text
stringlengths 5
22M
| id
stringlengths 12
177
| metadata
dict | __index_level_0__
int64 0
1.37k
|
---|---|---|---|
#include <vector>
#include <iostream>
#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cuda_bf16.h>
#include <cuda_profiler_api.h>
#include "THC/THC.h"
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include <math.h>
#include "softmax.h"
// symbol to be automatically resolved by PyTorch libs
extern THCState *state;
std::vector<torch::Tensor> fwd_cuda(
bool is_training,
int heads,
torch::Tensor const& input,
float dropout_prob
)
{
const int attn_batches = input.size(0);
const int sequences = attn_batches / heads;
const int q_seq_len = input.size(1);
const int k_seq_len = q_seq_len;
const int dropout_elems = attn_batches * q_seq_len * k_seq_len;
// There is no reason to use more than one stream as every kernel is
// sequentially dependent
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
cublasSetStream(handle, stream);
// 3 Intermediate Results + Output (Note: dropout intermediates are generated by ATen library code)
auto act_options = input.options().requires_grad(false);
auto mask_options = act_options.dtype(torch::kUInt8);
torch::Tensor softmax_results = torch::empty({attn_batches, q_seq_len, k_seq_len}, act_options);
torch::Tensor dropout_results = torch::empty({attn_batches, q_seq_len, k_seq_len}, act_options);
torch::Tensor dropout_mask = torch::empty({attn_batches, q_seq_len, k_seq_len}, mask_options);
// Softmax Intermediate Result Ptr (used by Matmul1 -> Softmax)
void* input_ptr = static_cast<void*>(input.data_ptr());
void* softmax_results_ptr = static_cast<void*>(softmax_results.data_ptr());
// Padded Softmax
bool softmax_success = false;
if (input.type().scalarType() == at::ScalarType::BFloat16){
softmax_success = dispatch_softmax<nv_bfloat16, nv_bfloat16, float>(
reinterpret_cast<nv_bfloat16*>(softmax_results_ptr),
reinterpret_cast<const nv_bfloat16*>(input_ptr),
k_seq_len,
k_seq_len,
attn_batches*q_seq_len);
} else if (input.type().scalarType() == at::ScalarType::Half){
softmax_success = dispatch_softmax<half, half, float>(
reinterpret_cast<half*>(softmax_results_ptr),
reinterpret_cast<const half*>(input_ptr),
k_seq_len,
k_seq_len,
attn_batches*q_seq_len);
} else if (input.type().scalarType() == at::ScalarType::Float){
softmax_success = dispatch_softmax<float, float, float>(
reinterpret_cast<float*>(softmax_results_ptr),
reinterpret_cast<const float*>(input_ptr),
k_seq_len,
k_seq_len,
attn_batches*q_seq_len);
} else {
softmax_success = false;
}
if (is_training) {
//use at:: function so that C++ version generates the same random mask as python version
auto dropout_tuple = at::_fused_dropout(softmax_results, 1.0f-dropout_prob);
dropout_results = std::get<0>(dropout_tuple);
dropout_mask = std::get<1>(dropout_tuple);
}
// Matmul2
return {
dropout_results,
dropout_mask,
softmax_results
};
}
torch::Tensor bwd_cuda(
int heads,
torch::Tensor const& output_grads,
torch::Tensor const& softmax_results,
torch::Tensor const& dropout_mask,
float dropout_prob
)
{
const int attn_batches = output_grads.size(0);
const int q_seq_len = output_grads.size(1);
const int k_seq_len = q_seq_len;
const int dropout_elems = attn_batches * q_seq_len * k_seq_len;
// TODO: Streams can be used in Backprop but I haven't added more than one
// in my first attempt to create the code
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
cublasSetStream(handle, stream);
// Output Tensor Allocations
// torch::Tensor input_grads = torch::empty_like(output_grads);
// Apply Dropout Mask and Scale by Dropout Probability
// Softmax Grad
if (softmax_results.type().scalarType() == at::ScalarType::BFloat16){
dispatch_masked_scale_softmax_backward<nv_bfloat16, nv_bfloat16, float, false>(
static_cast<nv_bfloat16*>(output_grads.data_ptr()),
static_cast<nv_bfloat16*>(output_grads.data_ptr()),
reinterpret_cast<nv_bfloat16 const*>(softmax_results.data_ptr()),
static_cast<uint8_t const*>(dropout_mask.data_ptr()),
1.0/(1.0-dropout_prob),
k_seq_len,
k_seq_len,
attn_batches*q_seq_len);
} else if (softmax_results.type().scalarType() == at::ScalarType::Half){
dispatch_masked_scale_softmax_backward<half, half, float, false>(
static_cast<half*>(output_grads.data_ptr()),
static_cast<half*>(output_grads.data_ptr()),
reinterpret_cast<half const*>(softmax_results.data_ptr()),
static_cast<uint8_t const*>(dropout_mask.data_ptr()),
1.0/(1.0-dropout_prob),
k_seq_len,
k_seq_len,
attn_batches*q_seq_len);
} else if (softmax_results.type().scalarType() == at::ScalarType::Float){
dispatch_masked_scale_softmax_backward<float, float, float, false>(
static_cast<float*>(output_grads.data_ptr()),
static_cast<float*>(output_grads.data_ptr()),
reinterpret_cast<float const*>(softmax_results.data_ptr()),
static_cast<uint8_t const*>(dropout_mask.data_ptr()),
1.0/(1.0-dropout_prob),
k_seq_len,
k_seq_len,
attn_batches*q_seq_len);
}
//backward pass is completely in-place
return output_grads;
}
|
COCO-LM/fairseq/fused_ops/csrc/softmax_dropout/softmax_dropout_kernel.cu/0
|
{
"file_path": "COCO-LM/fairseq/fused_ops/csrc/softmax_dropout/softmax_dropout_kernel.cu",
"repo_id": "COCO-LM",
"token_count": 3577
}
| 194 |
[build-system]
requires = ["setuptools", "wheel", "cython"]
build-backend = "setuptools.build_meta"
|
COCO-LM/fairseq/pyproject.toml/0
|
{
"file_path": "COCO-LM/fairseq/pyproject.toml",
"repo_id": "COCO-LM",
"token_count": 37
}
| 195 |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Split a large file into shards while respecting document boundaries. Documents
should be separated by a single empty line.
"""
import argparse
import contextlib
def main():
parser = argparse.ArgumentParser()
parser.add_argument("input")
parser.add_argument("--num-shards", type=int)
args = parser.parse_args()
assert args.num_shards is not None and args.num_shards > 1
with open(args.input, "r", encoding="utf-8") as h:
with contextlib.ExitStack() as stack:
outputs = [
stack.enter_context(
open(args.input + ".shard" + str(i), "w", encoding="utf-8")
)
for i in range(args.num_shards)
]
doc = []
first_doc = [True] * args.num_shards
def output_doc(i):
if not first_doc[i]:
outputs[i].write("\n")
first_doc[i] = False
for line in doc:
outputs[i].write(line)
doc.clear()
num_docs = 0
for line in h:
if line.strip() == "": # empty line indicates new document
output_doc(num_docs % args.num_shards)
num_docs += 1
else:
doc.append(line)
output_doc(num_docs % args.num_shards)
if __name__ == "__main__":
main()
|
COCO-LM/fairseq/scripts/shard_docs.py/0
|
{
"file_path": "COCO-LM/fairseq/scripts/shard_docs.py",
"repo_id": "COCO-LM",
"token_count": 775
}
| 196 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# This file defines example configuration arguments for quantizing
# a transformer model with product quantization
n_centroids:
Linear:
key: in_features
value: {"*": 8}
Embedding:
key: embedding_dim
value: {"*": 8}
block_sizes:
Linear:
key: fuzzy_name
value: {fc: 8, attn: 4, emb: 4}
Embedding:
key: fuzzy_name
value: {emb: 8}
layers_to_quantize:
- decoder\\.layers\\.\d+\\.fc[12]
- decoder\\.embed_tokens\\.embeddings\\.[012]\\.[01]
- decoder\\.layers\\.\d+\\.self_attn\\.(k_proj|v_proj|q_proj|out_proj)
|
COCO-LM/fairseq/tests/gpu/transformer_quantization_config.yaml/0
|
{
"file_path": "COCO-LM/fairseq/tests/gpu/transformer_quantization_config.yaml",
"repo_id": "COCO-LM",
"token_count": 321
}
| 197 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import numpy as np
from fairseq.data.data_utils_fast import batch_by_size_fn
from fairseq.data.data_utils_fast import batch_by_size_vec
class TestBatchBySize(unittest.TestCase):
@classmethod
def batch_by_size_baseline(
cls,
indices,
num_tokens_vec,
max_tokens,
max_sentences,
bsz_mult,
):
"""Simple, reliable and slow implementation of batch by size """
batches = []
start = 0
while start < len(indices):
for end in range(start + 1, len(indices) + 1):
max_val = max(num_tokens_vec[pos] for pos in range(start, end))
sent_count = end - start
num_tokens = max_val * sent_count
overflow = num_tokens > max_tokens > 0 or sent_count > max_sentences > 0
terminate = overflow or end == len(indices)
if overflow:
sent_count -= 1
if terminate:
if sent_count > bsz_mult:
sent_count = sent_count - sent_count % bsz_mult
batches.append(indices[start : start + sent_count])
start = start + sent_count
break
return batches
@classmethod
def _get_error_message(
cls, max_sentences, max_tokens, bsz_mult, num_tokens_vec, validation, results
):
return f"""Reference batch_by_size implementation should produce
same output as the baseline method.
Params:
max_sentences={max_sentences},
max_tokens={max_tokens},
bsz_mult={bsz_mult},
num_tokens_vec={num_tokens_vec},
expected_batches={validation},
returned_batches={results}"""
def _compare_results(
self,
indices_len,
batch_by_size_impl,
max_sentences,
max_tokens,
bsz_mult,
num_tokens_vec,
):
indices = np.array(list(range(indices_len)))
validation = self.batch_by_size_baseline(
indices,
num_tokens_vec,
max_tokens=max_tokens,
max_sentences=max_sentences,
bsz_mult=bsz_mult,
)
results = batch_by_size_impl(
indices,
num_tokens_vec,
max_tokens=max_tokens,
max_sentences=max_sentences,
bsz_mult=bsz_mult,
)
error_msg = self._get_error_message(
max_sentences, max_tokens, bsz_mult, num_tokens_vec, validation, results
)
self.assertEqual(len(validation), len(results), error_msg)
for first, second in zip(validation, results):
self.assertTrue(np.array_equal(first, second), error_msg)
def _run_compare_with_baseline_sweep(self, batch_by_size_impl):
"""Compare reference batch_by_size implementation with batch_by_size_baseline
across a dense grid of hyperparam values"""
MAX_MAX_TOKENS = 10
NUM_TOKENS_VECS_COUNT = 5
for indices_len in [10, 11]: # try odd and even len of indices
for max_sentences in range(0, indices_len + 2):
for max_tokens in range(0, MAX_MAX_TOKENS):
for bsz_mult in range(1, max(MAX_MAX_TOKENS, indices_len) + 2):
for _ in range(NUM_TOKENS_VECS_COUNT):
num_tokens_vec = np.random.randint(
0, max_tokens + 1, size=indices_len
)
self._compare_results(
indices_len,
batch_by_size_impl,
max_sentences,
max_tokens,
bsz_mult,
num_tokens_vec,
)
class TestBatchBySizeVec(TestBatchBySize):
def test_compare_with_baseline(self):
self._run_compare_with_baseline_sweep(batch_by_size_vec)
class TestBatchBySizeFn(TestBatchBySize):
def test_compare_with_baseline(self):
def batch_by_size_fn_wrapper(
indices,
num_tokens_vec,
max_tokens,
max_sentences,
bsz_mult,
):
def num_tokens_fn(idx):
return num_tokens_vec[idx]
return batch_by_size_fn(
indices, num_tokens_fn, max_tokens, max_sentences, bsz_mult
)
self._run_compare_with_baseline_sweep(batch_by_size_fn_wrapper)
if __name__ == "__main__":
unittest.main()
|
COCO-LM/fairseq/tests/test_data_utils.py/0
|
{
"file_path": "COCO-LM/fairseq/tests/test_data_utils.py",
"repo_id": "COCO-LM",
"token_count": 2629
}
| 198 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from fairseq.modules.multihead_attention import MultiheadAttention
class TestMultiheadAttention(unittest.TestCase):
def test_append_prev_key_padding_mask(self):
bsz = 1
src_len = 4
cases = [
# no padding mask
(None, None, None),
# current padding mask only
(
torch.tensor([[1]]).bool(),
None,
torch.tensor([[0, 0, 0, 1]]).bool(),
),
# previous padding mask only
(
None,
torch.tensor([[0, 1, 0]]).bool(),
torch.tensor([[0, 1, 0, 0]]).bool(),
),
# both padding masks
(
torch.tensor([[1]]).bool(),
torch.tensor([[0, 1, 0]]).bool(),
torch.tensor([[0, 1, 0, 1]]).bool(),
),
]
for c in cases:
key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
c[0],
c[1],
batch_size=bsz,
src_len=src_len,
static_kv=False,
)
if key_padding_mask is not None:
self.assertTrue(
torch.all(torch.eq(key_padding_mask, c[2])),
f"Unexpected resultant key padding mask: {key_padding_mask}"
f" given current: {c[0]} and previous: {c[1]}",
)
self.assertEqual(key_padding_mask.size(0), bsz)
self.assertEqual(key_padding_mask.size(1), src_len)
else:
self.assertIsNone(c[2])
if __name__ == "__main__":
unittest.main()
|
COCO-LM/fairseq/tests/test_multihead_attention.py/0
|
{
"file_path": "COCO-LM/fairseq/tests/test_multihead_attention.py",
"repo_id": "COCO-LM",
"token_count": 1044
}
| 199 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
# The script is largely adapted from the huggingface transformers library
from __future__ import absolute_import, division, print_function, unicode_literals
import logging
import math
import os
import torch
from torch import nn
from torch.nn.modules.loss import _Loss
import torch.nn.functional as F
from torch.nn import Parameter
from transformers.modeling_utils import PreTrainedModel, PoolerAnswerClass, PoolerEndLogits, PoolerStartLogits
from transformers.models.bert.modeling_bert import ACT2FN
from transformers.file_utils import WEIGHTS_NAME
from transformers.activations import get_activation
from cocolm.configuration_cocolm import COCOLMConfig
from cocolm.convert_state_dict import get_checkpoint_from_transformer_cache
logger = logging.getLogger(__name__)
try:
from apex.normalization.fused_layer_norm import FusedLayerNorm as COCOLMLayerNorm
except ImportError:
print("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.")
from torch.nn import LayerNorm as COCOLMLayerNorm
COCOLM_PRETRAINED_MODEL_ARCHIVE_MAP = {
'microsoft/cocolm-base': "https://huggingface.co/microsoft/cocolm-base/resolve/main/pytorch_model.bin",
'microsoft/cocolm-large': "https://huggingface.co/microsoft/cocolm-large/resolve/main/pytorch_model.bin",
}
class COCOLMPreTrainedModel(PreTrainedModel):
""" An abstract class to handle weights initialization
and a simple interface for dowloading and loading pretrained models.
"""
config_class = COCOLMConfig
supported_convert_pretrained_model_archive_map = {
"cocolm": COCOLM_PRETRAINED_MODEL_ARCHIVE_MAP,
}
base_model_prefix = "cocolm"
pretrained_model_archive_map = {
**COCOLM_PRETRAINED_MODEL_ARCHIVE_MAP,
}
def _init_weights(self, module):
""" Initialize the weights """
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(
mean=0.0, std=self.config.initializer_range)
elif isinstance(module, COCOLMLayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path, reuse_position_embedding=True,
drop_parameters=None, *model_args, **kwargs,
):
model_type = kwargs.pop('model_type', 'cocolm')
if model_type is not None and "state_dict" not in kwargs:
if model_type in cls.supported_convert_pretrained_model_archive_map:
pretrained_model_archive_map = cls.supported_convert_pretrained_model_archive_map[
model_type]
if pretrained_model_name_or_path in pretrained_model_archive_map:
state_dict = get_checkpoint_from_transformer_cache(
archive_file=pretrained_model_archive_map[pretrained_model_name_or_path],
pretrained_model_name_or_path=pretrained_model_name_or_path,
pretrained_model_archive_map=pretrained_model_archive_map,
cache_dir=kwargs.get("cache_dir", None), force_download=kwargs.get("force_download", None),
proxies=kwargs.get("proxies", None), resume_download=kwargs.get("resume_download", None),
)
kwargs["state_dict"] = state_dict
logger.info("Load HF ckpts")
elif os.path.isfile(pretrained_model_name_or_path):
state_dict = torch.load(
pretrained_model_name_or_path, map_location='cpu')
kwargs["state_dict"] = state_dict
logger.info("Load local ckpts")
elif os.path.isdir(pretrained_model_name_or_path):
state_dict = torch.load(os.path.join(
pretrained_model_name_or_path, WEIGHTS_NAME), map_location='cpu')
kwargs["state_dict"] = state_dict
logger.info("Load local ckpts")
else:
raise RuntimeError(
"No pre-trained checkpoint !")
if kwargs["state_dict"] is None:
logger.info("s2s-ft does't support the model !")
raise NotImplementedError()
state_dict = kwargs["state_dict"]
_k = 'cocolm.embeddings.position_embeddings.weight'
if _k in state_dict and "config" in kwargs:
config = kwargs["config"]
if config.max_position_embeddings > state_dict[_k].shape[0]:
logger.info("Resize > position embeddings !")
old_vocab_size = state_dict[_k].shape[0]
new_postion_embedding = state_dict[_k].data.new_tensor(torch.ones(
size=(config.max_position_embeddings, state_dict[_k].shape[1])), dtype=torch.float)
new_postion_embedding = nn.Parameter(
data=new_postion_embedding, requires_grad=True)
new_postion_embedding.data.normal_(
mean=0.0, std=config.initializer_range)
max_range = config.max_position_embeddings if reuse_position_embedding else old_vocab_size
shift = 0
while shift < max_range:
delta = min(old_vocab_size, max_range - shift)
new_postion_embedding.data[shift: shift +
delta, :] = state_dict[_k][:delta, :]
logger.info(" CP [%d ~ %d] into [%d ~ %d] " %
(0, delta, shift, shift + delta))
shift += delta
state_dict[_k] = new_postion_embedding.data
del new_postion_embedding
elif config.max_position_embeddings < state_dict[_k].shape[0]:
logger.info("Resize < position embeddings !")
old_vocab_size = state_dict[_k].shape[0]
new_postion_embedding = state_dict[_k].data.new_tensor(torch.ones(
size=(config.max_position_embeddings, state_dict[_k].shape[1])), dtype=torch.float)
new_postion_embedding = nn.Parameter(
data=new_postion_embedding, requires_grad=True)
new_postion_embedding.data.normal_(
mean=0.0, std=config.initializer_range)
new_postion_embedding.data.copy_(
state_dict[_k][:config.max_position_embeddings, :])
state_dict[_k] = new_postion_embedding.data
del new_postion_embedding
if drop_parameters is not None:
if not isinstance(drop_parameters, list):
raise RuntimeError()
not_drop_state_dict = {}
for key in state_dict:
drop_flag = False
for prefix in drop_parameters:
if key.startswith(prefix):
drop_flag = True
break
if drop_flag:
logger.info("Drop %s" % key)
else:
not_drop_state_dict[key] = state_dict[key]
kwargs["state_dict"] = not_drop_state_dict
del state_dict
if pretrained_model_name_or_path in pretrained_model_archive_map:
pretrained_model_name_or_path = pretrained_model_archive_map[pretrained_model_name_or_path]
elif not os.path.isfile(pretrained_model_name_or_path):
pretrained_model_name_or_path = 'microsoft/cocolm-large'
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
class COCOLMEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.
"""
def __init__(self, config):
super(COCOLMEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(
config.vocab_size, config.hidden_size, padding_idx=0)
fix_word_embedding = getattr(config, "fix_word_embedding", None)
if fix_word_embedding:
self.word_embeddings.weight.requires_grad = False
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size)
if config.type_vocab_size > 0:
self.token_type_embeddings = nn.Embedding(
config.type_vocab_size, config.hidden_size)
else:
self.token_type_embeddings = None
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.layer_norm_type = config.layer_norm_type
if self.layer_norm_type in ('post',):
self.LayerNorm = COCOLMLayerNorm(
config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
device = input_ids.device if input_ids is not None else inputs_embeds.device
if position_ids is None:
position_ids = torch.arange(
seq_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).expand(input_shape)
if token_type_ids is None:
token_type_ids = torch.zeros(
input_shape, dtype=torch.long, device=device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
embeddings = inputs_embeds + position_embeddings
if self.token_type_embeddings:
embeddings = embeddings + \
self.token_type_embeddings(token_type_ids)
if self.layer_norm_type in ('post',):
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings, position_ids
class SelfMultiheadAttention(nn.Module):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(
self,
embed_dim,
num_heads,
dropout=0.0,
bias=True,
scaling_factor=1,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = nn.Dropout(dropout)
self.head_dim = embed_dim // num_heads
assert (
self.head_dim * num_heads == self.embed_dim
), "embed_dim must be divisible by num_heads"
self.scaling = (self.head_dim * scaling_factor) ** -0.5
self.qk_head_dim = self.head_dim
self.in_proj = nn.Linear(embed_dim, embed_dim * 3, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def forward(
self,
query,
key_padding_mask,
need_weights,
attn_mask,
attn_bias,
before_softmax=False,
need_head_weights=False,
):
"""Input shape: Time x Batch x Channel
Args:
key_padding_mask (ByteTensor, optional): mask to exclude
keys that are pads, of shape `(batch, src_len)`, where
padding elements are indicated by 1s.
need_weights (bool, optional): return the attention weights,
averaged over heads (default: False).
attn_mask (ByteTensor, optional): typically used to
implement causal attention, where the mask prevents the
attention from looking forward in time (default: None).
before_softmax (bool, optional): return the raw attention
weights and values before the attention softmax.
need_head_weights (bool, optional): return the attention
weights for each head. Implies *need_weights*. Default:
return the average attention weights over all heads.
"""
if need_head_weights:
need_weights = True
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
if self.qk_head_dim == self.head_dim:
# , self.k_proj(query), self.v_proj(query)
q, k, v = self.in_proj(query).chunk(3, dim=-1)
else:
q, k = self.qk_proj(query).chunk(2, dim=-1)
v = self.v_proj(query)
q = (
q.contiguous().view(tgt_len, bsz * self.num_heads, self.qk_head_dim)
.transpose(0, 1) * self.scaling
)
if k is not None:
k = (
k.contiguous().view(-1, bsz * self.num_heads, self.qk_head_dim)
.transpose(0, 1)
)
if v is not None:
v = (
v.contiguous().view(-1, bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
assert k is not None
src_len = k.size(1)
# This is part of a workaround to get around fork/join parallelism
# not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
attn_weights = torch.bmm(q, k.transpose(1, 2))
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
attn_weights += attn_mask
if key_padding_mask is not None:
# don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights.masked_fill_(
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
float("-inf")
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attn_bias is not None:
attn_weights += attn_bias
if before_softmax:
return attn_weights, v
attn_probs = nn.Softmax(dim=-1)(attn_weights)
attn_probs = self.dropout(attn_probs)
assert v is not None
attn = torch.bmm(attn_probs, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn = self.out_proj(attn)
ret_attn_weights = None
if need_weights:
ret_attn_weights = attn_weights.view(
bsz, self.num_heads, tgt_len, src_len
).transpose(1, 0)
if not need_head_weights:
# average attention weights over heads
ret_attn_weights = attn_weights.mean(dim=0)
return attn, ret_attn_weights
class COCOLMAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.self_attn = SelfMultiheadAttention(config.hidden_size, config.num_attention_heads,
dropout=config.attention_probs_dropout_prob)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, x, attention_mask, attn_bias):
x = x.transpose(0, 1)
residual = x
x, attn = self.self_attn(query=x, key_padding_mask=attention_mask, need_weights=True if self.config.output_attentions else False, attn_mask=None, attn_bias=attn_bias)
x[x != x] = 0
x = self.dropout(x)
x = residual + x
x = self.LayerNorm(x)
if attn is not None:
return (x.transpose(0, 1), ) + attn
return (x.transpose(0, 1), )
class COCOLMIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class COCOLMOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.layer_norm_type = config.layer_norm_type
if self.layer_norm_type in ('post', 'hybrid'):
self.LayerNorm = COCOLMLayerNorm(
config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
if self.layer_norm_type == 'pre':
return hidden_states + input_tensor
elif self.layer_norm_type == 'hybrid':
return hidden_states + self.LayerNorm(input_tensor) + input_tensor
else:
return self.LayerNorm(hidden_states + input_tensor)
class COCOLMLayer(nn.Module):
def __init__(self, config):
super(COCOLMLayer, self).__init__()
self.attention = COCOLMAttention(config)
if hasattr(config, 'num_ffn_layers') and config.num_ffn_layers > 1:
self.num_ffn_layers = config.num_ffn_layers
self.intermediate = nn.ModuleList(
[COCOLMIntermediate(config) for _ in range(config.num_ffn_layers)])
self.output = nn.ModuleList(
[COCOLMOutput(config) for _ in range(config.num_ffn_layers)])
else:
self.num_ffn_layers = 0
self.intermediate = COCOLMIntermediate(config)
self.output = COCOLMOutput(config)
self.layer_norm_type = config.layer_norm_type
if self.layer_norm_type in ('pre', 'hybrid'):
if self.num_ffn_layers > 0:
self.LayerNorm = nn.ModuleList([COCOLMLayerNorm(
config.hidden_size, eps=1e-5) for i in range(self.num_ffn_layers)])
else:
self.LayerNorm = COCOLMLayerNorm(config.hidden_size, eps=1e-5)
def forward(self, hidden_states, attention_mask=None, split_lengths=None, rel_pos=None):
self_attention_outputs = self.attention(hidden_states, attention_mask, rel_pos)
attention_output = self_attention_outputs[0]
if isinstance(self.intermediate, nn.ModuleList):
layer_output = attention_output
for i, (intermediate_layer, output_layer) in enumerate(zip(self.intermediate, self.output)):
if self.layer_norm_type in ('pre', 'hybrid'):
_attention_output = self.LayerNorm[i](layer_output)
else:
_attention_output = layer_output
intermediate_output = intermediate_layer(_attention_output)
layer_output = output_layer(intermediate_output, layer_output)
else:
if self.layer_norm_type in ('pre', 'hybrid'):
_attention_output = self.LayerNorm(attention_output)
else:
_attention_output = attention_output
intermediate_output = self.intermediate(_attention_output)
layer_output = self.output(intermediate_output, attention_output)
outputs = (layer_output,) + self_attention_outputs[1:]
return outputs
class COCOLMEncoder(nn.Module):
def __init__(self, config):
super(COCOLMEncoder, self).__init__()
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.layer = nn.ModuleList([COCOLMLayer(config)
for _ in range(config.num_hidden_layers)])
self.layer_norm_type = config.layer_norm_type
if self.layer_norm_type in ('pre', 'hybrid'):
self.LayerNorm = COCOLMLayerNorm(config.hidden_size, eps=1e-5)
def forward(self, hidden_states, attention_mask=None, split_lengths=None, rel_pos=None):
all_hidden_states = ()
all_attentions = ()
for i, layer_module in enumerate(self.layer):
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states, attention_mask,
split_lengths=split_lengths, rel_pos=rel_pos)
hidden_states = layer_outputs[0]
if (self.layer_norm_type in ('pre', 'hybrid')) and (i == len(self.layer) - 1):
# pre-layernorm: apply layernorm for the topmost hidden states
hidden_states = self.LayerNorm(hidden_states)
if self.output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = (hidden_states,)
if self.output_hidden_states:
outputs = outputs + (all_hidden_states,)
if self.output_attentions:
outputs = outputs + (all_attentions,)
# last-layer hidden state, (all hidden states), (all attentions)
return outputs
class COCOLMBinaryPredictions(nn.Module):
"""Binary prediction module for the main model."""
def __init__(self, config):
super().__init__()
self.out_proj = nn.Linear(config.hidden_size, 1)
self.config = config
def forward(self, hidden_states):
logits = self.out_proj(hidden_states).squeeze(-1)
return logits
class COCOLMCLMHead(nn.Module):
def __init__(self, config):
super(COCOLMCLMHead, self).__init__()
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.decoder.bias = self.bias
def forward(self, hidden_states):
x = self.decoder(hidden_states)
return x
class COCOLMSCLHead(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = get_activation("gelu")
self.LayerNorm = COCOLMLayerNorm(
config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
pooled_output = self.LayerNorm(pooled_output)
return pooled_output
def relative_position_bucket(relative_position, num_buckets=32, max_distance=128):
sign = torch.sign(relative_position)
num_buckets //= 2
n = torch.abs(relative_position)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = n < max_exact
max_bucket_val = num_buckets - 1 - max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
val_if_large = max_exact + torch.ceil(
torch.log(n.float() / max_exact) / math.log((max_distance - 1) / max_exact) * (max_bucket_val)
).long()
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
ret = torch.where(is_small, n, val_if_large) * sign
return ret
class COCOLMModel(COCOLMPreTrainedModel):
def __init__(self, config):
super(COCOLMModel, self).__init__(config)
self.config = config
self.embeddings = COCOLMEmbeddings(config)
self.encoder = COCOLMEncoder(config)
if hasattr(config, 'need_pooler') and getattr(config, 'need_pooler'):
self.scl_head = COCOLMSCLHead(config)
else:
self.scl_head = None
if self.config.rel_pos_bins > 0:
assert self.config.rel_pos_bins % 2 == 0
self.relative_attention_bias = nn.Embedding(self.config.rel_pos_bins, self.config.num_attention_heads)
context_position = torch.arange(self.config.max_position_embeddings, dtype=torch.long)[:, None]
memory_position = torch.arange(self.config.max_position_embeddings, dtype=torch.long)[None, :]
relative_position = memory_position - context_position
self.rp_bucket = relative_position_bucket(
relative_position,
num_buckets=self.config.rel_pos_bins,
max_distance=self.config.max_rel_pos
)
self.rp_bucket -= self.rp_bucket.min()
def get_rel_pos_bias(self, x):
# Assume the input is ordered. If your input token is permuted, you may need to update this accordingly
if self.rp_bucket.device != x.device:
self.rp_bucket = self.rp_bucket.to(x.device)
seq_len = x.size(1)
rp_bucket = self.rp_bucket[:seq_len, :seq_len]
values = F.embedding(rp_bucket, self.relative_attention_bias.weight)
values = values.permute([2, 0, 1])
return values.contiguous()
def forward(self, input_ids=None, attention_mask=None, token_type_ids=None,
position_ids=None, inputs_embeds=None, split_lengths=None):
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError(
"You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = attention_mask == 0
embedding_output, position_ids = self.embeddings(
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds)
embedding_output = embedding_output * (attention_mask.unsqueeze(-1).type_as(embedding_output))
rel_pos_bias = self.get_rel_pos_bias(input_ids).repeat(input_ids.size(0), 1, 1) if self.config.rel_pos_bins > 0 else None
seq_len = input_ids.size(1)
if rel_pos_bias is not None and extended_attention_mask is not None:
# merge key_padding_mask and attn_mask
rel_pos_bias = rel_pos_bias.view(input_ids.size(0), -1, seq_len, seq_len)
rel_pos_bias.masked_fill_(
extended_attention_mask.unsqueeze(1).unsqueeze(2),
float("-inf")
)
rel_pos_bias = rel_pos_bias.view(-1, seq_len, seq_len)
extended_attention_mask = None
encoder_outputs = self.encoder(
embedding_output, attention_mask=extended_attention_mask,
split_lengths=split_lengths, rel_pos=rel_pos_bias)
sequence_output = encoder_outputs[0]
# add hidden_states and attentions if they are here
outputs = (sequence_output, ) + encoder_outputs[1:]
if self.scl_head is None:
# sequence_output, pooled_output, (hidden_states), (attentions)
return outputs
else:
pooled_output = self.scl_head(sequence_output)
return sequence_output, pooled_output
class COCOLMClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.cls_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = get_activation("gelu")(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class COCOLMForSequenceClassification(COCOLMPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.num_labels = config.num_labels
self.cocolm = COCOLMModel(config)
self.classifier = COCOLMClassificationHead(config)
self.init_weights()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
labels=None,
):
outputs = self.cocolm(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
)
logits = self.classifier(outputs[0])
# add hidden states and attention if they are here
outputs = (logits,) + outputs[2:]
if labels is not None:
if self.num_labels == 1:
# We are doing regression
loss_fct = nn.MSELoss()
loss = loss_fct(logits.view(-1), labels.view(-1))
else:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
logits.view(-1, self.num_labels), labels.view(-1))
outputs = (loss,) + outputs
return outputs # (loss), logits, (hidden_states), (attentions)
class PoolerLogits(nn.Module):
"""
Compute SQuAD start logits from sequence hidden states.
Args:
config (:class:`~transformers.PretrainedConfig`):
The config used by the model, will be used to grab the :obj:`hidden_size` of the model.
"""
def __init__(self, hidden_size):
super().__init__()
self.dense = nn.Linear(hidden_size, 1)
self.dense.weight.data.normal_(mean=0.0, std=0.02)
self.dense.bias.data.zero_()
def forward(
self, hidden_states, p_mask = None
):
"""
Args:
hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
The final hidden states of the model.
p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`):
Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
should be masked.
Returns:
:obj:`torch.FloatTensor`: The start logits for SQuAD.
"""
x = self.dense(hidden_states).squeeze(-1)
if p_mask is not None:
x.masked_fill_(p_mask, float('-inf'))
return x
class SQuADHead(nn.Module):
def __init__(self, hidden_size):
super().__init__()
self.start_logits = PoolerLogits(hidden_size)
self.end_logits = PoolerLogits(hidden_size)
def forward(
self,
hidden_states,
start_positions=None,
end_positions=None,
p_mask = None,
):
"""
Args:
hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
Final hidden states of the model on the sequence tokens.
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Positions of the first token for the labeled span.
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Positions of the last token for the labeled span.
is_impossible (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Whether the question has a possible answer in the paragraph or not.
p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`):
Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
should be masked.
Returns:
"""
start_logits = self.start_logits(hidden_states, p_mask=p_mask)
end_logits = self.end_logits(hidden_states, p_mask=p_mask)
if start_positions is not None and end_positions is not None:
def loss_fct(logits, targets):
return F.nll_loss(
F.log_softmax(
logits.view(-1, logits.size(-1)),
dim=-1,
dtype=torch.float32,
),
targets.view(-1),
reduction='sum',
)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) * 0.5
return total_loss
else:
return start_logits, end_logits
class COCOLMForQuestionAnswering(COCOLMPreTrainedModel):
def __init__(self, config):
super(COCOLMForQuestionAnswering, self).__init__(config)
self.num_labels = config.num_labels
self.cocolm = COCOLMModel(config)
self.qa_outputs = SQuADHead(config.hidden_size)
self.init_weights()
def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None,
start_positions=None, end_positions=None):
outputs = self.cocolm(input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds)
sequence_output = outputs[0]
squad_outputs = self.qa_outputs(sequence_output, start_positions, end_positions)
outputs = (squad_outputs,) + outputs[2:]
return outputs
|
COCO-LM/huggingface/cocolm/modeling_cocolm.py/0
|
{
"file_path": "COCO-LM/huggingface/cocolm/modeling_cocolm.py",
"repo_id": "COCO-LM",
"token_count": 16630
}
| 200 |
---
title: ClimaX
template: home.html
---
<!-- Welcome to CliMax -->
|
ClimaX/docs/index.md/0
|
{
"file_path": "ClimaX/docs/index.md",
"repo_id": "ClimaX",
"token_count": 26
}
| 201 |
# year_strings = [
# '185001010600-187001010000',
# '187001010600-189001010000',
# '189001010600-191001010000',
# '191001010600-193001010000',
# '193001010600-195001010000',
# '195001010600-197001010000',
# '197001010600-199001010000',
# '199001010600-201001010000',
# '201001010600-201501010000'
# ]
if config['output_type'] == '6hrPlev':
year_strings = [f'{y}01010300-{y+4}12312100' for y in range(1850, 2015, 5)]
elif config['output_type'] == 'E3hr':
year_strings = [f'{y}01010130-{y+4}12312230' for y in range(1850, 2015, 5)]
else:
year_strings = [f'{y}01010600-{y+5}01010000' for y in range(1850, 2015, 5)]
print(config)
#v20190815
rule download:
output:
"{dataset}/raw/{name}/{name}_{year_str}_raw.nc",
shell:
"wget {config[server_prefix]}/MPI-M/MPI-ESM1-2-HR/historical/{config["
"run]}/{config[output_type]}/"
"{config[cmip_name]}/gn/{config[version]}/"
"{config[cmip_name]}_{config[output_type]}_MPI-ESM1-2-HR_historical_{config[run]}_gn_{wildcards.year_str}.nc "
"-O {wildcards.dataset}/raw/{config[name]}/{config[name]}_{wildcards.year_str}_raw.nc"
# http://esgf-data1.llnl.gov/thredds/fileServer/css03_data/CMIP6/CMIP/MPI-M/MPI-ESM1-2-HR/historical/r1i1p1f1/6hrPlevPt/tas/gn/v20190815/tas_6hrPlevPt_MPI-ESM1-2-HR_historical_r1i1p1f1_gn_185001010600-185501010000.nc
# https://esgf.ceda.ac.uk/thredds/fileServer/esg_cmip6/CMIP6/CMIP/MPI-M/MPI-ESM1-2-HR/historical/r1i1p1f1/6hrPlevPt/uas/gn/v20190710/uas_6hrPlevPt_MPI-ESM1-2-HR_historical_r1i1p1f1_gn_185001010600-185501010000.nc
rule regrid:
input:
"{dataset}/raw/{name}/{name}_{year_str}_raw.nc"
output:
"{dataset}/{res}deg/{name}/{name}_{year_str}_{res}deg.nc.tmp"
shell:
"python ../../src/data_preprocessing/regrid.py \
--input_fns {input} \
--output_dir {wildcards.dataset}/{wildcards.res}deg/{wildcards.name} \
--ddeg_out {wildcards.res} \
--cmip 1 \
--rename {config[cmip_name]} {config[era_name]} \
--file_ending nc.tmp"
rule delete:
input:
expand("{{dataset}}/{res}deg/{{name}}/{{name}}_{{year_str}}_{res}deg.nc.tmp",
res=config['res']),
output:
expand("{{dataset}}/{res}deg/{{name}}/{{name}}_{{year_str}}_{res}deg.nc",
res=config['res'])
priority: 100
run:
for i, o in zip(input, output):
shell("mv {i} {o}")
# shell("rm {wildcards.dataset}/raw/{wildcards.name}/{wildcards.name}_{wildcards.year_str}_raw.nc"),
rule all:
input:
expand("{datadir}/{res}deg/{name}/{name}_{year_str}_{res}deg.nc",
datadir=config['datadir'], res=config['res'], name=config['name'], year_str=year_strings)
|
ClimaX/snakemake_configs/MPI-ESM/Snakefile/0
|
{
"file_path": "ClimaX/snakemake_configs/MPI-ESM/Snakefile",
"repo_id": "ClimaX",
"token_count": 1520
}
| 202 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from typing import Any
import torch
from pytorch_lightning import LightningModule
from climax.arch import ClimaX
from climax.utils.lr_scheduler import LinearWarmupCosineAnnealingLR
from climax.utils.metrics import lat_weighted_mse
class PretrainModule(LightningModule):
"""Lightning module for pretraining the ClimaX model.
Args:
net (ClimaX): ClimaX model.
lr (float, optional): Learning rate.
beta_1 (float, optional): Beta 1 for AdamW.
beta_2 (float, optional): Beta 2 for AdamW.
weight_decay (float, optional): Weight decay for AdamW.
warmup_steps (int, optional): Number of warmup steps.
max_steps (int, optional): Number of total steps.
warmup_start_lr (float, optional): Starting learning rate for warmup.
eta_min (float, optional): Minimum learning rate.
"""
def __init__(
self,
net: ClimaX,
lr: float = 5e-4,
beta_1: float = 0.9,
beta_2: float = 0.95,
weight_decay: float = 1e-5,
warmup_steps: int = 10000,
max_steps: int = 200000,
warmup_start_lr: float = 1e-8,
eta_min: float = 1e-8,
):
super().__init__()
self.save_hyperparameters(logger=False, ignore=["net"])
self.net = net
def set_lat_lon(self, lat, lon):
self.lat = lat
self.lon = lon
def training_step(self, batch: Any, batch_idx: int):
x, y, lead_times, variables, out_variables = batch
loss_dict, _ = self.net.forward(x, y, lead_times, variables, out_variables, [lat_weighted_mse], lat=self.lat)
loss_dict = loss_dict[0]
for var in loss_dict.keys():
self.log(
"train/" + var,
loss_dict[var],
on_step=True,
on_epoch=False,
prog_bar=True,
)
loss = loss_dict["loss"]
return loss
def configure_optimizers(self):
decay = []
no_decay = []
for name, m in self.named_parameters():
if "var_embed" in name or "pos_embed" in name or "time_pos_embed" in name:
no_decay.append(m)
else:
decay.append(m)
optimizer = torch.optim.AdamW(
[
{
"params": decay,
"lr": self.hparams.lr,
"betas": (self.hparams.beta_1, self.hparams.beta_2),
"weight_decay": self.hparams.weight_decay,
},
{
"params": no_decay,
"lr": self.hparams.lr,
"betas": (self.hparams.beta_1, self.hparams.beta_2),
"weight_decay": 0,
},
]
)
lr_scheduler = LinearWarmupCosineAnnealingLR(
optimizer,
self.hparams.warmup_steps,
self.hparams.max_steps,
self.hparams.warmup_start_lr,
self.hparams.eta_min,
)
scheduler = {"scheduler": lr_scheduler, "interval": "step", "frequency": 1}
return {"optimizer": optimizer, "lr_scheduler": scheduler}
|
ClimaX/src/climax/pretrain/module.py/0
|
{
"file_path": "ClimaX/src/climax/pretrain/module.py",
"repo_id": "ClimaX",
"token_count": 1644
}
| 203 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.networks.base_network import BaseNetwork
from models.networks.normalization import get_nonspade_norm_layer
import util.util as util
class MultiscaleDiscriminator(BaseNetwork):
@staticmethod
def modify_commandline_options(parser, is_train):
parser.add_argument('--netD_subarch', type=str, default='n_layer',
help='architecture of each discriminator')
parser.add_argument('--num_D', type=int, default=2,
help='number of discriminators to be used in multiscale')
opt, _ = parser.parse_known_args()
# define properties of each discriminator of the multiscale discriminator
subnetD = util.find_class_in_module(opt.netD_subarch + 'discriminator', \
'models.networks.discriminator')
subnetD.modify_commandline_options(parser, is_train)
return parser
def __init__(self, opt):
super().__init__()
self.opt = opt
for i in range(opt.num_D):
subnetD = self.create_single_discriminator(opt)
self.add_module('discriminator_%d' % i, subnetD)
def create_single_discriminator(self, opt):
subarch = opt.netD_subarch
if subarch == 'n_layer':
netD = NLayerDiscriminator(opt)
else:
raise ValueError('unrecognized discriminator subarchitecture %s' % subarch)
return netD
def downsample(self, input):
return F.avg_pool2d(input, kernel_size=3, stride=2, padding=[1, 1], count_include_pad=False)
def forward(self, input):
result = []
get_intermediate_features = not self.opt.no_ganFeat_loss
for name, D in self.named_children():
out = D(input)
if not get_intermediate_features:
out = [out]
result.append(out)
input = self.downsample(input)
return result
class NLayerDiscriminator(BaseNetwork):
@staticmethod
def modify_commandline_options(parser, is_train):
parser.add_argument('--n_layers_D', type=int, default=4, help='# layers in each discriminator')
return parser
def __init__(self, opt):
super().__init__()
self.opt = opt
kw = 4
padw = int((kw - 1.0) / 2)
nf = opt.ndf
input_nc = self.compute_D_input_nc(opt)
norm_layer = get_nonspade_norm_layer(opt, opt.norm_D)
sequence = [[nn.Conv2d(input_nc, nf, kernel_size=kw, stride=2, padding=padw),
nn.LeakyReLU(0.2, False)]]
for n in range(1, opt.n_layers_D):
nf_prev = nf
nf = min(nf * 2, 512)
stride = 1 if n == opt.n_layers_D - 1 else 2
if n == opt.n_layers_D - 1:
dec = []
nc_dec = nf_prev
for _ in range(opt.n_layers_D - 1):
dec += [nn.Upsample(scale_factor=2),
norm_layer(nn.Conv2d(nc_dec, int(nc_dec//2), kernel_size=3, stride=1, padding=1)),
nn.LeakyReLU(0.2, False)]
nc_dec = int(nc_dec // 2)
dec += [nn.Conv2d(nc_dec, opt.semantic_nc, kernel_size=3, stride=1, padding=1)]
self.dec = nn.Sequential(*dec)
sequence += [[norm_layer(nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=stride, padding=padw)),
nn.LeakyReLU(0.2, False)]]
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
for n in range(len(sequence)):
self.add_module('model' + str(n), nn.Sequential(*sequence[n]))
def compute_D_input_nc(self, opt):
input_nc = opt.label_nc + opt.output_nc
if opt.contain_dontcare_label:
input_nc += 1
return input_nc
def forward(self, input):
results = [input]
seg = None
cam_logit = None
for name, submodel in self.named_children():
if 'model' not in name:
continue
x = results[-1]
intermediate_output = submodel(x)
results.append(intermediate_output)
get_intermediate_features = not self.opt.no_ganFeat_loss
if get_intermediate_features:
retu = results[1:]
else:
retu = results[-1]
return retu
|
CoCosNet-v2/models/networks/discriminator.py/0
|
{
"file_path": "CoCosNet-v2/models/networks/discriminator.py",
"repo_id": "CoCosNet-v2",
"token_count": 2207
}
| 204 |
# Code Search
## Data Preprocess
Both training and validation datasets are created in a way that positive and negative samples are balanced. Negative samples consist of balanced number of instances with randomly replaced NL and PL.
We follow the official evaluation metric to calculate the Mean Reciprocal Rank (MRR) for each pair of test data (c, w) over a fixed set of 999 distractor codes.
You can use the following command to download the preprocessed training and validation dataset and preprocess the test dataset by yourself. The preprocessed testing dataset is very large, so only the preprocessing script is provided.
```shell
mkdir data data/codesearch
cd data/codesearch
gdown https://drive.google.com/uc?id=1xgSR34XO8xXZg4cZScDYj2eGerBE9iGo
unzip codesearch_data.zip
rm codesearch_data.zip
cd ../../codesearch
python process_data.py
cd ..
```
## Fine-Tune
We fine-tuned the model on 2*P100 GPUs.
```shell
cd codesearch
lang=php #fine-tuning a language-specific model for each programming language
pretrained_model=microsoft/codebert-base #Roberta: roberta-base
python run_classifier.py \
--model_type roberta \
--task_name codesearch \
--do_train \
--do_eval \
--eval_all_checkpoints \
--train_file train.txt \
--dev_file valid.txt \
--max_seq_length 200 \
--per_gpu_train_batch_size 32 \
--per_gpu_eval_batch_size 32 \
--learning_rate 1e-5 \
--num_train_epochs 8 \
--gradient_accumulation_steps 1 \
--overwrite_output_dir \
--data_dir ../data/codesearch/train_valid/$lang \
--output_dir ./models/$lang \
--model_name_or_path $pretrained_model
```
## Inference and Evaluation
Inference
```shell
lang=php #programming language
idx=0 #test batch idx
python run_classifier.py \
--model_type roberta \
--model_name_or_path microsoft/codebert-base \
--task_name codesearch \
--do_predict \
--output_dir ./models/$lang \
--data_dir ../data/codesearch/test/$lang \
--max_seq_length 200 \
--per_gpu_train_batch_size 32 \
--per_gpu_eval_batch_size 32 \
--learning_rate 1e-5 \
--num_train_epochs 8 \
--test_file batch_${idx}.txt \
--pred_model_dir ./models/$lang/checkpoint-best/ \
--test_result_dir ./results/$lang/${idx}_batch_result.txt
```
Evaluation
```shell
python mrr.py
```
|
CodeBERT/CodeBERT/codesearch/README.md/0
|
{
"file_path": "CodeBERT/CodeBERT/codesearch/README.md",
"repo_id": "CodeBERT",
"token_count": 732
}
| 205 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
from __future__ import absolute_import, division, print_function
import argparse
import logging
import os
import pickle
import random
import torch
import numpy as np
from itertools import cycle
import json
from model import Model
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler,TensorDataset
from torch.utils.data.distributed import DistributedSampler
from transformers import AdamW, get_linear_schedule_with_warmup, RobertaConfig, RobertaModel, RobertaTokenizer
from dataset import TextDataset
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
logger = logging.getLogger(__name__)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def train(args, train_datasets, eval_dataset, model, tokenizer):
""" Train the model """
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_samplers = [RandomSampler(train_dataset) for train_dataset in train_datasets]
train_dataloaders = [cycle(DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size,drop_last = True,num_workers = 0)) for train_dataset,train_sampler in zip(train_datasets,train_samplers)]
model.to(args.device)
if args.local_rank not in [-1, 0]:
torch.distributed.barrier()
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr = args.learning_rate, eps = args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps = args.warmup_steps,
num_training_steps = args.max_steps)
# use reintialized scheduler and opitmizer actually
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
scheduler_last = os.path.join(checkpoint_last, 'scheduler.pt')
optimizer_last = os.path.join(checkpoint_last, 'optimizer.pt')
if os.path.exists(scheduler_last):
scheduler.load_state_dict(torch.load(scheduler_last, map_location="cpu"))
if os.path.exists(optimizer_last):
optimizer.load_state_dict(torch.load(optimizer_last, map_location="cpu"))
if args.local_rank == 0:
torch.distributed.barrier()
# using fp16 to accelerate training
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids = [args.local_rank%args.gpu_per_node],
output_device = args.local_rank%args.gpu_per_node,
find_unused_parameters = True)
# Train!
logger.warning("***** Running training *****")
logger.warning(" Num examples = %d",sum([len(train_dataset) for train_dataset in train_datasets]) * (
torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.warning(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.warning(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (
torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.warning(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.warning(" Total optimization steps = %d", args.max_steps)
global_step = args.start_step
losses, contras_losses, align_losses, dual_losses, step = [], [], [], [], 0
model.zero_grad()
set_seed(args) # Added here for reproducibility (even between python 2 and 3)
probs = [0.34,0.33,0.33]
while True:
train_dataloader = np.random.choice(train_dataloaders, 1, p=probs)[0]
batch = next(train_dataloader)
model.train()
step+=1
# forward
dual_gen_ids, dual_gen_type_ids =[x.to(args.device) for x in batch]
loss, dual_loss, align_loss, contras_loss = model(dual_gen_ids, dual_gen_type_ids)
# store loss
losses.append(loss.item())
if contras_loss != 0:
contras_losses.append(contras_loss)
if align_loss != 0:
align_losses.append(align_loss)
if dual_loss != 0:
dual_losses.append(dual_loss)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
# backward
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
# update model
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
scheduler.step()
global_step += 1
if global_step %100 == 0:
logger.warning("steps: %s dual: %s", global_step,
round(np.mean(dual_losses),3),
)
losses, contras_losses, align_losses, dual_losses = [], [], [], []
# evaluate model and save model
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
checkpoint_prefix = 'checkpoint'
results = evaluate(args, model, tokenizer,eval_dataset)
for key, value in results.items():
logger.warning(" %s = %s", key, round(value,6))
# Save model checkpoint
output_dir = os.path.join(args.output_dir, '{}-{}-{}'.format(checkpoint_prefix,
global_step,
round(results['loss'], 6)))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module.encoder if hasattr(model,'module') else model.encoder
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.warning("Saving model checkpoint to %s", output_dir)
last_output_dir = os.path.join(args.output_dir, 'checkpoint-last')
if not os.path.exists(last_output_dir):
os.makedirs(last_output_dir)
model_to_save.save_pretrained(last_output_dir)
tokenizer.save_pretrained(last_output_dir)
idx_file = os.path.join(last_output_dir, 'idx_file.txt')
with open(idx_file, 'w', encoding='utf-8') as idxf:
idxf.write(str(0) + '\n')
torch.save(optimizer.state_dict(), os.path.join(last_output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(last_output_dir, "scheduler.pt"))
logger.warning("Saving optimizer and scheduler states to %s", last_output_dir)
step_file = os.path.join(last_output_dir, 'step_file.txt')
with open(step_file, 'w', encoding='utf-8') as stepf:
stepf.write(str(global_step) + '\n')
if args.max_steps > 0 and global_step > args.max_steps:
break
def evaluate(args, model, tokenizer, eval_dataset,prefix=""):
""" Evaluate the model """
eval_output_dir = args.output_dir
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
eval_dataloader = DataLoader(eval_dataset,
sampler = SequentialSampler(eval_dataset),
batch_size = args.eval_batch_size,
num_workers = 4,
drop_last = True)
# Eval!
logger.warning("***** Running evaluation *****")
logger.warning(" Num examples = %d", len(eval_dataset))
logger.warning(" Batch size = %d", args.eval_batch_size)
model.eval()
losses, contras_losses, align_losses, dual_losses = [], [], [], []
for batch in eval_dataloader:
dual_gen_ids, dual_gen_type_ids =[x.to(args.device) for x in batch]
with torch.no_grad():
loss, dual_loss, align_loss, contras_loss = model(dual_gen_ids, dual_gen_type_ids)
losses.append(loss.item())
if contras_loss != 0:
contras_losses.append(contras_loss)
if align_loss != 0:
align_losses.append(align_loss)
if dual_loss != 0:
dual_losses.append(dual_loss)
result = {
"loss": round(np.mean(losses),4),
"dual": round(np.mean(dual_losses),4),
}
return result
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--train_data_path", default=None, type=str, required=True,
help="The input training data path")
parser.add_argument("--another_train_data_path", default=None, type=str, required=True,
help="The input training data path")
parser.add_argument("--third_train_data_path", default=None, type=str, required=True,
help="The input training data path")
parser.add_argument("--eval_data_path", default=None, type=str,
help="The input evaluating data path")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--data_cache_dir", default=None, type=str, required=True,
help="The output directory where data cache will be written.")
parser.add_argument("--reload_dir", default=None, type=str,
help="The directory where the model checkpoints will be reloaded from.")
## Other parameters
parser.add_argument("--model_name_or_path", default=None, type=str,
help="The model checkpoint for weights initialization.")
parser.add_argument("--config_name", default=None, type=str,
help="Optional pretrained config name or path if not the same as model_name_or_path")
parser.add_argument("--tokenizer_name", default=None, type=str,
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")
parser.add_argument("--block_size", default=1024, type=int,
help="Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens).")
parser.add_argument("--per_gpu_train_batch_size", default=4, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=4, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--save_steps', type=int, default=50,
help="Save checkpoint every X updates steps.")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument("--node_index", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument("--gpu_per_node", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
args = parser.parse_args()
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
import datetime
torch.distributed.init_process_group(backend='nccl',timeout=datetime.timedelta(0,1800000))
args.local_rank+=args.node_index*args.gpu_per_node
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO if args.local_rank in [-1, 0] else logging.INFO) #logging.WARN
if args.local_rank not in [-1, 0]:
torch.distributed.barrier()
args.log_file = os.path.join(args.output_dir, 'log.txt')
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if os.path.exists(args.log_file):
logfile = logging.FileHandler(args.log_file, 'a')
else:
logfile = logging.FileHandler(args.log_file, 'w')
fmt = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s', '%m/%d/%Y %H:%M:%S %p')
logfile.setFormatter(fmt)
logger.addHandler(logfile)
if args.local_rank == 0:
torch.distributed.barrier()
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier()
args.start_step = 0
model_name_or_path = args.model_name_or_path
tokenizer = RobertaTokenizer.from_pretrained(model_name_or_path if args.tokenizer_name is None else args.tokenizer_name)
config = RobertaConfig.from_pretrained(model_name_or_path if args.config_name is None else args.config_name)
model = RobertaModel.from_pretrained(model_name_or_path,config=config)
# add special tokens
special_tokens_list = ['<line>','<state>','</state>','<dictsep>','<output>','<function>','<singleline>','<tutorial>','<codenet>','<indent>','<dedent>']
for i in range(200):
special_tokens_list.append('<' + str(i) + '>')
special_tokens_dict = {'additional_special_tokens': special_tokens_list}
tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
model = Model(model,config,tokenizer,args)
if args.local_rank == 0:
torch.distributed.barrier()
logger.warning("Training/evaluation parameters %s", args)
if args.local_rank == -1:
local_rank = 0
world_size = 1
else:
local_rank = args.local_rank
world_size = torch.distributed.get_world_size()
# reload and preprocess data
train_datasets = []
train_datasets.append(TextDataset(tokenizer, args, args.train_data_path, local_rank, world_size, logger, "train", prefix="codenet"))
train_datasets.append(TextDataset(tokenizer, args, args.another_train_data_path, local_rank, world_size, logger, "train", prefix="tutorial"))
train_datasets.append(TextDataset(tokenizer, args, args.third_train_data_path, local_rank, world_size, logger, "train", prefix="singleline"))
eval_dataset = TextDataset(tokenizer, args, args.eval_data_path, local_rank, world_size, logger, "eval","codenet")
# Training
train(args, train_datasets, eval_dataset, model, tokenizer)
if __name__ == "__main__":
main()
|
CodeBERT/CodeExecutor/pretrain/run.py/0
|
{
"file_path": "CodeBERT/CodeExecutor/pretrain/run.py",
"repo_id": "CodeBERT",
"token_count": 8982
}
| 206 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from evaluator.CodeBLEU.parser import DFG_python, DFG_java, DFG_ruby, DFG_go, DFG_php, DFG_javascript, DFG_csharp
from evaluator.CodeBLEU.parser import (remove_comments_and_docstrings,
tree_to_token_index,
index_to_code_token,
tree_to_variable_index)
from tree_sitter import Language, Parser
import os
root_dir = os.path.dirname(__file__)
dfg_function = {
'python': DFG_python,
'java': DFG_java,
'ruby': DFG_ruby,
'go': DFG_go,
'php': DFG_php,
'javascript': DFG_javascript,
'c_sharp': DFG_csharp,
}
def calc_syntax_match(references, candidate, lang):
return corpus_syntax_match([references], [candidate], lang)
def corpus_syntax_match(references, candidates, lang):
JAVA_LANGUAGE = Language(root_dir + '/parser/my-languages.so', lang)
parser = Parser()
parser.set_language(JAVA_LANGUAGE)
match_count = 0
total_count = 0
for i in range(len(candidates)):
references_sample = references[i]
candidate = candidates[i]
for reference in references_sample:
try:
candidate = remove_comments_and_docstrings(candidate, 'java')
except:
pass
try:
reference = remove_comments_and_docstrings(reference, 'java')
except:
pass
candidate_tree = parser.parse(bytes(candidate, 'utf8')).root_node
reference_tree = parser.parse(bytes(reference, 'utf8')).root_node
def get_all_sub_trees(root_node):
node_stack = []
sub_tree_sexp_list = []
depth = 1
node_stack.append([root_node, depth])
while len(node_stack) != 0:
cur_node, cur_depth = node_stack.pop()
sub_tree_sexp_list.append([cur_node.sexp(), cur_depth])
for child_node in cur_node.children:
if len(child_node.children) != 0:
depth = cur_depth + 1
node_stack.append([child_node, depth])
return sub_tree_sexp_list
cand_sexps = [x[0] for x in get_all_sub_trees(candidate_tree)]
ref_sexps = get_all_sub_trees(reference_tree)
# print(cand_sexps)
# print(ref_sexps)
for sub_tree, depth in ref_sexps:
if sub_tree in cand_sexps:
match_count += 1
total_count += len(ref_sexps)
score = match_count / total_count
return score
|
CodeBERT/CodeReviewer/code/evaluator/CodeBLEU/syntax_match.py/0
|
{
"file_path": "CodeBERT/CodeReviewer/code/evaluator/CodeBLEU/syntax_match.py",
"repo_id": "CodeBERT",
"token_count": 1383
}
| 207 |
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install --upgrade scipy transformers tqdm fuzzywuzzy tree_sitter datasets
lang=$1 #programming language
lr=2e-4
batch_size=16
beam_size=5
source_length=3968
target_length=128
global_length=64
window_size=512
output_dir=saved_models/$1
epochs=10
pretrained_model=microsoft/longcoder-base
mkdir -p $output_dir
python run.py \
--do_train \
--do_eval \
--lang $1 \
--output_dir $output_dir \
--model_name_or_path $pretrained_model \
--filename microsoft/LCC_$1 \
--max_source_length $source_length \
--max_target_length $target_length \
--max_global_length $global_length \
--window_size $window_size \
--beam_size $beam_size \
--train_batch_size $batch_size \
--eval_batch_size $batch_size \
--learning_rate $lr \
--num_train_epochs $epochs 2>&1| tee $output_dir/train.log
reload_model=$output_dir/checkpoint-best-acc/model.bin
python run.py \
--do_test \
--lang $1 \
--load_model_path $reload_model \
--model_name_or_path $pretrained_model \
--filename microsoft/LCC_$1 \
--output_dir $output_dir \
--max_source_length $source_length \
--max_target_length $target_length \
--max_global_length $global_length \
--window_size $window_size \
--beam_size $beam_size \
--train_batch_size $batch_size \
--eval_batch_size $batch_size \
--learning_rate $lr \
--num_train_epochs $epochs 2>&1| tee $output_dir/test.log
|
CodeBERT/LongCoder/run.sh/0
|
{
"file_path": "CodeBERT/LongCoder/run.sh",
"repo_id": "CodeBERT",
"token_count": 555
}
| 208 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
from __future__ import absolute_import
import os
import sys
import pickle
import torch
import json
import random
import logging
import argparse
import numpy as np
from io import open
from itertools import cycle
import torch.nn as nn
from model import Seq2Seq
from tqdm import tqdm, trange
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
from fuzzywuzzy import fuzz
import re
import multiprocessing
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
RobertaConfig, RobertaModel, RobertaTokenizer)
cpu_cont = 16
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
class Example(object):
"""A single training/test example."""
def __init__(self,
idx,
source,
target,
):
self.idx = idx
self.source = source
self.target = target
def read_examples(filename):
"""Read examples from filename."""
examples=[]
lang = filename.split("/")[-2]
with open(filename,encoding="utf-8") as f:
for idx, line in enumerate(f):
if ".txt" in filename:
inputs=line.strip().replace("<EOL>","</s>").split()
inputs=inputs[1:]
inputs=" ".join(inputs)
outputs=[]
else:
js=json.loads(line)
inputs=js["input"].replace("<EOL>","</s>").split()
inputs=inputs[1:]
inputs=" ".join(inputs)
outputs=js["gt"]
if 'id' in js:
idx = js['id']
examples.append(
Example(
idx = idx,
source = inputs,
target = outputs,
)
)
return examples
class InputFeatures(object):
"""A single training/test features for a example."""
def __init__(self,
example_id,
source_ids,
):
self.example_id = example_id
self.source_ids = source_ids
def post_process(code):
code = code.replace("<string","<STR_LIT").replace("<number","<NUM_LIT").replace("<char","<CHAR_LIT")
code = code.replace("<NUM_LIT>", "0").replace("<STR_LIT>", "").replace("<CHAR_LIT>", "")
pattern = re.compile(r"<(STR|NUM|CHAR)_LIT:(.*?)>", re.S)
lits = re.findall(pattern, code)
for lit in lits:
code = code.replace(f"<{lit[0]}_LIT:{lit[1]}>", lit[1])
return code
def tokenize(item):
source, max_length, tokenizer = item
source_tokens = [x for x in tokenizer.tokenize(source) if x!='\u0120']
source_tokens = ["<s>","<decoder-only>","</s>"]+source_tokens[-(max_length-3):]
source_ids = tokenizer.convert_tokens_to_ids(source_tokens)
padding_length = max_length - len(source_ids)
source_ids+=[tokenizer.pad_token_id]*padding_length
return source_tokens,source_ids
def convert_examples_to_features(examples, tokenizer, args,pool=None,stage=None):
features = []
if stage=="train":
max_length = args.max_source_length+args.max_target_length
else:
max_length = args.max_source_length
sources = [(x.source,max_length,tokenizer) for x in examples]
if pool is not None:
tokenize_tokens = pool.map(tokenize,tqdm(sources,total=len(sources)))
else:
tokenize_tokens = [tokenize(x) for x in sources]
for example_index, (source_tokens,source_ids) in enumerate(tokenize_tokens):
#source
if example_index < 5:
if stage=='train':
logger.info("*** Example ***")
logger.info("idx: {}".format(example_index))
logger.info("source_tokens: {}".format([x.replace('\u0120','_') for x in source_tokens]))
logger.info("source_ids: {}".format(' '.join(map(str, source_ids))))
features.append(
InputFeatures(
example_index,
source_ids,
)
)
return features
def set_seed(seed=42):
random.seed(seed)
os.environ['PYHTONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model: e.g. roberta-base" )
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--load_model_path", default=None, type=str,
help="Path to trained model: Should contain the .bin files" )
## Other parameters
parser.add_argument("--train_filename", default=None, type=str,
help="The train filename. Should contain the .jsonl files for this task.")
parser.add_argument("--dev_filename", default=None, type=str,
help="The dev filename. Should contain the .jsonl files for this task.")
parser.add_argument("--test_filename", default=None, type=str,
help="The test filename. Should contain the .jsonl files for this task.")
parser.add_argument("--lang", default="python", type=str,
help="Source language")
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--max_source_length", default=64, type=int,
help="The maximum total source sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--max_target_length", default=32, type=int,
help="The maximum total target sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_test", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument("--train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--beam_size", default=10, type=int,
help="beam size for beam search")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=3, type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--eval_steps", default=-1, type=int,
help="")
parser.add_argument("--train_steps", default=-1, type=int,
help="")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
pool = multiprocessing.Pool(cpu_cont)
# print arguments
args = parser.parse_args()
logger.info(args)
# Setup CUDA, GPU
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
logger.warning("Process rank: %s, device: %s, n_gpu: %s",
args.local_rank, device, args.n_gpu)
args.device = device
# Set seed
set_seed(args.seed)
# make dir if output_dir not exist
if os.path.exists(args.output_dir) is False:
os.makedirs(args.output_dir)
config =RobertaConfig.from_pretrained(args.model_name_or_path)
config.is_decoder = True
tokenizer = RobertaTokenizer.from_pretrained(args.model_name_or_path)
#budild model
encoder = RobertaModel.from_pretrained(args.model_name_or_path,config=config)
if args.lang == "python":
eos_ids = [tokenizer.sep_token_id]
else:
eos_ids = [tokenizer.convert_tokens_to_ids('Ġ;'), tokenizer.convert_tokens_to_ids('Ġ}'), tokenizer.convert_tokens_to_ids('Ġ{')]
model=Seq2Seq(encoder=encoder,decoder=encoder,config=config,
beam_size=args.beam_size,max_length=args.max_target_length,
sos_id=tokenizer.cls_token_id,eos_id=eos_ids)
if args.load_model_path is not None:
logger.info("reload model from {}".format(args.load_model_path))
model.load_state_dict(torch.load(args.load_model_path))
model.to(device)
if args.local_rank != -1:
# Distributed training
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
model = DDP(model)
elif args.n_gpu > 1:
# multi-gpu training
model = torch.nn.DataParallel(model)
if args.do_train:
# Prepare training data loader
train_examples = read_examples(args.train_filename)
train_features = convert_examples_to_features(train_examples, tokenizer,args, pool, stage='train')
all_source_ids = torch.tensor([f.source_ids for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_source_ids)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size//args.gradient_accumulation_steps)
num_train_optimization_steps = args.train_steps
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=int(len(train_dataloader)*args.num_train_epochs*0.1),
num_training_steps=len(train_dataloader)*args.num_train_epochs)
#Start training
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Step per epoch = %d", len(train_examples)//args.train_batch_size)
logger.info(" Num epoch = %d", args.num_train_epochs)
model.train()
dev_dataset={}
nb_tr_examples, nb_tr_steps,tr_loss,global_step,best_acc,best_loss = 0, 0,0,0,0,1e6
losses = []
for epoch in range(args.num_train_epochs):
for idx,batch in enumerate(train_dataloader):
batch = tuple(t.to(device) for t in batch)
source_ids = batch[0]
loss,_,_ = model(source_ids,True)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
losses.append(loss.item())
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
tr_loss += loss.item()
train_loss=round(tr_loss*args.gradient_accumulation_steps/(nb_tr_steps+1),4)
if (idx+1)%100==0:
logger.info("epoch {} step {} loss {}".format(epoch,idx+1,round(np.mean(losses[-100:]),4)))
nb_tr_examples += source_ids.size(0)
nb_tr_steps += 1
loss.backward()
if (nb_tr_steps + 1) % args.gradient_accumulation_steps == 0:
#Update parameters
optimizer.step()
optimizer.zero_grad()
scheduler.step()
global_step += 1
if args.do_eval:
#Eval model with dev dataset
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
eval_flag=False
eval_examples = read_examples(args.dev_filename.replace(".json",".txt"))
eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='dev')
all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_source_ids)
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
model.eval()
dev_losses = []
for batch in eval_dataloader:
batch = tuple(t.to(device) for t in batch)
source_ids = batch[0]
with torch.no_grad():
loss,_,_ = model(source_ids,True)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
dev_losses.append(loss.item())
eval_examples = read_examples(args.dev_filename)
eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='dev')
all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_source_ids)
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
p=[]
for batch in eval_dataloader:
batch = tuple(t.to(device) for t in batch)
source_ids = batch[0]
with torch.no_grad():
preds = model(source_ids=source_ids)
for pred in preds:
t=pred[0].cpu().numpy()
t=list(t)
if 0 in t:
t=t[:t.index(0)]
text = tokenizer.decode(t,clean_up_tokenization_spaces=False)
if args.lang == "java" and "{" in text:
text = text[:text.index("{")]
if args.lang == "python" and "</s>" in text:
text = text[:text.index("</s>")]
p.append(text)
model.train()
EM = 0.0
edit_sim = 0.0
total = len(p)
for ref,gold in zip(p,eval_examples):
pred = post_process(ref.strip())
gt = post_process(gold.target)
edit_sim += fuzz.ratio(pred, gt)
if pred.split() == gt.split():
EM += 1
dev_acc = round(EM/total*100, 2)
logger.info(" %s = %s "%("loss",round(np.mean(dev_losses),4)))
logger.info(" %s = %s "%("Acc",str(dev_acc)))
logger.info(" %s = %s "%("Edit sim",str(round(edit_sim/total, 2))))
logger.info(" "+"*"*20)
if dev_acc>best_acc:
logger.info(" Best acc:%s",dev_acc)
logger.info(" "+"*"*20)
best_acc=dev_acc
# Save best checkpoint for best bleu
output_dir = os.path.join(args.output_dir, 'checkpoint-best-acc')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(output_dir, "pytorch_model.bin")
torch.save(model_to_save.state_dict(), output_model_file)
if args.do_test:
files=[]
if args.test_filename is not None:
files.append(args.test_filename)
for idx,file in enumerate(files):
logger.info("Test file: {}".format(file))
eval_examples = read_examples(file)
eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='test')
all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_source_ids)
# Calculate bleu
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
p=[]
for batch in tqdm(eval_dataloader,total=len(eval_dataloader)):
batch = tuple(t.to(device) for t in batch)
source_ids = batch[0]
with torch.no_grad():
preds = model(source_ids=source_ids)
for pred in preds:
t=pred[0].cpu().numpy()
t=list(t)
if 0 in t:
t=t[:t.index(0)]
text = tokenizer.decode(t,clean_up_tokenization_spaces=False)
if args.lang == "java" and "{" in text:
text = text[:text.index("{")]
if args.lang == "python" and "</s>" in text:
text = text[:text.index("</s>")]
p.append(text)
model.train()
EM = 0.0
edit_sim = 0.0
total = len(p)
with open(os.path.join(args.output_dir, 'predictions.txt'),"w") as f:
for ref,gold in zip(p,eval_examples):
pred = post_process(ref.strip())
gt = post_process(gold.target)
edit_sim += fuzz.ratio(pred, gt)
if pred.split() == gt.split():
EM += 1
f.write(ref.strip()+"\n")
dev_acc = round(EM/total*100, 2)
logger.info(" %s = %s "%("Acc",str(dev_acc)))
logger.info(" %s = %s "%("Edit sim",str(round(edit_sim/total, 2))))
if __name__ == "__main__":
main()
|
CodeBERT/UniXcoder/downstream-tasks/code-completion/run.py/0
|
{
"file_path": "CodeBERT/UniXcoder/downstream-tasks/code-completion/run.py",
"repo_id": "CodeBERT",
"token_count": 11216
}
| 209 |
# CodeT: Code Generation with Generated Tests
# Overview
In the paper, we present **CodeT** (for **Code** Generation with Generated **T**ests), a simple yet effective approach to empower large pre-trained language models for code generation, which could achieve surprising improvements over previous methods. For example, we improve the pass@1 on HumanEval to 65.8%, an increase of absolute 18.8% on the OpenAI *code-davinci-002* model, and an absolute 20+% improvement over previous state-of-the-art results.

<center>Fig 1. The illustration of CodeT. Both the code solutions and the test cases are generated by the pre-trained language model. The best code solution is then selected by a dual execution agreement.</center>

<center>Fig 2. Code generation and test case generation: an example from the HumanEval benchmark. (Example input-output cases are removed from the context.)</center>
CodeT leverages large language models to generate both the code solutions and the test cases. We believe a solution could get support from both the test cases and the other solutions. The more test cases a solution can pass, and the more test-driven siblings the solution has, the better the solution is. Hence, We execute the code solutions using the test cases and chooses the best solution based on such dual execution agreement.
## Project
This project contains the basic components of CodeT and a main entry point, here is an overview:
```shell
|-- main.py # the main entry point to use CodeT
|-- src
|-- postprocess.py # handle code solution and test case post-processing
|-- _execution.py # perform execution with the given code solutions and test cases
|-- execution.py # wrapper of the execution process
|-- agreement.py # perform dual execution agreement of CodeT
|-- evaluation.py # calculate pass@k results for baseline and CodeT
|-- io_utils.py # simple utils for file reading/writing
|-- data
|-- dataset # contains the input data for code solution and test case generation
|-- HumanEval_for_code_generation.jsonl
|-- HumanEval_for_test_case_generation.jsonl
|-- MBPP_sanitized_for_code_generation.jsonl
|-- MBPP_sanitized_for_test_case_generation.jsonl
|-- APPS_zeroshot_for_code_generation.zip
|-- APPS_zeroshot_for_test_case_generation.jsonl
|-- CodeContests_zeroshot_for_code_generation.jsonl
|-- CodeContests_zeroshot_for_test_case_generation.jsonl
|-- generated_data # contains the output data by pre-trained language models
|-- HumanEval_codegen16B_temp0.8_topp0.95_num100_max300_code_solution.jsonl
|-- HumanEval_codegen16B_temp0.8_topp0.95_num100_max300_test_case.jsonl
|-- HumanEval_davinci002_temp0.8_topp0.95_num100_max300_code_solution.jsonl
|-- HumanEval_davinci002_temp0.8_topp0.95_num100_max300_test_case.jsonl
|-- HumanEval_incoder6B_temp0.8_topp0.95_num100_max300_code_solution.jsonl
|-- HumanEval_incoder6B_temp0.8_topp0.95_num100_max300_test_case.jsonl
|-- MBPP_codegen16B_temp0.8_topp0.95_num100_max300_code_solution.jsonl
|-- MBPP_codegen16B_temp0.8_topp0.95_num100_max300_test_case.jsonl
|-- MBPP_davinci002_temp0.8_topp0.95_num100_max300_code_solution.jsonl
|-- MBPP_davinci002_temp0.8_topp0.95_num100_max300_test_case.jsonl
|-- MBPP_incoder6B_temp0.8_topp0.95_num100_max300_code_solution.jsonl
|-- MBPP_incoder6B_temp0.8_topp0.95_num100_max300_test_case.jsonl
|-- APPS_zeroshot_davinci002_temp0.8_topp0.95_num50_max300_code_solution.zip
|-- APPS_zeroshot_davinci002_temp0.8_topp0.95_num50_max300_test_case.zip
|-- CodeContests_zeroshot_davinci002_temp0.8_topp0.95_num50_max300_test_case.jsonl
|-- CodeContests_zeroshot_davinci002_temp0.8_topp0.95_num1000_max300_code_solution.zip
```
# Quickstart
## Prepare Environment
First, you should set up a python environment. This code base has been tested under python 3.7.
After installing python 3.7, we strongly recommend you to use `virtualenv` to manage the python environment. You could use following commands to create an environment `venv` and activate it.
```bash
$ python3.7 -m venv venv
$ source venv/bin/activate
$ pip install -r requirements.txt
```
## Prepare Data
First, you can find our processed HumanEval and MBPP benchmarks in the `data/dataset` directory, including the data for code solution and test case generation. Then you may reproduce the results of InCoder and CodeGen on the HumanEval benchmark using the data we provide in the `data/generated_data` directory. Or you can feed the input data to the code generation models (e.g. [CodeGen](https://github.com/salesforce/CodeGen) and [InCoder](https://github.com/dpfried/incoder)) to generate code solutions and test cases.
Here is an example of the HumanEval benchmark:
```json
{
"task_id": "HumanEval/23",
"prompt": "\n\ndef strlen(string: str) -> int:\n \"\"\" Return length of given string\n \"\"\"\n",
"entry_point": "strlen",
"canonical_solution": " return len(string)\n",
"test": "\n\nMETADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}\n\n\ndef check(candidate):\n assert candidate('') == 0\n assert candidate('x') == 1\n assert candidate('asdasnakj') == 9\n"
}
```
And the model output should look like this:
```json
{
"prompt": "\n\ndef strlen(string: str) -> int:\n \"\"\" Return length of given string\n \"\"\"\n",
"samples": [" length = 0\n for char in string:\n length += 1\n return length\n\n",
" count = 0\n for _ in string:\n count += 1\n return count\n\n",
" return len(string)\n", " length = 0\n for _ in string:\n length += 1\n return length\n"]
}
```
## Use CodeT
You may use the script `main.py` to run CodeT, which automatically performs post-processing, dual execution agreement, and pass@k evaluation.
Before running the script, you need to specify several arguments:
```bash
python main.py
--source_path_for_solution PATH_1 # model input file in .jsonl format
--predict_path_for_solution PATH_2 # model output file in .jsonl format
--source_path_for_test PATH_3 # model input file in .jsonl format
--predict_path_for_test PATH_4 # model output file in .jsonl format
--cache_dir PATH_5 # the directory to store the cache files (execution results)
--timeout NUMBER # how many seconds to wait during execution for each test case (default 0.1)
--test_case_limit NUMBER # first n test cases per sample (default 5)
```
# Citation
If our work is useful for you, please consider citing our paper:
```bibtex
@misc{https://doi.org/10.48550/arxiv.2207.10397,
doi = {10.48550/ARXIV.2207.10397},
url = {https://arxiv.org/abs/2207.10397},
author = {Chen, Bei and Zhang, Fengji and Nguyen, Anh and Zan, Daoguang and Lin, Zeqi and Lou, Jian-Guang and Chen, Weizhu},
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), Programming Languages (cs.PL), Software Engineering (cs.SE), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {CodeT: Code Generation with Generated Tests},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}
```
# Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.
When you submit a pull request, a CLA bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [[email protected]](mailto:[email protected]) with any additional questions or comments.
# License
Please note that this repo is under [MIT License](LICENSE).
# Trademarks
This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft
trademarks or logos is subject to and must follow
[Microsoft's Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/usage/general).
Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship.
Any use of third-party trademarks or logos are subject to those third-party's policies.
|
CodeT/CodeT/README.md/0
|
{
"file_path": "CodeT/CodeT/README.md",
"repo_id": "CodeT",
"token_count": 2949
}
| 210 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from collections import defaultdict, Counter
import logging
import math
logging.basicConfig(
format="SystemLog: [%(asctime)s][%(name)s][%(levelname)s] - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
class DataManager:
def __init__(self, dual_exec_results, sampled_code_by_task, sampled_test_case_by_task, limit):
logger.info('handling dual exec results')
self.dual_exec_results = dual_exec_results
self.sampled_code_by_task = sampled_code_by_task
self.sampled_test_case_by_task = sampled_test_case_by_task
self.limit = limit
self.solution_frequency_by_task = defaultdict(Counter)
self.test_case_frequency_by_task = dict()
self.passed_unique_solutions_by_task = defaultdict(set)
self.passed_unique_test_cases_by_task = defaultdict(set)
self.passed_solution_test_case_pairs_by_task = defaultdict(set)
self.solution_string_to_id_range_by_task = dict()
self.test_case_string_to_id_range_by_task = dict()
self.solution_id_to_string_by_task = dict()
self.test_case_id_to_string_by_task = dict()
self.expanded_passed_solution_test_case_pairs_by_task = defaultdict(list)
self._get_solution_frequency()
logger.info('got solution frequency')
self._get_test_case_frequency()
logger.info('got test case frequency')
self._get_passed_solution_test_case_pairs_by_task()
logger.info('got passed solution test case pairs by task')
self._get_solution_and_test_case_ids()
logger.info('got solution and test case ids')
self._get_expanded_dual_exec_result()
logger.info('got expanded dual exec results')
def _get_solution_frequency(self):
for sample in self.sampled_code_by_task:
task_id = sample['task_id']
completion = sample['completion']
self.solution_frequency_by_task[task_id][completion] += 1
def _get_test_case_frequency(self):
for task_id in self.sampled_test_case_by_task.keys():
task_test_cases = [
cases_per_sample[:self.limit] for cases_per_sample in self.sampled_test_case_by_task[task_id]
]
task_test_cases = sum(task_test_cases, [])
self.test_case_frequency_by_task[task_id] = Counter(task_test_cases)
def _get_passed_solution_test_case_pairs_by_task(self):
for result in self.dual_exec_results:
if not result['passed']:
continue
for idx, test_case in enumerate(result['test_cases']):
if result['result'][idx] != True:
continue
if test_case not in self.test_case_frequency_by_task[result['task_id']]:
continue
self.passed_solution_test_case_pairs_by_task[result['task_id']].add((result['completion'], test_case))
self.passed_unique_solutions_by_task[result['task_id']].add(result['completion'])
self.passed_unique_test_cases_by_task[result['task_id']].add(test_case)
def _build_string_to_id_range(self, frequency_dict, limited_values):
id_ranges = dict()
start_id = 0
for key, value in frequency_dict.items():
if key not in limited_values:
continue
id_ranges[key] = range(start_id, start_id + value)
start_id += value
return id_ranges
def _build_id_to_string(self, str_to_id_range):
id_to_string = dict()
for string in str_to_id_range.keys():
for idx in str_to_id_range[string]:
id_to_string[idx] = string
return id_to_string
def _get_solution_and_test_case_ids(self):
for task_id in self.solution_frequency_by_task.keys():
self.solution_string_to_id_range_by_task[task_id] = self._build_string_to_id_range(self.solution_frequency_by_task[task_id], self.passed_unique_solutions_by_task[task_id])
self.test_case_string_to_id_range_by_task[task_id] = self._build_string_to_id_range(self.test_case_frequency_by_task[task_id], self.passed_unique_test_cases_by_task[task_id])
self.solution_id_to_string_by_task[task_id] = self._build_id_to_string(self.solution_string_to_id_range_by_task[task_id])
self.test_case_id_to_string_by_task[task_id] = self._build_id_to_string(self.test_case_string_to_id_range_by_task[task_id])
def _get_expanded_by_id_range(self, solution_id_range, test_case_id_range):
result = list()
for solution_id in solution_id_range:
for test_case_id in test_case_id_range:
result.append((solution_id, test_case_id))
return result
def _get_expanded_dual_exec_result(self):
for task_id in self.passed_solution_test_case_pairs_by_task.keys():
for solution_str, test_case_str in self.passed_solution_test_case_pairs_by_task[task_id]:
solution_id_range = self.solution_string_to_id_range_by_task[task_id][solution_str]
test_case_id_range = self.test_case_string_to_id_range_by_task[task_id][test_case_str]
self.expanded_passed_solution_test_case_pairs_by_task[task_id] += self._get_expanded_by_id_range(solution_id_range, test_case_id_range)
class DualAgreement:
def __init__(self, data_manager):
self.data_manager = data_manager
self.dual_exec_results_by_task = data_manager.expanded_passed_solution_test_case_pairs_by_task
self.solution_id_to_string_by_task = data_manager.solution_id_to_string_by_task
self.solution_passed_cases_by_task = defaultdict(defaultdict)
self.caseset_passed_solutions_by_task = defaultdict(defaultdict)
self._get_solution_passed_case_set()
logger.info('got solution passed case sets')
self._get_caseset_passed_solutions()
logger.info('got case set passed solutions')
def _get_solution_passed_case_set(self):
for task_id in self.dual_exec_results_by_task:
for solution, test_case in self.dual_exec_results_by_task[task_id]:
if solution in self.solution_passed_cases_by_task[task_id]:
self.solution_passed_cases_by_task[task_id][solution].append(test_case)
else:
self.solution_passed_cases_by_task[task_id][solution] = [test_case]
def _get_caseset_passed_solutions(self):
for task_id in self.solution_passed_cases_by_task.keys():
for solution in self.solution_passed_cases_by_task[task_id].keys():
case_set = tuple(sorted(self.solution_passed_cases_by_task[task_id][solution])) # case_set: set of (test_case, score)
if case_set in self.caseset_passed_solutions_by_task[task_id]:
self.caseset_passed_solutions_by_task[task_id][case_set].append(solution)
else:
self.caseset_passed_solutions_by_task[task_id][case_set] = [solution]
def get_sorted_solutions_without_iter(self):
logger.info('Start to get sorted solutions without iter')
# caseset_passed_solutions = {task_id: {case_set: [solution]}}
ranked_solutions_by_task = defaultdict(list)
for task_id in self.caseset_passed_solutions_by_task.keys():
flatted_case_set_passed_solutions = []
for case_set in self.caseset_passed_solutions_by_task[task_id].keys():
solution_set = self.caseset_passed_solutions_by_task[task_id][case_set]
solution_set_score = math.sqrt(len(solution_set))
case_set_score = len(case_set)
solution_str_set = [self.solution_id_to_string_by_task[task_id][solution] for solution in solution_set]
flatted_case_set_passed_solutions.append((solution_str_set, case_set_score*solution_set_score))
ranked_solutions_by_task[task_id] = sorted(flatted_case_set_passed_solutions, key=lambda x: x[1], reverse=True)
return ranked_solutions_by_task
|
CodeT/CodeT/src/agreement.py/0
|
{
"file_path": "CodeT/CodeT/src/agreement.py",
"repo_id": "CodeT",
"token_count": 3811
}
| 211 |
# RepoCoder: Repository-Level Code Completion Through Iterative Retrieval and Generation
# Overview
In the paper, we present **RepoCoder**, a simple, generic, and effective framework to tackle the repository-level code completion task, which is to continue writing the unfinished code based on a broader context of the repository. RepoCoder incorporates a similarity-based retriever, a pre-trained code language model, and a novel iterative retrieval-generation paradigm. It streamlines the overall process and eliminates the need for heuristic rules, static code analysis, data labeling, and model re-training in previous studies.

<center>
Figure 1. The illustration of our RepoCoder framework.
</center>
We also present a new benchmark, **RepoEval**, for the repository-level code completion task, which consists of the latest and high-quality real-world repositories covering line, API invocation, and function body completion scenarios. We test the performance of RepoCoder and show that it significantly improves the zero-shot code completion baseline by over 10% and consistently outperforms the vanilla retrieval-augmented code completion approach.
## Project
This project contains the basic components of RepoCoder. Here is an overview:
```shell
|-- make_window.py # slice the repository files and the model predictions into code snippets
|-- build_vector.py # build the vector representation for the code snippets
|-- search_code.py # search relevant code snippets with the vector representation
|-- build_prompt.py # build the prompt with the unfinished code and the retrieved code snippets
|-- run_pipeline.py # run the code completion pipeline
|-- compute_score.py # evaluate the performance of the code completion
|-- utils.py # utility functions
|-- datasets/datasets.zip # the input data for the code completion task
|-- function_level_completion_4k_context_codex.test.jsonl
|-- function_level_completion_2k_context_codex.test.jsonl
|-- line_level_completion_4k_context_codex.test.jsonl
|-- line_level_completion_2k_context_codex.test.jsonl
|-- line_level_completion_2k_context_codegen.test.jsonl
|-- line_level_completion_1k_context_codegen.test.jsonl
|-- api_level_completion_4k_context_codex.test.jsonl
|-- api_level_completion_2k_context_codex.test.jsonl
|-- api_level_completion_2k_context_codegen.test.jsonl
|-- api_level_completion_1k_context_codegen.test.jsonl
|-- repositories # the checkpoints of repositories used to build our benchmark
|-- function_level.zip
|-- CarperAI_trlx
|-- lucidrains_imagen-pytorch
|-- deepmind_tracr
|-- leopard-ai_betty
|-- google_lightweight_mmm
|-- amazon-science_patchcore-inspection
|-- facebookresearch_omnivore
|-- maxhumber_redframes
|-- line_and_api_level.zip
|-- pytorch_rl
|-- opendilab_ACE
|-- google_vizier
|-- awslabs_fortuna
|-- huggingface_evaluate
|-- huggingface_diffusers
|-- nerfstudio-project_nerfstudio
|-- alibaba_FederatedScope
```
We utilize a private library to handle the execution and evaluation of the function-level completion. Due to the license issue, we cannot release the code. However, we provide the data for the function-level completion task in `datasets/datasets.zip` and `repositories/function_level.zip`.
# Quickstart
## Prepare Environment
First, we should set up a python environment. This code base has been tested under python 3.8.
```bash
$ conda create -n repocoder python=3.8
$ conda activate repocoder
$ pip install -r requirements.txt
```
## Run the Code Completion
1. The `run_RG1_and_oracle_method` function in `run_pipeline.py` shows the process of building the prompts for vanilla retrieval-augmented generation (RG1) and the Oracle method. The generated prompts are listed in a .jsonl file, where each line contains the content in the following format:
```json
{
"prompt": "...the retrieved code snippets and unfinished code...",
"metadata": {
"task_id": "repo_name/idx",
"ground_truth": "ground truth completion",
"fpath_tuple": ["path", "to", "target file"],
"context_start_lineno": 0,
"line_no": 10,
}
}
```
2. Then we can call the model to generate completions and organize the results in the following format:
```json
{
"prompt": "...the retrieved code snippets and unfinished code...",
"choices": [{"text": "...generated completion without repeating the input prompt..."}],
"metadata": {}
}
```
3. Next, we can evaluate the performance of the code completion with the `compute_score.py` script. The script will compute the Exact Match and Edit Similarity scores.
4. After that, we can use the `run_RepoCoder_method` function in `run_pipeline.py` to run a second iteration of retrieval-generation, which is our proposed RepoCoder approach, using the prediction file of RG1. And finally, we can evaluate the performance of RepoCoder as introduced in Step 3.
# Citation
If our work is useful, please consider citing our paper:
```bibtex
@article{zhang2023repocoder,
title={RepoCoder: Repository-Level Code Completion Through Iterative Retrieval and Generation},
author={Zhang, Fengji and Chen, Bei and Zhang, Yue and Liu, Jin and Zan, Daoguang and Mao, Yi and Lou, Jian-Guang and Chen, Weizhu},
journal={arXiv preprint arXiv:2303.12570},
year={2023}
}
```
# Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.
When you submit a pull request, a CLA bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [[email protected]](mailto:[email protected]) with any additional questions or comments.
# License
Please note that this repo is under [MIT License](LICENSE).
# Trademarks
This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft
trademarks or logos is subject to and must follow
[Microsoft's Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/usage/general).
Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship.
Any use of third-party trademarks or logos are subject to those third-party's policies.
|
CodeT/RepoCoder/README.md/0
|
{
"file_path": "CodeT/RepoCoder/README.md",
"repo_id": "CodeT",
"token_count": 1968
}
| 212 |
# Cognitive Service Powershell context
## Using Speech Synthesis
This project includes speech synthesized playback for your query outputs using the azure cognitive services speech cli. As noted in the previous section about contexts, this is a certain behavior of the model that is included in the sample `powershell-voice-cognitive-service.txt` file available in the `contexts` folder. Before running any speech synthesis output from the model, you have to do a couple of steps to set it up:
### Set up Azure Speech Service
Speech Service is part of the larger Cognitive Services suite and helps you enable applications in areas of speech-to-text, text-to-speech, and speech translation. Here we want it primarily for the text-to-speech functionality.
1. Go to the Cognitive Services Hub in the Azure Portal
2. Create a new Speech Service: You may choose the default values for setting it up
3. Save the API Key and Region for further use
### Set up Azure Speech CLI
Follow the instructions in [Azure Speech CLI Quickstart](https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/spx-basics?tabs=windowsinstall%2Cterminal) to install the prerequisites
If you are setting up for the first time, here is what you may have to do:
1. Download [.NET Core 3.1 SDK](https://docs.microsoft.com/en-us/dotnet/core/install/windows) and [Microsoft Visual C++ Redistributable for Visual Studio 2019](https://support.microsoft.com/help/2977003/the-latest-supported-visual-c-downloads)
2. Install speech CLI in PowerShell using this command: `dotnet tool install --global Microsoft.CognitiveServices.Speech.CLI`
3. Use the subscription key and region that you obtained from the Cognitive Services Speech Service page and input into the following commands
`spx config @key --set SUBSCRIPTION-KEY`
`spx config @region --set REGION`
### Load the example speech context file
Load the example Cognitive Services speech context file using ` # load context powershell-voice-cognitive-service.txt ` and then hit `Ctrl + G` to let the Codex CLI load the file
And that's it! To get started with an example, go ahead and type `# whats the meaning of life`.
You can develop your own context with more speech functions as mentioned in the previous section.
|
Codex-CLI/contexts/CognitiveServiceContext.md/0
|
{
"file_path": "Codex-CLI/contexts/CognitiveServiceContext.md",
"repo_id": "Codex-CLI",
"token_count": 565
}
| 213 |
###
# PowerShell script to setup Codex CLI for PowerShell
###
param
(
[Parameter()]
[System.IO.FileInfo]
[ValidateScript( {
if (-Not ($_ | Test-Path) ) {
throw "Folder does not exist. Did you clone the Codex CLI repo?"
}
return $true
})]
[string]$RepoRoot = (Get-Location),
[Parameter(Mandatory = $true)]
[ValidateNotNullOrEmpty()]
[SecureString]
$OpenAIApiKey,
[Parameter(Mandatory = $true)]
[ValidateNotNullOrEmpty()]
$OpenAIOrganizationId,
[Parameter(Mandatory = $true)]
[ValidateNotNullOrEmpty()]
$OpenAIEngineId
)
$plugInScriptPath = Join-Path $RepoRoot -ChildPath "scripts\powershell_plugin.ps1"
$codexQueryPath = Join-Path $RepoRoot -ChildPath "src\codex_query.py"
$openAIConfigPath = Join-Path $RepoRoot -ChildPath "src\openaiapirc"
# The major version of PowerShell
$PSMajorVersion = $PSVersionTable.PSVersion.Major
# Convert secure string to plain text
if ($PSMajorVersion -lt 7) {
$binaryString = [System.Runtime.InteropServices.Marshal]::SecureStringToBSTR($OpenAIApiKey);
$openAIApiKeyPlainText = [System.Runtime.InteropServices.Marshal]::PtrToStringAuto($binaryString);
} else {
$openAIApiKeyPlainText = ConvertFrom-SecureString -SecureString $OpenAIApiKey -AsPlainText
}
# Check the access with OpenAI API
Write-Host "Checking OpenAI access..."
$enginesApiUri = "https://api.openai.com/v1/engines"
$response = $null
try {
if ($PSMajorVersion -lt 7) {
$response = (Invoke-WebRequest -Uri $enginesApiUri -Headers @{"Authorization" = "Bearer $openAIApiKeyPlainText"; "OpenAI-Organization" = "$OpenAIOrganizationId"})
} else {
$response = (Invoke-WebRequest -Uri $enginesApiUri -Authentication Bearer -Token $OpenAIApiKey -Headers @{"OpenAI-Organization" = "$OpenAIOrganizationId"})
}
} catch {
$statusCode = $_.Exception.Response.StatusCode.value__
Write-Error "Failed to access OpenAI api [$statusCode]. Please check your OpenAI API key (https://beta.openai.com/account/api-keys) and Organization ID (https://beta.openai.com/account/org-settings)."
exit 1
}
# Check if target engine is available to the user
if ($null -eq (($response.Content | ConvertFrom-Json).data | Where-Object {$_.id -eq $OpenAIEngineId})) {
Write-Error "Cannot find OpenAI engine: $OpenAIEngineId. Please check the OpenAI engine id (https://beta.openai.com/docs/engines/codex-series-private-beta) and your Organization ID (https://beta.openai.com/account/org-settings)."
exit 1
}
# Create new PowerShell profile if doesn't exist. The profile type is for current user and current host.
# To learn more about PowerShell profile, please refer to
# https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_profiles
if (!(Test-Path -Path $PROFILE)) {
New-Item -Type File -Path $PROFILE -Force
} else {
# Clean up the content before append new one. This allow users to setup multiple times without running cleanup script
(Get-Content -Path $PROFILE -Raw) -replace "(?ms)### Codex CLI setup - start.*?### Codex CLI setup - end", "" | Set-Content -Path $PROFILE
Write-Host "Removed previous setup script from $PROFILE."
}
# Add our plugin script into PowerShell profile. It involves three steps:
# 1. Read the plugin script content,
# 2. Replace hardcode variable with the actual path to codex_query.py,
# 3. Add the plugin script to the content of PowerShell profile.
(Get-Content -Path $plugInScriptPath) -replace "{{codex_query_path}}", $codexQueryPath | Add-Content -Path $PROFILE
Write-Host "Added plugin setup to $PROFILE."
# Create OpenAI configuration file to store secrets
if (!(Test-Path -Path $openAIConfigPath)) {
New-Item -Type File -Path $openAIConfigPath -Force
}
Set-Content -Path $openAIConfigPath "[openai]
organization_id=$OpenAIOrganizationId
secret_key=$openAIApiKeyPlainText
engine=$OpenAIEngineId"
Write-Host "Updated OpenAI configuration file with secrets."
Write-Host -ForegroundColor Blue "Codex CLI PowerShell (v$PSMajorVersion) setup completed. Please open a new PowerShell session, type in # followed by your natural language command and hit Ctrl+G!"
|
Codex-CLI/scripts/powershell_setup.ps1/0
|
{
"file_path": "Codex-CLI/scripts/powershell_setup.ps1",
"repo_id": "Codex-CLI",
"token_count": 1412
}
| 214 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
File: large_face_list_face.py
Description: Large Face List Face section of the Cognitive Face API.
"""
from . import util
def add(image, large_face_list_id, user_data=None, target_face=None):
"""Add a face to a large face list.
The input face is specified as an image with a `target_face` rectangle. It
returns a `persisted_face_id` representing the added face, and
`persisted_face_id` will not expire.
Args:
image: A URL or a file path or a file-like object represents an image.
large_face_list_id: Valid character is letter in lower case or digit or
'-' or '_', maximum length is 64.
user_data: Optional parameter. User-specified data about the large face
list for any purpose. The maximum length is 1KB.
target_face: Optional parameter. A face rectangle to specify the target
face to be added into the large face list, in the format of
"left,top,width,height". E.g. "10,10,100,100". If there are more
than one faces in the image, `target_face` is required to specify
which face to add. No `target_face` means there is only one face
detected in the entire image.
Returns:
A new `persisted_face_id`.
"""
url = 'largefacelists/{}/persistedFaces'.format(large_face_list_id)
headers, data, json = util.parse_image(image)
params = {
'userData': user_data,
'targetFace': target_face,
}
return util.request(
'POST', url, headers=headers, params=params, json=json, data=data)
def delete(large_face_list_id, persisted_face_id):
"""Delete an existing face from a large face list (given by a
`persisted_face_id` and a `large_face_list_id`). Persisted image related to
the face will also be deleted.
Args:
large_face_list_id: Valid character is letter in lower case or digit or
'-' or '_', maximum length is 64.
persisted_face_id: `persisted_face_id` of an existing face. Valid
character is letter in lower case or digit or '-' or '_', maximum
length is 64.
Returns:
An empty response body.
"""
url = 'largefacelists/{}/persistedFaces/{}'.format(large_face_list_id,
persisted_face_id)
return util.request('DELETE', url)
def get(large_face_list_id, persisted_face_id):
"""Retrieve information about a persisted face (specified by
`persisted_face_id` and a `large_face_list_id`).
Args:
large_face_list_id: Valid character is letter in lower case or digit or
'-' or '_', maximum length is 64.
persisted_face_id: `persisted_face_id` of an existing face. Valid
character is letter in lower case or digit or '-' or '_', maximum
length is 64.
Returns:
The target persisted face's information (`persisted_face_id` and
`user_data`).
"""
url = 'largefacelists/{}/persistedFaces/{}'.format(large_face_list_id,
persisted_face_id)
return util.request('GET', url)
def list(large_face_list_id, start=None, top=None):
"""Retrieve information (`persisted_face_id` and `user_data`) about
existing persisted faces in a large face list.
Args:
start: Optional parameter. List large face lists from the least
`large_face_list_id` greater than the "start". It contains no more
than 64 characters. Default is empty.
top: The number of large face lists to list, ranging in [1, 1000].
Default is 1000.
Returns:
An array of persisted faces and their information (`persisted_face_id`
and `user_data`).
"""
url = 'largefacelists/{}/persistedFaces'.format(large_face_list_id)
params = {
'start': start,
'top': top,
}
return util.request('GET', url, params=params)
def update(large_face_list_id, persisted_face_id, user_data=None):
"""Update a persisted face's `user_data` field in a large face list.
Args:
large_face_list_id: largeFaceListId of an existing large face list.
person.
person_id: `person_id` of the target person.
persisted_face_id: `persisted_face_id` of the target face, which is
persisted and will not expire.
user_data: Optional parameter. Attach `user_data` to person's
persisted face. The size limit is 1KB.
Returns:
An empty response body.
"""
url = 'largefacelists/{}/persistedFaces/{}'.format(large_face_list_id,
persisted_face_id)
json = {
'userData': user_data,
}
return util.request('PATCH', url, json=json)
|
Cognitive-Face-Python/cognitive_face/large_face_list_face.py/0
|
{
"file_path": "Cognitive-Face-Python/cognitive_face/large_face_list_face.py",
"repo_id": "Cognitive-Face-Python",
"token_count": 1976
}
| 215 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
File: test_person_group.py
Description: Unittests for Person Group section of the Cognitive Face API.
"""
import uuid
import unittest
import cognitive_face as CF
from . import util
class TestPersonGroup(unittest.TestCase):
"""Unittests for Person Group section."""
def test_person_group(self):
"""Unittests for `person_group.create`, `person_group.train`,
`person_group.update`, `person_group.get_status` and
`person_group.delete`.
"""
person_group_id = str(uuid.uuid1())
res = CF.person_group.create(person_group_id)
print(res)
self.assertIsInstance(res, dict)
util.wait()
# Fake a person and a face to satisfy training.
res = CF.person.create(person_group_id, 'TempPerson')
person_id = res['personId']
image = '{}PersonGroup/Family1-Dad/Family1-Dad3.jpg'.format(
util.BASE_URL_IMAGE)
res = CF.person.add_face(image, person_group_id, person_id)
res = CF.person_group.train(person_group_id)
print(res)
self.assertIsInstance(res, dict)
util.wait()
res = CF.person_group.update(person_group_id, 'name')
print(res)
self.assertIsInstance(res, dict)
util.wait()
res = CF.person_group.get_status(person_group_id)
print(res)
self.assertIsInstance(res, dict)
util.wait()
res = CF.person_group.delete(person_group_id)
print(res)
self.assertIsInstance(res, dict)
util.wait()
def test_get(self):
"""Unittest for `person_group.get`."""
res = CF.person_group.get(util.DataStore.person_group_id)
print(res)
self.assertIsInstance(res, dict)
util.wait()
def test_lists(self):
"""Unittest for `person_group.lists`."""
res = CF.person_group.lists()
print(res)
self.assertIsInstance(res, list)
util.wait()
|
Cognitive-Face-Python/cognitive_face/tests/test_person_group.py/0
|
{
"file_path": "Cognitive-Face-Python/cognitive_face/tests/test_person_group.py",
"repo_id": "Cognitive-Face-Python",
"token_count": 894
}
| 216 |
[nosetests]
exe=1
verbosity=2
|
Cognitive-Face-Python/setup.cfg/0
|
{
"file_path": "Cognitive-Face-Python/setup.cfg",
"repo_id": "Cognitive-Face-Python",
"token_count": 15
}
| 217 |
DUMPY_STRING_FOR_EMPTY_ANS = "no answer"
|
ContextualSP/adaptershare/data_utils/my_statics.py/0
|
{
"file_path": "ContextualSP/adaptershare/data_utils/my_statics.py",
"repo_id": "ContextualSP",
"token_count": 19
}
| 218 |
import os
import argparse
import random
from sys import path
path.append(os.getcwd())
from experiments.superglue.superglue_utils import save, TASKS, LOAD_FUNCS
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='data directory')
parser.add_argument('--task', type=str, default='CB')
args = parser.parse_args()
return args
def main(args):
task = args.task.lower()
assert task in TASKS, "don't support {}".format(task)
files = TASKS[task]
laod_function = LOAD_FUNCS[task]
for file in files:
data = laod_function(os.path.join(args.data_dir, file))
assert len(data) > 0
filename, extension = os.path.splitext(file)
fin = os.path.join(args.data_dir, file)
prefix = os.path.join(args.data_dir, "{}".format(filename))
columns = len(data[0])
labels = [str(sample["label"]) for sample in data]
input0 = [sample["premise"] for sample in data]
input1 = [sample["hypothesis"] for sample in data] if columns > 3 else None
input2 = [sample["hypothesis_extra"] for sample in data] if "hypothesis_extra" in data[0] else None
has_answer = "answer" in data[0]
answers = [sample["answer"] for sample in data] if has_answer else None
flabel = "{}.label".format(prefix)
save(labels, flabel)
finput0 = "{}.raw.input0".format(prefix)
save(input0, finput0)
if input1:
finput1 = "{}.raw.input1".format(prefix)
save(input1, finput1)
if input2:
finput2 = "{}.raw.input2".format(prefix)
save(input2, finput2)
if answers:
fanswers = "{}.answer".format(prefix)
save(answers, fanswers)
uids = [str(sample["uid"]) for sample in data]
fuid = "{}.id".format(prefix)
save(uids, fuid)
if __name__ == '__main__':
args = parse_args()
main(args)
|
ContextualSP/adaptershare/experiments/superglue/superglue_fairseq.py/0
|
{
"file_path": "ContextualSP/adaptershare/experiments/superglue/superglue_fairseq.py",
"repo_id": "ContextualSP",
"token_count": 862
}
| 219 |
# coding=utf-8
# Copyright (c) Microsoft. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
class LayerNorm(nn.Module):
# ref: https://github.com/pytorch/pytorch/issues/1959
# :https://arxiv.org/pdf/1607.06450.pdf
def __init__(self, hidden_size, eps=1e-4):
super(LayerNorm, self).__init__()
self.alpha = Parameter(torch.ones(1, 1, hidden_size)) # gain g
self.beta = Parameter(torch.zeros(1, 1, hidden_size)) # bias b
self.eps = eps
def forward(self, x):
"""
Args:
:param x: batch * len * input_size
Returns:
normalized x
"""
mu = torch.mean(x, 2, keepdim=True).expand_as(x)
sigma = torch.std(x, 2, keepdim=True).expand_as(x)
return (x - mu) / (sigma + self.eps) * self.alpha.expand_as(
x
) + self.beta.expand_as(x)
|
ContextualSP/adaptershare/module/sub_layers.py/0
|
{
"file_path": "ContextualSP/adaptershare/module/sub_layers.py",
"repo_id": "ContextualSP",
"token_count": 446
}
| 220 |
#!/bin/bash
usage() {
echo "Usage: ${0} [-g|--gpu_num] [-o|--output_dir] [-m|--model_dir] [-tr|--train_datasets] [-te|--test_datasets] [-ls|--log_step] [-ss|--save_step]" 1>&2
exit 1
}
while [ $# -gt 0 ]
do
key=${1}
case ${key} in
-g|--gpu_num)
GPU_NUM=${2}
shift 2
;;
-o|--output_dir)
OUT_DIR=${2}
shift 2
;;
-m|--model_dir)
M_DIR=${2}
shift 2
;;
-tr|--train_datasets)
TRAIN=${2}
shift 2
;;
-te|--test_datasets)
TEST=${2}
shift 2
;;
-ls|--log_step)
LOG_STEP=${2}
shift 2
;;
-ss|--save_step)
SAVE_STEP=${2}
shift 2
;;
*)
usage
shift
;;
esac
done
N_GPUS="1"
if [ ! -z "$GPU_NUM" ]; then
N_GPUS=$GPU_NUM
fi
if [ ! -z "$TRAIN" ]; then
TRAIN=$TRAIN
fi
if [ ! -z "$TEST" ]; then
TEST=$TEST
fi
if [ ! -z "$LOG_STEP" ]; then
LOG_STEP=$LOG_STEP
fi
if [ ! -z "$SAVE_STEP" ]; then
SAVE_STEP=$SAVE_STEP
fi
NOW=$(date +"%Y%m%d%H%M")
ADAPTER_DIR="/mnt/chenzhi/checkpoints/nlu_downstream/adapterdiff/${TRAIN}"
OUTPUT_DIR=$ADAPTER_DIR
if [ ! -z "$OUT_DIR" ]; then
OUTPUT_DIR=$OUT_DIR
fi
MODEL_DIR="bert-large-uncased"
if [ ! -z "$M_DIR" ]; then
MODEL_DIR=$M_DIR
fi
echo "Run Name: $RUN_NAME"
echo "Model Dir:" $MODEL_DIR
echo "Output Dir:" $OUTPUT_DIR
Run_Command_Args=" --init_checkpoint $MODEL_DIR"
Run_Command_Args="$Run_Command_Args --train_datasets ${TRAIN}"
Run_Command_Args="$Run_Command_Args --test_datasets ${TEST}"
Run_Command_Args="$Run_Command_Args --log_per_updates $LOG_STEP"
Run_Command_Args="$Run_Command_Args --save_per_updates_on true"
Run_Command_Args="$Run_Command_Args --save_per_updates $SAVE_STEP"
Run_Command_Args="$Run_Command_Args --epochs 10"
Run_Command_Args="$Run_Command_Args --batch_size 8"
Run_Command_Args="$Run_Command_Args --batch_size_eval 8"
Run_Command_Args="$Run_Command_Args --grad_accumulation_step 2"
Run_Command_Args="$Run_Command_Args --output_dir $OUTPUT_DIR"
Run_Command_Args="$Run_Command_Args --adapter_cache_path $OUTPUT_DIR"
Run_Command_Args="$Run_Command_Args --min_intra_simiarity 2"
Run_Command_Args="$Run_Command_Args --max_interference_degree 0"
echo $Run_Command_Args
CUDA_VISIBLE_DEVICES=0 python adapter_diff_train.py $Run_Command_Args
|
ContextualSP/adaptershare/scripts/adapter_diff_train.sh/0
|
{
"file_path": "ContextualSP/adaptershare/scripts/adapter_diff_train.sh",
"repo_id": "ContextualSP",
"token_count": 1092
}
| 221 |
#!/bin/bash
set -e
set -x
SRCDIR=`dirname $0`
CODEDIR=`dirname $SRCDIR`
WORKDIR=`mktemp -d $SRCDIR/mt-dnn-tests-XXX`
mkdir -p $WORKDIR/mt_dnn_models
mkdir -p $WORKDIR/checkpoints
function delete {
rm -rf $1
}
# tests begin here
i=0
for hparams in "" ; do
# train
python $CODEDIR/train.py --data_dir $CODEDIR/tests/sample_data/output --task_def $CODEDIR/tests/mnli_task_def.yml --init_checkpoint bert-base-uncased --transformer_cache $WORKDIR/mt_dnn_models/cache --batch_size 20 --batch_size_eval 20 --bert_dropout_p 0 --output_dir $WORKDIR/checkpoints/mt_dnn_results/ --log_file $WORKDIR/checkpoints/mt_dnn_results/log.log --optimizer adamax --train_datasets mnli --test_datasets mnli_matched --learning_rate 5e-5 --log_per_updates 1 --epochs 2 --grad_accumulation_step 2
# check if result files exist
if [ ! -f $WORKDIR/checkpoints/mt_dnn_results/model_0.pt ] && [ ! -f $WORKDIR/checkpoints/mt_dnn_results/model_1.pt ]; then
echo "Checkpoint files not found!"
exit 1
fi
# load model and resume training
python $CODEDIR/train.py --data_dir $CODEDIR/tests/sample_data/output --task_def $CODEDIR/tests/mnli_task_def.yml --init_checkpoint bert-base-uncased --transformer_cache $WORKDIR/mt_dnn_models/cache --batch_size 20 --batch_size_eval 20 --bert_dropout_p 0 --output_dir $WORKDIR/checkpoints/mt_dnn_results/ --log_file $WORKDIR/checkpoints/mt_dnn_results/log.log --optimizer adamax --train_datasets mnli --test_datasets mnli_matched --learning_rate 5e-5 --log_per_updates 1 --epochs 2 --grad_accumulation_step 2 --resume --model_ckpt $WORKDIR/checkpoints/mt_dnn_results/model_1.pt
i=$((i+1))
done
trap "delete $WORKDIR" TERM
|
ContextualSP/adaptershare/tests/test.sh/0
|
{
"file_path": "ContextualSP/adaptershare/tests/test.sh",
"repo_id": "ContextualSP",
"token_count": 680
}
| 222 |
python eval.py \
--checkpoint checkpoints/wtq_grounding_model/model.pt \
--data_path data/wtq_grounding/dev \
--threshold 0.15
|
ContextualSP/awakening_latent_grounding/eval_wtq_ground.sh/0
|
{
"file_path": "ContextualSP/awakening_latent_grounding/eval_wtq_ground.sh",
"repo_id": "ContextualSP",
"token_count": 55
}
| 223 |
import os
import torch
import torch.nn as nn
from transformers import BertTokenizer, AdamW, get_linear_schedule_with_warmup
from models import *
from utils import *
from datetime import datetime
import logging
from dataclasses import dataclass, field
@dataclass
class TrainingArgs:
learning_rate: float = field(default=3e-5, metadata={"help": "The initial learning rate for Adam."})
non_bert_learning_rate: float = field(default=1e-3,
metadata={"help": "The initial learning rate for non-BERT parameters."})
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay if we apply some."})
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for Adam optimizer."})
max_grad_norm: float = field(default=1.0, metadata={"help": "Max gradient norm."})
dropout: float = field(default=0.3)
label_smoothing: bool = field(default=True)
fp16: bool = field(default=False)
train_batch_size: int = field(default=16, metadata={"help": "Training batch size"})
eval_batch_size: int = field(default=32, metadata={"help": "Evaluation batch size"})
num_train_epochs: int = field(default=10, metadata={"help": "Training epochs"})
max_encode_length: int = field(default=512)
warmup_steps: int = field(default=0, metadata={"help": "Warmup steps"})
alw_func: str = field(default='const_0.0')
logging_steps: int = field(default=100)
evaluate_steps: int = field(default=1000)
accumulation_steps: int = field(default=1)
model: str = field(default='AlignmentModel')
bert_version: str = field(default="bert-base-uncased", metadata={"help": "Training epochs"})
checkpoint: str = field(default=None)
data_dir: str = field(default="data/slsql", metadata={"help": "input data dir"})
out_dir: str = field(default='out', metadata={'help': 'output data dir'})
sampling: bool = field(default=False)
device: str = field(default='cpu')
seed: int = field(default=123)
def get_logger(log_dir: str, version: str):
os.makedirs(log_dir, exist_ok=True)
logging_file = os.path.join(log_dir, '{}.log'.format(version))
logging.basicConfig(level=logging.INFO,
format='%(asctime)s\t%(levelname)-8s %(message)s',
datefmt='%m-%d %H:%M:%S',
filename=logging_file,
filemode='w')
# define a Handler which writes INFO messages or higher to the sys.stderr
console = logging.StreamHandler()
console.setLevel(logging.INFO)
# set a format which is simpler for console use
formatter = logging.Formatter('%(asctime)s\t%(message)s')
# tell the handler to use this format
console.setFormatter(formatter)
logger = logging.getLogger("")
logger.addHandler(console)
return logger
def set_seed(seed=123):
import random
import numpy as np
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
class Trainer:
args: TrainingArgs
model: nn.Module
logger: logging.Logger
device: torch.device
version: str
def __init__(self, args: TrainingArgs):
set_seed()
self.args = args
self.version = "{}_{}".format(args.model, datetime.now().strftime("%Y%m%d%H%M"))
if self.args.sampling:
self.version = "Sampling_" + self.version
self.args.evaluate_steps = 100
self.logger = get_logger(os.path.join(self.args.out_dir, self.version), self.args.model)
self.device = torch.device(args.device)
self.model = load_model_from_checkpoint(**self.args.__dict__)
open(os.path.join(self.args.out_dir, self.version, "config.json"), 'w', encoding='utf-8').write(
json.dumps(self.args.__dict__, indent=4, sort_keys=True) + '\n')
self.logger.info("save training config over.")
for key, val in self.args.__dict__.items():
self.logger.info("{} = {}".format(key, val))
def get_train_and_eval_iter(self):
bert_version = self.args.bert_version.replace("hfl/", "")
train_paths = [os.path.join(self.args.data_dir, f"train.{bert_version}.json")]
dev_paths = [os.path.join(self.args.data_dir, f"dev.{bert_version}.json")]
tokenizer = BertTokenizer.from_pretrained(self.args.bert_version)
self.logger.info("load BERT tokenizer from {} over.".format(self.args.bert_version))
data_loader_func = get_data_iterator_func(self.args.model)
if self.args.sampling:
train_iter = data_loader_func(train_paths, tokenizer, self.args.train_batch_size, self.device, False, True,
self.args.max_encode_length, sampling_size=self.args.train_batch_size * 100)
dev_iter = data_loader_func(dev_paths, tokenizer, self.args.eval_batch_size, self.device, False, False,
self.args.max_encode_length, sampling_size=self.args.train_batch_size * 20)
else:
train_iter = data_loader_func(train_paths, tokenizer, self.args.train_batch_size, self.device, False, True,
self.args.max_encode_length)
dev_iter = data_loader_func(dev_paths, tokenizer, self.args.eval_batch_size, self.device, False, False,
self.args.max_encode_length)
self.logger.info("load train iterator over, size = {}".format(len(train_iter.batch_sampler)))
self.logger.info("load dev iterator over, size = {}".format(len(dev_iter.batch_sampler)))
return train_iter, dev_iter
def evaluate(self, dev_iter: DataLoader, saved_file=None):
model = self.model
model.eval()
evaluator = get_evaluator_class(self.args.model)()
with torch.no_grad():
for batch_inputs in dev_iter:
batch_inputs['label_smoothing'] = self.args.label_smoothing
batch_outputs = model.compute_loss(**batch_inputs)
evaluator.add_batch(batch_inputs, batch_outputs)
saved_path = os.path.join(self.args.out_dir, self.version, saved_file) if saved_file is not None else None
eval_result = evaluator.get_metrics(saved_path)
model.train()
self.logger.info("Evaluate over:\n{}".format(
"\n".join([f"{k} = {v:.4f}" if isinstance(v, float) else f"{k} {v}" for k, v in eval_result.items()])))
return eval_result
def _parse_loss_weight_function(self, strategy: str):
if is_float(strategy):
w = float(strategy)
return lambda _: w
if strategy.startswith("linear"):
start, end = strategy.replace("linear_", "").split('-')
start, end = int(start), int(end)
return lambda x: min(1.0, max(0.0, (x - start) / end))
else:
raise NotImplementedError(f"not supported ALW function: {strategy}")
def train(self):
train_iter, dev_iter = self.get_train_and_eval_iter()
num_train_steps = self.args.num_train_epochs * int(len(train_iter))
self.logger.info("num_train_steps = {}".format(num_train_steps))
global_step = int(self.args.checkpoint.split('/')[-1].split('.')[1].replace('step_',
"")) if self.args.checkpoint is not None else 0
start_epoch = global_step // len(train_iter)
params = []
params_bert = []
for name, param in self.model.named_parameters():
if param.requires_grad:
if 'bert' in name:
params_bert.append(param)
else:
params.append(param)
optimizer = AdamW([{'params': params_bert},
{'params': params, 'lr': 1e-3}],
lr=self.args.learning_rate, eps=self.args.adam_epsilon)
if self.args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
self.logger.info("Enable fp16 optimization ...")
self.model, optimizer = amp.initialize(self.model, optimizer, opt_level="O2")
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps,
num_training_steps=num_train_steps)
self.model.train()
loss_weight_funcs = {
'align_loss': self._parse_loss_weight_function(self.args.alw_func),
}
grad_accumulation_count = 0
for epoch in range(start_epoch, self.args.num_train_epochs):
logging_loss = defaultdict(float)
for batch_inputs in train_iter:
global_step += 1
grad_accumulation_count += 1
batch_inputs['label_smoothing'] = self.args.label_smoothing
for loss_type in loss_weight_funcs:
batch_inputs[loss_type + "_weight"] = loss_weight_funcs[loss_type](epoch + 1)
outputs = self.model.compute_loss(**batch_inputs)
loss = outputs['loss'] / self.args.accumulation_steps
if self.args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
if grad_accumulation_count % self.args.accumulation_steps == 0:
if self.args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), self.args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
logging_loss['total_loss'] += loss.item() * self.args.accumulation_steps
for loss_type in loss_weight_funcs:
if loss_type in outputs:
logging_loss[loss_type] += outputs[loss_type].item()
if global_step % self.args.logging_steps == 0:
avg_loss = logging_loss['total_loss'] / self.args.logging_steps
loss_string = "total loss: {:.4f}; ".format(avg_loss)
for loss_type in loss_weight_funcs:
if loss_type in logging_loss:
loss_string += "{} : {:.4f} ({:.3f}); ".format(loss_type, logging_loss[
loss_type] / self.args.logging_steps, loss_weight_funcs[loss_type](epoch + 1))
self.logger.info(
"Epoch: {}, Step: {}/{}, {}".format(epoch + 1, global_step, len(train_iter) * (epoch + 1),
loss_string))
logging_loss = defaultdict(float)
if global_step % self.args.evaluate_steps == 0:
self.logger.info("Evaluating step {} ...".format(global_step))
eval_metrics = self.evaluate(dev_iter, saved_file='eval.step_{}.txt'.format(global_step))
saved_path = os.path.join(self.args.out_dir, self.version, "{}.step_{}.acc_{:.3f}.pt".format(
self.args.model,
global_step,
eval_metrics['overall accuracy']))
torch.save(self.model.state_dict(), saved_path)
self.logger.info("Save checkpoint to {}".format(saved_path))
self.logger.info("***** Running training over *****")
def parse_args():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-lr', '--learning_rate', help='learning rate', type=float, default=5e-5)
parser.add_argument('-model', '--model', help='model', default='SpiderAlignmentModel')
parser.add_argument('-bert', '--bert_version', help='bert version', default='bert-base-uncased')
parser.add_argument('-train_bs', '--train_batch_size', help='train batch size', type=int, default=10)
parser.add_argument('-eval_bs', '--eval_batch_size', help='eval batch size', type=int, default=10)
parser.add_argument('-max_enc_length', '--max_encode_length', help='sequence max encode length', type=int,
default=512)
parser.add_argument('-num_epochs', '--num_train_epochs', default=30, type=int)
parser.add_argument('-label_smoothing', '--label_smoothing', action='store_true', default=False)
parser.add_argument('-sampling', '--sampling', action='store_true')
# if finetune, use this.
parser.add_argument('-ckpt', '--checkpoint', default=None)
parser.add_argument('-alw', '--alw_func', default='0.1')
parser.add_argument('-data', '--data_dir', default=os.getenv("PT_DATA_DIR", default='data/slsql'))
parser.add_argument('-out_dir', '--out_dir', default=os.getenv("PT_OUTPUT_DIR", default='pt'))
parser.add_argument('-acc_steps', '--accumulation_steps', type=int, default=1)
parser.add_argument('-dropout', '--dropout', type=float, default=0.3)
parser.add_argument('-fp16', '--fp16', action='store_true')
parser.add_argument('-gpu', '--device', default='cuda:0' if torch.cuda.is_available() else 'cpu')
args = parser.parse_args()
training_args = TrainingArgs(**dict(args._get_kwargs()))
return training_args
if __name__ == '__main__':
args = parse_args()
trainer = Trainer(args)
trainer.train()
pass
|
ContextualSP/awakening_latent_grounding/train.py/0
|
{
"file_path": "ContextualSP/awakening_latent_grounding/train.py",
"repo_id": "ContextualSP",
"token_count": 6300
}
| 224 |
from .element_wise import ElementWiseMatrixAttention
|
ContextualSP/incomplete_utterance_rewriting/src/similar_functions/__init__.py/0
|
{
"file_path": "ContextualSP/incomplete_utterance_rewriting/src/similar_functions/__init__.py",
"repo_id": "ContextualSP",
"token_count": 12
}
| 225 |
from src.components.nl_modiifer import NLModifier
from src.components.question_generator import QuestionGenerator
|
ContextualSP/interactive_text_to_sql/src/components/__init__.py/0
|
{
"file_path": "ContextualSP/interactive_text_to_sql/src/components/__init__.py",
"repo_id": "ContextualSP",
"token_count": 31
}
| 226 |
import io
vector_file_path = 'data/common/wiki-news-300d-1M-subword.vec'
def load_vectors(fname):
fin = io.open(fname, 'r', encoding='utf-8', newline='\n', errors='ignore')
n, d = map(int, fin.readline().split())
data = {}
for line in fin:
tokens = line.rstrip().split(' ')
data[tokens[0]] = map(float, tokens[1:])
return data
|
ContextualSP/interactive_text_to_sql/src/utils/fasttext.py/0
|
{
"file_path": "ContextualSP/interactive_text_to_sql/src/utils/fasttext.py",
"repo_id": "ContextualSP",
"token_count": 160
}
| 227 |
import json
import sys
import copy
from itertools import combinations, permutations
from random import choice, choices, shuffle
import math
import argparse
from multiprocessing import Pool
import multiprocessing
from collections import Counter
from functools import reduce
from math import gcd
from random import sample
parser = argparse.ArgumentParser()
parser.add_argument("--max_number", type=int, default=100000, help="max number each dataset.")
parser.add_argument("--corpus_file", type=str, default='../corpus/pretraining_corpus_scene.txt', help="corpus file")
args = parser.parse_args()
fw = open(args.corpus_file, 'w')
def lcm(numbers):
return reduce((lambda x, y: int(x * y / gcd(x, y))), numbers)
def obtain_action_weight(actions):
temp = Counter([item.split()[0] for item in actions])
lcm_value = lcm(temp.values())
temp = {item:int(lcm_value / temp[item]) for item in temp}
action_weight = [temp[item.strip().split()[0]] for item in actions]
return action_weight
def random_sampling(candidate_list, n, weights=None):
result_list = []
for _ in range(n):
result = choices(candidate_list, k=1, weights=weights)[0]
result_list.append(result)
return result_list
def postpreprocess_scene(states):
states = ' | '.join(states.split())
return states
def scene_executor(slots, actions):
slots = copy.deepcopy(slots)
for action in actions:
splits = action.split()
if splits[0] == 'appear_person':
if slots[int(splits[1])-1].split(':')[1] == '__':
slots[int(splits[1])-1] = '{}:{}_'.format(slots[int(splits[1])-1].split(':')[0], splits[2])
else:
return 'Failed: already has a person here'
elif splits[0] == 'appear_hat':
if slots[int(splits[1])-1].split(':')[1][0] == '_':
return 'Failed: No person here'
else:
if slots[int(splits[1])-1].split(':')[1][1] == '_':
slots[int(splits[1])-1] = slots[int(splits[1])-1][:-1] + splits[2]
else:
return 'Failed: already has a hat here'
elif splits[0] == 'remove_person':
if slots[int(splits[1])-1].split(':')[1][1] != '_':
return 'Failed: please remove hat in this position first.'
else:
if slots[int(splits[1])-1].split(':')[1][0] == '_':
return 'Failed: no person requires to remove here.'
else:
slots[int(splits[1])-1] = '{}:__'.format(slots[int(splits[1])-1].split(':')[0])
elif splits[0] == 'remove_hat':
if slots[int(splits[1])-1].split(':')[1][0] == '_':
return 'Failed: no person here.'
else:
if slots[int(splits[1])-1].split(':')[1][1] == '_':
return 'Failed: no hat here.'
else:
slots[int(splits[1])-1] = slots[int(splits[1])-1][:-1] + '_'
else:
return 'Failed: No such function:{}'.format(splits[0])
return slots
def scene_state_generator():
state_element = ['b', 'g', 'o', 'p', 'r', 'y'] * 2
all_states = list(permutations(state_element, 2))
all_states = list(set([''.join(item) for item in all_states if not (item[0]=='_' and item[1]!='_')]))
content = ['{}'.format(item) for i,item in enumerate(random_sampling(all_states, 2))]
position = sample(list(range(1,11)), 2)
state_dict = dict(zip([str(item) for item in position], content))
for key in list(range(1,11)):
if str(key) not in state_dict:
state_dict[str(key)] = '__'
states = ['{}:{}'.format(key, value) for key, value in state_dict.items()]
states.sort(key=lambda x:int(x.split(':')[0]))
# states = ' '.join(states)
return states
def obtain_valid_actions_scene(states):
action_list = []
states = [item.strip().split(':')[1] for item in states]
for i in range(len(states)):
if states[i][0] == '_':
action_list.extend(['appear_person {} {}'.format(str(i+1), item) for item in ['b', 'g', 'o', 'p', 'r', 'y']])
else:
if states[i][1] == '_':
action_list.extend(['appear_hat {} {}'.format(str(i+1), item) for item in ['b', 'g', 'o', 'p', 'r', 'y']])
action_list.append('remove_person {}'.format(str(i+1)))
else:
action_list.append('remove_hat {}'.format(str(i+1)))
return list(set(action_list))
def scene_corpus_generation(inputs):
total_number, action_number_range = inputs
state_element = ['b', 'g', 'o', 'p', 'r', 'y', '_'] * 2
all_states = list(permutations(state_element, 2))
all_states = list(set([''.join(item) for item in all_states if not (item[0]=='_' and item[1]!='_')]))
all_states_weight = [6 if '_' in item else 1 for item in all_states]
index = all_states.index('__')
all_states_weight[index] = 64
all_actions = ['appear_person {} {}'.format(str(i+1),j) for i in range(10) for j in ['b', 'g', 'o', 'p', 'r', 'y']]
all_actions += ['appear_hat {} {}'.format(str(i+1),j) for i in range(10) for j in ['b', 'g', 'o', 'p', 'r', 'y']]
all_actions += ['remove_person {}'.format(str(i+1)) for i in range(10)]
all_actions += ['remove_hat {}'.format(str(i+1)) for i in range(10)]
count = 0
print('Begin generating scene corpus.')
while True:
# prev_states = ['{}:{}'.format(str(i+1), item) for i,item in enumerate(random_sampling(all_states, 10, weights=all_states_weight))]
prev_states = scene_state_generator()
states_this_step = prev_states
index = 0
action_list = []
step_this_case = choice(action_number_range)
while index < step_this_case:
all_valid_actions = obtain_valid_actions_scene(states_this_step)
action_weight = obtain_action_weight(all_valid_actions)
action = random_sampling(all_valid_actions, 1, weights=action_weight)
states_this_step = scene_executor(states_this_step, action)
assert isinstance(states_this_step, list)
action_list.extend(action)
index += 1
curr_states = states_this_step
prev_states = postpreprocess_scene(' '.join(prev_states))
actions = ' '.join(action_list)
curr_states = postpreprocess_scene(' '.join(curr_states))
item_row = '\t'.join([actions, prev_states, curr_states])
fw.write(item_row)
fw.write('\n')
count += 1
if count % 10000 == 0:
print('Finish generating {} cases'.format(count))
if count >= total_number:
break
if __name__ == '__main__':
total_number_list = [int(args.max_number * 0.3), int(args.max_number * 0.4), int(args.max_number * 0.2), int(args.max_number * 0.1)]
action_number_range_list = [list(range(1,6)), list(range(6,11)), list(range(11,16)), list(range(16,21))]
cores = multiprocessing.cpu_count()
print("Using {} cores".format(cores))
pool = Pool(cores)
for total_number, action_number_range in zip(total_number_list, action_number_range_list):
res = pool.map(scene_corpus_generation, zip([int(total_number // cores) * cores], [action_number_range]*cores))
# scene_corpus_generation(int(args.max_number * 0.3), list(range(1,6)))
# scene_corpus_generation(int(args.max_number * 0.4), list(range(6,11)))
# scene_corpus_generation(int(args.max_number * 0.2), list(range(11,16)))
# scene_corpus_generation(int(args.max_number * 0.1), list(range(16,21)))
|
ContextualSP/lemon/corpus_generation/scene_corpus_generation.py/0
|
{
"file_path": "ContextualSP/lemon/corpus_generation/scene_corpus_generation.py",
"repo_id": "ContextualSP",
"token_count": 3406
}
| 228 |
import os
from collections import defaultdict, deque, OrderedDict
from contextlib import contextmanager
from os.path import join
import logging
import tensorflow as tf
import time
from keras import backend as K
class TensorDebugger(object):
"""Debug your TensorFlow model.
EXAMPLE BELOW:
tf.reset_default_graph()
tdb = TensorDebugger()
# define a graph, register some nodes
x = tf.placeholder(tf.int32, name='x')
zs = []
for k in range(10):
y = tf.constant(k, name='y')
tdb.register('y', y) # register with any name you want; we just called it 'y'
z = x * y
zs.append(z)
g = tf.constant(12, name='g')
h = tf.constant(10, name='h')
tdb.register('g', g, force_run=True)
tdb.register('h', h)
total = tf.reduce_sum(tf.pack(zs))
sess = tf.InteractiveSession()
fetches = [total]
feed_dict = {x: 10}
# replace your sess.run recall with tdb.debug
# result = sess.run(fetches, feed_dict)
result, bp_results = tdb.debug(sess, fetches, feed_dict)
print 'result:', result
print 'bp_results:', bp_results
# result: [450]
# bp_results: {'y': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 'g': 12}
# notice that we collected every value of 'y' in the for-loop
# we didn't collect 'h', because it wasn't on the execution path to compute fetches
# we collected 'g' even though it's not on execution path, because we marked it as force_run
sess.close()
"""
DEFAULT = None
@classmethod
def default(cls):
if cls.DEFAULT is None:
cls.DEFAULT = TensorDebugger()
return cls.DEFAULT
def __init__(self, g=None):
self.name_to_nodes = defaultdict(list)
self.name_to_placeholders = defaultdict(list)
if g is None:
self.g = tf.get_default_graph()
self.namestack = []
@property
def dependency_graph(self):
"""Build a dependency graph.
Returns:
a dict. Each key is the name of a node (Tensor or Operation) and each value is a set of
dependencies (other node names)
"""
deps = defaultdict(set)
for op in self.g.get_operations():
# the op depends on its input tensors
for input_tensor in op.inputs:
deps[op.name].add(input_tensor.name)
# the op depends on the output tensors of its control_dependency ops
for control_op in op.control_inputs:
for output_tensor in control_op.outputs:
deps[op.name].add(output_tensor.name)
# the op's output tensors depend on the op
for output_tensor in op.outputs:
deps[output_tensor.name].add(op.name)
return deps
def ancestors(self, op_name, deps):
"""Get all nodes upstream of the current node."""
explored = set()
queue = deque([op_name])
while len(queue) != 0:
current = queue.popleft()
for parent in deps[current]:
if parent in explored: continue
explored.add(parent)
queue.append(parent)
return explored
def register(self, name, node, force_run=False):
"""Register a name for a node.
If multiple nodes are registered to the same name, TensorFlowDebugger
saves all nodes as a list, in the order that they were registered.
This is convenient if you want to register all nodes constructed in a for-loop
under the same name. E.g.
for k in range(10):
x = tf.constant(k)
debugger.register('x', x)
"""
# TODO(kelvin): deal with SparseTensor
placeholder = node.op.node_def.op == 'Placeholder'
# TODO(kelvin): remove this hack
node.force_run = force_run
name_tuple = tuple(self.namestack + [name])
if placeholder: # deal with placeholders separately, because they can't be directly fetched
lookup = self.name_to_placeholders
else:
lookup = self.name_to_nodes
lookup[name_tuple].append(node)
# TODO(kelvin): somehow make it optional to specify a name?
# We could use introspection to get the name of the variable...
return node
@contextmanager
def namescope(self, name):
self.namestack.append(name)
yield
self.namestack.pop()
def debug(self, sess, fetches, feed_dict):
"""Like Session.run, but also returns debug values.
Args:
sess: Session object
fetches: same as Session.run
feed_dict: same as Session.run
Will ONLY compute values of breakpoints that are on the execution path defined by fetches.
Returns:
results: same as what's returned by Session.run
bp_results: a dictionary mapping breakpoints to their values
If a single breakpoint maps to multiple nodes, the "value" for that breakpoint
will be a list of the values of all nodes mapping to that breakpoint,
in the order that the nodes were registered.
"""
single_fetch = not isinstance(fetches, list)
# as a new list
if single_fetch:
fetches = [fetches]
else:
fetches = list(fetches)
# compute all ancestors of the fetches
deps = self.dependency_graph # compute dependencies
ancestors = set()
for fetch in fetches:
name = fetch if isinstance(fetch, str) else fetch.name
anc = self.ancestors(name, deps)
ancestors.update(anc)
# give each fetch a name
orig_fetch = '__orig_fetch__'
names = [orig_fetch] * len(fetches)
# add debug nodes to fetches
for name, cand_nodes in self.name_to_nodes.items():
# filter nodes by those on execution path
nodes = []
for cand in cand_nodes:
if cand.name in ancestors or cand.force_run:
nodes.append(cand)
fetches.extend(nodes)
names.extend([name] * len(nodes))
# get all values
all_results = sess.run(fetches, feed_dict)
# extract out results
results = [] # original results
bp_results = defaultdict(list) # breakpoint results
for name, result in zip(names, all_results):
if name == orig_fetch:
results.append(result)
else:
bp_results[name].append(result)
# get placeholder values directly from feed_dict
for name, placeholders in self.name_to_placeholders.items():
for placeholder in placeholders:
if placeholder in feed_dict:
key = placeholder
elif placeholder.name in feed_dict:
key = placeholder.name
else:
if placeholder.force_run:
raise ValueError("Tried to force-run {}, but no value provided.".format(placeholder.name))
continue # placeholder wasn't fed
bp_results[name].append(feed_dict[key])
if single_fetch:
results = results[0]
# unwrap single-item lists and single-item name tuples
unwrap = lambda l: l[0] if len(l) == 1 else l
bp_results = {unwrap(k): unwrap(v) for k, v in bp_results.items()}
return results, bp_results
class Saver(object):
"""A light wrapper around the TensorFlow Saver.
This object is different in a few ways:
- it has its save directory specified up front.
- it is able to identify the latest checkpoint even if the directory was moved
between the last save and reload.
- it always uses the default session
"""
def __init__(self, save_dir, *args, **kwargs):
"""Create a Saver.
Args:
save_dir (str): directory to save checkpoints
args (list): args to pass to the tf.train.Saver constructor
kwargs (dict): kwargs to pass to the tf.train.Saver constructor
"""
self._save_dir = save_dir
self._saver = tf.train.Saver(*args, **kwargs)
self._prev_save_time = time.time()
def save(self, step):
"""Save.
Args:
step (int): train step number
"""
path = join(self._save_dir, 'weights')
self._saver.save(tf.get_default_session(), path, step)
self._prev_save_time = time.time()
def interval_save(self, step, interval):
"""If more than specified interval of time has elapsed since last save, then save.
Args:
step (int): train step number
interval (int): interval of time, in seconds.
"""
if time.time() - self._prev_save_time >= interval:
self.save(step)
def restore(self, step_or_ckpt=None):
"""Restore variables.
Args:
step_or_ckpt (int|str): if int, restores the checkpoint associated with that step. If str, restores
checkpoint at that path. If None, restores the latest checkpoint. Default is None.
"""
if step_or_ckpt is None:
ckpt = self.latest_checkpoint
elif isinstance(step_or_ckpt, int):
ckpt = self.checkpoint_paths[step_or_ckpt]
elif isinstance(step_or_ckpt, str):
ckpt = step_or_ckpt
else:
raise TypeError(step_or_ckpt)
sess = tf.get_default_session()
self._saver.restore(sess, ckpt)
@property
def checkpoint_paths(self):
"""A map from step number to checkpoint path.
Returns:
OrderedDict[int, str]
"""
log_path = join(self._save_dir, 'checkpoint')
if not os.path.exists(log_path):
logging.warn('No checkpoint log found at {}'.format(log_path))
return OrderedDict() # without any checkpoint log, we assume that there are no checkpoints
# load the checkpoints log
with open(log_path, 'r') as f:
logs = list(l.strip() for l in f)
d = OrderedDict()
for i, line in enumerate(logs):
key, val = line.split(': ')
if i == 0:
assert key == 'model_checkpoint_path'
continue # this one is redundant
else:
assert key == 'all_model_checkpoint_paths'
orig_path = val[1:-1] # strip quotation marks
_, f_name = os.path.split(orig_path)
correct_path = join(self._save_dir, f_name)
step = int(correct_path.split('-')[-1])
d[step] = correct_path
return d
@property
def latest_checkpoint(self):
ckpts = self.checkpoint_paths
if len(ckpts) == 0: # what if there are no checkpoints
raise IOError("No checkpoint to restore.")
latest_step = max(ckpts.keys())
return ckpts[latest_step]
class TensorBoardLogger(object):
def __init__(self, log_dir):
self.g = tf.Graph()
self.summaries = {}
self.sess = tf.Session(graph=self.g)
self.summ_writer = tf.summary.FileWriter(log_dir, flush_secs=5)
def log_proto(self, proto, step_num):
"""Log a Summary protobuf to the event file.
Args:
proto: a Summary protobuf
step_num: the iteration number at which this value was logged
"""
self.summ_writer.add_summary(proto, step_num)
return proto
def log(self, key, val, step_num):
"""Directly log a scalar value to the event file.
Args:
key (string): a name for the value
val: a float
step_num: the iteration number at which this value was logged
"""
try:
ph, summ = self.summaries[key]
except KeyError:
# if we haven't defined a variable for this key, define one
with self.g.as_default():
ph = tf.placeholder(tf.float32, (), name=key) # scalar
summ = tf.summary.scalar(key, ph)
self.summaries[key] = (ph, summ)
summary_str = self.sess.run(summ, {ph: val})
self.summ_writer.add_summary(summary_str, step_num)
return val
def assert_shape(variable, shape):
"""Assert that a TensorFlow Variable has a particular shape.
Args:
variable: TF Variable
shape: a TensorShape, Dimension or tuple
"""
variable.get_shape().assert_is_compatible_with(shape)
def guarantee_initialized_variables(session, variables=None):
"""Guarantee that all the specified variables are initialized.
If a variable is already initialized, leave it alone. Otherwise, initialize it.
If no variables are specified, checks all variables in the default graph.
Args:
variables (list[tf.Variable])
"""
name_to_var = {v.op.name: v for v in tf.global_variables() + tf.local_variables()}
uninitialized_variables = list(name_to_var[name] for name in
session.run(tf.report_uninitialized_variables(variables)))
init_op = tf.variables_initializer(uninitialized_variables)
session.run(init_op)
return uninitialized_variables
def assert_broadcastable(low_tensor, high_tensor):
low_shape = tf.shape(low_tensor)
high_shape = tf.shape(high_tensor)
low_rank = tf.rank(low_tensor)
# assert that shapes are compatible
high_shape_prefix = tf.slice(high_shape, [0], [low_rank])
assert_op = tf.assert_equal(high_shape_prefix, low_shape, name="assert_shape_prefix")
return assert_op
def expand_dims_for_broadcast(low_tensor, high_tensor):
"""Expand the dimensions of a lower-rank tensor, so that its rank matches that of a higher-rank tensor.
This makes it possible to perform broadcast operations between low_tensor and high_tensor.
Args:
low_tensor (Tensor): lower-rank Tensor with shape [s_0, ..., s_p]
high_tensor (Tensor): higher-rank Tensor with shape [s_0, ..., s_p, ..., s_n]
Note that the shape of low_tensor must be a prefix of the shape of high_tensor.
Returns:
Tensor: the lower-rank tensor, but with shape expanded to be [s_0, ..., s_p, 1, 1, ..., 1]
"""
orig_shape = tf.shape(low_tensor)
orig_rank = tf.rank(low_tensor)
target_rank = tf.rank(high_tensor)
# assert that shapes are compatible
assert_op = assert_broadcastable(low_tensor, high_tensor)
with tf.control_dependencies([assert_op]):
pad_shape = tf.tile([1], [target_rank - orig_rank])
new_shape = tf.concat(0, [orig_shape, pad_shape])
result = tf.reshape(low_tensor, new_shape)
# add static shape information
high_shape_static = high_tensor.get_shape()
low_shape_static = low_tensor.get_shape()
extra_rank = high_shape_static.ndims - low_shape_static.ndims
result_dims = list(low_shape_static.dims) + [tf.Dimension(1)] * extra_rank
result_shape = tf.TensorShape(result_dims)
result.set_shape(result_shape)
return result
def broadcast(tensor, target_tensor):
"""Broadcast a tensor to match the shape of a target tensor.
Args:
tensor (Tensor): tensor to be tiled
target_tensor (Tensor): tensor whose shape is to be matched
"""
rank = lambda t: t.get_shape().ndims
assert rank(tensor) == rank(target_tensor) # TODO: assert that tensors have no overlapping non-unity dimensions
orig_shape = tf.shape(tensor)
target_shape = tf.shape(target_tensor)
# if dim == 1, set it to target_dim
# else, set it to 1
tiling_factor = tf.select(tf.equal(orig_shape, 1), target_shape, tf.ones([rank(tensor)], dtype=tf.int32))
broadcasted = tf.tile(tensor, tiling_factor)
# Add static shape information
broadcasted.set_shape(target_tensor.get_shape())
return broadcasted
def gather_2d(tensor, i, j):
"""2D version of tf.gather.
The equivalent in Numpy would be tensor[i, j, :]
Args:
tensor (Tensor): a Tensor of rank at least 2
i (Tensor): row indices
j (Tensor): column indices of same shape as i, or broadcastable to the same shape
"""
rank = lambda t: t.get_shape().ndims
# get static shape info
assert rank(tensor) >= 2
assert rank(i) == rank(j)
dims_static = tensor.get_shape()
# get dynamic shape info
shape = tf.shape(tensor)
dims = tf.split(0, rank(tensor), shape)
rows, cols = dims[:2]
new_dims = [rows * cols] + dims[2:]
new_shape = tf.concat(0, new_dims)
tensor_flat = tf.reshape(tensor, new_shape)
# annotate with static shape
new_shape_static = tf.TensorShape([dims_static[0] * dims_static[1]] + list(dims_static[2:]))
tensor_flat.set_shape(new_shape_static)
k = i * cols + j
vals = tf.gather(tensor_flat, k)
return vals
@contextmanager
def clean_session():
"""Create a new Graph, bind the graph to a new Session, and make that session the default."""
graph = tf.Graph() # create a fresh graph
with tf.Session(graph=graph) as sess:
K.set_session(sess) # bind Keras
yield sess
|
ContextualSP/lemon/executor/gtd/ml/utils.py/0
|
{
"file_path": "ContextualSP/lemon/executor/gtd/ml/utils.py",
"repo_id": "ContextualSP",
"token_count": 7407
}
| 229 |
import pytest
from gtd.log import Metadata, SyncedMetadata
class TestMetadata(object):
@pytest.fixture
def m(self):
m = Metadata()
m['a'] = 10 # this is overwritten
m['b'] = 'test'
# namescope setitem
with m.name_scope('c'):
m['foo'] = 140
# nested setitem
m['a.foo'] = 120
m['c.bar'] = 'what'
return m
def test_getitem(self, m):
assert m['b'] == 'test'
def test_nested_getitem(self, m):
assert m['a.foo'] == 120
assert m['c.foo'] == 140
def test_namescope_getitem(self, m):
with m.name_scope('c'):
assert m['bar'] == 'what'
def test_nested_metadata(self, m):
m_sub = m['a']
assert isinstance(m_sub, Metadata)
assert m_sub['foo'] == 120
def test_contains(self, m):
assert 'b' in m
assert 'bar' not in m
assert 'c.bar' in m
class TestSyncedMetadata(TestMetadata): # run all the metadata tests
def test_syncing(self, tmpdir):
meta_path = str(tmpdir.join('meta.txt'))
s = SyncedMetadata(meta_path)
with s.name_scope('job'):
s['memory'] = 128
s2 = SyncedMetadata(meta_path) # reload the file
assert s2['job.memory'] == 128
|
ContextualSP/lemon/executor/gtd/tests/test_log.py/0
|
{
"file_path": "ContextualSP/lemon/executor/gtd/tests/test_log.py",
"repo_id": "ContextualSP",
"token_count": 624
}
| 230 |
import numpy as np
from collections import Sequence, Counter
from abc import ABCMeta, abstractmethod
from gtd.chrono import verboserate
from gtd.utils import flatten
from strongsup.parse_case import ParseCase, ParsePath
from strongsup.utils import epsilon_greedy_sample, softmax
from strongsup.utils import sample_with_replacement
from strongsup.decoder import NormalizationOptions
class Beam(Sequence):
"""A Sequence of ParsePaths.
In each ParsePath, each ParseCase must have already have a decision.
Usually paths in a Beam are unique, but this is not required
(e.g., BatchedReinforce uses Beams with repeated paths).
"""
__slots__ = ['_paths']
@classmethod
def initial_beam(self, context):
"""Return the initial beam for the context.
Args:
context (Context)
Returns:
Beam
"""
return Beam([ParsePath.empty(context)])
def __init__(self, paths):
self._paths = paths
def __getitem__(self, i):
return self._paths[i]
def __len__(self):
return len(self._paths)
def __str__(self):
return 'Beam' + str(self._paths)
__repr__ = __str__
def append(self, path):
self._paths.append(path)
@property
def terminated(self):
"""Whether all paths are terminated."""
return all(path.terminated for path in self._paths)
def get_terminated(self):
"""Get only the terminated paths."""
return Beam([path for path in self._paths if path.terminated])
def get_num_iterations(iterations_per_utterance, examples):
"""Returns the number of iterations to run for in this batch of examples
Args:
iterations_per_utterance (int): iterations per utterance config
examples (list[Example])
Returns:
int: number of iterations
"""
return iterations_per_utterance * max(
[len(ex.context.utterances) for ex in examples])
class ExplorationPolicy(object, metaclass=ABCMeta):
"""For given examples, search for candidate ParseCase based on some
exploration policy.
An ExplorationPolicy will be called by the decoder.
Since Examples are passed in, an ExplorationPolicy can choose to 'cheat'
and use the answer or gold logical form to aid the exploration.
This is totally fine during training.
"""
def __init__(self, decoder, config, normalization, train):
"""
Args:
decoder (Decoder)
config (Config)
normalization (NormalizationOptions)
train (bool): train or test policy
"""
self._decoder = decoder
self._config = config
self._normalization = normalization
self._train = train
@abstractmethod
def get_beams(self, examples, verbose=False):
"""Return a beam of scored ParseCases for each example.
Args:
examples (list[Example]): List of examples
verbose (bool): Verbosity
Returns:
list[Beam] of length len(examples).
"""
raise NotImplementedError
@abstractmethod
def get_intermediate_beams(self, examples, verbose=False):
"""Return the final beam along with intermediate beams / exploration states.
Args:
examples (list[Example]): List of examples
verbose (bool): Verbosity
Returns:
list[Beam], list[list[Beam]]
Each list has length len(examples).
Each sublist i in the second output contains the intermediate beams
for example i.
"""
raise NotImplementedError
def _ranker(self, path):
"""Assigns a score to a ParsePath depending on the configs
Return the log unnormalized probability of the ParsePath.
The returned value can be used to rank ParsePaths.
For local normalization, the method returns the log-probability.
For global normalization, the method returns the cumulative logit.
Args:
path (ParsePath): path to be scored
Return:
float: the score
"""
if self._normalization == NormalizationOptions.LOCAL:
return path.log_prob
elif self._normalization == NormalizationOptions.GLOBAL:
return path.score
else:
raise ValueError(
'Unknown normalization type: {}'.format(self._normalization))
################################
# Beam search
class BeamSearchExplorationPolicy(ExplorationPolicy):
def __init__(self, decoder, config, normalization, train):
super(BeamSearchExplorationPolicy, self).__init__(
decoder, config, normalization, train)
if not train:
assert not config.independent_utterance_exploration
assert config.exploration_epsilon == 0
def get_beams(self, examples, verbose=False):
beams = [Beam.initial_beam(ex.context) for ex in examples]
num_iterations = get_num_iterations(
self._config.iterations_per_utterance, examples)
if verbose:
iterations = verboserate(list(range(num_iterations)),
desc='Performing beam search')
else:
iterations = range(num_iterations)
for _ in iterations:
beams = self.advance(beams)
return beams
def get_intermediate_beams(self, examples, verbose=False):
beams = [Beam.initial_beam(ex.context) for ex in examples]
intermediates = [[] for _ in examples]
num_iterations = get_num_iterations(
self._config.iterations_per_utterance, examples)
if verbose:
iterations = verboserate(list(range(num_iterations)),
desc='Performing beam search')
else:
iterations = range(num_iterations)
for _ in iterations:
for ex_idx, beam in enumerate(beams):
intermediates[ex_idx].append(beam)
beams = self.advance(beams)
return beams, intermediates
def advance(self, beams):
"""Advance a batch of beams.
Args:
beams (list[Beam]): a batch of beams
Returns:
list[Beam]: a new batch of beams
(in the same order as the input beams)
"""
# Gather everything needed to be scored
# For efficiency, pad so that the number of cases from each beam
# is equal to beam_size.
cases_to_be_scored = []
new_paths = []
for beam in beams:
# terminated stores terminated paths
# which do not count toward the beam size limit
terminated = []
# unterminated stores unterminated paths and a partial ParseCase
# containing the possible candidate choices
unterminated = []
num_cases_to_be_scored = 0
#print '@' * 40
for path in beam:
if path.terminated:
terminated.append(path)
else:
case = path.extend()
unterminated.append((path, case))
cases_to_be_scored.append(case)
num_cases_to_be_scored += 1
new_paths.append((terminated, unterminated))
# Pad to beam_size
assert num_cases_to_be_scored <= self._config.beam_size
if beam:
while num_cases_to_be_scored < self._config.beam_size:
case = ParseCase.initial(beam[0].context)
cases_to_be_scored.append(case)
num_cases_to_be_scored += 1
# for exploration, use a parser which pretends like every utterance
# is the first utterance it is seeing
ignore_previous_utterances = \
self._config.independent_utterance_exploration
# Use the ParseModel to score
self._decoder.parse_model.score(cases_to_be_scored,
ignore_previous_utterances,
self._decoder.caching)
# Read the scores and create new paths
new_beams = []
#print '=' * 40
for terminated, unterminated in new_paths:
#print '-' * 20
new_unterminated = []
for path, case in unterminated:
for choice in case.choices:
clone = case.copy_with_decision(choice)
denotation = clone.denotation
# Filter out the cases with invalid denotation
if not isinstance(denotation, Exception):
path = clone.path
if path.terminated:
try:
# Test if the denotation can be finalized
path.finalized_denotation
#print 'FOUND [T]', clone.path.decisions, denotation, denotation.utterance_idx, path.finalized_denotation
terminated.append(path)
except ValueError as e:
#print 'FOUND [BAD T]', e
pass
elif self._decoder.path_checker(path):
#print 'FOUND', clone.path.decisions, denotation, denotation.utterance_idx
new_unterminated.append(path)
else:
#print 'PRUNED', clone.path.decisions, denotation, denotation.utterance_idx
pass
else:
#print 'BAD', clone.path.decisions, denotation
pass
# Sort the paths
terminated.sort(key=self._ranker, reverse=True)
new_unterminated.sort(key=self._ranker, reverse=True)
# Prune to beam size with exploration
epsilon = self._config.exploration_epsilon
selected = epsilon_greedy_sample(
new_unterminated,
min(self._config.beam_size, len(new_unterminated)),
epsilon=epsilon)
# Create a beam from the remaining paths
new_beams.append(Beam(terminated + selected))
return new_beams
################################
# Stale Beam Search
class BeamMetaInfo(object):
"""Wrapper around a Beam that includes metadata for BeamMap"""
def __init__(self, beam, age):
self._beam = beam
self._age = age
@property
def beam(self):
return self._beam
@property
def age(self):
return self._age
def increment_age(self):
self._age += 1
class BeamMap(object):
"""Maintains a map between Example and stale Beams"""
def __init__(self):
self._map = {} # example --> BeamMetaInfo
def contains(self, example):
"""Returns if example is in the map
Args:
example (Example)
Returns:
bool: True if example in map
"""
return example in self._map
def get_beam_age(self, example):
"""Returns how old the beam for this example is
Args:
example (Example)
Returns:
int: the age
"""
assert self.contains(example)
return self._map[example].age
def increment_age(self, example):
"""Increments the age of the beam associated with this example
Args:
example (Example)
"""
assert example in self._map
self._map[example].increment_age()
def set_beam(self, example, beam):
"""Sets the beam associated with this example.
Args:
example (Example)
beam (Beam)
"""
self._map[example] = BeamMetaInfo(beam, 1)
def get_beam(self, example):
"""Returns the beam associated with this example.
Args:
example (Example)
Returns:
Beam
"""
assert example in self._map
return self._map[example].beam
class StaleBeamSearch(ExplorationPolicy):
"""Performs beam search every max_age iterations.
On the other iterations, returns the stale beams.
NOTE: Does not recalculate scores
Args:
decoder (Decoder)
config (Config)
normalization (NormalizationOptions)
fresh_policy (ExplorationPolicy): the policy that runs to obtain
fresh beams
train (bool): train or test policy
"""
def __init__(self, decoder, config, normalization, train):
if not train:
raise ValueError(
"Stale Beam Search should only be used at train time")
super(StaleBeamSearch, self).__init__(
decoder, config, normalization, train)
self._fresh_policy = get_exploration_policy(
decoder, config.fresh_policy, normalization, train)
self._max_age = self._config.max_age # iterations till refresh
self._beam_map = BeamMap()
def get_beams(self, examples, verbose=False):
expired_examples = [] # Needs to be updated with BeamSearch
fresh_beams = [] # Fetched from cache
fresh_indices = [] # True @i if example i is fresh
for example in examples:
# Non-existent or expired
if not self._beam_map.contains(example) or \
self._beam_map.get_beam_age(example) >= self._max_age:
fresh_indices.append(False)
expired_examples.append(example)
else: # Still fresh
self._beam_map.increment_age(example)
fresh_indices.append(True)
fresh_beams.append(self._beam_map.get_beam(example))
# Recalculate expired beams
if len(expired_examples) > 0:
recalculated_beams = self._fresh_policy.get_beams(
expired_examples, verbose)
else:
recalculated_beams = []
# Cache recalculated beams
for expired_example, recalculated_beam in zip(
expired_examples, recalculated_beams):
self._beam_map.set_beam(expired_example, recalculated_beam)
# Put beams back in correct order
beams = []
for fresh in fresh_indices:
if fresh:
beams.append(fresh_beams.pop(0))
else:
beams.append(recalculated_beams.pop(0))
return beams
def get_intermediate_beams(self, examples, verbose=False):
return self._fresh_policy.get_intermediate_beams(
examples, verbose=verbose)
################################
# Gamma Sampling ABC
class GammaSamplingExplorationPolicy(ExplorationPolicy, metaclass=ABCMeta):
"""Creates a beam using some form of sampling."""
def __init__(self, decoder, config, normalization, train):
if not train:
raise ValueError(
"Sampling Exploration should only be used at train time.")
super(GammaSamplingExplorationPolicy, self).__init__(
decoder, config, normalization, train)
assert config.exploration_epsilon is None
def get_beams(self, examples, verbose=False):
terminated = [set() for _ in examples]
# initialize beams
beams = [[ParsePath.empty(ex.context)] for ex in examples]
# put all probability mass on the root
distributions = [[1] for _ in examples]
num_iterations = get_num_iterations(
self._config.iterations_per_utterance, examples)
iterations = range(num_iterations)
if verbose:
iterations = verboserate(
iterations, desc='Performing randomized search')
for _ in iterations:
terminated, beams, distributions = self.advance(
terminated, beams, distributions)
return [Beam(sorted(list(paths), key=self._ranker, reverse=True))
for paths in terminated]
def get_intermediate_beams(self, examples, verbose=False):
intermediates = [[] for _ in examples]
terminated = [set() for ex in examples]
particles = [[ParsePath.empty(ex.context)] for ex in examples]
distributions = [[1] for _ in range(len(examples))]
num_iterations = get_num_iterations(
self._config.iterations_per_utterance, examples)
if verbose:
iterations = verboserate(list(range(num_iterations)),
desc='Performing randomized search')
else:
iterations = range(num_iterations)
for _ in iterations:
for ex_idx, (beam, terminated_set) in enumerate(
zip(particles, terminated)):
intermediates[ex_idx].append(Beam(
sorted(terminated_set, key=self._ranker, reverse=True) +
sorted(beam, key=self._ranker, reverse=True)))
terminated, particles, distributions = self.advance(
terminated, particles, distributions)
return [Beam(sorted(list(paths), key=self._ranker, reverse=True))
for paths in terminated], intermediates
def advance(self, terminated, beams, empirical_distributions):
"""Advance a batch of beams.
Args:
terminated (list[set(ParsePath)]): a batch of all the
terminated paths found so far for each beam.
beams (list[list[ParsePath]]): a batch of beams.
All paths on all beams have the same length (all
should be unterminated)
empirical_distributions (list[list[float]]): a batch of
distributions over the corresponding beams.
Returns:
list[set[ParsePath]]: a batch of terminated beams
(in the same order as the input beams)
list[list[ParsePath]]: a batch of new beams all extended
by one time step
list[list[float]]: the new empirical distributions over these
particles
"""
# nothing on the beams should be terminated
# terminated paths should be in the terminated set
for beam in beams:
for path in beam:
assert not path.terminated
path_extensions = [[path.extend() for path in beam] for beam in beams]
# for exploration, use a parser which pretends like every utterance
# is the first utterance it is seeing
ignore_previous_utterances = \
self._config.independent_utterance_exploration
# Use the ParseModel to score
self._decoder.parse_model.score(flatten(path_extensions),
ignore_previous_utterances,
self._decoder.caching)
new_beams = []
new_distributions = []
gamma = self._config.exploration_gamma
for terminated_set, cases, distribution in zip(
terminated, path_extensions, empirical_distributions):
new_path_log_probs = []
paths_to_sample_from = []
for case, path_prob in zip(cases, distribution):
for continuation in case.valid_continuations(
self._decoder.path_checker):
# Add all the terminated paths
if continuation.terminated:
terminated_set.add(continuation)
else:
# Sample from unterminated paths
new_path_log_probs.append(
gamma * continuation[-1].log_prob +
np.log(path_prob))
paths_to_sample_from.append(continuation)
if len(paths_to_sample_from) == 0:
new_beams.append([])
new_distributions.append([])
continue
new_path_probs = softmax(new_path_log_probs)
new_particles, new_distribution = self._sample(
paths_to_sample_from, new_path_probs)
new_beams.append(new_particles)
new_distributions.append(new_distribution)
return terminated, new_beams, new_distributions
@abstractmethod
def _sample(self, paths_to_sample_from, path_probs):
"""Sample from set of valid paths to sample from according to policy.
Args:
paths_to_sample_from (list[ParsePath]): the valid paths in
next beam
path_probs (list[float]): gamma sharpened probs of each path
Returns:
list[ParsePath]: the paths that are sampled according to
this policy
list[float]: the new probabilities associated with these paths
for the next iteration
"""
raise NotImplementedError
################################
# Particle filter
class ParticleFiltering(GammaSamplingExplorationPolicy):
"""Estimates an empirical distribution from gamma-sharpened distribution
given by ParseModel. Samples from that empirical distribution.
1. Sample from empirical distribution p_hat (until get beam_size unique)
2. Extend particles using true distribution
Args:
decoder (Decoder)
config (Config)
normalization (NormalizationOptions)
"""
def _sample(self, paths_to_sample_from, path_probs):
# Samples without replacement. New particles have empirical
# distribution according to their frequency.
num_to_sample = min(
self._config.beam_size, len(paths_to_sample_from))
sampled_particles = sample_with_replacement(
paths_to_sample_from, path_probs, num_to_sample)
new_particle_counts = Counter(sampled_particles)
new_particles = list(new_particle_counts.keys())
new_distribution = np.array(list(new_particle_counts.values()))
new_distribution = list(
new_distribution / float(np.sum(new_distribution)))
return new_particles, new_distribution
################################
# Gamma Randomized Search
class GammaRandomizedSearch(GammaSamplingExplorationPolicy):
def _sample(self, paths_to_sample_from, path_probs):
# Samples without replacement
num_to_sample = min(
self._config.beam_size, len(paths_to_sample_from),
sum(p > 0 for p in path_probs)
)
chosen_indices = np.random.choice(
range(len(paths_to_sample_from)), size=num_to_sample,
replace=False, p=path_probs)
new_particles = [
paths_to_sample_from[index] for index in chosen_indices]
# Distribution is just gamma sharpened and normalized path probs
new_distribution = softmax(
[self._config.exploration_gamma * path.log_prob
for path in new_particles])
return new_particles, new_distribution
################################
# Batched REINFORCE
class BatchedReinforce(ExplorationPolicy):
"""Exploration policy that sample K independent paths for each example
(where K = beam size).
- The paths comes from the model distribution p(z|x) with possible modifications
using gamma or epsilon.
- Specifically the next predicate is sampled from
* gamma-softmaxed p(choice) with probability 1 - epsilon
* uniform over choices with probability epsilon
- Choices that cannot be executed are not considered.
- Paths that cannot be extended are discarded by default.
* Turn on "zombie_mode" to keep them on the beam for negative update
- There are two ways to handle terminated paths:
* Default: The last predicate must be sampled like other predicates
* termination_lookahead: For any choice that terminates the path,
apply it and add the terminated path to the beam.
Still keep extending the original path.
Possible configs:
- beam_size (int)
- independent_utterance_exploration (bool)
- exploration_gamma (float)
- exploration_epsilon (float)
- termination_lookahead (bool)
- zombie_mode (bool)
"""
def __init__(self, decoder, config, normalization, train):
if not train:
raise ValueError(
"Batched REINFORCE should only be used at train time")
super(BatchedReinforce, self).__init__(
decoder, config, normalization, train)
def get_beams(self, examples, verbose=False):
return self.get_intermediate_beams(examples, verbose)[0]
def get_intermediate_beams(self, examples, verbose=False):
# Start with beam_size empty paths for each example
beams = [Beam([ParsePath.empty(ex.context)
for _ in range(self._config.beam_size)])
for ex in examples]
intermediates = [[] for _ in examples]
num_iterations = get_num_iterations(
self._config.iterations_per_utterance, examples)
if verbose:
iterations = verboserate(list(range(num_iterations)),
desc='Batched REINFORCE')
else:
iterations = range(num_iterations)
for _ in iterations:
for ex_idx, beam in enumerate(beams):
intermediates[ex_idx].append(beam)
beams = self.advance(beams)
return beams, intermediates
def advance(self, beams):
"""Advance a batch of beams.
Args:
beams (list[Beam]): a batch of beams
Returns:
list[Beam]: a new batch of beams
(in the same order as the input beams)
"""
# Extend a new case for each unterminated path
cases_to_be_scored = []
extending = []
for beam in beams:
terminated, unterminated = [], []
for path in beam:
if path.terminated:
terminated.append(path)
else:
case = path.extend()
cases_to_be_scored.append(case)
unterminated.append((path, case))
extending.append((terminated, unterminated))
# Score them
ignore_previous_utterances = \
self._config.independent_utterance_exploration
self._decoder.parse_model.score(
cases_to_be_scored, ignore_previous_utterances, False)
# Read the scores and create new paths
all_new_beams = []
for new_beam, unterminated in extending:
for old_path, case in unterminated:
valid_choice_indices = []
valid_new_paths = []
for index, choice in enumerate(case.choices):
clone = case.copy_with_decision(choice)
denotation = clone.denotation
# Filter out the cases with invalid denotation
if not isinstance(denotation, Exception):
new_path = clone.path
# Filter out invalid paths
if new_path.terminated:
if new_path.finalizable:
# With termination_lookahead, add it to beam
if self._config.termination_lookahead:
new_beam.append(new_path)
else:
valid_choice_indices.append(index)
valid_new_paths.append(new_path)
elif self._decoder.path_checker(new_path):
valid_choice_indices.append(index)
valid_new_paths.append(new_path)
if valid_choice_indices:
# Sample a choice
epsilon = self._config.exploration_epsilon
gamma = self._config.exploration_gamma
if np.random.random() > epsilon:
probs = softmax([case.choice_logits[i] * gamma
for i in valid_choice_indices])
else:
probs = ([1. / len(valid_choice_indices)]
* len(valid_choice_indices))
selected_index = np.random.choice(
list(range(len(valid_new_paths))), p=probs)
new_beam.append(valid_new_paths[selected_index])
elif self._config.zombie_mode and len(old_path):
# Make a zombie copy of the last previous ParseCase
new_beam.append(old_path.zombie_clone())
all_new_beams.append(Beam(new_beam))
return all_new_beams
################################
# Main method
def get_exploration_policy(decoder, config, normalization, train):
"""Returns the ExplorationPolicy corresponding to the
config.exploration_policy entry.
Args:
decoder (Decoder): The Decoder
config (Config): Should be the config specified in the Decoder
normalization (NormalizationOptions): The normalization
train (bool): Whether the policy should be train or test
Returns:
ExplorationPolicy
"""
if config.type == "beam-search":
return BeamSearchExplorationPolicy(decoder, config, normalization, train)
elif config.type == "particle-filtering":
return ParticleFiltering(decoder, config, normalization, train)
elif config.type == "gamma-randomized-search":
return GammaRandomizedSearch(decoder, config, normalization, train)
elif config.type == "stale-beam-search":
return StaleBeamSearch(decoder, config, normalization, train)
elif config.type == "batched-reinforce":
return BatchedReinforce(decoder, config, normalization, train)
else:
raise ValueError(
"{} does not specify a valid ExplorationPolicy".format(
config.type))
|
ContextualSP/lemon/executor/strongsup/exploration_policy.py/0
|
{
"file_path": "ContextualSP/lemon/executor/strongsup/exploration_policy.py",
"repo_id": "ContextualSP",
"token_count": 13697
}
| 231 |
# from gtd.utils import cached_property
from strongsup.executor import Executor, Denotation
from strongsup.rlong.value import RLongStateValue
from strongsup.rlong.state import RLongObject
################################
# Denotation
class RLongDenotation(tuple, Denotation):
"""A pretty lightweight class representing the intermediate denotation."""
__slots__ = ()
def __new__(self, world_state, command_history, execution_stack):
"""Create a new RLongDenotation.
Args:
world_state (RLongState): Current states of the objects
command_history (list[tuple]): List of actions and arguments
execution_stack (list[object]): Used for building arguments for the next action
"""
return tuple.__new__(RLongDenotation, (world_state, command_history, execution_stack))
@property
def world_state(self):
return self[0]
@property
def command_history(self):
return self[1]
@property
def execution_stack(self):
return self[2]
@property
def utterance_idx(self):
return len(self[1])
################################
# Executor
class RLongExecutor(Executor):
"""Stack-based executor for alchemy, scene, and tangrams domains.
"""
def __init__(self, initial_state, debug=False):
self.initial_state = initial_state
self.debug = debug
def execute(self, y_toks, old_denotation=None):
"""Return the intermediate denotation of the formula.
Args:
y_toks (list[Predicate]): the formula fragment to be executed
old_denotation (Denotation): If specified, continue execution
from this intermediate denotation.
Returns:
Denotation
The denotation is not finalized.
Throws:
Exception if the formula is malformed.
"""
if not old_denotation:
denotation = RLongDenotation(self.initial_state, [], [])
else:
assert isinstance(old_denotation, tuple)
denotation = RLongDenotation(
old_denotation.world_state,
old_denotation.command_history,
old_denotation.execution_stack[:])
if self.debug:
print(('Executing: {} (old deno: {})'.format(y_toks, denotation)))
for predicate in y_toks:
denotation = self.apply(predicate.name, denotation)
if self.debug:
print((predicate, denotation))
return denotation
def execute_predicate(self, predicate, old_denotation=None):
if not old_denotation:
denotation = RLongDenotation(self.initial_state, [], [])
else:
assert isinstance(old_denotation, tuple)
denotation = RLongDenotation(
old_denotation.world_state,
old_denotation.command_history,
old_denotation.execution_stack[:])
return self.apply(predicate.name, denotation)
STACK_NOT_EMPTY = ValueError('Cannot finalize: Stack not empty')
def finalize(self, denotation):
"""Return the finalized denotation as list[Value].
Return None if the denotation cannot be finalized.
For rlong domain, a denotation can be finalized if the stack is empty.
The result will be a list of a single RLongValue.
"""
if denotation.execution_stack:
raise RLongExecutor.STACK_NOT_EMPTY
return [RLongStateValue(denotation.world_state)]
################################
# Apply
def apply(self, name, denotation):
"""Return a new denotation.
The execution stack can be modified directly.
But the world state and command history cannot be modified directly;
a new Denotation object must be created.
This happens only when an action is performed.
Args:
name (str): The next predicate name
denotation (RLongDenotation): Current denotation
Returns:
RLongDenotation
can be the same object as the input argument
if only the execution stack is modified
"""
if len(name) == 1 and name[0].isalpha():
# Color: Push onto the stack
denotation.execution_stack.append(name)
return denotation
elif name[0] == '-' or name[0].isdigit():
# Number: Push onto the stack
denotation.execution_stack.append(int(name))
return denotation
elif name[0] == 'X':
# Fraction: Push onto the stack
denotation.execution_stack.append(name)
return denotation
elif name == 'all-objects':
# All objects: Push onto the stack
denotation.execution_stack.append(denotation.world_state.all_objects)
return denotation
elif name[0] == 'P':
# Property: Join with the value
value = denotation.execution_stack.pop()
result = denotation.world_state.apply_join(value, name[1:])
assert result, 'Empty result'
denotation.execution_stack.append(result)
return denotation
elif name[0] == 'D':
# Double-Property: Join with the values
value2 = denotation.execution_stack.pop()
value1 = denotation.execution_stack.pop()
result = denotation.world_state.apply_double_join(
value1, value2, name[1:])
assert result, 'Empty result'
denotation.execution_stack.append(result)
return denotation
elif name[0] == 'A':
# Perform action
new_state, history_entry = denotation.world_state.apply_action(
name[1:], denotation.execution_stack)
return RLongDenotation(new_state,
denotation.command_history + [history_entry],
denotation.execution_stack)
elif name == 'index':
# Perform indexing on a list of objects
number = denotation.execution_stack.pop()
assert isinstance(number, int)
objects = denotation.execution_stack.pop()
assert isinstance(objects, list)
if number > 0:
# Because the LF uses 1-based indexing
denotation.execution_stack.append(objects[number - 1])
else:
# Negative indices: count from the right
denotation.execution_stack.append(objects[number])
return denotation
elif name[0] == 'H':
# History slot
number = denotation.execution_stack.pop()
assert isinstance(number, int)
# Pull out the argument
command = denotation.command_history[
number - 1 if number > 0 else number]
if name == 'H0':
# Get the action and execute
argument = command[0]
new_state, history_entry = denotation.world_state.apply_action(
argument, denotation.execution_stack)
return RLongDenotation(new_state,
denotation.command_history + [history_entry],
denotation.execution_stack)
elif name == 'HUndo':
# Get the opposite and execute
argument = denotation.world_state.reverse_action(command[0])
new_state, history_entry = denotation.world_state.apply_action(
argument, denotation.execution_stack)
return RLongDenotation(new_state,
denotation.command_history + [history_entry],
denotation.execution_stack)
else:
# Just push onto the stack
argument = command[int(name[1:])]
if not isinstance(argument, (int, str)):
assert isinstance(argument, RLongObject)
argument = denotation.world_state.resolve_argument(argument)
denotation.execution_stack.append(argument)
return denotation
else:
raise ValueError('Unknown predicate {}'.format(name))
|
ContextualSP/lemon/executor/strongsup/rlong/executor.py/0
|
{
"file_path": "ContextualSP/lemon/executor/strongsup/rlong/executor.py",
"repo_id": "ContextualSP",
"token_count": 3694
}
| 232 |
"""Generate predicates based on the context (utterance + graph)
- FuzzyMatchGenerator:
Generate predicates that fuzzily match an utterance span.
- NERValueGenerator:
Generate predicates from NER values (numbers, dates, etc.)
detected in the utterance
- FloatingPredicatesGenerator:
Generate predicates that do not anchor to utterance spans
"""
import re
from abc import ABCMeta, abstractmethod
import Levenshtein
from strongsup.predicate import Predicate
from strongsup.predicates_computer import PredicatesComputer
from strongsup.tables.graph import NULL_CELL
from strongsup.tables.predicate import WikiTablePredicate, FIXED_PREDICATES
class Generator(object, metaclass=ABCMeta):
@abstractmethod
def get_predicates(self, tokens):
"""Return a dict mapping each matched predicate z to a list M[z]
where M[z][i] indicates how well predicate z matches input token x[i].
Args:
tokens: A list of tokens of the utterance.
"""
pass
################################
# FuzzyMatchGenerator
class PredicateInfo(object):
def __init__(self, predicate, original_string, partial_match=False):
self.predicate = predicate
self.original_string = str(original_string)
self.normalized_string = re.sub('[^a-z0-9]', '', original_string.lower())
if partial_match:
self.partials = set()
if len(original_string) > FuzzyMatchGenerator.PARTIAL_MAX_PREDICATE_LENGTH:
return
tokens = re.sub('[^a-z0-9]', ' ', original_string.lower()).strip().split()
for i in range(len(tokens)):
for j in range(i + 1, len(tokens) + 1):
self.partials.add(''.join(tokens[i:j]))
class FuzzyMatchGenerator(Generator):
"""Compute possible string (or substring) matches between predicates
from the graph and token spans from the utterance.
"""
# Possible options:
# - Do not consider the match if the score is less than this:
SIMILARITY_THRESHOLD = 0.8
# - Do not consider phrases matching > this number of predicates:
# (likely a stop word)
MAX_MATCHES = 5
# For partial matches (match a part of the predicate's string)
# - Do not do partial match if the token span is shorter than this:
PARTIAL_MIN_SPAN_LENGTH = 3
# - Do not do partial match for predicates longer than this:
PARTIAL_MAX_PREDICATE_LENGTH = 70
def __init__(self, predicate_to_strings, partial_match=False):
"""Create a new TablesFuzzyMatcher for the given set of predicates.
Args:
predicate_to_strings: A dict from each predicate name
(e.g., fb:cell.dr_who) to the original string ("Dr. Who")
partial_match: Whether to perform partial match
(allows the token span to match consecutive words from the predicate:
e.g., allows fb:cell.dr_who to match "who")
"""
self.partial_match = partial_match
self.predicate_infos = {}
for predicate, original_string in predicate_to_strings.items():
self.predicate_infos[predicate] = PredicateInfo(
predicate, original_string, partial_match)
def get_predicates(self, tokens):
"""Return a dict mapping each fuzzy matched predicate z to a list M[z]
where M[z][i] indicates how well predicate z matches input word x[i].
Args:
tokens: A list of string tokens.
"""
tokens = [re.sub('[^a-z0-9]', '', token.lower()) for token in tokens]
matches = {}
for predicate_info in list(self.predicate_infos.values()):
matches[predicate_info.predicate] = [0.0] * len(tokens)
for i in range(len(tokens)):
for j in range(i + 1, len(tokens) + 1):
phrase = ''.join(tokens[i:j])
predicates_matching_phrase = {}
for predicate_info in list(self.predicate_infos.values()):
score = similarity_ratio(phrase, predicate_info.normalized_string)
if (self.partial_match and predicate_info.partials and
len(phrase) >= self.PARTIAL_MIN_SPAN_LENGTH):
part_score = max(similarity_ratio(phrase, part)
for part in predicate_info.partials)
score = max(score, part_score)
if score:
# Normalize
score = ((score - FuzzyMatchGenerator.SIMILARITY_THRESHOLD)
/ (1. - FuzzyMatchGenerator.SIMILARITY_THRESHOLD))
predicates_matching_phrase[predicate_info.predicate] = score
if len(predicates_matching_phrase) <= self.MAX_MATCHES:
for predicate, score in list(predicates_matching_phrase.items()):
weights = matches[predicate]
for k in range(i, j):
weights[k] = max(weights[k], score)
return dict((predicate, weights)
for (predicate, weights) in matches.items()
if any(x > 0 for x in weights))
# Helper methods
def similarity_ratio(x, y, threshold=FuzzyMatchGenerator.SIMILARITY_THRESHOLD):
"""Compute the similarity ratio between two strings.
If the ratio exceeds the threshold, return it; otherwise, return 0.
The similarity ratio is given by
1 - (levenshtein distance with substitution cost = 2) / (total length)
"""
ratio = Levenshtein.ratio(x, y)
return ratio if ratio > threshold else 0.
################################
# NERValueGenerator
class NERValueGenerator(Generator):
"""Compute possible primitive values (numbers and dates) that would be
tagged with numerical and temporal NER classes (NUMBER, ORDINAL, DATE, etc.)
Given an utterance x and a primitive value z, compute
M[z][i] = how well predicate z matches input word x[i]
"""
def __init__(self):
pass
def get_predicates(self, tokens):
"""Return a dict mapping each primitive predicate z to a list M[z]
where M[z][i] indicates how well z matches input word x[i].
Args:
tokens: A list of string tokens.
"""
match_weights = {}
for i in range(len(tokens)):
for predicate, l in hackish_ner(tokens, i):
if predicate not in match_weights:
match_weights[predicate] = [0.0] * len(tokens)
for k in range(i, i + l):
match_weights[predicate][k] = 1.0
return match_weights
# Helper method
WORDS_CARDINAL = [
'zero', 'one', 'two', 'three', 'four', 'five',
'six', 'seven', 'eight', 'nine', 'ten',
'eleven', 'twelve', 'thirteen', 'fourteen', 'fifteen',
'sixteen', 'seventeen', 'eighteen', 'nineteen', 'twenty']
WORDS_ORDINAL = [
'zeroth', 'first', 'second', 'third', 'fourth', 'fifth',
'sixth', 'seventh', 'eighth', 'ninth', 'tenth',
'eleventh', 'twelfth', 'thirteenth', 'fourteenth', 'fifteenth',
'sixteenth', 'seventeenth', 'eighteenth', 'nineteenth', 'twentieth']
MONTHS = ['',
'january', 'february', 'march', 'april', 'may', 'june',
'july', 'august', 'september', 'october', 'november', 'december']
MONTHS_SHORT = ['',
'jan', 'feb', 'mar', 'apr', 'may', 'jun',
'jul', 'aug', 'sep', 'oct', 'nov', 'dec']
def hackish_ner(tokens, i):
"""Check if tokens[i:i+l] can be converted into a primitive value.
Yield pairs (predicate, length).
"""
u = tokens[i]
# Integers: 1, 20, 450, ...
if re.match('^[0-9]+$', u):
v = str(int(u))
yield 'N' + v, 1
if len(u) == 4:
# Could be a year
yield 'D{}-xx-xx'.format(v), 1
# 0.2, 4,596, ...
try:
v = float(u.replace(',', ''))
if int(v) == v:
yield 'N' + str(int(v)), 1
else:
yield 'N' + str(v), 1
except (ValueError, OverflowError):
pass
# 1st, 2nd, 3rd, ...
match = re.match(r'([0-9]+)(st|nd|rd|th)', u)
if match:
yield 'N' + str(int(match.group(1))), 1
# one, two, three, ...
if u in WORDS_CARDINAL:
yield 'N' + str(WORDS_CARDINAL.index(u)), 1
# first, second, third, ...
if u in WORDS_ORDINAL:
yield 'N' + str(WORDS_ORDINAL.index(u)), 1
# TODO: Handle dates and some more numbers
# january, ...
# march 6, march 6th, ...
# november of 1992, november 1992, ...
# "march 6 , 2012", ...
# 1800s, 1920's, ...
################################
# FloatingPredicatesGenerator
class FloatingPredicatesGenerator(Generator):
def __init__(self, graph):
self.graph = graph
def get_predicates(self, tokens):
# Column headers
match_weights = {}
for predicate in self.graph._columns:
match_weights[predicate] = None
match_weights['!' + predicate] = None
# Empty cell
if self.graph.has_id(NULL_CELL):
match_weights[NULL_CELL] = None
return match_weights
################################
# Infer context predicates using all generator
class TablesPredicatesComputer(PredicatesComputer):
NER_VALUE_GENERATOR = NERValueGenerator()
def __init__(self, graph):
"""Initialize a predicates computer for the specified graph.
Args:
graph (TablesKnowledgeGraph)
"""
self.graph = graph
self.generators = [
FloatingPredicatesGenerator(self.graph),
FuzzyMatchGenerator(self.graph._original_strings, False),
# The following one is kind of slow, so comment out for now.
#FuzzyMatchGenerator(self.graph._original_strings, True),
self.NER_VALUE_GENERATOR]
def compute_predicates(self, tokens):
"""Infer predicates from the tokens and graph.
Return a list of predicates.
Args:
tokens (list[unicode])
Returns:
list[(Predicate, alignment)]
where alignment is list[(utterance token index, alignment strength)]
"""
matches = []
found_predicates = set()
for matcher in self.generators:
match_weights = matcher.get_predicates(tokens)
matches.append(match_weights)
found_predicates.update(match_weights)
predicates = [(fixed, []) for fixed in FIXED_PREDICATES]
for name in found_predicates:
predicate = WikiTablePredicate(name,
original_string=self.get_original_string(name))
match_weights = self.combine_match_weights(
matches, name, tokens)
predicates.append((predicate, match_weights))
predicates.sort(key=lambda x: (x[0].types, x[0].name))
return predicates
def get_original_string(self, name):
"""Get the original string. Also works for numbers and dates.
Args:
name (unicode): predicate name
Returns:
unicode
"""
words = []
if self.graph.has_id(name):
words.append(self.graph.original_string(name))
elif name[0] == 'N':
words.append(name[1:])
elif name[0] == 'D':
year, month, day = name[1:].split('-')
if year[0] != 'x':
words.append(year)
if month[0] != 'x':
words.append(MONTHS[int(month)].title())
if day[0] != 'x':
words.append(day)
return ' '.join(words)
def combine_match_weights(self, matches, name, tokens):
"""Helper method for combining match weights.
Returns:
list[(utterance token index, alignment strength)]
"""
combined = [0.0] * len(tokens)
for match in matches:
if name in match and match[name]:
for i, x in enumerate(match[name]):
combined[i] = max(combined[i], x)
return [(i, x) for (i, x) in enumerate(combined) if x]
################################
# Quick test
def test():
from dependency.data_directory import DataDirectory
from strongsup.tables.world import WikiTableWorld
class DummyContext(object):
def __init__(self, utterance, context):
self.graph = WikiTableWorld(context).graph
self.utterance = utterance
with open(DataDirectory.wiki_table_questions + '/data/training.tsv') as fin:
header = fin.readline().rstrip('\n').split('\t')
for i in range(20):
stuff = dict(list(zip(header, fin.readline().rstrip('\n').split('\t'))))
context = DummyContext(stuff['utterance'].split(), stuff['context'])
#print stuff
predicates = TablesPredicatesComputer(context.graph).compute_predicates(context)
names = [x[0].name for x in predicates]
assert len(names) == len(set(names))
#for x, y in sorted(predicates, key=lambda u: (u[0].types_vector, u[0].name)):
# print ' ' * 4, x, x.types, y
if __name__ == '__main__':
test()
|
ContextualSP/lemon/executor/strongsup/tables/predicates_computer.py/0
|
{
"file_path": "ContextualSP/lemon/executor/strongsup/tables/predicates_computer.py",
"repo_id": "ContextualSP",
"token_count": 5837
}
| 233 |
from gtd.utils import Bunch
from strongsup.example import Example, Context
from strongsup.experiment import example_to_supervised_cases
from strongsup.tests.utils import PredicateGenerator
from strongsup.utils import EOS
def test_example_to_supervised_cases():
class DummyTablePath(object):
graph = 'GRAPH!'
context = Context(DummyTablePath(), 'hello', executor='dummy executor')
p = PredicateGenerator(context)
context._predicates = [p('a'), p('b'), p('c'), p('d'), p(EOS)]
answer = None
logical_form = [p('a'), p('b'), p('c'), p('d')]
example = Example(context, answer, logical_form)
cases = example_to_supervised_cases(example)
c0, c1, c2, c3 = cases
assert c0.previous_decisions == []
assert c1.previous_decisions == [p('a')]
assert c2.previous_decisions == [p('a'), p('b')]
assert c3.previous_decisions == [p('a'), p('b'), p('c')]
assert c0.decision == p('a')
assert c1.decision == p('b')
assert c2.decision == p('c')
assert c3.decision == p('d')
|
ContextualSP/lemon/executor/strongsup/tests/test_experiment.py/0
|
{
"file_path": "ContextualSP/lemon/executor/strongsup/tests/test_experiment.py",
"repo_id": "ContextualSP",
"token_count": 396
}
| 234 |
import json
import random
import sys
from allennlp_reasoning_explainqa.common.constants import CORRECT_OPTION_TAG
from allennlp_reasoning_explainqa.training.metrics.confusion_matrix import (
F1MeasureCustomRetrievalEval,
)
from allennlp_reasoning_explainqa.training.metrics.explanation_eval import (
ExplanationEval,
)
# Sets random seed to a nothing-up-my-sleeve number so that we have
# deterministic evaluation scores.
random.seed(12345)
# Sets random seed to a nothing-up-my-sleeve number so that we have
# deterministic evaluation scores.
random.seed(12345)
def evaluate(prediction_filename, label_filename):
chainid_to_label = json.load(open(label_filename, "r"))
chain_count = len(chainid_to_label)
predictions_lines = open(prediction_filename, "r").readlines()
predictions = [json.loads(row) for row in predictions_lines]
prediction_count = len(predictions)
if chain_count != prediction_count:
print(
f"Label file {label_filename} has {chain_count} chains, but prediction file {prediction_filename} has {prediction_count} predictions. These must be equal."
)
sys.exit(1)
f1eval = F1MeasureCustomRetrievalEval(pos_label=1)
explanation_eval = ExplanationEval()
chain_ids_covered = []
cnt = 0
for row in predictions:
assert "score" in row, "Prediction should contain field score"
assert "chain_id" in row, "Prediction should contain field chain_id"
score = row["score"]
chain_id = row["chain_id"]
qid = chain_id.strip().split("_")[0]
print("qid,chain_id,score = ", qid, chain_id, score)
gtlabel = chainid_to_label[chain_id]
f1eval(int(gtlabel), score)
explanation_eval(qid, CORRECT_OPTION_TAG, int(gtlabel), score)
chain_ids_covered.append(chain_id)
cnt += 1
assert len(chain_ids_covered) == len(
chainid_to_label
), "Found {} chains but expected {} chains".format(
len(chain_ids_covered), len(chainid_to_label)
)
binclf_performance = f1eval.get_metric(reset=True)
print("f1.get_metric() = ", binclf_performance)
explanation_performance = explanation_eval.get_metric(reset=True)
print("explanation_eval.get_metric() = ", explanation_performance)
final_metrics = {
"auc_roc": binclf_performance["auc_roc"],
"explainP1": explanation_performance["explainP1"],
"explainNDCG": explanation_performance["explainNDCG"],
}
print("=" * 32)
print(": auc_roc = ", binclf_performance["auc_roc"])
print(": P1 = ", explanation_performance["explainP1"])
print(": explainNDCG = ", explanation_performance["explainNDCG"])
print("=" * 32)
return final_metrics
if __name__ == "__main__":
prediction_filename = sys.argv[1]
label_filename = sys.argv[2]
metrics_filename = sys.argv[3]
print(
f"Evaluating prediction file {prediction_filename} with label file {label_filename}"
)
metrics = evaluate(prediction_filename, label_filename)
print(f"Writing final metrics to file: {metrics_filename}")
json.dump(metrics, open(metrics_filename, "w"))
|
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/eqasc/code/allennlp_reasoning_explainqa/evaluator/evaluator.py/0
|
{
"file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/eqasc/code/allennlp_reasoning_explainqa/evaluator/evaluator.py",
"repo_id": "ContextualSP",
"token_count": 1196
}
| 235 |
from evaluation.metric import Metric
from evaluation.evaluation import Evaluation
|
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/evaluation/__init__.py/0
|
{
"file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/evaluation/__init__.py",
"repo_id": "ContextualSP",
"token_count": 17
}
| 236 |
#!/bin/bash
set -euo pipefail
echo
echo --------------------------------
echo Building image
echo --------------------------------
echo
set -x
docker build -t propara-evaluator-local .
set +x
echo
echo --------------------------------
echo Running
echo --------------------------------
echo
set -x
T=$(mktemp -d /tmp/tmp-XXXXX)
docker run \
-v $PWD/testfiles-1:/testfiles-1:ro \
-v $T:/output:rw \
-it propara-evaluator-local \
python3 \
evaluator.py \
--predictions /testfiles-1/predictions.tsv \
--answers /testfiles-1/answers.tsv \
--output /output/metrics.json
if [ "$(cat $T/metrics.json)" != '{"precision": 0.743, "recall": 0.43, "f1": 0.545}' ]; then
echo File $T/metrics.json looks wrong.
exit 1
fi
echo $T/metrics.json looks okay.
set +x
|
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/test-in-docker.sh/0
|
{
"file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/test-in-docker.sh",
"repo_id": "ContextualSP",
"token_count": 281
}
| 237 |
## Test case: Too few predictions
* answers.tsv has answers to three processes.
* predictions.tsv has a prediction of one process.
An evaluation on this prediction should abort.
|
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/testfiles-5/README.md/0
|
{
"file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/testfiles-5/README.md",
"repo_id": "ContextualSP",
"token_count": 44
}
| 238 |
## TRACIE Evaluator
This script evaluates NLI predictions against correct inferences and produces 4 accuracy scores described below, and can be used to check that outputs produced for the leaderboard are well formed.
## Example
```sh
% python3 evaluator/evaluator.py --question_answers data/train_uniform.jsonl --predictions data/predictions.jsonl --output metrics.json
% cat metrics.json
{"total_acc": 0.5, "start_acc": 0.5, "end_acc": 0.5, "story_em": 0.0}
```
This uses a dummy prediction file called `predictions.jsonl` which predicts entailments for each example in `train_uniform.jsonl`:
```
{"id":"tracie-train-uniform-0000","label":"entailment"}
{"id":"tracie-train-uniform-0001","label":"entailment"}
{"id":"tracie-train-uniform-0002","label":"entailment"}
{"id":"tracie-train-uniform-0003","label":"entailment"}
{"id":"tracie-train-uniform-0004","label":"entailment"}
...
```
## Output metrics
A json file called `metrics.json` will be produced containing the following accuracy scores:
```json
{"train_type": "train_iid", "total_acc": 0.5, "start_acc": 0.5, "end_acc": 0.5, "story_em": 0.0}
```
In this file, here is what the fields mean:
* `total_acc` is the overall accuracy
* `start_acc` is the accuracy of the subset of problems involving event `start` questions
* `end_acc` is the subset involving end point questions
* `story_em` is the accuracy of getting all questions correct per story
|
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/tracie/evaluator/README.md/0
|
{
"file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/tracie/evaluator/README.md",
"repo_id": "ContextualSP",
"token_count": 455
}
| 239 |
if [ -d "./bookcorpus_conclusion" ]
then
rm -r ./bookcorpus_conclusion
fi
mkdir ./bookcorpus_conclusion
python conclusion_corpus_construction.py --start 0 --end 500 &
python conclusion_corpus_construction.py --start 500 --end 1000 &
python conclusion_corpus_construction.py --start 1000 --end 1500 &
python conclusion_corpus_construction.py --start 1500 --end 2000 &
python conclusion_corpus_construction.py --start 2000 --end 2500 &
python conclusion_corpus_construction.py --start 2500 --end 3000 &
python conclusion_corpus_construction.py --start 3000 --end 3500 &
python conclusion_corpus_construction.py --start 3500 --end 4000 &
python conclusion_corpus_construction.py --start 4000 --end 4500 &
python conclusion_corpus_construction.py --start 4500 --end 5000 &
python conclusion_corpus_construction.py --start 5000 --end 5500 &
python conclusion_corpus_construction.py --start 5500 --end 6000 &
python conclusion_corpus_construction.py --start 6000 --end 6500 &
python conclusion_corpus_construction.py --start 6500 --end 7000 &
python conclusion_corpus_construction.py --start 7000 --end 7500 &
python conclusion_corpus_construction.py --start 7500 --end 8000 &
python conclusion_corpus_construction.py --start 8000 --end 8500 &
python conclusion_corpus_construction.py --start 8500 --end 9000 &
python conclusion_corpus_construction.py --start 9000 --end 9500 &
python conclusion_corpus_construction.py --start 9500 --end 10000 &
python conclusion_corpus_construction.py --start 10000 --end 10500 &
python conclusion_corpus_construction.py --start 10500 --end 11000 &
python conclusion_corpus_construction.py --start 11000 --end 11500 &
python conclusion_corpus_construction.py --start 11500 --end 12000 &
python conclusion_corpus_construction.py --start 12000 --end 12500 &
python conclusion_corpus_construction.py --start 12500 --end 13000 &
python conclusion_corpus_construction.py --start 13000 --end 13500 &
python conclusion_corpus_construction.py --start 13500 --end 14000 &
python conclusion_corpus_construction.py --start 14000 --end 14500 &
python conclusion_corpus_construction.py --start 14500 --end 15000 &
python conclusion_corpus_construction.py --start 15000 --end 15500 &
python conclusion_corpus_construction.py --start 15500 --end 16000 &
python conclusion_corpus_construction.py --start 16000 --end 16500 &
python conclusion_corpus_construction.py --start 16500 --end 17000 &
python conclusion_corpus_construction.py --start 17000 --end 17500 &
python conclusion_corpus_construction.py --start 17500 --end 18000 &
wait
cat ./bookcorpus_conclusion/*.jsonl > ./bookcorpus_conclusion.jsonl
rm -r ./bookcorpus_conclusion
|
ContextualSP/logigan/corpus_construction/mlm_corpus/construct_conclusion.sh/0
|
{
"file_path": "ContextualSP/logigan/corpus_construction/mlm_corpus/construct_conclusion.sh",
"repo_id": "ContextualSP",
"token_count": 817
}
| 240 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
import torch
import torch.nn as nn
from copy import deepcopy
from collections import Counter
from datasets import Dataset, load_dataset
import numpy as np
from transformers import Trainer, TrainingArguments
from torch.nn.functional import softmax
from parameters16g_es_corpusb import *
import os, time
import json
import datasets
import random
datasets.set_caching_enabled(False)
os.environ["WANDB_DISABLED"] = "true"
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', help='Path to load verifier model')
parser.add_argument('--output_dir', help='Path to save new checkpoint after training.')
parser.add_argument('--local_rank', help='local rank')
args = parser.parse_args()
VER_MODEL_PATH = args.model_path
# if not VER_MODEL_PATH.startswith('checkpoint-'):
# files=os.listdir(VER_MODEL_PATH)
# for f in files:
# if f.startswith('checkpoint-'): VER_MODEL_PATH = os.path.join(VER_MODEL_PATH, f)
if args.local_rank == '0': print(f"\nVerifier.py: Using Verifier model from {VER_MODEL_PATH}\n\n")
def compute_metrics(predictions):
pred_logits, labels = predictions
# print(pred_logits.shape)
return {"accuracy": 1}
def create_ver_infer(pred_dataset, pred):
logits, labels = pred[0][:,:2], pred[1]
pred_probs = softmax(torch.FloatTensor(logits), dim=-1).numpy()[:, 1]
# print(len(pred_probs))
start_idx = 0
if trainer.args.local_rank in [-1,0]:
with open(gen_train_iter_path, "w") as f: # Xinyu: Verifier will create train set for generator at current iteration.
for i,cs,gs,ids in zip(pred_dataset["input"], pred_dataset["conclusions"], pred_dataset["is_gold"],pred_dataset['selected_ids']):
ins_num = min(len(cs), gen_per_device_examples_num)
tmp_scores = [float(p) for p in pred_probs[start_idx:start_idx+ins_num]]
start_idx += ins_num
example = {"input": i, "conclusions": cs, "is_gold": gs, "ver_prob": tmp_scores}
json.dump(example, f)
f.write("\n")
print(f"\n\n\nSuccess: gen_infer.jsonl has been created at {gen_train_iter_path}.\n\n\n")
###########################################
data_files = {
'train': ver_train_iter_path,
'infer':gen_train_src_path
# 'infer': unlabeled_gen_train_iter_path
}
datasets = load_dataset('json', data_files=data_files, download_mode="force_redownload")
train_dataset = datasets["train"]
infer_dataset = datasets["infer"]
# Select random subset
np.random.seed(int(time.time()))
train_dataset = train_dataset.select(np.random.choice(np.arange(len(train_dataset["input"])), ver_train_samples_per_iter, replace=False))
infer_examples = infer_dataset.select(np.random.choice(np.arange(len(infer_dataset["input"])), gen_train_samples_per_iter, replace=False))
#load config
config = AutoConfig.from_pretrained(VER_MODEL_PATH)
# load tokenizer
tokenizer = AutoTokenizer.from_pretrained(VER_MODEL_PATH, use_fast=True)
special_tokens=['[SEP]','[MASK]']
if not all([t in tokenizer.vocab for t in special_tokens]): # add speical token only if they are not found
special_tokens_dict = {'additional_special_tokens': special_tokens}
num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
added_tokens = tokenizer.get_added_vocab()
print(f"\nAdded special tokens {special_tokens} into tokenizer vocab.\n")
encoder_max_length = 512
def process_infer_dataset_sample(examples):
all_cs = []
all_selected_ids = []
all_gs = []
for id, (i, cs,gs) in enumerate(zip(examples["input"], examples["conclusions"],examples["is_gold"])):
ins_num = min(len(cs),gen_per_device_examples_num)-1 #if not do_train else len(cs)
gold_id = gs.index(1)
all_ids = list(range(len(gs)))
all_ids.remove(gold_id)
selected_ids = list(np.random.choice(all_ids,ins_num,replace=False))
selected_ids.append(gold_id)
all_selected_ids.append(selected_ids)
tmp_cs = [cs[j] for j in selected_ids]
all_cs.append(tmp_cs)
all_gs.append([gs[j] for j in selected_ids])
# print(tmp_cs,[gs[j] for j in selected_ids],selected_ids)
examples['conclusions'] = all_cs
examples['is_gold']= all_gs
examples['selected_ids'] = all_selected_ids
return examples
def process_data_to_model_inputs(examples):
inputs = []
ids = []
all_selected_ids = []
for id, (i, cs,gs) in enumerate(zip(examples["input"], examples["conclusions"],examples["is_gold"])):
for c in cs:
inputs.append(i.replace("[MASK]", c))
ids.extend([id]*len(cs))
# inputs = [i.replace("[MASK]", c) for i,c in zip(examples["input"],examples["conclusion"])]
tokenized_inputs = tokenizer(
inputs,
padding="max_length",
truncation=True,
max_length=encoder_max_length
)
model_inputs = {}
model_inputs['ids']=ids
model_inputs["input_ids"] = tokenized_inputs.input_ids
model_inputs["attention_mask"] = tokenized_inputs.attention_mask
model_inputs["labels"] = [l for ls in examples["is_gold"] for l in ls]#[ls[index] for j,ls in enumerate(examples["is_gold"]) for index in all_selected_ids[j]]
# since above lists are references, the following line changes the 0 index for all samples
# print(model_inputs['labels'])
return model_inputs
training_args = TrainingArguments(
# evaluation_strategy="steps",
per_device_train_batch_size=ver_per_device_train_batch_size,
per_device_eval_batch_size=ver_per_device_eval_batch_size,
fp16=False,
half_precision_backend="amp",
output_dir=args.output_dir,
logging_steps=100,
save_strategy="no",
gradient_accumulation_steps=ver_gradient_accumulation_steps,
num_train_epochs=1,
do_eval=False,
learning_rate=ver_learning_rate,
eval_accumulation_steps=1
)
## map train data
column_names = train_dataset.column_names
train_dataset = train_dataset.map(
process_data_to_model_inputs,
# do_train=True,
batched=True,
remove_columns=column_names,
num_proc=8,
batch_size=16,
load_from_cache_file=False, # necessary
)
infer_examples = infer_examples.map(
process_infer_dataset_sample,
batched=True,
num_proc=8,
batch_size=16,
load_from_cache_file=False
)
column_names = infer_examples.column_names
infer_dataset = infer_examples.map(
process_data_to_model_inputs,
# do_train=False,
batched=True,
num_proc=8,
batch_size=16,
remove_columns=column_names,
load_from_cache_file=False, # necessary
)
# set Python list to PyTorch tensor
train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "labels"])
infer_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "labels"])
# # enable fp16 apex training
model = AutoModelForSequenceClassification.from_pretrained(VER_MODEL_PATH)
model.resize_token_embeddings(len(tokenizer))
# instantiate trainer
trainer = Trainer(
model=model,
tokenizer=tokenizer,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset,
eval_dataset=train_dataset
)
if __name__ == "__main__":
trainer.train()
trainer.save_model()
trainer.save_state()
pred = trainer.predict(infer_dataset, ignore_keys=["encoder_last_hidden_state"])
create_ver_infer(infer_examples, pred)
|
ContextualSP/logigan/pre-training/verifier_multi_es.py/0
|
{
"file_path": "ContextualSP/logigan/pre-training/verifier_multi_es.py",
"repo_id": "ContextualSP",
"token_count": 3015
}
| 241 |
recursive-include matchzoo/datasets/toy *
|
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/MANIFEST.in/0
|
{
"file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/MANIFEST.in",
"repo_id": "ContextualSP",
"token_count": 16
}
| 242 |
import typing
import matchzoo as mz
from .preparer import Preparer
from matchzoo.engine.base_task import BaseTask
from matchzoo.engine.base_model import BaseModel
from matchzoo.engine.base_callback import BaseCallback
from matchzoo.engine.base_preprocessor import BasePreprocessor
def prepare(
task: BaseTask,
model_class: typing.Type[BaseModel],
data_pack: mz.DataPack,
callback: typing.Optional[BaseCallback] = None,
preprocessor: typing.Optional[BasePreprocessor] = None,
embedding: typing.Optional['mz.Embedding'] = None,
config: typing.Optional[dict] = None,
):
"""
A simple shorthand for using :class:`matchzoo.Preparer`.
`config` is used to control specific behaviors. The default `config`
will be updated accordingly if a `config` dictionary is passed. e.g. to
override the default `bin_size`, pass `config={'bin_size': 15}`.
:param task: Task.
:param model_class: Model class.
:param data_pack: DataPack used to fit the preprocessor.
:param callback: Callback used to padding a batch.
(default: the default callback of `model_class`)
:param preprocessor: Preprocessor used to fit the `data_pack`.
(default: the default preprocessor of `model_class`)
:param embedding: Embedding to build a embedding matrix. If not set,
then a correctly shaped randomized matrix will be built.
:param config: Configuration of specific behaviors. (default: return
value of `mz.Preparer.get_default_config()`)
:return: A tuple of `(model, preprocessor, data_generator_builder,
embedding_matrix)`.
"""
preparer = Preparer(task=task, config=config)
return preparer.prepare(
model_class=model_class,
data_pack=data_pack,
callback=callback,
preprocessor=preprocessor,
embedding=embedding
)
|
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/auto/preparer/prepare.py/0
|
{
"file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/auto/preparer/prepare.py",
"repo_id": "ContextualSP",
"token_count": 636
}
| 243 |
"""A basic class representing a Dataset."""
import typing
import math
from collections import Iterable
import numpy as np
import pandas as pd
from torch.utils import data
import matchzoo as mz
from matchzoo.engine.base_callback import BaseCallback
class Dataset(data.IterableDataset):
"""
Dataset that is built from a data pack.
:param data_pack: DataPack to build the dataset.
:param mode: One of "point", "pair", and "list". (default: "point")
:param num_dup: Number of duplications per instance, only effective when
`mode` is "pair". (default: 1)
:param num_neg: Number of negative samples per instance, only effective
when `mode` is "pair". (default: 1)
:param batch_size: Batch size. (default: 32)
:param resample: Either to resample for each epoch, only effective when
`mode` is "pair". (default: `True`)
:param shuffle: Either to shuffle the samples/instances. (default: `True`)
:param sort: Whether to sort data according to length_right. (default: `False`)
:param callbacks: Callbacks. See `matchzoo.dataloader.callbacks` for more details.
Examples:
>>> import matchzoo as mz
>>> data_pack = mz.datasets.toy.load_data(stage='train')
>>> preprocessor = mz.preprocessors.BasicPreprocessor()
>>> data_processed = preprocessor.fit_transform(data_pack)
>>> dataset_point = mz.dataloader.Dataset(
... data_processed, mode='point', batch_size=32)
>>> len(dataset_point)
4
>>> dataset_pair = mz.dataloader.Dataset(
... data_processed, mode='pair', num_dup=2, num_neg=2, batch_size=32)
>>> len(dataset_pair)
1
"""
def __init__(
self,
data_pack: mz.DataPack,
mode='point',
num_dup: int = 1,
num_neg: int = 1,
batch_size: int = 32,
resample: bool = False,
shuffle: bool = True,
sort: bool = False,
callbacks: typing.List[BaseCallback] = None
):
"""Init."""
if callbacks is None:
callbacks = []
if mode not in ('point', 'pair', 'list'):
raise ValueError(f"{mode} is not a valid mode type."
f"Must be one of `point`, `pair` or `list`.")
if shuffle and sort:
raise ValueError(f"parameters `shuffle` and `sort` conflict, "
f"should not both be `True`.")
data_pack = data_pack.copy()
self._mode = mode
self._num_dup = num_dup
self._num_neg = num_neg
self._batch_size = batch_size
self._resample = (resample if mode != 'point' else False)
self._shuffle = shuffle
self._sort = sort
self._orig_relation = data_pack.relation
self._callbacks = callbacks
if mode == 'pair':
data_pack.relation = self._reorganize_pair_wise(
relation=self._orig_relation,
num_dup=num_dup,
num_neg=num_neg
)
self._data_pack = data_pack
self._batch_indices = None
self.reset_index()
def __getitem__(self, item) -> typing.Tuple[dict, np.ndarray]:
"""Get a batch from index idx.
:param item: the index of the batch.
"""
if isinstance(item, slice):
indices = sum(self._batch_indices[item], [])
elif isinstance(item, Iterable):
indices = [self._batch_indices[i] for i in item]
else:
indices = self._batch_indices[item]
batch_data_pack = self._data_pack[indices]
self._handle_callbacks_on_batch_data_pack(batch_data_pack)
x, y = batch_data_pack.unpack()
self._handle_callbacks_on_batch_unpacked(x, y)
return x, y
def __len__(self) -> int:
"""Get the total number of batches."""
return len(self._batch_indices)
def __iter__(self):
"""Create a generator that iterate over the Batches."""
if self._resample or self._shuffle:
self.on_epoch_end()
for i in range(len(self)):
yield self[i]
def on_epoch_end(self):
"""Reorganize the index array if needed."""
if self._resample:
self.resample_data()
self.reset_index()
def resample_data(self):
"""Reorganize data."""
if self.mode != 'point':
self._data_pack.relation = self._reorganize_pair_wise(
relation=self._orig_relation,
num_dup=self._num_dup,
num_neg=self._num_neg
)
def reset_index(self):
"""
Set the :attr:`_batch_indices`.
Here the :attr:`_batch_indices` records the index of all the instances.
"""
# index pool: index -> instance index
if self._mode == 'point':
num_instances = len(self._data_pack)
index_pool = list(range(num_instances))
elif self._mode == 'pair':
index_pool = []
step_size = self._num_neg + 1
num_instances = int(len(self._data_pack) / step_size)
for i in range(num_instances):
lower = i * step_size
upper = (i + 1) * step_size
indices = list(range(lower, upper))
if indices:
index_pool.append(indices)
elif self._mode == 'list':
raise NotImplementedError(
f'{self._mode} dataset not implemented.')
else:
raise ValueError(f"{self._mode} is not a valid mode type"
f"Must be one of `point`, `pair` or `list`.")
if self._shuffle:
np.random.shuffle(index_pool)
if self._sort:
old_index_pool = index_pool
max_instance_right_length = []
for row in range(len(old_index_pool)):
instance = self._data_pack[old_index_pool[row]].unpack()[0]
max_instance_right_length.append(max(instance['length_right']))
sort_index = np.argsort(max_instance_right_length)
index_pool = [old_index_pool[index] for index in sort_index]
# batch_indices: index -> batch of indices
self._batch_indices = []
for i in range(math.ceil(num_instances / self._batch_size)):
lower = self._batch_size * i
upper = self._batch_size * (i + 1)
candidates = index_pool[lower:upper]
if self._mode == 'pair':
candidates = sum(candidates, [])
self._batch_indices.append(candidates)
def _handle_callbacks_on_batch_data_pack(self, batch_data_pack):
for callback in self._callbacks:
callback.on_batch_data_pack(batch_data_pack)
def _handle_callbacks_on_batch_unpacked(self, x, y):
for callback in self._callbacks:
callback.on_batch_unpacked(x, y)
@property
def callbacks(self):
"""`callbacks` getter."""
return self._callbacks
@callbacks.setter
def callbacks(self, value):
"""`callbacks` setter."""
self._callbacks = value
@property
def num_neg(self):
"""`num_neg` getter."""
return self._num_neg
@num_neg.setter
def num_neg(self, value):
"""`num_neg` setter."""
self._num_neg = value
self.resample_data()
self.reset_index()
@property
def num_dup(self):
"""`num_dup` getter."""
return self._num_dup
@num_dup.setter
def num_dup(self, value):
"""`num_dup` setter."""
self._num_dup = value
self.resample_data()
self.reset_index()
@property
def mode(self):
"""`mode` getter."""
return self._mode
@property
def batch_size(self):
"""`batch_size` getter."""
return self._batch_size
@batch_size.setter
def batch_size(self, value):
"""`batch_size` setter."""
self._batch_size = value
self.reset_index()
@property
def shuffle(self):
"""`shuffle` getter."""
return self._shuffle
@shuffle.setter
def shuffle(self, value):
"""`shuffle` setter."""
self._shuffle = value
self.reset_index()
@property
def sort(self):
"""`sort` getter."""
return self._sort
@sort.setter
def sort(self, value):
"""`sort` setter."""
self._sort = value
self.reset_index()
@property
def resample(self):
"""`resample` getter."""
return self._resample
@resample.setter
def resample(self, value):
"""`resample` setter."""
self._resample = value
self.reset_index()
@property
def batch_indices(self):
"""`batch_indices` getter."""
return self._batch_indices
@classmethod
def _reorganize_pair_wise(
cls,
relation: pd.DataFrame,
num_dup: int = 1,
num_neg: int = 1
):
"""Re-organize the data pack as pair-wise format."""
pairs = []
groups = relation.sort_values(
'label', ascending=False).groupby('id_left')
for _, group in groups:
labels = group.label.unique()
for label in labels[:-1]:
pos_samples = group[group.label == label]
pos_samples = pd.concat([pos_samples] * num_dup)
neg_samples = group[group.label < label]
for _, pos_sample in pos_samples.iterrows():
pos_sample = pd.DataFrame([pos_sample])
neg_sample = neg_samples.sample(num_neg, replace=True)
pairs.extend((pos_sample, neg_sample))
new_relation = pd.concat(pairs, ignore_index=True)
return new_relation
|
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/dataloader/dataset.py/0
|
{
"file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/dataloader/dataset.py",
"repo_id": "ContextualSP",
"token_count": 4624
}
| 244 |
"""SNLI data loader."""
import typing
from pathlib import Path
import pandas as pd
import matchzoo
from matchzoo.engine.base_task import BaseTask
_url = "https://nlp.stanford.edu/projects/snli/snli_1.0.zip"
def load_data(
stage: str = 'train',
task: typing.Union[str, BaseTask] = 'classification',
target_label: str = 'entailment',
return_classes: bool = False
) -> typing.Union[matchzoo.DataPack, tuple]:
"""
Load SNLI data.
:param stage: One of `train`, `dev`, and `test`. (default: `train`)
:param task: Could be one of `ranking`, `classification` or a
:class:`matchzoo.engine.BaseTask` instance. (default: `classification`)
:param target_label: If `ranking`, chose one of `entailment`,
`contradiction` and `neutral` as the positive label.
(default: `entailment`)
:param return_classes: `True` to return classes for classification task,
`False` otherwise.
:return: A DataPack unless `task` is `classificiation` and `return_classes`
is `True`: a tuple of `(DataPack, classes)` in that case.
"""
if stage not in ('train', 'dev', 'test'):
raise ValueError(f"{stage} is not a valid stage."
f"Must be one of `train`, `dev`, and `test`.")
data_root = _download_data()
file_path = data_root.joinpath(f'snli_1.0_{stage}.txt')
data_pack = _read_data(file_path, task, target_label)
if task == 'ranking' or isinstance(task, matchzoo.tasks.Ranking):
return data_pack
elif task == 'classification' or isinstance(
task, matchzoo.tasks.Classification):
classes = ['entailment', 'contradiction', 'neutral']
if return_classes:
return data_pack, classes
else:
return data_pack
else:
raise ValueError(f"{task} is not a valid task."
f"Must be one of `Ranking` and `Classification`.")
def _download_data():
ref_path = matchzoo.utils.get_file(
'snli', _url, extract=True,
cache_dir=matchzoo.USER_DATA_DIR,
cache_subdir='snli'
)
return Path(ref_path).parent.joinpath('snli_1.0')
def _read_data(path, task, target_label):
table = pd.read_csv(path, sep='\t')
df = pd.DataFrame({
'text_left': table['sentence1'],
'text_right': table['sentence2'],
'label': table['gold_label']
})
df = df.dropna(axis=0, how='any').reset_index(drop=True)
filter_id = df[df['label'] == '-'].index.tolist()
df.drop(filter_id, inplace=True)
if task == 'ranking' or isinstance(task, matchzoo.tasks.Ranking):
if target_label not in ['entailment', 'contradiction', 'neutral']:
raise ValueError(f"{target_label} is not a valid target label."
f"Must be one of `entailment`, `contradiction`"
f" and `neutral`")
df['label'] = (df['label'] == target_label)
elif task == 'classification' or isinstance(
task, matchzoo.tasks.Classification):
classes = ['entailment', 'contradiction', 'neutral']
df['label'] = df['label'].apply(classes.index)
else:
raise ValueError(f"{task} is not a valid task."
f"Must be one of `Ranking` and `Classification`.")
return matchzoo.pack(df, task)
|
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/datasets/snli/load_data.py/0
|
{
"file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/datasets/snli/load_data.py",
"repo_id": "ContextualSP",
"token_count": 1427
}
| 245 |
"""Hyper parameter search spaces wrapping `hyperopt`."""
import typing
import numbers
import hyperopt
import hyperopt.pyll.base
class HyperoptProxy(object):
"""
Hyperopt proxy class.
See `hyperopt`'s documentation for more details:
https://github.com/hyperopt/hyperopt/wiki/FMin
Reason of these wrappers:
A hyper space in `hyperopt` requires a `label` to instantiate. This
`label` is used later as a reference to original hyper space that is
sampled. In `matchzoo`, hyper spaces are used in
:class:`matchzoo.engine.Param`. Only if a hyper space's label
matches its parent :class:`matchzoo.engine.Param`'s name, `matchzoo`
can correctly back-refrenced the parameter got sampled. This can be
done by asking the user always use the same name for a parameter and
its hyper space, but typos can occur. As a result, these wrappers
are created to hide hyper spaces' `label`, and always correctly
bind them with its parameter's name.
Examples::
>>> import matchzoo as mz
>>> from hyperopt.pyll.stochastic import sample
Basic Usage:
>>> model = mz.models.DenseBaseline()
>>> sample(model.params.hyper_space) # doctest: +SKIP
{'mlp_num_layers': 1.0, 'mlp_num_units': 274.0}
Arithmetic Operations:
>>> new_space = 2 ** mz.hyper_spaces.quniform(2, 6)
>>> model.params.get('mlp_num_layers').hyper_space = new_space
>>> sample(model.params.hyper_space) # doctest: +SKIP
{'mlp_num_layers': 8.0, 'mlp_num_units': 292.0}
"""
def __init__(
self,
hyperopt_func: typing.Callable[..., hyperopt.pyll.Apply],
**kwargs
):
"""
:class:`HyperoptProxy` constructor.
:param hyperopt_func: Target `hyperopt.hp` function to proxy.
:param kwargs: Keyword arguments of the proxy function, must pass all
parameters in `hyperopt_func`.
"""
self._func = hyperopt_func
self._kwargs = kwargs
def convert(self, name: str) -> hyperopt.pyll.Apply:
"""
Attach `name` as `hyperopt.hp`'s `label`.
:param name:
:return: a `hyperopt` ready search space
"""
return self._func(name, **self._kwargs)
def __add__(self, other):
"""__add__."""
return _wrap_as_composite_func(self, other, lambda x, y: x + y)
def __radd__(self, other):
"""__radd__."""
return _wrap_as_composite_func(self, other, lambda x, y: x + y)
def __sub__(self, other):
"""__sub__."""
return _wrap_as_composite_func(self, other, lambda x, y: x - y)
def __rsub__(self, other):
"""__rsub__."""
return _wrap_as_composite_func(self, other, lambda x, y: y - x)
def __mul__(self, other):
"""__mul__."""
return _wrap_as_composite_func(self, other, lambda x, y: x * y)
def __rmul__(self, other):
"""__rmul__."""
return _wrap_as_composite_func(self, other, lambda x, y: x * y)
def __truediv__(self, other):
"""__truediv__."""
return _wrap_as_composite_func(self, other, lambda x, y: x / y)
def __rtruediv__(self, other):
"""__rtruediv__."""
return _wrap_as_composite_func(self, other, lambda x, y: y / x)
def __floordiv__(self, other):
"""__floordiv__."""
return _wrap_as_composite_func(self, other, lambda x, y: x // y)
def __rfloordiv__(self, other):
"""__rfloordiv__."""
return _wrap_as_composite_func(self, other, lambda x, y: y // x)
def __pow__(self, other):
"""__pow__."""
return _wrap_as_composite_func(self, other, lambda x, y: x ** y)
def __rpow__(self, other):
"""__rpow__."""
return _wrap_as_composite_func(self, other, lambda x, y: y ** x)
def __neg__(self):
"""__neg__."""
return _wrap_as_composite_func(self, None, lambda x, _: -x)
def _wrap_as_composite_func(self, other, func):
def _wrapper(name, **kwargs):
return func(self._func(name, **kwargs), other)
return HyperoptProxy(_wrapper, **self._kwargs)
class choice(HyperoptProxy):
""":func:`hyperopt.hp.choice` proxy."""
def __init__(self, options: list):
"""
:func:`hyperopt.hp.choice` proxy.
:param options: options to search from
"""
super().__init__(hyperopt_func=hyperopt.hp.choice, options=options)
self._options = options
def __str__(self):
""":return: `str` representation of the hyper space."""
return f'choice in {self._options}'
class quniform(HyperoptProxy):
""":func:`hyperopt.hp.quniform` proxy."""
def __init__(
self,
low: numbers.Number,
high: numbers.Number,
q: numbers.Number = 1
):
"""
:func:`hyperopt.hp.quniform` proxy.
If using with integer values, then `high` is exclusive.
:param low: lower bound of the space
:param high: upper bound of the space
:param q: similar to the `step` in the python built-in `range`
"""
super().__init__(hyperopt_func=hyperopt.hp.quniform,
low=low,
high=high, q=q)
self._low = low
self._high = high
self._q = q
def __str__(self):
""":return: `str` representation of the hyper space."""
return f'quantitative uniform distribution in ' \
f'[{self._low}, {self._high}), with a step size of {self._q}'
class uniform(HyperoptProxy):
""":func:`hyperopt.hp.uniform` proxy."""
def __init__(
self,
low: numbers.Number,
high: numbers.Number
):
"""
:func:`hyperopt.hp.uniform` proxy.
:param low: lower bound of the space
:param high: upper bound of the space
"""
super().__init__(hyperopt_func=hyperopt.hp.uniform, low=low, high=high)
self._low = low
self._high = high
def __str__(self):
""":return: `str` representation of the hyper space."""
return f'uniform distribution in [{self._low}, {self._high})'
def sample(space):
"""
Take a sample in the hyper space.
This method is stateless, so the distribution of the samples is different
from that of `tune` call. This function just gives a general idea of what
a sample from the `space` looks like.
Example:
>>> import matchzoo as mz
>>> space = mz.models.DenseBaseline.get_default_params().hyper_space
>>> mz.hyper_spaces.sample(space) # doctest: +ELLIPSIS
{'mlp_num_fan_out': ...}
"""
return hyperopt.pyll.stochastic.sample(space)
|
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/engine/hyper_spaces.py/0
|
{
"file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/engine/hyper_spaces.py",
"repo_id": "ContextualSP",
"token_count": 2925
}
| 246 |
from .dense_baseline import DenseBaseline
from .dssm import DSSM
from .cdssm import CDSSM
from .drmm import DRMM
from .drmmtks import DRMMTKS
from .esim import ESIM
from .knrm import KNRM
from .conv_knrm import ConvKNRM
from .bimpm import BiMPM
from .matchlstm import MatchLSTM
from .arci import ArcI
from .arcii import ArcII
from .bert import Bert
from .mvlstm import MVLSTM
from .match_pyramid import MatchPyramid
from .anmm import aNMM
from .hbmp import HBMP
from .duet import DUET
from .diin import DIIN
from .match_srnn import MatchSRNN
def list_available() -> list:
from matchzoo.engine.base_model import BaseModel
from matchzoo.utils import list_recursive_concrete_subclasses
return list_recursive_concrete_subclasses(BaseModel)
|
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/models/__init__.py/0
|
{
"file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/models/__init__.py",
"repo_id": "ContextualSP",
"token_count": 261
}
| 247 |
"""An implementation of HBMP Model."""
import typing
import copy
import torch
import torch.nn as nn
from matchzoo.engine import hyper_spaces
from matchzoo.engine.param_table import ParamTable
from matchzoo.engine.param import Param
from matchzoo.engine.base_model import BaseModel
class HBMP(BaseModel):
"""
HBMP model.
Examples:
>>> model = HBMP()
>>> model.params['embedding_input_dim'] = 200
>>> model.params['embedding_output_dim'] = 100
>>> model.params['mlp_num_layers'] = 1
>>> model.params['mlp_num_units'] = 10
>>> model.params['mlp_num_fan_out'] = 10
>>> model.params['mlp_activation_func'] = nn.LeakyReLU(0.1)
>>> model.params['lstm_hidden_size'] = 5
>>> model.params['lstm_num'] = 3
>>> model.params['num_layers'] = 3
>>> model.params['dropout_rate'] = 0.1
>>> model.guess_and_fill_missing_params(verbose=0)
>>> model.build()
"""
@classmethod
def get_default_params(cls) -> ParamTable:
""":return: model default parameters."""
params = super().get_default_params(
with_embedding=True, with_multi_layer_perceptron=True)
params.add(Param(name='lstm_hidden_size', value=5,
desc="Integer, the hidden size of the "
"bi-directional LSTM layer."))
params.add(Param(name='lstm_num', value=3,
desc="Integer, number of LSTM units"))
params.add(Param(name='num_layers', value=1,
desc="Integer, number of LSTM layers."))
params.add(Param(
name='dropout_rate', value=0.0,
hyper_space=hyper_spaces.quniform(
low=0.0, high=0.8, q=0.01),
desc="The dropout rate."
))
return params
def build(self):
"""
Build model structure.
HBMP use Siamese arthitecture.
"""
self.embedding = self._make_default_embedding_layer()
encoder_layer = nn.LSTM(
input_size=self._params['embedding_output_dim'],
hidden_size=self._params['lstm_hidden_size'],
num_layers=self._params['num_layers'],
dropout=self._params['dropout_rate'],
batch_first=True,
bidirectional=True)
self.encoder = nn.ModuleList(
[copy.deepcopy(encoder_layer)
for _ in range(self._params['lstm_num'])])
self.max_pool = nn.AdaptiveMaxPool1d(1)
self.mlp = self._make_multi_layer_perceptron_layer(
self._params['lstm_hidden_size'] * 24
)
self.out = self._make_output_layer(
self._params['mlp_num_fan_out']
)
def forward(self, inputs):
"""Forward."""
# Scalar dimensions referenced here:
# B = batch size (number of sequences)
# D = embedding size
# L = `input_left` sequence length
# R = `input_right` sequence length
# F = hidden size of LSTM layer
# Left input and right input.
# shape = [B, L]
# shape = [B, R]
input_left, input_right = inputs['text_left'], inputs['text_right']
batch_size = input_left.shape[0]
state_shape = (
2 * self._params['num_layers'], batch_size,
self._params['lstm_hidden_size']
)
# shape = [B, L, D]
# shape = [B, R, D]
embed_left = self.embedding(input_left.long())
embed_right = self.embedding(input_right.long())
out_left = []
h_left = c_left = torch.zeros(*state_shape, device=input_left.device)
for layer in self.encoder:
out, (h_left, c_left) = layer(embed_left, (h_left, c_left))
out_left.append(self.max_pool(out.transpose(1, 2)).squeeze(2))
out_right = []
h_right = c_right = torch.zeros(*state_shape, device=input_left.device)
for layer in self.encoder:
out, (h_right, c_right) = layer(embed_right, (h_right, c_right))
out_right.append(self.max_pool(out.transpose(1, 2)).squeeze(2))
# shape = [B, 6 * F]
encode_left = torch.cat(out_left, 1)
encode_right = torch.cat(out_right, 1)
embed_minus = torch.abs(encode_left - encode_right)
embed_multiply = encode_left * encode_right
encode_concat = torch.cat(
[encode_left, encode_right, embed_minus, embed_multiply], 1)
output = self.mlp(encode_concat)
output = self.out(output)
return output
|
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/models/hbmp.py/0
|
{
"file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/models/hbmp.py",
"repo_id": "ContextualSP",
"token_count": 2187
}
| 248 |
from .unit import Unit
class Lowercase(Unit):
"""Process unit for text lower case."""
def transform(self, input_: list) -> list:
"""
Convert list of tokens to lower case.
:param input_: list of tokens.
:return tokens: lower-cased list of tokens.
"""
return [token.lower() for token in input_]
|
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/preprocessors/units/lowercase.py/0
|
{
"file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/preprocessors/units/lowercase.py",
"repo_id": "ContextualSP",
"token_count": 135
}
| 249 |
from .trainer import Trainer
|
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/trainers/__init__.py/0
|
{
"file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/trainers/__init__.py",
"repo_id": "ContextualSP",
"token_count": 7
}
| 250 |
import shutil
import pandas as pd
import pytest
from matchzoo import DataPack, load_data_pack
@pytest.fixture
def data_pack():
relation = [['qid0', 'did0', 1], ['qid1', 'did1', 0]]
left = [['qid0', [1, 2]], ['qid1', [2, 3]]]
right = [['did0', [2, 3, 4]], ['did1', [3, 4, 5]]]
relation = pd.DataFrame(relation, columns=['id_left', 'id_right', 'label'])
left = pd.DataFrame(left, columns=['id_left', 'text_left'])
left.set_index('id_left', inplace=True)
right = pd.DataFrame(right, columns=['id_right', 'text_right'])
right.set_index('id_right', inplace=True)
return DataPack(relation=relation,
left=left,
right=right)
def test_length(data_pack):
num_examples = 2
assert len(data_pack) == num_examples
def test_getter(data_pack):
assert data_pack.relation.iloc[0].values.tolist() == ['qid0', 'did0', 1]
assert data_pack.relation.iloc[1].values.tolist() == ['qid1', 'did1', 0]
assert data_pack.left.loc['qid0', 'text_left'] == [1, 2]
assert data_pack.right.loc['did1', 'text_right'] == [3, 4, 5]
def test_save_load(data_pack):
dirpath = '.tmpdir'
data_pack.save(dirpath)
dp = load_data_pack(dirpath)
assert len(data_pack) == 2
assert len(dp) == 2
shutil.rmtree(dirpath)
|
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tests/data_pack/test_datapack.py/0
|
{
"file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tests/data_pack/test_datapack.py",
"repo_id": "ContextualSP",
"token_count": 581
}
| 251 |
import torch
import pytest
from pathlib import Path
import shutil
import matchzoo as mz
@pytest.fixture(scope='module')
def task():
return mz.tasks.Ranking(losses=mz.losses.RankCrossEntropyLoss())
@pytest.fixture(scope='module')
def train_raw(task):
return mz.datasets.toy.load_data('train', task)[:10]
@pytest.fixture(scope='module')
def model_class():
return mz.models.DenseBaseline
@pytest.fixture(scope='module')
def embedding():
return mz.datasets.toy.load_embedding()
@pytest.fixture(scope='module')
def setup(task, model_class, train_raw, embedding):
return mz.auto.prepare(
task=task,
model_class=model_class,
data_pack=train_raw,
embedding=embedding
)
@pytest.fixture(scope='module')
def model(setup):
return setup[0]
@pytest.fixture(scope='module')
def preprocessor(setup):
return setup[1]
@pytest.fixture(scope='module')
def dataset_builder(setup):
return setup[2]
@pytest.fixture(scope='module')
def dataloader_builder(setup):
return setup[3]
@pytest.fixture(scope='module')
def dataloader(train_raw, preprocessor, dataset_builder, dataloader_builder):
return dataloader_builder.build(
dataset_builder.build(preprocessor.transform(train_raw)))
@pytest.fixture(scope='module')
def optimizer(model):
return torch.optim.Adam(model.parameters())
@pytest.fixture(scope='module')
def scheduler(optimizer):
return torch.optim.lr_scheduler.StepLR(optimizer, step_size=10)
@pytest.fixture(scope='module')
def save_dir():
return Path('.matchzoo_test_save_load_tmpdir')
@pytest.fixture(scope='module')
def trainer(
model, optimizer, dataloader, scheduler, save_dir
):
return mz.trainers.Trainer(
model=model,
optimizer=optimizer,
trainloader=dataloader,
validloader=dataloader,
epochs=4,
validate_interval=2,
patience=1,
scheduler=scheduler,
clip_norm=10,
save_dir=save_dir,
save_all=True,
verbose=1,
)
@pytest.mark.slow
def test_trainer(trainer, dataloader, save_dir):
trainer.run()
assert trainer.evaluate(dataloader)
assert trainer.predict(dataloader) is not None
# Save model
model_checkpoint = save_dir.joinpath('model.pt')
trainer.save_model()
trainer.restore_model(model_checkpoint)
# Save model
trainer_checkpoint = save_dir.joinpath('trainer.pt')
trainer.save()
trainer.restore(trainer_checkpoint)
if save_dir.exists():
shutil.rmtree(save_dir)
|
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tests/trainer/test_trainer.py/0
|
{
"file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tests/trainer/test_trainer.py",
"repo_id": "ContextualSP",
"token_count": 1046
}
| 252 |
<jupyter_start><jupyter_code>import torch
import numpy as np
import pandas as pd
import matchzoo as mz
print('matchzoo version', mz.__version__)
ranking_task = mz.tasks.Ranking(losses=mz.losses.RankHingeLoss())
ranking_task.metrics = [
mz.metrics.NormalizedDiscountedCumulativeGain(k=3),
mz.metrics.NormalizedDiscountedCumulativeGain(k=5),
mz.metrics.MeanAveragePrecision()
]
print("`ranking_task` initialized with metrics", ranking_task.metrics)
print('data loading ...')
train_pack_raw = mz.datasets.wiki_qa.load_data('train', task=ranking_task)
dev_pack_raw = mz.datasets.wiki_qa.load_data('dev', task=ranking_task, filtered=True)
test_pack_raw = mz.datasets.wiki_qa.load_data('test', task=ranking_task, filtered=True)
print('data loaded as `train_pack_raw` `dev_pack_raw` `test_pack_raw`')<jupyter_output>data loading ...
data loaded as `train_pack_raw` `dev_pack_raw` `test_pack_raw`
|
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tutorials/ranking/init.ipynb/0
|
{
"file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tutorials/ranking/init.ipynb",
"repo_id": "ContextualSP",
"token_count": 347
}
| 253 |
#!/usr/bin/env bash
export seed=1
export config_file=train_configs/concat.none.jsonnet
export model_file=checkpoints_cosql/cosql_concat_none_model
export tables_file=dataset_cosql/tables.json
export database_path=dataset_cosql/database
export dataset_path=dataset_cosql
export train_data_path=dataset_cosql/train.json
export validation_data_path=dataset_cosql/dev.json
export pretrained_file=glove/glove.twitter.27B.100d.txt
allennlp train -s ${model_file} ${config_file} \
--include-package dataset_reader.sparc_reader \
--include-package models.sparc_parser \
-o "{\"model.serialization_dir\":\"${model_file}\",\"random_seed\":\"${seed}\",\"numpy_seed\":\"${seed}\",\"pytorch_seed\":\"${seed}\",\"dataset_reader.tables_file\":\"${tables_file}\",\"dataset_reader.database_path\":\"${database_path}\",\"train_data_path\":\"${train_data_path}\",\"validation_data_path\":\"${validation_data_path}\",\"model.text_embedder.tokens.pretrained_file\":\"${pretrained_file}\",\"model.dataset_path\":\"${dataset_path}\"}"
|
ContextualSP/semantic_parsing_in_context/bash_files/linux/train_cosql.bash/0
|
{
"file_path": "ContextualSP/semantic_parsing_in_context/bash_files/linux/train_cosql.bash",
"repo_id": "ContextualSP",
"token_count": 367
}
| 254 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
"""
Mainly borrowed from `allennlp.data.fields.knowledge_graph_filed.py`
############################################################
# NOTICE #
# we maintain this file for not sorting the entities. #
# which is important for our model! #
############################################################
Author: Qian Liu
"""
"""
A ``KnowledgeGraph`` is a graphical representation of some structured knowledge source: say a
table, figure or an explicit knowledge base.
"""
from typing import Dict, List, Set
class KnowledgeGraph:
"""
A ``KnowledgeGraph`` represents a collection of entities and their relationships.
The ``KnowledgeGraph`` currently stores (untyped) neighborhood information and text
representations of each entity (if there is any).
The knowledge base itself can be a table (like in WikitableQuestions), a figure (like in NLVR)
or some other structured knowledge source. This abstract class needs to be inherited for
implementing the functionality appropriate for a given KB.
All of the parameters listed below are stored as public attributes.
Parameters
----------
entities : ``Set[str]``
The string identifiers of the entities in this knowledge graph. We sort this set and store
it as a list. The sorting is so that we get a guaranteed consistent ordering across
separate runs of the code.
neighbors : ``Dict[str, List[str]]``
A mapping from string identifiers to other string identifiers, denoting which entities are
neighbors in the graph.
entity_text : ``Dict[str, str]``
If you have additional text associated with each entity (other than its string identifier),
you can store that here. This might be, e.g., the text in a table cell, or the description
of a wikipedia entity.
"""
def __init__(self,
entities: List[str],
neighbors: Dict[str, List[str]],
neighbors_with_table: Dict[str, List[str]],
entity_text: Dict[str, str] = None) -> None:
self.entities = entities
self.neighbors = neighbors
self.neighbors_with_table = neighbors_with_table
self.entity_text = entity_text
def __eq__(self, other):
if isinstance(self, other.__class__):
return self.__dict__ == other.__dict__
return NotImplemented
|
ContextualSP/semantic_parsing_in_context/context/knowledge_graph_filed.py/0
|
{
"file_path": "ContextualSP/semantic_parsing_in_context/context/knowledge_graph_filed.py",
"repo_id": "ContextualSP",
"token_count": 856
}
| 255 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from typing import Any, Dict, List, Sequence, Tuple
import torch
from context.copy_production_rule_field import CopyProductionRule
from allennlp.state_machines.states.state import State
from models.states_machine.grammar_state_let import GrammarStatelet
from models.states_machine.condition_state_let import ConditionStatelet
from models.states_machine.rnn_statelet import RnnStatelet
# This syntax is pretty weird and ugly, but it's necessary to make mypy happy with the API that
# we've defined. We're using generics to make the type of `combine_states` come out right. See
# the note in `state_machines.state.py` for a little more detail.
class GrammarBasedState(State['GrammarBasedState']):
"""
A generic State that's suitable for most models that do grammar-based decoding. We keep around
a `group` of states, and each element in the group has a few things: a batch index, an action
history, a score, an ``RnnStatelet``, and a ``GrammarStatelet``. We additionally have some
information that's independent of any particular group element: a list of all possible actions
for all batch instances passed to ``model.forward()``, and a ``extras`` field that you can use
if you really need some extra information about each batch instance (like a string description,
or other metadata).
Finally, we also have a specially-treated, optional ``debug_info`` field. If this is given, it
should be an empty list for each group instance when the initial state is created. In that
case, we will keep around information about the actions considered at each timestep of decoding
and other things that you might want to visualize in a demo. This probably isn't necessary for
training, and to get it right we need to copy a bunch of data structures for each new state, so
it's best used only at evaluation / demo time.
Parameters
----------
batch_indices : ``List[int]``
Passed to super class; see docs there.
action_history : ``List[List[int]]``
Passed to super class; see docs there.
score : ``List[torch.Tensor]``
Passed to super class; see docs there.
rnn_state : ``List[RnnStatelet]``
An ``RnnStatelet`` for every group element. This keeps track of the current decoder hidden
state, the previous decoder output, the output from the encoder (for computing attentions),
and other things that are typical seq2seq decoder state things.
grammar_state : ``List[GrammarStatelet]``
This hold the current grammar state for each element of the group. The ``GrammarStatelet``
keeps track of which actions are currently valid.
condition_state: ``List[ConditionStatelet]``
This object will further prune the decoding space, along with some prior knowledge (e.g. the same columns
cannot appear in the same select clause)
possible_actions : ``List[List[ProductionRule]]``
The list of all possible actions that was passed to ``model.forward()``. We need this so
we can recover production strings, which we need to update grammar states.
extras : ``List[Any]``, optional (default=None)
If you need to keep around some extra data for each instance in the batch, you can put that
in here, without adding another field. This should be used `very sparingly`, as there is
no type checking or anything done on the contents of this field, and it will just be passed
around between ``States`` as-is, without copying.
debug_info : ``List[Any]``, optional (default=None).
"""
def __init__(self,
batch_indices: List[int],
action_history: List[List[int]],
score: List[torch.Tensor],
rnn_state: List[RnnStatelet],
grammar_state: List[GrammarStatelet],
condition_state: List[ConditionStatelet],
possible_actions: List[List[CopyProductionRule]],
extras: List[Any] = None,
debug_info: List = None) -> None:
super().__init__(batch_indices, action_history, score)
self.rnn_state = rnn_state
self.grammar_state = grammar_state
self.condition_state = condition_state
self.possible_actions = possible_actions
self.extras = extras
self.debug_info = debug_info
def new_state_from_group_index(self,
group_index: int,
action: int,
new_score: torch.Tensor,
new_rnn_state: RnnStatelet,
considered_actions: List[int] = None,
action_probabilities: List[float] = None,
attention_weights: torch.Tensor = None) -> 'GrammarBasedState':
batch_index = self.batch_indices[group_index]
new_action_history = self.action_history[group_index] + [action]
production_rule = self.possible_actions[batch_index][action][0]
new_grammar_state = self.grammar_state[group_index].take_action(production_rule)
new_condition_state = self.condition_state[group_index].take_action(production_rule)
if self.debug_info is not None:
attention = attention_weights[group_index] if attention_weights is not None else None
debug_info = {
'considered_actions': [self.possible_actions[batch_index][action_id].rule
for action_id in considered_actions],
'question_attention': attention,
'probabilities': action_probabilities,
}
new_debug_info = [self.debug_info[group_index] + [debug_info]]
else:
new_debug_info = None
return GrammarBasedState(batch_indices=[batch_index],
action_history=[new_action_history],
score=[new_score],
rnn_state=[new_rnn_state],
grammar_state=[new_grammar_state],
condition_state=[new_condition_state],
possible_actions=self.possible_actions,
extras=self.extras,
debug_info=new_debug_info)
def print_action_history(self, group_index: int = None) -> None:
scores = self.score if group_index is None else [self.score[group_index]]
batch_indices = self.batch_indices if group_index is None else [self.batch_indices[group_index]]
histories = self.action_history if group_index is None else [self.action_history[group_index]]
for score, batch_index, action_history in zip(scores, batch_indices, histories):
print(' ', score.detach().cpu().numpy()[0],
[self.possible_actions[batch_index][action][0] for action in action_history])
def get_valid_actions(self) -> List[Dict[str, Tuple[torch.Tensor, torch.Tensor, List[int]]]]:
"""
Returns a list of valid actions for each element of the group.
Note the validation is applied on two functions, one is grammar state's filter,
another is condition state's filter.
"""
return [condition_state.get_valid_actions(grammar_state.get_valid_actions())
for condition_state, grammar_state in zip(self.condition_state, self.grammar_state)]
def is_finished(self) -> bool:
if len(self.batch_indices) != 1:
raise RuntimeError("is_finished() is only defined with a group_size of 1")
return self.grammar_state[0].is_finished()
@classmethod
def combine_states(cls, states: Sequence['GrammarBasedState']) -> 'GrammarBasedState':
batch_indices = [batch_index for state in states for batch_index in state.batch_indices]
action_histories = [action_history for state in states for action_history in state.action_history]
scores = [score for state in states for score in state.score]
rnn_states = [rnn_state for state in states for rnn_state in state.rnn_state]
grammar_states = [grammar_state for state in states for grammar_state in state.grammar_state]
condition_states = [condition_state for state in states for condition_state in state.condition_state]
if states[0].debug_info is not None:
debug_info = [debug_info for state in states for debug_info in state.debug_info]
else:
debug_info = None
return GrammarBasedState(batch_indices=batch_indices,
action_history=action_histories,
score=scores,
rnn_state=rnn_states,
grammar_state=grammar_states,
condition_state=condition_states,
possible_actions=states[0].possible_actions,
extras=states[0].extras,
debug_info=debug_info)
|
ContextualSP/semantic_parsing_in_context/models/states_machine/grammar_based_state.py/0
|
{
"file_path": "ContextualSP/semantic_parsing_in_context/models/states_machine/grammar_based_state.py",
"repo_id": "ContextualSP",
"token_count": 3754
}
| 256 |
# Copyright (c) Facebook, Inc. and Microsoft Corporation.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Dict, List
try:
import marisa_trie
except ModuleNotFoundError:
pass
class Trie(object):
def __init__(self, sequences: List[List[int]] = []):
self.trie_dict = {}
self.len = 0
if sequences:
for sequence in sequences:
Trie._add_to_trie(sequence, self.trie_dict)
self.len += 1
self.append_trie = None
self.bos_token_id = None
def append(self, trie, bos_token_id):
self.append_trie = trie
self.bos_token_id = bos_token_id
def add(self, sequence: List[int]):
Trie._add_to_trie(sequence, self.trie_dict)
self.len += 1
def get(self, prefix_sequence: List[int]):
return Trie._get_from_trie(
prefix_sequence, self.trie_dict, self.append_trie, self.bos_token_id
)
@staticmethod
def load_from_dict(trie_dict):
trie = Trie()
trie.trie_dict = trie_dict
trie.len = sum(1 for _ in trie)
return trie
@staticmethod
def _add_to_trie(sequence: List[int], trie_dict: Dict):
if sequence:
if sequence[0] not in trie_dict:
trie_dict[sequence[0]] = {}
Trie._add_to_trie(sequence[1:], trie_dict[sequence[0]])
@staticmethod
def _get_from_trie(
prefix_sequence: List[int],
trie_dict: Dict,
append_trie=None,
bos_token_id: int = None,
):
if len(prefix_sequence) == 0:
output = list(trie_dict.keys())
if append_trie and bos_token_id in output:
output.remove(bos_token_id)
output += list(append_trie.trie_dict.keys())
return output
elif prefix_sequence[0] in trie_dict:
return Trie._get_from_trie(
prefix_sequence[1:],
trie_dict[prefix_sequence[0]],
append_trie,
bos_token_id,
)
else:
if append_trie:
return append_trie.get(prefix_sequence)
else:
return []
def __iter__(self):
def _traverse(prefix_sequence, trie_dict):
if trie_dict:
for next_token in trie_dict:
yield from _traverse(
prefix_sequence + [next_token], trie_dict[next_token]
)
else:
yield prefix_sequence
return _traverse([], self.trie_dict)
def __len__(self):
return self.len
def __getitem__(self, value):
return self.get(value)
class MarisaTrie(object):
def __init__(
self,
sequences: List[List[int]] = [],
cache_fist_branch=True,
max_token_id=256001,
):
self.int2char = [chr(i) for i in range(min(max_token_id, 55000))] + (
[chr(i) for i in range(65000, max_token_id + 10000)]
if max_token_id >= 55000
else []
)
self.char2int = {self.int2char[i]: i for i in range(max_token_id)}
self.cache_fist_branch = cache_fist_branch
if self.cache_fist_branch:
self.zero_iter = list({sequence[0] for sequence in sequences})
assert len(self.zero_iter) == 1
self.first_iter = list({sequence[1] for sequence in sequences})
self.trie = marisa_trie.Trie(
"".join([self.int2char[i] for i in sequence]) for sequence in sequences
)
def get(self, prefix_sequence: List[int]):
if self.cache_fist_branch and len(prefix_sequence) == 0:
return self.zero_iter
elif (
self.cache_fist_branch
and len(prefix_sequence) == 1
and self.zero_iter == prefix_sequence
):
return self.first_iter
else:
key = "".join([self.int2char[i] for i in prefix_sequence])
return list(
{
self.char2int[e[len(key)]]
for e in self.trie.keys(key)
if len(e) > len(key)
}
)
def __iter__(self):
for sequence in self.trie.iterkeys():
yield [self.char2int[e] for e in sequence]
def __len__(self):
return len(self.trie)
def __getitem__(self, value):
return self.get(value)
class DummyTrieMention(object):
def __init__(self, return_values):
self._return_values = return_values
def get(self, indices=None):
return self._return_values
class DummyTrieEntity(object):
def __init__(self, return_values, codes):
self._return_values = list(
set(return_values).difference(
set(
codes[e]
for e in (
"start_mention_token",
"end_mention_token",
"start_entity_token",
)
)
)
)
self._codes = codes
def get(self, indices, depth=0):
if len(indices) == 0 and depth == 0:
return self._codes["end_mention_token"]
elif len(indices) == 0 and depth == 1:
return self._codes["start_entity_token"]
elif len(indices) == 0:
return self._return_values
elif len(indices) == 1 and indices[0] == self._codes["end_entity_token"]:
return self._codes["EOS"]
else:
return self.get(indices[1:], depth=depth + 1)
|
ContextualSP/unified_parser_text_to_sql/genre/trie.py/0
|
{
"file_path": "ContextualSP/unified_parser_text_to_sql/genre/trie.py",
"repo_id": "ContextualSP",
"token_count": 2933
}
| 257 |
import os
import json
import argparse
import subprocess
from tqdm import tqdm
from step1_schema_linking import read_database_schema
from train import run_command
def running_process(generate_path):
# cmd = f"python -m multiprocessing_bpe_encoder \
# --encoder-json ./models/spider_sl/encoder.json \
# --vocab-bpe ./models/spider_sl/vocab.bpe \
# --inputs {generate_path}/train.src \
# --outputs {generate_path}/train.bpe.src \
# --workers 1 \
# --keep-empty"
# run_command(cmd)
#
# cmd = f"python -m multiprocessing_bpe_encoder \
# --encoder-json ./models/spider_sl/encoder.json \
# --vocab-bpe ./models/spider_sl/vocab.bpe \
# --inputs {generate_path}/train.tgt \
# --outputs {generate_path}/train.bpe.tgt \
# --workers 1 \
# --keep-empty"
# run_command(cmd)
cmd = f"python -m multiprocessing_bpe_encoder \
--encoder-json ./models/spider_sl/encoder.json \
--vocab-bpe ./models/spider_sl/vocab.bpe \
--inputs {generate_path}/dev.src \
--outputs {generate_path}/dev.bpe.src \
--workers 1 \
--keep-empty"
run_command(cmd)
cmd = f"python -m multiprocessing_bpe_encoder \
--encoder-json ./models/spider_sl/encoder.json \
--vocab-bpe ./models/spider_sl/vocab.bpe \
--inputs {generate_path}/dev.tgt \
--outputs {generate_path}/dev.bpe.tgt \
--workers 1 \
--keep-empty"
run_command(cmd)
# cmd = f'fairseq-preprocess --source-lang "src" --target-lang "tgt" \
# --trainpref {generate_path}/train.bpe \
# --validpref {generate_path}/dev.bpe \
# --destdir {generate_path}/bin \
# --workers 2 \
# --srcdict ./models/spider_sl/dict.src.txt \
# --tgtdict ./models/spider_sl/dict.tgt.txt '
cmd = f'fairseq-preprocess --source-lang "src" --target-lang "tgt" \
--validpref {generate_path}/dev.bpe \
--destdir {generate_path}/bin \
--workers 2 \
--srcdict ./models/spider_sl/dict.src.txt \
--tgtdict ./models/spider_sl/dict.tgt.txt '
subprocess.Popen(
cmd, universal_newlines=True, shell=True,
stdout=subprocess.PIPE, stderr=subprocess.PIPE).communicate()
def build_schema_linking_data(schema, question, item, turn_id, linking_type):
source_sequence_list, target_sequence_list = [], []
# column description
column_names = []
for i, (t, c) in enumerate(zip(schema['column_types'], schema['column_names_original'])):
if c[0] == -1:
column_names.append("{0} {1}".format(t, c[1].lower()))
else:
column_with_alias = "{0}@{1}".format(schema['table_names_original'][c[0]].lower(), c[1].lower())
tag_list = []
if column_with_alias in item['interaction'][turn_id]['exact_match']:
tag_list.append('EM')
elif column_with_alias in item['interaction'][turn_id]['partial_match']:
tag_list.append('PA')
if column_with_alias in item['interaction'][turn_id]['value_match']:
tag_list.append('VC')
# primary-foreign key
if i in schema['primary_keys']:
tag_list.append('RK')
elif i in schema['foreign_keys_col']:
tag_list.append('FO')
if tag_list != []:
column_names.append("{0} {1} {2}".format(' '.join(tag_list), t, column_with_alias))
else:
column_names.append("{0} {1}".format(t, column_with_alias))
# table description
table_names = []
for t in schema['table_names_original']:
tag_list = []
if t in item['interaction'][turn_id]['exact_match']:
tag_list.append('EM')
elif t in item['interaction'][turn_id]['partial_match']:
tag_list.append('PA')
if '_nosl' in linking_type or 'not' in linking_type:
tag_list = []
if tag_list != []:
table_names.append("{0} {1}".format(' '.join(tag_list), t.lower()))
else:
table_names.append("{0}".format(t.lower()))
table_names = ' | '.join(table_names)
column_names = ' | '.join(column_names)
for structure_schema_list in schema['permutations'][:10]:
structure_schema_str = ' | '.join(structure_schema_list)
source_sequence = f"<C> {column_names} | <T> {table_names} | <S> {structure_schema_str} | <Q> {question.lower()}"
target_sequence = item['interaction'][turn_id]['sql'].lower()
source_sequence_list.append(source_sequence)
target_sequence_list.append(target_sequence)
return source_sequence_list, target_sequence_list
def extract_input_and_output(example_lines, linking_type):
inputs = []
outputs = []
database_schema_filename = './data/spider/tables.json'
schema_tokens, column_names, database_schemas = read_database_schema(database_schema_filename)
for item in tqdm(example_lines):
question = item['interaction'][0]['utterance']
schema = database_schemas[item['database_id']]
source_sequence, target_sequence = build_schema_linking_data(schema=schema,
question=question,
item=item,
turn_id=0,
linking_type=linking_type)
outputs.extend(target_sequence)
inputs.extend(source_sequence)
assert len(inputs) == len(outputs)
return inputs, outputs
def read_dataflow_dataset(file_path, out_folder, session, linking_type):
train_out_path = os.path.join(out_folder, session)
train_src_writer = open(train_out_path + ".src", "w", encoding="utf8")
train_tgt_writer = open(train_out_path + ".tgt", "w", encoding="utf8")
with open(file_path, "r", encoding='utf-8') as data_file:
lines = json.load(data_file)
data_input, data_output = extract_input_and_output(lines, linking_type)
train_src_writer.write("\n".join(data_input))
train_tgt_writer.write("\n".join(data_output))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--sl_dataset_path", default='./data/spider_schema_linking_tag')
parser.add_argument("--output_path", default='./dataset_post/spider_sl')
parser.add_argument("--linking_type", default='default')
args = parser.parse_args()
# for session in ["train", "dev"]:
for session in ["dev"]:
file_path = os.path.join(args.sl_dataset_path, "{}.json".format(session))
out_folder = args.output_path
if not os.path.exists(out_folder):
os.makedirs(out_folder)
read_dataflow_dataset(file_path, out_folder, session, args.linking_type)
running_process(args.output_path)
|
ContextualSP/unified_parser_text_to_sql/step2_serialization.py/0
|
{
"file_path": "ContextualSP/unified_parser_text_to_sql/step2_serialization.py",
"repo_id": "ContextualSP",
"token_count": 3372
}
| 258 |
SUPERNET:
MLP_RATIO: 4.0
NUM_HEADS: 10
EMBED_DIM: 640
DEPTH: 16
SEARCH_SPACE:
MLP_RATIO:
- 3.0
- 3.5
- 4.0
NUM_HEADS:
- 8
- 9
- 10
DEPTH:
- 14
- 15
- 16
EMBED_DIM:
- 528
- 576
- 624
RETRAIN:
MLP_RATIO:
- 3.5
- 3.5
- 4.0
- 3.5
- 4.0
- 3.5
- 3.5
- 3.0
- 4.0
- 4.0
- 3.0
- 4.0
- 3.0
- 3.5
NUM_HEADS:
- 9
- 9
- 9
- 9
- 9
- 10
- 9
- 9
- 10
- 9
- 10
- 9
- 9
- 10
DEPTH: 14
EMBED_DIM: 576
|
Cream/AutoFormer/experiments/subnet/AutoFormer-B.yaml/0
|
{
"file_path": "Cream/AutoFormer/experiments/subnet/AutoFormer-B.yaml",
"repo_id": "Cream",
"token_count": 398
}
| 259 |
import torch
from torch import nn
from torch.nn import Parameter
import torch.nn.functional as F
from .Linear_super import LinearSuper
from .qkv_super import qkv_super
from ..utils import trunc_normal_
def softmax(x, dim, onnx_trace=False):
if onnx_trace:
return F.softmax(x.float(), dim=dim)
else:
return F.softmax(x, dim=dim, dtype=torch.float32)
class RelativePosition2D_super(nn.Module):
def __init__(self, num_units, max_relative_position):
super().__init__()
self.num_units = num_units
self.max_relative_position = max_relative_position
# The first element in embeddings_table_v is the vertical embedding for the class
self.embeddings_table_v = nn.Parameter(torch.randn(max_relative_position * 2 + 2, num_units))
self.embeddings_table_h = nn.Parameter(torch.randn(max_relative_position * 2 + 2, num_units))
trunc_normal_(self.embeddings_table_v, std=.02)
trunc_normal_(self.embeddings_table_h, std=.02)
self.sample_head_dim = None
self.sample_embeddings_table_h = None
self.sample_embeddings_table_v = None
def set_sample_config(self, sample_head_dim):
self.sample_head_dim = sample_head_dim
self.sample_embeddings_table_h = self.embeddings_table_h[:,:sample_head_dim]
self.sample_embeddings_table_v = self.embeddings_table_v[:,:sample_head_dim]
def calc_sampled_param_num(self):
return self.sample_embeddings_table_h.numel() + self.sample_embeddings_table_v.numel()
def forward(self, length_q, length_k):
# remove the first cls token distance computation
length_q = length_q - 1
length_k = length_k - 1
device = self.embeddings_table_v.device
range_vec_q = torch.arange(length_q, device=device)
range_vec_k = torch.arange(length_k, device=device)
# compute the row and column distance
distance_mat_v = (range_vec_k[None, :] // int(length_q ** 0.5 ) - range_vec_q[:, None] // int(length_q ** 0.5 ))
distance_mat_h = (range_vec_k[None, :] % int(length_q ** 0.5 ) - range_vec_q[:, None] % int(length_q ** 0.5 ))
# clip the distance to the range of [-max_relative_position, max_relative_position]
distance_mat_clipped_v = torch.clamp(distance_mat_v, -self.max_relative_position, self.max_relative_position)
distance_mat_clipped_h = torch.clamp(distance_mat_h, -self.max_relative_position, self.max_relative_position)
# translate the distance from [1, 2 * max_relative_position + 1], 0 is for the cls token
final_mat_v = distance_mat_clipped_v + self.max_relative_position + 1
final_mat_h = distance_mat_clipped_h + self.max_relative_position + 1
# pad the 0 which represent the cls token
final_mat_v = torch.nn.functional.pad(final_mat_v, (1,0,1,0), "constant", 0)
final_mat_h = torch.nn.functional.pad(final_mat_h, (1,0,1,0), "constant", 0)
final_mat_v = final_mat_v.long()
final_mat_h = final_mat_h.long()
# get the embeddings with the corresponding distance
embeddings = self.sample_embeddings_table_v[final_mat_v] + self.sample_embeddings_table_h[final_mat_h]
return embeddings
class AttentionSuper(nn.Module):
def __init__(self, super_embed_dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., normalization = False, relative_position = False,
num_patches = None, max_relative_position=14, scale=False, change_qkv = False):
super().__init__()
self.num_heads = num_heads
head_dim = super_embed_dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.super_embed_dim = super_embed_dim
self.fc_scale = scale
self.change_qkv = change_qkv
if change_qkv:
self.qkv = qkv_super(super_embed_dim, 3 * super_embed_dim, bias=qkv_bias)
else:
self.qkv = LinearSuper(super_embed_dim, 3 * super_embed_dim, bias=qkv_bias)
self.relative_position = relative_position
if self.relative_position:
self.rel_pos_embed_k = RelativePosition2D_super(super_embed_dim //num_heads, max_relative_position)
self.rel_pos_embed_v = RelativePosition2D_super(super_embed_dim //num_heads, max_relative_position)
self.max_relative_position = max_relative_position
self.sample_qk_embed_dim = None
self.sample_v_embed_dim = None
self.sample_num_heads = None
self.sample_scale = None
self.sample_in_embed_dim = None
self.proj = LinearSuper(super_embed_dim, super_embed_dim)
self.attn_drop = nn.Dropout(attn_drop)
self.proj_drop = nn.Dropout(proj_drop)
def set_sample_config(self, sample_q_embed_dim=None, sample_num_heads=None, sample_in_embed_dim=None):
self.sample_in_embed_dim = sample_in_embed_dim
self.sample_num_heads = sample_num_heads
if not self.change_qkv:
self.sample_qk_embed_dim = self.super_embed_dim
self.sample_scale = (sample_in_embed_dim // self.sample_num_heads) ** -0.5
else:
self.sample_qk_embed_dim = sample_q_embed_dim
self.sample_scale = (self.sample_qk_embed_dim // self.sample_num_heads) ** -0.5
self.qkv.set_sample_config(sample_in_dim=sample_in_embed_dim, sample_out_dim=3*self.sample_qk_embed_dim)
self.proj.set_sample_config(sample_in_dim=self.sample_qk_embed_dim, sample_out_dim=sample_in_embed_dim)
if self.relative_position:
self.rel_pos_embed_k.set_sample_config(self.sample_qk_embed_dim // sample_num_heads)
self.rel_pos_embed_v.set_sample_config(self.sample_qk_embed_dim // sample_num_heads)
def calc_sampled_param_num(self):
return 0
def get_complexity(self, sequence_length):
total_flops = 0
total_flops += self.qkv.get_complexity(sequence_length)
# attn
total_flops += sequence_length * sequence_length * self.sample_qk_embed_dim
# x
total_flops += sequence_length * sequence_length * self.sample_qk_embed_dim
total_flops += self.proj.get_complexity(sequence_length)
if self.relative_position:
total_flops += self.max_relative_position * sequence_length * sequence_length + sequence_length * sequence_length / 2.0
total_flops += self.max_relative_position * sequence_length * sequence_length + sequence_length * self.sample_qk_embed_dim / 2.0
return total_flops
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.sample_num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.sample_scale
if self.relative_position:
r_p_k = self.rel_pos_embed_k(N, N)
attn = attn + (q.permute(2, 0, 1, 3).reshape(N, self.sample_num_heads * B, -1) @ r_p_k.transpose(2, 1)) \
.transpose(1, 0).reshape(B, self.sample_num_heads, N, N) * self.sample_scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1,2).reshape(B, N, -1)
if self.relative_position:
r_p_v = self.rel_pos_embed_v(N, N)
attn_1 = attn.permute(2, 0, 1, 3).reshape(N, B * self.sample_num_heads, -1)
# The size of attention is (B, num_heads, N, N), reshape it to (N, B*num_heads, N) and do batch matmul with
# the relative position embedding of V (N, N, head_dim) get shape like (N, B*num_heads, head_dim). We reshape it to the
# same size as x (B, num_heads, N, hidden_dim)
x = x + (attn_1 @ r_p_v).transpose(1, 0).reshape(B, self.sample_num_heads, N, -1).transpose(2,1).reshape(B, N, -1)
if self.fc_scale:
x = x * (self.super_embed_dim / self.sample_qk_embed_dim)
x = self.proj(x)
x = self.proj_drop(x)
return x
|
Cream/AutoFormer/model/module/multihead_super.py/0
|
{
"file_path": "Cream/AutoFormer/model/module/multihead_super.py",
"repo_id": "Cream",
"token_count": 3598
}
| 260 |
# CyDAS Detection Code Base
### Environments
- Python 3.7
- Pytorch>=1.8.2
- Torchvision == 0.9.2
You can directly run the code ```sh env.sh``` and ```sh compile.sh``` to setup the running environment.
We use 8 GPUs (24GB RTX 3090) to train our detector, you can adjust the batch size in configs by yourselves.
### Data Preparatoin
Your directory tree should be look like this:
````bash
$HitDet.pytorch/data
├── coco
│ ├── annotations
│ ├── train2017
│ └── val2017
│
├── VOCdevkit
│ ├── VOC2007
│ │ ├── Annotations
│ │ ├── ImageSets
│ │ ├── JPEGImages
│ │ ├── SegmentationClass
│ │ └── SegmentationObject
│ └── VOC2012
│ ├── Annotations
│ ├── ImageSets
│ ├── JPEGImages
│ ├── SegmentationClass
│ └── SegmentationObject
````
### Getting Start
Our pretrained backbone params can be found in [GoogleDrive](https://drive.google.com/drive/folders/1CkFp24bEDq0wUp504BQ68jn5Vs069qox)
Installation
* Clone this repo:
```bash
cd CDARTS_detection
```
* Install dependencies:
```bash
bash env.sh
bash compile.sh
```
Train:
```
sh train.sh
```
## Acknowledgement
Our code is based on the open source project [MMDetection](https://github.com/open-mmlab/mmdetection).
|
Cream/CDARTS/CDARTS_detection/README.md/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/README.md",
"repo_id": "Cream",
"token_count": 458
}
| 261 |
import yaml
try:
from yaml import CLoader as Loader, CDumper as Dumper
except ImportError:
from yaml import Loader, Dumper
from .base import BaseFileHandler # isort:skip
class YamlHandler(BaseFileHandler):
def load_from_fileobj(self, file, **kwargs):
kwargs.setdefault('Loader', Loader)
return yaml.load(file, **kwargs)
def dump_to_fileobj(self, obj, file, **kwargs):
kwargs.setdefault('Dumper', Dumper)
yaml.dump(obj, file, **kwargs)
def dump_to_str(self, obj, **kwargs):
kwargs.setdefault('Dumper', Dumper)
return yaml.dump(obj, **kwargs)
|
Cream/CDARTS/CDARTS_detection/mmcv/fileio/handlers/yaml_handler.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/mmcv/fileio/handlers/yaml_handler.py",
"repo_id": "Cream",
"token_count": 256
}
| 262 |
import torch
import torch.distributed as dist
import torch.nn as nn
from torch._utils import (_flatten_dense_tensors, _take_tensors,
_unflatten_dense_tensors)
from .scatter_gather import scatter_kwargs
class MMDistributedDataParallel(nn.Module):
def __init__(self, module, dim=0, broadcast_buffers=True,
bucket_cap_mb=25):
super(MMDistributedDataParallel, self).__init__()
self.module = module
self.dim = dim
self.broadcast_buffers = broadcast_buffers
self.broadcast_bucket_size = bucket_cap_mb * 1024 * 1024
self._sync_params()
def _dist_broadcast_coalesced(self, tensors, buffer_size):
for tensors in _take_tensors(tensors, buffer_size):
flat_tensors = _flatten_dense_tensors(tensors)
dist.broadcast(flat_tensors, 0)
for tensor, synced in zip(
tensors, _unflatten_dense_tensors(flat_tensors, tensors)):
tensor.copy_(synced)
def _sync_params(self):
module_states = list(self.module.state_dict().values())
if len(module_states) > 0:
self._dist_broadcast_coalesced(module_states,
self.broadcast_bucket_size)
if self.broadcast_buffers:
if torch.__version__ < '1.0':
buffers = [b.data for b in self.module._all_buffers()]
else:
buffers = [b.data for b in self.module.buffers()]
if len(buffers) > 0:
self._dist_broadcast_coalesced(buffers,
self.broadcast_bucket_size)
def scatter(self, inputs, kwargs, device_ids):
return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)
def forward(self, *inputs, **kwargs):
inputs, kwargs = self.scatter(inputs, kwargs,
[torch.cuda.current_device()])
return self.module(*inputs[0], **kwargs[0])
|
Cream/CDARTS/CDARTS_detection/mmcv/parallel/distributed.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/mmcv/parallel/distributed.py",
"repo_id": "Cream",
"token_count": 1000
}
| 263 |
import torch
from .hook import Hook
class EmptyCacheHook(Hook):
def __init__(self, before_epoch=False, after_epoch=True, after_iter=False):
self._before_epoch = before_epoch
self._after_epoch = after_epoch
self._after_iter = after_iter
def after_iter(self, runner):
if self._after_iter:
torch.cuda.empty_cache()
def before_epoch(self, runner):
if self._before_epoch:
torch.cuda.empty_cache()
def after_epoch(self, runner):
if self._after_epoch:
torch.cuda.empty_cache()
|
Cream/CDARTS/CDARTS_detection/mmcv/runner/hooks/memory.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/mmcv/runner/hooks/memory.py",
"repo_id": "Cream",
"token_count": 258
}
| 264 |
import os.path as osp
from collections import OrderedDict
import cv2
from mmcv.opencv_info import USE_OPENCV2
from mmcv.utils import (check_file_exist, mkdir_or_exist, scandir,
track_progress)
if not USE_OPENCV2:
from cv2 import (CAP_PROP_FRAME_WIDTH, CAP_PROP_FRAME_HEIGHT, CAP_PROP_FPS,
CAP_PROP_FRAME_COUNT, CAP_PROP_FOURCC,
CAP_PROP_POS_FRAMES, VideoWriter_fourcc)
else:
from cv2.cv import CV_CAP_PROP_FRAME_WIDTH as CAP_PROP_FRAME_WIDTH
from cv2.cv import CV_CAP_PROP_FRAME_HEIGHT as CAP_PROP_FRAME_HEIGHT
from cv2.cv import CV_CAP_PROP_FPS as CAP_PROP_FPS
from cv2.cv import CV_CAP_PROP_FRAME_COUNT as CAP_PROP_FRAME_COUNT
from cv2.cv import CV_CAP_PROP_FOURCC as CAP_PROP_FOURCC
from cv2.cv import CV_CAP_PROP_POS_FRAMES as CAP_PROP_POS_FRAMES
from cv2.cv import CV_FOURCC as VideoWriter_fourcc
class Cache(object):
def __init__(self, capacity):
self._cache = OrderedDict()
self._capacity = int(capacity)
if capacity <= 0:
raise ValueError('capacity must be a positive integer')
@property
def capacity(self):
return self._capacity
@property
def size(self):
return len(self._cache)
def put(self, key, val):
if key in self._cache:
return
if len(self._cache) >= self.capacity:
self._cache.popitem(last=False)
self._cache[key] = val
def get(self, key, default=None):
val = self._cache[key] if key in self._cache else default
return val
class VideoReader(object):
"""Video class with similar usage to a list object.
This video warpper class provides convenient apis to access frames.
There exists an issue of OpenCV's VideoCapture class that jumping to a
certain frame may be inaccurate. It is fixed in this class by checking
the position after jumping each time.
Cache is used when decoding videos. So if the same frame is visited for
the second time, there is no need to decode again if it is stored in the
cache.
:Example:
>>> import mmcv
>>> v = mmcv.VideoReader('sample.mp4')
>>> len(v) # get the total frame number with `len()`
120
>>> for img in v: # v is iterable
>>> mmcv.imshow(img)
>>> v[5] # get the 6th frame
"""
def __init__(self, filename, cache_capacity=10):
check_file_exist(filename, 'Video file not found: ' + filename)
self._vcap = cv2.VideoCapture(filename)
assert cache_capacity > 0
self._cache = Cache(cache_capacity)
self._position = 0
# get basic info
self._width = int(self._vcap.get(CAP_PROP_FRAME_WIDTH))
self._height = int(self._vcap.get(CAP_PROP_FRAME_HEIGHT))
self._fps = self._vcap.get(CAP_PROP_FPS)
self._frame_cnt = int(self._vcap.get(CAP_PROP_FRAME_COUNT))
self._fourcc = self._vcap.get(CAP_PROP_FOURCC)
@property
def vcap(self):
""":obj:`cv2.VideoCapture`: The raw VideoCapture object."""
return self._vcap
@property
def opened(self):
"""bool: Indicate whether the video is opened."""
return self._vcap.isOpened()
@property
def width(self):
"""int: Width of video frames."""
return self._width
@property
def height(self):
"""int: Height of video frames."""
return self._height
@property
def resolution(self):
"""tuple: Video resolution (width, height)."""
return (self._width, self._height)
@property
def fps(self):
"""float: FPS of the video."""
return self._fps
@property
def frame_cnt(self):
"""int: Total frames of the video."""
return self._frame_cnt
@property
def fourcc(self):
"""str: "Four character code" of the video."""
return self._fourcc
@property
def position(self):
"""int: Current cursor position, indicating frame decoded."""
return self._position
def _get_real_position(self):
return int(round(self._vcap.get(CAP_PROP_POS_FRAMES)))
def _set_real_position(self, frame_id):
self._vcap.set(CAP_PROP_POS_FRAMES, frame_id)
pos = self._get_real_position()
for _ in range(frame_id - pos):
self._vcap.read()
self._position = frame_id
def read(self):
"""Read the next frame.
If the next frame have been decoded before and in the cache, then
return it directly, otherwise decode, cache and return it.
Returns:
ndarray or None: Return the frame if successful, otherwise None.
"""
# pos = self._position
if self._cache:
img = self._cache.get(self._position)
if img is not None:
ret = True
else:
if self._position != self._get_real_position():
self._set_real_position(self._position)
ret, img = self._vcap.read()
if ret:
self._cache.put(self._position, img)
else:
ret, img = self._vcap.read()
if ret:
self._position += 1
return img
def get_frame(self, frame_id):
"""Get frame by index.
Args:
frame_id (int): Index of the expected frame, 0-based.
Returns:
ndarray or None: Return the frame if successful, otherwise None.
"""
if frame_id < 0 or frame_id >= self._frame_cnt:
raise IndexError(
'"frame_id" must be between 0 and {}'.format(self._frame_cnt -
1))
if frame_id == self._position:
return self.read()
if self._cache:
img = self._cache.get(frame_id)
if img is not None:
self._position = frame_id + 1
return img
self._set_real_position(frame_id)
ret, img = self._vcap.read()
if ret:
if self._cache:
self._cache.put(self._position, img)
self._position += 1
return img
def current_frame(self):
"""Get the current frame (frame that is just visited).
Returns:
ndarray or None: If the video is fresh, return None, otherwise
return the frame.
"""
if self._position == 0:
return None
return self._cache.get(self._position - 1)
def cvt2frames(self,
frame_dir,
file_start=0,
filename_tmpl='{:06d}.jpg',
start=0,
max_num=0,
show_progress=True):
"""Convert a video to frame images
Args:
frame_dir (str): Output directory to store all the frame images.
file_start (int): Filenames will start from the specified number.
filename_tmpl (str): Filename template with the index as the
placeholder.
start (int): The starting frame index.
max_num (int): Maximum number of frames to be written.
show_progress (bool): Whether to show a progress bar.
"""
mkdir_or_exist(frame_dir)
if max_num == 0:
task_num = self.frame_cnt - start
else:
task_num = min(self.frame_cnt - start, max_num)
if task_num <= 0:
raise ValueError('start must be less than total frame number')
if start > 0:
self._set_real_position(start)
def write_frame(file_idx):
img = self.read()
filename = osp.join(frame_dir, filename_tmpl.format(file_idx))
cv2.imwrite(filename, img)
if show_progress:
track_progress(write_frame, range(file_start,
file_start + task_num))
else:
for i in range(task_num):
img = self.read()
if img is None:
break
filename = osp.join(frame_dir,
filename_tmpl.format(i + file_start))
cv2.imwrite(filename, img)
def __len__(self):
return self.frame_cnt
def __getitem__(self, index):
if isinstance(index, slice):
return [
self.get_frame(i)
for i in range(*index.indices(self.frame_cnt))
]
# support negative indexing
if index < 0:
index += self.frame_cnt
if index < 0:
raise IndexError('index out of range')
return self.get_frame(index)
def __iter__(self):
self._set_real_position(0)
return self
def __next__(self):
img = self.read()
if img is not None:
return img
else:
raise StopIteration
next = __next__
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self._vcap.release()
def frames2video(frame_dir,
video_file,
fps=30,
fourcc='XVID',
filename_tmpl='{:06d}.jpg',
start=0,
end=0,
show_progress=True):
"""Read the frame images from a directory and join them as a video
Args:
frame_dir (str): The directory containing video frames.
video_file (str): Output filename.
fps (float): FPS of the output video.
fourcc (str): Fourcc of the output video, this should be compatible
with the output file type.
filename_tmpl (str): Filename template with the index as the variable.
start (int): Starting frame index.
end (int): Ending frame index.
show_progress (bool): Whether to show a progress bar.
"""
if end == 0:
ext = filename_tmpl.split('.')[-1]
end = len([name for name in scandir(frame_dir, ext)])
first_file = osp.join(frame_dir, filename_tmpl.format(start))
check_file_exist(first_file, 'The start frame not found: ' + first_file)
img = cv2.imread(first_file)
height, width = img.shape[:2]
resolution = (width, height)
vwriter = cv2.VideoWriter(video_file, VideoWriter_fourcc(*fourcc), fps,
resolution)
def write_frame(file_idx):
filename = osp.join(frame_dir, filename_tmpl.format(file_idx))
img = cv2.imread(filename)
vwriter.write(img)
if show_progress:
track_progress(write_frame, range(start, end))
else:
for i in range(start, end):
filename = osp.join(frame_dir, filename_tmpl.format(i))
img = cv2.imread(filename)
vwriter.write(img)
vwriter.release()
|
Cream/CDARTS/CDARTS_detection/mmcv/video/io.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/mmcv/video/io.py",
"repo_id": "Cream",
"token_count": 5118
}
| 265 |
import torch
class AssignResult(object):
def __init__(self, num_gts, gt_inds, max_overlaps, labels=None):
self.num_gts = num_gts
self.gt_inds = gt_inds
self.max_overlaps = max_overlaps
self.labels = labels
def add_gt_(self, gt_labels):
self_inds = torch.arange(
1, len(gt_labels) + 1, dtype=torch.long, device=gt_labels.device)
self.gt_inds = torch.cat([self_inds, self.gt_inds])
self.max_overlaps = torch.cat(
[self.max_overlaps.new_ones(self.num_gts), self.max_overlaps])
if self.labels is not None:
self.labels = torch.cat([gt_labels, self.labels])
|
Cream/CDARTS/CDARTS_detection/mmdet/core/bbox/assigners/assign_result.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/mmdet/core/bbox/assigners/assign_result.py",
"repo_id": "Cream",
"token_count": 333
}
| 266 |
import numpy as np
def bbox_overlaps(bboxes1, bboxes2, mode='iou'):
"""Calculate the ious between each bbox of bboxes1 and bboxes2.
Args:
bboxes1(ndarray): shape (n, 4)
bboxes2(ndarray): shape (k, 4)
mode(str): iou (intersection over union) or iof (intersection
over foreground)
Returns:
ious(ndarray): shape (n, k)
"""
assert mode in ['iou', 'iof']
bboxes1 = bboxes1.astype(np.float32)
bboxes2 = bboxes2.astype(np.float32)
rows = bboxes1.shape[0]
cols = bboxes2.shape[0]
ious = np.zeros((rows, cols), dtype=np.float32)
if rows * cols == 0:
return ious
exchange = False
if bboxes1.shape[0] > bboxes2.shape[0]:
bboxes1, bboxes2 = bboxes2, bboxes1
ious = np.zeros((cols, rows), dtype=np.float32)
exchange = True
area1 = (bboxes1[:, 2] - bboxes1[:, 0] + 1) * (
bboxes1[:, 3] - bboxes1[:, 1] + 1)
area2 = (bboxes2[:, 2] - bboxes2[:, 0] + 1) * (
bboxes2[:, 3] - bboxes2[:, 1] + 1)
for i in range(bboxes1.shape[0]):
x_start = np.maximum(bboxes1[i, 0], bboxes2[:, 0])
y_start = np.maximum(bboxes1[i, 1], bboxes2[:, 1])
x_end = np.minimum(bboxes1[i, 2], bboxes2[:, 2])
y_end = np.minimum(bboxes1[i, 3], bboxes2[:, 3])
overlap = np.maximum(x_end - x_start + 1, 0) * np.maximum(
y_end - y_start + 1, 0)
if mode == 'iou':
union = area1[i] + area2 - overlap
else:
union = area1[i] if not exchange else area2
ious[i, :] = overlap / union
if exchange:
ious = ious.T
return ious
|
Cream/CDARTS/CDARTS_detection/mmdet/core/evaluation/bbox_overlaps.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/mmdet/core/evaluation/bbox_overlaps.py",
"repo_id": "Cream",
"token_count": 826
}
| 267 |
from .dist_utils import allreduce_grads, DistOptimizerHook, DistOptimizerArchHook
from .misc import tensor2imgs, unmap, multi_apply
__all__ = [
'allreduce_grads', 'DistOptimizerHook', 'tensor2imgs', 'unmap',
'multi_apply', 'DistOptimizerArchHook'
]
|
Cream/CDARTS/CDARTS_detection/mmdet/core/utils/__init__.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/mmdet/core/utils/__init__.py",
"repo_id": "Cream",
"token_count": 103
}
| 268 |
import mmcv
from ..registry import PIPELINES
from .compose import Compose
@PIPELINES.register_module
class MultiScaleFlipAug(object):
def __init__(self, transforms, img_scale, flip=False):
self.transforms = Compose(transforms)
self.img_scale = img_scale if isinstance(img_scale, list) else [img_scale]
assert mmcv.is_list_of(self.img_scale, tuple)
self.flip = flip
def __call__(self, results):
aug_data = []
flip_aug = [False, True] if self.flip else [False]
for scale in self.img_scale:
for flip in flip_aug:
_results = results.copy()
_results['scale'] = scale
_results['flip'] = flip
data = self.transforms(_results)
aug_data.append(data)
# list of dict to dict of list
aug_data_dict = {key: [] for key in aug_data[0]}
for data in aug_data:
for key, val in data.items():
aug_data_dict[key].append(val)
return aug_data_dict
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += '(transforms={}, img_scale={}, flip={})'.format(
self.transforms, self.img_scale, self.flip)
return repr_str
|
Cream/CDARTS/CDARTS_detection/mmdet/datasets/pipelines/test_aug.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/mmdet/datasets/pipelines/test_aug.py",
"repo_id": "Cream",
"token_count": 588
}
| 269 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import normal_init
from mmdet.core import delta2bbox
from mmdet.ops import nms
from .anchor_head import AnchorHead
from ..registry import HEADS
@HEADS.register_module
class RPNHead(AnchorHead):
def __init__(self, in_channels, **kwargs):
super(RPNHead, self).__init__(2, in_channels, **kwargs)
def _init_layers(self):
self.rpn_conv = nn.Conv2d(
self.in_channels, self.feat_channels, 3, padding=1)
self.rpn_cls = nn.Conv2d(self.feat_channels,
self.num_anchors * self.cls_out_channels, 1)
self.rpn_reg = nn.Conv2d(self.feat_channels, self.num_anchors * 4, 1)
def init_weights(self):
normal_init(self.rpn_conv, std=0.01)
normal_init(self.rpn_cls, std=0.01)
normal_init(self.rpn_reg, std=0.01)
def forward_single(self, x):
x = self.rpn_conv(x)
x = F.relu(x, inplace=True)
rpn_cls_score = self.rpn_cls(x)
rpn_bbox_pred = self.rpn_reg(x)
return rpn_cls_score, rpn_bbox_pred
def loss(self,
cls_scores,
bbox_preds,
gt_bboxes,
img_metas,
cfg,
gt_bboxes_ignore=None):
losses = super(RPNHead, self).loss(
cls_scores,
bbox_preds,
gt_bboxes,
None,
img_metas,
cfg,
gt_bboxes_ignore=gt_bboxes_ignore)
return dict(
loss_rpn_cls=losses['loss_cls'], loss_rpn_bbox=losses['loss_bbox'])
def get_bboxes_single(self,
cls_scores,
bbox_preds,
mlvl_anchors,
img_shape,
scale_factor,
cfg,
rescale=False):
mlvl_proposals = []
for idx in range(len(cls_scores)):
rpn_cls_score = cls_scores[idx]
rpn_bbox_pred = bbox_preds[idx]
assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:]
anchors = mlvl_anchors[idx]
rpn_cls_score = rpn_cls_score.permute(1, 2, 0)
if self.use_sigmoid_cls:
rpn_cls_score = rpn_cls_score.reshape(-1)
scores = rpn_cls_score.sigmoid()
else:
rpn_cls_score = rpn_cls_score.reshape(-1, 2)
scores = rpn_cls_score.softmax(dim=1)[:, 1]
rpn_bbox_pred = rpn_bbox_pred.permute(1, 2, 0).reshape(-1, 4)
if cfg.nms_pre > 0 and scores.shape[0] > cfg.nms_pre:
_, topk_inds = scores.topk(cfg.nms_pre)
rpn_bbox_pred = rpn_bbox_pred[topk_inds, :]
anchors = anchors[topk_inds, :]
scores = scores[topk_inds]
proposals = delta2bbox(anchors, rpn_bbox_pred, self.target_means,
self.target_stds, img_shape)
if cfg.min_bbox_size > 0:
w = proposals[:, 2] - proposals[:, 0] + 1
h = proposals[:, 3] - proposals[:, 1] + 1
valid_inds = torch.nonzero((w >= cfg.min_bbox_size) &
(h >= cfg.min_bbox_size)).squeeze()
proposals = proposals[valid_inds, :]
scores = scores[valid_inds]
proposals = torch.cat([proposals, scores.unsqueeze(-1)], dim=-1)
proposals, _ = nms(proposals, cfg.nms_thr)
proposals = proposals[:cfg.nms_post, :]
mlvl_proposals.append(proposals)
proposals = torch.cat(mlvl_proposals, 0)
if cfg.nms_across_levels:
proposals, _ = nms(proposals, cfg.nms_thr)
proposals = proposals[:cfg.max_num, :]
else:
scores = proposals[:, 4]
num = min(cfg.max_num, proposals.shape[0])
_, topk_inds = scores.topk(num)
proposals = proposals[topk_inds, :]
return proposals
|
Cream/CDARTS/CDARTS_detection/mmdet/models/anchor_heads/rpn_head.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/anchor_heads/rpn_head.py",
"repo_id": "Cream",
"token_count": 2356
}
| 270 |
import logging
import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from torch.nn.modules.batchnorm import _BatchNorm
from mmcv.cnn import constant_init, kaiming_init
# from mmcv.runner import load_checkpoint
from mmdet.ops import DeformConv, ModulatedDeformConv, ContextBlock
from mmdet.models.plugins import GeneralizedAttention
from ..registry import BACKBONES
from ..utils import build_conv_layer, build_norm_layer
class BasicBlock(nn.Module):
expansion = 1
def __init__(self,
inplanes,
planes,
stride=1,
kernel_size=3,
dilation=1,
downsample=None,
style='pytorch',
with_cp=False,
conv2_split=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
dcn=None,
gcb=None,
gen_attention=None):
super(BasicBlock, self).__init__()
assert dcn is None, "Not implemented yet."
assert gen_attention is None, "Not implemented yet."
assert gcb is None, "Not implemented yet."
self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1)
self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2)
self.conv1 = build_conv_layer(
conv_cfg,
inplanes,
planes,
3,
stride=stride,
padding=dilation,
dilation=dilation,
bias=False)
self.add_module(self.norm1_name, norm1)
self.conv2 = build_conv_layer(
conv_cfg, planes, planes, 3, padding=1, bias=False)
self.add_module(self.norm2_name, norm2)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
self.dilation = dilation
assert not with_cp
@property
def norm1(self):
return getattr(self, self.norm1_name)
@property
def norm2(self):
return getattr(self, self.norm2_name)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.norm1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.norm2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self,
inplanes,
planes,
stride=1,
kernel_size=3,
dilation=1,
downsample=None,
style='pytorch',
with_cp=False,
conv2_split=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
dcn=None,
gcb=None,
gen_attention=None):
"""Bottleneck block for ResNet.
If style is "pytorch", the stride-two layer is the 3x3 conv layer,
if it is "caffe", the stride-two layer is the first 1x1 conv layer.
"""
super(Bottleneck, self).__init__()
assert style in ['pytorch', 'caffe']
assert dcn is None or isinstance(dcn, dict)
assert gcb is None or isinstance(gcb, dict)
assert gen_attention is None or isinstance(gen_attention, dict)
self.inplanes = inplanes
self.planes = planes
self.stride = stride
self.dilation = dilation
self.style = style
self.with_cp = with_cp
self.conv2_split = conv2_split
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.dcn = dcn
self.with_dcn = dcn is not None
self.gcb = gcb
self.with_gcb = gcb is not None
self.gen_attention = gen_attention
self.with_gen_attention = gen_attention is not None
if self.style == 'pytorch':
self.conv1_stride = 1
self.conv2_stride = stride
else:
self.conv1_stride = stride
self.conv2_stride = 1
self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1)
self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2)
self.norm3_name, norm3 = build_norm_layer(
norm_cfg, planes * self.expansion, postfix=3)
self.conv1 = build_conv_layer(
conv_cfg,
inplanes,
planes,
kernel_size=1,
stride=self.conv1_stride,
bias=False)
self.add_module(self.norm1_name, norm1)
fallback_on_stride = False
self.with_modulated_dcn = False
if self.with_dcn:
fallback_on_stride = dcn.get('fallback_on_stride', False)
self.with_modulated_dcn = dcn.get('modulated', False)
if not self.with_dcn or fallback_on_stride:
if not self.conv2_split:
self.conv2 = build_conv_layer(
conv_cfg,
planes,
planes,
kernel_size=kernel_size,
stride=self.conv2_stride,
padding=int((kernel_size-1)*dilation/2),
dilation=dilation,
bias=False)
else:
self.conv2_d1 = build_conv_layer(
conv_cfg, planes, planes-2*int(planes/3), kernel_size=3,
stride=self.conv2_stride, padding=dilation,
dilation=dilation, bias=False)
self.conv2_d2 = build_conv_layer(
conv_cfg, planes, int(planes/3), kernel_size=3,
stride=self.conv2_stride, padding=dilation+1,
dilation=dilation+1, bias=False)
self.conv2_d3 = build_conv_layer(
conv_cfg, planes, int(planes/3), kernel_size=3,
stride=self.conv2_stride, padding=dilation+2,
dilation=dilation+2, bias=False)
else:
assert conv_cfg is None, 'conv_cfg must be None for DCN'
deformable_groups = dcn.get('deformable_groups', 1)
if not self.with_modulated_dcn:
conv_op = DeformConv
offset_channels = 18
else:
conv_op = ModulatedDeformConv
offset_channels = 27
""" original code
self.conv2_offset = nn.Conv2d(
planes,
deformable_groups * offset_channels,
kernel_size=3,
stride=self.conv2_stride,
padding=dilation,
dilation=dilation)
"""
# for huang lang test
self.conv2_offset = StructualDeformBlock(
planes,
deformable_groups * offset_channels,
kernel_size=3,
stride=self.conv2_stride,
padding=dilation,
dilation=dilation)
self.conv2 = conv_op(
planes,
planes,
kernel_size=3,
stride=self.conv2_stride,
padding=dilation,
dilation=dilation,
deformable_groups=deformable_groups,
bias=False)
self.add_module(self.norm2_name, norm2)
self.conv3 = build_conv_layer(
conv_cfg,
planes,
planes * self.expansion,
kernel_size=1,
bias=False)
self.add_module(self.norm3_name, norm3)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
if self.with_gcb:
gcb_inplanes = planes * self.expansion
self.context_block = ContextBlock(inplanes=gcb_inplanes, **gcb)
# gen_attention
if self.with_gen_attention:
self.gen_attention_block = GeneralizedAttention(
planes, **gen_attention)
@property
def norm1(self):
return getattr(self, self.norm1_name)
@property
def norm2(self):
return getattr(self, self.norm2_name)
@property
def norm3(self):
return getattr(self, self.norm3_name)
def forward(self, x):
def _inner_forward(x):
identity = x
out = self.conv1(x)
out = self.norm1(out)
out = self.relu(out)
if not self.with_dcn:
if not self.conv2_split:
out = self.conv2(out)
else:
out_d1 = self.conv2_d1(out)
out_d2 = self.conv2_d2(out)
out_d3 = self.conv2_d3(out)
out = torch.cat((out_d1, out_d2, out_d3), 1)
elif self.with_modulated_dcn:
offset_mask = self.conv2_offset(out)
offset = offset_mask[:, :18, :, :]
mask = offset_mask[:, -9:, :, :].sigmoid()
out = self.conv2(out, offset, mask)
else:
offset = self.conv2_offset(out)
out = self.conv2(out, offset)
out = self.norm2(out)
out = self.relu(out)
if self.with_gen_attention:
out = self.gen_attention_block(out)
out = self.conv3(out)
out = self.norm3(out)
if self.with_gcb:
out = self.context_block(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
out = self.relu(out)
return out
# for huang lang test
from torch.nn import functional as F
class StructualDeformBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1):
super(StructualDeformBlock, self).__init__()
assert out_channels == 2 * kernel_size**2
self.out_channels = out_channels + 6
self.in_channels = in_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
# conv weights
self.weight = nn.Parameter(torch.Tensor(self.out_channels, in_channels, kernel_size, kernel_size))
self.bias = nn.Parameter(torch.Tensor(self.out_channels))
# homogeneous coordinate map
coord = (torch.arange(kernel_size, dtype=torch.float) - kernel_size // 2) * dilation
coord = list(torch.meshgrid([coord, coord]))
coord.append(torch.ones(kernel_size, kernel_size))
self.coord_map = torch.autograd.Variable(torch.stack(coord, dim=0).view(3, -1), requires_grad=False) # (3, K**2)
def extra_repr(self):
s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}'
', stride={stride}, padding={padding}, dilation={dilation}')
return s.format(**self.__dict__)
def forward(self, x_):
offset_affine = F.conv2d(x_, self.weight, self.bias, self.stride, self.padding, self.dilation)
n, c, h, w = offset_affine.shape
# apply affine transformation on conv grids
deform_params = offset_affine[:, -6:].view(n, 2, 3, h, w)
structural_offset = torch.einsum('nijhw,jk->nikhw', (deform_params, self.coord_map.to(deform_params.device)))
offset = structural_offset.reshape(n, -1, h, w) + offset_affine[:, :-6]
return offset
class MBBlock(nn.Module):
def __init__(self, in_channels, out_channels, expansion, stride, kernel_size, dilation=1, groups=1):
super(MBBlock, self).__init__()
self.in_channels = in_channels
self.out_channels =out_channels
self.stride = stride
self.groups = groups
mid_channels = in_channels * expansion
padding = (kernel_size - 1) * dilation // 2
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, 1, stride=1, padding=0, dilation=1, bias=False, groups=groups),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True)
)
self.conv2 = nn.Sequential(
nn.Conv2d(mid_channels, mid_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False, groups=mid_channels),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True)
)
self.conv3 = nn.Sequential(
nn.Conv2d(mid_channels, out_channels, 1, stride=1, padding=0, dilation=1, bias=False, groups=groups),
nn.BatchNorm2d(out_channels)
)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight, 0, 1.0 / m.weight.shape[1])
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0.0001)
nn.init.constant_(m.running_mean, 0)
def forward(self, x):
out = self.conv1(x)
out = self.conv2(out)
out = self.conv3(out)
if self.in_channels == self.out_channels and self.stride == 1:
out = out + x
return out
def make_res_layer(block,
inplanes,
planes,
blocks,
stride=1,
kernel_size=3,
dilation=1,
style='pytorch',
with_cp=False,
conv2_split=False,
toy_replace=None,
conv_cfg=None,
norm_cfg=dict(type='BN'),
dcn=None,
gcb=None,
gen_attention=None,
gen_attention_blocks=[]):
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = nn.Sequential(
build_conv_layer(
conv_cfg,
inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias=False),
build_norm_layer(norm_cfg, planes * block.expansion)[1],
)
layers = []
layers.append(
block(
inplanes=inplanes,
planes=planes,
stride=stride,
kernel_size=kernel_size,
dilation=dilation,
downsample=downsample,
style=style,
with_cp=with_cp,
conv2_split=conv2_split,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
dcn=dcn,
gcb=gcb,
gen_attention=gen_attention if
(0 in gen_attention_blocks) else None))
inplanes = planes * block.expansion
for i in range(1, blocks):
if blocks > 30 and i % 2 == 1:
layers.append(
block(
inplanes=inplanes,
planes=planes,
stride=1,
kernel_size=3,
dilation=2,
style=style,
with_cp=with_cp,
conv2_split=conv2_split,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
dcn=dcn,
gcb=gcb,
gen_attention=gen_attention if
(i in gen_attention_blocks) else None))
elif toy_replace is not None and i == toy_replace.get('layer', 30):
if toy_replace.get('block', 'res') == 'ir':
layers.append(
MBBlock(inplanes, inplanes, 1, 1, toy_replace.get('conv_kernel'), dilation=toy_replace.get('dilation'), groups=1)
)
else:
layers.append(
block(
inplanes=inplanes,
planes=planes,
stride=1,
kernel_size=toy_replace.get('conv_kernel'),
dilation=toy_replace.get('dilation'),
style=style,
with_cp=with_cp,
conv2_split=conv2_split,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
dcn=dcn,
gcb=gcb,
gen_attention=gen_attention if
(i in gen_attention_blocks) else None))
else:
layers.append(
block(
inplanes=inplanes,
planes=planes,
stride=1,
kernel_size=kernel_size,
dilation=dilation,
style=style,
with_cp=with_cp,
conv2_split=conv2_split,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
dcn=dcn,
gcb=gcb,
gen_attention=gen_attention if
(i in gen_attention_blocks) else None))
# for [1,2,3,1]
'''
layers.append(
block(
inplanes=inplanes,
planes=planes,
stride=1,
kernel_size=3,
dilation=2,
style=style,
with_cp=with_cp,
conv2_split=conv2_split,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
dcn=dcn,
gcb=gcb,
gen_attention=gen_attention if
(i in gen_attention_blocks) else None))
'''
return nn.Sequential(*layers)
@BACKBONES.register_module
class ResNet(nn.Module):
"""ResNet backbone.
Args:
depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
num_stages (int): Resnet stages, normally 4.
strides (Sequence[int]): Strides of the first block of each stage.
dilations (Sequence[int]): Dilation of each stage.
out_indices (Sequence[int]): Output from which stages.
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters.
norm_cfg (dict): dictionary to construct and config norm layer.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed.
zero_init_residual (bool): whether to use zero init for last norm layer
in resblocks to let them behave as identity.
"""
arch_settings = {
10: (BasicBlock, (1, 1, 1, 1)),
18: (BasicBlock, (2, 2, 2, 2)),
34: (BasicBlock, (3, 4, 6, 3)),
50: (Bottleneck, (3, 4, 6, 3)),
101: (Bottleneck, (3, 4, 23, 3)),
152: (Bottleneck, (3, 8, 36, 3))
}
def __init__(self,
depth,
num_stages=4,
strides=(1, 2, 2, 2),
kernel_size=3,
dilations=(1, 1, 1, 1),
out_indices=(0, 1, 2, 3),
style='pytorch',
frozen_stages=-1,
conv_cfg=None,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
dcn=None,
stage_with_dcn=(False, False, False, False),
gcb=None,
stage_with_gcb=(False, False, False, False),
gen_attention=None,
stage_with_gen_attention=((), (), (), ()),
with_cp=False,
conv2_split=False,
toy_replace=None, # for toy experiments replace
zero_init_residual=True):
super(ResNet, self).__init__()
if depth not in self.arch_settings:
raise KeyError('invalid depth {} for resnet'.format(depth))
self.depth = depth
self.num_stages = num_stages
assert num_stages >= 1 and num_stages <= 4
self.strides = strides
self.kernel_size=kernel_size
self.dilations = dilations
assert len(strides) == len(dilations) == num_stages
self.out_indices = out_indices
assert max(out_indices) < num_stages
self.style = style
self.frozen_stages = frozen_stages
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.with_cp = with_cp
self.conv2_split = conv2_split
self.toy_replace = toy_replace
self.norm_eval = norm_eval
self.dcn = dcn
self.stage_with_dcn = stage_with_dcn
if dcn is not None:
assert len(stage_with_dcn) == num_stages
self.gen_attention = gen_attention
self.gcb = gcb
self.stage_with_gcb = stage_with_gcb
if gcb is not None:
assert len(stage_with_gcb) == num_stages
self.zero_init_residual = zero_init_residual
self.block, stage_blocks = self.arch_settings[depth]
self.stage_blocks = stage_blocks[:num_stages]
self.inplanes = 64
self._make_stem_layer()
self.res_layers = []
_toy_replace = None
for i, num_blocks in enumerate(self.stage_blocks):
if self.toy_replace is not None:
if i != self.toy_replace.get('stage'):
_toy_replace = None
else:
_toy_replace = self.toy_replace
stride = strides[i]
dilation = dilations[i]
dcn = self.dcn if self.stage_with_dcn[i] else None
gcb = self.gcb if self.stage_with_gcb[i] else None
planes = 64 * 2**i
res_layer = make_res_layer(
self.block,
self.inplanes,
planes,
num_blocks,
stride=stride,
kernel_size=kernel_size,
dilation=dilation,
style=self.style,
with_cp=with_cp,
conv2_split=conv2_split,
toy_replace=_toy_replace,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
dcn=dcn,
gcb=gcb,
gen_attention=gen_attention,
gen_attention_blocks=stage_with_gen_attention[i])
self.inplanes = planes * self.block.expansion
layer_name = 'layer{}'.format(i + 1)
self.add_module(layer_name, res_layer)
self.res_layers.append(layer_name)
self._freeze_stages()
self.feat_dim = self.block.expansion * 64 * 2**(
len(self.stage_blocks) - 1)
@property
def norm1(self):
return getattr(self, self.norm1_name)
def _make_stem_layer(self):
self.conv1 = build_conv_layer(
self.conv_cfg,
3,
64,
kernel_size=7,
stride=2,
padding=3,
bias=False)
self.norm1_name, norm1 = build_norm_layer(self.norm_cfg, 64, postfix=1)
self.add_module(self.norm1_name, norm1)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.norm1.eval()
for m in [self.conv1, self.norm1]:
for param in m.parameters():
param.requires_grad = False
for i in range(1, self.frozen_stages + 1):
m = getattr(self, 'layer{}'.format(i))
m.eval()
for param in m.parameters():
param.requires_grad = False
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
logger = logging.getLogger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
constant_init(m, 1)
if self.dcn is not None:
for m in self.modules():
if isinstance(m, Bottleneck) and hasattr(
m, 'conv2_offset'):
constant_init(m.conv2_offset, 0)
if self.zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
constant_init(m.norm3, 0)
elif isinstance(m, BasicBlock):
constant_init(m.norm2, 0)
else:
raise TypeError('pretrained must be a str or None')
def forward(self, x):
x = self.conv1(x)
x = self.norm1(x)
x = self.relu(x)
x = self.maxpool(x)
outs = []
for i, layer_name in enumerate(self.res_layers):
res_layer = getattr(self, layer_name)
x = res_layer(x)
if i in self.out_indices:
outs.append(x)
return tuple(outs)
def train(self, mode=True):
super(ResNet, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
# trick: eval have effect on BatchNorm only
if isinstance(m, _BatchNorm):
m.eval()
from collections import OrderedDict
def load_checkpoint(model,
filename,
strict=False,
logger=None):
checkpoint = torch.load(filename)
# get state_dict from checkpoint
if isinstance(checkpoint, OrderedDict):
state_dict = checkpoint
elif isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
raise RuntimeError(
'No state_dict found in checkpoint file {}'.format(filename))
# strip prefix of state_dict
if list(state_dict.keys())[0].startswith('module.'):
state_dict = {k[7:]: v for k, v in state_dict.items()}
# load state_dict
if hasattr(model, 'module'):
load_state_dict(model.module, state_dict, strict, logger)
else:
omit_name = None
if model.toy_replace is not None:
# layer3.1.conv2.weight
omit_name = 'layer' + str(model.toy_replace.get('stage')+1) + '.' + str(model.toy_replace.get('layer')) + '.conv2.weight'
load_state_dict(model, state_dict, strict, logger, omit_name=omit_name)
return checkpoint
def load_state_dict(module, state_dict, strict=False, logger=None, omit_name=None):
"""Load state_dict to a module.
Args:
logger (:obj:`logging.Logger`, optional): Logger to log the error
message. If not specified, print function will be used.
"""
unexpected_keys = []
own_state = module.state_dict()
state_dict_modify = state_dict.copy()
for name, param in state_dict.items():
if isinstance(param, torch.nn.Parameter):
# backwards compatibility for serialized parameters
param = param.data
if 'conv2' in name and 'layer4.0.conv2_d2.weight' in own_state.keys():
d1 = name.replace('conv2', 'conv2_d1')
d1_c = own_state[d1].size(0)
own_state[d1].copy_(param[:d1_c,:,:,:])
state_dict_modify[d1] = param[:d1_c,:,:,:]
d2 = name.replace('conv2', 'conv2_d2')
d2_c = own_state[d2].size(0)
own_state[d2].copy_(param[d1_c:d1_c+d2_c,:,:,:])
state_dict_modify[d2] = param[d1_c:d1_c+d2_c,:,:,:]
d3 = name.replace('conv2', 'conv2_d3')
own_state[d3].copy_(param[d1_c+d2_c:,:,:,:])
state_dict_modify[d3] = param[d1_c+d2_c:,:,:,:]
else:
if name not in own_state:
unexpected_keys.append(name)
continue
try:
if name == omit_name:
print('{} is omitted.'.format(omit_name))
else:
own_state[name].copy_(param)
except Exception:
raise RuntimeError(
'While copying the parameter named {}, '
'whose dimensions in the model are {} and '
'whose dimensions in the checkpoint are {}.'.format(
name, own_state[name].size(), param.size()))
missing_keys = set(own_state.keys()) - set(state_dict_modify.keys())
err_msg = []
if unexpected_keys:
err_msg.append('unexpected key in source state_dict: {}\n'.format(
', '.join(unexpected_keys)))
if missing_keys:
err_msg.append('missing keys in source state_dict: {}\n'.format(
', '.join(missing_keys)))
err_msg = '\n'.join(err_msg)
if err_msg:
if strict:
raise RuntimeError(err_msg)
elif logger is not None:
logger.warn(err_msg)
else:
print(err_msg)
|
Cream/CDARTS/CDARTS_detection/mmdet/models/backbones/resnet.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/backbones/resnet.py",
"repo_id": "Cream",
"token_count": 15964
}
| 271 |
import torch
from mmdet.core import bbox2roi, build_assigner, build_sampler
from ..registry import DETECTORS
from .two_stage import TwoStageDetector
@DETECTORS.register_module
class DoubleHeadRCNN(TwoStageDetector):
def __init__(self, reg_roi_scale_factor, cls_roi_scale_factor=None, **kwargs):
super().__init__(**kwargs)
self.reg_roi_scale_factor = reg_roi_scale_factor
self.cls_roi_scale_factor = cls_roi_scale_factor
def forward_dummy(self, img):
outs = ()
# backbone
x = self.extract_feat(img)
# rpn
if self.with_rpn:
rpn_outs = self.rpn_head(x)
outs = outs + (rpn_outs, )
proposals = torch.randn(1000, 4).cuda()
# bbox head
rois = bbox2roi([proposals])
bbox_cls_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs],
rois,
roi_scale_factor=self.cls_roi_scale_factor)
bbox_reg_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs],
rois,
roi_scale_factor=self.reg_roi_scale_factor)
if self.with_shared_head:
bbox_cls_feats = self.shared_head(bbox_cls_feats)
bbox_reg_feats = self.shared_head(bbox_reg_feats)
cls_score, bbox_pred = self.bbox_head(bbox_cls_feats, bbox_reg_feats)
outs += (cls_score, bbox_pred)
return outs
def forward_train(self,
img,
img_meta,
gt_bboxes,
gt_labels,
gt_bboxes_ignore=None,
gt_masks=None,
proposals=None):
out = self.extract_feat(img)
if len(out) >= 4:
x = out
loss_latency = None
else:
x = out[0]
loss_latency = out[1]
losses = dict()
# RPN forward and loss
if self.with_rpn:
rpn_outs = self.rpn_head(x)
rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta,
self.train_cfg.rpn)
rpn_losses = self.rpn_head.loss(
*rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
losses.update(rpn_losses)
proposal_cfg = self.train_cfg.get('rpn_proposal',
self.test_cfg.rpn)
proposal_inputs = rpn_outs + (img_meta, proposal_cfg)
proposal_list = self.rpn_head.get_bboxes(*proposal_inputs)
else:
proposal_list = proposals
# assign gts and sample proposals
if self.with_bbox or self.with_mask:
bbox_assigner = build_assigner(self.train_cfg.rcnn.assigner)
bbox_sampler = build_sampler(
self.train_cfg.rcnn.sampler, context=self)
num_imgs = img.size(0)
if gt_bboxes_ignore is None:
gt_bboxes_ignore = [None for _ in range(num_imgs)]
sampling_results = []
for i in range(num_imgs):
assign_result = bbox_assigner.assign(proposal_list[i],
gt_bboxes[i],
gt_bboxes_ignore[i],
gt_labels[i])
sampling_result = bbox_sampler.sample(
assign_result,
proposal_list[i],
gt_bboxes[i],
gt_labels[i],
feats=[lvl_feat[i][None] for lvl_feat in x])
sampling_results.append(sampling_result)
# bbox head forward and loss
if self.with_bbox:
rois = bbox2roi([res.bboxes for res in sampling_results])
# TODO: a more flexible way to decide which feature maps to use
bbox_cls_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs],
rois,
roi_scale_factor=self.cls_roi_scale_factor)
bbox_reg_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs],
rois,
roi_scale_factor=self.reg_roi_scale_factor)
if self.with_shared_head:
bbox_cls_feats = self.shared_head(bbox_cls_feats)
bbox_reg_feats = self.shared_head(bbox_reg_feats)
cls_score, bbox_pred = self.bbox_head(bbox_cls_feats,
bbox_reg_feats)
bbox_targets = self.bbox_head.get_target(sampling_results,
gt_bboxes, gt_labels,
self.train_cfg.rcnn)
loss_bbox = self.bbox_head.loss(cls_score, bbox_pred,
*bbox_targets)
losses.update(loss_bbox)
# mask head forward and loss
if self.with_mask:
if not self.share_roi_extractor:
pos_rois = bbox2roi(
[res.pos_bboxes for res in sampling_results])
mask_feats = self.mask_roi_extractor(
x[:self.mask_roi_extractor.num_inputs], pos_rois)
if self.with_shared_head:
mask_feats = self.shared_head(mask_feats)
else:
pos_inds = []
device = bbox_cls_feats.device
for res in sampling_results:
pos_inds.append(
torch.ones(
res.pos_bboxes.shape[0],
device=device,
dtype=torch.uint8))
pos_inds.append(
torch.zeros(
res.neg_bboxes.shape[0],
device=device,
dtype=torch.uint8))
pos_inds = torch.cat(pos_inds)
mask_feats = bbox_cls_feats[pos_inds]
mask_pred = self.mask_head(mask_feats)
mask_targets = self.mask_head.get_target(sampling_results,
gt_masks,
self.train_cfg.rcnn)
pos_labels = torch.cat(
[res.pos_gt_labels for res in sampling_results])
loss_mask = self.mask_head.loss(mask_pred, mask_targets,
pos_labels)
losses.update(loss_mask)
return losses, loss_latency
def simple_test_bboxes(self,
x,
img_meta,
proposals,
rcnn_test_cfg,
rescale=False):
"""Test only det bboxes without augmentation."""
rois = bbox2roi(proposals)
bbox_cls_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs],
rois,
roi_scale_factor=self.cls_roi_scale_factor)
bbox_reg_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs],
rois,
roi_scale_factor=self.reg_roi_scale_factor)
if self.with_shared_head:
bbox_cls_feats = self.shared_head(bbox_cls_feats)
bbox_reg_feats = self.shared_head(bbox_reg_feats)
cls_score, bbox_pred = self.bbox_head(bbox_cls_feats, bbox_reg_feats)
img_shape = img_meta[0]['img_shape']
scale_factor = img_meta[0]['scale_factor']
det_bboxes, det_labels = self.bbox_head.get_det_bboxes(
rois,
cls_score,
bbox_pred,
img_shape,
scale_factor,
rescale=rescale,
cfg=rcnn_test_cfg)
return det_bboxes, det_labels
|
Cream/CDARTS/CDARTS_detection/mmdet/models/detectors/double_head_rcnn.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/detectors/double_head_rcnn.py",
"repo_id": "Cream",
"token_count": 4788
}
| 272 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from .utils import weight_reduce_loss
from ..registry import LOSSES
def cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None):
# element-wise losses
loss = F.cross_entropy(pred, label, reduction='none')
# apply weights and do the reduction
if weight is not None:
weight = weight.float()
loss = weight_reduce_loss(
loss, weight=weight, reduction=reduction, avg_factor=avg_factor)
return loss
def _expand_binary_labels(labels, label_weights, label_channels):
bin_labels = labels.new_full((labels.size(0), label_channels), 0)
inds = torch.nonzero(labels >= 1).squeeze()
if inds.numel() > 0:
bin_labels[inds, labels[inds] - 1] = 1
if label_weights is None:
bin_label_weights = None
else:
bin_label_weights = label_weights.view(-1, 1).expand(
label_weights.size(0), label_channels)
return bin_labels, bin_label_weights
def binary_cross_entropy(pred,
label,
weight=None,
reduction='mean',
avg_factor=None):
if pred.dim() != label.dim():
label, weight = _expand_binary_labels(label, weight, pred.size(-1))
# weighted element-wise losses
if weight is not None:
weight = weight.float()
loss = F.binary_cross_entropy_with_logits(
pred, label.float(), weight, reduction='none')
# do the reduction for the weighted loss
loss = weight_reduce_loss(loss, reduction=reduction, avg_factor=avg_factor)
return loss
def mask_cross_entropy(pred, target, label, reduction='mean', avg_factor=None):
# TODO: handle these two reserved arguments
assert reduction == 'mean' and avg_factor is None
num_rois = pred.size()[0]
inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device)
pred_slice = pred[inds, label].squeeze(1)
return F.binary_cross_entropy_with_logits(
pred_slice, target, reduction='mean')[None]
@LOSSES.register_module
class CrossEntropyLoss(nn.Module):
def __init__(self,
use_sigmoid=False,
use_mask=False,
reduction='mean',
loss_weight=1.0):
super(CrossEntropyLoss, self).__init__()
assert (use_sigmoid is False) or (use_mask is False)
self.use_sigmoid = use_sigmoid
self.use_mask = use_mask
self.reduction = reduction
self.loss_weight = loss_weight
if self.use_sigmoid:
self.cls_criterion = binary_cross_entropy
elif self.use_mask:
self.cls_criterion = mask_cross_entropy
else:
self.cls_criterion = cross_entropy
def forward(self,
cls_score,
label,
weight=None,
avg_factor=None,
reduction_override=None,
**kwargs):
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (
reduction_override if reduction_override else self.reduction)
loss_cls = self.loss_weight * self.cls_criterion(
cls_score,
label,
weight,
reduction=reduction,
avg_factor=avg_factor,
**kwargs)
return loss_cls
|
Cream/CDARTS/CDARTS_detection/mmdet/models/losses/cross_entropy_loss.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/losses/cross_entropy_loss.py",
"repo_id": "Cream",
"token_count": 1550
}
| 273 |
# --------------------------------------------------------
# Copyright (c) 2019 Jianyuan Guo ([email protected])
# --------------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
from .hit_ops import OPS
PRIMITIVES = [
'conv_1x1',
'ir_k3_e6_d3',
'ir_k5_e6',
'ir_k5_e6_d3',
'sd_k3_d1',
'sd_k3_d3',
'sd_k5_d2',
'sd_k5_d3',
]
class HitNeck(nn.Module):
def __init__(self, num_fm=4, in_channel=[256], out_channel=256,
latency=None, gamma=0.02, genotype=None, **kwargs):
super(HitNeck, self).__init__()
self.num_fm = num_fm
self.in_channel = in_channel
self.out_channel = out_channel
self.genotype = genotype
bn_type = kwargs.get('bn_type', 'BN')
self.cells = nn.ModuleList()
input_size = [160, 80, 40, 20] # 1/4, 1/8, 1/16, 1/32
for i, ops in enumerate(genotype):
if i < self.num_fm:
cell = OPS[PRIMITIVES[ops]](input_size[i%self.num_fm],
in_channel[i%self.num_fm], out_channel, 1, bn=bn_type)
else:
cell = OPS[PRIMITIVES[ops]](input_size[i%self.num_fm],
out_channel, out_channel, 1, bn=bn_type)
self.cells.append(cell)
for m in self.modules():
if isinstance(m, nn.SyncBatchNorm):
m._specify_ddp_gpu_num(1)
def forward(self, x, step):
assert(step in [1, 2])
_step = step - 1
out = []
for i in range(_step*self.num_fm, step*self.num_fm):
out.append(self.cells[i](x[i%self.num_fm]))
return out
|
Cream/CDARTS/CDARTS_detection/mmdet/models/necks/auto_neck/hit_neck_search.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/necks/auto_neck/hit_neck_search.py",
"repo_id": "Cream",
"token_count": 882
}
| 274 |
from .conv_ws import conv_ws_2d, ConvWS2d
from .conv_module import build_conv_layer, ConvModule
from .norm import build_norm_layer
from .scale import Scale
from .weight_init import (xavier_init, normal_init, uniform_init, kaiming_init,
bias_init_with_prob)
__all__ = [
'conv_ws_2d', 'ConvWS2d', 'build_conv_layer', 'ConvModule',
'build_norm_layer', 'xavier_init', 'normal_init', 'uniform_init',
'kaiming_init', 'bias_init_with_prob', 'Scale'
]
|
Cream/CDARTS/CDARTS_detection/mmdet/models/utils/__init__.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/utils/__init__.py",
"repo_id": "Cream",
"token_count": 204
}
| 275 |
// modify from
// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda.c
#include <torch/extension.h>
#include <cmath>
#include <vector>
void deformable_im2col(const at::Tensor data_im, const at::Tensor data_offset,
const int channels, const int height, const int width,
const int ksize_h, const int ksize_w, const int pad_h,
const int pad_w, const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w,
const int parallel_imgs, const int deformable_group,
at::Tensor data_col);
void deformable_col2im(const at::Tensor data_col, const at::Tensor data_offset,
const int channels, const int height, const int width,
const int ksize_h, const int ksize_w, const int pad_h,
const int pad_w, const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w,
const int parallel_imgs, const int deformable_group,
at::Tensor grad_im);
void deformable_col2im_coord(
const at::Tensor data_col, const at::Tensor data_im,
const at::Tensor data_offset, const int channels, const int height,
const int width, const int ksize_h, const int ksize_w, const int pad_h,
const int pad_w, const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w, const int parallel_imgs,
const int deformable_group, at::Tensor grad_offset);
void modulated_deformable_im2col_cuda(
const at::Tensor data_im, const at::Tensor data_offset,
const at::Tensor data_mask, const int batch_size, const int channels,
const int height_im, const int width_im, const int height_col,
const int width_col, const int kernel_h, const int kenerl_w,
const int pad_h, const int pad_w, const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w, const int deformable_group,
at::Tensor data_col);
void modulated_deformable_col2im_cuda(
const at::Tensor data_col, const at::Tensor data_offset,
const at::Tensor data_mask, const int batch_size, const int channels,
const int height_im, const int width_im, const int height_col,
const int width_col, const int kernel_h, const int kenerl_w,
const int pad_h, const int pad_w, const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w, const int deformable_group,
at::Tensor grad_im);
void modulated_deformable_col2im_coord_cuda(
const at::Tensor data_col, const at::Tensor data_im,
const at::Tensor data_offset, const at::Tensor data_mask,
const int batch_size, const int channels, const int height_im,
const int width_im, const int height_col, const int width_col,
const int kernel_h, const int kenerl_w, const int pad_h, const int pad_w,
const int stride_h, const int stride_w, const int dilation_h,
const int dilation_w, const int deformable_group, at::Tensor grad_offset,
at::Tensor grad_mask);
void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput,
at::Tensor weight, int kH, int kW, int dH, int dW, int padH,
int padW, int dilationH, int dilationW, int group,
int deformable_group) {
TORCH_CHECK(weight.ndimension() == 4,
"4D weight tensor (nOutputPlane,nInputPlane,kH,kW) expected, "
"but got: %s",
weight.ndimension());
TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
TORCH_CHECK(kW > 0 && kH > 0,
"kernel size should be greater than zero, but got kH: %d kW: %d", kH,
kW);
TORCH_CHECK((weight.size(2) == kH && weight.size(3) == kW),
"kernel size should be consistent with weight, ",
"but got kH: %d kW: %d weight.size(2): %d, weight.size(3): %d", kH,
kW, weight.size(2), weight.size(3));
TORCH_CHECK(dW > 0 && dH > 0,
"stride should be greater than zero, but got dH: %d dW: %d", dH, dW);
TORCH_CHECK(
dilationW > 0 && dilationH > 0,
"dilation should be greater than 0, but got dilationH: %d dilationW: %d",
dilationH, dilationW);
int ndim = input.ndimension();
int dimf = 0;
int dimh = 1;
int dimw = 2;
if (ndim == 4) {
dimf++;
dimh++;
dimw++;
}
TORCH_CHECK(ndim == 3 || ndim == 4, "3D or 4D input tensor expected but got: %s",
ndim);
long nInputPlane = weight.size(1) * group;
long inputHeight = input.size(dimh);
long inputWidth = input.size(dimw);
long nOutputPlane = weight.size(0);
long outputHeight =
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
long outputWidth =
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
TORCH_CHECK(nInputPlane % deformable_group == 0,
"input channels must divide deformable group size");
if (outputWidth < 1 || outputHeight < 1)
AT_ERROR(
"Given input size: (%ld x %ld x %ld). "
"Calculated output size: (%ld x %ld x %ld). Output size is too small",
nInputPlane, inputHeight, inputWidth, nOutputPlane, outputHeight,
outputWidth);
TORCH_CHECK(input.size(1) == nInputPlane,
"invalid number of input planes, expected: %d, but got: %d",
nInputPlane, input.size(1));
TORCH_CHECK((inputHeight >= kH && inputWidth >= kW),
"input image is smaller than kernel");
TORCH_CHECK((offset.size(2) == outputHeight && offset.size(3) == outputWidth),
"invalid spatial size of offset, expected height: %d width: %d, but "
"got height: %d width: %d",
outputHeight, outputWidth, offset.size(2), offset.size(3));
TORCH_CHECK((offset.size(1) == deformable_group * 2 * kH * kW),
"invalid number of channels of offset");
if (gradOutput != NULL) {
TORCH_CHECK(gradOutput->size(dimf) == nOutputPlane,
"invalid number of gradOutput planes, expected: %d, but got: %d",
nOutputPlane, gradOutput->size(dimf));
TORCH_CHECK((gradOutput->size(dimh) == outputHeight &&
gradOutput->size(dimw) == outputWidth),
"invalid size of gradOutput, expected height: %d width: %d , but "
"got height: %d width: %d",
outputHeight, outputWidth, gradOutput->size(dimh),
gradOutput->size(dimw));
}
}
int deform_conv_forward_cuda(at::Tensor input, at::Tensor weight,
at::Tensor offset, at::Tensor output,
at::Tensor columns, at::Tensor ones, int kW,
int kH, int dW, int dH, int padW, int padH,
int dilationW, int dilationH, int group,
int deformable_group, int im2col_step) {
// todo: resize columns to include im2col: done
// todo: add im2col_step as input
// todo: add new output buffer and transpose it to output (or directly
// transpose output) todo: possibly change data indexing because of
// parallel_imgs
shape_check(input, offset, NULL, weight, kH, kW, dH, dW, padH, padW,
dilationH, dilationW, group, deformable_group);
input = input.contiguous();
offset = offset.contiguous();
weight = weight.contiguous();
int batch = 1;
if (input.ndimension() == 3) {
// Force batch
batch = 0;
input.unsqueeze_(0);
offset.unsqueeze_(0);
}
// todo: assert batchsize dividable by im2col_step
long batchSize = input.size(0);
long nInputPlane = input.size(1);
long inputHeight = input.size(2);
long inputWidth = input.size(3);
long nOutputPlane = weight.size(0);
long outputWidth =
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
long outputHeight =
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");
output = output.view({batchSize / im2col_step, im2col_step, nOutputPlane,
outputHeight, outputWidth});
columns = at::zeros(
{nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
input.options());
if (ones.ndimension() != 2 ||
ones.size(0) * ones.size(1) < outputHeight * outputWidth) {
ones = at::ones({outputHeight, outputWidth}, input.options());
}
input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
inputHeight, inputWidth});
offset =
offset.view({batchSize / im2col_step, im2col_step,
deformable_group * 2 * kH * kW, outputHeight, outputWidth});
at::Tensor output_buffer =
at::zeros({batchSize / im2col_step, nOutputPlane,
im2col_step * outputHeight, outputWidth},
output.options());
output_buffer = output_buffer.view(
{output_buffer.size(0), group, output_buffer.size(1) / group,
output_buffer.size(2), output_buffer.size(3)});
for (int elt = 0; elt < batchSize / im2col_step; elt++) {
deformable_im2col(input[elt], offset[elt], nInputPlane, inputHeight,
inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
dilationW, im2col_step, deformable_group, columns);
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
weight = weight.view({group, weight.size(0) / group, weight.size(1),
weight.size(2), weight.size(3)});
for (int g = 0; g < group; g++) {
output_buffer[elt][g] = output_buffer[elt][g]
.flatten(1)
.addmm_(weight[g].flatten(1), columns[g])
.view_as(output_buffer[elt][g]);
}
}
output_buffer = output_buffer.view(
{output_buffer.size(0), output_buffer.size(1) * output_buffer.size(2),
output_buffer.size(3), output_buffer.size(4)});
output_buffer = output_buffer.view({batchSize / im2col_step, nOutputPlane,
im2col_step, outputHeight, outputWidth});
output_buffer.transpose_(1, 2);
output.copy_(output_buffer);
output = output.view({batchSize, nOutputPlane, outputHeight, outputWidth});
input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
offset = offset.view(
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
if (batch == 0) {
output = output.view({nOutputPlane, outputHeight, outputWidth});
input = input.view({nInputPlane, inputHeight, inputWidth});
offset = offset.view({offset.size(1), offset.size(2), offset.size(3)});
}
return 1;
}
int deform_conv_backward_input_cuda(at::Tensor input, at::Tensor offset,
at::Tensor gradOutput, at::Tensor gradInput,
at::Tensor gradOffset, at::Tensor weight,
at::Tensor columns, int kW, int kH, int dW,
int dH, int padW, int padH, int dilationW,
int dilationH, int group,
int deformable_group, int im2col_step) {
shape_check(input, offset, &gradOutput, weight, kH, kW, dH, dW, padH, padW,
dilationH, dilationW, group, deformable_group);
input = input.contiguous();
offset = offset.contiguous();
gradOutput = gradOutput.contiguous();
weight = weight.contiguous();
int batch = 1;
if (input.ndimension() == 3) {
// Force batch
batch = 0;
input = input.view({1, input.size(0), input.size(1), input.size(2)});
offset = offset.view({1, offset.size(0), offset.size(1), offset.size(2)});
gradOutput = gradOutput.view(
{1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)});
}
long batchSize = input.size(0);
long nInputPlane = input.size(1);
long inputHeight = input.size(2);
long inputWidth = input.size(3);
long nOutputPlane = weight.size(0);
long outputWidth =
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
long outputHeight =
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
TORCH_CHECK((offset.size(0) == batchSize), 3, "invalid batch size of offset");
gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth});
columns = at::zeros(
{nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
input.options());
// change order of grad output
gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step,
nOutputPlane, outputHeight, outputWidth});
gradOutput.transpose_(1, 2);
gradInput = gradInput.view({batchSize / im2col_step, im2col_step, nInputPlane,
inputHeight, inputWidth});
input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
inputHeight, inputWidth});
gradOffset = gradOffset.view({batchSize / im2col_step, im2col_step,
deformable_group * 2 * kH * kW, outputHeight,
outputWidth});
offset =
offset.view({batchSize / im2col_step, im2col_step,
deformable_group * 2 * kH * kW, outputHeight, outputWidth});
for (int elt = 0; elt < batchSize / im2col_step; elt++) {
// divide into groups
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
weight = weight.view({group, weight.size(0) / group, weight.size(1),
weight.size(2), weight.size(3)});
gradOutput = gradOutput.view(
{gradOutput.size(0), group, gradOutput.size(1) / group,
gradOutput.size(2), gradOutput.size(3), gradOutput.size(4)});
for (int g = 0; g < group; g++) {
columns[g] = columns[g].addmm_(weight[g].flatten(1).transpose(0, 1),
gradOutput[elt][g].flatten(1), 0.0f, 1.0f);
}
columns =
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
gradOutput = gradOutput.view(
{gradOutput.size(0), gradOutput.size(1) * gradOutput.size(2),
gradOutput.size(3), gradOutput.size(4), gradOutput.size(5)});
deformable_col2im_coord(columns, input[elt], offset[elt], nInputPlane,
inputHeight, inputWidth, kH, kW, padH, padW, dH, dW,
dilationH, dilationW, im2col_step, deformable_group,
gradOffset[elt]);
deformable_col2im(columns, offset[elt], nInputPlane, inputHeight,
inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
dilationW, im2col_step, deformable_group, gradInput[elt]);
}
gradOutput.transpose_(1, 2);
gradOutput =
gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth});
gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth});
input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
gradOffset = gradOffset.view(
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
offset = offset.view(
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
if (batch == 0) {
gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth});
input = input.view({nInputPlane, inputHeight, inputWidth});
gradInput = gradInput.view({nInputPlane, inputHeight, inputWidth});
offset = offset.view({offset.size(1), offset.size(2), offset.size(3)});
gradOffset =
gradOffset.view({offset.size(1), offset.size(2), offset.size(3)});
}
return 1;
}
int deform_conv_backward_parameters_cuda(
at::Tensor input, at::Tensor offset, at::Tensor gradOutput,
at::Tensor gradWeight, // at::Tensor gradBias,
at::Tensor columns, at::Tensor ones, int kW, int kH, int dW, int dH,
int padW, int padH, int dilationW, int dilationH, int group,
int deformable_group, float scale, int im2col_step) {
// todo: transpose and reshape outGrad
// todo: reshape columns
// todo: add im2col_step as input
shape_check(input, offset, &gradOutput, gradWeight, kH, kW, dH, dW, padH,
padW, dilationH, dilationW, group, deformable_group);
input = input.contiguous();
offset = offset.contiguous();
gradOutput = gradOutput.contiguous();
int batch = 1;
if (input.ndimension() == 3) {
// Force batch
batch = 0;
input = input.view(
at::IntList({1, input.size(0), input.size(1), input.size(2)}));
gradOutput = gradOutput.view(
{1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)});
}
long batchSize = input.size(0);
long nInputPlane = input.size(1);
long inputHeight = input.size(2);
long inputWidth = input.size(3);
long nOutputPlane = gradWeight.size(0);
long outputWidth =
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
long outputHeight =
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");
columns = at::zeros(
{nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
input.options());
gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step,
nOutputPlane, outputHeight, outputWidth});
gradOutput.transpose_(1, 2);
at::Tensor gradOutputBuffer = at::zeros_like(gradOutput);
gradOutputBuffer =
gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane, im2col_step,
outputHeight, outputWidth});
gradOutputBuffer.copy_(gradOutput);
gradOutputBuffer =
gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane,
im2col_step * outputHeight, outputWidth});
gradOutput.transpose_(1, 2);
gradOutput =
gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth});
input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
inputHeight, inputWidth});
offset =
offset.view({batchSize / im2col_step, im2col_step,
deformable_group * 2 * kH * kW, outputHeight, outputWidth});
for (int elt = 0; elt < batchSize / im2col_step; elt++) {
deformable_im2col(input[elt], offset[elt], nInputPlane, inputHeight,
inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
dilationW, im2col_step, deformable_group, columns);
// divide into group
gradOutputBuffer = gradOutputBuffer.view(
{gradOutputBuffer.size(0), group, gradOutputBuffer.size(1) / group,
gradOutputBuffer.size(2), gradOutputBuffer.size(3)});
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
gradWeight =
gradWeight.view({group, gradWeight.size(0) / group, gradWeight.size(1),
gradWeight.size(2), gradWeight.size(3)});
for (int g = 0; g < group; g++) {
gradWeight[g] = gradWeight[g]
.flatten(1)
.addmm_(gradOutputBuffer[elt][g].flatten(1),
columns[g].transpose(1, 0), 1.0, scale)
.view_as(gradWeight[g]);
}
gradOutputBuffer = gradOutputBuffer.view(
{gradOutputBuffer.size(0),
gradOutputBuffer.size(1) * gradOutputBuffer.size(2),
gradOutputBuffer.size(3), gradOutputBuffer.size(4)});
columns =
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
gradWeight = gradWeight.view({gradWeight.size(0) * gradWeight.size(1),
gradWeight.size(2), gradWeight.size(3),
gradWeight.size(4)});
}
input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
offset = offset.view(
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
if (batch == 0) {
gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth});
input = input.view({nInputPlane, inputHeight, inputWidth});
}
return 1;
}
void modulated_deform_conv_cuda_forward(
at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,
at::Tensor offset, at::Tensor mask, at::Tensor output, at::Tensor columns,
int kernel_h, int kernel_w, const int stride_h, const int stride_w,
const int pad_h, const int pad_w, const int dilation_h,
const int dilation_w, const int group, const int deformable_group,
const bool with_bias) {
TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
const int batch = input.size(0);
const int channels = input.size(1);
const int height = input.size(2);
const int width = input.size(3);
const int channels_out = weight.size(0);
const int channels_kernel = weight.size(1);
const int kernel_h_ = weight.size(2);
const int kernel_w_ = weight.size(3);
if (kernel_h_ != kernel_h || kernel_w_ != kernel_w)
AT_ERROR("Input shape and kernel shape wont match: (%d x %d vs %d x %d).",
kernel_h_, kernel_w, kernel_h_, kernel_w_);
if (channels != channels_kernel * group)
AT_ERROR("Input shape and kernel channels wont match: (%d vs %d).",
channels, channels_kernel * group);
const int height_out =
(height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
const int width_out =
(width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
if (ones.ndimension() != 2 ||
ones.size(0) * ones.size(1) < height_out * width_out) {
// Resize plane and fill with ones...
ones = at::ones({height_out, width_out}, input.options());
}
// resize output
output = output.view({batch, channels_out, height_out, width_out}).zero_();
// resize temporary columns
columns =
at::zeros({channels * kernel_h * kernel_w, 1 * height_out * width_out},
input.options());
output = output.view({output.size(0), group, output.size(1) / group,
output.size(2), output.size(3)});
for (int b = 0; b < batch; b++) {
modulated_deformable_im2col_cuda(
input[b], offset[b], mask[b], 1, channels, height, width, height_out,
width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
dilation_h, dilation_w, deformable_group, columns);
// divide into group
weight = weight.view({group, weight.size(0) / group, weight.size(1),
weight.size(2), weight.size(3)});
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
for (int g = 0; g < group; g++) {
output[b][g] = output[b][g]
.flatten(1)
.addmm_(weight[g].flatten(1), columns[g])
.view_as(output[b][g]);
}
weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
weight.size(3), weight.size(4)});
columns =
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
}
output = output.view({output.size(0), output.size(1) * output.size(2),
output.size(3), output.size(4)});
if (with_bias) {
output += bias.view({1, bias.size(0), 1, 1});
}
}
void modulated_deform_conv_cuda_backward(
at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,
at::Tensor offset, at::Tensor mask, at::Tensor columns,
at::Tensor grad_input, at::Tensor grad_weight, at::Tensor grad_bias,
at::Tensor grad_offset, at::Tensor grad_mask, at::Tensor grad_output,
int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h,
int pad_w, int dilation_h, int dilation_w, int group, int deformable_group,
const bool with_bias) {
TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
const int batch = input.size(0);
const int channels = input.size(1);
const int height = input.size(2);
const int width = input.size(3);
const int channels_kernel = weight.size(1);
const int kernel_h_ = weight.size(2);
const int kernel_w_ = weight.size(3);
if (kernel_h_ != kernel_h || kernel_w_ != kernel_w)
AT_ERROR("Input shape and kernel shape wont match: (%d x %d vs %d x %d).",
kernel_h_, kernel_w, kernel_h_, kernel_w_);
if (channels != channels_kernel * group)
AT_ERROR("Input shape and kernel channels wont match: (%d vs %d).",
channels, channels_kernel * group);
const int height_out =
(height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
const int width_out =
(width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
if (ones.ndimension() != 2 ||
ones.size(0) * ones.size(1) < height_out * width_out) {
// Resize plane and fill with ones...
ones = at::ones({height_out, width_out}, input.options());
}
grad_input = grad_input.view({batch, channels, height, width});
columns = at::zeros({channels * kernel_h * kernel_w, height_out * width_out},
input.options());
grad_output =
grad_output.view({grad_output.size(0), group, grad_output.size(1) / group,
grad_output.size(2), grad_output.size(3)});
for (int b = 0; b < batch; b++) {
// divide int group
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
weight = weight.view({group, weight.size(0) / group, weight.size(1),
weight.size(2), weight.size(3)});
for (int g = 0; g < group; g++) {
columns[g].addmm_(weight[g].flatten(1).transpose(0, 1),
grad_output[b][g].flatten(1), 0.0f, 1.0f);
}
columns =
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
weight.size(3), weight.size(4)});
// gradient w.r.t. input coordinate data
modulated_deformable_col2im_coord_cuda(
columns, input[b], offset[b], mask[b], 1, channels, height, width,
height_out, width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h,
stride_w, dilation_h, dilation_w, deformable_group, grad_offset[b],
grad_mask[b]);
// gradient w.r.t. input data
modulated_deformable_col2im_cuda(
columns, offset[b], mask[b], 1, channels, height, width, height_out,
width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
dilation_h, dilation_w, deformable_group, grad_input[b]);
// gradient w.r.t. weight, dWeight should accumulate across the batch and
// group
modulated_deformable_im2col_cuda(
input[b], offset[b], mask[b], 1, channels, height, width, height_out,
width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
dilation_h, dilation_w, deformable_group, columns);
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
grad_weight = grad_weight.view({group, grad_weight.size(0) / group,
grad_weight.size(1), grad_weight.size(2),
grad_weight.size(3)});
if (with_bias)
grad_bias = grad_bias.view({group, grad_bias.size(0) / group});
for (int g = 0; g < group; g++) {
grad_weight[g] =
grad_weight[g]
.flatten(1)
.addmm_(grad_output[b][g].flatten(1), columns[g].transpose(0, 1))
.view_as(grad_weight[g]);
if (with_bias) {
grad_bias[g] =
grad_bias[g]
.view({-1, 1})
.addmm_(grad_output[b][g].flatten(1), ones.view({-1, 1}))
.view(-1);
}
}
columns =
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
grad_weight = grad_weight.view({grad_weight.size(0) * grad_weight.size(1),
grad_weight.size(2), grad_weight.size(3),
grad_weight.size(4)});
if (with_bias)
grad_bias = grad_bias.view({grad_bias.size(0) * grad_bias.size(1)});
}
grad_output = grad_output.view({grad_output.size(0) * grad_output.size(1),
grad_output.size(2), grad_output.size(3),
grad_output.size(4)});
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("deform_conv_forward_cuda", &deform_conv_forward_cuda,
"deform forward (CUDA)");
m.def("deform_conv_backward_input_cuda", &deform_conv_backward_input_cuda,
"deform_conv_backward_input (CUDA)");
m.def("deform_conv_backward_parameters_cuda",
&deform_conv_backward_parameters_cuda,
"deform_conv_backward_parameters (CUDA)");
m.def("modulated_deform_conv_cuda_forward",
&modulated_deform_conv_cuda_forward,
"modulated deform conv forward (CUDA)");
m.def("modulated_deform_conv_cuda_backward",
&modulated_deform_conv_cuda_backward,
"modulated deform conv backward (CUDA)");
}
|
Cream/CDARTS/CDARTS_detection/mmdet/ops/dcn/src/deform_conv_cuda.cpp/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/mmdet/ops/dcn/src/deform_conv_cuda.cpp",
"repo_id": "Cream",
"token_count": 12775
}
| 276 |
import os.path as osp
from setuptools import setup, Extension
import numpy as np
from Cython.Build import cythonize
from Cython.Distutils import build_ext
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
ext_args = dict(
include_dirs=[np.get_include()],
language='c++',
extra_compile_args={
'cc': ['-Wno-unused-function', '-Wno-write-strings'],
'nvcc': ['-c', '--compiler-options', '-fPIC'],
},
)
extensions = [
Extension('soft_nms_cpu', ['src/soft_nms_cpu.pyx'], **ext_args),
]
def customize_compiler_for_nvcc(self):
"""inject deep into distutils to customize how the dispatch
to cc/nvcc works.
If you subclass UnixCCompiler, it's not trivial to get your subclass
injected in, and still have the right customizations (i.e.
distutils.sysconfig.customize_compiler) run on it. So instead of going
the OO route, I have this. Note, it's kindof like a wierd functional
subclassing going on."""
# tell the compiler it can processes .cu
self.src_extensions.append('.cu')
# save references to the default compiler_so and _comple methods
default_compiler_so = self.compiler_so
super = self._compile
# now redefine the _compile method. This gets executed for each
# object but distutils doesn't have the ability to change compilers
# based on source extension: we add it.
def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
if osp.splitext(src)[1] == '.cu':
# use the cuda for .cu files
self.set_executable('compiler_so', 'nvcc')
# use only a subset of the extra_postargs, which are 1-1 translated
# from the extra_compile_args in the Extension class
postargs = extra_postargs['nvcc']
else:
postargs = extra_postargs['cc']
super(obj, src, ext, cc_args, postargs, pp_opts)
# reset the default compiler_so, which we might have changed for cuda
self.compiler_so = default_compiler_so
# inject our redefined _compile method into the class
self._compile = _compile
class custom_build_ext(build_ext):
def build_extensions(self):
customize_compiler_for_nvcc(self.compiler)
build_ext.build_extensions(self)
setup(
name='soft_nms',
cmdclass={'build_ext': custom_build_ext},
ext_modules=cythonize(extensions),
)
setup(
name='nms_cuda',
ext_modules=[
CUDAExtension('nms_cuda', [
'src/nms_cuda.cpp',
'src/nms_kernel.cu',
]),
CUDAExtension('nms_cpu', [
'src/nms_cpu.cpp',
]),
],
cmdclass={'build_ext': BuildExtension})
|
Cream/CDARTS/CDARTS_detection/mmdet/ops/nms/setup.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/mmdet/ops/nms/setup.py",
"repo_id": "Cream",
"token_count": 1084
}
| 277 |
from .functions.roi_pool import roi_pool
from .modules.roi_pool import RoIPool
__all__ = ['roi_pool', 'RoIPool']
|
Cream/CDARTS/CDARTS_detection/mmdet/ops/roi_pool/__init__.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/mmdet/ops/roi_pool/__init__.py",
"repo_id": "Cream",
"token_count": 45
}
| 278 |
// modify from
// https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/csrc/cuda/SigmoidFocalLoss_cuda.cu
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
// This file is modified from
// https://github.com/pytorch/pytorch/blob/master/modules/detectron/sigmoid_focal_loss_op.cu
// Cheng-Yang Fu
// [email protected]
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <THC/THC.h>
#include <THC/THCAtomics.cuh>
#include <THC/THCDeviceUtils.cuh>
#include <cfloat>
// TODO make it in a common file
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
i += blockDim.x * gridDim.x)
template <typename scalar_t>
__global__ void SigmoidFocalLossForward(const int nthreads,
const scalar_t *logits,
const long *targets,
const int num_classes,
const float gamma, const float alpha,
const int num, scalar_t *losses) {
CUDA_1D_KERNEL_LOOP(i, nthreads) {
int n = i / num_classes;
int d = i % num_classes; // current class[0~79];
int t = targets[n]; // target class [1~80];
// Decide it is positive or negative case.
scalar_t c1 = (t == (d + 1));
scalar_t c2 = (t >= 0 & t != (d + 1));
scalar_t zn = (1.0 - alpha);
scalar_t zp = (alpha);
// p = 1. / 1. + expf(-x); p = sigmoid(x)
scalar_t p = 1. / (1. + expf(-logits[i]));
// (1-p)**gamma * log(p) where
scalar_t term1 = powf((1. - p), gamma) * logf(max(p, FLT_MIN));
// p**gamma * log(1-p)
scalar_t term2 =
powf(p, gamma) *
(-1. * logits[i] * (logits[i] >= 0) -
logf(1. + expf(logits[i] - 2. * logits[i] * (logits[i] >= 0))));
losses[i] = 0.0;
losses[i] += -c1 * term1 * zp;
losses[i] += -c2 * term2 * zn;
} // CUDA_1D_KERNEL_LOOP
} // SigmoidFocalLossForward
template <typename scalar_t>
__global__ void SigmoidFocalLossBackward(
const int nthreads, const scalar_t *logits, const long *targets,
const scalar_t *d_losses, const int num_classes, const float gamma,
const float alpha, const int num, scalar_t *d_logits) {
CUDA_1D_KERNEL_LOOP(i, nthreads) {
int n = i / num_classes;
int d = i % num_classes; // current class[0~79];
int t = targets[n]; // target class [1~80], 0 is background;
// Decide it is positive or negative case.
scalar_t c1 = (t == (d + 1));
scalar_t c2 = (t >= 0 & t != (d + 1));
scalar_t zn = (1.0 - alpha);
scalar_t zp = (alpha);
// p = 1. / 1. + expf(-x); p = sigmoid(x)
scalar_t p = 1. / (1. + expf(-logits[i]));
// (1-p)**g * (1 - p - g*p*log(p)
scalar_t term1 =
powf((1. - p), gamma) * (1. - p - (p * gamma * logf(max(p, FLT_MIN))));
// (p**g) * (g*(1-p)*log(1-p) - p)
scalar_t term2 =
powf(p, gamma) *
((-1. * logits[i] * (logits[i] >= 0) -
logf(1. + expf(logits[i] - 2. * logits[i] * (logits[i] >= 0)))) *
(1. - p) * gamma -
p);
d_logits[i] = 0.0;
d_logits[i] += -c1 * term1 * zp;
d_logits[i] += -c2 * term2 * zn;
d_logits[i] = d_logits[i] * d_losses[i];
} // CUDA_1D_KERNEL_LOOP
} // SigmoidFocalLossBackward
at::Tensor SigmoidFocalLoss_forward_cuda(const at::Tensor &logits,
const at::Tensor &targets,
const int num_classes,
const float gamma, const float alpha) {
AT_ASSERTM(logits.type().is_cuda(), "logits must be a CUDA tensor");
AT_ASSERTM(targets.type().is_cuda(), "targets must be a CUDA tensor");
AT_ASSERTM(logits.dim() == 2, "logits should be NxClass");
const int num_samples = logits.size(0);
auto losses = at::empty({num_samples, logits.size(1)}, logits.options());
auto losses_size = num_samples * logits.size(1);
dim3 grid(std::min(THCCeilDiv(losses_size, 512L), 4096L));
dim3 block(512);
if (losses.numel() == 0) {
THCudaCheck(cudaGetLastError());
return losses;
}
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
logits.type(), "SigmoidFocalLoss_forward", [&] {
SigmoidFocalLossForward<scalar_t><<<grid, block>>>(
losses_size, logits.contiguous().data<scalar_t>(),
targets.contiguous().data<long>(), num_classes, gamma, alpha,
num_samples, losses.data<scalar_t>());
});
THCudaCheck(cudaGetLastError());
return losses;
}
at::Tensor SigmoidFocalLoss_backward_cuda(const at::Tensor &logits,
const at::Tensor &targets,
const at::Tensor &d_losses,
const int num_classes,
const float gamma,
const float alpha) {
AT_ASSERTM(logits.type().is_cuda(), "logits must be a CUDA tensor");
AT_ASSERTM(targets.type().is_cuda(), "targets must be a CUDA tensor");
AT_ASSERTM(d_losses.type().is_cuda(), "d_losses must be a CUDA tensor");
AT_ASSERTM(logits.dim() == 2, "logits should be NxClass");
const int num_samples = logits.size(0);
AT_ASSERTM(logits.size(1) == num_classes,
"logits.size(1) should be num_classes");
auto d_logits = at::zeros({num_samples, num_classes}, logits.options());
auto d_logits_size = num_samples * logits.size(1);
dim3 grid(std::min(THCCeilDiv(d_logits_size, 512L), 4096L));
dim3 block(512);
if (d_logits.numel() == 0) {
THCudaCheck(cudaGetLastError());
return d_logits;
}
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
logits.type(), "SigmoidFocalLoss_backward", [&] {
SigmoidFocalLossBackward<scalar_t><<<grid, block>>>(
d_logits_size, logits.contiguous().data<scalar_t>(),
targets.contiguous().data<long>(),
d_losses.contiguous().data<scalar_t>(), num_classes, gamma, alpha,
num_samples, d_logits.data<scalar_t>());
});
THCudaCheck(cudaGetLastError());
return d_logits;
}
|
Cream/CDARTS/CDARTS_detection/mmdet/ops/sigmoid_focal_loss/src/sigmoid_focal_loss_cuda.cu/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/mmdet/ops/sigmoid_focal_loss/src/sigmoid_focal_loss_cuda.cu",
"repo_id": "Cream",
"token_count": 3155
}
| 279 |
import argparse
from mmcv import Config
from mmdet.models import build_detector
from mmdet.utils import get_model_complexity_info
def parse_args():
parser = argparse.ArgumentParser(description='Train a detector')
parser.add_argument('config', help='train config file path')
parser.add_argument(
'--shape',
type=int,
nargs='+',
default=[1280, 800],
help='input image size')
args = parser.parse_args()
return args
def main():
args = parse_args()
if len(args.shape) == 1:
input_shape = (3, args.shape[0], args.shape[0])
elif len(args.shape) == 2:
input_shape = (3, ) + tuple(args.shape)
else:
raise ValueError('invalid input shape')
cfg = Config.fromfile(args.config)
model = build_detector(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg).cuda()
model.eval()
if hasattr(model, 'forward_dummy'):
model.forward = model.forward_dummy
else:
raise NotImplementedError(
'FLOPs counter is currently not currently supported with {}'.
format(model.__class__.__name__))
flops, params = get_model_complexity_info(model, input_shape)
split_line = '=' * 30
print('{0}\nInput shape: {1}\nFlops: {2}\nParams: {3}\n{0}'.format(
split_line, input_shape, flops, params))
if __name__ == '__main__':
main()
|
Cream/CDARTS/CDARTS_detection/tools/get_flops.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_detection/tools/get_flops.py",
"repo_id": "Cream",
"token_count": 582
}
| 280 |
import torch.utils.data as data
class CombineDBs(data.Dataset):
NUM_CLASSES = 21
def __init__(self, dataloaders, excluded=None):
self.dataloaders = dataloaders
self.excluded = excluded
self.im_ids = []
# Combine object lists
for dl in dataloaders:
for elem in dl.im_ids:
if elem not in self.im_ids:
self.im_ids.append(elem)
# Exclude
if excluded:
for dl in excluded:
for elem in dl.im_ids:
if elem in self.im_ids:
self.im_ids.remove(elem)
# Get object pointers
self.cat_list = []
self.im_list = []
new_im_ids = []
num_images = 0
for ii, dl in enumerate(dataloaders):
for jj, curr_im_id in enumerate(dl.im_ids):
if (curr_im_id in self.im_ids) and (curr_im_id not in new_im_ids):
num_images += 1
new_im_ids.append(curr_im_id)
self.cat_list.append({'db_ii': ii, 'cat_ii': jj})
self.im_ids = new_im_ids
print('Combined number of images: {:d}'.format(num_images))
def __getitem__(self, index):
_db_ii = self.cat_list[index]["db_ii"]
_cat_ii = self.cat_list[index]['cat_ii']
sample = self.dataloaders[_db_ii].__getitem__(_cat_ii)
if 'meta' in sample.keys():
sample['meta']['db'] = str(self.dataloaders[_db_ii])
return sample
def __len__(self):
return len(self.cat_list)
def __str__(self):
include_db = [str(db) for db in self.dataloaders]
exclude_db = [str(db) for db in self.excluded]
return 'Included datasets:'+str(include_db)+'\n'+'Excluded datasets:'+str(exclude_db)
if __name__ == "__main__":
import matplotlib.pyplot as plt
from dataloaders.datasets import pascal, sbd
from dataloaders import sbd
import torch
import numpy as np
from dataloaders.dataloader_utils import decode_segmap
import argparse
parser = argparse.ArgumentParser()
args = parser.parse_args()
args.base_size = 513
args.crop_size = 513
pascal_voc_val = pascal.VOCSegmentation(args, split='val')
sbd = sbd.SBDSegmentation(args, split=['train', 'val'])
pascal_voc_train = pascal.VOCSegmentation(args, split='train')
dataset = CombineDBs([pascal_voc_train, sbd], excluded=[pascal_voc_val])
dataloader = torch.utils.data.DataLoader(dataset, batch_size=2, shuffle=True, num_workers=0)
for ii, sample in enumerate(dataloader):
for jj in range(sample["image"].size()[0]):
img = sample['image'].numpy()
gt = sample['label'].numpy()
tmp = np.array(gt[jj]).astype(np.uint8)
segmap = decode_segmap(tmp, dataset='pascal')
img_tmp = np.transpose(img[jj], axes=[1, 2, 0])
img_tmp *= (0.229, 0.224, 0.225)
img_tmp += (0.485, 0.456, 0.406)
img_tmp *= 255.0
img_tmp = img_tmp.astype(np.uint8)
plt.figure()
plt.title('display')
plt.subplot(211)
plt.imshow(img_tmp)
plt.subplot(212)
plt.imshow(segmap)
if ii == 1:
break
plt.show(block=True)
|
Cream/CDARTS/CDARTS_segmentation/dataloaders/datasets/combine_dbs.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_segmentation/dataloaders/datasets/combine_dbs.py",
"repo_id": "Cream",
"token_count": 1685
}
| 281 |
from .default import _C as config
from .default import update_config
seg_config = config
update_seg_config = update_config
|
Cream/CDARTS/CDARTS_segmentation/segmentation/config/__init__.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_segmentation/segmentation/config/__init__.py",
"repo_id": "Cream",
"token_count": 34
}
| 282 |
from .aspp import ASPP
from .deeplabv3 import DeepLabV3Decoder
from .deeplabv3plus import DeepLabV3PlusDecoder
from .panoptic_deeplab import PanopticDeepLabDecoder
|
Cream/CDARTS/CDARTS_segmentation/segmentation/model/decoder/__init__.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_segmentation/segmentation/model/decoder/__init__.py",
"repo_id": "Cream",
"token_count": 61
}
| 283 |
# ------------------------------------------------------------------------------
# Post-processing to get semantic segmentation results.
# Written by Bowen Cheng ([email protected])
# ------------------------------------------------------------------------------
import torch
__all__ = ['get_semantic_segmentation']
def get_semantic_segmentation(sem):
"""
Post-processing for semantic segmentation branch.
Arguments:
sem: A Tensor of shape [N, C, H, W], where N is the batch size, for consistent, we only
support N=1.
Returns:
A Tensor of shape [1, H, W] (to be gathered by distributed data parallel).
Raises:
ValueError, if batch size is not 1.
"""
if sem.size(0) != 1:
raise ValueError('Only supports inference for batch size = 1')
sem = sem.squeeze(0)
return torch.argmax(sem, dim=0, keepdim=True)
|
Cream/CDARTS/CDARTS_segmentation/segmentation/model/post_processing/semantic_post_processing.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_segmentation/segmentation/model/post_processing/semantic_post_processing.py",
"repo_id": "Cream",
"token_count": 284
}
| 284 |
from .cityscapes import Cityscapes
from .bdd import BDD
from .coco import COCO
from .camvid import CamVid
__all__ = ['Cityscapes', 'BDD', 'CamVid', 'COCO']
|
Cream/CDARTS/CDARTS_segmentation/tools/datasets/__init__.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_segmentation/tools/datasets/__init__.py",
"repo_id": "Cream",
"token_count": 61
}
| 285 |
from collections import namedtuple
Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat')
PRIMITIVES = [
'skip',
'conv',
'conv_downup',
'conv_2x_downup',
'sa',
]
# 'conv_2x',
|
Cream/CDARTS/CDARTS_segmentation/train/genotypes.py/0
|
{
"file_path": "Cream/CDARTS/CDARTS_segmentation/train/genotypes.py",
"repo_id": "Cream",
"token_count": 94
}
| 286 |
## Environment Setup
Tesla V100, CUDA10.0, linux 16.04, pytorch>=1.2, python3, [apex](https://github.com/NVIDIA/apex)
### Data Preparation
* [Cifar-10](https://www.cs.toronto.edu/~kriz/cifar.html)
* [Cifar-100](https://www.cs.toronto.edu/~kriz/cifar.html)
* [ImageNet-2012](http://www.image-net.org/)
Create soft link in main dir.
```
ln -s $DataLocation experiments/data
```
In ${ROOT}/experiments/data, it should be like this.
```
experiments/data/imagenet/train
experiments/data/imagenet/val
...
```
### Installation
* First, you should install graphviz.
```
apt-get install graphviz
```
* Install python requirements.
```buildoutcfg
pip install -r requirements
```
* Then you should install apex.
```buildoutcfg
git clone https://github.com/NVIDIA/apex
cd apex
python setup.py install --cpp_ext --cuda_ext
```
### Search, Retrain and Evaluation
We have provided all the shell scripts and the corresponding default parameters, which are stored in the scripts folder.
* For example:
```buildoutcfg
cd ${CODE_ROOT}
bash CyDAS/scripts/run_search_cifar_1gpu.sh
bash CyDAS/scripts/run_retrain_cifar_1gpu.sh
...
```
#### Search
* Main python file is
```buildoutcfg
${ROOT}/CyDAS/search.py
```
* Followings are options during training.
```buildoutcfg
--regular # whether to use regular
--regular_ratio # if use regular, the ragular ratio
--regular_coeff # if use regular, the regular coefficient
--ensemble_param # Ensemble different layer features
--loss_alpha # the loss coefficient
--w_lr # the learning rate of the search network
--alpha_lr # the learning rate of the architecture parameters
--nasnet_lr # the learning rate of the evaluation network
--w_weight_decay # the weight decay the search and the evaluation network
--alpha_weight_decay # the weight decay the the architecture parameters
--fix_head # wheter to fix the parameters of auxiliary heads
--interactive_type # The KD function, 0 kl, 1 cosine, 2 mse, 3 sl1
--pretrain_epochs # the pretrain epochs of the search network
--search_iter # the search iterations
--search_iter_epochs # the epochs in each search iteration
--nasnet_warmup # the epochs used to train a new evaluation network
```
* Here we present our search scripts on CIFAR and ImageNet.
```buildoutcfg
bash CyDAS/scripts/run_search_cifar_1gpu.sh
bash CyDAS/scripts/run_search_cifar_4gpus.sh
bash CyDAS/scripts/run_search_imagenet.sh
```
* Modify the following settings in `run_search_cifar_1gpu.sh` and `run_search_cifar_4gpus.sh` to search on CIFAR100.
```
--dataset cifar100
--n_classes 100
```
#### Retrain
* Main python file is
```buildoutcfg
${ROOT}/CyDAS/retrain.py
```
* We have provided all cell genotypes of Cifar and ImageNet in
```buildoutcfg
${ROOT}/CyDAS/cells/cifar_genotypes.json
...
```
* Followings are options during training.
```buildoutcfg
--cell_file # path of cell genotype
--weight_decay # decay of W in the Retrain-Phase
--lr # learning rate of W in the Retrain-Phase
--warmup_epochs # warmup epochs
--epochs # total retrain epochs
--cutout_length # cutout length for cifar
--aux_weight # weight of auxiliary loss, 0.4 is the best option
--drop_path_prob # used for dropping path in NAS
--label_smooth # label smooth ratio
```
* Here we present our train scripts on CIFAR and ImageNet.
```buildoutcfg
bash CyDAS/scripts/run_retrain_cifar_1gpu.sh
bash CyDAS/scripts/run_retrain_cifar_4gpus.sh
bash CyDAS/scripts/run_retrain_imagenet.sh
```
* Modify the following settings in `run_retrain_cifar.sh` to train CIFAR100.
```
--dataset cifar100
--n_classes 100
```
#### Evaluation
* Main python file is
```buildoutcfg
${ROOT}/CyDAS/test.py
```
* Followings are options during testing.
```buildoutcfg
--resume # whether to load checkpint
--resume_name # checkpint name
```
* Here we present our test scripts on CIFAR and ImageNet.
```buildoutcfg
bash CyDAS/scripts/run_test_cifar.sh
bash CyDAS/scripts/run_test_imagenet.sh
```
* Modify the following settings in `run_test_cifar.sh` to test CIFAR100.
```
--dataset cifar100
--n_classes 100
```
|
Cream/CDARTS/SETUP.md/0
|
{
"file_path": "Cream/CDARTS/SETUP.md",
"repo_id": "Cream",
"token_count": 2025
}
| 287 |
""" CNN cell for architecture search """
import torch
import torch.nn as nn
from copy import deepcopy
from models.ops import ResNetBasicblock, OPS, NAS_BENCH_201
from utils.genotypes import Structure
# This module is used for NAS-Bench-201, represents a small search space with a complete DAG
class SearchCell(nn.Module):
def __init__(self, C_in, C_out, stride, max_nodes, op_names, affine=False, track_running_stats=True):
super(SearchCell, self).__init__()
self.op_names = deepcopy(op_names)
self.edges = nn.ModuleDict()
self.max_nodes = max_nodes
self.in_dim = C_in
self.out_dim = C_out
for i in range(1, max_nodes):
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
if j == 0:
xlists = [OPS[op_name](C_in , C_out, stride, affine, track_running_stats) for op_name in op_names]
else:
xlists = [OPS[op_name](C_in , C_out, 1, affine, track_running_stats) for op_name in op_names]
self.edges[ node_str ] = nn.ModuleList( xlists )
self.edge_keys = sorted(list(self.edges.keys()))
self.edge2index = {key:i for i, key in enumerate(self.edge_keys)}
self.num_edges = len(self.edges)
def extra_repr(self):
string = 'info :: {max_nodes} nodes, inC={in_dim}, outC={out_dim}'.format(**self.__dict__)
return string
def forward(self, inputs, weightss):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
weights = weightss[ self.edge2index[node_str] ]
inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# GDAS
def forward_gdas(self, inputs, hardwts, index):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
weights = hardwts[ self.edge2index[node_str] ]
argmaxs = index[ self.edge2index[node_str] ].item()
weigsum = sum( weights[_ie] * edge(nodes[j]) if _ie == argmaxs else weights[_ie] for _ie, edge in enumerate(self.edges[node_str]) )
inter_nodes.append( weigsum )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# joint
def forward_joint(self, inputs, weightss):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
weights = weightss[ self.edge2index[node_str] ]
#aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel()
aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) )
inter_nodes.append( aggregation )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# uniform random sampling per iteration, SETN
def forward_urs(self, inputs):
nodes = [inputs]
for i in range(1, self.max_nodes):
while True: # to avoid select zero for all ops
sops, has_non_zero = [], False
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
candidates = self.edges[node_str]
select_op = random.choice(candidates)
sops.append( select_op )
if not hasattr(select_op, 'is_zero') or select_op.is_zero is False: has_non_zero=True
if has_non_zero: break
inter_nodes = []
for j, select_op in enumerate(sops):
inter_nodes.append( select_op(nodes[j]) )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# select the argmax
def forward_select(self, inputs, weightss):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
weights = weightss[ self.edge2index[node_str] ]
inter_nodes.append( self.edges[node_str][ weights.argmax().item() ]( nodes[j] ) )
#inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# forward with a specific structure
def forward_dynamic(self, inputs, structure):
nodes = [inputs]
for i in range(1, self.max_nodes):
cur_op_node = structure.nodes[i-1]
inter_nodes = []
for op_name, j in cur_op_node:
node_str = '{:}<-{:}'.format(i, j)
op_index = self.op_names.index( op_name )
inter_nodes.append( self.edges[node_str][op_index]( nodes[j] ) )
nodes.append( sum(inter_nodes) )
return nodes[-1]
|
Cream/CDARTS/benchmark201/models/search_cells.py/0
|
{
"file_path": "Cream/CDARTS/benchmark201/models/search_cells.py",
"repo_id": "Cream",
"token_count": 2072
}
| 288 |
import torch
import torch.nn as nn
from lib.utils import utils
from lib.models.loss import Loss_interactive
def search(train_loader, valid_loader, model, optimizer, w_optim, alpha_optim, layer_idx, epoch, writer, logger, config):
# interactive retrain and kl
device = torch.device("cuda")
criterion = nn.CrossEntropyLoss().to(device)
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
losses = utils.AverageMeter()
losses_interactive = utils.AverageMeter()
losses_cls = utils.AverageMeter()
losses_reg = utils.AverageMeter()
step_num = len(train_loader)
step_num = int(step_num * config.sample_ratio)
cur_step = epoch*step_num
cur_lr_search = w_optim.param_groups[0]['lr']
cur_lr_main = optimizer.param_groups[0]['lr']
if config.local_rank == 0:
logger.info("Train Epoch {} Search LR {}".format(epoch, cur_lr_search))
logger.info("Train Epoch {} Main LR {}".format(epoch, cur_lr_main))
writer.add_scalar('retrain/lr', cur_lr_search, cur_step)
model.train()
for step, ((trn_X, trn_y), (val_X, val_y)) in enumerate(zip(train_loader, valid_loader)):
if step > step_num:
break
trn_X, trn_y = trn_X.to(device, non_blocking=True), trn_y.to(device, non_blocking=True)
val_X, val_y = val_X.to(device, non_blocking=True), val_y.to(device, non_blocking=True)
N = trn_X.size(0)
#use valid data
alpha_optim.zero_grad()
optimizer.zero_grad()
logits_search, emsemble_logits_search = model(val_X, layer_idx, super_flag=True)
logits_main, emsemble_logits_main= model(val_X, layer_idx, super_flag=False)
loss_cls = (criterion(logits_search, val_y) + criterion(logits_main, val_y)) / config.loss_alpha
loss_interactive = Loss_interactive(emsemble_logits_search, emsemble_logits_main, config.loss_T, config.interactive_type) * config.loss_alpha
loss_regular = 0 * loss_cls
if config.regular:
reg_decay = max(config.regular_coeff * (1 - float(epoch-config.pretrain_epochs)/((config.search_iter-config.pretrain_epochs)*config.search_iter_epochs*config.regular_ratio)), 0)
# normal cell
op_opt = ['max_pool_3x3', 'avg_pool_3x3', 'skip_connect']
op_groups = []
for idx in range(layer_idx, 3):
for op_dx in op_opt:
op_groups.append((idx - layer_idx, op_dx))
loss_regular = loss_regular + model.module.add_alpha_regularization(op_groups, weight_decay=reg_decay, method='L1', reduce=False)
# reduction cell
# op_opt = []
op_opt = ['max_pool_3x3', 'avg_pool_3x3', 'skip_connect']
op_groups = []
for i in range(layer_idx, 3):
for op_dx in op_opt:
op_groups.append((i - layer_idx, op_dx))
loss_regular = loss_regular + model.module.add_alpha_regularization(op_groups, weight_decay=reg_decay, method='L1', normal=False)
loss = loss_cls + loss_interactive + loss_regular
loss.backward()
nn.utils.clip_grad_norm_(model.module.parameters(), config.w_grad_clip)
optimizer.step()
alpha_optim.step()
prec1, prec5 = utils.accuracy(logits_main, val_y, topk=(1, 5))
if config.distributed:
reduced_loss = utils.reduce_tensor(loss.data, config.world_size)
reduced_loss_interactive = utils.reduce_tensor(loss_interactive.data, config.world_size)
reduced_loss_cls = utils.reduce_tensor(loss_cls.data, config.world_size)
reduced_loss_reg = utils.reduce_tensor(loss_regular.data, config.world_size)
prec1 = utils.reduce_tensor(prec1, config.world_size)
prec5 = utils.reduce_tensor(prec5, config.world_size)
else:
reduced_loss = loss.data
reduced_loss_interactive = loss_interactive.data
reduced_loss_cls = loss_cls.data
reduced_loss_reg = loss_regular.data
losses.update(reduced_loss.item(), N)
losses_interactive.update(reduced_loss_interactive.item(), N)
losses_cls.update(reduced_loss_cls.item(), N)
losses_reg.update(reduced_loss_reg.item(), N)
top1.update(prec1.item(), N)
top5.update(prec5.item(), N)
torch.cuda.synchronize()
if config.local_rank == 0 and (step % config.print_freq == 0 or step == step_num):
logger.info(
"Train_2: Layer {}/{} Epoch {:2d}/{} Step {:03d}/{:03d} Loss {losses.avg:.3f} "
"Loss_interactive {losses_interactive.avg:.3f} Losses_cls {losses_cls.avg:.3f} Losses_reg {losses_reg.avg:.3f} "
"Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format(
layer_idx+1, config.layer_num, epoch+1, config.search_iter*config.search_iter_epochs, step,
step_num, losses=losses, losses_interactive=losses_interactive, losses_cls=losses_cls,
losses_reg=losses_reg, top1=top1, top5=top5))
if config.local_rank == 0:
writer.add_scalar('retrain/loss', reduced_loss.item(), cur_step)
writer.add_scalar('retrain/top1', prec1.item(), cur_step)
writer.add_scalar('retrain/top5', prec5.item(), cur_step)
cur_step += 1
w_optim.zero_grad()
logits_search_train, _ = model(trn_X, layer_idx, super_flag=True)
loss_cls_train = criterion(logits_search_train, trn_y)
loss_train = loss_cls_train
loss_train.backward()
# gradient clipping
nn.utils.clip_grad_norm_(model.module.parameters(), config.w_grad_clip)
# only update w
w_optim.step()
# alpha_optim.step()
if config.distributed:
reduced_loss_cls_train = utils.reduce_tensor(loss_cls_train.data, config.world_size)
reduced_loss_train = utils.reduce_tensor(loss_train.data, config.world_size)
else:
reduced_loss_cls_train = reduced_loss_cls_train.data
reduced_loss_train = reduced_loss_train.data
if config.local_rank == 0 and (step % config.print_freq == 0 or step == step_num-1):
logger.info(
"Train_1: Loss_cls: {:.3f} Loss: {:.3f}".format(
reduced_loss_cls_train.item(), reduced_loss_train.item())
)
if config.local_rank == 0:
logger.info("Train_2: Layer {}/{} Epoch {:2d}/{} Final Prec@1 {:.4%}".format(
layer_idx+1, config.layer_num, epoch+1, config.search_iter*config.search_iter_epochs, top1.avg))
def retrain_warmup(valid_loader, model, optimizer, layer_idx, epoch, writer, logger, super_flag, retrain_epochs, config):
device = torch.device("cuda")
criterion = nn.CrossEntropyLoss().to(device)
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
losses = utils.AverageMeter()
step_num = len(valid_loader)
step_num = int(step_num * config.sample_ratio)
cur_step = epoch*step_num
cur_lr = optimizer.param_groups[0]['lr']
if config.local_rank == 0:
logger.info("Warmup Epoch {} LR {:.3f}".format(epoch+1, cur_lr))
writer.add_scalar('warmup/lr', cur_lr, cur_step)
model.train()
for step, (val_X, val_y) in enumerate(valid_loader):
if step > step_num:
break
val_X, val_y = val_X.to(device, non_blocking=True), val_y.to(device, non_blocking=True)
N = val_X.size(0)
optimizer.zero_grad()
logits_main, _ = model(val_X, layer_idx, super_flag=super_flag)
loss = criterion(logits_main, val_y)
loss.backward()
nn.utils.clip_grad_norm_(model.module.parameters(), config.w_grad_clip)
optimizer.step()
prec1, prec5 = utils.accuracy(logits_main, val_y, topk=(1, 5))
if config.distributed:
reduced_loss = utils.reduce_tensor(loss.data, config.world_size)
prec1 = utils.reduce_tensor(prec1, config.world_size)
prec5 = utils.reduce_tensor(prec5, config.world_size)
else:
reduced_loss = loss.data
losses.update(reduced_loss.item(), N)
top1.update(prec1.item(), N)
top5.update(prec5.item(), N)
torch.cuda.synchronize()
if config.local_rank == 0 and (step % config.print_freq == 0 or step == step_num):
logger.info(
"Warmup: Layer {}/{} Epoch {:2d}/{} Step {:03d}/{:03d} Loss {losses.avg:.3f} "
"Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format(
layer_idx+1, config.layer_num, epoch+1, retrain_epochs, step,
step_num, losses=losses, top1=top1, top5=top5))
if config.local_rank == 0:
writer.add_scalar('retrain/loss', reduced_loss.item(), cur_step)
writer.add_scalar('retrain/top1', prec1.item(), cur_step)
writer.add_scalar('retrain/top5', prec5.item(), cur_step)
cur_step += 1
if config.local_rank == 0:
logger.info("Warmup: Layer {}/{} Epoch {:2d}/{} Final Prec@1 {:.4%}".format(
layer_idx+1, config.layer_num, epoch+1, retrain_epochs, top1.avg))
def validate(valid_loader, model, layer_idx, epoch, cur_step, writer, logger, super_flag, config):
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
losses = utils.AverageMeter()
model.eval()
device = torch.device("cuda")
criterion = nn.CrossEntropyLoss().to(device)
with torch.no_grad():
for step, (X, y) in enumerate(valid_loader):
X, y = X.to(device, non_blocking=True), y.to(device, non_blocking=True)
N = X.size(0)
logits, _ = model(X, layer_idx, super_flag=False)
loss = criterion(logits, y)
prec1, prec5 = utils.accuracy(logits, y, topk=(1, 5))
reduced_loss = loss.data
losses.update(reduced_loss.item(), N)
top1.update(prec1.item(), N)
top5.update(prec5.item(), N)
torch.cuda.synchronize()
step_num = len(valid_loader)
if (step % config.print_freq == 0 or step == step_num-1) and config.local_rank == 0:
logger.info(
"Valid: Layer {}/{} Epoch {:2d}/{} Step {:03d}/{:03d} Loss {losses.avg:.3f} "
"Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format(
layer_idx+1, config.layer_num, epoch+1, config.search_iter*config.search_iter_epochs, step, step_num,
losses=losses, top1=top1, top5=top5))
if config.local_rank == 0:
writer.add_scalar('val/loss', losses.avg, cur_step)
writer.add_scalar('val/top1', top1.avg, cur_step)
writer.add_scalar('val/top5', top5.avg, cur_step)
logger.info("Valid: Layer {}/{} Epoch {:2d}/{} Final Prec@1 {:.4%}".format(
layer_idx+1, config.layer_num, epoch+1, config.search_iter*config.search_iter_epochs, top1.avg))
return top1.avg
|
Cream/CDARTS/lib/core/search_function.py/0
|
{
"file_path": "Cream/CDARTS/lib/core/search_function.py",
"repo_id": "Cream",
"token_count": 5370
}
| 289 |
graphviz
torch==1.2
torchvision==0.2
tensorboard
tensorboardX
|
Cream/CDARTS/requirements/0
|
{
"file_path": "Cream/CDARTS/requirements",
"repo_id": "Cream",
"token_count": 27
}
| 290 |
AUTO_RESUME: False
DATA_DIR: './data/imagenet'
MODEL: '600m_retrain'
RESUME_PATH: './experiments/workspace/retrain/resume.pth.tar'
SAVE_PATH: './experiments/workspace/retrain'
SEED: 42
LOG_INTERVAL: 50
RECOVERY_INTERVAL: 0
WORKERS: 4
NUM_GPU: 2
SAVE_IMAGES: False
AMP: False
OUTPUT: 'None'
EVAL_METRICS: 'prec1'
TTA: 0
LOCAL_RANK: 0
DATASET:
NUM_CLASSES: 1000
IMAGE_SIZE: 224 # image patch size
INTERPOLATION: 'random' # Image resize interpolation type
BATCH_SIZE: 128 # batch size
NO_PREFECHTER: False
NET:
GP: 'avg'
DROPOUT_RATE: 0.0
SELECTION: 42
EMA:
USE: True
FORCE_CPU: False # force model ema to be tracked on CPU
DECAY: 0.9998
OPT: 'rmsproptf'
OPT_EPS: 1e-2
MOMENTUM: 0.9
DECAY_RATE: 0.1
SCHED: 'sgd'
LR_NOISE_PCT: 0.67
LR_NOISE_STD: 1.0
WARMUP_LR: 1e-4
MIN_LR: 1e-5
EPOCHS: 200
START_EPOCH: None
DECAY_EPOCHS: 30.0
WARMUP_EPOCHS: 3
COOLDOWN_EPOCHS: 10
PATIENCE_EPOCHS: 10
LR: 1e-2
|
Cream/Cream/experiments/configs/retrain/retrain.yaml/0
|
{
"file_path": "Cream/Cream/experiments/configs/retrain/retrain.yaml",
"repo_id": "Cream",
"token_count": 452
}
| 291 |
from copy import deepcopy
from lib.utils.builder_util import modify_block_args
from lib.models.blocks import get_Bottleneck, InvertedResidual
from timm.models.efficientnet_blocks import *
# SuperNet Builder definition.
class SuperNetBuilder:
""" Build Trunk Blocks
"""
def __init__(
self,
choices,
channel_multiplier=1.0,
channel_divisor=8,
channel_min=None,
output_stride=32,
pad_type='',
act_layer=None,
se_kwargs=None,
norm_layer=nn.BatchNorm2d,
norm_kwargs=None,
drop_path_rate=0.,
feature_location='',
verbose=False,
resunit=False,
dil_conv=False,
logger=None):
# dict
# choices = {'kernel_size': [3, 5, 7], 'exp_ratio': [4, 6]}
self.choices = [[x, y] for x in choices['kernel_size']
for y in choices['exp_ratio']]
self.choices_num = len(self.choices) - 1
self.channel_multiplier = channel_multiplier
self.channel_divisor = channel_divisor
self.channel_min = channel_min
self.output_stride = output_stride
self.pad_type = pad_type
self.act_layer = act_layer
self.se_kwargs = se_kwargs
self.norm_layer = norm_layer
self.norm_kwargs = norm_kwargs
self.drop_path_rate = drop_path_rate
self.feature_location = feature_location
assert feature_location in ('pre_pwl', 'post_exp', '')
self.verbose = verbose
self.resunit = resunit
self.dil_conv = dil_conv
self.logger = logger
# state updated during build, consumed by model
self.in_chs = None
def _round_channels(self, chs):
return round_channels(
chs,
self.channel_multiplier,
self.channel_divisor,
self.channel_min)
def _make_block(
self,
ba,
choice_idx,
block_idx,
block_count,
resunit=False,
dil_conv=False):
drop_path_rate = self.drop_path_rate * block_idx / block_count
bt = ba.pop('block_type')
ba['in_chs'] = self.in_chs
ba['out_chs'] = self._round_channels(ba['out_chs'])
if 'fake_in_chs' in ba and ba['fake_in_chs']:
# FIXME this is a hack to work around mismatch in origin impl input
# filters
ba['fake_in_chs'] = self._round_channels(ba['fake_in_chs'])
ba['norm_layer'] = self.norm_layer
ba['norm_kwargs'] = self.norm_kwargs
ba['pad_type'] = self.pad_type
# block act fn overrides the model default
ba['act_layer'] = ba['act_layer'] if ba['act_layer'] is not None else self.act_layer
assert ba['act_layer'] is not None
if bt == 'ir':
ba['drop_path_rate'] = drop_path_rate
ba['se_kwargs'] = self.se_kwargs
if self.verbose:
self.logger.info(
' InvertedResidual {}, Args: {}'.format(
block_idx, str(ba)))
block = InvertedResidual(**ba)
elif bt == 'ds' or bt == 'dsa':
ba['drop_path_rate'] = drop_path_rate
ba['se_kwargs'] = self.se_kwargs
if self.verbose:
self.logger.info(
' DepthwiseSeparable {}, Args: {}'.format(
block_idx, str(ba)))
block = DepthwiseSeparableConv(**ba)
elif bt == 'cn':
if self.verbose:
self.logger.info(
' ConvBnAct {}, Args: {}'.format(
block_idx, str(ba)))
block = ConvBnAct(**ba)
else:
assert False, 'Uknkown block type (%s) while building model.' % bt
if choice_idx == self.choice_num - 1:
self.in_chs = ba['out_chs'] # update in_chs for arg of next block
return block
def __call__(self, in_chs, model_block_args):
""" Build the blocks
Args:
in_chs: Number of input-channels passed to first block
model_block_args: A list of lists, outer list defines stages, inner
list contains strings defining block configuration(s)
Return:
List of block stacks (each stack wrapped in nn.Sequential)
"""
if self.verbose:
self.logger.info(
'Building model trunk with %d stages...' %
len(model_block_args))
self.in_chs = in_chs
total_block_count = sum([len(x) for x in model_block_args])
total_block_idx = 0
current_stride = 2
current_dilation = 1
feature_idx = 0
stages = nn.ModuleList()
# outer list of block_args defines the stacks ('stages' by some
# conventions)
for stage_idx, stage_block_args in enumerate(model_block_args):
last_stack = stage_idx == (len(model_block_args) - 1)
if self.verbose:
self.logger.info('Stack: {}'.format(stage_idx))
assert isinstance(stage_block_args, list)
blocks = nn.ModuleList()
# each stack (stage) contains a list of block arguments
for block_idx, block_args in enumerate(stage_block_args):
last_block = block_idx == (len(stage_block_args) - 1)
if self.verbose:
self.logger.info(' Block: {}'.format(block_idx))
# Sort out stride, dilation, and feature extraction details
assert block_args['stride'] in (1, 2)
if block_idx >= 1:
# only the first block in any stack can have a stride > 1
block_args['stride'] = 1
next_dilation = current_dilation
if block_args['stride'] > 1:
next_output_stride = current_stride * block_args['stride']
if next_output_stride > self.output_stride:
next_dilation = current_dilation * block_args['stride']
block_args['stride'] = 1
if self.verbose:
self.logger.info(
' Converting stride to dilation to maintain output_stride=={}'.format(
self.output_stride))
else:
current_stride = next_output_stride
block_args['dilation'] = current_dilation
if next_dilation != current_dilation:
current_dilation = next_dilation
if stage_idx == 0 or stage_idx == 6:
self.choice_num = 1
else:
self.choice_num = len(self.choices)
if self.dil_conv:
self.choice_num += 2
choice_blocks = nn.ModuleList()
block_args_copy = deepcopy(block_args)
if self.choice_num == 1:
# create the block
block = self._make_block(
block_args, 0, total_block_idx, total_block_count)
choice_blocks.append(block)
else:
for choice_idx, choice in enumerate(self.choices):
# create the block
block_args = deepcopy(block_args_copy)
block_args = modify_block_args(
block_args, choice[0], choice[1])
block = self._make_block(
block_args, choice_idx, total_block_idx, total_block_count)
choice_blocks.append(block)
if self.dil_conv:
block_args = deepcopy(block_args_copy)
block_args = modify_block_args(block_args, 3, 0)
block = self._make_block(
block_args,
self.choice_num - 2,
total_block_idx,
total_block_count,
resunit=self.resunit,
dil_conv=self.dil_conv)
choice_blocks.append(block)
block_args = deepcopy(block_args_copy)
block_args = modify_block_args(block_args, 5, 0)
block = self._make_block(
block_args,
self.choice_num - 1,
total_block_idx,
total_block_count,
resunit=self.resunit,
dil_conv=self.dil_conv)
choice_blocks.append(block)
if self.resunit:
block = get_Bottleneck(block.conv_pw.in_channels,
block.conv_pwl.out_channels,
block.conv_dw.stride[0])
choice_blocks.append(block)
blocks.append(choice_blocks)
# incr global block idx (across all stacks)
total_block_idx += 1
stages.append(blocks)
return stages
|
Cream/Cream/lib/models/builders/build_supernet.py/0
|
{
"file_path": "Cream/Cream/lib/models/builders/build_supernet.py",
"repo_id": "Cream",
"token_count": 5205
}
| 292 |
# model settings
model = dict(
type='CascadeRCNN',
pretrained=None,
backbone=dict(
type='SwinTransformer',
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.2,
ape=False,
patch_norm=True,
out_indices=(0, 1, 2, 3),
use_checkpoint=False),
neck=dict(
type='FPN',
in_channels=[96, 192, 384, 768],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
roi_head=dict(
type='CascadeRoIHead',
num_stages=3,
stage_loss_weights=[1, 0.5, 0.25],
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=[
dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=80,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
loss_weight=1.0)),
dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=80,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.05, 0.05, 0.1, 0.1]),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
loss_weight=1.0)),
dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=80,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.033, 0.033, 0.067, 0.067]),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
],
mask_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
mask_head=dict(
type='FCNMaskHead',
num_convs=4,
in_channels=256,
conv_out_channels=256,
num_classes=80,
loss_mask=dict(
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
# model training and testing settings
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_per_img=2000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.6,
neg_iou_thr=0.6,
min_pos_iou=0.6,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.7,
min_pos_iou=0.7,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False)
]),
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100,
mask_thr_binary=0.5)))
|
Cream/EfficientViT/downstream/configs/_base_/models/cascade_mask_rcnn_swin_fpn.py/0
|
{
"file_path": "Cream/EfficientViT/downstream/configs/_base_/models/cascade_mask_rcnn_swin_fpn.py",
"repo_id": "Cream",
"token_count": 4748
}
| 293 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.