EYX73OY08I8Q29CQ0U38RRQ54UR9_1_6","score":0.5} {"chain_id":"32EYX73OY08I8Q29CQ0U38RRQ54UR9_1_7","score":0.5} {"chain_id":"32EYX73OY08I8Q29CQ0U38RRQ54UR9_1_8","score":0.5} {"chain_id":"32EYX73OY08I8Q29CQ0U38RRQ54UR9_1_9","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA33HLM9C_1_1","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA33HLM9C_1_10","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA33HLM9C_1_2","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA33HLM9C_1_3","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA33HLM9C_1_4","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA33HLM9C_1_5","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA33HLM9C_1_6","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA33HLM9C_1_7","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA33HLM9C_1_8","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA33HLM9C_1_9","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA3HWE9M0_1_1","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA3HWE9M0_1_10","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA3HWE9M0_1_2","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA3HWE9M0_1_3","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA3HWE9M0_1_4","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA3HWE9M0_1_5","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA3HWE9M0_1_6","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA3HWE9M0_1_7","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA3HWE9M0_1_8","score":0.5} {"chain_id":"32KTQ2V7RDETRI1E979MLDA3HWE9M0_1_9","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9Q6WIGP_1_1","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9Q6WIGP_1_10","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9Q6WIGP_1_2","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9Q6WIGP_1_3","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9Q6WIGP_1_4","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9Q6WIGP_1_5","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9Q6WIGP_1_6","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9Q6WIGP_1_7","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9Q6WIGP_1_8","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9Q6WIGP_1_9","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9QJRIGA_1_1","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9QJRIGA_1_10","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9QJRIGA_1_2","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9QJRIGA_1_3","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9QJRIGA_1_4","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9QJRIGA_1_5","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9QJRIGA_1_6","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9QJRIGA_1_7","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9QJRIGA_1_8","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9QJRIGA_1_9","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9UZZGIG_1_1","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9UZZGIG_1_10","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9UZZGIG_1_2","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9UZZGIG_1_3","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9UZZGIG_1_4","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9UZZGIG_1_5","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9UZZGIG_1_6","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9UZZGIG_1_7","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9UZZGIG_1_8","score":0.5} {"chain_id":"32M8BPYGATLMA9YV2YH4L1P9UZZGIG_1_9","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440084VA2_1_1","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440084VA2_1_10","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440084VA2_1_2","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440084VA2_1_3","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440084VA2_1_4","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440084VA2_1_5","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440084VA2_1_6","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440084VA2_1_7","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440084VA2_1_8","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440084VA2_1_9","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440D3RAV7_1_1","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440D3RAV7_1_10","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440D3RAV7_1_2","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440D3RAV7_1_3","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440D3RAV7_1_4","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440D3RAV7_1_5","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440D3RAV7_1_6","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440D3RAV7_1_7","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440D3RAV7_1_8","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440D3RAV7_1_9","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440ZUSAVC_1_1","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440ZUSAVC_1_10","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440ZUSAVC_1_2","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440ZUSAVC_1_3","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440ZUSAVC_1_4","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440ZUSAVC_1_5","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440ZUSAVC_1_6","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440ZUSAVC_1_7","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440ZUSAVC_1_8","score":0.5} {"chain_id":"32N49TQG3GHQMO5SF5OD4440ZUSAVC_1_9","score":0.5} {"chain_id":"32Q90QCQ1SKFWQSSW6CSYEJA8JKEKA_1_1","score":0.5} {"chain_id":"32Q90QCQ1SKFWQSSW6CSYEJA8JKEKA_1_10","score":0.5} {"chain_id":"32Q90QCQ1SKFWQSSW6CSYEJA8JKEKA_1_2","score":0.5} {"chain_id":"32Q90QCQ1SKFWQSSW6CSYEJA8JKEKA_1_3","score":0.5} {"chain_id":"32Q90QCQ1SKFWQSSW6CSYEJA8JKEKA_1_4","score":0.5} {"chain_id":"32Q90QCQ1SKFWQSSW6CSYEJA8JKEKA_1_5","score":0.5} {"chain_id":"32Q90QCQ1SKFWQSSW6CSYEJA8JKEKA_1_6","score":0.5} {"chain_id":"32Q90QCQ1SKFWQSSW6CSYEJA8JKEKA_1_7","score":0.5} {"chain_id":"32Q90QCQ1SKFWQSSW6CSYEJA8JKEKA_1_8","score":0.5} {"chain_id":"32Q90QCQ1SKFWQSSW6CSYEJA8JKEKA_1_9","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT7KMS45_1_1","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT7KMS45_1_10","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT7KMS45_1_2","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT7KMS45_1_3","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT7KMS45_1_4","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT7KMS45_1_5","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT7KMS45_1_6","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT7KMS45_1_7","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT7KMS45_1_8","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT7KMS45_1_9","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT8H94SZ_1_1","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT8H94SZ_1_10","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT8H94SZ_1_2","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT8H94SZ_1_3","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT8H94SZ_1_4","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT8H94SZ_1_5","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT8H94SZ_1_6","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT8H94SZ_1_7","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT8H94SZ_1_8","score":0.5} {"chain_id":"32RIADZISS3VS787C99HGEYT8H94SZ_1_9","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH64J3AE_1_1","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH64J3AE_1_10","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH64J3AE_1_2","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH64J3AE_1_3","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH64J3AE_1_4","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH64J3AE_1_5","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH64J3AE_1_6","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH64J3AE_1_7","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH64J3AE_1_8","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH64J3AE_1_9","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH81NA3L_1_1","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH81NA3L_1_10","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH81NA3L_1_2","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH81NA3L_1_3","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH81NA3L_1_4","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH81NA3L_1_5","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH81NA3L_1_6","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH81NA3L_1_7","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH81NA3L_1_8","score":0.5} {"chain_id":"32SVAV9L3F86AF39VVI7L9CH81NA3L_1_9","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6LKUBV9_1_1","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6LKUBV9_1_10","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6LKUBV9_1_2","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6LKUBV9_1_3","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6LKUBV9_1_4","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6LKUBV9_1_5","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6LKUBV9_1_6","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6LKUBV9_1_7","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6LKUBV9_1_8","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6LKUBV9_1_9","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6MWJVB7_1_1","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6MWJVB7_1_10","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6MWJVB7_1_2","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6MWJVB7_1_3","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6MWJVB7_1_4","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6MWJVB7_1_5","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6MWJVB7_1_6","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6MWJVB7_1_7","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6MWJVB7_1_8","score":0.5} {"chain_id":"32UTUBMZ7GVV5YAKLJO9ZFO6MWJVB7_1_9","score":0.5} {"chain_id":"32VNZTT0A73JRS8UXK9CQ4TXQM34R6_1_1","score":0.5} {"chain_id":"32VNZTT0A73JRS8UXK9CQ4TXQM34R6_1_10","score":0.5} {"chain_id":"32VNZTT0A73JRS8UXK9CQ4TXQM34R6_1_2","score":0.5} {"chain_id":"32VNZTT0A73JRS8UXK9CQ4TXQM34R6_1_3","score":0.5} {"chain_id":"32VNZTT0A73JRS8UXK9CQ4TXQM34R6_1_4","score":0.5} {"chain_id":"32VNZTT0A73JRS8UXK9CQ4TXQM34R6_1_5","score":0.5} {"chain_id":"32VNZTT0A73JRS8UXK9CQ4TXQM34R6_1_6","score":0.5} {"chain_id":"32VNZTT0A73JRS8UXK9CQ4TXQM34R6_1_7","score":0.5} {"chain_id":"32VNZTT0A73JRS8UXK9CQ4TXQM34R6_1_8","score":0.5} {"chain_id":"32VNZTT0A73JRS8UXK9CQ4TXQM34R6_1_9","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PY8UM2Y_1_1","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PY8UM2Y_1_10","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PY8UM2Y_1_2","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PY8UM2Y_1_3","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PY8UM2Y_1_4","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PY8UM2Y_1_5","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PY8UM2Y_1_6","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PY8UM2Y_1_7","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PY8UM2Y_1_8","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PY8UM2Y_1_9","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PYFAM2S_1_1","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PYFAM2S_1_10","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PYFAM2S_1_2","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PYFAM2S_1_3","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PYFAM2S_1_4","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PYFAM2S_1_5","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PYFAM2S_1_6","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PYFAM2S_1_7","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PYFAM2S_1_8","score":0.5} {"chain_id":"32XVDSJFPZWIRYGFOYU7BQ2PYFAM2S_1_9","score":0.5} {"chain_id":"3300DTYQT2G17TQN9BWPU0VJ4TBEQ6_1_1","score":0.5} {"chain_id":"3300DTYQT2G17TQN9BWPU0VJ4TBEQ6_1_10","score":0.5} {"chain_id":"3300DTYQT2G17TQN9BWPU0VJ4TBEQ6_1_2","score":0.5} {"chain_id":"3300DTYQT2G17TQN9BWPU0VJ4TBEQ6_1_3","score":0.5} {"chain_id":"3300DTYQT2G17TQN9BWPU0VJ4TBEQ6_1_4","score":0.5} {"chain_id":"3300DTYQT2G17TQN9BWPU0VJ4TBEQ6_1_5","score":0.5} {"chain_id":"3300DTYQT2G17TQN9BWPU0VJ4TBEQ6_1_6","score":0.5} {"chain_id":"3300DTYQT2G17TQN9BWPU0VJ4TBEQ6_1_7","score":0.5} {"chain_id":"3300DTYQT2G17TQN9BWPU0VJ4TBEQ6_1_8","score":0.5} {"chain_id":"3300DTYQT2G17TQN9BWPU0VJ4TBEQ6_1_9","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWA532YC_1_1","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWA532YC_1_10","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWA532YC_1_2","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWA532YC_1_3","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWA532YC_1_4","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWA532YC_1_5","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWA532YC_1_6","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWA532YC_1_7","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWA532YC_1_8","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWA532YC_1_9","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWJQ62YU_1_1","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWJQ62YU_1_10","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWJQ62YU_1_2","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWJQ62YU_1_3","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWJQ62YU_1_4","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWJQ62YU_1_5","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWJQ62YU_1_6","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWJQ62YU_1_7","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWJQ62YU_1_8","score":0.5} {"chain_id":"336KAV9KYQRILF5T71II5LPWJQ62YU_1_9","score":0.5} {"chain_id":"336YQZE83VDAQVZ26HW59X51FSCM57_1_1","score":0.5} {"chain_id":"336YQZE83VDAQVZ26HW59X51FSCM57_1_10","score":0.5} {"chain_id":"336YQZE83VDAQVZ26HW59X51FSCM57_1_2","score":0.5} {"chain_id":"336YQZE83VDAQVZ26HW59X51FSCM57_1_3","score":0.5} {"chain_id":"336YQZE83VDAQVZ26HW59X51FSCM57_1_4","score":0.5} {"chain_id":"336YQZE83VDAQVZ26HW59X51FSCM57_1_5","score":0.5} {"chain_id":"336YQZE83VDAQVZ26HW59X51FSCM57_1_6","score":0.5} {"chain_id":"336YQZE83VDAQVZ26HW59X51FSCM57_1_7","score":0.5} {"chain_id":"336YQZE83VDAQVZ26HW59X51FSCM57_1_8","score":0.5} {"chain_id":"336YQZE83VDAQVZ26HW59X51FSCM57_1_9","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBS7OLV3_1_1","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBS7OLV3_1_10","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBS7OLV3_1_2","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBS7OLV3_1_3","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBS7OLV3_1_4","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBS7OLV3_1_5","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBS7OLV3_1_6","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBS7OLV3_1_7","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBS7OLV3_1_8","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBS7OLV3_1_9","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBU4BLVM_1_1","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBU4BLVM_1_10","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBU4BLVM_1_2","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBU4BLVM_1_3","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBU4BLVM_1_4","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBU4BLVM_1_5","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBU4BLVM_1_6","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBU4BLVM_1_7","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBU4BLVM_1_8","score":0.5} {"chain_id":"337RC3OW0517I7WWCWD3DIKBU4BLVM_1_9","score":0.5} {"chain_id":"338JKRMM26YL4NA8AG79P3DRPY6HAI_1_1","score":0.5} {"chain_id":"338JKRMM26YL4NA8AG79P3DRPY6HAI_1_10","score":0.5} {"chain_id":"338JKRMM26YL4NA8AG79P3DRPY6HAI_1_2","score":0.5} {"chain_id":"338JKRMM26YL4NA8AG79P3DRPY6HAI_1_3","score":0.5} {"chain_id":"338JKRMM26YL4NA8AG79P3DRPY6HAI_1_4","score":0.5} {"chain_id":"338JKRMM26YL4NA8AG79P3DRPY6HAI_1_5","score":0.5} {"chain_id":"338JKRMM26YL4NA8AG79P3DRPY6HAI_1_6","score":0.5} {"chain_id":"338JKRMM26YL4NA8AG79P3DRPY6HAI_1_7","score":0.5} {"chain_id":"338JKRMM26YL4NA8AG79P3DRPY6HAI_1_8","score":0.5} {"chain_id":"338JKRMM26YL4NA8AG79P3DRPY6HAI_1_9","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2V9NKIA_1_1","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2V9NKIA_1_10","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2V9NKIA_1_2","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2V9NKIA_1_3","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2V9NKIA_1_4","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2V9NKIA_1_5","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2V9NKIA_1_6","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2V9NKIA_1_7","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2V9NKIA_1_8","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2V9NKIA_1_9","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2X1ZKI8_1_1","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2X1ZKI8_1_10","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2X1ZKI8_1_2","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2X1ZKI8_1_3","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2X1ZKI8_1_4","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2X1ZKI8_1_5","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2X1ZKI8_1_6","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2X1ZKI8_1_7","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2X1ZKI8_1_8","score":0.5} {"chain_id":"339ANSOTR51RCVUESP2JJTH2X1ZKI8_1_9","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS3ZP3L8_1_1","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS3ZP3L8_1_10","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS3ZP3L8_1_2","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS3ZP3L8_1_3","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS3ZP3L8_1_4","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS3ZP3L8_1_5","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS3ZP3L8_1_6","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS3ZP3L8_1_7","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS3ZP3L8_1_8","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS3ZP3L8_1_9","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS5AAL3Z_1_1","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS5AAL3Z_1_10","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS5AAL3Z_1_2","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS5AAL3Z_1_3","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS5AAL3Z_1_4","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS5AAL3Z_1_5","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS5AAL3Z_1_6","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS5AAL3Z_1_7","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS5AAL3Z_1_8","score":0.5} {"chain_id":"33CID57104SN6YUDSM7XUNSS5AAL3Z_1_9","score":0.5} {"chain_id":"33F859I566CQNXF0GU75KEXX9WFBHT_1_1","score":0.5} {"chain_id":"33F859I566CQNXF0GU75KEXX9WFBHT_1_10","score":0.5} {"chain_id":"33F859I566CQNXF0GU75KEXX9WFBHT_1_2","score":0.5} {"chain_id":"33F859I566CQNXF0GU75KEXX9WFBHT_1_3","score":0.5} {"chain_id":"33F859I566CQNXF0GU75KEXX9WFBHT_1_4","score":0.5} {"chain_id":"33F859I566CQNXF0GU75KEXX9WFBHT_1_5","score":0.5} {"chain_id":"33F859I566CQNXF0GU75KEXX9WFBHT_1_6","score":0.5} {"chain_id":"33F859I566CQNXF0GU75KEXX9WFBHT_1_7","score":0.5} {"chain_id":"33F859I566CQNXF0GU75KEXX9WFBHT_1_8","score":0.5} {"chain_id":"33F859I566CQNXF0GU75KEXX9WFBHT_1_9","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8ALHC1M_1_1","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8ALHC1M_1_10","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8ALHC1M_1_2","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8ALHC1M_1_3","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8ALHC1M_1_4","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8ALHC1M_1_5","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8ALHC1M_1_6","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8ALHC1M_1_7","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8ALHC1M_1_8","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8ALHC1M_1_9","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8BO91CA_1_1","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8BO91CA_1_10","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8BO91CA_1_2","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8BO91CA_1_3","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8BO91CA_1_4","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8BO91CA_1_5","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8BO91CA_1_6","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8BO91CA_1_7","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8BO91CA_1_8","score":0.5} {"chain_id":"33FOTY3KEMKYTRMSS50F3BN8BO91CA_1_9","score":0.5} {"chain_id":"33IZTU6J810MQ9WHWKBMDPVR127XSG_1_1","score":0.5} {"chain_id":"33IZTU6J810MQ9WHWKBMDPVR127XSG_1_10","score":0.5} {"chain_id":"33IZTU6J810MQ9WHWKBMDPVR127XSG_1_2","score":0.5} {"chain_id":"33IZTU6J810MQ9WHWKBMDPVR127XSG_1_3","score":0.5} {"chain_id":"33IZTU6J810MQ9WHWKBMDPVR127XSG_1_4","score":0.5} {"chain_id":"33IZTU6J810MQ9WHWKBMDPVR127XSG_1_5","score":0.5} {"chain_id":"33IZTU6J810MQ9WHWKBMDPVR127XSG_1_6","score":0.5} {"chain_id":"33IZTU6J810MQ9WHWKBMDPVR127XSG_1_7","score":0.5} {"chain_id":"33IZTU6J810MQ9WHWKBMDPVR127XSG_1_8","score":0.5} {"chain_id":"33IZTU6J810MQ9WHWKBMDPVR127XSG_1_9","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N5VENMZ_1_1","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N5VENMZ_1_10","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N5VENMZ_1_2","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N5VENMZ_1_3","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N5VENMZ_1_4","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N5VENMZ_1_5","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N5VENMZ_1_6","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N5VENMZ_1_7","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N5VENMZ_1_8","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N5VENMZ_1_9","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N6EKNM8_1_1","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N6EKNM8_1_10","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N6EKNM8_1_2","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N6EKNM8_1_3","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N6EKNM8_1_4","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N6EKNM8_1_5","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N6EKNM8_1_6","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N6EKNM8_1_7","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N6EKNM8_1_8","score":0.5} {"chain_id":"33JKGHPFYCTEGK58AHSR3E5N6EKNM8_1_9","score":0.5} {"chain_id":"33L7PJKHCGXXQ88ODC4K7VAKC4V8TB_1_1","score":0.5} {"chain_id":"33L7PJKHCGXXQ88ODC4K7VAKC4V8TB_1_10","score":0.5} {"chain_id":"33L7PJKHCGXXQ88ODC4K7VAKC4V8TB_1_2","score":0.5} {"chain_id":"33L7PJKHCGXXQ88ODC4K7VAKC4V8TB_1_3","score":0.5} {"chain_id":"33L7PJKHCGXXQ88ODC4K7VAKC4V8TB_1_4","score":0.5} {"chain_id":"33L7PJKHCGXXQ88ODC4K7VAKC4V8TB_1_5","score":0.5} {"chain_id":"33L7PJKHCGXXQ88ODC4K7VAKC4V8TB_1_6","score":0.5} {"chain_id":"33L7PJKHCGXXQ88ODC4K7VAKC4V8TB_1_7","score":0.5} {"chain_id":"33L7PJKHCGXXQ88ODC4K7VAKC4V8TB_1_8","score":0.5} {"chain_id":"33L7PJKHCGXXQ88ODC4K7VAKC4V8TB_1_9","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNC2JI1TN_1_1","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNC2JI1TN_1_10","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNC2JI1TN_1_2","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNC2JI1TN_1_3","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNC2JI1TN_1_4","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNC2JI1TN_1_5","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNC2JI1TN_1_6","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNC2JI1TN_1_7","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNC2JI1TN_1_8","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNC2JI1TN_1_9","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCC3IT1T_1_1","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCC3IT1T_1_10","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCC3IT1T_1_2","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCC3IT1T_1_3","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCC3IT1T_1_4","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCC3IT1T_1_5","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCC3IT1T_1_6","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCC3IT1T_1_7","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCC3IT1T_1_8","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCC3IT1T_1_9","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCXL91TD_1_1","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCXL91TD_1_10","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCXL91TD_1_2","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCXL91TD_1_3","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCXL91TD_1_4","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCXL91TD_1_5","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCXL91TD_1_6","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCXL91TD_1_7","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCXL91TD_1_8","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCXL91TD_1_9","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCY7CT1H_1_1","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCY7CT1H_1_10","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCY7CT1H_1_2","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCY7CT1H_1_3","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCY7CT1H_1_4","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCY7CT1H_1_5","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCY7CT1H_1_6","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCY7CT1H_1_7","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCY7CT1H_1_8","score":0.5} {"chain_id":"33LKR6A5KEJFF8O3ERV5SLNCY7CT1H_1_9","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVGNBXRQ_1_1","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVGNBXRQ_1_10","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVGNBXRQ_1_2","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVGNBXRQ_1_3","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVGNBXRQ_1_4","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVGNBXRQ_1_5","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVGNBXRQ_1_6","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVGNBXRQ_1_7","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVGNBXRQ_1_8","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVGNBXRQ_1_9","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVH0JXRP_1_1","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVH0JXRP_1_10","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVH0JXRP_1_2","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVH0JXRP_1_3","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVH0JXRP_1_4","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVH0JXRP_1_5","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVH0JXRP_1_6","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVH0JXRP_1_7","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVH0JXRP_1_8","score":0.5} {"chain_id":"33M4IA01QG0APUW4HVBHNFQVH0JXRP_1_9","score":0.5} {"chain_id":"33OOO72IVHKZ2BY1UOKP9H636K2CTP_1_1","score":0.5} {"chain_id":"33OOO72IVHKZ2BY1UOKP9H636K2CTP_1_10","score":0.5} {"chain_id":"33OOO72IVHKZ2BY1UOKP9H636K2CTP_1_2","score":0.5} {"chain_id":"33OOO72IVHKZ2BY1UOKP9H636K2CTP_1_3","score":0.5} {"chain_id":"33OOO72IVHKZ2BY1UOKP9H636K2CTP_1_4","score":0.5} {"chain_id":"33OOO72IVHKZ2BY1UOKP9H636K2CTP_1_5","score":0.5} {"chain_id":"33OOO72IVHKZ2BY1UOKP9H636K2CTP_1_6","score":0.5} {"chain_id":"33OOO72IVHKZ2BY1UOKP9H636K2CTP_1_7","score":0.5} {"chain_id":"33OOO72IVHKZ2BY1UOKP9H636K2CTP_1_8","score":0.5} {"chain_id":"33OOO72IVHKZ2BY1UOKP9H636K2CTP_1_9","score":0.5} {"chain_id":"33PPUNGG384ZUPWJIDZ2K066QXAZRC_1_1","score":0.5} {"chain_id":"33PPUNGG384ZUPWJIDZ2K066QXAZRC_1_10","score":0.5} {"chain_id":"33PPUNGG384ZUPWJIDZ2K066QXAZRC_1_2","score":0.5} {"chain_id":"33PPUNGG384ZUPWJIDZ2K066QXAZRC_1_3","score":0.5} {"chain_id":"33PPUNGG384ZUPWJIDZ2K066QXAZRC_1_4","score":0.5} {"chain_id":"33PPUNGG384ZUPWJIDZ2K066QXAZRC_1_5","score":0.5} {"chain_id":"33PPUNGG384ZUPWJIDZ2K066QXAZRC_1_6","score":0.5} {"chain_id":"33PPUNGG384ZUPWJIDZ2K066QXAZRC_1_7","score":0.5} {"chain_id":"33PPUNGG384ZUPWJIDZ2K066QXAZRC_1_8","score":0.5} {"chain_id":"33PPUNGG384ZUPWJIDZ2K066QXAZRC_1_9","score":0.5} {"chain_id":"33SA9F9TRXT6RQM9LKVVMPD55P4WE7_1_1","score":0.5} {"chain_id":"33SA9F9TRXT6RQM9LKVVMPD55P4WE7_1_10","score":0.5} {"chain_id":"33SA9F9TRXT6RQM9LKVVMPD55P4WE7_1_2","score":0.5} {"chain_id":"33SA9F9TRXT6RQM9LKVVMPD55P4WE7_1_3","score":0.5} {"chain_id":"33SA9F9TRXT6RQM9LKVVMPD55P4WE7_1_4","score":0.5} {"chain_id":"33SA9F9TRXT6RQM9LKVVMPD55P4WE7_1_5","score":0.5} {"chain_id":"33SA9F9TRXT6RQM9LKVVMPD55P4WE7_1_6","score":0.5} {"chain_id":"33SA9F9TRXT6RQM9LKVVMPD55P4WE7_1_7","score":0.5} {"chain_id":"33SA9F9TRXT6RQM9LKVVMPD55P4WE7_1_8","score":0.5} {"chain_id":"33SA9F9TRXT6RQM9LKVVMPD55P4WE7_1_9","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPGYY94_1_1","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPGYY94_1_10","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPGYY94_1_2","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPGYY94_1_3","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPGYY94_1_4","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPGYY94_1_5","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPGYY94_1_6","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPGYY94_1_7","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPGYY94_1_8","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPGYY94_1_9","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPL3Y9J_1_1","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPL3Y9J_1_10","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPL3Y9J_1_2","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPL3Y9J_1_3","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPL3Y9J_1_4","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPL3Y9J_1_5","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPL3Y9J_1_6","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPL3Y9J_1_7","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPL3Y9J_1_8","score":0.5} {"chain_id":"33TIN5LC049TLZQSSAXXF8XAPL3Y9J_1_9","score":0.5} {"chain_id":"345LHZDEDXRQPOH710ZYLAOBJL33UG_1_1","score":0.5} {"chain_id":"345LHZDEDXRQPOH710ZYLAOBJL33UG_1_10","score":0.5} {"chain_id":"345LHZDEDXRQPOH710ZYLAOBJL33UG_1_2","score":0.5} {"chain_id":"345LHZDEDXRQPOH710ZYLAOBJL33UG_1_3","score":0.5} {"chain_id":"345LHZDEDXRQPOH710ZYLAOBJL33UG_1_4","score":0.5} {"chain_id":"345LHZDEDXRQPOH710ZYLAOBJL33UG_1_5","score":0.5} {"chain_id":"345LHZDEDXRQPOH710ZYLAOBJL33UG_1_6","score":0.5} {"chain_id":"345LHZDEDXRQPOH710ZYLAOBJL33UG_1_7","score":0.5} {"chain_id":"345LHZDEDXRQPOH710ZYLAOBJL33UG_1_8","score":0.5} {"chain_id":"345LHZDEDXRQPOH710ZYLAOBJL33UG_1_9","score":0.5} {"chain_id":"3483FV8BEEIG2VVN1INQMU53AHI62V_1_1","score":0.5} {"chain_id":"3483FV8BEEIG2VVN1INQMU53AHI62V_1_10","score":0.5} {"chain_id":"3483FV8BEEIG2VVN1INQMU53AHI62V_1_2","score":0.5} {"chain_id":"3483FV8BEEIG2VVN1INQMU53AHI62V_1_3","score":0.5} {"chain_id":"3483FV8BEEIG2VVN1INQMU53AHI62V_1_4","score":0.5} {"chain_id":"3483FV8BEEIG2VVN1INQMU53AHI62V_1_5","score":0.5} {"chain_id":"3483FV8BEEIG2VVN1INQMU53AHI62V_1_6","score":0.5} {"chain_id":"3483FV8BEEIG2VVN1INQMU53AHI62V_1_7","score":0.5} {"chain_id":"3483FV8BEEIG2VVN1INQMU53AHI62V_1_8","score":0.5} {"chain_id":"3483FV8BEEIG2VVN1INQMU53AHI62V_1_9","score":0.5} {"chain_id":"34BBWHLWHAAI7VOVH3LM74BXMY7IWJ_1_1","score":0.5} {"chain_id":"34BBWHLWHAAI7VOVH3LM74BXMY7IWJ_1_10","score":0.5} {"chain_id":"34BBWHLWHAAI7VOVH3LM74BXMY7IWJ_1_2","score":0.5} {"chain_id":"34BBWHLWHAAI7VOVH3LM74BXMY7IWJ_1_3","score":0.5} {"chain_id":"34BBWHLWHAAI7VOVH3LM74BXMY7IWJ_1_4","score":0.5} {"chain_id":"34BBWHLWHAAI7VOVH3LM74BXMY7IWJ_1_5","score":0.5} {"chain_id":"34BBWHLWHAAI7VOVH3LM74BXMY7IWJ_1_6","score":0.5} {"chain_id":"34BBWHLWHAAI7VOVH3LM74BXMY7IWJ_1_7","score":0.5} {"chain_id":"34BBWHLWHAAI7VOVH3LM74BXMY7IWJ_1_8","score":0.5} {"chain_id":"34BBWHLWHAAI7VOVH3LM74BXMY7IWJ_1_9","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8NKR5YG_1_1","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8NKR5YG_1_10","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8NKR5YG_1_2","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8NKR5YG_1_3","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8NKR5YG_1_4","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8NKR5YG_1_5","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8NKR5YG_1_6","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8NKR5YG_1_7","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8NKR5YG_1_8","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8NKR5YG_1_9","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8O01Y5G_1_1","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8O01Y5G_1_10","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8O01Y5G_1_2","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8O01Y5G_1_3","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8O01Y5G_1_4","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8O01Y5G_1_5","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8O01Y5G_1_6","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8O01Y5G_1_7","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8O01Y5G_1_8","score":0.5} {"chain_id":"34FNN24DCM8AKCOGPKKG3SS8O01Y5G_1_9","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0CWOV47_1_1","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0CWOV47_1_10","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0CWOV47_1_2","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0CWOV47_1_3","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0CWOV47_1_4","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0CWOV47_1_5","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0CWOV47_1_6","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0CWOV47_1_7","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0CWOV47_1_8","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0CWOV47_1_9","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0LPQ4VD_1_1","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0LPQ4VD_1_10","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0LPQ4VD_1_2","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0LPQ4VD_1_3","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0LPQ4VD_1_4","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0LPQ4VD_1_5","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0LPQ4VD_1_6","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0LPQ4VD_1_7","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0LPQ4VD_1_8","score":0.5} {"chain_id":"34HJIJKLP5VBKZPB64EMR1I0LPQ4VD_1_9","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBW5XQI8_1_1","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBW5XQI8_1_10","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBW5XQI8_1_2","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBW5XQI8_1_3","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBW5XQI8_1_4","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBW5XQI8_1_5","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBW5XQI8_1_6","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBW5XQI8_1_7","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBW5XQI8_1_8","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBW5XQI8_1_9","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBWR4QIN_1_1","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBWR4QIN_1_10","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBWR4QIN_1_2","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBWR4QIN_1_3","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBWR4QIN_1_4","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBWR4QIN_1_5","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBWR4QIN_1_6","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBWR4QIN_1_7","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBWR4QIN_1_8","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBWR4QIN_1_9","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBZIFQIJ_1_1","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBZIFQIJ_1_10","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBZIFQIJ_1_2","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBZIFQIJ_1_3","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBZIFQIJ_1_4","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBZIFQIJ_1_5","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBZIFQIJ_1_6","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBZIFQIJ_1_7","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBZIFQIJ_1_8","score":0.5} {"chain_id":"34J10VATJFXDNYS95UMGFFTBZIFQIJ_1_9","score":0.5} {"chain_id":"34MAJL3QP4MR8QNSMU8G86QHHEF433_1_1","score":0.5} {"chain_id":"34MAJL3QP4MR8QNSMU8G86QHHEF433_1_10","score":0.5} {"chain_id":"34MAJL3QP4MR8QNSMU8G86QHHEF433_1_2","score":0.5} {"chain_id":"34MAJL3QP4MR8QNSMU8G86QHHEF433_1_3","score":0.5} {"chain_id":"34MAJL3QP4MR8QNSMU8G86QHHEF433_1_4","score":0.5} {"chain_id":"34MAJL3QP4MR8QNSMU8G86QHHEF433_1_5","score":0.5} {"chain_id":"34MAJL3QP4MR8QNSMU8G86QHHEF433_1_6","score":0.5} {"chain_id":"34MAJL3QP4MR8QNSMU8G86QHHEF433_1_7","score":0.5} {"chain_id":"34MAJL3QP4MR8QNSMU8G86QHHEF433_1_8","score":0.5} {"chain_id":"34MAJL3QP4MR8QNSMU8G86QHHEF433_1_9","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL721O10X_1_1","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL721O10X_1_10","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL721O10X_1_2","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL721O10X_1_3","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL721O10X_1_4","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL721O10X_1_5","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL721O10X_1_6","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL721O10X_1_7","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL721O10X_1_8","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL721O10X_1_9","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL74G901D_1_1","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL74G901D_1_10","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL74G901D_1_2","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL74G901D_1_3","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL74G901D_1_4","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL74G901D_1_5","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL74G901D_1_6","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL74G901D_1_7","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL74G901D_1_8","score":0.5} {"chain_id":"34Q075JO1XCEZZRCGP7V8AL74G901D_1_9","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2JLNLH8_1_1","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2JLNLH8_1_10","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2JLNLH8_1_2","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2JLNLH8_1_3","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2JLNLH8_1_4","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2JLNLH8_1_5","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2JLNLH8_1_6","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2JLNLH8_1_7","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2JLNLH8_1_8","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2JLNLH8_1_9","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2M6FHL5_1_1","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2M6FHL5_1_10","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2M6FHL5_1_2","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2M6FHL5_1_3","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2M6FHL5_1_4","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2M6FHL5_1_5","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2M6FHL5_1_6","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2M6FHL5_1_7","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2M6FHL5_1_8","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2M6FHL5_1_9","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2Q9HLHL_1_1","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2Q9HLHL_1_10","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2Q9HLHL_1_2","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2Q9HLHL_1_3","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2Q9HLHL_1_4","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2Q9HLHL_1_5","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2Q9HLHL_1_6","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2Q9HLHL_1_7","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2Q9HLHL_1_8","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2Q9HLHL_1_9","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2ZJGHL9_1_1","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2ZJGHL9_1_10","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2ZJGHL9_1_2","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2ZJGHL9_1_3","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2ZJGHL9_1_4","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2ZJGHL9_1_5","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2ZJGHL9_1_6","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2ZJGHL9_1_7","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2ZJGHL9_1_8","score":0.5} {"chain_id":"34S6N1K2ZVI2061C77WZYHT2ZJGHL9_1_9","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUHE4NYM_1_1","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUHE4NYM_1_10","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUHE4NYM_1_2","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUHE4NYM_1_3","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUHE4NYM_1_4","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUHE4NYM_1_5","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUHE4NYM_1_6","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUHE4NYM_1_7","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUHE4NYM_1_8","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUHE4NYM_1_9","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUL6PYN6_1_1","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUL6PYN6_1_10","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUL6PYN6_1_2","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUL6PYN6_1_3","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUL6PYN6_1_4","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUL6PYN6_1_5","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUL6PYN6_1_6","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUL6PYN6_1_7","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUL6PYN6_1_8","score":0.5} {"chain_id":"34S9DKFK73OEA1UMTKG2X9SUL6PYN6_1_9","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64Y6GFC0Y_1_1","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64Y6GFC0Y_1_10","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64Y6GFC0Y_1_2","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64Y6GFC0Y_1_3","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64Y6GFC0Y_1_4","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64Y6GFC0Y_1_5","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64Y6GFC0Y_1_6","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64Y6GFC0Y_1_7","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64Y6GFC0Y_1_8","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64Y6GFC0Y_1_9","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64YJNDC0N_1_1","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64YJNDC0N_1_10","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64YJNDC0N_1_2","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64YJNDC0N_1_3","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64YJNDC0N_1_4","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64YJNDC0N_1_5","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64YJNDC0N_1_6","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64YJNDC0N_1_7","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64YJNDC0N_1_8","score":0.5} {"chain_id":"34T446B1C0DYM21AWMWFP64YJNDC0N_1_9","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHBM496V_1_1","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHBM496V_1_10","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHBM496V_1_2","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHBM496V_1_3","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHBM496V_1_4","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHBM496V_1_5","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHBM496V_1_6","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHBM496V_1_7","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHBM496V_1_8","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHBM496V_1_9","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC1G962_1_1","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC1G962_1_10","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC1G962_1_2","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC1G962_1_3","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC1G962_1_4","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC1G962_1_5","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC1G962_1_6","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC1G962_1_7","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC1G962_1_8","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC1G962_1_9","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC6C695_1_1","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC6C695_1_10","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC6C695_1_2","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC6C695_1_3","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC6C695_1_4","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC6C695_1_5","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC6C695_1_6","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC6C695_1_7","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC6C695_1_8","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHC6C695_1_9","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHGPL69K_1_1","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHGPL69K_1_10","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHGPL69K_1_2","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHGPL69K_1_3","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHGPL69K_1_4","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHGPL69K_1_5","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHGPL69K_1_6","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHGPL69K_1_7","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHGPL69K_1_8","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHGPL69K_1_9","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHQ7U693_1_1","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHQ7U693_1_10","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHQ7U693_1_2","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHQ7U693_1_3","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHQ7U693_1_4","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHQ7U693_1_5","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHQ7U693_1_6","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHQ7U693_1_7","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHQ7U693_1_8","score":0.5} {"chain_id":"34V1S5K3GS0R2FGMMR25WHDHQ7U693_1_9","score":0.5} {"chain_id":"34X6J5FLPTX9I9CFNC7GRG8B8NLJQH_1_1","score":0.5} {"chain_id":"34X6J5FLPTX9I9CFNC7GRG8B8NLJQH_1_10","score":0.5} {"chain_id":"34X6J5FLPTX9I9CFNC7GRG8B8NLJQH_1_2","score":0.5} {"chain_id":"34X6J5FLPTX9I9CFNC7GRG8B8NLJQH_1_3","score":0.5} {"chain_id":"34X6J5FLPTX9I9CFNC7GRG8B8NLJQH_1_4","score":0.5} {"chain_id":"34X6J5FLPTX9I9CFNC7GRG8B8NLJQH_1_5","score":0.5} {"chain_id":"34X6J5FLPTX9I9CFNC7GRG8B8NLJQH_1_6","score":0.5} {"chain_id":"34X6J5FLPTX9I9CFNC7GRG8B8NLJQH_1_7","score":0.5} {"chain_id":"34X6J5FLPTX9I9CFNC7GRG8B8NLJQH_1_8","score":0.5} {"chain_id":"34X6J5FLPTX9I9CFNC7GRG8B8NLJQH_1_9","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQAZMMGM_1_1","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQAZMMGM_1_10","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQAZMMGM_1_2","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQAZMMGM_1_3","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQAZMMGM_1_4","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQAZMMGM_1_5","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQAZMMGM_1_6","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQAZMMGM_1_7","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQAZMMGM_1_8","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQAZMMGM_1_9","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQBL6GM9_1_1","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQBL6GM9_1_10","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQBL6GM9_1_2","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQBL6GM9_1_3","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQBL6GM9_1_4","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQBL6GM9_1_5","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQBL6GM9_1_6","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQBL6GM9_1_7","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQBL6GM9_1_8","score":0.5} {"chain_id":"34YB12FSQYN86SOMNDFWDUWQBL6GM9_1_9","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42RBY0T3_1_1","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42RBY0T3_1_10","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42RBY0T3_1_2","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42RBY0T3_1_3","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42RBY0T3_1_4","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42RBY0T3_1_5","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42RBY0T3_1_6","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42RBY0T3_1_7","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42RBY0T3_1_8","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42RBY0T3_1_9","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42YZT0TH_1_1","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42YZT0TH_1_10","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42YZT0TH_1_2","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42YZT0TH_1_3","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42YZT0TH_1_4","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42YZT0TH_1_5","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42YZT0TH_1_6","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42YZT0TH_1_7","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42YZT0TH_1_8","score":0.5} {"chain_id":"34Z02EIMISCF8J3LI8R5EG42YZT0TH_1_9","score":0.5} {"chain_id":"351SEKWQS0G5U8EVLNEO79TT73UMD2_1_1","score":0.5} {"chain_id":"351SEKWQS0G5U8EVLNEO79TT73UMD2_1_10","score":0.5} {"chain_id":"351SEKWQS0G5U8EVLNEO79TT73UMD2_1_2","score":0.5} {"chain_id":"351SEKWQS0G5U8EVLNEO79TT73UMD2_1_3","score":0.5} {"chain_id":"351SEKWQS0G5U8EVLNEO79TT73UMD2_1_4","score":0.5} {"chain_id":"351SEKWQS0G5U8EVLNEO79TT73UMD2_1_5","score":0.5} {"chain_id":"351SEKWQS0G5U8EVLNEO79TT73UMD2_1_6","score":0.5} {"chain_id":"351SEKWQS0G5U8EVLNEO79TT73UMD2_1_7","score":0.5} {"chain_id":"351SEKWQS0G5U8EVLNEO79TT73UMD2_1_8","score":0.5} {"chain_id":"351SEKWQS0G5U8EVLNEO79TT73UMD2_1_9","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RREHE4H1_1_1","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RREHE4H1_1_10","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RREHE4H1_1_2","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RREHE4H1_1_3","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RREHE4H1_1_4","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RREHE4H1_1_5","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RREHE4H1_1_6","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RREHE4H1_1_7","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RREHE4H1_1_8","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RREHE4H1_1_9","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RRY9X4HO_1_1","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RRY9X4HO_1_10","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RRY9X4HO_1_2","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RRY9X4HO_1_3","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RRY9X4HO_1_4","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RRY9X4HO_1_5","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RRY9X4HO_1_6","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RRY9X4HO_1_7","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RRY9X4HO_1_8","score":0.5} {"chain_id":"352YTHGROVC62YUR1FXIC0RRY9X4HO_1_9","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52X11B00A_1_1","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52X11B00A_1_10","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52X11B00A_1_2","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52X11B00A_1_3","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52X11B00A_1_4","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52X11B00A_1_5","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52X11B00A_1_6","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52X11B00A_1_7","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52X11B00A_1_8","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52X11B00A_1_9","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52XYFS00G_1_1","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52XYFS00G_1_10","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52XYFS00G_1_2","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52XYFS00G_1_3","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52XYFS00G_1_4","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52XYFS00G_1_5","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52XYFS00G_1_6","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52XYFS00G_1_7","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52XYFS00G_1_8","score":0.5} {"chain_id":"354GIDR5ZB5ESA6UK63VU52XYFS00G_1_9","score":0.5} {"chain_id":"354P56DE9K2SBUQQE77OJQI3Z8F7SG_1_1","score":0.5} {"chain_id":"354P56DE9K2SBUQQE77OJQI3Z8F7SG_1_10","score":0.5} {"chain_id":"354P56DE9K2SBUQQE77OJQI3Z8F7SG_1_2","score":0.5} {"chain_id":"354P56DE9K2SBUQQE77OJQI3Z8F7SG_1_3","score":0.5} {"chain_id":"354P56DE9K2SBUQQE77OJQI3Z8F7SG_1_4","score":0.5} {"chain_id":"354P56DE9K2SBUQQE77OJQI3Z8F7SG_1_5","score":0.5} {"chain_id":"354P56DE9K2SBUQQE77OJQI3Z8F7SG_1_6","score":0.5} {"chain_id":"354P56DE9K2SBUQQE77OJQI3Z8F7SG_1_7","score":0.5} {"chain_id":"354P56DE9K2SBUQQE77OJQI3Z8F7SG_1_8","score":0.5} {"chain_id":"354P56DE9K2SBUQQE77OJQI3Z8F7SG_1_9","score":0.5} {"chain_id":"358010RM5ES2I1DLQFGROCFYEOXVXT_1_1","score":0.5} {"chain_id":"358010RM5ES2I1DLQFGROCFYEOXVXT_1_10","score":0.5} {"chain_id":"358010RM5ES2I1DLQFGROCFYEOXVXT_1_2","score":0.5} {"chain_id":"358010RM5ES2I1DLQFGROCFYEOXVXT_1_3","score":0.5} {"chain_id":"358010RM5ES2I1DLQFGROCFYEOXVXT_1_4","score":0.5} {"chain_id":"358010RM5ES2I1DLQFGROCFYEOXVXT_1_5","score":0.5} {"chain_id":"358010RM5ES2I1DLQFGROCFYEOXVXT_1_6","score":0.5} {"chain_id":"358010RM5ES2I1DLQFGROCFYEOXVXT_1_7","score":0.5} {"chain_id":"358010RM5ES2I1DLQFGROCFYEOXVXT_1_8","score":0.5} {"chain_id":"358010RM5ES2I1DLQFGROCFYEOXVXT_1_9","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7I0PR7Y_1_1","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7I0PR7Y_1_10","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7I0PR7Y_1_2","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7I0PR7Y_1_3","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7I0PR7Y_1_4","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7I0PR7Y_1_5","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7I0PR7Y_1_6","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7I0PR7Y_1_7","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7I0PR7Y_1_8","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7I0PR7Y_1_9","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7R7GR7C_1_1","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7R7GR7C_1_10","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7R7GR7C_1_2","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7R7GR7C_1_3","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7R7GR7C_1_4","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7R7GR7C_1_5","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7R7GR7C_1_6","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7R7GR7C_1_7","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7R7GR7C_1_8","score":0.5} {"chain_id":"358UUM7WRZ2GAFQDZI7JTGD7R7GR7C_1_9","score":0.5} {"chain_id":"35BLDD71I6WRNWD0RX4CLXV998WVZI_1_1","score":0.5} {"chain_id":"35BLDD71I6WRNWD0RX4CLXV998WVZI_1_10","score":0.5} {"chain_id":"35BLDD71I6WRNWD0RX4CLXV998WVZI_1_2","score":0.5} {"chain_id":"35BLDD71I6WRNWD0RX4CLXV998WVZI_1_3","score":0.5} {"chain_id":"35BLDD71I6WRNWD0RX4CLXV998WVZI_1_4","score":0.5} {"chain_id":"35BLDD71I6WRNWD0RX4CLXV998WVZI_1_5","score":0.5} {"chain_id":"35BLDD71I6WRNWD0RX4CLXV998WVZI_1_6","score":0.5} {"chain_id":"35BLDD71I6WRNWD0RX4CLXV998WVZI_1_7","score":0.5} {"chain_id":"35BLDD71I6WRNWD0RX4CLXV998WVZI_1_8","score":0.5} {"chain_id":"35BLDD71I6WRNWD0RX4CLXV998WVZI_1_9","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNF8OR3XG_1_1","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNF8OR3XG_1_10","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNF8OR3XG_1_2","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNF8OR3XG_1_3","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNF8OR3XG_1_4","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNF8OR3XG_1_5","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNF8OR3XG_1_6","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNF8OR3XG_1_7","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNF8OR3XG_1_8","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNF8OR3XG_1_9","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFAOCX3X_1_1","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFAOCX3X_1_10","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFAOCX3X_1_2","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFAOCX3X_1_3","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFAOCX3X_1_4","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFAOCX3X_1_5","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFAOCX3X_1_6","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFAOCX3X_1_7","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFAOCX3X_1_8","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFAOCX3X_1_9","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFDZJX3T_1_1","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFDZJX3T_1_10","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFDZJX3T_1_2","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFDZJX3T_1_3","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFDZJX3T_1_4","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFDZJX3T_1_5","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFDZJX3T_1_6","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFDZJX3T_1_7","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFDZJX3T_1_8","score":0.5} {"chain_id":"35DR22AR5DJI6SB265AL5HNFDZJX3T_1_9","score":0.5} {"chain_id":"35GCEFQ6I5N7BNBH7NY6223QJQT3ZO_1_1","score":0.5} {"chain_id":"35GCEFQ6I5N7BNBH7NY6223QJQT3ZO_1_10","score":0.5} {"chain_id":"35GCEFQ6I5N7BNBH7NY6223QJQT3ZO_1_2","score":0.5} {"chain_id":"35GCEFQ6I5N7BNBH7NY6223QJQT3ZO_1_3","score":0.5} {"chain_id":"35GCEFQ6I5N7BNBH7NY6223QJQT3ZO_1_4","score":0.5} {"chain_id":"35GCEFQ6I5N7BNBH7NY6223QJQT3ZO_1_5","score":0.5} {"chain_id":"35GCEFQ6I5N7BNBH7NY6223QJQT3ZO_1_6","score":0.5} {"chain_id":"35GCEFQ6I5N7BNBH7NY6223QJQT3ZO_1_7","score":0.5} {"chain_id":"35GCEFQ6I5N7BNBH7NY6223QJQT3ZO_1_8","score":0.5} {"chain_id":"35GCEFQ6I5N7BNBH7NY6223QJQT3ZO_1_9","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JO8WEOW_1_1","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JO8WEOW_1_10","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JO8WEOW_1_2","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JO8WEOW_1_3","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JO8WEOW_1_4","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JO8WEOW_1_5","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JO8WEOW_1_6","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JO8WEOW_1_7","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JO8WEOW_1_8","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JO8WEOW_1_9","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JP44OE7_1_1","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JP44OE7_1_10","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JP44OE7_1_2","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JP44OE7_1_3","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JP44OE7_1_4","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JP44OE7_1_5","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JP44OE7_1_6","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JP44OE7_1_7","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JP44OE7_1_8","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JP44OE7_1_9","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JR2ZOE0_1_1","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JR2ZOE0_1_10","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JR2ZOE0_1_2","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JR2ZOE0_1_3","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JR2ZOE0_1_4","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JR2ZOE0_1_5","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JR2ZOE0_1_6","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JR2ZOE0_1_7","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JR2ZOE0_1_8","score":0.5} {"chain_id":"35GMH2SV3EGYMHD7UY4L5V0JR2ZOE0_1_9","score":0.5} {"chain_id":"35H6S234SAZ81SEAJ1POK18FSIC65F_1_1","score":0.5} {"chain_id":"35H6S234SAZ81SEAJ1POK18FSIC65F_1_10","score":0.5} {"chain_id":"35H6S234SAZ81SEAJ1POK18FSIC65F_1_2","score":0.5} {"chain_id":"35H6S234SAZ81SEAJ1POK18FSIC65F_1_3","score":0.5} {"chain_id":"35H6S234SAZ81SEAJ1POK18FSIC65F_1_4","score":0.5} {"chain_id":"35H6S234SAZ81SEAJ1POK18FSIC65F_1_5","score":0.5} {"chain_id":"35H6S234SAZ81SEAJ1POK18FSIC65F_1_6","score":0.5} {"chain_id":"35H6S234SAZ81SEAJ1POK18FSIC65F_1_7","score":0.5} {"chain_id":"35H6S234SAZ81SEAJ1POK18FSIC65F_1_8","score":0.5} {"chain_id":"35H6S234SAZ81SEAJ1POK18FSIC65F_1_9","score":0.5} {"chain_id":"35K3O9HUABC4G40EVVLVI1R5W1GFEA_1_1","score":0.5} {"chain_id":"35K3O9HUABC4G40EVVLVI1R5W1GFEA_1_10","score":0.5} {"chain_id":"35K3O9HUABC4G40EVVLVI1R5W1GFEA_1_2","score":0.5} {"chain_id":"35K3O9HUABC4G40EVVLVI1R5W1GFEA_1_3","score":0.5} {"chain_id":"35K3O9HUABC4G40EVVLVI1R5W1GFEA_1_4","score":0.5} {"chain_id":"35K3O9HUABC4G40EVVLVI1R5W1GFEA_1_5","score":0.5} {"chain_id":"35K3O9HUABC4G40EVVLVI1R5W1GFEA_1_6","score":0.5} {"chain_id":"35K3O9HUABC4G40EVVLVI1R5W1GFEA_1_7","score":0.5} {"chain_id":"35K3O9HUABC4G40EVVLVI1R5W1GFEA_1_8","score":0.5} {"chain_id":"35K3O9HUABC4G40EVVLVI1R5W1GFEA_1_9","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PL37GHUV_1_1","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PL37GHUV_1_10","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PL37GHUV_1_2","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PL37GHUV_1_3","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PL37GHUV_1_4","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PL37GHUV_1_5","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PL37GHUV_1_6","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PL37GHUV_1_7","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PL37GHUV_1_8","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PL37GHUV_1_9","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PLYF0UH3_1_1","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PLYF0UH3_1_10","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PLYF0UH3_1_2","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PLYF0UH3_1_3","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PLYF0UH3_1_4","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PLYF0UH3_1_5","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PLYF0UH3_1_6","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PLYF0UH3_1_7","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PLYF0UH3_1_8","score":0.5} {"chain_id":"35L9RVQFCOH5JWO6GLO0P4PLYF0UH3_1_9","score":0.5} {"chain_id":"3634BBTX0OTGW920REBM3GPXTX7FIE_1_1","score":0.5} {"chain_id":"3634BBTX0OTGW920REBM3GPXTX7FIE_1_10","score":0.5} {"chain_id":"3634BBTX0OTGW920REBM3GPXTX7FIE_1_2","score":0.5} {"chain_id":"3634BBTX0OTGW920REBM3GPXTX7FIE_1_3","score":0.5} {"chain_id":"3634BBTX0OTGW920REBM3GPXTX7FIE_1_4","score":0.5} {"chain_id":"3634BBTX0OTGW920REBM3GPXTX7FIE_1_5","score":0.5} {"chain_id":"3634BBTX0OTGW920REBM3GPXTX7FIE_1_6","score":0.5} {"chain_id":"3634BBTX0OTGW920REBM3GPXTX7FIE_1_7","score":0.5} {"chain_id":"3634BBTX0OTGW920REBM3GPXTX7FIE_1_8","score":0.5} {"chain_id":"3634BBTX0OTGW920REBM3GPXTX7FIE_1_9","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4DM6G68_1_1","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4DM6G68_1_10","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4DM6G68_1_2","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4DM6G68_1_3","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4DM6G68_1_4","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4DM6G68_1_5","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4DM6G68_1_6","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4DM6G68_1_7","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4DM6G68_1_8","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4DM6G68_1_9","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4F0U6GG_1_1","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4F0U6GG_1_10","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4F0U6GG_1_2","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4F0U6GG_1_3","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4F0U6GG_1_4","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4F0U6GG_1_5","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4F0U6GG_1_6","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4F0U6GG_1_7","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4F0U6GG_1_8","score":0.5} {"chain_id":"369J354OFD96HP3U0X8FOYZ4F0U6GG_1_9","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G03RPYD0_1_1","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G03RPYD0_1_10","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G03RPYD0_1_2","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G03RPYD0_1_3","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G03RPYD0_1_4","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G03RPYD0_1_5","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G03RPYD0_1_6","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G03RPYD0_1_7","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G03RPYD0_1_8","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G03RPYD0_1_9","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G05VOYD9_1_1","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G05VOYD9_1_10","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G05VOYD9_1_2","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G05VOYD9_1_3","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G05VOYD9_1_4","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G05VOYD9_1_5","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G05VOYD9_1_6","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G05VOYD9_1_7","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G05VOYD9_1_8","score":0.5} {"chain_id":"36AHBNMV1RB5OP394Q2Z14G05VOYD9_1_9","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE1FPMWF_1_1","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE1FPMWF_1_10","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE1FPMWF_1_2","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE1FPMWF_1_3","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE1FPMWF_1_4","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE1FPMWF_1_5","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE1FPMWF_1_6","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE1FPMWF_1_7","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE1FPMWF_1_8","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE1FPMWF_1_9","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE347WMN_1_1","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE347WMN_1_10","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE347WMN_1_2","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE347WMN_1_3","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE347WMN_1_4","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE347WMN_1_5","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE347WMN_1_6","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE347WMN_1_7","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE347WMN_1_8","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIE347WMN_1_9","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIEZPHWMZ_1_1","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIEZPHWMZ_1_10","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIEZPHWMZ_1_2","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIEZPHWMZ_1_3","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIEZPHWMZ_1_4","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIEZPHWMZ_1_5","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIEZPHWMZ_1_6","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIEZPHWMZ_1_7","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIEZPHWMZ_1_8","score":0.5} {"chain_id":"36NEMU28XFC43EEM2IJEZXIEZPHWMZ_1_9","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE0FCAEQ_1_1","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE0FCAEQ_1_10","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE0FCAEQ_1_2","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE0FCAEQ_1_3","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE0FCAEQ_1_4","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE0FCAEQ_1_5","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE0FCAEQ_1_6","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE0FCAEQ_1_7","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE0FCAEQ_1_8","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE0FCAEQ_1_9","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE16UAER_1_1","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE16UAER_1_10","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE16UAER_1_2","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE16UAER_1_3","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE16UAER_1_4","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE16UAER_1_5","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE16UAER_1_6","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE16UAER_1_7","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE16UAER_1_8","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE16UAER_1_9","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE4OWAEW_1_1","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE4OWAEW_1_10","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE4OWAEW_1_2","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE4OWAEW_1_3","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE4OWAEW_1_4","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE4OWAEW_1_5","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE4OWAEW_1_6","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE4OWAEW_1_7","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE4OWAEW_1_8","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GE4OWAEW_1_9","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GEZPIEAJ_1_1","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GEZPIEAJ_1_10","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GEZPIEAJ_1_2","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GEZPIEAJ_1_3","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GEZPIEAJ_1_4","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GEZPIEAJ_1_5","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GEZPIEAJ_1_6","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GEZPIEAJ_1_7","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GEZPIEAJ_1_8","score":0.5} {"chain_id":"36PW28KO4ZV9KDJ6KFZ340GEZPIEAJ_1_9","score":0.5} {"chain_id":"36TFCYNS449X00I1LQZN9BOPQNKHXZ_1_1","score":0.5} {"chain_id":"36TFCYNS449X00I1LQZN9BOPQNKHXZ_1_10","score":0.5} {"chain_id":"36TFCYNS449X00I1LQZN9BOPQNKHXZ_1_2","score":0.5} {"chain_id":"36TFCYNS449X00I1LQZN9BOPQNKHXZ_1_3","score":0.5} {"chain_id":"36TFCYNS449X00I1LQZN9BOPQNKHXZ_1_4","score":0.5} {"chain_id":"36TFCYNS449X00I1LQZN9BOPQNKHXZ_1_5","score":0.5} {"chain_id":"36TFCYNS449X00I1LQZN9BOPQNKHXZ_1_6","score":0.5} {"chain_id":"36TFCYNS449X00I1LQZN9BOPQNKHXZ_1_7","score":0.5} {"chain_id":"36TFCYNS449X00I1LQZN9BOPQNKHXZ_1_8","score":0.5} {"chain_id":"36TFCYNS449X00I1LQZN9BOPQNKHXZ_1_9","score":0.5} {"chain_id":"36V4Q8R5ZKZZJHI0Q9K8780SHVJQMS_1_1","score":0.5} {"chain_id":"36V4Q8R5ZKZZJHI0Q9K8780SHVJQMS_1_10","score":0.5} {"chain_id":"36V4Q8R5ZKZZJHI0Q9K8780SHVJQMS_1_2","score":0.5} {"chain_id":"36V4Q8R5ZKZZJHI0Q9K8780SHVJQMS_1_3","score":0.5} {"chain_id":"36V4Q8R5ZKZZJHI0Q9K8780SHVJQMS_1_4","score":0.5} {"chain_id":"36V4Q8R5ZKZZJHI0Q9K8780SHVJQMS_1_5","score":0.5} {"chain_id":"36V4Q8R5ZKZZJHI0Q9K8780SHVJQMS_1_6","score":0.5} {"chain_id":"36V4Q8R5ZKZZJHI0Q9K8780SHVJQMS_1_7","score":0.5} {"chain_id":"36V4Q8R5ZKZZJHI0Q9K8780SHVJQMS_1_8","score":0.5} {"chain_id":"36V4Q8R5ZKZZJHI0Q9K8780SHVJQMS_1_9","score":0.5} {"chain_id":"36W0OB37HWDM5VIGM8N86W40Z5AHZP_1_1","score":0.5} {"chain_id":"36W0OB37HWDM5VIGM8N86W40Z5AHZP_1_10","score":0.5} {"chain_id":"36W0OB37HWDM5VIGM8N86W40Z5AHZP_1_2","score":0.5} {"chain_id":"36W0OB37HWDM5VIGM8N86W40Z5AHZP_1_3","score":0.5} {"chain_id":"36W0OB37HWDM5VIGM8N86W40Z5AHZP_1_4","score":0.5} {"chain_id":"36W0OB37HWDM5VIGM8N86W40Z5AHZP_1_5","score":0.5} {"chain_id":"36W0OB37HWDM5VIGM8N86W40Z5AHZP_1_6","score":0.5} {"chain_id":"36W0OB37HWDM5VIGM8N86W40Z5AHZP_1_7","score":0.5} {"chain_id":"36W0OB37HWDM5VIGM8N86W40Z5AHZP_1_8","score":0.5} {"chain_id":"36W0OB37HWDM5VIGM8N86W40Z5AHZP_1_9","score":0.5} {"chain_id":"36WLNQG78Z9E3NOYQTZZZB0KIUCBEV_1_1","score":0.5} {"chain_id":"36WLNQG78Z9E3NOYQTZZZB0KIUCBEV_1_10","score":0.5} {"chain_id":"36WLNQG78Z9E3NOYQTZZZB0KIUCBEV_1_2","score":0.5} {"chain_id":"36WLNQG78Z9E3NOYQTZZZB0KIUCBEV_1_3","score":0.5} {"chain_id":"36WLNQG78Z9E3NOYQTZZZB0KIUCBEV_1_4","score":0.5} {"chain_id":"36WLNQG78Z9E3NOYQTZZZB0KIUCBEV_1_5","score":0.5} {"chain_id":"36WLNQG78Z9E3NOYQTZZZB0KIUCBEV_1_6","score":0.5} {"chain_id":"36WLNQG78Z9E3NOYQTZZZB0KIUCBEV_1_7","score":0.5} {"chain_id":"36WLNQG78Z9E3NOYQTZZZB0KIUCBEV_1_8","score":0.5} {"chain_id":"36WLNQG78Z9E3NOYQTZZZB0KIUCBEV_1_9","score":0.5} {"chain_id":"36ZN444YTRXA2MFTQHUCQAYBI2HIOR_1_1","score":0.5} {"chain_id":"36ZN444YTRXA2MFTQHUCQAYBI2HIOR_1_10","score":0.5} {"chain_id":"36ZN444YTRXA2MFTQHUCQAYBI2HIOR_1_2","score":0.5} {"chain_id":"36ZN444YTRXA2MFTQHUCQAYBI2HIOR_1_3","score":0.5} {"chain_id":"36ZN444YTRXA2MFTQHUCQAYBI2HIOR_1_4","score":0.5} {"chain_id":"36ZN444YTRXA2MFTQHUCQAYBI2HIOR_1_5","score":0.5} {"chain_id":"36ZN444YTRXA2MFTQHUCQAYBI2HIOR_1_6","score":0.5} {"chain_id":"36ZN444YTRXA2MFTQHUCQAYBI2HIOR_1_7","score":0.5} {"chain_id":"36ZN444YTRXA2MFTQHUCQAYBI2HIOR_1_8","score":0.5} {"chain_id":"36ZN444YTRXA2MFTQHUCQAYBI2HIOR_1_9","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P4MDRTI_1_1","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P4MDRTI_1_10","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P4MDRTI_1_2","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P4MDRTI_1_3","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P4MDRTI_1_4","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P4MDRTI_1_5","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P4MDRTI_1_6","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P4MDRTI_1_7","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P4MDRTI_1_8","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P4MDRTI_1_9","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P6GZTRW_1_1","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P6GZTRW_1_10","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P6GZTRW_1_2","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P6GZTRW_1_3","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P6GZTRW_1_4","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P6GZTRW_1_5","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P6GZTRW_1_6","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P6GZTRW_1_7","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P6GZTRW_1_8","score":0.5} {"chain_id":"373ERPL3YO738DNKCLAKYC5P6GZTRW_1_9","score":0.5} {"chain_id":"374TNBHA8BUZDY7E9C8J13NZNZGQYM_1_1","score":0.5} {"chain_id":"374TNBHA8BUZDY7E9C8J13NZNZGQYM_1_10","score":0.5} {"chain_id":"374TNBHA8BUZDY7E9C8J13NZNZGQYM_1_2","score":0.5} {"chain_id":"374TNBHA8BUZDY7E9C8J13NZNZGQYM_1_3","score":0.5} {"chain_id":"374TNBHA8BUZDY7E9C8J13NZNZGQYM_1_4","score":0.5} {"chain_id":"374TNBHA8BUZDY7E9C8J13NZNZGQYM_1_5","score":0.5} {"chain_id":"374TNBHA8BUZDY7E9C8J13NZNZGQYM_1_6","score":0.5} {"chain_id":"374TNBHA8BUZDY7E9C8J13NZNZGQYM_1_7","score":0.5} {"chain_id":"374TNBHA8BUZDY7E9C8J13NZNZGQYM_1_8","score":0.5} {"chain_id":"374TNBHA8BUZDY7E9C8J13NZNZGQYM_1_9","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6RPOIA9_1_1","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6RPOIA9_1_10","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6RPOIA9_1_2","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6RPOIA9_1_3","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6RPOIA9_1_4","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6RPOIA9_1_5","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6RPOIA9_1_6","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6RPOIA9_1_7","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6RPOIA9_1_8","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6RPOIA9_1_9","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6U2PAIV_1_1","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6U2PAIV_1_10","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6U2PAIV_1_2","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6U2PAIV_1_3","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6U2PAIV_1_4","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6U2PAIV_1_5","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6U2PAIV_1_6","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6U2PAIV_1_7","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6U2PAIV_1_8","score":0.5} {"chain_id":"378XPAWRUCCL0ILSGYPUPFE6U2PAIV_1_9","score":0.5} {"chain_id":"379J5II41OFQGWAAH6OTDEWPRXSEL2_1_1","score":0.5} {"chain_id":"379J5II41OFQGWAAH6OTDEWPRXSEL2_1_10","score":0.5} {"chain_id":"379J5II41OFQGWAAH6OTDEWPRXSEL2_1_2","score":0.5} {"chain_id":"379J5II41OFQGWAAH6OTDEWPRXSEL2_1_3","score":0.5} {"chain_id":"379J5II41OFQGWAAH6OTDEWPRXSEL2_1_4","score":0.5} {"chain_id":"379J5II41OFQGWAAH6OTDEWPRXSEL2_1_5","score":0.5} {"chain_id":"379J5II41OFQGWAAH6OTDEWPRXSEL2_1_6","score":0.5} {"chain_id":"379J5II41OFQGWAAH6OTDEWPRXSEL2_1_7","score":0.5} {"chain_id":"379J5II41OFQGWAAH6OTDEWPRXSEL2_1_8","score":0.5} {"chain_id":"379J5II41OFQGWAAH6OTDEWPRXSEL2_1_9","score":0.5} {"chain_id":"37C0GNLMHF2355T3Y777IDW74JJ6DZ_1_1","score":0.5} {"chain_id":"37C0GNLMHF2355T3Y777IDW74JJ6DZ_1_10","score":0.5} {"chain_id":"37C0GNLMHF2355T3Y777IDW74JJ6DZ_1_2","score":0.5} {"chain_id":"37C0GNLMHF2355T3Y777IDW74JJ6DZ_1_3","score":0.5} {"chain_id":"37C0GNLMHF2355T3Y777IDW74JJ6DZ_1_4","score":0.5} {"chain_id":"37C0GNLMHF2355T3Y777IDW74JJ6DZ_1_5","score":0.5} {"chain_id":"37C0GNLMHF2355T3Y777IDW74JJ6DZ_1_6","score":0.5} {"chain_id":"37C0GNLMHF2355T3Y777IDW74JJ6DZ_1_7","score":0.5} {"chain_id":"37C0GNLMHF2355T3Y777IDW74JJ6DZ_1_8","score":0.5} {"chain_id":"37C0GNLMHF2355T3Y777IDW74JJ6DZ_1_9","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCAY6IBK_1_1","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCAY6IBK_1_10","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCAY6IBK_1_2","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCAY6IBK_1_3","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCAY6IBK_1_4","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCAY6IBK_1_5","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCAY6IBK_1_6","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCAY6IBK_1_7","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCAY6IBK_1_8","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCAY6IBK_1_9","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCBDBIBK_1_1","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCBDBIBK_1_10","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCBDBIBK_1_2","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCBDBIBK_1_3","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCBDBIBK_1_4","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCBDBIBK_1_5","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCBDBIBK_1_6","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCBDBIBK_1_7","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCBDBIBK_1_8","score":0.5} {"chain_id":"37FMASSAYCQQJSQKMCPQKQYCBDBIBK_1_9","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQHDPP0_1_1","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQHDPP0_1_10","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQHDPP0_1_2","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQHDPP0_1_3","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQHDPP0_1_4","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQHDPP0_1_5","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQHDPP0_1_6","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQHDPP0_1_7","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQHDPP0_1_8","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQHDPP0_1_9","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQI2PPR_1_1","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQI2PPR_1_10","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQI2PPR_1_2","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQI2PPR_1_3","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQI2PPR_1_4","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQI2PPR_1_5","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQI2PPR_1_6","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQI2PPR_1_7","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQI2PPR_1_8","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQI2PPR_1_9","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQX8PPR_1_1","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQX8PPR_1_10","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQX8PPR_1_2","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQX8PPR_1_3","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQX8PPR_1_4","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQX8PPR_1_5","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQX8PPR_1_6","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQX8PPR_1_7","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQX8PPR_1_8","score":0.5} {"chain_id":"37KGEN7NJ3PK48EYICXBO74DQX8PPR_1_9","score":0.5} {"chain_id":"37M28K1J0QCHVT5YYGAU1GT65T9AJO_1_1","score":0.5} {"chain_id":"37M28K1J0QCHVT5YYGAU1GT65T9AJO_1_10","score":0.5} {"chain_id":"37M28K1J0QCHVT5YYGAU1GT65T9AJO_1_2","score":0.5} {"chain_id":"37M28K1J0QCHVT5YYGAU1GT65T9AJO_1_3","score":0.5} {"chain_id":"37M28K1J0QCHVT5YYGAU1GT65T9AJO_1_4","score":0.5} {"chain_id":"37M28K1J0QCHVT5YYGAU1GT65T9AJO_1_5","score":0.5} {"chain_id":"37M28K1J0QCHVT5YYGAU1GT65T9AJO_1_6","score":0.5} {"chain_id":"37M28K1J0QCHVT5YYGAU1GT65T9AJO_1_7","score":0.5} {"chain_id":"37M28K1J0QCHVT5YYGAU1GT65T9AJO_1_8","score":0.5} {"chain_id":"37M28K1J0QCHVT5YYGAU1GT65T9AJO_1_9","score":0.5} {"chain_id":"37Q970SNZE7E08BOPRQFIGRQ18LS1N_1_1","score":0.5} {"chain_id":"37Q970SNZE7E08BOPRQFIGRQ18LS1N_1_10","score":0.5} {"chain_id":"37Q970SNZE7E08BOPRQFIGRQ18LS1N_1_2","score":0.5} {"chain_id":"37Q970SNZE7E08BOPRQFIGRQ18LS1N_1_3","score":0.5} {"chain_id":"37Q970SNZE7E08BOPRQFIGRQ18LS1N_1_4","score":0.5} {"chain_id":"37Q970SNZE7E08BOPRQFIGRQ18LS1N_1_5","score":0.5} {"chain_id":"37Q970SNZE7E08BOPRQFIGRQ18LS1N_1_6","score":0.5} {"chain_id":"37Q970SNZE7E08BOPRQFIGRQ18LS1N_1_7","score":0.5} {"chain_id":"37Q970SNZE7E08BOPRQFIGRQ18LS1N_1_8","score":0.5} {"chain_id":"37Q970SNZE7E08BOPRQFIGRQ18LS1N_1_9","score":0.5} {"chain_id":"37QW5D2ZRGLWB8V9OCZUXQEYDG2S8K_1_1","score":0.5} {"chain_id":"37QW5D2ZRGLWB8V9OCZUXQEYDG2S8K_1_10","score":0.5} {"chain_id":"37QW5D2ZRGLWB8V9OCZUXQEYDG2S8K_1_2","score":0.5} {"chain_id":"37QW5D2ZRGLWB8V9OCZUXQEYDG2S8K_1_3","score":0.5} {"chain_id":"37QW5D2ZRGLWB8V9OCZUXQEYDG2S8K_1_4","score":0.5} {"chain_id":"37QW5D2ZRGLWB8V9OCZUXQEYDG2S8K_1_5","score":0.5} {"chain_id":"37QW5D2ZRGLWB8V9OCZUXQEYDG2S8K_1_6","score":0.5} {"chain_id":"37QW5D2ZRGLWB8V9OCZUXQEYDG2S8K_1_7","score":0.5} {"chain_id":"37QW5D2ZRGLWB8V9OCZUXQEYDG2S8K_1_8","score":0.5} {"chain_id":"37QW5D2ZRGLWB8V9OCZUXQEYDG2S8K_1_9","score":0.5} {"chain_id":"37TD41K0AH8YNBLM5OFZZCAH4WTSCB_1_1","score":0.5} {"chain_id":"37TD41K0AH8YNBLM5OFZZCAH4WTSCB_1_10","score":0.5} {"chain_id":"37TD41K0AH8YNBLM5OFZZCAH4WTSCB_1_2","score":0.5} {"chain_id":"37TD41K0AH8YNBLM5OFZZCAH4WTSCB_1_3","score":0.5} {"chain_id":"37TD41K0AH8YNBLM5OFZZCAH4WTSCB_1_4","score":0.5} {"chain_id":"37TD41K0AH8YNBLM5OFZZCAH4WTSCB_1_5","score":0.5} {"chain_id":"37TD41K0AH8YNBLM5OFZZCAH4WTSCB_1_6","score":0.5} {"chain_id":"37TD41K0AH8YNBLM5OFZZCAH4WTSCB_1_7","score":0.5} {"chain_id":"37TD41K0AH8YNBLM5OFZZCAH4WTSCB_1_8","score":0.5} {"chain_id":"37TD41K0AH8YNBLM5OFZZCAH4WTSCB_1_9","score":0.5} {"chain_id":"37TRT2X24QQME3AQ4UAQWRDCML7BJG_1_1","score":0.5} {"chain_id":"37TRT2X24QQME3AQ4UAQWRDCML7BJG_1_10","score":0.5} {"chain_id":"37TRT2X24QQME3AQ4UAQWRDCML7BJG_1_2","score":0.5} {"chain_id":"37TRT2X24QQME3AQ4UAQWRDCML7BJG_1_3","score":0.5} {"chain_id":"37TRT2X24QQME3AQ4UAQWRDCML7BJG_1_4","score":0.5} {"chain_id":"37TRT2X24QQME3AQ4UAQWRDCML7BJG_1_5","score":0.5} {"chain_id":"37TRT2X24QQME3AQ4UAQWRDCML7BJG_1_6","score":0.5} {"chain_id":"37TRT2X24QQME3AQ4UAQWRDCML7BJG_1_7","score":0.5} {"chain_id":"37TRT2X24QQME3AQ4UAQWRDCML7BJG_1_8","score":0.5} {"chain_id":"37TRT2X24QQME3AQ4UAQWRDCML7BJG_1_9","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92MU18RL_1_1","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92MU18RL_1_10","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92MU18RL_1_2","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92MU18RL_1_3","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92MU18RL_1_4","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92MU18RL_1_5","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92MU18RL_1_6","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92MU18RL_1_7","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92MU18RL_1_8","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92MU18RL_1_9","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92OXR8RJ_1_1","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92OXR8RJ_1_10","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92OXR8RJ_1_2","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92OXR8RJ_1_3","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92OXR8RJ_1_4","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92OXR8RJ_1_5","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92OXR8RJ_1_6","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92OXR8RJ_1_7","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92OXR8RJ_1_8","score":0.5} {"chain_id":"37U1UTWH9VLKATVW9NZP7G92OXR8RJ_1_9","score":0.5} {"chain_id":"37UEWGM5HT72ZTBBA2QAS6MUF53R1X_1_1","score":0.5} {"chain_id":"37UEWGM5HT72ZTBBA2QAS6MUF53R1X_1_10","score":0.5} {"chain_id":"37UEWGM5HT72ZTBBA2QAS6MUF53R1X_1_2","score":0.5} {"chain_id":"37UEWGM5HT72ZTBBA2QAS6MUF53R1X_1_3","score":0.5} {"chain_id":"37UEWGM5HT72ZTBBA2QAS6MUF53R1X_1_4","score":0.5} {"chain_id":"37UEWGM5HT72ZTBBA2QAS6MUF53R1X_1_5","score":0.5} {"chain_id":"37UEWGM5HT72ZTBBA2QAS6MUF53R1X_1_6","score":0.5} {"chain_id":"37UEWGM5HT72ZTBBA2QAS6MUF53R1X_1_7","score":0.5} {"chain_id":"37UEWGM5HT72ZTBBA2QAS6MUF53R1X_1_8","score":0.5} {"chain_id":"37UEWGM5HT72ZTBBA2QAS6MUF53R1X_1_9","score":0.5} {"chain_id":"37UQDCYH6XU83M7U82CTUD2A0D17VH_1_1","score":0.5} {"chain_id":"37UQDCYH6XU83M7U82CTUD2A0D17VH_1_10","score":0.5} {"chain_id":"37UQDCYH6XU83M7U82CTUD2A0D17VH_1_2","score":0.5} {"chain_id":"37UQDCYH6XU83M7U82CTUD2A0D17VH_1_3","score":0.5} {"chain_id":"37UQDCYH6XU83M7U82CTUD2A0D17VH_1_4","score":0.5} {"chain_id":"37UQDCYH6XU83M7U82CTUD2A0D17VH_1_5","score":0.5} {"chain_id":"37UQDCYH6XU83M7U82CTUD2A0D17VH_1_6","score":0.5} {"chain_id":"37UQDCYH6XU83M7U82CTUD2A0D17VH_1_7","score":0.5} {"chain_id":"37UQDCYH6XU83M7U82CTUD2A0D17VH_1_8","score":0.5} {"chain_id":"37UQDCYH6XU83M7U82CTUD2A0D17VH_1_9","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9D2YWR_1_1","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9D2YWR_1_10","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9D2YWR_1_2","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9D2YWR_1_3","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9D2YWR_1_4","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9D2YWR_1_5","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9D2YWR_1_6","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9D2YWR_1_7","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9D2YWR_1_8","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9D2YWR_1_9","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9KVWYW_1_1","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9KVWYW_1_10","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9KVWYW_1_2","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9KVWYW_1_3","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9KVWYW_1_4","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9KVWYW_1_5","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9KVWYW_1_6","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9KVWYW_1_7","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9KVWYW_1_8","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5L9KVWYW_1_9","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5LE5OWY0_1_1","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5LE5OWY0_1_10","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5LE5OWY0_1_2","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5LE5OWY0_1_3","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5LE5OWY0_1_4","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5LE5OWY0_1_5","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5LE5OWY0_1_6","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5LE5OWY0_1_7","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5LE5OWY0_1_8","score":0.5} {"chain_id":"37W3JXSD6674XV30LL7PTS5LE5OWY0_1_9","score":0.5} {"chain_id":"37WLF8U1WPPBJBZDQOTUMQRXQZN6KZ_1_1","score":0.5} {"chain_id":"37WLF8U1WPPBJBZDQOTUMQRXQZN6KZ_1_10","score":0.5} {"chain_id":"37WLF8U1WPPBJBZDQOTUMQRXQZN6KZ_1_2","score":0.5} {"chain_id":"37WLF8U1WPPBJBZDQOTUMQRXQZN6KZ_1_3","score":0.5} {"chain_id":"37WLF8U1WPPBJBZDQOTUMQRXQZN6KZ_1_4","score":0.5} {"chain_id":"37WLF8U1WPPBJBZDQOTUMQRXQZN6KZ_1_5","score":0.5} {"chain_id":"37WLF8U1WPPBJBZDQOTUMQRXQZN6KZ_1_6","score":0.5} {"chain_id":"37WLF8U1WPPBJBZDQOTUMQRXQZN6KZ_1_7","score":0.5} {"chain_id":"37WLF8U1WPPBJBZDQOTUMQRXQZN6KZ_1_8","score":0.5} {"chain_id":"37WLF8U1WPPBJBZDQOTUMQRXQZN6KZ_1_9","score":0.5} {"chain_id":"37XITHEISW8MMWL9QZFU925LEIKRC4_1_1","score":0.5} {"chain_id":"37XITHEISW8MMWL9QZFU925LEIKRC4_1_10","score":0.5} {"chain_id":"37XITHEISW8MMWL9QZFU925LEIKRC4_1_2","score":0.5} {"chain_id":"37XITHEISW8MMWL9QZFU925LEIKRC4_1_3","score":0.5} {"chain_id":"37XITHEISW8MMWL9QZFU925LEIKRC4_1_4","score":0.5} {"chain_id":"37XITHEISW8MMWL9QZFU925LEIKRC4_1_5","score":0.5} {"chain_id":"37XITHEISW8MMWL9QZFU925LEIKRC4_1_6","score":0.5} {"chain_id":"37XITHEISW8MMWL9QZFU925LEIKRC4_1_7","score":0.5} {"chain_id":"37XITHEISW8MMWL9QZFU925LEIKRC4_1_8","score":0.5} {"chain_id":"37XITHEISW8MMWL9QZFU925LEIKRC4_1_9","score":0.5} {"chain_id":"37ZHEEHM6WLORD5BOS6NBIAR7TK37Q_1_1","score":0.5} {"chain_id":"37ZHEEHM6WLORD5BOS6NBIAR7TK37Q_1_10","score":0.5} {"chain_id":"37ZHEEHM6WLORD5BOS6NBIAR7TK37Q_1_2","score":0.5} {"chain_id":"37ZHEEHM6WLORD5BOS6NBIAR7TK37Q_1_3","score":0.5} {"chain_id":"37ZHEEHM6WLORD5BOS6NBIAR7TK37Q_1_4","score":0.5} {"chain_id":"37ZHEEHM6WLORD5BOS6NBIAR7TK37Q_1_5","score":0.5} {"chain_id":"37ZHEEHM6WLORD5BOS6NBIAR7TK37Q_1_6","score":0.5} {"chain_id":"37ZHEEHM6WLORD5BOS6NBIAR7TK37Q_1_7","score":0.5} {"chain_id":"37ZHEEHM6WLORD5BOS6NBIAR7TK37Q_1_8","score":0.5} {"chain_id":"37ZHEEHM6WLORD5BOS6NBIAR7TK37Q_1_9","score":0.5} {"chain_id":"382M9COHEHETZMX4QKGU41S84MEUE1_1_1","score":0.5} {"chain_id":"382M9COHEHETZMX4QKGU41S84MEUE1_1_10","score":0.5} {"chain_id":"382M9COHEHETZMX4QKGU41S84MEUE1_1_2","score":0.5} {"chain_id":"382M9COHEHETZMX4QKGU41S84MEUE1_1_3","score":0.5} {"chain_id":"382M9COHEHETZMX4QKGU41S84MEUE1_1_4","score":0.5} {"chain_id":"382M9COHEHETZMX4QKGU41S84MEUE1_1_5","score":0.5} {"chain_id":"382M9COHEHETZMX4QKGU41S84MEUE1_1_6","score":0.5} {"chain_id":"382M9COHEHETZMX4QKGU41S84MEUE1_1_7","score":0.5} {"chain_id":"382M9COHEHETZMX4QKGU41S84MEUE1_1_8","score":0.5} {"chain_id":"382M9COHEHETZMX4QKGU41S84MEUE1_1_9","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8G5TDS0H_1_1","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8G5TDS0H_1_10","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8G5TDS0H_1_2","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8G5TDS0H_1_3","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8G5TDS0H_1_4","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8G5TDS0H_1_5","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8G5TDS0H_1_6","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8G5TDS0H_1_7","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8G5TDS0H_1_8","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8G5TDS0H_1_9","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8GQ76S0N_1_1","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8GQ76S0N_1_10","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8GQ76S0N_1_2","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8GQ76S0N_1_3","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8GQ76S0N_1_4","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8GQ76S0N_1_5","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8GQ76S0N_1_6","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8GQ76S0N_1_7","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8GQ76S0N_1_8","score":0.5} {"chain_id":"384PI804XS0ETJQ6T8MF4B8GQ76S0N_1_9","score":0.5} {"chain_id":"386PBUZZXFWYRCW2V7ZKAU9HW8OLJ0_1_1","score":0.5} {"chain_id":"386PBUZZXFWYRCW2V7ZKAU9HW8OLJ0_1_10","score":0.5} {"chain_id":"386PBUZZXFWYRCW2V7ZKAU9HW8OLJ0_1_2","score":0.5} {"chain_id":"386PBUZZXFWYRCW2V7ZKAU9HW8OLJ0_1_3","score":0.5} {"chain_id":"386PBUZZXFWYRCW2V7ZKAU9HW8OLJ0_1_4","score":0.5} {"chain_id":"386PBUZZXFWYRCW2V7ZKAU9HW8OLJ0_1_5","score":0.5} {"chain_id":"386PBUZZXFWYRCW2V7ZKAU9HW8OLJ0_1_6","score":0.5} {"chain_id":"386PBUZZXFWYRCW2V7ZKAU9HW8OLJ0_1_7","score":0.5} {"chain_id":"386PBUZZXFWYRCW2V7ZKAU9HW8OLJ0_1_8","score":0.5} {"chain_id":"386PBUZZXFWYRCW2V7ZKAU9HW8OLJ0_1_9","score":0.5} {"chain_id":"38BQUHLA9WZWY55KBWS4I35SY1SOMJ_1_1","score":0.5} {"chain_id":"38BQUHLA9WZWY55KBWS4I35SY1SOMJ_1_10","score":0.5} {"chain_id":"38BQUHLA9WZWY55KBWS4I35SY1SOMJ_1_2","score":0.5} {"chain_id":"38BQUHLA9WZWY55KBWS4I35SY1SOMJ_1_3","score":0.5} {"chain_id":"38BQUHLA9WZWY55KBWS4I35SY1SOMJ_1_4","score":0.5} {"chain_id":"38BQUHLA9WZWY55KBWS4I35SY1SOMJ_1_5","score":0.5} {"chain_id":"38BQUHLA9WZWY55KBWS4I35SY1SOMJ_1_6","score":0.5} {"chain_id":"38BQUHLA9WZWY55KBWS4I35SY1SOMJ_1_7","score":0.5} {"chain_id":"38BQUHLA9WZWY55KBWS4I35SY1SOMJ_1_8","score":0.5} {"chain_id":"38BQUHLA9WZWY55KBWS4I35SY1SOMJ_1_9","score":0.5} {"chain_id":"38F5OAUN5NB3LLCA3DVPFCB1RLDH7X_1_1","score":0.5} {"chain_id":"38F5OAUN5NB3LLCA3DVPFCB1RLDH7X_1_10","score":0.5} {"chain_id":"38F5OAUN5NB3LLCA3DVPFCB1RLDH7X_1_2","score":0.5} {"chain_id":"38F5OAUN5NB3LLCA3DVPFCB1RLDH7X_1_3","score":0.5} {"chain_id":"38F5OAUN5NB3LLCA3DVPFCB1RLDH7X_1_4","score":0.5} {"chain_id":"38F5OAUN5NB3LLCA3DVPFCB1RLDH7X_1_5","score":0.5} {"chain_id":"38F5OAUN5NB3LLCA3DVPFCB1RLDH7X_1_6","score":0.5} {"chain_id":"38F5OAUN5NB3LLCA3DVPFCB1RLDH7X_1_7","score":0.5} {"chain_id":"38F5OAUN5NB3LLCA3DVPFCB1RLDH7X_1_8","score":0.5} {"chain_id":"38F5OAUN5NB3LLCA3DVPFCB1RLDH7X_1_9","score":0.5} {"chain_id":"38JBBYETQO9UIO3PBEPCRXUELCHE4B_1_1","score":0.5} {"chain_id":"38JBBYETQO9UIO3PBEPCRXUELCHE4B_1_10","score":0.5} {"chain_id":"38JBBYETQO9UIO3PBEPCRXUELCHE4B_1_2","score":0.5} {"chain_id":"38JBBYETQO9UIO3PBEPCRXUELCHE4B_1_3","score":0.5} {"chain_id":"38JBBYETQO9UIO3PBEPCRXUELCHE4B_1_4","score":0.5} {"chain_id":"38JBBYETQO9UIO3PBEPCRXUELCHE4B_1_5","score":0.5} {"chain_id":"38JBBYETQO9UIO3PBEPCRXUELCHE4B_1_6","score":0.5} {"chain_id":"38JBBYETQO9UIO3PBEPCRXUELCHE4B_1_7","score":0.5} {"chain_id":"38JBBYETQO9UIO3PBEPCRXUELCHE4B_1_8","score":0.5} {"chain_id":"38JBBYETQO9UIO3PBEPCRXUELCHE4B_1_9","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LS9L7W6M_1_1","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LS9L7W6M_1_10","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LS9L7W6M_1_2","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LS9L7W6M_1_3","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LS9L7W6M_1_4","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LS9L7W6M_1_5","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LS9L7W6M_1_6","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LS9L7W6M_1_7","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LS9L7W6M_1_8","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LS9L7W6M_1_9","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LSA25W6J_1_1","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LSA25W6J_1_10","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LSA25W6J_1_2","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LSA25W6J_1_3","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LSA25W6J_1_4","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LSA25W6J_1_5","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LSA25W6J_1_6","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LSA25W6J_1_7","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LSA25W6J_1_8","score":0.5} {"chain_id":"38YMOXR4MUY2EBTUF2CXA1LSA25W6J_1_9","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK1822PV_1_1","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK1822PV_1_10","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK1822PV_1_2","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK1822PV_1_3","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK1822PV_1_4","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK1822PV_1_5","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK1822PV_1_6","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK1822PV_1_7","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK1822PV_1_8","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK1822PV_1_9","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK2GHP2E_1_1","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK2GHP2E_1_10","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK2GHP2E_1_2","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK2GHP2E_1_3","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK2GHP2E_1_4","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK2GHP2E_1_5","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK2GHP2E_1_6","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK2GHP2E_1_7","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK2GHP2E_1_8","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK2GHP2E_1_9","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK3JG2PX_1_1","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK3JG2PX_1_10","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK3JG2PX_1_2","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK3JG2PX_1_3","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK3JG2PX_1_4","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK3JG2PX_1_5","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK3JG2PX_1_6","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK3JG2PX_1_7","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK3JG2PX_1_8","score":0.5} {"chain_id":"3907X2AHF04OC1DSGEMZSUWK3JG2PX_1_9","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RC4NVEXL_1_1","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RC4NVEXL_1_10","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RC4NVEXL_1_2","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RC4NVEXL_1_3","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RC4NVEXL_1_4","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RC4NVEXL_1_5","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RC4NVEXL_1_6","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RC4NVEXL_1_7","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RC4NVEXL_1_8","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RC4NVEXL_1_9","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RCYCYEXW_1_1","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RCYCYEXW_1_10","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RCYCYEXW_1_2","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RCYCYEXW_1_3","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RCYCYEXW_1_4","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RCYCYEXW_1_5","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RCYCYEXW_1_6","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RCYCYEXW_1_7","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RCYCYEXW_1_8","score":0.5} {"chain_id":"39ASUFLU6X6LGQRZVPRHO8RCYCYEXW_1_9","score":0.5} {"chain_id":"39DD6S19JPAALLREW7F2LT7N8JFZED_1_1","score":0.5} {"chain_id":"39DD6S19JPAALLREW7F2LT7N8JFZED_1_10","score":0.5} {"chain_id":"39DD6S19JPAALLREW7F2LT7N8JFZED_1_2","score":0.5} {"chain_id":"39DD6S19JPAALLREW7F2LT7N8JFZED_1_3","score":0.5} {"chain_id":"39DD6S19JPAALLREW7F2LT7N8JFZED_1_4","score":0.5} {"chain_id":"39DD6S19JPAALLREW7F2LT7N8JFZED_1_5","score":0.5} {"chain_id":"39DD6S19JPAALLREW7F2LT7N8JFZED_1_6","score":0.5} {"chain_id":"39DD6S19JPAALLREW7F2LT7N8JFZED_1_7","score":0.5} {"chain_id":"39DD6S19JPAALLREW7F2LT7N8JFZED_1_8","score":0.5} {"chain_id":"39DD6S19JPAALLREW7F2LT7N8JFZED_1_9","score":0.5} {"chain_id":"39GAF6DQWRZUS0SSJMVKT3BXADX1VV_1_1","score":0.5} {"chain_id":"39GAF6DQWRZUS0SSJMVKT3BXADX1VV_1_10","score":0.5} {"chain_id":"39GAF6DQWRZUS0SSJMVKT3BXADX1VV_1_2","score":0.5} {"chain_id":"39GAF6DQWRZUS0SSJMVKT3BXADX1VV_1_3","score":0.5} {"chain_id":"39GAF6DQWRZUS0SSJMVKT3BXADX1VV_1_4","score":0.5} {"chain_id":"39GAF6DQWRZUS0SSJMVKT3BXADX1VV_1_5","score":0.5} {"chain_id":"39GAF6DQWRZUS0SSJMVKT3BXADX1VV_1_6","score":0.5} {"chain_id":"39GAF6DQWRZUS0SSJMVKT3BXADX1VV_1_7","score":0.5} {"chain_id":"39GAF6DQWRZUS0SSJMVKT3BXADX1VV_1_8","score":0.5} {"chain_id":"39GAF6DQWRZUS0SSJMVKT3BXADX1VV_1_9","score":0.5} {"chain_id":"39GHHAVOMFQ2T4PHPF03OD76QJ2J4O_1_1","score":0.5} {"chain_id":"39GHHAVOMFQ2T4PHPF03OD76QJ2J4O_1_10","score":0.5} {"chain_id":"39GHHAVOMFQ2T4PHPF03OD76QJ2J4O_1_2","score":0.5} {"chain_id":"39GHHAVOMFQ2T4PHPF03OD76QJ2J4O_1_3","score":0.5} {"chain_id":"39GHHAVOMFQ2T4PHPF03OD76QJ2J4O_1_4","score":0.5} {"chain_id":"39GHHAVOMFQ2T4PHPF03OD76QJ2J4O_1_5","score":0.5} {"chain_id":"39GHHAVOMFQ2T4PHPF03OD76QJ2J4O_1_6","score":0.5} {"chain_id":"39GHHAVOMFQ2T4PHPF03OD76QJ2J4O_1_7","score":0.5} {"chain_id":"39GHHAVOMFQ2T4PHPF03OD76QJ2J4O_1_8","score":0.5} {"chain_id":"39GHHAVOMFQ2T4PHPF03OD76QJ2J4O_1_9","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY596Z8VD_1_1","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY596Z8VD_1_10","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY596Z8VD_1_2","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY596Z8VD_1_3","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY596Z8VD_1_4","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY596Z8VD_1_5","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY596Z8VD_1_6","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY596Z8VD_1_7","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY596Z8VD_1_8","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY596Z8VD_1_9","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY5AKNV8H_1_1","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY5AKNV8H_1_10","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY5AKNV8H_1_2","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY5AKNV8H_1_3","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY5AKNV8H_1_4","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY5AKNV8H_1_5","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY5AKNV8H_1_6","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY5AKNV8H_1_7","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY5AKNV8H_1_8","score":0.5} {"chain_id":"39GXDJN2OTDC30CDI74Z8DY5AKNV8H_1_9","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO0E6CV8_1_1","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO0E6CV8_1_10","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO0E6CV8_1_2","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO0E6CV8_1_3","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO0E6CV8_1_4","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO0E6CV8_1_5","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO0E6CV8_1_6","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO0E6CV8_1_7","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO0E6CV8_1_8","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO0E6CV8_1_9","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO2CMVC5_1_1","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO2CMVC5_1_10","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO2CMVC5_1_2","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO2CMVC5_1_3","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO2CMVC5_1_4","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO2CMVC5_1_5","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO2CMVC5_1_6","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO2CMVC5_1_7","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO2CMVC5_1_8","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUO2CMVC5_1_9","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUOYZCCVI_1_1","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUOYZCCVI_1_10","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUOYZCCVI_1_2","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUOYZCCVI_1_3","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUOYZCCVI_1_4","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUOYZCCVI_1_5","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUOYZCCVI_1_6","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUOYZCCVI_1_7","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUOYZCCVI_1_8","score":0.5} {"chain_id":"39JEC7537U0EF32QZJK4AZUOYZCCVI_1_9","score":0.5} {"chain_id":"39L1G8WVWQQAGRQ9ZCPEA8JE5TA31S_1_1","score":0.5} {"chain_id":"39L1G8WVWQQAGRQ9ZCPEA8JE5TA31S_1_10","score":0.5} {"chain_id":"39L1G8WVWQQAGRQ9ZCPEA8JE5TA31S_1_2","score":0.5} {"chain_id":"39L1G8WVWQQAGRQ9ZCPEA8JE5TA31S_1_3","score":0.5} {"chain_id":"39L1G8WVWQQAGRQ9ZCPEA8JE5TA31S_1_4","score":0.5} {"chain_id":"39L1G8WVWQQAGRQ9ZCPEA8JE5TA31S_1_5","score":0.5} {"chain_id":"39L1G8WVWQQAGRQ9ZCPEA8JE5TA31S_1_6","score":0.5} {"chain_id":"39L1G8WVWQQAGRQ9ZCPEA8JE5TA31S_1_7","score":0.5} {"chain_id":"39L1G8WVWQQAGRQ9ZCPEA8JE5TA31S_1_8","score":0.5} {"chain_id":"39L1G8WVWQQAGRQ9ZCPEA8JE5TA31S_1_9","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ00WJIUY_1_1","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ00WJIUY_1_10","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ00WJIUY_1_2","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ00WJIUY_1_3","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ00WJIUY_1_4","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ00WJIUY_1_5","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ00WJIUY_1_6","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ00WJIUY_1_7","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ00WJIUY_1_8","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ00WJIUY_1_9","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ02YBUI8_1_1","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ02YBUI8_1_10","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ02YBUI8_1_2","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ02YBUI8_1_3","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ02YBUI8_1_4","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ02YBUI8_1_5","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ02YBUI8_1_6","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ02YBUI8_1_7","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ02YBUI8_1_8","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ02YBUI8_1_9","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ0D5SUIE_1_1","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ0D5SUIE_1_10","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ0D5SUIE_1_2","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ0D5SUIE_1_3","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ0D5SUIE_1_4","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ0D5SUIE_1_5","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ0D5SUIE_1_6","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ0D5SUIE_1_7","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ0D5SUIE_1_8","score":0.5} {"chain_id":"39LNWE0K4UV5FRZQM36LPGQ0D5SUIE_1_9","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MGCC38V_1_1","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MGCC38V_1_10","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MGCC38V_1_2","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MGCC38V_1_3","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MGCC38V_1_4","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MGCC38V_1_5","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MGCC38V_1_6","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MGCC38V_1_7","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MGCC38V_1_8","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MGCC38V_1_9","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MKJR83X_1_1","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MKJR83X_1_10","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MKJR83X_1_2","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MKJR83X_1_3","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MKJR83X_1_4","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MKJR83X_1_5","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MKJR83X_1_6","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MKJR83X_1_7","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MKJR83X_1_8","score":0.5} {"chain_id":"39LOEL67OS4SRRAUYXYTPI6MKJR83X_1_9","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y5BX9P7_1_1","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y5BX9P7_1_10","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y5BX9P7_1_2","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y5BX9P7_1_3","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y5BX9P7_1_4","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y5BX9P7_1_5","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y5BX9P7_1_6","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y5BX9P7_1_7","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y5BX9P7_1_8","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y5BX9P7_1_9","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y6UD9PQ_1_1","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y6UD9PQ_1_10","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y6UD9PQ_1_2","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y6UD9PQ_1_3","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y6UD9PQ_1_4","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y6UD9PQ_1_5","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y6UD9PQ_1_6","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y6UD9PQ_1_7","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y6UD9PQ_1_8","score":0.5} {"chain_id":"39N5ACM9HEMZCLYR1N1E2H4Y6UD9PQ_1_9","score":0.5} {"chain_id":"39OWYR0EPKQ2M9H5VWXPP4JLFPMYFY_1_1","score":0.5} {"chain_id":"39OWYR0EPKQ2M9H5VWXPP4JLFPMYFY_1_10","score":0.5} {"chain_id":"39OWYR0EPKQ2M9H5VWXPP4JLFPMYFY_1_2","score":0.5} {"chain_id":"39OWYR0EPKQ2M9H5VWXPP4JLFPMYFY_1_3","score":0.5} {"chain_id":"39OWYR0EPKQ2M9H5VWXPP4JLFPMYFY_1_4","score":0.5} {"chain_id":"39OWYR0EPKQ2M9H5VWXPP4JLFPMYFY_1_5","score":0.5} {"chain_id":"39OWYR0EPKQ2M9H5VWXPP4JLFPMYFY_1_6","score":0.5} {"chain_id":"39OWYR0EPKQ2M9H5VWXPP4JLFPMYFY_1_7","score":0.5} {"chain_id":"39OWYR0EPKQ2M9H5VWXPP4JLFPMYFY_1_8","score":0.5} {"chain_id":"39OWYR0EPKQ2M9H5VWXPP4JLFPMYFY_1_9","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1BITVJ_1_1","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1BITVJ_1_10","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1BITVJ_1_2","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1BITVJ_1_3","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1BITVJ_1_4","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1BITVJ_1_5","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1BITVJ_1_6","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1BITVJ_1_7","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1BITVJ_1_8","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1BITVJ_1_9","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1OATV1_1_1","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1OATV1_1_10","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1OATV1_1_2","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1OATV1_1_3","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1OATV1_1_4","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1OATV1_1_5","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1OATV1_1_6","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1OATV1_1_7","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1OATV1_1_8","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9US1OATV1_1_9","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9USOW3VTZ_1_1","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9USOW3VTZ_1_10","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9USOW3VTZ_1_2","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9USOW3VTZ_1_3","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9USOW3VTZ_1_4","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9USOW3VTZ_1_5","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9USOW3VTZ_1_6","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9USOW3VTZ_1_7","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9USOW3VTZ_1_8","score":0.5} {"chain_id":"39PAAFCODMZV1K41L5FUZ9USOW3VTZ_1_9","score":0.5} {"chain_id":"39RP059MEHSCFBGB7RNICJ5T4QHBMZ_1_1","score":0.5} {"chain_id":"39RP059MEHSCFBGB7RNICJ5T4QHBMZ_1_10","score":0.5} {"chain_id":"39RP059MEHSCFBGB7RNICJ5T4QHBMZ_1_2","score":0.5} {"chain_id":"39RP059MEHSCFBGB7RNICJ5T4QHBMZ_1_3","score":0.5} {"chain_id":"39RP059MEHSCFBGB7RNICJ5T4QHBMZ_1_4","score":0.5} {"chain_id":"39RP059MEHSCFBGB7RNICJ5T4QHBMZ_1_5","score":0.5} {"chain_id":"39RP059MEHSCFBGB7RNICJ5T4QHBMZ_1_6","score":0.5} {"chain_id":"39RP059MEHSCFBGB7RNICJ5T4QHBMZ_1_7","score":0.5} {"chain_id":"39RP059MEHSCFBGB7RNICJ5T4QHBMZ_1_8","score":0.5} {"chain_id":"39RP059MEHSCFBGB7RNICJ5T4QHBMZ_1_9","score":0.5} {"chain_id":"39U1BHVTDLQBPB2I1V9OGE29XUXT3N_1_1","score":0.5} {"chain_id":"39U1BHVTDLQBPB2I1V9OGE29XUXT3N_1_10","score":0.5} {"chain_id":"39U1BHVTDLQBPB2I1V9OGE29XUXT3N_1_2","score":0.5} {"chain_id":"39U1BHVTDLQBPB2I1V9OGE29XUXT3N_1_3","score":0.5} {"chain_id":"39U1BHVTDLQBPB2I1V9OGE29XUXT3N_1_4","score":0.5} {"chain_id":"39U1BHVTDLQBPB2I1V9OGE29XUXT3N_1_5","score":0.5} {"chain_id":"39U1BHVTDLQBPB2I1V9OGE29XUXT3N_1_6","score":0.5} {"chain_id":"39U1BHVTDLQBPB2I1V9OGE29XUXT3N_1_7","score":0.5} {"chain_id":"39U1BHVTDLQBPB2I1V9OGE29XUXT3N_1_8","score":0.5} {"chain_id":"39U1BHVTDLQBPB2I1V9OGE29XUXT3N_1_9","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50COSUJV_1_1","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50COSUJV_1_10","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50COSUJV_1_2","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50COSUJV_1_3","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50COSUJV_1_4","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50COSUJV_1_5","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50COSUJV_1_6","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50COSUJV_1_7","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50COSUJV_1_8","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50COSUJV_1_9","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50CT6UJJ_1_1","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50CT6UJJ_1_10","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50CT6UJJ_1_2","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50CT6UJJ_1_3","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50CT6UJJ_1_4","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50CT6UJJ_1_5","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50CT6UJJ_1_6","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50CT6UJJ_1_7","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50CT6UJJ_1_8","score":0.5} {"chain_id":"39ZSFO5CA8V1A2JW4LRL1H50CT6UJJ_1_9","score":0.5} {"chain_id":"3A0EX8ZRN8NC9S5PQUBT6ES0070YBI_1_1","score":0.5} {"chain_id":"3A0EX8ZRN8NC9S5PQUBT6ES0070YBI_1_10","score":0.5} {"chain_id":"3A0EX8ZRN8NC9S5PQUBT6ES0070YBI_1_2","score":0.5} {"chain_id":"3A0EX8ZRN8NC9S5PQUBT6ES0070YBI_1_3","score":0.5} {"chain_id":"3A0EX8ZRN8NC9S5PQUBT6ES0070YBI_1_4","score":0.5} {"chain_id":"3A0EX8ZRN8NC9S5PQUBT6ES0070YBI_1_5","score":0.5} {"chain_id":"3A0EX8ZRN8NC9S5PQUBT6ES0070YBI_1_6","score":0.5} {"chain_id":"3A0EX8ZRN8NC9S5PQUBT6ES0070YBI_1_7","score":0.5} {"chain_id":"3A0EX8ZRN8NC9S5PQUBT6ES0070YBI_1_8","score":0.5} {"chain_id":"3A0EX8ZRN8NC9S5PQUBT6ES0070YBI_1_9","score":0.5} {"chain_id":"3A1COHJ8NJU7LZHTDINVTC7WZAG8HF_1_1","score":0.5} {"chain_id":"3A1COHJ8NJU7LZHTDINVTC7WZAG8HF_1_10","score":0.5} {"chain_id":"3A1COHJ8NJU7LZHTDINVTC7WZAG8HF_1_2","score":0.5} {"chain_id":"3A1COHJ8NJU7LZHTDINVTC7WZAG8HF_1_3","score":0.5} {"chain_id":"3A1COHJ8NJU7LZHTDINVTC7WZAG8HF_1_4","score":0.5} {"chain_id":"3A1COHJ8NJU7LZHTDINVTC7WZAG8HF_1_5","score":0.5} {"chain_id":"3A1COHJ8NJU7LZHTDINVTC7WZAG8HF_1_6","score":0.5} {"chain_id":"3A1COHJ8NJU7LZHTDINVTC7WZAG8HF_1_7","score":0.5} {"chain_id":"3A1COHJ8NJU7LZHTDINVTC7WZAG8HF_1_8","score":0.5} {"chain_id":"3A1COHJ8NJU7LZHTDINVTC7WZAG8HF_1_9","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOS5WH1Z_1_1","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOS5WH1Z_1_10","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOS5WH1Z_1_2","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOS5WH1Z_1_3","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOS5WH1Z_1_4","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOS5WH1Z_1_5","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOS5WH1Z_1_6","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOS5WH1Z_1_7","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOS5WH1Z_1_8","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOS5WH1Z_1_9","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOSV31H6_1_1","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOSV31H6_1_10","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOSV31H6_1_2","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOSV31H6_1_3","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOSV31H6_1_4","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOSV31H6_1_5","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOSV31H6_1_6","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOSV31H6_1_7","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOSV31H6_1_8","score":0.5} {"chain_id":"3A1PQ49WVHGPAZX8EXEGE2KOSV31H6_1_9","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1Y2X2MLG_1_1","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1Y2X2MLG_1_10","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1Y2X2MLG_1_2","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1Y2X2MLG_1_3","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1Y2X2MLG_1_4","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1Y2X2MLG_1_5","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1Y2X2MLG_1_6","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1Y2X2MLG_1_7","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1Y2X2MLG_1_8","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1Y2X2MLG_1_9","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YG13ML3_1_1","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YG13ML3_1_10","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YG13ML3_1_2","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YG13ML3_1_3","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YG13ML3_1_4","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YG13ML3_1_5","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YG13ML3_1_6","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YG13ML3_1_7","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YG13ML3_1_8","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YG13ML3_1_9","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YHNHLMP_1_1","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YHNHLMP_1_10","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YHNHLMP_1_2","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YHNHLMP_1_3","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YHNHLMP_1_4","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YHNHLMP_1_5","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YHNHLMP_1_6","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YHNHLMP_1_7","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YHNHLMP_1_8","score":0.5} {"chain_id":"3A4NIXBJ76YOSK2NY4CCQM1YHNHLMP_1_9","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3F5DAHC7_1_1","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3F5DAHC7_1_10","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3F5DAHC7_1_2","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3F5DAHC7_1_3","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3F5DAHC7_1_4","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3F5DAHC7_1_5","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3F5DAHC7_1_6","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3F5DAHC7_1_7","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3F5DAHC7_1_8","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3F5DAHC7_1_9","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3FW1LHCL_1_1","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3FW1LHCL_1_10","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3FW1LHCL_1_2","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3FW1LHCL_1_3","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3FW1LHCL_1_4","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3FW1LHCL_1_5","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3FW1LHCL_1_6","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3FW1LHCL_1_7","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3FW1LHCL_1_8","score":0.5} {"chain_id":"3A4TN5196KH9X276UU30VY3FW1LHCL_1_9","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO445CCXJ4_1_1","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO445CCXJ4_1_10","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO445CCXJ4_1_2","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO445CCXJ4_1_3","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO445CCXJ4_1_4","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO445CCXJ4_1_5","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO445CCXJ4_1_6","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO445CCXJ4_1_7","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO445CCXJ4_1_8","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO445CCXJ4_1_9","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO44JUOJXG_1_1","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO44JUOJXG_1_10","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO44JUOJXG_1_2","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO44JUOJXG_1_3","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO44JUOJXG_1_4","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO44JUOJXG_1_5","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO44JUOJXG_1_6","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO44JUOJXG_1_7","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO44JUOJXG_1_8","score":0.5} {"chain_id":"3A7Y0R2P2ONTR6DR9Q28LO44JUOJXG_1_9","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JHBRTHV_1_1","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JHBRTHV_1_10","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JHBRTHV_1_2","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JHBRTHV_1_3","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JHBRTHV_1_4","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JHBRTHV_1_5","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JHBRTHV_1_6","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JHBRTHV_1_7","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JHBRTHV_1_8","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JHBRTHV_1_9","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JJ73TH1_1_1","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JJ73TH1_1_10","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JJ73TH1_1_2","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JJ73TH1_1_3","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JJ73TH1_1_4","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JJ73TH1_1_5","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JJ73TH1_1_6","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JJ73TH1_1_7","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JJ73TH1_1_8","score":0.5} {"chain_id":"3AAPLD8UCCGQJJ9HGGYQK83JJ73TH1_1_9","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZICYMPNS_1_1","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZICYMPNS_1_10","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZICYMPNS_1_2","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZICYMPNS_1_3","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZICYMPNS_1_4","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZICYMPNS_1_5","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZICYMPNS_1_6","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZICYMPNS_1_7","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZICYMPNS_1_8","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZICYMPNS_1_9","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZIH3DNPW_1_1","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZIH3DNPW_1_10","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZIH3DNPW_1_2","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZIH3DNPW_1_3","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZIH3DNPW_1_4","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZIH3DNPW_1_5","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZIH3DNPW_1_6","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZIH3DNPW_1_7","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZIH3DNPW_1_8","score":0.5} {"chain_id":"3AMW0RGHOD1K1N2L2XKJKIZIH3DNPW_1_9","score":0.5} {"chain_id":"3AMYWKA6YBLU92KSOGLNT78651TO6M_1_1","score":0.5} {"chain_id":"3AMYWKA6YBLU92KSOGLNT78651TO6M_1_10","score":0.5} {"chain_id":"3AMYWKA6YBLU92KSOGLNT78651TO6M_1_2","score":0.5} {"chain_id":"3AMYWKA6YBLU92KSOGLNT78651TO6M_1_3","score":0.5} {"chain_id":"3AMYWKA6YBLU92KSOGLNT78651TO6M_1_4","score":0.5} {"chain_id":"3AMYWKA6YBLU92KSOGLNT78651TO6M_1_5","score":0.5} {"chain_id":"3AMYWKA6YBLU92KSOGLNT78651TO6M_1_6","score":0.5} {"chain_id":"3AMYWKA6YBLU92KSOGLNT78651TO6M_1_7","score":0.5} {"chain_id":"3AMYWKA6YBLU92KSOGLNT78651TO6M_1_8","score":0.5} {"chain_id":"3AMYWKA6YBLU92KSOGLNT78651TO6M_1_9","score":0.5} {"chain_id":"3AQF3RZ558H03P7ZPD2X6DZST9WF6J_1_1","score":0.5} {"chain_id":"3AQF3RZ558H03P7ZPD2X6DZST9WF6J_1_10","score":0.5} {"chain_id":"3AQF3RZ558H03P7ZPD2X6DZST9WF6J_1_2","score":0.5} {"chain_id":"3AQF3RZ558H03P7ZPD2X6DZST9WF6J_1_3","score":0.5} {"chain_id":"3AQF3RZ558H03P7ZPD2X6DZST9WF6J_1_4","score":0.5} {"chain_id":"3AQF3RZ558H03P7ZPD2X6DZST9WF6J_1_5","score":0.5} {"chain_id":"3AQF3RZ558H03P7ZPD2X6DZST9WF6J_1_6","score":0.5} {"chain_id":"3AQF3RZ558H03P7ZPD2X6DZST9WF6J_1_7","score":0.5} {"chain_id":"3AQF3RZ558H03P7ZPD2X6DZST9WF6J_1_8","score":0.5} {"chain_id":"3AQF3RZ558H03P7ZPD2X6DZST9WF6J_1_9","score":0.5} {"chain_id":"3ATPCQ38J897QI0XKGBXB38UI03AY9_1_1","score":0.5} {"chain_id":"3ATPCQ38J897QI0XKGBXB38UI03AY9_1_10","score":0.5} {"chain_id":"3ATPCQ38J897QI0XKGBXB38UI03AY9_1_2","score":0.5} {"chain_id":"3ATPCQ38J897QI0XKGBXB38UI03AY9_1_3","score":0.5} {"chain_id":"3ATPCQ38J897QI0XKGBXB38UI03AY9_1_4","score":0.5} {"chain_id":"3ATPCQ38J897QI0XKGBXB38UI03AY9_1_5","score":0.5} {"chain_id":"3ATPCQ38J897QI0XKGBXB38UI03AY9_1_6","score":0.5} {"chain_id":"3ATPCQ38J897QI0XKGBXB38UI03AY9_1_7","score":0.5} {"chain_id":"3ATPCQ38J897QI0XKGBXB38UI03AY9_1_8","score":0.5} {"chain_id":"3ATPCQ38J897QI0XKGBXB38UI03AY9_1_9","score":0.5} {"chain_id":"3ATTHHXXWANXWVTLR8H89NP4XT3IXQ_1_1","score":0.5} {"chain_id":"3ATTHHXXWANXWVTLR8H89NP4XT3IXQ_1_10","score":0.5} {"chain_id":"3ATTHHXXWANXWVTLR8H89NP4XT3IXQ_1_2","score":0.5} {"chain_id":"3ATTHHXXWANXWVTLR8H89NP4XT3IXQ_1_3","score":0.5} {"chain_id":"3ATTHHXXWANXWVTLR8H89NP4XT3IXQ_1_4","score":0.5} {"chain_id":"3ATTHHXXWANXWVTLR8H89NP4XT3IXQ_1_5","score":0.5} {"chain_id":"3ATTHHXXWANXWVTLR8H89NP4XT3IXQ_1_6","score":0.5} {"chain_id":"3ATTHHXXWANXWVTLR8H89NP4XT3IXQ_1_7","score":0.5} {"chain_id":"3ATTHHXXWANXWVTLR8H89NP4XT3IXQ_1_8","score":0.5} {"chain_id":"3ATTHHXXWANXWVTLR8H89NP4XT3IXQ_1_9","score":0.5} {"chain_id":"3AUQQEL7U5SULB7AN3RKFYSNQX7V0B_1_1","score":0.5} {"chain_id":"3AUQQEL7U5SULB7AN3RKFYSNQX7V0B_1_10","score":0.5} {"chain_id":"3AUQQEL7U5SULB7AN3RKFYSNQX7V0B_1_2","score":0.5} {"chain_id":"3AUQQEL7U5SULB7AN3RKFYSNQX7V0B_1_3","score":0.5} {"chain_id":"3AUQQEL7U5SULB7AN3RKFYSNQX7V0B_1_4","score":0.5} {"chain_id":"3AUQQEL7U5SULB7AN3RKFYSNQX7V0B_1_5","score":0.5} {"chain_id":"3AUQQEL7U5SULB7AN3RKFYSNQX7V0B_1_6","score":0.5} {"chain_id":"3AUQQEL7U5SULB7AN3RKFYSNQX7V0B_1_7","score":0.5} {"chain_id":"3AUQQEL7U5SULB7AN3RKFYSNQX7V0B_1_8","score":0.5} {"chain_id":"3AUQQEL7U5SULB7AN3RKFYSNQX7V0B_1_9","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685F4GKIZF_1_1","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685F4GKIZF_1_10","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685F4GKIZF_1_2","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685F4GKIZF_1_3","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685F4GKIZF_1_4","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685F4GKIZF_1_5","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685F4GKIZF_1_6","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685F4GKIZF_1_7","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685F4GKIZF_1_8","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685F4GKIZF_1_9","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685FZGOIZE_1_1","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685FZGOIZE_1_10","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685FZGOIZE_1_2","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685FZGOIZE_1_3","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685FZGOIZE_1_4","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685FZGOIZE_1_5","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685FZGOIZE_1_6","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685FZGOIZE_1_7","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685FZGOIZE_1_8","score":0.5} {"chain_id":"3AWETUDC92RM1QT0SQ5T685FZGOIZE_1_9","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87XCTB67_1_1","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87XCTB67_1_10","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87XCTB67_1_2","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87XCTB67_1_3","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87XCTB67_1_4","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87XCTB67_1_5","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87XCTB67_1_6","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87XCTB67_1_7","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87XCTB67_1_8","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87XCTB67_1_9","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87Y2O6BE_1_1","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87Y2O6BE_1_10","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87Y2O6BE_1_2","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87Y2O6BE_1_3","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87Y2O6BE_1_4","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87Y2O6BE_1_5","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87Y2O6BE_1_6","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87Y2O6BE_1_7","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87Y2O6BE_1_8","score":0.5} {"chain_id":"3B2X28YI3WEAQ8VJKBG1NN87Y2O6BE_1_9","score":0.5} {"chain_id":"3B3WTRP3DB13KEXLZPQ264W5YN892Z_1_1","score":0.5} {"chain_id":"3B3WTRP3DB13KEXLZPQ264W5YN892Z_1_10","score":0.5} {"chain_id":"3B3WTRP3DB13KEXLZPQ264W5YN892Z_1_2","score":0.5} {"chain_id":"3B3WTRP3DB13KEXLZPQ264W5YN892Z_1_3","score":0.5} {"chain_id":"3B3WTRP3DB13KEXLZPQ264W5YN892Z_1_4","score":0.5} {"chain_id":"3B3WTRP3DB13KEXLZPQ264W5YN892Z_1_5","score":0.5} {"chain_id":"3B3WTRP3DB13KEXLZPQ264W5YN892Z_1_6","score":0.5} {"chain_id":"3B3WTRP3DB13KEXLZPQ264W5YN892Z_1_7","score":0.5} {"chain_id":"3B3WTRP3DB13KEXLZPQ264W5YN892Z_1_8","score":0.5} {"chain_id":"3B3WTRP3DB13KEXLZPQ264W5YN892Z_1_9","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7930LLRSD_1_1","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7930LLRSD_1_10","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7930LLRSD_1_2","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7930LLRSD_1_3","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7930LLRSD_1_4","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7930LLRSD_1_5","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7930LLRSD_1_6","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7930LLRSD_1_7","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7930LLRSD_1_8","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7930LLRSD_1_9","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7933D2RSH_1_1","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7933D2RSH_1_10","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7933D2RSH_1_2","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7933D2RSH_1_3","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7933D2RSH_1_4","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7933D2RSH_1_5","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7933D2RSH_1_6","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7933D2RSH_1_7","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7933D2RSH_1_8","score":0.5} {"chain_id":"3B837J3LDOV2TDA5NL5UO7933D2RSH_1_9","score":0.5} {"chain_id":"3BDCF01OGXTOM1R1H70NKHO5PAJLYS_1_1","score":0.5} {"chain_id":"3BDCF01OGXTOM1R1H70NKHO5PAJLYS_1_10","score":0.5} {"chain_id":"3BDCF01OGXTOM1R1H70NKHO5PAJLYS_1_2","score":0.5} {"chain_id":"3BDCF01OGXTOM1R1H70NKHO5PAJLYS_1_3","score":0.5} {"chain_id":"3BDCF01OGXTOM1R1H70NKHO5PAJLYS_1_4","score":0.5} {"chain_id":"3BDCF01OGXTOM1R1H70NKHO5PAJLYS_1_5","score":0.5} {"chain_id":"3BDCF01OGXTOM1R1H70NKHO5PAJLYS_1_6","score":0.5} {"chain_id":"3BDCF01OGXTOM1R1H70NKHO5PAJLYS_1_7","score":0.5} {"chain_id":"3BDCF01OGXTOM1R1H70NKHO5PAJLYS_1_8","score":0.5} {"chain_id":"3BDCF01OGXTOM1R1H70NKHO5PAJLYS_1_9","score":0.5} {"chain_id":"3BGYGHDBBXJSKUCMEGBNWHORO09229_1_1","score":0.5} {"chain_id":"3BGYGHDBBXJSKUCMEGBNWHORO09229_1_10","score":0.5} {"chain_id":"3BGYGHDBBXJSKUCMEGBNWHORO09229_1_2","score":0.5} {"chain_id":"3BGYGHDBBXJSKUCMEGBNWHORO09229_1_3","score":0.5} {"chain_id":"3BGYGHDBBXJSKUCMEGBNWHORO09229_1_4","score":0.5} {"chain_id":"3BGYGHDBBXJSKUCMEGBNWHORO09229_1_5","score":0.5} {"chain_id":"3BGYGHDBBXJSKUCMEGBNWHORO09229_1_6","score":0.5} {"chain_id":"3BGYGHDBBXJSKUCMEGBNWHORO09229_1_7","score":0.5} {"chain_id":"3BGYGHDBBXJSKUCMEGBNWHORO09229_1_8","score":0.5} {"chain_id":"3BGYGHDBBXJSKUCMEGBNWHORO09229_1_9","score":0.5} {"chain_id":"3BQU611VFPJEKYIKKY5HGR4J3IH993_1_1","score":0.5} {"chain_id":"3BQU611VFPJEKYIKKY5HGR4J3IH993_1_10","score":0.5} {"chain_id":"3BQU611VFPJEKYIKKY5HGR4J3IH993_1_2","score":0.5} {"chain_id":"3BQU611VFPJEKYIKKY5HGR4J3IH993_1_3","score":0.5} {"chain_id":"3BQU611VFPJEKYIKKY5HGR4J3IH993_1_4","score":0.5} {"chain_id":"3BQU611VFPJEKYIKKY5HGR4J3IH993_1_5","score":0.5} {"chain_id":"3BQU611VFPJEKYIKKY5HGR4J3IH993_1_6","score":0.5} {"chain_id":"3BQU611VFPJEKYIKKY5HGR4J3IH993_1_7","score":0.5} {"chain_id":"3BQU611VFPJEKYIKKY5HGR4J3IH993_1_8","score":0.5} {"chain_id":"3BQU611VFPJEKYIKKY5HGR4J3IH993_1_9","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1JVO6AT_1_1","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1JVO6AT_1_10","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1JVO6AT_1_2","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1JVO6AT_1_3","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1JVO6AT_1_4","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1JVO6AT_1_5","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1JVO6AT_1_6","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1JVO6AT_1_7","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1JVO6AT_1_8","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1JVO6AT_1_9","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1K6ZA6V_1_1","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1K6ZA6V_1_10","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1K6ZA6V_1_2","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1K6ZA6V_1_3","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1K6ZA6V_1_4","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1K6ZA6V_1_5","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1K6ZA6V_1_6","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1K6ZA6V_1_7","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1K6ZA6V_1_8","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1K6ZA6V_1_9","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1NC7A6I_1_1","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1NC7A6I_1_10","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1NC7A6I_1_2","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1NC7A6I_1_3","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1NC7A6I_1_4","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1NC7A6I_1_5","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1NC7A6I_1_6","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1NC7A6I_1_7","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1NC7A6I_1_8","score":0.5} {"chain_id":"3BV8HQ2ZZW057YQREXG5SCO1NC7A6I_1_9","score":0.5} {"chain_id":"3BWI6RSP7G8R1BL8DCNJU9EOD46E7B_1_1","score":0.5} {"chain_id":"3BWI6RSP7G8R1BL8DCNJU9EOD46E7B_1_10","score":0.5} {"chain_id":"3BWI6RSP7G8R1BL8DCNJU9EOD46E7B_1_2","score":0.5} {"chain_id":"3BWI6RSP7G8R1BL8DCNJU9EOD46E7B_1_3","score":0.5} {"chain_id":"3BWI6RSP7G8R1BL8DCNJU9EOD46E7B_1_4","score":0.5} {"chain_id":"3BWI6RSP7G8R1BL8DCNJU9EOD46E7B_1_5","score":0.5} {"chain_id":"3BWI6RSP7G8R1BL8DCNJU9EOD46E7B_1_6","score":0.5} {"chain_id":"3BWI6RSP7G8R1BL8DCNJU9EOD46E7B_1_7","score":0.5} {"chain_id":"3BWI6RSP7G8R1BL8DCNJU9EOD46E7B_1_8","score":0.5} {"chain_id":"3BWI6RSP7G8R1BL8DCNJU9EOD46E7B_1_9","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHFNRUMC_1_1","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHFNRUMC_1_10","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHFNRUMC_1_2","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHFNRUMC_1_3","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHFNRUMC_1_4","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHFNRUMC_1_5","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHFNRUMC_1_6","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHFNRUMC_1_7","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHFNRUMC_1_8","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHFNRUMC_1_9","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHTD8UMN_1_1","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHTD8UMN_1_10","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHTD8UMN_1_2","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHTD8UMN_1_3","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHTD8UMN_1_4","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHTD8UMN_1_5","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHTD8UMN_1_6","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHTD8UMN_1_7","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHTD8UMN_1_8","score":0.5} {"chain_id":"3BXQMRHWKZXRBAPH7I4DH9XHTD8UMN_1_9","score":0.5} {"chain_id":"3C2NJ6JBKAGO9G1F0Z97O5RP6JMN2Q_1_1","score":0.5} {"chain_id":"3C2NJ6JBKAGO9G1F0Z97O5RP6JMN2Q_1_10","score":0.5} {"chain_id":"3C2NJ6JBKAGO9G1F0Z97O5RP6JMN2Q_1_2","score":0.5} {"chain_id":"3C2NJ6JBKAGO9G1F0Z97O5RP6JMN2Q_1_3","score":0.5} {"chain_id":"3C2NJ6JBKAGO9G1F0Z97O5RP6JMN2Q_1_4","score":0.5} {"chain_id":"3C2NJ6JBKAGO9G1F0Z97O5RP6JMN2Q_1_5","score":0.5} {"chain_id":"3C2NJ6JBKAGO9G1F0Z97O5RP6JMN2Q_1_6","score":0.5} {"chain_id":"3C2NJ6JBKAGO9G1F0Z97O5RP6JMN2Q_1_7","score":0.5} {"chain_id":"3C2NJ6JBKAGO9G1F0Z97O5RP6JMN2Q_1_8","score":0.5} {"chain_id":"3C2NJ6JBKAGO9G1F0Z97O5RP6JMN2Q_1_9","score":0.5} {"chain_id":"3C44YUNSI1OBFBB8D36GODNOZNZDP0_1_1","score":0.5} {"chain_id":"3C44YUNSI1OBFBB8D36GODNOZNZDP0_1_10","score":0.5} {"chain_id":"3C44YUNSI1OBFBB8D36GODNOZNZDP0_1_2","score":0.5} {"chain_id":"3C44YUNSI1OBFBB8D36GODNOZNZDP0_1_3","score":0.5} {"chain_id":"3C44YUNSI1OBFBB8D36GODNOZNZDP0_1_4","score":0.5} {"chain_id":"3C44YUNSI1OBFBB8D36GODNOZNZDP0_1_5","score":0.5} {"chain_id":"3C44YUNSI1OBFBB8D36GODNOZNZDP0_1_6","score":0.5} {"chain_id":"3C44YUNSI1OBFBB8D36GODNOZNZDP0_1_7","score":0.5} {"chain_id":"3C44YUNSI1OBFBB8D36GODNOZNZDP0_1_8","score":0.5} {"chain_id":"3C44YUNSI1OBFBB8D36GODNOZNZDP0_1_9","score":0.5} {"chain_id":"3C6FJU71TQSR5REVQLSOB4KOR2AUYK_1_1","score":0.5} {"chain_id":"3C6FJU71TQSR5REVQLSOB4KOR2AUYK_1_10","score":0.5} {"chain_id":"3C6FJU71TQSR5REVQLSOB4KOR2AUYK_1_2","score":0.5} {"chain_id":"3C6FJU71TQSR5REVQLSOB4KOR2AUYK_1_3","score":0.5} {"chain_id":"3C6FJU71TQSR5REVQLSOB4KOR2AUYK_1_4","score":0.5} {"chain_id":"3C6FJU71TQSR5REVQLSOB4KOR2AUYK_1_5","score":0.5} {"chain_id":"3C6FJU71TQSR5REVQLSOB4KOR2AUYK_1_6","score":0.5} {"chain_id":"3C6FJU71TQSR5REVQLSOB4KOR2AUYK_1_7","score":0.5} {"chain_id":"3C6FJU71TQSR5REVQLSOB4KOR2AUYK_1_8","score":0.5} {"chain_id":"3C6FJU71TQSR5REVQLSOB4KOR2AUYK_1_9","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWFF7MZC_1_1","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWFF7MZC_1_10","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWFF7MZC_1_2","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWFF7MZC_1_3","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWFF7MZC_1_4","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWFF7MZC_1_5","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWFF7MZC_1_6","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWFF7MZC_1_7","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWFF7MZC_1_8","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWFF7MZC_1_9","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWGSRZM0_1_1","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWGSRZM0_1_10","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWGSRZM0_1_2","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWGSRZM0_1_3","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWGSRZM0_1_4","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWGSRZM0_1_5","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWGSRZM0_1_6","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWGSRZM0_1_7","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWGSRZM0_1_8","score":0.5} {"chain_id":"3C8HJ7UOP7T8X9JRD53LY1CWGSRZM0_1_9","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHFRV95H_1_1","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHFRV95H_1_10","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHFRV95H_1_2","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHFRV95H_1_3","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHFRV95H_1_4","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHFRV95H_1_5","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHFRV95H_1_6","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHFRV95H_1_7","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHFRV95H_1_8","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHFRV95H_1_9","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHVZO956_1_1","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHVZO956_1_10","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHVZO956_1_2","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHVZO956_1_3","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHVZO956_1_4","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHVZO956_1_5","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHVZO956_1_6","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHVZO956_1_7","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHVZO956_1_8","score":0.5} {"chain_id":"3CCZ6YKWR7IVJBG8H8S04BZHVZO956_1_9","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCG4G8I7K_1_1","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCG4G8I7K_1_10","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCG4G8I7K_1_2","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCG4G8I7K_1_3","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCG4G8I7K_1_4","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCG4G8I7K_1_5","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCG4G8I7K_1_6","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCG4G8I7K_1_7","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCG4G8I7K_1_8","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCG4G8I7K_1_9","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCGQHAI7A_1_1","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCGQHAI7A_1_10","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCGQHAI7A_1_2","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCGQHAI7A_1_3","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCGQHAI7A_1_4","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCGQHAI7A_1_5","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCGQHAI7A_1_6","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCGQHAI7A_1_7","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCGQHAI7A_1_8","score":0.5} {"chain_id":"3CFJTT4SXTP3HGNU9VDAFOCGQHAI7A_1_9","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CAYS6LV_1_1","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CAYS6LV_1_10","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CAYS6LV_1_2","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CAYS6LV_1_3","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CAYS6LV_1_4","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CAYS6LV_1_5","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CAYS6LV_1_6","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CAYS6LV_1_7","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CAYS6LV_1_8","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CAYS6LV_1_9","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CCVDL6R_1_1","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CCVDL6R_1_10","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CCVDL6R_1_2","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CCVDL6R_1_3","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CCVDL6R_1_4","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CCVDL6R_1_5","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CCVDL6R_1_6","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CCVDL6R_1_7","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CCVDL6R_1_8","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CCVDL6R_1_9","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CD706LO_1_1","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CD706LO_1_10","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CD706LO_1_2","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CD706LO_1_3","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CD706LO_1_4","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CD706LO_1_5","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CD706LO_1_6","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CD706LO_1_7","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CD706LO_1_8","score":0.5} {"chain_id":"3CFVK00FWLKM3HHVBO5V1Q4CD706LO_1_9","score":0.5} {"chain_id":"3CN4LGXD5XNSOTKGBF16Y0MUPYL4YL_1_1","score":0.5} {"chain_id":"3CN4LGXD5XNSOTKGBF16Y0MUPYL4YL_1_10","score":0.5} {"chain_id":"3CN4LGXD5XNSOTKGBF16Y0MUPYL4YL_1_2","score":0.5} {"chain_id":"3CN4LGXD5XNSOTKGBF16Y0MUPYL4YL_1_3","score":0.5} {"chain_id":"3CN4LGXD5XNSOTKGBF16Y0MUPYL4YL_1_4","score":0.5} {"chain_id":"3CN4LGXD5XNSOTKGBF16Y0MUPYL4YL_1_5","score":0.5} {"chain_id":"3CN4LGXD5XNSOTKGBF16Y0MUPYL4YL_1_6","score":0.5} {"chain_id":"3CN4LGXD5XNSOTKGBF16Y0MUPYL4YL_1_7","score":0.5} {"chain_id":"3CN4LGXD5XNSOTKGBF16Y0MUPYL4YL_1_8","score":0.5} {"chain_id":"3CN4LGXD5XNSOTKGBF16Y0MUPYL4YL_1_9","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEFB5KPJ_1_1","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEFB5KPJ_1_10","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEFB5KPJ_1_2","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEFB5KPJ_1_3","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEFB5KPJ_1_4","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEFB5KPJ_1_5","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEFB5KPJ_1_6","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEFB5KPJ_1_7","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEFB5KPJ_1_8","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEFB5KPJ_1_9","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEHMVPK2_1_1","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEHMVPK2_1_10","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEHMVPK2_1_2","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEHMVPK2_1_3","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEHMVPK2_1_4","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEHMVPK2_1_5","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEHMVPK2_1_6","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEHMVPK2_1_7","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEHMVPK2_1_8","score":0.5} {"chain_id":"3COPXFW7XBBJTHHI5KS3SQIEHMVPK2_1_9","score":0.5} {"chain_id":"3CP1TO84PT0KJRV9WZDLUOR3F8U257_1_1","score":0.5} {"chain_id":"3CP1TO84PT0KJRV9WZDLUOR3F8U257_1_10","score":0.5} {"chain_id":"3CP1TO84PT0KJRV9WZDLUOR3F8U257_1_2","score":0.5} {"chain_id":"3CP1TO84PT0KJRV9WZDLUOR3F8U257_1_3","score":0.5} {"chain_id":"3CP1TO84PT0KJRV9WZDLUOR3F8U257_1_4","score":0.5} {"chain_id":"3CP1TO84PT0KJRV9WZDLUOR3F8U257_1_5","score":0.5} {"chain_id":"3CP1TO84PT0KJRV9WZDLUOR3F8U257_1_6","score":0.5} {"chain_id":"3CP1TO84PT0KJRV9WZDLUOR3F8U257_1_7","score":0.5} {"chain_id":"3CP1TO84PT0KJRV9WZDLUOR3F8U257_1_8","score":0.5} {"chain_id":"3CP1TO84PT0KJRV9WZDLUOR3F8U257_1_9","score":0.5} {"chain_id":"3CPLWGV3MOYZ90MEL8OMYSZ35T39NC_1_1","score":0.5} {"chain_id":"3CPLWGV3MOYZ90MEL8OMYSZ35T39NC_1_10","score":0.5} {"chain_id":"3CPLWGV3MOYZ90MEL8OMYSZ35T39NC_1_2","score":0.5} {"chain_id":"3CPLWGV3MOYZ90MEL8OMYSZ35T39NC_1_3","score":0.5} {"chain_id":"3CPLWGV3MOYZ90MEL8OMYSZ35T39NC_1_4","score":0.5} {"chain_id":"3CPLWGV3MOYZ90MEL8OMYSZ35T39NC_1_5","score":0.5} {"chain_id":"3CPLWGV3MOYZ90MEL8OMYSZ35T39NC_1_6","score":0.5} {"chain_id":"3CPLWGV3MOYZ90MEL8OMYSZ35T39NC_1_7","score":0.5} {"chain_id":"3CPLWGV3MOYZ90MEL8OMYSZ35T39NC_1_8","score":0.5} {"chain_id":"3CPLWGV3MOYZ90MEL8OMYSZ35T39NC_1_9","score":0.5} {"chain_id":"3D3VGR7TA0EY9WPQX64TGZ1RA5H3RU_1_1","score":0.5} {"chain_id":"3D3VGR7TA0EY9WPQX64TGZ1RA5H3RU_1_10","score":0.5} {"chain_id":"3D3VGR7TA0EY9WPQX64TGZ1RA5H3RU_1_2","score":0.5} {"chain_id":"3D3VGR7TA0EY9WPQX64TGZ1RA5H3RU_1_3","score":0.5} {"chain_id":"3D3VGR7TA0EY9WPQX64TGZ1RA5H3RU_1_4","score":0.5} {"chain_id":"3D3VGR7TA0EY9WPQX64TGZ1RA5H3RU_1_5","score":0.5} {"chain_id":"3D3VGR7TA0EY9WPQX64TGZ1RA5H3RU_1_6","score":0.5} {"chain_id":"3D3VGR7TA0EY9WPQX64TGZ1RA5H3RU_1_7","score":0.5} {"chain_id":"3D3VGR7TA0EY9WPQX64TGZ1RA5H3RU_1_8","score":0.5} {"chain_id":"3D3VGR7TA0EY9WPQX64TGZ1RA5H3RU_1_9","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q64IE9G3_1_1","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q64IE9G3_1_10","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q64IE9G3_1_2","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q64IE9G3_1_3","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q64IE9G3_1_4","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q64IE9G3_1_5","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q64IE9G3_1_6","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q64IE9G3_1_7","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q64IE9G3_1_8","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q64IE9G3_1_9","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q66Y8G92_1_1","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q66Y8G92_1_10","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q66Y8G92_1_2","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q66Y8G92_1_3","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q66Y8G92_1_4","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q66Y8G92_1_5","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q66Y8G92_1_6","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q66Y8G92_1_7","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q66Y8G92_1_8","score":0.5} {"chain_id":"3D4CH1LGEASTZ85SY4BR88Q66Y8G92_1_9","score":0.5} {"chain_id":"3DBQWDE4Y6XG8DK2IIB5MCU1M6U5NC_1_1","score":0.5} {"chain_id":"3DBQWDE4Y6XG8DK2IIB5MCU1M6U5NC_1_10","score":0.5} {"chain_id":"3DBQWDE4Y6XG8DK2IIB5MCU1M6U5NC_1_2","score":0.5} {"chain_id":"3DBQWDE4Y6XG8DK2IIB5MCU1M6U5NC_1_3","score":0.5} {"chain_id":"3DBQWDE4Y6XG8DK2IIB5MCU1M6U5NC_1_4","score":0.5} {"chain_id":"3DBQWDE4Y6XG8DK2IIB5MCU1M6U5NC_1_5","score":0.5} {"chain_id":"3DBQWDE4Y6XG8DK2IIB5MCU1M6U5NC_1_6","score":0.5} {"chain_id":"3DBQWDE4Y6XG8DK2IIB5MCU1M6U5NC_1_7","score":0.5} {"chain_id":"3DBQWDE4Y6XG8DK2IIB5MCU1M6U5NC_1_8","score":0.5} {"chain_id":"3DBQWDE4Y6XG8DK2IIB5MCU1M6U5NC_1_9","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSH29XYT_1_1","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSH29XYT_1_10","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSH29XYT_1_2","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSH29XYT_1_3","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSH29XYT_1_4","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSH29XYT_1_5","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSH29XYT_1_6","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSH29XYT_1_7","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSH29XYT_1_8","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSH29XYT_1_9","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSIEZXY8_1_1","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSIEZXY8_1_10","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSIEZXY8_1_2","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSIEZXY8_1_3","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSIEZXY8_1_4","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSIEZXY8_1_5","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSIEZXY8_1_6","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSIEZXY8_1_7","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSIEZXY8_1_8","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSIEZXY8_1_9","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSKNPXYI_1_1","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSKNPXYI_1_10","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSKNPXYI_1_2","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSKNPXYI_1_3","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSKNPXYI_1_4","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSKNPXYI_1_5","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSKNPXYI_1_6","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSKNPXYI_1_7","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSKNPXYI_1_8","score":0.5} {"chain_id":"3DEL4X4EL6KJMV8QVQ3BVBJSKNPXYI_1_9","score":0.5} {"chain_id":"3DH6GAKTYYO8RQ85W8RWSWZ3QV5ZYD_1_1","score":0.5} {"chain_id":"3DH6GAKTYYO8RQ85W8RWSWZ3QV5ZYD_1_10","score":0.5} {"chain_id":"3DH6GAKTYYO8RQ85W8RWSWZ3QV5ZYD_1_2","score":0.5} {"chain_id":"3DH6GAKTYYO8RQ85W8RWSWZ3QV5ZYD_1_3","score":0.5} {"chain_id":"3DH6GAKTYYO8RQ85W8RWSWZ3QV5ZYD_1_4","score":0.5} {"chain_id":"3DH6GAKTYYO8RQ85W8RWSWZ3QV5ZYD_1_5","score":0.5} {"chain_id":"3DH6GAKTYYO8RQ85W8RWSWZ3QV5ZYD_1_6","score":0.5} {"chain_id":"3DH6GAKTYYO8RQ85W8RWSWZ3QV5ZYD_1_7","score":0.5} {"chain_id":"3DH6GAKTYYO8RQ85W8RWSWZ3QV5ZYD_1_8","score":0.5} {"chain_id":"3DH6GAKTYYO8RQ85W8RWSWZ3QV5ZYD_1_9","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS0RCG2M_1_1","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS0RCG2M_1_10","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS0RCG2M_1_2","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS0RCG2M_1_3","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS0RCG2M_1_4","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS0RCG2M_1_5","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS0RCG2M_1_6","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS0RCG2M_1_7","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS0RCG2M_1_8","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS0RCG2M_1_9","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS31IG2F_1_1","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS31IG2F_1_10","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS31IG2F_1_2","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS31IG2F_1_3","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS31IG2F_1_4","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS31IG2F_1_5","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS31IG2F_1_6","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS31IG2F_1_7","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS31IG2F_1_8","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLIS31IG2F_1_9","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLISEYO2GC_1_1","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLISEYO2GC_1_10","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLISEYO2GC_1_2","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLISEYO2GC_1_3","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLISEYO2GC_1_4","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLISEYO2GC_1_5","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLISEYO2GC_1_6","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLISEYO2GC_1_7","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLISEYO2GC_1_8","score":0.5} {"chain_id":"3DHE4R9OCWAIZOKTDVWCYLISEYO2GC_1_9","score":0.5} {"chain_id":"3DI28L7YXADDQP66OW6ATZNBAFRE1T_1_1","score":0.5} {"chain_id":"3DI28L7YXADDQP66OW6ATZNBAFRE1T_1_10","score":0.5} {"chain_id":"3DI28L7YXADDQP66OW6ATZNBAFRE1T_1_2","score":0.5} {"chain_id":"3DI28L7YXADDQP66OW6ATZNBAFRE1T_1_3","score":0.5} {"chain_id":"3DI28L7YXADDQP66OW6ATZNBAFRE1T_1_4","score":0.5} {"chain_id":"3DI28L7YXADDQP66OW6ATZNBAFRE1T_1_5","score":0.5} {"chain_id":"3DI28L7YXADDQP66OW6ATZNBAFRE1T_1_6","score":0.5} {"chain_id":"3DI28L7YXADDQP66OW6ATZNBAFRE1T_1_7","score":0.5} {"chain_id":"3DI28L7YXADDQP66OW6ATZNBAFRE1T_1_8","score":0.5} {"chain_id":"3DI28L7YXADDQP66OW6ATZNBAFRE1T_1_9","score":0.5} {"chain_id":"3DL65MZB8DEXDSG44TVUAV624SKEC7_1_1","score":0.5} {"chain_id":"3DL65MZB8DEXDSG44TVUAV624SKEC7_1_10","score":0.5} {"chain_id":"3DL65MZB8DEXDSG44TVUAV624SKEC7_1_2","score":0.5} {"chain_id":"3DL65MZB8DEXDSG44TVUAV624SKEC7_1_3","score":0.5} {"chain_id":"3DL65MZB8DEXDSG44TVUAV624SKEC7_1_4","score":0.5} {"chain_id":"3DL65MZB8DEXDSG44TVUAV624SKEC7_1_5","score":0.5} {"chain_id":"3DL65MZB8DEXDSG44TVUAV624SKEC7_1_6","score":0.5} {"chain_id":"3DL65MZB8DEXDSG44TVUAV624SKEC7_1_7","score":0.5} {"chain_id":"3DL65MZB8DEXDSG44TVUAV624SKEC7_1_8","score":0.5} {"chain_id":"3DL65MZB8DEXDSG44TVUAV624SKEC7_1_9","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921RHV46B_1_1","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921RHV46B_1_10","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921RHV46B_1_2","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921RHV46B_1_3","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921RHV46B_1_4","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921RHV46B_1_5","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921RHV46B_1_6","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921RHV46B_1_7","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921RHV46B_1_8","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921RHV46B_1_9","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921UV346E_1_1","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921UV346E_1_10","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921UV346E_1_2","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921UV346E_1_3","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921UV346E_1_4","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921UV346E_1_5","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921UV346E_1_6","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921UV346E_1_7","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921UV346E_1_8","score":0.5} {"chain_id":"3DPNQGW4LLEQ59AA5W6EF921UV346E_1_9","score":0.5} {"chain_id":"3DQQ64TANGKAOHBZUYB6G1C99SOPWL_1_1","score":0.5} {"chain_id":"3DQQ64TANGKAOHBZUYB6G1C99SOPWL_1_10","score":0.5} {"chain_id":"3DQQ64TANGKAOHBZUYB6G1C99SOPWL_1_2","score":0.5} {"chain_id":"3DQQ64TANGKAOHBZUYB6G1C99SOPWL_1_3","score":0.5} {"chain_id":"3DQQ64TANGKAOHBZUYB6G1C99SOPWL_1_4","score":0.5} {"chain_id":"3DQQ64TANGKAOHBZUYB6G1C99SOPWL_1_5","score":0.5} {"chain_id":"3DQQ64TANGKAOHBZUYB6G1C99SOPWL_1_6","score":0.5} {"chain_id":"3DQQ64TANGKAOHBZUYB6G1C99SOPWL_1_7","score":0.5} {"chain_id":"3DQQ64TANGKAOHBZUYB6G1C99SOPWL_1_8","score":0.5} {"chain_id":"3DQQ64TANGKAOHBZUYB6G1C99SOPWL_1_9","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JJKVSE_1_1","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JJKVSE_1_10","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JJKVSE_1_2","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JJKVSE_1_3","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JJKVSE_1_4","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JJKVSE_1_5","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JJKVSE_1_6","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JJKVSE_1_7","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JJKVSE_1_8","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JJKVSE_1_9","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JSFSVO_1_1","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JSFSVO_1_10","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JSFSVO_1_2","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JSFSVO_1_3","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JSFSVO_1_4","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JSFSVO_1_5","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JSFSVO_1_6","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JSFSVO_1_7","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JSFSVO_1_8","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6JSFSVO_1_9","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6MF2VSR_1_1","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6MF2VSR_1_10","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6MF2VSR_1_2","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6MF2VSR_1_3","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6MF2VSR_1_4","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6MF2VSR_1_5","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6MF2VSR_1_6","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6MF2VSR_1_7","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6MF2VSR_1_8","score":0.5} {"chain_id":"3DUZQ9U6SMNUMKRMW5A4P4Y6MF2VSR_1_9","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUF8GA555_1_1","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUF8GA555_1_10","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUF8GA555_1_2","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUF8GA555_1_3","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUF8GA555_1_4","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUF8GA555_1_5","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUF8GA555_1_6","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUF8GA555_1_7","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUF8GA555_1_8","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUF8GA555_1_9","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUFV8W55Y_1_1","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUFV8W55Y_1_10","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUFV8W55Y_1_2","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUFV8W55Y_1_3","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUFV8W55Y_1_4","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUFV8W55Y_1_5","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUFV8W55Y_1_6","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUFV8W55Y_1_7","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUFV8W55Y_1_8","score":0.5} {"chain_id":"3DY46V3X3PHCIOEWEIFJSVUFV8W55Y_1_9","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA1RXVRA_1_1","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA1RXVRA_1_10","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA1RXVRA_1_2","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA1RXVRA_1_3","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA1RXVRA_1_4","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA1RXVRA_1_5","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA1RXVRA_1_6","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA1RXVRA_1_7","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA1RXVRA_1_8","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA1RXVRA_1_9","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA4IPRVJ_1_1","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA4IPRVJ_1_10","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA4IPRVJ_1_2","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA4IPRVJ_1_3","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA4IPRVJ_1_4","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA4IPRVJ_1_5","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA4IPRVJ_1_6","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA4IPRVJ_1_7","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA4IPRVJ_1_8","score":0.5} {"chain_id":"3DY4FPOOA1NIL5R9HGAZZUTA4IPRVJ_1_9","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8B3YN8IQ_1_1","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8B3YN8IQ_1_10","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8B3YN8IQ_1_2","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8B3YN8IQ_1_3","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8B3YN8IQ_1_4","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8B3YN8IQ_1_5","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8B3YN8IQ_1_6","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8B3YN8IQ_1_7","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8B3YN8IQ_1_8","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8B3YN8IQ_1_9","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8BFQM8IL_1_1","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8BFQM8IL_1_10","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8BFQM8IL_1_2","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8BFQM8IL_1_3","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8BFQM8IL_1_4","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8BFQM8IL_1_5","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8BFQM8IL_1_6","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8BFQM8IL_1_7","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8BFQM8IL_1_8","score":0.5} {"chain_id":"3E1QT0TDFP87HUSDJ05GTO8BFQM8IL_1_9","score":0.5} {"chain_id":"3E337GFOL97EOA9MZEUWQ9LQG34GNH_1_1","score":0.5} {"chain_id":"3E337GFOL97EOA9MZEUWQ9LQG34GNH_1_10","score":0.5} {"chain_id":"3E337GFOL97EOA9MZEUWQ9LQG34GNH_1_2","score":0.5} {"chain_id":"3E337GFOL97EOA9MZEUWQ9LQG34GNH_1_3","score":0.5} {"chain_id":"3E337GFOL97EOA9MZEUWQ9LQG34GNH_1_4","score":0.5} {"chain_id":"3E337GFOL97EOA9MZEUWQ9LQG34GNH_1_5","score":0.5} {"chain_id":"3E337GFOL97EOA9MZEUWQ9LQG34GNH_1_6","score":0.5} {"chain_id":"3E337GFOL97EOA9MZEUWQ9LQG34GNH_1_7","score":0.5} {"chain_id":"3E337GFOL97EOA9MZEUWQ9LQG34GNH_1_8","score":0.5} {"chain_id":"3E337GFOL97EOA9MZEUWQ9LQG34GNH_1_9","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4URKTICF_1_1","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4URKTICF_1_10","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4URKTICF_1_2","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4URKTICF_1_3","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4URKTICF_1_4","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4URKTICF_1_5","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4URKTICF_1_6","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4URKTICF_1_7","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4URKTICF_1_8","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4URKTICF_1_9","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4UTNYICS_1_1","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4UTNYICS_1_10","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4UTNYICS_1_2","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4UTNYICS_1_3","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4UTNYICS_1_4","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4UTNYICS_1_5","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4UTNYICS_1_6","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4UTNYICS_1_7","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4UTNYICS_1_8","score":0.5} {"chain_id":"3E47SOBEYQV9TXIQ0CLLVA4UTNYICS_1_9","score":0.5} {"chain_id":"3E4GGUZ1T8QN1AGC3MHRWDAL5VGK2O_1_1","score":0.5} {"chain_id":"3E4GGUZ1T8QN1AGC3MHRWDAL5VGK2O_1_10","score":0.5} {"chain_id":"3E4GGUZ1T8QN1AGC3MHRWDAL5VGK2O_1_2","score":0.5} {"chain_id":"3E4GGUZ1T8QN1AGC3MHRWDAL5VGK2O_1_3","score":0.5} {"chain_id":"3E4GGUZ1T8QN1AGC3MHRWDAL5VGK2O_1_4","score":0.5} {"chain_id":"3E4GGUZ1T8QN1AGC3MHRWDAL5VGK2O_1_5","score":0.5} {"chain_id":"3E4GGUZ1T8QN1AGC3MHRWDAL5VGK2O_1_6","score":0.5} {"chain_id":"3E4GGUZ1T8QN1AGC3MHRWDAL5VGK2O_1_7","score":0.5} {"chain_id":"3E4GGUZ1T8QN1AGC3MHRWDAL5VGK2O_1_8","score":0.5} {"chain_id":"3E4GGUZ1T8QN1AGC3MHRWDAL5VGK2O_1_9","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97E7D9Y_1_1","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97E7D9Y_1_10","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97E7D9Y_1_2","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97E7D9Y_1_3","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97E7D9Y_1_4","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97E7D9Y_1_5","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97E7D9Y_1_6","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97E7D9Y_1_7","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97E7D9Y_1_8","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97E7D9Y_1_9","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97SUD9D_1_1","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97SUD9D_1_10","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97SUD9D_1_2","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97SUD9D_1_3","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97SUD9D_1_4","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97SUD9D_1_5","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97SUD9D_1_6","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97SUD9D_1_7","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97SUD9D_1_8","score":0.5} {"chain_id":"3E7TUJ2EGCLQNOV1WEAJ2NN97SUD9D_1_9","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGCWTIP_1_1","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGCWTIP_1_10","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGCWTIP_1_2","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGCWTIP_1_3","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGCWTIP_1_4","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGCWTIP_1_5","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGCWTIP_1_6","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGCWTIP_1_7","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGCWTIP_1_8","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGCWTIP_1_9","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGF2ITQ_1_1","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGF2ITQ_1_10","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGF2ITQ_1_2","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGF2ITQ_1_3","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGF2ITQ_1_4","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGF2ITQ_1_5","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGF2ITQ_1_6","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGF2ITQ_1_7","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGF2ITQ_1_8","score":0.5} {"chain_id":"3EA3QWIZ4IUQFEK1MYGBKK4YGF2ITQ_1_9","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF034JQ1JL_1_1","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF034JQ1JL_1_10","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF034JQ1JL_1_2","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF034JQ1JL_1_3","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF034JQ1JL_1_4","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF034JQ1JL_1_5","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF034JQ1JL_1_6","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF034JQ1JL_1_7","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF034JQ1JL_1_8","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF034JQ1JL_1_9","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03EE81J3_1_1","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03EE81J3_1_10","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03EE81J3_1_2","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03EE81J3_1_3","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03EE81J3_1_4","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03EE81J3_1_5","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03EE81J3_1_6","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03EE81J3_1_7","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03EE81J3_1_8","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03EE81J3_1_9","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03Y09J1E_1_1","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03Y09J1E_1_10","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03Y09J1E_1_2","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03Y09J1E_1_3","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03Y09J1E_1_4","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03Y09J1E_1_5","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03Y09J1E_1_6","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03Y09J1E_1_7","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03Y09J1E_1_8","score":0.5} {"chain_id":"3EF8EXOTT1UL15SY2XH1QF03Y09J1E_1_9","score":0.5} {"chain_id":"3EFVCAY5L383C5CJ1IQG5PNBF7KJ88_1_1","score":0.5} {"chain_id":"3EFVCAY5L383C5CJ1IQG5PNBF7KJ88_1_10","score":0.5} {"chain_id":"3EFVCAY5L383C5CJ1IQG5PNBF7KJ88_1_2","score":0.5} {"chain_id":"3EFVCAY5L383C5CJ1IQG5PNBF7KJ88_1_3","score":0.5} {"chain_id":"3EFVCAY5L383C5CJ1IQG5PNBF7KJ88_1_4","score":0.5} {"chain_id":"3EFVCAY5L383C5CJ1IQG5PNBF7KJ88_1_5","score":0.5} {"chain_id":"3EFVCAY5L383C5CJ1IQG5PNBF7KJ88_1_6","score":0.5} {"chain_id":"3EFVCAY5L383C5CJ1IQG5PNBF7KJ88_1_7","score":0.5} {"chain_id":"3EFVCAY5L383C5CJ1IQG5PNBF7KJ88_1_8","score":0.5} {"chain_id":"3EFVCAY5L383C5CJ1IQG5PNBF7KJ88_1_9","score":0.5} {"chain_id":"3EG49X351UBH3BYKP78JCKZZNRTX69_1_1","score":0.5} {"chain_id":"3EG49X351UBH3BYKP78JCKZZNRTX69_1_10","score":0.5} {"chain_id":"3EG49X351UBH3BYKP78JCKZZNRTX69_1_2","score":0.5} {"chain_id":"3EG49X351UBH3BYKP78JCKZZNRTX69_1_3","score":0.5} {"chain_id":"3EG49X351UBH3BYKP78JCKZZNRTX69_1_4","score":0.5} {"chain_id":"3EG49X351UBH3BYKP78JCKZZNRTX69_1_5","score":0.5} {"chain_id":"3EG49X351UBH3BYKP78JCKZZNRTX69_1_6","score":0.5} {"chain_id":"3EG49X351UBH3BYKP78JCKZZNRTX69_1_7","score":0.5} {"chain_id":"3EG49X351UBH3BYKP78JCKZZNRTX69_1_8","score":0.5} {"chain_id":"3EG49X351UBH3BYKP78JCKZZNRTX69_1_9","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FA58IZ67_1_1","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FA58IZ67_1_10","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FA58IZ67_1_2","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FA58IZ67_1_3","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FA58IZ67_1_4","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FA58IZ67_1_5","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FA58IZ67_1_6","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FA58IZ67_1_7","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FA58IZ67_1_8","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FA58IZ67_1_9","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FASHG6ZH_1_1","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FASHG6ZH_1_10","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FASHG6ZH_1_2","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FASHG6ZH_1_3","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FASHG6ZH_1_4","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FASHG6ZH_1_5","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FASHG6ZH_1_6","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FASHG6ZH_1_7","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FASHG6ZH_1_8","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FASHG6ZH_1_9","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FAVR86ZW_1_1","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FAVR86ZW_1_10","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FAVR86ZW_1_2","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FAVR86ZW_1_3","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FAVR86ZW_1_4","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FAVR86ZW_1_5","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FAVR86ZW_1_6","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FAVR86ZW_1_7","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FAVR86ZW_1_8","score":0.5} {"chain_id":"3EJPLAJKEMF686YZQPW495FAVR86ZW_1_9","score":0.5} {"chain_id":"3EO896NRAWUMAP474G1BWLJY76QTJE_1_1","score":0.5} {"chain_id":"3EO896NRAWUMAP474G1BWLJY76QTJE_1_10","score":0.5} {"chain_id":"3EO896NRAWUMAP474G1BWLJY76QTJE_1_2","score":0.5} {"chain_id":"3EO896NRAWUMAP474G1BWLJY76QTJE_1_3","score":0.5} {"chain_id":"3EO896NRAWUMAP474G1BWLJY76QTJE_1_4","score":0.5} {"chain_id":"3EO896NRAWUMAP474G1BWLJY76QTJE_1_5","score":0.5} {"chain_id":"3EO896NRAWUMAP474G1BWLJY76QTJE_1_6","score":0.5} {"chain_id":"3EO896NRAWUMAP474G1BWLJY76QTJE_1_7","score":0.5} {"chain_id":"3EO896NRAWUMAP474G1BWLJY76QTJE_1_8","score":0.5} {"chain_id":"3EO896NRAWUMAP474G1BWLJY76QTJE_1_9","score":0.5} {"chain_id":"3EQHHY4HQSRAYL3GVEYAWSL4M9M5GD_1_1","score":0.5} {"chain_id":"3EQHHY4HQSRAYL3GVEYAWSL4M9M5GD_1_10","score":0.5} {"chain_id":"3EQHHY4HQSRAYL3GVEYAWSL4M9M5GD_1_2","score":0.5} {"chain_id":"3EQHHY4HQSRAYL3GVEYAWSL4M9M5GD_1_3","score":0.5} {"chain_id":"3EQHHY4HQSRAYL3GVEYAWSL4M9M5GD_1_4","score":0.5} {"chain_id":"3EQHHY4HQSRAYL3GVEYAWSL4M9M5GD_1_5","score":0.5} {"chain_id":"3EQHHY4HQSRAYL3GVEYAWSL4M9M5GD_1_6","score":0.5} {"chain_id":"3EQHHY4HQSRAYL3GVEYAWSL4M9M5GD_1_7","score":0.5} {"chain_id":"3EQHHY4HQSRAYL3GVEYAWSL4M9M5GD_1_8","score":0.5} {"chain_id":"3EQHHY4HQSRAYL3GVEYAWSL4M9M5GD_1_9","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZE9J9KH_1_1","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZE9J9KH_1_10","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZE9J9KH_1_2","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZE9J9KH_1_3","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZE9J9KH_1_4","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZE9J9KH_1_5","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZE9J9KH_1_6","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZE9J9KH_1_7","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZE9J9KH_1_8","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZE9J9KH_1_9","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZEAC9KC_1_1","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZEAC9KC_1_10","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZEAC9KC_1_2","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZEAC9KC_1_3","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZEAC9KC_1_4","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZEAC9KC_1_5","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZEAC9KC_1_6","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZEAC9KC_1_7","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZEAC9KC_1_8","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZEAC9KC_1_9","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZF9I9KH_1_1","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZF9I9KH_1_10","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZF9I9KH_1_2","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZF9I9KH_1_3","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZF9I9KH_1_4","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZF9I9KH_1_5","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZF9I9KH_1_6","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZF9I9KH_1_7","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZF9I9KH_1_8","score":0.5} {"chain_id":"3ERET4BTVM8Y1U1BOVW660IZF9I9KH_1_9","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64GZPY7B_1_1","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64GZPY7B_1_10","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64GZPY7B_1_2","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64GZPY7B_1_3","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64GZPY7B_1_4","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64GZPY7B_1_5","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64GZPY7B_1_6","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64GZPY7B_1_7","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64GZPY7B_1_8","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64GZPY7B_1_9","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64K6YY72_1_1","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64K6YY72_1_10","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64K6YY72_1_2","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64K6YY72_1_3","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64K6YY72_1_4","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64K6YY72_1_5","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64K6YY72_1_6","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64K6YY72_1_7","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64K6YY72_1_8","score":0.5} {"chain_id":"3F0BG9B9MPMP7G2ZDDZD1C64K6YY72_1_9","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8BMR9Q1_1_1","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8BMR9Q1_1_10","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8BMR9Q1_1_2","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8BMR9Q1_1_3","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8BMR9Q1_1_4","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8BMR9Q1_1_5","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8BMR9Q1_1_6","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8BMR9Q1_1_7","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8BMR9Q1_1_8","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8BMR9Q1_1_9","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8CKDQ91_1_1","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8CKDQ91_1_10","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8CKDQ91_1_2","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8CKDQ91_1_3","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8CKDQ91_1_4","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8CKDQ91_1_5","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8CKDQ91_1_6","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8CKDQ91_1_7","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8CKDQ91_1_8","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8CKDQ91_1_9","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8QNYQ96_1_1","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8QNYQ96_1_10","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8QNYQ96_1_2","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8QNYQ96_1_3","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8QNYQ96_1_4","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8QNYQ96_1_5","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8QNYQ96_1_6","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8QNYQ96_1_7","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8QNYQ96_1_8","score":0.5} {"chain_id":"3F1567XTNW4KCXZ610G32MU8QNYQ96_1_9","score":0.5} {"chain_id":"3FDJT1UU747F07ZZL5JPUKDXTC25KN_1_1","score":0.5} {"chain_id":"3FDJT1UU747F07ZZL5JPUKDXTC25KN_1_10","score":0.5} {"chain_id":"3FDJT1UU747F07ZZL5JPUKDXTC25KN_1_2","score":0.5} {"chain_id":"3FDJT1UU747F07ZZL5JPUKDXTC25KN_1_3","score":0.5} {"chain_id":"3FDJT1UU747F07ZZL5JPUKDXTC25KN_1_4","score":0.5} {"chain_id":"3FDJT1UU747F07ZZL5JPUKDXTC25KN_1_5","score":0.5} {"chain_id":"3FDJT1UU747F07ZZL5JPUKDXTC25KN_1_6","score":0.5} {"chain_id":"3FDJT1UU747F07ZZL5JPUKDXTC25KN_1_7","score":0.5} {"chain_id":"3FDJT1UU747F07ZZL5JPUKDXTC25KN_1_8","score":0.5} {"chain_id":"3FDJT1UU747F07ZZL5JPUKDXTC25KN_1_9","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZN07KOPV_1_1","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZN07KOPV_1_10","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZN07KOPV_1_2","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZN07KOPV_1_3","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZN07KOPV_1_4","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZN07KOPV_1_5","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZN07KOPV_1_6","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZN07KOPV_1_7","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZN07KOPV_1_8","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZN07KOPV_1_9","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZNGAUPOS_1_1","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZNGAUPOS_1_10","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZNGAUPOS_1_2","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZNGAUPOS_1_3","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZNGAUPOS_1_4","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZNGAUPOS_1_5","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZNGAUPOS_1_6","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZNGAUPOS_1_7","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZNGAUPOS_1_8","score":0.5} {"chain_id":"3FE2ERCCZX72J82X3CKWZ7ZNGAUPOS_1_9","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMU74J2QI_1_1","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMU74J2QI_1_10","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMU74J2QI_1_2","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMU74J2QI_1_3","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMU74J2QI_1_4","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMU74J2QI_1_5","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMU74J2QI_1_6","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMU74J2QI_1_7","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMU74J2QI_1_8","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMU74J2QI_1_9","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMUB4X2Q0_1_1","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMUB4X2Q0_1_10","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMUB4X2Q0_1_2","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMUB4X2Q0_1_3","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMUB4X2Q0_1_4","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMUB4X2Q0_1_5","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMUB4X2Q0_1_6","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMUB4X2Q0_1_7","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMUB4X2Q0_1_8","score":0.5} {"chain_id":"3FE7TXL1LIM9CDE7GR1OSZMUB4X2Q0_1_9","score":0.5} {"chain_id":"3FIJLY1B6U38DVP44916CDQ9BHDPFJ_1_1","score":0.5} {"chain_id":"3FIJLY1B6U38DVP44916CDQ9BHDPFJ_1_10","score":0.5} {"chain_id":"3FIJLY1B6U38DVP44916CDQ9BHDPFJ_1_2","score":0.5} {"chain_id":"3FIJLY1B6U38DVP44916CDQ9BHDPFJ_1_3","score":0.5} {"chain_id":"3FIJLY1B6U38DVP44916CDQ9BHDPFJ_1_4","score":0.5} {"chain_id":"3FIJLY1B6U38DVP44916CDQ9BHDPFJ_1_5","score":0.5} {"chain_id":"3FIJLY1B6U38DVP44916CDQ9BHDPFJ_1_6","score":0.5} {"chain_id":"3FIJLY1B6U38DVP44916CDQ9BHDPFJ_1_7","score":0.5} {"chain_id":"3FIJLY1B6U38DVP44916CDQ9BHDPFJ_1_8","score":0.5} {"chain_id":"3FIJLY1B6U38DVP44916CDQ9BHDPFJ_1_9","score":0.5} {"chain_id":"3FK0YFF9PZFAEC8QQ0F90RIDNSXVVH_1_1","score":0.5} {"chain_id":"3FK0YFF9PZFAEC8QQ0F90RIDNSXVVH_1_10","score":0.5} {"chain_id":"3FK0YFF9PZFAEC8QQ0F90RIDNSXVVH_1_2","score":0.5} {"chain_id":"3FK0YFF9PZFAEC8QQ0F90RIDNSXVVH_1_3","score":0.5} {"chain_id":"3FK0YFF9PZFAEC8QQ0F90RIDNSXVVH_1_4","score":0.5} {"chain_id":"3FK0YFF9PZFAEC8QQ0F90RIDNSXVVH_1_5","score":0.5} {"chain_id":"3FK0YFF9PZFAEC8QQ0F90RIDNSXVVH_1_6","score":0.5} {"chain_id":"3FK0YFF9PZFAEC8QQ0F90RIDNSXVVH_1_7","score":0.5} {"chain_id":"3FK0YFF9PZFAEC8QQ0F90RIDNSXVVH_1_8","score":0.5} {"chain_id":"3FK0YFF9PZFAEC8QQ0F90RIDNSXVVH_1_9","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSNP3V3_1_1","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSNP3V3_1_10","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSNP3V3_1_2","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSNP3V3_1_3","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSNP3V3_1_4","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSNP3V3_1_5","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSNP3V3_1_6","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSNP3V3_1_7","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSNP3V3_1_8","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSNP3V3_1_9","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSOVV33_1_1","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSOVV33_1_10","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSOVV33_1_2","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSOVV33_1_3","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSOVV33_1_4","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSOVV33_1_5","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSOVV33_1_6","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSOVV33_1_7","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSOVV33_1_8","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSOVV33_1_9","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSPW3VE_1_1","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSPW3VE_1_10","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSPW3VE_1_2","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSPW3VE_1_3","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSPW3VE_1_4","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSPW3VE_1_5","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSPW3VE_1_6","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSPW3VE_1_7","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSPW3VE_1_8","score":0.5} {"chain_id":"3FPRZHYEPY6Q23676Q93HWQUSPW3VE_1_9","score":0.5} {"chain_id":"3FQ5JJ512LNJQW55P5FBO1DJJM1NK7_1_1","score":0.5} {"chain_id":"3FQ5JJ512LNJQW55P5FBO1DJJM1NK7_1_10","score":0.5} {"chain_id":"3FQ5JJ512LNJQW55P5FBO1DJJM1NK7_1_2","score":0.5} {"chain_id":"3FQ5JJ512LNJQW55P5FBO1DJJM1NK7_1_3","score":0.5} {"chain_id":"3FQ5JJ512LNJQW55P5FBO1DJJM1NK7_1_4","score":0.5} {"chain_id":"3FQ5JJ512LNJQW55P5FBO1DJJM1NK7_1_5","score":0.5} {"chain_id":"3FQ5JJ512LNJQW55P5FBO1DJJM1NK7_1_6","score":0.5} {"chain_id":"3FQ5JJ512LNJQW55P5FBO1DJJM1NK7_1_7","score":0.5} {"chain_id":"3FQ5JJ512LNJQW55P5FBO1DJJM1NK7_1_8","score":0.5} {"chain_id":"3FQ5JJ512LNJQW55P5FBO1DJJM1NK7_1_9","score":0.5} {"chain_id":"3FTF2T8WLRHPWUVSD9F9UBCU1ZB9WY_1_1","score":0.5} {"chain_id":"3FTF2T8WLRHPWUVSD9F9UBCU1ZB9WY_1_10","score":0.5} {"chain_id":"3FTF2T8WLRHPWUVSD9F9UBCU1ZB9WY_1_2","score":0.5} {"chain_id":"3FTF2T8WLRHPWUVSD9F9UBCU1ZB9WY_1_3","score":0.5} {"chain_id":"3FTF2T8WLRHPWUVSD9F9UBCU1ZB9WY_1_4","score":0.5} {"chain_id":"3FTF2T8WLRHPWUVSD9F9UBCU1ZB9WY_1_5","score":0.5} {"chain_id":"3FTF2T8WLRHPWUVSD9F9UBCU1ZB9WY_1_6","score":0.5} {"chain_id":"3FTF2T8WLRHPWUVSD9F9UBCU1ZB9WY_1_7","score":0.5} {"chain_id":"3FTF2T8WLRHPWUVSD9F9UBCU1ZB9WY_1_8","score":0.5} {"chain_id":"3FTF2T8WLRHPWUVSD9F9UBCU1ZB9WY_1_9","score":0.5} {"chain_id":"3FTOP5WARFNLUG7G6ED1CAHT0V0J0P_1_1","score":0.5} {"chain_id":"3FTOP5WARFNLUG7G6ED1CAHT0V0J0P_1_10","score":0.5} {"chain_id":"3FTOP5WARFNLUG7G6ED1CAHT0V0J0P_1_2","score":0.5} {"chain_id":"3FTOP5WARFNLUG7G6ED1CAHT0V0J0P_1_3","score":0.5} {"chain_id":"3FTOP5WARFNLUG7G6ED1CAHT0V0J0P_1_4","score":0.5} {"chain_id":"3FTOP5WARFNLUG7G6ED1CAHT0V0J0P_1_5","score":0.5} {"chain_id":"3FTOP5WARFNLUG7G6ED1CAHT0V0J0P_1_6","score":0.5} {"chain_id":"3FTOP5WARFNLUG7G6ED1CAHT0V0J0P_1_7","score":0.5} {"chain_id":"3FTOP5WARFNLUG7G6ED1CAHT0V0J0P_1_8","score":0.5} {"chain_id":"3FTOP5WARFNLUG7G6ED1CAHT0V0J0P_1_9","score":0.5} {"chain_id":"3G0WWMR1UVJ51Z302AZ8KNPSI2MNQC_1_1","score":0.5} {"chain_id":"3G0WWMR1UVJ51Z302AZ8KNPSI2MNQC_1_10","score":0.5} {"chain_id":"3G0WWMR1UVJ51Z302AZ8KNPSI2MNQC_1_2","score":0.5} {"chain_id":"3G0WWMR1UVJ51Z302AZ8KNPSI2MNQC_1_3","score":0.5} {"chain_id":"3G0WWMR1UVJ51Z302AZ8KNPSI2MNQC_1_4","score":0.5} {"chain_id":"3G0WWMR1UVJ51Z302AZ8KNPSI2MNQC_1_5","score":0.5} {"chain_id":"3G0WWMR1UVJ51Z302AZ8KNPSI2MNQC_1_6","score":0.5} {"chain_id":"3G0WWMR1UVJ51Z302AZ8KNPSI2MNQC_1_7","score":0.5} {"chain_id":"3G0WWMR1UVJ51Z302AZ8KNPSI2MNQC_1_8","score":0.5} {"chain_id":"3G0WWMR1UVJ51Z302AZ8KNPSI2MNQC_1_9","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBFGB76F_1_1","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBFGB76F_1_10","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBFGB76F_1_2","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBFGB76F_1_3","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBFGB76F_1_4","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBFGB76F_1_5","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBFGB76F_1_6","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBFGB76F_1_7","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBFGB76F_1_8","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBFGB76F_1_9","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBHBU76Q_1_1","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBHBU76Q_1_10","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBHBU76Q_1_2","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBHBU76Q_1_3","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBHBU76Q_1_4","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBHBU76Q_1_5","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBHBU76Q_1_6","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBHBU76Q_1_7","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBHBU76Q_1_8","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBHBU76Q_1_9","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBW6E67E_1_1","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBW6E67E_1_10","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBW6E67E_1_2","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBW6E67E_1_3","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBW6E67E_1_4","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBW6E67E_1_5","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBW6E67E_1_6","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBW6E67E_1_7","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBW6E67E_1_8","score":0.5} {"chain_id":"3G2UL9A02DDNOWST7U4LILMBW6E67E_1_9","score":0.5} {"chain_id":"3G5F9DBFOPW5WBD6LBY5LQR4H2ZVHK_1_1","score":0.5} {"chain_id":"3G5F9DBFOPW5WBD6LBY5LQR4H2ZVHK_1_10","score":0.5} {"chain_id":"3G5F9DBFOPW5WBD6LBY5LQR4H2ZVHK_1_2","score":0.5} {"chain_id":"3G5F9DBFOPW5WBD6LBY5LQR4H2ZVHK_1_3","score":0.5} {"chain_id":"3G5F9DBFOPW5WBD6LBY5LQR4H2ZVHK_1_4","score":0.5} {"chain_id":"3G5F9DBFOPW5WBD6LBY5LQR4H2ZVHK_1_5","score":0.5} {"chain_id":"3G5F9DBFOPW5WBD6LBY5LQR4H2ZVHK_1_6","score":0.5} {"chain_id":"3G5F9DBFOPW5WBD6LBY5LQR4H2ZVHK_1_7","score":0.5} {"chain_id":"3G5F9DBFOPW5WBD6LBY5LQR4H2ZVHK_1_8","score":0.5} {"chain_id":"3G5F9DBFOPW5WBD6LBY5LQR4H2ZVHK_1_9","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMI1H30_1_1","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMI1H30_1_10","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMI1H30_1_2","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMI1H30_1_3","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMI1H30_1_4","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMI1H30_1_5","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMI1H30_1_6","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMI1H30_1_7","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMI1H30_1_8","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMI1H30_1_9","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMKMH3P_1_1","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMKMH3P_1_10","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMKMH3P_1_2","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMKMH3P_1_3","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMKMH3P_1_4","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMKMH3P_1_5","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMKMH3P_1_6","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMKMH3P_1_7","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMKMH3P_1_8","score":0.5} {"chain_id":"3GA6AFUKOONLK2BN11SZ2VZLMKMH3P_1_9","score":0.5} {"chain_id":"3GDTJDAPVUATDDI44F38LHFSK728M1_1_1","score":0.5} {"chain_id":"3GDTJDAPVUATDDI44F38LHFSK728M1_1_10","score":0.5} {"chain_id":"3GDTJDAPVUATDDI44F38LHFSK728M1_1_2","score":0.5} {"chain_id":"3GDTJDAPVUATDDI44F38LHFSK728M1_1_3","score":0.5} {"chain_id":"3GDTJDAPVUATDDI44F38LHFSK728M1_1_4","score":0.5} {"chain_id":"3GDTJDAPVUATDDI44F38LHFSK728M1_1_5","score":0.5} {"chain_id":"3GDTJDAPVUATDDI44F38LHFSK728M1_1_6","score":0.5} {"chain_id":"3GDTJDAPVUATDDI44F38LHFSK728M1_1_7","score":0.5} {"chain_id":"3GDTJDAPVUATDDI44F38LHFSK728M1_1_8","score":0.5} {"chain_id":"3GDTJDAPVUATDDI44F38LHFSK728M1_1_9","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SE735WL_1_1","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SE735WL_1_10","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SE735WL_1_2","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SE735WL_1_3","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SE735WL_1_4","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SE735WL_1_5","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SE735WL_1_6","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SE735WL_1_7","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SE735WL_1_8","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SE735WL_1_9","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SSUMW5J_1_1","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SSUMW5J_1_10","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SSUMW5J_1_2","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SSUMW5J_1_3","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SSUMW5J_1_4","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SSUMW5J_1_5","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SSUMW5J_1_6","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SSUMW5J_1_7","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SSUMW5J_1_8","score":0.5} {"chain_id":"3GFK2QRXX9G6V7TGAJ2SIV7SSUMW5J_1_9","score":0.5} {"chain_id":"3GGAI1SQEVXVPG8HLRJDN3BB9YJCM6_1_1","score":0.5} {"chain_id":"3GGAI1SQEVXVPG8HLRJDN3BB9YJCM6_1_10","score":0.5} {"chain_id":"3GGAI1SQEVXVPG8HLRJDN3BB9YJCM6_1_2","score":0.5} {"chain_id":"3GGAI1SQEVXVPG8HLRJDN3BB9YJCM6_1_3","score":0.5} {"chain_id":"3GGAI1SQEVXVPG8HLRJDN3BB9YJCM6_1_4","score":0.5} {"chain_id":"3GGAI1SQEVXVPG8HLRJDN3BB9YJCM6_1_5","score":0.5} {"chain_id":"3GGAI1SQEVXVPG8HLRJDN3BB9YJCM6_1_6","score":0.5} {"chain_id":"3GGAI1SQEVXVPG8HLRJDN3BB9YJCM6_1_7","score":0.5} {"chain_id":"3GGAI1SQEVXVPG8HLRJDN3BB9YJCM6_1_8","score":0.5} {"chain_id":"3GGAI1SQEVXVPG8HLRJDN3BB9YJCM6_1_9","score":0.5} {"chain_id":"3GM6G9ZBKNWCBXAS7DE3CDBFUFHMTK_1_1","score":0.5} {"chain_id":"3GM6G9ZBKNWCBXAS7DE3CDBFUFHMTK_1_10","score":0.5} {"chain_id":"3GM6G9ZBKNWCBXAS7DE3CDBFUFHMTK_1_2","score":0.5} {"chain_id":"3GM6G9ZBKNWCBXAS7DE3CDBFUFHMTK_1_3","score":0.5} {"chain_id":"3GM6G9ZBKNWCBXAS7DE3CDBFUFHMTK_1_4","score":0.5} {"chain_id":"3GM6G9ZBKNWCBXAS7DE3CDBFUFHMTK_1_5","score":0.5} {"chain_id":"3GM6G9ZBKNWCBXAS7DE3CDBFUFHMTK_1_6","score":0.5} {"chain_id":"3GM6G9ZBKNWCBXAS7DE3CDBFUFHMTK_1_7","score":0.5} {"chain_id":"3GM6G9ZBKNWCBXAS7DE3CDBFUFHMTK_1_8","score":0.5} {"chain_id":"3GM6G9ZBKNWCBXAS7DE3CDBFUFHMTK_1_9","score":0.5} {"chain_id":"3GNA64GUZE31BAXUYA3MQ6P64X9Q5L_1_1","score":0.5} {"chain_id":"3GNA64GUZE31BAXUYA3MQ6P64X9Q5L_1_10","score":0.5} {"chain_id":"3GNA64GUZE31BAXUYA3MQ6P64X9Q5L_1_2","score":0.5} {"chain_id":"3GNA64GUZE31BAXUYA3MQ6P64X9Q5L_1_3","score":0.5} {"chain_id":"3GNA64GUZE31BAXUYA3MQ6P64X9Q5L_1_4","score":0.5} {"chain_id":"3GNA64GUZE31BAXUYA3MQ6P64X9Q5L_1_5","score":0.5} {"chain_id":"3GNA64GUZE31BAXUYA3MQ6P64X9Q5L_1_6","score":0.5} {"chain_id":"3GNA64GUZE31BAXUYA3MQ6P64X9Q5L_1_7","score":0.5} {"chain_id":"3GNA64GUZE31BAXUYA3MQ6P64X9Q5L_1_8","score":0.5} {"chain_id":"3GNA64GUZE31BAXUYA3MQ6P64X9Q5L_1_9","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIBUNPAC_1_1","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIBUNPAC_1_10","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIBUNPAC_1_2","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIBUNPAC_1_3","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIBUNPAC_1_4","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIBUNPAC_1_5","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIBUNPAC_1_6","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIBUNPAC_1_7","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIBUNPAC_1_8","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIBUNPAC_1_9","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIDVDAPR_1_1","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIDVDAPR_1_10","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIDVDAPR_1_2","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIDVDAPR_1_3","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIDVDAPR_1_4","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIDVDAPR_1_5","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIDVDAPR_1_6","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIDVDAPR_1_7","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIDVDAPR_1_8","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIDVDAPR_1_9","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIHBZPAS_1_1","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIHBZPAS_1_10","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIHBZPAS_1_2","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIHBZPAS_1_3","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIHBZPAS_1_4","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIHBZPAS_1_5","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIHBZPAS_1_6","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIHBZPAS_1_7","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIHBZPAS_1_8","score":0.5} {"chain_id":"3GNCZX450IMDH48WTTFEYCFIHBZPAS_1_9","score":0.5} {"chain_id":"3GS6S824SQWALWZMEJYECC7E4D2WN6_1_1","score":0.5} {"chain_id":"3GS6S824SQWALWZMEJYECC7E4D2WN6_1_10","score":0.5} {"chain_id":"3GS6S824SQWALWZMEJYECC7E4D2WN6_1_2","score":0.5} {"chain_id":"3GS6S824SQWALWZMEJYECC7E4D2WN6_1_3","score":0.5} {"chain_id":"3GS6S824SQWALWZMEJYECC7E4D2WN6_1_4","score":0.5} {"chain_id":"3GS6S824SQWALWZMEJYECC7E4D2WN6_1_5","score":0.5} {"chain_id":"3GS6S824SQWALWZMEJYECC7E4D2WN6_1_6","score":0.5} {"chain_id":"3GS6S824SQWALWZMEJYECC7E4D2WN6_1_7","score":0.5} {"chain_id":"3GS6S824SQWALWZMEJYECC7E4D2WN6_1_8","score":0.5} {"chain_id":"3GS6S824SQWALWZMEJYECC7E4D2WN6_1_9","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOA1QPBK_1_1","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOA1QPBK_1_10","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOA1QPBK_1_2","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOA1QPBK_1_3","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOA1QPBK_1_4","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOA1QPBK_1_5","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOA1QPBK_1_6","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOA1QPBK_1_7","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOA1QPBK_1_8","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOA1QPBK_1_9","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVBGBP1_1_1","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVBGBP1_1_10","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVBGBP1_1_2","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVBGBP1_1_3","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVBGBP1_1_4","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVBGBP1_1_5","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVBGBP1_1_6","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVBGBP1_1_7","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVBGBP1_1_8","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVBGBP1_1_9","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVFXBPQ_1_1","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVFXBPQ_1_10","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVFXBPQ_1_2","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVFXBPQ_1_3","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVFXBPQ_1_4","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVFXBPQ_1_5","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVFXBPQ_1_6","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVFXBPQ_1_7","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVFXBPQ_1_8","score":0.5} {"chain_id":"3GU1KF0O4I0I0EDOZ7FATNZOVFXBPQ_1_9","score":0.5} {"chain_id":"3H7XDTSHKCQ4B4I0RFLJMSYH6Z4GW5_1_1","score":0.5} {"chain_id":"3H7XDTSHKCQ4B4I0RFLJMSYH6Z4GW5_1_10","score":0.5} {"chain_id":"3H7XDTSHKCQ4B4I0RFLJMSYH6Z4GW5_1_2","score":0.5} {"chain_id":"3H7XDTSHKCQ4B4I0RFLJMSYH6Z4GW5_1_3","score":0.5} {"chain_id":"3H7XDTSHKCQ4B4I0RFLJMSYH6Z4GW5_1_4","score":0.5} {"chain_id":"3H7XDTSHKCQ4B4I0RFLJMSYH6Z4GW5_1_5","score":0.5} {"chain_id":"3H7XDTSHKCQ4B4I0RFLJMSYH6Z4GW5_1_6","score":0.5} {"chain_id":"3H7XDTSHKCQ4B4I0RFLJMSYH6Z4GW5_1_7","score":0.5} {"chain_id":"3H7XDTSHKCQ4B4I0RFLJMSYH6Z4GW5_1_8","score":0.5} {"chain_id":"3H7XDTSHKCQ4B4I0RFLJMSYH6Z4GW5_1_9","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVT8X0LPP_1_1","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVT8X0LPP_1_10","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVT8X0LPP_1_2","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVT8X0LPP_1_3","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVT8X0LPP_1_4","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVT8X0LPP_1_5","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVT8X0LPP_1_6","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVT8X0LPP_1_7","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVT8X0LPP_1_8","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVT8X0LPP_1_9","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVTCYVLPQ_1_1","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVTCYVLPQ_1_10","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVTCYVLPQ_1_2","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVTCYVLPQ_1_3","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVTCYVLPQ_1_4","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVTCYVLPQ_1_5","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVTCYVLPQ_1_6","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVTCYVLPQ_1_7","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVTCYVLPQ_1_8","score":0.5} {"chain_id":"3H7Z272LX76UDNZ0QK447QVTCYVLPQ_1_9","score":0.5} {"chain_id":"3H8DHMCCW9AA4KES0B18SW1P6R0DKZ_1_1","score":0.5} {"chain_id":"3H8DHMCCW9AA4KES0B18SW1P6R0DKZ_1_10","score":0.5} {"chain_id":"3H8DHMCCW9AA4KES0B18SW1P6R0DKZ_1_2","score":0.5} {"chain_id":"3H8DHMCCW9AA4KES0B18SW1P6R0DKZ_1_3","score":0.5} {"chain_id":"3H8DHMCCW9AA4KES0B18SW1P6R0DKZ_1_4","score":0.5} {"chain_id":"3H8DHMCCW9AA4KES0B18SW1P6R0DKZ_1_5","score":0.5} {"chain_id":"3H8DHMCCW9AA4KES0B18SW1P6R0DKZ_1_6","score":0.5} {"chain_id":"3H8DHMCCW9AA4KES0B18SW1P6R0DKZ_1_7","score":0.5} {"chain_id":"3H8DHMCCW9AA4KES0B18SW1P6R0DKZ_1_8","score":0.5} {"chain_id":"3H8DHMCCW9AA4KES0B18SW1P6R0DKZ_1_9","score":0.5} {"chain_id":"3HFNH7HEMHDZR7MEF6MDU3GVI3JGQ7_1_1","score":0.5} {"chain_id":"3HFNH7HEMHDZR7MEF6MDU3GVI3JGQ7_1_10","score":0.5} {"chain_id":"3HFNH7HEMHDZR7MEF6MDU3GVI3JGQ7_1_2","score":0.5} {"chain_id":"3HFNH7HEMHDZR7MEF6MDU3GVI3JGQ7_1_3","score":0.5} {"chain_id":"3HFNH7HEMHDZR7MEF6MDU3GVI3JGQ7_1_4","score":0.5} {"chain_id":"3HFNH7HEMHDZR7MEF6MDU3GVI3JGQ7_1_5","score":0.5} {"chain_id":"3HFNH7HEMHDZR7MEF6MDU3GVI3JGQ7_1_6","score":0.5} {"chain_id":"3HFNH7HEMHDZR7MEF6MDU3GVI3JGQ7_1_7","score":0.5} {"chain_id":"3HFNH7HEMHDZR7MEF6MDU3GVI3JGQ7_1_8","score":0.5} {"chain_id":"3HFNH7HEMHDZR7MEF6MDU3GVI3JGQ7_1_9","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8BSF9OS_1_1","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8BSF9OS_1_10","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8BSF9OS_1_2","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8BSF9OS_1_3","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8BSF9OS_1_4","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8BSF9OS_1_5","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8BSF9OS_1_6","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8BSF9OS_1_7","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8BSF9OS_1_8","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8BSF9OS_1_9","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8WNNO9Q_1_1","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8WNNO9Q_1_10","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8WNNO9Q_1_2","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8WNNO9Q_1_3","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8WNNO9Q_1_4","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8WNNO9Q_1_5","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8WNNO9Q_1_6","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8WNNO9Q_1_7","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8WNNO9Q_1_8","score":0.5} {"chain_id":"3HHRAGRYX84HRLMQMNOZDHZ8WNNO9Q_1_9","score":0.5} {"chain_id":"3HL8HNGX450NL89XNK59QNQU53J9FB_1_1","score":0.5} {"chain_id":"3HL8HNGX450NL89XNK59QNQU53J9FB_1_10","score":0.5} {"chain_id":"3HL8HNGX450NL89XNK59QNQU53J9FB_1_2","score":0.5} {"chain_id":"3HL8HNGX450NL89XNK59QNQU53J9FB_1_3","score":0.5} {"chain_id":"3HL8HNGX450NL89XNK59QNQU53J9FB_1_4","score":0.5} {"chain_id":"3HL8HNGX450NL89XNK59QNQU53J9FB_1_5","score":0.5} {"chain_id":"3HL8HNGX450NL89XNK59QNQU53J9FB_1_6","score":0.5} {"chain_id":"3HL8HNGX450NL89XNK59QNQU53J9FB_1_7","score":0.5} {"chain_id":"3HL8HNGX450NL89XNK59QNQU53J9FB_1_8","score":0.5} {"chain_id":"3HL8HNGX450NL89XNK59QNQU53J9FB_1_9","score":0.5} {"chain_id":"3HMIGG0U4L5T7U7INIRJFC2ZW208YK_1_1","score":0.5} {"chain_id":"3HMIGG0U4L5T7U7INIRJFC2ZW208YK_1_10","score":0.5} {"chain_id":"3HMIGG0U4L5T7U7INIRJFC2ZW208YK_1_2","score":0.5} {"chain_id":"3HMIGG0U4L5T7U7INIRJFC2ZW208YK_1_3","score":0.5} {"chain_id":"3HMIGG0U4L5T7U7INIRJFC2ZW208YK_1_4","score":0.5} {"chain_id":"3HMIGG0U4L5T7U7INIRJFC2ZW208YK_1_5","score":0.5} {"chain_id":"3HMIGG0U4L5T7U7INIRJFC2ZW208YK_1_6","score":0.5} {"chain_id":"3HMIGG0U4L5T7U7INIRJFC2ZW208YK_1_7","score":0.5} {"chain_id":"3HMIGG0U4L5T7U7INIRJFC2ZW208YK_1_8","score":0.5} {"chain_id":"3HMIGG0U4L5T7U7INIRJFC2ZW208YK_1_9","score":0.5} {"chain_id":"3HMVI3QICJRBWUNXOXI402FRD0R1YT_1_1","score":0.5} {"chain_id":"3HMVI3QICJRBWUNXOXI402FRD0R1YT_1_10","score":0.5} {"chain_id":"3HMVI3QICJRBWUNXOXI402FRD0R1YT_1_2","score":0.5} {"chain_id":"3HMVI3QICJRBWUNXOXI402FRD0R1YT_1_3","score":0.5} {"chain_id":"3HMVI3QICJRBWUNXOXI402FRD0R1YT_1_4","score":0.5} {"chain_id":"3HMVI3QICJRBWUNXOXI402FRD0R1YT_1_5","score":0.5} {"chain_id":"3HMVI3QICJRBWUNXOXI402FRD0R1YT_1_6","score":0.5} {"chain_id":"3HMVI3QICJRBWUNXOXI402FRD0R1YT_1_7","score":0.5} {"chain_id":"3HMVI3QICJRBWUNXOXI402FRD0R1YT_1_8","score":0.5} {"chain_id":"3HMVI3QICJRBWUNXOXI402FRD0R1YT_1_9","score":0.5} {"chain_id":"3HOSI13XHZN2QE8I8UFLOJ6ZLL0DDO_1_1","score":0.5} {"chain_id":"3HOSI13XHZN2QE8I8UFLOJ6ZLL0DDO_1_10","score":0.5} {"chain_id":"3HOSI13XHZN2QE8I8UFLOJ6ZLL0DDO_1_2","score":0.5} {"chain_id":"3HOSI13XHZN2QE8I8UFLOJ6ZLL0DDO_1_3","score":0.5} {"chain_id":"3HOSI13XHZN2QE8I8UFLOJ6ZLL0DDO_1_4","score":0.5} {"chain_id":"3HOSI13XHZN2QE8I8UFLOJ6ZLL0DDO_1_5","score":0.5} {"chain_id":"3HOSI13XHZN2QE8I8UFLOJ6ZLL0DDO_1_6","score":0.5} {"chain_id":"3HOSI13XHZN2QE8I8UFLOJ6ZLL0DDO_1_7","score":0.5} {"chain_id":"3HOSI13XHZN2QE8I8UFLOJ6ZLL0DDO_1_8","score":0.5} {"chain_id":"3HOSI13XHZN2QE8I8UFLOJ6ZLL0DDO_1_9","score":0.5} {"chain_id":"3HQUKB7LNFD0EAIMGMH16P0VI1DHH6_1_1","score":0.5} {"chain_id":"3HQUKB7LNFD0EAIMGMH16P0VI1DHH6_1_10","score":0.5} {"chain_id":"3HQUKB7LNFD0EAIMGMH16P0VI1DHH6_1_2","score":0.5} {"chain_id":"3HQUKB7LNFD0EAIMGMH16P0VI1DHH6_1_3","score":0.5} {"chain_id":"3HQUKB7LNFD0EAIMGMH16P0VI1DHH6_1_4","score":0.5} {"chain_id":"3HQUKB7LNFD0EAIMGMH16P0VI1DHH6_1_5","score":0.5} {"chain_id":"3HQUKB7LNFD0EAIMGMH16P0VI1DHH6_1_6","score":0.5} {"chain_id":"3HQUKB7LNFD0EAIMGMH16P0VI1DHH6_1_7","score":0.5} {"chain_id":"3HQUKB7LNFD0EAIMGMH16P0VI1DHH6_1_8","score":0.5} {"chain_id":"3HQUKB7LNFD0EAIMGMH16P0VI1DHH6_1_9","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A01JM04_1_1","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A01JM04_1_10","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A01JM04_1_2","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A01JM04_1_3","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A01JM04_1_4","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A01JM04_1_5","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A01JM04_1_6","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A01JM04_1_7","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A01JM04_1_8","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A01JM04_1_9","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3JBM0Z_1_1","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3JBM0Z_1_10","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3JBM0Z_1_2","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3JBM0Z_1_3","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3JBM0Z_1_4","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3JBM0Z_1_5","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3JBM0Z_1_6","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3JBM0Z_1_7","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3JBM0Z_1_8","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3JBM0Z_1_9","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3LXM0P_1_1","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3LXM0P_1_10","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3LXM0P_1_2","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3LXM0P_1_3","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3LXM0P_1_4","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3LXM0P_1_5","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3LXM0P_1_6","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3LXM0P_1_7","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3LXM0P_1_8","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29A3LXM0P_1_9","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AXZK0MC_1_1","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AXZK0MC_1_10","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AXZK0MC_1_2","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AXZK0MC_1_3","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AXZK0MC_1_4","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AXZK0MC_1_5","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AXZK0MC_1_6","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AXZK0MC_1_7","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AXZK0MC_1_8","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AXZK0MC_1_9","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AYI40MZ_1_1","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AYI40MZ_1_10","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AYI40MZ_1_2","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AYI40MZ_1_3","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AYI40MZ_1_4","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AYI40MZ_1_5","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AYI40MZ_1_6","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AYI40MZ_1_7","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AYI40MZ_1_8","score":0.5} {"chain_id":"3HRMW88U16PBVOD19BQTS29AYI40MZ_1_9","score":0.5} {"chain_id":"3HWRJOOET51DK9501FLUP0AKJPRSEH_1_1","score":0.5} {"chain_id":"3HWRJOOET51DK9501FLUP0AKJPRSEH_1_10","score":0.5} {"chain_id":"3HWRJOOET51DK9501FLUP0AKJPRSEH_1_2","score":0.5} {"chain_id":"3HWRJOOET51DK9501FLUP0AKJPRSEH_1_3","score":0.5} {"chain_id":"3HWRJOOET51DK9501FLUP0AKJPRSEH_1_4","score":0.5} {"chain_id":"3HWRJOOET51DK9501FLUP0AKJPRSEH_1_5","score":0.5} {"chain_id":"3HWRJOOET51DK9501FLUP0AKJPRSEH_1_6","score":0.5} {"chain_id":"3HWRJOOET51DK9501FLUP0AKJPRSEH_1_7","score":0.5} {"chain_id":"3HWRJOOET51DK9501FLUP0AKJPRSEH_1_8","score":0.5} {"chain_id":"3HWRJOOET51DK9501FLUP0AKJPRSEH_1_9","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGX102F9_1_1","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGX102F9_1_10","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGX102F9_1_2","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGX102F9_1_3","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGX102F9_1_4","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGX102F9_1_5","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGX102F9_1_6","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGX102F9_1_7","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGX102F9_1_8","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGX102F9_1_9","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZ5VF2R_1_1","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZ5VF2R_1_10","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZ5VF2R_1_2","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZ5VF2R_1_3","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZ5VF2R_1_4","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZ5VF2R_1_5","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZ5VF2R_1_6","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZ5VF2R_1_7","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZ5VF2R_1_8","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZ5VF2R_1_9","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZU52F2_1_1","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZU52F2_1_10","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZU52F2_1_2","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZU52F2_1_3","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZU52F2_1_4","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZU52F2_1_5","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZU52F2_1_6","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZU52F2_1_7","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZU52F2_1_8","score":0.5} {"chain_id":"3HYA4D452RICLOOY2BQUG0IGZU52F2_1_9","score":0.5} {"chain_id":"3I02618YA05XWDMUZYW5YDRCODAUPQ_1_1","score":0.5} {"chain_id":"3I02618YA05XWDMUZYW5YDRCODAUPQ_1_10","score":0.5} {"chain_id":"3I02618YA05XWDMUZYW5YDRCODAUPQ_1_2","score":0.5} {"chain_id":"3I02618YA05XWDMUZYW5YDRCODAUPQ_1_3","score":0.5} {"chain_id":"3I02618YA05XWDMUZYW5YDRCODAUPQ_1_4","score":0.5} {"chain_id":"3I02618YA05XWDMUZYW5YDRCODAUPQ_1_5","score":0.5} {"chain_id":"3I02618YA05XWDMUZYW5YDRCODAUPQ_1_6","score":0.5} {"chain_id":"3I02618YA05XWDMUZYW5YDRCODAUPQ_1_7","score":0.5} {"chain_id":"3I02618YA05XWDMUZYW5YDRCODAUPQ_1_8","score":0.5} {"chain_id":"3I02618YA05XWDMUZYW5YDRCODAUPQ_1_9","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHASO0YY_1_1","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHASO0YY_1_10","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHASO0YY_1_2","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHASO0YY_1_3","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHASO0YY_1_4","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHASO0YY_1_5","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHASO0YY_1_6","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHASO0YY_1_7","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHASO0YY_1_8","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHASO0YY_1_9","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHBB3Y0E_1_1","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHBB3Y0E_1_10","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHBB3Y0E_1_2","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHBB3Y0E_1_3","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHBB3Y0E_1_4","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHBB3Y0E_1_5","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHBB3Y0E_1_6","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHBB3Y0E_1_7","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHBB3Y0E_1_8","score":0.5} {"chain_id":"3I0BTBYZAXKBP52FSEE4MXWHBB3Y0E_1_9","score":0.5} {"chain_id":"3I2PTA7R3TT4TTIX5X7SSV8OSXZKQ6_1_1","score":0.5} {"chain_id":"3I2PTA7R3TT4TTIX5X7SSV8OSXZKQ6_1_10","score":0.5} {"chain_id":"3I2PTA7R3TT4TTIX5X7SSV8OSXZKQ6_1_2","score":0.5} {"chain_id":"3I2PTA7R3TT4TTIX5X7SSV8OSXZKQ6_1_3","score":0.5} {"chain_id":"3I2PTA7R3TT4TTIX5X7SSV8OSXZKQ6_1_4","score":0.5} {"chain_id":"3I2PTA7R3TT4TTIX5X7SSV8OSXZKQ6_1_5","score":0.5} {"chain_id":"3I2PTA7R3TT4TTIX5X7SSV8OSXZKQ6_1_6","score":0.5} {"chain_id":"3I2PTA7R3TT4TTIX5X7SSV8OSXZKQ6_1_7","score":0.5} {"chain_id":"3I2PTA7R3TT4TTIX5X7SSV8OSXZKQ6_1_8","score":0.5} {"chain_id":"3I2PTA7R3TT4TTIX5X7SSV8OSXZKQ6_1_9","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P3NO2A4_1_1","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P3NO2A4_1_10","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P3NO2A4_1_2","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P3NO2A4_1_3","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P3NO2A4_1_4","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P3NO2A4_1_5","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P3NO2A4_1_6","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P3NO2A4_1_7","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P3NO2A4_1_8","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P3NO2A4_1_9","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P4QE2A1_1_1","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P4QE2A1_1_10","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P4QE2A1_1_2","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P4QE2A1_1_3","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P4QE2A1_1_4","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P4QE2A1_1_5","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P4QE2A1_1_6","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P4QE2A1_1_7","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P4QE2A1_1_8","score":0.5} {"chain_id":"3I33IC7ZWF1HPX7QRV422Z7P4QE2A1_1_9","score":0.5} {"chain_id":"3I3WADAZ9Q3YQYKEJXBI11U6DUC5OX_1_1","score":0.5} {"chain_id":"3I3WADAZ9Q3YQYKEJXBI11U6DUC5OX_1_10","score":0.5} {"chain_id":"3I3WADAZ9Q3YQYKEJXBI11U6DUC5OX_1_2","score":0.5} {"chain_id":"3I3WADAZ9Q3YQYKEJXBI11U6DUC5OX_1_3","score":0.5} {"chain_id":"3I3WADAZ9Q3YQYKEJXBI11U6DUC5OX_1_4","score":0.5} {"chain_id":"3I3WADAZ9Q3YQYKEJXBI11U6DUC5OX_1_5","score":0.5} {"chain_id":"3I3WADAZ9Q3YQYKEJXBI11U6DUC5OX_1_6","score":0.5} {"chain_id":"3I3WADAZ9Q3YQYKEJXBI11U6DUC5OX_1_7","score":0.5} {"chain_id":"3I3WADAZ9Q3YQYKEJXBI11U6DUC5OX_1_8","score":0.5} {"chain_id":"3I3WADAZ9Q3YQYKEJXBI11U6DUC5OX_1_9","score":0.5} {"chain_id":"3IAEQB9FMEJ1ZK89PPKBG7VKSKRDWK_1_1","score":0.5} {"chain_id":"3IAEQB9FMEJ1ZK89PPKBG7VKSKRDWK_1_10","score":0.5} {"chain_id":"3IAEQB9FMEJ1ZK89PPKBG7VKSKRDWK_1_2","score":0.5} {"chain_id":"3IAEQB9FMEJ1ZK89PPKBG7VKSKRDWK_1_3","score":0.5} {"chain_id":"3IAEQB9FMEJ1ZK89PPKBG7VKSKRDWK_1_4","score":0.5} {"chain_id":"3IAEQB9FMEJ1ZK89PPKBG7VKSKRDWK_1_5","score":0.5} {"chain_id":"3IAEQB9FMEJ1ZK89PPKBG7VKSKRDWK_1_6","score":0.5} {"chain_id":"3IAEQB9FMEJ1ZK89PPKBG7VKSKRDWK_1_7","score":0.5} {"chain_id":"3IAEQB9FMEJ1ZK89PPKBG7VKSKRDWK_1_8","score":0.5} {"chain_id":"3IAEQB9FMEJ1ZK89PPKBG7VKSKRDWK_1_9","score":0.5} {"chain_id":"3IAS3U3I0FFM87CIX94YXARVL9J2BH_1_1","score":0.5} {"chain_id":"3IAS3U3I0FFM87CIX94YXARVL9J2BH_1_10","score":0.5} {"chain_id":"3IAS3U3I0FFM87CIX94YXARVL9J2BH_1_2","score":0.5} {"chain_id":"3IAS3U3I0FFM87CIX94YXARVL9J2BH_1_3","score":0.5} {"chain_id":"3IAS3U3I0FFM87CIX94YXARVL9J2BH_1_4","score":0.5} {"chain_id":"3IAS3U3I0FFM87CIX94YXARVL9J2BH_1_5","score":0.5} {"chain_id":"3IAS3U3I0FFM87CIX94YXARVL9J2BH_1_6","score":0.5} {"chain_id":"3IAS3U3I0FFM87CIX94YXARVL9J2BH_1_7","score":0.5} {"chain_id":"3IAS3U3I0FFM87CIX94YXARVL9J2BH_1_8","score":0.5} {"chain_id":"3IAS3U3I0FFM87CIX94YXARVL9J2BH_1_9","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CENFISA_1_1","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CENFISA_1_10","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CENFISA_1_2","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CENFISA_1_3","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CENFISA_1_4","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CENFISA_1_5","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CENFISA_1_6","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CENFISA_1_7","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CENFISA_1_8","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CENFISA_1_9","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CR51IS9_1_1","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CR51IS9_1_10","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CR51IS9_1_2","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CR51IS9_1_3","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CR51IS9_1_4","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CR51IS9_1_5","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CR51IS9_1_6","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CR51IS9_1_7","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CR51IS9_1_8","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CR51IS9_1_9","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRLYIS2_1_1","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRLYIS2_1_10","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRLYIS2_1_2","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRLYIS2_1_3","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRLYIS2_1_4","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRLYIS2_1_5","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRLYIS2_1_6","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRLYIS2_1_7","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRLYIS2_1_8","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRLYIS2_1_9","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRT1ISL_1_1","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRT1ISL_1_10","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRT1ISL_1_2","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRT1ISL_1_3","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRT1ISL_1_4","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRT1ISL_1_5","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRT1ISL_1_6","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRT1ISL_1_7","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRT1ISL_1_8","score":0.5} {"chain_id":"3IFS6Q0HJIIP0E7MXYBLAF8CRT1ISL_1_9","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS3M9NOF_1_1","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS3M9NOF_1_10","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS3M9NOF_1_2","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS3M9NOF_1_3","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS3M9NOF_1_4","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS3M9NOF_1_5","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS3M9NOF_1_6","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS3M9NOF_1_7","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS3M9NOF_1_8","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS3M9NOF_1_9","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS4CKON8_1_1","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS4CKON8_1_10","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS4CKON8_1_2","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS4CKON8_1_3","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS4CKON8_1_4","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS4CKON8_1_5","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS4CKON8_1_6","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS4CKON8_1_7","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS4CKON8_1_8","score":0.5} {"chain_id":"3IGI0VL647J2GNQKNX74VIUS4CKON8_1_9","score":0.5} {"chain_id":"3IHR8NYAM70YFFSFKS5NL9TIOGH4P3_1_1","score":0.5} {"chain_id":"3IHR8NYAM70YFFSFKS5NL9TIOGH4P3_1_10","score":0.5} {"chain_id":"3IHR8NYAM70YFFSFKS5NL9TIOGH4P3_1_2","score":0.5} {"chain_id":"3IHR8NYAM70YFFSFKS5NL9TIOGH4P3_1_3","score":0.5} {"chain_id":"3IHR8NYAM70YFFSFKS5NL9TIOGH4P3_1_4","score":0.5} {"chain_id":"3IHR8NYAM70YFFSFKS5NL9TIOGH4P3_1_5","score":0.5} {"chain_id":"3IHR8NYAM70YFFSFKS5NL9TIOGH4P3_1_6","score":0.5} {"chain_id":"3IHR8NYAM70YFFSFKS5NL9TIOGH4P3_1_7","score":0.5} {"chain_id":"3IHR8NYAM70YFFSFKS5NL9TIOGH4P3_1_8","score":0.5} {"chain_id":"3IHR8NYAM70YFFSFKS5NL9TIOGH4P3_1_9","score":0.5} {"chain_id":"3II4UPYCOJ6WFNCNDGL5OIDY4WPQDY_1_1","score":0.5} {"chain_id":"3II4UPYCOJ6WFNCNDGL5OIDY4WPQDY_1_10","score":0.5} {"chain_id":"3II4UPYCOJ6WFNCNDGL5OIDY4WPQDY_1_2","score":0.5} {"chain_id":"3II4UPYCOJ6WFNCNDGL5OIDY4WPQDY_1_3","score":0.5} {"chain_id":"3II4UPYCOJ6WFNCNDGL5OIDY4WPQDY_1_4","score":0.5} {"chain_id":"3II4UPYCOJ6WFNCNDGL5OIDY4WPQDY_1_5","score":0.5} {"chain_id":"3II4UPYCOJ6WFNCNDGL5OIDY4WPQDY_1_6","score":0.5} {"chain_id":"3II4UPYCOJ6WFNCNDGL5OIDY4WPQDY_1_7","score":0.5} {"chain_id":"3II4UPYCOJ6WFNCNDGL5OIDY4WPQDY_1_8","score":0.5} {"chain_id":"3II4UPYCOJ6WFNCNDGL5OIDY4WPQDY_1_9","score":0.5} {"chain_id":"3IJXV6UZ1XIDZZ79I9BGK53GSP9RIG_1_1","score":0.5} {"chain_id":"3IJXV6UZ1XIDZZ79I9BGK53GSP9RIG_1_10","score":0.5} {"chain_id":"3IJXV6UZ1XIDZZ79I9BGK53GSP9RIG_1_2","score":0.5} {"chain_id":"3IJXV6UZ1XIDZZ79I9BGK53GSP9RIG_1_3","score":0.5} {"chain_id":"3IJXV6UZ1XIDZZ79I9BGK53GSP9RIG_1_4","score":0.5} {"chain_id":"3IJXV6UZ1XIDZZ79I9BGK53GSP9RIG_1_5","score":0.5} {"chain_id":"3IJXV6UZ1XIDZZ79I9BGK53GSP9RIG_1_6","score":0.5} {"chain_id":"3IJXV6UZ1XIDZZ79I9BGK53GSP9RIG_1_7","score":0.5} {"chain_id":"3IJXV6UZ1XIDZZ79I9BGK53GSP9RIG_1_8","score":0.5} {"chain_id":"3IJXV6UZ1XIDZZ79I9BGK53GSP9RIG_1_9","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLE9BSFN9_1_1","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLE9BSFN9_1_10","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLE9BSFN9_1_2","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLE9BSFN9_1_3","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLE9BSFN9_1_4","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLE9BSFN9_1_5","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLE9BSFN9_1_6","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLE9BSFN9_1_7","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLE9BSFN9_1_8","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLE9BSFN9_1_9","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLECZWFNS_1_1","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLECZWFNS_1_10","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLECZWFNS_1_2","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLECZWFNS_1_3","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLECZWFNS_1_4","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLECZWFNS_1_5","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLECZWFNS_1_6","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLECZWFNS_1_7","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLECZWFNS_1_8","score":0.5} {"chain_id":"3IKZ72A5B4F8AADROUOE8OLECZWFNS_1_9","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6U8S68W_1_1","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6U8S68W_1_10","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6U8S68W_1_2","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6U8S68W_1_3","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6U8S68W_1_4","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6U8S68W_1_5","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6U8S68W_1_6","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6U8S68W_1_7","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6U8S68W_1_8","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6U8S68W_1_9","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6XPT860_1_1","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6XPT860_1_10","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6XPT860_1_2","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6XPT860_1_3","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6XPT860_1_4","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6XPT860_1_5","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6XPT860_1_6","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6XPT860_1_7","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6XPT860_1_8","score":0.5} {"chain_id":"3IO1LGZLK9WROAXCHZWRWLI6XPT860_1_9","score":0.5} {"chain_id":"3IOEN3P9S7I9DADRIENCHBVYC1F61Z_1_1","score":0.5} {"chain_id":"3IOEN3P9S7I9DADRIENCHBVYC1F61Z_1_10","score":0.5} {"chain_id":"3IOEN3P9S7I9DADRIENCHBVYC1F61Z_1_2","score":0.5} {"chain_id":"3IOEN3P9S7I9DADRIENCHBVYC1F61Z_1_3","score":0.5} {"chain_id":"3IOEN3P9S7I9DADRIENCHBVYC1F61Z_1_4","score":0.5} {"chain_id":"3IOEN3P9S7I9DADRIENCHBVYC1F61Z_1_5","score":0.5} {"chain_id":"3IOEN3P9S7I9DADRIENCHBVYC1F61Z_1_6","score":0.5} {"chain_id":"3IOEN3P9S7I9DADRIENCHBVYC1F61Z_1_7","score":0.5} {"chain_id":"3IOEN3P9S7I9DADRIENCHBVYC1F61Z_1_8","score":0.5} {"chain_id":"3IOEN3P9S7I9DADRIENCHBVYC1F61Z_1_9","score":0.5} {"chain_id":"3IQ1VMJRYTJSPHSPC4JHCMF38UM9AS_1_1","score":0.5} {"chain_id":"3IQ1VMJRYTJSPHSPC4JHCMF38UM9AS_1_10","score":0.5} {"chain_id":"3IQ1VMJRYTJSPHSPC4JHCMF38UM9AS_1_2","score":0.5} {"chain_id":"3IQ1VMJRYTJSPHSPC4JHCMF38UM9AS_1_3","score":0.5} {"chain_id":"3IQ1VMJRYTJSPHSPC4JHCMF38UM9AS_1_4","score":0.5} {"chain_id":"3IQ1VMJRYTJSPHSPC4JHCMF38UM9AS_1_5","score":0.5} {"chain_id":"3IQ1VMJRYTJSPHSPC4JHCMF38UM9AS_1_6","score":0.5} {"chain_id":"3IQ1VMJRYTJSPHSPC4JHCMF38UM9AS_1_7","score":0.5} {"chain_id":"3IQ1VMJRYTJSPHSPC4JHCMF38UM9AS_1_8","score":0.5} {"chain_id":"3IQ1VMJRYTJSPHSPC4JHCMF38UM9AS_1_9","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCNSBJS6_1_1","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCNSBJS6_1_10","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCNSBJS6_1_2","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCNSBJS6_1_3","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCNSBJS6_1_4","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCNSBJS6_1_5","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCNSBJS6_1_6","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCNSBJS6_1_7","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCNSBJS6_1_8","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCNSBJS6_1_9","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCTXKJSV_1_1","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCTXKJSV_1_10","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCTXKJSV_1_2","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCTXKJSV_1_3","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCTXKJSV_1_4","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCTXKJSV_1_5","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCTXKJSV_1_6","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCTXKJSV_1_7","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCTXKJSV_1_8","score":0.5} {"chain_id":"3ITXP059PWILVPRSFGWLMGNCTXKJSV_1_9","score":0.5} {"chain_id":"3IUZPWIU1O69DQEJH66YKKQACBBKWR_1_1","score":0.5} {"chain_id":"3IUZPWIU1O69DQEJH66YKKQACBBKWR_1_10","score":0.5} {"chain_id":"3IUZPWIU1O69DQEJH66YKKQACBBKWR_1_2","score":0.5} {"chain_id":"3IUZPWIU1O69DQEJH66YKKQACBBKWR_1_3","score":0.5} {"chain_id":"3IUZPWIU1O69DQEJH66YKKQACBBKWR_1_4","score":0.5} {"chain_id":"3IUZPWIU1O69DQEJH66YKKQACBBKWR_1_5","score":0.5} {"chain_id":"3IUZPWIU1O69DQEJH66YKKQACBBKWR_1_6","score":0.5} {"chain_id":"3IUZPWIU1O69DQEJH66YKKQACBBKWR_1_7","score":0.5} {"chain_id":"3IUZPWIU1O69DQEJH66YKKQACBBKWR_1_8","score":0.5} {"chain_id":"3IUZPWIU1O69DQEJH66YKKQACBBKWR_1_9","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG1RGRJG_1_1","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG1RGRJG_1_10","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG1RGRJG_1_2","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG1RGRJG_1_3","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG1RGRJG_1_4","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG1RGRJG_1_5","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG1RGRJG_1_6","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG1RGRJG_1_7","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG1RGRJG_1_8","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG1RGRJG_1_9","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG7V4JRA_1_1","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG7V4JRA_1_10","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG7V4JRA_1_2","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG7V4JRA_1_3","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG7V4JRA_1_4","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG7V4JRA_1_5","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG7V4JRA_1_6","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG7V4JRA_1_7","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG7V4JRA_1_8","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG7V4JRA_1_9","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG8JRRJI_1_1","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG8JRRJI_1_10","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG8JRRJI_1_2","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG8JRRJI_1_3","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG8JRRJI_1_4","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG8JRRJI_1_5","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG8JRRJI_1_6","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG8JRRJI_1_7","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG8JRRJI_1_8","score":0.5} {"chain_id":"3IX2EGZR7BI9UARF0RWGW6IG8JRRJI_1_9","score":0.5} {"chain_id":"3IXEICO792IAMUP0KX7MNHET7NC6TN_1_1","score":0.5} {"chain_id":"3IXEICO792IAMUP0KX7MNHET7NC6TN_1_10","score":0.5} {"chain_id":"3IXEICO792IAMUP0KX7MNHET7NC6TN_1_2","score":0.5} {"chain_id":"3IXEICO792IAMUP0KX7MNHET7NC6TN_1_3","score":0.5} {"chain_id":"3IXEICO792IAMUP0KX7MNHET7NC6TN_1_4","score":0.5} {"chain_id":"3IXEICO792IAMUP0KX7MNHET7NC6TN_1_5","score":0.5} {"chain_id":"3IXEICO792IAMUP0KX7MNHET7NC6TN_1_6","score":0.5} {"chain_id":"3IXEICO792IAMUP0KX7MNHET7NC6TN_1_7","score":0.5} {"chain_id":"3IXEICO792IAMUP0KX7MNHET7NC6TN_1_8","score":0.5} {"chain_id":"3IXEICO792IAMUP0KX7MNHET7NC6TN_1_9","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QI6B90_1_1","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QI6B90_1_10","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QI6B90_1_2","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QI6B90_1_3","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QI6B90_1_4","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QI6B90_1_5","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QI6B90_1_6","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QI6B90_1_7","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QI6B90_1_8","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QI6B90_1_9","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QLJ9BH_1_1","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QLJ9BH_1_10","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QLJ9BH_1_2","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QLJ9BH_1_3","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QLJ9BH_1_4","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QLJ9BH_1_5","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QLJ9BH_1_6","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QLJ9BH_1_7","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QLJ9BH_1_8","score":0.5} {"chain_id":"3IXQG4FA2TXX8RXHIIJD7XZ9QLJ9BH_1_9","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CO8K4068_1_1","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CO8K4068_1_10","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CO8K4068_1_2","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CO8K4068_1_3","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CO8K4068_1_4","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CO8K4068_1_5","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CO8K4068_1_6","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CO8K4068_1_7","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CO8K4068_1_8","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CO8K4068_1_9","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CONOU06L_1_1","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CONOU06L_1_10","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CONOU06L_1_2","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CONOU06L_1_3","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CONOU06L_1_4","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CONOU06L_1_5","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CONOU06L_1_6","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CONOU06L_1_7","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CONOU06L_1_8","score":0.5} {"chain_id":"3J2UYBXQQLB96LS9MVJC36CONOU06L_1_9","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JCDIQWX_1_1","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JCDIQWX_1_10","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JCDIQWX_1_2","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JCDIQWX_1_3","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JCDIQWX_1_4","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JCDIQWX_1_5","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JCDIQWX_1_6","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JCDIQWX_1_7","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JCDIQWX_1_8","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JCDIQWX_1_9","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JEPPQWU_1_1","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JEPPQWU_1_10","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JEPPQWU_1_2","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JEPPQWU_1_3","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JEPPQWU_1_4","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JEPPQWU_1_5","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JEPPQWU_1_6","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JEPPQWU_1_7","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JEPPQWU_1_8","score":0.5} {"chain_id":"3J4Q2Z4UTY2VOTCEUBQVG62JEPPQWU_1_9","score":0.5} {"chain_id":"3J88R45B2GXPDHGP437SIKQGJHHPXC_1_1","score":0.5} {"chain_id":"3J88R45B2GXPDHGP437SIKQGJHHPXC_1_10","score":0.5} {"chain_id":"3J88R45B2GXPDHGP437SIKQGJHHPXC_1_2","score":0.5} {"chain_id":"3J88R45B2GXPDHGP437SIKQGJHHPXC_1_3","score":0.5} {"chain_id":"3J88R45B2GXPDHGP437SIKQGJHHPXC_1_4","score":0.5} {"chain_id":"3J88R45B2GXPDHGP437SIKQGJHHPXC_1_5","score":0.5} {"chain_id":"3J88R45B2GXPDHGP437SIKQGJHHPXC_1_6","score":0.5} {"chain_id":"3J88R45B2GXPDHGP437SIKQGJHHPXC_1_7","score":0.5} {"chain_id":"3J88R45B2GXPDHGP437SIKQGJHHPXC_1_8","score":0.5} {"chain_id":"3J88R45B2GXPDHGP437SIKQGJHHPXC_1_9","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE3409LM_1_1","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE3409LM_1_10","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE3409LM_1_2","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE3409LM_1_3","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE3409LM_1_4","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE3409LM_1_5","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE3409LM_1_6","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE3409LM_1_7","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE3409LM_1_8","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE3409LM_1_9","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE6G9L9Y_1_1","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE6G9L9Y_1_10","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE6G9L9Y_1_2","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE6G9L9Y_1_3","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE6G9L9Y_1_4","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE6G9L9Y_1_5","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE6G9L9Y_1_6","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE6G9L9Y_1_7","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE6G9L9Y_1_8","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VE6G9L9Y_1_9","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VEGKT9LO_1_1","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VEGKT9LO_1_10","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VEGKT9LO_1_2","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VEGKT9LO_1_3","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VEGKT9LO_1_4","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VEGKT9LO_1_5","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VEGKT9LO_1_6","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VEGKT9LO_1_7","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VEGKT9LO_1_8","score":0.5} {"chain_id":"3JAOYWH7VI39L0JT9V87L0VEGKT9LO_1_9","score":0.5} {"chain_id":"3JBT3HLQF81EICG45LVDF56R0WLZPS_1_1","score":0.5} {"chain_id":"3JBT3HLQF81EICG45LVDF56R0WLZPS_1_10","score":0.5} {"chain_id":"3JBT3HLQF81EICG45LVDF56R0WLZPS_1_2","score":0.5} {"chain_id":"3JBT3HLQF81EICG45LVDF56R0WLZPS_1_3","score":0.5} {"chain_id":"3JBT3HLQF81EICG45LVDF56R0WLZPS_1_4","score":0.5} {"chain_id":"3JBT3HLQF81EICG45LVDF56R0WLZPS_1_5","score":0.5} {"chain_id":"3JBT3HLQF81EICG45LVDF56R0WLZPS_1_6","score":0.5} {"chain_id":"3JBT3HLQF81EICG45LVDF56R0WLZPS_1_7","score":0.5} {"chain_id":"3JBT3HLQF81EICG45LVDF56R0WLZPS_1_8","score":0.5} {"chain_id":"3JBT3HLQF81EICG45LVDF56R0WLZPS_1_9","score":0.5} {"chain_id":"3JC6VJ2SABI9OUQD9E6006A10SA5A6_1_1","score":0.5} {"chain_id":"3JC6VJ2SABI9OUQD9E6006A10SA5A6_1_10","score":0.5} {"chain_id":"3JC6VJ2SABI9OUQD9E6006A10SA5A6_1_2","score":0.5} {"chain_id":"3JC6VJ2SABI9OUQD9E6006A10SA5A6_1_3","score":0.5} {"chain_id":"3JC6VJ2SABI9OUQD9E6006A10SA5A6_1_4","score":0.5} {"chain_id":"3JC6VJ2SABI9OUQD9E6006A10SA5A6_1_5","score":0.5} {"chain_id":"3JC6VJ2SABI9OUQD9E6006A10SA5A6_1_6","score":0.5} {"chain_id":"3JC6VJ2SABI9OUQD9E6006A10SA5A6_1_7","score":0.5} {"chain_id":"3JC6VJ2SABI9OUQD9E6006A10SA5A6_1_8","score":0.5} {"chain_id":"3JC6VJ2SABI9OUQD9E6006A10SA5A6_1_9","score":0.5} {"chain_id":"3JCG6DTRV3PQ4WGSI2RPOHKXNGIQQH_1_1","score":0.5} {"chain_id":"3JCG6DTRV3PQ4WGSI2RPOHKXNGIQQH_1_10","score":0.5} {"chain_id":"3JCG6DTRV3PQ4WGSI2RPOHKXNGIQQH_1_2","score":0.5} {"chain_id":"3JCG6DTRV3PQ4WGSI2RPOHKXNGIQQH_1_3","score":0.5} {"chain_id":"3JCG6DTRV3PQ4WGSI2RPOHKXNGIQQH_1_4","score":0.5} {"chain_id":"3JCG6DTRV3PQ4WGSI2RPOHKXNGIQQH_1_5","score":0.5} {"chain_id":"3JCG6DTRV3PQ4WGSI2RPOHKXNGIQQH_1_6","score":0.5} {"chain_id":"3JCG6DTRV3PQ4WGSI2RPOHKXNGIQQH_1_7","score":0.5} {"chain_id":"3JCG6DTRV3PQ4WGSI2RPOHKXNGIQQH_1_8","score":0.5} {"chain_id":"3JCG6DTRV3PQ4WGSI2RPOHKXNGIQQH_1_9","score":0.5} {"chain_id":"3JJVG1YBEBWE74V5FS6WVHU78VN5BP_1_1","score":0.5} {"chain_id":"3JJVG1YBEBWE74V5FS6WVHU78VN5BP_1_10","score":0.5} {"chain_id":"3JJVG1YBEBWE74V5FS6WVHU78VN5BP_1_2","score":0.5} {"chain_id":"3JJVG1YBEBWE74V5FS6WVHU78VN5BP_1_3","score":0.5} {"chain_id":"3JJVG1YBEBWE74V5FS6WVHU78VN5BP_1_4","score":0.5} {"chain_id":"3JJVG1YBEBWE74V5FS6WVHU78VN5BP_1_5","score":0.5} {"chain_id":"3JJVG1YBEBWE74V5FS6WVHU78VN5BP_1_6","score":0.5} {"chain_id":"3JJVG1YBEBWE74V5FS6WVHU78VN5BP_1_7","score":0.5} {"chain_id":"3JJVG1YBEBWE74V5FS6WVHU78VN5BP_1_8","score":0.5} {"chain_id":"3JJVG1YBEBWE74V5FS6WVHU78VN5BP_1_9","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURI33VER_1_1","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURI33VER_1_10","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURI33VER_1_2","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURI33VER_1_3","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURI33VER_1_4","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURI33VER_1_5","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURI33VER_1_6","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURI33VER_1_7","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURI33VER_1_8","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURI33VER_1_9","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURLWJEVF_1_1","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURLWJEVF_1_10","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURLWJEVF_1_2","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURLWJEVF_1_3","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURLWJEVF_1_4","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURLWJEVF_1_5","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURLWJEVF_1_6","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURLWJEVF_1_7","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURLWJEVF_1_8","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURLWJEVF_1_9","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURZK2EVO_1_1","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURZK2EVO_1_10","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURZK2EVO_1_2","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURZK2EVO_1_3","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURZK2EVO_1_4","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURZK2EVO_1_5","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURZK2EVO_1_6","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURZK2EVO_1_7","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURZK2EVO_1_8","score":0.5} {"chain_id":"3JMSRU9HQITTC1M4VAQZ0NURZK2EVO_1_9","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0AHI2LU_1_1","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0AHI2LU_1_10","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0AHI2LU_1_2","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0AHI2LU_1_3","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0AHI2LU_1_4","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0AHI2LU_1_5","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0AHI2LU_1_6","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0AHI2LU_1_7","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0AHI2LU_1_8","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0AHI2LU_1_9","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0ZRGL2K_1_1","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0ZRGL2K_1_10","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0ZRGL2K_1_2","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0ZRGL2K_1_3","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0ZRGL2K_1_4","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0ZRGL2K_1_5","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0ZRGL2K_1_6","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0ZRGL2K_1_7","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0ZRGL2K_1_8","score":0.5} {"chain_id":"3JNQLM5FT4LYLGYUOMTSBDN0ZRGL2K_1_9","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANFXPNAL_1_1","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANFXPNAL_1_10","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANFXPNAL_1_2","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANFXPNAL_1_3","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANFXPNAL_1_4","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANFXPNAL_1_5","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANFXPNAL_1_6","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANFXPNAL_1_7","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANFXPNAL_1_8","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANFXPNAL_1_9","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANG6PANR_1_1","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANG6PANR_1_10","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANG6PANR_1_2","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANG6PANR_1_3","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANG6PANR_1_4","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANG6PANR_1_5","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANG6PANR_1_6","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANG6PANR_1_7","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANG6PANR_1_8","score":0.5} {"chain_id":"3JPSL1DZ5SYDEJWJDE2MUNANG6PANR_1_9","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS287H13E5_1_1","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS287H13E5_1_10","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS287H13E5_1_2","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS287H13E5_1_3","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS287H13E5_1_4","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS287H13E5_1_5","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS287H13E5_1_6","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS287H13E5_1_7","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS287H13E5_1_8","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS287H13E5_1_9","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28TNX3EZ_1_1","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28TNX3EZ_1_10","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28TNX3EZ_1_2","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28TNX3EZ_1_3","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28TNX3EZ_1_4","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28TNX3EZ_1_5","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28TNX3EZ_1_6","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28TNX3EZ_1_7","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28TNX3EZ_1_8","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28TNX3EZ_1_9","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U3Z3EY_1_1","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U3Z3EY_1_10","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U3Z3EY_1_2","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U3Z3EY_1_3","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U3Z3EY_1_4","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U3Z3EY_1_5","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U3Z3EY_1_6","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U3Z3EY_1_7","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U3Z3EY_1_8","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U3Z3EY_1_9","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U8P3EY_1_1","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U8P3EY_1_10","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U8P3EY_1_2","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U8P3EY_1_3","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U8P3EY_1_4","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U8P3EY_1_5","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U8P3EY_1_6","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U8P3EY_1_7","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U8P3EY_1_8","score":0.5} {"chain_id":"3JRJSWSMQHK90SKLB0KTHS28U8P3EY_1_9","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y5GOS_1_1","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y5GOS_1_10","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y5GOS_1_2","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y5GOS_1_3","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y5GOS_1_4","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y5GOS_1_5","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y5GOS_1_6","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y5GOS_1_7","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y5GOS_1_8","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y5GOS_1_9","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y8GOV_1_1","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y8GOV_1_10","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y8GOV_1_2","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y8GOV_1_3","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y8GOV_1_4","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y8GOV_1_5","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y8GOV_1_6","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y8GOV_1_7","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y8GOV_1_8","score":0.5} {"chain_id":"3JV9LGBJWTDW6V9Y0TU95YLV0Y8GOV_1_9","score":0.5} {"chain_id":"3JW0YLFXRTF08Q806KP18VK5YEBWWH_1_1","score":0.5} {"chain_id":"3JW0YLFXRTF08Q806KP18VK5YEBWWH_1_10","score":0.5} {"chain_id":"3JW0YLFXRTF08Q806KP18VK5YEBWWH_1_2","score":0.5} {"chain_id":"3JW0YLFXRTF08Q806KP18VK5YEBWWH_1_3","score":0.5} {"chain_id":"3JW0YLFXRTF08Q806KP18VK5YEBWWH_1_4","score":0.5} {"chain_id":"3JW0YLFXRTF08Q806KP18VK5YEBWWH_1_5","score":0.5} {"chain_id":"3JW0YLFXRTF08Q806KP18VK5YEBWWH_1_6","score":0.5} {"chain_id":"3JW0YLFXRTF08Q806KP18VK5YEBWWH_1_7","score":0.5} {"chain_id":"3JW0YLFXRTF08Q806KP18VK5YEBWWH_1_8","score":0.5} {"chain_id":"3JW0YLFXRTF08Q806KP18VK5YEBWWH_1_9","score":0.5} {"chain_id":"3JWH6J9I9SCIXT1BJS2IPYUTV6ABNK_1_1","score":0.5} {"chain_id":"3JWH6J9I9SCIXT1BJS2IPYUTV6ABNK_1_10","score":0.5} {"chain_id":"3JWH6J9I9SCIXT1BJS2IPYUTV6ABNK_1_2","score":0.5} {"chain_id":"3JWH6J9I9SCIXT1BJS2IPYUTV6ABNK_1_3","score":0.5} {"chain_id":"3JWH6J9I9SCIXT1BJS2IPYUTV6ABNK_1_4","score":0.5} {"chain_id":"3JWH6J9I9SCIXT1BJS2IPYUTV6ABNK_1_5","score":0.5} {"chain_id":"3JWH6J9I9SCIXT1BJS2IPYUTV6ABNK_1_6","score":0.5} {"chain_id":"3JWH6J9I9SCIXT1BJS2IPYUTV6ABNK_1_7","score":0.5} {"chain_id":"3JWH6J9I9SCIXT1BJS2IPYUTV6ABNK_1_8","score":0.5} {"chain_id":"3JWH6J9I9SCIXT1BJS2IPYUTV6ABNK_1_9","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHBNIFGS_1_1","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHBNIFGS_1_10","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHBNIFGS_1_2","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHBNIFGS_1_3","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHBNIFGS_1_4","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHBNIFGS_1_5","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHBNIFGS_1_6","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHBNIFGS_1_7","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHBNIFGS_1_8","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHBNIFGS_1_9","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHO8RFGK_1_1","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHO8RFGK_1_10","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHO8RFGK_1_2","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHO8RFGK_1_3","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHO8RFGK_1_4","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHO8RFGK_1_5","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHO8RFGK_1_6","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHO8RFGK_1_7","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHO8RFGK_1_8","score":0.5} {"chain_id":"3JZQSN0I3Q920IW51QBJI4CHO8RFGK_1_9","score":0.5} {"chain_id":"3K2755HG5S2ZOYMEZ0ABCJ9KX0EFD3_1_1","score":0.5} {"chain_id":"3K2755HG5S2ZOYMEZ0ABCJ9KX0EFD3_1_10","score":0.5} {"chain_id":"3K2755HG5S2ZOYMEZ0ABCJ9KX0EFD3_1_2","score":0.5} {"chain_id":"3K2755HG5S2ZOYMEZ0ABCJ9KX0EFD3_1_3","score":0.5} {"chain_id":"3K2755HG5S2ZOYMEZ0ABCJ9KX0EFD3_1_4","score":0.5} {"chain_id":"3K2755HG5S2ZOYMEZ0ABCJ9KX0EFD3_1_5","score":0.5} {"chain_id":"3K2755HG5S2ZOYMEZ0ABCJ9KX0EFD3_1_6","score":0.5} {"chain_id":"3K2755HG5S2ZOYMEZ0ABCJ9KX0EFD3_1_7","score":0.5} {"chain_id":"3K2755HG5S2ZOYMEZ0ABCJ9KX0EFD3_1_8","score":0.5} {"chain_id":"3K2755HG5S2ZOYMEZ0ABCJ9KX0EFD3_1_9","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP0U9T_1_1","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP0U9T_1_10","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP0U9T_1_2","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP0U9T_1_3","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP0U9T_1_4","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP0U9T_1_5","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP0U9T_1_6","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP0U9T_1_7","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP0U9T_1_8","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP0U9T_1_9","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP19U9_1_1","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP19U9_1_10","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP19U9_1_2","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP19U9_1_3","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP19U9_1_4","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP19U9_1_5","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP19U9_1_6","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP19U9_1_7","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP19U9_1_8","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDP19U9_1_9","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDSC9UQ_1_1","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDSC9UQ_1_10","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDSC9UQ_1_2","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDSC9UQ_1_3","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDSC9UQ_1_4","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDSC9UQ_1_5","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDSC9UQ_1_6","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDSC9UQ_1_7","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDSC9UQ_1_8","score":0.5} {"chain_id":"3K3R2QNK8B2C4Q6NI908CNRXDSC9UQ_1_9","score":0.5} {"chain_id":"3K5TEWLKGVA5S6OQRTGQL2SJGAPVID_1_1","score":0.5} {"chain_id":"3K5TEWLKGVA5S6OQRTGQL2SJGAPVID_1_10","score":0.5} {"chain_id":"3K5TEWLKGVA5S6OQRTGQL2SJGAPVID_1_2","score":0.5} {"chain_id":"3K5TEWLKGVA5S6OQRTGQL2SJGAPVID_1_3","score":0.5} {"chain_id":"3K5TEWLKGVA5S6OQRTGQL2SJGAPVID_1_4","score":0.5} {"chain_id":"3K5TEWLKGVA5S6OQRTGQL2SJGAPVID_1_5","score":0.5} {"chain_id":"3K5TEWLKGVA5S6OQRTGQL2SJGAPVID_1_6","score":0.5} {"chain_id":"3K5TEWLKGVA5S6OQRTGQL2SJGAPVID_1_7","score":0.5} {"chain_id":"3K5TEWLKGVA5S6OQRTGQL2SJGAPVID_1_8","score":0.5} {"chain_id":"3K5TEWLKGVA5S6OQRTGQL2SJGAPVID_1_9","score":0.5} {"chain_id":"3K772S5NP8AOU0RKQL9VLM3IFH3EHM_1_1","score":0.5} {"chain_id":"3K772S5NP8AOU0RKQL9VLM3IFH3EHM_1_10","score":0.5} {"chain_id":"3K772S5NP8AOU0RKQL9VLM3IFH3EHM_1_2","score":0.5} {"chain_id":"3K772S5NP8AOU0RKQL9VLM3IFH3EHM_1_3","score":0.5} {"chain_id":"3K772S5NP8AOU0RKQL9VLM3IFH3EHM_1_4","score":0.5} {"chain_id":"3K772S5NP8AOU0RKQL9VLM3IFH3EHM_1_5","score":0.5} {"chain_id":"3K772S5NP8AOU0RKQL9VLM3IFH3EHM_1_6","score":0.5} {"chain_id":"3K772S5NP8AOU0RKQL9VLM3IFH3EHM_1_7","score":0.5} {"chain_id":"3K772S5NP8AOU0RKQL9VLM3IFH3EHM_1_8","score":0.5} {"chain_id":"3K772S5NP8AOU0RKQL9VLM3IFH3EHM_1_9","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QY67BLNH_1_1","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QY67BLNH_1_10","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QY67BLNH_1_2","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QY67BLNH_1_3","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QY67BLNH_1_4","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QY67BLNH_1_5","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QY67BLNH_1_6","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QY67BLNH_1_7","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QY67BLNH_1_8","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QY67BLNH_1_9","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYBBNNL8_1_1","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYBBNNL8_1_10","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYBBNNL8_1_2","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYBBNNL8_1_3","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYBBNNL8_1_4","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYBBNNL8_1_5","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYBBNNL8_1_6","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYBBNNL8_1_7","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYBBNNL8_1_8","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYBBNNL8_1_9","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYCTZNLL_1_1","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYCTZNLL_1_10","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYCTZNLL_1_2","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYCTZNLL_1_3","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYCTZNLL_1_4","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYCTZNLL_1_5","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYCTZNLL_1_6","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYCTZNLL_1_7","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYCTZNLL_1_8","score":0.5} {"chain_id":"3K9FOBBF2HIUA2NNA5RC31QYCTZNLL_1_9","score":0.5} {"chain_id":"3KAKFY4PGU1LGXM77JAK2700MBF3IA_1_1","score":0.5} {"chain_id":"3KAKFY4PGU1LGXM77JAK2700MBF3IA_1_10","score":0.5} {"chain_id":"3KAKFY4PGU1LGXM77JAK2700MBF3IA_1_2","score":0.5} {"chain_id":"3KAKFY4PGU1LGXM77JAK2700MBF3IA_1_3","score":0.5} {"chain_id":"3KAKFY4PGU1LGXM77JAK2700MBF3IA_1_4","score":0.5} {"chain_id":"3KAKFY4PGU1LGXM77JAK2700MBF3IA_1_5","score":0.5} {"chain_id":"3KAKFY4PGU1LGXM77JAK2700MBF3IA_1_6","score":0.5} {"chain_id":"3KAKFY4PGU1LGXM77JAK2700MBF3IA_1_7","score":0.5} {"chain_id":"3KAKFY4PGU1LGXM77JAK2700MBF3IA_1_8","score":0.5} {"chain_id":"3KAKFY4PGU1LGXM77JAK2700MBF3IA_1_9","score":0.5} {"chain_id":"3KB8R4ZV1E6CN1KPWOPNZELWSR5BGL_1_1","score":0.5} {"chain_id":"3KB8R4ZV1E6CN1KPWOPNZELWSR5BGL_1_10","score":0.5} {"chain_id":"3KB8R4ZV1E6CN1KPWOPNZELWSR5BGL_1_2","score":0.5} {"chain_id":"3KB8R4ZV1E6CN1KPWOPNZELWSR5BGL_1_3","score":0.5} {"chain_id":"3KB8R4ZV1E6CN1KPWOPNZELWSR5BGL_1_4","score":0.5} {"chain_id":"3KB8R4ZV1E6CN1KPWOPNZELWSR5BGL_1_5","score":0.5} {"chain_id":"3KB8R4ZV1E6CN1KPWOPNZELWSR5BGL_1_6","score":0.5} {"chain_id":"3KB8R4ZV1E6CN1KPWOPNZELWSR5BGL_1_7","score":0.5} {"chain_id":"3KB8R4ZV1E6CN1KPWOPNZELWSR5BGL_1_8","score":0.5} {"chain_id":"3KB8R4ZV1E6CN1KPWOPNZELWSR5BGL_1_9","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJEP1U2V_1_1","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJEP1U2V_1_10","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJEP1U2V_1_2","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJEP1U2V_1_3","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJEP1U2V_1_4","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJEP1U2V_1_5","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJEP1U2V_1_6","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJEP1U2V_1_7","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJEP1U2V_1_8","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJEP1U2V_1_9","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJNLOU2J_1_1","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJNLOU2J_1_10","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJNLOU2J_1_2","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJNLOU2J_1_3","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJNLOU2J_1_4","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJNLOU2J_1_5","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJNLOU2J_1_6","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJNLOU2J_1_7","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJNLOU2J_1_8","score":0.5} {"chain_id":"3KGTPGBS6XK146LOX0LT20JJNLOU2J_1_9","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDO62DKOZ_1_1","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDO62DKOZ_1_10","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDO62DKOZ_1_2","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDO62DKOZ_1_3","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDO62DKOZ_1_4","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDO62DKOZ_1_5","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDO62DKOZ_1_6","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDO62DKOZ_1_7","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDO62DKOZ_1_8","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDO62DKOZ_1_9","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOD2WOKT_1_1","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOD2WOKT_1_10","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOD2WOKT_1_2","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOD2WOKT_1_3","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOD2WOKT_1_4","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOD2WOKT_1_5","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOD2WOKT_1_6","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOD2WOKT_1_7","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOD2WOKT_1_8","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOD2WOKT_1_9","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMCKOI_1_1","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMCKOI_1_10","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMCKOI_1_2","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMCKOI_1_3","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMCKOI_1_4","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMCKOI_1_5","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMCKOI_1_6","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMCKOI_1_7","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMCKOI_1_8","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMCKOI_1_9","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMOKOU_1_1","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMOKOU_1_10","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMOKOU_1_2","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMOKOU_1_3","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMOKOU_1_4","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMOKOU_1_5","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMOKOU_1_6","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMOKOU_1_7","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMOKOU_1_8","score":0.5} {"chain_id":"3KIBXJ1WD5T18H5HQKFO3QDOMMOKOU_1_9","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37J3C2VJX_1_1","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37J3C2VJX_1_10","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37J3C2VJX_1_2","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37J3C2VJX_1_3","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37J3C2VJX_1_4","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37J3C2VJX_1_5","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37J3C2VJX_1_6","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37J3C2VJX_1_7","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37J3C2VJX_1_8","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37J3C2VJX_1_9","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37JRH6JVN_1_1","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37JRH6JVN_1_10","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37JRH6JVN_1_2","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37JRH6JVN_1_3","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37JRH6JVN_1_4","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37JRH6JVN_1_5","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37JRH6JVN_1_6","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37JRH6JVN_1_7","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37JRH6JVN_1_8","score":0.5} {"chain_id":"3KJYX6QCM9A1NH8W9B1QX37JRH6JVN_1_9","score":0.5} {"chain_id":"3KKG4CDWKIXDNSC8339QZJT3LHB49W_1_1","score":0.5} {"chain_id":"3KKG4CDWKIXDNSC8339QZJT3LHB49W_1_10","score":0.5} {"chain_id":"3KKG4CDWKIXDNSC8339QZJT3LHB49W_1_2","score":0.5} {"chain_id":"3KKG4CDWKIXDNSC8339QZJT3LHB49W_1_3","score":0.5} {"chain_id":"3KKG4CDWKIXDNSC8339QZJT3LHB49W_1_4","score":0.5} {"chain_id":"3KKG4CDWKIXDNSC8339QZJT3LHB49W_1_5","score":0.5} {"chain_id":"3KKG4CDWKIXDNSC8339QZJT3LHB49W_1_6","score":0.5} {"chain_id":"3KKG4CDWKIXDNSC8339QZJT3LHB49W_1_7","score":0.5} {"chain_id":"3KKG4CDWKIXDNSC8339QZJT3LHB49W_1_8","score":0.5} {"chain_id":"3KKG4CDWKIXDNSC8339QZJT3LHB49W_1_9","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AEW4FKG_1_1","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AEW4FKG_1_10","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AEW4FKG_1_2","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AEW4FKG_1_3","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AEW4FKG_1_4","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AEW4FKG_1_5","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AEW4FKG_1_6","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AEW4FKG_1_7","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AEW4FKG_1_8","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AEW4FKG_1_9","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AI3YFKS_1_1","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AI3YFKS_1_10","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AI3YFKS_1_2","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AI3YFKS_1_3","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AI3YFKS_1_4","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AI3YFKS_1_5","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AI3YFKS_1_6","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AI3YFKS_1_7","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AI3YFKS_1_8","score":0.5} {"chain_id":"3KMS4QQVK2P724SORHWYGW4AI3YFKS_1_9","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTVMQSM7_1_1","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTVMQSM7_1_10","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTVMQSM7_1_2","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTVMQSM7_1_3","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTVMQSM7_1_4","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTVMQSM7_1_5","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTVMQSM7_1_6","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTVMQSM7_1_7","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTVMQSM7_1_8","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTVMQSM7_1_9","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTWEIMSE_1_1","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTWEIMSE_1_10","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTWEIMSE_1_2","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTWEIMSE_1_3","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTWEIMSE_1_4","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTWEIMSE_1_5","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTWEIMSE_1_6","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTWEIMSE_1_7","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTWEIMSE_1_8","score":0.5} {"chain_id":"3KRVW3HTZNKBWXXDID9D28FTWEIMSE_1_9","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAX843RMH_1_1","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAX843RMH_1_10","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAX843RMH_1_2","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAX843RMH_1_3","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAX843RMH_1_4","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAX843RMH_1_5","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAX843RMH_1_6","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAX843RMH_1_7","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAX843RMH_1_8","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAX843RMH_1_9","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXBS8MRW_1_1","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXBS8MRW_1_10","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXBS8MRW_1_2","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXBS8MRW_1_3","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXBS8MRW_1_4","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXBS8MRW_1_5","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXBS8MRW_1_6","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXBS8MRW_1_7","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXBS8MRW_1_8","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXBS8MRW_1_9","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXC7SRMG_1_1","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXC7SRMG_1_10","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXC7SRMG_1_2","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXC7SRMG_1_3","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXC7SRMG_1_4","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXC7SRMG_1_5","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXC7SRMG_1_6","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXC7SRMG_1_7","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXC7SRMG_1_8","score":0.5} {"chain_id":"3KV0LJBBH2KZVIX03O98CYAXC7SRMG_1_9","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCD2R5LL_1_1","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCD2R5LL_1_10","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCD2R5LL_1_2","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCD2R5LL_1_3","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCD2R5LL_1_4","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCD2R5LL_1_5","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCD2R5LL_1_6","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCD2R5LL_1_7","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCD2R5LL_1_8","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCD2R5LL_1_9","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCFLAL5O_1_1","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCFLAL5O_1_10","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCFLAL5O_1_2","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCFLAL5O_1_3","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCFLAL5O_1_4","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCFLAL5O_1_5","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCFLAL5O_1_6","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCFLAL5O_1_7","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCFLAL5O_1_8","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCFLAL5O_1_9","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCKOLL5A_1_1","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCKOLL5A_1_10","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCKOLL5A_1_2","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCKOLL5A_1_3","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCKOLL5A_1_4","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCKOLL5A_1_5","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCKOLL5A_1_6","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCKOLL5A_1_7","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCKOLL5A_1_8","score":0.5} {"chain_id":"3KWTYT08702QKDHH65VQ9KQCKOLL5A_1_9","score":0.5} {"chain_id":"3KXIR214I4F2N8R9IUUBPWLPCM542R_1_1","score":0.5} {"chain_id":"3KXIR214I4F2N8R9IUUBPWLPCM542R_1_10","score":0.5} {"chain_id":"3KXIR214I4F2N8R9IUUBPWLPCM542R_1_2","score":0.5} {"chain_id":"3KXIR214I4F2N8R9IUUBPWLPCM542R_1_3","score":0.5} {"chain_id":"3KXIR214I4F2N8R9IUUBPWLPCM542R_1_4","score":0.5} {"chain_id":"3KXIR214I4F2N8R9IUUBPWLPCM542R_1_5","score":0.5} {"chain_id":"3KXIR214I4F2N8R9IUUBPWLPCM542R_1_6","score":0.5} {"chain_id":"3KXIR214I4F2N8R9IUUBPWLPCM542R_1_7","score":0.5} {"chain_id":"3KXIR214I4F2N8R9IUUBPWLPCM542R_1_8","score":0.5} {"chain_id":"3KXIR214I4F2N8R9IUUBPWLPCM542R_1_9","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYMRSODY_1_1","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYMRSODY_1_10","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYMRSODY_1_2","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYMRSODY_1_3","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYMRSODY_1_4","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYMRSODY_1_5","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYMRSODY_1_6","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYMRSODY_1_7","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYMRSODY_1_8","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYMRSODY_1_9","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPHDDOR_1_1","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPHDDOR_1_10","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPHDDOR_1_2","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPHDDOR_1_3","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPHDDOR_1_4","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPHDDOR_1_5","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPHDDOR_1_6","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPHDDOR_1_7","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPHDDOR_1_8","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPHDDOR_1_9","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPI4DOK_1_1","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPI4DOK_1_10","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPI4DOK_1_2","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPI4DOK_1_3","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPI4DOK_1_4","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPI4DOK_1_5","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPI4DOK_1_6","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPI4DOK_1_7","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPI4DOK_1_8","score":0.5} {"chain_id":"3KYQYYSHYV6TUBZ7Y3T1ZDIYPI4DOK_1_9","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW320416SY9_1_1","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW320416SY9_1_10","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW320416SY9_1_2","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW320416SY9_1_3","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW320416SY9_1_4","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW320416SY9_1_5","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW320416SY9_1_6","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW320416SY9_1_7","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW320416SY9_1_8","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW320416SY9_1_9","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW3205AJYSB_1_1","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW3205AJYSB_1_10","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW3205AJYSB_1_2","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW3205AJYSB_1_3","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW3205AJYSB_1_4","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW3205AJYSB_1_5","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW3205AJYSB_1_6","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW3205AJYSB_1_7","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW3205AJYSB_1_8","score":0.5} {"chain_id":"3L0KT67Y8EFBQEMR1GXOW3205AJYSB_1_9","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHL8HUNJ_1_1","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHL8HUNJ_1_10","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHL8HUNJ_1_2","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHL8HUNJ_1_3","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHL8HUNJ_1_4","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHL8HUNJ_1_5","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHL8HUNJ_1_6","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHL8HUNJ_1_7","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHL8HUNJ_1_8","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHL8HUNJ_1_9","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHYOWUN7_1_1","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHYOWUN7_1_10","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHYOWUN7_1_2","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHYOWUN7_1_3","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHYOWUN7_1_4","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHYOWUN7_1_5","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHYOWUN7_1_6","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHYOWUN7_1_7","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHYOWUN7_1_8","score":0.5} {"chain_id":"3L2IS5HSFAHXTSAHJJJDUOMHYOWUN7_1_9","score":0.5} {"chain_id":"3L4D84MILZRW5GDC4MKMI2GAHLGHJG_1_1","score":0.5} {"chain_id":"3L4D84MILZRW5GDC4MKMI2GAHLGHJG_1_10","score":0.5} {"chain_id":"3L4D84MILZRW5GDC4MKMI2GAHLGHJG_1_2","score":0.5} {"chain_id":"3L4D84MILZRW5GDC4MKMI2GAHLGHJG_1_3","score":0.5} {"chain_id":"3L4D84MILZRW5GDC4MKMI2GAHLGHJG_1_4","score":0.5} {"chain_id":"3L4D84MILZRW5GDC4MKMI2GAHLGHJG_1_5","score":0.5} {"chain_id":"3L4D84MILZRW5GDC4MKMI2GAHLGHJG_1_6","score":0.5} {"chain_id":"3L4D84MILZRW5GDC4MKMI2GAHLGHJG_1_7","score":0.5} {"chain_id":"3L4D84MILZRW5GDC4MKMI2GAHLGHJG_1_8","score":0.5} {"chain_id":"3L4D84MILZRW5GDC4MKMI2GAHLGHJG_1_9","score":0.5} {"chain_id":"3L4PIM1GQTFZPZMEMRXJ6TX4HY6YR7_1_1","score":0.5} {"chain_id":"3L4PIM1GQTFZPZMEMRXJ6TX4HY6YR7_1_10","score":0.5} {"chain_id":"3L4PIM1GQTFZPZMEMRXJ6TX4HY6YR7_1_2","score":0.5} {"chain_id":"3L4PIM1GQTFZPZMEMRXJ6TX4HY6YR7_1_3","score":0.5} {"chain_id":"3L4PIM1GQTFZPZMEMRXJ6TX4HY6YR7_1_4","score":0.5} {"chain_id":"3L4PIM1GQTFZPZMEMRXJ6TX4HY6YR7_1_5","score":0.5} {"chain_id":"3L4PIM1GQTFZPZMEMRXJ6TX4HY6YR7_1_6","score":0.5} {"chain_id":"3L4PIM1GQTFZPZMEMRXJ6TX4HY6YR7_1_7","score":0.5} {"chain_id":"3L4PIM1GQTFZPZMEMRXJ6TX4HY6YR7_1_8","score":0.5} {"chain_id":"3L4PIM1GQTFZPZMEMRXJ6TX4HY6YR7_1_9","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O18N254T_1_1","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O18N254T_1_10","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O18N254T_1_2","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O18N254T_1_3","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O18N254T_1_4","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O18N254T_1_5","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O18N254T_1_6","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O18N254T_1_7","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O18N254T_1_8","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O18N254T_1_9","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O1WXK45I_1_1","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O1WXK45I_1_10","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O1WXK45I_1_2","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O1WXK45I_1_3","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O1WXK45I_1_4","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O1WXK45I_1_5","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O1WXK45I_1_6","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O1WXK45I_1_7","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O1WXK45I_1_8","score":0.5} {"chain_id":"3L6L49WXW0WUM5AW0DW9N3O1WXK45I_1_9","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT08ODAN_1_1","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT08ODAN_1_10","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT08ODAN_1_2","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT08ODAN_1_3","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT08ODAN_1_4","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT08ODAN_1_5","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT08ODAN_1_6","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT08ODAN_1_7","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT08ODAN_1_8","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT08ODAN_1_9","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT0ILDA4_1_1","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT0ILDA4_1_10","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT0ILDA4_1_2","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT0ILDA4_1_3","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT0ILDA4_1_4","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT0ILDA4_1_5","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT0ILDA4_1_6","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT0ILDA4_1_7","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT0ILDA4_1_8","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYT0ILDA4_1_9","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYTZEEDAO_1_1","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYTZEEDAO_1_10","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYTZEEDAO_1_2","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYTZEEDAO_1_3","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYTZEEDAO_1_4","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYTZEEDAO_1_5","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYTZEEDAO_1_6","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYTZEEDAO_1_7","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYTZEEDAO_1_8","score":0.5} {"chain_id":"3L70J4KAZGL4S756OKOJYIYTZEEDAO_1_9","score":0.5} {"chain_id":"3LEIZ60CDJYTQP0XOWZGTF6CM719ZQ_1_1","score":0.5} {"chain_id":"3LEIZ60CDJYTQP0XOWZGTF6CM719ZQ_1_10","score":0.5} {"chain_id":"3LEIZ60CDJYTQP0XOWZGTF6CM719ZQ_1_2","score":0.5} {"chain_id":"3LEIZ60CDJYTQP0XOWZGTF6CM719ZQ_1_3","score":0.5} {"chain_id":"3LEIZ60CDJYTQP0XOWZGTF6CM719ZQ_1_4","score":0.5} {"chain_id":"3LEIZ60CDJYTQP0XOWZGTF6CM719ZQ_1_5","score":0.5} {"chain_id":"3LEIZ60CDJYTQP0XOWZGTF6CM719ZQ_1_6","score":0.5} {"chain_id":"3LEIZ60CDJYTQP0XOWZGTF6CM719ZQ_1_7","score":0.5} {"chain_id":"3LEIZ60CDJYTQP0XOWZGTF6CM719ZQ_1_8","score":0.5} {"chain_id":"3LEIZ60CDJYTQP0XOWZGTF6CM719ZQ_1_9","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZGYSBDD_1_1","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZGYSBDD_1_10","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZGYSBDD_1_2","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZGYSBDD_1_3","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZGYSBDD_1_4","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZGYSBDD_1_5","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZGYSBDD_1_6","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZGYSBDD_1_7","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZGYSBDD_1_8","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZGYSBDD_1_9","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZIO5BD8_1_1","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZIO5BD8_1_10","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZIO5BD8_1_2","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZIO5BD8_1_3","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZIO5BD8_1_4","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZIO5BD8_1_5","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZIO5BD8_1_6","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZIO5BD8_1_7","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZIO5BD8_1_8","score":0.5} {"chain_id":"3LEP4MGT3GZ9BHAYUYOFTTIZIO5BD8_1_9","score":0.5} {"chain_id":"3LJ7UR74RHCYCUG24DSVHKONL0KN4P_1_1","score":0.5} {"chain_id":"3LJ7UR74RHCYCUG24DSVHKONL0KN4P_1_10","score":0.5} {"chain_id":"3LJ7UR74RHCYCUG24DSVHKONL0KN4P_1_2","score":0.5} {"chain_id":"3LJ7UR74RHCYCUG24DSVHKONL0KN4P_1_3","score":0.5} {"chain_id":"3LJ7UR74RHCYCUG24DSVHKONL0KN4P_1_4","score":0.5} {"chain_id":"3LJ7UR74RHCYCUG24DSVHKONL0KN4P_1_5","score":0.5} {"chain_id":"3LJ7UR74RHCYCUG24DSVHKONL0KN4P_1_6","score":0.5} {"chain_id":"3LJ7UR74RHCYCUG24DSVHKONL0KN4P_1_7","score":0.5} {"chain_id":"3LJ7UR74RHCYCUG24DSVHKONL0KN4P_1_8","score":0.5} {"chain_id":"3LJ7UR74RHCYCUG24DSVHKONL0KN4P_1_9","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17J0UZOWP_1_1","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17J0UZOWP_1_10","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17J0UZOWP_1_2","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17J0UZOWP_1_3","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17J0UZOWP_1_4","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17J0UZOWP_1_5","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17J0UZOWP_1_6","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17J0UZOWP_1_7","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17J0UZOWP_1_8","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17J0UZOWP_1_9","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17JAULWOT_1_1","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17JAULWOT_1_10","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17JAULWOT_1_2","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17JAULWOT_1_3","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17JAULWOT_1_4","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17JAULWOT_1_5","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17JAULWOT_1_6","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17JAULWOT_1_7","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17JAULWOT_1_8","score":0.5} {"chain_id":"3LKC68YZ3A2S3HZYFYYRR17JAULWOT_1_9","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17IQGLH_1_1","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17IQGLH_1_10","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17IQGLH_1_2","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17IQGLH_1_3","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17IQGLH_1_4","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17IQGLH_1_5","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17IQGLH_1_6","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17IQGLH_1_7","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17IQGLH_1_8","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17IQGLH_1_9","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17KIGLD_1_1","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17KIGLD_1_10","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17KIGLD_1_2","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17KIGLD_1_3","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17KIGLD_1_4","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17KIGLD_1_5","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17KIGLD_1_6","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17KIGLD_1_7","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17KIGLD_1_8","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH17KIGLD_1_9","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1BA4LGO_1_1","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1BA4LGO_1_10","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1BA4LGO_1_2","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1BA4LGO_1_3","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1BA4LGO_1_4","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1BA4LGO_1_5","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1BA4LGO_1_6","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1BA4LGO_1_7","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1BA4LGO_1_8","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1BA4LGO_1_9","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1KWYGLU_1_1","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1KWYGLU_1_10","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1KWYGLU_1_2","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1KWYGLU_1_3","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1KWYGLU_1_4","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1KWYGLU_1_5","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1KWYGLU_1_6","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1KWYGLU_1_7","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1KWYGLU_1_8","score":0.5} {"chain_id":"3LO69W1SU3CO0A61N1EHDHH1KWYGLU_1_9","score":0.5} {"chain_id":"3LOTDFNYA7YYX4M5GVF147Y54FGFW6_1_1","score":0.5} {"chain_id":"3LOTDFNYA7YYX4M5GVF147Y54FGFW6_1_10","score":0.5} {"chain_id":"3LOTDFNYA7YYX4M5GVF147Y54FGFW6_1_2","score":0.5} {"chain_id":"3LOTDFNYA7YYX4M5GVF147Y54FGFW6_1_3","score":0.5} {"chain_id":"3LOTDFNYA7YYX4M5GVF147Y54FGFW6_1_4","score":0.5} {"chain_id":"3LOTDFNYA7YYX4M5GVF147Y54FGFW6_1_5","score":0.5} {"chain_id":"3LOTDFNYA7YYX4M5GVF147Y54FGFW6_1_6","score":0.5} {"chain_id":"3LOTDFNYA7YYX4M5GVF147Y54FGFW6_1_7","score":0.5} {"chain_id":"3LOTDFNYA7YYX4M5GVF147Y54FGFW6_1_8","score":0.5} {"chain_id":"3LOTDFNYA7YYX4M5GVF147Y54FGFW6_1_9","score":0.5} {"chain_id":"3LOZAJ85YDCTLAFJ25WGM7IN388X2D_1_1","score":0.5} {"chain_id":"3LOZAJ85YDCTLAFJ25WGM7IN388X2D_1_10","score":0.5} {"chain_id":"3LOZAJ85YDCTLAFJ25WGM7IN388X2D_1_2","score":0.5} {"chain_id":"3LOZAJ85YDCTLAFJ25WGM7IN388X2D_1_3","score":0.5} {"chain_id":"3LOZAJ85YDCTLAFJ25WGM7IN388X2D_1_4","score":0.5} {"chain_id":"3LOZAJ85YDCTLAFJ25WGM7IN388X2D_1_5","score":0.5} {"chain_id":"3LOZAJ85YDCTLAFJ25WGM7IN388X2D_1_6","score":0.5} {"chain_id":"3LOZAJ85YDCTLAFJ25WGM7IN388X2D_1_7","score":0.5} {"chain_id":"3LOZAJ85YDCTLAFJ25WGM7IN388X2D_1_8","score":0.5} {"chain_id":"3LOZAJ85YDCTLAFJ25WGM7IN388X2D_1_9","score":0.5} {"chain_id":"3LRLIPTPEQ8C6DBGG1A62VTJI2OKAE_1_1","score":0.5} {"chain_id":"3LRLIPTPEQ8C6DBGG1A62VTJI2OKAE_1_10","score":0.5} {"chain_id":"3LRLIPTPEQ8C6DBGG1A62VTJI2OKAE_1_2","score":0.5} {"chain_id":"3LRLIPTPEQ8C6DBGG1A62VTJI2OKAE_1_3","score":0.5} {"chain_id":"3LRLIPTPEQ8C6DBGG1A62VTJI2OKAE_1_4","score":0.5} {"chain_id":"3LRLIPTPEQ8C6DBGG1A62VTJI2OKAE_1_5","score":0.5} {"chain_id":"3LRLIPTPEQ8C6DBGG1A62VTJI2OKAE_1_6","score":0.5} {"chain_id":"3LRLIPTPEQ8C6DBGG1A62VTJI2OKAE_1_7","score":0.5} {"chain_id":"3LRLIPTPEQ8C6DBGG1A62VTJI2OKAE_1_8","score":0.5} {"chain_id":"3LRLIPTPEQ8C6DBGG1A62VTJI2OKAE_1_9","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX5DHQOJ_1_1","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX5DHQOJ_1_10","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX5DHQOJ_1_2","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX5DHQOJ_1_3","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX5DHQOJ_1_4","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX5DHQOJ_1_5","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX5DHQOJ_1_6","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX5DHQOJ_1_7","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX5DHQOJ_1_8","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX5DHQOJ_1_9","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX6OQQOF_1_1","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX6OQQOF_1_10","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX6OQQOF_1_2","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX6OQQOF_1_3","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX6OQQOF_1_4","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX6OQQOF_1_5","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX6OQQOF_1_6","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX6OQQOF_1_7","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX6OQQOF_1_8","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX6OQQOF_1_9","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX73AQOU_1_1","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX73AQOU_1_10","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX73AQOU_1_2","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX73AQOU_1_3","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX73AQOU_1_4","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX73AQOU_1_5","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX73AQOU_1_6","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX73AQOU_1_7","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX73AQOU_1_8","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX73AQOU_1_9","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX79KOQE_1_1","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX79KOQE_1_10","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX79KOQE_1_2","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX79KOQE_1_3","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX79KOQE_1_4","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX79KOQE_1_5","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX79KOQE_1_6","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX79KOQE_1_7","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX79KOQE_1_8","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX79KOQE_1_9","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX7BDOQB_1_1","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX7BDOQB_1_10","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX7BDOQB_1_2","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX7BDOQB_1_3","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX7BDOQB_1_4","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX7BDOQB_1_5","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX7BDOQB_1_6","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX7BDOQB_1_7","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX7BDOQB_1_8","score":0.5} {"chain_id":"3LS2AMNW5FPNJK3C3PZLZCPX7BDOQB_1_9","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJKZRFQ4_1_1","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJKZRFQ4_1_10","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJKZRFQ4_1_2","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJKZRFQ4_1_3","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJKZRFQ4_1_4","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJKZRFQ4_1_5","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJKZRFQ4_1_6","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJKZRFQ4_1_7","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJKZRFQ4_1_8","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJKZRFQ4_1_9","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJTD9FQN_1_1","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJTD9FQN_1_10","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJTD9FQN_1_2","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJTD9FQN_1_3","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJTD9FQN_1_4","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJTD9FQN_1_5","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJTD9FQN_1_6","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJTD9FQN_1_7","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJTD9FQN_1_8","score":0.5} {"chain_id":"3LWJHTCVCCLTD7QJ4MGVCIGJTD9FQN_1_9","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP4P8BKD_1_1","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP4P8BKD_1_10","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP4P8BKD_1_2","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP4P8BKD_1_3","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP4P8BKD_1_4","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP4P8BKD_1_5","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP4P8BKD_1_6","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP4P8BKD_1_7","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP4P8BKD_1_8","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP4P8BKD_1_9","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP5LZBKX_1_1","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP5LZBKX_1_10","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP5LZBKX_1_2","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP5LZBKX_1_3","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP5LZBKX_1_4","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP5LZBKX_1_5","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP5LZBKX_1_6","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP5LZBKX_1_7","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP5LZBKX_1_8","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DP5LZBKX_1_9","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPFLOKB5_1_1","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPFLOKB5_1_10","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPFLOKB5_1_2","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPFLOKB5_1_3","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPFLOKB5_1_4","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPFLOKB5_1_5","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPFLOKB5_1_6","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPFLOKB5_1_7","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPFLOKB5_1_8","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPFLOKB5_1_9","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPGPBKB1_1_1","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPGPBKB1_1_10","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPGPBKB1_1_2","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPGPBKB1_1_3","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPGPBKB1_1_4","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPGPBKB1_1_5","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPGPBKB1_1_6","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPGPBKB1_1_7","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPGPBKB1_1_8","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPGPBKB1_1_9","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPY8GKBQ_1_1","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPY8GKBQ_1_10","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPY8GKBQ_1_2","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPY8GKBQ_1_3","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPY8GKBQ_1_4","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPY8GKBQ_1_5","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPY8GKBQ_1_6","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPY8GKBQ_1_7","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPY8GKBQ_1_8","score":0.5} {"chain_id":"3LYA37P8IQMHPNG8MFA2X6DPY8GKBQ_1_9","score":0.5} {"chain_id":"3M0BCWMB8VV8KNAPBTT5LH7KSOWBW9_1_1","score":0.5} {"chain_id":"3M0BCWMB8VV8KNAPBTT5LH7KSOWBW9_1_10","score":0.5} {"chain_id":"3M0BCWMB8VV8KNAPBTT5LH7KSOWBW9_1_2","score":0.5} {"chain_id":"3M0BCWMB8VV8KNAPBTT5LH7KSOWBW9_1_3","score":0.5} {"chain_id":"3M0BCWMB8VV8KNAPBTT5LH7KSOWBW9_1_4","score":0.5} {"chain_id":"3M0BCWMB8VV8KNAPBTT5LH7KSOWBW9_1_5","score":0.5} {"chain_id":"3M0BCWMB8VV8KNAPBTT5LH7KSOWBW9_1_6","score":0.5} {"chain_id":"3M0BCWMB8VV8KNAPBTT5LH7KSOWBW9_1_7","score":0.5} {"chain_id":"3M0BCWMB8VV8KNAPBTT5LH7KSOWBW9_1_8","score":0.5} {"chain_id":"3M0BCWMB8VV8KNAPBTT5LH7KSOWBW9_1_9","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVDMZ5S_1_1","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVDMZ5S_1_10","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVDMZ5S_1_2","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVDMZ5S_1_3","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVDMZ5S_1_4","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVDMZ5S_1_5","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVDMZ5S_1_6","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVDMZ5S_1_7","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVDMZ5S_1_8","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVDMZ5S_1_9","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVRTZ5R_1_1","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVRTZ5R_1_10","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVRTZ5R_1_2","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVRTZ5R_1_3","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVRTZ5R_1_4","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVRTZ5R_1_5","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVRTZ5R_1_6","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVRTZ5R_1_7","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVRTZ5R_1_8","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AVRTZ5R_1_9","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AWL95Z2_1_1","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AWL95Z2_1_10","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AWL95Z2_1_2","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AWL95Z2_1_3","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AWL95Z2_1_4","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AWL95Z2_1_5","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AWL95Z2_1_6","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AWL95Z2_1_7","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AWL95Z2_1_8","score":0.5} {"chain_id":"3M0NZ3JDP1XAP2YLL6MZHZ1AWL95Z2_1_9","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI748X6S4_1_1","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI748X6S4_1_10","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI748X6S4_1_2","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI748X6S4_1_3","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI748X6S4_1_4","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI748X6S4_1_5","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI748X6S4_1_6","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI748X6S4_1_7","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI748X6S4_1_8","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI748X6S4_1_9","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI7JJ9S63_1_1","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI7JJ9S63_1_10","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI7JJ9S63_1_2","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI7JJ9S63_1_3","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI7JJ9S63_1_4","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI7JJ9S63_1_5","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI7JJ9S63_1_6","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI7JJ9S63_1_7","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI7JJ9S63_1_8","score":0.5} {"chain_id":"3M23Y66PO2697UCLVX2WDCI7JJ9S63_1_9","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBJJFR6T_1_1","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBJJFR6T_1_10","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBJJFR6T_1_2","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBJJFR6T_1_3","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBJJFR6T_1_4","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBJJFR6T_1_5","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBJJFR6T_1_6","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBJJFR6T_1_7","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBJJFR6T_1_8","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBJJFR6T_1_9","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBKXMR6T_1_1","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBKXMR6T_1_10","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBKXMR6T_1_2","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBKXMR6T_1_3","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBKXMR6T_1_4","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBKXMR6T_1_5","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBKXMR6T_1_6","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBKXMR6T_1_7","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBKXMR6T_1_8","score":0.5} {"chain_id":"3M68NM076H6X6FC8G82RN2DBKXMR6T_1_9","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY2IVQBO_1_1","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY2IVQBO_1_10","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY2IVQBO_1_2","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY2IVQBO_1_3","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY2IVQBO_1_4","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY2IVQBO_1_5","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY2IVQBO_1_6","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY2IVQBO_1_7","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY2IVQBO_1_8","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY2IVQBO_1_9","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY4MUQBX_1_1","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY4MUQBX_1_10","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY4MUQBX_1_2","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY4MUQBX_1_3","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY4MUQBX_1_4","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY4MUQBX_1_5","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY4MUQBX_1_6","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY4MUQBX_1_7","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY4MUQBX_1_8","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPY4MUQBX_1_9","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPYY9TBQL_1_1","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPYY9TBQL_1_10","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPYY9TBQL_1_2","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPYY9TBQL_1_3","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPYY9TBQL_1_4","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPYY9TBQL_1_5","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPYY9TBQL_1_6","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPYY9TBQL_1_7","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPYY9TBQL_1_8","score":0.5} {"chain_id":"3M81GAB8A0I30QE3ZKUZTSPYY9TBQL_1_9","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF69XNL_1_1","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF69XNL_1_10","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF69XNL_1_2","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF69XNL_1_3","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF69XNL_1_4","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF69XNL_1_5","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF69XNL_1_6","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF69XNL_1_7","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF69XNL_1_8","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF69XNL_1_9","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF9SXNA_1_1","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF9SXNA_1_10","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF9SXNA_1_2","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF9SXNA_1_3","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF9SXNA_1_4","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF9SXNA_1_5","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF9SXNA_1_6","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF9SXNA_1_7","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF9SXNA_1_8","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLF9SXNA_1_9","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLFRMNXU_1_1","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLFRMNXU_1_10","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLFRMNXU_1_2","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLFRMNXU_1_3","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLFRMNXU_1_4","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLFRMNXU_1_5","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLFRMNXU_1_6","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLFRMNXU_1_7","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLFRMNXU_1_8","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLFRMNXU_1_9","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLS0ANXD_1_1","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLS0ANXD_1_10","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLS0ANXD_1_2","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLS0ANXD_1_3","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLS0ANXD_1_4","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLS0ANXD_1_5","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLS0ANXD_1_6","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLS0ANXD_1_7","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLS0ANXD_1_8","score":0.5} {"chain_id":"3MAOD8E57Q9PAW4COOU0EVLLS0ANXD_1_9","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99UD8KKLI_1_1","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99UD8KKLI_1_10","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99UD8KKLI_1_2","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99UD8KKLI_1_3","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99UD8KKLI_1_4","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99UD8KKLI_1_5","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99UD8KKLI_1_6","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99UD8KKLI_1_7","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99UD8KKLI_1_8","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99UD8KKLI_1_9","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99USK2KL3_1_1","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99USK2KL3_1_10","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99USK2KL3_1_2","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99USK2KL3_1_3","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99USK2KL3_1_4","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99USK2KL3_1_5","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99USK2KL3_1_6","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99USK2KL3_1_7","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99USK2KL3_1_8","score":0.5} {"chain_id":"3MB8LZR5BFST2W2KDSZWB99USK2KL3_1_9","score":0.5} {"chain_id":"3MD9PLUKKIDEFR4RP6ILBG1W01AZNQ_1_1","score":0.5} {"chain_id":"3MD9PLUKKIDEFR4RP6ILBG1W01AZNQ_1_10","score":0.5} {"chain_id":"3MD9PLUKKIDEFR4RP6ILBG1W01AZNQ_1_2","score":0.5} {"chain_id":"3MD9PLUKKIDEFR4RP6ILBG1W01AZNQ_1_3","score":0.5} {"chain_id":"3MD9PLUKKIDEFR4RP6ILBG1W01AZNQ_1_4","score":0.5} {"chain_id":"3MD9PLUKKIDEFR4RP6ILBG1W01AZNQ_1_5","score":0.5} {"chain_id":"3MD9PLUKKIDEFR4RP6ILBG1W01AZNQ_1_6","score":0.5} {"chain_id":"3MD9PLUKKIDEFR4RP6ILBG1W01AZNQ_1_7","score":0.5} {"chain_id":"3MD9PLUKKIDEFR4RP6ILBG1W01AZNQ_1_8","score":0.5} {"chain_id":"3MD9PLUKKIDEFR4RP6ILBG1W01AZNQ_1_9","score":0.5} {"chain_id":"3MHW492WW0CROPEHC8EIDVZ0R02MV5_1_1","score":0.5} {"chain_id":"3MHW492WW0CROPEHC8EIDVZ0R02MV5_1_10","score":0.5} {"chain_id":"3MHW492WW0CROPEHC8EIDVZ0R02MV5_1_2","score":0.5} {"chain_id":"3MHW492WW0CROPEHC8EIDVZ0R02MV5_1_3","score":0.5} {"chain_id":"3MHW492WW0CROPEHC8EIDVZ0R02MV5_1_4","score":0.5} {"chain_id":"3MHW492WW0CROPEHC8EIDVZ0R02MV5_1_5","score":0.5} {"chain_id":"3MHW492WW0CROPEHC8EIDVZ0R02MV5_1_6","score":0.5} {"chain_id":"3MHW492WW0CROPEHC8EIDVZ0R02MV5_1_7","score":0.5} {"chain_id":"3MHW492WW0CROPEHC8EIDVZ0R02MV5_1_8","score":0.5} {"chain_id":"3MHW492WW0CROPEHC8EIDVZ0R02MV5_1_9","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H1U63MF_1_1","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H1U63MF_1_10","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H1U63MF_1_2","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H1U63MF_1_3","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H1U63MF_1_4","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H1U63MF_1_5","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H1U63MF_1_6","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H1U63MF_1_7","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H1U63MF_1_8","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H1U63MF_1_9","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H2HUM3X_1_1","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H2HUM3X_1_10","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H2HUM3X_1_2","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H2HUM3X_1_3","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H2HUM3X_1_4","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H2HUM3X_1_5","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H2HUM3X_1_6","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H2HUM3X_1_7","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H2HUM3X_1_8","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H2HUM3X_1_9","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H54XM3D_1_1","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H54XM3D_1_10","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H54XM3D_1_2","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H54XM3D_1_3","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H54XM3D_1_4","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H54XM3D_1_5","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H54XM3D_1_6","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H54XM3D_1_7","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H54XM3D_1_8","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H54XM3D_1_9","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H57P3MS_1_1","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H57P3MS_1_10","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H57P3MS_1_2","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H57P3MS_1_3","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H57P3MS_1_4","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H57P3MS_1_5","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H57P3MS_1_6","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H57P3MS_1_7","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H57P3MS_1_8","score":0.5} {"chain_id":"3MMN5BL1WZ37CGCYSY8CU07H57P3MS_1_9","score":0.5} {"chain_id":"3MRNMEIQW55LOQWALBD97WE4YJPDL9_1_1","score":0.5} {"chain_id":"3MRNMEIQW55LOQWALBD97WE4YJPDL9_1_10","score":0.5} {"chain_id":"3MRNMEIQW55LOQWALBD97WE4YJPDL9_1_2","score":0.5} {"chain_id":"3MRNMEIQW55LOQWALBD97WE4YJPDL9_1_3","score":0.5} {"chain_id":"3MRNMEIQW55LOQWALBD97WE4YJPDL9_1_4","score":0.5} {"chain_id":"3MRNMEIQW55LOQWALBD97WE4YJPDL9_1_5","score":0.5} {"chain_id":"3MRNMEIQW55LOQWALBD97WE4YJPDL9_1_6","score":0.5} {"chain_id":"3MRNMEIQW55LOQWALBD97WE4YJPDL9_1_7","score":0.5} {"chain_id":"3MRNMEIQW55LOQWALBD97WE4YJPDL9_1_8","score":0.5} {"chain_id":"3MRNMEIQW55LOQWALBD97WE4YJPDL9_1_9","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE7Y9WAE_1_1","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE7Y9WAE_1_10","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE7Y9WAE_1_2","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE7Y9WAE_1_3","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE7Y9WAE_1_4","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE7Y9WAE_1_5","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE7Y9WAE_1_6","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE7Y9WAE_1_7","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE7Y9WAE_1_8","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE7Y9WAE_1_9","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE87BWAZ_1_1","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE87BWAZ_1_10","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE87BWAZ_1_2","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE87BWAZ_1_3","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE87BWAZ_1_4","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE87BWAZ_1_5","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE87BWAZ_1_6","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE87BWAZ_1_7","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE87BWAZ_1_8","score":0.5} {"chain_id":"3MTMREQS4VH31D5X5FT9Q6NE87BWAZ_1_9","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZQ835X9_1_1","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZQ835X9_1_10","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZQ835X9_1_2","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZQ835X9_1_3","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZQ835X9_1_4","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZQ835X9_1_5","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZQ835X9_1_6","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZQ835X9_1_7","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZQ835X9_1_8","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZQ835X9_1_9","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZSATX5X_1_1","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZSATX5X_1_10","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZSATX5X_1_2","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZSATX5X_1_3","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZSATX5X_1_4","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZSATX5X_1_5","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZSATX5X_1_6","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZSATX5X_1_7","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZSATX5X_1_8","score":0.5} {"chain_id":"3MX2NQ3YC9TLK7Y6KOYEKELZSATX5X_1_9","score":0.5} {"chain_id":"3N1FSUEFL5ZPQIPPFJESLFCTATYD4A_1_1","score":0.5} {"chain_id":"3N1FSUEFL5ZPQIPPFJESLFCTATYD4A_1_10","score":0.5} {"chain_id":"3N1FSUEFL5ZPQIPPFJESLFCTATYD4A_1_2","score":0.5} {"chain_id":"3N1FSUEFL5ZPQIPPFJESLFCTATYD4A_1_3","score":0.5} {"chain_id":"3N1FSUEFL5ZPQIPPFJESLFCTATYD4A_1_4","score":0.5} {"chain_id":"3N1FSUEFL5ZPQIPPFJESLFCTATYD4A_1_5","score":0.5} {"chain_id":"3N1FSUEFL5ZPQIPPFJESLFCTATYD4A_1_6","score":0.5} {"chain_id":"3N1FSUEFL5ZPQIPPFJESLFCTATYD4A_1_7","score":0.5} {"chain_id":"3N1FSUEFL5ZPQIPPFJESLFCTATYD4A_1_8","score":0.5} {"chain_id":"3N1FSUEFL5ZPQIPPFJESLFCTATYD4A_1_9","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMR5MH8_1_1","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMR5MH8_1_10","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMR5MH8_1_2","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMR5MH8_1_3","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMR5MH8_1_4","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMR5MH8_1_5","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMR5MH8_1_6","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMR5MH8_1_7","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMR5MH8_1_8","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMR5MH8_1_9","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMTXMH4_1_1","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMTXMH4_1_10","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMTXMH4_1_2","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMTXMH4_1_3","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMTXMH4_1_4","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMTXMH4_1_5","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMTXMH4_1_6","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMTXMH4_1_7","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMTXMH4_1_8","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RMTXMH4_1_9","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RNR6MHA_1_1","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RNR6MHA_1_10","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RNR6MHA_1_2","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RNR6MHA_1_3","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RNR6MHA_1_4","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RNR6MHA_1_5","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RNR6MHA_1_6","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RNR6MHA_1_7","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RNR6MHA_1_8","score":0.5} {"chain_id":"3N2BF7Y2VQTM6OJX7JXEYU8RNR6MHA_1_9","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DRDZKUR_1_1","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DRDZKUR_1_10","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DRDZKUR_1_2","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DRDZKUR_1_3","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DRDZKUR_1_4","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DRDZKUR_1_5","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DRDZKUR_1_6","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DRDZKUR_1_7","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DRDZKUR_1_8","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DRDZKUR_1_9","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DS47UKS_1_1","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DS47UKS_1_10","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DS47UKS_1_2","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DS47UKS_1_3","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DS47UKS_1_4","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DS47UKS_1_5","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DS47UKS_1_6","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DS47UKS_1_7","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DS47UKS_1_8","score":0.5} {"chain_id":"3N4BPTXIO8RWLMPEM6RX2W5DS47UKS_1_9","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UX64COOM_1_1","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UX64COOM_1_10","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UX64COOM_1_2","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UX64COOM_1_3","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UX64COOM_1_4","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UX64COOM_1_5","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UX64COOM_1_6","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UX64COOM_1_7","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UX64COOM_1_8","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UX64COOM_1_9","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UXTVHOOW_1_1","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UXTVHOOW_1_10","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UXTVHOOW_1_2","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UXTVHOOW_1_3","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UXTVHOOW_1_4","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UXTVHOOW_1_5","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UXTVHOOW_1_6","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UXTVHOOW_1_7","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UXTVHOOW_1_8","score":0.5} {"chain_id":"3N8OEVH1FRPKY8QWOC7HA7UXTVHOOW_1_9","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z0PF72X_1_1","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z0PF72X_1_10","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z0PF72X_1_2","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z0PF72X_1_3","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z0PF72X_1_4","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z0PF72X_1_5","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z0PF72X_1_6","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z0PF72X_1_7","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z0PF72X_1_8","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z0PF72X_1_9","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z5UR27J_1_1","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z5UR27J_1_10","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z5UR27J_1_2","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z5UR27J_1_3","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z5UR27J_1_4","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z5UR27J_1_5","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z5UR27J_1_6","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z5UR27J_1_7","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z5UR27J_1_8","score":0.5} {"chain_id":"3NAPMVF0ZWEZ6V9SKSSIS85Z5UR27J_1_9","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ0ZQFOA_1_1","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ0ZQFOA_1_10","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ0ZQFOA_1_2","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ0ZQFOA_1_3","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ0ZQFOA_1_4","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ0ZQFOA_1_5","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ0ZQFOA_1_6","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ0ZQFOA_1_7","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ0ZQFOA_1_8","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ0ZQFOA_1_9","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ11JFO8_1_1","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ11JFO8_1_10","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ11JFO8_1_2","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ11JFO8_1_3","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ11JFO8_1_4","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ11JFO8_1_5","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ11JFO8_1_6","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ11JFO8_1_7","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ11JFO8_1_8","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ11JFO8_1_9","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ2KUFOM_1_1","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ2KUFOM_1_10","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ2KUFOM_1_2","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ2KUFOM_1_3","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ2KUFOM_1_4","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ2KUFOM_1_5","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ2KUFOM_1_6","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ2KUFOM_1_7","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ2KUFOM_1_8","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJ2KUFOM_1_9","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJY00FOK_1_1","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJY00FOK_1_10","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJY00FOK_1_2","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJY00FOK_1_3","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJY00FOK_1_4","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJY00FOK_1_5","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJY00FOK_1_6","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJY00FOK_1_7","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJY00FOK_1_8","score":0.5} {"chain_id":"3NC5L260MOLQSVD3P9ORNDLJY00FOK_1_9","score":0.5} {"chain_id":"3ND9UOO81K1KXWW126IZZK3P2NNLWR_1_1","score":0.5} {"chain_id":"3ND9UOO81K1KXWW126IZZK3P2NNLWR_1_10","score":0.5} {"chain_id":"3ND9UOO81K1KXWW126IZZK3P2NNLWR_1_2","score":0.5} {"chain_id":"3ND9UOO81K1KXWW126IZZK3P2NNLWR_1_3","score":0.5} {"chain_id":"3ND9UOO81K1KXWW126IZZK3P2NNLWR_1_4","score":0.5} {"chain_id":"3ND9UOO81K1KXWW126IZZK3P2NNLWR_1_5","score":0.5} {"chain_id":"3ND9UOO81K1KXWW126IZZK3P2NNLWR_1_6","score":0.5} {"chain_id":"3ND9UOO81K1KXWW126IZZK3P2NNLWR_1_7","score":0.5} {"chain_id":"3ND9UOO81K1KXWW126IZZK3P2NNLWR_1_8","score":0.5} {"chain_id":"3ND9UOO81K1KXWW126IZZK3P2NNLWR_1_9","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9N2V8P8O_1_1","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9N2V8P8O_1_10","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9N2V8P8O_1_2","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9N2V8P8O_1_3","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9N2V8P8O_1_4","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9N2V8P8O_1_5","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9N2V8P8O_1_6","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9N2V8P8O_1_7","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9N2V8P8O_1_8","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9N2V8P8O_1_9","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NMM48P5_1_1","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NMM48P5_1_10","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NMM48P5_1_2","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NMM48P5_1_3","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NMM48P5_1_4","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NMM48P5_1_5","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NMM48P5_1_6","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NMM48P5_1_7","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NMM48P5_1_8","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NMM48P5_1_9","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NPKXP8E_1_1","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NPKXP8E_1_10","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NPKXP8E_1_2","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NPKXP8E_1_3","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NPKXP8E_1_4","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NPKXP8E_1_5","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NPKXP8E_1_6","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NPKXP8E_1_7","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NPKXP8E_1_8","score":0.5} {"chain_id":"3NG53N1RLVIZYGFHWVV02L9NPKXP8E_1_9","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFA0U1PG_1_1","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFA0U1PG_1_10","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFA0U1PG_1_2","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFA0U1PG_1_3","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFA0U1PG_1_4","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFA0U1PG_1_5","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFA0U1PG_1_6","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFA0U1PG_1_7","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFA0U1PG_1_8","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFA0U1PG_1_9","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFAWMP1O_1_1","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFAWMP1O_1_10","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFAWMP1O_1_2","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFAWMP1O_1_3","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFAWMP1O_1_4","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFAWMP1O_1_5","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFAWMP1O_1_6","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFAWMP1O_1_7","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFAWMP1O_1_8","score":0.5} {"chain_id":"3NGI5ARFTT4HNGVWXAMLNBMFAWMP1O_1_9","score":0.5} {"chain_id":"3NGMS9VZTLHWMI0AQ6510JC591TFFP_1_1","score":0.5} {"chain_id":"3NGMS9VZTLHWMI0AQ6510JC591TFFP_1_10","score":0.5} {"chain_id":"3NGMS9VZTLHWMI0AQ6510JC591TFFP_1_2","score":0.5} {"chain_id":"3NGMS9VZTLHWMI0AQ6510JC591TFFP_1_3","score":0.5} {"chain_id":"3NGMS9VZTLHWMI0AQ6510JC591TFFP_1_4","score":0.5} {"chain_id":"3NGMS9VZTLHWMI0AQ6510JC591TFFP_1_5","score":0.5} {"chain_id":"3NGMS9VZTLHWMI0AQ6510JC591TFFP_1_6","score":0.5} {"chain_id":"3NGMS9VZTLHWMI0AQ6510JC591TFFP_1_7","score":0.5} {"chain_id":"3NGMS9VZTLHWMI0AQ6510JC591TFFP_1_8","score":0.5} {"chain_id":"3NGMS9VZTLHWMI0AQ6510JC591TFFP_1_9","score":0.5} {"chain_id":"3NJM2BJS4W51AJ5UD7B54756IXDCPD_1_1","score":0.5} {"chain_id":"3NJM2BJS4W51AJ5UD7B54756IXDCPD_1_10","score":0.5} {"chain_id":"3NJM2BJS4W51AJ5UD7B54756IXDCPD_1_2","score":0.5} {"chain_id":"3NJM2BJS4W51AJ5UD7B54756IXDCPD_1_3","score":0.5} {"chain_id":"3NJM2BJS4W51AJ5UD7B54756IXDCPD_1_4","score":0.5} {"chain_id":"3NJM2BJS4W51AJ5UD7B54756IXDCPD_1_5","score":0.5} {"chain_id":"3NJM2BJS4W51AJ5UD7B54756IXDCPD_1_6","score":0.5} {"chain_id":"3NJM2BJS4W51AJ5UD7B54756IXDCPD_1_7","score":0.5} {"chain_id":"3NJM2BJS4W51AJ5UD7B54756IXDCPD_1_8","score":0.5} {"chain_id":"3NJM2BJS4W51AJ5UD7B54756IXDCPD_1_9","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3BJ8QLL_1_1","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3BJ8QLL_1_10","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3BJ8QLL_1_2","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3BJ8QLL_1_3","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3BJ8QLL_1_4","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3BJ8QLL_1_5","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3BJ8QLL_1_6","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3BJ8QLL_1_7","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3BJ8QLL_1_8","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3BJ8QLL_1_9","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3Q79QLD_1_1","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3Q79QLD_1_10","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3Q79QLD_1_2","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3Q79QLD_1_3","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3Q79QLD_1_4","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3Q79QLD_1_5","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3Q79QLD_1_6","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3Q79QLD_1_7","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3Q79QLD_1_8","score":0.5} {"chain_id":"3NLZY2D53POFDZ0FQXJT7VL3Q79QLD_1_9","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOGEAXG6_1_1","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOGEAXG6_1_10","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOGEAXG6_1_2","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOGEAXG6_1_3","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOGEAXG6_1_4","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOGEAXG6_1_5","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOGEAXG6_1_6","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOGEAXG6_1_7","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOGEAXG6_1_8","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOGEAXG6_1_9","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOH4MXGZ_1_1","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOH4MXGZ_1_10","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOH4MXGZ_1_2","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOH4MXGZ_1_3","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOH4MXGZ_1_4","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOH4MXGZ_1_5","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOH4MXGZ_1_6","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOH4MXGZ_1_7","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOH4MXGZ_1_8","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOH4MXGZ_1_9","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOIQNGXS_1_1","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOIQNGXS_1_10","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOIQNGXS_1_2","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOIQNGXS_1_3","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOIQNGXS_1_4","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOIQNGXS_1_5","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOIQNGXS_1_6","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOIQNGXS_1_7","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOIQNGXS_1_8","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCOIQNGXS_1_9","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCORTGXGH_1_1","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCORTGXGH_1_10","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCORTGXGH_1_2","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCORTGXGH_1_3","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCORTGXGH_1_4","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCORTGXGH_1_5","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCORTGXGH_1_6","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCORTGXGH_1_7","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCORTGXGH_1_8","score":0.5} {"chain_id":"3NPFYT4IZC3J04NQ1KH5OBCORTGXGH_1_9","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A3NBPTC_1_1","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A3NBPTC_1_10","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A3NBPTC_1_2","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A3NBPTC_1_3","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A3NBPTC_1_4","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A3NBPTC_1_5","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A3NBPTC_1_6","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A3NBPTC_1_7","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A3NBPTC_1_8","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A3NBPTC_1_9","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A51DTPC_1_1","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A51DTPC_1_10","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A51DTPC_1_2","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A51DTPC_1_3","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A51DTPC_1_4","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A51DTPC_1_5","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A51DTPC_1_6","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A51DTPC_1_7","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A51DTPC_1_8","score":0.5} {"chain_id":"3NPI0JQDAO4IW075ZT6VTH5A51DTPC_1_9","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM71NTYVB_1_1","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM71NTYVB_1_10","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM71NTYVB_1_2","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM71NTYVB_1_3","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM71NTYVB_1_4","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM71NTYVB_1_5","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM71NTYVB_1_6","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM71NTYVB_1_7","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM71NTYVB_1_8","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM71NTYVB_1_9","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM74CNVYJ_1_1","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM74CNVYJ_1_10","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM74CNVYJ_1_2","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM74CNVYJ_1_3","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM74CNVYJ_1_4","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM74CNVYJ_1_5","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM74CNVYJ_1_6","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM74CNVYJ_1_7","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM74CNVYJ_1_8","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM74CNVYJ_1_9","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM76ULVYJ_1_1","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM76ULVYJ_1_10","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM76ULVYJ_1_2","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM76ULVYJ_1_3","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM76ULVYJ_1_4","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM76ULVYJ_1_5","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM76ULVYJ_1_6","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM76ULVYJ_1_7","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM76ULVYJ_1_8","score":0.5} {"chain_id":"3NQL1CS15R7RI63VVB2T7QM76ULVYJ_1_9","score":0.5} {"chain_id":"3NS0A6KXC4785ZN5225QLWSZJO9ZGL_1_1","score":0.5} {"chain_id":"3NS0A6KXC4785ZN5225QLWSZJO9ZGL_1_10","score":0.5} {"chain_id":"3NS0A6KXC4785ZN5225QLWSZJO9ZGL_1_2","score":0.5} {"chain_id":"3NS0A6KXC4785ZN5225QLWSZJO9ZGL_1_3","score":0.5} {"chain_id":"3NS0A6KXC4785ZN5225QLWSZJO9ZGL_1_4","score":0.5} {"chain_id":"3NS0A6KXC4785ZN5225QLWSZJO9ZGL_1_5","score":0.5} {"chain_id":"3NS0A6KXC4785ZN5225QLWSZJO9ZGL_1_6","score":0.5} {"chain_id":"3NS0A6KXC4785ZN5225QLWSZJO9ZGL_1_7","score":0.5} {"chain_id":"3NS0A6KXC4785ZN5225QLWSZJO9ZGL_1_8","score":0.5} {"chain_id":"3NS0A6KXC4785ZN5225QLWSZJO9ZGL_1_9","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD7L379K_1_1","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD7L379K_1_10","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD7L379K_1_2","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD7L379K_1_3","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD7L379K_1_4","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD7L379K_1_5","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD7L379K_1_6","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD7L379K_1_7","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD7L379K_1_8","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD7L379K_1_9","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD89D797_1_1","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD89D797_1_10","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD89D797_1_2","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD89D797_1_3","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD89D797_1_4","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD89D797_1_5","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD89D797_1_6","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD89D797_1_7","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD89D797_1_8","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD89D797_1_9","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD8RL79F_1_1","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD8RL79F_1_10","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD8RL79F_1_2","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD8RL79F_1_3","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD8RL79F_1_4","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD8RL79F_1_5","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD8RL79F_1_6","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD8RL79F_1_7","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD8RL79F_1_8","score":0.5} {"chain_id":"3NXNZ5RS1AWA6FUR517X2VDD8RL79F_1_9","score":0.5} {"chain_id":"3O6CYIULED0NGMJVBKA0Q7Z8HBIUWS_1_1","score":0.5} {"chain_id":"3O6CYIULED0NGMJVBKA0Q7Z8HBIUWS_1_10","score":0.5} {"chain_id":"3O6CYIULED0NGMJVBKA0Q7Z8HBIUWS_1_2","score":0.5} {"chain_id":"3O6CYIULED0NGMJVBKA0Q7Z8HBIUWS_1_3","score":0.5} {"chain_id":"3O6CYIULED0NGMJVBKA0Q7Z8HBIUWS_1_4","score":0.5} {"chain_id":"3O6CYIULED0NGMJVBKA0Q7Z8HBIUWS_1_5","score":0.5} {"chain_id":"3O6CYIULED0NGMJVBKA0Q7Z8HBIUWS_1_6","score":0.5} {"chain_id":"3O6CYIULED0NGMJVBKA0Q7Z8HBIUWS_1_7","score":0.5} {"chain_id":"3O6CYIULED0NGMJVBKA0Q7Z8HBIUWS_1_8","score":0.5} {"chain_id":"3O6CYIULED0NGMJVBKA0Q7Z8HBIUWS_1_9","score":0.5} {"chain_id":"3O7L7BFSHEOOQV24W3RGLY4XGBBIEB_1_1","score":0.5} {"chain_id":"3O7L7BFSHEOOQV24W3RGLY4XGBBIEB_1_10","score":0.5} {"chain_id":"3O7L7BFSHEOOQV24W3RGLY4XGBBIEB_1_2","score":0.5} {"chain_id":"3O7L7BFSHEOOQV24W3RGLY4XGBBIEB_1_3","score":0.5} {"chain_id":"3O7L7BFSHEOOQV24W3RGLY4XGBBIEB_1_4","score":0.5} {"chain_id":"3O7L7BFSHEOOQV24W3RGLY4XGBBIEB_1_5","score":0.5} {"chain_id":"3O7L7BFSHEOOQV24W3RGLY4XGBBIEB_1_6","score":0.5} {"chain_id":"3O7L7BFSHEOOQV24W3RGLY4XGBBIEB_1_7","score":0.5} {"chain_id":"3O7L7BFSHEOOQV24W3RGLY4XGBBIEB_1_8","score":0.5} {"chain_id":"3O7L7BFSHEOOQV24W3RGLY4XGBBIEB_1_9","score":0.5} {"chain_id":"3OCHAWUVGOJO2QJ9RB2KM34HOLUKXG_1_1","score":0.5} {"chain_id":"3OCHAWUVGOJO2QJ9RB2KM34HOLUKXG_1_10","score":0.5} {"chain_id":"3OCHAWUVGOJO2QJ9RB2KM34HOLUKXG_1_2","score":0.5} {"chain_id":"3OCHAWUVGOJO2QJ9RB2KM34HOLUKXG_1_3","score":0.5} {"chain_id":"3OCHAWUVGOJO2QJ9RB2KM34HOLUKXG_1_4","score":0.5} {"chain_id":"3OCHAWUVGOJO2QJ9RB2KM34HOLUKXG_1_5","score":0.5} {"chain_id":"3OCHAWUVGOJO2QJ9RB2KM34HOLUKXG_1_6","score":0.5} {"chain_id":"3OCHAWUVGOJO2QJ9RB2KM34HOLUKXG_1_7","score":0.5} {"chain_id":"3OCHAWUVGOJO2QJ9RB2KM34HOLUKXG_1_8","score":0.5} {"chain_id":"3OCHAWUVGOJO2QJ9RB2KM34HOLUKXG_1_9","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHM4F9QUD_1_1","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHM4F9QUD_1_10","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHM4F9QUD_1_2","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHM4F9QUD_1_3","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHM4F9QUD_1_4","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHM4F9QUD_1_5","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHM4F9QUD_1_6","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHM4F9QUD_1_7","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHM4F9QUD_1_8","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHM4F9QUD_1_9","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMNPRUQ2_1_1","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMNPRUQ2_1_10","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMNPRUQ2_1_2","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMNPRUQ2_1_3","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMNPRUQ2_1_4","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMNPRUQ2_1_5","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMNPRUQ2_1_6","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMNPRUQ2_1_7","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMNPRUQ2_1_8","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMNPRUQ2_1_9","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMO7UUQ6_1_1","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMO7UUQ6_1_10","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMO7UUQ6_1_2","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMO7UUQ6_1_3","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMO7UUQ6_1_4","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMO7UUQ6_1_5","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMO7UUQ6_1_6","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMO7UUQ6_1_7","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMO7UUQ6_1_8","score":0.5} {"chain_id":"3OE22WJIGINIWPN9ZBBUYIHMO7UUQ6_1_9","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS5SPAOO_1_1","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS5SPAOO_1_10","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS5SPAOO_1_2","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS5SPAOO_1_3","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS5SPAOO_1_4","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS5SPAOO_1_5","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS5SPAOO_1_6","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS5SPAOO_1_7","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS5SPAOO_1_8","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS5SPAOO_1_9","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS8E0AOA_1_1","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS8E0AOA_1_10","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS8E0AOA_1_2","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS8E0AOA_1_3","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS8E0AOA_1_4","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS8E0AOA_1_5","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS8E0AOA_1_6","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS8E0AOA_1_7","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS8E0AOA_1_8","score":0.5} {"chain_id":"3OHYZ19UGC4VW4WVET2Z9CAS8E0AOA_1_9","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1ECWLAFY_1_1","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1ECWLAFY_1_10","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1ECWLAFY_1_2","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1ECWLAFY_1_3","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1ECWLAFY_1_4","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1ECWLAFY_1_5","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1ECWLAFY_1_6","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1ECWLAFY_1_7","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1ECWLAFY_1_8","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1ECWLAFY_1_9","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1EF9LAFR_1_1","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1EF9LAFR_1_10","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1EF9LAFR_1_2","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1EF9LAFR_1_3","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1EF9LAFR_1_4","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1EF9LAFR_1_5","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1EF9LAFR_1_6","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1EF9LAFR_1_7","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1EF9LAFR_1_8","score":0.5} {"chain_id":"3OLF68YTN901QRJ2FQJ9MI1EF9LAFR_1_9","score":0.5} {"chain_id":"3OLQQLKKNSOKL6MAELCGXZJXQK2JEB_1_1","score":0.5} {"chain_id":"3OLQQLKKNSOKL6MAELCGXZJXQK2JEB_1_10","score":0.5} {"chain_id":"3OLQQLKKNSOKL6MAELCGXZJXQK2JEB_1_2","score":0.5} {"chain_id":"3OLQQLKKNSOKL6MAELCGXZJXQK2JEB_1_3","score":0.5} {"chain_id":"3OLQQLKKNSOKL6MAELCGXZJXQK2JEB_1_4","score":0.5} {"chain_id":"3OLQQLKKNSOKL6MAELCGXZJXQK2JEB_1_5","score":0.5} {"chain_id":"3OLQQLKKNSOKL6MAELCGXZJXQK2JEB_1_6","score":0.5} {"chain_id":"3OLQQLKKNSOKL6MAELCGXZJXQK2JEB_1_7","score":0.5} {"chain_id":"3OLQQLKKNSOKL6MAELCGXZJXQK2JEB_1_8","score":0.5} {"chain_id":"3OLQQLKKNSOKL6MAELCGXZJXQK2JEB_1_9","score":0.5} {"chain_id":"3ON104KXQKVOZOPGWEJID31EIX4W4F_1_1","score":0.5} {"chain_id":"3ON104KXQKVOZOPGWEJID31EIX4W4F_1_10","score":0.5} {"chain_id":"3ON104KXQKVOZOPGWEJID31EIX4W4F_1_2","score":0.5} {"chain_id":"3ON104KXQKVOZOPGWEJID31EIX4W4F_1_3","score":0.5} {"chain_id":"3ON104KXQKVOZOPGWEJID31EIX4W4F_1_4","score":0.5} {"chain_id":"3ON104KXQKVOZOPGWEJID31EIX4W4F_1_5","score":0.5} {"chain_id":"3ON104KXQKVOZOPGWEJID31EIX4W4F_1_6","score":0.5} {"chain_id":"3ON104KXQKVOZOPGWEJID31EIX4W4F_1_7","score":0.5} {"chain_id":"3ON104KXQKVOZOPGWEJID31EIX4W4F_1_8","score":0.5} {"chain_id":"3ON104KXQKVOZOPGWEJID31EIX4W4F_1_9","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYL9QOB9_1_1","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYL9QOB9_1_10","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYL9QOB9_1_2","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYL9QOB9_1_3","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYL9QOB9_1_4","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYL9QOB9_1_5","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYL9QOB9_1_6","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYL9QOB9_1_7","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYL9QOB9_1_8","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYL9QOB9_1_9","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYZO5BOJ_1_1","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYZO5BOJ_1_10","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYZO5BOJ_1_2","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYZO5BOJ_1_3","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYZO5BOJ_1_4","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYZO5BOJ_1_5","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYZO5BOJ_1_6","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYZO5BOJ_1_7","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYZO5BOJ_1_8","score":0.5} {"chain_id":"3OONKJ5DKCI0FE1NK72V4NUYZO5BOJ_1_9","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E6LFV67_1_1","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E6LFV67_1_10","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E6LFV67_1_2","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E6LFV67_1_3","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E6LFV67_1_4","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E6LFV67_1_5","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E6LFV67_1_6","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E6LFV67_1_7","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E6LFV67_1_8","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E6LFV67_1_9","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E8056V4_1_1","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E8056V4_1_10","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E8056V4_1_2","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E8056V4_1_3","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E8056V4_1_4","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E8056V4_1_5","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E8056V4_1_6","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E8056V4_1_7","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E8056V4_1_8","score":0.5} {"chain_id":"3OS46CRSLFYPZMTPPS71OZ2E8056V4_1_9","score":0.5} {"chain_id":"3OS4RQUCR9E691OUL4J5HTLKTIPFBO_1_1","score":0.5} {"chain_id":"3OS4RQUCR9E691OUL4J5HTLKTIPFBO_1_10","score":0.5} {"chain_id":"3OS4RQUCR9E691OUL4J5HTLKTIPFBO_1_2","score":0.5} {"chain_id":"3OS4RQUCR9E691OUL4J5HTLKTIPFBO_1_3","score":0.5} {"chain_id":"3OS4RQUCR9E691OUL4J5HTLKTIPFBO_1_4","score":0.5} {"chain_id":"3OS4RQUCR9E691OUL4J5HTLKTIPFBO_1_5","score":0.5} {"chain_id":"3OS4RQUCR9E691OUL4J5HTLKTIPFBO_1_6","score":0.5} {"chain_id":"3OS4RQUCR9E691OUL4J5HTLKTIPFBO_1_7","score":0.5} {"chain_id":"3OS4RQUCR9E691OUL4J5HTLKTIPFBO_1_8","score":0.5} {"chain_id":"3OS4RQUCR9E691OUL4J5HTLKTIPFBO_1_9","score":0.5} {"chain_id":"3OSWBBLG1EWGOKDZZUGXIQ9R4BCDX9_1_1","score":0.5} {"chain_id":"3OSWBBLG1EWGOKDZZUGXIQ9R4BCDX9_1_10","score":0.5} {"chain_id":"3OSWBBLG1EWGOKDZZUGXIQ9R4BCDX9_1_2","score":0.5} {"chain_id":"3OSWBBLG1EWGOKDZZUGXIQ9R4BCDX9_1_3","score":0.5} {"chain_id":"3OSWBBLG1EWGOKDZZUGXIQ9R4BCDX9_1_4","score":0.5} {"chain_id":"3OSWBBLG1EWGOKDZZUGXIQ9R4BCDX9_1_5","score":0.5} {"chain_id":"3OSWBBLG1EWGOKDZZUGXIQ9R4BCDX9_1_6","score":0.5} {"chain_id":"3OSWBBLG1EWGOKDZZUGXIQ9R4BCDX9_1_7","score":0.5} {"chain_id":"3OSWBBLG1EWGOKDZZUGXIQ9R4BCDX9_1_8","score":0.5} {"chain_id":"3OSWBBLG1EWGOKDZZUGXIQ9R4BCDX9_1_9","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL96359V50P7_1_1","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL96359V50P7_1_10","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL96359V50P7_1_2","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL96359V50P7_1_3","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL96359V50P7_1_4","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL96359V50P7_1_5","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL96359V50P7_1_6","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL96359V50P7_1_7","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL96359V50P7_1_8","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL96359V50P7_1_9","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL9635IT0P0W_1_1","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL9635IT0P0W_1_10","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL9635IT0P0W_1_2","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL9635IT0P0W_1_3","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL9635IT0P0W_1_4","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL9635IT0P0W_1_5","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL9635IT0P0W_1_6","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL9635IT0P0W_1_7","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL9635IT0P0W_1_8","score":0.5} {"chain_id":"3OUYGIZWR7XHGRAE1RIL9635IT0P0W_1_9","score":0.5} {"chain_id":"3OVHNO1VE605TFDE0C4IFBP26UOZD2_1_1","score":0.5} {"chain_id":"3OVHNO1VE605TFDE0C4IFBP26UOZD2_1_10","score":0.5} {"chain_id":"3OVHNO1VE605TFDE0C4IFBP26UOZD2_1_2","score":0.5} {"chain_id":"3OVHNO1VE605TFDE0C4IFBP26UOZD2_1_3","score":0.5} {"chain_id":"3OVHNO1VE605TFDE0C4IFBP26UOZD2_1_4","score":0.5} {"chain_id":"3OVHNO1VE605TFDE0C4IFBP26UOZD2_1_5","score":0.5} {"chain_id":"3OVHNO1VE605TFDE0C4IFBP26UOZD2_1_6","score":0.5} {"chain_id":"3OVHNO1VE605TFDE0C4IFBP26UOZD2_1_7","score":0.5} {"chain_id":"3OVHNO1VE605TFDE0C4IFBP26UOZD2_1_8","score":0.5} {"chain_id":"3OVHNO1VE605TFDE0C4IFBP26UOZD2_1_9","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJS4HD4QP_1_1","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJS4HD4QP_1_10","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJS4HD4QP_1_2","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJS4HD4QP_1_3","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJS4HD4QP_1_4","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJS4HD4QP_1_5","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJS4HD4QP_1_6","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJS4HD4QP_1_7","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJS4HD4QP_1_8","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJS4HD4QP_1_9","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSODF4Q3_1_1","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSODF4Q3_1_10","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSODF4Q3_1_2","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSODF4Q3_1_3","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSODF4Q3_1_4","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSODF4Q3_1_5","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSODF4Q3_1_6","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSODF4Q3_1_7","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSODF4Q3_1_8","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSODF4Q3_1_9","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSVGFQ42_1_1","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSVGFQ42_1_10","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSVGFQ42_1_2","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSVGFQ42_1_3","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSVGFQ42_1_4","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSVGFQ42_1_5","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSVGFQ42_1_6","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSVGFQ42_1_7","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSVGFQ42_1_8","score":0.5} {"chain_id":"3OVR4I9USPIJFRTUK5KCLEJSVGFQ42_1_9","score":0.5} {"chain_id":"3OWEPKL089BVVHYL6BQ2KW8XEH77NM_1_1","score":0.5} {"chain_id":"3OWEPKL089BVVHYL6BQ2KW8XEH77NM_1_10","score":0.5} {"chain_id":"3OWEPKL089BVVHYL6BQ2KW8XEH77NM_1_2","score":0.5} {"chain_id":"3OWEPKL089BVVHYL6BQ2KW8XEH77NM_1_3","score":0.5} {"chain_id":"3OWEPKL089BVVHYL6BQ2KW8XEH77NM_1_4","score":0.5} {"chain_id":"3OWEPKL089BVVHYL6BQ2KW8XEH77NM_1_5","score":0.5} {"chain_id":"3OWEPKL089BVVHYL6BQ2KW8XEH77NM_1_6","score":0.5} {"chain_id":"3OWEPKL089BVVHYL6BQ2KW8XEH77NM_1_7","score":0.5} {"chain_id":"3OWEPKL089BVVHYL6BQ2KW8XEH77NM_1_8","score":0.5} {"chain_id":"3OWEPKL089BVVHYL6BQ2KW8XEH77NM_1_9","score":0.5} {"chain_id":"3OXV7EAXLEP5NDR65I1V54AVCIV63P_1_1","score":0.5} {"chain_id":"3OXV7EAXLEP5NDR65I1V54AVCIV63P_1_10","score":0.5} {"chain_id":"3OXV7EAXLEP5NDR65I1V54AVCIV63P_1_2","score":0.5} {"chain_id":"3OXV7EAXLEP5NDR65I1V54AVCIV63P_1_3","score":0.5} {"chain_id":"3OXV7EAXLEP5NDR65I1V54AVCIV63P_1_4","score":0.5} {"chain_id":"3OXV7EAXLEP5NDR65I1V54AVCIV63P_1_5","score":0.5} {"chain_id":"3OXV7EAXLEP5NDR65I1V54AVCIV63P_1_6","score":0.5} {"chain_id":"3OXV7EAXLEP5NDR65I1V54AVCIV63P_1_7","score":0.5} {"chain_id":"3OXV7EAXLEP5NDR65I1V54AVCIV63P_1_8","score":0.5} {"chain_id":"3OXV7EAXLEP5NDR65I1V54AVCIV63P_1_9","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3B4OLOT_1_1","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3B4OLOT_1_10","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3B4OLOT_1_2","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3B4OLOT_1_3","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3B4OLOT_1_4","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3B4OLOT_1_5","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3B4OLOT_1_6","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3B4OLOT_1_7","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3B4OLOT_1_8","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3B4OLOT_1_9","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3ZL3LOU_1_1","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3ZL3LOU_1_10","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3ZL3LOU_1_2","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3ZL3LOU_1_3","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3ZL3LOU_1_4","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3ZL3LOU_1_5","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3ZL3LOU_1_6","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3ZL3LOU_1_7","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3ZL3LOU_1_8","score":0.5} {"chain_id":"3P1L2B7AD1OCSNNZBKRPIQQ3ZL3LOU_1_9","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP4E8LFP_1_1","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP4E8LFP_1_10","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP4E8LFP_1_2","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP4E8LFP_1_3","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP4E8LFP_1_4","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP4E8LFP_1_5","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP4E8LFP_1_6","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP4E8LFP_1_7","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP4E8LFP_1_8","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP4E8LFP_1_9","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP532FLS_1_1","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP532FLS_1_10","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP532FLS_1_2","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP532FLS_1_3","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP532FLS_1_4","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP532FLS_1_5","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP532FLS_1_6","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP532FLS_1_7","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP532FLS_1_8","score":0.5} {"chain_id":"3P529IW9KYKIMAA6CH8ZVWHP532FLS_1_9","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XH4SHT2X_1_1","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XH4SHT2X_1_10","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XH4SHT2X_1_2","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XH4SHT2X_1_3","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XH4SHT2X_1_4","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XH4SHT2X_1_5","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XH4SHT2X_1_6","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XH4SHT2X_1_7","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XH4SHT2X_1_8","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XH4SHT2X_1_9","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XHRATT2W_1_1","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XHRATT2W_1_10","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XHRATT2W_1_2","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XHRATT2W_1_3","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XHRATT2W_1_4","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XHRATT2W_1_5","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XHRATT2W_1_6","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XHRATT2W_1_7","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XHRATT2W_1_8","score":0.5} {"chain_id":"3P59JYT76LJM4T6ZXVVJX4XHRATT2W_1_9","score":0.5} {"chain_id":"3PB5A5BD0V5PLPHZJ7D7UCZ0FB8G7O_1_1","score":0.5} {"chain_id":"3PB5A5BD0V5PLPHZJ7D7UCZ0FB8G7O_1_10","score":0.5} {"chain_id":"3PB5A5BD0V5PLPHZJ7D7UCZ0FB8G7O_1_2","score":0.5} {"chain_id":"3PB5A5BD0V5PLPHZJ7D7UCZ0FB8G7O_1_3","score":0.5} {"chain_id":"3PB5A5BD0V5PLPHZJ7D7UCZ0FB8G7O_1_4","score":0.5} {"chain_id":"3PB5A5BD0V5PLPHZJ7D7UCZ0FB8G7O_1_5","score":0.5} {"chain_id":"3PB5A5BD0V5PLPHZJ7D7UCZ0FB8G7O_1_6","score":0.5} {"chain_id":"3PB5A5BD0V5PLPHZJ7D7UCZ0FB8G7O_1_7","score":0.5} {"chain_id":"3PB5A5BD0V5PLPHZJ7D7UCZ0FB8G7O_1_8","score":0.5} {"chain_id":"3PB5A5BD0V5PLPHZJ7D7UCZ0FB8G7O_1_9","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENG6YZWA_1_1","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENG6YZWA_1_10","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENG6YZWA_1_2","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENG6YZWA_1_3","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENG6YZWA_1_4","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENG6YZWA_1_5","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENG6YZWA_1_6","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENG6YZWA_1_7","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENG6YZWA_1_8","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENG6YZWA_1_9","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENHHPZWO_1_1","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENHHPZWO_1_10","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENHHPZWO_1_2","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENHHPZWO_1_3","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENHHPZWO_1_4","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENHHPZWO_1_5","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENHHPZWO_1_6","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENHHPZWO_1_7","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENHHPZWO_1_8","score":0.5} {"chain_id":"3PH3VY7DJLW42LD5H7987ZENHHPZWO_1_9","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPUDLJJO_1_1","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPUDLJJO_1_10","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPUDLJJO_1_2","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPUDLJJO_1_3","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPUDLJJO_1_4","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPUDLJJO_1_5","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPUDLJJO_1_6","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPUDLJJO_1_7","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPUDLJJO_1_8","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPUDLJJO_1_9","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPZ40JJQ_1_1","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPZ40JJQ_1_10","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPZ40JJQ_1_2","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPZ40JJQ_1_3","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPZ40JJQ_1_4","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPZ40JJQ_1_5","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPZ40JJQ_1_6","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPZ40JJQ_1_7","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPZ40JJQ_1_8","score":0.5} {"chain_id":"3PIWWX1FJJ5SWM82SMN7UFWPZ40JJQ_1_9","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM068A91G_1_1","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM068A91G_1_10","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM068A91G_1_2","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM068A91G_1_3","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM068A91G_1_4","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM068A91G_1_5","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM068A91G_1_6","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM068A91G_1_7","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM068A91G_1_8","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM068A91G_1_9","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM08C819G_1_1","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM08C819G_1_10","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM08C819G_1_2","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM08C819G_1_3","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM08C819G_1_4","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM08C819G_1_5","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM08C819G_1_6","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM08C819G_1_7","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM08C819G_1_8","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM08C819G_1_9","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM0IG419U_1_1","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM0IG419U_1_10","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM0IG419U_1_2","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM0IG419U_1_3","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM0IG419U_1_4","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM0IG419U_1_5","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM0IG419U_1_6","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM0IG419U_1_7","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM0IG419U_1_8","score":0.5} {"chain_id":"3PJ71Z61R41WVTFPGLQO1LM0IG419U_1_9","score":0.5} {"chain_id":"3PJUZCGDJ6FE6TZAF6Z3GV98NRH98U_1_1","score":0.5} {"chain_id":"3PJUZCGDJ6FE6TZAF6Z3GV98NRH98U_1_10","score":0.5} {"chain_id":"3PJUZCGDJ6FE6TZAF6Z3GV98NRH98U_1_2","score":0.5} {"chain_id":"3PJUZCGDJ6FE6TZAF6Z3GV98NRH98U_1_3","score":0.5} {"chain_id":"3PJUZCGDJ6FE6TZAF6Z3GV98NRH98U_1_4","score":0.5} {"chain_id":"3PJUZCGDJ6FE6TZAF6Z3GV98NRH98U_1_5","score":0.5} {"chain_id":"3PJUZCGDJ6FE6TZAF6Z3GV98NRH98U_1_6","score":0.5} {"chain_id":"3PJUZCGDJ6FE6TZAF6Z3GV98NRH98U_1_7","score":0.5} {"chain_id":"3PJUZCGDJ6FE6TZAF6Z3GV98NRH98U_1_8","score":0.5} {"chain_id":"3PJUZCGDJ6FE6TZAF6Z3GV98NRH98U_1_9","score":0.5} {"chain_id":"3PM8NZGV8YFADTH44GMHIPGQODQQXR_1_1","score":0.5} {"chain_id":"3PM8NZGV8YFADTH44GMHIPGQODQQXR_1_10","score":0.5} {"chain_id":"3PM8NZGV8YFADTH44GMHIPGQODQQXR_1_2","score":0.5} {"chain_id":"3PM8NZGV8YFADTH44GMHIPGQODQQXR_1_3","score":0.5} {"chain_id":"3PM8NZGV8YFADTH44GMHIPGQODQQXR_1_4","score":0.5} {"chain_id":"3PM8NZGV8YFADTH44GMHIPGQODQQXR_1_5","score":0.5} {"chain_id":"3PM8NZGV8YFADTH44GMHIPGQODQQXR_1_6","score":0.5} {"chain_id":"3PM8NZGV8YFADTH44GMHIPGQODQQXR_1_7","score":0.5} {"chain_id":"3PM8NZGV8YFADTH44GMHIPGQODQQXR_1_8","score":0.5} {"chain_id":"3PM8NZGV8YFADTH44GMHIPGQODQQXR_1_9","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RC8OC94_1_1","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RC8OC94_1_10","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RC8OC94_1_2","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RC8OC94_1_3","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RC8OC94_1_4","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RC8OC94_1_5","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RC8OC94_1_6","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RC8OC94_1_7","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RC8OC94_1_8","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RC8OC94_1_9","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RDR4C9N_1_1","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RDR4C9N_1_10","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RDR4C9N_1_2","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RDR4C9N_1_3","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RDR4C9N_1_4","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RDR4C9N_1_5","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RDR4C9N_1_6","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RDR4C9N_1_7","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RDR4C9N_1_8","score":0.5} {"chain_id":"3PMBY0YE272GIWPNWIF8IH5RDR4C9N_1_9","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1RAWZQU_1_1","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1RAWZQU_1_10","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1RAWZQU_1_2","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1RAWZQU_1_3","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1RAWZQU_1_4","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1RAWZQU_1_5","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1RAWZQU_1_6","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1RAWZQU_1_7","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1RAWZQU_1_8","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1RAWZQU_1_9","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1S54QZK_1_1","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1S54QZK_1_10","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1S54QZK_1_2","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1S54QZK_1_3","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1S54QZK_1_4","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1S54QZK_1_5","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1S54QZK_1_6","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1S54QZK_1_7","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1S54QZK_1_8","score":0.5} {"chain_id":"3PPTZCWALQJZIOHJ5YA2FAW1S54QZK_1_9","score":0.5} {"chain_id":"3PQ8K71NHXJ6U02U4AXH8HQNGEFAAP_1_1","score":0.5} {"chain_id":"3PQ8K71NHXJ6U02U4AXH8HQNGEFAAP_1_10","score":0.5} {"chain_id":"3PQ8K71NHXJ6U02U4AXH8HQNGEFAAP_1_2","score":0.5} {"chain_id":"3PQ8K71NHXJ6U02U4AXH8HQNGEFAAP_1_3","score":0.5} {"chain_id":"3PQ8K71NHXJ6U02U4AXH8HQNGEFAAP_1_4","score":0.5} {"chain_id":"3PQ8K71NHXJ6U02U4AXH8HQNGEFAAP_1_5","score":0.5} {"chain_id":"3PQ8K71NHXJ6U02U4AXH8HQNGEFAAP_1_6","score":0.5} {"chain_id":"3PQ8K71NHXJ6U02U4AXH8HQNGEFAAP_1_7","score":0.5} {"chain_id":"3PQ8K71NHXJ6U02U4AXH8HQNGEFAAP_1_8","score":0.5} {"chain_id":"3PQ8K71NHXJ6U02U4AXH8HQNGEFAAP_1_9","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VAIY9TG_1_1","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VAIY9TG_1_10","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VAIY9TG_1_2","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VAIY9TG_1_3","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VAIY9TG_1_4","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VAIY9TG_1_5","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VAIY9TG_1_6","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VAIY9TG_1_7","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VAIY9TG_1_8","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VAIY9TG_1_9","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VYO1T93_1_1","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VYO1T93_1_10","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VYO1T93_1_2","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VYO1T93_1_3","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VYO1T93_1_4","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VYO1T93_1_5","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VYO1T93_1_6","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VYO1T93_1_7","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VYO1T93_1_8","score":0.5} {"chain_id":"3PS7W85Z8Z1X4DRYI4AY7R5VYO1T93_1_9","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM1KT21B_1_1","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM1KT21B_1_10","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM1KT21B_1_2","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM1KT21B_1_3","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM1KT21B_1_4","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM1KT21B_1_5","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM1KT21B_1_6","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM1KT21B_1_7","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM1KT21B_1_8","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM1KT21B_1_9","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM2AO21N_1_1","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM2AO21N_1_10","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM2AO21N_1_2","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM2AO21N_1_3","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM2AO21N_1_4","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM2AO21N_1_5","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM2AO21N_1_6","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM2AO21N_1_7","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM2AO21N_1_8","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEM2AO21N_1_9","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEMZPO21E_1_1","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEMZPO21E_1_10","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEMZPO21E_1_2","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEMZPO21E_1_3","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEMZPO21E_1_4","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEMZPO21E_1_5","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEMZPO21E_1_6","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEMZPO21E_1_7","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEMZPO21E_1_8","score":0.5} {"chain_id":"3PW9OPU9PQJLV9UQVCB9RYEMZPO21E_1_9","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UASK28F_1_1","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UASK28F_1_10","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UASK28F_1_2","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UASK28F_1_3","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UASK28F_1_4","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UASK28F_1_5","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UASK28F_1_6","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UASK28F_1_7","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UASK28F_1_8","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UASK28F_1_9","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UHRM28M_1_1","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UHRM28M_1_10","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UHRM28M_1_2","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UHRM28M_1_3","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UHRM28M_1_4","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UHRM28M_1_5","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UHRM28M_1_6","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UHRM28M_1_7","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UHRM28M_1_8","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UHRM28M_1_9","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UQFY82P_1_1","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UQFY82P_1_10","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UQFY82P_1_2","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UQFY82P_1_3","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UQFY82P_1_4","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UQFY82P_1_5","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UQFY82P_1_6","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UQFY82P_1_7","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UQFY82P_1_8","score":0.5} {"chain_id":"3PWWM24LHSX369EBUXKO681UQFY82P_1_9","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY2YABU_1_1","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY2YABU_1_10","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY2YABU_1_2","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY2YABU_1_3","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY2YABU_1_4","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY2YABU_1_5","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY2YABU_1_6","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY2YABU_1_7","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY2YABU_1_8","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY2YABU_1_9","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY6GBAL_1_1","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY6GBAL_1_10","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY6GBAL_1_2","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY6GBAL_1_3","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY6GBAL_1_4","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY6GBAL_1_5","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY6GBAL_1_6","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY6GBAL_1_7","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY6GBAL_1_8","score":0.5} {"chain_id":"3PXX5PX6LXXBDA7MAOXD3SATY6GBAL_1_9","score":0.5} {"chain_id":"3PZDLQMM0TK5IC4OB90T8UXD3EB2CK_1_1","score":0.5} {"chain_id":"3PZDLQMM0TK5IC4OB90T8UXD3EB2CK_1_10","score":0.5} {"chain_id":"3PZDLQMM0TK5IC4OB90T8UXD3EB2CK_1_2","score":0.5} {"chain_id":"3PZDLQMM0TK5IC4OB90T8UXD3EB2CK_1_3","score":0.5} {"chain_id":"3PZDLQMM0TK5IC4OB90T8UXD3EB2CK_1_4","score":0.5} {"chain_id":"3PZDLQMM0TK5IC4OB90T8UXD3EB2CK_1_5","score":0.5} {"chain_id":"3PZDLQMM0TK5IC4OB90T8UXD3EB2CK_1_6","score":0.5} {"chain_id":"3PZDLQMM0TK5IC4OB90T8UXD3EB2CK_1_7","score":0.5} {"chain_id":"3PZDLQMM0TK5IC4OB90T8UXD3EB2CK_1_8","score":0.5} {"chain_id":"3PZDLQMM0TK5IC4OB90T8UXD3EB2CK_1_9","score":0.5} {"chain_id":"3Q5C1WP23M0DU6DDDVD7P5HYN1515C_1_1","score":0.5} {"chain_id":"3Q5C1WP23M0DU6DDDVD7P5HYN1515C_1_10","score":0.5} {"chain_id":"3Q5C1WP23M0DU6DDDVD7P5HYN1515C_1_2","score":0.5} {"chain_id":"3Q5C1WP23M0DU6DDDVD7P5HYN1515C_1_3","score":0.5} {"chain_id":"3Q5C1WP23M0DU6DDDVD7P5HYN1515C_1_4","score":0.5} {"chain_id":"3Q5C1WP23M0DU6DDDVD7P5HYN1515C_1_5","score":0.5} {"chain_id":"3Q5C1WP23M0DU6DDDVD7P5HYN1515C_1_6","score":0.5} {"chain_id":"3Q5C1WP23M0DU6DDDVD7P5HYN1515C_1_7","score":0.5} {"chain_id":"3Q5C1WP23M0DU6DDDVD7P5HYN1515C_1_8","score":0.5} {"chain_id":"3Q5C1WP23M0DU6DDDVD7P5HYN1515C_1_9","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PKUU5CP_1_1","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PKUU5CP_1_10","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PKUU5CP_1_2","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PKUU5CP_1_3","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PKUU5CP_1_4","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PKUU5CP_1_5","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PKUU5CP_1_6","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PKUU5CP_1_7","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PKUU5CP_1_8","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PKUU5CP_1_9","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PNZ2C5H_1_1","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PNZ2C5H_1_10","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PNZ2C5H_1_2","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PNZ2C5H_1_3","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PNZ2C5H_1_4","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PNZ2C5H_1_5","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PNZ2C5H_1_6","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PNZ2C5H_1_7","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PNZ2C5H_1_8","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PNZ2C5H_1_9","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PPSKC5N_1_1","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PPSKC5N_1_10","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PPSKC5N_1_2","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PPSKC5N_1_3","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PPSKC5N_1_4","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PPSKC5N_1_5","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PPSKC5N_1_6","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PPSKC5N_1_7","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PPSKC5N_1_8","score":0.5} {"chain_id":"3Q8GYXHFEP1XH9NBTS2R610PPSKC5N_1_9","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVC72D20T_1_1","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVC72D20T_1_10","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVC72D20T_1_2","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVC72D20T_1_3","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVC72D20T_1_4","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVC72D20T_1_5","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVC72D20T_1_6","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVC72D20T_1_7","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVC72D20T_1_8","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVC72D20T_1_9","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVCRTP207_1_1","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVCRTP207_1_10","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVCRTP207_1_2","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVCRTP207_1_3","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVCRTP207_1_4","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVCRTP207_1_5","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVCRTP207_1_6","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVCRTP207_1_7","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVCRTP207_1_8","score":0.5} {"chain_id":"3QAPZX2QN4CLOK98ZT79DTVCRTP207_1_9","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBD3O4P_1_1","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBD3O4P_1_10","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBD3O4P_1_2","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBD3O4P_1_3","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBD3O4P_1_4","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBD3O4P_1_5","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBD3O4P_1_6","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBD3O4P_1_7","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBD3O4P_1_8","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBD3O4P_1_9","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBIH4OT_1_1","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBIH4OT_1_10","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBIH4OT_1_2","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBIH4OT_1_3","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBIH4OT_1_4","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBIH4OT_1_5","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBIH4OT_1_6","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBIH4OT_1_7","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBIH4OT_1_8","score":0.5} {"chain_id":"3QBD8R3Z21IGUFGE5SS8W9OSBIH4OT_1_9","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T7B95TC_1_1","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T7B95TC_1_10","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T7B95TC_1_2","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T7B95TC_1_3","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T7B95TC_1_4","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T7B95TC_1_5","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T7B95TC_1_6","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T7B95TC_1_7","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T7B95TC_1_8","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T7B95TC_1_9","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T8LU5TI_1_1","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T8LU5TI_1_10","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T8LU5TI_1_2","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T8LU5TI_1_3","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T8LU5TI_1_4","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T8LU5TI_1_5","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T8LU5TI_1_6","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T8LU5TI_1_7","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T8LU5TI_1_8","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0T8LU5TI_1_9","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TBGKT5P_1_1","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TBGKT5P_1_10","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TBGKT5P_1_2","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TBGKT5P_1_3","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TBGKT5P_1_4","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TBGKT5P_1_5","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TBGKT5P_1_6","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TBGKT5P_1_7","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TBGKT5P_1_8","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TBGKT5P_1_9","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TF6B5TC_1_1","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TF6B5TC_1_10","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TF6B5TC_1_2","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TF6B5TC_1_3","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TF6B5TC_1_4","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TF6B5TC_1_5","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TF6B5TC_1_6","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TF6B5TC_1_7","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TF6B5TC_1_8","score":0.5} {"chain_id":"3QECW5O0KH0E3QPMFEXHVB0TF6B5TC_1_9","score":0.5} {"chain_id":"3QEMNNSB2XYM9578HHCZORW334S7DC_1_1","score":0.5} {"chain_id":"3QEMNNSB2XYM9578HHCZORW334S7DC_1_10","score":0.5} {"chain_id":"3QEMNNSB2XYM9578HHCZORW334S7DC_1_2","score":0.5} {"chain_id":"3QEMNNSB2XYM9578HHCZORW334S7DC_1_3","score":0.5} {"chain_id":"3QEMNNSB2XYM9578HHCZORW334S7DC_1_4","score":0.5} {"chain_id":"3QEMNNSB2XYM9578HHCZORW334S7DC_1_5","score":0.5} {"chain_id":"3QEMNNSB2XYM9578HHCZORW334S7DC_1_6","score":0.5} {"chain_id":"3QEMNNSB2XYM9578HHCZORW334S7DC_1_7","score":0.5} {"chain_id":"3QEMNNSB2XYM9578HHCZORW334S7DC_1_8","score":0.5} {"chain_id":"3QEMNNSB2XYM9578HHCZORW334S7DC_1_9","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK3OF4P_1_1","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK3OF4P_1_10","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK3OF4P_1_2","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK3OF4P_1_3","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK3OF4P_1_4","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK3OF4P_1_5","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK3OF4P_1_6","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK3OF4P_1_7","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK3OF4P_1_8","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK3OF4P_1_9","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK53F48_1_1","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK53F48_1_10","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK53F48_1_2","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK53F48_1_3","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK53F48_1_4","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK53F48_1_5","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK53F48_1_6","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK53F48_1_7","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK53F48_1_8","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEK53F48_1_9","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFENTA4FJ_1_1","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFENTA4FJ_1_10","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFENTA4FJ_1_2","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFENTA4FJ_1_3","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFENTA4FJ_1_4","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFENTA4FJ_1_5","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFENTA4FJ_1_6","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFENTA4FJ_1_7","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFENTA4FJ_1_8","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFENTA4FJ_1_9","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEY08F4H_1_1","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEY08F4H_1_10","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEY08F4H_1_2","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEY08F4H_1_3","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEY08F4H_1_4","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEY08F4H_1_5","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEY08F4H_1_6","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEY08F4H_1_7","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEY08F4H_1_8","score":0.5} {"chain_id":"3QFUFYSY9YEMO23L6P9I9FFEY08F4H_1_9","score":0.5} {"chain_id":"3QIYRE09Y3GHKVJJHV9TJMHKD2Z1NR_1_1","score":0.5} {"chain_id":"3QIYRE09Y3GHKVJJHV9TJMHKD2Z1NR_1_10","score":0.5} {"chain_id":"3QIYRE09Y3GHKVJJHV9TJMHKD2Z1NR_1_2","score":0.5} {"chain_id":"3QIYRE09Y3GHKVJJHV9TJMHKD2Z1NR_1_3","score":0.5} {"chain_id":"3QIYRE09Y3GHKVJJHV9TJMHKD2Z1NR_1_4","score":0.5} {"chain_id":"3QIYRE09Y3GHKVJJHV9TJMHKD2Z1NR_1_5","score":0.5} {"chain_id":"3QIYRE09Y3GHKVJJHV9TJMHKD2Z1NR_1_6","score":0.5} {"chain_id":"3QIYRE09Y3GHKVJJHV9TJMHKD2Z1NR_1_7","score":0.5} {"chain_id":"3QIYRE09Y3GHKVJJHV9TJMHKD2Z1NR_1_8","score":0.5} {"chain_id":"3QIYRE09Y3GHKVJJHV9TJMHKD2Z1NR_1_9","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BC0ENCO_1_1","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BC0ENCO_1_10","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BC0ENCO_1_2","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BC0ENCO_1_3","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BC0ENCO_1_4","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BC0ENCO_1_5","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BC0ENCO_1_6","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BC0ENCO_1_7","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BC0ENCO_1_8","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BC0ENCO_1_9","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BFWINCN_1_1","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BFWINCN_1_10","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BFWINCN_1_2","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BFWINCN_1_3","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BFWINCN_1_4","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BFWINCN_1_5","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BFWINCN_1_6","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BFWINCN_1_7","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BFWINCN_1_8","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BFWINCN_1_9","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BIJINC0_1_1","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BIJINC0_1_10","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BIJINC0_1_2","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BIJINC0_1_3","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BIJINC0_1_4","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BIJINC0_1_5","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BIJINC0_1_6","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BIJINC0_1_7","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BIJINC0_1_8","score":0.5} {"chain_id":"3QL2OFSM96H17YTHXSYD0I0BIJINC0_1_9","score":0.5} {"chain_id":"3QRYMNZ7FYGITFVSJET3PS0FYVLTN0_1_1","score":0.5} {"chain_id":"3QRYMNZ7FYGITFVSJET3PS0FYVLTN0_1_10","score":0.5} {"chain_id":"3QRYMNZ7FYGITFVSJET3PS0FYVLTN0_1_2","score":0.5} {"chain_id":"3QRYMNZ7FYGITFVSJET3PS0FYVLTN0_1_3","score":0.5} {"chain_id":"3QRYMNZ7FYGITFVSJET3PS0FYVLTN0_1_4","score":0.5} {"chain_id":"3QRYMNZ7FYGITFVSJET3PS0FYVLTN0_1_5","score":0.5} {"chain_id":"3QRYMNZ7FYGITFVSJET3PS0FYVLTN0_1_6","score":0.5} {"chain_id":"3QRYMNZ7FYGITFVSJET3PS0FYVLTN0_1_7","score":0.5} {"chain_id":"3QRYMNZ7FYGITFVSJET3PS0FYVLTN0_1_8","score":0.5} {"chain_id":"3QRYMNZ7FYGITFVSJET3PS0FYVLTN0_1_9","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3Q04309E_1_1","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3Q04309E_1_10","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3Q04309E_1_2","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3Q04309E_1_3","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3Q04309E_1_4","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3Q04309E_1_5","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3Q04309E_1_6","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3Q04309E_1_7","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3Q04309E_1_8","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3Q04309E_1_9","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYJ5098_1_1","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYJ5098_1_10","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYJ5098_1_2","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYJ5098_1_3","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYJ5098_1_4","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYJ5098_1_5","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYJ5098_1_6","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYJ5098_1_7","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYJ5098_1_8","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYJ5098_1_9","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYMB90T_1_1","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYMB90T_1_10","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYMB90T_1_2","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYMB90T_1_3","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYMB90T_1_4","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYMB90T_1_5","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYMB90T_1_6","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYMB90T_1_7","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYMB90T_1_8","score":0.5} {"chain_id":"3QXNC7EIPIUWO4U7K2MONG3QYMB90T_1_9","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LE2FU0_1_1","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LE2FU0_1_10","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LE2FU0_1_2","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LE2FU0_1_3","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LE2FU0_1_4","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LE2FU0_1_5","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LE2FU0_1_6","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LE2FU0_1_7","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LE2FU0_1_8","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LE2FU0_1_9","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LJRFUZ_1_1","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LJRFUZ_1_10","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LJRFUZ_1_2","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LJRFUZ_1_3","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LJRFUZ_1_4","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LJRFUZ_1_5","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LJRFUZ_1_6","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LJRFUZ_1_7","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LJRFUZ_1_8","score":0.5} {"chain_id":"3QY5DC2MXRJL50X0LV00MJD8LJRFUZ_1_9","score":0.5} {"chain_id":"3QY7M81QH7LUNBDI9YYMS4RTHR0K7Z_1_1","score":0.5} {"chain_id":"3QY7M81QH7LUNBDI9YYMS4RTHR0K7Z_1_10","score":0.5} {"chain_id":"3QY7M81QH7LUNBDI9YYMS4RTHR0K7Z_1_2","score":0.5} {"chain_id":"3QY7M81QH7LUNBDI9YYMS4RTHR0K7Z_1_3","score":0.5} {"chain_id":"3QY7M81QH7LUNBDI9YYMS4RTHR0K7Z_1_4","score":0.5} {"chain_id":"3QY7M81QH7LUNBDI9YYMS4RTHR0K7Z_1_5","score":0.5} {"chain_id":"3QY7M81QH7LUNBDI9YYMS4RTHR0K7Z_1_6","score":0.5} {"chain_id":"3QY7M81QH7LUNBDI9YYMS4RTHR0K7Z_1_7","score":0.5} {"chain_id":"3QY7M81QH7LUNBDI9YYMS4RTHR0K7Z_1_8","score":0.5} {"chain_id":"3QY7M81QH7LUNBDI9YYMS4RTHR0K7Z_1_9","score":0.5} {"chain_id":"3R08VXYT7CULIB7ZYCHPGFLOALNW71_1_1","score":0.5} {"chain_id":"3R08VXYT7CULIB7ZYCHPGFLOALNW71_1_10","score":0.5} {"chain_id":"3R08VXYT7CULIB7ZYCHPGFLOALNW71_1_2","score":0.5} {"chain_id":"3R08VXYT7CULIB7ZYCHPGFLOALNW71_1_3","score":0.5} {"chain_id":"3R08VXYT7CULIB7ZYCHPGFLOALNW71_1_4","score":0.5} {"chain_id":"3R08VXYT7CULIB7ZYCHPGFLOALNW71_1_5","score":0.5} {"chain_id":"3R08VXYT7CULIB7ZYCHPGFLOALNW71_1_6","score":0.5} {"chain_id":"3R08VXYT7CULIB7ZYCHPGFLOALNW71_1_7","score":0.5} {"chain_id":"3R08VXYT7CULIB7ZYCHPGFLOALNW71_1_8","score":0.5} {"chain_id":"3R08VXYT7CULIB7ZYCHPGFLOALNW71_1_9","score":0.5} {"chain_id":"3R0T90IZ1SBVX6CVAOLIAYREF6ZGCK_1_1","score":0.5} {"chain_id":"3R0T90IZ1SBVX6CVAOLIAYREF6ZGCK_1_10","score":0.5} {"chain_id":"3R0T90IZ1SBVX6CVAOLIAYREF6ZGCK_1_2","score":0.5} {"chain_id":"3R0T90IZ1SBVX6CVAOLIAYREF6ZGCK_1_3","score":0.5} {"chain_id":"3R0T90IZ1SBVX6CVAOLIAYREF6ZGCK_1_4","score":0.5} {"chain_id":"3R0T90IZ1SBVX6CVAOLIAYREF6ZGCK_1_5","score":0.5} {"chain_id":"3R0T90IZ1SBVX6CVAOLIAYREF6ZGCK_1_6","score":0.5} {"chain_id":"3R0T90IZ1SBVX6CVAOLIAYREF6ZGCK_1_7","score":0.5} {"chain_id":"3R0T90IZ1SBVX6CVAOLIAYREF6ZGCK_1_8","score":0.5} {"chain_id":"3R0T90IZ1SBVX6CVAOLIAYREF6ZGCK_1_9","score":0.5} {"chain_id":"3R2PKQ87NW7M2JUHD1FZY696IOVIM8_1_1","score":0.5} {"chain_id":"3R2PKQ87NW7M2JUHD1FZY696IOVIM8_1_10","score":0.5} {"chain_id":"3R2PKQ87NW7M2JUHD1FZY696IOVIM8_1_2","score":0.5} {"chain_id":"3R2PKQ87NW7M2JUHD1FZY696IOVIM8_1_3","score":0.5} {"chain_id":"3R2PKQ87NW7M2JUHD1FZY696IOVIM8_1_4","score":0.5} {"chain_id":"3R2PKQ87NW7M2JUHD1FZY696IOVIM8_1_5","score":0.5} {"chain_id":"3R2PKQ87NW7M2JUHD1FZY696IOVIM8_1_6","score":0.5} {"chain_id":"3R2PKQ87NW7M2JUHD1FZY696IOVIM8_1_7","score":0.5} {"chain_id":"3R2PKQ87NW7M2JUHD1FZY696IOVIM8_1_8","score":0.5} {"chain_id":"3R2PKQ87NW7M2JUHD1FZY696IOVIM8_1_9","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ467XO8_1_1","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ467XO8_1_10","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ467XO8_1_2","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ467XO8_1_3","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ467XO8_1_4","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ467XO8_1_5","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ467XO8_1_6","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ467XO8_1_7","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ467XO8_1_8","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ467XO8_1_9","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ8PIXOP_1_1","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ8PIXOP_1_10","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ8PIXOP_1_2","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ8PIXOP_1_3","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ8PIXOP_1_4","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ8PIXOP_1_5","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ8PIXOP_1_6","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ8PIXOP_1_7","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ8PIXOP_1_8","score":0.5} {"chain_id":"3R2UR8A0IAF7SH4OP3UDTKLQ8PIXOP_1_9","score":0.5} {"chain_id":"3R5F3LQFV2JWXC43QLIYQ511BKRZOK_1_1","score":0.5} {"chain_id":"3R5F3LQFV2JWXC43QLIYQ511BKRZOK_1_10","score":0.5} {"chain_id":"3R5F3LQFV2JWXC43QLIYQ511BKRZOK_1_2","score":0.5} {"chain_id":"3R5F3LQFV2JWXC43QLIYQ511BKRZOK_1_3","score":0.5} {"chain_id":"3R5F3LQFV2JWXC43QLIYQ511BKRZOK_1_4","score":0.5} {"chain_id":"3R5F3LQFV2JWXC43QLIYQ511BKRZOK_1_5","score":0.5} {"chain_id":"3R5F3LQFV2JWXC43QLIYQ511BKRZOK_1_6","score":0.5} {"chain_id":"3R5F3LQFV2JWXC43QLIYQ511BKRZOK_1_7","score":0.5} {"chain_id":"3R5F3LQFV2JWXC43QLIYQ511BKRZOK_1_8","score":0.5} {"chain_id":"3R5F3LQFV2JWXC43QLIYQ511BKRZOK_1_9","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCA8WXF6_1_1","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCA8WXF6_1_10","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCA8WXF6_1_2","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCA8WXF6_1_3","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCA8WXF6_1_4","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCA8WXF6_1_5","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCA8WXF6_1_6","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCA8WXF6_1_7","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCA8WXF6_1_8","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCA8WXF6_1_9","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCRV3XF4_1_1","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCRV3XF4_1_10","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCRV3XF4_1_2","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCRV3XF4_1_3","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCRV3XF4_1_4","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCRV3XF4_1_5","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCRV3XF4_1_6","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCRV3XF4_1_7","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCRV3XF4_1_8","score":0.5} {"chain_id":"3R6BYFZZP7BDM4RVQ0BN6QCCRV3XF4_1_9","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RI5TQTGB_1_1","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RI5TQTGB_1_10","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RI5TQTGB_1_2","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RI5TQTGB_1_3","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RI5TQTGB_1_4","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RI5TQTGB_1_5","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RI5TQTGB_1_6","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RI5TQTGB_1_7","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RI5TQTGB_1_8","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RI5TQTGB_1_9","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RIYV9TGR_1_1","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RIYV9TGR_1_10","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RIYV9TGR_1_2","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RIYV9TGR_1_3","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RIYV9TGR_1_4","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RIYV9TGR_1_5","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RIYV9TGR_1_6","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RIYV9TGR_1_7","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RIYV9TGR_1_8","score":0.5} {"chain_id":"3R6P78PK7KACJNE6WAG8Z8RIYV9TGR_1_9","score":0.5} {"chain_id":"3R8YZBNQ9HHGYEBDM3IJOQ32V1Q7QZ_1_1","score":0.5} {"chain_id":"3R8YZBNQ9HHGYEBDM3IJOQ32V1Q7QZ_1_10","score":0.5} {"chain_id":"3R8YZBNQ9HHGYEBDM3IJOQ32V1Q7QZ_1_2","score":0.5} {"chain_id":"3R8YZBNQ9HHGYEBDM3IJOQ32V1Q7QZ_1_3","score":0.5} {"chain_id":"3R8YZBNQ9HHGYEBDM3IJOQ32V1Q7QZ_1_4","score":0.5} {"chain_id":"3R8YZBNQ9HHGYEBDM3IJOQ32V1Q7QZ_1_5","score":0.5} {"chain_id":"3R8YZBNQ9HHGYEBDM3IJOQ32V1Q7QZ_1_6","score":0.5} {"chain_id":"3R8YZBNQ9HHGYEBDM3IJOQ32V1Q7QZ_1_7","score":0.5} {"chain_id":"3R8YZBNQ9HHGYEBDM3IJOQ32V1Q7QZ_1_8","score":0.5} {"chain_id":"3R8YZBNQ9HHGYEBDM3IJOQ32V1Q7QZ_1_9","score":0.5} {"chain_id":"3R9WASFE2ZF2RZRARIZ83BSNKC9ZFU_1_1","score":0.5} {"chain_id":"3R9WASFE2ZF2RZRARIZ83BSNKC9ZFU_1_10","score":0.5} {"chain_id":"3R9WASFE2ZF2RZRARIZ83BSNKC9ZFU_1_2","score":0.5} {"chain_id":"3R9WASFE2ZF2RZRARIZ83BSNKC9ZFU_1_3","score":0.5} {"chain_id":"3R9WASFE2ZF2RZRARIZ83BSNKC9ZFU_1_4","score":0.5} {"chain_id":"3R9WASFE2ZF2RZRARIZ83BSNKC9ZFU_1_5","score":0.5} {"chain_id":"3R9WASFE2ZF2RZRARIZ83BSNKC9ZFU_1_6","score":0.5} {"chain_id":"3R9WASFE2ZF2RZRARIZ83BSNKC9ZFU_1_7","score":0.5} {"chain_id":"3R9WASFE2ZF2RZRARIZ83BSNKC9ZFU_1_8","score":0.5} {"chain_id":"3R9WASFE2ZF2RZRARIZ83BSNKC9ZFU_1_9","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN1RIUBM_1_1","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN1RIUBM_1_10","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN1RIUBM_1_2","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN1RIUBM_1_3","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN1RIUBM_1_4","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN1RIUBM_1_5","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN1RIUBM_1_6","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN1RIUBM_1_7","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN1RIUBM_1_8","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN1RIUBM_1_9","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN348UB4_1_1","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN348UB4_1_10","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN348UB4_1_2","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN348UB4_1_3","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN348UB4_1_4","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN348UB4_1_5","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN348UB4_1_6","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN348UB4_1_7","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN348UB4_1_8","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN348UB4_1_9","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN3S0BUP_1_1","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN3S0BUP_1_10","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN3S0BUP_1_2","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN3S0BUP_1_3","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN3S0BUP_1_4","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN3S0BUP_1_5","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN3S0BUP_1_6","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN3S0BUP_1_7","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN3S0BUP_1_8","score":0.5} {"chain_id":"3RANCT1ZVFGVSJLKGTE43TMN3S0BUP_1_9","score":0.5} {"chain_id":"3RGU30DZTA7IXUENVJ0ZA7O60HTMJU_1_1","score":0.5} {"chain_id":"3RGU30DZTA7IXUENVJ0ZA7O60HTMJU_1_10","score":0.5} {"chain_id":"3RGU30DZTA7IXUENVJ0ZA7O60HTMJU_1_2","score":0.5} {"chain_id":"3RGU30DZTA7IXUENVJ0ZA7O60HTMJU_1_3","score":0.5} {"chain_id":"3RGU30DZTA7IXUENVJ0ZA7O60HTMJU_1_4","score":0.5} {"chain_id":"3RGU30DZTA7IXUENVJ0ZA7O60HTMJU_1_5","score":0.5} {"chain_id":"3RGU30DZTA7IXUENVJ0ZA7O60HTMJU_1_6","score":0.5} {"chain_id":"3RGU30DZTA7IXUENVJ0ZA7O60HTMJU_1_7","score":0.5} {"chain_id":"3RGU30DZTA7IXUENVJ0ZA7O60HTMJU_1_8","score":0.5} {"chain_id":"3RGU30DZTA7IXUENVJ0ZA7O60HTMJU_1_9","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOCM3501_1_1","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOCM3501_1_10","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOCM3501_1_2","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOCM3501_1_3","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOCM3501_1_4","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOCM3501_1_5","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOCM3501_1_6","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOCM3501_1_7","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOCM3501_1_8","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOCM3501_1_9","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOR6G05S_1_1","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOR6G05S_1_10","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOR6G05S_1_2","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOR6G05S_1_3","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOR6G05S_1_4","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOR6G05S_1_5","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOR6G05S_1_6","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOR6G05S_1_7","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOR6G05S_1_8","score":0.5} {"chain_id":"3RJSC4XJ10TDNHSVHC97B0YOR6G05S_1_9","score":0.5} {"chain_id":"3RRCEFRB7MBWBLR51NNMQPOT4J04BR_1_1","score":0.5} {"chain_id":"3RRCEFRB7MBWBLR51NNMQPOT4J04BR_1_10","score":0.5} {"chain_id":"3RRCEFRB7MBWBLR51NNMQPOT4J04BR_1_2","score":0.5} {"chain_id":"3RRCEFRB7MBWBLR51NNMQPOT4J04BR_1_3","score":0.5} {"chain_id":"3RRCEFRB7MBWBLR51NNMQPOT4J04BR_1_4","score":0.5} {"chain_id":"3RRCEFRB7MBWBLR51NNMQPOT4J04BR_1_5","score":0.5} {"chain_id":"3RRCEFRB7MBWBLR51NNMQPOT4J04BR_1_6","score":0.5} {"chain_id":"3RRCEFRB7MBWBLR51NNMQPOT4J04BR_1_7","score":0.5} {"chain_id":"3RRCEFRB7MBWBLR51NNMQPOT4J04BR_1_8","score":0.5} {"chain_id":"3RRCEFRB7MBWBLR51NNMQPOT4J04BR_1_9","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL0CBEY9_1_1","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL0CBEY9_1_10","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL0CBEY9_1_2","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL0CBEY9_1_3","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL0CBEY9_1_4","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL0CBEY9_1_5","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL0CBEY9_1_6","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL0CBEY9_1_7","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL0CBEY9_1_8","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL0CBEY9_1_9","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL3GQEYZ_1_1","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL3GQEYZ_1_10","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL3GQEYZ_1_2","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL3GQEYZ_1_3","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL3GQEYZ_1_4","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL3GQEYZ_1_5","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL3GQEYZ_1_6","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL3GQEYZ_1_7","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL3GQEYZ_1_8","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYL3GQEYZ_1_9","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYLZ9UEYL_1_1","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYLZ9UEYL_1_10","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYLZ9UEYL_1_2","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYLZ9UEYL_1_3","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYLZ9UEYL_1_4","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYLZ9UEYL_1_5","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYLZ9UEYL_1_6","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYLZ9UEYL_1_7","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYLZ9UEYL_1_8","score":0.5} {"chain_id":"3RSDURM96ALAGVH90LDJ7MYLZ9UEYL_1_9","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O1JPSPC_1_1","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O1JPSPC_1_10","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O1JPSPC_1_2","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O1JPSPC_1_3","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O1JPSPC_1_4","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O1JPSPC_1_5","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O1JPSPC_1_6","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O1JPSPC_1_7","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O1JPSPC_1_8","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O1JPSPC_1_9","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O3K6SPX_1_1","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O3K6SPX_1_10","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O3K6SPX_1_2","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O3K6SPX_1_3","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O3K6SPX_1_4","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O3K6SPX_1_5","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O3K6SPX_1_6","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O3K6SPX_1_7","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O3K6SPX_1_8","score":0.5} {"chain_id":"3RU7GD8VPOSHH0UQAT15JC9O3K6SPX_1_9","score":0.5} {"chain_id":"3RUIQRXJBBN4M2K2YSBXQ9M95IYLLI_1_1","score":0.5} {"chain_id":"3RUIQRXJBBN4M2K2YSBXQ9M95IYLLI_1_10","score":0.5} {"chain_id":"3RUIQRXJBBN4M2K2YSBXQ9M95IYLLI_1_2","score":0.5} {"chain_id":"3RUIQRXJBBN4M2K2YSBXQ9M95IYLLI_1_3","score":0.5} {"chain_id":"3RUIQRXJBBN4M2K2YSBXQ9M95IYLLI_1_4","score":0.5} {"chain_id":"3RUIQRXJBBN4M2K2YSBXQ9M95IYLLI_1_5","score":0.5} {"chain_id":"3RUIQRXJBBN4M2K2YSBXQ9M95IYLLI_1_6","score":0.5} {"chain_id":"3RUIQRXJBBN4M2K2YSBXQ9M95IYLLI_1_7","score":0.5} {"chain_id":"3RUIQRXJBBN4M2K2YSBXQ9M95IYLLI_1_8","score":0.5} {"chain_id":"3RUIQRXJBBN4M2K2YSBXQ9M95IYLLI_1_9","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA2W4N0N_1_1","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA2W4N0N_1_10","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA2W4N0N_1_2","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA2W4N0N_1_3","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA2W4N0N_1_4","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA2W4N0N_1_5","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA2W4N0N_1_6","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA2W4N0N_1_7","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA2W4N0N_1_8","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA2W4N0N_1_9","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA4QCN0L_1_1","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA4QCN0L_1_10","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA4QCN0L_1_2","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA4QCN0L_1_3","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA4QCN0L_1_4","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA4QCN0L_1_5","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA4QCN0L_1_6","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA4QCN0L_1_7","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA4QCN0L_1_8","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA4QCN0L_1_9","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA5O20NL_1_1","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA5O20NL_1_10","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA5O20NL_1_2","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA5O20NL_1_3","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA5O20NL_1_4","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA5O20NL_1_5","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA5O20NL_1_6","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA5O20NL_1_7","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA5O20NL_1_8","score":0.5} {"chain_id":"3RWE2M8QWH9HD6Y1LC5T5HYA5O20NL_1_9","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28N7QX1GY_1_1","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28N7QX1GY_1_10","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28N7QX1GY_1_2","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28N7QX1GY_1_3","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28N7QX1GY_1_4","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28N7QX1GY_1_5","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28N7QX1GY_1_6","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28N7QX1GY_1_7","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28N7QX1GY_1_8","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28N7QX1GY_1_9","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28NMHD1GB_1_1","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28NMHD1GB_1_10","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28NMHD1GB_1_2","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28NMHD1GB_1_3","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28NMHD1GB_1_4","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28NMHD1GB_1_5","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28NMHD1GB_1_6","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28NMHD1GB_1_7","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28NMHD1GB_1_8","score":0.5} {"chain_id":"3RXPCZQMQPABA32XURWYT28NMHD1GB_1_9","score":0.5} {"chain_id":"3RYC5T2D73S5GLUDV410T24SI05PRP_1_1","score":0.5} {"chain_id":"3RYC5T2D73S5GLUDV410T24SI05PRP_1_10","score":0.5} {"chain_id":"3RYC5T2D73S5GLUDV410T24SI05PRP_1_2","score":0.5} {"chain_id":"3RYC5T2D73S5GLUDV410T24SI05PRP_1_3","score":0.5} {"chain_id":"3RYC5T2D73S5GLUDV410T24SI05PRP_1_4","score":0.5} {"chain_id":"3RYC5T2D73S5GLUDV410T24SI05PRP_1_5","score":0.5} {"chain_id":"3RYC5T2D73S5GLUDV410T24SI05PRP_1_6","score":0.5} {"chain_id":"3RYC5T2D73S5GLUDV410T24SI05PRP_1_7","score":0.5} {"chain_id":"3RYC5T2D73S5GLUDV410T24SI05PRP_1_8","score":0.5} {"chain_id":"3RYC5T2D73S5GLUDV410T24SI05PRP_1_9","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QXOD1D3_1_1","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QXOD1D3_1_10","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QXOD1D3_1_2","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QXOD1D3_1_3","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QXOD1D3_1_4","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QXOD1D3_1_5","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QXOD1D3_1_6","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QXOD1D3_1_7","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QXOD1D3_1_8","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QXOD1D3_1_9","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QZYE1DQ_1_1","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QZYE1DQ_1_10","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QZYE1DQ_1_2","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QZYE1DQ_1_3","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QZYE1DQ_1_4","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QZYE1DQ_1_5","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QZYE1DQ_1_6","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QZYE1DQ_1_7","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QZYE1DQ_1_8","score":0.5} {"chain_id":"3S06PH7KSR38YJS6S1VQNH5QZYE1DQ_1_9","score":0.5} {"chain_id":"3S0TNUHWKTHQ9JCRRM452RSYNPKD82_1_1","score":0.5} {"chain_id":"3S0TNUHWKTHQ9JCRRM452RSYNPKD82_1_10","score":0.5} {"chain_id":"3S0TNUHWKTHQ9JCRRM452RSYNPKD82_1_2","score":0.5} {"chain_id":"3S0TNUHWKTHQ9JCRRM452RSYNPKD82_1_3","score":0.5} {"chain_id":"3S0TNUHWKTHQ9JCRRM452RSYNPKD82_1_4","score":0.5} {"chain_id":"3S0TNUHWKTHQ9JCRRM452RSYNPKD82_1_5","score":0.5} {"chain_id":"3S0TNUHWKTHQ9JCRRM452RSYNPKD82_1_6","score":0.5} {"chain_id":"3S0TNUHWKTHQ9JCRRM452RSYNPKD82_1_7","score":0.5} {"chain_id":"3S0TNUHWKTHQ9JCRRM452RSYNPKD82_1_8","score":0.5} {"chain_id":"3S0TNUHWKTHQ9JCRRM452RSYNPKD82_1_9","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYJ9IL4U_1_1","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYJ9IL4U_1_10","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYJ9IL4U_1_2","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYJ9IL4U_1_3","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYJ9IL4U_1_4","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYJ9IL4U_1_5","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYJ9IL4U_1_6","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYJ9IL4U_1_7","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYJ9IL4U_1_8","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYJ9IL4U_1_9","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYL834LY_1_1","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYL834LY_1_10","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYL834LY_1_2","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYL834LY_1_3","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYL834LY_1_4","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYL834LY_1_5","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYL834LY_1_6","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYL834LY_1_7","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYL834LY_1_8","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYL834LY_1_9","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYLBKL42_1_1","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYLBKL42_1_10","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYLBKL42_1_2","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYLBKL42_1_3","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYLBKL42_1_4","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYLBKL42_1_5","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYLBKL42_1_6","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYLBKL42_1_7","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYLBKL42_1_8","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYLBKL42_1_9","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYUVV4L9_1_1","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYUVV4L9_1_10","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYUVV4L9_1_2","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYUVV4L9_1_3","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYUVV4L9_1_4","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYUVV4L9_1_5","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYUVV4L9_1_6","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYUVV4L9_1_7","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYUVV4L9_1_8","score":0.5} {"chain_id":"3S4AW7T80BH8OUDHS0CG4SKYUVV4L9_1_9","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOL1K6TD8_1_1","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOL1K6TD8_1_10","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOL1K6TD8_1_2","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOL1K6TD8_1_3","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOL1K6TD8_1_4","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOL1K6TD8_1_5","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOL1K6TD8_1_6","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOL1K6TD8_1_7","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOL1K6TD8_1_8","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOL1K6TD8_1_9","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOLO7JDT2_1_1","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOLO7JDT2_1_10","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOLO7JDT2_1_2","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOLO7JDT2_1_3","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOLO7JDT2_1_4","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOLO7JDT2_1_5","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOLO7JDT2_1_6","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOLO7JDT2_1_7","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOLO7JDT2_1_8","score":0.5} {"chain_id":"3S96KQ6I9M39734FUKF0TNOLO7JDT2_1_9","score":0.5} {"chain_id":"3SB4CE2TJVUIQDANFKPVSP1LFNTXAV_1_1","score":0.5} {"chain_id":"3SB4CE2TJVUIQDANFKPVSP1LFNTXAV_1_10","score":0.5} {"chain_id":"3SB4CE2TJVUIQDANFKPVSP1LFNTXAV_1_2","score":0.5} {"chain_id":"3SB4CE2TJVUIQDANFKPVSP1LFNTXAV_1_3","score":0.5} {"chain_id":"3SB4CE2TJVUIQDANFKPVSP1LFNTXAV_1_4","score":0.5} {"chain_id":"3SB4CE2TJVUIQDANFKPVSP1LFNTXAV_1_5","score":0.5} {"chain_id":"3SB4CE2TJVUIQDANFKPVSP1LFNTXAV_1_6","score":0.5} {"chain_id":"3SB4CE2TJVUIQDANFKPVSP1LFNTXAV_1_7","score":0.5} {"chain_id":"3SB4CE2TJVUIQDANFKPVSP1LFNTXAV_1_8","score":0.5} {"chain_id":"3SB4CE2TJVUIQDANFKPVSP1LFNTXAV_1_9","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD2Y3G0M_1_1","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD2Y3G0M_1_10","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD2Y3G0M_1_2","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD2Y3G0M_1_3","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD2Y3G0M_1_4","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD2Y3G0M_1_5","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD2Y3G0M_1_6","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD2Y3G0M_1_7","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD2Y3G0M_1_8","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD2Y3G0M_1_9","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD6DPG06_1_1","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD6DPG06_1_10","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD6DPG06_1_2","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD6DPG06_1_3","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD6DPG06_1_4","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD6DPG06_1_5","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD6DPG06_1_6","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD6DPG06_1_7","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD6DPG06_1_8","score":0.5} {"chain_id":"3SB5N7Y3O33B3EHFY8SYFXPD6DPG06_1_9","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WD8H6IYE_1_1","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WD8H6IYE_1_10","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WD8H6IYE_1_2","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WD8H6IYE_1_3","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WD8H6IYE_1_4","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WD8H6IYE_1_5","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WD8H6IYE_1_6","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WD8H6IYE_1_7","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WD8H6IYE_1_8","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WD8H6IYE_1_9","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WDS72YIQ_1_1","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WDS72YIQ_1_10","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WDS72YIQ_1_2","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WDS72YIQ_1_3","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WDS72YIQ_1_4","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WDS72YIQ_1_5","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WDS72YIQ_1_6","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WDS72YIQ_1_7","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WDS72YIQ_1_8","score":0.5} {"chain_id":"3SBEHTYCWN2MW0JVW43AS1WDS72YIQ_1_9","score":0.5} {"chain_id":"3SITXWYCNV8N9NFFLYPRN0LRWP7XBM_1_1","score":0.5} {"chain_id":"3SITXWYCNV8N9NFFLYPRN0LRWP7XBM_1_10","score":0.5} {"chain_id":"3SITXWYCNV8N9NFFLYPRN0LRWP7XBM_1_2","score":0.5} {"chain_id":"3SITXWYCNV8N9NFFLYPRN0LRWP7XBM_1_3","score":0.5} {"chain_id":"3SITXWYCNV8N9NFFLYPRN0LRWP7XBM_1_4","score":0.5} {"chain_id":"3SITXWYCNV8N9NFFLYPRN0LRWP7XBM_1_5","score":0.5} {"chain_id":"3SITXWYCNV8N9NFFLYPRN0LRWP7XBM_1_6","score":0.5} {"chain_id":"3SITXWYCNV8N9NFFLYPRN0LRWP7XBM_1_7","score":0.5} {"chain_id":"3SITXWYCNV8N9NFFLYPRN0LRWP7XBM_1_8","score":0.5} {"chain_id":"3SITXWYCNV8N9NFFLYPRN0LRWP7XBM_1_9","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NO7HL8KG_1_1","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NO7HL8KG_1_10","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NO7HL8KG_1_2","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NO7HL8KG_1_3","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NO7HL8KG_1_4","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NO7HL8KG_1_5","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NO7HL8KG_1_6","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NO7HL8KG_1_7","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NO7HL8KG_1_8","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NO7HL8KG_1_9","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOUUU8K2_1_1","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOUUU8K2_1_10","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOUUU8K2_1_2","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOUUU8K2_1_3","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOUUU8K2_1_4","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOUUU8K2_1_5","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOUUU8K2_1_6","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOUUU8K2_1_7","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOUUU8K2_1_8","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOUUU8K2_1_9","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOYP6K8K_1_1","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOYP6K8K_1_10","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOYP6K8K_1_2","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOYP6K8K_1_3","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOYP6K8K_1_4","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOYP6K8K_1_5","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOYP6K8K_1_6","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOYP6K8K_1_7","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOYP6K8K_1_8","score":0.5} {"chain_id":"3SKEMFQBZ34YNPI1J3QS64NOYP6K8K_1_9","score":0.5} {"chain_id":"3SLE99ER0NCCEIFUMGDCKL125F6BZF_1_1","score":0.5} {"chain_id":"3SLE99ER0NCCEIFUMGDCKL125F6BZF_1_10","score":0.5} {"chain_id":"3SLE99ER0NCCEIFUMGDCKL125F6BZF_1_2","score":0.5} {"chain_id":"3SLE99ER0NCCEIFUMGDCKL125F6BZF_1_3","score":0.5} {"chain_id":"3SLE99ER0NCCEIFUMGDCKL125F6BZF_1_4","score":0.5} {"chain_id":"3SLE99ER0NCCEIFUMGDCKL125F6BZF_1_5","score":0.5} {"chain_id":"3SLE99ER0NCCEIFUMGDCKL125F6BZF_1_6","score":0.5} {"chain_id":"3SLE99ER0NCCEIFUMGDCKL125F6BZF_1_7","score":0.5} {"chain_id":"3SLE99ER0NCCEIFUMGDCKL125F6BZF_1_8","score":0.5} {"chain_id":"3SLE99ER0NCCEIFUMGDCKL125F6BZF_1_9","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7N3UKC2_1_1","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7N3UKC2_1_10","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7N3UKC2_1_2","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7N3UKC2_1_3","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7N3UKC2_1_4","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7N3UKC2_1_5","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7N3UKC2_1_6","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7N3UKC2_1_7","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7N3UKC2_1_8","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7N3UKC2_1_9","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7XUHCK9_1_1","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7XUHCK9_1_10","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7XUHCK9_1_2","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7XUHCK9_1_3","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7XUHCK9_1_4","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7XUHCK9_1_5","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7XUHCK9_1_6","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7XUHCK9_1_7","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7XUHCK9_1_8","score":0.5} {"chain_id":"3SNVL38CI4R0ZS8E0F6X8QJ7XUHCK9_1_9","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD8HHYJL_1_1","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD8HHYJL_1_10","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD8HHYJL_1_2","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD8HHYJL_1_3","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD8HHYJL_1_4","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD8HHYJL_1_5","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD8HHYJL_1_6","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD8HHYJL_1_7","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD8HHYJL_1_8","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD8HHYJL_1_9","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD9ZHJY7_1_1","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD9ZHJY7_1_10","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD9ZHJY7_1_2","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD9ZHJY7_1_3","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD9ZHJY7_1_4","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD9ZHJY7_1_5","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD9ZHJY7_1_6","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD9ZHJY7_1_7","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD9ZHJY7_1_8","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BD9ZHJY7_1_9","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCIAJY5_1_1","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCIAJY5_1_10","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCIAJY5_1_2","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCIAJY5_1_3","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCIAJY5_1_4","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCIAJY5_1_5","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCIAJY5_1_6","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCIAJY5_1_7","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCIAJY5_1_8","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCIAJY5_1_9","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCLYJYZ_1_1","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCLYJYZ_1_10","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCLYJYZ_1_2","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCLYJYZ_1_3","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCLYJYZ_1_4","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCLYJYZ_1_5","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCLYJYZ_1_6","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCLYJYZ_1_7","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCLYJYZ_1_8","score":0.5} {"chain_id":"3SPJ0334212IRB31EMOA42BDCLYJYZ_1_9","score":0.5} {"chain_id":"3STRJBFXOWQHL9APM11NX0JBAXCTKR_1_1","score":0.5} {"chain_id":"3STRJBFXOWQHL9APM11NX0JBAXCTKR_1_10","score":0.5} {"chain_id":"3STRJBFXOWQHL9APM11NX0JBAXCTKR_1_2","score":0.5} {"chain_id":"3STRJBFXOWQHL9APM11NX0JBAXCTKR_1_3","score":0.5} {"chain_id":"3STRJBFXOWQHL9APM11NX0JBAXCTKR_1_4","score":0.5} {"chain_id":"3STRJBFXOWQHL9APM11NX0JBAXCTKR_1_5","score":0.5} {"chain_id":"3STRJBFXOWQHL9APM11NX0JBAXCTKR_1_6","score":0.5} {"chain_id":"3STRJBFXOWQHL9APM11NX0JBAXCTKR_1_7","score":0.5} {"chain_id":"3STRJBFXOWQHL9APM11NX0JBAXCTKR_1_8","score":0.5} {"chain_id":"3STRJBFXOWQHL9APM11NX0JBAXCTKR_1_9","score":0.5} {"chain_id":"3SUWZRL0MYC8XB73U2IROVES6Q6E6E_1_1","score":0.5} {"chain_id":"3SUWZRL0MYC8XB73U2IROVES6Q6E6E_1_10","score":0.5} {"chain_id":"3SUWZRL0MYC8XB73U2IROVES6Q6E6E_1_2","score":0.5} {"chain_id":"3SUWZRL0MYC8XB73U2IROVES6Q6E6E_1_3","score":0.5} {"chain_id":"3SUWZRL0MYC8XB73U2IROVES6Q6E6E_1_4","score":0.5} {"chain_id":"3SUWZRL0MYC8XB73U2IROVES6Q6E6E_1_5","score":0.5} {"chain_id":"3SUWZRL0MYC8XB73U2IROVES6Q6E6E_1_6","score":0.5} {"chain_id":"3SUWZRL0MYC8XB73U2IROVES6Q6E6E_1_7","score":0.5} {"chain_id":"3SUWZRL0MYC8XB73U2IROVES6Q6E6E_1_8","score":0.5} {"chain_id":"3SUWZRL0MYC8XB73U2IROVES6Q6E6E_1_9","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4D7A1R9W_1_1","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4D7A1R9W_1_10","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4D7A1R9W_1_2","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4D7A1R9W_1_3","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4D7A1R9W_1_4","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4D7A1R9W_1_5","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4D7A1R9W_1_6","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4D7A1R9W_1_7","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4D7A1R9W_1_8","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4D7A1R9W_1_9","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4DMZN9RT_1_1","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4DMZN9RT_1_10","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4DMZN9RT_1_2","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4DMZN9RT_1_3","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4DMZN9RT_1_4","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4DMZN9RT_1_5","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4DMZN9RT_1_6","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4DMZN9RT_1_7","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4DMZN9RT_1_8","score":0.5} {"chain_id":"3T111IHZ5EPKOYE6EF537C4DMZN9RT_1_9","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3E42ST_1_1","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3E42ST_1_10","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3E42ST_1_2","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3E42ST_1_3","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3E42ST_1_4","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3E42ST_1_5","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3E42ST_1_6","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3E42ST_1_7","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3E42ST_1_8","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3E42ST_1_9","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3EQS25_1_1","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3EQS25_1_10","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3EQS25_1_2","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3EQS25_1_3","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3EQS25_1_4","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3EQS25_1_5","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3EQS25_1_6","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3EQS25_1_7","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3EQS25_1_8","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1V3EQS25_1_9","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VMVG2SM_1_1","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VMVG2SM_1_10","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VMVG2SM_1_2","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VMVG2SM_1_3","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VMVG2SM_1_4","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VMVG2SM_1_5","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VMVG2SM_1_6","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VMVG2SM_1_7","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VMVG2SM_1_8","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VMVG2SM_1_9","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VPXK2SX_1_1","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VPXK2SX_1_10","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VPXK2SX_1_2","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VPXK2SX_1_3","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VPXK2SX_1_4","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VPXK2SX_1_5","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VPXK2SX_1_6","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VPXK2SX_1_7","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VPXK2SX_1_8","score":0.5} {"chain_id":"3TAYZSBPLL7LPTTK8VQTNZ1VPXK2SX_1_9","score":0.5} {"chain_id":"3TDXMTX3CBTKDG9PQL8I9ACKUCL6I5_1_1","score":0.5} {"chain_id":"3TDXMTX3CBTKDG9PQL8I9ACKUCL6I5_1_10","score":0.5} {"chain_id":"3TDXMTX3CBTKDG9PQL8I9ACKUCL6I5_1_2","score":0.5} {"chain_id":"3TDXMTX3CBTKDG9PQL8I9ACKUCL6I5_1_3","score":0.5} {"chain_id":"3TDXMTX3CBTKDG9PQL8I9ACKUCL6I5_1_4","score":0.5} {"chain_id":"3TDXMTX3CBTKDG9PQL8I9ACKUCL6I5_1_5","score":0.5} {"chain_id":"3TDXMTX3CBTKDG9PQL8I9ACKUCL6I5_1_6","score":0.5} {"chain_id":"3TDXMTX3CBTKDG9PQL8I9ACKUCL6I5_1_7","score":0.5} {"chain_id":"3TDXMTX3CBTKDG9PQL8I9ACKUCL6I5_1_8","score":0.5} {"chain_id":"3TDXMTX3CBTKDG9PQL8I9ACKUCL6I5_1_9","score":0.5} {"chain_id":"3TE22NPXPBBCQM6WM8DZIBINWS3449_1_1","score":0.5} {"chain_id":"3TE22NPXPBBCQM6WM8DZIBINWS3449_1_10","score":0.5} {"chain_id":"3TE22NPXPBBCQM6WM8DZIBINWS3449_1_2","score":0.5} {"chain_id":"3TE22NPXPBBCQM6WM8DZIBINWS3449_1_3","score":0.5} {"chain_id":"3TE22NPXPBBCQM6WM8DZIBINWS3449_1_4","score":0.5} {"chain_id":"3TE22NPXPBBCQM6WM8DZIBINWS3449_1_5","score":0.5} {"chain_id":"3TE22NPXPBBCQM6WM8DZIBINWS3449_1_6","score":0.5} {"chain_id":"3TE22NPXPBBCQM6WM8DZIBINWS3449_1_7","score":0.5} {"chain_id":"3TE22NPXPBBCQM6WM8DZIBINWS3449_1_8","score":0.5} {"chain_id":"3TE22NPXPBBCQM6WM8DZIBINWS3449_1_9","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZ13NR2Y_1_1","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZ13NR2Y_1_10","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZ13NR2Y_1_2","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZ13NR2Y_1_3","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZ13NR2Y_1_4","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZ13NR2Y_1_5","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZ13NR2Y_1_6","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZ13NR2Y_1_7","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZ13NR2Y_1_8","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZ13NR2Y_1_9","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZGPDR2B_1_1","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZGPDR2B_1_10","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZGPDR2B_1_2","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZGPDR2B_1_3","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZGPDR2B_1_4","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZGPDR2B_1_5","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZGPDR2B_1_6","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZGPDR2B_1_7","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZGPDR2B_1_8","score":0.5} {"chain_id":"3TE3O8573079OET7T6QOXPWZGPDR2B_1_9","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGS0V0DV_1_1","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGS0V0DV_1_10","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGS0V0DV_1_2","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGS0V0DV_1_3","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGS0V0DV_1_4","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGS0V0DV_1_5","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGS0V0DV_1_6","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGS0V0DV_1_7","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGS0V0DV_1_8","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGS0V0DV_1_9","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGVK30DA_1_1","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGVK30DA_1_10","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGVK30DA_1_2","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGVK30DA_1_3","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGVK30DA_1_4","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGVK30DA_1_5","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGVK30DA_1_6","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGVK30DA_1_7","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGVK30DA_1_8","score":0.5} {"chain_id":"3TEM0PF1Q5W8RU7OWIRQ9CMGVK30DA_1_9","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN31WMML_1_1","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN31WMML_1_10","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN31WMML_1_2","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN31WMML_1_3","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN31WMML_1_4","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN31WMML_1_5","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN31WMML_1_6","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN31WMML_1_7","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN31WMML_1_8","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN31WMML_1_9","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN339MM2_1_1","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN339MM2_1_10","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN339MM2_1_2","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN339MM2_1_3","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN339MM2_1_4","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN339MM2_1_5","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN339MM2_1_6","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN339MM2_1_7","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN339MM2_1_8","score":0.5} {"chain_id":"3TESA3PJ3198Y2K8YGDRQZGN339MM2_1_9","score":0.5} {"chain_id":"3TK8OJTYM1KX9SBU4O6AUZTVZ4PVPN_1_1","score":0.5} {"chain_id":"3TK8OJTYM1KX9SBU4O6AUZTVZ4PVPN_1_10","score":0.5} {"chain_id":"3TK8OJTYM1KX9SBU4O6AUZTVZ4PVPN_1_2","score":0.5} {"chain_id":"3TK8OJTYM1KX9SBU4O6AUZTVZ4PVPN_1_3","score":0.5} {"chain_id":"3TK8OJTYM1KX9SBU4O6AUZTVZ4PVPN_1_4","score":0.5} {"chain_id":"3TK8OJTYM1KX9SBU4O6AUZTVZ4PVPN_1_5","score":0.5} {"chain_id":"3TK8OJTYM1KX9SBU4O6AUZTVZ4PVPN_1_6","score":0.5} {"chain_id":"3TK8OJTYM1KX9SBU4O6AUZTVZ4PVPN_1_7","score":0.5} {"chain_id":"3TK8OJTYM1KX9SBU4O6AUZTVZ4PVPN_1_8","score":0.5} {"chain_id":"3TK8OJTYM1KX9SBU4O6AUZTVZ4PVPN_1_9","score":0.5} {"chain_id":"3TMFV4NEP8DPIPCI8H9VUFHJGZM8WC_1_1","score":0.5} {"chain_id":"3TMFV4NEP8DPIPCI8H9VUFHJGZM8WC_1_10","score":0.5} {"chain_id":"3TMFV4NEP8DPIPCI8H9VUFHJGZM8WC_1_2","score":0.5} {"chain_id":"3TMFV4NEP8DPIPCI8H9VUFHJGZM8WC_1_3","score":0.5} {"chain_id":"3TMFV4NEP8DPIPCI8H9VUFHJGZM8WC_1_4","score":0.5} {"chain_id":"3TMFV4NEP8DPIPCI8H9VUFHJGZM8WC_1_5","score":0.5} {"chain_id":"3TMFV4NEP8DPIPCI8H9VUFHJGZM8WC_1_6","score":0.5} {"chain_id":"3TMFV4NEP8DPIPCI8H9VUFHJGZM8WC_1_7","score":0.5} {"chain_id":"3TMFV4NEP8DPIPCI8H9VUFHJGZM8WC_1_8","score":0.5} {"chain_id":"3TMFV4NEP8DPIPCI8H9VUFHJGZM8WC_1_9","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D27NYCW8_1_1","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D27NYCW8_1_10","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D27NYCW8_1_2","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D27NYCW8_1_3","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D27NYCW8_1_4","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D27NYCW8_1_5","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D27NYCW8_1_6","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D27NYCW8_1_7","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D27NYCW8_1_8","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D27NYCW8_1_9","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D2BV7CW1_1_1","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D2BV7CW1_1_10","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D2BV7CW1_1_2","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D2BV7CW1_1_3","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D2BV7CW1_1_4","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D2BV7CW1_1_5","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D2BV7CW1_1_6","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D2BV7CW1_1_7","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D2BV7CW1_1_8","score":0.5} {"chain_id":"3TPWUS5F890RUS2VPTP0W1D2BV7CW1_1_9","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7FGP3T_1_1","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7FGP3T_1_10","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7FGP3T_1_2","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7FGP3T_1_3","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7FGP3T_1_4","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7FGP3T_1_5","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7FGP3T_1_6","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7FGP3T_1_7","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7FGP3T_1_8","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7FGP3T_1_9","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7IBP3U_1_1","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7IBP3U_1_10","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7IBP3U_1_2","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7IBP3U_1_3","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7IBP3U_1_4","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7IBP3U_1_5","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7IBP3U_1_6","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7IBP3U_1_7","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7IBP3U_1_8","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7IBP3U_1_9","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7UA3PV_1_1","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7UA3PV_1_10","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7UA3PV_1_2","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7UA3PV_1_3","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7UA3PV_1_4","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7UA3PV_1_5","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7UA3PV_1_6","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7UA3PV_1_7","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7UA3PV_1_8","score":0.5} {"chain_id":"3TPZPLC3M0BDXJ9BKE04B41C7UA3PV_1_9","score":0.5} {"chain_id":"3TS1AR6UQQDJ7PL48N7PCRZOCWEF7S_1_1","score":0.5} {"chain_id":"3TS1AR6UQQDJ7PL48N7PCRZOCWEF7S_1_10","score":0.5} {"chain_id":"3TS1AR6UQQDJ7PL48N7PCRZOCWEF7S_1_2","score":0.5} {"chain_id":"3TS1AR6UQQDJ7PL48N7PCRZOCWEF7S_1_3","score":0.5} {"chain_id":"3TS1AR6UQQDJ7PL48N7PCRZOCWEF7S_1_4","score":0.5} {"chain_id":"3TS1AR6UQQDJ7PL48N7PCRZOCWEF7S_1_5","score":0.5} {"chain_id":"3TS1AR6UQQDJ7PL48N7PCRZOCWEF7S_1_6","score":0.5} {"chain_id":"3TS1AR6UQQDJ7PL48N7PCRZOCWEF7S_1_7","score":0.5} {"chain_id":"3TS1AR6UQQDJ7PL48N7PCRZOCWEF7S_1_8","score":0.5} {"chain_id":"3TS1AR6UQQDJ7PL48N7PCRZOCWEF7S_1_9","score":0.5} {"chain_id":"3TU5ZICBRD0KYSGWW8AP2QZXU648QP_1_1","score":0.5} {"chain_id":"3TU5ZICBRD0KYSGWW8AP2QZXU648QP_1_10","score":0.5} {"chain_id":"3TU5ZICBRD0KYSGWW8AP2QZXU648QP_1_2","score":0.5} {"chain_id":"3TU5ZICBRD0KYSGWW8AP2QZXU648QP_1_3","score":0.5} {"chain_id":"3TU5ZICBRD0KYSGWW8AP2QZXU648QP_1_4","score":0.5} {"chain_id":"3TU5ZICBRD0KYSGWW8AP2QZXU648QP_1_5","score":0.5} {"chain_id":"3TU5ZICBRD0KYSGWW8AP2QZXU648QP_1_6","score":0.5} {"chain_id":"3TU5ZICBRD0KYSGWW8AP2QZXU648QP_1_7","score":0.5} {"chain_id":"3TU5ZICBRD0KYSGWW8AP2QZXU648QP_1_8","score":0.5} {"chain_id":"3TU5ZICBRD0KYSGWW8AP2QZXU648QP_1_9","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPCV0Q1B_1_1","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPCV0Q1B_1_10","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPCV0Q1B_1_2","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPCV0Q1B_1_3","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPCV0Q1B_1_4","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPCV0Q1B_1_5","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPCV0Q1B_1_6","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPCV0Q1B_1_7","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPCV0Q1B_1_8","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPCV0Q1B_1_9","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPSZEQ1D_1_1","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPSZEQ1D_1_10","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPSZEQ1D_1_2","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPSZEQ1D_1_3","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPSZEQ1D_1_4","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPSZEQ1D_1_5","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPSZEQ1D_1_6","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPSZEQ1D_1_7","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPSZEQ1D_1_8","score":0.5} {"chain_id":"3TUI152ZZBM2NSWBXN1ANGCPSZEQ1D_1_9","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HW71ZLXA_1_1","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HW71ZLXA_1_10","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HW71ZLXA_1_2","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HW71ZLXA_1_3","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HW71ZLXA_1_4","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HW71ZLXA_1_5","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HW71ZLXA_1_6","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HW71ZLXA_1_7","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HW71ZLXA_1_8","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HW71ZLXA_1_9","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN7FLXI_1_1","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN7FLXI_1_10","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN7FLXI_1_2","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN7FLXI_1_3","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN7FLXI_1_4","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN7FLXI_1_5","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN7FLXI_1_6","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN7FLXI_1_7","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN7FLXI_1_8","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN7FLXI_1_9","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN86XLN_1_1","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN86XLN_1_10","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN86XLN_1_2","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN86XLN_1_3","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN86XLN_1_4","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN86XLN_1_5","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN86XLN_1_6","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN86XLN_1_7","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN86XLN_1_8","score":0.5} {"chain_id":"3TVRFO09GKEZMW1RCBEL13HWN86XLN_1_9","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD68K3TWC_1_1","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD68K3TWC_1_10","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD68K3TWC_1_2","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD68K3TWC_1_3","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD68K3TWC_1_4","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD68K3TWC_1_5","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD68K3TWC_1_6","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD68K3TWC_1_7","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD68K3TWC_1_8","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD68K3TWC_1_9","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SFMWT8_1_1","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SFMWT8_1_10","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SFMWT8_1_2","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SFMWT8_1_3","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SFMWT8_1_4","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SFMWT8_1_5","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SFMWT8_1_6","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SFMWT8_1_7","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SFMWT8_1_8","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SFMWT8_1_9","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SI2TWR_1_1","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SI2TWR_1_10","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SI2TWR_1_2","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SI2TWR_1_3","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SI2TWR_1_4","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SI2TWR_1_5","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SI2TWR_1_6","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SI2TWR_1_7","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SI2TWR_1_8","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6SI2TWR_1_9","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6WMPTWQ_1_1","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6WMPTWQ_1_10","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6WMPTWQ_1_2","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6WMPTWQ_1_3","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6WMPTWQ_1_4","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6WMPTWQ_1_5","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6WMPTWQ_1_6","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6WMPTWQ_1_7","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6WMPTWQ_1_8","score":0.5} {"chain_id":"3TVSS0C0E1Z8G946BFKQLBD6WMPTWQ_1_9","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHW0RU4D_1_1","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHW0RU4D_1_10","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHW0RU4D_1_2","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHW0RU4D_1_3","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHW0RU4D_1_4","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHW0RU4D_1_5","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHW0RU4D_1_6","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHW0RU4D_1_7","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHW0RU4D_1_8","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHW0RU4D_1_9","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHXHSU4D_1_1","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHXHSU4D_1_10","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHXHSU4D_1_2","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHXHSU4D_1_3","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHXHSU4D_1_4","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHXHSU4D_1_5","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHXHSU4D_1_6","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHXHSU4D_1_7","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHXHSU4D_1_8","score":0.5} {"chain_id":"3TXD01ZLD4GB7K0B1E4HVFGHXHSU4D_1_9","score":0.5} {"chain_id":"3TXMY6UCAENMAV69DKQU4CVGWRFCQP_1_1","score":0.5} {"chain_id":"3TXMY6UCAENMAV69DKQU4CVGWRFCQP_1_10","score":0.5} {"chain_id":"3TXMY6UCAENMAV69DKQU4CVGWRFCQP_1_2","score":0.5} {"chain_id":"3TXMY6UCAENMAV69DKQU4CVGWRFCQP_1_3","score":0.5} {"chain_id":"3TXMY6UCAENMAV69DKQU4CVGWRFCQP_1_4","score":0.5} {"chain_id":"3TXMY6UCAENMAV69DKQU4CVGWRFCQP_1_5","score":0.5} {"chain_id":"3TXMY6UCAENMAV69DKQU4CVGWRFCQP_1_6","score":0.5} {"chain_id":"3TXMY6UCAENMAV69DKQU4CVGWRFCQP_1_7","score":0.5} {"chain_id":"3TXMY6UCAENMAV69DKQU4CVGWRFCQP_1_8","score":0.5} {"chain_id":"3TXMY6UCAENMAV69DKQU4CVGWRFCQP_1_9","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH69GD0K4_1_1","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH69GD0K4_1_10","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH69GD0K4_1_2","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH69GD0K4_1_3","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH69GD0K4_1_4","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH69GD0K4_1_5","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH69GD0K4_1_6","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH69GD0K4_1_7","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH69GD0K4_1_8","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH69GD0K4_1_9","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6EEL0KD_1_1","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6EEL0KD_1_10","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6EEL0KD_1_2","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6EEL0KD_1_3","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6EEL0KD_1_4","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6EEL0KD_1_5","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6EEL0KD_1_6","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6EEL0KD_1_7","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6EEL0KD_1_8","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6EEL0KD_1_9","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6OGY0K4_1_1","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6OGY0K4_1_10","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6OGY0K4_1_2","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6OGY0K4_1_3","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6OGY0K4_1_4","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6OGY0K4_1_5","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6OGY0K4_1_6","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6OGY0K4_1_7","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6OGY0K4_1_8","score":0.5} {"chain_id":"3TY7ZAOG5FJG50DYOZDDDPH6OGY0K4_1_9","score":0.5} {"chain_id":"3TYCR1GOTCIORR16DT26YOX7LLDLZX_1_1","score":0.5} {"chain_id":"3TYCR1GOTCIORR16DT26YOX7LLDLZX_1_10","score":0.5} {"chain_id":"3TYCR1GOTCIORR16DT26YOX7LLDLZX_1_2","score":0.5} {"chain_id":"3TYCR1GOTCIORR16DT26YOX7LLDLZX_1_3","score":0.5} {"chain_id":"3TYCR1GOTCIORR16DT26YOX7LLDLZX_1_4","score":0.5} {"chain_id":"3TYCR1GOTCIORR16DT26YOX7LLDLZX_1_5","score":0.5} {"chain_id":"3TYCR1GOTCIORR16DT26YOX7LLDLZX_1_6","score":0.5} {"chain_id":"3TYCR1GOTCIORR16DT26YOX7LLDLZX_1_7","score":0.5} {"chain_id":"3TYCR1GOTCIORR16DT26YOX7LLDLZX_1_8","score":0.5} {"chain_id":"3TYCR1GOTCIORR16DT26YOX7LLDLZX_1_9","score":0.5} {"chain_id":"3U088ZLJVKS7007FDDWG10B1V01W00_1_1","score":0.5} {"chain_id":"3U088ZLJVKS7007FDDWG10B1V01W00_1_10","score":0.5} {"chain_id":"3U088ZLJVKS7007FDDWG10B1V01W00_1_2","score":0.5} {"chain_id":"3U088ZLJVKS7007FDDWG10B1V01W00_1_3","score":0.5} {"chain_id":"3U088ZLJVKS7007FDDWG10B1V01W00_1_4","score":0.5} {"chain_id":"3U088ZLJVKS7007FDDWG10B1V01W00_1_5","score":0.5} {"chain_id":"3U088ZLJVKS7007FDDWG10B1V01W00_1_6","score":0.5} {"chain_id":"3U088ZLJVKS7007FDDWG10B1V01W00_1_7","score":0.5} {"chain_id":"3U088ZLJVKS7007FDDWG10B1V01W00_1_8","score":0.5} {"chain_id":"3U088ZLJVKS7007FDDWG10B1V01W00_1_9","score":0.5} {"chain_id":"3U0SRXB7CD45D0I0FPO8PDZXEORNRG_1_1","score":0.5} {"chain_id":"3U0SRXB7CD45D0I0FPO8PDZXEORNRG_1_10","score":0.5} {"chain_id":"3U0SRXB7CD45D0I0FPO8PDZXEORNRG_1_2","score":0.5} {"chain_id":"3U0SRXB7CD45D0I0FPO8PDZXEORNRG_1_3","score":0.5} {"chain_id":"3U0SRXB7CD45D0I0FPO8PDZXEORNRG_1_4","score":0.5} {"chain_id":"3U0SRXB7CD45D0I0FPO8PDZXEORNRG_1_5","score":0.5} {"chain_id":"3U0SRXB7CD45D0I0FPO8PDZXEORNRG_1_6","score":0.5} {"chain_id":"3U0SRXB7CD45D0I0FPO8PDZXEORNRG_1_7","score":0.5} {"chain_id":"3U0SRXB7CD45D0I0FPO8PDZXEORNRG_1_8","score":0.5} {"chain_id":"3U0SRXB7CD45D0I0FPO8PDZXEORNRG_1_9","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183050B71_1_1","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183050B71_1_10","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183050B71_1_2","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183050B71_1_3","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183050B71_1_4","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183050B71_1_5","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183050B71_1_6","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183050B71_1_7","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183050B71_1_8","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183050B71_1_9","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WN4B71_1_1","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WN4B71_1_10","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WN4B71_1_2","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WN4B71_1_3","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WN4B71_1_4","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WN4B71_1_5","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WN4B71_1_6","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WN4B71_1_7","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WN4B71_1_8","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WN4B71_1_9","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WSO7BR_1_1","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WSO7BR_1_10","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WSO7BR_1_2","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WSO7BR_1_3","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WSO7BR_1_4","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WSO7BR_1_5","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WSO7BR_1_6","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WSO7BR_1_7","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WSO7BR_1_8","score":0.5} {"chain_id":"3U4J9857OEATU89O3LLTT183WSO7BR_1_9","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MTFPHPC_1_1","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MTFPHPC_1_10","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MTFPHPC_1_2","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MTFPHPC_1_3","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MTFPHPC_1_4","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MTFPHPC_1_5","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MTFPHPC_1_6","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MTFPHPC_1_7","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MTFPHPC_1_8","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MTFPHPC_1_9","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MU5RPH3_1_1","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MU5RPH3_1_10","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MU5RPH3_1_2","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MU5RPH3_1_3","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MU5RPH3_1_4","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MU5RPH3_1_5","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MU5RPH3_1_6","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MU5RPH3_1_7","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MU5RPH3_1_8","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MU5RPH3_1_9","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MVDWPHP_1_1","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MVDWPHP_1_10","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MVDWPHP_1_2","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MVDWPHP_1_3","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MVDWPHP_1_4","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MVDWPHP_1_5","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MVDWPHP_1_6","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MVDWPHP_1_7","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MVDWPHP_1_8","score":0.5} {"chain_id":"3U5NZHP4LR1SRRGAZZP6FY2MVDWPHP_1_9","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWVEJ4ZE_1_1","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWVEJ4ZE_1_10","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWVEJ4ZE_1_2","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWVEJ4ZE_1_3","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWVEJ4ZE_1_4","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWVEJ4ZE_1_5","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWVEJ4ZE_1_6","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWVEJ4ZE_1_7","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWVEJ4ZE_1_8","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWVEJ4ZE_1_9","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWWDG4ZA_1_1","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWWDG4ZA_1_10","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWWDG4ZA_1_2","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWWDG4ZA_1_3","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWWDG4ZA_1_4","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWWDG4ZA_1_5","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWWDG4ZA_1_6","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWWDG4ZA_1_7","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWWDG4ZA_1_8","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWWDG4ZA_1_9","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWX1SZ4U_1_1","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWX1SZ4U_1_10","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWX1SZ4U_1_2","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWX1SZ4U_1_3","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWX1SZ4U_1_4","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWX1SZ4U_1_5","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWX1SZ4U_1_6","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWX1SZ4U_1_7","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWX1SZ4U_1_8","score":0.5} {"chain_id":"3U84XHCDICCSTJUL713PC7VWX1SZ4U_1_9","score":0.5} {"chain_id":"3U8YCDAGXPF2G3BT14XA9BTFCQRQ0K_1_1","score":0.5} {"chain_id":"3U8YCDAGXPF2G3BT14XA9BTFCQRQ0K_1_10","score":0.5} {"chain_id":"3U8YCDAGXPF2G3BT14XA9BTFCQRQ0K_1_2","score":0.5} {"chain_id":"3U8YCDAGXPF2G3BT14XA9BTFCQRQ0K_1_3","score":0.5} {"chain_id":"3U8YCDAGXPF2G3BT14XA9BTFCQRQ0K_1_4","score":0.5} {"chain_id":"3U8YCDAGXPF2G3BT14XA9BTFCQRQ0K_1_5","score":0.5} {"chain_id":"3U8YCDAGXPF2G3BT14XA9BTFCQRQ0K_1_6","score":0.5} {"chain_id":"3U8YCDAGXPF2G3BT14XA9BTFCQRQ0K_1_7","score":0.5} {"chain_id":"3U8YCDAGXPF2G3BT14XA9BTFCQRQ0K_1_8","score":0.5} {"chain_id":"3U8YCDAGXPF2G3BT14XA9BTFCQRQ0K_1_9","score":0.5} {"chain_id":"3UN61F00HWO1NBCUBPSMVWZBM96R5K_1_1","score":0.5} {"chain_id":"3UN61F00HWO1NBCUBPSMVWZBM96R5K_1_10","score":0.5} {"chain_id":"3UN61F00HWO1NBCUBPSMVWZBM96R5K_1_2","score":0.5} {"chain_id":"3UN61F00HWO1NBCUBPSMVWZBM96R5K_1_3","score":0.5} {"chain_id":"3UN61F00HWO1NBCUBPSMVWZBM96R5K_1_4","score":0.5} {"chain_id":"3UN61F00HWO1NBCUBPSMVWZBM96R5K_1_5","score":0.5} {"chain_id":"3UN61F00HWO1NBCUBPSMVWZBM96R5K_1_6","score":0.5} {"chain_id":"3UN61F00HWO1NBCUBPSMVWZBM96R5K_1_7","score":0.5} {"chain_id":"3UN61F00HWO1NBCUBPSMVWZBM96R5K_1_8","score":0.5} {"chain_id":"3UN61F00HWO1NBCUBPSMVWZBM96R5K_1_9","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UAWTYMA_1_1","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UAWTYMA_1_10","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UAWTYMA_1_2","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UAWTYMA_1_3","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UAWTYMA_1_4","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UAWTYMA_1_5","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UAWTYMA_1_6","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UAWTYMA_1_7","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UAWTYMA_1_8","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UAWTYMA_1_9","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UBAIYMS_1_1","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UBAIYMS_1_10","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UBAIYMS_1_2","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UBAIYMS_1_3","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UBAIYMS_1_4","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UBAIYMS_1_5","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UBAIYMS_1_6","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UBAIYMS_1_7","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UBAIYMS_1_8","score":0.5} {"chain_id":"3UNH76FOCS48SJ9MHJ12KU3UBAIYMS_1_9","score":0.5} {"chain_id":"3UOUJI6MTDD25MOLLP6MSQDFRVJXUK_1_1","score":0.5} {"chain_id":"3UOUJI6MTDD25MOLLP6MSQDFRVJXUK_1_10","score":0.5} {"chain_id":"3UOUJI6MTDD25MOLLP6MSQDFRVJXUK_1_2","score":0.5} {"chain_id":"3UOUJI6MTDD25MOLLP6MSQDFRVJXUK_1_3","score":0.5} {"chain_id":"3UOUJI6MTDD25MOLLP6MSQDFRVJXUK_1_4","score":0.5} {"chain_id":"3UOUJI6MTDD25MOLLP6MSQDFRVJXUK_1_5","score":0.5} {"chain_id":"3UOUJI6MTDD25MOLLP6MSQDFRVJXUK_1_6","score":0.5} {"chain_id":"3UOUJI6MTDD25MOLLP6MSQDFRVJXUK_1_7","score":0.5} {"chain_id":"3UOUJI6MTDD25MOLLP6MSQDFRVJXUK_1_8","score":0.5} {"chain_id":"3UOUJI6MTDD25MOLLP6MSQDFRVJXUK_1_9","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQV5KZU2_1_1","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQV5KZU2_1_10","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQV5KZU2_1_2","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQV5KZU2_1_3","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQV5KZU2_1_4","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQV5KZU2_1_5","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQV5KZU2_1_6","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQV5KZU2_1_7","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQV5KZU2_1_8","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQV5KZU2_1_9","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQZX1UZ2_1_1","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQZX1UZ2_1_10","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQZX1UZ2_1_2","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQZX1UZ2_1_3","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQZX1UZ2_1_4","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQZX1UZ2_1_5","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQZX1UZ2_1_6","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQZX1UZ2_1_7","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQZX1UZ2_1_8","score":0.5} {"chain_id":"3URFVVM165HRAHO0M7U7PBTQZX1UZ2_1_9","score":0.5} {"chain_id":"3UWN2HHPUY4HEFIDUEODFN4TZEVNS0_1_1","score":0.5} {"chain_id":"3UWN2HHPUY4HEFIDUEODFN4TZEVNS0_1_10","score":0.5} {"chain_id":"3UWN2HHPUY4HEFIDUEODFN4TZEVNS0_1_2","score":0.5} {"chain_id":"3UWN2HHPUY4HEFIDUEODFN4TZEVNS0_1_3","score":0.5} {"chain_id":"3UWN2HHPUY4HEFIDUEODFN4TZEVNS0_1_4","score":0.5} {"chain_id":"3UWN2HHPUY4HEFIDUEODFN4TZEVNS0_1_5","score":0.5} {"chain_id":"3UWN2HHPUY4HEFIDUEODFN4TZEVNS0_1_6","score":0.5} {"chain_id":"3UWN2HHPUY4HEFIDUEODFN4TZEVNS0_1_7","score":0.5} {"chain_id":"3UWN2HHPUY4HEFIDUEODFN4TZEVNS0_1_8","score":0.5} {"chain_id":"3UWN2HHPUY4HEFIDUEODFN4TZEVNS0_1_9","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXBXE7AE_1_1","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXBXE7AE_1_10","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXBXE7AE_1_2","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXBXE7AE_1_3","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXBXE7AE_1_4","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXBXE7AE_1_5","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXBXE7AE_1_6","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXBXE7AE_1_7","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXBXE7AE_1_8","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXBXE7AE_1_9","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXIOKA7C_1_1","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXIOKA7C_1_10","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXIOKA7C_1_2","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXIOKA7C_1_3","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXIOKA7C_1_4","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXIOKA7C_1_5","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXIOKA7C_1_6","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXIOKA7C_1_7","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXIOKA7C_1_8","score":0.5} {"chain_id":"3UXUOQ9OKEWOBY4WX7LXYQOXIOKA7C_1_9","score":0.5} {"chain_id":"3V0Z7YWSIYZ1HLAO2QVYYML2OL9V2U_1_1","score":0.5} {"chain_id":"3V0Z7YWSIYZ1HLAO2QVYYML2OL9V2U_1_10","score":0.5} {"chain_id":"3V0Z7YWSIYZ1HLAO2QVYYML2OL9V2U_1_2","score":0.5} {"chain_id":"3V0Z7YWSIYZ1HLAO2QVYYML2OL9V2U_1_3","score":0.5} {"chain_id":"3V0Z7YWSIYZ1HLAO2QVYYML2OL9V2U_1_4","score":0.5} {"chain_id":"3V0Z7YWSIYZ1HLAO2QVYYML2OL9V2U_1_5","score":0.5} {"chain_id":"3V0Z7YWSIYZ1HLAO2QVYYML2OL9V2U_1_6","score":0.5} {"chain_id":"3V0Z7YWSIYZ1HLAO2QVYYML2OL9V2U_1_7","score":0.5} {"chain_id":"3V0Z7YWSIYZ1HLAO2QVYYML2OL9V2U_1_8","score":0.5} {"chain_id":"3V0Z7YWSIYZ1HLAO2QVYYML2OL9V2U_1_9","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJACX23K_1_1","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJACX23K_1_10","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJACX23K_1_2","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJACX23K_1_3","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJACX23K_1_4","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJACX23K_1_5","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJACX23K_1_6","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJACX23K_1_7","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJACX23K_1_8","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJACX23K_1_9","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJXGV32E_1_1","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJXGV32E_1_10","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJXGV32E_1_2","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJXGV32E_1_3","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJXGV32E_1_4","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJXGV32E_1_5","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJXGV32E_1_6","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJXGV32E_1_7","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJXGV32E_1_8","score":0.5} {"chain_id":"3V5Q80FXIXQH5C85IGPSFRTJXGV32E_1_9","score":0.5} {"chain_id":"3VA45EW49NMZ2GJVIA96YBHP3AQ1OO_1_1","score":0.5} {"chain_id":"3VA45EW49NMZ2GJVIA96YBHP3AQ1OO_1_10","score":0.5} {"chain_id":"3VA45EW49NMZ2GJVIA96YBHP3AQ1OO_1_2","score":0.5} {"chain_id":"3VA45EW49NMZ2GJVIA96YBHP3AQ1OO_1_3","score":0.5} {"chain_id":"3VA45EW49NMZ2GJVIA96YBHP3AQ1OO_1_4","score":0.5} {"chain_id":"3VA45EW49NMZ2GJVIA96YBHP3AQ1OO_1_5","score":0.5} {"chain_id":"3VA45EW49NMZ2GJVIA96YBHP3AQ1OO_1_6","score":0.5} {"chain_id":"3VA45EW49NMZ2GJVIA96YBHP3AQ1OO_1_7","score":0.5} {"chain_id":"3VA45EW49NMZ2GJVIA96YBHP3AQ1OO_1_8","score":0.5} {"chain_id":"3VA45EW49NMZ2GJVIA96YBHP3AQ1OO_1_9","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XATRO89_1_1","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XATRO89_1_10","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XATRO89_1_2","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XATRO89_1_3","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XATRO89_1_4","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XATRO89_1_5","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XATRO89_1_6","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XATRO89_1_7","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XATRO89_1_8","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XATRO89_1_9","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XDYWO8R_1_1","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XDYWO8R_1_10","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XDYWO8R_1_2","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XDYWO8R_1_3","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XDYWO8R_1_4","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XDYWO8R_1_5","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XDYWO8R_1_6","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XDYWO8R_1_7","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XDYWO8R_1_8","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XDYWO8R_1_9","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XR2TO8A_1_1","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XR2TO8A_1_10","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XR2TO8A_1_2","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XR2TO8A_1_3","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XR2TO8A_1_4","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XR2TO8A_1_5","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XR2TO8A_1_6","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XR2TO8A_1_7","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XR2TO8A_1_8","score":0.5} {"chain_id":"3VAR3R6G1P0HDG3GHVILDL4XR2TO8A_1_9","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3AISGR_1_1","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3AISGR_1_10","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3AISGR_1_2","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3AISGR_1_3","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3AISGR_1_4","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3AISGR_1_5","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3AISGR_1_6","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3AISGR_1_7","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3AISGR_1_8","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3AISGR_1_9","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3XYGS5_1_1","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3XYGS5_1_10","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3XYGS5_1_2","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3XYGS5_1_3","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3XYGS5_1_4","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3XYGS5_1_5","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3XYGS5_1_6","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3XYGS5_1_7","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3XYGS5_1_8","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VW3XYGS5_1_9","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWY4YSGQ_1_1","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWY4YSGQ_1_10","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWY4YSGQ_1_2","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWY4YSGQ_1_3","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWY4YSGQ_1_4","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWY4YSGQ_1_5","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWY4YSGQ_1_6","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWY4YSGQ_1_7","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWY4YSGQ_1_8","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWY4YSGQ_1_9","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWZ0GGSP_1_1","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWZ0GGSP_1_10","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWZ0GGSP_1_2","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWZ0GGSP_1_3","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWZ0GGSP_1_4","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWZ0GGSP_1_5","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWZ0GGSP_1_6","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWZ0GGSP_1_7","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWZ0GGSP_1_8","score":0.5} {"chain_id":"3VBEN272MKYB4N1R7ABIP3VWZ0GGSP_1_9","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G77FCON_1_1","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G77FCON_1_10","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G77FCON_1_2","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G77FCON_1_3","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G77FCON_1_4","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G77FCON_1_5","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G77FCON_1_6","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G77FCON_1_7","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G77FCON_1_8","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G77FCON_1_9","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G7AQOCG_1_1","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G7AQOCG_1_10","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G7AQOCG_1_2","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G7AQOCG_1_3","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G7AQOCG_1_4","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G7AQOCG_1_5","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G7AQOCG_1_6","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G7AQOCG_1_7","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G7AQOCG_1_8","score":0.5} {"chain_id":"3VD82FOHKQNJPJTTY7YQF70G7AQOCG_1_9","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLA5F8M_1_1","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLA5F8M_1_10","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLA5F8M_1_2","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLA5F8M_1_3","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLA5F8M_1_4","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLA5F8M_1_5","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLA5F8M_1_6","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLA5F8M_1_7","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLA5F8M_1_8","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLA5F8M_1_9","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLAUF8B_1_1","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLAUF8B_1_10","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLAUF8B_1_2","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLAUF8B_1_3","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLAUF8B_1_4","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLAUF8B_1_5","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLAUF8B_1_6","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLAUF8B_1_7","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLAUF8B_1_8","score":0.5} {"chain_id":"3VE8AYVF8MWN73QNISZVQRVJLAUF8B_1_9","score":0.5} {"chain_id":"3VHHR074H3G57HV0UYAN74489JEL7Z_1_1","score":0.5} {"chain_id":"3VHHR074H3G57HV0UYAN74489JEL7Z_1_10","score":0.5} {"chain_id":"3VHHR074H3G57HV0UYAN74489JEL7Z_1_2","score":0.5} {"chain_id":"3VHHR074H3G57HV0UYAN74489JEL7Z_1_3","score":0.5} {"chain_id":"3VHHR074H3G57HV0UYAN74489JEL7Z_1_4","score":0.5} {"chain_id":"3VHHR074H3G57HV0UYAN74489JEL7Z_1_5","score":0.5} {"chain_id":"3VHHR074H3G57HV0UYAN74489JEL7Z_1_6","score":0.5} {"chain_id":"3VHHR074H3G57HV0UYAN74489JEL7Z_1_7","score":0.5} {"chain_id":"3VHHR074H3G57HV0UYAN74489JEL7Z_1_8","score":0.5} {"chain_id":"3VHHR074H3G57HV0UYAN74489JEL7Z_1_9","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KR8BTO9_1_1","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KR8BTO9_1_10","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KR8BTO9_1_2","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KR8BTO9_1_3","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KR8BTO9_1_4","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KR8BTO9_1_5","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KR8BTO9_1_6","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KR8BTO9_1_7","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KR8BTO9_1_8","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KR8BTO9_1_9","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KS9NOTJ_1_1","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KS9NOTJ_1_10","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KS9NOTJ_1_2","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KS9NOTJ_1_3","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KS9NOTJ_1_4","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KS9NOTJ_1_5","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KS9NOTJ_1_6","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KS9NOTJ_1_7","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KS9NOTJ_1_8","score":0.5} {"chain_id":"3VJ40NV2QIM0B0V4KTTG4H0KS9NOTJ_1_9","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6YSPTFX_1_1","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6YSPTFX_1_10","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6YSPTFX_1_2","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6YSPTFX_1_3","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6YSPTFX_1_4","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6YSPTFX_1_5","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6YSPTFX_1_6","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6YSPTFX_1_7","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6YSPTFX_1_8","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6YSPTFX_1_9","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6ZBFTFQ_1_1","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6ZBFTFQ_1_10","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6ZBFTFQ_1_2","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6ZBFTFQ_1_3","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6ZBFTFQ_1_4","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6ZBFTFQ_1_5","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6ZBFTFQ_1_6","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6ZBFTFQ_1_7","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6ZBFTFQ_1_8","score":0.5} {"chain_id":"3VNL7UK1XFI65NIBLQAQHNR6ZBFTFQ_1_9","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGTZZ9VV_1_1","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGTZZ9VV_1_10","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGTZZ9VV_1_2","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGTZZ9VV_1_3","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGTZZ9VV_1_4","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGTZZ9VV_1_5","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGTZZ9VV_1_6","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGTZZ9VV_1_7","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGTZZ9VV_1_8","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGTZZ9VV_1_9","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGWQDV9G_1_1","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGWQDV9G_1_10","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGWQDV9G_1_2","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGWQDV9G_1_3","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGWQDV9G_1_4","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGWQDV9G_1_5","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGWQDV9G_1_6","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGWQDV9G_1_7","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGWQDV9G_1_8","score":0.5} {"chain_id":"3VNXK88KKCHCH5VNNZAD89TGWQDV9G_1_9","score":0.5} {"chain_id":"3VSOLARPKB8S5WT43P47PE1X7A393Q_1_1","score":0.5} {"chain_id":"3VSOLARPKB8S5WT43P47PE1X7A393Q_1_10","score":0.5} {"chain_id":"3VSOLARPKB8S5WT43P47PE1X7A393Q_1_2","score":0.5} {"chain_id":"3VSOLARPKB8S5WT43P47PE1X7A393Q_1_3","score":0.5} {"chain_id":"3VSOLARPKB8S5WT43P47PE1X7A393Q_1_4","score":0.5} {"chain_id":"3VSOLARPKB8S5WT43P47PE1X7A393Q_1_5","score":0.5} {"chain_id":"3VSOLARPKB8S5WT43P47PE1X7A393Q_1_6","score":0.5} {"chain_id":"3VSOLARPKB8S5WT43P47PE1X7A393Q_1_7","score":0.5} {"chain_id":"3VSOLARPKB8S5WT43P47PE1X7A393Q_1_8","score":0.5} {"chain_id":"3VSOLARPKB8S5WT43P47PE1X7A393Q_1_9","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITKEQKRI_1_1","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITKEQKRI_1_10","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITKEQKRI_1_2","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITKEQKRI_1_3","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITKEQKRI_1_4","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITKEQKRI_1_5","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITKEQKRI_1_6","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITKEQKRI_1_7","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITKEQKRI_1_8","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITKEQKRI_1_9","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITOJSKRY_1_1","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITOJSKRY_1_10","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITOJSKRY_1_2","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITOJSKRY_1_3","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITOJSKRY_1_4","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITOJSKRY_1_5","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITOJSKRY_1_6","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITOJSKRY_1_7","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITOJSKRY_1_8","score":0.5} {"chain_id":"3W2LOLRXLBE45UXXICWSXLITOJSKRY_1_9","score":0.5} {"chain_id":"3W8CV64QJ2Y7Z403IAT9T827KXY9H4_1_1","score":0.5} {"chain_id":"3W8CV64QJ2Y7Z403IAT9T827KXY9H4_1_10","score":0.5} {"chain_id":"3W8CV64QJ2Y7Z403IAT9T827KXY9H4_1_2","score":0.5} {"chain_id":"3W8CV64QJ2Y7Z403IAT9T827KXY9H4_1_3","score":0.5} {"chain_id":"3W8CV64QJ2Y7Z403IAT9T827KXY9H4_1_4","score":0.5} {"chain_id":"3W8CV64QJ2Y7Z403IAT9T827KXY9H4_1_5","score":0.5} {"chain_id":"3W8CV64QJ2Y7Z403IAT9T827KXY9H4_1_6","score":0.5} {"chain_id":"3W8CV64QJ2Y7Z403IAT9T827KXY9H4_1_7","score":0.5} {"chain_id":"3W8CV64QJ2Y7Z403IAT9T827KXY9H4_1_8","score":0.5} {"chain_id":"3W8CV64QJ2Y7Z403IAT9T827KXY9H4_1_9","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE50B5VN_1_1","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE50B5VN_1_10","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE50B5VN_1_2","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE50B5VN_1_3","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE50B5VN_1_4","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE50B5VN_1_5","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE50B5VN_1_6","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE50B5VN_1_7","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE50B5VN_1_8","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE50B5VN_1_9","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE8VZ5V4_1_1","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE8VZ5V4_1_10","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE8VZ5V4_1_2","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE8VZ5V4_1_3","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE8VZ5V4_1_4","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE8VZ5V4_1_5","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE8VZ5V4_1_6","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE8VZ5V4_1_7","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE8VZ5V4_1_8","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOE8VZ5V4_1_9","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOEBMB5V1_1_1","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOEBMB5V1_1_10","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOEBMB5V1_1_2","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOEBMB5V1_1_3","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOEBMB5V1_1_4","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOEBMB5V1_1_5","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOEBMB5V1_1_6","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOEBMB5V1_1_7","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOEBMB5V1_1_8","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOEBMB5V1_1_9","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOECXG5VT_1_1","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOECXG5VT_1_10","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOECXG5VT_1_2","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOECXG5VT_1_3","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOECXG5VT_1_4","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOECXG5VT_1_5","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOECXG5VT_1_6","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOECXG5VT_1_7","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOECXG5VT_1_8","score":0.5} {"chain_id":"3W92K5RLWUGTGITBK9XWWTOECXG5VT_1_9","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVGEQ53W_1_1","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVGEQ53W_1_10","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVGEQ53W_1_2","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVGEQ53W_1_3","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVGEQ53W_1_4","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVGEQ53W_1_5","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVGEQ53W_1_6","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVGEQ53W_1_7","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVGEQ53W_1_8","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVGEQ53W_1_9","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVJJX35E_1_1","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVJJX35E_1_10","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVJJX35E_1_2","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVJJX35E_1_3","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVJJX35E_1_4","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVJJX35E_1_5","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVJJX35E_1_6","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVJJX35E_1_7","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVJJX35E_1_8","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVJJX35E_1_9","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVUR735F_1_1","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVUR735F_1_10","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVUR735F_1_2","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVUR735F_1_3","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVUR735F_1_4","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVUR735F_1_5","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVUR735F_1_6","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVUR735F_1_7","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVUR735F_1_8","score":0.5} {"chain_id":"3WETL7AQWT7949RS0ZRQDYWVUR735F_1_9","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKETNA1Z_1_1","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKETNA1Z_1_10","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKETNA1Z_1_2","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKETNA1Z_1_3","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKETNA1Z_1_4","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKETNA1Z_1_5","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKETNA1Z_1_6","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKETNA1Z_1_7","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKETNA1Z_1_8","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKETNA1Z_1_9","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKP2YA13_1_1","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKP2YA13_1_10","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKP2YA13_1_2","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKP2YA13_1_3","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKP2YA13_1_4","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKP2YA13_1_5","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKP2YA13_1_6","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKP2YA13_1_7","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKP2YA13_1_8","score":0.5} {"chain_id":"3WJEQKOXA81A0CPU8R4OXGXKP2YA13_1_9","score":0.5} {"chain_id":"3WLEIWSYHOGWZKF4X1EUJLUTFF2H2B_1_1","score":0.5} {"chain_id":"3WLEIWSYHOGWZKF4X1EUJLUTFF2H2B_1_10","score":0.5} {"chain_id":"3WLEIWSYHOGWZKF4X1EUJLUTFF2H2B_1_2","score":0.5} {"chain_id":"3WLEIWSYHOGWZKF4X1EUJLUTFF2H2B_1_3","score":0.5} {"chain_id":"3WLEIWSYHOGWZKF4X1EUJLUTFF2H2B_1_4","score":0.5} {"chain_id":"3WLEIWSYHOGWZKF4X1EUJLUTFF2H2B_1_5","score":0.5} {"chain_id":"3WLEIWSYHOGWZKF4X1EUJLUTFF2H2B_1_6","score":0.5} {"chain_id":"3WLEIWSYHOGWZKF4X1EUJLUTFF2H2B_1_7","score":0.5} {"chain_id":"3WLEIWSYHOGWZKF4X1EUJLUTFF2H2B_1_8","score":0.5} {"chain_id":"3WLEIWSYHOGWZKF4X1EUJLUTFF2H2B_1_9","score":0.5} {"chain_id":"3WMOAN2SRBWX67ZHO9TIQAO027MNVK_1_1","score":0.5} {"chain_id":"3WMOAN2SRBWX67ZHO9TIQAO027MNVK_1_10","score":0.5} {"chain_id":"3WMOAN2SRBWX67ZHO9TIQAO027MNVK_1_2","score":0.5} {"chain_id":"3WMOAN2SRBWX67ZHO9TIQAO027MNVK_1_3","score":0.5} {"chain_id":"3WMOAN2SRBWX67ZHO9TIQAO027MNVK_1_4","score":0.5} {"chain_id":"3WMOAN2SRBWX67ZHO9TIQAO027MNVK_1_5","score":0.5} {"chain_id":"3WMOAN2SRBWX67ZHO9TIQAO027MNVK_1_6","score":0.5} {"chain_id":"3WMOAN2SRBWX67ZHO9TIQAO027MNVK_1_7","score":0.5} {"chain_id":"3WMOAN2SRBWX67ZHO9TIQAO027MNVK_1_8","score":0.5} {"chain_id":"3WMOAN2SRBWX67ZHO9TIQAO027MNVK_1_9","score":0.5} {"chain_id":"3WOKGM4L71FZVRYDMR56K6YFZSUO03_1_1","score":0.5} {"chain_id":"3WOKGM4L71FZVRYDMR56K6YFZSUO03_1_10","score":0.5} {"chain_id":"3WOKGM4L71FZVRYDMR56K6YFZSUO03_1_2","score":0.5} {"chain_id":"3WOKGM4L71FZVRYDMR56K6YFZSUO03_1_3","score":0.5} {"chain_id":"3WOKGM4L71FZVRYDMR56K6YFZSUO03_1_4","score":0.5} {"chain_id":"3WOKGM4L71FZVRYDMR56K6YFZSUO03_1_5","score":0.5} {"chain_id":"3WOKGM4L71FZVRYDMR56K6YFZSUO03_1_6","score":0.5} {"chain_id":"3WOKGM4L71FZVRYDMR56K6YFZSUO03_1_7","score":0.5} {"chain_id":"3WOKGM4L71FZVRYDMR56K6YFZSUO03_1_8","score":0.5} {"chain_id":"3WOKGM4L71FZVRYDMR56K6YFZSUO03_1_9","score":0.5} {"chain_id":"3WQ3B2KGE8FFJMUME54KSRHQQRRB14_1_1","score":0.5} {"chain_id":"3WQ3B2KGE8FFJMUME54KSRHQQRRB14_1_10","score":0.5} {"chain_id":"3WQ3B2KGE8FFJMUME54KSRHQQRRB14_1_2","score":0.5} {"chain_id":"3WQ3B2KGE8FFJMUME54KSRHQQRRB14_1_3","score":0.5} {"chain_id":"3WQ3B2KGE8FFJMUME54KSRHQQRRB14_1_4","score":0.5} {"chain_id":"3WQ3B2KGE8FFJMUME54KSRHQQRRB14_1_5","score":0.5} {"chain_id":"3WQ3B2KGE8FFJMUME54KSRHQQRRB14_1_6","score":0.5} {"chain_id":"3WQ3B2KGE8FFJMUME54KSRHQQRRB14_1_7","score":0.5} {"chain_id":"3WQ3B2KGE8FFJMUME54KSRHQQRRB14_1_8","score":0.5} {"chain_id":"3WQ3B2KGE8FFJMUME54KSRHQQRRB14_1_9","score":0.5} {"chain_id":"3WQQ9FUS6ATXUME7DQDZ714YKNCB8Z_1_1","score":0.5} {"chain_id":"3WQQ9FUS6ATXUME7DQDZ714YKNCB8Z_1_10","score":0.5} {"chain_id":"3WQQ9FUS6ATXUME7DQDZ714YKNCB8Z_1_2","score":0.5} {"chain_id":"3WQQ9FUS6ATXUME7DQDZ714YKNCB8Z_1_3","score":0.5} {"chain_id":"3WQQ9FUS6ATXUME7DQDZ714YKNCB8Z_1_4","score":0.5} {"chain_id":"3WQQ9FUS6ATXUME7DQDZ714YKNCB8Z_1_5","score":0.5} {"chain_id":"3WQQ9FUS6ATXUME7DQDZ714YKNCB8Z_1_6","score":0.5} {"chain_id":"3WQQ9FUS6ATXUME7DQDZ714YKNCB8Z_1_7","score":0.5} {"chain_id":"3WQQ9FUS6ATXUME7DQDZ714YKNCB8Z_1_8","score":0.5} {"chain_id":"3WQQ9FUS6ATXUME7DQDZ714YKNCB8Z_1_9","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XMXM47R_1_1","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XMXM47R_1_10","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XMXM47R_1_2","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XMXM47R_1_3","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XMXM47R_1_4","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XMXM47R_1_5","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XMXM47R_1_6","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XMXM47R_1_7","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XMXM47R_1_8","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XMXM47R_1_9","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XQPP74L_1_1","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XQPP74L_1_10","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XQPP74L_1_2","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XQPP74L_1_3","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XQPP74L_1_4","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XQPP74L_1_5","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XQPP74L_1_6","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XQPP74L_1_7","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XQPP74L_1_8","score":0.5} {"chain_id":"3WR9XG3T63A999OFO6B6LN2XQPP74L_1_9","score":0.5} {"chain_id":"3WRFBPLXRANDUYXY4ZNC7FWH8C23NN_1_1","score":0.5} {"chain_id":"3WRFBPLXRANDUYXY4ZNC7FWH8C23NN_1_10","score":0.5} {"chain_id":"3WRFBPLXRANDUYXY4ZNC7FWH8C23NN_1_2","score":0.5} {"chain_id":"3WRFBPLXRANDUYXY4ZNC7FWH8C23NN_1_3","score":0.5} {"chain_id":"3WRFBPLXRANDUYXY4ZNC7FWH8C23NN_1_4","score":0.5} {"chain_id":"3WRFBPLXRANDUYXY4ZNC7FWH8C23NN_1_5","score":0.5} {"chain_id":"3WRFBPLXRANDUYXY4ZNC7FWH8C23NN_1_6","score":0.5} {"chain_id":"3WRFBPLXRANDUYXY4ZNC7FWH8C23NN_1_7","score":0.5} {"chain_id":"3WRFBPLXRANDUYXY4ZNC7FWH8C23NN_1_8","score":0.5} {"chain_id":"3WRFBPLXRANDUYXY4ZNC7FWH8C23NN_1_9","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGF1D1ATS_1_1","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGF1D1ATS_1_10","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGF1D1ATS_1_2","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGF1D1ATS_1_3","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGF1D1ATS_1_4","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGF1D1ATS_1_5","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGF1D1ATS_1_6","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGF1D1ATS_1_7","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGF1D1ATS_1_8","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGF1D1ATS_1_9","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGFGWCTA3_1_1","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGFGWCTA3_1_10","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGFGWCTA3_1_2","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGFGWCTA3_1_3","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGFGWCTA3_1_4","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGFGWCTA3_1_5","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGFGWCTA3_1_6","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGFGWCTA3_1_7","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGFGWCTA3_1_8","score":0.5} {"chain_id":"3WSELTNVR31B9W13AAOY3MGFGWCTA3_1_9","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0H098CBX_1_1","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0H098CBX_1_10","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0H098CBX_1_2","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0H098CBX_1_3","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0H098CBX_1_4","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0H098CBX_1_5","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0H098CBX_1_6","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0H098CBX_1_7","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0H098CBX_1_8","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0H098CBX_1_9","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HURPBC7_1_1","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HURPBC7_1_10","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HURPBC7_1_2","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HURPBC7_1_3","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HURPBC7_1_4","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HURPBC7_1_5","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HURPBC7_1_6","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HURPBC7_1_7","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HURPBC7_1_8","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HURPBC7_1_9","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HWVUCBN_1_1","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HWVUCBN_1_10","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HWVUCBN_1_2","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HWVUCBN_1_3","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HWVUCBN_1_4","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HWVUCBN_1_5","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HWVUCBN_1_6","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HWVUCBN_1_7","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HWVUCBN_1_8","score":0.5} {"chain_id":"3WT783CTPBGZ6P4KU2T49N0HWVUCBN_1_9","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP43CSKP_1_1","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP43CSKP_1_10","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP43CSKP_1_2","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP43CSKP_1_3","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP43CSKP_1_4","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP43CSKP_1_5","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP43CSKP_1_6","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP43CSKP_1_7","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP43CSKP_1_8","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP43CSKP_1_9","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP7Z2KS2_1_1","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP7Z2KS2_1_10","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP7Z2KS2_1_2","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP7Z2KS2_1_3","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP7Z2KS2_1_4","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP7Z2KS2_1_5","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP7Z2KS2_1_6","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP7Z2KS2_1_7","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP7Z2KS2_1_8","score":0.5} {"chain_id":"3WYGZ5XF3WEG69XAX1WXNVNP7Z2KS2_1_9","score":0.5} {"chain_id":"3WYP994K17Q63GOUU3ULVY68MQNY6Z_1_1","score":0.5} {"chain_id":"3WYP994K17Q63GOUU3ULVY68MQNY6Z_1_10","score":0.5} {"chain_id":"3WYP994K17Q63GOUU3ULVY68MQNY6Z_1_2","score":0.5} {"chain_id":"3WYP994K17Q63GOUU3ULVY68MQNY6Z_1_3","score":0.5} {"chain_id":"3WYP994K17Q63GOUU3ULVY68MQNY6Z_1_4","score":0.5} {"chain_id":"3WYP994K17Q63GOUU3ULVY68MQNY6Z_1_5","score":0.5} {"chain_id":"3WYP994K17Q63GOUU3ULVY68MQNY6Z_1_6","score":0.5} {"chain_id":"3WYP994K17Q63GOUU3ULVY68MQNY6Z_1_7","score":0.5} {"chain_id":"3WYP994K17Q63GOUU3ULVY68MQNY6Z_1_8","score":0.5} {"chain_id":"3WYP994K17Q63GOUU3ULVY68MQNY6Z_1_9","score":0.5} {"chain_id":"3X08E93BHVH4KWEOOKZTC7MFK2Z66H_1_1","score":0.5} {"chain_id":"3X08E93BHVH4KWEOOKZTC7MFK2Z66H_1_10","score":0.5} {"chain_id":"3X08E93BHVH4KWEOOKZTC7MFK2Z66H_1_2","score":0.5} {"chain_id":"3X08E93BHVH4KWEOOKZTC7MFK2Z66H_1_3","score":0.5} {"chain_id":"3X08E93BHVH4KWEOOKZTC7MFK2Z66H_1_4","score":0.5} {"chain_id":"3X08E93BHVH4KWEOOKZTC7MFK2Z66H_1_5","score":0.5} {"chain_id":"3X08E93BHVH4KWEOOKZTC7MFK2Z66H_1_6","score":0.5} {"chain_id":"3X08E93BHVH4KWEOOKZTC7MFK2Z66H_1_7","score":0.5} {"chain_id":"3X08E93BHVH4KWEOOKZTC7MFK2Z66H_1_8","score":0.5} {"chain_id":"3X08E93BHVH4KWEOOKZTC7MFK2Z66H_1_9","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKWDCWSR_1_1","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKWDCWSR_1_10","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKWDCWSR_1_2","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKWDCWSR_1_3","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKWDCWSR_1_4","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKWDCWSR_1_5","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKWDCWSR_1_6","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKWDCWSR_1_7","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKWDCWSR_1_8","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKWDCWSR_1_9","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKXS9SWF_1_1","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKXS9SWF_1_10","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKXS9SWF_1_2","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKXS9SWF_1_3","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKXS9SWF_1_4","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKXS9SWF_1_5","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKXS9SWF_1_6","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKXS9SWF_1_7","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKXS9SWF_1_8","score":0.5} {"chain_id":"3X0H8UUIT1N719RRMFF0B6HKXS9SWF_1_9","score":0.5} {"chain_id":"3X1FV8S5JXQRWFIV15GN0QF3BJQGVH_1_1","score":0.5} {"chain_id":"3X1FV8S5JXQRWFIV15GN0QF3BJQGVH_1_10","score":0.5} {"chain_id":"3X1FV8S5JXQRWFIV15GN0QF3BJQGVH_1_2","score":0.5} {"chain_id":"3X1FV8S5JXQRWFIV15GN0QF3BJQGVH_1_3","score":0.5} {"chain_id":"3X1FV8S5JXQRWFIV15GN0QF3BJQGVH_1_4","score":0.5} {"chain_id":"3X1FV8S5JXQRWFIV15GN0QF3BJQGVH_1_5","score":0.5} {"chain_id":"3X1FV8S5JXQRWFIV15GN0QF3BJQGVH_1_6","score":0.5} {"chain_id":"3X1FV8S5JXQRWFIV15GN0QF3BJQGVH_1_7","score":0.5} {"chain_id":"3X1FV8S5JXQRWFIV15GN0QF3BJQGVH_1_8","score":0.5} {"chain_id":"3X1FV8S5JXQRWFIV15GN0QF3BJQGVH_1_9","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV37J1L4_1_1","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV37J1L4_1_10","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV37J1L4_1_2","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV37J1L4_1_3","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV37J1L4_1_4","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV37J1L4_1_5","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV37J1L4_1_6","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV37J1L4_1_7","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV37J1L4_1_8","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV37J1L4_1_9","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV6UNL15_1_1","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV6UNL15_1_10","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV6UNL15_1_2","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV6UNL15_1_3","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV6UNL15_1_4","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV6UNL15_1_5","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV6UNL15_1_6","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV6UNL15_1_7","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV6UNL15_1_8","score":0.5} {"chain_id":"3X31TUMD7XLRWVGY5ITE6UDV6UNL15_1_9","score":0.5} {"chain_id":"3X4JMASXCM8FCX94IM0KEMYGMLZ0BD_1_1","score":0.5} {"chain_id":"3X4JMASXCM8FCX94IM0KEMYGMLZ0BD_1_10","score":0.5} {"chain_id":"3X4JMASXCM8FCX94IM0KEMYGMLZ0BD_1_2","score":0.5} {"chain_id":"3X4JMASXCM8FCX94IM0KEMYGMLZ0BD_1_3","score":0.5} {"chain_id":"3X4JMASXCM8FCX94IM0KEMYGMLZ0BD_1_4","score":0.5} {"chain_id":"3X4JMASXCM8FCX94IM0KEMYGMLZ0BD_1_5","score":0.5} {"chain_id":"3X4JMASXCM8FCX94IM0KEMYGMLZ0BD_1_6","score":0.5} {"chain_id":"3X4JMASXCM8FCX94IM0KEMYGMLZ0BD_1_7","score":0.5} {"chain_id":"3X4JMASXCM8FCX94IM0KEMYGMLZ0BD_1_8","score":0.5} {"chain_id":"3X4JMASXCM8FCX94IM0KEMYGMLZ0BD_1_9","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCO849RWY_1_1","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCO849RWY_1_10","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCO849RWY_1_2","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCO849RWY_1_3","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCO849RWY_1_4","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCO849RWY_1_5","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCO849RWY_1_6","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCO849RWY_1_7","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCO849RWY_1_8","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCO849RWY_1_9","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCOAAJRWM_1_1","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCOAAJRWM_1_10","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCOAAJRWM_1_2","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCOAAJRWM_1_3","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCOAAJRWM_1_4","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCOAAJRWM_1_5","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCOAAJRWM_1_6","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCOAAJRWM_1_7","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCOAAJRWM_1_8","score":0.5} {"chain_id":"3X4MXAO0BGNV0URE7QFVLWCOAAJRWM_1_9","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWM8WYLCN_1_1","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWM8WYLCN_1_10","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWM8WYLCN_1_2","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWM8WYLCN_1_3","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWM8WYLCN_1_4","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWM8WYLCN_1_5","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWM8WYLCN_1_6","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWM8WYLCN_1_7","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWM8WYLCN_1_8","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWM8WYLCN_1_9","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMC42CL2_1_1","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMC42CL2_1_10","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMC42CL2_1_2","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMC42CL2_1_3","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMC42CL2_1_4","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMC42CL2_1_5","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMC42CL2_1_6","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMC42CL2_1_7","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMC42CL2_1_8","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMC42CL2_1_9","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMNBVLCT_1_1","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMNBVLCT_1_10","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMNBVLCT_1_2","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMNBVLCT_1_3","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMNBVLCT_1_4","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMNBVLCT_1_5","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMNBVLCT_1_6","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMNBVLCT_1_7","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMNBVLCT_1_8","score":0.5} {"chain_id":"3X65QVEQI0MBJYQWLFIYNQWMNBVLCT_1_9","score":0.5} {"chain_id":"3X66WABAJWH7K6GCHVAHHVNKA86G31_1_1","score":0.5} {"chain_id":"3X66WABAJWH7K6GCHVAHHVNKA86G31_1_10","score":0.5} {"chain_id":"3X66WABAJWH7K6GCHVAHHVNKA86G31_1_2","score":0.5} {"chain_id":"3X66WABAJWH7K6GCHVAHHVNKA86G31_1_3","score":0.5} {"chain_id":"3X66WABAJWH7K6GCHVAHHVNKA86G31_1_4","score":0.5} {"chain_id":"3X66WABAJWH7K6GCHVAHHVNKA86G31_1_5","score":0.5} {"chain_id":"3X66WABAJWH7K6GCHVAHHVNKA86G31_1_6","score":0.5} {"chain_id":"3X66WABAJWH7K6GCHVAHHVNKA86G31_1_7","score":0.5} {"chain_id":"3X66WABAJWH7K6GCHVAHHVNKA86G31_1_8","score":0.5} {"chain_id":"3X66WABAJWH7K6GCHVAHHVNKA86G31_1_9","score":0.5} {"chain_id":"3X73LLYYQ1DSO64XJKCEB9XRT3QNHU_1_1","score":0.5} {"chain_id":"3X73LLYYQ1DSO64XJKCEB9XRT3QNHU_1_10","score":0.5} {"chain_id":"3X73LLYYQ1DSO64XJKCEB9XRT3QNHU_1_2","score":0.5} {"chain_id":"3X73LLYYQ1DSO64XJKCEB9XRT3QNHU_1_3","score":0.5} {"chain_id":"3X73LLYYQ1DSO64XJKCEB9XRT3QNHU_1_4","score":0.5} {"chain_id":"3X73LLYYQ1DSO64XJKCEB9XRT3QNHU_1_5","score":0.5} {"chain_id":"3X73LLYYQ1DSO64XJKCEB9XRT3QNHU_1_6","score":0.5} {"chain_id":"3X73LLYYQ1DSO64XJKCEB9XRT3QNHU_1_7","score":0.5} {"chain_id":"3X73LLYYQ1DSO64XJKCEB9XRT3QNHU_1_8","score":0.5} {"chain_id":"3X73LLYYQ1DSO64XJKCEB9XRT3QNHU_1_9","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZY4Z2SQW_1_1","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZY4Z2SQW_1_10","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZY4Z2SQW_1_2","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZY4Z2SQW_1_3","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZY4Z2SQW_1_4","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZY4Z2SQW_1_5","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZY4Z2SQW_1_6","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZY4Z2SQW_1_7","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZY4Z2SQW_1_8","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZY4Z2SQW_1_9","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZYJLXSQE_1_1","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZYJLXSQE_1_10","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZYJLXSQE_1_2","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZYJLXSQE_1_3","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZYJLXSQE_1_4","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZYJLXSQE_1_5","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZYJLXSQE_1_6","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZYJLXSQE_1_7","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZYJLXSQE_1_8","score":0.5} {"chain_id":"3X87C8JFV6A2HCV5A6GUJHZYJLXSQE_1_9","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQ0UNTLV_1_1","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQ0UNTLV_1_10","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQ0UNTLV_1_2","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQ0UNTLV_1_3","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQ0UNTLV_1_4","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQ0UNTLV_1_5","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQ0UNTLV_1_6","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQ0UNTLV_1_7","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQ0UNTLV_1_8","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQ0UNTLV_1_9","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQBYKLT3_1_1","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQBYKLT3_1_10","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQBYKLT3_1_2","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQBYKLT3_1_3","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQBYKLT3_1_4","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQBYKLT3_1_5","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQBYKLT3_1_6","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQBYKLT3_1_7","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQBYKLT3_1_8","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQBYKLT3_1_9","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQZ72LTR_1_1","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQZ72LTR_1_10","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQZ72LTR_1_2","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQZ72LTR_1_3","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQZ72LTR_1_4","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQZ72LTR_1_5","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQZ72LTR_1_6","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQZ72LTR_1_7","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQZ72LTR_1_8","score":0.5} {"chain_id":"3XC1O3LBOSLS5FS771DOC0WQZ72LTR_1_9","score":0.5} {"chain_id":"3XIQGXAUMC707BCP8HDBIYZVFQWX70_1_1","score":0.5} {"chain_id":"3XIQGXAUMC707BCP8HDBIYZVFQWX70_1_10","score":0.5} {"chain_id":"3XIQGXAUMC707BCP8HDBIYZVFQWX70_1_2","score":0.5} {"chain_id":"3XIQGXAUMC707BCP8HDBIYZVFQWX70_1_3","score":0.5} {"chain_id":"3XIQGXAUMC707BCP8HDBIYZVFQWX70_1_4","score":0.5} {"chain_id":"3XIQGXAUMC707BCP8HDBIYZVFQWX70_1_5","score":0.5} {"chain_id":"3XIQGXAUMC707BCP8HDBIYZVFQWX70_1_6","score":0.5} {"chain_id":"3XIQGXAUMC707BCP8HDBIYZVFQWX70_1_7","score":0.5} {"chain_id":"3XIQGXAUMC707BCP8HDBIYZVFQWX70_1_8","score":0.5} {"chain_id":"3XIQGXAUMC707BCP8HDBIYZVFQWX70_1_9","score":0.5} {"chain_id":"3XLBSAQ9Z4BPC6C49Z1WFJF60J2Z76_1_1","score":0.5} {"chain_id":"3XLBSAQ9Z4BPC6C49Z1WFJF60J2Z76_1_10","score":0.5} {"chain_id":"3XLBSAQ9Z4BPC6C49Z1WFJF60J2Z76_1_2","score":0.5} {"chain_id":"3XLBSAQ9Z4BPC6C49Z1WFJF60J2Z76_1_3","score":0.5} {"chain_id":"3XLBSAQ9Z4BPC6C49Z1WFJF60J2Z76_1_4","score":0.5} {"chain_id":"3XLBSAQ9Z4BPC6C49Z1WFJF60J2Z76_1_5","score":0.5} {"chain_id":"3XLBSAQ9Z4BPC6C49Z1WFJF60J2Z76_1_6","score":0.5} {"chain_id":"3XLBSAQ9Z4BPC6C49Z1WFJF60J2Z76_1_7","score":0.5} {"chain_id":"3XLBSAQ9Z4BPC6C49Z1WFJF60J2Z76_1_8","score":0.5} {"chain_id":"3XLBSAQ9Z4BPC6C49Z1WFJF60J2Z76_1_9","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV590DJEP6_1_1","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV590DJEP6_1_10","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV590DJEP6_1_2","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV590DJEP6_1_3","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV590DJEP6_1_4","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV590DJEP6_1_5","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV590DJEP6_1_6","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV590DJEP6_1_7","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV590DJEP6_1_8","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV590DJEP6_1_9","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59WCFPE7_1_1","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59WCFPE7_1_10","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59WCFPE7_1_2","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59WCFPE7_1_3","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59WCFPE7_1_4","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59WCFPE7_1_5","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59WCFPE7_1_6","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59WCFPE7_1_7","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59WCFPE7_1_8","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59WCFPE7_1_9","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59YBLEP2_1_1","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59YBLEP2_1_10","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59YBLEP2_1_2","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59YBLEP2_1_3","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59YBLEP2_1_4","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59YBLEP2_1_5","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59YBLEP2_1_6","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59YBLEP2_1_7","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59YBLEP2_1_8","score":0.5} {"chain_id":"3XM0HYN6NKYG7HP89YH0UV59YBLEP2_1_9","score":0.5} {"chain_id":"3XUHV3NRVKXOYHYRFKGSHSX54M0H5I_1_1","score":0.5} {"chain_id":"3XUHV3NRVKXOYHYRFKGSHSX54M0H5I_1_10","score":0.5} {"chain_id":"3XUHV3NRVKXOYHYRFKGSHSX54M0H5I_1_2","score":0.5} {"chain_id":"3XUHV3NRVKXOYHYRFKGSHSX54M0H5I_1_3","score":0.5} {"chain_id":"3XUHV3NRVKXOYHYRFKGSHSX54M0H5I_1_4","score":0.5} {"chain_id":"3XUHV3NRVKXOYHYRFKGSHSX54M0H5I_1_5","score":0.5} {"chain_id":"3XUHV3NRVKXOYHYRFKGSHSX54M0H5I_1_6","score":0.5} {"chain_id":"3XUHV3NRVKXOYHYRFKGSHSX54M0H5I_1_7","score":0.5} {"chain_id":"3XUHV3NRVKXOYHYRFKGSHSX54M0H5I_1_8","score":0.5} {"chain_id":"3XUHV3NRVKXOYHYRFKGSHSX54M0H5I_1_9","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA3MAA0P_1_1","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA3MAA0P_1_10","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA3MAA0P_1_2","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA3MAA0P_1_3","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA3MAA0P_1_4","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA3MAA0P_1_5","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA3MAA0P_1_6","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA3MAA0P_1_7","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA3MAA0P_1_8","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA3MAA0P_1_9","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA94Y0A9_1_1","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA94Y0A9_1_10","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA94Y0A9_1_2","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA94Y0A9_1_3","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA94Y0A9_1_4","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA94Y0A9_1_5","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA94Y0A9_1_6","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA94Y0A9_1_7","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA94Y0A9_1_8","score":0.5} {"chain_id":"3XXU1SWE8MUATN4CC80OJBEA94Y0A9_1_9","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6J0ZVDE_1_1","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6J0ZVDE_1_10","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6J0ZVDE_1_2","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6J0ZVDE_1_3","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6J0ZVDE_1_4","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6J0ZVDE_1_5","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6J0ZVDE_1_6","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6J0ZVDE_1_7","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6J0ZVDE_1_8","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6J0ZVDE_1_9","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KU6VDA_1_1","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KU6VDA_1_10","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KU6VDA_1_2","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KU6VDA_1_3","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KU6VDA_1_4","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KU6VDA_1_5","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KU6VDA_1_6","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KU6VDA_1_7","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KU6VDA_1_8","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KU6VDA_1_9","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KYBVDN_1_1","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KYBVDN_1_10","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KYBVDN_1_2","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KYBVDN_1_3","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KYBVDN_1_4","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KYBVDN_1_5","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KYBVDN_1_6","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KYBVDN_1_7","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KYBVDN_1_8","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6KYBVDN_1_9","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6MOMVDG_1_1","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6MOMVDG_1_10","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6MOMVDG_1_2","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6MOMVDG_1_3","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6MOMVDG_1_4","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6MOMVDG_1_5","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6MOMVDG_1_6","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6MOMVDG_1_7","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6MOMVDG_1_8","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6MOMVDG_1_9","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6O1IVD4_1_1","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6O1IVD4_1_10","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6O1IVD4_1_2","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6O1IVD4_1_3","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6O1IVD4_1_4","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6O1IVD4_1_5","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6O1IVD4_1_6","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6O1IVD4_1_7","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6O1IVD4_1_8","score":0.5} {"chain_id":"3Y4W8Q93LZJOKV84ZFFFU5C6O1IVD4_1_9","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31SNFPID_1_1","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31SNFPID_1_10","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31SNFPID_1_2","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31SNFPID_1_3","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31SNFPID_1_4","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31SNFPID_1_5","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31SNFPID_1_6","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31SNFPID_1_7","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31SNFPID_1_8","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31SNFPID_1_9","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31T1UPIL_1_1","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31T1UPIL_1_10","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31T1UPIL_1_2","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31T1UPIL_1_3","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31T1UPIL_1_4","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31T1UPIL_1_5","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31T1UPIL_1_6","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31T1UPIL_1_7","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31T1UPIL_1_8","score":0.5} {"chain_id":"3Y5140Z9DXFSNMRU5H7RFA31T1UPIL_1_9","score":0.5} {"chain_id":"3Y54SXRO1LKVO5F1GF5P3NS9EMXTU9_1_1","score":0.5} {"chain_id":"3Y54SXRO1LKVO5F1GF5P3NS9EMXTU9_1_10","score":0.5} {"chain_id":"3Y54SXRO1LKVO5F1GF5P3NS9EMXTU9_1_2","score":0.5} {"chain_id":"3Y54SXRO1LKVO5F1GF5P3NS9EMXTU9_1_3","score":0.5} {"chain_id":"3Y54SXRO1LKVO5F1GF5P3NS9EMXTU9_1_4","score":0.5} {"chain_id":"3Y54SXRO1LKVO5F1GF5P3NS9EMXTU9_1_5","score":0.5} {"chain_id":"3Y54SXRO1LKVO5F1GF5P3NS9EMXTU9_1_6","score":0.5} {"chain_id":"3Y54SXRO1LKVO5F1GF5P3NS9EMXTU9_1_7","score":0.5} {"chain_id":"3Y54SXRO1LKVO5F1GF5P3NS9EMXTU9_1_8","score":0.5} {"chain_id":"3Y54SXRO1LKVO5F1GF5P3NS9EMXTU9_1_9","score":0.5} {"chain_id":"3YDGXNSEOZTD9NTYYB3CZNYSX5F48D_1_1","score":0.5} {"chain_id":"3YDGXNSEOZTD9NTYYB3CZNYSX5F48D_1_10","score":0.5} {"chain_id":"3YDGXNSEOZTD9NTYYB3CZNYSX5F48D_1_2","score":0.5} {"chain_id":"3YDGXNSEOZTD9NTYYB3CZNYSX5F48D_1_3","score":0.5} {"chain_id":"3YDGXNSEOZTD9NTYYB3CZNYSX5F48D_1_4","score":0.5} {"chain_id":"3YDGXNSEOZTD9NTYYB3CZNYSX5F48D_1_5","score":0.5} {"chain_id":"3YDGXNSEOZTD9NTYYB3CZNYSX5F48D_1_6","score":0.5} {"chain_id":"3YDGXNSEOZTD9NTYYB3CZNYSX5F48D_1_7","score":0.5} {"chain_id":"3YDGXNSEOZTD9NTYYB3CZNYSX5F48D_1_8","score":0.5} {"chain_id":"3YDGXNSEOZTD9NTYYB3CZNYSX5F48D_1_9","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKJVK41W_1_1","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKJVK41W_1_10","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKJVK41W_1_2","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKJVK41W_1_3","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKJVK41W_1_4","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKJVK41W_1_5","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKJVK41W_1_6","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKJVK41W_1_7","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKJVK41W_1_8","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKJVK41W_1_9","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKWCQ14A_1_1","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKWCQ14A_1_10","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKWCQ14A_1_2","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKWCQ14A_1_3","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKWCQ14A_1_4","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKWCQ14A_1_5","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKWCQ14A_1_6","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKWCQ14A_1_7","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKWCQ14A_1_8","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKWCQ14A_1_9","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKXTS14B_1_1","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKXTS14B_1_10","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKXTS14B_1_2","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKXTS14B_1_3","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKXTS14B_1_4","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKXTS14B_1_5","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKXTS14B_1_6","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKXTS14B_1_7","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKXTS14B_1_8","score":0.5} {"chain_id":"3YDTZAI2WXFVYN9DZQUXKDBKXTS14B_1_9","score":0.5} {"chain_id":"3YGXWBAF70GFLQJBFNJH19UBM86C4K_1_1","score":0.5} {"chain_id":"3YGXWBAF70GFLQJBFNJH19UBM86C4K_1_10","score":0.5} {"chain_id":"3YGXWBAF70GFLQJBFNJH19UBM86C4K_1_2","score":0.5} {"chain_id":"3YGXWBAF70GFLQJBFNJH19UBM86C4K_1_3","score":0.5} {"chain_id":"3YGXWBAF70GFLQJBFNJH19UBM86C4K_1_4","score":0.5} {"chain_id":"3YGXWBAF70GFLQJBFNJH19UBM86C4K_1_5","score":0.5} {"chain_id":"3YGXWBAF70GFLQJBFNJH19UBM86C4K_1_6","score":0.5} {"chain_id":"3YGXWBAF70GFLQJBFNJH19UBM86C4K_1_7","score":0.5} {"chain_id":"3YGXWBAF70GFLQJBFNJH19UBM86C4K_1_8","score":0.5} {"chain_id":"3YGXWBAF70GFLQJBFNJH19UBM86C4K_1_9","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQ6KGHN_1_1","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQ6KGHN_1_10","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQ6KGHN_1_2","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQ6KGHN_1_3","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQ6KGHN_1_4","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQ6KGHN_1_5","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQ6KGHN_1_6","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQ6KGHN_1_7","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQ6KGHN_1_8","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQ6KGHN_1_9","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQNJGHK_1_1","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQNJGHK_1_10","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQNJGHK_1_2","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQNJGHK_1_3","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQNJGHK_1_4","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQNJGHK_1_5","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQNJGHK_1_6","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQNJGHK_1_7","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQNJGHK_1_8","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUQNJGHK_1_9","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUU04HG0_1_1","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUU04HG0_1_10","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUU04HG0_1_2","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUU04HG0_1_3","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUU04HG0_1_4","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUU04HG0_1_5","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUU04HG0_1_6","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUU04HG0_1_7","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUU04HG0_1_8","score":0.5} {"chain_id":"3YMU66OBIN7MEENBWGZJLPOUU04HG0_1_9","score":0.5} {"chain_id":"3YOH7BII096WY1EERW12YI7W620KV9_1_1","score":0.5} {"chain_id":"3YOH7BII096WY1EERW12YI7W620KV9_1_10","score":0.5} {"chain_id":"3YOH7BII096WY1EERW12YI7W620KV9_1_2","score":0.5} {"chain_id":"3YOH7BII096WY1EERW12YI7W620KV9_1_3","score":0.5} {"chain_id":"3YOH7BII096WY1EERW12YI7W620KV9_1_4","score":0.5} {"chain_id":"3YOH7BII096WY1EERW12YI7W620KV9_1_5","score":0.5} {"chain_id":"3YOH7BII096WY1EERW12YI7W620KV9_1_6","score":0.5} {"chain_id":"3YOH7BII096WY1EERW12YI7W620KV9_1_7","score":0.5} {"chain_id":"3YOH7BII096WY1EERW12YI7W620KV9_1_8","score":0.5} {"chain_id":"3YOH7BII096WY1EERW12YI7W620KV9_1_9","score":0.5} {"chain_id":"3YT88D1N08XCMSCV7MVWFNFDSY13KY_1_1","score":0.5} {"chain_id":"3YT88D1N08XCMSCV7MVWFNFDSY13KY_1_10","score":0.5} {"chain_id":"3YT88D1N08XCMSCV7MVWFNFDSY13KY_1_2","score":0.5} {"chain_id":"3YT88D1N08XCMSCV7MVWFNFDSY13KY_1_3","score":0.5} {"chain_id":"3YT88D1N08XCMSCV7MVWFNFDSY13KY_1_4","score":0.5} {"chain_id":"3YT88D1N08XCMSCV7MVWFNFDSY13KY_1_5","score":0.5} {"chain_id":"3YT88D1N08XCMSCV7MVWFNFDSY13KY_1_6","score":0.5} {"chain_id":"3YT88D1N08XCMSCV7MVWFNFDSY13KY_1_7","score":0.5} {"chain_id":"3YT88D1N08XCMSCV7MVWFNFDSY13KY_1_8","score":0.5} {"chain_id":"3YT88D1N08XCMSCV7MVWFNFDSY13KY_1_9","score":0.5} {"chain_id":"3YW4XOSQKQKUFL3SEWLFXH9EM6CU1D_1_1","score":0.5} {"chain_id":"3YW4XOSQKQKUFL3SEWLFXH9EM6CU1D_1_10","score":0.5} {"chain_id":"3YW4XOSQKQKUFL3SEWLFXH9EM6CU1D_1_2","score":0.5} {"chain_id":"3YW4XOSQKQKUFL3SEWLFXH9EM6CU1D_1_3","score":0.5} {"chain_id":"3YW4XOSQKQKUFL3SEWLFXH9EM6CU1D_1_4","score":0.5} {"chain_id":"3YW4XOSQKQKUFL3SEWLFXH9EM6CU1D_1_5","score":0.5} {"chain_id":"3YW4XOSQKQKUFL3SEWLFXH9EM6CU1D_1_6","score":0.5} {"chain_id":"3YW4XOSQKQKUFL3SEWLFXH9EM6CU1D_1_7","score":0.5} {"chain_id":"3YW4XOSQKQKUFL3SEWLFXH9EM6CU1D_1_8","score":0.5} {"chain_id":"3YW4XOSQKQKUFL3SEWLFXH9EM6CU1D_1_9","score":0.5} {"chain_id":"3YWRV122CSYCQLNDDHUUCRWMTO78UH_1_1","score":0.5} {"chain_id":"3YWRV122CSYCQLNDDHUUCRWMTO78UH_1_10","score":0.5} {"chain_id":"3YWRV122CSYCQLNDDHUUCRWMTO78UH_1_2","score":0.5} {"chain_id":"3YWRV122CSYCQLNDDHUUCRWMTO78UH_1_3","score":0.5} {"chain_id":"3YWRV122CSYCQLNDDHUUCRWMTO78UH_1_4","score":0.5} {"chain_id":"3YWRV122CSYCQLNDDHUUCRWMTO78UH_1_5","score":0.5} {"chain_id":"3YWRV122CSYCQLNDDHUUCRWMTO78UH_1_6","score":0.5} {"chain_id":"3YWRV122CSYCQLNDDHUUCRWMTO78UH_1_7","score":0.5} {"chain_id":"3YWRV122CSYCQLNDDHUUCRWMTO78UH_1_8","score":0.5} {"chain_id":"3YWRV122CSYCQLNDDHUUCRWMTO78UH_1_9","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5KTACU2_1_1","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5KTACU2_1_10","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5KTACU2_1_2","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5KTACU2_1_3","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5KTACU2_1_4","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5KTACU2_1_5","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5KTACU2_1_6","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5KTACU2_1_7","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5KTACU2_1_8","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5KTACU2_1_9","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5ODRUC9_1_1","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5ODRUC9_1_10","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5ODRUC9_1_2","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5ODRUC9_1_3","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5ODRUC9_1_4","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5ODRUC9_1_5","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5ODRUC9_1_6","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5ODRUC9_1_7","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5ODRUC9_1_8","score":0.5} {"chain_id":"3YZ8UPK3VTLE2ODQUTAZEDS5ODRUC9_1_9","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGMF2E2F_1_1","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGMF2E2F_1_10","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGMF2E2F_1_2","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGMF2E2F_1_3","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGMF2E2F_1_4","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGMF2E2F_1_5","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGMF2E2F_1_6","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGMF2E2F_1_7","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGMF2E2F_1_8","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGMF2E2F_1_9","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGNTUE20_1_1","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGNTUE20_1_10","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGNTUE20_1_2","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGNTUE20_1_3","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGNTUE20_1_4","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGNTUE20_1_5","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGNTUE20_1_6","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGNTUE20_1_7","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGNTUE20_1_8","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGNTUE20_1_9","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGO4DE26_1_1","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGO4DE26_1_10","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGO4DE26_1_2","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGO4DE26_1_3","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGO4DE26_1_4","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGO4DE26_1_5","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGO4DE26_1_6","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGO4DE26_1_7","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGO4DE26_1_8","score":0.5} {"chain_id":"3Z2R0DQ0JHDKFAO2706OYIXGO4DE26_1_9","score":0.5} {"chain_id":"3Z4AIRP3C6CMWPXNJ1W2HO8IPXQX1W_1_1","score":0.5} {"chain_id":"3Z4AIRP3C6CMWPXNJ1W2HO8IPXQX1W_1_10","score":0.5} {"chain_id":"3Z4AIRP3C6CMWPXNJ1W2HO8IPXQX1W_1_2","score":0.5} {"chain_id":"3Z4AIRP3C6CMWPXNJ1W2HO8IPXQX1W_1_3","score":0.5} {"chain_id":"3Z4AIRP3C6CMWPXNJ1W2HO8IPXQX1W_1_4","score":0.5} {"chain_id":"3Z4AIRP3C6CMWPXNJ1W2HO8IPXQX1W_1_5","score":0.5} {"chain_id":"3Z4AIRP3C6CMWPXNJ1W2HO8IPXQX1W_1_6","score":0.5} {"chain_id":"3Z4AIRP3C6CMWPXNJ1W2HO8IPXQX1W_1_7","score":0.5} {"chain_id":"3Z4AIRP3C6CMWPXNJ1W2HO8IPXQX1W_1_8","score":0.5} {"chain_id":"3Z4AIRP3C6CMWPXNJ1W2HO8IPXQX1W_1_9","score":0.5} {"chain_id":"3Z4XG4ZF48Q47PH8IM5HWYVQTKXX85_1_1","score":0.5} {"chain_id":"3Z4XG4ZF48Q47PH8IM5HWYVQTKXX85_1_10","score":0.5} {"chain_id":"3Z4XG4ZF48Q47PH8IM5HWYVQTKXX85_1_2","score":0.5} {"chain_id":"3Z4XG4ZF48Q47PH8IM5HWYVQTKXX85_1_3","score":0.5} {"chain_id":"3Z4XG4ZF48Q47PH8IM5HWYVQTKXX85_1_4","score":0.5} {"chain_id":"3Z4XG4ZF48Q47PH8IM5HWYVQTKXX85_1_5","score":0.5} {"chain_id":"3Z4XG4ZF48Q47PH8IM5HWYVQTKXX85_1_6","score":0.5} {"chain_id":"3Z4XG4ZF48Q47PH8IM5HWYVQTKXX85_1_7","score":0.5} {"chain_id":"3Z4XG4ZF48Q47PH8IM5HWYVQTKXX85_1_8","score":0.5} {"chain_id":"3Z4XG4ZF48Q47PH8IM5HWYVQTKXX85_1_9","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB104M8Z7_1_1","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB104M8Z7_1_10","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB104M8Z7_1_2","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB104M8Z7_1_3","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB104M8Z7_1_4","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB104M8Z7_1_5","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB104M8Z7_1_6","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB104M8Z7_1_7","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB104M8Z7_1_8","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB104M8Z7_1_9","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB11JPZ8W_1_1","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB11JPZ8W_1_10","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB11JPZ8W_1_2","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB11JPZ8W_1_3","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB11JPZ8W_1_4","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB11JPZ8W_1_5","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB11JPZ8W_1_6","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB11JPZ8W_1_7","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB11JPZ8W_1_8","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB11JPZ8W_1_9","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1Z8I8ZA_1_1","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1Z8I8ZA_1_10","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1Z8I8ZA_1_2","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1Z8I8ZA_1_3","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1Z8I8ZA_1_4","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1Z8I8ZA_1_5","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1Z8I8ZA_1_6","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1Z8I8ZA_1_7","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1Z8I8ZA_1_8","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1Z8I8ZA_1_9","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1ZFU8Z0_1_1","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1ZFU8Z0_1_10","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1ZFU8Z0_1_2","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1ZFU8Z0_1_3","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1ZFU8Z0_1_4","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1ZFU8Z0_1_5","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1ZFU8Z0_1_6","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1ZFU8Z0_1_7","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1ZFU8Z0_1_8","score":0.5} {"chain_id":"3Z7ISHFUH0UTCKHNJ4T2TJB1ZFU8Z0_1_9","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNUE0KH8_1_1","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNUE0KH8_1_10","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNUE0KH8_1_2","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNUE0KH8_1_3","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNUE0KH8_1_4","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNUE0KH8_1_5","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNUE0KH8_1_6","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNUE0KH8_1_7","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNUE0KH8_1_8","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNUE0KH8_1_9","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNYJRHKA_1_1","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNYJRHKA_1_10","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNYJRHKA_1_2","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNYJRHKA_1_3","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNYJRHKA_1_4","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNYJRHKA_1_5","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNYJRHKA_1_6","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNYJRHKA_1_7","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNYJRHKA_1_8","score":0.5} {"chain_id":"3Z9WI9EOZZNRG0JUM7KYJHGNYJRHKA_1_9","score":0.5} {"chain_id":"3ZAK8W07I4DU8WIAIDHFJCQ4HRQ0UQ_1_1","score":0.5} {"chain_id":"3ZAK8W07I4DU8WIAIDHFJCQ4HRQ0UQ_1_10","score":0.5} {"chain_id":"3ZAK8W07I4DU8WIAIDHFJCQ4HRQ0UQ_1_2","score":0.5} {"chain_id":"3ZAK8W07I4DU8WIAIDHFJCQ4HRQ0UQ_1_3","score":0.5} {"chain_id":"3ZAK8W07I4DU8WIAIDHFJCQ4HRQ0UQ_1_4","score":0.5} {"chain_id":"3ZAK8W07I4DU8WIAIDHFJCQ4HRQ0UQ_1_5","score":0.5} {"chain_id":"3ZAK8W07I4DU8WIAIDHFJCQ4HRQ0UQ_1_6","score":0.5} {"chain_id":"3ZAK8W07I4DU8WIAIDHFJCQ4HRQ0UQ_1_7","score":0.5} {"chain_id":"3ZAK8W07I4DU8WIAIDHFJCQ4HRQ0UQ_1_8","score":0.5} {"chain_id":"3ZAK8W07I4DU8WIAIDHFJCQ4HRQ0UQ_1_9","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57K12ECZD_1_1","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57K12ECZD_1_10","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57K12ECZD_1_2","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57K12ECZD_1_3","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57K12ECZD_1_4","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57K12ECZD_1_5","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57K12ECZD_1_6","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57K12ECZD_1_7","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57K12ECZD_1_8","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57K12ECZD_1_9","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57KRHLCZ4_1_1","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57KRHLCZ4_1_10","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57KRHLCZ4_1_2","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57KRHLCZ4_1_3","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57KRHLCZ4_1_4","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57KRHLCZ4_1_5","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57KRHLCZ4_1_6","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57KRHLCZ4_1_7","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57KRHLCZ4_1_8","score":0.5} {"chain_id":"3ZAZR5XV01HVON700G97V57KRHLCZ4_1_9","score":0.5} {"chain_id":"3ZDAD0O1T1CN599WLKGCNURD0CZTXU_1_1","score":0.5} {"chain_id":"3ZDAD0O1T1CN599WLKGCNURD0CZTXU_1_10","score":0.5} {"chain_id":"3ZDAD0O1T1CN599WLKGCNURD0CZTXU_1_2","score":0.5} {"chain_id":"3ZDAD0O1T1CN599WLKGCNURD0CZTXU_1_3","score":0.5} {"chain_id":"3ZDAD0O1T1CN599WLKGCNURD0CZTXU_1_4","score":0.5} {"chain_id":"3ZDAD0O1T1CN599WLKGCNURD0CZTXU_1_5","score":0.5} {"chain_id":"3ZDAD0O1T1CN599WLKGCNURD0CZTXU_1_6","score":0.5} {"chain_id":"3ZDAD0O1T1CN599WLKGCNURD0CZTXU_1_7","score":0.5} {"chain_id":"3ZDAD0O1T1CN599WLKGCNURD0CZTXU_1_8","score":0.5} {"chain_id":"3ZDAD0O1T1CN599WLKGCNURD0CZTXU_1_9","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OAW8TZ8_1_1","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OAW8TZ8_1_10","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OAW8TZ8_1_2","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OAW8TZ8_1_3","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OAW8TZ8_1_4","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OAW8TZ8_1_5","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OAW8TZ8_1_6","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OAW8TZ8_1_7","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OAW8TZ8_1_8","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OAW8TZ8_1_9","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OBC1ZT4_1_1","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OBC1ZT4_1_10","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OBC1ZT4_1_2","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OBC1ZT4_1_3","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OBC1ZT4_1_4","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OBC1ZT4_1_5","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OBC1ZT4_1_6","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OBC1ZT4_1_7","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OBC1ZT4_1_8","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OBC1ZT4_1_9","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OC9GZTE_1_1","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OC9GZTE_1_10","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OC9GZTE_1_2","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OC9GZTE_1_3","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OC9GZTE_1_4","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OC9GZTE_1_5","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OC9GZTE_1_6","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OC9GZTE_1_7","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OC9GZTE_1_8","score":0.5} {"chain_id":"3ZGVPD4G6TGCA49BM24XKF7OC9GZTE_1_9","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ5OS9_1_1","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ5OS9_1_10","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ5OS9_1_2","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ5OS9_1_3","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ5OS9_1_4","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ5OS9_1_5","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ5OS9_1_6","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ5OS9_1_7","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ5OS9_1_8","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ5OS9_1_9","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ6OSA_1_1","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ6OSA_1_10","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ6OSA_1_2","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ6OSA_1_3","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ6OSA_1_4","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ6OSA_1_5","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ6OSA_1_6","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ6OSA_1_7","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ6OSA_1_8","score":0.5} {"chain_id":"3ZOTGHDK5IAZW0IPVTOQUC4YRZ6OSA_1_9","score":0.5} {"chain_id":"3ZPPDN2SLVVVFU91S9L3855UXK79E0_1_1","score":0.5} {"chain_id":"3ZPPDN2SLVVVFU91S9L3855UXK79E0_1_10","score":0.5} {"chain_id":"3ZPPDN2SLVVVFU91S9L3855UXK79E0_1_2","score":0.5} {"chain_id":"3ZPPDN2SLVVVFU91S9L3855UXK79E0_1_3","score":0.5} {"chain_id":"3ZPPDN2SLVVVFU91S9L3855UXK79E0_1_4","score":0.5} {"chain_id":"3ZPPDN2SLVVVFU91S9L3855UXK79E0_1_5","score":0.5} {"chain_id":"3ZPPDN2SLVVVFU91S9L3855UXK79E0_1_6","score":0.5} {"chain_id":"3ZPPDN2SLVVVFU91S9L3855UXK79E0_1_7","score":0.5} {"chain_id":"3ZPPDN2SLVVVFU91S9L3855UXK79E0_1_8","score":0.5} {"chain_id":"3ZPPDN2SLVVVFU91S9L3855UXK79E0_1_9","score":0.5} {"chain_id":"3ZQIG0FLQEFNT18VGAK5MT1RQGCWVV_1_1","score":0.5} {"chain_id":"3ZQIG0FLQEFNT18VGAK5MT1RQGCWVV_1_10","score":0.5} {"chain_id":"3ZQIG0FLQEFNT18VGAK5MT1RQGCWVV_1_2","score":0.5} {"chain_id":"3ZQIG0FLQEFNT18VGAK5MT1RQGCWVV_1_3","score":0.5} {"chain_id":"3ZQIG0FLQEFNT18VGAK5MT1RQGCWVV_1_4","score":0.5} {"chain_id":"3ZQIG0FLQEFNT18VGAK5MT1RQGCWVV_1_5","score":0.5} {"chain_id":"3ZQIG0FLQEFNT18VGAK5MT1RQGCWVV_1_6","score":0.5} {"chain_id":"3ZQIG0FLQEFNT18VGAK5MT1RQGCWVV_1_7","score":0.5} {"chain_id":"3ZQIG0FLQEFNT18VGAK5MT1RQGCWVV_1_8","score":0.5} {"chain_id":"3ZQIG0FLQEFNT18VGAK5MT1RQGCWVV_1_9","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SABCZ04P_1_1","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SABCZ04P_1_10","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SABCZ04P_1_2","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SABCZ04P_1_3","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SABCZ04P_1_4","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SABCZ04P_1_5","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SABCZ04P_1_6","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SABCZ04P_1_7","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SABCZ04P_1_8","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SABCZ04P_1_9","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SADLM04W_1_1","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SADLM04W_1_10","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SADLM04W_1_2","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SADLM04W_1_3","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SADLM04W_1_4","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SADLM04W_1_5","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SADLM04W_1_6","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SADLM04W_1_7","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SADLM04W_1_8","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SADLM04W_1_9","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SAHS704Z_1_1","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SAHS704Z_1_10","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SAHS704Z_1_2","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SAHS704Z_1_3","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SAHS704Z_1_4","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SAHS704Z_1_5","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SAHS704Z_1_6","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SAHS704Z_1_7","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SAHS704Z_1_8","score":0.5} {"chain_id":"3ZR9AIQJUB8VRYOV37QX68SAHS704Z_1_9","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVK2GBSFR_1_1","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVK2GBSFR_1_10","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVK2GBSFR_1_2","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVK2GBSFR_1_3","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVK2GBSFR_1_4","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVK2GBSFR_1_5","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVK2GBSFR_1_6","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVK2GBSFR_1_7","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVK2GBSFR_1_8","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVK2GBSFR_1_9","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVKCJSSFO_1_1","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVKCJSSFO_1_10","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVKCJSSFO_1_2","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVKCJSSFO_1_3","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVKCJSSFO_1_4","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVKCJSSFO_1_5","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVKCJSSFO_1_6","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVKCJSSFO_1_7","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVKCJSSFO_1_8","score":0.5} {"chain_id":"3ZSANO2JCF65QN5WWQ507IVKCJSSFO_1_9","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z22AHRO6_1_1","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z22AHRO6_1_10","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z22AHRO6_1_2","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z22AHRO6_1_3","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z22AHRO6_1_4","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z22AHRO6_1_5","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z22AHRO6_1_6","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z22AHRO6_1_7","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z22AHRO6_1_8","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z22AHRO6_1_9","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z23NGORT_1_1","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z23NGORT_1_10","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z23NGORT_1_2","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z23NGORT_1_3","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z23NGORT_1_4","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z23NGORT_1_5","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z23NGORT_1_6","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z23NGORT_1_7","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z23NGORT_1_8","score":0.5} {"chain_id":"3ZSY5X72NXANVLICG4OL42Z23NGORT_1_9","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98EGDW3B_1_1","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98EGDW3B_1_10","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98EGDW3B_1_2","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98EGDW3B_1_3","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98EGDW3B_1_4","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98EGDW3B_1_5","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98EGDW3B_1_6","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98EGDW3B_1_7","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98EGDW3B_1_8","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98EGDW3B_1_9","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98ZXCW3T_1_1","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98ZXCW3T_1_10","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98ZXCW3T_1_2","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98ZXCW3T_1_3","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98ZXCW3T_1_4","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98ZXCW3T_1_5","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98ZXCW3T_1_6","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98ZXCW3T_1_7","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98ZXCW3T_1_8","score":0.5} {"chain_id":"3ZV9H2YQQD63HS6CW0EZ3Y98ZXCW3T_1_9","score":0.5} {"chain_id":"3ZWFC4W1UU6TP85JH15VH8QOA39FRF_1_1","score":0.5} {"chain_id":"3ZWFC4W1UU6TP85JH15VH8QOA39FRF_1_10","score":0.5} {"chain_id":"3ZWFC4W1UU6TP85JH15VH8QOA39FRF_1_2","score":0.5} {"chain_id":"3ZWFC4W1UU6TP85JH15VH8QOA39FRF_1_3","score":0.5} {"chain_id":"3ZWFC4W1UU6TP85JH15VH8QOA39FRF_1_4","score":0.5} {"chain_id":"3ZWFC4W1UU6TP85JH15VH8QOA39FRF_1_5","score":0.5} {"chain_id":"3ZWFC4W1UU6TP85JH15VH8QOA39FRF_1_6","score":0.5} {"chain_id":"3ZWFC4W1UU6TP85JH15VH8QOA39FRF_1_7","score":0.5} {"chain_id":"3ZWFC4W1UU6TP85JH15VH8QOA39FRF_1_8","score":0.5} {"chain_id":"3ZWFC4W1UU6TP85JH15VH8QOA39FRF_1_9","score":0.5}
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/eqasc/data/dummy_predictions_dev.jsonl/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/eqasc/data/dummy_predictions_dev.jsonl", "repo_id": "ContextualSP", "token_count": 353770 }
242
## ProPara datasets This directory contains dev, train and test datasets. * [dev](dev/) contains the dev dataset for developing your predictor * [train](train/) contains the training dataset for evaluating your predictor during development * [test](test/) contains the test dataset for evaluation on the [ProPara Leaderboard](https://leaderboard.allenai.org/). Each subdirectory contains `answers.tsv` and `dummy-predictions.tsv` files. In addition each has a `sentences.tsv` file as a convenience to discover the process paragraphs for each process id.
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/data/README.md/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/data/README.md", "repo_id": "ContextualSP", "token_count": 147 }
243
# ProPara Evaluator ## Example ``` % export PYTHONPATH=. % python3 evaluator.py --predictions testfiles-1/predictions.tsv --answers testfiles-1/answers.tsv --output /tmp/metrics.json ================================================= Question Avg. Precision Avg. Recall Avg. F1 ------------------------------------------------- Inputs 0.793 0.597 0.681 Outputs 0.739 0.593 0.658 Conversions 0.878 0.200 0.326 Moves 0.563 0.331 0.417 ------------------------------------------------- Overall Precision 0.743 Overall Recall 0.430 Overall F1 0.545 ================================================= Evaluated 54 predictions against 54 answers. % cat /tmp/metrics.json {"precision": 0.743, "recall": 0.43, "f1": 0.545} ``` ## Usage The script requires prediction and answer input files, and produces a report to standard out. You'll need Python 3.6 or newer to run it. Optional: * the argument `--output` writes the overall precision, recall and F1 score to a JSON file. * the argument `--diagnostics` writes a diagnostic file with process summaries (an intermediate representation of each process) and their scores. * the argument `--sentences` reads sentences from a sentences file and includes them in the diagnostics file. See [sentences.tsv files in the ../data directory](../data/). ## Evaluation process ### Overview The task is to predict what happens to specific participants in each sentence of a process paragraph. This prediction for a process is summarized to answer four key questions: 1. **What are the Inputs?** (i.e., Which participants existed before the process began, and don't exist after the process ended? Or, what participants were consumed?) 2. **What are the Outputs?** (i.e., Which participants existed after the process ended, but didn't exist before the process began? Or, what participants were produced?) 3. **What are the Conversions?** (i.e., Which participants were converted to which other participants?) 4. **What are the Moves?** (i.e., Which participants moved from one location to another?) The proposed answers (prediction) to these questions are compared to the correct answers (gold) to arrive at a score for each question. These scores are aggregated over all processes to arrive at a final performance score represented by precision, recall and F1 calculations. ### Details The process of evaluating predictions can be divided into four steps. #### Step 1. Reading the action file An **action file** is a file with tab-separated values representing a table of actions for participants in sentences of process paragraphs. For example, consider process 1167 from the training set, consisting of five sentences: > ① The gravity of the sun pulls its mass inward. ② There is a lot of pressure > on the Sun. ③ The pressure forces atoms of hydrogen to fuse together in > nuclear reactions. ④ The energy from the reactions gives off different kinds > of light. ⑤ The light travels to the Earth. For this process paragraph, the objective is to decide what happens to the two participants "atoms of hydrogen" and "sunlight; light" by filling in the three blank columns in a six-column table: | ProcessID | Sentence | Participant(s) | Action | Location Before | Location After | | --------- | -------- | ----------------- | ------ | ----------------- | -------------- | | 1167 | 1 | atoms of hydrogen | | | | | 1167 | 1 | sunlight; light | | | | | 1167 | 2 | atoms of hydrogen | | | | | 1167 | 2 | sunlight; light | | | | | 1167 | 3 | atoms of hydrogen | | | | | 1167 | 3 | sunlight; light | | | | | 1167 | 4 | atoms of hydrogen | | | | | 1167 | 4 | sunlight; light | | | | | 1167 | 5 | atoms of hydrogen | | | | | 1167 | 5 | sunlight; light | | | | A TSV file with this table is called an **action file** because each row in the table represents what happens to a specific participant in a specific sentence in a specific process paragraph. The first three columns are fixed, and provided to you: * **ProcessID** (column 1): This is the identifier for the process paragraph. * **Sentence** (column 2): This is the sentence number (starting with 1) in the process paragraph. * **Participant(s)** (column 3): This is usually a span from the process paragraph identifying an interesting participant. It may contain a `;` character to delimit alternative participants (e.g., coreferent mentions of `sunlight` and `light`.) See section **Scoring each process** for another example. Your prediction action file must contain these three columns verbatim to be admitted for evaluation. The last three columns are to be predicted. * **Action** (column 4): This should describe what happens to the participant in this sentence. It must be one of `NONE`, `CREATE`, `MOVE`, or `DESTROY`. * **Location Before** (column 5): This should describe the location of the participant (column 3) before this sentence (column 2). * **Location After** (column 6): This should describe the location of the participant (column 3) after this sentence (column 2). Specifically, there are rules for the locations based on the kind of action happening. * If the **Action** is `NONE`, then... * **Location Before** and **Location After** must be equal. The special value `?` means the participant's location is unknown to the predictor, and the special value `-` means the participant doesn't exist. * If the **Action** is `CREATE`, then... * **Location Before** must be `-` to mean that the participant didn't exist before this sentence. * **Location After** is the location where the participant was created. The special value `?` means the participant was created but the location is unknown to the predictor. * If the **Action** is `MOVE`, then... * **Location Before** is the location from where the participant moved. The special value `?` means the participant existed before this sentence, but its location is unknown to the predictor. * **Location After** is the location to where the participant moved. The special value `?` means the participant existed after this sentence, but its location is unknown to the predictor. * If the **Action** is `DESTROY`, then... * **Location Before** is the location where the participant was destroyed. The special value `?` means the participant was destroyed but the location is unknown to the predictor. * **Location After** must be `-` to mean that the participant didn't exist after this sentence. If your prediction file does not meet these requirements, evaluation will abort. For example, a valid prediction for the above paragraph might be: | ProcessID | Sentence | Participant(s) | Action | Location Before | Location After | | --------- | -------- | ----------------- | ------ | ----------------- | -------------- | | 1167 | 1 | atoms of hydrogen | NONE | - | - | | 1167 | 1 | sunlight; light | NONE | - | - | | 1167 | 2 | atoms of hydrogen | NONE | - | - | | 1167 | 2 | sunlight; light | NONE | - | - | | 1167 | 3 | atoms of hydrogen | DESTROY | star | - | | 1167 | 3 | sunlight; light | NONE | - | - | | 1167 | 4 | atoms of hydrogen | NONE | - | - | | 1167 | 4 | sunlight; light | CREATE | - | star | | 1167 | 5 | atoms of hydrogen | NONE | - | - | | 1167 | 5 | sunlight; light | MOVE | star | soil | This means: * In paragraph 1167, sentence 3, the participant `atoms of hydrogen` is destroyed at `star` * In paragraph 1167, sentence 4, the participant `sunlight; light` is created at `star` * In paragraph 1167, sentence 5, the participant `sunlight; light` is moved from `star` to `soil` **Note:** This is a somewhat contrived example to illustrate the scoring mechanism below. For comparison, the action file with the correct ("gold") answers is: | ProcessID | Sentence | Participant(s) | Action | Location Before | Location After | | --------- | -------- | ----------------- | ------ | ----------------- | -------------- | | 1167 | 1 | atoms of hydrogen | NONE | sun | sun | | 1167 | 1 | sunlight; light | NONE | sun | sun | | 1167 | 2 | atoms of hydrogen | DESTROY | sun | - | | 1167 | 2 | sunlight; light | NONE | - | - | | 1167 | 3 | atoms of hydrogen | NONE | - | - | | 1167 | 3 | sunlight; light | NONE | - | - | | 1167 | 4 | atoms of hydrogen | NONE | - | - | | 1167 | 4 | sunlight; light | CREATE | - | sun | | 1167 | 5 | atoms of hydrogen | NONE | - | - | | 1167 | 5 | sunlight; light | MOVE | sun | earth | That is: * In paragraph 1167, sentence 3, the participant `atoms of hydrogen` is destroyed at `sun` * In paragraph 1167, sentence 4, the participant `sunlight; light` is created at `sun` * In paragraph 1167, sentence 5, the participant `sunlight; light` is moved from `sun` to `earth` **Note:** You can use the `explainer.py` program to parse action files into explanations like the above. Next, these two action files are summarized. #### Step 2. Summarizing each process To compare predicted actions to answer actions, each process paragraph in these tables is summarized into answers to the four questions described above. For the above predictions, the internal summary can be seen in the diagnostics output like this: ```json { "prediction_summary": { "process_id": 1167, "inputs": { "participants": [ "atoms of hydrogen" ] }, "outputs": { "participants": [ "sunlight OR light" ] }, "conversions": null, "moves": [ { "participants": "sunlight OR light", "step_number": 5, "location_before": "star", "location_after": "soil" } ] } } ``` For the corresponding answer, the internal summary in the diagnostics output looks like this: ```json { "answer_summary": { "process_id": 1167, "inputs": { "participants": [ "atoms of hydrogen" ] }, "outputs": { "participants": [ "sunlight OR light" ] }, "conversions": [ { "participants_destroyed": "atoms of hydrogen", "participants_created": "sunlight OR light", "location": "sun", "step_number": 3 } ], "moves": [ { "participants": "sunlight OR light", "step_number": 5, "location_before": "sun", "location_after": "earth" } ] } } ``` To read the code that summarizes process paragraphs from an action file, look at the function `summarize_actions_file` and its uses. #### Step 3. Scoring each process The summary of a prediction can be compared to the corresponding answer by assigning precision and recall scores to each of these four questions. Internally, this is represented in JSON like this: ```json { "score": { "process_id": 1167, "inputs": { "precision": 1, "recall": 1 }, "outputs": { "precision": 1, "recall": 1 }, "conversions": { "precision": 1, "recall": 0 }, "moves": { "precision": 0.3333333333333333, "recall": 0.3333333333333333 } } } ``` In this case, the precision and recall of **What are the Inputs?** and **What are the Outputs?** is 1, because the prediction and answer both have the same summarization, even though the predicted locations of `CREATE` and `DESTROY` actions differ. Since the prediction did not describe any conversions, but the answers do, the recall for **What are the Conversions?** is 0. Finally, while the prediction did correctly describe that the participant `sunlight OR light` moved in sentence 5, the before and after locations are not correct. Therefore, the precision and recall suffer for the question **What are the Moves?** To read the code that compares these summaries, look at the functions `_score_inputs`, `_score_outputs`, `_score_conversions`, and `_score_moves` and their use. **Note about location comparison:** > Locations are normalized before comparison. > > Since you have to discover locations in the paragraph yourself when predicting > actions for specific participants, your locations may differ slightly from the > ones in the answers. > > For example, if the paragraph has `Ants walk on branches` and `The ant fell off > a branch` then the location of the ant could be written as `branches`, `a > branch`, or `branch`. Since your chosen span of the paragraph for this location > may differ from the correct answer, a process of normalization resolves any of > these variants to `branch`: first by lower casing the string, then removing > starting articles like `a` and finally using the Porter stemming algorithm to > settle on the final string. > > To see this in the code, look for the function `_compare_locations` and its uses. **Note about participant comparison:** > Participants are not normalized before comparison. > > Your predictor may have selected a participant from the process paragraph that is > not the one chosen for you in the answer. From the example above, if you predict > an action on the participant `Ants`, but the answer action is on participant `ant`, > your predicted action will not be matched. > > To see this in the code, look for the function `_compare_participants` and its uses. > > If your prediction refers to participants that are not in the answers, you'll see a > report alerting you to the difference and the evaluation will abort. To see this in > the code, look for the function `diff_participants` and its use. You should correct > these differences by predicting actions only on the participants chosen for you. That is, > your prediction's first three columns should match the first three columns of the answer > file. #### Step 4. Calculating an overall score The above process scores are aggregated to an overall performance score. To illustrate, consider the precision and recall scores (as computed above), in a table: <html> <table> <tr> <th rowspan="2">ProcessID</th> <th colspan="4">Precision</th> <th colspan="4">Recall</th> </tr> <tr> <td>Inputs</td> <td>Outputs</td> <td>Conversions</td> <td>Moves</td> <td>Inputs</td> <td>Outputs</td> <td>Conversions</td> <td>Moves</td> </tr> <tr> <td>1</td> <td>IP<sub>1</sub></td> <td>OP<sub>1</sub></td> <td>CP<sub>1</sub></td> <td>MP<sub>1</sub></td> <td>IR<sub>1</sub></td> <td>OR<sub>1</sub></td> <td>CR<sub>1</sub></td> <td>MR<sub>1</sub></td> </tr> <tr> <td>2</td> <td>IP<sub>2</sub></td> <td>OP<sub>2</sub></td> <td>CP<sub>2</sub></td> <td>MP<sub>2</sub></td> <td>IR<sub>2</sub></td> <td>OR<sub>2</sub></td> <td>CR<sub>2</sub></td> <td>MR<sub>2</sub></td> </tr> <tr> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> </tr> </table> </html> Given these precision and recall values, the overall performance is calculated as three numbers: * **Overall Precision P** = (Average of all IP + Average of all OP + Average of all CP + Average of all MP) / 4 * **Overall Recall R** = (Average of all IR + Average of all OR + Average of all CR + Average of all MR) / 4 * **Overall F1 score** = harmonic mean of P and R = 2 * (P * R) / (P + R) To read the code that calculates these final scores, look at the class `Evaluation`. ## Evaluator Development ### Testing Run this script to run a comprehensive suite of tests: ```bash ./test.sh ```
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/README.md/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/README.md", "repo_id": "ContextualSP", "token_count": 6079 }
244
import unittest from collections import OrderedDict from process.action_file import ActionFile from process.constants import NO_ACTION as NO_ACT from process.constants import NO_LOCATION as NO_LOC, CREATE, DESTROY, MOVE class TestSummarize(unittest.TestCase): def test_load(self): # Spot-check values loaded from an action file actionfile = ActionFile.from_file('testfiles-0/answers.tsv') # Process 514 self.assertEquals( OrderedDict([ ('glacier', [NO_LOC, NO_LOC, NO_LOC, NO_LOC, NO_LOC, NO_LOC, 'area', 'area']), ('mass', [NO_LOC, NO_LOC, NO_LOC, NO_LOC, NO_LOC, 'area', 'area', 'area']), ('snow', ['area', 'area', 'area', 'area', NO_LOC, NO_LOC, NO_LOC, NO_LOC]), ]), actionfile.locations[514], ) self.assertEquals( OrderedDict([ ('glacier', [NO_ACT, NO_ACT, NO_ACT, NO_ACT, NO_ACT, CREATE, NO_ACT]), ('mass', [NO_ACT, NO_ACT, NO_ACT, NO_ACT, CREATE, NO_ACT, NO_ACT]), ('snow', [NO_ACT, NO_ACT, NO_ACT, DESTROY, NO_ACT, NO_ACT, NO_ACT]), ]), actionfile.actions[514], ) self.assertEquals(7, actionfile.num_sentences[514]) # Process 540 self.assertEquals( OrderedDict([ ('air', ['unk', 'unk', 'unk', 'bronchiole', 'alveolus', 'unk', 'unk', 'unk', 'unk', 'unk', 'unk']), ('carbon dioxide', ['unk', 'unk', 'unk', 'unk', 'unk', 'bloodstream', 'bloodstream', 'alveolus', 'bronchiole', 'lung', 'body']), ('oxygen', ['unk', 'unk', 'unk', 'unk', 'unk', 'bloodstream', 'unk', 'unk', 'unk', 'unk', 'unk']), ]), actionfile.locations[540], ) self.assertEquals( OrderedDict([ ('air', [NO_ACT, NO_ACT, MOVE, MOVE, MOVE, NO_ACT, NO_ACT, NO_ACT, NO_ACT, NO_ACT]), ('carbon dioxide', [NO_ACT, NO_ACT, NO_ACT, NO_ACT, MOVE, NO_ACT, MOVE, MOVE, MOVE, MOVE]), ('oxygen', [NO_ACT, NO_ACT, NO_ACT, NO_ACT, MOVE, MOVE, NO_ACT, NO_ACT, NO_ACT, NO_ACT]), ]), actionfile.actions[540] ) self.assertEquals(10, actionfile.num_sentences[540]) if __name__ == '__main__': unittest.main()
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/process/test_action_file.py/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/process/test_action_file.py", "repo_id": "ContextualSP", "token_count": 1222 }
245
from typing import List, Set from text.stemmer import PorterStemmer # Extract term sets from a phrase containing " AND " and " OR " tokens. A phrase like "foo OR bar AND fnord OR gnarf" # is turned into a list of term sets like [{"foo", "bar"}, {"fnord", "gnarf"}] to match to another phrase's term sets. def extract_termsets(phrase: str) -> List[Set[str]]: outer = [p.strip() for p in phrase.split(" AND ")] inner = [set(item.split(" OR ")) for item in outer] return inner # Extract term sets from a phrase containing " AND " and " OR " tokens. A phrase like "foo OR bar AND fnord OR gnarf" # is turned into a list of term sets like [{"foo", "bar"}, {"fnord", "gnarf"}] to match to another phrase's term sets. # # This function normalizes each word. def extract_termsets_with_normalization(phrase: str) -> List[Set[str]]: outer = [p.strip() for p in phrase.split(" AND ")] inner = [set(_normalize_words(item.split(" OR "))) for item in outer] return inner def terms_overlap(phrase1_terms: List[Set[str]], phrase2_terms: List[Set[str]]): num = 0 for t1 in phrase1_terms: for t2 in phrase2_terms: if t1.intersection(t2): num += 1 return num def _normalize_words(words: List[str]) -> List[str]: stemmed = [] # type: List[str] for w in words: if not w or len(w.strip()) == 0: return [""] w_lower = w.lower() # Remove leading articles from the phrase (e.g., the rays => rays). articles = ["a", "an", "the", "your", "his", "their", "my", "another", "other", "this", "that"] starting_article = next((article for article in articles if w_lower.startswith(_leading_word(article))), None) if starting_article is not None: w_lower = w_lower.replace(_leading_word(starting_article), "", 1) # Porter stemmer: rays => ray stemmed.append(PorterStemmer().stem(w_lower).strip()) return stemmed def _leading_word(word): return word + " "
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/text/terms.py/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/text/terms.py", "repo_id": "ContextualSP", "token_count": 746 }
246
# TRACIE * [evaluator](evaluator/) is the program used by the AI2 Leaderboard to evaluate submitted predictions. * `data` holds the publicly available train and test sets (with hidden test labels), along with example prediction files (for testing the evaluator). ## Example usage To evaluate your predictions, run the following (on a toy prediction file that guesses `entailment` for every train instance, called `train_uniform_predictions.jsonl`). ```sh % python3 evaluator/evaluator.py --question_answers data/train_uniform.jsonl --predictions data/predictions.jsonl --output metrics.json % cat metrics.json {"total_acc": 0.5, "start_acc": 0.5, "end_acc": 0.5, "story_em": 0.0} ``` For usage of the evaluator, see the [evaluator README](evaluator/).
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/tracie/README.md/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/tracie/README.md", "repo_id": "ContextualSP", "token_count": 235 }
247
python build_ver_train.py --num_examples 10000 --local_rank 0 --start_index 0 & python build_ver_train.py --num_examples 10000 --local_rank 1 --start_index 10000 & python build_ver_train.py --num_examples 10000 --local_rank 2 --start_index 20000 & python build_ver_train.py --num_examples 10000 --local_rank 3 --start_index 30000 & python build_ver_train.py --num_examples 10000 --local_rank 4 --start_index 40000 & python build_ver_train.py --num_examples 10000 --local_rank 5 --start_index 50000 & python build_ver_train.py --num_examples 10000 --local_rank 6 --start_index 60000 & python build_ver_train.py --num_examples 10000 --local_rank 7 --start_index 70000 & python build_ver_train.py --num_examples 10000 --local_rank 8 --start_index 80000 & python build_ver_train.py --num_examples 10000 --local_rank 9 --start_index 90000 & python build_ver_train.py --num_examples 10000 --local_rank 10 --start_index 100000 & python build_ver_train.py --num_examples 10000 --local_rank 11 --start_index 110000 & python build_ver_train.py --num_examples 10000 --local_rank 12 --start_index 120000 & python build_ver_train.py --num_examples 10000 --local_rank 13 --start_index 130000 & python build_ver_train.py --num_examples 10000 --local_rank 14 --start_index 140000 & python build_ver_train.py --num_examples 10000 --local_rank 15 --start_index 150000 & python build_ver_train.py --num_examples 10000 --local_rank 16 --start_index 160000 & python build_ver_train.py --num_examples 10000 --local_rank 17 --start_index 170000 & python build_ver_train.py --num_examples 10000 --local_rank 18 --start_index 180000 & python build_ver_train.py --num_examples 10000 --local_rank 19 --start_index 190000 & python build_ver_train.py --num_examples 10000 --local_rank 20 --start_index 200000 & python build_ver_train.py --num_examples 10000 --local_rank 21 --start_index 210000 & python build_ver_train.py --num_examples 10000 --local_rank 22 --start_index 220000 & python build_ver_train.py --num_examples 10000 --local_rank 23 --start_index 230000 & python build_ver_train.py --num_examples 10000 --local_rank 24 --start_index 240000 & python build_ver_train.py --num_examples 10000 --local_rank 25 --start_index 250000 & python build_ver_train.py --num_examples 10000 --local_rank 26 --start_index 260000 & python build_ver_train.py --num_examples 10000 --local_rank 27 --start_index 270000 & python build_ver_train.py --num_examples 10000 --local_rank 28 --start_index 280000 & python build_ver_train.py --num_examples 10000 --local_rank 29 --start_index 290000 & python build_ver_train.py --num_examples 10000 --local_rank 30 --start_index 300000 & python build_ver_train.py --num_examples 10000 --local_rank 31 --start_index 310000 & python build_ver_train.py --num_examples 10000 --local_rank 32 --start_index 320000 & python build_ver_train.py --num_examples 10000 --local_rank 33 --start_index 330000 & python build_ver_train.py --num_examples 10000 --local_rank 34 --start_index 340000 & python build_ver_train.py --num_examples 10000 --local_rank 35 --start_index 350000 & python build_ver_train.py --num_examples 10000 --local_rank 36 --start_index 360000 & python build_ver_train.py --num_examples 10000 --local_rank 37 --start_index 370000 & python build_ver_train.py --num_examples 10000 --local_rank 38 --start_index 380000 & python build_ver_train.py --num_examples 10000 --local_rank 39 --start_index 390000 & python build_ver_train.py --num_examples 10000 --local_rank 40 --start_index 400000 & python build_ver_train.py --num_examples 10000 --local_rank 41 --start_index 410000 & python build_ver_train.py --num_examples 10000 --local_rank 42 --start_index 420000 & python build_ver_train.py --num_examples 10000 --local_rank 43 --start_index 430000 & python build_ver_train.py --num_examples 10000 --local_rank 44 --start_index 440000 & python build_ver_train.py --num_examples 10000 --local_rank 45 --start_index 450000 & python build_ver_train.py --num_examples 10000 --local_rank 46 --start_index 460000 & python build_ver_train.py --num_examples 10000 --local_rank 47 --start_index 470000 & python build_ver_train.py --num_examples 10000 --local_rank 48 --start_index 480000 & python build_ver_train.py --num_examples 10000 --local_rank 49 --start_index 490000
ContextualSP/logigan/corpus_construction/elastic_search/run_ver.sh/0
{ "file_path": "ContextualSP/logigan/corpus_construction/elastic_search/run_ver.sh", "repo_id": "ContextualSP", "token_count": 1350 }
248
from tqdm import tqdm, trange from transformers import AutoModelForSequenceClassification , AutoTokenizer import torch.nn as nn import argparse import copy from copy import deepcopy from torch.utils.data import Dataset, DataLoader, IterableDataset import os, sys, time import json import string import re from collections import Counter from datasets import Dataset, load_dataset, load_metric import numpy as np from transformers import Trainer, TrainingArguments from transformers.trainer_utils import PredictionOutput, EvalLoopOutput from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union import pandas as pd from torch.nn.functional import softmax import datasets datasets.set_caching_enabled(False) from parameters16g_es_corpusb import * def generate_ver_train_iter(pred): logits = pred.predictions pred_prob = np.exp(logits) / np.sum(np.exp(logits), axis=-1)[:,None].repeat(3, axis=-1) # 0 as entailment, 1 & 2 as non-ent ent_prob = pred_prob[:,0, None] non_ent_prob = pred_prob[:,1, None] + pred_prob[:,2, None] prob = np.concatenate([ent_prob, non_ent_prob], axis=-1) pred_labels = np.argmax(prob, axis=-1) if trainer.args.local_rank in [-1,0]: with open(ver_train_iter_path, "w") as f: inputs = infer_dataset["input"] outputs = infer_dataset["conclusion"] preds = infer_dataset["gen_conclusion"] for in_, out_, pred, label in zip(inputs, outputs, preds, pred_labels): example1 = {"input": in_, "conclusions": [pred,out_], "is_gold": [1 if 1 - int(label) == 1 else 0,1]} # pred # example2 = {"input": in_, "conclusion": out_, "is_gold": 1} # gold json.dump(example1, f); f.write("\n") # json.dump(example2, f); f.write("\n") print(len(inputs)) print(f"\n\n\nSuccess: ver_train_iter.jsonl has been created at {ver_train_iter_path}.\n\n") datasets = load_dataset('json', data_files={"infer": unlabeled_ver_train_iter_path}, download_mode='force_redownload') ### model setting setting 1 tokenizer = AutoTokenizer.from_pretrained("ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli") infer_dataset = datasets["infer"] encoder_max_length = 512 decoder_max_length = 128 def process_data_to_model_inputs(batch): inputs1 = batch["conclusion"] inputs2 = batch["gen_conclusion"] inputs = tokenizer(inputs1, inputs2, truncation=True, padding="max_length", max_length=encoder_max_length) batch["input_ids"] = inputs.input_ids batch["attention_mask"] = inputs.attention_mask return batch ## map train data workers = 8 infer_dataset = infer_dataset.map( process_data_to_model_inputs, batched=True, num_proc=workers, batch_size=16, load_from_cache_file=False, # necessary ) infer_dataset.set_format(type="torch", columns=["input_ids", "attention_mask"]) training_args = TrainingArguments( per_device_train_batch_size=1, per_device_eval_batch_size=nli_per_device_eval_batch_size, save_strategy="no", output_dir=nli_output_dir ) # model = BartForConditionalGeneration.from_pretrained("./pbart_checkpoints") model = AutoModelForSequenceClassification.from_pretrained("ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli") # pretrained bm 3, lp 3, nr 2 trainer = Trainer( model=model, tokenizer=tokenizer, args=training_args ) if __name__ == "__main__": # trainer.train() # trainer.predict(valid_dataset, ignore_keys=["encoder_last_hidden_state"]) pred = trainer.predict(infer_dataset, ignore_keys=["encoder_last_hidden_state"]) generate_ver_train_iter(pred)
ContextualSP/logigan/pre-training/nli_es.py/0
{ "file_path": "ContextualSP/logigan/pre-training/nli_es.py", "repo_id": "ContextualSP", "token_count": 1489 }
249
import json from collections import defaultdict import re FILTER_PRED = ["people.person.spouse_s/ns:people.marriage.spouse|ns:fictional_universe.fictional_character.married_to/ns:fictional_universe.marriage_of_fictional_characters.spouses", "people.person.sibling_s/ns:people.sibling_relationship.sibling|ns:fictional_universe.fictional_character.siblings/ns:fictional_universe.sibling_relationship_of_fictional_characters.siblings"] split = "mcd1" dir = f"./data/{split}/" test_file = f"{dir}/test/test_mask_predict_classification.csv" test_sparql = open(f"{dir}/test/test_target.txt") test_query = open(f"{dir}/test/test_encode.txt") test_mask_file = f"{dir}/test/test_mask_predict_mapping.csv" test_predict = json.loads(open(f"./output/esim-mask-{split}-predict").readlines()[0]) test_predict_prob = json.loads(open(f"./output/esim-mask-{split}-predict.prob").readlines()[0]) test_data = [i.strip().split('\t') for i in open(test_file).readlines()[1:]] test_mask_data = [i.strip().split('\t') for i in open(test_mask_file).readlines()[1:]] token_pred_dict_file = open("./data/phrase_table.pred").readlines() token_pred_dict = defaultdict(list) for i in token_pred_dict_file: i = eval(i.strip())[0] token_pred_dict[i[0]].append(i[1]) assert len(test_data) == len(test_mask_data) == len(test_predict) == len(test_predict_prob),print(len(test_data),len(test_mask_data),len(test_predict)) golden_dict = {i.strip():j.strip() for i, j in zip(test_query, test_sparql)} pred_dict = defaultdict(list) pos_error = 0 false_error = 0 right = 0 pred_1 = 0 pos_cnt = 0 false_errors, predicate_set, token_state = defaultdict(list), [], [] cur_query = '' for idx, info in enumerate(zip(test_data, test_predict, test_predict_prob)): item, pred_v, pred_prob = info if item[0] != cur_query: if len(predicate_set): for token, preds in predicate_set.items(): if token_state[token] == 0 and len(preds): max_idx, max_score, max_item = -1, float('-inf'), '' for pred in preds: if len(false_errors[pred]): false_errors[pred] = sorted(false_errors[pred], key = lambda k:k[2], reverse = True) if false_errors[pred][0][2] > max_score: max_pred = pred max_idx, max_item , max_score = false_errors[pred][0] if max_idx != -1: false_errors[max_pred].pop(0) simplified_query = max_item[0].strip() original_query = test_mask_data[max_idx][0] mask_entities = eval(test_mask_data[max_idx][-1]) # print("mask mask_entities:", mask_entities) assert isinstance(mask_entities, dict) for key, v in mask_entities.items(): if key in max_item[1]: for vv in v: pred_dict[original_query] += max_item[1].strip().replace(key, vv).split(" . ") pred_dict[original_query] += max_item[1].strip().split(" . ") predicate_set = {token:token_pred_dict[token] for token in item[0].split()} predicate2token = defaultdict(list) for k,v in predicate_set.items(): for vv in v: predicate2token[vv].append(k) token_state = {token:0 for token in item[0].split()} cur_query = item[0] false_errors = defaultdict(list) # print("="*50) if pred_v == 1 and item[-1].strip() == 'True': # if item[1].strip().startswith("M"): # print("pred False", item) if len(item[1].split(" . ")) == 1: a1, r, a2 = item[1].split() if re.match(r'\?x[0-9]*|M[0-9]*', a1) and re.match(r'\?x[0-9]*|M[0-9]*', a2) and r!='is': v= r else: v = f"{r} {a2}" false_errors[v].append((idx, item, pred_prob[0])) false_error += 1 pass elif int(pred_v) == 0 and item[-1].strip() == 'False': pos_error += 1 pass else: right += 1 if int(pred_v) == 0: for triple in item[1].split(" . "): a1, r, a2 = triple.split() if re.match(r'\?x[0-9]*|M[0-9]*', a1) and re.match(r'\?x[0-9]*|M[0-9]*', a2) and r!='is': token_key= r else: token_key = f"{r} {a2}" for token in predicate2token[token_key]: token_state[token] = 1 if 'executive' not in token_key: break simplified_query = item[0].strip() original_query = test_mask_data[idx][0] mask_entities = eval(test_mask_data[idx][-1]) assert isinstance(mask_entities, dict) for key, v in mask_entities.items(): if key in item[1]: for vv in v: pred_dict[original_query] += item[1].strip().replace(key, vv).split(" . ") pred_dict[original_query] += item[1].strip().split(" . ") pred_1 += 1 if item[-1].strip() == 'True': pos_cnt += 1 # print(right / len(test_data)) # print(pos_error / (len(test_data) - pos_cnt)) # print(false_error / pos_cnt) # print(false_error, pos_error) # print("pred_dict:",len(pred_dict)) # print("golden_dict:",len(golden_dict)) cnt = 0 for item, val in golden_dict.items(): sub_sparqls = list(set(pred_dict.get(item, []))) sub_sparqls.sort() filter_sparqls = [] for sub_sparql in sub_sparqls: a1, r, a2 = sub_sparql.split() if r in FILTER_PRED: filter_sparqls.append(f"FILTER ( {a1} != {a2} )") filter_sparqls.sort() if " . ".join(sub_sparqls+filter_sparqls) == val: cnt += 1 else: if len(set(sub_sparqls + filter_sparqls) - set(val.split(' . '))) == 0 and len(set(val.split(' . ')) - set(sub_sparqls + filter_sparqls)) == 0: print(f"\n\nquery:{item}\n\nsparqls-golden:{set(sub_sparqls + filter_sparqls) - set(val.split(' . '))}\n\ngolden-sparqls:{set(val.split(' . ')) - set(sub_sparqls + filter_sparqls)}\n\nsub-sparql:{sub_sparqls + filter_sparqls}\n\ngolden:{val}") print("accuracy:", cnt / len(golden_dict))
ContextualSP/poset_decoding/evaluate.py/0
{ "file_path": "ContextualSP/poset_decoding/evaluate.py", "repo_id": "ContextualSP", "token_count": 2453 }
250
matchzoo ======== .. toctree:: :maxdepth: 4 matchzoo
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/docs/source/modules.rst/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/docs/source/modules.rst", "repo_id": "ContextualSP", "token_count": 27 }
251
from matchzoo.engine.base_callback import BaseCallback class LambdaCallback(BaseCallback): """ LambdaCallback. Just a shorthand for creating a callback class. See :class:`matchzoo.engine.base_callback.BaseCallback` for more details. Example: >>> import matchzoo as mz >>> from matchzoo.dataloader.callbacks import LambdaCallback >>> data = mz.datasets.toy.load_data() >>> batch_func = lambda x: print(type(x)) >>> unpack_func = lambda x, y: print(type(x), type(y)) >>> callback = LambdaCallback(on_batch_data_pack=batch_func, ... on_batch_unpacked=unpack_func) >>> dataset = mz.dataloader.Dataset( ... data, callbacks=[callback]) >>> _ = dataset[0] <class 'matchzoo.data_pack.data_pack.DataPack'> <class 'dict'> <class 'numpy.ndarray'> """ def __init__(self, on_batch_data_pack=None, on_batch_unpacked=None): """Init.""" self._on_batch_unpacked = on_batch_unpacked self._on_batch_data_pack = on_batch_data_pack def on_batch_data_pack(self, data_pack): """`on_batch_data_pack`.""" if self._on_batch_data_pack: self._on_batch_data_pack(data_pack) def on_batch_unpacked(self, x, y): """`on_batch_unpacked`.""" if self._on_batch_unpacked: self._on_batch_unpacked(x, y)
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/dataloader/callbacks/lambda_callback.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/dataloader/callbacks/lambda_callback.py", "repo_id": "ContextualSP", "token_count": 634 }
252
"""FastText embedding data loader.""" from pathlib import Path import matchzoo as mz _fasttext_embedding_url = "https://dl.fbaipublicfiles.com/fasttext/vectors" \ "-wiki/wiki.{}.vec" def load_fasttext_embedding(language: str = 'en') -> mz.embedding.Embedding: """ Return the pretrained fasttext embedding. :param language: the language of embedding. Supported language can be referred to "https://github.com/facebookresearch/fastText/blob/master" "/docs/pretrained-vectors.md" :return: The :class:`mz.embedding.Embedding` object. """ file_name = _fasttext_embedding_url.split('/')[-1].format(language) file_path = (Path(mz.USER_DATA_DIR) / 'fasttext').joinpath(file_name) if not file_path.exists(): mz.utils.get_file(file_name, _fasttext_embedding_url.format(language), extract=False, cache_dir=mz.USER_DATA_DIR, cache_subdir='fasttext') return mz.embedding.load_from_file(file_path=str(file_path), mode='fasttext')
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/datasets/embeddings/load_fasttext_embedding.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/datasets/embeddings/load_fasttext_embedding.py", "repo_id": "ContextualSP", "token_count": 541 }
253
"""Base callback.""" import abc import numpy as np import matchzoo as mz class BaseCallback(abc.ABC): """ DataGenerator callback base class. To build your own callbacks, inherit `mz.data_generator.callbacks.Callback` and overrides corresponding methods. A batch is processed in the following way: - slice data pack based on batch index - handle `on_batch_data_pack` callbacks - unpack data pack into x, y - handle `on_batch_x_y` callbacks - return x, y """ def on_batch_data_pack(self, data_pack: mz.DataPack): """ `on_batch_data_pack`. :param data_pack: a sliced DataPack before unpacking. """ @abc.abstractmethod def on_batch_unpacked(self, x: dict, y: np.ndarray): """ `on_batch_unpacked`. :param x: unpacked x. :param y: unpacked y. """
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/engine/base_callback.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/engine/base_callback.py", "repo_id": "ContextualSP", "token_count": 357 }
254
"""Mean average precision metric for ranking.""" import numpy as np from matchzoo.engine.base_metric import ( BaseMetric, sort_and_couple, RankingMetric ) class MeanAveragePrecision(RankingMetric): """Mean average precision metric.""" ALIAS = ['mean_average_precision', 'map'] def __init__(self, threshold: float = 0.): """ :class:`MeanAveragePrecision` constructor. :param threshold: The threshold of relevance degree. """ self._threshold = threshold def __repr__(self): """:return: Formated string representation of the metric.""" return f"{self.ALIAS[0]}({self._threshold})" def __call__(self, y_true: np.array, y_pred: np.array) -> float: """ Calculate mean average precision. Example: >>> y_true = [0, 1, 0, 0] >>> y_pred = [0.1, 0.6, 0.2, 0.3] >>> MeanAveragePrecision()(y_true, y_pred) 1.0 :param y_true: The ground true label of each document. :param y_pred: The predicted scores of each document. :return: Mean average precision. """ result = 0. pos = 0 coupled_pair = sort_and_couple(y_true, y_pred) for idx, (label, score) in enumerate(coupled_pair): if label > self._threshold: pos += 1. result += pos / (idx + 1.) if pos == 0: return 0. else: return result / pos
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/metrics/mean_average_precision.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/metrics/mean_average_precision.py", "repo_id": "ContextualSP", "token_count": 670 }
255
"""An implementation of DRMMTKS Model.""" import typing import torch import torch.nn as nn import torch.nn.functional as F from matchzoo.engine.param_table import ParamTable from matchzoo.engine.base_callback import BaseCallback from matchzoo.engine.param import Param from matchzoo.engine.base_model import BaseModel from matchzoo.engine import hyper_spaces from matchzoo.dataloader import callbacks from matchzoo.modules import Attention class DRMMTKS(BaseModel): """ DRMMTKS Model. Examples: >>> model = DRMMTKS() >>> model.params['top_k'] = 10 >>> model.params['mlp_num_layers'] = 1 >>> model.params['mlp_num_units'] = 5 >>> model.params['mlp_num_fan_out'] = 1 >>> model.params['mlp_activation_func'] = 'tanh' >>> model.guess_and_fill_missing_params(verbose=0) >>> model.build() """ @classmethod def get_default_params(cls) -> ParamTable: """:return: model default parameters.""" params = super().get_default_params( with_embedding=True, with_multi_layer_perceptron=True ) params.add(Param(name='mask_value', value=0, desc="The value to be masked from inputs.")) params.add(Param( 'top_k', value=10, hyper_space=hyper_spaces.quniform(low=2, high=100), desc="Size of top-k pooling layer." )) params['mlp_num_fan_out'] = 1 return params @classmethod def get_default_padding_callback( cls, fixed_length_left: int = 10, fixed_length_right: int = 100, pad_word_value: typing.Union[int, str] = 0, pad_word_mode: str = 'pre', with_ngram: bool = False, fixed_ngram_length: int = None, pad_ngram_value: typing.Union[int, str] = 0, pad_ngram_mode: str = 'pre' ) -> BaseCallback: """ Model default padding callback. The padding callback's on_batch_unpacked would pad a batch of data to a fixed length. :return: Default padding callback. """ return callbacks.BasicPadding( fixed_length_left=fixed_length_left, fixed_length_right=fixed_length_right, pad_word_value=pad_word_value, pad_word_mode=pad_word_mode, with_ngram=with_ngram, fixed_ngram_length=fixed_ngram_length, pad_ngram_value=pad_ngram_value, pad_ngram_mode=pad_ngram_mode ) def build(self): """Build model structure.""" self.embedding = self._make_default_embedding_layer() self.attention = Attention( input_size=self._params['embedding_output_dim'] ) self.mlp = self._make_multi_layer_perceptron_layer( self._params['top_k'] ) self.out = self._make_output_layer(1) def forward(self, inputs): """Forward.""" # Scalar dimensions referenced here: # B = batch size (number of sequences) # D = embedding size # L = `input_left` sequence length # R = `input_right` sequence length # K = size of top-k # Left input and right input. # shape = [B, L] # shape = [B, R] query, doc = inputs['text_left'], inputs['text_right'] # shape = [B, L] mask_query = (query == self._params['mask_value']) # Process left input. # shape = [B, L, D] embed_query = self.embedding(query.long()) # shape = [B, R, D] embed_doc = self.embedding(doc.long()) # Matching histogram of top-k # shape = [B, L, R] matching_matrix = torch.einsum( 'bld,brd->blr', F.normalize(embed_query, p=2, dim=-1), F.normalize(embed_doc, p=2, dim=-1) ) # shape = [B, L, K] matching_topk = torch.topk( matching_matrix, k=self._params['top_k'], dim=-1, sorted=True )[0] # shape = [B, L] attention_probs = self.attention(embed_query, mask_query) # shape = [B, L] dense_output = self.mlp(matching_topk).squeeze(dim=-1) x = torch.einsum('bl,bl->b', dense_output, attention_probs) out = self.out(x.unsqueeze(dim=-1)) return out
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/models/drmmtks.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/models/drmmtks.py", "repo_id": "ContextualSP", "token_count": 2065 }
256
"""DenseNet module.""" import typing import torch import torch.nn as nn class DenseBlock(nn.Module): """Dense block of DenseNet.""" def __init__( self, in_channels, growth_rate: int = 20, kernel_size: tuple = (2, 2), layers_per_dense_block: int = 3 ): """Init.""" super().__init__() dense_block = [] for _ in range(layers_per_dense_block): conv_block = self._make_conv_block(in_channels, growth_rate, kernel_size) dense_block.append(conv_block) in_channels += growth_rate self._dense_block = nn.ModuleList(dense_block) def forward(self, x): """Forward.""" for layer in self._dense_block: conv_out = layer(x) x = torch.cat([x, conv_out], dim=1) return x @classmethod def _make_conv_block( cls, in_channels: int, out_channels: int, kernel_size: tuple ) -> nn.Module: """Make conv block.""" return nn.Sequential( nn.ConstantPad2d( (0, kernel_size[1] - 1, 0, kernel_size[0] - 1), 0 ), nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size ), nn.ReLU() ) class DenseNet(nn.Module): """ DenseNet module. :param in_channels: Feature size of input. :param nb_dense_blocks: The number of blocks in densenet. :param layers_per_dense_block: The number of convolution layers in dense block. :param growth_rate: The filter size of each convolution layer in dense block. :param transition_scale_down_ratio: The channel scale down ratio of the convolution layer in transition block. :param conv_kernel_size: The kernel size of convolution layer in dense block. :param pool_kernel_size: The kernel size of pooling layer in transition block. """ def __init__( self, in_channels, nb_dense_blocks: int = 3, layers_per_dense_block: int = 3, growth_rate: int = 10, transition_scale_down_ratio: float = 0.5, conv_kernel_size: tuple = (2, 2), pool_kernel_size: tuple = (2, 2), ): """Init.""" super().__init__() dense_blocks = [] transition_blocks = [] for _ in range(nb_dense_blocks): dense_block = DenseBlock( in_channels, growth_rate, conv_kernel_size, layers_per_dense_block) in_channels += layers_per_dense_block * growth_rate dense_blocks.append(dense_block) transition_block = self._make_transition_block( in_channels, transition_scale_down_ratio, pool_kernel_size) in_channels = int(in_channels * transition_scale_down_ratio) transition_blocks.append(transition_block) self._dense_blocks = nn.ModuleList(dense_blocks) self._transition_blocks = nn.ModuleList(transition_blocks) self._out_channels = in_channels @property def out_channels(self) -> int: """`out_channels` getter.""" return self._out_channels def forward(self, x): """Forward.""" for dense_block, trans_block in zip(self._dense_blocks, self._transition_blocks): x = dense_block(x) x = trans_block(x) return x @classmethod def _make_transition_block( cls, in_channels: int, transition_scale_down_ratio: float, pool_kernel_size: tuple ) -> nn.Module: return nn.Sequential( nn.Conv2d( in_channels=in_channels, out_channels=int(in_channels * transition_scale_down_ratio), kernel_size=1 ), nn.MaxPool2d(kernel_size=pool_kernel_size, stride=pool_kernel_size) )
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/modules/dense_net.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/modules/dense_net.py", "repo_id": "ContextualSP", "token_count": 1889 }
257
from .unit import Unit from .digit_removal import DigitRemoval from .frequency_filter import FrequencyFilter from .lemmatization import Lemmatization from .lowercase import Lowercase from .matching_histogram import MatchingHistogram from .ngram_letter import NgramLetter from .punc_removal import PuncRemoval from .stateful_unit import StatefulUnit from .stemming import Stemming from .stop_removal import StopRemoval from .tokenize import Tokenize from .vocabulary import Vocabulary from .word_hashing import WordHashing from .character_index import CharacterIndex from .word_exact_match import WordExactMatch from .truncated_length import TruncatedLength def list_available() -> list: from matchzoo.utils import list_recursive_concrete_subclasses return list_recursive_concrete_subclasses(Unit)
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/preprocessors/units/__init__.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/preprocessors/units/__init__.py", "repo_id": "ContextualSP", "token_count": 226 }
258
import numpy as np from .unit import Unit class WordExactMatch(Unit): """ WordExactUnit Class. Process unit to get a binary match list of two word index lists. The word index list is the word representation of a text. Examples: >>> import pandas >>> input_ = pandas.DataFrame({ ... 'text_left':[[1, 2, 3],[4, 5, 7, 9]], ... 'text_right':[[5, 3, 2, 7],[2, 3, 5]]} ... ) >>> left_word_exact_match = WordExactMatch( ... match='text_left', to_match='text_right' ... ) >>> left_out = input_.apply(left_word_exact_match.transform, axis=1) >>> left_out[0] [0, 1, 1] >>> left_out[1] [0, 1, 0, 0] >>> right_word_exact_match = WordExactMatch( ... match='text_right', to_match='text_left' ... ) >>> right_out = input_.apply(right_word_exact_match.transform, axis=1) >>> right_out[0] [0, 1, 1, 0] >>> right_out[1] [0, 0, 1] """ def __init__( self, match: str, to_match: str ): """ Class initialization. :param match: the 'match' column name. :param to_match: the 'to_match' column name. """ self._match = match self._to_match = to_match def transform(self, input_) -> list: """ Transform two word index lists into a binary match list. :param input_: a dataframe include 'match' column and 'to_match' column. :return: a binary match result list of two word index lists. """ match_binary = [] for i in range(len(input_[self._match])): if input_[self._match][i] in set(input_[self._to_match]): match_binary.append(1) else: match_binary.append(0) return match_binary
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/preprocessors/units/word_exact_match.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/preprocessors/units/word_exact_match.py", "repo_id": "ContextualSP", "token_count": 903 }
259
"""Matchzoo version file.""" __version__ = '1.1.1'
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/version.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/version.py", "repo_id": "ContextualSP", "token_count": 22 }
260