text
stringlengths
5
22M
id
stringlengths
12
177
metadata
dict
__index_level_0__
int64
0
1.37k
# def propara_executor(state, action): import jsonlines from tqdm import tqdm from random import choices import argparse import multiprocessing from multiprocessing import Pool parser = argparse.ArgumentParser() parser.add_argument("--dataset_prefix", type=str, default='propara', help="dataset prefix") # parser.add_argument("--max_number", type=int, default=10000, help="max number each dataset.") parser.add_argument("--corpus_file", type=str, default='../corpus/pretraining_corpus_propara.txt', help="corpus file") args = parser.parse_args() fw = open(args.corpus_file, 'w') def random_sampling(candidate_list, n, weights=None): result_list = [] for _ in range(n): result = choices(candidate_list, k=1, weights=weights)[0] result_list.append(result) return result_list def propara_state_generator(candidate_list): # random get a state item = random_sampling(candidate_list, 1)[0] participants = item['participants'] states = random_sampling(item['states_token'], len(participants)) states = {'participants':participants, 'states':states} return states def propara_action_generator(states, states_tokens): # random get an action action = '' func_list = ['Move', 'Create', 'Destroy'] while True: try: func = random_sampling(func_list,1)[0] if func == 'Create': available_participants = [p for p, s in zip(states['participants'],states['states']) if s == '-'] p = random_sampling(available_participants, 1)[0] x = random_sampling(states_tokens, 1)[0] if x not in ['-', '?']: action = {'func': func, 'participant':p, 'para1':x} else: action = {'func': func, 'participant':p} elif func == 'Destroy': available_participants = [p for p, s in zip(states['participants'],states['states']) if s != '-'] p = random_sampling(available_participants, 1)[0] action = {'func': func, 'participant':p} elif func == 'Move': available_participants_states = [(p,s) for p, s in zip(states['participants'],states['states']) if s != '-'] p, x1 = random_sampling(available_participants_states, 1)[0] x2 = random_sampling([item for item in states_tokens if item != x1 and item != '-'], 1)[0] action = {'func': func, 'participant':p, 'para1':x1, 'para2':x2} break except: continue return action def propara_exeutor(states, action): result = dict() if action['func'] == 'Create': if 'para1' not in action.keys(): result['participants'] = states['participants'] result['states'] = ['?' if p==action['participant'] else s for p, s in zip(states['participants'], states['states'])] else: result['participants'] = states['participants'] result['states'] = [action['para1'] if p==action['participant'] else s for p, s in zip(states['participants'], states['states'])] elif action['func'] == 'Destroy': result['participants'] = states['participants'] result['states'] = ['-' if p==action['participant'] else s for p, s in zip(states['participants'], states['states'])] elif action['func'] == 'Move': result['participants'] = states['participants'] result['states'] = [action['para2'] if p==action['participant'] and s==action['para1'] else s for p, s in zip(states['participants'], states['states'])] return result def states_linearize_ori(states): return 'col : ' + ' | '.join(states['participants']) + ' ' + 'state : ' + ' | '.join(states['states']) def states_linearize_tgt(states): return 'state : ' + ' | '.join(states['states']) def action_linearize(action): if action['func'] == 'Create': if 'para1' in action.keys(): result = ' '.join([action['func'], action['participant'], action['para1']]) else: result = ' '.join([action['func'], action['participant']]) elif action['func'] == 'Destroy': result = ' '.join([action['func'], action['participant']]) elif action['func'] == 'Move': result = ' '.join([action['func'], action['participant'], 'from', action['para1'], 'to', action['para2']]) return result def corpus_generation(inputs): candidate_list, max_step, total_number = inputs count = 0 while True: states = propara_state_generator(candidate_list) action_list = [] for _ in range(20): action = propara_action_generator(states, states_tokens) if action['participant'] not in [item['participant'] for item in action_list]: action_list.append(action) if len(action_list) >= max_step: break if len(action_list) == max_step: states_temp = states for action in action_list: states_temp = propara_exeutor(states_temp, action) final_states = states_temp initial_states = states_linearize_ori(states) final_states = states_linearize_tgt(final_states) final_action = ' , '.join([action_linearize(item) for item in action_list]).lower() item_row = '\t'.join([final_action.strip(), initial_states, final_states]).lower() fw.write(item_row) fw.write('\n') count += 1 if count % 10000 == 0: print('Finish generating {} cases'.format(count)) if count >= total_number: break if __name__ == '__main__': if args.dataset_prefix == 'propara': data_lines = list(jsonlines.open('./grids.v1.train.json', 'r')) candidate_list = [] for index in tqdm(range(len(data_lines))): line = data_lines[index] id = line['para_id'] participants = line['participants'] states = line['states'] states_tokens = [states[i][j] for i in range(len(states)) for j in range(len(states[0]))] candidate = {'participants':participants, 'states_token':states_tokens} candidate_list.append(candidate) cores = multiprocessing.cpu_count() print("Using {} cores".format(cores)) pool = Pool(cores) max_number_list = [200000,300000,300000,300000,150000,75000,25000,10000] # 100W for i in range(1,9): res = pool.map(corpus_generation, zip([candidate_list]*cores, [i]*cores, [int(max_number_list[i-1] // cores)]*cores)) pool.close() pool.join()
ContextualSP/lemon/corpus_generation/propara_corpus_generation.py/0
{ "file_path": "ContextualSP/lemon/corpus_generation/propara_corpus_generation.py", "repo_id": "ContextualSP", "token_count": 2952 }
234
from abc import abstractproperty, ABCMeta, abstractmethod import tensorflow as tf from keras.layers import Dense, LSTM from gtd.ml.framework import Feedable, Model from gtd.ml.seq_batch import FeedSequenceBatch, embed, reduce_mean, SequenceBatch, reduce_sum, weighted_sum, reduce_max from gtd.ml.vocab import Vocab class Embedder(Feedable, metaclass=ABCMeta): """A map from objects to embeddings.""" @abstractproperty def embeds(self): """A Tensor of shape [vocab_size, :, ..., :].""" pass @property def embed_dim(self): return self.embeds.get_shape().as_list()[1] class TokenEmbedder(Embedder): """An embedding model for simple token-like objects (such as words). The embedding matrix is a TensorFlow Variable, with one row for each token. """ def __init__(self, simple_embeddings, var_name, trainable=True): """Create VariableEmbeddings. Args: simple_embeddings (SimpleEmbeddings): a gtd.vocab.SimpleEmbeddings object var_name (str): name for the Variable trainable (bool): whether the embedding matrix is trainable or not """ vocab = simple_embeddings.vocab vocab_size = len(vocab) embed_dim = simple_embeddings.embed_dim embeds = tf.get_variable(var_name, shape=[vocab_size, embed_dim], initializer=tf.constant_initializer(simple_embeddings.array), trainable=trainable) self._embeds = embeds self._embed_dim = embed_dim self._vocab = vocab @property def vocab(self): return self._vocab @property def embeds(self): return self._embeds @property def embed_dim(self): return self._embed_dim @property def vocab_size(self): return len(self.vocab) def inputs_to_feed_dict(self, *args, **kwargs): return {} class SequenceEmbedder(Embedder, metaclass=ABCMeta): """An embedding matrix for objects that can be represented as sequences (such as sentences).""" def __init__(self, token_embeds, align='left', seq_length=None, name='SequenceEmbedder'): """Create a SequenceEmbeddings object. Args: token_embeds (Tensor): a Tensor of shape (token_vocab_size, token_dim) align (str): see FeedSequenceBatch seq_length (int): see FeedSequenceBatch """ with tf.name_scope(name): sequence_batch = FeedSequenceBatch(align=align, seq_length=seq_length) # (sequence_vocab_size, seq_length) embedded_sequence_batch = embed(sequence_batch, token_embeds) embeds = self.embed_sequences(embedded_sequence_batch) self._sequence_batch = sequence_batch self._embedded_sequence_batch = embedded_sequence_batch self._embeds = embeds @abstractmethod def embed_sequences(self, embedded_sequence_batch): """Convert an embedded SequenceBatch into a Tensor of sequence embeddings. Args: embedded_sequence_batch (gtd.ml.seq_batch.SequenceBatch): a SequenceBatch of shape [seq_vocab_size, seq_length, token_dim] Returns: sequence_embeds (Tensor): of shape [seq_vocab_size, seq_dim] """ pass def inputs_to_feed_dict(self, sequences, token_vocab): """Feed sequences. Args: sequences (list[list[unicode]]): a list of sequences token_vocab (SimpleVocab): a map from token names to integers Returns: feed_dict """ return self._sequence_batch.inputs_to_feed_dict(sequences, token_vocab) @property def embeds(self): return self._embeds class MeanSequenceEmbedder(SequenceEmbedder): def __init__(self, token_embeds, align='left', seq_length=None, allow_empty=False, name='MeanSequenceEmbedder'): """MeanSequenceEmbedder. Args: allow_empty (bool): allow computing the average of an empty sequence. In this case, we assume 0/0 == 0, rather than NaN. Default is False, causing an error to be thrown. (see SequenceEmbedder for other args) """ self._allow_empty = allow_empty super(MeanSequenceEmbedder, self).__init__(token_embeds, align=align, seq_length=seq_length, name=name) def embed_sequences(self, embedded_sequence_batch): return reduce_mean(embedded_sequence_batch, allow_empty=self._allow_empty) class MaxSequenceEmbedder(SequenceEmbedder): def embed_sequences(self, embedded_sequence_batch): return reduce_max(embedded_sequence_batch) class ConcatSequenceEmbedder(SequenceEmbedder): def embed_sequences(self, embedded_sequence_batch): values = embedded_sequence_batch.values shape = tf.shape(values) nrows, ncols = shape[0], shape[1] * shape[2] new_shape = tf.pack([nrows, ncols]) result = tf.reshape(values, new_shape) # (batch_size, seq_length * embed_dim) # add static shape info batch_dim, seq_length_dim, token_dim = values.get_shape() concat_dim = token_dim * seq_length_dim result.set_shape(tf.TensorShape([batch_dim, concat_dim])) return result class Attention(Model): """Implements standard attention. Given some memory, a memory mask and a query, outputs the weighted memory cells. """ def __init__(self, memory_cells, query, project_query=False): """Define Attention. Args: memory_cells (SequenceBatch): a SequenceBatch containing a Tensor of shape (batch_size, num_cells, cell_dim) query (Tensor): a tensor of shape (batch_size, query_dim). project_query (bool): defaults to False. If True, the query goes through an extra projection layer to coerce it to cell_dim. """ cell_dim = memory_cells.values.get_shape().as_list()[2] if project_query: # project the query up/down to cell_dim self._projection_layer = Dense(cell_dim, activation='linear') query = self._projection_layer(query) # (batch_size, cand_dim) memory_values, memory_mask = memory_cells.values, memory_cells.mask # batch matrix multiply to compute logit scores for all choices in all batches query = tf.expand_dims(query, 2) # (batch_size, cell_dim, 1) logit_values = tf.batch_matmul(memory_values, query) # (batch_size, num_cells, 1) logit_values = tf.squeeze(logit_values, [2]) # (batch_size, num_cells) # set all pad logits to negative infinity logits = SequenceBatch(logit_values, memory_mask) logits = logits.with_pad_value(-float('inf')) # normalize to get probs probs = tf.nn.softmax(logits.values) # (batch_size, num_cells) retrieved = tf.batch_matmul(tf.expand_dims(probs, 1), memory_values) # (batch_size, 1, cell_dim) retrieved = tf.squeeze(retrieved, [1]) # (batch_size, cell_dim) self._logits = logits.values self._probs = probs self._retrieved = retrieved @property def logits(self): return self._logits # (batch_size, num_cells) @property def probs(self): return self._probs # (batch_size, num_cells) @property def retrieved(self): return self._retrieved # (batch_size, cell_dim) @property def projection_weights(self): """Get projection weights. Returns: (np.array, np.array): a pair of numpy arrays, (W, b) used to project the query tensor to match the predicate embedding dimension. """ return self._projection_layer.get_weights() @projection_weights.setter def projection_weights(self, value): W, b = value self._projection_layer.set_weights([W, b]) class Scorer(Model, metaclass=ABCMeta): @abstractproperty def scores(self): """Return a SequenceBatch.""" pass class CandidateScorer(Feedable, Scorer): def __init__(self, query, cand_embeds, project_query=False): """Create a CandidateScorer. Args: query (Tensor): of shape (batch_size, query_dim) cand_embeds (Tensor): of shape (cand_vocab_size, cand_dim) project_query (bool): whether to project the query tensor to match the dimension of the cand_embeds """ with tf.name_scope("CandidateScorer"): cand_batch = FeedSequenceBatch() embedded_cand_batch = embed(cand_batch, cand_embeds) # (batch_size, num_candidates, cand_dim) attention = Attention(embedded_cand_batch, query, project_query=project_query) self._attention = attention self._cand_batch = cand_batch self._scores = SequenceBatch(attention.logits, cand_batch.mask) self._probs = SequenceBatch(attention.probs, cand_batch.mask) @property def probs(self): return self._probs @property def scores(self): return self._scores @property def projection_weights(self): return self._attention.projection_weights @projection_weights.setter def projection_weights(self, value): self._attention.projection_weights = value def inputs_to_feed_dict(self, candidates, cand_vocab): """Feed inputs. Args: candidates (list[list[unicode]]): a batch of sequences, where each sequence is a unique set of candidates. cand_vocab (Vocab): a map from a candidate string to an int Returns: feed_dict """ return self._cand_batch.inputs_to_feed_dict(candidates, cand_vocab) class SoftCopyScorer(Feedable, Scorer): def __init__(self, input_scores): """Align a candidate with elements of the input, and define its score to be the summed score of aligned inputs. Args: input_scores (Tensor): of shape (batch_size, input_length) """ input_scores_flat = tf.reshape(input_scores, shape=[-1]) # (batch_size * input_length,) self._input_length = input_scores.get_shape().as_list()[1] alignments_flat = FeedSequenceBatch() # (total_candidates, max_alignments) alignment_weights_flat = FeedSequenceBatch(dtype=tf.float32) # (total_candidates, max_alignments) aligned_attention_weights = embed(alignments_flat, input_scores_flat) # (total_candidates, max_alignments) scores_flat = weighted_sum(aligned_attention_weights, alignment_weights_flat.with_pad_value(0).values) # (total_candidates,) unflatten = FeedSequenceBatch() # (batch_size, num_candidates) scores = embed(unflatten, scores_flat).with_pad_value(0) # (batch_size, num_candidates) self._alignments_flat = alignments_flat self._alignment_weights_flat = alignment_weights_flat self._unflatten = unflatten self._scores = scores @property def input_length(self): return self._input_length @property def scores(self): """A SequenceBatch.""" return self._scores def inputs_to_feed_dict(self, alignments): """Feed inputs. Args: alignments (list[list[list[(int, float)]]]): alignments[i][j] is a list of alignments for candidate j of example i. Each alignment is an (idx, strength) pair. `idx` corresponds to a position in the input sequence. `strength` is a float. Returns: a feed_dict """ alignments_flat = [] alignment_weights_flat = [] unflatten = [] flat_idx = 0 for ex_idx, ex_alignments in enumerate(alignments): # loop over examples uf = [] for aligns in ex_alignments: # loop over candidates if len(aligns) > 0: positions, strengths = [list(l) for l in zip(*aligns)] if max(positions) > (self._input_length - 1): raise ValueError("alignment positions must not exceed input length") else: positions, strengths = [], [] offset = ex_idx * self.input_length positions_flat = [offset + i for i in positions] alignments_flat.append(positions_flat) alignment_weights_flat.append(strengths) uf.append(flat_idx) flat_idx += 1 unflatten.append(uf) feed = {} feed.update(self._alignments_flat.inputs_to_feed_dict(alignments_flat)) feed.update(self._alignment_weights_flat.inputs_to_feed_dict(alignment_weights_flat)) feed.update(self._unflatten.inputs_to_feed_dict(unflatten)) return feed class LSTMSequenceEmbedder(SequenceEmbedder): """Forward LSTM Sequence Embedder Also provide attention states. """ def __init__(self, token_embeds, seq_length, align='left', name='LSTMSequenceEmbedder', hidden_size=50): self.hidden_size = hidden_size super(LSTMSequenceEmbedder, self).__init__(token_embeds, align=align, seq_length=seq_length, name=name) def embed_sequences(self, embed_sequence_batch): self._forward_lstm = LSTM(self.hidden_size, return_sequences=True) # Pass input through the LSTMs # Shape: (batch_size, seq_length, hidden_size) hidden_state_values = self._forward_lstm(embed_sequence_batch.values, embed_sequence_batch.mask) self._hidden_states = SequenceBatch(hidden_state_values, embed_sequence_batch.mask) # Embedding dimension: (batch_size, hidden_size) shape = tf.shape(embed_sequence_batch.values) forward_final = tf.slice(hidden_state_values, [0, shape[1] - 1, 0], [-1, 1, self.hidden_size]) return tf.squeeze(forward_final, [1]) @property def weights(self): return self._forward_lstm.get_weights() @weights.setter def weights(self, w): self._forward_lstm.set_weights(w) @property def hidden_states(self): return self._hidden_states class BidiLSTMSequenceEmbedder(SequenceEmbedder): """Bidirectional LSTM Sequence Embedder Also provide attention states. """ def __init__(self, token_embeds, seq_length, align='left', name='BidiLSTMSequenceEmbedder', hidden_size=50): self.seq_length = seq_length self.hidden_size = hidden_size super(BidiLSTMSequenceEmbedder, self).__init__(token_embeds, align=align, seq_length=seq_length, name=name) def embed_sequences(self, embed_sequence_batch): """Return sentence embeddings as a tensor with with shape [batch_size, hidden_size * 2] """ forward_values = embed_sequence_batch.values forward_mask = embed_sequence_batch.mask backward_values = tf.reverse(forward_values, [False, True, False]) backward_mask = tf.reverse(forward_mask, [False, True]) # Initialize LSTMs self._forward_lstm = LSTM(self.hidden_size, return_sequences=True) self._backward_lstm = LSTM(self.hidden_size, return_sequences=True) # Pass input through the LSTMs # Shape: (batch_size, seq_length, hidden_size) forward_seq = self._forward_lstm(forward_values, forward_mask) forward_seq.set_shape((None, self.seq_length, self.hidden_size)) backward_seq = self._backward_lstm(backward_values, backward_mask) backward_seq.set_shape((None, self.seq_length, self.hidden_size)) # Stitch the outputs together --> hidden states (for computing attention) # Final dimension: (batch_size, seq_length, hidden_size * 2) lstm_states = tf.concat(2, [forward_seq, tf.reverse(backward_seq, [False, True, False])]) self._hidden_states = SequenceBatch(lstm_states, forward_mask) # Stitch the final outputs together --> sequence embedding # Final dimension: (batch_size, hidden_size * 2) seq_length = tf.shape(forward_values)[1] forward_final = tf.slice(forward_seq, [0, seq_length - 1, 0], [-1, 1, self.hidden_size]) backward_final = tf.slice(backward_seq, [0, seq_length - 1, 0], [-1, 1, self.hidden_size]) return tf.squeeze(tf.concat(2, [forward_final, backward_final]), [1]) @property def weights(self): return (self._forward_lstm.get_weights(), self._backward_lstm.get_weights()) @weights.setter def weights(self, w): forward_weights, backward_weights = w self._forward_lstm.set_weights(forward_weights) self._backward_lstm.set_weights(backward_weights) @property def hidden_states(self): """Return a SequenceBatch whose value has shape [batch_size, max_seq_length, hidden_size * 2] """ return self._hidden_states
ContextualSP/lemon/executor/gtd/ml/model.py/0
{ "file_path": "ContextualSP/lemon/executor/gtd/ml/model.py", "repo_id": "ContextualSP", "token_count": 6965 }
235
from unittest import TestCase from gtd.graph import Graph class TestGraph(TestCase): def test_shortest_path(self): triples = [ ('1', '2', '3'), ('3', '4', '5'), ('1', '0', '5'), ] self.assertEqual( Graph(triples).shortest_path('1', '5'), ['1', '0', '5'] ) self.assertEqual( Graph(triples[:2]).shortest_path('1', '5'), ['1', '2', '3', '4', '5'] )
ContextualSP/lemon/executor/gtd/tests/test_graph.py/0
{ "file_path": "ContextualSP/lemon/executor/gtd/tests/test_graph.py", "repo_id": "ContextualSP", "token_count": 255 }
236
from abc import ABCMeta, abstractproperty class ExampleFactory(object, metaclass=ABCMeta): @abstractproperty def examples(self): """Return an iterable of Examples.""" raise NotImplementedError
ContextualSP/lemon/executor/strongsup/example_factory.py/0
{ "file_path": "ContextualSP/lemon/executor/strongsup/example_factory.py", "repo_id": "ContextualSP", "token_count": 73 }
237
"""Knowledge graph constructed from a table. The graph is stored as a list of triples. """ import os import re import sys from collections import Counter from itertools import chain from strongsup.tables.structure import parse_number, parse_date, InfiniteSet from strongsup.tables.utils import tsv_unescape, tsv_unescape_list from dependency.data_directory import DataDirectory ################################ # Constants REL_NEXT = 'fb:row.row.next' REL_INDEX = 'fb:row.row.index' REL_NUMBER = 'fb:cell.cell.number' REL_DATE = 'fb:cell.cell.date' REL_NUM2 = 'fb:cell.cell.num2' REL_PART = 'fb:cell.cell.part' ALL_GRAPH_BUILT_INS = (REL_NEXT, REL_INDEX, REL_NUMBER, REL_DATE, REL_NUM2, REL_PART) ALL_GRAPH_BUILT_INS += tuple('!' + x for x in ALL_GRAPH_BUILT_INS) NULL_CELL = 'fb:cell.null' ################################ # TablesKnowledgeGraph class TablesKnowledgeGraph(object): """A knowledge graph constructed from a table.""" # Whether to start the row indices from 1 (default) or 0 (legacy). FIRST_ROW_INDEX = 1 def __init__(self, fin, name=None): """Construct a TablesKnowledgeGraph from a CoreNLP-tagged table TSV file. Each line in the TSV file describe a cell in the context table. The following fields must be present: - row: Row index (-1 = header row, body row index starts from 0) - col: Column index (starts from 0) - id: ID of the cell - content: Original string content of the cell The following fields are optional: - number: Possible number normalization ("40 cakes" --> 40) - date: Possible date normalization ("Jan 5" --> xx-01-05) - num2: Possible second-number normalization ("3-1" --> 1) - list and listID: Possible list normalization ("Apple, Banana, Orange" --> Apple|Banana|Orange) listID contains the ID of the list items, while list contains the original strings Args: fin: A filename string or a file object. name: Unique identifier """ if isinstance(fin, str): with open(fin) as fin_file: self.__init__(fin_file, name=(name or fin)) return self._name = name or (fin.name if hasattr(fin, 'name') else str(fin)) # Map from relation -> [{first -> seconds}, {second -> firsts}] self._relations = {} # Map from id -> original string self._original_strings = {} # Set of all row IDs self._rows = set() # List of column IDs self._columns = [] # _grid[i][j] = cell id at row i column j self._grid = [] # Now fin is a file object current_row, current_row_id = None, None header = fin.readline().rstrip('\n').split('\t') for line in fin: line = line.rstrip('\n').split('\t') if len(line) < len(header): line.extend([''] * (len(header) - len(line))) record = dict(list(zip(header, line))) if record['row'] == '-1': # column headers self._columns.append(record['id']) self._original_strings[record['id']] = tsv_unescape(record['content']) self._original_strings['!' + record['id']] = tsv_unescape(record['content']) else: # normal cell # Define a bunch of knowledge graph edges. row, col = int(record['row']), int(record['col']) if current_row != row: current_row = row actual_row_index = current_row + self.FIRST_ROW_INDEX previous_row_id = current_row_id current_row_id = 'fb:row.r{}'.format(actual_row_index) if previous_row_id is not None: # Row --> Next Row relation self._add_relation(REL_NEXT, previous_row_id, current_row_id) # Row --> Index relation self._add_relation(REL_INDEX, current_row_id, float(actual_row_index)) self._rows.add(current_row_id) self._grid.append([]) # Assume that the cells are listed in the correct order assert len(self._grid[row]) == col self._grid[row].append(record['id']) self._original_strings[record['id']] = tsv_unescape(record['content']) # Row --> Cell relation self._add_relation(self._columns[col], current_row_id, record['id']) # Normalization relations if record.get('number'): for second in (parse_number(x) for x in record['number'].split('|')): self._add_relation(REL_NUMBER, record['id'], second) if record.get('date'): for second in (parse_date(x) for x in record['date'].split('|')): self._add_relation(REL_DATE, record['id'], second) if record.get('num2'): for second in (parse_number(x) for x in record['num2'].split('|')): self._add_relation(REL_NUM2, record['id'], second) if record.get('listId'): list_ids = record['listId'].split('|') for second in list_ids: self._add_relation(REL_PART, record['id'], second) # Original strings for listIds list_strings = tsv_unescape_list(record['list']) for list_id, list_string in zip(list_ids, list_strings): self._original_strings[list_id] = list_string def _add_relation(self, relation, first, second): """Internal function for adding a knowledge graph edge (x, r, y). Args: relation: Relation r (string) first: Entity x (string, number, or date) second: Entity y (string, number, or date) """ mapping = self._relations.setdefault(relation, [{}, {}]) mapping[0].setdefault(first, set()).add(second) mapping[1].setdefault(second, set()).add(first) ################################ # Queries @property def name(self): return self._name def __str__(self): return '<TablesKnowledgeGraph {}>'.format(self._name.encode('utf8', 'ignore')) __repr__ = __str__ @property def executor(self): try: return self._executor except AttributeError: # Import here to prevent recursive import from strongsup.tables.executor import TablesPostfixExecutor self._executor = TablesPostfixExecutor(self) return self._executor def join(self, relation, seconds): """Return the set of all x such that for some y in seconds, (x, relation, y) is in the graph. Note that the shorthand reversed relations (e.g., !fb:row.row.name) does not work. Args: relation (basestring): relation r seconds (set, InfiniteSet, or list): the set of y's Returns: the set of x's """ second_to_firsts = self._relations.get(relation, [{}, {}])[1] if isinstance(seconds, (list, set)): return set(chain.from_iterable(second_to_firsts.get(y, []) for y in seconds)) elif isinstance(seconds, InfiniteSet): return set(chain.from_iterable(xs for (y, xs) in second_to_firsts.items() if y in seconds)) else: raise NotImplementedError('? . {} . {}'.format(relation, seconds)) def reversed_join(self, relation, firsts): """Return the collection of all y such that for some x in firsts, (x, relation, y) is in the graph. Note that the shorthand reversed relations (e.g., !fb:row.row.name) does not work. Args: relation (basestring): Relation r (string) firsts (set, InfiniteSet, or list): the set of x's Returns: the set of y's """ first_to_seconds = self._relations.get(relation, [{}, {}])[0] if isinstance(firsts, (list, set)): return set(chain.from_iterable(first_to_seconds.get(x, []) for x in firsts)) elif isinstance(firsts, InfiniteSet): return set(chain.from_iterable(ys for (x, ys) in first_to_seconds.items() if x in firsts)) else: raise NotImplementedError('{} . {} . ?'.format(firsts, relation)) @property def all_rows(self): """Return the set of all rows fb:row.r0, ..., fb:row.r(M-1)""" return self._rows @property def all_columns(self): """Return the set of all column IDs""" return set(self._columns) def has_id(self, id_): return id_ in self._original_strings def original_string(self, id_): """Return the original string (e.g., fb:cell.obama --> "Obama")""" return self._original_strings[id_] ################################ # Debug if __name__ == '__main__': table = TablesKnowledgeGraph(sys.argv[1]) print(table._rows) print(table._columns) print(table._grid) print(table._relations) print(table._original_strings)
ContextualSP/lemon/executor/strongsup/tables/graph.py/0
{ "file_path": "ContextualSP/lemon/executor/strongsup/tables/graph.py", "repo_id": "ContextualSP", "token_count": 4157 }
238
# -*- coding: utf-8 -*- import pytest from strongsup.tables.utils import ( tsv_unescape, tsv_unescape_list, normalize, ) class TestStringMethods(object): def test_tsv_unescape(self): assert tsv_unescape(r'abn\ncd\p\\\pp') == 'abn\ncd|\\|p' assert tsv_unescape_list(r'abn\ncd\p\\\pp|u\n\pac|r||d') == [ 'abn\ncd|\\|p', 'u\n|ac', 'r', '', 'd'] def test_normalize(self): assert normalize(' This is a BOOK†[a][1]') == 'this is a book' assert normalize('Apollo 11 (1969) 「阿波罗」') == 'apollo 11 (1969) 「阿波罗」' assert normalize('"Apollo 11 (1969)"') == 'apollo 11' assert normalize('"Apollo 11" (1969)') == 'apollo 11' assert normalize('“Erdős café – ε’š delight.”') == 'erdos cafe - ε\'s delight' assert normalize('3.14') == '3.14'
ContextualSP/lemon/executor/strongsup/tests/tables/test_utils.py/0
{ "file_path": "ContextualSP/lemon/executor/strongsup/tests/tables/test_utils.py", "repo_id": "ContextualSP", "token_count": 422 }
239
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import re from collections import defaultdict from re import RegexFlag from typing import List def extract_structure_data(plain_text_content: str): # extracts lines starts with specific flags # map id to its related information data = [] predict_outputs = re.findall("^D.+", plain_text_content, RegexFlag.MULTILINE) ground_outputs = re.findall("^T.+", plain_text_content, RegexFlag.MULTILINE) source_inputs = re.findall("^S.+", plain_text_content, RegexFlag.MULTILINE) for predict, ground, source in zip(predict_outputs, ground_outputs, source_inputs): try: predict_id, _, predict_clean = predict.split('\t') ground_id, ground_clean = ground.split('\t') source_id, source_clean = source.split('\t') assert predict_id[2:] == ground_id [2:] assert ground_id[2:] == source_id[2:] except Exception: print("An error occurred in source: {}".format(source)) continue data.append((predict_clean, ground_clean, source_clean, predict_id[2:])) return data def evaluate(data: List, target_delimiter: str): def evaluate_example(_predict_str: str, _ground_str: str): _predict_spans = _predict_str.split(target_delimiter) _ground_spans = _ground_str.split(target_delimiter) _predict_values = defaultdict(lambda: 0) _ground_values = defaultdict(lambda: 0) for span in _predict_spans: try: _predict_values[float(span)] += 1 except ValueError: _predict_values[span.strip()] += 1 for span in _ground_spans: try: _ground_values[float(span)] += 1 except ValueError: _ground_values[span.strip()] += 1 _is_correct = _predict_values == _ground_values return _is_correct correct_num = 0 correct_arr = [] total = len(data) for example in data: predict_str, ground_str, source_str, predict_id = example is_correct = evaluate_example(predict_str, ground_str) if is_correct: correct_num += 1 correct_arr.append(is_correct) print("Correct / Total : {} / {}, Denotation Accuracy : {:.3f}".format(correct_num, total, correct_num / total)) return correct_arr def evaluate_generate_file(generate_file_path, target_delimiter): with open(generate_file_path, "r", encoding="utf8") as generate_f: file_content = generate_f.read() data = extract_structure_data(file_content) correct_arr = evaluate(data, target_delimiter) # write into eval file eval_file_path = generate_file_path + ".eval" eval_file = open(eval_file_path, "w", encoding="utf8") eval_file.write("Score\tPredict\tGolden\tSource\tID\n") for example, correct in zip(data, correct_arr): eval_file.write(str(correct) + "\t" + "\t".join(example) + "\n") eval_file.close()
ContextualSP/lemon/lemon/model_eval.py/0
{ "file_path": "ContextualSP/lemon/lemon/model_eval.py", "repo_id": "ContextualSP", "token_count": 1290 }
240
# OpenBookQA * [evaluator](evaluator/) is the program used by the AI2 Leaderboard to evaluate submitted predictions. * `data` have the files (and scripts to generate them) used for evaluating Leaderboard predictions. ## Example usage To evaluate dummy predictions (every question is predicted to be `A`) against the dataset, run this: ``` % python3 evaluator/evaluator.py -qa data/question-answers.jsonl -p data/dummy-predictions.csv -o metrics.json % cat metrics.json {"accuracy": 0.276} ```
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/openbookqa/README.md/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/openbookqa/README.md", "repo_id": "ContextualSP", "token_count": 149 }
241
#!/bin/bash echo ---------------------------------- echo removing pycache detritus echo ---------------------------------- echo rm -vrf $(find . -type d -name __pycache__) echo echo ---------------------------------- echo removing mypy detritus echo ---------------------------------- echo rm -vrf .mypy_cache
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/clean.sh/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/clean.sh", "repo_id": "ContextualSP", "token_count": 74 }
242
from scoring.question import QuestionScores
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/scoring/__init__.py/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/scoring/__init__.py", "repo_id": "ContextualSP", "token_count": 9 }
243
## Test case: Prediction and answer are both empty * answers.tsv is empty. * predictions.tsv is empty. An evaluation on this prediction should abort.
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/testfiles-4/README.md/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/propara/evaluator/testfiles-4/README.md", "repo_id": "ContextualSP", "token_count": 40 }
244
# QASC * [evaluator](evaluator/) is the program used by the AI2 Leaderboard to evaluate submitted predictions. * `data` have example prediction files ## Example usage To evaluate your predictions against the train or dev datasets, run either of these and look at the resulting metrics.json file: ``` % python3 evaluator/evaluator.py -qa data/train.jsonl -p /path/to/your/train/predictions.csv -o metrics.json % python3 evaluator/evaluator.py -qa data/dev.jsonl -p /path/to/your/dev/predictions.csv -o metrics.json ``` For example, to evaluate dummy predictions (every question is predicted to be `A`) against the train dataset, run this: ``` % python3 evaluator/evaluator.py -qa data/train.jsonl -p data/train-predictions.csv -o metrics.json % cat metrics.json {"accuracy": 0.12417014998770592} ``` For usage of the evaluator, see the [evaluator README](evaluator/).
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/qasc/README.md/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/qasc/README.md", "repo_id": "ContextualSP", "token_count": 281 }
245
# SciTail * [evaluator](evaluator/) is the program used by the AI2 Leaderboard to evaluate submitted predictions. ## Example usage To evaluate dummy predictions (every pair of sentences is predicted to entail) against the SciTail dataset, run this: ``` % python3 evaluator/evaluator.py -a data/test/answers.jsonl -p data/test/dummy-predictions.csv accuracy: 0.39604891815616183 ``` Replace `data/test/dummy-predictions.csv` with your predictions to compute your test score. You can also evaluate predictions against the Dev set by running: ``` % python3 evaluator/evaluator.py -a data/dev/answers.jsonl -p data/dev/dummy-predictions.csv accuracy: 0.5038343558282209 ``` Replace `data/dev/dummy-predictions.csv` with your predictions to compute your dev score.
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/scitail/README.md/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/scitail/README.md", "repo_id": "ContextualSP", "token_count": 247 }
246
{"id": "tracie-train-uniform-0000", "label": "entailment"} {"id": "tracie-train-uniform-0001", "label": "entailment"} {"id": "tracie-train-uniform-0002", "label": "entailment"} {"id": "tracie-train-uniform-0003", "label": "entailment"} {"id": "tracie-train-uniform-0004", "label": "entailment"} {"id": "tracie-train-uniform-0005", "label": "entailment"} {"id": "tracie-train-uniform-0006", "label": "entailment"} {"id": "tracie-train-uniform-0007", "label": "entailment"} {"id": "tracie-train-uniform-0008", "label": "entailment"} {"id": "tracie-train-uniform-0009", "label": "entailment"} {"id": "tracie-train-uniform-0010", "label": "entailment"} {"id": "tracie-train-uniform-0011", "label": "entailment"} {"id": "tracie-train-uniform-0012", "label": "entailment"} {"id": "tracie-train-uniform-0013", "label": "entailment"} {"id": "tracie-train-uniform-0014", "label": "entailment"} {"id": "tracie-train-uniform-0015", "label": "entailment"} {"id": "tracie-train-uniform-0016", "label": "entailment"} {"id": "tracie-train-uniform-0017", "label": "entailment"} {"id": "tracie-train-uniform-0018", "label": "entailment"} {"id": "tracie-train-uniform-0019", "label": "entailment"} {"id": "tracie-train-uniform-0020", "label": "entailment"} {"id": "tracie-train-uniform-0021", "label": "entailment"} {"id": "tracie-train-uniform-0022", "label": "entailment"} {"id": "tracie-train-uniform-0023", "label": "entailment"} {"id": "tracie-train-uniform-0024", "label": "entailment"} {"id": "tracie-train-uniform-0025", "label": "entailment"} {"id": "tracie-train-uniform-0026", "label": "entailment"} {"id": "tracie-train-uniform-0027", "label": "entailment"} {"id": "tracie-train-uniform-0028", "label": "entailment"} {"id": "tracie-train-uniform-0029", "label": "entailment"} {"id": "tracie-train-uniform-0030", "label": "entailment"} {"id": "tracie-train-uniform-0031", "label": "entailment"} {"id": "tracie-train-uniform-0032", "label": "entailment"} {"id": "tracie-train-uniform-0033", "label": "entailment"} {"id": "tracie-train-uniform-0034", "label": "entailment"} {"id": "tracie-train-uniform-0035", "label": "entailment"} {"id": "tracie-train-uniform-0036", "label": "entailment"} {"id": "tracie-train-uniform-0037", "label": "entailment"} {"id": "tracie-train-uniform-0038", "label": "entailment"} {"id": "tracie-train-uniform-0039", "label": "entailment"} {"id": "tracie-train-uniform-0040", "label": "entailment"} {"id": "tracie-train-uniform-0041", "label": "entailment"} {"id": "tracie-train-uniform-0042", "label": "entailment"} {"id": "tracie-train-uniform-0043", "label": "entailment"} {"id": "tracie-train-uniform-0044", "label": "entailment"} {"id": "tracie-train-uniform-0045", "label": "entailment"} {"id": "tracie-train-uniform-0046", "label": "entailment"} {"id": "tracie-train-uniform-0047", "label": "entailment"} {"id": "tracie-train-uniform-0048", "label": "entailment"} {"id": "tracie-train-uniform-0049", "label": "entailment"} {"id": "tracie-train-uniform-0050", "label": "entailment"} {"id": "tracie-train-uniform-0051", "label": "entailment"} {"id": "tracie-train-uniform-0052", "label": "entailment"} {"id": "tracie-train-uniform-0053", "label": "entailment"} {"id": "tracie-train-uniform-0054", "label": "entailment"} {"id": "tracie-train-uniform-0055", "label": "entailment"} {"id": "tracie-train-uniform-0056", "label": "entailment"} {"id": "tracie-train-uniform-0057", "label": "entailment"} {"id": "tracie-train-uniform-0058", "label": "entailment"} {"id": "tracie-train-uniform-0059", "label": "entailment"} {"id": "tracie-train-uniform-0060", "label": "entailment"} {"id": "tracie-train-uniform-0061", "label": "entailment"} {"id": "tracie-train-uniform-0062", "label": "entailment"} {"id": "tracie-train-uniform-0063", "label": "entailment"} {"id": "tracie-train-uniform-0064", "label": "entailment"} {"id": "tracie-train-uniform-0065", "label": "entailment"} {"id": "tracie-train-uniform-0066", "label": "entailment"} {"id": "tracie-train-uniform-0067", "label": "entailment"} {"id": "tracie-train-uniform-0068", "label": "entailment"} {"id": "tracie-train-uniform-0069", "label": "entailment"} {"id": "tracie-train-uniform-0070", "label": "entailment"} {"id": "tracie-train-uniform-0071", "label": "entailment"} {"id": "tracie-train-uniform-0072", "label": "entailment"} {"id": "tracie-train-uniform-0073", "label": "entailment"} {"id": "tracie-train-uniform-0074", "label": "entailment"} {"id": "tracie-train-uniform-0075", "label": "entailment"} {"id": "tracie-train-uniform-0076", "label": "entailment"} {"id": "tracie-train-uniform-0077", "label": "entailment"} {"id": "tracie-train-uniform-0078", "label": "entailment"} {"id": "tracie-train-uniform-0079", "label": "entailment"} {"id": "tracie-train-uniform-0080", "label": "entailment"} {"id": "tracie-train-uniform-0081", "label": "entailment"} {"id": "tracie-train-uniform-0082", "label": "entailment"} {"id": "tracie-train-uniform-0083", "label": "entailment"} {"id": "tracie-train-uniform-0084", "label": "entailment"} {"id": "tracie-train-uniform-0085", "label": "entailment"} {"id": "tracie-train-uniform-0086", "label": "entailment"} {"id": "tracie-train-uniform-0087", "label": "entailment"} {"id": "tracie-train-uniform-0088", "label": "entailment"} {"id": "tracie-train-uniform-0089", "label": "entailment"} {"id": "tracie-train-uniform-0090", "label": "entailment"} {"id": "tracie-train-uniform-0091", "label": "entailment"} {"id": "tracie-train-uniform-0092", "label": "entailment"} {"id": "tracie-train-uniform-0093", "label": "entailment"} {"id": "tracie-train-uniform-0094", "label": "entailment"} {"id": "tracie-train-uniform-0095", "label": "entailment"} {"id": "tracie-train-uniform-0096", "label": "entailment"} {"id": "tracie-train-uniform-0097", "label": "entailment"} {"id": "tracie-train-uniform-0098", "label": "entailment"} {"id": "tracie-train-uniform-0099", "label": "entailment"} {"id": "tracie-train-uniform-0100", "label": "entailment"} {"id": "tracie-train-uniform-0101", "label": "entailment"} {"id": "tracie-train-uniform-0102", "label": "entailment"} {"id": "tracie-train-uniform-0103", "label": "entailment"} {"id": "tracie-train-uniform-0104", "label": "entailment"} {"id": "tracie-train-uniform-0105", "label": "entailment"} {"id": "tracie-train-uniform-0106", "label": "entailment"} {"id": "tracie-train-uniform-0107", "label": "entailment"} {"id": "tracie-train-uniform-0108", "label": "entailment"} {"id": "tracie-train-uniform-0109", "label": "entailment"} {"id": "tracie-train-uniform-0110", "label": "entailment"} {"id": "tracie-train-uniform-0111", "label": "entailment"} {"id": "tracie-train-uniform-0112", "label": "entailment"} {"id": "tracie-train-uniform-0113", "label": "entailment"} {"id": "tracie-train-uniform-0114", "label": "entailment"} {"id": "tracie-train-uniform-0115", "label": "entailment"} {"id": "tracie-train-uniform-0116", "label": "entailment"} {"id": "tracie-train-uniform-0117", "label": "entailment"} {"id": "tracie-train-uniform-0118", "label": "entailment"} {"id": "tracie-train-uniform-0119", "label": "entailment"} {"id": "tracie-train-uniform-0120", "label": "entailment"} {"id": "tracie-train-uniform-0121", "label": "entailment"} {"id": "tracie-train-uniform-0122", "label": "entailment"} {"id": "tracie-train-uniform-0123", "label": "entailment"} {"id": "tracie-train-uniform-0124", "label": "entailment"} {"id": "tracie-train-uniform-0125", "label": "entailment"} {"id": "tracie-train-uniform-0126", "label": "entailment"} {"id": "tracie-train-uniform-0127", "label": "entailment"} {"id": "tracie-train-uniform-0128", "label": "entailment"} {"id": "tracie-train-uniform-0129", "label": "entailment"} {"id": "tracie-train-uniform-0130", "label": "entailment"} {"id": "tracie-train-uniform-0131", "label": "entailment"} {"id": "tracie-train-uniform-0132", "label": "entailment"} {"id": "tracie-train-uniform-0133", "label": "entailment"} {"id": "tracie-train-uniform-0134", "label": "entailment"} {"id": "tracie-train-uniform-0135", "label": "entailment"} {"id": "tracie-train-uniform-0136", "label": "entailment"} {"id": "tracie-train-uniform-0137", "label": "entailment"} {"id": "tracie-train-uniform-0138", "label": "entailment"} {"id": "tracie-train-uniform-0139", "label": "entailment"} {"id": "tracie-train-uniform-0140", "label": "entailment"} {"id": "tracie-train-uniform-0141", "label": "entailment"} {"id": "tracie-train-uniform-0142", "label": "entailment"} {"id": "tracie-train-uniform-0143", "label": "entailment"} {"id": "tracie-train-uniform-0144", "label": "entailment"} {"id": "tracie-train-uniform-0145", "label": "entailment"} {"id": "tracie-train-uniform-0146", "label": "entailment"} {"id": "tracie-train-uniform-0147", "label": "entailment"} {"id": "tracie-train-uniform-0148", "label": "entailment"} {"id": "tracie-train-uniform-0149", "label": "entailment"} {"id": "tracie-train-uniform-0150", "label": "entailment"} {"id": "tracie-train-uniform-0151", "label": "entailment"} {"id": "tracie-train-uniform-0152", "label": "entailment"} {"id": "tracie-train-uniform-0153", "label": "entailment"} {"id": "tracie-train-uniform-0154", "label": "entailment"} {"id": "tracie-train-uniform-0155", "label": "entailment"} {"id": "tracie-train-uniform-0156", "label": "entailment"} {"id": "tracie-train-uniform-0157", "label": "entailment"} {"id": "tracie-train-uniform-0158", "label": "entailment"} {"id": "tracie-train-uniform-0159", "label": "entailment"} {"id": "tracie-train-uniform-0160", "label": "entailment"} {"id": "tracie-train-uniform-0161", "label": "entailment"} {"id": "tracie-train-uniform-0162", "label": "entailment"} {"id": "tracie-train-uniform-0163", "label": "entailment"} {"id": "tracie-train-uniform-0164", "label": "entailment"} {"id": "tracie-train-uniform-0165", "label": "entailment"} {"id": "tracie-train-uniform-0166", "label": "entailment"} {"id": "tracie-train-uniform-0167", "label": "entailment"} {"id": "tracie-train-uniform-0168", "label": "entailment"} {"id": "tracie-train-uniform-0169", "label": "entailment"} {"id": "tracie-train-uniform-0170", "label": "entailment"} {"id": "tracie-train-uniform-0171", "label": "entailment"} {"id": "tracie-train-uniform-0172", "label": "entailment"} {"id": "tracie-train-uniform-0173", "label": "entailment"} {"id": "tracie-train-uniform-0174", "label": "entailment"} {"id": "tracie-train-uniform-0175", "label": "entailment"} {"id": "tracie-train-uniform-0176", "label": "entailment"} {"id": "tracie-train-uniform-0177", "label": "entailment"} {"id": "tracie-train-uniform-0178", "label": "entailment"} {"id": "tracie-train-uniform-0179", "label": "entailment"} {"id": "tracie-train-uniform-0180", "label": "entailment"} {"id": "tracie-train-uniform-0181", "label": "entailment"} {"id": "tracie-train-uniform-0182", "label": "entailment"} {"id": "tracie-train-uniform-0183", "label": "entailment"} {"id": "tracie-train-uniform-0184", "label": "entailment"} {"id": "tracie-train-uniform-0185", "label": "entailment"} {"id": "tracie-train-uniform-0186", "label": "entailment"} {"id": "tracie-train-uniform-0187", "label": "entailment"} {"id": "tracie-train-uniform-0188", "label": "entailment"} {"id": "tracie-train-uniform-0189", "label": "entailment"} {"id": "tracie-train-uniform-0190", "label": "entailment"} {"id": "tracie-train-uniform-0191", "label": "entailment"} {"id": "tracie-train-uniform-0192", "label": "entailment"} {"id": "tracie-train-uniform-0193", "label": "entailment"} {"id": "tracie-train-uniform-0194", "label": "entailment"} {"id": "tracie-train-uniform-0195", "label": "entailment"} {"id": "tracie-train-uniform-0196", "label": "entailment"} {"id": "tracie-train-uniform-0197", "label": "entailment"} {"id": "tracie-train-uniform-0198", "label": "entailment"} {"id": "tracie-train-uniform-0199", "label": "entailment"} {"id": "tracie-train-uniform-0200", "label": "entailment"} {"id": "tracie-train-uniform-0201", "label": "entailment"} {"id": "tracie-train-uniform-0202", "label": "entailment"} {"id": "tracie-train-uniform-0203", "label": "entailment"} {"id": "tracie-train-uniform-0204", "label": "entailment"} {"id": "tracie-train-uniform-0205", "label": "entailment"} {"id": "tracie-train-uniform-0206", "label": "entailment"} {"id": "tracie-train-uniform-0207", "label": "entailment"} {"id": "tracie-train-uniform-0208", "label": "entailment"} {"id": "tracie-train-uniform-0209", "label": "entailment"} {"id": "tracie-train-uniform-0210", "label": "entailment"} {"id": "tracie-train-uniform-0211", "label": "entailment"} {"id": "tracie-train-uniform-0212", "label": "entailment"} {"id": "tracie-train-uniform-0213", "label": "entailment"} {"id": "tracie-train-uniform-0214", "label": "entailment"} {"id": "tracie-train-uniform-0215", "label": "entailment"} {"id": "tracie-train-uniform-0216", "label": "entailment"} {"id": "tracie-train-uniform-0217", "label": "entailment"} {"id": "tracie-train-uniform-0218", "label": "entailment"} {"id": "tracie-train-uniform-0219", "label": "entailment"} {"id": "tracie-train-uniform-0220", "label": "entailment"} {"id": "tracie-train-uniform-0221", "label": "entailment"} {"id": "tracie-train-uniform-0222", "label": "entailment"} {"id": "tracie-train-uniform-0223", "label": "entailment"} {"id": "tracie-train-uniform-0224", "label": "entailment"} {"id": "tracie-train-uniform-0225", "label": "entailment"} {"id": "tracie-train-uniform-0226", "label": "entailment"} {"id": "tracie-train-uniform-0227", "label": "entailment"} {"id": "tracie-train-uniform-0228", "label": "entailment"} {"id": "tracie-train-uniform-0229", "label": "entailment"} {"id": "tracie-train-uniform-0230", "label": "entailment"} {"id": "tracie-train-uniform-0231", "label": "entailment"} {"id": "tracie-train-uniform-0232", "label": "entailment"} {"id": "tracie-train-uniform-0233", "label": "entailment"} {"id": "tracie-train-uniform-0234", "label": "entailment"} {"id": "tracie-train-uniform-0235", "label": "entailment"} {"id": "tracie-train-uniform-0236", "label": "entailment"} {"id": "tracie-train-uniform-0237", "label": "entailment"} {"id": "tracie-train-uniform-0238", "label": "entailment"} {"id": "tracie-train-uniform-0239", "label": "entailment"} {"id": "tracie-train-uniform-0240", "label": "entailment"} {"id": "tracie-train-uniform-0241", "label": "entailment"} {"id": "tracie-train-uniform-0242", "label": "entailment"} {"id": "tracie-train-uniform-0243", "label": "entailment"} {"id": "tracie-train-uniform-0244", "label": "entailment"} {"id": "tracie-train-uniform-0245", "label": "entailment"} {"id": "tracie-train-uniform-0246", "label": "entailment"} {"id": "tracie-train-uniform-0247", "label": "entailment"} {"id": "tracie-train-uniform-0248", "label": "entailment"} {"id": "tracie-train-uniform-0249", "label": "entailment"} {"id": "tracie-train-uniform-0250", "label": "entailment"} {"id": "tracie-train-uniform-0251", "label": "entailment"} {"id": "tracie-train-uniform-0252", "label": "entailment"} {"id": "tracie-train-uniform-0253", "label": "entailment"} {"id": "tracie-train-uniform-0254", "label": "entailment"} {"id": "tracie-train-uniform-0255", "label": "entailment"} {"id": "tracie-train-uniform-0256", "label": "entailment"} {"id": "tracie-train-uniform-0257", "label": "entailment"} {"id": "tracie-train-uniform-0258", "label": "entailment"} {"id": "tracie-train-uniform-0259", "label": "entailment"} {"id": "tracie-train-uniform-0260", "label": "entailment"} {"id": "tracie-train-uniform-0261", "label": "entailment"} {"id": "tracie-train-uniform-0262", "label": "entailment"} {"id": "tracie-train-uniform-0263", "label": "entailment"} {"id": "tracie-train-uniform-0264", "label": "entailment"} {"id": "tracie-train-uniform-0265", "label": "entailment"} {"id": "tracie-train-uniform-0266", "label": "entailment"} {"id": "tracie-train-uniform-0267", "label": "entailment"} {"id": "tracie-train-uniform-0268", "label": "entailment"} {"id": "tracie-train-uniform-0269", "label": "entailment"} {"id": "tracie-train-uniform-0270", "label": "entailment"} {"id": "tracie-train-uniform-0271", "label": "entailment"} {"id": "tracie-train-uniform-0272", "label": "entailment"} {"id": "tracie-train-uniform-0273", "label": "entailment"} {"id": "tracie-train-uniform-0274", "label": "entailment"} {"id": "tracie-train-uniform-0275", "label": "entailment"} {"id": "tracie-train-uniform-0276", "label": "entailment"} {"id": "tracie-train-uniform-0277", "label": "entailment"} {"id": "tracie-train-uniform-0278", "label": "entailment"} {"id": "tracie-train-uniform-0279", "label": "entailment"} {"id": "tracie-train-uniform-0280", "label": "entailment"} {"id": "tracie-train-uniform-0281", "label": "entailment"} {"id": "tracie-train-uniform-0282", "label": "entailment"} {"id": "tracie-train-uniform-0283", "label": "entailment"} {"id": "tracie-train-uniform-0284", "label": "entailment"} {"id": "tracie-train-uniform-0285", "label": "entailment"} {"id": "tracie-train-uniform-0286", "label": "entailment"} {"id": "tracie-train-uniform-0287", "label": "entailment"} {"id": "tracie-train-uniform-0288", "label": "entailment"} {"id": "tracie-train-uniform-0289", "label": "entailment"} {"id": "tracie-train-uniform-0290", "label": "entailment"} {"id": "tracie-train-uniform-0291", "label": "entailment"} {"id": "tracie-train-uniform-0292", "label": "entailment"} {"id": "tracie-train-uniform-0293", "label": "entailment"} {"id": "tracie-train-uniform-0294", "label": "entailment"} {"id": "tracie-train-uniform-0295", "label": "entailment"} {"id": "tracie-train-uniform-0296", "label": "entailment"} {"id": "tracie-train-uniform-0297", "label": "entailment"} {"id": "tracie-train-uniform-0298", "label": "entailment"} {"id": "tracie-train-uniform-0299", "label": "entailment"} {"id": "tracie-train-uniform-0300", "label": "entailment"} {"id": "tracie-train-uniform-0301", "label": "entailment"} {"id": "tracie-train-uniform-0302", "label": "entailment"} {"id": "tracie-train-uniform-0303", "label": "entailment"} {"id": "tracie-train-uniform-0304", "label": "entailment"} {"id": "tracie-train-uniform-0305", "label": "entailment"} {"id": "tracie-train-uniform-0306", "label": "entailment"} {"id": "tracie-train-uniform-0307", "label": "entailment"} {"id": "tracie-train-uniform-0308", "label": "entailment"} {"id": "tracie-train-uniform-0309", "label": "entailment"} {"id": "tracie-train-uniform-0310", "label": "entailment"} {"id": "tracie-train-uniform-0311", "label": "entailment"} {"id": "tracie-train-uniform-0312", "label": "entailment"} {"id": "tracie-train-uniform-0313", "label": "entailment"} {"id": "tracie-train-uniform-0314", "label": "entailment"} {"id": "tracie-train-uniform-0315", "label": "entailment"} {"id": "tracie-train-uniform-0316", "label": "entailment"} {"id": "tracie-train-uniform-0317", "label": "entailment"} {"id": "tracie-train-uniform-0318", "label": "entailment"} {"id": "tracie-train-uniform-0319", "label": "entailment"} {"id": "tracie-train-uniform-0320", "label": "entailment"} {"id": "tracie-train-uniform-0321", "label": "entailment"} {"id": "tracie-train-uniform-0322", "label": "entailment"} {"id": "tracie-train-uniform-0323", "label": "entailment"} {"id": "tracie-train-uniform-0324", "label": "entailment"} {"id": "tracie-train-uniform-0325", "label": "entailment"} {"id": "tracie-train-uniform-0326", "label": "entailment"} {"id": "tracie-train-uniform-0327", "label": "entailment"} {"id": "tracie-train-uniform-0328", "label": "entailment"} {"id": "tracie-train-uniform-0329", "label": "entailment"} {"id": "tracie-train-uniform-0330", "label": "entailment"} {"id": "tracie-train-uniform-0331", "label": "entailment"} {"id": "tracie-train-uniform-0332", "label": "entailment"} {"id": "tracie-train-uniform-0333", "label": "entailment"} {"id": "tracie-train-uniform-0334", "label": "entailment"} {"id": "tracie-train-uniform-0335", "label": "entailment"} {"id": "tracie-train-uniform-0336", "label": "entailment"} {"id": "tracie-train-uniform-0337", "label": "entailment"} {"id": "tracie-train-uniform-0338", "label": "entailment"} {"id": "tracie-train-uniform-0339", "label": "entailment"} {"id": "tracie-train-uniform-0340", "label": "entailment"} {"id": "tracie-train-uniform-0341", "label": "entailment"} {"id": "tracie-train-uniform-0342", "label": "entailment"} {"id": "tracie-train-uniform-0343", "label": "entailment"} {"id": "tracie-train-uniform-0344", "label": "entailment"} {"id": "tracie-train-uniform-0345", "label": "entailment"} {"id": "tracie-train-uniform-0346", "label": "entailment"} {"id": "tracie-train-uniform-0347", "label": "entailment"} {"id": "tracie-train-uniform-0348", "label": "entailment"} {"id": "tracie-train-uniform-0349", "label": "entailment"} {"id": "tracie-train-uniform-0350", "label": "entailment"} {"id": "tracie-train-uniform-0351", "label": "entailment"} {"id": "tracie-train-uniform-0352", "label": "entailment"} {"id": "tracie-train-uniform-0353", "label": "entailment"} {"id": "tracie-train-uniform-0354", "label": "entailment"} {"id": "tracie-train-uniform-0355", "label": "entailment"} {"id": "tracie-train-uniform-0356", "label": "entailment"} {"id": "tracie-train-uniform-0357", "label": "entailment"} {"id": "tracie-train-uniform-0358", "label": "entailment"} {"id": "tracie-train-uniform-0359", "label": "entailment"} {"id": "tracie-train-uniform-0360", "label": "entailment"} {"id": "tracie-train-uniform-0361", "label": "entailment"} {"id": "tracie-train-uniform-0362", "label": "entailment"} {"id": "tracie-train-uniform-0363", "label": "entailment"} {"id": "tracie-train-uniform-0364", "label": "entailment"} {"id": "tracie-train-uniform-0365", "label": "entailment"} {"id": "tracie-train-uniform-0366", "label": "entailment"} {"id": "tracie-train-uniform-0367", "label": "entailment"} {"id": "tracie-train-uniform-0368", "label": "entailment"} {"id": "tracie-train-uniform-0369", "label": "entailment"} {"id": "tracie-train-uniform-0370", "label": "entailment"} {"id": "tracie-train-uniform-0371", "label": "entailment"} {"id": "tracie-train-uniform-0372", "label": "entailment"} {"id": "tracie-train-uniform-0373", "label": "entailment"} {"id": "tracie-train-uniform-0374", "label": "entailment"} {"id": "tracie-train-uniform-0375", "label": "entailment"} {"id": "tracie-train-uniform-0376", "label": "entailment"} {"id": "tracie-train-uniform-0377", "label": "entailment"} {"id": "tracie-train-uniform-0378", "label": "entailment"} {"id": "tracie-train-uniform-0379", "label": "entailment"} {"id": "tracie-train-uniform-0380", "label": "entailment"} {"id": "tracie-train-uniform-0381", "label": "entailment"} {"id": "tracie-train-uniform-0382", "label": "entailment"} {"id": "tracie-train-uniform-0383", "label": "entailment"} {"id": "tracie-train-uniform-0384", "label": "entailment"} {"id": "tracie-train-uniform-0385", "label": "entailment"} {"id": "tracie-train-uniform-0386", "label": "entailment"} {"id": "tracie-train-uniform-0387", "label": "entailment"} {"id": "tracie-train-uniform-0388", "label": "entailment"} {"id": "tracie-train-uniform-0389", "label": "entailment"} {"id": "tracie-train-uniform-0390", "label": "entailment"} {"id": "tracie-train-uniform-0391", "label": "entailment"} {"id": "tracie-train-uniform-0392", "label": "entailment"} {"id": "tracie-train-uniform-0393", "label": "entailment"} {"id": "tracie-train-uniform-0394", "label": "entailment"} {"id": "tracie-train-uniform-0395", "label": "entailment"} {"id": "tracie-train-uniform-0396", "label": "entailment"} {"id": "tracie-train-uniform-0397", "label": "entailment"} {"id": "tracie-train-uniform-0398", "label": "entailment"} {"id": "tracie-train-uniform-0399", "label": "entailment"} {"id": "tracie-train-uniform-0400", "label": "entailment"} {"id": "tracie-train-uniform-0401", "label": "entailment"} {"id": "tracie-train-uniform-0402", "label": "entailment"} {"id": "tracie-train-uniform-0403", "label": "entailment"} {"id": "tracie-train-uniform-0404", "label": "entailment"} {"id": "tracie-train-uniform-0405", "label": "entailment"} {"id": "tracie-train-uniform-0406", "label": "entailment"} {"id": "tracie-train-uniform-0407", "label": "entailment"} {"id": "tracie-train-uniform-0408", "label": "entailment"} {"id": "tracie-train-uniform-0409", "label": "entailment"} {"id": "tracie-train-uniform-0410", "label": "entailment"} {"id": "tracie-train-uniform-0411", "label": "entailment"} {"id": "tracie-train-uniform-0412", "label": "entailment"} {"id": "tracie-train-uniform-0413", "label": "entailment"} {"id": "tracie-train-uniform-0414", "label": "entailment"} {"id": "tracie-train-uniform-0415", "label": "entailment"} {"id": "tracie-train-uniform-0416", "label": "entailment"} {"id": "tracie-train-uniform-0417", "label": "entailment"} {"id": "tracie-train-uniform-0418", "label": "entailment"} {"id": "tracie-train-uniform-0419", "label": "entailment"} {"id": "tracie-train-uniform-0420", "label": "entailment"} {"id": "tracie-train-uniform-0421", "label": "entailment"} {"id": "tracie-train-uniform-0422", "label": "entailment"} {"id": "tracie-train-uniform-0423", "label": "entailment"} {"id": "tracie-train-uniform-0424", "label": "entailment"} {"id": "tracie-train-uniform-0425", "label": "entailment"} {"id": "tracie-train-uniform-0426", "label": "entailment"} {"id": "tracie-train-uniform-0427", "label": "entailment"} {"id": "tracie-train-uniform-0428", "label": "entailment"} {"id": "tracie-train-uniform-0429", "label": "entailment"} {"id": "tracie-train-uniform-0430", "label": "entailment"} {"id": "tracie-train-uniform-0431", "label": "entailment"} {"id": "tracie-train-uniform-0432", "label": "entailment"} {"id": "tracie-train-uniform-0433", "label": "entailment"} {"id": "tracie-train-uniform-0434", "label": "entailment"} {"id": "tracie-train-uniform-0435", "label": "entailment"} {"id": "tracie-train-uniform-0436", "label": "entailment"} {"id": "tracie-train-uniform-0437", "label": "entailment"} {"id": "tracie-train-uniform-0438", "label": "entailment"} {"id": "tracie-train-uniform-0439", "label": "entailment"} {"id": "tracie-train-uniform-0440", "label": "entailment"} {"id": "tracie-train-uniform-0441", "label": "entailment"} {"id": "tracie-train-uniform-0442", "label": "entailment"} {"id": "tracie-train-uniform-0443", "label": "entailment"} {"id": "tracie-train-uniform-0444", "label": "entailment"} {"id": "tracie-train-uniform-0445", "label": "entailment"} {"id": "tracie-train-uniform-0446", "label": "entailment"} {"id": "tracie-train-uniform-0447", "label": "entailment"} {"id": "tracie-train-uniform-0448", "label": "entailment"} {"id": "tracie-train-uniform-0449", "label": "entailment"} {"id": "tracie-train-uniform-0450", "label": "entailment"} {"id": "tracie-train-uniform-0451", "label": "entailment"} {"id": "tracie-train-uniform-0452", "label": "entailment"} {"id": "tracie-train-uniform-0453", "label": "entailment"} {"id": "tracie-train-uniform-0454", "label": "entailment"} {"id": "tracie-train-uniform-0455", "label": "entailment"} {"id": "tracie-train-uniform-0456", "label": "entailment"} {"id": "tracie-train-uniform-0457", "label": "entailment"} {"id": "tracie-train-uniform-0458", "label": "entailment"} {"id": "tracie-train-uniform-0459", "label": "entailment"} {"id": "tracie-train-uniform-0460", "label": "entailment"} {"id": "tracie-train-uniform-0461", "label": "entailment"} {"id": "tracie-train-uniform-0462", "label": "entailment"} {"id": "tracie-train-uniform-0463", "label": "entailment"} {"id": "tracie-train-uniform-0464", "label": "entailment"} {"id": "tracie-train-uniform-0465", "label": "entailment"} {"id": "tracie-train-uniform-0466", "label": "entailment"} {"id": "tracie-train-uniform-0467", "label": "entailment"} {"id": "tracie-train-uniform-0468", "label": "entailment"} {"id": "tracie-train-uniform-0469", "label": "entailment"} {"id": "tracie-train-uniform-0470", "label": "entailment"} {"id": "tracie-train-uniform-0471", "label": "entailment"} {"id": "tracie-train-uniform-0472", "label": "entailment"} {"id": "tracie-train-uniform-0473", "label": "entailment"} {"id": "tracie-train-uniform-0474", "label": "entailment"} {"id": "tracie-train-uniform-0475", "label": "entailment"} {"id": "tracie-train-uniform-0476", "label": "entailment"} {"id": "tracie-train-uniform-0477", "label": "entailment"} {"id": "tracie-train-uniform-0478", "label": "entailment"} {"id": "tracie-train-uniform-0479", "label": "entailment"} {"id": "tracie-train-uniform-0480", "label": "entailment"} {"id": "tracie-train-uniform-0481", "label": "entailment"} {"id": "tracie-train-uniform-0482", "label": "entailment"} {"id": "tracie-train-uniform-0483", "label": "entailment"} {"id": "tracie-train-uniform-0484", "label": "entailment"} {"id": "tracie-train-uniform-0485", "label": "entailment"} {"id": "tracie-train-uniform-0486", "label": "entailment"} {"id": "tracie-train-uniform-0487", "label": "entailment"} {"id": "tracie-train-uniform-0488", "label": "entailment"} {"id": "tracie-train-uniform-0489", "label": "entailment"} {"id": "tracie-train-uniform-0490", "label": "entailment"} {"id": "tracie-train-uniform-0491", "label": "entailment"} {"id": "tracie-train-uniform-0492", "label": "entailment"} {"id": "tracie-train-uniform-0493", "label": "entailment"} {"id": "tracie-train-uniform-0494", "label": "entailment"} {"id": "tracie-train-uniform-0495", "label": "entailment"} {"id": "tracie-train-uniform-0496", "label": "entailment"} {"id": "tracie-train-uniform-0497", "label": "entailment"} {"id": "tracie-train-uniform-0498", "label": "entailment"} {"id": "tracie-train-uniform-0499", "label": "entailment"} {"id": "tracie-train-uniform-0500", "label": "entailment"} {"id": "tracie-train-uniform-0501", "label": "entailment"} {"id": "tracie-train-uniform-0502", "label": "entailment"} {"id": "tracie-train-uniform-0503", "label": "entailment"} {"id": "tracie-train-uniform-0504", "label": "entailment"} {"id": "tracie-train-uniform-0505", "label": "entailment"} {"id": "tracie-train-uniform-0506", "label": "entailment"} {"id": "tracie-train-uniform-0507", "label": "entailment"} {"id": "tracie-train-uniform-0508", "label": "entailment"} {"id": "tracie-train-uniform-0509", "label": "entailment"} {"id": "tracie-train-uniform-0510", "label": "entailment"} {"id": "tracie-train-uniform-0511", "label": "entailment"} {"id": "tracie-train-uniform-0512", "label": "entailment"} {"id": "tracie-train-uniform-0513", "label": "entailment"} {"id": "tracie-train-uniform-0514", "label": "entailment"} {"id": "tracie-train-uniform-0515", "label": "entailment"} {"id": "tracie-train-uniform-0516", "label": "entailment"} {"id": "tracie-train-uniform-0517", "label": "entailment"} {"id": "tracie-train-uniform-0518", "label": "entailment"} {"id": "tracie-train-uniform-0519", "label": "entailment"} {"id": "tracie-train-uniform-0520", "label": "entailment"} {"id": "tracie-train-uniform-0521", "label": "entailment"} {"id": "tracie-train-uniform-0522", "label": "entailment"} {"id": "tracie-train-uniform-0523", "label": "entailment"} {"id": "tracie-train-uniform-0524", "label": "entailment"} {"id": "tracie-train-uniform-0525", "label": "entailment"} {"id": "tracie-train-uniform-0526", "label": "entailment"} {"id": "tracie-train-uniform-0527", "label": "entailment"} {"id": "tracie-train-uniform-0528", "label": "entailment"} {"id": "tracie-train-uniform-0529", "label": "entailment"} {"id": "tracie-train-uniform-0530", "label": "entailment"} {"id": "tracie-train-uniform-0531", "label": "entailment"} {"id": "tracie-train-uniform-0532", "label": "entailment"} {"id": "tracie-train-uniform-0533", "label": "entailment"} {"id": "tracie-train-uniform-0534", "label": "entailment"} {"id": "tracie-train-uniform-0535", "label": "entailment"} {"id": "tracie-train-uniform-0536", "label": "entailment"} {"id": "tracie-train-uniform-0537", "label": "entailment"} {"id": "tracie-train-uniform-0538", "label": "entailment"} {"id": "tracie-train-uniform-0539", "label": "entailment"} {"id": "tracie-train-uniform-0540", "label": "entailment"} {"id": "tracie-train-uniform-0541", "label": "entailment"} {"id": "tracie-train-uniform-0542", "label": "entailment"} {"id": "tracie-train-uniform-0543", "label": "entailment"} {"id": "tracie-train-uniform-0544", "label": "entailment"} {"id": "tracie-train-uniform-0545", "label": "entailment"} {"id": "tracie-train-uniform-0546", "label": "entailment"} {"id": "tracie-train-uniform-0547", "label": "entailment"} {"id": "tracie-train-uniform-0548", "label": "entailment"} {"id": "tracie-train-uniform-0549", "label": "entailment"} {"id": "tracie-train-uniform-0550", "label": "entailment"} {"id": "tracie-train-uniform-0551", "label": "entailment"} {"id": "tracie-train-uniform-0552", "label": "entailment"} {"id": "tracie-train-uniform-0553", "label": "entailment"} {"id": "tracie-train-uniform-0554", "label": "entailment"} {"id": "tracie-train-uniform-0555", "label": "entailment"} {"id": "tracie-train-uniform-0556", "label": "entailment"} {"id": "tracie-train-uniform-0557", "label": "entailment"} {"id": "tracie-train-uniform-0558", "label": "entailment"} {"id": "tracie-train-uniform-0559", "label": "entailment"} {"id": "tracie-train-uniform-0560", "label": "entailment"} {"id": "tracie-train-uniform-0561", "label": "entailment"} {"id": "tracie-train-uniform-0562", "label": "entailment"} {"id": "tracie-train-uniform-0563", "label": "entailment"} {"id": "tracie-train-uniform-0564", "label": "entailment"} {"id": "tracie-train-uniform-0565", "label": "entailment"} {"id": "tracie-train-uniform-0566", "label": "entailment"} {"id": "tracie-train-uniform-0567", "label": "entailment"} {"id": "tracie-train-uniform-0568", "label": "entailment"} {"id": "tracie-train-uniform-0569", "label": "entailment"} {"id": "tracie-train-uniform-0570", "label": "entailment"} {"id": "tracie-train-uniform-0571", "label": "entailment"} {"id": "tracie-train-uniform-0572", "label": "entailment"} {"id": "tracie-train-uniform-0573", "label": "entailment"} {"id": "tracie-train-uniform-0574", "label": "entailment"} {"id": "tracie-train-uniform-0575", "label": "entailment"} {"id": "tracie-train-uniform-0576", "label": "entailment"} {"id": "tracie-train-uniform-0577", "label": "entailment"} {"id": "tracie-train-uniform-0578", "label": "entailment"} {"id": "tracie-train-uniform-0579", "label": "entailment"} {"id": "tracie-train-uniform-0580", "label": "entailment"} {"id": "tracie-train-uniform-0581", "label": "entailment"} {"id": "tracie-train-uniform-0582", "label": "entailment"} {"id": "tracie-train-uniform-0583", "label": "entailment"} {"id": "tracie-train-uniform-0584", "label": "entailment"} {"id": "tracie-train-uniform-0585", "label": "entailment"} {"id": "tracie-train-uniform-0586", "label": "entailment"} {"id": "tracie-train-uniform-0587", "label": "entailment"} {"id": "tracie-train-uniform-0588", "label": "entailment"} {"id": "tracie-train-uniform-0589", "label": "entailment"} {"id": "tracie-train-uniform-0590", "label": "entailment"} {"id": "tracie-train-uniform-0591", "label": "entailment"} {"id": "tracie-train-uniform-0592", "label": "entailment"} {"id": "tracie-train-uniform-0593", "label": "entailment"} {"id": "tracie-train-uniform-0594", "label": "entailment"} {"id": "tracie-train-uniform-0595", "label": "entailment"} {"id": "tracie-train-uniform-0596", "label": "entailment"} {"id": "tracie-train-uniform-0597", "label": "entailment"} {"id": "tracie-train-uniform-0598", "label": "entailment"} {"id": "tracie-train-uniform-0599", "label": "entailment"} {"id": "tracie-train-uniform-0600", "label": "entailment"} {"id": "tracie-train-uniform-0601", "label": "entailment"} {"id": "tracie-train-uniform-0602", "label": "entailment"} {"id": "tracie-train-uniform-0603", "label": "entailment"} {"id": "tracie-train-uniform-0604", "label": "entailment"} {"id": "tracie-train-uniform-0605", "label": "entailment"} {"id": "tracie-train-uniform-0606", "label": "entailment"} {"id": "tracie-train-uniform-0607", "label": "entailment"} {"id": "tracie-train-uniform-0608", "label": "entailment"} {"id": "tracie-train-uniform-0609", "label": "entailment"} {"id": "tracie-train-uniform-0610", "label": "entailment"} {"id": "tracie-train-uniform-0611", "label": "entailment"} {"id": "tracie-train-uniform-0612", "label": "entailment"} {"id": "tracie-train-uniform-0613", "label": "entailment"} {"id": "tracie-train-uniform-0614", "label": "entailment"} {"id": "tracie-train-uniform-0615", "label": "entailment"} {"id": "tracie-train-uniform-0616", "label": "entailment"} {"id": "tracie-train-uniform-0617", "label": "entailment"} {"id": "tracie-train-uniform-0618", "label": "entailment"} {"id": "tracie-train-uniform-0619", "label": "entailment"} {"id": "tracie-train-uniform-0620", "label": "entailment"} {"id": "tracie-train-uniform-0621", "label": "entailment"} {"id": "tracie-train-uniform-0622", "label": "entailment"} {"id": "tracie-train-uniform-0623", "label": "entailment"} {"id": "tracie-train-uniform-0624", "label": "entailment"} {"id": "tracie-train-uniform-0625", "label": "entailment"} {"id": "tracie-train-uniform-0626", "label": "entailment"} {"id": "tracie-train-uniform-0627", "label": "entailment"} {"id": "tracie-train-uniform-0628", "label": "entailment"} {"id": "tracie-train-uniform-0629", "label": "entailment"} {"id": "tracie-train-uniform-0630", "label": "entailment"} {"id": "tracie-train-uniform-0631", "label": "entailment"} {"id": "tracie-train-uniform-0632", "label": "entailment"} {"id": "tracie-train-uniform-0633", "label": "entailment"} {"id": "tracie-train-uniform-0634", "label": "entailment"} {"id": "tracie-train-uniform-0635", "label": "entailment"} {"id": "tracie-train-uniform-0636", "label": "entailment"} {"id": "tracie-train-uniform-0637", "label": "entailment"} {"id": "tracie-train-uniform-0638", "label": "entailment"} {"id": "tracie-train-uniform-0639", "label": "entailment"} {"id": "tracie-train-uniform-0640", "label": "entailment"} {"id": "tracie-train-uniform-0641", "label": "entailment"} {"id": "tracie-train-uniform-0642", "label": "entailment"} {"id": "tracie-train-uniform-0643", "label": "entailment"} {"id": "tracie-train-uniform-0644", "label": "entailment"} {"id": "tracie-train-uniform-0645", "label": "entailment"} {"id": "tracie-train-uniform-0646", "label": "entailment"} {"id": "tracie-train-uniform-0647", "label": "entailment"} {"id": "tracie-train-uniform-0648", "label": "entailment"} {"id": "tracie-train-uniform-0649", "label": "entailment"} {"id": "tracie-train-uniform-0650", "label": "entailment"} {"id": "tracie-train-uniform-0651", "label": "entailment"} {"id": "tracie-train-uniform-0652", "label": "entailment"} {"id": "tracie-train-uniform-0653", "label": "entailment"} {"id": "tracie-train-uniform-0654", "label": "entailment"} {"id": "tracie-train-uniform-0655", "label": "entailment"} {"id": "tracie-train-uniform-0656", "label": "entailment"} {"id": "tracie-train-uniform-0657", "label": "entailment"} {"id": "tracie-train-uniform-0658", "label": "entailment"} {"id": "tracie-train-uniform-0659", "label": "entailment"} {"id": "tracie-train-uniform-0660", "label": "entailment"} {"id": "tracie-train-uniform-0661", "label": "entailment"} {"id": "tracie-train-uniform-0662", "label": "entailment"} {"id": "tracie-train-uniform-0663", "label": "entailment"} {"id": "tracie-train-uniform-0664", "label": "entailment"} {"id": "tracie-train-uniform-0665", "label": "entailment"} {"id": "tracie-train-uniform-0666", "label": "entailment"} {"id": "tracie-train-uniform-0667", "label": "entailment"} {"id": "tracie-train-uniform-0668", "label": "entailment"} {"id": "tracie-train-uniform-0669", "label": "entailment"} {"id": "tracie-train-uniform-0670", "label": "entailment"} {"id": "tracie-train-uniform-0671", "label": "entailment"} {"id": "tracie-train-uniform-0672", "label": "entailment"} {"id": "tracie-train-uniform-0673", "label": "entailment"} {"id": "tracie-train-uniform-0674", "label": "entailment"} {"id": "tracie-train-uniform-0675", "label": "entailment"} {"id": "tracie-train-uniform-0676", "label": "entailment"} {"id": "tracie-train-uniform-0677", "label": "entailment"} {"id": "tracie-train-uniform-0678", "label": "entailment"} {"id": "tracie-train-uniform-0679", "label": "entailment"} {"id": "tracie-train-uniform-0680", "label": "entailment"} {"id": "tracie-train-uniform-0681", "label": "entailment"} {"id": "tracie-train-uniform-0682", "label": "entailment"} {"id": "tracie-train-uniform-0683", "label": "entailment"} {"id": "tracie-train-uniform-0684", "label": "entailment"} {"id": "tracie-train-uniform-0685", "label": "entailment"} {"id": "tracie-train-uniform-0686", "label": "entailment"} {"id": "tracie-train-uniform-0687", "label": "entailment"} {"id": "tracie-train-uniform-0688", "label": "entailment"} {"id": "tracie-train-uniform-0689", "label": "entailment"} {"id": "tracie-train-uniform-0690", "label": "entailment"} {"id": "tracie-train-uniform-0691", "label": "entailment"} {"id": "tracie-train-uniform-0692", "label": "entailment"} {"id": "tracie-train-uniform-0693", "label": "entailment"} {"id": "tracie-train-uniform-0694", "label": "entailment"} {"id": "tracie-train-uniform-0695", "label": "entailment"} {"id": "tracie-train-uniform-0696", "label": "entailment"} {"id": "tracie-train-uniform-0697", "label": "entailment"} {"id": "tracie-train-uniform-0698", "label": "entailment"} {"id": "tracie-train-uniform-0699", "label": "entailment"} {"id": "tracie-train-uniform-0700", "label": "entailment"} {"id": "tracie-train-uniform-0701", "label": "entailment"} {"id": "tracie-train-uniform-0702", "label": "entailment"} {"id": "tracie-train-uniform-0703", "label": "entailment"} {"id": "tracie-train-uniform-0704", "label": "entailment"} {"id": "tracie-train-uniform-0705", "label": "entailment"} {"id": "tracie-train-uniform-0706", "label": "entailment"} {"id": "tracie-train-uniform-0707", "label": "entailment"} {"id": "tracie-train-uniform-0708", "label": "entailment"} {"id": "tracie-train-uniform-0709", "label": "entailment"} {"id": "tracie-train-uniform-0710", "label": "entailment"} {"id": "tracie-train-uniform-0711", "label": "entailment"} {"id": "tracie-train-uniform-0712", "label": "entailment"} {"id": "tracie-train-uniform-0713", "label": "entailment"} {"id": "tracie-train-uniform-0714", "label": "entailment"} {"id": "tracie-train-uniform-0715", "label": "entailment"} {"id": "tracie-train-uniform-0716", "label": "entailment"} {"id": "tracie-train-uniform-0717", "label": "entailment"} {"id": "tracie-train-uniform-0718", "label": "entailment"} {"id": "tracie-train-uniform-0719", "label": "entailment"} {"id": "tracie-train-uniform-0720", "label": "entailment"} {"id": "tracie-train-uniform-0721", "label": "entailment"} {"id": "tracie-train-uniform-0722", "label": "entailment"} {"id": "tracie-train-uniform-0723", "label": "entailment"} {"id": "tracie-train-uniform-0724", "label": "entailment"} {"id": "tracie-train-uniform-0725", "label": "entailment"} {"id": "tracie-train-uniform-0726", "label": "entailment"} {"id": "tracie-train-uniform-0727", "label": "entailment"} {"id": "tracie-train-uniform-0728", "label": "entailment"} {"id": "tracie-train-uniform-0729", "label": "entailment"} {"id": "tracie-train-uniform-0730", "label": "entailment"} {"id": "tracie-train-uniform-0731", "label": "entailment"} {"id": "tracie-train-uniform-0732", "label": "entailment"} {"id": "tracie-train-uniform-0733", "label": "entailment"} {"id": "tracie-train-uniform-0734", "label": "entailment"} {"id": "tracie-train-uniform-0735", "label": "entailment"} {"id": "tracie-train-uniform-0736", "label": "entailment"} {"id": "tracie-train-uniform-0737", "label": "entailment"} {"id": "tracie-train-uniform-0738", "label": "entailment"} {"id": "tracie-train-uniform-0739", "label": "entailment"} {"id": "tracie-train-uniform-0740", "label": "entailment"} {"id": "tracie-train-uniform-0741", "label": "entailment"} {"id": "tracie-train-uniform-0742", "label": "entailment"} {"id": "tracie-train-uniform-0743", "label": "entailment"} {"id": "tracie-train-uniform-0744", "label": "entailment"} {"id": "tracie-train-uniform-0745", "label": "entailment"} {"id": "tracie-train-uniform-0746", "label": "entailment"} {"id": "tracie-train-uniform-0747", "label": "entailment"} {"id": "tracie-train-uniform-0748", "label": "entailment"} {"id": "tracie-train-uniform-0749", "label": "entailment"} {"id": "tracie-train-uniform-0750", "label": "entailment"} {"id": "tracie-train-uniform-0751", "label": "entailment"} {"id": "tracie-train-uniform-0752", "label": "entailment"} {"id": "tracie-train-uniform-0753", "label": "entailment"} {"id": "tracie-train-uniform-0754", "label": "entailment"} {"id": "tracie-train-uniform-0755", "label": "entailment"} {"id": "tracie-train-uniform-0756", "label": "entailment"} {"id": "tracie-train-uniform-0757", "label": "entailment"} {"id": "tracie-train-uniform-0758", "label": "entailment"} {"id": "tracie-train-uniform-0759", "label": "entailment"} {"id": "tracie-train-uniform-0760", "label": "entailment"} {"id": "tracie-train-uniform-0761", "label": "entailment"} {"id": "tracie-train-uniform-0762", "label": "entailment"} {"id": "tracie-train-uniform-0763", "label": "entailment"} {"id": "tracie-train-uniform-0764", "label": "entailment"} {"id": "tracie-train-uniform-0765", "label": "entailment"} {"id": "tracie-train-uniform-0766", "label": "entailment"} {"id": "tracie-train-uniform-0767", "label": "entailment"} {"id": "tracie-train-uniform-0768", "label": "entailment"} {"id": "tracie-train-uniform-0769", "label": "entailment"} {"id": "tracie-train-uniform-0770", "label": "entailment"} {"id": "tracie-train-uniform-0771", "label": "entailment"} {"id": "tracie-train-uniform-0772", "label": "entailment"} {"id": "tracie-train-uniform-0773", "label": "entailment"} {"id": "tracie-train-uniform-0774", "label": "entailment"} {"id": "tracie-train-uniform-0775", "label": "entailment"} {"id": "tracie-train-uniform-0776", "label": "entailment"} {"id": "tracie-train-uniform-0777", "label": "entailment"} {"id": "tracie-train-uniform-0778", "label": "entailment"} {"id": "tracie-train-uniform-0779", "label": "entailment"} {"id": "tracie-train-uniform-0780", "label": "entailment"} {"id": "tracie-train-uniform-0781", "label": "entailment"} {"id": "tracie-train-uniform-0782", "label": "entailment"} {"id": "tracie-train-uniform-0783", "label": "entailment"} {"id": "tracie-train-uniform-0784", "label": "entailment"} {"id": "tracie-train-uniform-0785", "label": "entailment"} {"id": "tracie-train-uniform-0786", "label": "entailment"} {"id": "tracie-train-uniform-0787", "label": "entailment"} {"id": "tracie-train-uniform-0788", "label": "entailment"} {"id": "tracie-train-uniform-0789", "label": "entailment"} {"id": "tracie-train-uniform-0790", "label": "entailment"} {"id": "tracie-train-uniform-0791", "label": "entailment"} {"id": "tracie-train-uniform-0792", "label": "entailment"} {"id": "tracie-train-uniform-0793", "label": "entailment"} {"id": "tracie-train-uniform-0794", "label": "entailment"} {"id": "tracie-train-uniform-0795", "label": "entailment"} {"id": "tracie-train-uniform-0796", "label": "entailment"} {"id": "tracie-train-uniform-0797", "label": "entailment"} {"id": "tracie-train-uniform-0798", "label": "entailment"} {"id": "tracie-train-uniform-0799", "label": "entailment"} {"id": "tracie-train-uniform-0800", "label": "entailment"} {"id": "tracie-train-uniform-0801", "label": "entailment"} {"id": "tracie-train-uniform-0802", "label": "entailment"} {"id": "tracie-train-uniform-0803", "label": "entailment"} {"id": "tracie-train-uniform-0804", "label": "entailment"} {"id": "tracie-train-uniform-0805", "label": "entailment"} {"id": "tracie-train-uniform-0806", "label": "entailment"} {"id": "tracie-train-uniform-0807", "label": "entailment"} {"id": "tracie-train-uniform-0808", "label": "entailment"} {"id": "tracie-train-uniform-0809", "label": "entailment"} {"id": "tracie-train-uniform-0810", "label": "entailment"} {"id": "tracie-train-uniform-0811", "label": "entailment"} {"id": "tracie-train-uniform-0812", "label": "entailment"} {"id": "tracie-train-uniform-0813", "label": "entailment"} {"id": "tracie-train-uniform-0814", "label": "entailment"} {"id": "tracie-train-uniform-0815", "label": "entailment"} {"id": "tracie-train-uniform-0816", "label": "entailment"} {"id": "tracie-train-uniform-0817", "label": "entailment"} {"id": "tracie-train-uniform-0818", "label": "entailment"} {"id": "tracie-train-uniform-0819", "label": "entailment"} {"id": "tracie-train-uniform-0820", "label": "entailment"} {"id": "tracie-train-uniform-0821", "label": "entailment"} {"id": "tracie-train-uniform-0822", "label": "entailment"} {"id": "tracie-train-uniform-0823", "label": "entailment"} {"id": "tracie-train-uniform-0824", "label": "entailment"} {"id": "tracie-train-uniform-0825", "label": "entailment"} {"id": "tracie-train-uniform-0826", "label": "entailment"} {"id": "tracie-train-uniform-0827", "label": "entailment"} {"id": "tracie-train-uniform-0828", "label": "entailment"} {"id": "tracie-train-uniform-0829", "label": "entailment"} {"id": "tracie-train-uniform-0830", "label": "entailment"} {"id": "tracie-train-uniform-0831", "label": "entailment"} {"id": "tracie-train-uniform-0832", "label": "entailment"} {"id": "tracie-train-uniform-0833", "label": "entailment"} {"id": "tracie-train-uniform-0834", "label": "entailment"} {"id": "tracie-train-uniform-0835", "label": "entailment"} {"id": "tracie-train-uniform-0836", "label": "entailment"} {"id": "tracie-train-uniform-0837", "label": "entailment"} {"id": "tracie-train-uniform-0838", "label": "entailment"} {"id": "tracie-train-uniform-0839", "label": "entailment"} {"id": "tracie-train-uniform-0840", "label": "entailment"} {"id": "tracie-train-uniform-0841", "label": "entailment"} {"id": "tracie-train-uniform-0842", "label": "entailment"} {"id": "tracie-train-uniform-0843", "label": "entailment"} {"id": "tracie-train-uniform-0844", "label": "entailment"} {"id": "tracie-train-uniform-0845", "label": "entailment"} {"id": "tracie-train-uniform-0846", "label": "entailment"} {"id": "tracie-train-uniform-0847", "label": "entailment"} {"id": "tracie-train-uniform-0848", "label": "entailment"} {"id": "tracie-train-uniform-0849", "label": "entailment"} {"id": "tracie-train-uniform-0850", "label": "entailment"} {"id": "tracie-train-uniform-0851", "label": "entailment"} {"id": "tracie-train-uniform-0852", "label": "entailment"} {"id": "tracie-train-uniform-0853", "label": "entailment"} {"id": "tracie-train-uniform-0854", "label": "entailment"} {"id": "tracie-train-uniform-0855", "label": "entailment"} {"id": "tracie-train-uniform-0856", "label": "entailment"} {"id": "tracie-train-uniform-0857", "label": "entailment"} {"id": "tracie-train-uniform-0858", "label": "entailment"} {"id": "tracie-train-uniform-0859", "label": "entailment"}
ContextualSP/lemon/propara_evaluator/aristo-leaderboard/tracie/data/predictions.jsonl/0
{ "file_path": "ContextualSP/lemon/propara_evaluator/aristo-leaderboard/tracie/data/predictions.jsonl", "repo_id": "ContextualSP", "token_count": 21493 }
247
#!/bin/bash GPU_NUM=16 python -m torch.distributed.launch --nproc_per_node=${GPU_NUM} hf_generation_multi_es.py \ --model_name_or_path $1 \ --output_dir $2 \ --data_dir $3 \ --train_file $4 \ --validation_file $5 \ --per_device_train_batch_size $6 \ --gradient_accumulation_steps $7 \ --learning_rate $8 \ --num_train_epochs $9 \ --seed ${10} \ --remove_unused_columns False \ --num_beams ${17} \ --save_strategy epoch \ --evaluation_strategy no \ --logging_steps 200 \ --max_train_samples ${11} \ --max_predict_samples ${12} \ --predict_with_generate \ --do_predict ${13} \ --test_file ${14} \ --do_eval False \ --do_train ${15} \ --max_eval_samples 16 \ --prediction_mode ${16} \ --gan_alpha ${18} \ --per_device_eval_batch_size ${19} \ --overwrite_cache\ --overwrite_output_dir
ContextualSP/logigan/pre-training/run_hf.sh/0
{ "file_path": "ContextualSP/logigan/pre-training/run_hf.sh", "repo_id": "ContextualSP", "token_count": 403 }
248
# Local path to the dataset (after it has been downloaded). dataset_local_path="./data/dataset.json" if [[ ! -f "${dataset_local_path}" ]]; then echo "ERROR: Dataset not found." echo "Please download the dataset first from ${dataset_url}!" echo "See further instructions in the README." exit 1 fi # preprocess data from raw CFQ dataset.json python -m preprocess_cfq --dataset_path="${dataset_local_path}" \ --split_path="./data/splits/mcd1.json" --save_path="./data/mcd1/" python -m preprocess_cfq --dataset_path="${dataset_local_path}" \ --split_path="./data/splits/mcd2.json" --save_path="./data/mcd2/" python -m preprocess_cfq --dataset_path="${dataset_local_path}" \ --split_path="./data/splits/mcd3.json" --save_path="./data/mcd3/" # preprocess data for sketch python preprocess_hierarchical_training.py # preprocess data for primi
ContextualSP/poset_decoding/preprocess.sh/0
{ "file_path": "ContextualSP/poset_decoding/preprocess.sh", "repo_id": "ContextualSP", "token_count": 325 }
249
language: python cache: pip sudo: true env: global: - PYTHONPATH=$PYTHONPATH:$TRAVIS_BUILD_DIR/tests:$TRAVIS_BUILD_DIR/matchzoo matrix: allow_failures: - os: osx include: - os: linux dist: xenial python: 3.6 - os: osx osx_image: xcode10.2 language: shell install: - pip3 install --progress-bar off -r requirements.txt - python3 -m nltk.downloader punkt - python3 -m nltk.downloader wordnet - python3 -m nltk.downloader stopwords script: - stty cols 80 - export COLUMNS=80 - if [ "$TRAVIS_EVENT_TYPE" == "pull_request" ]; then make push; fi - if [ "$TRAVIS_EVENT_TYPE" == "push" ]; then make push; fi - if [ "$TRAVIS_EVENT_TYPE" == "cron" ]; then make cron; fi after_success: - codecov
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/.travis.yml/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/.travis.yml", "repo_id": "ContextualSP", "token_count": 328 }
250
from pathlib import Path USER_DIR = Path.expanduser(Path('~')).joinpath('.matchzoo') if not USER_DIR.exists(): USER_DIR.mkdir() USER_DATA_DIR = USER_DIR.joinpath('datasets') if not USER_DATA_DIR.exists(): USER_DATA_DIR.mkdir() USER_TUNED_MODELS_DIR = USER_DIR.joinpath('tuned_models') from .version import __version__ from .data_pack import DataPack from .data_pack import pack from .data_pack import load_data_pack from . import preprocessors from . import dataloader from .preprocessors.chain_transform import chain_transform from . import auto from . import tasks from . import metrics from . import losses from . import engine from . import models from . import trainers from . import embedding from . import datasets from . import modules from .engine import hyper_spaces from .engine.base_preprocessor import load_preprocessor from .engine.param import Param from .engine.param_table import ParamTable from .embedding.embedding import Embedding from .preprocessors.build_unit_from_data_pack import build_unit_from_data_pack from .preprocessors.build_vocab_unit import build_vocab_unit
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/__init__.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/__init__.py", "repo_id": "ContextualSP", "token_count": 350 }
251
import typing from collections import Iterable import numpy as np from matchzoo.engine.base_callback import BaseCallback def _infer_dtype(value): """Infer the dtype for the features. It is required as the input is usually array of objects before padding. """ while isinstance(value, (list, tuple)) and len(value) > 0: value = value[0] if not isinstance(value, Iterable): return np.array(value).dtype if value is not None and len(value) > 0 and np.issubdtype( np.array(value).dtype, np.generic): dtype = np.array(value[0]).dtype else: dtype = value.dtype # Single Precision if dtype == np.double: dtype = np.float32 return dtype def _padding_2D(input, output, mode: str = 'pre'): """ Pad the input 2D-tensor to the output 2D-tensor. :param input: The input 2D-tensor contains the origin values. :param output: The output is a shapped 2D-tensor which have filled with pad value. :param mode: The padding model, which can be 'pre' or 'post'. """ batch_size = min(output.shape[0], len(input)) pad_length = output.shape[1] if mode == 'post': for i in range(batch_size): end_pos = min(len(input[i]), pad_length) if end_pos > 0: output[i][:end_pos] = input[i][:end_pos] elif mode == 'pre': for i in range(batch_size): start_pos = min(len(input[i]), pad_length) if start_pos > 0: output[i][-start_pos:] = input[i][-start_pos:] else: raise ValueError('{} is not a vaild pad mode.'.format(mode)) def _padding_3D(input, output, mode: str = 'pre'): """ Pad the input 3D-tensor to the output 3D-tensor. :param input: The input 3D-tensor contains the origin values. :param output: The output is a shapped 3D-tensor which have filled with pad value. :param mode: The padding model, which can be 'pre' or 'post'. """ batch_size = min(output.shape[0], len(input)) pad_1d_length = output.shape[1] pad_2d_length = output.shape[2] if mode == 'post': for i in range(batch_size): len_d1 = min(len(input[i]), pad_1d_length) for j in range(len_d1): end_pos = min(len(input[i][j]), pad_2d_length) if end_pos > 0: output[i][j][:end_pos] = input[i][j][:end_pos] elif mode == 'pre': for i in range(batch_size): len_d1 = min(len(input[i]), pad_1d_length) for j in range(len_d1): start_pos = min(len(input[i][j]), pad_2d_length) if start_pos > 0: output[i][j][-start_pos:] = input[i][j][-start_pos:] else: raise ValueError('{} is not a vaild pad mode.'.format(mode)) class BasicPadding(BaseCallback): """ Pad data for basic preprocessor. :param fixed_length_left: Integer. If set, `text_left` will be padded to this length. :param fixed_length_right: Integer. If set, `text_right` will be padded to this length. :param pad_word_value: the value to fill text. :param pad_word_mode: String, `pre` or `post`: pad either before or after each sequence. :param with_ngram: Boolean. Whether to pad the n-grams. :param fixed_ngram_length: Integer. If set, each word will be padded to this length, or it will be set as the maximum length of words in current batch. :param pad_ngram_value: the value to fill empty n-grams. :param pad_ngram_mode: String, `pre` or `post`: pad either before of after each sequence. """ def __init__( self, fixed_length_left: int = None, fixed_length_right: int = None, pad_word_value: typing.Union[int, str] = 0, pad_word_mode: str = 'pre', with_ngram: bool = False, fixed_ngram_length: int = None, pad_ngram_value: typing.Union[int, str] = 0, pad_ngram_mode: str = 'pre' ): """Init.""" self._fixed_length_left = fixed_length_left self._fixed_length_right = fixed_length_right self._pad_word_value = pad_word_value self._pad_word_mode = pad_word_mode self._with_ngram = with_ngram self._fixed_ngram_length = fixed_ngram_length self._pad_ngram_value = pad_ngram_value self._pad_ngram_mode = pad_ngram_mode def on_batch_unpacked(self, x: dict, y: np.ndarray): """Pad `x['text_left']` and `x['text_right]`.""" batch_size = len(x['id_left']) pad_length_left = int(max(x['length_left'])) pad_length_right = int(max(x['length_right'])) if self._with_ngram: ngram_length_left = max([len(w) for k in x['ngram_left'] for w in k]) ngram_length_right = max([len(w) for k in x['ngram_right'] for w in k]) ngram_length = max(ngram_length_left, ngram_length_right) if self._fixed_ngram_length: ngram_length = self._fixed_ngram_length if self._fixed_length_left is not None: pad_length_left = self._fixed_length_left if self._fixed_length_right is not None: pad_length_right = self._fixed_length_right for key, value in x.items(): dtype = _infer_dtype(value) if key == 'text_left': padded_value = np.full([batch_size, pad_length_left], self._pad_word_value, dtype=dtype) _padding_2D(value, padded_value, self._pad_word_mode) elif key == 'text_right': padded_value = np.full([batch_size, pad_length_right], self._pad_word_value, dtype=dtype) _padding_2D(value, padded_value, self._pad_word_mode) elif key == 'ngram_left': padded_value = np.full( [batch_size, pad_length_left, ngram_length], self._pad_ngram_value, dtype=dtype ) _padding_3D(value, padded_value, self._pad_ngram_mode) elif key == 'ngram_right': padded_value = np.full( [batch_size, pad_length_right, ngram_length], self._pad_ngram_value, dtype=dtype ) _padding_3D(value, padded_value, self._pad_ngram_mode) else: continue x[key] = padded_value class DRMMPadding(BaseCallback): """ Pad data for DRMM Model. :param fixed_length_left: Integer. If set, `text_left` and `match_histogram` will be padded to this length. :param fixed_length_right: Integer. If set, `text_right` will be padded to this length. :param pad_value: the value to fill text. :param pad_mode: String, `pre` or `post`: pad either before or after each sequence. """ def __init__( self, fixed_length_left: int = None, fixed_length_right: int = None, pad_value: typing.Union[int, str] = 0, pad_mode: str = 'pre', ): """Init.""" self._fixed_length_left = fixed_length_left self._fixed_length_right = fixed_length_right self._pad_value = pad_value self._pad_mode = pad_mode def on_batch_unpacked(self, x: dict, y: np.ndarray): """ Padding. Pad `x['text_left']`, `x['text_right]` and `x['match_histogram']`. """ batch_size = len(x['id_left']) pad_length_left = max(x['length_left']) pad_length_right = max(x['length_right']) bin_size = len(x['match_histogram'][0][0]) if self._fixed_length_left is not None: pad_length_left = self._fixed_length_left if self._fixed_length_right is not None: pad_length_right = self._fixed_length_right for key, value in x.items(): if key != 'text_left' and key != 'text_right' and \ key != 'match_histogram': continue dtype = _infer_dtype(value) if key == 'text_left': padded_value = np.full([batch_size, pad_length_left], self._pad_value, dtype=dtype) _padding_2D(value, padded_value, self._pad_mode) elif key == 'text_right': padded_value = np.full([batch_size, pad_length_right], self._pad_value, dtype=dtype) _padding_2D(value, padded_value, self._pad_mode) else: # key == 'match_histogram' padded_value = np.full( [batch_size, pad_length_left, bin_size], self._pad_value, dtype=dtype) _padding_3D(value, padded_value, self._pad_mode) x[key] = padded_value class BertPadding(BaseCallback): """ Pad data for bert preprocessor. :param fixed_length_left: Integer. If set, `text_left` will be padded to this length. :param fixed_length_right: Integer. If set, `text_right` will be padded to this length. :param pad_value: the value to fill text. :param pad_mode: String, `pre` or `post`: pad either before or after each sequence. """ def __init__( self, fixed_length_left: int = None, fixed_length_right: int = None, pad_value: typing.Union[int, str] = 0, pad_mode: str = 'pre', ): """Init.""" self._padding = BasicPadding(fixed_length_left=fixed_length_left, fixed_length_right=fixed_length_right, pad_word_value=pad_value, pad_word_mode=pad_mode) def on_batch_unpacked(self, x: dict, y: np.ndarray): """Pad `x['text_left']` and `x['text_right]`.""" self._padding.on_batch_unpacked(x, y) x['text_left'] = np.insert(x['text_left'], 0, 101, axis=1) x['text_left'] = np.insert(x['text_left'], x['text_left'][0].size, 102, axis=1) x['text_right'] = np.insert(x['text_right'], x['text_right'][0].size, 102, axis=1)
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/dataloader/callbacks/padding.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/dataloader/callbacks/padding.py", "repo_id": "ContextualSP", "token_count": 4960 }
252
from .load_data import load_data
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/datasets/quora_qp/__init__.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/datasets/quora_qp/__init__.py", "repo_id": "ContextualSP", "token_count": 10 }
253
"""Base Model.""" import abc import typing from pathlib import Path import numpy as np import torch import torch.nn as nn from matchzoo.utils import parse_activation from matchzoo.engine.base_callback import BaseCallback from matchzoo.engine import hyper_spaces from matchzoo.engine.base_preprocessor import BasePreprocessor from matchzoo.engine.param_table import ParamTable from matchzoo.engine.param import Param from matchzoo.dataloader import callbacks from matchzoo import preprocessors from matchzoo import tasks class BaseModel(nn.Module, abc.ABC): """ Abstract base class of all MatchZoo models. MatchZoo models are wrapped over pytorch models. `params` is a set of model hyper-parameters that deterministically builds a model. In other words, `params['model_class'](params=params)` of the same `params` always create models with the same structure. :param params: Model hyper-parameters. (default: return value from :meth:`get_default_params`) Example: >>> BaseModel() # doctest: +ELLIPSIS Traceback (most recent call last): ... TypeError: Can't instantiate abstract class BaseModel ... >>> class MyModel(BaseModel): ... def build(self): ... pass ... def forward(self): ... pass >>> isinstance(MyModel(), BaseModel) True """ def __init__( self, params: typing.Optional[ParamTable] = None ): """Init.""" super().__init__() self._params = params or self.get_default_params() @classmethod def get_default_params( cls, with_embedding=False, with_multi_layer_perceptron=False ) -> ParamTable: """ Model default parameters. The common usage is to instantiate :class:`matchzoo.engine.ModelParams` first, then set the model specific parametrs. Examples: >>> class MyModel(BaseModel): ... def build(self): ... print(self._params['num_eggs'], 'eggs') ... print('and', self._params['ham_type']) ... def forward(self, greeting): ... print(greeting) ... ... @classmethod ... def get_default_params(cls): ... params = ParamTable() ... params.add(Param('num_eggs', 512)) ... params.add(Param('ham_type', 'Parma Ham')) ... return params >>> my_model = MyModel() >>> my_model.build() 512 eggs and Parma Ham >>> my_model('Hello MatchZoo!') Hello MatchZoo! Notice that all parameters must be serialisable for the entire model to be serialisable. Therefore, it's strongly recommended to use python native data types to store parameters. :return: model parameters """ params = ParamTable() params.add(Param( name='model_class', value=cls, desc="Model class. Used internally for save/load. " "Changing this may cause unexpected behaviors." )) params.add(Param( name='task', desc="Decides model output shape, loss, and metrics." )) params.add(Param( name='out_activation_func', value=None, desc="Activation function used in output layer." )) if with_embedding: params.add(Param( name='with_embedding', value=True, desc="A flag used help `auto` module. Shouldn't be changed." )) params.add(Param( name='embedding', desc='FloatTensor containing weights for the Embedding.', validator=lambda x: isinstance(x, np.ndarray) )) params.add(Param( name='embedding_input_dim', desc='Usually equals vocab size + 1. Should be set manually.' )) params.add(Param( name='embedding_output_dim', desc='Should be set manually.' )) params.add(Param( name='padding_idx', value=0, desc='If given, pads the output with the embedding vector at' 'padding_idx (initialized to zeros) whenever it encounters' 'the index.' )) params.add(Param( name='embedding_freeze', value=False, desc='`True` to freeze embedding layer training, ' '`False` to enable embedding parameters.' )) if with_multi_layer_perceptron: params.add(Param( name='with_multi_layer_perceptron', value=True, desc="A flag of whether a multiple layer perceptron is used. " "Shouldn't be changed." )) params.add(Param( name='mlp_num_units', value=128, desc="Number of units in first `mlp_num_layers` layers.", hyper_space=hyper_spaces.quniform(8, 256, 8) )) params.add(Param( name='mlp_num_layers', value=3, desc="Number of layers of the multiple layer percetron.", hyper_space=hyper_spaces.quniform(1, 6) )) params.add(Param( name='mlp_num_fan_out', value=64, desc="Number of units of the layer that connects the multiple " "layer percetron and the output.", hyper_space=hyper_spaces.quniform(4, 128, 4) )) params.add(Param( name='mlp_activation_func', value='relu', desc='Activation function used in the multiple ' 'layer perceptron.' )) return params def guess_and_fill_missing_params(self, verbose=1): """ Guess and fill missing parameters in :attr:`params`. Use this method to automatically fill-in other hyper parameters. This involves some guessing so the parameter it fills could be wrong. For example, the default task is `Ranking`, and if we do not set it to `Classification` manaully for data packs prepared for classification, then the shape of the model output and the data will mismatch. :param verbose: Verbosity. """ self._params.get('task').set_default(tasks.Ranking(), verbose) if 'with_embedding' in self._params: self._params.get('embedding_input_dim').set_default(300, verbose) self._params.get('embedding_output_dim').set_default(300, verbose) def _set_param_default(self, name: str, default_val: str, verbose: int = 0): if self._params[name] is None: self._params[name] = default_val if verbose: print(f"Parameter \"{name}\" set to {default_val}.") @classmethod def get_default_preprocessor( cls, truncated_mode: str = 'pre', truncated_length_left: typing.Optional[int] = None, truncated_length_right: typing.Optional[int] = None, filter_mode: str = 'df', filter_low_freq: float = 1, filter_high_freq: float = float('inf'), remove_stop_words: bool = False, ngram_size: typing.Optional[int] = None, ) -> BasePreprocessor: """ Model default preprocessor. The preprocessor's transform should produce a correctly shaped data pack that can be used for training. :return: Default preprocessor. """ return preprocessors.BasicPreprocessor( truncated_mode=truncated_mode, truncated_length_left=truncated_length_left, truncated_length_right=truncated_length_right, filter_mode=filter_mode, filter_low_freq=filter_low_freq, filter_high_freq=filter_high_freq, remove_stop_words=remove_stop_words, ngram_size=ngram_size ) @classmethod def get_default_padding_callback( cls, fixed_length_left: int = None, fixed_length_right: int = None, pad_word_value: typing.Union[int, str] = 0, pad_word_mode: str = 'pre', with_ngram: bool = False, fixed_ngram_length: int = None, pad_ngram_value: typing.Union[int, str] = 0, pad_ngram_mode: str = 'pre' ) -> BaseCallback: """ Model default padding callback. The padding callback's on_batch_unpacked would pad a batch of data to a fixed length. :return: Default padding callback. """ return callbacks.BasicPadding( fixed_length_left=fixed_length_left, fixed_length_right=fixed_length_right, pad_word_value=pad_word_value, pad_word_mode=pad_word_mode, with_ngram=with_ngram, fixed_ngram_length=fixed_ngram_length, pad_ngram_value=pad_ngram_value, pad_ngram_mode=pad_ngram_mode ) @property def params(self) -> ParamTable: """:return: model parameters.""" return self._params @params.setter def params(self, val): self._params = val @abc.abstractmethod def build(self): """Build model, each subclass need to implement this method.""" raise NotImplementedError( "Build method not implemented in the subclass." ) @abc.abstractmethod def forward(self, *input): """ Defines the computation performed at every call. Should be overridden by all subclasses. """ raise NotImplementedError( "Forward method not implemented in the subclass." ) def _make_embedding_layer( self, num_embeddings: int = 0, embedding_dim: int = 0, freeze: bool = True, embedding: typing.Optional[np.ndarray] = None, **kwargs ) -> nn.Module: """:return: an embedding module.""" if isinstance(embedding, np.ndarray): return nn.Embedding.from_pretrained( embeddings=torch.Tensor(embedding), freeze=freeze ) else: return nn.Embedding( num_embeddings=num_embeddings, embedding_dim=embedding_dim ) def _make_default_embedding_layer( self, **kwargs ) -> nn.Module: """:return: an embedding module.""" if isinstance(self._params['embedding'], np.ndarray): self._params['embedding_input_dim'] = ( self._params['embedding'].shape[0] ) self._params['embedding_output_dim'] = ( self._params['embedding'].shape[1] ) return nn.Embedding.from_pretrained( embeddings=torch.Tensor(self._params['embedding']), freeze=self._params['embedding_freeze'], padding_idx=self._params['padding_idx'] ) else: return nn.Embedding( num_embeddings=self._params['embedding_input_dim'], embedding_dim=self._params['embedding_output_dim'], padding_idx=self._params['padding_idx'] ) def _make_output_layer( self, in_features: int = 0 ) -> nn.Module: """:return: a correctly shaped torch module for model output.""" task = self._params['task'] if isinstance(task, tasks.Classification): out_features = task.num_classes elif isinstance(task, tasks.Ranking): out_features = 1 else: raise ValueError(f"{task} is not a valid task type. " f"Must be in `Ranking` and `Classification`.") if self._params['out_activation_func']: return nn.Sequential( nn.Linear(in_features, out_features), parse_activation(self._params['out_activation_func']) ) else: return nn.Linear(in_features, out_features) def _make_perceptron_layer( self, in_features: int = 0, out_features: int = 0, activation: nn.Module = nn.ReLU() ) -> nn.Module: """:return: a perceptron layer.""" return nn.Sequential( nn.Linear(in_features, out_features), activation ) def _make_multi_layer_perceptron_layer(self, in_features) -> nn.Module: """:return: a multiple layer perceptron.""" if not self._params['with_multi_layer_perceptron']: raise AttributeError( 'Parameter `with_multi_layer_perception` not set.') activation = parse_activation(self._params['mlp_activation_func']) mlp_sizes = [ in_features, *self._params['mlp_num_layers'] * [self._params['mlp_num_units']], self._params['mlp_num_fan_out'] ] mlp = [ self._make_perceptron_layer(in_f, out_f, activation) for in_f, out_f in zip(mlp_sizes, mlp_sizes[1:]) ] return nn.Sequential(*mlp)
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/engine/base_model.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/engine/base_model.py", "repo_id": "ContextualSP", "token_count": 6350 }
254
"""Normalized discounted cumulative gain metric for ranking.""" import numpy as np from matchzoo.engine.base_metric import ( BaseMetric, sort_and_couple, RankingMetric ) from .discounted_cumulative_gain import DiscountedCumulativeGain class NormalizedDiscountedCumulativeGain(RankingMetric): """Normalized discounted cumulative gain metric.""" ALIAS = ['normalized_discounted_cumulative_gain', 'ndcg'] def __init__(self, k: int = 1, threshold: float = 0.): """ :class:`NormalizedDiscountedCumulativeGain` constructor. :param k: Number of results to consider :param threshold: the label threshold of relevance degree. """ self._k = k self._threshold = threshold def __repr__(self) -> str: """:return: Formated string representation of the metric.""" return f"{self.ALIAS[0]}@{self._k}({self._threshold})" def __call__(self, y_true: np.array, y_pred: np.array) -> float: """ Calculate normalized discounted cumulative gain (ndcg). Relevance is positive real values or binary values. Example: >>> y_true = [0, 1, 2, 0] >>> y_pred = [0.4, 0.2, 0.5, 0.7] >>> ndcg = NormalizedDiscountedCumulativeGain >>> ndcg(k=1)(y_true, y_pred) 0.0 >>> round(ndcg(k=2)(y_true, y_pred), 2) 0.52 >>> round(ndcg(k=3)(y_true, y_pred), 2) 0.52 >>> type(ndcg()(y_true, y_pred)) <class 'float'> :param y_true: The ground true label of each document. :param y_pred: The predicted scores of each document. :return: Normalized discounted cumulative gain. """ dcg_metric = DiscountedCumulativeGain(k=self._k, threshold=self._threshold) idcg_val = dcg_metric(y_true, y_true) dcg_val = dcg_metric(y_true, y_pred) return dcg_val / idcg_val if idcg_val != 0 else 0
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/metrics/normalized_discounted_cumulative_gain.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/metrics/normalized_discounted_cumulative_gain.py", "repo_id": "ContextualSP", "token_count": 919 }
255
"""An implementation of DUET Model.""" import typing import torch import torch.nn as nn import torch.nn.functional as F from matchzoo import preprocessors from matchzoo.engine import hyper_spaces from matchzoo.engine.param import Param from matchzoo.engine.base_model import BaseModel from matchzoo.engine.param_table import ParamTable from matchzoo.engine.base_callback import BaseCallback from matchzoo.dataloader import callbacks from matchzoo.modules import Attention from matchzoo.utils import parse_activation class DUET(BaseModel): """ Duet Model. Examples: >>> model = DUET() >>> model.params['left_length'] = 10 >>> model.params['right_length'] = 40 >>> model.params['lm_filters'] = 300 >>> model.params['mlp_num_layers'] = 2 >>> model.params['mlp_num_units'] = 300 >>> model.params['mlp_num_fan_out'] = 300 >>> model.params['mlp_activation_func'] = 'relu' >>> model.params['vocab_size'] = 2000 >>> model.params['dm_filters'] = 300 >>> model.params['dm_conv_activation_func'] = 'relu' >>> model.params['dm_kernel_size'] = 3 >>> model.params['dm_right_pool_size'] = 8 >>> model.params['dropout_rate'] = 0.5 >>> model.guess_and_fill_missing_params(verbose=0) >>> model.build() """ @classmethod def get_default_params(cls) -> ParamTable: """:return: model default parameters.""" params = super().get_default_params( with_embedding=False, with_multi_layer_perceptron=True ) params.add(Param(name='mask_value', value=0, desc="The value to be masked from inputs.")) params.add(Param(name='left_length', value=10, desc='Length of left input.')) params.add(Param(name='right_length', value=40, desc='Length of right input.')) params.add(Param(name='lm_filters', value=300, desc="Filter size of 1D convolution layer in " "the local model.")) params.add(Param(name='vocab_size', value=419, desc="Vocabulary size of the tri-letters used in " "the distributed model.")) params.add(Param(name='dm_filters', value=300, desc="Filter size of 1D convolution layer in " "the distributed model.")) params.add(Param(name='dm_kernel_size', value=3, desc="Kernel size of 1D convolution layer in " "the distributed model.")) params.add(Param(name='dm_conv_activation_func', value='relu', desc="Activation functions of the convolution layer " "in the distributed model.")) params.add(Param(name='dm_right_pool_size', value=8, desc="Kernel size of 1D convolution layer in " "the distributed model.")) params.add(Param( name='dropout_rate', value=0.5, hyper_space=hyper_spaces.quniform(low=0.0, high=0.8, q=0.02), desc="The dropout rate.")) return params @classmethod def get_default_preprocessor( cls, truncated_mode: str = 'pre', truncated_length_left: int = 10, truncated_length_right: int = 40, filter_mode: str = 'df', filter_low_freq: float = 1, filter_high_freq: float = float('inf'), remove_stop_words: bool = False, ngram_size: int = 3 ): """:return: Default preprocessor.""" return preprocessors.BasicPreprocessor( truncated_mode=truncated_mode, truncated_length_left=truncated_length_left, truncated_length_right=truncated_length_right, filter_mode=filter_mode, filter_low_freq=filter_low_freq, filter_high_freq=filter_high_freq, remove_stop_words=remove_stop_words, ngram_size=ngram_size ) @classmethod def get_default_padding_callback( cls, fixed_length_left: int = 10, fixed_length_right: int = 40, pad_word_value: typing.Union[int, str] = 0, pad_word_mode: str = 'pre', with_ngram: bool = True, fixed_ngram_length: int = None, pad_ngram_value: typing.Union[int, str] = 0, pad_ngram_mode: str = 'pre' ) -> BaseCallback: """ Model default padding callback. The padding callback's on_batch_unpacked would pad a batch of data to a fixed length. :return: Default padding callback. """ return callbacks.BasicPadding( fixed_length_left=fixed_length_left, fixed_length_right=fixed_length_right, pad_word_value=pad_word_value, pad_word_mode=pad_word_mode, with_ngram=with_ngram, fixed_ngram_length=fixed_ngram_length, pad_ngram_value=pad_ngram_value, pad_ngram_mode=pad_ngram_mode ) @classmethod def _xor_match(cls, x, y): """Xor match of two inputs.""" x_expand = torch.unsqueeze(x, 2).repeat(1, 1, y.shape[1]) y_expand = torch.unsqueeze(y, 1).repeat(1, x.shape[1], 1) out = torch.eq(x_expand, y_expand).float() return out def build(self): """Build model structure.""" self.lm_conv1d = nn.Conv1d( in_channels=self._params['right_length'], out_channels=self.params['lm_filters'], kernel_size=1, stride=1 ) lm_mlp_size = self._params['left_length'] * self._params['lm_filters'] self.lm_mlp = self._make_multi_layer_perceptron_layer(lm_mlp_size) self.lm_linear = self._make_perceptron_layer( in_features=self._params['mlp_num_fan_out'], out_features=1 ) self.dm_conv_activation_func = parse_activation( self._params['dm_conv_activation_func'] ) self.dm_conv_left = nn.Conv1d( self._params['vocab_size'], self._params['dm_filters'], self._params['dm_kernel_size'] ) self.dm_mlp_left = self._make_perceptron_layer( in_features=self._params['dm_filters'], out_features=self._params['dm_filters'] ) self.dm_conv1_right = nn.Conv1d( self._params['vocab_size'], self._params['dm_filters'], self._params['dm_kernel_size'] ) self.dm_conv2_right = nn.Conv1d( self._params['dm_filters'], self._params['dm_filters'], 1 ) dm_mp_size = ( (self._params['right_length'] - self._params['dm_kernel_size'] + 1) // ( self._params['dm_right_pool_size']) * self._params['dm_filters'] ) self.dm_mlp = self._make_multi_layer_perceptron_layer(dm_mp_size) self.dm_linear = self._make_perceptron_layer( in_features=self._params['mlp_num_fan_out'], out_features=1 ) self.dropout = nn.Dropout(self._params['dropout_rate']) self.out = self._make_output_layer(1) def forward(self, inputs): """Forward.""" # Scalar dimensions referenced here: # B = batch size (number of sequences) # L = `input_left` sequence length # R = `input_right` sequence length # Left input and right input. # shape = [B, L] # shape = [B, R] query_word, doc_word = inputs['text_left'], inputs['text_right'] # shape = [B, L] mask_query = (query_word != self._params['mask_value']).float() mask_doc = (doc_word != self._params['mask_value']).float() # shape = [B, ngram_size, L] # shape = [B, ngram_size, R] query_ngram, doc_ngram = inputs['ngram_left'], inputs['ngram_right'] query_ngram = F.normalize(query_ngram, p=2, dim=2) doc_ngram = F.normalize(doc_ngram, p=2, dim=2) # shape = [B, R, L] matching_xor = self._xor_match(doc_word, query_word) mask_xor = torch.einsum('bi, bj->bij', mask_doc, mask_query) xor_res = torch.einsum('bij, bij->bij', matching_xor, mask_xor) # Process local model lm_res = self.lm_conv1d(xor_res) lm_res = lm_res.flatten(start_dim=1, end_dim=-1) lm_res = self.lm_mlp(lm_res) lm_res = self.dropout(lm_res) lm_res = self.lm_linear(lm_res) # Process distributed model dm_left = self.dm_conv_left(query_ngram.permute(0, 2, 1)) dm_left = self.dm_conv_activation_func(dm_left) dm_left = torch.max(dm_left, dim=-1)[0] dm_left = self.dm_mlp_left(dm_left) dm_right = self.dm_conv1_right(doc_ngram.permute(0, 2, 1)) dm_right = F.max_pool2d( self.dm_conv_activation_func(dm_right), (1, self._params['dm_right_pool_size']) ) dm_right = self.dm_conv2_right(dm_right) dm_res = torch.einsum('bl,blk->blk', dm_left, dm_right) dm_res = dm_res.flatten(start_dim=1, end_dim=-1) dm_res = self.dm_mlp(dm_res) dm_res = self.dropout(dm_res) dm_res = self.dm_linear(dm_res) x = lm_res + dm_res out = self.out(x) return out
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/models/duet.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/models/duet.py", "repo_id": "ContextualSP", "token_count": 4688 }
256
"""Gaussian kernel module.""" import typing import torch import torch.nn as nn class GaussianKernel(nn.Module): """ Gaussian kernel module. :param mu: Float, mean of the kernel. :param sigma: Float, sigma of the kernel. Examples: >>> import torch >>> kernel = GaussianKernel() >>> x = torch.randn(4, 5, 10) >>> x.shape torch.Size([4, 5, 10]) >>> kernel(x).shape torch.Size([4, 5, 10]) """ def __init__(self, mu: float = 1., sigma: float = 1.): """Gaussian kernel constructor.""" super().__init__() self.mu = mu self.sigma = sigma def forward(self, x): """Forward.""" return torch.exp( -0.5 * ((x - self.mu) ** 2) / (self.sigma ** 2) )
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/modules/gaussian_kernel.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/modules/gaussian_kernel.py", "repo_id": "ContextualSP", "token_count": 365 }
257
from .unit import Unit class DigitRemoval(Unit): """Process unit to remove digits.""" def transform(self, input_: list) -> list: """ Remove digits from list of tokens. :param input_: list of tokens to be filtered. :return tokens: tokens of tokens without digits. """ return [token for token in input_ if not token.isdigit()]
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/preprocessors/units/digit_removal.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/preprocessors/units/digit_removal.py", "repo_id": "ContextualSP", "token_count": 141 }
258
from .classification import Classification from .ranking import Ranking
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/tasks/__init__.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/tasks/__init__.py", "repo_id": "ContextualSP", "token_count": 13 }
259
import torch import numpy as np from matchzoo import losses def test_hinge_loss(): true_value = torch.Tensor([[1.2], [1], [1], [1]]) pred_value = torch.Tensor([[1.2], [0.1], [0], [-0.3]]) expected_loss = torch.Tensor([(0 + 1 - 0.3 + 0) / 2.0]) loss = losses.RankHingeLoss()(pred_value, true_value) assert torch.isclose(expected_loss, loss) expected_loss = torch.Tensor( [(2 + 0.1 - 1.2 + 2 - 0.3 + 0) / 2.0]) loss = losses.RankHingeLoss(margin=2)(pred_value, true_value) assert torch.isclose(expected_loss, loss) true_value = torch.Tensor( [[1.2], [1], [0.8], [1], [1], [0.8]]) pred_value = torch.Tensor( [[1.2], [0.1], [-0.5], [0], [0], [-0.3]]) expected_loss = torch.Tensor( [(0 + 1 - 0.15) / 2.0]) loss = losses.RankHingeLoss(num_neg=2, margin=1)( pred_value, true_value) assert torch.isclose(expected_loss, loss) def test_rank_crossentropy_loss(): losses.neg_num = 1 def softmax(x): return np.exp(x) / np.sum(np.exp(x), axis=0) true_value = torch.Tensor([[1.], [0.], [0.], [1.]]) pred_value = torch.Tensor([[0.8], [0.1], [0.8], [0.1]]) expected_loss = torch.Tensor( [(-np.log(softmax([0.8, 0.1])[0]) - np.log( softmax([0.8, 0.1])[1])) / 2]) loss = losses.RankCrossEntropyLoss()(pred_value, true_value) assert torch.isclose(expected_loss, loss) true_value = torch.Tensor([[1.], [0.], [0.], [0.], [1.], [0.]]) pred_value = torch.Tensor([[0.8], [0.1], [0.1], [0.8], [0.1], [0.1]]) expected_loss = torch.Tensor( [(-np.log(softmax([0.8, 0.1, 0.1])[0]) - np.log( softmax([0.8, 0.1, 0.1])[1])) / 2]) loss = losses.RankCrossEntropyLoss(num_neg=2)( pred_value, true_value) assert torch.isclose(expected_loss, loss)
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tests/test_losses.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tests/test_losses.py", "repo_id": "ContextualSP", "token_count": 888 }
260
<jupyter_start><jupyter_code>%run init.ipynb ranking_task = mz.tasks.Ranking(losses=mz.losses.RankCrossEntropyLoss(num_neg=4)) ranking_task.metrics = [ mz.metrics.NormalizedDiscountedCumulativeGain(k=3), mz.metrics.NormalizedDiscountedCumulativeGain(k=5), mz.metrics.MeanAveragePrecision() ] preprocessor = mz.models.DSSM.get_default_preprocessor(ngram_size=3) train_pack_processed = preprocessor.fit_transform(train_pack_raw) valid_pack_processed = preprocessor.transform(dev_pack_raw) test_pack_processed = preprocessor.transform(test_pack_raw) preprocessor.context triletter_callback = mz.dataloader.callbacks.Ngram( preprocessor, mode='aggregate') trainset = mz.dataloader.Dataset( data_pack=train_pack_processed, mode='pair', num_dup=1, num_neg=4, callbacks=[triletter_callback] ) testset = mz.dataloader.Dataset( data_pack=test_pack_processed, callbacks=[triletter_callback] ) padding_callback = mz.models.DSSM.get_default_padding_callback() trainloader = mz.dataloader.DataLoader( dataset=trainset, batch_size=32, stage='train', resample=True, callback=padding_callback ) testloader = mz.dataloader.DataLoader( dataset=testset, batch_size=32, stage='dev', callback=padding_callback ) model = mz.models.DSSM() model.params['task'] = ranking_task model.params['vocab_size'] = preprocessor.context['ngram_vocab_size'] model.params['mlp_num_layers'] = 3 model.params['mlp_num_units'] = 300 model.params['mlp_num_fan_out'] = 128 model.params['mlp_activation_func'] = 'relu' model.build() print(model, sum(p.numel() for p in model.parameters() if p.requires_grad)) optimizer = torch.optim.Adam(model.parameters()) trainer = mz.trainers.Trainer( model=model, optimizer=optimizer, trainloader=trainloader, validloader=testloader, validate_interval=None, epochs=10 ) trainer.run()<jupyter_output><empty_output>
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tutorials/ranking/dssm.ipynb/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tutorials/ranking/dssm.ipynb", "repo_id": "ContextualSP", "token_count": 765 }
261
# Semantic Parsing in Context <img src="https://pytorch.org/assets/images/logo-dark.svg" height = "25" align=center /> The official pytorch implementation of our paper [How Far are We from Effective Context Modeling ? An Exploratory Study on Semantic Parsing in Context](https://arxiv.org/pdf/2002.00652.pdf). This code contains multiple context modeling techniques on modeling context in semantic parsing. It provides `readable`, `fast` and `strong` baselines for the community. If you find our code useful, please consider citing our paper: ```bib @inproceedings{qian2020how, title={How Far are We from Effective Context Modeling? An Exploratory Study on Semantic Parsing in Context twitter}, author={Liu, Qian and Chen, Bei and Guo, Jiaqi and Lou, Jian-Guang and Zhou, Bin and Zhang, Dongmei}, booktitle={IJCAI}, year={2020} } ``` ## Content - [Task Introduction](#task) - [Model Framework](#model) - [Install Requirements](#requirements) - [Prepare Dataset](#data) - [Train Model](#train) - [Evaluate Model](#evaluate) - [Predict on Custom Data](#predict-on-custom-data) - [Demo on Web](#demo) - [Pretrained Weights](#experiment) - [Fine-grained Analysis](#analysis) - [Frequent Asked Questions](#faq) ## Task <img src="misc/task.png" height=150> Semantic parsing, which translates a natural language sentence into its corresponding executable logic form (e.g. Structured Query Language, SQL), relieves users from the burden of learning techniques behind the logic form. The majority of previous studies on semantic parsing assume that queries are context-independent and analyze them in isolation. However, in reality, users prefer to interact with systems in a dialogue, where users are allowed to ask context-dependent incomplete questions. That arises the task of **Semantic Parsing in Context**, which is quite challenging as there are complex contextual phenomena. ## Model <img src="misc/semantic_framework.png" height=400> Our backbone is the Sequence to Sequence model with a Grammar-Based Decoder, especially using the IRNet grammar (SemQL). ## Requirements ### Python Environment First of all, you should setup a python environment. This code base has been tested under python 3.x, and we officially support python 3.7. After installing python 3.7, we strongly recommend you to use `virtualenv` (a tool to create isolated Python environments) to manage the python environment. You could use following commands to create a environment. ```bash python -m pip install virtualenv virtualenv venv ``` ### Activate Virtual Environment Then you should activate the environment to install the dependencies. You could achieve it via using the command as below. (Please change $ENV_FOLDER to your own virtualenv folder path, e.g. venv) ```bash $ENV_FOLDER\Scripts\activate.bat (Windows) source $ENV_FOLDER/bin/activate (Linux) ``` ### Install Libraries The most important requirements of our code base are as following: - pytorch >= 1.2.0 (not tested on other versions, but 1.0.0 may work though) - allennlp == 0.9.0 Then you should install following packages: - dill - ordered_set - edit_distance You should install them at first. ### SQL-based evaluation Now our code saves the best model checkpoint based on SQL based comparison, which is the performance indicator on the Spider, SParC and CoSQL benchmarks. Here we adopt the evaluation script which is suited for python3 from [EditSQL](https://github.com/ryanzhumich/editsql). ## Data ### Prepare Dataset You could download the two datasets [SParC](https://yale-lily.github.io/sparc) and [CoSQL](https://yale-lily.github.io/cosql). And then rename the dataset top folder as `dataset_sparc` and `dataset_cosql` respectively. An example structure for dataset `SParC` is as following: ``` |- dataset_sparc |- database |- academic |- activity_1 |- ... |- train.json |- dev.json |- tables.json |- models |- predictor |- ... ``` ### Prepare Glove If you want to train models without BERT, please download [Glove Twitter](http://nlp.stanford.edu/data/glove.twitter.27B.zip). Unzip and rename the folder into `glove`. ## Train ![task](misc/settings.png) We use the command `allennlp` to train our models, and all the hyper-parameters for different settings are stored in configs listed under `train_configs` and `train_configs_bert`. The config and model architectures in our paper are as following: | Config | Model in Paper | | :--- | :---: | concat.none.jsonnet | Concat History | | turn.none.jsonnet | Turn-level Encoder| | none.attn.jsonnet | SQL Attention| | none.gate.jsonnet | Gate Mechanism | | none.token.jsonnet | Action Copy | | none.tree.jsonnet | Tree Copy | | concat.attn.jsonnet | Concat + Attention | | concat.token.jsonnet | Concat + Token Copy | | concat.tree.jsonnet | Concat + Tree Copy | | turn.attn.jsonnet | Turn + SQL Attention| | turn.token.jsonnet | Turn + Action Copy| | turn.tree.jsonnet | Turn + Tree Copy| | turn.token.attn.jsonnet | Turn + Action Copy + SQL Attention| For example, you could run `Concat History` on `SParC` using the following script (*We also provide [`windows`](https://github.com/microsoft/ContextualSP/tree/master/bash_files/windows) and [`linux`](https://github.com/microsoft/ContextualSP/tree/master/bash_files/linux) batch script in the folder [`batch_files`](https://github.com/microsoft/ContextualSP/tree/master/bash_files) for your convenience. Please run them under the root directory `./`.*): - Under linux: ```bash export seed=1 export config_file=train_configs/concat.none.jsonnet export model_file=checkpoints_sparc/sparc_concat_model export tables_file=dataset_sparc/tables.json export database_path=dataset_sparc/database export dataset_path=dataset_sparc export train_data_path=dataset_sparc/train.json export validation_data_path=dataset_sparc/dev.json export pretrained_file=glove/glove.twitter.27B.100d.txt allennlp train -s ${model_file} ${config_file} \ --include-package dataset_reader.sparc_reader \ --include-package models.sparc_parser \ -o "{\"model.serialization_dir\":\"${model_file}\",\"random_seed\":\"${seed}\",\"numpy_seed\":\"${seed}\",\"pytorch_seed\":\"${seed}\",\"dataset_reader.tables_file\":\"${tables_file}\",\"dataset_reader.database_path\":\"${database_path}\",\"train_data_path\":\"${train_data_path}\",\"validation_data_path\":\"${validation_data_path}\",\"model.text_embedder.tokens.pretrained_file\":\"${pretrained_file}\",\"model.dataset_path\":\"${dataset_path}\"}" ``` - Under Windows (`"""` is to escape the double quotation mark, equalivant to `"`): ```cmd set seed=1 set config_file=train_configs/concat.none.jsonnet set model_file=checkpoints_sparc/sparc_concat_model set tables_file=dataset_sparc/tables.json set database_path=dataset_sparc/database set dataset_path=dataset_sparc set train_data_path=dataset_sparc/train.json set validation_data_path=dataset_sparc/dev.json set pretrained_file=glove/glove.twitter.27B.100d.txt allennlp train -s %model_file% %config_file% ^ --include-package dataset_reader.sparc_reader ^ --include-package models.sparc_parser ^ -o {"""model.serialization_dir""":"""%model_file%""","""random_seed""":"""%seed%""","""numpy_seed""":"""%seed%""","""pytorch_seed""":"""%seed%""","""dataset_reader.tables_file""":"""%tables_file%""","""dataset_reader.database_path""":"""%database_path%""","""train_data_path""":"""%train_data_path%""","""validation_data_path""":"""%validation_data_path%""","""model.text_embedder.tokens.pretrained_file""":"""%pretrained_file%""","""model.dataset_path""":"""%dataset_path%"""} ``` ## Evaluate You could predict and evaluate SQLs using trained model checkpoint file (e.g. `checkpoints_sparc/sparc_concat_model/model.tar.gz`) using the following command: - Under Linux ```bash export model_file=checkpoints_sparc/sparc_concat_model export validation_file=dataset_sparc/dev.json export validation_out_file=dataset_sparc/dev.jsonl export prediction_out_file=predict.jsonl python postprocess.py --valid_file ${validation_file} --valid_out_file ${validation_out_file} allennlp predict \ --include-package dataset_reader.sparc_reader \ --include-package models.sparc_parser \ --include-package predictor.sparc_predictor \ --predictor sparc \ --dataset-reader-choice validation \ --batch-size 1 \ --cuda-device 0 \ --output-file ${model_file}/${prediction_out_file} \ ${model_file}/model.tar.gz ${validation_out_file} ``` - Under Windows ```cmd set model_file=checkpoints_sparc/sparc_concat_model set validation_file=dataset_sparc/dev.json set validation_out_file=dataset_sparc/dev.jsonl set prediction_out_file=predict.jsonl python postprocess.py --valid_file %validation_file% --valid_out_file %validation_out_file% allennlp predict ^ --include-package dataset_reader.sparc_reader ^ --include-package models.sparc_parser ^ --include-package predictor.sparc_predictor ^ --predictor sparc ^ --dataset-reader-choice validation ^ --batch-size 1 ^ --cuda-device 0 ^ --output-file %model_file%/%prediction_out_file% ^ %model_file%/model.tar.gz %validation_out_file ``` ## Predict On Custom Data Our code also supports function call to predict SQls on custom data. You could find it in `predict.py`. Before running it, you should firstly store your own database into paths corresponding to the arguments of `PredictManager` with the same format as SParC/CoSQL. ## Demo You could also host a demo page using the following command using a well-trained archived model (e.g. `checkpoints_sparc/sparc_concat_model/model.tar.gz`): - Under Linux ```bash export model_file=checkpoints_sparc/sparc_concat_model python -m allennlp.service.server_simple \ --archive-path ${model_file}/model.tar.gz \ --predictor sparc \ --include-package predictor.sparc_predictor \ --include-package dataset_reader.sparc_reader \ --include-package models.sparc_parser \ --title "Contextual Semantic Parsing Demo" \ --field-name question \ --field-name database_id ``` - Under Windows ```cmd set model_file=checkpoints_sparc/sparc_concat_model python -m allennlp.service.server_simple ^ --archive-path %model_file%/model.tar.gz ^ --predictor sparc ^ --include-package predictor.sparc_predictor ^ --include-package dataset_reader.sparc_reader ^ --include-package models.sparc_parser ^ --title "Contextual Semantic Parsing Demo" ^ --field-name question ^ --field-name database_id ``` Once running, you could open the demo page in [http://localhost:8000](http://localhost:8000). The question field accepts an interaction of questions separated by `;`. See the demo page below (only accepts database_id appeared in `tables.json`): ![demo](misc/demo.png) ## Experiment | Dataset | BERT | Config | Best | Avg | Pretrained_Weights | | :---: | :---: |:--- | :---: | :---: | :---: | | SParC | No | concat.none.jsonnet | 41.8 | 40.0 | [model.tar.gz](https://github.com/microsoft/ContextualSP/releases/download/sparc.concat/model.tar.gz)| | SParC | No | turn.none.jsonnet | 43.6 | 42.4 | [model.tar.gz](https://github.com/microsoft/ContextualSP/releases/download/sparc.turn/model.tar.gz)| | SParC | No | none.token.jsonnet | 38.9 | 38.4 | [model.tar.gz](https://github.com/microsoft/ContextualSP/releases/download/sparc.token/model.tar.gz)| | SParC | Yes | concat.none.jsonnet | 52.6 | 51.0 | [model.tar.gz](https://github.com/microsoft/ContextualSP/releases/download/sparc.bert.concat/model.tar.gz)| | SParC | Yes | turn.none.jsonnet | 47.0 | 43.0 | [model.tar.gz](https://github.com/microsoft/ContextualSP/releases/download/sparc.bert.turn/model.tar.gz)| | SParC | Yes | none.token.jsonnet | 46.1 | 45.4 | [model.tar.gz](https://github.com/microsoft/ContextualSP/releases/download/sparc.bert.token/model.tar.gz)| | CoSQL | No | concat.none.jsonnet | 33.5 | 32.4 | [model.tar.gz](https://github.com/microsoft/ContextualSP/releases/download/cosql.concat/model.tar.gz)| | CoSQL | No | turn.none.jsonnet | 31.9 | 31.3 | [model.tar.gz](https://github.com/microsoft/ContextualSP/releases/download/cosql.turn/model.tar.gz)| | CoSQL | No | none.token.jsonnet | 32.8 | 31.9 | [model.tar.gz](https://github.com/microsoft/ContextualSP/releases/download/cosql.token/model.tar.gz)| | CoSQL | Yes | concat.none.jsonnet | 41.0 | 40.4 | [model.tar.gz](https://github.com/microsoft/ContextualSP/releases/download/cosql.bert.concat/model.tar.gz)| | CoSQL | Yes | turn.none.jsonnet | 39.2 | 38.9 | [model.tar.gz](https://github.com/microsoft/ContextualSP/releases/download/cosql.bert.turn/model.tar.gz)| | CoSQL | Yes | none.token.jsonnet | 42.1 | 41.6 | [model.tar.gz](https://github.com/microsoft/ContextualSP/releases/download/cosql.bert.token/model.tar.gz)| ## Analysis We also provide the fine-grained analysis results [here](https://github.com/microsoft/ContextualSP/blob/master/misc/dev_annotaed.tsv) annotated on the SParC validation set. You could either use it in your research work or debug your model in a fine-grained level. ## Acknowledgement We will thank the following repos which are very helpful to us. - [allennlp](https://github.com/allenai/allennlp) - [IRNet](https://github.com/microsoft/IRNet) - [spider-schema-gnn](https://github.com/benbogin/spider-schema-gnn) - [sparc](https://github.com/taoyds/sparc) - [editsql](https://github.com/ryanzhumich/editsql) ## FAQ **1. allennlp.common.checks.ConfigurationError: 'Serialization directory (checkpoints_sparc/sparc_concat_none_model) already exists and is not empty. Specify --recover to recover training from existing output.'** *Ans*: It means that there is already a checkpoint model named `checkpoints_sparc/sparc_concat_none_model`. Please add `--recover` option after the train commnd (if you want to resume the model to continue training) or delete the checkpoint model. **2. FileNotFoundError: [Errno 2] No such file or directory: 'dataset_sparc/train.json'** *Ans*: Please firstly download datasets and rename them as `dataset_sparc` and `dataset_cosql` following the above instructions. **3. The GPU Memory is not enough for running experiments under BERT** *Ans*: The training of this repo is based on batching `interactions` rather than `single sentences`. It means that, even when `batch_size` is set as `1`, one batch contains ~5 NL-SQL pairs (one interaction/dialogue). Therefore, the minimal memory requirement is nearly `17GB` in all settings under BERT. Considering this, we provide a memory friendly config file `concat.none.mem.jsonnet`. In such a config, data batching is based on natural language sentences rather than interactions. It only needs at least nearly `5GB` when using `batch_size` as `1`. To reduce memory consumed, you could also consider decreasing `maximum_history_len` hyper-parameter in #57 in sparc_reader.py (the default value is `5`). In practise, it also works well under `3` or `4`. **4. How to debug my custom model** *Ans*: We provide `debug.py` for debugging your custom model. Please change `config_file`(#9) into your custom one and debug by running `debug.py`. **5. How to validate the correctness of generated SemQL** *Ans*: We provide a [test script](https://github.com/microsoft/ContextualSP/blob/2b59163b3cca9922098c19895943b2c9e57c3447/semantic_parsing_in_context/test_sql_to_semql.py) for validating when translating SQL into SemQL. You could copy & modify the following script to achieve your testing goal as below: ```python def test_example(self): db_id = "flight_2" sql_plain = "SELECT * FROM AIRLINES" sql_clause = """ { "orderBy": [], "from": { "table_units": [ [ "table_unit", 0 ] ], "conds": [] }, "union": null, "except": null, "groupBy": [], "limit": null, "intersect": null, "where": [], "having": [], "select": [ false, [ [ 0, [ 0, [ 0, 0, false ], null ] ] ] ] } """ expected_action_str = "[Statement -> Root, Root -> Select, Select -> A, A -> none C T, C -> *, T -> airlines]" self.template(sql_plain, sql_clause, db_id, expected_action_str) ``` > `db_id`, `sql_plain` and `sql_clause` can be found in the dataset, and `expected_action_str` could be set as empty at first until you obtain the correct expected action sequence output.
ContextualSP/semantic_parsing_in_context/README.md/0
{ "file_path": "ContextualSP/semantic_parsing_in_context/README.md", "repo_id": "ContextualSP", "token_count": 5834 }
262
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import logging import os from functools import partial from typing import List from typing import Optional, Dict from typing import Tuple import edit_distance import numpy as np import torch from allennlp.training.metrics.metric import Metric from overrides import overrides from context.converter import ActionConverter from context.db_context import SparcDBContext from scripts.sparc_evaluate import evaluate class MetricUtil: """ This metric is deigned for full interaction matching ratio """ def __init__(self, dataset_path=None): """ Dataset path if provided for sql evaluation :param dataset_path: """ self._total_value = 0.0 self._count = 0 # we package a complete evaluate function in `sparc_evaluate.py` if dataset_path is not None: self._evaluator = SQLEvaluator(dataset_path=dataset_path) else: self._evaluator = ActionEvaluator() def __call__(self, best_action_indices: List[List[int]], gold_labels, batch_size: int, mask: Optional[torch.LongTensor], db_contexts: List[SparcDBContext] = None, action_mapping: List[List[str]] = None, with_sql: bool = False) -> Tuple: # if with sql, we need the action mapping to restore the action mapping assert (action_mapping is not None) == with_sql assert (db_contexts is not None) == with_sql assert isinstance(gold_labels[0], str) == with_sql # convert best_final_states into best_action_indices return self.calculation(best_action_indices, gold_labels, batch_size, mask, db_contexts, action_mapping, with_sql) def calculation(self, best_action_indices: List[List[int]], gold_labels, batch_size: int, mask: Optional[torch.LongTensor], db_contexts: List[SparcDBContext] = None, action_mapping: List[List[str]] = None, with_sql: bool = False, soft_correct: bool = False): """ This method is designed for check the correctness of metric measuring :param best_action_indices: predicted action sequence :param gold_labels: if ground-truth is SQL, the type should be `str`; otherwise, it should be torch.LongTensor. :param batch_size: batch size, for separate interaction accuracy calculation :param mask: action mask which has shape batch_size * inter_size, max_action_len :param db_contexts: db_context for mapping action str sequence into SQL :param action_mapping: int -> str, mapping action into corresponding string :param with_sql: whether evaluation under sql equality :param soft_correct: soft correct will return similarity(float) rather than correctness(integer) :return: """ assert (action_mapping is not None) == with_sql assert (db_contexts is not None) == with_sql assert isinstance(gold_labels[0], str) == with_sql sen_mask = mask.sum(dim=1).ne(0) iter_size = len(gold_labels) assert iter_size % batch_size == 0 inter_size = iter_size // batch_size # correct matrix if soft_correct: correct_mat = np.zeros((batch_size, inter_size), dtype=np.float) else: correct_mat = np.zeros((batch_size, inter_size), dtype=np.long) # iteration over all instances for i in range(iter_size): # if equal to 0, skip it if sen_mask[i] == 0: continue # for plain calculation if with_sql: # map predicted action into sql action_seq_ind = best_action_indices[i] action_seq_str = [action_mapping[i][ind] for ind in action_seq_ind] if len(action_seq_ind) == 0: match_score = 0.0 else: converter = ActionConverter(db_context=db_contexts[i]) try: action_sql = converter.translate_to_sql(action_seq_str) except Exception as e: logging.error("Converter error: {}".format(e)) action_sql = f'NULL' match_score = self._evaluator.is_equal(action_sql, gold_labels[i], db_contexts[i].db_id) else: if soft_correct: match_score = self._evaluator.similarity(best_action_indices[i], gold_labels[i], mask[i]) else: match_score = self._evaluator.is_equal(best_action_indices[i], gold_labels[i], mask[i]) correct_mat[i // inter_size, i % inter_size] = match_score sen_mask = sen_mask.view(batch_size, inter_size).cpu().data.numpy() return correct_mat, sen_mask class Evaluator: """ Abstract class for evaluator """ def __init__(self): pass def is_equal(self, predict, target, option) -> int: """ Judge whether `predict` is equal to `target` :return: if equal return 1; otherwise, return 0. """ pass def similarity(self, predict, target, option) -> float: """ Calculate similarity between predict and target, :return: the similarity """ pass class SQLEvaluator(Evaluator): def __init__(self, dataset_path): super().__init__() self.evaluate_func = partial(evaluate, db_dir=os.path.join(dataset_path, 'database'), table=os.path.join(dataset_path, 'tables.json')) @overrides def is_equal(self, predict_sql, gold_sql, db_id) -> int: """ Judge whether given predict sql is equal to ground truth under the db_id :return: if equal, return 1; otherwise, return 0 """ try: exact_match_score = self.evaluate_func(gold_sql, predict_sql, db_id) except Exception as e: logging.error("SQL Parse error: {}".format(e)) logging.error("DB_id: {}, Gold_SQL: {}, Predicted SQL: {}".format(db_id, gold_sql, predict_sql)) exact_match_score = 0 return exact_match_score @overrides def similarity(self, predict_sql, gold_sql, db_id) -> float: raise NotImplementedError class ActionEvaluator(Evaluator): @overrides def is_equal(self, predicted: List[int], targets: torch.LongTensor, target_mask: torch.LongTensor) -> int: """ Judge whether given predict sql is equal to ground truth under the db_id :return: if equal, return 1; otherwise, return 0 """ if len(predicted) > targets.size(0): return 0 predicted_tensor = targets.new_tensor(predicted) # remove padding ones actual_len = target_mask.sum() targets_trimmed = targets[:actual_len] # Return 1 if the predicted sequence is anywhere in the list of targets. is_correct = torch.equal(predicted_tensor, targets_trimmed) if is_correct: return 1 else: return 0 @overrides def similarity(self, predicted: List[int], targets: torch.LongTensor, target_mask: torch.LongTensor) -> float: # remove padding ones actual_len = target_mask.sum() targets_trimmed = targets[:actual_len] targets_trimmed = list(targets_trimmed.cpu().data.numpy()) sm = edit_distance.SequenceMatcher(a=predicted, b=targets_trimmed) # get the edit distance similarity between two lists return sm.ratio() @Metric.register("turn_average") class TurnAverage(Metric): """ This :class:`Metric` breaks with the typical ``Metric`` API and just stores values that were computed in some fashion outside of a ``Metric``. If you have some external code that computes the metric for you, for instance, you can use this to report the average result using our ``Metric`` API. """ def __init__(self, prefix) -> None: self._total_seq_value = 0.0 self._total_inter_value = 0.0 self._total_turn_1_value = 0.0 self._total_turn_2_value = 0.0 self._total_turn_3_value = 0.0 self._total_turn_4_value = 0.0 self._seq_count = 0 self._inter_count = 0 self._turn_1_count = 0 self._turn_2_count = 0 self._turn_3_count = 0 self._turn_4_count = 0 # for record the metric self.prefix = prefix @overrides def __call__(self, correct_mat, mask_mat): """ Parameters ---------- correct_mat : ``np.matrix`` has shape batch_size x inter_size, 1 means correct while 0 means error. mask_mat: ``np.matrix`` has the same shape with correct mat, 0 means invalid and 1 means valid. """ # return the sequence correct number correct_mat = correct_mat & mask_mat self._total_seq_value += np.count_nonzero(correct_mat == 1) self._seq_count += np.count_nonzero(mask_mat == 1) batch_size, maximum_inter_size = correct_mat.shape for i in range(maximum_inter_size): statistic_score = np.count_nonzero(correct_mat[:, i] == 1) statistic_count = np.count_nonzero(mask_mat[:, i] == 1) if i == 0: self._total_turn_1_value += statistic_score self._turn_1_count += statistic_count elif i == 1: self._total_turn_2_value += statistic_score self._turn_2_count += statistic_count elif i == 2: self._total_turn_3_value += statistic_score self._turn_3_count += statistic_count else: self._total_turn_4_value += statistic_score self._turn_4_count += statistic_count # only valid & incorrect, return 1 not_correct_mat = np.logical_and(np.logical_not(correct_mat), mask_mat) # if anyone is 1, the result is 0 correct_inter = 1 - not_correct_mat.max(axis=1) mask_inter = mask_mat.sum(axis=1) != 0 correct_inter = correct_inter & mask_inter self._total_inter_value += np.count_nonzero(correct_inter == 1) self._inter_count += np.count_nonzero(mask_inter == 1) @overrides def get_metric(self, reset: bool = False) -> Dict: """ Returns ------- The average of all values that were passed to ``__call__``. """ average_seq = self._total_seq_value / self._seq_count if self._seq_count > 0 else 0 average_inter = self._total_inter_value / self._inter_count if self._inter_count > 0 else 0 average_turn_1 = self._total_turn_1_value / self._turn_1_count if self._turn_1_count > 0 else 0 average_turn_2 = self._total_turn_2_value / self._turn_2_count if self._turn_2_count > 0 else 0 average_turn_3 = self._total_turn_3_value / self._turn_3_count if self._turn_3_count > 0 else 0 average_turn_4 = self._total_turn_4_value / self._turn_4_count if self._turn_4_count > 0 else 0 if reset: self.reset() return { f'{self.prefix}_exact_match': average_seq, # hidden them in TQDM report f'_{self.prefix}_inter_exact_match': average_inter, f'_{self.prefix}_turn_1_exact_match': average_turn_1, f'_{self.prefix}_turn_2_exact_match': average_turn_2, f'_{self.prefix}_turn_3_exact_match': average_turn_3, f'_{self.prefix}_turn_4_exact_match': average_turn_4, } @overrides def reset(self): self._total_inter_value = 0.0 self._total_seq_value = 0.0 self._total_turn_1_value = 0.0 self._total_turn_2_value = 0.0 self._total_turn_3_value = 0.0 self._total_turn_4_value = 0.0 self._inter_count = 0 self._seq_count = 0 self._turn_1_count = 0 self._turn_2_count = 0 self._turn_3_count = 0 self._turn_4_count = 0
ContextualSP/semantic_parsing_in_context/models/metrics.py/0
{ "file_path": "ContextualSP/semantic_parsing_in_context/models/metrics.py", "repo_id": "ContextualSP", "token_count": 5552 }
263
import json from context.converter import SQLConverter, SparcDBContext import unittest from allennlp.data.tokenizers import WordTokenizer class TestSQLToSemQL(unittest.TestCase): @staticmethod def template(sql_plain, sql_text, db_id, expected_str): sql_clause = json.loads(sql_text) db_context = SparcDBContext(db_id=db_id, utterance=[], tokenizer=WordTokenizer(), # TODO: Please first config the dataset path you want to test tables_file="dataset_sparc\\tables.json", database_path="dataset_sparc\\database") converter = SQLConverter(db_context=db_context) inter_seq = converter.translate_to_intermediate(sql_clause=sql_clause) assert str(inter_seq) == expected_str, \ f'\nSQL:\t\t{sql_plain}\nExp:\t\t{expected_str}\nPred:\t\t{str(inter_seq)}\n' def test_example(self): db_id = "flight_2" sql_plain = "SELECT * FROM AIRLINES" sql_clause = """ { "orderBy": [], "from": { "table_units": [ [ "table_unit", 0 ] ], "conds": [] }, "union": null, "except": null, "groupBy": [], "limit": null, "intersect": null, "where": [], "having": [], "select": [ false, [ [ 0, [ 0, [ 0, 0, false ], null ] ] ] ] } """ expected_action_str = "[Statement -> Root, Root -> Select, Select -> A, A -> none C T, C -> *, T -> airlines]" self.template(sql_plain, sql_clause, db_id, expected_action_str)
ContextualSP/semantic_parsing_in_context/test_sql_to_semql.py/0
{ "file_path": "ContextualSP/semantic_parsing_in_context/test_sql_to_semql.py", "repo_id": "ContextualSP", "token_count": 1419 }
264
# Copyright (c) Facebook, Inc. and Microsoft Corporation. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List import torch from genre.trie import Trie keyword = ['select', 'distinct', 'from', 'join', 'on', 'where', 'group', 'by', 'order', 'asc', 'desc', 'limit', 'having', 'and', 'not', 'or', 'like', 'between', 'in', 'sum', 'count', 'max', 'min', 'avg', '(', ')', ',', '>', '<', '=', '>=', '!=', '<=', 'union', 'except', 'intersect', '1', '2', '3', '4', '5'] def get_end_to_end_prefix_allowed_tokens_fn_hf( model, sentences: List[str], start_mention_token="{", end_mention_token="}", start_entity_token="[", end_entity_token="]", mention_trie: Trie = None, candidates_trie: Trie = None, mention_to_candidates_dict: Dict[str, List[str]] = None, ): return _get_end_to_end_prefix_allowed_tokens_fn( lambda x: model.tokenizer.encode(x), lambda x: model.tokenizer.decode(torch.tensor(x)), model.tokenizer.bos_token_id, model.tokenizer.pad_token_id, model.tokenizer.eos_token_id, len(model.tokenizer) - 1, sentences, start_mention_token, end_mention_token, start_entity_token, end_entity_token, mention_trie, candidates_trie, mention_to_candidates_dict, ) def get_end_to_end_prefix_allowed_tokens_fn_fairseq( model, sentences: List[str], start_mention_token="{", end_mention_token="}", start_entity_token="[", end_entity_token="]", mention_trie: Trie = None, candidates_trie: Trie = None, mention_to_candidates_dict: Dict[str, List[str]] = None, ): return _get_end_to_end_prefix_allowed_tokens_fn( lambda x: model.encode(x).tolist(), lambda x: model.decode(torch.tensor(x)), model.model.decoder.dictionary.bos(), model.model.decoder.dictionary.pad(), model.model.decoder.dictionary.eos(), len(model.model.decoder.dictionary), sentences, start_mention_token, end_mention_token, start_entity_token, end_entity_token, mention_trie, candidates_trie, mention_to_candidates_dict, ) def _get_end_to_end_prefix_allowed_tokens_fn( encode_fn, decode_fn, bos_token_id, pad_token_id, eos_token_id, vocabulary_length, sentences: List[str], start_mention_token="{", end_mention_token="}", start_entity_token="[", end_entity_token="]", mention_trie: Trie = None, candidates_trie: Trie = None, mention_to_candidates_dict: Dict[str, List[str]] = None, ): assert not ( candidates_trie is not None and mention_to_candidates_dict is not None ), "`candidates_trie` and `mention_to_candidates_dict` cannot be both != `None`" codes = {} codes["EOS"] = eos_token_id codes["BOS"] = bos_token_id keyword_codes = {k: encode_fn(" {}".format(k))[1] for k in keyword} keyword_codes['wselect'] = encode_fn("{}".format('select'))[1] def prefix_allowed_tokens_fn(batch_id, sent): sent = sent.tolist() trie_out = get_trie_schema(sent) return trie_out def get_trie_schema(sent): pointer_start = get_keyword_mention(sent) keyword_rnt = list(keyword_codes.values()) if pointer_start + 1 < len(sent) and pointer_start != -1: ment_next = mention_trie.get(sent[pointer_start + 1:]) if codes["EOS"] in ment_next: return ment_next + keyword_rnt else: return ment_next else: ment_next = mention_trie.get([]) return ment_next + keyword_rnt + [codes["EOS"]] def get_keyword_mention(sent): pointer_start = -1 for i, e in enumerate(sent): if e in keyword_codes.values(): pointer_start = i return pointer_start return prefix_allowed_tokens_fn
ContextualSP/unified_parser_text_to_sql/genre/entity_linking.py/0
{ "file_path": "ContextualSP/unified_parser_text_to_sql/genre/entity_linking.py", "repo_id": "ContextualSP", "token_count": 2026 }
265
import subprocess import argparse import os def run_command(bash_command): process = subprocess.Popen(bash_command.split()) output, error = process.communicate() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--dataset_path", type=str, default="", help="dataset path") parser.add_argument("--exp_name", type=str, default="", help="test") parser.add_argument("--models_path", type=str, default="", help="models path") parser.add_argument("--bart_model_path", type=str, default="", help="bart init models path") parser.add_argument("--total_num_update", type=int, default=200000) parser.add_argument("--max_tokens", type=int, default=4096) parser.add_argument("--tensorboard_path", type=str, default="", help="tensorboard path") args = parser.parse_args() print("START training") run_command("printenv") restore_file = os.path.join(args.bart_model_path, "model.pt") cmd = f""" fairseq-train {args.dataset_path} \ --save-dir {args.models_path}/{args.exp_name} \ --restore-file {restore_file} \ --arch bart_large \ --criterion label_smoothed_cross_entropy \ --source-lang src \ --target-lang tgt \ --truncate-source \ --label-smoothing 0.1 \ --max-tokens {args.max_tokens} \ --update-freq 4 \ --max-update {args.total_num_update} \ --required-batch-size-multiple 1 \ --dropout 0.1 \ --attention-dropout 0.1 \ --relu-dropout 0.0 \ --weight-decay 0.05 \ --optimizer adam \ --adam-eps 1e-08 \ --clip-norm 0.1 \ --lr-scheduler polynomial_decay \ --lr 1e-05 \ --total-num-update {args.total_num_update} \ --warmup-updates 5000 \ --ddp-backend no_c10d \ --num-workers 20 \ --reset-meters \ --reset-optimizer \ --reset-dataloader \ --share-all-embeddings \ --layernorm-embedding \ --share-decoder-input-output-embed \ --skip-invalid-size-inputs-valid-test \ --log-format json \ --log-interval 10 \ --save-interval-updates 500 \ --validate-interval-updates 500 \ --validate-interval 10 \ --save-interval 10 \ --patience 200 \ --no-last-checkpoints \ --no-save-optimizer-state \ --report-accuracy """ print("RUN {}".format(cmd)) run_command(cmd)
ContextualSP/unified_parser_text_to_sql/train.py/0
{ "file_path": "ContextualSP/unified_parser_text_to_sql/train.py", "repo_id": "ContextualSP", "token_count": 981 }
266
import math import sys from typing import Iterable, Optional from timm.utils.model import unwrap_model import torch from timm.data import Mixup from timm.utils import accuracy, ModelEma from lib import utils @torch.no_grad() def evaluate(data_loader, model, device, amp=True): criterion = torch.nn.CrossEntropyLoss() metric_logger = utils.MetricLogger(delimiter=" ") header = 'Test:' # switch to evaluation mode model.eval() for images, target in metric_logger.log_every(data_loader, 10, header): images = images.to(device, non_blocking=True) target = target.to(device, non_blocking=True) # compute output if amp: with torch.cuda.amp.autocast(): output = model(images) loss = criterion(output, target) else: output = model(images) loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) batch_size = images.shape[0] metric_logger.update(loss=loss.item()) metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) metric_logger.meters['acc5'].update(acc5.item(), n=batch_size) # gather the stats from all processes metric_logger.synchronize_between_processes() print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}' .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss)) return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
Cream/AutoFormerV2/engine.py/0
{ "file_path": "Cream/AutoFormerV2/engine.py", "repo_id": "Cream", "token_count": 653 }
267
""" Retrain cell """ import _init_paths import os import torch import json import torch.nn as nn import numpy as np import lib.utils.genotypes as gt from tensorboardX import SummaryWriter from lib.models.cdarts_controller import CDARTSController from lib.utils import utils from lib.config import AugmentConfig from lib.core.augment_function import train, validate # config config = AugmentConfig() # make apex optional if config.distributed: # DDP = torch.nn.parallel.DistributedDataParallel try: import apex from apex.parallel import DistributedDataParallel as DDP from apex import amp, optimizers from apex.fp16_utils import * except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this example.") # tensorboard writer = SummaryWriter(log_dir=os.path.join(config.path, "tb")) writer.add_text('config', config.as_markdown(), 0) logger = utils.get_logger(os.path.join(config.path, "{}.log".format(config.name))) if config.local_rank == 0: config.print_params(logger.info) if 'cifar' in config.dataset: from lib.datasets.cifar import get_augment_datasets elif 'imagenet' in config.dataset: from lib.datasets.imagenet import get_augment_datasets else: raise Exception("Not support dataset!") def main(): logger.info("Logger is set - training start") # set seed np.random.seed(config.seed) torch.manual_seed(config.seed) torch.cuda.manual_seed_all(config.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True if config.distributed: config.gpu = config.local_rank % torch.cuda.device_count() torch.cuda.set_device(config.gpu) # distributed init torch.distributed.init_process_group(backend='nccl', init_method=config.dist_url, world_size=config.world_size, rank=config.local_rank) config.world_size = torch.distributed.get_world_size() config.total_batch_size = config.world_size * config.batch_size else: config.total_batch_size = config.batch_size loaders, samplers = get_augment_datasets(config) train_loader, valid_loader = loaders train_sampler, valid_sampler = samplers net_crit = nn.CrossEntropyLoss().cuda() controller = CDARTSController(config, net_crit, n_nodes=4, stem_multiplier=config.stem_multiplier) file = open(config.cell_file, 'r') js = file.read() r_dict = json.loads(js) if config.local_rank == 0: logger.info(r_dict) file.close() genotypes_dict = {} for layer_idx, genotype in r_dict.items(): genotypes_dict[int(layer_idx)] = gt.from_str(genotype) controller.build_augment_model(controller.init_channel, genotypes_dict) resume_state = None if config.resume: resume_state = torch.load(config.resume_path, map_location='cpu') controller.model_main.load_state_dict(resume_state['model_main']) controller.model_main = controller.model_main.cuda() param_size = utils.param_size(controller.model_main) logger.info("param size = %fMB", param_size) # change training hyper parameters according to cell type if 'cifar' in config.dataset: if param_size < 3.0: config.weight_decay = 3e-4 config.drop_path_prob = 0.2 elif param_size > 3.0 and param_size < 3.5: config.weight_decay = 3e-4 config.drop_path_prob = 0.3 else: config.weight_decay = 5e-4 config.drop_path_prob = 0.3 if config.local_rank == 0: logger.info("Current weight decay: {}".format(config.weight_decay)) logger.info("Current drop path prob: {}".format(config.drop_path_prob)) controller.model_main = apex.parallel.convert_syncbn_model(controller.model_main) # weights optimizer optimizer = torch.optim.SGD(controller.model_main.parameters(), lr=config.lr, momentum=config.momentum, weight_decay=config.weight_decay) # optimizer = torch.optim.SGD(controller.model_main.parameters(), lr=config.lr, momentum=config.momentum, weight_decay=config.weight_decay, nesterov=True) lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, config.epochs) if config.use_amp: controller.model_main, optimizer = amp.initialize(controller.model_main, optimizer, opt_level=config.opt_level) if config.distributed: controller.model_main = DDP(controller.model_main, delay_allreduce=True) best_top1 = 0. best_top5 = 0. sta_epoch = 0 # training loop if config.resume: optimizer.load_state_dict(resume_state['optimizer']) lr_scheduler.load_state_dict(resume_state['lr_scheduler']) best_top1 = resume_state['best_top1'] best_top5 = resume_state['best_top5'] sta_epoch = resume_state['sta_epoch'] epoch_pool = [220, 230, 235, 240, 245] for epoch in range(sta_epoch, config.epochs): # reset iterators train_sampler.set_epoch(epoch) valid_sampler.set_epoch(epoch) current_lr = lr_scheduler.get_lr()[0] # current_lr = utils.adjust_lr(optimizer, epoch, config) if config.local_rank == 0: logger.info('Epoch: %d lr %e', epoch, current_lr) if epoch < config.warmup_epochs and config.total_batch_size > 256: for param_group in optimizer.param_groups: param_group['lr'] = current_lr * (epoch + 1) / 5.0 if config.local_rank == 0: logger.info('Warming-up Epoch: %d, LR: %e', epoch, current_lr * (epoch + 1) / 5.0) drop_prob = config.drop_path_prob * epoch / config.epochs controller.model_main.module.drop_path_prob(drop_prob) # training train(train_loader, controller.model_main, optimizer, epoch, writer, logger, config) # validation cur_step = (epoch+1) * len(train_loader) top1, top5 = validate(valid_loader, controller.model_main, epoch, cur_step, writer, logger, config) if 'cifar' in config.dataset: lr_scheduler.step() elif 'imagenet' in config.dataset: lr_scheduler.step() # current_lr = utils.adjust_lr(optimizer, epoch, config) else: raise Exception('Lr error!') # save if best_top1 < top1: best_top1 = top1 best_top5 = top5 is_best = True else: is_best = False # save if config.local_rank == 0: if ('imagenet' in config.dataset) and ((epoch+1) in epoch_pool) and (not config.resume) and (config.local_rank == 0): torch.save({ "model_main":controller.model_main.module.state_dict(), "optimizer":optimizer.state_dict(), "lr_scheduler":lr_scheduler.state_dict(), "best_top1":best_top1, "best_top5":best_top5, "sta_epoch":epoch + 1 }, os.path.join(config.path, "epoch_{}.pth.tar".format(epoch+1))) utils.save_checkpoint(controller.model_main.module.state_dict(), config.path, is_best) torch.save({ "model_main":controller.model_main.module.state_dict(), "optimizer":optimizer.state_dict(), "lr_scheduler":lr_scheduler.state_dict(), "best_top1":best_top1, "best_top5":best_top5, "sta_epoch":epoch + 1 }, os.path.join(config.path, "retrain_resume.pth.tar")) utils.save_checkpoint(controller.model_main.module.state_dict(), config.path, is_best) if config.local_rank == 0: logger.info("Final best Prec@1 = {:.4%}, Prec@5 = {:.4%}".format(best_top1, best_top5)) if __name__ == "__main__": main()
Cream/CDARTS/CDARTS/retrain.py/0
{ "file_path": "Cream/CDARTS/CDARTS/retrain.py", "repo_id": "Cream", "token_count": 3503 }
268
from abc import ABCMeta, abstractmethod class BaseFileHandler(object): __metaclass__ = ABCMeta # python 2 compatibility @abstractmethod def load_from_fileobj(self, file, **kwargs): pass @abstractmethod def dump_to_fileobj(self, obj, file, **kwargs): pass @abstractmethod def dump_to_str(self, obj, **kwargs): pass def load_from_path(self, filepath, mode='r', **kwargs): with open(filepath, mode) as f: return self.load_from_fileobj(f, **kwargs) def dump_to_path(self, obj, filepath, mode='w', **kwargs): with open(filepath, mode) as f: self.dump_to_fileobj(obj, f, **kwargs)
Cream/CDARTS/CDARTS_detection/mmcv/fileio/handlers/base.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmcv/fileio/handlers/base.py", "repo_id": "Cream", "token_count": 293 }
269
import collections import torch import torch.nn.functional as F from torch.utils.data.dataloader import default_collate from .data_container import DataContainer def collate(batch, samples_per_gpu=1): """Puts each data field into a tensor/DataContainer with outer dimension batch size. Extend default_collate to add support for :type:`~mmcv.parallel.DataContainer`. There are 3 cases. 1. cpu_only = True, e.g., meta data 2. cpu_only = False, stack = True, e.g., images tensors 3. cpu_only = False, stack = False, e.g., gt bboxes """ if not isinstance(batch, collections.Sequence): raise TypeError("{} is not supported.".format(batch.dtype)) if isinstance(batch[0], DataContainer): assert len(batch) % samples_per_gpu == 0 stacked = [] if batch[0].cpu_only: for i in range(0, len(batch), samples_per_gpu): stacked.append( [sample.data for sample in batch[i:i + samples_per_gpu]]) return DataContainer( stacked, batch[0].stack, batch[0].padding_value, cpu_only=True) elif batch[0].stack: for i in range(0, len(batch), samples_per_gpu): assert isinstance(batch[i].data, torch.Tensor) if batch[i].pad_dims is not None: ndim = batch[i].dim() assert ndim > batch[i].pad_dims max_shape = [0 for _ in range(batch[i].pad_dims)] for dim in range(1, batch[i].pad_dims + 1): max_shape[dim - 1] = batch[i].size(-dim) for sample in batch[i:i + samples_per_gpu]: for dim in range(0, ndim - batch[i].pad_dims): assert batch[i].size(dim) == sample.size(dim) for dim in range(1, batch[i].pad_dims + 1): max_shape[dim - 1] = max(max_shape[dim - 1], sample.size(-dim)) padded_samples = [] for sample in batch[i:i + samples_per_gpu]: pad = [0 for _ in range(batch[i].pad_dims * 2)] for dim in range(1, batch[i].pad_dims + 1): pad[2 * dim - 1] = max_shape[dim - 1] - sample.size(-dim) padded_samples.append( F.pad( sample.data, pad, value=sample.padding_value)) stacked.append(default_collate(padded_samples)) elif batch[i].pad_dims is None: stacked.append( default_collate([ sample.data for sample in batch[i:i + samples_per_gpu] ])) else: raise ValueError( 'pad_dims should be either None or integers (1-3)') else: for i in range(0, len(batch), samples_per_gpu): stacked.append( [sample.data for sample in batch[i:i + samples_per_gpu]]) return DataContainer(stacked, batch[0].stack, batch[0].padding_value) elif isinstance(batch[0], collections.Sequence): transposed = zip(*batch) return [collate(samples, samples_per_gpu) for samples in transposed] elif isinstance(batch[0], collections.Mapping): return { key: collate([d[key] for d in batch], samples_per_gpu) for key in batch[0] } else: return default_collate(batch)
Cream/CDARTS/CDARTS_detection/mmcv/parallel/collate.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmcv/parallel/collate.py", "repo_id": "Cream", "token_count": 1935 }
270
import os.path as osp import torch from ...utils import master_only from .base import LoggerHook class TensorboardLoggerHook(LoggerHook): def __init__(self, log_dir=None, interval=10, ignore_last=True, reset_flag=True): super(TensorboardLoggerHook, self).__init__(interval, ignore_last, reset_flag) self.log_dir = log_dir @master_only def before_run(self, runner): if torch.__version__ >= '1.1': try: from torch.utils.tensorboard import SummaryWriter except ImportError: raise ImportError( 'Please run "pip install future tensorboard" to install ' 'the dependencies to use torch.utils.tensorboard ' '(applicable to PyTorch 1.1 or higher)') else: try: from tensorboardX import SummaryWriter except ImportError: raise ImportError('Please install tensorboardX to use ' 'TensorboardLoggerHook.') if self.log_dir is None: self.log_dir = osp.join(runner.work_dir, 'tf_logs') self.writer = SummaryWriter(self.log_dir) @master_only def log(self, runner): for var in runner.log_buffer.output: if var in ['time', 'data_time']: continue tag = '{}/{}'.format(var, runner.mode) record = runner.log_buffer.output[var] if isinstance(record, str): self.writer.add_text(tag, record, runner.iter) else: self.writer.add_scalar(tag, runner.log_buffer.output[var], runner.iter) @master_only def after_run(self, runner): self.writer.close()
Cream/CDARTS/CDARTS_detection/mmcv/runner/hooks/logger/tensorboard.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmcv/runner/hooks/logger/tensorboard.py", "repo_id": "Cream", "token_count": 996 }
271
from time import time class TimerError(Exception): def __init__(self, message): self.message = message super(TimerError, self).__init__(message) class Timer(object): """A flexible Timer class. :Example: >>> import time >>> import mmcv >>> with mmcv.Timer(): >>> # simulate a code block that will run for 1s >>> time.sleep(1) 1.000 >>> with mmcv.Timer(print_tmpl='it takes {:.1f} seconds'): >>> # simulate a code block that will run for 1s >>> time.sleep(1) it takes 1.0 seconds >>> timer = mmcv.Timer() >>> time.sleep(0.5) >>> print(timer.since_start()) 0.500 >>> time.sleep(0.5) >>> print(timer.since_last_check()) 0.500 >>> print(timer.since_start()) 1.000 """ def __init__(self, start=True, print_tmpl=None): self._is_running = False self.print_tmpl = print_tmpl if print_tmpl else '{:.3f}' if start: self.start() @property def is_running(self): """bool: indicate whether the timer is running""" return self._is_running def __enter__(self): self.start() return self def __exit__(self, type, value, traceback): print(self.print_tmpl.format(self.since_last_check())) self._is_running = False def start(self): """Start the timer.""" if not self._is_running: self._t_start = time() self._is_running = True self._t_last = time() def since_start(self): """Total time since the timer is started. Returns (float): Time in seconds. """ if not self._is_running: raise TimerError('timer is not running') self._t_last = time() return self._t_last - self._t_start def since_last_check(self): """Time since the last checking. Either :func:`since_start` or :func:`since_last_check` is a checking operation. Returns (float): Time in seconds. """ if not self._is_running: raise TimerError('timer is not running') dur = time() - self._t_last self._t_last = time() return dur _g_timers = {} # global timers def check_time(timer_id): """Add check points in a single line. This method is suitable for running a task on a list of items. A timer will be registered when the method is called for the first time. :Example: >>> import time >>> import mmcv >>> for i in range(1, 6): >>> # simulate a code block >>> time.sleep(i) >>> mmcv.check_time('task1') 2.000 3.000 4.000 5.000 Args: timer_id (str): Timer identifier. """ if timer_id not in _g_timers: _g_timers[timer_id] = Timer() return 0 else: return _g_timers[timer_id].since_last_check()
Cream/CDARTS/CDARTS_detection/mmcv/utils/timer.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmcv/utils/timer.py", "repo_id": "Cream", "token_count": 1263 }
272
import mmcv from . import assigners, samplers def build_assigner(cfg, **kwargs): if isinstance(cfg, assigners.BaseAssigner): return cfg elif isinstance(cfg, dict): return mmcv.runner.obj_from_dict(cfg, assigners, default_args=kwargs) else: raise TypeError('Invalid type {} for building a sampler'.format( type(cfg))) def build_sampler(cfg, **kwargs): if isinstance(cfg, samplers.BaseSampler): return cfg elif isinstance(cfg, dict): return mmcv.runner.obj_from_dict(cfg, samplers, default_args=kwargs) else: raise TypeError('Invalid type {} for building a sampler'.format( type(cfg))) def assign_and_sample(bboxes, gt_bboxes, gt_bboxes_ignore, gt_labels, cfg): bbox_assigner = build_assigner(cfg.assigner) bbox_sampler = build_sampler(cfg.sampler) assign_result = bbox_assigner.assign(bboxes, gt_bboxes, gt_bboxes_ignore, gt_labels) sampling_result = bbox_sampler.sample(assign_result, bboxes, gt_bboxes, gt_labels) return assign_result, sampling_result
Cream/CDARTS/CDARTS_detection/mmdet/core/bbox/assign_sampling.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/core/bbox/assign_sampling.py", "repo_id": "Cream", "token_count": 533 }
273
import torch class SamplingResult(object): def __init__(self, pos_inds, neg_inds, bboxes, gt_bboxes, assign_result, gt_flags): self.pos_inds = pos_inds self.neg_inds = neg_inds self.pos_bboxes = bboxes[pos_inds] self.neg_bboxes = bboxes[neg_inds] self.pos_is_gt = gt_flags[pos_inds] self.num_gts = gt_bboxes.shape[0] self.pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1 self.pos_gt_bboxes = gt_bboxes[self.pos_assigned_gt_inds, :] if assign_result.labels is not None: self.pos_gt_labels = assign_result.labels[pos_inds] else: self.pos_gt_labels = None @property def bboxes(self): return torch.cat([self.pos_bboxes, self.neg_bboxes])
Cream/CDARTS/CDARTS_detection/mmdet/core/bbox/samplers/sampling_result.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/core/bbox/samplers/sampling_result.py", "repo_id": "Cream", "token_count": 403 }
274
from .bbox_nms import multiclass_nms from .merge_augs import (merge_aug_proposals, merge_aug_bboxes, merge_aug_scores, merge_aug_masks) __all__ = [ 'multiclass_nms', 'merge_aug_proposals', 'merge_aug_bboxes', 'merge_aug_scores', 'merge_aug_masks' ]
Cream/CDARTS/CDARTS_detection/mmdet/core/post_processing/__init__.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/core/post_processing/__init__.py", "repo_id": "Cream", "token_count": 141 }
275
import collections from mmdet.utils import build_from_cfg from ..registry import PIPELINES @PIPELINES.register_module class Compose(object): def __init__(self, transforms): assert isinstance(transforms, collections.abc.Sequence) self.transforms = [] for transform in transforms: if isinstance(transform, dict): transform = build_from_cfg(transform, PIPELINES) self.transforms.append(transform) elif callable(transform): self.transforms.append(transform) else: raise TypeError('transform must be callable or a dict') def __call__(self, data): for t in self.transforms: data = t(data) if data is None: return None return data def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += '\n' format_string += ' {0}'.format(t) format_string += '\n)' return format_string
Cream/CDARTS/CDARTS_detection/mmdet/datasets/pipelines/compose.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/datasets/pipelines/compose.py", "repo_id": "Cream", "token_count": 492 }
276
import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import normal_init from mmdet.core import delta2bbox from mmdet.ops import nms from .guided_anchor_head import GuidedAnchorHead from ..registry import HEADS @HEADS.register_module class GARPNHead(GuidedAnchorHead): """Guided-Anchor-based RPN head.""" def __init__(self, in_channels, **kwargs): super(GARPNHead, self).__init__(2, in_channels, **kwargs) def _init_layers(self): self.rpn_conv = nn.Conv2d(self.in_channels, self.feat_channels, 3, padding=1) super(GARPNHead, self)._init_layers() def init_weights(self): normal_init(self.rpn_conv, std=0.01) super(GARPNHead, self).init_weights() def forward_single(self, x): x = self.rpn_conv(x) x = F.relu(x, inplace=True) (cls_score, bbox_pred, shape_pred, loc_pred) = super(GARPNHead, self).forward_single(x) return cls_score, bbox_pred, shape_pred, loc_pred def loss(self, cls_scores, bbox_preds, shape_preds, loc_preds, gt_bboxes, img_metas, cfg, gt_bboxes_ignore=None): losses = super(GARPNHead, self).loss(cls_scores, bbox_preds, shape_preds, loc_preds, gt_bboxes, None, img_metas, cfg, gt_bboxes_ignore=gt_bboxes_ignore) return dict(loss_rpn_cls=losses['loss_cls'], loss_rpn_bbox=losses['loss_bbox'], loss_anchor_shape=losses['loss_shape'], loss_anchor_loc=losses['loss_loc']) def get_bboxes_single(self, cls_scores, bbox_preds, mlvl_anchors, mlvl_masks, img_shape, scale_factor, cfg, rescale=False): mlvl_proposals = [] for idx in range(len(cls_scores)): rpn_cls_score = cls_scores[idx] rpn_bbox_pred = bbox_preds[idx] anchors = mlvl_anchors[idx] mask = mlvl_masks[idx] assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:] # if no location is kept, end. if mask.sum() == 0: continue rpn_cls_score = rpn_cls_score.permute(1, 2, 0) if self.use_sigmoid_cls: rpn_cls_score = rpn_cls_score.reshape(-1) scores = rpn_cls_score.sigmoid() else: rpn_cls_score = rpn_cls_score.reshape(-1, 2) scores = rpn_cls_score.softmax(dim=1)[:, 1] # filter scores, bbox_pred w.r.t. mask. # anchors are filtered in get_anchors() beforehand. scores = scores[mask] rpn_bbox_pred = rpn_bbox_pred.permute(1, 2, 0).reshape(-1, 4)[mask, :] if scores.dim() == 0: rpn_bbox_pred = rpn_bbox_pred.unsqueeze(0) anchors = anchors.unsqueeze(0) scores = scores.unsqueeze(0) # filter anchors, bbox_pred, scores w.r.t. scores if cfg.nms_pre > 0 and scores.shape[0] > cfg.nms_pre: _, topk_inds = scores.topk(cfg.nms_pre) rpn_bbox_pred = rpn_bbox_pred[topk_inds, :] anchors = anchors[topk_inds, :] scores = scores[topk_inds] # get proposals w.r.t. anchors and rpn_bbox_pred proposals = delta2bbox(anchors, rpn_bbox_pred, self.target_means, self.target_stds, img_shape) # filter out too small bboxes if cfg.min_bbox_size > 0: w = proposals[:, 2] - proposals[:, 0] + 1 h = proposals[:, 3] - proposals[:, 1] + 1 valid_inds = torch.nonzero((w >= cfg.min_bbox_size) & (h >= cfg.min_bbox_size)).squeeze() proposals = proposals[valid_inds, :] scores = scores[valid_inds] proposals = torch.cat([proposals, scores.unsqueeze(-1)], dim=-1) # NMS in current level proposals, _ = nms(proposals, cfg.nms_thr) proposals = proposals[:cfg.nms_post, :] mlvl_proposals.append(proposals) proposals = torch.cat(mlvl_proposals, 0) if cfg.nms_across_levels: # NMS across multi levels proposals, _ = nms(proposals, cfg.nms_thr) proposals = proposals[:cfg.max_num, :] else: scores = proposals[:, 4] num = min(cfg.max_num, proposals.shape[0]) _, topk_inds = scores.topk(num) proposals = proposals[topk_inds, :] return proposals
Cream/CDARTS/CDARTS_detection/mmdet/models/anchor_heads/ga_rpn_head.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/anchor_heads/ga_rpn_head.py", "repo_id": "Cream", "token_count": 3227 }
277
import math import torch import torch.nn as nn from torch.autograd import Variable from .dropblock import DropBlockScheduled, DropBlock2D import logging from torch.nn.modules.batchnorm import _BatchNorm import torch.nn.functional as F import time import numpy as np from ..registry import BACKBONES def Conv_3x3(inp, oup, stride, activation=nn.ReLU6, act_params={"inplace": True}): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), activation(**act_params) ) def Conv_1x1(inp, oup, activation=nn.ReLU6, act_params={"inplace": True}): return nn.Sequential( nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), activation(**act_params) ) def SepConv_3x3(inp, oup, activation=nn.ReLU6, act_params={"inplace": True}): # input=32, output=16 return nn.Sequential( # dw nn.Conv2d(inp, inp, 3, 1, 1, groups=inp, bias=False), nn.BatchNorm2d(inp), activation(**act_params), # pw-linear nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ) class InvertedResidual(nn.Module): def __init__(self, inp, oup, stride, expand_ratio, kernel, drop_prob=0.0, num_steps=3e5, activation=nn.ReLU6, act_params={"inplace": True}): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] self.use_res_connect = self.stride == 1 and inp == oup self.conv = nn.Sequential( # pw nn.Conv2d(inp, inp * expand_ratio, 1, 1, 0, bias=False), nn.BatchNorm2d(inp * expand_ratio), DropBlockScheduled( DropBlock2D(drop_prob=drop_prob, block_size=7), start_value=0., stop_value=drop_prob, nr_steps=num_steps), activation(**act_params), # dw nn.Conv2d(inp * expand_ratio, inp * expand_ratio, kernel, stride, kernel // 2, groups=inp * expand_ratio, bias=False), nn.BatchNorm2d(inp * expand_ratio), DropBlockScheduled( DropBlock2D(drop_prob=drop_prob, block_size=7), start_value=0., stop_value=drop_prob, nr_steps=num_steps), activation(**act_params), # pw-linear nn.Conv2d(inp * expand_ratio, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), DropBlockScheduled( DropBlock2D(drop_prob=drop_prob, block_size=7), start_value=0., stop_value=drop_prob, nr_steps=num_steps), ) if self.use_res_connect: self.skip_drop = DropBlockScheduled( DropBlock2D(drop_prob=drop_prob, block_size=7), start_value=0., stop_value=drop_prob, nr_steps=num_steps) def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = logging.getLogger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) else: raise TypeError('pretrained must be a str or None') def forward(self, x): if self.use_res_connect: return self.skip_drop(x + self.conv(x)) else: return self.conv(x) @BACKBONES.register_module class MnasNet(nn.Module): def __init__(self, out_indices=(1,2,3,4), width_mult=1., drop_prob=0.0, num_steps=3e5, activation=nn.ReLU6, act_params={"inplace": True}): super(MnasNet, self).__init__() self.out_indices = out_indices self.activation = activation self.act_params = act_params # setting of inverted residual blocks self.interverted_residual_setting = [ # t, c, n, s, k, dp [3, 24, 3, 2, 3, 0], # -> 56x56 [3, 40, 3, 2, 5, 0], # -> 28x28 [6, 80, 3, 2, 5, 0], # -> 14x14 [6, 96, 2, 1, 3, drop_prob], # -> 14x14 [6, 192, 4, 2, 5, drop_prob], # -> 7x7 [6, 320, 1, 1, 3, drop_prob], # -> 7x7 ] self.num_steps = num_steps input_channel = int(32 * width_mult) self.last_channel = int(1280 * width_mult) if width_mult > 1.0 else 1280 # building first two layer self.features = [Conv_3x3(3, input_channel, 2, self.activation, self.act_params), SepConv_3x3(input_channel, 16, self.activation, self.act_params)] input_channel = 16 # building inverted residual blocks (MBConv) for t, c, n, s, k, dp in self.interverted_residual_setting: output_channel = int(c * width_mult) for i in range(n): if i == 0: self.features.append(InvertedResidual(input_channel, output_channel, s, t, k, dp, self.num_steps, self.activation, self.act_params)) else: self.features.append(InvertedResidual(input_channel, output_channel, 1, t, k, dp, self.num_steps, self.activation, self.act_params)) input_channel = output_channel # building last several layers self.features.append(Conv_1x1(input_channel, self.last_channel, self.activation, self.act_params)) # make it nn.Sequential self.features = nn.Sequential(*self.features) def forward(self, x): import pdb pdb.set_trace() outs = [] cnt = 0 for i, layer in enumerate(self.features): x = layer(x) if i in self.out_indices: outs.append(x) return outs def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): n = m.weight.size(1) m.weight.data.normal_(0, 0.01) m.bias.data.zero_() if __name__ == '__main__': net = MnasNet() print(net) x_image = Variable(torch.randn(1, 3, 224, 224)) y = net(x_image) # print(y)
Cream/CDARTS/CDARTS_detection/mmdet/models/backbones/mnasnet.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/backbones/mnasnet.py", "repo_id": "Cream", "token_count": 3658 }
278
from .base import BaseDetector from .double_head_rcnn import DoubleHeadRCNN from .single_stage import SingleStageDetector from .two_stage import TwoStageDetector from .rpn import RPN from .fast_rcnn import FastRCNN from .faster_rcnn import FasterRCNN from .mask_rcnn import MaskRCNN from .cascade_rcnn import CascadeRCNN from .htc import HybridTaskCascade from .retinanet import RetinaNet from .fcos import FCOS from .grid_rcnn import GridRCNN from .mask_scoring_rcnn import MaskScoringRCNN __all__ = [ 'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN', 'FastRCNN', 'FasterRCNN', 'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade', 'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN', 'DoubleHeadRCNN' ]
Cream/CDARTS/CDARTS_detection/mmdet/models/detectors/__init__.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/detectors/__init__.py", "repo_id": "Cream", "token_count": 251 }
279
from .accuracy import accuracy, Accuracy from .cross_entropy_loss import (cross_entropy, binary_cross_entropy, mask_cross_entropy, CrossEntropyLoss) from .focal_loss import sigmoid_focal_loss, FocalLoss from .smooth_l1_loss import smooth_l1_loss, SmoothL1Loss from .ghm_loss import GHMC, GHMR from .balanced_l1_loss import balanced_l1_loss, BalancedL1Loss from .mse_loss import mse_loss, MSELoss from .iou_loss import iou_loss, bounded_iou_loss, IoULoss, BoundedIoULoss from .utils import reduce_loss, weight_reduce_loss, weighted_loss __all__ = [ 'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy', 'mask_cross_entropy', 'CrossEntropyLoss', 'sigmoid_focal_loss', 'FocalLoss', 'smooth_l1_loss', 'SmoothL1Loss', 'balanced_l1_loss', 'BalancedL1Loss', 'mse_loss', 'MSELoss', 'iou_loss', 'bounded_iou_loss', 'IoULoss', 'BoundedIoULoss', 'GHMC', 'GHMR', 'reduce_loss', 'weight_reduce_loss', 'weighted_loss' ]
Cream/CDARTS/CDARTS_detection/mmdet/models/losses/__init__.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/losses/__init__.py", "repo_id": "Cream", "token_count": 409 }
280
from .fpn import FPN from .fpn_panet import PAFPN from .bfp import BFP from .hrfpn import HRFPN from .nas_fpn import NASFPN from .search_pafpn import SearchPAFPN __all__ = ['FPN', 'BFP', 'HRFPN', 'NASFPN', 'PAFPN', 'SearchPAFPN']
Cream/CDARTS/CDARTS_detection/mmdet/models/necks/__init__.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/necks/__init__.py", "repo_id": "Cream", "token_count": 99 }
281
from __future__ import division import torch import torch.nn as nn from mmdet import ops from mmdet.core import force_fp32 from ..registry import ROI_EXTRACTORS @ROI_EXTRACTORS.register_module class SingleRoIExtractor(nn.Module): """Extract RoI features from a single level feature map. If there are mulitple input feature levels, each RoI is mapped to a level according to its scale. Args: roi_layer (dict): Specify RoI layer type and arguments. out_channels (int): Output channels of RoI layers. featmap_strides (int): Strides of input feature maps. finest_scale (int): Scale threshold of mapping to level 0. """ def __init__(self, roi_layer, out_channels, featmap_strides, finest_scale=56): super(SingleRoIExtractor, self).__init__() self.roi_layers = self.build_roi_layers(roi_layer, featmap_strides) self.out_channels = out_channels self.featmap_strides = featmap_strides self.finest_scale = finest_scale self.fp16_enabled = False @property def num_inputs(self): """int: Input feature map levels.""" return len(self.featmap_strides) def init_weights(self): pass def build_roi_layers(self, layer_cfg, featmap_strides): cfg = layer_cfg.copy() layer_type = cfg.pop('type') assert hasattr(ops, layer_type) layer_cls = getattr(ops, layer_type) roi_layers = nn.ModuleList( [layer_cls(spatial_scale=1 / s, **cfg) for s in featmap_strides]) return roi_layers def map_roi_levels(self, rois, num_levels): """Map rois to corresponding feature levels by scales. - scale < finest_scale * 2: level 0 - finest_scale * 2 <= scale < finest_scale * 4: level 1 - finest_scale * 4 <= scale < finest_scale * 8: level 2 - scale >= finest_scale * 8: level 3 Args: rois (Tensor): Input RoIs, shape (k, 5). num_levels (int): Total level number. Returns: Tensor: Level index (0-based) of each RoI, shape (k, ) """ scale = torch.sqrt( (rois[:, 3] - rois[:, 1] + 1) * (rois[:, 4] - rois[:, 2] + 1)) target_lvls = torch.floor(torch.log2(scale / self.finest_scale + 1e-6)) target_lvls = target_lvls.clamp(min=0, max=num_levels - 1).long() return target_lvls def roi_rescale(self, rois, scale_factor): cx = (rois[:, 1] + rois[:, 3]) * 0.5 cy = (rois[:, 2] + rois[:, 4]) * 0.5 w = rois[:, 3] - rois[:, 1] + 1 h = rois[:, 4] - rois[:, 2] + 1 new_w = w * scale_factor new_h = h * scale_factor x1 = cx - new_w * 0.5 + 0.5 x2 = cx + new_w * 0.5 - 0.5 y1 = cy - new_h * 0.5 + 0.5 y2 = cy + new_h * 0.5 - 0.5 new_rois = torch.stack((rois[:, 0], x1, y1, x2, y2), dim=-1) return new_rois @force_fp32(apply_to=('feats', ), out_fp16=True) def forward(self, feats, rois, roi_scale_factor=None): if len(feats) == 1: return self.roi_layers[0](feats[0], rois) out_size = self.roi_layers[0].out_size num_levels = len(feats) target_lvls = self.map_roi_levels(rois, num_levels) roi_feats = feats[0].new_zeros( rois.size(0), self.out_channels, *out_size) if roi_scale_factor is not None: rois = self.roi_rescale(rois, roi_scale_factor) for i in range(num_levels): inds = target_lvls == i if inds.any(): rois_ = rois[inds, :] roi_feats_t = self.roi_layers[i](feats[i], rois_) roi_feats[inds] = roi_feats_t return roi_feats
Cream/CDARTS/CDARTS_detection/mmdet/models/roi_extractors/single_level.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/roi_extractors/single_level.py", "repo_id": "Cream", "token_count": 1852 }
282
import math import torch import torch.nn as nn from torch.nn.modules.utils import _pair from ..functions.deform_conv import deform_conv, modulated_deform_conv class DeformConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, deformable_groups=1, bias=False): super(DeformConv, self).__init__() assert not bias assert in_channels % groups == 0, \ 'in_channels {} cannot be divisible by groups {}'.format( in_channels, groups) assert out_channels % groups == 0, \ 'out_channels {} cannot be divisible by groups {}'.format( out_channels, groups) self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _pair(kernel_size) self.stride = _pair(stride) self.padding = _pair(padding) self.dilation = _pair(dilation) self.groups = groups self.deformable_groups = deformable_groups self.weight = nn.Parameter( torch.Tensor(out_channels, in_channels // self.groups, *self.kernel_size)) self.reset_parameters() def reset_parameters(self): n = self.in_channels for k in self.kernel_size: n *= k stdv = 1. / math.sqrt(n) self.weight.data.uniform_(-stdv, stdv) def forward(self, x, offset): return deform_conv(x, offset, self.weight, self.stride, self.padding, self.dilation, self.groups, self.deformable_groups) class DeformConvPack(DeformConv): def __init__(self, *args, **kwargs): super(DeformConvPack, self).__init__(*args, **kwargs) self.conv_offset = nn.Conv2d( self.in_channels, self.deformable_groups * 2 * self.kernel_size[0] * self.kernel_size[1], kernel_size=self.kernel_size, stride=_pair(self.stride), padding=_pair(self.padding), bias=True) self.init_offset() def init_offset(self): self.conv_offset.weight.data.zero_() self.conv_offset.bias.data.zero_() def forward(self, x): offset = self.conv_offset(x) return deform_conv(x, offset, self.weight, self.stride, self.padding, self.dilation, self.groups, self.deformable_groups) class ModulatedDeformConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, deformable_groups=1, bias=True): super(ModulatedDeformConv, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _pair(kernel_size) self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.deformable_groups = deformable_groups self.with_bias = bias self.weight = nn.Parameter( torch.Tensor(out_channels, in_channels // groups, *self.kernel_size)) if bias: self.bias = nn.Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): n = self.in_channels for k in self.kernel_size: n *= k stdv = 1. / math.sqrt(n) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.zero_() def forward(self, x, offset, mask): return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups, self.deformable_groups) class ModulatedDeformConvPack(ModulatedDeformConv): def __init__(self, *args, **kwargs): super(ModulatedDeformConvPack, self).__init__(*args, **kwargs) self.conv_offset_mask = nn.Conv2d( self.in_channels, self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1], kernel_size=self.kernel_size, stride=_pair(self.stride), padding=_pair(self.padding), bias=True) self.init_offset() def init_offset(self): self.conv_offset_mask.weight.data.zero_() self.conv_offset_mask.bias.data.zero_() def forward(self, x): out = self.conv_offset_mask(x) o1, o2, mask = torch.chunk(out, 3, dim=1) offset = torch.cat((o1, o2), dim=1) mask = torch.sigmoid(mask) return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups, self.deformable_groups)
Cream/CDARTS/CDARTS_detection/mmdet/ops/dcn/modules/deform_conv.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/ops/dcn/modules/deform_conv.py", "repo_id": "Cream", "token_count": 2682 }
283
#include <ATen/ATen.h> #include <THC/THCAtomics.cuh> #define CUDA_1D_KERNEL_LOOP(i, n) \ for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \ i += blockDim.x * gridDim.x) #define THREADS_PER_BLOCK 1024 inline int GET_BLOCKS(const int N) { int optimal_block_num = (N + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK; int max_block_num = 65000; return min(optimal_block_num, max_block_num); } template <typename scalar_t> __global__ void MaskedIm2colForward(const int n, const scalar_t *data_im, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const long *mask_h_idx, const long *mask_w_idx, const int mask_cnt, scalar_t *data_col) { // mask_cnt * channels CUDA_1D_KERNEL_LOOP(index, n) { const int m_index = index % mask_cnt; const int h_col = mask_h_idx[m_index]; const int w_col = mask_w_idx[m_index]; const int c_im = index / mask_cnt; const int c_col = c_im * kernel_h * kernel_w; const int h_offset = h_col - pad_h; const int w_offset = w_col - pad_w; scalar_t *data_col_ptr = data_col + c_col * mask_cnt + m_index; for (int i = 0; i < kernel_h; ++i) { int h_im = h_offset + i; for (int j = 0; j < kernel_w; ++j) { int w_im = w_offset + j; if (h_im >= 0 && w_im >= 0 && h_im < height && w_im < width) { *data_col_ptr = (scalar_t)data_im[(c_im * height + h_im) * width + w_im]; } else { *data_col_ptr = 0.0; } data_col_ptr += mask_cnt; } } } } int MaskedIm2colForwardLaucher(const at::Tensor bottom_data, const int height, const int width, const int channels, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const at::Tensor mask_h_idx, const at::Tensor mask_w_idx, const int mask_cnt, at::Tensor top_data) { const int output_size = mask_cnt * channels; AT_DISPATCH_FLOATING_TYPES_AND_HALF( bottom_data.type(), "MaskedIm2colLaucherForward", ([&] { const scalar_t *bottom_data_ = bottom_data.data<scalar_t>(); const long *mask_h_idx_ = mask_h_idx.data<long>(); const long *mask_w_idx_ = mask_w_idx.data<long>(); scalar_t *top_data_ = top_data.data<scalar_t>(); MaskedIm2colForward<scalar_t> <<<GET_BLOCKS(output_size), THREADS_PER_BLOCK>>>( output_size, bottom_data_, height, width, kernel_h, kernel_w, pad_h, pad_w, mask_h_idx_, mask_w_idx_, mask_cnt, top_data_); })); THCudaCheck(cudaGetLastError()); return 1; } template <typename scalar_t> __global__ void MaskedCol2imForward(const int n, const scalar_t *data_col, const int height, const int width, const int channels, const long *mask_h_idx, const long *mask_w_idx, const int mask_cnt, scalar_t *data_im) { CUDA_1D_KERNEL_LOOP(index, n) { const int m_index = index % mask_cnt; const int h_im = mask_h_idx[m_index]; const int w_im = mask_w_idx[m_index]; const int c_im = index / mask_cnt; // int kernel_extent_w = (kernel_w - 1) + 1; // int kernel_extent_h = (kernel_h - 1) + 1; // compute the start and end of the output data_im[(c_im * height + h_im) * width + w_im] = data_col[index]; } } int MaskedCol2imForwardLaucher(const at::Tensor bottom_data, const int height, const int width, const int channels, const at::Tensor mask_h_idx, const at::Tensor mask_w_idx, const int mask_cnt, at::Tensor top_data) { const int output_size = mask_cnt * channels; AT_DISPATCH_FLOATING_TYPES_AND_HALF( bottom_data.type(), "MaskedCol2imLaucherForward", ([&] { const scalar_t *bottom_data_ = bottom_data.data<scalar_t>(); const long *mask_h_idx_ = mask_h_idx.data<long>(); const long *mask_w_idx_ = mask_w_idx.data<long>(); scalar_t *top_data_ = top_data.data<scalar_t>(); MaskedCol2imForward<scalar_t> <<<GET_BLOCKS(output_size), THREADS_PER_BLOCK>>>( output_size, bottom_data_, height, width, channels, mask_h_idx_, mask_w_idx_, mask_cnt, top_data_); })); THCudaCheck(cudaGetLastError()); return 1; }
Cream/CDARTS/CDARTS_detection/mmdet/ops/masked_conv/src/masked_conv2d_kernel.cu/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/ops/masked_conv/src/masked_conv2d_kernel.cu", "repo_id": "Cream", "token_count": 2595 }
284
from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension setup( name='roi_align_cuda', ext_modules=[ CUDAExtension('roi_align_cuda', [ 'src/roi_align_cuda.cpp', 'src/roi_align_kernel.cu', ]), ], cmdclass={'build_ext': BuildExtension})
Cream/CDARTS/CDARTS_detection/mmdet/ops/roi_align/setup.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/ops/roi_align/setup.py", "repo_id": "Cream", "token_count": 154 }
285
from torch import nn from ..functions.sigmoid_focal_loss import sigmoid_focal_loss # TODO: remove this module class SigmoidFocalLoss(nn.Module): def __init__(self, gamma, alpha): super(SigmoidFocalLoss, self).__init__() self.gamma = gamma self.alpha = alpha def forward(self, logits, targets): assert logits.is_cuda loss = sigmoid_focal_loss(logits, targets, self.gamma, self.alpha) return loss.sum() def __repr__(self): tmpstr = self.__class__.__name__ + "(" tmpstr += "gamma=" + str(self.gamma) tmpstr += ", alpha=" + str(self.alpha) tmpstr += ")" return tmpstr
Cream/CDARTS/CDARTS_detection/mmdet/ops/sigmoid_focal_loss/modules/sigmoid_focal_loss.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/ops/sigmoid_focal_loss/modules/sigmoid_focal_loss.py", "repo_id": "Cream", "token_count": 298 }
286
from argparse import ArgumentParser from mmdet.core import coco_eval def main(): parser = ArgumentParser(description='COCO Evaluation') parser.add_argument('result', help='result file path') parser.add_argument('--ann', help='annotation file path') parser.add_argument( '--types', type=str, nargs='+', choices=['proposal_fast', 'proposal', 'bbox', 'segm', 'keypoint'], default=['bbox'], help='result types') parser.add_argument( '--max-dets', type=int, nargs='+', default=[100, 300, 1000], help='proposal numbers, only used for recall evaluation') args = parser.parse_args() coco_eval(args.result, args.types, args.ann, args.max_dets) if __name__ == '__main__': main()
Cream/CDARTS/CDARTS_detection/tools/coco_eval.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/tools/coco_eval.py", "repo_id": "Cream", "token_count": 330 }
287
# ------------------------------------------------------------------------------ # Generates targets for Panoptic-DeepLab. # Written by Bowen Cheng ([email protected]) # ------------------------------------------------------------------------------ import numpy as np import torch class PanopticTargetGenerator(object): """ Generates panoptic training target for Panoptic-DeepLab. Annotation is assumed to have Cityscapes format. Arguments: ignore_label: Integer, the ignore label for semantic segmentation. rgb2id: Function, panoptic label is encoded in a colored image, this function convert color to the corresponding panoptic label. thing_list: List, a list of thing classes sigma: the sigma for Gaussian kernel. ignore_stuff_in_offset: Boolean, whether to ignore stuff region when training the offset branch. small_instance_area: Integer, indicates largest area for small instances. small_instance_weight: Integer, indicates semantic loss weights for small instances. ignore_crowd_in_semantic: Boolean, whether to ignore crowd region in semantic segmentation branch, crowd region is ignored in the original TensorFlow implementation. """ def __init__(self, ignore_label, rgb2id, thing_list, sigma=8, ignore_stuff_in_offset=False, small_instance_area=0, small_instance_weight=1, ignore_crowd_in_semantic=False): self.ignore_label = ignore_label self.rgb2id = rgb2id self.thing_list = thing_list self.ignore_stuff_in_offset = ignore_stuff_in_offset self.small_instance_area = small_instance_area self.small_instance_weight = small_instance_weight self.ignore_crowd_in_semantic = ignore_crowd_in_semantic self.sigma = sigma size = 6 * sigma + 3 x = np.arange(0, size, 1, float) y = x[:, np.newaxis] x0, y0 = 3 * sigma + 1, 3 * sigma + 1 self.g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) def __call__(self, panoptic, segments): """Generates the training target. reference: https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/preparation/createPanopticImgs.py reference: https://github.com/facebookresearch/detectron2/blob/master/datasets/prepare_panoptic_fpn.py#L18 Args: panoptic: numpy.array, colored image encoding panoptic label. segments: List, a list of dictionary containing information of every segment, it has fields: - id: panoptic id, after decoding `panoptic`. - category_id: semantic class id. - area: segment area. - bbox: segment bounding box. - iscrowd: crowd region. Returns: A dictionary with fields: - semantic: Tensor, semantic label, shape=(H, W). - foreground: Tensor, foreground mask label, shape=(H, W). - center: Tensor, center heatmap, shape=(1, H, W). - center_points: List, center coordinates, with tuple (y-coord, x-coord). - offset: Tensor, offset, shape=(2, H, W), first dim is (offset_y, offset_x). - semantic_weights: Tensor, loss weight for semantic prediction, shape=(H, W). - center_weights: Tensor, ignore region of center prediction, shape=(H, W), used as weights for center regression 0 is ignore, 1 is has instance. Multiply this mask to loss. - offset_weights: Tensor, ignore region of offset prediction, shape=(H, W), used as weights for offset regression 0 is ignore, 1 is has instance. Multiply this mask to loss. """ panoptic = self.rgb2id(panoptic) height, width = panoptic.shape[0], panoptic.shape[1] semantic = np.zeros_like(panoptic, dtype=np.uint8) + self.ignore_label foreground = np.zeros_like(panoptic, dtype=np.uint8) center = np.zeros((1, height, width), dtype=np.float32) center_pts = [] offset = np.zeros((2, height, width), dtype=np.float32) y_coord = np.ones_like(panoptic, dtype=np.float32) x_coord = np.ones_like(panoptic, dtype=np.float32) y_coord = np.cumsum(y_coord, axis=0) - 1 x_coord = np.cumsum(x_coord, axis=1) - 1 # Generate pixel-wise loss weights semantic_weights = np.ones_like(panoptic, dtype=np.uint8) # 0: ignore, 1: has instance # three conditions for a region to be ignored for instance branches: # (1) It is labeled as `ignore_label` # (2) It is crowd region (iscrowd=1) # (3) (Optional) It is stuff region (for offset branch) center_weights = np.zeros_like(panoptic, dtype=np.uint8) offset_weights = np.zeros_like(panoptic, dtype=np.uint8) for seg in segments: cat_id = seg["category_id"] if self.ignore_crowd_in_semantic: if not seg['iscrowd']: semantic[panoptic == seg["id"]] = cat_id else: semantic[panoptic == seg["id"]] = cat_id if cat_id in self.thing_list: foreground[panoptic == seg["id"]] = 1 if not seg['iscrowd']: # Ignored regions are not in `segments`. # Handle crowd region. center_weights[panoptic == seg["id"]] = 1 if self.ignore_stuff_in_offset: # Handle stuff region. if cat_id in self.thing_list: offset_weights[panoptic == seg["id"]] = 1 else: offset_weights[panoptic == seg["id"]] = 1 if cat_id in self.thing_list: # find instance center mask_index = np.where(panoptic == seg["id"]) if len(mask_index[0]) == 0: # the instance is completely cropped continue # Find instance area ins_area = len(mask_index[0]) if ins_area < self.small_instance_area: semantic_weights[panoptic == seg["id"]] = self.small_instance_weight center_y, center_x = np.mean(mask_index[0]), np.mean(mask_index[1]) center_pts.append([center_y, center_x]) # generate center heatmap y, x = int(center_y), int(center_x) # outside image boundary if x < 0 or y < 0 or \ x >= width or y >= height: continue sigma = self.sigma # upper left ul = int(np.round(x - 3 * sigma - 1)), int(np.round(y - 3 * sigma - 1)) # bottom right br = int(np.round(x + 3 * sigma + 2)), int(np.round(y + 3 * sigma + 2)) c, d = max(0, -ul[0]), min(br[0], width) - ul[0] a, b = max(0, -ul[1]), min(br[1], height) - ul[1] cc, dd = max(0, ul[0]), min(br[0], width) aa, bb = max(0, ul[1]), min(br[1], height) center[0, aa:bb, cc:dd] = np.maximum( center[0, aa:bb, cc:dd], self.g[a:b, c:d]) # generate offset (2, h, w) -> (y-dir, x-dir) offset_y_index = (np.zeros_like(mask_index[0]), mask_index[0], mask_index[1]) offset_x_index = (np.ones_like(mask_index[0]), mask_index[0], mask_index[1]) offset[offset_y_index] = center_y - y_coord[mask_index] offset[offset_x_index] = center_x - x_coord[mask_index] return dict( semantic=torch.as_tensor(semantic.astype('long')), foreground=torch.as_tensor(foreground.astype('long')), center=torch.as_tensor(center.astype(np.float32)), center_points=center_pts, offset=torch.as_tensor(offset.astype(np.float32)), semantic_weights=torch.as_tensor(semantic_weights.astype(np.float32)), center_weights=torch.as_tensor(center_weights.astype(np.float32)), offset_weights=torch.as_tensor(offset_weights.astype(np.float32)) ) class SemanticTargetGenerator(object): """ Generates semantic training target only for Panoptic-DeepLab (no instance). Annotation is assumed to have Cityscapes format. Arguments: ignore_label: Integer, the ignore label for semantic segmentation. rgb2id: Function, panoptic label is encoded in a colored image, this function convert color to the corresponding panoptic label. thing_list: List, a list of thing classes sigma: the sigma for Gaussian kernel. """ def __init__(self, ignore_label, rgb2id): self.ignore_label = ignore_label self.rgb2id = rgb2id def __call__(self, panoptic, segments): """Generates the training target. reference: https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/preparation/createPanopticImgs.py reference: https://github.com/facebookresearch/detectron2/blob/master/datasets/prepare_panoptic_fpn.py#L18 Args: panoptic: numpy.array, colored image encoding panoptic label. segments: List, a list of dictionary containing information of every segment, it has fields: - id: panoptic id, after decoding `panoptic`. - category_id: semantic class id. - area: segment area. - bbox: segment bounding box. - iscrowd: crowd region. Returns: A dictionary with fields: - semantic: Tensor, semantic label, shape=(H, W). """ panoptic = self.rgb2id(panoptic) semantic = np.zeros_like(panoptic, dtype=np.uint8) + self.ignore_label for seg in segments: cat_id = seg["category_id"] semantic[panoptic == seg["id"]] = cat_id return dict( semantic=torch.as_tensor(semantic.astype('long')) )
Cream/CDARTS/CDARTS_segmentation/dataloaders/transforms/target_transforms.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/dataloaders/transforms/target_transforms.py", "repo_id": "Cream", "token_count": 4642 }
288
# ------------------------------------------------------------------------------ # Reference: https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py # Modified by Bowen Cheng ([email protected]) # ------------------------------------------------------------------------------ import torch.nn as nn from torchvision.models.utils import load_state_dict_from_url __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2'] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth', 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth', 'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth', 'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth', } def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) # while original implementation places the stride at the first 1x1 convolution(self.conv1) # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. # This variant is also known as ResNet V1.5 and improves accuracy according to # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) # self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def _forward_impl(self, x): outputs = {} # See note [TorchScript super()] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) outputs['stem'] = x x = self.layer1(x) # 1/4 outputs['res2'] = x x = self.layer2(x) # 1/8 outputs['res3'] = x x = self.layer3(x) # 1/16 outputs['res4'] = x x = self.layer4(x) # 1/32 outputs['res5'] = x return outputs def forward(self, x): return self._forward_impl(x) def _resnet(arch, block, layers, pretrained, progress, **kwargs): model = ResNet(block, layers, **kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) model.load_state_dict(state_dict, strict=False) return model def resnet18(pretrained=False, progress=True, **kwargs): r"""ResNet-18 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs) def resnet34(pretrained=False, progress=True, **kwargs): r"""ResNet-34 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnet50(pretrained=False, progress=True, **kwargs): r"""ResNet-50 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnet101(pretrained=False, progress=True, **kwargs): r"""ResNet-101 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) def resnet152(pretrained=False, progress=True, **kwargs): r"""ResNet-152 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs) def resnext50_32x4d(pretrained=False, progress=True, **kwargs): r"""ResNeXt-50 32x4d model from `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['groups'] = 32 kwargs['width_per_group'] = 4 return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnext101_32x8d(pretrained=False, progress=True, **kwargs): r"""ResNeXt-101 32x8d model from `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['groups'] = 32 kwargs['width_per_group'] = 8 return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) def wide_resnet50_2(pretrained=False, progress=True, **kwargs): r"""Wide ResNet-50-2 model from `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['width_per_group'] = 64 * 2 return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def wide_resnet101_2(pretrained=False, progress=True, **kwargs): r"""Wide ResNet-101-2 model from `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['width_per_group'] = 64 * 2 return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)
Cream/CDARTS/CDARTS_segmentation/segmentation/model/backbone/resnet.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/segmentation/model/backbone/resnet.py", "repo_id": "Cream", "token_count": 6389 }
289
from .semantic_post_processing import get_semantic_segmentation from .instance_post_processing import get_panoptic_segmentation from .evaluation_format import get_cityscapes_instance_format
Cream/CDARTS/CDARTS_segmentation/segmentation/model/post_processing/__init__.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/segmentation/model/post_processing/__init__.py", "repo_id": "Cream", "token_count": 53 }
290
# ------------------------------------------------------------------------------ # Utility functions. # Written by Bowen Cheng ([email protected]) # ------------------------------------------------------------------------------ import torch class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count if self.count != 0 else 0 def get_loss_info_str(loss_meter_dict): msg = '' for key in loss_meter_dict.keys(): msg += '{name}: {meter.val:.3e} ({meter.avg:.3e})\t'.format( name=key, meter=loss_meter_dict[key] ) return msg def to_cuda(batch, device): if type(batch) == torch.Tensor: batch = batch.to(device) elif type(batch) == dict: for key in batch.keys(): batch[key] = to_cuda(batch[key], device) elif type(batch) == list: for i in range(len(batch)): batch[i] = to_cuda(batch[i], device) return batch def get_module(model, distributed): if distributed: return model.module else: return model
Cream/CDARTS/CDARTS_segmentation/segmentation/utils/utils.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/segmentation/utils/utils.py", "repo_id": "Cream", "token_count": 554 }
291
import os import cv2 import numpy as np import time from tqdm import tqdm import torch import torch.multiprocessing as mp from engine.logger import get_logger from utils.pyt_utils import load_model, link_file, ensure_dir from utils.img_utils import pad_image_to_shape, normalize logger = get_logger() class Evaluator(object): def __init__(self, dataset, class_num, image_mean, image_std, network, multi_scales, is_flip, devices=0, out_idx=0, threds=5, config=None, logger=None, verbose=False, save_path=None, show_image=False, show_prediction=False): self.dataset = dataset self.ndata = self.dataset.get_length() self.class_num = class_num self.image_mean = image_mean self.image_std = image_std self.multi_scales = multi_scales self.is_flip = is_flip self.network = network self.devices = devices if type(self.devices) == int: self.devices = [self.devices] self.out_idx = out_idx self.threds = threds self.config = config self.logger = logger self.context = mp.get_context('spawn') self.val_func = None self.results_queue = self.context.Queue(self.ndata) self.verbose = verbose self.save_path = save_path if save_path is not None: ensure_dir(save_path) self.show_image = show_image self.show_prediction = show_prediction def run(self, model_path, model_indice, log_file, log_file_link): """There are four evaluation modes: 1.only eval a .pth model: -e *.pth 2.only eval a certain epoch: -e epoch 3.eval all epochs in a given section: -e start_epoch-end_epoch 4.eval all epochs from a certain started epoch: -e start_epoch- """ if '.pth' in model_indice: models = [model_indice, ] elif "-" in model_indice: start_epoch = int(model_indice.split("-")[0]) end_epoch = model_indice.split("-")[1] models = os.listdir(model_path) models.remove("epoch-last.pth") sorted_models = [None] * len(models) model_idx = [0] * len(models) for idx, m in enumerate(models): num = m.split(".")[0].split("-")[1] model_idx[idx] = num sorted_models[idx] = m model_idx = np.array([int(i) for i in model_idx]) down_bound = model_idx >= start_epoch up_bound = [True] * len(sorted_models) if end_epoch: end_epoch = int(end_epoch) assert start_epoch < end_epoch up_bound = model_idx <= end_epoch bound = up_bound * down_bound model_slice = np.array(sorted_models)[bound] models = [os.path.join(model_path, model) for model in model_slice] else: models = [os.path.join(model_path, 'epoch-%s.pth' % model_indice), ] results = open(log_file, 'a') link_file(log_file, log_file_link) for model in models: logger.info("Load Model: %s" % model) self.val_func = load_model(self.network, model) result_line, mIoU = self.multi_process_evaluation() results.write('Model: ' + model + '\n') results.write(result_line) results.write('\n') results.flush() results.close() def run_online(self): """ eval during training """ self.val_func = self.network result_line, mIoU = self.single_process_evaluation() return result_line, mIoU def single_process_evaluation(self): all_results = [] from pdb import set_trace as bp with torch.no_grad(): for idx in tqdm(range(self.ndata)): dd = self.dataset[idx] results_dict = self.func_per_iteration(dd, self.devices[0], iter=idx) all_results.append(results_dict) _, _mIoU = self.compute_metric([results_dict]) result_line, mIoU = self.compute_metric(all_results) return result_line, mIoU def run_online_multiprocess(self): """ eval during training """ self.val_func = self.network result_line, mIoU = self.multi_process_single_gpu_evaluation() return result_line, mIoU def multi_process_single_gpu_evaluation(self): # start_eval_time = time.perf_counter() stride = int(np.ceil(self.ndata / self.threds)) # start multi-process on single-gpu procs = [] for d in range(self.threds): e_record = min((d + 1) * stride, self.ndata) shred_list = list(range(d * stride, e_record)) device = self.devices[0] logger.info('Thread %d handle %d data.' % (d, len(shred_list))) p = self.context.Process(target=self.worker, args=(shred_list, device)) procs.append(p) for p in procs: p.start() all_results = [] for _ in tqdm(range(self.ndata)): t = self.results_queue.get() all_results.append(t) if self.verbose: self.compute_metric(all_results) for p in procs: p.join() result_line, mIoU = self.compute_metric(all_results) # logger.info('Evaluation Elapsed Time: %.2fs' % (time.perf_counter() - start_eval_time)) return result_line, mIoU def multi_process_evaluation(self): start_eval_time = time.perf_counter() nr_devices = len(self.devices) stride = int(np.ceil(self.ndata / nr_devices)) # start multi-process on multi-gpu procs = [] for d in range(nr_devices): e_record = min((d + 1) * stride, self.ndata) shred_list = list(range(d * stride, e_record)) device = self.devices[d] logger.info('GPU %s handle %d data.' % (device, len(shred_list))) p = self.context.Process(target=self.worker, args=(shred_list, device)) procs.append(p) for p in procs: p.start() all_results = [] for _ in tqdm(range(self.ndata)): t = self.results_queue.get() all_results.append(t) if self.verbose: self.compute_metric(all_results) for p in procs: p.join() result_line, mIoU = self.compute_metric(all_results) logger.info('Evaluation Elapsed Time: %.2fs' % (time.perf_counter() - start_eval_time)) return result_line, mIoU def worker(self, shred_list, device): # start_load_time = time.time() # logger.info('Load Model on Device %d: %.2fs' % (device, time.time() - start_load_time)) for idx in shred_list: dd = self.dataset[idx] results_dict = self.func_per_iteration(dd, device, iter=idx) self.results_queue.put(results_dict) def func_per_iteration(self, data, device, iter=None): raise NotImplementedError def compute_metric(self, results): raise NotImplementedError # evaluate the whole image at once def whole_eval(self, img, output_size, input_size=None, device=None): if input_size is not None: img, margin = self.process_image(img, input_size) else: img = self.process_image(img, input_size) pred = self.val_func_process(img, device) if input_size is not None: pred = pred[:, margin[0]:(pred.shape[1] - margin[1]), margin[2]:(pred.shape[2] - margin[3])] pred = pred.permute(1, 2, 0) pred = pred.cpu().numpy() if output_size is not None: pred = cv2.resize(pred, (output_size[1], output_size[0]), interpolation=cv2.INTER_LINEAR) pred = pred.argmax(2) return pred # slide the window to evaluate the image def sliding_eval(self, img, crop_size, stride_rate, device=None): ori_rows, ori_cols, c = img.shape processed_pred = np.zeros((ori_rows, ori_cols, self.class_num)) for s in self.multi_scales: img_scale = cv2.resize(img, None, fx=s, fy=s, interpolation=cv2.INTER_LINEAR) new_rows, new_cols, _ = img_scale.shape processed_pred += self.scale_process(img_scale, (ori_rows, ori_cols), crop_size, stride_rate, device) pred = processed_pred.argmax(2) return pred def scale_process(self, img, ori_shape, crop_size, stride_rate, device=None): new_rows, new_cols, c = img.shape long_size = new_cols if new_cols > new_rows else new_rows if long_size <= crop_size: input_data, margin = self.process_image(img, crop_size) score = self.val_func_process(input_data, device) score = score[:, margin[0]:(score.shape[1] - margin[1]), margin[2]:(score.shape[2] - margin[3])] else: stride = int(np.ceil(crop_size * stride_rate)) img_pad, margin = pad_image_to_shape(img, crop_size, cv2.BORDER_CONSTANT, value=0) pad_rows = img_pad.shape[0] pad_cols = img_pad.shape[1] r_grid = int(np.ceil((pad_rows - crop_size) / stride)) + 1 c_grid = int(np.ceil((pad_cols - crop_size) / stride)) + 1 data_scale = torch.zeros(self.class_num, pad_rows, pad_cols).cuda( device) count_scale = torch.zeros(self.class_num, pad_rows, pad_cols).cuda( device) for grid_yidx in range(r_grid): for grid_xidx in range(c_grid): s_x = grid_xidx * stride s_y = grid_yidx * stride e_x = min(s_x + crop_size, pad_cols) e_y = min(s_y + crop_size, pad_rows) s_x = e_x - crop_size s_y = e_y - crop_size img_sub = img_pad[s_y:e_y, s_x: e_x, :] count_scale[:, s_y: e_y, s_x: e_x] += 1 input_data, tmargin = self.process_image(img_sub, crop_size) temp_score = self.val_func_process(input_data, device) temp_score = temp_score[:, tmargin[0]:(temp_score.shape[1] - tmargin[1]), tmargin[2]:(temp_score.shape[2] - tmargin[3])] data_scale[:, s_y: e_y, s_x: e_x] += temp_score # score = data_scale / count_scale score = data_scale score = score[:, margin[0]:(score.shape[1] - margin[1]), margin[2]:(score.shape[2] - margin[3])] score = score.permute(1, 2, 0) data_output = cv2.resize(score.cpu().numpy(), (ori_shape[1], ori_shape[0]), interpolation=cv2.INTER_LINEAR) return data_output def val_func_process(self, input_data, device=None): input_data = np.ascontiguousarray(input_data[None, :, :, :], dtype=np.float32) input_data = torch.FloatTensor(input_data).cuda(device) with torch.cuda.device(input_data.get_device()): self.val_func.eval() self.val_func.to(input_data.get_device()) with torch.no_grad(): score = self.val_func(input_data) if (isinstance(score, tuple) or isinstance(score, list)) and len(score) > 1: score = score[self.out_idx] score = score[0] # a single image pass, ignore batch dim if self.is_flip: input_data = input_data.flip(-1) score_flip = self.val_func(input_data) score_flip = score_flip[0] score += score_flip.flip(-1) score = torch.exp(score) # score = score.data return score def process_image(self, img, crop_size=None): p_img = img if img.shape[2] < 3: im_b = p_img im_g = p_img im_r = p_img p_img = np.concatenate((im_b, im_g, im_r), axis=2) p_img = normalize(p_img, self.image_mean, self.image_std) if crop_size is not None: p_img, margin = pad_image_to_shape(p_img, crop_size, cv2.BORDER_CONSTANT, value=0) p_img = p_img.transpose(2, 0, 1) return p_img, margin p_img = p_img.transpose(2, 0, 1) return p_img
Cream/CDARTS/CDARTS_segmentation/tools/engine/evaluator.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/tools/engine/evaluator.py", "repo_id": "Cream", "token_count": 6706 }
292
import numpy as np import cv2 import scipy.io as sio def set_img_color(colors, background, img, gt, show255=False, weight_foreground=0.55): origin = np.array(img) for i in range(len(colors)): if i != background: img[np.where(gt == i)] = colors[i] if show255: img[np.where(gt == 255)] = 0 cv2.addWeighted(img, weight_foreground, origin, (1 - weight_foreground), 0, img) return img def show_prediction(colors, background, img, pred, weight_foreground=1): im = np.array(img, np.uint8) set_img_color(colors, background, im, pred, weight_foreground=weight_foreground) final = np.array(im) return final def show_img(colors, background, img, clean, gt, *pds): im1 = np.array(img, np.uint8) # set_img_color(colors, background, im1, clean) final = np.array(im1) # the pivot black bar pivot = np.zeros((im1.shape[0], 15, 3), dtype=np.uint8) for pd in pds: im = np.array(img, np.uint8) # pd[np.where(gt == 255)] = 255 set_img_color(colors, background, im, pd) final = np.column_stack((final, pivot)) final = np.column_stack((final, im)) im = np.array(img, np.uint8) set_img_color(colors, background, im, gt, True) final = np.column_stack((final, pivot)) final = np.column_stack((final, im)) return final def get_colors(class_num): colors = [] for i in range(class_num): colors.append((np.random.random((1, 3)) * 255).tolist()[0]) return colors def get_ade_colors(): colors = sio.loadmat('./color150.mat')['colors'] colors = colors[:, ::-1, ] colors = np.array(colors).astype(int).tolist() colors.insert(0, [0, 0, 0]) return colors def print_iou(iu, mean_pixel_acc, class_names=None, show_no_back=False, no_print=False): n = iu.size lines = [] for i in range(n): if class_names is None: cls = 'Class %d:' % (i + 1) else: cls = '%d %s' % (i + 1, class_names[i]) lines.append('%-8s\t%.3f%%' % (cls, iu[i] * 100)) mean_IU = np.nanmean(iu) # mean_IU_no_back = np.nanmean(iu[1:]) mean_IU_no_back = np.nanmean(iu[:-1]) if show_no_back: lines.append( '---------------------------- %-8s\t%.3f%%\t%-8s\t%.3f%%\t%-8s\t%.3f%%' % ( 'mean_IU', mean_IU * 100, 'mean_IU_no_back', mean_IU_no_back * 100, 'mean_pixel_ACC', mean_pixel_acc * 100)) else: print(mean_pixel_acc) lines.append( '---------------------------- %-8s\t%.3f%%\t%-8s\t%.3f%%' % ( 'mean_IU', mean_IU * 100, 'mean_pixel_ACC', mean_pixel_acc * 100)) line = "\n".join(lines) if not no_print: print(line) return line
Cream/CDARTS/CDARTS_segmentation/tools/utils/visualize.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/tools/utils/visualize.py", "repo_id": "Cream", "token_count": 1350 }
293
import torch import torch.nn as nn from torch.nn import functional as F from builder import * from operations import * from operations import DropPath_ from genotypes import PRIMITIVES from pdb import set_trace as bp from seg_oprs import FeatureFusion, Head, Decoder from layers import NaiveSyncBatchNorm # BatchNorm2d = nn.BatchNorm2d BatchNorm2d = NaiveSyncBatchNorm IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5) IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5) def hard_sigmoid(x, inplace: bool = False): if inplace: return x.add_(3.).clamp_(0., 6.).div_(6.) else: return F.relu6(x + 3.) / 6. class HardSigmoid(nn.Module): def __init__(self, inplace: bool = False): super(HardSigmoid, self).__init__() self.inplace = inplace def forward(self, x): return hard_sigmoid(x, self.inplace) class SelectAdaptivePool2d(nn.Module): """Selectable global pooling layer with dynamic input kernel size """ def __init__(self, output_size=1, pool_type='avg', flatten=False): super(SelectAdaptivePool2d, self).__init__() self.output_size = output_size self.pool_type = pool_type self.flatten = flatten if pool_type == 'avgmax': self.pool = AdaptiveAvgMaxPool2d(output_size) elif pool_type == 'catavgmax': self.pool = AdaptiveCatAvgMaxPool2d(output_size) elif pool_type == 'max': self.pool = nn.AdaptiveMaxPool2d(output_size) else: if pool_type != 'avg': assert False, 'Invalid pool type: %s' % pool_type self.pool = nn.AdaptiveAvgPool2d(output_size) def forward(self, x): x = self.pool(x) if self.flatten: x = x.flatten(1) return x def feat_mult(self): return adaptive_pool_feat_mult(self.pool_type) def __repr__(self): return self.__class__.__name__ + ' (' \ + 'output_size=' + str(self.output_size) \ + ', pool_type=' + self.pool_type + ')' def create_conv2d(in_chs, out_chs, kernel_size, **kwargs): """ Select a 2d convolution implementation based on arguments Creates and returns one of torch.nn.Conv2d, Conv2dSame, MixedConv2d, or CondConv2d. Used extensively by EfficientNet, MobileNetv3 and related networks. """ assert 'groups' not in kwargs # only use 'depthwise' bool arg if isinstance(kernel_size, list): assert 'num_experts' not in kwargs # MixNet + CondConv combo not supported currently # We're going to use only lists for defining the MixedConv2d kernel groups, # ints, tuples, other iterables will continue to pass to normal conv and specify h, w. m = MixedConv2d(in_chs, out_chs, kernel_size, **kwargs) else: depthwise = kwargs.pop('depthwise', False) groups = out_chs if depthwise else 1 if 'num_experts' in kwargs and kwargs['num_experts'] > 0: m = CondConv2d(in_chs, out_chs, kernel_size, groups=groups, **kwargs) else: m = create_conv2d_pad(in_chs, out_chs, kernel_size, groups=groups, **kwargs) return m def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv_stem', 'classifier': 'classifier', **kwargs } def conv_bn(inp, oup, stride, groups=1, act_fn=nn.ReLU): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False, groups=groups), nn.BatchNorm2d(oup), act_fn(inplace=True) ) def conv_1x1_bn(inp, oup, groups=1, act_fn=nn.ReLU): return nn.Sequential( nn.Conv2d(inp, oup, 1, 1, 0, bias=False, groups=groups), nn.BatchNorm2d(oup), act_fn(inplace=True) ) default_cfgs = { 'mobilenetv3_large_075': _cfg(url=''), 'mobilenetv3_large_100': _cfg( interpolation='bicubic', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth'), 'mobilenetv3_small_075': _cfg(url=''), 'mobilenetv3_small_100': _cfg(url=''), 'mobilenetv3_rw': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth', interpolation='bicubic'), 'tf_mobilenetv3_large_075': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_large_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_large_minimal_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_small_075': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_small_100': _cfg( url= 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_small_minimal_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), } _DEBUG = False class ChildNet(nn.Module): def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=16, num_features=1280, head_bias=True, channel_multiplier=1.0, pad_type='', act_layer=nn.ReLU, drop_rate=0., drop_path_rate=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, global_pool='avg', pool_bn=False, zero_gamma=False): super(ChildNet, self).__init__() norm_layer = BatchNorm2d self.num_classes = num_classes self.num_features = num_features self.drop_rate = drop_rate self._in_chs = in_chans self.pool_bn = pool_bn # Stem stem_size = round_channels(stem_size, channel_multiplier) self.conv_stem = create_conv2d(self._in_chs, stem_size, 3, stride=2, padding=pad_type) self.bn1 = norm_layer(stem_size, **norm_kwargs) self.act1 = act_layer(inplace=True) self._in_chs = stem_size # Middle stages (IR/ER/DS Blocks) builder = ChildNetBuilder( channel_multiplier, 8, None, 32, pad_type, act_layer, se_kwargs, norm_layer, norm_kwargs, drop_path_rate, verbose=_DEBUG) self.blocks = nn.Sequential(*builder(self._in_chs, block_args)) # self.blocks = builder(self._in_chs, block_args) self._in_chs = builder.in_chs # Head + Pooling self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.conv_head = create_conv2d(self._in_chs, self.num_features, 1, padding=pad_type, bias=head_bias) self.act2 = act_layer(inplace=True) # Classifier self.classifier = nn.Linear(self.num_features * self.global_pool.feat_mult(), self.num_classes) if pool_bn: self.pool_bn = nn.BatchNorm1d(1) efficientnet_init_weights(self, zero_gamma=zero_gamma) def get_classifier(self): return self.classifier def reset_classifier(self, num_classes, global_pool='avg'): self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.num_classes = num_classes self.classifier = nn.Linear( self.num_features * self.global_pool.feat_mult(), num_classes) if self.num_classes else None def forward_features(self, x): # architecture = [[0], [], [], [], [], [0]] x = self.conv_stem(x) x = self.bn1(x) x = self.act1(x) outputs = [] # 16, 24, 40, 96, 320 # block_idxs = [0, 1, 2, 4, 6] block_idxs = [1, 2, 4, 6] for i, block in enumerate(self.blocks): x = block(x) if i in block_idxs: outputs.append(x) # x = self.blocks(x) return tuple(outputs) def forward(self, x): x = self.forward_features(x) return x def modify_block_args(block_args, kernel_size, exp_ratio): # kernel_size: 3,5,7 # exp_ratio: 4,6 block_type = block_args['block_type'] # each type of block has different valid arguments, fill accordingly if block_type == 'cn': block_args['kernel_size'] = kernel_size elif block_type == 'er': block_args['exp_kernel_size'] = kernel_size else: block_args['dw_kernel_size'] = kernel_size if block_type == 'ir' or block_type == 'er': block_args['exp_ratio'] = exp_ratio return block_args def _gen_childnet(**kwargs): # arch_list = [[0], [3, 2], [3, 2], [3, 3], [3, 3, 3], [3, 3, 3], [0]] # arch_list = [[0], [3, 2, 3, 3], [3, 2, 3, 1], [3, 0, 3, 2], [3, 3, 3, 3], [3, 3, 3, 3], [0]] # arch_list = [[0], [3,4,3,1],[3,2,3,0],[3,3,3,1],[3,3,3,3],[3,3,3,3],[0]] arch_list = [[0], [3, 4, 2, 0], [5, 2, 4, 0], [4, 3, 2, 2], [1, 3, 0, 1], [2, 4, 4, 2], [0]] # arch_list = [[0], [], [], [], [], [0]] choices = {'kernel_size': [3, 5, 7], 'exp_ratio': [4, 6]} choices_list = [[x,y] for x in choices['kernel_size'] for y in choices['exp_ratio']] num_features = 1280 # act_layer = HardSwish act_layer = Swish ''' arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_e1_c16_se0.25'], # stage 1, 112x112 in ['ir_r1_k3_s2_e4_c24_se0.25', 'ir_r1_k3_s1_e4_c24_se0.25'], # stage 2, 56x56 in ['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r1_k5_s2_e4_c40_se0.25'], # stage 3, 28x28 in ['ir_r1_k3_s2_e6_c80_se0.25', 'ir_r2_k3_s1_e4_c80_se0.25'], # stage 4, 14x14in ['ir_r1_k3_s1_e6_c96_se0.25', 'ir_r1_k3_s1_e6_c96_se0.25', 'ir_r1_k3_s1_e6_c96_se0.25'], # stage 5, 14x14in ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k5_s2_e6_c192_se0.25'], # stage 6, 7x7 in ['cn_r1_k1_s1_c320_se0.25'], ] ''' arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_e1_c16_se0.25'], # stage 1, 112x112 in ['ir_r1_k3_s2_e4_c24_se0.25', 'ir_r1_k3_s1_e4_c24_se0.25', 'ir_r1_k3_s1_e4_c24_se0.25', 'ir_r1_k3_s1_e4_c24_se0.25'], # stage 2, 56x56 in ['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r1_k5_s1_e4_c40_se0.25', 'ir_r1_k5_s2_e4_c40_se0.25', 'ir_r1_k5_s2_e4_c40_se0.25'], # stage 3, 28x28 in ['ir_r1_k3_s2_e6_c80_se0.25', 'ir_r1_k3_s1_e4_c80_se0.25', 'ir_r1_k3_s1_e4_c80_se0.25', 'ir_r2_k3_s1_e4_c80_se0.25'], # stage 4, 14x14in ['ir_r1_k3_s1_e6_c96_se0.25', 'ir_r1_k3_s1_e6_c96_se0.25', 'ir_r1_k3_s1_e6_c96_se0.25', 'ir_r1_k3_s1_e6_c96_se0.25'], # stage 5, 14x14in ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s2_e6_c192_se0.25'], # stage 6, 7x7 in ['cn_r1_k1_s1_c320_se0.25'], ] #arch_def = [ # # stage 0, 112x112 in # ['ds_r1_k3_s1_e1_c16_se0.25'], # # stage 1, 112x112 in # ['ir_r1_k3_s2_e4_c24_se0.25'], # # stage 2, 56x56 in # ['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r1_k5_s2_e4_c40_se0.25'], # # stage 3, 28x28 in # ['ir_r1_k3_s2_e6_c80_se0.25', 'ir_r1_k3_s2_e6_c80_se0.25', 'ir_r1_k3_s2_e6_c80_se0.25'], # # stage 4, 14x14in # ['ir_r1_k3_s1_e6_c96_se0.25', 'ir_r1_k3_s1_e6_c96_se0.25', 'ir_r1_k3_s1_e6_c96_se0.25', 'ir_r1_k3_s1_e6_c96_se0.25'], # # stage 5, 14x14in # ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s2_e6_c192_se0.25'], # # stage 6, 7x7 in # ['cn_r1_k1_s1_c320_se0.25'], #] new_arch = [] # change to child arch_def for i, (layer_choice, layer_arch) in enumerate(zip(arch_list, arch_def)): if len(layer_arch) == 1: new_arch.append(layer_arch) continue else: new_layer = [] for j, (block_choice, block_arch) in enumerate(zip(layer_choice, layer_arch)): kernel_size, exp_ratio = choices_list[block_choice] elements = block_arch.split('_') block_arch = block_arch.replace(elements[2], 'k{}'.format(str(kernel_size))) block_arch = block_arch.replace(elements[4], 'e{}'.format(str(exp_ratio))) new_layer.append(block_arch) new_arch.append(new_layer) model_kwargs = dict( block_args=decode_arch_def(new_arch), num_features=num_features, stem_size=16, # channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), act_layer=act_layer, se_kwargs=dict(act_layer=nn.ReLU, gate_fn=hard_sigmoid, reduce_mid=True, divisor=8), num_classes=1000, drop_rate=0.2, drop_path_rate=0.2, global_pool='avg' ) model = ChildNet(**model_kwargs) return model class CyDASseg(nn.Module): def __init__(self, Fch=12, num_classes=19, stem_head_width=(1., 1.)): super(CyDASseg, self).__init__() self._num_classes = num_classes self._stem_head_width = stem_head_width self.backbone = _gen_childnet() # self.f_channels = [16, 24, 40, 96] self.f_channels = [24, 40, 96, 320] self._Fch = Fch # del self.backbone.blocks[3][2] #for m in self.backbone.modules(): # if isinstance(m, nn.BatchNorm2d): # m.eval() # m.weight.requires_grad = False # m.bias.requires_grad = False self.last_channel = self.backbone.blocks[-1][-1].conv.out_channels # self.backbone.blocks[-1][-1] # building decoder self.build_arm_ffm_head() def init_weights(self, pretrained=None): if pretrained: state_dict = torch.load(pretrained) state_dict = state_dict['state_dict'] # resume_checkpoint(self.backbone, pretrained) self.backbone.load_state_dict(state_dict, strict=True) else: print("No pretrained model!") return def build_arm_ffm_head(self): # 24, 40, 96, 320 if self.training: self.heads32 = Head(self.f_channels[-1], self._num_classes, True, norm_layer=BatchNorm2d) self.heads16 = Head(self.f_channels[-2], self._num_classes, True, norm_layer=BatchNorm2d) self.heads8 = Decoder(self.num_filters(8, self._stem_head_width[1]), self.f_channels[0], self._num_classes, Fch=self._Fch, scale=4, branch=1, is_aux=False, norm_layer=BatchNorm2d) self.arms32 = nn.ModuleList([ ConvNorm(self.f_channels[-1], self.num_filters(16, self._stem_head_width[1]), 1, 1, 0, slimmable=False), ConvNorm(self.num_filters(16, self._stem_head_width[1]), self.num_filters(8, self._stem_head_width[1]), 1, 1, 0, slimmable=False), ]) self.refines32 = nn.ModuleList([ ConvNorm(self.num_filters(16, self._stem_head_width[1])+self.f_channels[-2], self.num_filters(16, self._stem_head_width[1]), 3, 1, 1, slimmable=False), ConvNorm(self.num_filters(8, self._stem_head_width[1])+self.f_channels[-3], self.num_filters(8, self._stem_head_width[1]), 3, 1, 1, slimmable=False), ]) self.ffm = FeatureFusion(self.num_filters(8, self._stem_head_width[1]), self.num_filters(8, self._stem_head_width[1]), reduction=1, Fch=self._Fch, scale=8, branch=1, norm_layer=BatchNorm2d) def agg_ffm(self, outputs8, outputs16, outputs32, outputs4): pred32 = []; pred16 = []; pred8 = [] # order of predictions is not important if self.training: pred32.append(outputs32) out = self.arms32[0](outputs32) out = F.interpolate(out, size=(int(out.size(2))*2, int(out.size(3))*2), mode='bilinear', align_corners=False) out = self.refines32[0](torch.cat([out, outputs16], dim=1)) if self.training: pred16.append(outputs16) out = self.arms32[1](out) out = F.interpolate(out, size=(int(out.size(2))*2, int(out.size(3))*2), mode='bilinear', align_corners=False) out = self.refines32[1](torch.cat([out, outputs8], dim=1)) pred8.append(out) if len(pred32) > 0: pred32 = self.heads32(torch.cat(pred32, dim=1)) else: pred32 = None if len(pred16) > 0: pred16 = self.heads16(torch.cat(pred16, dim=1)) else: pred16 = None pred8 = self.heads8(self.ffm(torch.cat(pred8, dim=1)), outputs4) if self.training: return pred8, pred16, pred32 else: return pred8 def num_filters(self, scale, width=1.0): return int(np.round(scale * self._Fch * width)) def forward(self, x): b,c,h,w = x.shape outputs = self.backbone(x) outputs4, outputs8, outputs16, outputs32 =outputs[0], outputs[1], outputs[2], outputs[3] if self.training: pred8, pred16, pred32 = self.agg_ffm(outputs8, outputs16, outputs32, outputs4) pred8 = F.interpolate(pred8, size=(h,w), mode='bilinear', align_corners=False) if pred16 is not None: pred16 = F.interpolate(pred16, size=(h,w), mode='bilinear', align_corners=False) if pred32 is not None: pred32 = F.interpolate(pred32, size=(h,w), mode='bilinear', align_corners=False) return pred8, pred16, pred32 else: pred8 = self.agg_ffm(outputs8, outputs16, outputs32, outputs4) out = F.interpolate(pred8, size=(int(pred8.size(2))*4, int(pred8.size(3))*4), mode='bilinear', align_corners=False) return out
Cream/CDARTS/CDARTS_segmentation/train/cydas.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/train/cydas.py", "repo_id": "Cream", "token_count": 9355 }
294
from __future__ import division import os import shutil import sys import time import glob import json import logging import argparse import _init_paths from utils.darts_utils import create_exp_dir, save, plot_op, plot_path_width, objective_acc_lat parser = argparse.ArgumentParser(description='parameters for sampling') parser.add_argument('--arch_loc', default='./jsons', type=str, help='resumed model') parser.add_argument('--save_dir', default='./archs', type=str, help='saved dict') parser.add_argument("--Fch", default=12, type=int, help='Fch') parser.add_argument('--stem_head_width', type=float, default=0.6666666666666666, help='base learning rate') args = parser.parse_args() def main(): width_mult_list = [4./12, 6./12, 8./12, 10./12, 1.,] json_files = glob.glob(os.path.join(args.arch_loc, "*.json")) for json_file in json_files: with open(json_file, 'r') as f: model_dict = json.loads(f.read()) last = model_dict["lasts"] save_dir = os.path.join(args.save_dir, os.path.basename(json_file).strip('.json')) os.makedirs(save_dir, exist_ok=True) try: for b in range(len(last)): if len(width_mult_list) > 1: plot_op(model_dict["ops"][b], model_dict["paths"][b], width=model_dict["widths"][b], head_width=args.stem_head_width, F_base=args.Fch).savefig(os.path.join(save_dir, "ops_%d_%d.png"%(0,b)), bbox_inches="tight") else: plot_op(model_dict["ops"][b], model_dict["paths"][b], F_base=args.Fch).savefig(os.path.join(save_dir, "ops_%d_%d.png"%(0,b)), bbox_inches="tight") plot_path_width(model_dict["lasts"], model_dict["paths"], model_dict["widths"]).savefig(os.path.join(save_dir, "path_width%d.png"%0)) except: print("Arch: {} is invalid".format(json_file)) shutil.rmtree(save_dir) if __name__ == '__main__': main()
Cream/CDARTS/CDARTS_segmentation/train/vis_arch.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/train/vis_arch.py", "repo_id": "Cream", "token_count": 852 }
295
""" Config class for search/augment """ import argparse import os from functools import partial import torch def get_parser(name): """ make default formatted parser """ parser = argparse.ArgumentParser(name, formatter_class=argparse.ArgumentDefaultsHelpFormatter) # print default value always parser.add_argument = partial(parser.add_argument, help=' ') return parser def parse_gpus(gpus): if gpus == 'all': return list(range(torch.cuda.device_count())) else: return [int(s) for s in gpus.split(',')] class BaseConfig(argparse.Namespace): def print_params(self, prtf=print): prtf("") prtf("Parameters:") for attr, value in sorted(vars(self).items()): prtf("{}={}".format(attr.upper(), value)) prtf("") def as_markdown(self): """ Return configs as markdown format """ text = "|name|value| \n|-|-| \n" for attr, value in sorted(vars(self).items()): text += "|{}|{}| \n".format(attr, value) return text class SearchConfig(BaseConfig): def build_parser(self): parser = get_parser("Search config") parser.add_argument('--name', required=True) ########### basic settings ############ parser.add_argument('--dataset', default='imagenet', help='CIFAR10 / MNIST / FashionMNIST / imagenet') parser.add_argument('--model_type', type=str, default='cifar', help='cifar or imagenet') parser.add_argument('--data_dir', type=str, default='experiments/data/cifar', help='cifar dataset') parser.add_argument('--train_dir', type=str, default='experiments/data/imagenet/train', help='') parser.add_argument('--val_dir', type=str, default='experiments/data/imagenet/train', help='') parser.add_argument('--test_dir', type=str, default='experiments/data/imagenet/val', help='') parser.add_argument('--param_pool_path', type=str, default=None, help='') parser.add_argument('--input_channels', type=int, default=3) parser.add_argument('--init_channels', type=int, default=16) parser.add_argument('--stem_multiplier', type=int, default=3) parser.add_argument('--n_classes', type=int, default=10) parser.add_argument('--batch_size', type=int, default=128, help='batch size') parser.add_argument('--print_freq', type=int, default=50, help='print frequency') parser.add_argument('--seed', type=int, default=0, help='random seed') parser.add_argument('--workers', type=int, default=4, help='# of workers') parser.add_argument('--gpus', default='0', help='gpu device ids separated by comma. ' '`all` indicates use all gpus.') parser.add_argument('--sample_ratio', type=float, default=0.2, help='imagenet sample ratio') parser.add_argument('--resume', action='store_true', default=False, help='resnet stem(pretrain)') ########### learning rate ############ parser.add_argument('--w_lr', type=float, default=0.05, help='lr for weights') parser.add_argument('--lr_ratio', type=float, default=0.5, help='lr for trained layers') parser.add_argument('--w_lr_min', type=float, default=0.001, help='minimum lr for weights') parser.add_argument('--w_momentum', type=float, default=0.9, help='momentum for weights') parser.add_argument('--w_weight_decay', type=float, default=3e-4, help='weight decay for weights') parser.add_argument('--w_grad_clip', type=float, default=5., help='gradient clipping for weights') parser.add_argument('--alpha_lr', type=float, default=6e-4, help='lr for alpha') parser.add_argument('--alpha_weight_decay', type=float, default=1e-3, help='weight decay for alpha') ########### alternate training ############ parser.add_argument('--res_stem', action='store_true', default=False, help='resnet stem(pretrain)') parser.add_argument('--layer_num', type=int, default=3, help='layer need to be replaced') parser.add_argument('--cells_num', type=int, default=3, help='cells num of one layer') parser.add_argument('--pretrain_epochs', type=int, default=5, help='# of training epochs') parser.add_argument('--pretrain_decay', type=int, default=5, help='pretrain epochs') parser.add_argument('--random_times', type=int, default=10, help='# of training epochs') parser.add_argument('--random_epochs', type=int, default=3, help='# of training epochs') parser.add_argument('--search_iter', type=int, default=5, help='times of search') parser.add_argument('--search_iter_epochs', type=int, default=5, help='# of training epochs') parser.add_argument('--unrolled', action='store_true', default=False, help='use one-step unrolled validation loss') parser.add_argument('--one_stage', action='store_true', default=False, help='one_stage search') parser.add_argument('--same_structure', action='store_true', default=False, help='same_structure search and retrain') parser.add_argument('--clean_arch', action='store_true', default=False, help='clean archs each epoch') parser.add_argument('--sync_param', action='store_true', default=False, help='whether to sync param') parser.add_argument('--ensemble_sum', action='store_true', default=False, help='ensemble sum or concat') parser.add_argument('--ensemble_param', action='store_true', default=False, help='whether to learn ensemble params') parser.add_argument('--use_beta', action='store_true', default=False, help='whether to use beta arch param') parser.add_argument('--bn_affine', action='store_true', default=False, help='main bn affine') parser.add_argument('--sync_bn', action='store_true', default=False, help='whether to sync bn') parser.add_argument('--use_apex', action='store_true', default=False, help='whether to apex') parser.add_argument('--regular', action='store_true', default=False, help='resnet stem(pretrain)') parser.add_argument('--regular_ratio', type=float, default=0.5, help='regular ratio') parser.add_argument('--regular_coeff', type=float, default=5, help='regular coefficient') parser.add_argument('--repeat_cell', action='store_true', default=False, help='use repeat cell') parser.add_argument('--fix_head', action='store_true', default=False, help='whether to fix head') parser.add_argument('--share_fc', action='store_true', default=False, help='whether to share fc') parser.add_argument('--nasnet_lr', type=float, default=0.1, help='lr of nasnet') parser.add_argument('--nasnet_warmup', type=int, default=5, help='warm up of nasnet') parser.add_argument('--loss_alpha', type=float, default=1, help='loss alpha') parser.add_argument('--loss_T', type=float, default=2, help='loss T') parser.add_argument('--interactive_type', type=int, default=0, help='0 kl 1 cosine 2 mse 3 sl1') parser.add_argument('--gumbel_sample', action='store_true', default=False, help='whether to use gumbel sample') parser.add_argument('--sample_pretrain', action='store_true', default=False, help='sample_pretrain') ########### data augument ############ parser.add_argument('--aux_weight', type=float, default=0.4, help='auxiliary loss weight') parser.add_argument('--cutout_length', type=int, default=16, help='cutout length') parser.add_argument('--drop_path_prob', type=float, default=0.2, help='drop path prob') parser.add_argument('--use_aa', action='store_true', default=False, help='whether to use aa') parser.add_argument('--mixup_alpha', default=0., type=float, help='mixup interpolation coefficient (default: 1)') ########### distributed ############ parser.add_argument("--local_rank", default=0, type=int) parser.add_argument("--world_size", default=1, type=int) parser.add_argument('--dist_url', default='tcp://127.0.0.1:23456', type=str, help='url used to set up distributed training') parser.add_argument('--distributed', action='store_true', help='Run model distributed mode.') return parser def __init__(self): parser = self.build_parser() args = parser.parse_args() super().__init__(**vars(args)) self.data_path = './experiments/data/' self.path = os.path.join('experiments', 'search', self.name) self.resume_path = os.path.join(self.path, 'search_resume.pth.tar') self.plot_path = os.path.join(self.path, 'plots') self.retrain_path = os.path.join(self.path, 'retrain') self.gpus = parse_gpus(self.gpus) class AugmentConfig(BaseConfig): def build_parser(self): parser = get_parser("Augment config") parser.add_argument('--name', required=True) parser.add_argument('--dataset', required=True, help='cifar10 / cifar100 / imagenet') parser.add_argument('--model_type', type=str, default='cifar', help='cifar or imagenet') parser.add_argument('--data_dir', type=str, default='experiments/data/cifar', help='cifar dataset') parser.add_argument('--train_dir', type=str, default='experiments/data/imagenet/train', help='') parser.add_argument('--test_dir', type=str, default='experiments/data/imagenet/val', help='') parser.add_argument('--cell_file', type=str, default='CDARTS/cells/cifar_genotype.json', help='') parser.add_argument('--resume', action='store_true', default=False, help='resnet stem(pretrain)') parser.add_argument('--n_classes', type=int, default=10) parser.add_argument('--input_channels', type=int, default=3) parser.add_argument('--stem_multiplier', type=int, default=3) ########### alternate training ############ parser.add_argument('--res_stem', action='store_true', default=False, help='resnet stem(pretrain)') parser.add_argument('--layer_num', type=int, default=3, help='layer need to be replaced') parser.add_argument('--cells_num', type=int, default=3, help='cells num of one layer') parser.add_argument('--same_structure', action='store_true', default=False, help='same_structure search and retrain') parser.add_argument('--ensemble_sum', action='store_true', default=False, help='whether to ensemble') parser.add_argument('--ensemble_param', action='store_true', default=False, help='whether to learn ensemble params') parser.add_argument('--use_beta', action='store_true', default=False, help='whether to use beta arch param') parser.add_argument('--bn_affine', action='store_true', default=False, help='main bn affine') parser.add_argument('--repeat_cell', action='store_true', default=False, help='use repeat cell') parser.add_argument('--fix_head', action='store_true', default=False, help='whether to fix head') parser.add_argument('--share_fc', action='store_true', default=False, help='whether to share fc') parser.add_argument('--sample_pretrain', action='store_true', default=False, help='sample_pretrain') parser.add_argument('--use_aa', action='store_true', default=False, help='whether to use aa') parser.add_argument('--mixup_alpha', default=0., type=float, help='mixup interpolation coefficient (default: 1)') parser.add_argument('--resume_name', type=str, default='retrain_resume.pth.tar') parser.add_argument('--batch_size', type=int, default=128, help='batch size') parser.add_argument('--lr', type=float, default=0.025, help='lr for weights') parser.add_argument('--momentum', type=float, default=0.9, help='momentum') parser.add_argument('--weight_decay', type=float, default=5e-4, help='weight decay') parser.add_argument('--grad_clip', type=float, default=5., help='gradient clipping for weights') parser.add_argument('--print_freq', type=int, default=200, help='print frequency') parser.add_argument('--gpus', default='0', help='gpu device ids separated by comma. ' '`all` indicates use all gpus.') parser.add_argument('--epochs', type=int, default=600, help='# of training epochs') parser.add_argument('--warmup_epochs', type=int, default=5, help='# warmup') parser.add_argument('--init_channels', type=int, default=36) parser.add_argument('--layers', type=int, default=20, help='# of layers') parser.add_argument('--seed', type=int, default=0, help='random seed') parser.add_argument('--workers', type=int, default=4, help='# of workers') parser.add_argument('--aux_weight', type=float, default=0.4, help='auxiliary loss weight') parser.add_argument('--cutout_length', type=int, default=16, help='cutout length') parser.add_argument('--sample_archs', type=int, default=1, help='sample arch num') parser.add_argument('--label_smooth', type=float, default=0.1, help='label smoothing') parser.add_argument('--drop_path_prob', type=float, default=0.3, help='drop path prob') ########### distributed ############ parser.add_argument("--local_rank", default=0, type=int) parser.add_argument("--world_size", default=1, type=int) parser.add_argument('--use_amp', action='store_true', default=False, help='whether to use amp') parser.add_argument('--opt-level', type=str, default='O1') parser.add_argument('--dist_url', default='tcp://127.0.0.1:23456', type=str, help='url used to set up distributed training') parser.add_argument('--fp16', action='store_true', help='Run model fp16 mode.') parser.add_argument('--distributed', action='store_true', help='Run model distributed mode.') parser.add_argument('--static-loss-scale', type=float, default=1, help='Static loss scale, positive power of 2 values can improve fp16 convergence.') parser.add_argument('--dynamic-loss-scale', action='store_true', help='Use dynamic loss scaling. If supplied, this argument supersedes ' + '--static-loss-scale.') return parser def __init__(self): parser = self.build_parser() args = parser.parse_args() super().__init__(**vars(args)) self.data_path = './experiments/data/' self.path = os.path.join('experiments', 'retrain', self.name) self.gpus = parse_gpus(self.gpus) self.resume_path = os.path.join(self.path, self.resume_name)
Cream/CDARTS/lib/config.py/0
{ "file_path": "Cream/CDARTS/lib/config.py", "repo_id": "Cream", "token_count": 5765 }
296
""" Genotypes - Genotype: normal/reduce gene + normal/reduce cell output connection (concat) - gene: discrete ops information (w/o output connection) - dag: real ops (can be mixed or discrete, but Genotype has only discrete information itself) """ from collections import namedtuple import torch import torch.nn as nn import torch.nn.functional as F from lib.models import ops from lib.models.ops import PRIMITIVES Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat') def to_dag(C_in, gene, reduction, bn_affine=True): """ generate discrete ops from gene """ dag = nn.ModuleList() for edges in gene: row = nn.ModuleList() for op_name, s_idx in edges: # reduction cell & from input nodes => stride = 2 stride = 2 if reduction and s_idx < 2 else 1 op = ops.OPS[op_name](C_in, stride, bn_affine) if not isinstance(op, ops.Identity): # Identity does not use drop path op = nn.Sequential( op, ops.DropPath_() ) op.s_idx = s_idx row.append(op) dag.append(row) return dag def from_str(s): """ generate genotype from string e.g. "Genotype( normal=[[('sep_conv_3x3', 0), ('sep_conv_3x3', 1)], [('sep_conv_3x3', 1), ('dil_conv_3x3', 2)], [('sep_conv_3x3', 1), ('sep_conv_3x3', 2)], [('sep_conv_3x3', 1), ('dil_conv_3x3', 4)]], normal_concat=range(2, 6), reduce=[[('max_pool_3x3', 0), ('max_pool_3x3', 1)], [('max_pool_3x3', 0), ('skip_connect', 2)], [('max_pool_3x3', 0), ('skip_connect', 2)], [('max_pool_3x3', 0), ('skip_connect', 2)]], reduce_concat=range(2, 6))" """ genotype = eval(s) return genotype def parse(alpha, beta, k): """ parse continuous alpha to discrete gene. alpha is ParameterList: ParameterList [ Parameter(n_edges1, n_ops), Parameter(n_edges2, n_ops), ... ] beta is ParameterList: ParameterList [ Parameter(n_edges1), Parameter(n_edges2), ... ] gene is list: [ [('node1_ops_1', node_idx), ..., ('node1_ops_k', node_idx)], [('node2_ops_1', node_idx), ..., ('node2_ops_k', node_idx)], ... ] each node has two edges (k=2) in CNN. """ gene = [] assert PRIMITIVES[-1] == 'none' # assume last PRIMITIVE is 'none' # 1) Convert the mixed op to discrete edge (single op) by choosing top-1 weight edge # 2) Choose top-k edges per node by edge score (top-1 weight in edge) # output the connect idx[(node_idx, connect_idx, op_idx).... () ()] connect_idx = [] for edges, w in zip(alpha, beta): # edges: Tensor(n_edges, n_ops) edge_max, primitive_indices = torch.topk((w.view(-1, 1) * edges)[:, :-1], 1) # ignore 'none' topk_edge_values, topk_edge_indices = torch.topk(edge_max.view(-1), k) node_gene = [] node_idx = [] for edge_idx in topk_edge_indices: prim_idx = primitive_indices[edge_idx] prim = PRIMITIVES[prim_idx] node_gene.append((prim, edge_idx.item())) node_idx.append((edge_idx.item(), prim_idx.item())) gene.append(node_gene) connect_idx.append(node_idx) return gene, connect_idx def parse_gumbel(alpha, beta, k): """ parse continuous alpha to discrete gene. alpha is ParameterList: ParameterList [ Parameter(n_edges1, n_ops), Parameter(n_edges2, n_ops), ... ] beta is ParameterList: ParameterList [ Parameter(n_edges1), Parameter(n_edges2), ... ] gene is list: [ [('node1_ops_1', node_idx), ..., ('node1_ops_k', node_idx)], [('node2_ops_1', node_idx), ..., ('node2_ops_k', node_idx)], ... ] each node has two edges (k=2) in CNN. """ gene = [] assert PRIMITIVES[-1] == 'none' # assume last PRIMITIVE is 'none' # 1) Convert the mixed op to discrete edge (single op) by choosing top-1 weight edge # 2) Choose top-k edges per node by edge score (top-1 weight in edge) # output the connect idx[(node_idx, connect_idx, op_idx).... () ()] connect_idx = [] for edges, w in zip(alpha, beta): # edges: Tensor(n_edges, n_ops) discrete_a = F.gumbel_softmax(edges[:, :-1].reshape(-1), tau=1, hard=True) for i in range(k-1): discrete_a = discrete_a + F.gumbel_softmax(edges[:, :-1].reshape(-1), tau=1, hard=True) discrete_a = discrete_a.reshape(-1, len(PRIMITIVES)-1) reserved_edge = (discrete_a>0).nonzero() node_gene = [] node_idx = [] for i in range(reserved_edge.shape[0]): edge_idx = reserved_edge[i][0].item() prim_idx = reserved_edge[i][1].item() prim = PRIMITIVES[prim_idx] node_gene.append((prim, edge_idx)) node_idx.append((edge_idx, prim_idx)) gene.append(node_gene) connect_idx.append(node_idx) return gene, connect_idx
Cream/CDARTS/lib/utils/genotypes.py/0
{ "file_path": "Cream/CDARTS/lib/utils/genotypes.py", "repo_id": "Cream", "token_count": 2551 }
297
# This file is downloaded from https://github.com/rwightman/pytorch-image-models # This file is to define the inverted residual block which is the base operation in our search space. import torch.nn as nn from timm.models.layers import create_conv2d from timm.models.efficientnet_blocks import make_divisible, resolve_se_args, \ SqueezeExcite, drop_path class InvertedResidual(nn.Module): """ Inverted residual block w/ optional SE and CondConv routing""" def __init__(self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False, exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1, se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, conv_kwargs=None, drop_path_rate=0.): super(InvertedResidual, self).__init__() norm_kwargs = norm_kwargs or {} conv_kwargs = conv_kwargs or {} mid_chs = make_divisible(in_chs * exp_ratio) has_se = se_ratio is not None and se_ratio > 0. self.has_residual = (in_chs == out_chs and stride == 1) and not noskip self.drop_path_rate = drop_path_rate # Point-wise expansion self.conv_pw = create_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type, **conv_kwargs) self.bn1 = norm_layer(mid_chs, **norm_kwargs) self.act1 = act_layer(inplace=True) # Depth-wise convolution self.conv_dw = create_conv2d( mid_chs, mid_chs, dw_kernel_size, stride=stride, dilation=dilation, padding=pad_type, depthwise=True, **conv_kwargs) self.bn2 = norm_layer(mid_chs, **norm_kwargs) self.act2 = act_layer(inplace=True) # Squeeze-and-excitation if has_se: se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer) self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio, **se_kwargs) else: self.se = None # Point-wise linear projection self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs) self.bn3 = norm_layer(out_chs, **norm_kwargs) def feature_info(self, location): if location == 'expansion': # after SE, input to PWL info = dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) else: # location == 'bottleneck', block output info = dict(module='', hook_type='', num_chs=self.conv_pwl.out_channels) return info def forward(self, x): residual = x # Point-wise expansion x = self.conv_pw(x) x = self.bn1(x) x = self.act1(x) # Depth-wise convolution x = self.conv_dw(x) x = self.bn2(x) x = self.act2(x) # Squeeze-and-excitation if self.se is not None: x = self.se(x) # Point-wise linear projection x = self.conv_pwl(x) x = self.bn3(x) if self.has_residual: if self.drop_path_rate > 0.: x = drop_path(x, self.drop_path_rate, self.training) x += residual return x
Cream/Cream/lib/models/blocks/inverted_residual_block.py/0
{ "file_path": "Cream/Cream/lib/models/blocks/inverted_residual_block.py", "repo_id": "Cream", "token_count": 1519 }
298
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # Written by Hao Du and Houwen Peng # email: [email protected] and [email protected] import os import warnings import datetime import torch import torch.nn as nn import _init_paths from torch.utils.tensorboard import SummaryWriter # import timm packages from timm.utils import ModelEma from timm.models import resume_checkpoint from timm.data import Dataset, create_loader # import apex as distributed package otherwise we use torch.nn.parallel.distributed as distributed package try: from apex.parallel import convert_syncbn_model from apex.parallel import DistributedDataParallel as DDP HAS_APEX = True except ImportError: from torch.nn.parallel import DistributedDataParallel as DDP HAS_APEX = False # import models and training functions from lib.core.test import validate from lib.models.structures.childnet import gen_childnet from lib.utils.util import parse_config_args, get_logger, get_model_flops_params from lib.config import DEFAULT_CROP_PCT, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD def main(): args, cfg = parse_config_args('child net testing') # resolve logging output_dir = os.path.join(cfg.SAVE_PATH, "{}-{}".format(datetime.date.today().strftime('%m%d'), cfg.MODEL)) if args.local_rank == 0: logger = get_logger(os.path.join(output_dir, 'test.log')) writer = SummaryWriter(os.path.join(output_dir, 'runs')) else: writer, logger = None, None # retrain model selection if cfg.NET.SELECTION == 481: arch_list = [ [0], [ 3, 4, 3, 1], [ 3, 2, 3, 0], [ 3, 3, 3, 1, 1], [ 3, 3, 3, 3], [ 3, 3, 3, 3], [0]] cfg.DATASET.IMAGE_SIZE = 224 elif cfg.NET.SELECTION == 43: arch_list = [[0], [3], [3, 1], [3, 1], [3, 3, 3], [3, 3], [0]] cfg.DATASET.IMAGE_SIZE = 96 elif cfg.NET.SELECTION == 14: arch_list = [[0], [3], [3, 3], [3, 3], [3], [3], [0]] cfg.DATASET.IMAGE_SIZE = 64 elif cfg.NET.SELECTION == 114: arch_list = [[0], [3], [3, 3], [3, 3], [3, 3, 3], [3, 3], [0]] cfg.DATASET.IMAGE_SIZE = 160 elif cfg.NET.SELECTION == 287: arch_list = [[0], [3], [3, 3], [3, 1, 3], [3, 3, 3, 3], [3, 3, 3], [0]] cfg.DATASET.IMAGE_SIZE = 224 elif cfg.NET.SELECTION == 604: arch_list = [[0], [3, 3, 2, 3, 3], [3, 2, 3, 2, 3], [3, 2, 3, 2, 3], [3, 3, 2, 2, 3, 3], [3, 3, 2, 3, 3, 3], [0]] cfg.DATASET.IMAGE_SIZE = 224 else: raise ValueError("Model Test Selection is not Supported!") # define childnet architecture from arch_list stem = ['ds_r1_k3_s1_e1_c16_se0.25', 'cn_r1_k1_s1_c320_se0.25'] choice_block_pool = ['ir_r1_k3_s2_e4_c24_se0.25', 'ir_r1_k5_s2_e4_c40_se0.25', 'ir_r1_k3_s2_e6_c80_se0.25', 'ir_r1_k3_s1_e6_c96_se0.25', 'ir_r1_k5_s2_e6_c192_se0.25'] arch_def = [[stem[0]]] + [[choice_block_pool[idx] for repeat_times in range(len(arch_list[idx + 1]))] for idx in range(len(choice_block_pool))] + [[stem[1]]] # generate childnet model = gen_childnet( arch_list, arch_def, num_classes=cfg.DATASET.NUM_CLASSES, drop_rate=cfg.NET.DROPOUT_RATE, global_pool=cfg.NET.GP) if args.local_rank == 0: macs, params = get_model_flops_params(model, input_size=( 1, 3, cfg.DATASET.IMAGE_SIZE, cfg.DATASET.IMAGE_SIZE)) logger.info( '[Model-{}] Flops: {} Params: {}'.format(cfg.NET.SELECTION, macs, params)) # initialize distributed parameters torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') if args.local_rank == 0: logger.info( "Training on Process {} with {} GPUs.".format( args.local_rank, cfg.NUM_GPU)) # resume model from checkpoint assert cfg.AUTO_RESUME is True and os.path.exists(cfg.RESUME_PATH) _, __ = resume_checkpoint(model, cfg.RESUME_PATH) model = model.cuda() model_ema = None if cfg.NET.EMA.USE: # Important to create EMA model after cuda(), DP wrapper, and AMP but # before SyncBN and DDP wrapper model_ema = ModelEma( model, decay=cfg.NET.EMA.DECAY, device='cpu' if cfg.NET.EMA.FORCE_CPU else '', resume=cfg.RESUME_PATH) # imagenet validation dataset eval_dir = os.path.join(cfg.DATA_DIR, 'val') if not os.path.exists(eval_dir) and args.local_rank == 0: logger.error( 'Validation folder does not exist at: {}'.format(eval_dir)) exit(1) dataset_eval = Dataset(eval_dir) loader_eval = create_loader( dataset_eval, input_size=(3, cfg.DATASET.IMAGE_SIZE, cfg.DATASET.IMAGE_SIZE), batch_size=cfg.DATASET.VAL_BATCH_MUL * cfg.DATASET.BATCH_SIZE, is_training=False, num_workers=cfg.WORKERS, distributed=True, interpolation='bicubic', pin_memory=cfg.DATASET.PIN_MEM, crop_pct=DEFAULT_CROP_PCT, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD ) # only test accuracy of model-EMA validate_loss_fn = nn.CrossEntropyLoss().cuda() validate(0, model_ema.ema, loader_eval, validate_loss_fn, cfg, log_suffix='_EMA', logger=logger, writer=writer, local_rank=args.local_rank) if __name__ == '__main__': main()
Cream/Cream/tools/test.py/0
{ "file_path": "Cream/Cream/tools/test.py", "repo_id": "Cream", "token_count": 2845 }
299
# dataset settings dataset_type = 'WIDERFaceDataset' data_root = 'data/WIDERFace/' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(300, 300), keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='RandomFlip', flip_ratio=0.5), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(300, 300), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=60, workers_per_gpu=2, train=dict( type='RepeatDataset', times=2, dataset=dict( type=dataset_type, ann_file=data_root + 'train.txt', img_prefix=data_root + 'WIDER_train/', min_size=17, pipeline=train_pipeline)), val=dict( type=dataset_type, ann_file=data_root + 'val.txt', img_prefix=data_root + 'WIDER_val/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'val.txt', img_prefix=data_root + 'WIDER_val/', pipeline=test_pipeline))
Cream/EfficientViT/downstream/configs/_base_/datasets/wider_face.py/0
{ "file_path": "Cream/EfficientViT/downstream/configs/_base_/datasets/wider_face.py", "repo_id": "Cream", "token_count": 1019 }
300
# Copyright (c) Open-MMLab. All rights reserved. import os.path as osp import time from tempfile import TemporaryDirectory import torch from torch.optim import Optimizer import mmcv from mmcv.parallel import is_module_wrapper from mmcv.runner.checkpoint import weights_to_cpu, get_state_dict try: import apex except: print('apex is not installed') def save_checkpoint(model, filename, optimizer=None, meta=None): """Save checkpoint to file. The checkpoint will have 4 fields: ``meta``, ``state_dict`` and ``optimizer``, ``amp``. By default ``meta`` will contain version and time info. Args: model (Module): Module whose params are to be saved. filename (str): Checkpoint filename. optimizer (:obj:`Optimizer`, optional): Optimizer to be saved. meta (dict, optional): Metadata to be saved in checkpoint. """ if meta is None: meta = {} elif not isinstance(meta, dict): raise TypeError(f'meta must be a dict or None, but got {type(meta)}') meta.update(mmcv_version=mmcv.__version__, time=time.asctime()) if is_module_wrapper(model): model = model.module if hasattr(model, 'CLASSES') and model.CLASSES is not None: # save class name to the meta meta.update(CLASSES=model.CLASSES) checkpoint = { 'meta': meta, 'state_dict': weights_to_cpu(get_state_dict(model)) } # save optimizer state dict in the checkpoint if isinstance(optimizer, Optimizer): checkpoint['optimizer'] = optimizer.state_dict() elif isinstance(optimizer, dict): checkpoint['optimizer'] = {} for name, optim in optimizer.items(): checkpoint['optimizer'][name] = optim.state_dict() # save amp state dict in the checkpoint checkpoint['amp'] = apex.amp.state_dict() if filename.startswith('pavi://'): try: from pavi import modelcloud from pavi.exception import NodeNotFoundError except ImportError: raise ImportError( 'Please install pavi to load checkpoint from modelcloud.') model_path = filename[7:] root = modelcloud.Folder() model_dir, model_name = osp.split(model_path) try: model = modelcloud.get(model_dir) except NodeNotFoundError: model = root.create_training_model(model_dir) with TemporaryDirectory() as tmp_dir: checkpoint_file = osp.join(tmp_dir, model_name) with open(checkpoint_file, 'wb') as f: torch.save(checkpoint, f) f.flush() model.create_file(checkpoint_file, name=model_name) else: mmcv.mkdir_or_exist(osp.dirname(filename)) # immediately flush buffer with open(filename, 'wb') as f: torch.save(checkpoint, f) f.flush()
Cream/EfficientViT/downstream/mmcv_custom/runner/checkpoint.py/0
{ "file_path": "Cream/EfficientViT/downstream/mmcv_custom/runner/checkpoint.py", "repo_id": "Cream", "token_count": 1165 }
301
import torch from timm.models.registry import register_model from models import deit_tiny_patch16_224,\ deit_small_patch16_224,\ deit_base_patch16_224,\ deit_base_patch16_384 def get_deit_rpe_config(): from irpe import get_rpe_config as _get_rpe_config rpe_config = _get_rpe_config( ratio=1.9, method="product", mode='ctx', shared_head=True, skip=0, rpe_on='k', ) return rpe_config @register_model def mini_deit_tiny_patch16_224(pretrained=False, **kwargs): return deit_tiny_patch16_224(pretrained=pretrained, rpe_config=get_deit_rpe_config(), use_cls_token=False, repeated_times=2, use_transform=True, **kwargs) @register_model def mini_deit_small_patch16_224(pretrained=False, **kwargs): return deit_small_patch16_224(pretrained=pretrained, rpe_config=get_deit_rpe_config(), use_cls_token=False, repeated_times=2, use_transform=True, **kwargs) @register_model def mini_deit_base_patch16_224(pretrained=False, **kwargs): return deit_base_patch16_224(pretrained=pretrained, rpe_config=get_deit_rpe_config(), use_cls_token=False, repeated_times=2, use_transform=True, **kwargs) @register_model def mini_deit_base_patch16_384(pretrained=False, **kwargs): return deit_base_patch16_384(pretrained=pretrained, rpe_config=get_deit_rpe_config(), use_cls_token=False, repeated_times=2, use_transform=True, **kwargs)
Cream/MiniViT/Mini-DeiT/mini_deit_models.py/0
{ "file_path": "Cream/MiniViT/Mini-DeiT/mini_deit_models.py", "repo_id": "Cream", "token_count": 1244 }
302
MODEL: TYPE: swin_minivit_distill NAME: swin_base_patch4_window7_224_minivit DROP_PATH_RATE: 0.2 SWIN: EMBED_DIM: 128 DEPTHS: [ 2, 2, 18, 2 ] NUM_HEADS: [ 4, 8, 16, 32 ] WINDOW_SIZE: 7 MINIVIT: SEPARATE_LAYERNUM_LIST: [1, 1, 9, 1]
Cream/MiniViT/Mini-Swin/configs/swin_base_patch4_window7_224_minivit_sharenum2.yaml/0
{ "file_path": "Cream/MiniViT/Mini-Swin/configs/swin_base_patch4_window7_224_minivit_sharenum2.yaml", "repo_id": "Cream", "token_count": 140 }
303
from .build import build_model
Cream/MiniViT/Mini-Swin/models/__init__.py/0
{ "file_path": "Cream/MiniViT/Mini-Swin/models/__init__.py", "repo_id": "Cream", "token_count": 7 }
304
include src/open_clip/bpe_simple_vocab_16e6.txt.gz include src/open_clip/model_configs/*.json
Cream/TinyCLIP/MANIFEST.in/0
{ "file_path": "Cream/TinyCLIP/MANIFEST.in", "repo_id": "Cream", "token_count": 38 }
305
import ast import json import logging import math import os import random import sys import braceexpand from dataclasses import dataclass from multiprocessing import Value import numpy as np import pandas as pd import torch import torchvision.datasets as datasets import webdataset as wds from PIL import Image from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler, IterableDataset, get_worker_info from torch.utils.data.distributed import DistributedSampler from webdataset.filters import _shuffle from webdataset.tariterators import base_plus_ext, url_opener, tar_file_expander, valid_sample try: import horovod.torch as hvd except ImportError: hvd = None try: from timm.data import TimmDatasetTar except ImportError: # for higher version of timm from timm.data import ImageDataset as TimmDatasetTar class CsvDataset(Dataset): def __init__(self, input_filename, transforms, img_key, caption_key, sep="\t", tokenizer=None): logging.debug(f'Loading csv data from {input_filename}.') df = pd.read_csv(input_filename, sep=sep) self.images = df[img_key].tolist() self.captions = df[caption_key].tolist() self.transforms = transforms logging.debug('Done loading data.') self.tokenize = tokenizer def __len__(self): return len(self.captions) def __getitem__(self, idx): images = self.transforms(Image.open(str(self.images[idx]))) texts = self.tokenize([str(self.captions[idx])])[0] return images, texts class SharedEpoch: def __init__(self, epoch: int = 0): self.shared_epoch = Value('i', epoch) def set_value(self, epoch): self.shared_epoch.value = epoch def get_value(self): return self.shared_epoch.value @dataclass class DataInfo: dataloader: DataLoader sampler: DistributedSampler = None shared_epoch: SharedEpoch = None def set_epoch(self, epoch): if self.shared_epoch is not None: self.shared_epoch.set_value(epoch) if self.sampler is not None and isinstance(self.sampler, DistributedSampler): self.sampler.set_epoch(epoch) def expand_urls(urls, weights=None): if weights is None: expanded_urls = wds.shardlists.expand_urls(urls) return expanded_urls, None if isinstance(urls, str): urllist = urls.split("::") weights = weights.split('::') assert len(weights) == len(urllist), \ f"Expected the number of data components ({len(urllist)}) and weights({len(weights)}) to match." weights = [float(weight) for weight in weights] all_urls, all_weights = [], [] for url, weight in zip(urllist, weights): expanded_url = list(braceexpand.braceexpand(url)) expanded_weights = [weight for _ in expanded_url] all_urls.extend(expanded_url) all_weights.extend(expanded_weights) return all_urls, all_weights else: all_urls = list(urls) return all_urls, weights def get_dataset_size(shards): shards_list, _ = expand_urls(shards) dir_path = os.path.dirname(shards_list[0]) sizes_filename = os.path.join(dir_path, 'sizes.json') len_filename = os.path.join(dir_path, '__len__') if os.path.exists(sizes_filename): sizes = json.load(open(sizes_filename, 'r')) total_size = sum([int(sizes[os.path.basename(shard)]) for shard in shards_list]) elif os.path.exists(len_filename): # FIXME this used to be eval(open(...)) but that seemed rather unsafe total_size = ast.literal_eval(open(len_filename, 'r').read()) else: total_size = None # num samples undefined # some common dataset sizes (at time of authors last download) # CC3M (train): 2905954 # CC12M: 10968539 # LAION-400M: 407332084 # LAION-2B (english): 2170337258 num_shards = len(shards_list) return total_size, num_shards def get_imagenet(args, preprocess_fns, split): assert split in ["train", "val", "v2"] is_train = split == "train" preprocess_train, preprocess_val = preprocess_fns if split == "v2": from imagenetv2_pytorch import ImageNetV2Dataset dataset = ImageNetV2Dataset( location=args.imagenet_v2, transform=preprocess_val) else: if is_train: data_path = args.imagenet_train preprocess_fn = preprocess_train else: data_path = args.imagenet_val preprocess_fn = preprocess_val assert data_path data_dir = os.path.join(data_path, f'val.tar') if os.path.exists(data_dir): dataset = TimmDatasetTar(data_dir, transform=preprocess_fn) else: val_data_path = os.path.join(data_path, 'val') if os.path.exists(val_data_path): data_path = val_data_path dataset = datasets.ImageFolder(data_path, transform=preprocess_fn) if is_train: idxs = np.zeros(len(dataset.targets)) target_array = np.array(dataset.targets) k = 50 for c in range(1000): m = target_array == c n = len(idxs[m]) arr = np.zeros(n) arr[:k] = 1 np.random.shuffle(arr) idxs[m] = arr idxs = idxs.astype('int') sampler = SubsetRandomSampler(np.where(idxs)[0]) else: indices = np.arange(args.rank, len(dataset), args.world_size) sampler = SubsetRandomSampler(indices) dataloader = torch.utils.data.DataLoader( dataset, batch_size=args.batch_size, num_workers=args.workers, sampler=sampler, ) return DataInfo(dataloader=dataloader, sampler=sampler) def count_samples(dataloader): os.environ["WDS_EPOCH"] = "0" n_elements, n_batches = 0, 0 for images, texts in dataloader: n_batches += 1 n_elements += len(images) assert len(images) == len(texts) return n_elements, n_batches def filter_no_caption_or_no_image(sample): has_caption = ('txt' in sample) has_image = ( 'png' in sample or 'jpg' in sample or 'jpeg' in sample or 'webp' in sample) return has_caption and has_image def log_and_continue(exn): """Call in an exception handler to ignore any exception, issue a warning, and continue.""" logging.warning(f'Handling webdataset error ({repr(exn)}). Ignoring.') return True def group_by_keys_nothrow(data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None): """Return function over iterator that groups key, value pairs into samples. :param keys: function that splits the key into key and extension (base_plus_ext) :param lcase: convert suffixes to lower case (Default value = True) """ current_sample = None for filesample in data: assert isinstance(filesample, dict) fname, value = filesample["fname"], filesample["data"] prefix, suffix = keys(fname) if prefix is None: continue if lcase: suffix = suffix.lower() # FIXME webdataset version throws if suffix in current_sample, but we have a potential for # this happening in the current LAION400m dataset if a tar ends with same prefix as the next # begins, rare, but can happen since prefix aren't unique across tar files in that dataset if current_sample is None or prefix != current_sample["__key__"] or suffix in current_sample: if valid_sample(current_sample): yield current_sample current_sample = dict( __key__=prefix, __url__=filesample["__url__"]) if suffixes is None or suffix in suffixes: current_sample[suffix] = value if valid_sample(current_sample): yield current_sample def tarfile_to_samples_nothrow(src, handler=log_and_continue): # NOTE this is a re-impl of the webdataset impl with group_by_keys that doesn't throw streams = url_opener(src, handler=handler) files = tar_file_expander(streams, handler=handler) samples = group_by_keys_nothrow(files, handler=handler) return samples def pytorch_worker_seed(increment=0): """get dataloader worker seed from pytorch""" worker_info = get_worker_info() if worker_info is not None: # favour using the seed already created for pytorch dataloader workers if it exists seed = worker_info.seed if increment: # space out seed increments so they can't overlap across workers in different iterations seed += increment * max(1, worker_info.num_workers) return seed # fallback to wds rank based seed return wds.utils.pytorch_worker_seed() _SHARD_SHUFFLE_SIZE = 2000 _SHARD_SHUFFLE_INITIAL = 500 _SAMPLE_SHUFFLE_SIZE = 5000 _SAMPLE_SHUFFLE_INITIAL = 1000 class detshuffle2(wds.PipelineStage): def __init__( self, bufsize=1000, initial=100, seed=0, epoch=-1, ): self.bufsize = bufsize self.initial = initial self.seed = seed self.epoch = epoch def run(self, src): if isinstance(self.epoch, SharedEpoch): epoch = self.epoch.get_value() else: # NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train) # situation as different workers may wrap at different times (or not at all). self.epoch += 1 epoch = self.epoch rng = random.Random() if self.seed < 0: # If seed is negative, we use the worker's seed, this will be different across all nodes/workers seed = pytorch_worker_seed(epoch) else: # This seed to be deterministic AND the same across all nodes/workers in each epoch seed = self.seed + epoch rng.seed(seed) return _shuffle(src, self.bufsize, self.initial, rng) class ResampledShards2(IterableDataset): """An iterable dataset yielding a list of urls.""" def __init__( self, urls, weights=None, nshards=sys.maxsize, worker_seed=None, deterministic=False, epoch=-1, ): """Sample shards from the shard list with replacement. :param urls: a list of URLs as a Python list or brace notation string """ super().__init__() urls, weights = expand_urls(urls, weights) self.urls = urls self.weights = weights if self.weights is not None: assert len(self.urls) == len(self.weights), \ f"Number of urls {len(self.urls)} and weights {len(self.weights)} should match." assert isinstance(self.urls[0], str) self.nshards = nshards self.rng = random.Random() self.worker_seed = worker_seed self.deterministic = deterministic self.epoch = epoch def __iter__(self): """Return an iterator over the shards.""" if isinstance(self.epoch, SharedEpoch): epoch = self.epoch.get_value() else: # NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train) # situation as different workers may wrap at different times (or not at all). self.epoch += 1 epoch = self.epoch if self.deterministic: # reset seed w/ epoch if deterministic if self.worker_seed is None: # pytorch worker seed should be deterministic due to being init by arg.seed + rank + worker id seed = pytorch_worker_seed(epoch) else: seed = self.worker_seed() + epoch self.rng.seed(seed) for _ in range(self.nshards): if self.weights is None: yield dict(url=self.rng.choice(self.urls)) else: yield dict(url=self.rng.choices(self.urls, weights=self.weights, k=1)[0]) def get_wds_dataset(args, preprocess_img, is_train, epoch=0, floor=False, tokenizer=None): input_shards = args.train_data if is_train else args.val_data assert input_shards is not None resampled = getattr(args, 'dataset_resampled', False) and is_train num_shards = None if is_train: if args.train_num_samples is not None: num_samples = args.train_num_samples else: num_samples, num_shards = get_dataset_size(input_shards) if not num_samples: raise RuntimeError( 'Currently, the number of dataset samples must be specified for the training dataset. ' 'Please specify it via `--train-num-samples` if no dataset length info is present.') else: # Eval will just exhaust the iterator if the size is not specified. num_samples = args.val_num_samples or 0 # create a shared epoch store to sync epoch to dataloader worker proc shared_epoch = SharedEpoch(epoch=epoch) if is_train and args.train_data_upsampling_factors is not None: assert resampled, "--train_data_upsampling_factors is only supported when sampling with replacement (with --dataset-resampled)." if resampled: pipeline = [ResampledShards2( input_shards, weights=args.train_data_upsampling_factors, deterministic=True, epoch=shared_epoch, )] else: pipeline = [wds.SimpleShardList(input_shards)] # at this point we have an iterator over all the shards if is_train: if not resampled: pipeline.extend([ detshuffle2( bufsize=_SHARD_SHUFFLE_SIZE, initial=_SHARD_SHUFFLE_INITIAL, seed=args.seed, epoch=shared_epoch, ), wds.split_by_node, wds.split_by_worker, ]) pipeline.extend([ # at this point, we have an iterator over the shards assigned to each worker at each node # wds.tarfile_to_samples(handler=log_and_continue), tarfile_to_samples_nothrow, wds.shuffle( bufsize=_SAMPLE_SHUFFLE_SIZE, initial=_SAMPLE_SHUFFLE_INITIAL, ), ]) else: pipeline.extend([ wds.split_by_worker, # at this point, we have an iterator over the shards assigned to each worker wds.tarfile_to_samples(handler=log_and_continue), ]) pipeline.extend([ wds.select(filter_no_caption_or_no_image), wds.decode("pilrgb", handler=log_and_continue), wds.rename(image="jpg;png;jpeg;webp", text="txt"), wds.map_dict(image=preprocess_img, text=lambda text: tokenizer(text)[0]), wds.to_tuple("image", "text"), wds.batched(args.batch_size, partial=not is_train) ]) dataset = wds.DataPipeline(*pipeline) if is_train: if not resampled: num_shards = num_shards or len(expand_urls(input_shards)[0]) assert num_shards >= args.workers * \ args.world_size, 'number of shards must be >= total workers' # roll over and repeat a few samples to get same number of full batches on each node round_fn = math.floor if floor else math.ceil global_batch_size = args.batch_size * args.world_size num_batches = round_fn(num_samples / global_batch_size) num_workers = max(1, args.workers) num_worker_batches = round_fn( num_batches / num_workers) # per dataloader worker num_batches = num_worker_batches * num_workers num_samples = num_batches * global_batch_size # each worker is iterating over this dataset = dataset.with_epoch(num_worker_batches) else: # last batches are partial, eval is done on single (master) node num_batches = math.ceil(num_samples / args.batch_size) dataloader = wds.WebLoader( dataset, batch_size=None, shuffle=False, num_workers=args.workers, persistent_workers=args.workers > 0, ) # FIXME not clear which approach is better, with_epoch before vs after dataloader? # hoping to resolve via https://github.com/webdataset/webdataset/issues/169 # if is_train: # # roll over and repeat a few samples to get same number of full batches on each node # global_batch_size = args.batch_size * args.world_size # num_batches = math.ceil(num_samples / global_batch_size) # num_workers = max(1, args.workers) # num_batches = math.ceil(num_batches / num_workers) * num_workers # num_samples = num_batches * global_batch_size # dataloader = dataloader.with_epoch(num_batches) # else: # # last batches are partial, eval is done on single (master) node # num_batches = math.ceil(num_samples / args.batch_size) # add meta-data to dataloader instance for convenience dataloader.num_batches = num_batches dataloader.num_samples = num_samples return DataInfo(dataloader=dataloader, shared_epoch=shared_epoch) def get_csv_dataset(args, preprocess_fn, is_train, epoch=0, tokenizer=None): input_filename = args.train_data if is_train else args.val_data assert input_filename dataset = CsvDataset( input_filename, preprocess_fn, img_key=args.csv_img_key, caption_key=args.csv_caption_key, sep=args.csv_separator, tokenizer=tokenizer ) num_samples = len(dataset) sampler = DistributedSampler( dataset) if args.distributed and is_train else None shuffle = is_train and sampler is None dataloader = DataLoader( dataset, batch_size=args.batch_size, shuffle=shuffle, num_workers=args.workers, pin_memory=True, sampler=sampler, drop_last=is_train, ) dataloader.num_samples = num_samples dataloader.num_batches = len(dataloader) return DataInfo(dataloader, sampler) class SyntheticDataset(Dataset): def __init__( self, transform=None, image_size=(224, 224), caption="Dummy caption", dataset_size=100, tokenizer=None, ): self.transform = transform self.image_size = image_size self.caption = caption self.image = Image.new('RGB', image_size) self.dataset_size = dataset_size self.preprocess_txt = lambda text: tokenizer(text)[0] def __len__(self): return self.dataset_size def __getitem__(self, idx): if self.transform is not None: image = self.transform(self.image) return image, self.preprocess_txt(self.caption) def get_synthetic_dataset(args, preprocess_fn, is_train, epoch=0, tokenizer=None): image_size = preprocess_fn.transforms[0].size dataset = SyntheticDataset( transform=preprocess_fn, image_size=image_size, dataset_size=args.train_num_samples, tokenizer=tokenizer) num_samples = len(dataset) sampler = DistributedSampler( dataset) if args.distributed and is_train else None shuffle = is_train and sampler is None dataloader = DataLoader( dataset, batch_size=args.batch_size, shuffle=shuffle, num_workers=args.workers, pin_memory=True, sampler=sampler, drop_last=is_train, ) dataloader.num_samples = num_samples dataloader.num_batches = len(dataloader) return DataInfo(dataloader, sampler) def get_dataset_fn(data_path, dataset_type): if dataset_type == "webdataset": return get_wds_dataset elif dataset_type == "csv": return get_csv_dataset elif dataset_type == "synthetic": return get_synthetic_dataset elif dataset_type == "auto": ext = data_path.split('.')[-1] if ext in ['csv', 'tsv']: return get_csv_dataset elif ext in ['tar']: return get_wds_dataset else: raise ValueError( f"Tried to figure out dataset type, but failed for extension {ext}.") else: raise ValueError(f"Unsupported dataset type: {dataset_type}") def get_data(args, preprocess_fns, epoch=0, tokenizer=None): preprocess_train, preprocess_val = preprocess_fns data = {} if args.train_data or args.dataset_type == "synthetic": data["train"] = get_dataset_fn(args.train_data, args.dataset_type)( args, preprocess_train, is_train=True, epoch=epoch, tokenizer=tokenizer) if args.val_data: data["val"] = get_dataset_fn(args.val_data, args.dataset_type)( args, preprocess_val, is_train=False, tokenizer=tokenizer) if args.imagenet_val is not None: data["imagenet-val"] = get_imagenet(args, preprocess_fns, "val") if args.imagenet_v2 is not None: data["imagenet-v2"] = get_imagenet(args, preprocess_fns, "v2") return data
Cream/TinyCLIP/src/training/data.py/0
{ "file_path": "Cream/TinyCLIP/src/training/data.py", "repo_id": "Cream", "token_count": 9288 }
306
MODEL: TYPE: clip_vit_large14_224 TRAIN: EPOCHS: 90 DATA: MEAN_AND_STD_TYPE: clip DATASET: imagenet22k AUG: MIXUP: 0.0 CUTMIX: 0.0
Cream/TinyViT/configs/teacher/clip_vit_large_patch14_22k.yaml/0
{ "file_path": "Cream/TinyViT/configs/teacher/clip_vit_large_patch14_22k.yaml", "repo_id": "Cream", "token_count": 83 }
307
from .parser_factory import create_parser
Cream/TinyViT/data/augmentation/parsers/__init__.py/0
{ "file_path": "Cream/TinyViT/data/augmentation/parsers/__init__.py", "repo_id": "Cream", "token_count": 11 }
308
# -------------------------------------------------------- # TinyViT Utils # Copyright (c) 2022 Microsoft # -------------------------------------------------------- import torch import torch.distributed as dist def get_dist_backend(): if not dist.is_available(): return None if not dist.is_initialized(): return None return dist.get_backend() class AverageMeter: """Computes and stores the average and current value""" def __init__(self): self._use_gpu = get_dist_backend() == 'nccl' self.reset() def reset(self): # local self._val = 0 self._sum = 0 self._count = 0 # global self._history_avg = 0 self._history_count = 0 self._avg = None def update(self, val, n=1): self._val = val self._sum += val * n self._count += n self._avg = None @property def val(self): return self._val @property def count(self): return self._count + self._history_count @property def avg(self): if self._avg is None: # compute avg r = self._history_count / max(1, self._history_count + self._count) _avg = self._sum / max(1, self._count) self._avg = r * self._history_avg + (1.0 - r) * _avg return self._avg def sync(self): buf = torch.tensor([self._sum, self._count], dtype=torch.float32) if self._use_gpu: buf = buf.cuda() dist.all_reduce(buf, op=dist.ReduceOp.SUM) _sum, _count = buf.tolist() _avg = _sum / max(1, _count) r = self._history_count / max(1, self._history_count + _count) self._history_avg = r * self._history_avg + (1.0 - r) * _avg self._history_count += _count self._sum = 0 self._count = 0 self._avg = None
Cream/TinyViT/my_meter.py/0
{ "file_path": "Cream/TinyViT/my_meter.py", "repo_id": "Cream", "token_count": 866 }
309
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Train and eval functions used in main.py """ import math import os import sys from typing import Iterable import torch import util.misc as utils from datasets.coco_eval import CocoEvaluator from datasets.panoptic_eval import PanopticEvaluator def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, max_norm: float = 0): model.train() criterion.train() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}')) header = 'Epoch: [{}]'.format(epoch) print_freq = 10 for samples, targets in metric_logger.log_every(data_loader, print_freq, header): samples = samples.to(device) targets = [{k: v.to(device) for k, v in t.items()} for t in targets] outputs = model(samples) loss_dict = criterion(outputs, targets) weight_dict = criterion.weight_dict losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) # reduce losses over all GPUs for logging purposes loss_dict_reduced = utils.reduce_dict(loss_dict) loss_dict_reduced_unscaled = {f'{k}_unscaled': v for k, v in loss_dict_reduced.items()} loss_dict_reduced_scaled = {k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict} losses_reduced_scaled = sum(loss_dict_reduced_scaled.values()) loss_value = losses_reduced_scaled.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) print(loss_dict_reduced) sys.exit(1) optimizer.zero_grad() losses.backward() if max_norm > 0: torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm) optimizer.step() metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled) metric_logger.update(class_error=loss_dict_reduced['class_error']) metric_logger.update(lr=optimizer.param_groups[0]["lr"]) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} @torch.no_grad() def evaluate(model, criterion, postprocessors, data_loader, base_ds, device, output_dir): model.eval() criterion.eval() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}')) header = 'Test:' iou_types = tuple(k for k in ('segm', 'bbox') if k in postprocessors.keys()) coco_evaluator = CocoEvaluator(base_ds, iou_types) # coco_evaluator.coco_eval[iou_types[0]].params.iouThrs = [0, 0.1, 0.5, 0.75] panoptic_evaluator = None if 'panoptic' in postprocessors.keys(): panoptic_evaluator = PanopticEvaluator( data_loader.dataset.ann_file, data_loader.dataset.ann_folder, output_dir=os.path.join(output_dir, "panoptic_eval"), ) for samples, targets in metric_logger.log_every(data_loader, 10, header): samples = samples.to(device) targets = [{k: v.to(device) for k, v in t.items()} for t in targets] outputs = model(samples) loss_dict = criterion(outputs, targets) weight_dict = criterion.weight_dict # reduce losses over all GPUs for logging purposes loss_dict_reduced = utils.reduce_dict(loss_dict) loss_dict_reduced_scaled = {k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict} loss_dict_reduced_unscaled = {f'{k}_unscaled': v for k, v in loss_dict_reduced.items()} metric_logger.update(loss=sum(loss_dict_reduced_scaled.values()), **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled) metric_logger.update(class_error=loss_dict_reduced['class_error']) orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0) results = postprocessors['bbox'](outputs, orig_target_sizes) if 'segm' in postprocessors.keys(): target_sizes = torch.stack([t["size"] for t in targets], dim=0) results = postprocessors['segm'](results, outputs, orig_target_sizes, target_sizes) res = {target['image_id'].item(): output for target, output in zip(targets, results)} if coco_evaluator is not None: coco_evaluator.update(res) if panoptic_evaluator is not None: res_pano = postprocessors["panoptic"](outputs, target_sizes, orig_target_sizes) for i, target in enumerate(targets): image_id = target["image_id"].item() file_name = f"{image_id:012d}.png" res_pano[i]["image_id"] = image_id res_pano[i]["file_name"] = file_name panoptic_evaluator.update(res_pano) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) if coco_evaluator is not None: coco_evaluator.synchronize_between_processes() if panoptic_evaluator is not None: panoptic_evaluator.synchronize_between_processes() # accumulate predictions from all images if coco_evaluator is not None: coco_evaluator.accumulate() coco_evaluator.summarize() panoptic_res = None if panoptic_evaluator is not None: panoptic_res = panoptic_evaluator.summarize() stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()} if coco_evaluator is not None: if 'bbox' in postprocessors.keys(): stats['coco_eval_bbox'] = coco_evaluator.coco_eval['bbox'].stats.tolist() if 'segm' in postprocessors.keys(): stats['coco_eval_masks'] = coco_evaluator.coco_eval['segm'].stats.tolist() if panoptic_res is not None: stats['PQ_all'] = panoptic_res["All"] stats['PQ_th'] = panoptic_res["Things"] stats['PQ_st'] = panoptic_res["Stuff"] return stats, coco_evaluator
Cream/iRPE/DETR-with-iRPE/engine.py/0
{ "file_path": "Cream/iRPE/DETR-with-iRPE/engine.py", "repo_id": "Cream", "token_count": 2985 }
310
OUTPUT_DIR: 'OUTPUT/' WORKERS: 6 PRINT_FREQ: 500 AMP: ENABLED: true MODEL: NAME: cls_cvt SPEC: INIT: 'trunc_norm' NUM_STAGES: 3 PATCH_SIZE: [7, 3, 3] PATCH_STRIDE: [4, 2, 2] PATCH_PADDING: [2, 1, 1] DIM_EMBED: [64, 192, 384] NUM_HEADS: [1, 3, 6] DEPTH: [1, 2, 10] MLP_RATIO: [4.0, 4.0, 4.0] ATTN_DROP_RATE: [0.0, 0.0, 0.0] DROP_RATE: [0.0, 0.0, 0.0] DROP_PATH_RATE: [0.0, 0.0, 0.1] QKV_BIAS: [True, True, True] CLS_TOKEN: [False, False, True] POS_EMBED: [False, False, False] QKV_PROJ_METHOD: ['dw_bn', 'dw_bn', 'dw_bn'] KERNEL_QKV: [3, 3, 3] PADDING_KV: [1, 1, 1] STRIDE_KV: [2, 2, 2] PADDING_Q: [1, 1, 1] STRIDE_Q: [1, 1, 1] AUG: MIXUP_PROB: 1.0 MIXUP: 0.8 MIXCUT: 1.0 TIMM_AUG: USE_LOADER: true RE_COUNT: 1 RE_MODE: pixel RE_SPLIT: false RE_PROB: 0.25 AUTO_AUGMENT: rand-m9-mstd0.5-inc1 HFLIP: 0.5 VFLIP: 0.0 COLOR_JITTER: 0.4 INTERPOLATION: bicubic LOSS: LABEL_SMOOTHING: 0.1 CUDNN: BENCHMARK: true DETERMINISTIC: false ENABLED: true DATASET: DATASET: 'imagenet' DATA_FORMAT: 'jpg' ROOT: 'DATASET/imagenet/' TEST_SET: 'val' TRAIN_SET: 'train' TEST: BATCH_SIZE_PER_GPU: 32 IMAGE_SIZE: [224, 224] MODEL_FILE: '' INTERPOLATION: 3 TRAIN: BATCH_SIZE_PER_GPU: 256 LR: 0.00025 IMAGE_SIZE: [224, 224] BEGIN_EPOCH: 0 END_EPOCH: 300 LR_SCHEDULER: METHOD: 'timm' ARGS: sched: 'cosine' warmup_epochs: 5 warmup_lr: 0.000001 min_lr: 0.00001 cooldown_epochs: 10 decay_rate: 0.1 OPTIMIZER: adamW WD: 0.05 WITHOUT_WD_LIST: ['bn', 'bias', 'ln'] SHUFFLE: true DEBUG: DEBUG: false
CvT/experiments/imagenet/cvt/cvt-13-224x224.yaml/0
{ "file_path": "CvT/experiments/imagenet/cvt/cvt-13-224x224.yaml", "repo_id": "CvT", "token_count": 981 }
311
from .build import build_transforms
CvT/lib/dataset/transformas/__init__.py/0
{ "file_path": "CvT/lib/dataset/transformas/__init__.py", "repo_id": "CvT", "token_count": 9 }
312
from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import pprint import time import torch import torch.nn.parallel import torch.optim from torch.utils.collect_env import get_pretty_env_info from tensorboardX import SummaryWriter import _init_paths from config import config from config import update_config from config import save_config from core.loss import build_criterion from core.function import train_one_epoch, test from dataset import build_dataloader from models import build_model from optim import build_optimizer from scheduler import build_lr_scheduler from utils.comm import comm from utils.utils import create_logger from utils.utils import init_distributed from utils.utils import setup_cudnn from utils.utils import summary_model_on_master from utils.utils import resume_checkpoint from utils.utils import save_checkpoint_on_master from utils.utils import save_model_on_master def parse_args(): parser = argparse.ArgumentParser( description='Train classification network') parser.add_argument('--cfg', help='experiment configure file name', required=True, type=str) # distributed training parser.add_argument("--local_rank", type=int, default=0) parser.add_argument("--port", type=int, default=9000) parser.add_argument('opts', help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER) args = parser.parse_args() return args def main(): args = parse_args() init_distributed(args) setup_cudnn(config) update_config(config, args) final_output_dir = create_logger(config, args.cfg, 'train') tb_log_dir = final_output_dir if comm.is_main_process(): logging.info("=> collecting env info (might take some time)") logging.info("\n" + get_pretty_env_info()) logging.info(pprint.pformat(args)) logging.info(config) logging.info("=> using {} GPUs".format(args.num_gpus)) output_config_path = os.path.join(final_output_dir, 'config.yaml') logging.info("=> saving config into: {}".format(output_config_path)) save_config(config, output_config_path) model = build_model(config) model.to(torch.device('cuda')) # copy model file summary_model_on_master(model, config, final_output_dir, True) if config.AMP.ENABLED and config.AMP.MEMORY_FORMAT == 'nhwc': logging.info('=> convert memory format to nhwc') model.to(memory_format=torch.channels_last) writer_dict = { 'writer': SummaryWriter(logdir=tb_log_dir), 'train_global_steps': 0, 'valid_global_steps': 0, } best_perf = 0.0 best_model = True begin_epoch = config.TRAIN.BEGIN_EPOCH optimizer = build_optimizer(config, model) best_perf, begin_epoch = resume_checkpoint( model, optimizer, config, final_output_dir, True ) train_loader = build_dataloader(config, True, args.distributed) valid_loader = build_dataloader(config, False, args.distributed) if args.distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True ) criterion = build_criterion(config) criterion.cuda() criterion_eval = build_criterion(config, train=False) criterion_eval.cuda() lr_scheduler = build_lr_scheduler(config, optimizer, begin_epoch) scaler = torch.cuda.amp.GradScaler(enabled=config.AMP.ENABLED) logging.info('=> start training') for epoch in range(begin_epoch, config.TRAIN.END_EPOCH): head = 'Epoch[{}]:'.format(epoch) logging.info('=> {} epoch start'.format(head)) start = time.time() if args.distributed: train_loader.sampler.set_epoch(epoch) # train for one epoch logging.info('=> {} train start'.format(head)) with torch.autograd.set_detect_anomaly(config.TRAIN.DETECT_ANOMALY): train_one_epoch(config, train_loader, model, criterion, optimizer, epoch, final_output_dir, tb_log_dir, writer_dict, scaler=scaler) logging.info( '=> {} train end, duration: {:.2f}s' .format(head, time.time()-start) ) # evaluate on validation set logging.info('=> {} validate start'.format(head)) val_start = time.time() if epoch >= config.TRAIN.EVAL_BEGIN_EPOCH: perf = test( config, valid_loader, model, criterion_eval, final_output_dir, tb_log_dir, writer_dict, args.distributed ) best_model = (perf > best_perf) best_perf = perf if best_model else best_perf logging.info( '=> {} validate end, duration: {:.2f}s' .format(head, time.time()-val_start) ) lr_scheduler.step(epoch=epoch+1) if config.TRAIN.LR_SCHEDULER.METHOD == 'timm': lr = lr_scheduler.get_epoch_values(epoch+1)[0] else: lr = lr_scheduler.get_last_lr()[0] logging.info(f'=> lr: {lr}') save_checkpoint_on_master( model=model, distributed=args.distributed, model_name=config.MODEL.NAME, optimizer=optimizer, output_dir=final_output_dir, in_epoch=True, epoch_or_step=epoch, best_perf=best_perf, ) if best_model and comm.is_main_process(): save_model_on_master( model, args.distributed, final_output_dir, 'model_best.pth' ) if config.TRAIN.SAVE_ALL_MODELS and comm.is_main_process(): save_model_on_master( model, args.distributed, final_output_dir, f'model_{epoch}.pth' ) logging.info( '=> {} epoch end, duration : {:.2f}s' .format(head, time.time()-start) ) save_model_on_master( model, args.distributed, final_output_dir, 'final_state.pth' ) if config.SWA.ENABLED and comm.is_main_process(): save_model_on_master( args.distributed, final_output_dir, 'swa_state.pth' ) writer_dict['writer'].close() logging.info('=> finish training') if __name__ == '__main__': main()
CvT/tools/train.py/0
{ "file_path": "CvT/tools/train.py", "repo_id": "CvT", "token_count": 2935 }
313
import numpy as np cimport numpy as np import array import bisect cpdef float sorted_median(float[:] data, int i, int j): cdef int n = j - i cdef int mid if n == 0: raise Exception("no median for empty data") if n % 2 == 1: return data[i + n // 2] else: mid = i + n // 2 return (data[mid - 1] + data[mid])/2 cpdef median_filter(np.ndarray data, int window, bint need_two_end=False): cdef int w_len = window // 2 * 2 + 1 cdef int t_len = len(data) cdef float[:] val = array.array('f', [x for x in data]) cdef float[:] ans = array.array('f', [x for x in data]) cdef float[:] cur_windows = array.array('f', [0 for x in range(w_len)]) cdef int delete_id cdef int add_id cdef int index if t_len < w_len: return ans for i in range(0, w_len): index = i add_id = bisect.bisect_right(cur_windows[:i], val[i]) while index > add_id: cur_windows[index] = cur_windows[index - 1] index -= 1 cur_windows[add_id] = data[i] if i >= w_len // 2 and need_two_end: ans[i - w_len // 2] = sorted_median(cur_windows, 0, i + 1) ans[window // 2] = sorted_median(cur_windows, 0, w_len) for i in range(window // 2 + 1, t_len - window // 2): delete_id = bisect.bisect_right(cur_windows, val[i - window // 2 - 1]) - 1 index = delete_id while index < w_len - 1: cur_windows[index] = cur_windows[index + 1] index += 1 add_id = bisect.bisect_right(cur_windows[:w_len - 1], val[i + window // 2]) index = w_len - 1 while index > add_id: cur_windows[index] = cur_windows[index - 1] index -= 1 cur_windows[add_id] = data[i + window // 2] ans[i] = sorted_median(cur_windows, 0, w_len) if need_two_end: for i in range(t_len - window // 2, t_len): delete_id = bisect.bisect_right(cur_windows[: w_len], data[i - window // 2 - 1]) - 1 index = delete_id while index < w_len - 1: cur_windows[index] = cur_windows[index + 1] index += 1 w_len -= 1 ans[i] = sorted_median(cur_windows[: w_len], 0, w_len) return ans
anomalydetector/msanomalydetector/_anomaly_kernel_cython.pyx/0
{ "file_path": "anomalydetector/msanomalydetector/_anomaly_kernel_cython.pyx", "repo_id": "anomalydetector", "token_count": 1096 }
314
# -*- coding: utf-8 -*- """ Version string and parsed tuple. Keeps it all in one place. """ __version__ = '1.1' VERSION = tuple(int(x) for x in __version__.split('.'))
anomalydetector/version.py/0
{ "file_path": "anomalydetector/version.py", "repo_id": "anomalydetector", "token_count": 64 }
315
# Copyright (c) 2019-2020, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0. # https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/utils/distributed.py import os from contextlib import contextmanager from typing import Generator, Optional, Union import torch def init_distributed(use_cuda: bool) -> None: """Initialize distributed backend for parallel training. This method sets up the distributed backend for parallel training based on the specified `use_cuda` flag. If `use_cuda` is `True`, it initializes the distributed mode using the CUDA/NCCL backend. Otherwise, it uses the Gloo backend. Args: use_cuda: Whether to initialize the distributed mode using the CUDA/NCCL backend. Raises: AssertionError: If the distributed mode is not initialized successfully. """ world_size = int(os.environ.get("WORLD_SIZE", 1)) distributed = world_size > 1 if distributed: backend = "nccl" if use_cuda else "gloo" torch.distributed.init_process_group(backend=backend, init_method="env://") assert torch.distributed.is_initialized() def barrier() -> None: """Synchronize all processes in the distributed backend. This method calls the `torch.distributed.barrier` function if the distributed mode is available and initialized. The `barrier` function synchronizes all processes in the distributed backend by blocking the processes until all processes have reached this point. """ if torch.distributed.is_available() and torch.distributed.is_initialized(): torch.distributed.barrier() def get_rank() -> int: """Get the rank of the current process in the distributed backend. Returns: The rank of the current process in the distributed backend. If the distributed mode is not available or not initialized, the returned rank will be `0`. """ if torch.distributed.is_available() and torch.distributed.is_initialized(): return torch.distributed.get_rank() return 0 def get_world_size() -> int: """Get the total number of processes in the distributed backend. Returns: The total number of processes in the distributed backend. If the distributed mode is not available or not initialized, the returned world size will be `1`. """ if torch.distributed.is_available() and torch.distributed.is_initialized(): return torch.distributed.get_world_size() return 1 def all_reduce(tensor: Union[int, float, torch.Tensor], op: Optional[str] = "sum") -> Union[int, float]: """Reduce the input tensor/value into a scalar using the specified reduction operator. This method applies the specified reduction operator to the input tensor/value in a distributed manner. The result is a scalar value that is computed by aggregating the values from all processes in the distributed backend. Args: tensor: Input tensor/value to be reduced. op: Type of reduction operator. The supported operators are "sum", "mean", "min", "max", and "product". Returns: The scalar value obtained by applying the reduction operator to the input tensor/value. If the distributed mode is not available or not initialized, the inputvtensor/value is returned as is. Raises: RuntimeError: If the specified reduction operator is not supported. """ if torch.distributed.is_available() and torch.distributed.is_initialized(): if op == "sum" or op == "mean": torch_op = torch.distributed.ReduceOp.SUM elif op == "min": torch_op = torch.distributed.ReduceOp.MIN elif op == "max": torch_op = torch.distributed.ReduceOp.MAX elif op == "product": torch_op = torch.distributed.ReduceOp.PRODUCT else: raise RuntimeError(f"Operator: {op} is not supported yet.") backend = torch.distributed.get_backend() if backend == torch.distributed.Backend.NCCL: device = torch.device("cuda") elif backend == torch.distributed.Backend.GLOO: device = torch.device("cpu") else: raise RuntimeError(f"Distributed backend: {backend} is not supported yet.") tensor = torch.tensor(tensor, device=device) torch.distributed.all_reduce(tensor, torch_op) if op == "mean": tensor /= get_world_size() return tensor.item() return tensor @contextmanager def sync_workers() -> Generator[int, None, None]: """Context manager for synchronizing the processes in the distributed backend. This context manager yields the rank of the current process in the distributed backend and synchronizes all processes on exit. Yields: The rank of the current process in the distributed backend. Example: >>> with sync_workers(): >>> # Execute some code that should be synchronized across all processes. >>> pass """ rank = get_rank() yield rank barrier()
archai/archai/common/distributed_utils.py/0
{ "file_path": "archai/archai/common/distributed_utils.py", "repo_id": "archai", "token_count": 1755 }
316
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from typing import Callable, Optional from overrides import overrides from torch.utils.data import Dataset from torchvision.datasets import FGVCAircraft from torchvision.transforms import ToTensor from archai.api.dataset_provider import DatasetProvider class AircraftDatasetProvider(DatasetProvider): """FGVC Aircraft dataset provider.""" def __init__( self, root: Optional[str] = "dataroot", ) -> None: """Initialize FGVC Aircraft dataset provider. Args: root: Root directory of dataset where is saved. """ super().__init__() self.root = root @overrides def get_train_dataset( self, annotation_level: Optional[str] = "variant", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> Dataset: return FGVCAircraft( self.root, split="train", annotation_level=annotation_level, transform=transform or ToTensor(), target_transform=target_transform, download=True, ) @overrides def get_val_dataset( self, annotation_level: Optional[str] = "variant", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> Dataset: return FGVCAircraft( self.root, split="val", annotation_level=annotation_level, transform=transform or ToTensor(), target_transform=target_transform, download=True, ) @overrides def get_test_dataset( self, annotation_level: Optional[str] = "variant", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> Dataset: return FGVCAircraft( self.root, split="test", annotation_level=annotation_level, transform=transform or ToTensor(), target_transform=target_transform, download=True, )
archai/archai/datasets/cv/aircraft_dataset_provider.py/0
{ "file_path": "archai/archai/datasets/cv/aircraft_dataset_provider.py", "repo_id": "archai", "token_count": 943 }
317
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import random from typing import Tuple import torch class Brightness: """Brightness transform.""" def __init__(self, value: float) -> None: """Initialize the brightness transform. Args: value: Brightness factor, e.g., 0 = no change, 1 = completely white, -1 = completely black, <0 = darker, >0 = brighter. """ self.value = max(min(value, 1.0), -1.0) def __call__(self, *imgs: Tuple[torch.Tensor, ...]) -> torch.Tensor: outputs = [] for idx, img in enumerate(imgs): img = torch.clamp(img.float().add(self.value).type(img.type()), 0, 1) outputs.append(img) return outputs if idx > 1 else outputs[0] class RandomBrightness: """Random brightness transform.""" def __init__(self, min_val: float, max_val: float) -> None: """Initialize the random brightness transform. Args: min_val: Minimum brightness factor. max_val: Maximum brightness factor. """ self.values = (min_val, max_val) def __call__(self, *imgs: Tuple[torch.Tensor, ...]) -> torch.Tensor: value = random.uniform(self.values[0], self.values[1]) outputs = Brightness(value)(*imgs) return outputs
archai/archai/datasets/cv/transforms/brightness.py/0
{ "file_path": "archai/archai/datasets/cv/transforms/brightness.py", "repo_id": "archai", "token_count": 560 }
318
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from abc import abstractmethod from typing import List, Optional import torch from overrides import EnforceOverrides from archai.common.ordered_dict_logger import OrderedDictLogger from archai.datasets.nlp.tokenizer_utils.token_config import SpecialTokenEnum logger = OrderedDictLogger(source=__name__) class TokenizerBase(EnforceOverrides): """Abstract class for tokenizers. This class serves as a base for training, encoding and decoding. The class enforces implementation of nine methods: `__len__`, `train`, `is_trained`, `load`, `encode_text`, `decode_text`, `special_token_id`, `token_to_id` and `id_to_token`. Note: This class is inherited from `EnforceOverrides` and any overridden methods in the subclass should be decorated with `@overrides` to ensure they are properly overridden. """ @abstractmethod def __len__(self) -> int: """Get the length of the vocabulary. Returns: The length of the vocabulary. """ pass @abstractmethod def train(self, filepaths: List[str]) -> None: """Train the tokenizer on a list of files. Args: filepaths: A list of paths to input files. """ pass @abstractmethod def is_trained(self) -> bool: """Check if the vocabulary has been trained. Returns: `True` if the vocabulary has been trained, `False` otherwise. """ pass @abstractmethod def load(self) -> None: """Load a pre-trained tokenizer.""" pass @abstractmethod def encode_text(self, text: str) -> List[int]: """Encode text into tokens. Args: text: The input text to encode. Returns: The encoded text (tokens). """ pass @abstractmethod def decode_text(self, ids: List[int]) -> str: """Decode tokens into text. Args: ids: The tokens to decode. Returns: The decoded tokens (text). """ pass @abstractmethod def special_token_id(self, sp: SpecialTokenEnum) -> int: """Get the identifier of a special token. Args: sp: The special token's enumerator. Returns: The special token's identifier. """ pass @abstractmethod def token_to_id(self, t: str) -> int: """Convert a string-based token to its identifier. Args: t: The string-based token. Returns: The token's identifier. """ pass @abstractmethod def id_to_token(self, id: int) -> str: """Convert a token identifier to its string-based representation. Args: id: The token's identifier. Returns: The string-based token. """ pass def tokens_to_ids(self, ts: List[str]) -> List[int]: """Convert a list of string-based tokens to their corresponding identifiers. Args: ts: A list of string-based tokens. Returns: The identifiers corresponding to the input tokens. """ return [self.token_to_id(t) for t in ts] def ids_to_tokens(self, ids: List[int]) -> List[str]: """Convert a list of tokens' identifiers to their string-based representations. Args: ids: A list of tokens' identifiers. Returns: The string-based representations of the input tokens. """ return [self.id_to_token(id) for id in ids] def encode_file(self, path: str, verbose: Optional[bool] = True) -> torch.Tensor: """Encode text from an input file. This method reads text from the specified file and encodes it using the `encode_text` method. It also includes options for verbosity and efficiently handling large datasets by converting the encoded tokens to a `torch.Tensor` every 500k lines. Args: path: The path to the input file. verbose: Whether to add verbosity to the logger. Returns: The encoded tokens. """ logger.info(f"Encoding file: {path}") encoded = [] tensor_encoded = torch.LongTensor() with open(path, "r", encoding="utf-8") as f: for idx, line in enumerate(f): # Converts to tensor.Tensor every 500k lines, # otherwise Python list uses a lot of RAM if idx > 0 and idx % 500000 == 0: tensor_encoded = torch.cat((tensor_encoded, torch.LongTensor(encoded))) encoded = [] if verbose and idx > 0 and idx % 500000 == 0: logger.debug(f"Completed line: {format(idx)}") tokens = self.encode_text(line) encoded.extend(tokens) if len(encoded) > 0: tensor_encoded = torch.cat((tensor_encoded, torch.LongTensor(encoded))) return tensor_encoded
archai/archai/datasets/nlp/tokenizer_utils/tokenizer_base.py/0
{ "file_path": "archai/archai/datasets/nlp/tokenizer_utils/tokenizer_base.py", "repo_id": "archai", "token_count": 2190 }
319
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from abc import abstractmethod from typing import List import numpy as np from overrides import EnforceOverrides from archai.discrete_search.api.archai_model import ArchaiModel class DiscreteSearchSpace(EnforceOverrides): """Abstract class for discrete search spaces. This class serves as a base for implementing search spaces. The class enforces implementation of five methods: `save_arch`, `load_arch`, `save_model_weights`, `load_model_weights` and `random_sample`. Note: This class is inherited from `EnforceOverrides` and any overridden methods in the subclass should be decorated with `@overrides` to ensure they are properly overridden. Examples: >>> class MyDiscreteSearchSpace(DiscreteSearchSpace): >>> def __init__(self) -> None: >>> super().__init__() >>> >>> @overrides >>> def save_arch(self, arch, file_path) -> None: >>> torch.save(arch, file_path) >>> >>> @overrides >>> def load_arch(self, file_path) -> ArchaiModel: >>> return torch.load(file_path) >>> >>> @overrides >>> def save_model_weights(self, model, file_path) -> None: >>> torch.save(model.state_dict(), file_path) >>> >>> @overrides >>> def load_model_weights(self, model, file_path) -> None: >>> model.load_state_dict(torch.load(file_path)) >>> >>> @overrides >>> def random_sample(self, config) -> ArchaiModel: >>> return ArchaiModel(config) """ @abstractmethod def save_arch(self, model: ArchaiModel, file_path: str) -> None: """Save an architecture to a file without saving the weights. Args: model: Model's architecture to save. file_path: File path to save the architecture. """ pass @abstractmethod def load_arch(self, file_path: str) -> ArchaiModel: """Load from a file an architecture that was saved using `SearchSpace.save_arch()`. Args: file_path: File path to load the architecture. Returns: Loaded model. """ pass @abstractmethod def save_model_weights(self, model: ArchaiModel, file_path: str) -> None: """Save the weights of a model. Args: model: Model to save the weights. file_path: File path to save the weights. """ pass @abstractmethod def load_model_weights(self, model: ArchaiModel, file_path: str) -> None: """Load the weights (created with `SearchSpace.save_model_weights()`) into a model of the same architecture. Args: model: Model to load the weights. file_path: File path to load the weights. """ pass @abstractmethod def random_sample(self) -> ArchaiModel: """Randomly sample an architecture from the search spaces. Returns: Sampled architecture. """ pass class EvolutionarySearchSpace(DiscreteSearchSpace, EnforceOverrides): """Abstract class for discrete search spaces compatible with evolutionary algorithms. The class enforces implementation of two methods: `mutate` and `crossover`. Note: This class is inherited from `EnforceOverrides` and any overridden methods in the subclass should be decorated with `@overrides` to ensure they are properly overridden. """ @abstractmethod def mutate(self, arch: ArchaiModel) -> ArchaiModel: """Mutate an architecture from the search space. This method should not alter the base model architecture directly, only generate a new one. Args: arch: Base model. Returns: Mutated model. """ pass @abstractmethod def crossover(self, arch_list: List[ArchaiModel]) -> ArchaiModel: """Combine a list of architectures into a new one. Args: arch_list: List of architectures. Returns: Resulting model. """ pass class BayesOptSearchSpace(DiscreteSearchSpace, EnforceOverrides): """Abstract class for discrete search spaces compatible with Bayesian Optimization algorithms. The class enforces implementation of a single method: `encode`. Note: This class is inherited from `EnforceOverrides` and any overridden methods in the subclass should be decorated with `@overrides` to ensure they are properly overridden. """ @abstractmethod def encode(self, arch: ArchaiModel) -> np.ndarray: """Encode an architecture into a fixed-length vector representation. Args: arch: Model from the search space. Returns: Fixed-length vector representation of `arch`. """ pass
archai/archai/discrete_search/api/search_space.py/0
{ "file_path": "archai/archai/discrete_search/api/search_space.py", "repo_id": "archai", "token_count": 1989 }
320
# Copyright (c) DeepSpeed Team - Microsoft Corporation. # Licensed under the MIT License. # https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/profiling/flops_profiler/profiler.py import time from functools import partial from typing import List, Optional import torch from archai.discrete_search.evaluators.pt_profiler_utils.pt_profiler_hooks import ( FLOPS, MACS, disable_functional_hooks, disable_tensor_hooks, enable_functional_hooks, enable_tensor_hooks, ) class ProfilerModel: """Prepare a model to be used with profilling.""" def __init__(self, model: torch.nn.Module) -> None: """Initialize with custom arguments and keyword arguments. Args: model: Pre-trained model. """ self.model = model self.is_profiling = False self.is_patched = False def start(self, ignore_layers: Optional[List[str]] = None) -> None: """Start profiling. Args: ignore_layers: Layers to be ignored when profiling. """ self.reset() enable_functional_hooks() enable_tensor_hooks() def register_hooks(module: torch.nn.Module, ignore_layers: List[str]) -> None: if ignore_layers and type(module) in ignore_layers: return def pre_hook(module: torch.nn.Module, input: torch.Tensor): FLOPS.append([]) MACS.append([]) if not hasattr(module, "__pre_hook_handle__"): module.__pre_hook_handle__ = module.register_forward_pre_hook(pre_hook) def post_hook(module: torch.nn.Module, input: torch.Tensor, output: torch.Tensor): if FLOPS: module.__flops__ += sum([elem[1] for elem in FLOPS[-1]]) FLOPS.pop() module.__macs__ += sum([elem[1] for elem in MACS[-1]]) MACS.pop() if not hasattr(module, "__post_hook_handle__"): module.__post_hook_handle__ = module.register_forward_hook(post_hook) def start_time_hook(module: torch.nn.Module, input: torch.Tensor): if torch.cuda.is_available(): torch.cuda.synchronize() module.__start_time__ = time.time() if not hasattr(module, "__start_time_hook_handle"): module.__start_time_hook_handle__ = module.register_forward_pre_hook(start_time_hook) def end_time_hook(module: torch.nn.Module, input: torch.Tensor, output: torch.Tensor): if torch.cuda.is_available(): torch.cuda.synchronize() module.__latency__ += time.time() - module.__start_time__ if not hasattr(module, "__end_time_hook_handle__"): module.__end_time_hook_handle__ = module.register_forward_hook(end_time_hook) def peak_memory_hook(module: torch.nn.Module, input: torch.Tensor, output: torch.Tensor): if torch.cuda.is_available(): module.__peak_memory__ = torch.cuda.max_memory_allocated() torch.cuda.reset_peak_memory_stats() if not hasattr(module, "__peak_memory_hook_handle__"): module.__peak_memory_hook_handle__ = module.register_forward_hook(peak_memory_hook) self.model.apply(partial(register_hooks, ignore_layers=ignore_layers)) self.is_profiling = True self.is_patched = True def stop(self) -> None: """Stop profiling.""" if self.is_profiling and self.is_patched: disable_functional_hooks() disable_tensor_hooks() self.is_patched = False def remove_hooks(module: torch.nn.Module) -> None: if hasattr(module, "__pre_hook_handle__"): module.__pre_hook_handle__.remove() del module.__pre_hook_handle__ if hasattr(module, "__post_hook_handle__"): module.__post_hook_handle__.remove() del module.__post_hook_handle__ if hasattr(module, "__flops_handle__"): module.__flops_handle__.remove() del module.__flops_handle__ if hasattr(module, "__start_time_hook_handle__"): module.__start_time_hook_handle__.remove() del module.__start_time_hook_handle__ if hasattr(module, "__end_time_hook_handle__"): module.__end_time_hook_handle__.remove() del module.__end_time_hook_handle__ if hasattr(module, "__peak_memory_hook_handle__"): module.__peak_memory_hook_handle__.remove() del module.__peak_memory_hook_handle__ self.model.apply(remove_hooks) def reset(self) -> None: """Reset the profiler.""" def reset_attrs(module: torch.nn.Module) -> None: module.__flops__ = 0 module.__macs__ = 0 module.__params__ = sum(p.numel() for p in module.parameters()) module.__start_time__ = 0 module.__latency__ = 0 module.__peak_memory__ = 0 self.model.apply(reset_attrs) def end(self) -> None: """End the profiler.""" if not self.is_profiling: return self.stop() self.is_profiling = False def remove_attrs(module: torch.nn.Module) -> None: if hasattr(module, "__flops__"): del module.__flops__ if hasattr(module, "__macs__"): del module.__macs__ if hasattr(module, "__params__"): del module.__params__ if hasattr(module, "__start_time__"): del module.__start_time__ if hasattr(module, "__latency__"): del module.__latency__ if hasattr(module, "__peak_memory__"): del module.__peak_memory__ self.model.apply(remove_attrs) def get_flops(self) -> int: """Get the model's number of FLOPs. Returns: Number of floating point operations. """ def _get(module: torch.nn.Module) -> int: flops = module.__flops__ for child in module.children(): flops += _get(child) return flops return _get(self.model) def get_macs(self) -> int: """Get the model's number of MACs. Returns: Number of multiply-accumulate operations. """ def _get(module: torch.nn.Module) -> int: macs = module.__macs__ for child in module.children(): macs += _get(child) return macs return _get(self.model) def get_params(self) -> int: """Get the model's total number of parameters. Returns: Number of parameters. """ return self.model.__params__ def get_latency(self) -> float: """Get the model's latency. Returns: Latency (seconds). """ def _get(module: torch.nn.Module) -> int: latency = module.__latency__ if latency == 0: for child in module.children(): latency += child.__latency__ return latency return _get(self.model) def get_peak_memory(self) -> float: """Get the model's peak memory. Returns: Peak memory (bytes). """ def _get(module: torch.nn.Module) -> int: peak_memory = [module.__peak_memory__] for child in module.children(): peak_memory += [_get(child)] return max(peak_memory) return _get(self.model)
archai/archai/discrete_search/evaluators/pt_profiler_utils/pt_profiler_model.py/0
{ "file_path": "archai/archai/discrete_search/evaluators/pt_profiler_utils/pt_profiler_model.py", "repo_id": "archai", "token_count": 3755 }
321
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import math from typing import Dict, Optional import torch import torch.nn as nn from flash_attn.modules.mha import MHA from flash_attn.modules.mlp import FusedMLP from transformers.modeling_outputs import CausalLMOutput from transformers.models.codegen.configuration_codegen import CodeGenConfig from transformers.models.codegen.modeling_codegen import ( CodeGenAttention, CodeGenMLP, CodeGenPreTrainedModel, apply_rotary_pos_emb, fixed_pos_embedding, ) from xformers.ops import LowerTriangularMask, memory_efficient_attention class CodeGenFlashConfig(CodeGenConfig): model_type = "codegen-flash" def __init__( self, *args, pad_vocab_size_multiple: Optional[int] = 1, attn_type: Optional[str] = "default", use_fused_mlp: Optional[bool] = False, **kwargs ) -> None: super().__init__(*args, **kwargs) self.vocab_size = int(math.ceil(self.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple) assert attn_type in [ "default", "flash", "xformers", ], "`attn_type` should be one of: `default`, `flash` or `xformers`." self.attn_type = attn_type self.use_fused_mlp = use_fused_mlp class CodeGenFlashEmbedding(nn.Module): def __init__(self, config: CodeGenFlashConfig) -> None: super().__init__() self.wte = nn.Embedding(config.vocab_size, config.n_embd) self.drop = nn.Dropout(config.embd_pdrop) def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.wte(input_ids) hidden_states = self.drop(hidden_states) return hidden_states class CodeGenXAttention(CodeGenAttention): def __init__(self, config): super().__init__(config) def _merge_heads(self, tensor, num_attention_heads, attn_head_size): new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,) return tensor.view(new_shape) def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.Tensor: qkv = self.qkv_proj(hidden_states) # TODO(enijkamp): factor out number of logical TPU-v4 cores or make forward pass agnostic mp_num = 4 qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1)) local_dim = self.head_dim * self.num_attention_heads // mp_num query, value, key = torch.split(qkv_split, local_dim, dim=-1) query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num) key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num) value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num) seq_len = key.shape[1] offset = 0 if self.rotary_dim is not None: k_rot = key[:, :, :, : self.rotary_dim] k_pass = key[:, :, :, self.rotary_dim :] q_rot = query[:, :, :, : self.rotary_dim] q_pass = query[:, :, :, self.rotary_dim :] sincos = fixed_pos_embedding(k_rot, 1, seq_len=seq_len) k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=offset) q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=offset) key = torch.cat([k_rot, k_pass], dim=-1) query = torch.cat([q_rot, q_pass], dim=-1) else: sincos = fixed_pos_embedding(key, 1, seq_len=seq_len) key = apply_rotary_pos_emb(key, sincos, offset=offset) query = apply_rotary_pos_emb(query, sincos, offset=offset) # compute self-attention: V x Softmax(QK^T) attn_output = memory_efficient_attention( query.to(torch.float16), key.to(torch.float16), value.to(torch.float16), attn_bias=LowerTriangularMask(), ) attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim) attn_output = self.out_proj(attn_output) attn_output = self.resid_dropout(attn_output) return attn_output class CodeGenFlashBlock(nn.Module): def __init__(self, config: CodeGenFlashConfig) -> None: super().__init__() inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd rotary_dim = min(config.rotary_dim, config.n_ctx // config.num_attention_heads) self.attn_type = config.attn_type self.use_fused_mlp = config.use_fused_mlp self.resid_pdrop = config.resid_pdrop self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) if self.attn_type == "default": self.attn = CodeGenAttention(config) elif self.attn_type == "flash": head_dim = config.n_embd // config.n_head self.attn = MHA( embed_dim=config.n_embd, num_heads=config.n_head, cross_attn=False, bias=True, dropout=config.attn_pdrop, softmax_scale=head_dim ** (-0.5), causal=True, rotary_emb_dim=rotary_dim, fused_bias_fc=True, use_flash_attn=True, return_residual=False, ) elif self.attn_type == "xformers": self.attn = CodeGenXAttention(config) if not self.use_fused_mlp: self.mlp = CodeGenMLP(inner_dim, config) else: activation = ( "gelu_approx" if config.activation_function in ["gelu_new", "gelu_fast", "gelu_approx"] else "relu" ) self.mlp = FusedMLP(in_features=config.n_embd, hidden_features=inner_dim, activation=activation) def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_outputs = self.attn(hidden_states) if isinstance(attn_outputs, tuple): attn_outputs = attn_outputs[0] feed_forward_hidden_states = self.mlp(hidden_states) if self.attn_type == "flash": attn_outputs = nn.Dropout(self.resid_pdrop)(attn_outputs) feed_forward_hidden_states = nn.Dropout(self.resid_pdrop)(feed_forward_hidden_states) hidden_states = attn_outputs + feed_forward_hidden_states + residual return hidden_states class CodeGenFlashLMHead(nn.Module): def __init__(self, config: CodeGenFlashConfig) -> None: super().__init__() self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) self.lm_head = nn.Linear(config.n_embd, config.vocab_size) def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: hidden_states = self.ln_f(hidden_states) lm_logits = self.lm_head(hidden_states).to(torch.float32) return lm_logits class LMHeadLoss(nn.Module): def __init__(self, shift_labels: Optional[bool] = False) -> None: super().__init__() self.shift_labels = shift_labels self.loss_fct = nn.CrossEntropyLoss() def forward(self, lm_logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor: if self.shift_labels: lm_logits = lm_logits[..., :-1, :].contiguous() labels = labels[..., 1:].contiguous() loss = self.loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) return loss class CodeGenFlashSequential(CodeGenPreTrainedModel): def __init__(self, config: CodeGenFlashConfig) -> None: super().__init__(config) modules = [CodeGenFlashEmbedding(config)] for _ in range(config.n_layer): modules.append(CodeGenFlashBlock(config)) modules.append(CodeGenFlashLMHead(config)) self.layers = nn.Sequential(*modules) self.loss = LMHeadLoss() self.post_init() def forward( self, input_ids: torch.LongTensor, labels: Optional[torch.LongTensor] = None, **kwargs ) -> CausalLMOutput: lm_logits = self.layers(input_ids) loss = None if labels is not None: loss = self.loss(lm_logits, labels) return CausalLMOutput(loss=loss, logits=lm_logits) def prepare_inputs_for_generation(self, input_ids: torch.LongTensor, **kwargs) -> Dict[str, torch.Tensor]: return {"input_ids": input_ids} def get_input_embeddings(self) -> torch.Tensor: return self.layers[0].wte def set_input_embeddings(self, new_embeddings: torch.Tensor) -> None: self.layers[0].wte = new_embeddings def get_output_embeddings(self) -> torch.Tensor: return self.layers[-1].lm_head def set_output_embeddings(self, new_embeddings: torch.Tensor) -> None: self.layers[-1].lm_head = new_embeddings
archai/archai/discrete_search/search_spaces/nlp/tfpp/modeling_codegen_flash.py/0
{ "file_path": "archai/archai/discrete_search/search_spaces/nlp/tfpp/modeling_codegen_flash.py", "repo_id": "archai", "token_count": 4153 }
322
# TD: [2023-01-05]: Extracted the SSKernelDiag class from # https://github.com/HazyResearch/state-spaces/blob/06dbbdfd0876501a7f12bf3262121badbc7658af/src/models/sequence/ss/kernel.py # We make a small change to use the log_vandermonde CUDA code. """SSKernelDiag is the S4D kernel, a simpler algorithm for computing the kernel for the case of diagonal state matrices A. """ import math import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from opt_einsum import contract from .utils import OptimModule # This could be None if the CUDA import fails from .ssm_ops.vandermonde import log_vandermonde_fast try: import pykeops from .ssm_ops.vandermonde import log_vandermonde, log_vandermonde_transpose has_pykeops = True print("Pykeops installation found.") except ImportError: has_pykeops = False from .ssm_ops.vandermonde import log_vandermonde_naive as log_vandermonde from .ssm_ops.vandermonde import log_vandermonde_transpose_naive as log_vandermonde_transpose print( "Falling back on slow Vandermonde kernel. Install pykeops for improved memory efficiency." ) _c2r = torch.view_as_real _r2c = torch.view_as_complex if tuple(map(int, torch.__version__.split('.')[:2])) >= (1, 10): _resolve_conj = lambda x: x.conj().resolve_conj() else: _resolve_conj = lambda x: x.conj() class SSKernelDiag(OptimModule): """Version using (complex) diagonal state matrix (S4D)""" def __init__( self, A, B, C, log_dt, L=None, disc='bilinear', real_type='exp', lr=None, bandlimit=None, force_real=False, ): super().__init__() self.L = L self.disc = disc self.bandlimit = bandlimit self.real_type = real_type self.force_real = force_real # Rank of low-rank correction assert A.size(-1) == C.size(-1) self.H = log_dt.size(-1) self.N = A.size(-1) assert A.size(-2) == B.size(-2) # Number of independent SSMs trained assert self.H % A.size(-2) == 0 self.n_ssm = A.size(-2) self.repeat = self.H // A.size(0) self.channels = C.shape[0] self.C = nn.Parameter(_c2r(_resolve_conj(C))) # Register parameters if lr is None or isinstance(lr, float): lr_dict = {} else: lr_dict, lr = lr, None self.register("log_dt", log_dt, lr_dict.get('dt', lr)) self.register("B", _c2r(B), lr_dict.get('B', lr)) self.register("inv_A_real", self._A_init(A.real), lr_dict.get('A', lr)) self.register("A_imag", A.imag, lr_dict.get('A', lr)) def _A_init(self, A_real): A_real = torch.clamp(A_real, max=-1e-4) if self.real_type == 'none': return -A_real elif self.real_type == 'exp': return torch.log(-A_real) # Some of the HiPPO methods have real part 0 elif self.real_type == 'relu': return -A_real elif self.real_type == 'sigmoid': return torch.logit(-A_real) elif self.real_type == 'softplus': return torch.log(torch.exp(-A_real)-1) else: raise NotImplementedError def _A(self): # Get the internal A (diagonal) parameter if self.real_type == 'none': A_real = -self.inv_A_real elif self.real_type == 'exp': A_real = -torch.exp(self.inv_A_real) elif self.real_type == 'relu': # JAX version seems to NaN if you alloA 0's, although this code Aas fine Aithout it A_real = -F.relu(self.inv_A_real)-1e-4 elif self.real_type == 'sigmoid': A_real = -F.sigmoid(self.inv_A_real) elif self.real_type == 'softplus': A_real = -F.softplus(self.inv_A_real) else: raise NotImplementedError A = A_real + 1j * self.A_imag return A def forward(self, L, state=None, rate=1.0, u=None): """ state: (B, H, N) initial state rate: sampling rate factor L: target length returns: (C, H, L) convolution kernel (generally C=1) (B, H, L) output from initial state """ dt = torch.exp(self.log_dt) * rate # (H) C = _r2c(self.C) # (C H N) A = self._A() # (H N) B = _r2c(self.B) B = repeat(B, 't n -> 1 (v t) n', v=self.repeat) # Force A to be real valued, so the whole kernel can be interpreted as a "multi-head EMA" if self.force_real: A = A.real + 0j if self.bandlimit is not None: freqs = dt[:, None] / rate * A.imag.abs() / (2*math.pi) # (H, N) mask = torch.where(freqs < self.bandlimit * .5, 1, 0) C = C * mask # Incorporate dt into A A = repeat(A, 't n -> (v t) n', v=self.repeat) dtA = A * dt.unsqueeze(-1) # (H N) # Augment B with state if state is not None: s = state / dt.unsqueeze(-1) if self.disc == 'bilinear': s = s * (1. + dtA/2) elif self.disc == 'zoh': s = s * dtA * dtA.exp() / (dtA.exp() - 1.) B = torch.cat([s, B], dim=-3) # (1+B H N) C = (B[:, None, :, :] * C).view(-1, self.H, self.N) if self.disc == 'zoh': # Power up C = C * (torch.exp(dtA)-1.) / A # TODO (TD): make it work for C.shape[0] > 1 if log_vandermonde_fast is not None and C.shape[0] == 1: K = log_vandermonde_fast(C.squeeze(0), dtA, L).unsqueeze(0) # (H L) else: K = log_vandermonde(C, dtA, L) # (H L) elif self.disc == 'bilinear': C = C * (1. - dtA/2).reciprocal() * dt.unsqueeze(-1) # or * dtA / A dA = (1. + dtA/2) / (1. - dtA/2) if log_vandermonde_fast is not None: dA_log = repeat(dA.log(), 'h d -> (c h) d', c=C.shape[0]) K = rearrange(log_vandermonde_fast(rearrange(C, 'c h d -> (c h) d'), dA_log, L), '(c h) d -> c h d', c=C.shape[0]) else: K = log_vandermonde(C, dA.log(), L) elif self.disc == 'dss': # Implementation from DSS meant for case when real eigenvalues can be positive P = dtA.unsqueeze(-1) * torch.arange(L, device=C.device) # [H N L] A_gt_0 = A.real > 0 # [N] if A_gt_0.any(): with torch.no_grad(): P_max = dtA * (A_gt_0 * (L-1)) # [H N] P = P - P_max.unsqueeze(-1) # [H N L] S = P.exp() # [H N L] dtA_neg = dtA * (1 - 2*A_gt_0) # [H N] num = dtA_neg.exp() - 1 # [H N] den = (dtA_neg * L).exp() - 1 # [H N] # Inline reciprocal function for DSS logic x = den * A x_conj = _resolve_conj(x) r = x_conj / (x*x_conj + 1e-7) C = C * num * r # [C H N] K = contract('chn,hnl->chl', C, S).float() else: assert False, f"{self.disc} not supported" K = K.view(-1, self.channels, self.H, L) # (1+B C H L) if state is not None: K_state = K[:-1, :, :, :] # (B C H L) else: K_state = None K = K[-1, :, :, :] # (C H L) return K, K_state def _setup_step(self): # These methods are organized like this to be compatible with the NPLR kernel interface dt = torch.exp(self.log_dt) # (H) B = _r2c(self.B) # (H N) C = _r2c(self.C) # (C H N) self.dC = C A = self._A() # (H N) A = repeat(A, 't n -> (v t) n', v=self.repeat) B = repeat(B, 't n -> (v t) n', v=self.repeat) # Incorporate dt into A dtA = A * dt.unsqueeze(-1) # (H N) if self.disc == 'zoh': self.dA = torch.exp(dtA) # (H N) self.dB = B * (torch.exp(dtA)-1.) / A # (C H N) elif self.disc == 'bilinear': self.dA = (1. + dtA/2) / (1. - dtA/2) self.dB = B * (1. - dtA/2).reciprocal() * dt.unsqueeze(-1) # or * dtA / A def default_state(self, *batch_shape): C = _r2c(self.C) state = torch.zeros(*batch_shape, self.H, self.N, dtype=C.dtype, device=C.device) return state def step(self, u, state): next_state = contract("h n, b h n -> b h n", self.dA, state) \ + contract("h n, b h -> b h n", self.dB, u) y = contract("c h n, b h n -> b c h", self.dC, next_state) return 2*y.real, next_state def forward_state(self, u, state): self._setup_step() AL = self.dA ** u.size(-1) u = u.flip(-1).to(self.dA).contiguous() # (B H L) v = log_vandermonde_transpose(u, self.dB, self.dA.log(), u.size(-1)) next_state = AL * state + v return next_state class EMAKernel(OptimModule): """Translation of Mega's MultiHeadEMA. This is a minimal implementation of the convolution kernel part of the module. This module, together with the main S4 block in src.models.sequence.ss.s4 (which is really just a fft-conv wrapper around any convolution kernel, such as this one), should be exactly equivalent to using the original Mega EMA module in src.models.sequence.ss.ema. Two additional flags have been provided to resolve discrepencies in parameter count between S4(D) and EMA - `dt_tie` makes the shape of the step size \Delta (H, 1) instead of (H, N) - `efficient_bidirectional` ties the A/B/dt parameters for the conv kernels in both forwards and backwards directions. This should have exactly the same speed, slightly more parameter efficiency, and unchanged performance. """ def __init__( self, H, N=2, channels=1, l_max=None, dt_tie=False, efficient_bidirectional=False, ): super().__init__() self.H = H self.N = N self.channels = channels self.l_max = l_max self.scale = math.sqrt(1.0 / self.N) # Exactly match the parameter count of S4(D) when bididirectional is on self.efficient_bidirectional = efficient_bidirectional if self.efficient_bidirectional: H_C = H * channels else: H *= channels H_C = H self.delta = nn.Parameter(torch.Tensor(H, 1 if dt_tie else N, 1)) self.alpha = nn.Parameter(torch.Tensor(H, N, 1)) self.beta = nn.Parameter(torch.Tensor(H, N, 1)) self.gamma = nn.Parameter(torch.Tensor(H_C, N)) # self.omega = nn.Parameter(torch.Tensor(H)) # D skip connection handled by outside class self.reset_parameters() def reset_parameters(self): with torch.no_grad(): nn.init.normal_(self.delta, mean=0.0, std=0.2) nn.init.normal_(self.alpha, mean=0.0, std=0.2) # Mega comment: beta [1, -1, 1, -1, ...] seems more stable. val = torch.ones(self.N, 1) if self.N > 1: idx = torch.tensor(list(range(1, self.N, 2))) val.index_fill_(0, idx, -1.0) self.beta.normal_(mean=0.0, std=0.02).add_(val) nn.init.normal_(self.gamma, mean=0.0, std=1.0) # nn.init.normal_(self.omega, mean=0.0, std=1.0) def coeffs(self): # Same as discretize p = torch.sigmoid(self.delta) # (H N 1) alpha = torch.sigmoid(self.alpha) q = 1.0 - p * alpha return p, q def forward(self, L=None, state=None, rate=1.0): L = L if self.l_max is None else min(self.l_max, L) p, q = self.coeffs() # (H N 1) vander = torch.arange(L).to(p).view(1, 1, L) * torch.log(q) # (H N L) kernel = (p * self.beta) * torch.exp(vander) if self.efficient_bidirectional: C = rearrange(self.gamma * self.scale, '(c h) n -> c h n', c=self.channels) kernel = torch.einsum('dnl,cdn->cdl', kernel, C) # kernel = rearrange(kernel, 'c d l -> (c d) l') else: kernel = torch.einsum('dnl,dn->dl', kernel, self.gamma * self.scale) kernel = rearrange(kernel, '(c h) l -> c h l', c=self.channels) kernel = kernel[..., :L] # kernel = rearrange(kernel, '(c h) l -> c h l', c=self.channels) return kernel, None # k_state
archai/archai/discrete_search/search_spaces/nlp/tfpp/ops/ssm_utils/ss_kernel_diag.py/0
{ "file_path": "archai/archai/discrete_search/search_spaces/nlp/tfpp/ops/ssm_utils/ss_kernel_diag.py", "repo_id": "archai", "token_count": 6457 }
323
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # # Copyright (c) 2018, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0. from typing import Optional import torch import torch.nn as nn class PositionWiseFF(nn.Module): def __init__( self, d_model: int, d_inner: int, dropout: float, pre_lnorm: Optional[bool] = False, layer_norm_epsilon: Optional[float] = 1e-5, ) -> None: super().__init__() self.d_model = d_model self.d_inner = d_inner self.dropout = dropout self.pre_lnorm = pre_lnorm self.ff = nn.Sequential( nn.Linear(d_model, d_inner), nn.ReLU(inplace=True), nn.Dropout(dropout), nn.Linear(d_inner, d_model), nn.Dropout(dropout), ) self.layer_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon) def forward(self, inputs: torch.FloatTensor) -> torch.FloatTensor: if self.pre_lnorm: output = self.ff(self.layer_norm(inputs)) output += inputs else: output = self.ff(inputs) output = self.layer_norm(inputs + output) return output class PositionWiseFFPrimerEZ(nn.Module): def __init__( self, d_model: int, d_inner: int, dropout: float, pre_lnorm: Optional[bool] = False, layer_norm_epsilon: Optional[float] = 1e-5, ) -> None: super().__init__() # Squared ReLU: https://arxiv.org/abs/2109.08668 self.d_model = d_model self.d_inner = d_inner self.dropout = dropout self.pre_lnorm = pre_lnorm self.ff1 = nn.Sequential(nn.Linear(d_model, d_inner), nn.ReLU(inplace=True)) self.ff2 = nn.Sequential(nn.Dropout(dropout), nn.Linear(d_inner, d_model), nn.Dropout(dropout)) self.layer_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon) def forward(self, inputs: torch.FloatTensor) -> torch.FloatTensor: if self.pre_lnorm: output = self.ff2(self.ff1(self.layer_norm(inputs)) ** 2) output += inputs else: output = self.ff2(self.ff1(inputs) ** 2) output = self.layer_norm(inputs + output) return output
archai/archai/discrete_search/search_spaces/nlp/transformer_flex/models/mem_transformer_utils/position_wise_ff.py/0
{ "file_path": "archai/archai/discrete_search/search_spaces/nlp/transformer_flex/models/mem_transformer_utils/position_wise_ff.py", "repo_id": "archai", "token_count": 1133 }
324
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from typing import Dict, Optional, Tuple import torch import torch.nn.functional as F def gpt2_onnx_forward( self, input_ids: torch.LongTensor, past_key_values: Optional[Tuple[torch.FloatTensor, ...]] = None, ) -> Dict[str, torch.FloatTensor]: """Forward pass through the GPT-2 model with ONNX exportability. This method overrides the default GPT-2 forward method and returns both output probabilities and past key/values. Args: input_ids: Input tensor. past_key_values: Past pre-computed key/values tensor. Returns: Output probabilities and past key/values. """ outputs_dict = {} outputs = self.transformer(input_ids, past_key_values=past_key_values) last_hidden_state = outputs.last_hidden_state past_key_values = outputs.past_key_values logits = F.softmax(self.lm_head(last_hidden_state[:, -1, :]), dim=-1) outputs_dict["logits"] = logits if past_key_values: past_key_values = tuple([torch.stack(p) for p in past_key_values]) outputs_dict["past_key_values"] = past_key_values return outputs_dict
archai/archai/onnx/onnx_forward.py/0
{ "file_path": "archai/archai/onnx/onnx_forward.py", "repo_id": "archai", "token_count": 437 }
325
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from typing import Dict, List import torch from overrides import overrides from torch import nn from archai.common.common import get_conf from archai.common.ordered_dict_logger import get_global_logger from archai.supergraph.algos.divnas.analyse_activations import compute_brute_force_sol from archai.supergraph.algos.divnas.divnas_cell import Divnas_Cell from archai.supergraph.algos.divnas.divop import DivOp from archai.supergraph.datasets.data import get_data from archai.supergraph.nas.cell import Cell from archai.supergraph.nas.finalizers import Finalizers from archai.supergraph.nas.model import Model from archai.supergraph.nas.model_desc import CellDesc, EdgeDesc, ModelDesc, NodeDesc logger = get_global_logger() class DivnasFinalizers(Finalizers): @overrides def finalize_model(self, model: Model, to_cpu=True, restore_device=True) -> ModelDesc: logger.pushd('finalize') # get config and train data loader # TODO: confirm this is correct in case you get silent bugs conf = get_conf() conf_loader = conf['nas']['search']['loader'] data_loaders = get_data(conf_loader) assert data_loaders.train_dl is not None # wrap all cells in the model self._divnas_cells:Dict[int, Divnas_Cell] = {} for _, cell in enumerate(model.cells): divnas_cell = Divnas_Cell(cell) self._divnas_cells[id(cell)] = divnas_cell # go through all edges in the DAG and if they are of divop # type then set them to collect activations sigma = conf['nas']['search']['divnas']['sigma'] for _, dcell in enumerate(self._divnas_cells.values()): dcell.collect_activations(DivOp, sigma) # now we need to run one evaluation epoch to collect activations # we do it on cpu otherwise we might run into memory issues # later we can redo the whole logic in pytorch itself # at the end of this each node in a cell will have the covariance # matrix of all incoming edges' ops model = model.cpu() model.eval() with torch.no_grad(): for _ in range(1): for _, (x, _) in enumerate(data_loaders.train_dl): _, _ = model(x), None # now you can go through and update the # node covariances in every cell for dcell in self._divnas_cells.values(): dcell.update_covs() logger.popd() return super().finalize_model(model, to_cpu, restore_device) @overrides def finalize_cell(self, cell:Cell, cell_index:int, model_desc:ModelDesc, *args, **kwargs)->CellDesc: # first finalize each node, we will need to recreate node desc with final version max_final_edges = model_desc.max_final_edges node_descs:List[NodeDesc] = [] dcell = self._divnas_cells[id(cell)] assert len(cell.dag) == len(list(dcell.node_covs.values())) for i,node in enumerate(cell.dag): node_cov = dcell.node_covs[id(node)] node_desc = self.finalize_node(node, i, cell.desc.nodes()[i], max_final_edges, node_cov) node_descs.append(node_desc) # (optional) clear out all activation collection information dcell.clear_collect_activations() desc = cell.desc finalized = CellDesc( id = desc.id, cell_type=desc.cell_type, conf_cell=desc.conf_cell, stems=[cell.s0_op.finalize()[0], cell.s1_op.finalize()[0]], stem_shapes=desc.stem_shapes, nodes = node_descs, node_shapes=desc.node_shapes, post_op=cell.post_op.finalize()[0], out_shape=desc.out_shape, trainables_from = desc.trainables_from ) return finalized @overrides def finalize_node(self, node:nn.ModuleList, node_index:int, node_desc:NodeDesc, max_final_edges:int, cov, *args, **kwargs)->NodeDesc: # node is a list of edges assert len(node) >= max_final_edges # covariance matrix shape must be square 2-D assert len(cov.shape) == 2 assert cov.shape[0] == cov.shape[1] # the number of primitive operators has to be greater # than equal to the maximum number of final edges # allowed assert cov.shape[0] >= max_final_edges # get total number of ops incoming to this node num_ops = sum([edge._op.num_valid_div_ops for edge in node]) # and collect some bookkeeping indices edge_num_and_op_ind = [] for j, edge in enumerate(node): if type(edge._op) == DivOp: for k in range(edge._op.num_valid_div_ops): edge_num_and_op_ind.append((j, k)) assert len(edge_num_and_op_ind) == num_ops # run brute force set selection algorithm max_subset, max_mi = compute_brute_force_sol(cov, max_final_edges) # convert the cov indices to edge descs selected_edges = [] for ind in max_subset: edge_ind, op_ind = edge_num_and_op_ind[ind] op_desc = node[edge_ind]._op.get_valid_op_desc(op_ind) new_edge = EdgeDesc(op_desc, node[edge_ind].input_ids) selected_edges.append(new_edge) # for edge in selected_edges: # self.finalize_edge(edge) return NodeDesc(selected_edges, node_desc.conv_params)
archai/archai/supergraph/algos/divnas/divnas_finalizers.py/0
{ "file_path": "archai/archai/supergraph/algos/divnas/divnas_finalizers.py", "repo_id": "archai", "token_count": 2476 }
326
# NASBench 101 Implementation ##Credits Code in this directory is from https://github.com/romulus0914/NASBench-PyTorch authored by Romulus Hong.
archai/archai/supergraph/algos/nasbench101/README.md/0
{ "file_path": "archai/archai/supergraph/algos/nasbench101/README.md", "repo_id": "archai", "token_count": 40 }
327
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import copy import glob import math import os import pathlib from typing import Optional # only works on linux import ray import yaml from overrides import overrides from archai.common import common, ml_utils, utils from archai.common.config import Config from archai.common.ordered_dict_logger import get_global_logger from archai.supergraph.algos.petridish.petridish_utils import ( ConvexHullPoint, ExperimentStage, JobStage, plot_pool, save_hull, ) from archai.supergraph.nas import nas_utils from archai.supergraph.nas.evaluater import EvalResult, Evaluater from archai.supergraph.nas.model_desc import CellType, ModelDesc from archai.supergraph.nas.model_desc_builder import ModelDescBuilder logger = get_global_logger() def filepath_ext(filepath:str)->str: """Returns '.f' for '/a/b/c/d.e.f' """ return pathlib.Path(filepath).suffix def filepath_name_only(filepath:str)->str: """Returns 'd.e' for '/a/b/c/d.e.f' """ return pathlib.Path(filepath).stem def append_to_filename(filepath:str, name_suffix:str, new_ext:Optional[str]=None)->str: """Returns '/a/b/c/h.f' for filepath='/a/b/c/d.e.f', new_name='h' """ ext = new_ext or filepath_ext(filepath) name = filepath_name_only(filepath) return str(pathlib.Path(filepath).with_name(name+name_suffix).with_suffix(ext)) class EvaluaterPetridish(Evaluater): @overrides def evaluate(self, conf_eval:Config, model_desc_builder:ModelDescBuilder)->EvalResult: """Takes a folder of model descriptions output by search process and trains them in a distributed manner using ray with 1 gpu""" logger.pushd('evaluate') final_desc_foldername:str = conf_eval['final_desc_foldername'] source_desc_foldername:str = conf_eval.get('source_desc_foldername', final_desc_foldername) # get list of model descs in the gallery folder source_desc_folderpath = utils.full_path(source_desc_foldername) final_desc_folderpath = utils.full_path(final_desc_foldername, True) files = [os.path.join(final_desc_folderpath, utils.filepath_name_ext(f)) \ for f in glob.glob(os.path.join(source_desc_folderpath, 'model_desc_*.yaml')) \ if os.path.isfile(os.path.join(source_desc_folderpath, f))] logger.info({'model_desc_files':len(files)}) # to avoid all workers download datasets individually, let's do it before hand self._ensure_dataset_download(conf_eval) future_ids = [] for model_desc_filename in files: future_id = EvaluaterPetridish._train_dist.remote(self, conf_eval, model_desc_builder, model_desc_filename, common.get_state(), source_desc_folderpath) future_ids.append(future_id) # wait for all eval jobs to be finished ready_refs, remaining_refs = ray.wait(future_ids, num_returns=len(future_ids)) # plot pareto curve of gallery of models hull_points = [ray.get(ready_ref) for ready_ref in ready_refs] save_hull(hull_points, common.get_expdir()) plot_pool(hull_points, common.get_expdir(), ExperimentStage.EVAL) best_point = max(hull_points, key=lambda p:p.metrics.best_val_top1()) logger.info({'best_val_top1':best_point.metrics.best_val_top1(), 'best_MAdd': best_point.model_stats.MAdd}) logger.popd() return EvalResult(best_point.metrics) @staticmethod @ray.remote(num_gpus=1) def _train_dist(evaluater:Evaluater, conf_eval:Config, model_desc_builder:ModelDescBuilder, model_desc_filename:str, common_state, source_folder:Optional[str])->ConvexHullPoint: """Train given a model""" common.init_from(common_state) # region config vars conf_model_desc = conf_eval['model_desc'] max_cells = conf_model_desc['n_cells'] conf_checkpoint = conf_eval['checkpoint'] resume = conf_eval['resume'] conf_petridish = conf_eval['petridish'] cell_count_scale = conf_petridish['cell_count_scale'] #endregion #register ops as we are in different process now model_desc_builder.pre_build(conf_model_desc) model_filename = utils.append_to_filename(model_desc_filename, '_model', '.pt') full_desc_filename = utils.append_to_filename(model_desc_filename, '_full', '.yaml') metrics_filename = utils.append_to_filename(model_desc_filename, '_metrics', '.yaml') model_stats_filename = utils.append_to_filename(model_desc_filename, '_model_stats', '.yaml') # create checkpoint for this specific model desc by changing the config checkpoint = None if conf_checkpoint is not None: conf_checkpoint['filename'] = utils.append_to_filename(model_filename, '_checkpoint', '.pth') checkpoint = nas_utils.create_checkpoint(conf_checkpoint, resume) if checkpoint is not None and resume: if 'metrics_stats' in checkpoint: # return the output we had recorded in the checkpoint convex_hull_point = checkpoint['metrics_stats'] return convex_hull_point # template model is what we used during the search if source_folder: template_model_desc = ModelDesc.load(os.path.join(source_folder, utils.filepath_name_ext(model_desc_filename))) else: template_model_desc = ModelDesc.load(model_desc_filename) # we first scale this model by number of cells, keeping reductions same as in search n_cells = math.ceil(len(template_model_desc.cell_descs())*cell_count_scale) n_cells = min(n_cells, max_cells) conf_model_desc = copy.deepcopy(conf_model_desc) conf_model_desc['n_cells'] = n_cells conf_model_desc['n_reductions'] = n_reductions = template_model_desc.cell_type_count(CellType.Reduction) model_desc = model_desc_builder.build(conf_model_desc, template=template_model_desc) # save desc for reference model_desc.save(full_desc_filename) model = evaluater.model_from_desc(model_desc) train_metrics = evaluater.train_model(conf_eval, model, checkpoint) train_metrics.save(metrics_filename) # get metrics_stats model_stats = nas_utils.get_model_stats(model) # save metrics_stats with open(model_stats_filename, 'w') as f: yaml.dump(model_stats, f) # save model if model_filename: model_filename = utils.full_path(model_filename) ml_utils.save_model(model, model_filename) # TODO: Causes logging error at random times. Commenting out as stop-gap fix. # logger.info({'model_save_path': model_filename}) hull_point = ConvexHullPoint(JobStage.EVAL_TRAINED, 0, 0, model_desc, (n_cells, n_reductions, len(model_desc.cell_descs()[0].nodes())), metrics=train_metrics, model_stats=model_stats) if checkpoint: checkpoint.new() checkpoint['metrics_stats'] = hull_point checkpoint.commit() return hull_point def _ensure_dataset_download(self, conf_search:Config)->None: conf_loader = conf_search['loader'] self.get_data(conf_loader)
archai/archai/supergraph/algos/petridish/evaluater_petridish.py/0
{ "file_path": "archai/archai/supergraph/algos/petridish/evaluater_petridish.py", "repo_id": "archai", "token_count": 3092 }
328
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # code in this file is adpated from rpmcruz/autoaugment # https://github.com/rpmcruz/autoaugment/blob/master/transformations.py import random from collections import defaultdict from typing import List, Union import numpy as np import PIL import PIL.ImageDraw import PIL.ImageEnhance import PIL.ImageOps from archai.common.ordered_dict_logger import get_global_logger from archai.datasets.cv.transforms.custom_cutout import CustomCutout from archai.supergraph.datasets.aug_policies import ( fa_reduced_cifar10, fa_reduced_svhn, fa_resnet50_rimagenet, ) logger = get_global_logger() _random_mirror = True class Augmentation: def __init__(self, policies): self.policies = policies def __call__(self, img): for _ in range(1): policy = random.choice(self.policies) for name, pr, level in policy: if random.random() > pr: continue img = apply_augment(img, name, level) return img def add_named_augs(transform_train, aug:Union[List, str], cutout:int): # TODO: recheck: total_aug remains None in original fastaug code total_aug = augs = None logger.info({'augmentation': aug}) if isinstance(aug, list): transform_train.transforms.insert(0, Augmentation(aug)) elif aug: if aug == 'fa_reduced_cifar10': transform_train.transforms.insert(0, Augmentation(fa_reduced_cifar10())) elif aug == 'fa_reduced_imagenet': transform_train.transforms.insert(0, Augmentation(fa_resnet50_rimagenet())) elif aug == 'fa_reduced_svhn': transform_train.transforms.insert(0, Augmentation(fa_reduced_svhn())) elif aug == 'arsaug': transform_train.transforms.insert(0, Augmentation(arsaug_policy())) elif aug == 'autoaug_cifar10': transform_train.transforms.insert(0, Augmentation(autoaug_paper_cifar10())) elif aug == 'autoaug_extend': transform_train.transforms.insert(0, Augmentation(autoaug_policy())) elif aug in ['default', 'inception', 'inception320']: pass else: raise ValueError('Augmentations not found: %s' % aug) # add cutout transform # TODO: use PyTorch built-in cutout logger.info({'cutout': cutout}) if cutout > 0: transform_train.transforms.append(CustomCutout(cutout)) return total_aug, augs def ShearX(img, v): # [-0.3, 0.3] assert -0.3 <= v <= 0.3 if _random_mirror and random.random() > 0.5: v = -v return img.transform(img.size, PIL.Image.AFFINE, (1, v, 0, 0, 1, 0)) def ShearY(img, v): # [-0.3, 0.3] assert -0.3 <= v <= 0.3 if _random_mirror and random.random() > 0.5: v = -v return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, v, 1, 0)) def TranslateX(img, v): # [-150, 150] => percentage: [-0.45, 0.45] assert -0.45 <= v <= 0.45 if _random_mirror and random.random() > 0.5: v = -v v = v * img.size[0] return img.transform(img.size, PIL.Image.AFFINE, (1, 0, v, 0, 1, 0)) def TranslateY(img, v): # [-150, 150] => percentage: [-0.45, 0.45] assert -0.45 <= v <= 0.45 if _random_mirror and random.random() > 0.5: v = -v v = v * img.size[1] return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, 0, 1, v)) def TranslateXAbs(img, v): # [-150, 150] => percentage: [-0.45, 0.45] assert 0 <= v <= 10 if random.random() > 0.5: v = -v return img.transform(img.size, PIL.Image.AFFINE, (1, 0, v, 0, 1, 0)) def TranslateYAbs(img, v): # [-150, 150] => percentage: [-0.45, 0.45] assert 0 <= v <= 10 if random.random() > 0.5: v = -v return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, 0, 1, v)) def Rotate(img, v): # [-30, 30] assert -30 <= v <= 30 if _random_mirror and random.random() > 0.5: v = -v return img.rotate(v) def AutoContrast(img, _): return PIL.ImageOps.autocontrast(img) def Invert(img, _): return PIL.ImageOps.invert(img) def Equalize(img, _): return PIL.ImageOps.equalize(img) def Flip(img, _): # not from the paper return PIL.ImageOps.mirror(img) def Solarize(img, v): # [0, 256] assert 0 <= v <= 256 return PIL.ImageOps.solarize(img, v) def Posterize(img, v): # [4, 8] assert 4 <= v <= 8 v = int(v) return PIL.ImageOps.posterize(img, v) def Posterize2(img, v): # [0, 4] assert 0 <= v <= 4 v = int(v) return PIL.ImageOps.posterize(img, v) def Contrast(img, v): # [0.1,1.9] assert 0.1 <= v <= 1.9 return PIL.ImageEnhance.Contrast(img).enhance(v) def Color(img, v): # [0.1,1.9] assert 0.1 <= v <= 1.9 return PIL.ImageEnhance.Color(img).enhance(v) def Brightness(img, v): # [0.1,1.9] assert 0.1 <= v <= 1.9 return PIL.ImageEnhance.Brightness(img).enhance(v) def Sharpness(img, v): # [0.1,1.9] assert 0.1 <= v <= 1.9 return PIL.ImageEnhance.Sharpness(img).enhance(v) def Cutout(img, v): # [0, 60] => percentage: [0, 0.2] assert 0.0 <= v <= 0.2 if v <= 0.: return img v = v * img.size[0] return CutoutAbs(img, v) def CutoutAbs(img, v): # [0, 60] => percentage: [0, 0.2] # assert 0 <= v <= 20 if v < 0: return img w, h = img.size x0 = np.random.uniform(w) y0 = np.random.uniform(h) x0 = int(max(0, x0 - v / 2.)) y0 = int(max(0, y0 - v / 2.)) x1 = min(w, x0 + v) y1 = min(h, y0 + v) xy = (x0, y0, x1, y1) color = (125, 123, 114) # color = (0, 0, 0) img = img.copy() PIL.ImageDraw.Draw(img).rectangle(xy, color) return img def SamplePairing(imgs): # [0, 0.4] def f(img1, v): i = np.random.choice(len(imgs)) img2 = PIL.Image.fromarray(imgs[i]) return PIL.Image.blend(img1, img2, v) return f def augment_list(for_autoaug=True): # 16 oeprations and their ranges l = [ (ShearX, -0.3, 0.3), # 0 (ShearY, -0.3, 0.3), # 1 (TranslateX, -0.45, 0.45), # 2 (TranslateY, -0.45, 0.45), # 3 (Rotate, -30, 30), # 4 (AutoContrast, 0, 1), # 5 (Invert, 0, 1), # 6 (Equalize, 0, 1), # 7 (Solarize, 0, 256), # 8 (Posterize, 4, 8), # 9 (Contrast, 0.1, 1.9), # 10 (Color, 0.1, 1.9), # 11 (Brightness, 0.1, 1.9), # 12 (Sharpness, 0.1, 1.9), # 13 (Cutout, 0, 0.2), # 14 # (SamplePairing(imgs), 0, 0.4), # 15 ] if for_autoaug: l += [ (CutoutAbs, 0, 20), # compatible with auto-augment (Posterize2, 0, 4), # 9 (TranslateXAbs, 0, 10), # 9 (TranslateYAbs, 0, 10), # 9 ] return l _augment_dict = {fn.__name__: (fn, v1, v2) for fn, v1, v2 in augment_list()} def get_augment(name): global _augment_dict return _augment_dict[name] def apply_augment(img, name, level): augment_fn, low, high = get_augment(name) return augment_fn(img.copy(), level * (high - low) + low) def arsaug_policy(): exp0_0 = [ [('Solarize', 0.66, 0.34), ('Equalize', 0.56, 0.61)], [('Equalize', 0.43, 0.06), ('AutoContrast', 0.66, 0.08)], [('Color', 0.72, 0.47), ('Contrast', 0.88, 0.86)], [('Brightness', 0.84, 0.71), ('Color', 0.31, 0.74)], [('Rotate', 0.68, 0.26), ('TranslateX', 0.38, 0.88)]] exp0_1 = [ [('TranslateY', 0.88, 0.96), ('TranslateY', 0.53, 0.79)], [('AutoContrast', 0.44, 0.36), ('Solarize', 0.22, 0.48)], [('AutoContrast', 0.93, 0.32), ('Solarize', 0.85, 0.26)], [('Solarize', 0.55, 0.38), ('Equalize', 0.43, 0.48)], [('TranslateY', 0.72, 0.93), ('AutoContrast', 0.83, 0.95)]] exp0_2 = [ [('Solarize', 0.43, 0.58), ('AutoContrast', 0.82, 0.26)], [('TranslateY', 0.71, 0.79), ('AutoContrast', 0.81, 0.94)], [('AutoContrast', 0.92, 0.18), ('TranslateY', 0.77, 0.85)], [('Equalize', 0.71, 0.69), ('Color', 0.23, 0.33)], [('Sharpness', 0.36, 0.98), ('Brightness', 0.72, 0.78)]] exp0_3 = [ [('Equalize', 0.74, 0.49), ('TranslateY', 0.86, 0.91)], [('TranslateY', 0.82, 0.91), ('TranslateY', 0.96, 0.79)], [('AutoContrast', 0.53, 0.37), ('Solarize', 0.39, 0.47)], [('TranslateY', 0.22, 0.78), ('Color', 0.91, 0.65)], [('Brightness', 0.82, 0.46), ('Color', 0.23, 0.91)]] exp0_4 = [ [('Cutout', 0.27, 0.45), ('Equalize', 0.37, 0.21)], [('Color', 0.43, 0.23), ('Brightness', 0.65, 0.71)], [('ShearX', 0.49, 0.31), ('AutoContrast', 0.92, 0.28)], [('Equalize', 0.62, 0.59), ('Equalize', 0.38, 0.91)], [('Solarize', 0.57, 0.31), ('Equalize', 0.61, 0.51)]] exp0_5 = [ [('TranslateY', 0.29, 0.35), ('Sharpness', 0.31, 0.64)], [('Color', 0.73, 0.77), ('TranslateX', 0.65, 0.76)], [('ShearY', 0.29, 0.74), ('Posterize', 0.42, 0.58)], [('Color', 0.92, 0.79), ('Equalize', 0.68, 0.54)], [('Sharpness', 0.87, 0.91), ('Sharpness', 0.93, 0.41)]] exp0_6 = [ [('Solarize', 0.39, 0.35), ('Color', 0.31, 0.44)], [('Color', 0.33, 0.77), ('Color', 0.25, 0.46)], [('ShearY', 0.29, 0.74), ('Posterize', 0.42, 0.58)], [('AutoContrast', 0.32, 0.79), ('Cutout', 0.68, 0.34)], [('AutoContrast', 0.67, 0.91), ('AutoContrast', 0.73, 0.83)]] return exp0_0 + exp0_1 + exp0_2 + exp0_3 + exp0_4 + exp0_5 + exp0_6 def autoaug2arsaug(f): def autoaug(): mapper = defaultdict(lambda: lambda x: x) mapper.update({ 'ShearX': lambda x: float_parameter(x, 0.3), 'ShearY': lambda x: float_parameter(x, 0.3), 'TranslateX': lambda x: int_parameter(x, 10), 'TranslateY': lambda x: int_parameter(x, 10), 'Rotate': lambda x: int_parameter(x, 30), 'Solarize': lambda x: 256 - int_parameter(x, 256), 'Posterize2': lambda x: 4 - int_parameter(x, 4), 'Contrast': lambda x: float_parameter(x, 1.8) + .1, 'Color': lambda x: float_parameter(x, 1.8) + .1, 'Brightness': lambda x: float_parameter(x, 1.8) + .1, 'Sharpness': lambda x: float_parameter(x, 1.8) + .1, 'CutoutAbs': lambda x: int_parameter(x, 20) }) def low_high(name, prev_value): _, low, high = get_augment(name) return float(prev_value - low) / (high - low) policies = f() new_policies = [] for policy in policies: new_policies.append([(name, pr, low_high(name, mapper[name](level))) for name, pr, level in policy]) return new_policies return autoaug @autoaug2arsaug def autoaug_paper_cifar10(): return [ [('Invert', 0.1, 7), ('Contrast', 0.2, 6)], [('Rotate', 0.7, 2), ('TranslateXAbs', 0.3, 9)], [('Sharpness', 0.8, 1), ('Sharpness', 0.9, 3)], [('ShearY', 0.5, 8), ('TranslateYAbs', 0.7, 9)], [('AutoContrast', 0.5, 8), ('Equalize', 0.9, 2)], [('ShearY', 0.2, 7), ('Posterize2', 0.3, 7)], [('Color', 0.4, 3), ('Brightness', 0.6, 7)], [('Sharpness', 0.3, 9), ('Brightness', 0.7, 9)], [('Equalize', 0.6, 5), ('Equalize', 0.5, 1)], [('Contrast', 0.6, 7), ('Sharpness', 0.6, 5)], [('Color', 0.7, 7), ('TranslateXAbs', 0.5, 8)], [('Equalize', 0.3, 7), ('AutoContrast', 0.4, 8)], [('TranslateYAbs', 0.4, 3), ('Sharpness', 0.2, 6)], [('Brightness', 0.9, 6), ('Color', 0.2, 6)], [('Solarize', 0.5, 2), ('Invert', 0.0, 3)], [('Equalize', 0.2, 0), ('AutoContrast', 0.6, 0)], [('Equalize', 0.2, 8), ('Equalize', 0.6, 4)], [('Color', 0.9, 9), ('Equalize', 0.6, 6)], [('AutoContrast', 0.8, 4), ('Solarize', 0.2, 8)], [('Brightness', 0.1, 3), ('Color', 0.7, 0)], [('Solarize', 0.4, 5), ('AutoContrast', 0.9, 3)], [('TranslateYAbs', 0.9, 9), ('TranslateYAbs', 0.7, 9)], [('AutoContrast', 0.9, 2), ('Solarize', 0.8, 3)], [('Equalize', 0.8, 8), ('Invert', 0.1, 3)], [('TranslateYAbs', 0.7, 9), ('AutoContrast', 0.9, 1)], ] @autoaug2arsaug def autoaug_policy(): """AutoAugment policies found on Cifar.""" exp0_0 = [ [('Invert', 0.1, 7), ('Contrast', 0.2, 6)], [('Rotate', 0.7, 2), ('TranslateXAbs', 0.3, 9)], [('Sharpness', 0.8, 1), ('Sharpness', 0.9, 3)], [('ShearY', 0.5, 8), ('TranslateYAbs', 0.7, 9)], [('AutoContrast', 0.5, 8), ('Equalize', 0.9, 2)]] exp0_1 = [ [('Solarize', 0.4, 5), ('AutoContrast', 0.9, 3)], [('TranslateYAbs', 0.9, 9), ('TranslateYAbs', 0.7, 9)], [('AutoContrast', 0.9, 2), ('Solarize', 0.8, 3)], [('Equalize', 0.8, 8), ('Invert', 0.1, 3)], [('TranslateYAbs', 0.7, 9), ('AutoContrast', 0.9, 1)]] exp0_2 = [ [('Solarize', 0.4, 5), ('AutoContrast', 0.0, 2)], [('TranslateYAbs', 0.7, 9), ('TranslateYAbs', 0.7, 9)], [('AutoContrast', 0.9, 0), ('Solarize', 0.4, 3)], [('Equalize', 0.7, 5), ('Invert', 0.1, 3)], [('TranslateYAbs', 0.7, 9), ('TranslateYAbs', 0.7, 9)]] exp0_3 = [ [('Solarize', 0.4, 5), ('AutoContrast', 0.9, 1)], [('TranslateYAbs', 0.8, 9), ('TranslateYAbs', 0.9, 9)], [('AutoContrast', 0.8, 0), ('TranslateYAbs', 0.7, 9)], [('TranslateYAbs', 0.2, 7), ('Color', 0.9, 6)], [('Equalize', 0.7, 6), ('Color', 0.4, 9)]] exp1_0 = [ [('ShearY', 0.2, 7), ('Posterize2', 0.3, 7)], [('Color', 0.4, 3), ('Brightness', 0.6, 7)], [('Sharpness', 0.3, 9), ('Brightness', 0.7, 9)], [('Equalize', 0.6, 5), ('Equalize', 0.5, 1)], [('Contrast', 0.6, 7), ('Sharpness', 0.6, 5)]] exp1_1 = [ [('Brightness', 0.3, 7), ('AutoContrast', 0.5, 8)], [('AutoContrast', 0.9, 4), ('AutoContrast', 0.5, 6)], [('Solarize', 0.3, 5), ('Equalize', 0.6, 5)], [('TranslateYAbs', 0.2, 4), ('Sharpness', 0.3, 3)], [('Brightness', 0.0, 8), ('Color', 0.8, 8)]] exp1_2 = [ [('Solarize', 0.2, 6), ('Color', 0.8, 6)], [('Solarize', 0.2, 6), ('AutoContrast', 0.8, 1)], [('Solarize', 0.4, 1), ('Equalize', 0.6, 5)], [('Brightness', 0.0, 0), ('Solarize', 0.5, 2)], [('AutoContrast', 0.9, 5), ('Brightness', 0.5, 3)]] exp1_3 = [ [('Contrast', 0.7, 5), ('Brightness', 0.0, 2)], [('Solarize', 0.2, 8), ('Solarize', 0.1, 5)], [('Contrast', 0.5, 1), ('TranslateYAbs', 0.2, 9)], [('AutoContrast', 0.6, 5), ('TranslateYAbs', 0.0, 9)], [('AutoContrast', 0.9, 4), ('Equalize', 0.8, 4)]] exp1_4 = [ [('Brightness', 0.0, 7), ('Equalize', 0.4, 7)], [('Solarize', 0.2, 5), ('Equalize', 0.7, 5)], [('Equalize', 0.6, 8), ('Color', 0.6, 2)], [('Color', 0.3, 7), ('Color', 0.2, 4)], [('AutoContrast', 0.5, 2), ('Solarize', 0.7, 2)]] exp1_5 = [ [('AutoContrast', 0.2, 0), ('Equalize', 0.1, 0)], [('ShearY', 0.6, 5), ('Equalize', 0.6, 5)], [('Brightness', 0.9, 3), ('AutoContrast', 0.4, 1)], [('Equalize', 0.8, 8), ('Equalize', 0.7, 7)], [('Equalize', 0.7, 7), ('Solarize', 0.5, 0)]] exp1_6 = [ [('Equalize', 0.8, 4), ('TranslateYAbs', 0.8, 9)], [('TranslateYAbs', 0.8, 9), ('TranslateYAbs', 0.6, 9)], [('TranslateYAbs', 0.9, 0), ('TranslateYAbs', 0.5, 9)], [('AutoContrast', 0.5, 3), ('Solarize', 0.3, 4)], [('Solarize', 0.5, 3), ('Equalize', 0.4, 4)]] exp2_0 = [ [('Color', 0.7, 7), ('TranslateXAbs', 0.5, 8)], [('Equalize', 0.3, 7), ('AutoContrast', 0.4, 8)], [('TranslateYAbs', 0.4, 3), ('Sharpness', 0.2, 6)], [('Brightness', 0.9, 6), ('Color', 0.2, 8)], [('Solarize', 0.5, 2), ('Invert', 0.0, 3)]] exp2_1 = [ [('AutoContrast', 0.1, 5), ('Brightness', 0.0, 0)], [('CutoutAbs', 0.2, 4), ('Equalize', 0.1, 1)], [('Equalize', 0.7, 7), ('AutoContrast', 0.6, 4)], [('Color', 0.1, 8), ('ShearY', 0.2, 3)], [('ShearY', 0.4, 2), ('Rotate', 0.7, 0)]] exp2_2 = [ [('ShearY', 0.1, 3), ('AutoContrast', 0.9, 5)], [('TranslateYAbs', 0.3, 6), ('CutoutAbs', 0.3, 3)], [('Equalize', 0.5, 0), ('Solarize', 0.6, 6)], [('AutoContrast', 0.3, 5), ('Rotate', 0.2, 7)], [('Equalize', 0.8, 2), ('Invert', 0.4, 0)]] exp2_3 = [ [('Equalize', 0.9, 5), ('Color', 0.7, 0)], [('Equalize', 0.1, 1), ('ShearY', 0.1, 3)], [('AutoContrast', 0.7, 3), ('Equalize', 0.7, 0)], [('Brightness', 0.5, 1), ('Contrast', 0.1, 7)], [('Contrast', 0.1, 4), ('Solarize', 0.6, 5)]] exp2_4 = [ [('Solarize', 0.2, 3), ('ShearX', 0.0, 0)], [('TranslateXAbs', 0.3, 0), ('TranslateXAbs', 0.6, 0)], [('Equalize', 0.5, 9), ('TranslateYAbs', 0.6, 7)], [('ShearX', 0.1, 0), ('Sharpness', 0.5, 1)], [('Equalize', 0.8, 6), ('Invert', 0.3, 6)]] exp2_5 = [ [('AutoContrast', 0.3, 9), ('CutoutAbs', 0.5, 3)], [('ShearX', 0.4, 4), ('AutoContrast', 0.9, 2)], [('ShearX', 0.0, 3), ('Posterize2', 0.0, 3)], [('Solarize', 0.4, 3), ('Color', 0.2, 4)], [('Equalize', 0.1, 4), ('Equalize', 0.7, 6)]] exp2_6 = [ [('Equalize', 0.3, 8), ('AutoContrast', 0.4, 3)], [('Solarize', 0.6, 4), ('AutoContrast', 0.7, 6)], [('AutoContrast', 0.2, 9), ('Brightness', 0.4, 8)], [('Equalize', 0.1, 0), ('Equalize', 0.0, 6)], [('Equalize', 0.8, 4), ('Equalize', 0.0, 4)]] exp2_7 = [ [('Equalize', 0.5, 5), ('AutoContrast', 0.1, 2)], [('Solarize', 0.5, 5), ('AutoContrast', 0.9, 5)], [('AutoContrast', 0.6, 1), ('AutoContrast', 0.7, 8)], [('Equalize', 0.2, 0), ('AutoContrast', 0.1, 2)], [('Equalize', 0.6, 9), ('Equalize', 0.4, 4)]] exp0s = exp0_0 + exp0_1 + exp0_2 + exp0_3 exp1s = exp1_0 + exp1_1 + exp1_2 + exp1_3 + exp1_4 + exp1_5 + exp1_6 exp2s = exp2_0 + exp2_1 + exp2_2 + exp2_3 + exp2_4 + exp2_5 + exp2_6 + exp2_7 return exp0s + exp1s + exp2s _PARAMETER_MAX = 10 def float_parameter(level, maxval): return float(level) * maxval / _PARAMETER_MAX def int_parameter(level, maxval): return int(float_parameter(level, maxval)) def no_duplicates(f): def wrap_remove_duplicates(): policies = f() return remove_deplicates(policies) return wrap_remove_duplicates def remove_deplicates(policies): s = set() new_policies = [] for ops in policies: key = [] for op in ops: key.append(op[0]) key = '_'.join(key) if key in s: continue else: s.add(key) new_policies.append(ops) return new_policies def policy_decoder(augment, num_policy, num_op): op_list = augment_list(False) policies = [] for i in range(num_policy): ops = [] for j in range(num_op): op_idx = augment['policy_%d_%d' % (i, j)] op_prob = augment['prob_%d_%d' % (i, j)] op_level = augment['level_%d_%d' % (i, j)] ops.append((op_list[op_idx][0].__name__, op_prob, op_level)) policies.append(ops) return policies
archai/archai/supergraph/datasets/augmentation.py/0
{ "file_path": "archai/archai/supergraph/datasets/augmentation.py", "repo_id": "archai", "token_count": 10051 }
329
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import torchvision from overrides import overrides from torchvision.transforms import transforms from archai.common import utils from archai.common.config import Config from archai.supergraph.datasets.dataset_provider import ( DatasetProvider, ImgSize, TrainTestDatasets, register_dataset_provider, ) class MnistProvider(DatasetProvider): def __init__(self, conf_dataset:Config): super().__init__(conf_dataset) self._dataroot = utils.full_path(conf_dataset['dataroot']) @overrides def get_datasets(self, load_train:bool, load_test:bool, transform_train, transform_test)->TrainTestDatasets: trainset, testset = None, None if load_train: trainset = torchvision.datasets.MNIST(root=self._dataroot, train=True, download=True, transform=transform_train) if load_test: testset = torchvision.datasets.MNIST(root=self._dataroot, train=False, download=True, transform=transform_test) return trainset, testset @overrides def get_transforms(self, img_size:ImgSize)->tuple: MEAN = [0.13066051707548254] STD = [0.30810780244715075] transf = [ transforms.RandomAffine(degrees=15, translate=(0.1, 0.1), scale=(0.9, 1.1), shear=0.1) ] normalize = [ transforms.ToTensor(), transforms.Normalize(MEAN, STD) ] train_transform = transforms.Compose(transf + normalize) test_transform = transforms.Compose(normalize) return train_transform, test_transform register_dataset_provider('mnist', MnistProvider)
archai/archai/supergraph/datasets/providers/mnist_provider.py/0
{ "file_path": "archai/archai/supergraph/datasets/providers/mnist_provider.py", "repo_id": "archai", "token_count": 753 }
330
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. """ Note: All classes in this file needs to be deepcopy compatible because descs are used as template to create copies by macro builder. """ import copy import os import pathlib from enum import Enum from typing import List, Mapping, Optional, Union import torch import yaml from archai.common import utils from archai.common.config import Config from archai.common.ordered_dict_logger import get_global_logger logger = get_global_logger() # Each tensor shape is list # A layer can output multiple tensors so its shapes are TensorShapes # list of all layer outputs is TensorShapesList] TensorShape=List[Union[int, float]] TensorShapes=List[TensorShape] TensorShapesList=List[TensorShapes] class ConvMacroParams: """Holds parameters that may be altered by macro architecture""" def __init__(self, ch_in:int, ch_out:int) -> None: self.ch_in, self.ch_out = ch_in, ch_out def clone(self)->'ConvMacroParams': return copy.deepcopy(self) class OpDesc: """Op description that is in each edge""" def __init__(self, name:str, params:dict, in_len:int, trainables:Optional[Mapping], children:Optional[List['OpDesc']]=None, children_ins:Optional[List[int]]=None)->None: self.name = name self.in_len = in_len self.params = params # parameters specific to op needed to construct it self.trainables = trainables # TODO: make this private due to clear_trainable # If op is keeping any child op then it should save it in children. # This way we can control state_dict of children. self.children = children self.children_ins = children_ins def clone(self, clone_trainables=True)->'OpDesc': cloned = copy.deepcopy(self) if not clone_trainables: cloned.clear_trainables() return cloned def clear_trainables(self)->None: self.trainables = None if self.children is not None: for child in self.children: child.clear_trainables() def state_dict(self)->dict: return { 'trainables': self.trainables, 'children': [child.state_dict() if child is not None else None for child in self.children] \ if self.children is not None else None } def load_state_dict(self, state_dict)->None: self.trainables = state_dict['trainables'] c, cs = self.children, state_dict['children'] assert (c is None and cs is None) or \ (c is not None and cs is not None and len(c) == len(cs)) # TODO: when c and cs are both none, zip throws an error that the # first argument should be iterable if (c is None and cs is None): return for cx, csx in utils.zip_eq(c, cs): if cx is not None and csx is not None: cx.load_state_dict(csx) class EdgeDesc: """Edge description between two nodes in the cell """ def __init__(self, op_desc:OpDesc, input_ids:List[int])->None: assert op_desc.in_len == len(input_ids) self.op_desc = op_desc self.input_ids = input_ids def clone(self, conv_params:Optional[ConvMacroParams], clear_trainables:bool)\ ->'EdgeDesc': # edge cloning is same as deep copy except that we do it through # constructor for future proofing any additional future rules and # that we allow overiding conv_params and clearing weights e = EdgeDesc(self.op_desc.clone(), self.input_ids) # op_desc should have params set from cloning. If no override supplied # then don't change it if conv_params is not None: e.op_desc.params['conv'] = conv_params if clear_trainables: e.op_desc.clear_trainables() return e def clear_trainables(self)->None: self.op_desc.clear_trainables() def state_dict(self)->dict: return {'op_desc': self.op_desc.state_dict()} def load_state_dict(self, state_dict)->None: self.op_desc.load_state_dict(state_dict['op_desc']) class NodeDesc: def __init__(self, edges:List[EdgeDesc], conv_params:ConvMacroParams) -> None: self.edges = edges self.conv_params = conv_params def clone(self): # don't override conv_params or reset learned weights # node cloning is currently equivalent to deep copy return NodeDesc(edges=[e.clone(conv_params=None, clear_trainables=False) for e in self.edges], conv_params=self.conv_params) def clear_trainables(self)->None: for edge in self.edges: edge.clear_trainables() def state_dict(self)->dict: return { 'edges': [e.state_dict() for e in self.edges] } def load_state_dict(self, state_dict)->None: for e, es in zip(self.edges, state_dict['edges']): e.load_state_dict(es) class AuxTowerDesc: def __init__(self, ch_in:int, n_classes:int, stride:int) -> None: self.ch_in = ch_in self.n_classes = n_classes self.stride = stride class CellType(Enum): Regular = 'regular' Reduction = 'reduction' class CellDesc: def __init__(self, id:int, cell_type:CellType, conf_cell:Config, stems:List[OpDesc], stem_shapes:TensorShapes, nodes:List[NodeDesc], node_shapes: TensorShapes, post_op:OpDesc, out_shape:TensorShape, trainables_from:int)->None: self.cell_type = cell_type self.id = id self.conf_cell = conf_cell self.stems = stems self.stem_shapes = stem_shapes self.out_shape = out_shape self.trainables_from = trainables_from self.reset_nodes(nodes, node_shapes, post_op, out_shape) def clone(self, id:int)->'CellDesc': c = copy.deepcopy(self) # note that trainables_from is also cloned c.id = id return c def clear_trainables(self)->None: for stem in self.stems: stem.clear_trainables() for node in self._nodes: node.clear_trainables() self.post_op.clear_trainables() def state_dict(self)->dict: return { 'id': self.id, 'cell_type': self.cell_type, 'stems': [s.state_dict() for s in self.stems], 'stem_shapes': self.stem_shapes, 'nodes': [n.state_dict() for n in self.nodes()], 'node_shapes': self.node_shapes, 'post_op': self.post_op.state_dict(), 'out_shape': self.out_shape } def load_state_dict(self, state_dict)->None: assert self.id == state_dict['id'] assert self.cell_type == state_dict['cell_type'] for s, ss in utils.zip_eq(self.stems, state_dict['stems']): s.load_state_dict(ss) self.stem_shapes = state_dict['stem_shapes'] for n, ns in utils.zip_eq(self.nodes(), state_dict['nodes']): n.load_state_dict(ns) self.node_shapes = state_dict['node_shapes'] self.post_op.load_state_dict(state_dict['post_op']) self.out_shape = state_dict['out_shape'] def reset_nodes(self, nodes:List[NodeDesc], node_shapes:TensorShapes, post_op:OpDesc, out_shape:TensorShape)->None: self._nodes = nodes self.node_shapes = node_shapes self.post_op = post_op self.out_shape = out_shape def nodes(self)->List[NodeDesc]: return self._nodes def all_empty(self)->bool: return len(self._nodes)==0 or all((len(n.edges)==0 for n in self._nodes)) def all_full(self)->bool: return len(self._nodes)>0 and all((len(n.edges)>0 for n in self._nodes)) class ModelDesc: def __init__(self, conf_model_desc:Config, model_stems:List[OpDesc], pool_op:OpDesc, cell_descs:List[CellDesc], aux_tower_descs:List[Optional[AuxTowerDesc]], logits_op:OpDesc)->None: self.conf_model_desc = conf_model_desc conf_dataset = conf_model_desc['dataset'] self.ds_ch:int = conf_dataset['channels'] self.n_classes:int = conf_dataset['n_classes'] self.params = conf_model_desc['params'].to_dict() self.max_final_edges:int = conf_model_desc['max_final_edges'] self.model_stems, self.pool_op = model_stems, pool_op self.logits_op = logits_op self.reset_cells(cell_descs, aux_tower_descs) def reset_cells(self, cell_descs:List[CellDesc], aux_tower_descs:List[Optional[AuxTowerDesc]])->None: assert len(cell_descs) == len(aux_tower_descs) # every cell should have unique ID so we can tell where arch params are shared assert len(set(c.id for c in cell_descs)) == len(cell_descs) self._cell_descs = cell_descs self.aux_tower_descs = aux_tower_descs def clear_trainables(self)->None: for stem in self.model_stems: stem.clear_trainables() for attr in ['pool_op', 'logits_op']: op_desc:OpDesc = getattr(self, attr) op_desc.clear_trainables() for cell_desc in self._cell_descs: cell_desc.clear_trainables() def cell_descs(self)->List[CellDesc]: return self._cell_descs def cell_type_count(self, cell_type:CellType)->int: return sum(1 for c in self._cell_descs if c.cell_type==cell_type) def clone(self)->'ModelDesc': return copy.deepcopy(self) def has_aux_tower(self)->bool: return any(self.aux_tower_descs) def all_empty(self)->bool: return len(self._cell_descs)==0 or \ all((c.all_empty() for c in self._cell_descs)) def all_full(self)->bool: return len(self._cell_descs)>0 and \ all((c.all_full() for c in self._cell_descs)) def state_dict(self)->dict: return { 'cell_descs': [c.state_dict() for c in self.cell_descs()], 'model_stems': [stem.state_dict() for stem in self.model_stems], 'pool_op': self.pool_op.state_dict(), 'logits_op': self.logits_op.state_dict() } def load_state_dict(self, state_dict)->None: for c, cs in utils.zip_eq(self.cell_descs(), state_dict['cell_descs']): c.load_state_dict(cs) for stem, state in utils.zip_eq(self.model_stems, state_dict['model_stems']): stem.load_state_dict(state) self.pool_op.load_state_dict(state_dict['pool_op']) self.logits_op.load_state_dict(state_dict['logits_op']) def save(self, filename:str, save_trainables=False)->Optional[str]: if filename: filename = utils.full_path(filename) if save_trainables: state_dict = self.state_dict() pt_filepath = ModelDesc._pt_filepath(filename) torch.save(state_dict, pt_filepath) # save yaml cloned = self.clone() cloned.clear_trainables() utils.write_string(filename, yaml.dump(cloned)) return filename @staticmethod def _pt_filepath(desc_filepath:str)->str: # change file extension return str(pathlib.Path(desc_filepath).with_suffix('.pth')) @staticmethod def load(filename:str, load_trainables=False)->'ModelDesc': filename = utils.full_path(filename) if not filename or not os.path.exists(filename): raise RuntimeError("Model description file is not found." "Typically this file should be generated from the search." "Please copy this file to '{}'".format(filename)) logger.info({'final_desc_filename': filename}) with open(filename, 'r') as f: model_desc = yaml.load(f, Loader=yaml.Loader) if load_trainables: # look for pth file that should have pytorch parameters state_dict pt_filepath = ModelDesc._pt_filepath(filename) if os.path.exists(pt_filepath): state_dict = torch.load(pt_filepath, map_location=torch.device('cpu')) model_desc.load_state_dict(state_dict) # else no need to restore weights return model_desc
archai/archai/supergraph/nas/model_desc.py/0
{ "file_path": "archai/archai/supergraph/nas/model_desc.py", "repo_id": "archai", "token_count": 5656 }
331
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from typing import Callable, Optional, Tuple import torch from overrides import EnforceOverrides from torch import Tensor, nn from torch.optim.lr_scheduler import _LRScheduler from torch.optim.optimizer import Optimizer from torch.utils.data import DataLoader from archai.common import ml_utils from archai.common.apex_utils import ApexUtils from archai.common.config import Config from archai.common.ordered_dict_logger import get_global_logger from archai.supergraph.datasets import data from archai.supergraph.utils.checkpoint import CheckPoint from archai.supergraph.utils.metrics import Metrics from archai.supergraph.utils.multi_optim import MultiOptim, OptimSched from archai.supergraph.utils.tester import Tester logger = get_global_logger() class Trainer(EnforceOverrides): def __init__(self, conf_train:Config, model:nn.Module, checkpoint:Optional[CheckPoint]=None)->None: # region config vars self.conf_train = conf_train conf_lossfn = conf_train['lossfn'] self._aux_weight = conf_train['aux_weight'] self._grad_clip = conf_train['grad_clip'] self._drop_path_prob = conf_train['drop_path_prob'] self._logger_freq = conf_train['logger_freq'] self._title = conf_train['title'] self._epochs = conf_train['epochs'] self.conf_optim = conf_train['optimizer'] self.conf_sched = conf_train['lr_schedule'] self.batch_chunks = conf_train['batch_chunks'] conf_validation = conf_train['validation'] conf_apex = conf_train['apex'] self._validation_freq = 0 if conf_validation is None else conf_validation['freq'] # endregion logger.pushd(self._title + '__init__') self._apex = ApexUtils(conf_apex) self._checkpoint = checkpoint self.model = model self._lossfn = ml_utils.get_lossfn(conf_lossfn) # using separate apex for Tester is not possible because we must use # same distributed model as Trainer and hence they must share apex self._tester = Tester(conf_validation, model, self._apex) \ if conf_validation else None self._metrics:Optional[Metrics] = None self._droppath_module = self._get_droppath_module() if self._droppath_module is None and self._drop_path_prob > 0.0: logger.warn({'droppath_module': None}) self._start_epoch = -1 # nothing is started yet logger.popd() def fit(self, data_loaders:data.DataLoaders)->Metrics: logger.pushd(self._title) assert data_loaders.train_dl is not None self._metrics = Metrics(self._title, self._apex, logger_freq=self._logger_freq) # create optimizers and schedulers self._multi_optim = self.create_multi_optim(len(data_loaders.train_dl)) # before checkpoint restore, convert to amp self.model = self._apex.to_amp(self.model, self._multi_optim, batch_size=data_loaders.train_dl.batch_size) # pyright: ignore[reportGeneralTypeIssues] self._lossfn = self._lossfn.to(self.get_device()) self.pre_fit(data_loaders) # we need to restore checkpoint after all objects are created because # restoring checkpoint requires load_state_dict calls on these objects self._start_epoch = 0 # do we have a checkpoint checkpoint_avail = self._checkpoint is not None checkpoint_val = checkpoint_avail and 'trainer' in self._checkpoint # pyright: ignore[reportGeneralTypeIssues] resumed = False if checkpoint_val: # restore checkpoint resumed = True self.restore_checkpoint() elif checkpoint_avail: # TODO: bad checkpoint? self._checkpoint.clear() logger.warn({'resumed': resumed, 'checkpoint_avail': checkpoint_avail, 'checkpoint_val': checkpoint_val, 'start_epoch': self._start_epoch, 'total_epochs': self._epochs}) logger.info({'aux_weight': self._aux_weight, 'grad_clip': self._grad_clip, 'drop_path_prob': self._drop_path_prob, 'validation_freq': self._validation_freq, 'batch_chunks': self.batch_chunks}) if self._start_epoch >= self._epochs: logger.warn(f'fit done because start_epoch {self._start_epoch}>={self._epochs}') return self.get_metrics() # we already finished the run, we might be checkpointed logger.pushd('epochs') for epoch in range(self._start_epoch, self._epochs): logger.pushd(epoch) self._set_epoch(epoch, data_loaders) self.pre_epoch(data_loaders) self._train_epoch(data_loaders.train_dl) self.post_epoch(data_loaders) logger.popd() logger.popd() self.post_fit(data_loaders) # make sure we don't keep references to the graph del self._multi_optim logger.popd() return self.get_metrics() def create_multi_optim(self, train_len:int)->MultiOptim: logger.info({'steps_per_epoch': train_len, 'conf_sched': self.conf_sched.to_dict()}) logger.info({'conf_optim': self.conf_optim.to_dict()}) # optimizers, schedulers needs to be recreated for each fit call # as they have state specific to each run optim = self.create_optimizer(self.conf_optim, self.model.parameters()) # create scheduler for optim before applying amp sched, sched_on_epoch = self.create_scheduler(self.conf_sched, optim, train_len) multi_optim = MultiOptim() multi_optim.append(OptimSched(optim, sched, sched_on_epoch)) logger.info({'multi_optim_len': len(multi_optim)}) return multi_optim def create_optimizer(self, conf_optim:Config, params)->Optimizer: optim = ml_utils.create_optimizer(conf_optim, params) return optim def create_scheduler(self, conf_sched:Config, optim:Optimizer, steps_per_epoch:int) \ ->Tuple[Optional[_LRScheduler],bool]: return ml_utils.create_lr_scheduler(conf_sched, self._epochs, optim, steps_per_epoch) def get_optimizer(self, index=0)->Optimizer: return self._multi_optim[index].optim def get_scheduler(self, index=0)->Optional[_LRScheduler]: return self._multi_optim[index].sched def get_metrics(self)->Metrics: return self._metrics # pyright: ignore[reportGeneralTypeIssues] def _set_epoch(self, epoch:int, data_loaders:data.DataLoaders)->None: # optimizers such as bi-level may use val set for its own use # which causes reshuffling due to automatic epoch counting # here we make sure that val_dl has same epoch as train_dl if hasattr(data_loaders.train_dl.sampler, 'set_epoch'): data_loaders.train_dl.sampler.set_epoch(epoch) # pyright: ignore[reportGeneralTypeIssues,reportOptionalMemberAccess] if data_loaders.val_dl is not None and hasattr(data_loaders.val_dl.sampler, 'set_epoch'): data_loaders.val_dl.sampler.set_epoch(epoch) # pyright: ignore[reportGeneralTypeIssues] # apply droppath self._set_drop_path(epoch, self._epochs) assert self._metrics.epochs() == epoch ######################### hooks ######################### def pre_fit(self, data_loaders:data.DataLoaders)->None: self._metrics.pre_run() def post_fit(self, data_loaders:data.DataLoaders)->None: test_metrics = None # first run test before checkpointing, otherwise we won't have val metrics if data_loaders.test_dl and self._tester: test_metrics = self._tester.test(data_loaders.test_dl) self._metrics.post_run(test_metrics=test_metrics) def pre_epoch(self, data_loaders:data.DataLoaders)->None: self._metrics.pre_epoch(lr=self._multi_optim.get_lr(0, 0)) def post_epoch(self, data_loaders:data.DataLoaders)->None: val_metrics = None # first run test before checkpointing, otherwise we won't have val metrics if data_loaders.val_dl and self._tester and self._validation_freq > 0: if self._metrics.epochs() % self._validation_freq == 0 or \ self._metrics.epochs() >= self._epochs: # last epoch # these asserts makes sure train and val are not ovrlapiing # assert train_dl.sampler.epoch == val_dl.sampler.epoch # tidx = list(train_dl.sampler) # vidx = list(val_dl.sampler) # assert all(ti not in vidx for ti in tidx) val_metrics = self._tester.test(data_loaders.val_dl) # update val metrics self._metrics.post_epoch(lr=self._multi_optim.get_lr(0, 0), val_metrics=val_metrics) # checkpoint if enabled with given freq or if this is the last epoch if self._checkpoint is not None and self._apex.is_master() and \ self._checkpoint.freq > 0 and (self._metrics.epochs() % self._checkpoint.freq == 0 or \ self._metrics.epochs() >= self._epochs): self._checkpoint.new() self.update_checkpoint(self._checkpoint) self._checkpoint.commit() def pre_step(self, x:Tensor, y:Tensor)->None: self._metrics.pre_step(x, y) def post_step(self, x:Tensor, y:Tensor, logits:Tensor, loss:Tensor, steps:int)->None: self._metrics.post_step(x, y, logits, loss, steps) ######################### hooks ######################### def get_device(self): return self._apex.device def restore_checkpoint(self)->None: state = self._checkpoint['trainer'] last_epoch = state['last_epoch'] assert last_epoch >= 0 and last_epoch < self._epochs self._metrics.load_state_dict(state['metrics']) assert self._metrics.epochs() == last_epoch+1 self._apex.load_state_dict(state['amp']) self.model.load_state_dict(state['model']) self._multi_optim.load_state_dict(state['multi_optim']) self._start_epoch = last_epoch + 1 def epoch(self)->int: return self._metrics.epochs() def update_checkpoint(self, checkpoint:CheckPoint)->None: # TODO: Don't need to pass checkpoint # save all necessory state state = { 'last_epoch': self._metrics.epochs()-1, 'metrics': self._metrics.state_dict(), 'model': self.model.state_dict(), 'multi_optim': self._multi_optim.state_dict(), 'amp': self._apex.state_dict() } self._checkpoint['trainer'] = state def _train_epoch(self, train_dl: DataLoader)->None: steps = len(train_dl) self.model.train() logger.pushd('steps') for step, (x, y) in enumerate(train_dl): logger.pushd(step) assert self.model.training # derived class might alter the mode # TODO: please check that no algorithm is invalidated by swapping prestep with zero grad self._multi_optim.zero_grad() self.pre_step(x, y) # divide batch in to chunks if needed so it fits in GPU RAM if self.batch_chunks > 1: x_chunks, y_chunks = torch.chunk(x, self.batch_chunks), torch.chunk(y, self.batch_chunks) else: x_chunks, y_chunks = (x,), (y,) logits_chunks = [] loss_sum, loss_count = 0.0, 0 for xc, yc in zip(x_chunks, y_chunks): xc, yc = xc.to(self.get_device(), non_blocking=True), yc.to(self.get_device(), non_blocking=True) with self._apex.autocast(): logits_c, aux_logits = self.model(xc), None tupled_out = isinstance(logits_c, Tuple) and len(logits_c) >=2 # if self._aux_weight: # TODO: some other way to validate? # assert tupled_out, "aux_logits cannot be None unless aux tower is disabled" if tupled_out: # then we are using model created by desc logits_c, aux_logits = logits_c[0], logits_c[1] loss_c = self.compute_loss(self._lossfn, yc, logits_c, # pyright: ignore[reportGeneralTypeIssues] self._aux_weight, aux_logits) self._apex.backward(loss_c) loss_sum += loss_c.item() * len(logits_c) loss_count += len(logits_c) # TODO: cannot place on CPU if it was half precision but should we somehow? logits_chunks.append(logits_c.detach()) # pyright: ignore[reportGeneralTypeIssues] # TODO: original darts clips alphas as well but pt.darts doesn't self._apex.clip_grad(self._grad_clip, self.model, self._multi_optim) self._apex.step(self._multi_optim) # TODO: we possibly need to sync so all replicas are upto date self._apex.sync_devices() # TODO: we need to put y on GPU because logits are on GPU. Is this good idea from GPU mem perspective? self.post_step(x, y.to(self.get_device(), non_blocking=True), ml_utils.join_chunks(logits_chunks), torch.tensor(loss_sum/loss_count), steps) logger.popd() # end of step self._multi_optim.epoch() logger.popd() def compute_loss(self, lossfn:Callable, y:Tensor, logits:Tensor, aux_weight:float, aux_logits:Optional[Tensor])->Tensor: loss = lossfn(logits, y) if aux_weight > 0.0 and aux_logits is not None: loss += aux_weight * lossfn(aux_logits, y) return loss def _get_droppath_module(self)->Optional[nn.Module]: m = self.model if hasattr(self.model, 'module'): # for data parallel model m = self.model.module if hasattr(m, 'drop_path_prob'): return m # pyright: ignore[reportGeneralTypeIssues] return None def _set_drop_path(self, epoch:int, epochs:int)->None: if self._drop_path_prob and self._droppath_module is not None: drop_prob = self._drop_path_prob * epoch / epochs # set value as property in model (it will be used by forward()) # this is necessory when using DataParallel(model) # https://github.com/pytorch/pytorch/issues/16885 m = self.model if hasattr(self.model, 'module'): # for data parallel model m = self.model.module if hasattr(m, 'drop_path_prob'): m.drop_path_prob(drop_prob) # pyright: ignore[reportGeneralTypeIssues] else: raise RuntimeError('Drop path value {} was specified but model' ' does not have drop_path_prob() method'\ .format(self._drop_path_prob))
archai/archai/supergraph/utils/trainer.py/0
{ "file_path": "archai/archai/supergraph/utils/trainer.py", "repo_id": "archai", "token_count": 6886 }
332
# Copyright (c) Microsoft Corporation. # Licensed under the MIT licen import os from dataclasses import asdict, dataclass, field from typing import Any, Dict, Optional, Tuple import numpy as np import torch from archai.common.distributed_utils import ( get_world_size, init_distributed, sync_workers, ) from archai.common.file_utils import get_full_path def _get_amlt_dirs() -> Tuple[str, str]: data_dir = os.environ.get("AMLT_DATA_DIR", "") output_dir = os.environ.get("AMLT_OUTPUT_DIR", "") return data_dir, output_dir def _get_default_dataroot() -> str: is_amlt_available = os.environ.get("AMLT_OUTPUT_DIR", None) return "/var/tmp/dataroot" if is_amlt_available else "~/dataroot" def _create_dirs( dataroot: str, dataset_name: str, experiment_name: Optional[str] = "tmp", output_dir: Optional[str] = "~/logdir", pretrained_path: Optional[str] = "", cache_dir: Optional[str] = "", ) -> Tuple[str, str, str, str]: def _get_dataset_dir_name(dataset_name: str) -> str: if dataset_name == "wt2": return "wikitext-2" if dataset_name == "wt103": return "wikitext-103" if dataset_name == "lm1b": return "one-billion-words" if dataset_name.startswith("olx_"): return dataset_name raise RuntimeError(f"Dataset: {dataset_name} is not supported yet.") pt_data_dir, pt_output_dir = _get_amlt_dirs() if pt_output_dir: pt_output_dir = os.path.join(pt_output_dir, experiment_name) dataroot = dataroot or pt_data_dir or _get_default_dataroot() dataroot = get_full_path(dataroot) dataset_dir = get_full_path(os.path.join(dataroot, "textpred", _get_dataset_dir_name(dataset_name))) output_dir = get_full_path(pt_output_dir or os.path.join(output_dir, experiment_name), create_folder=True) if not os.path.isabs(cache_dir): cache_dir = os.path.join(dataset_dir, cache_dir) cache_dir = get_full_path(cache_dir, create_folder=True) if not os.path.isabs(pretrained_path) and pretrained_path: pretrained_path = os.path.join(os.path.dirname(output_dir), pretrained_path) return dataset_dir, output_dir, pretrained_path, cache_dir @dataclass class NvidiaTrainingArguments: """Define arguments used in the NVIDIA training pipeline. Args: experiment_name: Name of the experiment. checkpoint_file_path: Path to the checkpoint file. output_dir: Output folder. seed: Random seed. no_cuda: Whether CUDA should not be used. logging_steps: Number of steps between logs. do_eval: Whether to enable evaluation. eval_steps: Number of steps between evaluations. save_all_checkpoints: Whether to save all checkpoints from `eval_steps` steps. dataset_name: Name of the dataset. dataset_dir: Dataset folder. dataset_cache_dir: Dataset cache folder. dataset_refresh_cache: Whether cache should be refreshed. vocab_type: Name of the vocabulary/tokenizer. vocab_size: Size of the vocabulary. iterator_roll: Whether iterator should be rolled. global_batch_size: Global batch size. per_device_global_batch_size: Individual GPU batch size. seq_len: Sequence length. strategy: Distributed training strategy. local_rank: Local rank of process. find_unused_parameters: Whether unused parameters should be found. max_steps: Maximum number of training steps. gradient_accumulation_steps: Number of gradient accumulation steps. fp16: Whether FP16 precision should be used. optim: Name of the optimizer. learning_rate: Optimizer learning rate. weight_decay: Optimizer weight decay. momentum: Optimizer momentum. max_grad_norm: Optimizer gradients clipping value. lr_scheduler_type: Name of the scheduler. lr_qat_scheduler_type: Name of the QAT-based scheduler. lr_scheduler_max_steps: Maximum number of scheduler steps. lr_scheduler_warmup_steps: Number of warmup steps for the scheduler. lr_scheduler_patience: Scheduler patience. lr_scheduler_min_lr: Scheduler minimum learning rate. lr_scheduler_decay_rate: Scheduler decay rate. qat: Whether QAT should be used during training. mixed_qat: Whether MixedQAT should be used during training. """ experiment_name: str = field(metadata={"help": "Name of the experiment."}) checkpoint_file_path: str = field(default="", metadata={"help": "Path to the checkpoint file."}) output_dir: str = field(default="~/logdir", metadata={"help": "Output folder."}) seed: int = field(default=42, metadata={"help": "Random seed."}) no_cuda: bool = field(default=False, metadata={"help": "Whether CUDA should not be used."}) logging_steps: int = field(default=10, metadata={"help": "Number of steps between logs."}) do_eval: bool = field(default=True, metadata={"help": "Whether to enable evaluation."}) eval_steps: int = field(default=100, metadata={"help": "Number of steps between evaluations."}) save_all_checkpoints: bool = field( default=False, metadata={"help": "Whether to save all checkpoints from `eval_steps` steps."} ) dataset_name: str = field(default="wt103", metadata={"help": "Name of the dataset."}) dataset_dir: str = field(default="", metadata={"help": "Dataset folder."}) dataset_cache_dir: str = field(default="cache", metadata={"help": "Dataset cache folder."}) dataset_refresh_cache: bool = field(default=False, metadata={"help": "Whether cache should be refreshed."}) vocab_type: str = field(default="gpt2", metadata={"help": "Type of the tokenizer."}) vocab_size: int = field(default=10000, metadata={"help": "Size of the vocabulary"}) iterator_roll: bool = field(default=True, metadata={"help": "Whether iterator should be rolled."}) global_batch_size: int = field(default=256, metadata={"help": "Global batch size."}) per_device_global_batch_size: int = field(default=None, metadata={"help": "Individual GPU batch size."}) seq_len: int = field(default=192, metadata={"help": "Sequence length."}) strategy: str = field(default="ddp", metadata={"help": "Multi-GPU strategy."}) local_rank: int = field(default=os.getenv("LOCAL_RANK", 0), metadata={"help": "Local rank of process."}) find_unused_parameters: bool = field(default=False, metadata={"help": "Whether unused parameters should be found."}) max_steps: int = field(default=40000, metadata={"help": "Maximum number of training steps."}) gradient_accumulation_steps: int = field(default=1, metadata={"help": "Number of gradient accumulation steps."}) fp16: bool = field(default=False, metadata={"help": "Whether FP16 precision should be used."}) optim: str = field(default="jitlamb", metadata={"help": "Name of the optimizer."}) learning_rate: float = field(default=0.01, metadata={"help": "Optimizer learning rate."}) weight_decay: float = field(default=0.0, metadata={"help": "Optimizer weight decay."}) momentum: float = field(default=0.0, metadata={"help": "Optimizer momentum."}) max_grad_norm: float = field(default=0.25, metadata={"help": "Optimizer gradients clipping value."}) lr_scheduler_type: str = field(default="cosine", metadata={"help": "Name of the scheduler."}) lr_qat_scheduler_type: str = field(default="cosine", metadata={"help": "Name of the QAT-based scheduler."}) lr_scheduler_max_steps: int = field(default=None, metadata={"help": "Maximum number of scheduler steps."}) lr_scheduler_warmup_steps: int = field(default=1000, metadata={"help": "Number of scheduler warmup steps."}) lr_scheduler_patience: float = field(default=0, metadata={"help": "Scheduler patience."}) lr_scheduler_min_lr: float = field(default=0.001, metadata={"help": "Scheduler minimum learning rate."}) lr_scheduler_decay_rate: float = field(default=0.5, metadata={"help": "Scheduler decay rate."}) qat: bool = field(default=False, metadata={"help": "Whether QAT should be used during training."}) mixed_qat: bool = field(default=False, metadata={"help": "Whether MixedQAT should be used during training."}) @property def device(self) -> torch.device: """Return a PyTorch device instance.""" return torch.device("cuda" if not self.no_cuda else "cpu") def __post_init__(self) -> None: """Override post-initialization with custom instructions. Ensure that `qat` and `mixed_qat` are not used together, set the random seed, initialize distributed training, create necessary directories, and set the global batch size. """ assert not (self.qat and self.mixed_qat), "`qat` and `mixed_qat` should not be used together." np.random.seed(self.seed) torch.manual_seed(self.seed) self.local_rank = int(self.local_rank) if not self.no_cuda: torch.cuda.set_device(self.local_rank) init_distributed(True) (self.dataset_dir, self.output_dir, self.checkpoint_file_path, self.dataset_cache_dir,) = _create_dirs( self.dataset_dir, self.dataset_name, self.experiment_name, self.output_dir, self.checkpoint_file_path, self.dataset_cache_dir, ) with sync_workers() as rank: if rank == 0: os.makedirs(self.output_dir, exist_ok=True) if self.per_device_global_batch_size is not None: world_size = get_world_size() self.global_batch_size = world_size * self.per_device_global_batch_size def to_dict(self) -> Dict[str, Any]: """Convert attributes into a dictionary representation. Returns: Attributes encoded as a dictionary. """ return asdict(self)
archai/archai/trainers/nlp/nvidia_training_args.py/0
{ "file_path": "archai/archai/trainers/nlp/nvidia_training_args.py", "repo_id": "archai", "token_count": 3759 }
333