Dataset Viewer
Auto-converted to Parquet
code
stringlengths
1.36k
41.2k
apis
sequence
extract_api
stringlengths
328
40.6k
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import grpc import requests from grpc._cython import cygrpc from fate_arch.common.base_utils import json_dumps, json_loads from fate_flow.entity.runtime_config import RuntimeConfig from fate_flow.settings import FATEFLOW_SERVICE_NAME, HEADERS, DEFAULT_REMOTE_REQUEST_TIMEOUT from fate_flow.settings import IP, GRPC_PORT, stat_logger from fate_flow.utils.proto_compatibility import basic_meta_pb2 from fate_flow.utils.proto_compatibility import proxy_pb2 from fate_flow.utils.proto_compatibility import proxy_pb2_grpc import time import sys from fate_flow.tests.grpc.xthread import ThreadPoolExecutor def wrap_grpc_packet(json_body, http_method, url, src_party_id, dst_party_id, job_id=None, overall_timeout=DEFAULT_REMOTE_REQUEST_TIMEOUT): _src_end_point = basic_meta_pb2.Endpoint(ip=IP, port=GRPC_PORT) _src = proxy_pb2.Topic(name=job_id, partyId="{}".format(src_party_id), role=FATEFLOW_SERVICE_NAME, callback=_src_end_point) _dst = proxy_pb2.Topic(name=job_id, partyId="{}".format(dst_party_id), role=FATEFLOW_SERVICE_NAME, callback=None) _task = proxy_pb2.Task(taskId=job_id) _command = proxy_pb2.Command(name=FATEFLOW_SERVICE_NAME) _conf = proxy_pb2.Conf(overallTimeout=overall_timeout) _meta = proxy_pb2.Metadata(src=_src, dst=_dst, task=_task, command=_command, operator=http_method, conf=_conf) _data = proxy_pb2.Data(key=url, value=bytes(json_dumps(json_body), 'utf-8')) return proxy_pb2.Packet(header=_meta, body=_data) def get_url(_suffix): return "http://{}:{}/{}".format(RuntimeConfig.JOB_SERVER_HOST, RuntimeConfig.HTTP_PORT, _suffix.lstrip('/')) class UnaryService(proxy_pb2_grpc.DataTransferServiceServicer): def unaryCall(self, _request, context): packet = _request header = packet.header _suffix = packet.body.key param_bytes = packet.body.value param = bytes.decode(param_bytes) job_id = header.task.taskId src = header.src dst = header.dst method = header.operator param_dict = json_loads(param) param_dict['src_party_id'] = str(src.partyId) source_routing_header = [] for key, value in context.invocation_metadata(): source_routing_header.append((key, value)) stat_logger.info(f"grpc request routing header: {source_routing_header}") param = bytes.decode(bytes(json_dumps(param_dict), 'utf-8')) action = getattr(requests, method.lower(), None) if action: print(_suffix) #resp = action(url=get_url(_suffix), data=param, headers=HEADERS) else: pass #resp_json = resp.json() resp_json = {"status": "test"} import time print("sleep") time.sleep(60) return wrap_grpc_packet(resp_json, method, _suffix, dst.partyId, src.partyId, job_id) thread_pool_executor = ThreadPoolExecutor(max_workers=5) print(f"start grpc server pool on {thread_pool_executor._max_workers} max workers") server = grpc.server(thread_pool_executor, options=[(cygrpc.ChannelArgKey.max_send_message_length, -1), (cygrpc.ChannelArgKey.max_receive_message_length, -1)]) proxy_pb2_grpc.add_DataTransferServiceServicer_to_server(UnaryService(), server) server.add_insecure_port("{}:{}".format("127.0.0.1", 7777)) server.start() try: while True: time.sleep(60 * 60 * 24) except KeyboardInterrupt: server.stop(0) sys.exit(0)
[ "fate_flow.utils.proto_compatibility.basic_meta_pb2.Endpoint", "fate_flow.utils.proto_compatibility.proxy_pb2.Conf", "fate_flow.tests.grpc.xthread.ThreadPoolExecutor", "fate_flow.utils.proto_compatibility.proxy_pb2.Command", "fate_flow.settings.stat_logger.info", "fate_flow.utils.proto_compatibility.proxy_pb2.Packet", "fate_flow.utils.proto_compatibility.proxy_pb2.Metadata", "fate_flow.utils.proto_compatibility.proxy_pb2.Task" ]
[((3486, 3519), 'fate_flow.tests.grpc.xthread.ThreadPoolExecutor', 'ThreadPoolExecutor', ([], {'max_workers': '(5)'}), '(max_workers=5)\n', (3504, 3519), False, 'from fate_flow.tests.grpc.xthread import ThreadPoolExecutor\n'), ((3613, 3773), 'grpc.server', 'grpc.server', (['thread_pool_executor'], {'options': '[(cygrpc.ChannelArgKey.max_send_message_length, -1), (cygrpc.ChannelArgKey.\n max_receive_message_length, -1)]'}), '(thread_pool_executor, options=[(cygrpc.ChannelArgKey.\n max_send_message_length, -1), (cygrpc.ChannelArgKey.\n max_receive_message_length, -1)])\n', (3624, 3773), False, 'import grpc\n'), ((1381, 1427), 'fate_flow.utils.proto_compatibility.basic_meta_pb2.Endpoint', 'basic_meta_pb2.Endpoint', ([], {'ip': 'IP', 'port': 'GRPC_PORT'}), '(ip=IP, port=GRPC_PORT)\n', (1404, 1427), False, 'from fate_flow.utils.proto_compatibility import basic_meta_pb2\n'), ((1686, 1715), 'fate_flow.utils.proto_compatibility.proxy_pb2.Task', 'proxy_pb2.Task', ([], {'taskId': 'job_id'}), '(taskId=job_id)\n', (1700, 1715), False, 'from fate_flow.utils.proto_compatibility import proxy_pb2\n'), ((1731, 1776), 'fate_flow.utils.proto_compatibility.proxy_pb2.Command', 'proxy_pb2.Command', ([], {'name': 'FATEFLOW_SERVICE_NAME'}), '(name=FATEFLOW_SERVICE_NAME)\n', (1748, 1776), False, 'from fate_flow.utils.proto_compatibility import proxy_pb2\n'), ((1789, 1835), 'fate_flow.utils.proto_compatibility.proxy_pb2.Conf', 'proxy_pb2.Conf', ([], {'overallTimeout': 'overall_timeout'}), '(overallTimeout=overall_timeout)\n', (1803, 1835), False, 'from fate_flow.utils.proto_compatibility import proxy_pb2\n'), ((1848, 1954), 'fate_flow.utils.proto_compatibility.proxy_pb2.Metadata', 'proxy_pb2.Metadata', ([], {'src': '_src', 'dst': '_dst', 'task': '_task', 'command': '_command', 'operator': 'http_method', 'conf': '_conf'}), '(src=_src, dst=_dst, task=_task, command=_command,\n operator=http_method, conf=_conf)\n', (1866, 1954), False, 'from fate_flow.utils.proto_compatibility import proxy_pb2\n'), ((2043, 2085), 'fate_flow.utils.proto_compatibility.proxy_pb2.Packet', 'proxy_pb2.Packet', ([], {'header': '_meta', 'body': '_data'}), '(header=_meta, body=_data)\n', (2059, 2085), False, 'from fate_flow.utils.proto_compatibility import proxy_pb2\n'), ((2646, 2663), 'fate_arch.common.base_utils.json_loads', 'json_loads', (['param'], {}), '(param)\n', (2656, 2663), False, 'from fate_arch.common.base_utils import json_dumps, json_loads\n'), ((2873, 2946), 'fate_flow.settings.stat_logger.info', 'stat_logger.info', (['f"""grpc request routing header: {source_routing_header}"""'], {}), "(f'grpc request routing header: {source_routing_header}')\n", (2889, 2946), False, 'from fate_flow.settings import IP, GRPC_PORT, stat_logger\n'), ((3353, 3367), 'time.sleep', 'time.sleep', (['(60)'], {}), '(60)\n', (3363, 3367), False, 'import time\n'), ((4002, 4026), 'time.sleep', 'time.sleep', (['(60 * 60 * 24)'], {}), '(60 * 60 * 24)\n', (4012, 4026), False, 'import time\n'), ((4076, 4087), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (4084, 4087), False, 'import sys\n'), ((1999, 2020), 'fate_arch.common.base_utils.json_dumps', 'json_dumps', (['json_body'], {}), '(json_body)\n', (2009, 2020), False, 'from fate_arch.common.base_utils import json_dumps, json_loads\n'), ((2983, 3005), 'fate_arch.common.base_utils.json_dumps', 'json_dumps', (['param_dict'], {}), '(param_dict)\n', (2993, 3005), False, 'from fate_arch.common.base_utils import json_dumps, json_loads\n')]
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from flask import Flask, request from fate_arch.common import conf_utils from fate_flow.entity.runtime_config import RuntimeConfig from fate_flow.settings import stat_logger from fate_flow.utils.api_utils import get_json_result from fate_flow.utils.service_utils import ServiceUtils manager = Flask(__name__) @manager.errorhandler(500) def internal_server_error(e): stat_logger.exception(e) return get_json_result(retcode=100, retmsg=str(e)) @manager.route('/get', methods=['POST']) def get_fate_version_info(): version = RuntimeConfig.get_env(request.json.get('module', 'FATE')) return get_json_result(data={request.json.get('module'): version}) @manager.route('/registry', methods=['POST']) def service_registry(): update_server = ServiceUtils.register_service(request.json) return get_json_result(data={"update_server": update_server}) @manager.route('/query', methods=['POST']) def service_query(): service_info = ServiceUtils.get(request.json.get("service_name")) return get_json_result(data={"service_info": service_info})
[ "fate_flow.utils.service_utils.ServiceUtils.register_service", "fate_flow.settings.stat_logger.exception", "fate_flow.utils.api_utils.get_json_result" ]
[((911, 926), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (916, 926), False, 'from flask import Flask, request\n'), ((990, 1014), 'fate_flow.settings.stat_logger.exception', 'stat_logger.exception', (['e'], {}), '(e)\n', (1011, 1014), False, 'from fate_flow.settings import stat_logger\n'), ((1377, 1420), 'fate_flow.utils.service_utils.ServiceUtils.register_service', 'ServiceUtils.register_service', (['request.json'], {}), '(request.json)\n', (1406, 1420), False, 'from fate_flow.utils.service_utils import ServiceUtils\n'), ((1432, 1486), 'fate_flow.utils.api_utils.get_json_result', 'get_json_result', ([], {'data': "{'update_server': update_server}"}), "(data={'update_server': update_server})\n", (1447, 1486), False, 'from fate_flow.utils.api_utils import get_json_result\n'), ((1634, 1686), 'fate_flow.utils.api_utils.get_json_result', 'get_json_result', ([], {'data': "{'service_info': service_info}"}), "(data={'service_info': service_info})\n", (1649, 1686), False, 'from fate_flow.utils.api_utils import get_json_result\n'), ((1178, 1212), 'flask.request.json.get', 'request.json.get', (['"""module"""', '"""FATE"""'], {}), "('module', 'FATE')\n", (1194, 1212), False, 'from flask import Flask, request\n'), ((1589, 1621), 'flask.request.json.get', 'request.json.get', (['"""service_name"""'], {}), "('service_name')\n", (1605, 1621), False, 'from flask import Flask, request\n'), ((1247, 1273), 'flask.request.json.get', 'request.json.get', (['"""module"""'], {}), "('module')\n", (1263, 1273), False, 'from flask import Flask, request\n')]
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import shutil import time from fate_arch.common import log, file_utils, EngineType from fate_arch.storage import StorageEngine, EggRollStorageType from fate_flow.entity.metric import Metric, MetricMeta from fate_flow.utils import job_utils, data_utils from fate_flow.scheduling_apps.client import ControllerClient from fate_arch import storage LOGGER = log.getLogger() class Upload(object): def __init__(self): self.taskid = '' self.tracker = None self.MAX_PARTITIONS = 1024 self.MAX_BYTES = 1024*1024*8 self.parameters = {} self.table = None def run(self, component_parameters=None, args=None): self.parameters = component_parameters["UploadParam"] LOGGER.info(self.parameters) LOGGER.info(args) self.parameters["role"] = component_parameters["role"] self.parameters["local"] = component_parameters["local"] storage_engine = self.parameters["storage_engine"] storage_address = self.parameters["storage_address"] # if not set storage, use job storage as default if not storage_engine: storage_engine = args["job_parameters"].storage_engine if not storage_address: storage_address = args["job_parameters"].engines_address[EngineType.STORAGE] job_id = self.taskid.split("_")[0] if not os.path.isabs(self.parameters.get("file", "")): self.parameters["file"] = os.path.join(file_utils.get_project_base_directory(), self.parameters["file"]) if not os.path.exists(self.parameters["file"]): raise Exception("%s is not exist, please check the configure" % (self.parameters["file"])) if not os.path.getsize(self.parameters["file"]): raise Exception("%s is an empty file" % (self.parameters["file"])) name, namespace = self.parameters.get("name"), self.parameters.get("namespace") _namespace, _table_name = self.generate_table_name(self.parameters["file"]) if namespace is None: namespace = _namespace if name is None: name = _table_name read_head = self.parameters['head'] if read_head == 0: head = False elif read_head == 1: head = True else: raise Exception("'head' in conf.json should be 0 or 1") partitions = self.parameters["partition"] if partitions <= 0 or partitions >= self.MAX_PARTITIONS: raise Exception("Error number of partition, it should between %d and %d" % (0, self.MAX_PARTITIONS)) with storage.Session.build(session_id=job_utils.generate_session_id(self.tracker.task_id, self.tracker.task_version, self.tracker.role, self.tracker.party_id, suffix="storage", random_end=True), namespace=namespace, name=name) as storage_session: if self.parameters.get("destroy", False): table = storage_session.get_table() if table: LOGGER.info(f"destroy table name: {name} namespace: {namespace} engine: {table.get_engine()}") table.destroy() else: LOGGER.info(f"can not found table name: {name} namespace: {namespace}, pass destroy") address_dict = storage_address.copy() with storage.Session.build(session_id=job_utils.generate_session_id(self.tracker.task_id, self.tracker.task_version, self.tracker.role, self.tracker.party_id, suffix="storage", random_end=True), storage_engine=storage_engine, options=self.parameters.get("options")) as storage_session: if storage_engine in {StorageEngine.EGGROLL, StorageEngine.STANDALONE}: upload_address = {"name": name, "namespace": namespace, "storage_type": EggRollStorageType.ROLLPAIR_LMDB} elif storage_engine in {StorageEngine.MYSQL}: upload_address = {"db": namespace, "name": name} elif storage_engine in {StorageEngine.HDFS}: upload_address = {"path": data_utils.default_input_fs_path(name=name, namespace=namespace, prefix=address_dict.get("path_prefix"))} else: raise RuntimeError(f"can not support this storage engine: {storage_engine}") address_dict.update(upload_address) LOGGER.info(f"upload to {storage_engine} storage, address: {address_dict}") address = storage.StorageTableMeta.create_address(storage_engine=storage_engine, address_dict=address_dict) self.parameters["partitions"] = partitions self.parameters["name"] = name self.table = storage_session.create_table(address=address, **self.parameters) data_table_count = self.save_data_table(job_id, name, namespace, head) self.table.get_meta().update_metas(in_serialized=True) LOGGER.info("------------load data finish!-----------------") # rm tmp file try: if '{}/fate_upload_tmp'.format(job_id) in self.parameters['file']: LOGGER.info("remove tmp upload file") shutil.rmtree(os.path.join(self.parameters["file"].split('tmp')[0], 'tmp')) except: LOGGER.info("remove tmp file failed") LOGGER.info("file: {}".format(self.parameters["file"])) LOGGER.info("total data_count: {}".format(data_table_count)) LOGGER.info("table name: {}, table namespace: {}".format(name, namespace)) def set_taskid(self, taskid): self.taskid = taskid def set_tracker(self, tracker): self.tracker = tracker def save_data_table(self, job_id, dst_table_name, dst_table_namespace, head=True): input_file = self.parameters["file"] input_feature_count = self.get_count(input_file) with open(input_file, 'r') as fin: lines_count = 0 if head is True: data_head = fin.readline() input_feature_count -= 1 self.table.get_meta().update_metas(schema=data_utils.get_header_schema(header_line=data_head, id_delimiter=self.parameters["id_delimiter"])) n = 0 while True: data = list() lines = fin.readlines(self.MAX_BYTES) if lines: for line in lines: values = line.rstrip().split(self.parameters["id_delimiter"]) data.append((values[0], data_utils.list_to_str(values[1:], id_delimiter=self.parameters["id_delimiter"]))) lines_count += len(data) save_progress = lines_count/input_feature_count*100//1 job_info = {'progress': save_progress, "job_id": job_id, "role": self.parameters["local"]['role'], "party_id": self.parameters["local"]['party_id']} ControllerClient.update_job(job_info=job_info) self.table.put_all(data) if n == 0: self.table.get_meta().update_metas(part_of_data=data) else: table_count = self.table.count() self.table.get_meta().update_metas(count=table_count, partitions=self.parameters["partition"]) self.tracker.log_output_data_info(data_name='upload', table_namespace=dst_table_namespace, table_name=dst_table_name) self.tracker.log_metric_data(metric_namespace="upload", metric_name="data_access", metrics=[Metric("count", table_count)]) self.tracker.set_metric_meta(metric_namespace="upload", metric_name="data_access", metric_meta=MetricMeta(name='upload', metric_type='UPLOAD')) return table_count n += 1 def get_count(self, input_file): with open(input_file, 'r', encoding='utf-8') as fp: count = 0 for line in fp: count += 1 return count def generate_table_name(self, input_file_path): str_time = time.strftime("%Y%m%d%H%M%S", time.localtime()) file_name = input_file_path.split(".")[0] file_name = file_name.split("/")[-1] return file_name, str_time def save_data(self): return None def export_model(self): return None
[ "fate_flow.utils.data_utils.get_header_schema", "fate_flow.utils.data_utils.list_to_str", "fate_flow.entity.metric.MetricMeta", "fate_flow.utils.job_utils.generate_session_id", "fate_flow.entity.metric.Metric", "fate_flow.scheduling_apps.client.ControllerClient.update_job" ]
[((981, 996), 'fate_arch.common.log.getLogger', 'log.getLogger', ([], {}), '()\n', (994, 996), False, 'from fate_arch.common import log, file_utils, EngineType\n'), ((2170, 2209), 'os.path.exists', 'os.path.exists', (["self.parameters['file']"], {}), "(self.parameters['file'])\n", (2184, 2209), False, 'import os\n'), ((2329, 2369), 'os.path.getsize', 'os.path.getsize', (["self.parameters['file']"], {}), "(self.parameters['file'])\n", (2344, 2369), False, 'import os\n'), ((5046, 5147), 'fate_arch.storage.StorageTableMeta.create_address', 'storage.StorageTableMeta.create_address', ([], {'storage_engine': 'storage_engine', 'address_dict': 'address_dict'}), '(storage_engine=storage_engine,\n address_dict=address_dict)\n', (5085, 5147), False, 'from fate_arch import storage\n'), ((8975, 8991), 'time.localtime', 'time.localtime', ([], {}), '()\n', (8989, 8991), False, 'import time\n'), ((2089, 2128), 'fate_arch.common.file_utils.get_project_base_directory', 'file_utils.get_project_base_directory', ([], {}), '()\n', (2126, 2128), False, 'from fate_arch.common import log, file_utils, EngineType\n'), ((3248, 3413), 'fate_flow.utils.job_utils.generate_session_id', 'job_utils.generate_session_id', (['self.tracker.task_id', 'self.tracker.task_version', 'self.tracker.role', 'self.tracker.party_id'], {'suffix': '"""storage"""', 'random_end': '(True)'}), "(self.tracker.task_id, self.tracker.\n task_version, self.tracker.role, self.tracker.party_id, suffix=\n 'storage', random_end=True)\n", (3277, 3413), False, 'from fate_flow.utils import job_utils, data_utils\n'), ((3960, 4125), 'fate_flow.utils.job_utils.generate_session_id', 'job_utils.generate_session_id', (['self.tracker.task_id', 'self.tracker.task_version', 'self.tracker.role', 'self.tracker.party_id'], {'suffix': '"""storage"""', 'random_end': '(True)'}), "(self.tracker.task_id, self.tracker.\n task_version, self.tracker.role, self.tracker.party_id, suffix=\n 'storage', random_end=True)\n", (3989, 4125), False, 'from fate_flow.utils import job_utils, data_utils\n'), ((7474, 7520), 'fate_flow.scheduling_apps.client.ControllerClient.update_job', 'ControllerClient.update_job', ([], {'job_info': 'job_info'}), '(job_info=job_info)\n', (7501, 7520), False, 'from fate_flow.scheduling_apps.client import ControllerClient\n'), ((6658, 6760), 'fate_flow.utils.data_utils.get_header_schema', 'data_utils.get_header_schema', ([], {'header_line': 'data_head', 'id_delimiter': "self.parameters['id_delimiter']"}), "(header_line=data_head, id_delimiter=self.\n parameters['id_delimiter'])\n", (6686, 6760), False, 'from fate_flow.utils import job_utils, data_utils\n'), ((8566, 8613), 'fate_flow.entity.metric.MetricMeta', 'MetricMeta', ([], {'name': '"""upload"""', 'metric_type': '"""UPLOAD"""'}), "(name='upload', metric_type='UPLOAD')\n", (8576, 8613), False, 'from fate_flow.entity.metric import Metric, MetricMeta\n'), ((7082, 7167), 'fate_flow.utils.data_utils.list_to_str', 'data_utils.list_to_str', (['values[1:]'], {'id_delimiter': "self.parameters['id_delimiter']"}), "(values[1:], id_delimiter=self.parameters['id_delimiter']\n )\n", (7104, 7167), False, 'from fate_flow.utils import job_utils, data_utils\n'), ((8322, 8350), 'fate_flow.entity.metric.Metric', 'Metric', (['"""count"""', 'table_count'], {}), "('count', table_count)\n", (8328, 8350), False, 'from fate_flow.entity.metric import Metric, MetricMeta\n')]
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import shutil from ruamel import yaml from datetime import datetime from fate_flow.db.db_models import DB, MachineLearningModelInfo as MLModel from fate_flow.pipelined_model import pipelined_model from fate_arch.common.base_utils import json_loads, json_dumps from fate_arch.common.file_utils import get_project_base_directory from fate_flow.settings import stat_logger from fate_flow.utils import model_utils from federatedml.protobuf.model_migrate.model_migrate import model_migration from fate_flow.utils.config_adapter import JobRuntimeConfigAdapter def gen_model_file_path(model_id, model_version): return os.path.join(get_project_base_directory(), "model_local_cache", model_id, model_version) def compare_roles(request_conf_roles: dict, run_time_conf_roles: dict): if request_conf_roles.keys() == run_time_conf_roles.keys(): verify_format = True verify_equality = True for key in request_conf_roles.keys(): verify_format = verify_format and (len(request_conf_roles[key]) == len(run_time_conf_roles[key])) and (isinstance(request_conf_roles[key], list)) request_conf_roles_set = set(str(item) for item in request_conf_roles[key]) run_time_conf_roles_set = set(str(item) for item in run_time_conf_roles[key]) verify_equality = verify_equality and (request_conf_roles_set == run_time_conf_roles_set) if not verify_format: raise Exception("The structure of roles data of local configuration is different from " "model runtime configuration's. Migration aborting.") else: return verify_equality raise Exception("The structure of roles data of local configuration is different from " "model runtime configuration's. Migration aborting.") def import_from_files(config: dict): model = pipelined_model.PipelinedModel(model_id=config["model_id"], model_version=config["model_version"]) if config['force']: model.force = True model.unpack_model(config["file"]) def import_from_db(config: dict): model_path = gen_model_file_path(config["model_id"], config["model_version"]) if config['force']: os.rename(model_path, model_path + '_backup_{}'.format(datetime.now().strftime('%Y%m%d%H%M'))) def migration(config_data: dict): try: party_model_id = model_utils.gen_party_model_id(model_id=config_data["model_id"], role=config_data["local"]["role"], party_id=config_data["local"]["party_id"]) model = pipelined_model.PipelinedModel(model_id=party_model_id, model_version=config_data["model_version"]) if not model.exists(): raise Exception("Can not found {} {} model local cache".format(config_data["model_id"], config_data["model_version"])) with DB.connection_context(): if MLModel.get_or_none(MLModel.f_model_version == config_data["unify_model_version"]): raise Exception("Unify model version {} has been occupied in database. " "Please choose another unify model version and try again.".format( config_data["unify_model_version"])) model_data = model.collect_models(in_bytes=True) if "pipeline.pipeline:Pipeline" not in model_data: raise Exception("Can not found pipeline file in model.") migrate_model = pipelined_model.PipelinedModel(model_id=model_utils.gen_party_model_id(model_id=model_utils.gen_model_id(config_data["migrate_role"]), role=config_data["local"]["role"], party_id=config_data["local"]["migrate_party_id"]), model_version=config_data["unify_model_version"]) # migrate_model.create_pipelined_model() shutil.copytree(src=model.model_path, dst=migrate_model.model_path) pipeline = migrate_model.read_component_model('pipeline', 'pipeline')['Pipeline'] # Utilize Pipeline_model collect model data. And modify related inner information of model train_runtime_conf = json_loads(pipeline.train_runtime_conf) train_runtime_conf["role"] = config_data["migrate_role"] train_runtime_conf["initiator"] = config_data["migrate_initiator"] adapter = JobRuntimeConfigAdapter(train_runtime_conf) train_runtime_conf = adapter.update_model_id_version(model_id=model_utils.gen_model_id(train_runtime_conf["role"]), model_version=migrate_model.model_version) # update pipeline.pb file pipeline.train_runtime_conf = json_dumps(train_runtime_conf, byte=True) pipeline.model_id = bytes(adapter.get_common_parameters().to_dict().get("model_id"), "utf-8") pipeline.model_version = bytes(adapter.get_common_parameters().to_dict().get("model_version"), "utf-8") if model_utils.compare_version(pipeline.fate_version, '1.5.0') == 'gt': pipeline.initiator_role = config_data["migrate_initiator"]['role'] pipeline.initiator_party_id = config_data["migrate_initiator"]['party_id'] # save updated pipeline.pb file migrate_model.save_pipeline(pipeline) shutil.copyfile(os.path.join(migrate_model.model_path, "pipeline.pb"), os.path.join(migrate_model.model_path, "variables", "data", "pipeline", "pipeline", "Pipeline")) # modify proto with open(os.path.join(migrate_model.model_path, 'define', 'define_meta.yaml'), 'r') as fin: define_yaml = yaml.safe_load(fin) for key, value in define_yaml['model_proto'].items(): if key == 'pipeline': continue for v in value.keys(): buffer_obj = migrate_model.read_component_model(key, v) module_name = define_yaml['component_define'].get(key, {}).get('module_name') modified_buffer = model_migration(model_contents=buffer_obj, module_name=module_name, old_guest_list=config_data['role']['guest'], new_guest_list=config_data['migrate_role']['guest'], old_host_list=config_data['role']['host'], new_host_list=config_data['migrate_role']['host'], old_arbiter_list=config_data.get('role', {}).get('arbiter', None), new_arbiter_list=config_data.get('migrate_role', {}).get('arbiter', None)) migrate_model.save_component_model(component_name=key, component_module_name=module_name, model_alias=v, model_buffers=modified_buffer) archive_path = migrate_model.packaging_model() shutil.rmtree(os.path.abspath(migrate_model.model_path)) return (0, f"Migrating model successfully. " \ "The configuration of model has been modified automatically. " \ "New model id is: {}, model version is: {}. " \ "Model files can be found at '{}'.".format(adapter.get_common_parameters().to_dict().get("model_id"), migrate_model.model_version, os.path.abspath(archive_path)), {"model_id": migrate_model.model_id, "model_version": migrate_model.model_version, "path": os.path.abspath(archive_path)}) except Exception as e: stat_logger.exception(e) return 100, str(e), {}
[ "fate_flow.db.db_models.MachineLearningModelInfo.get_or_none", "fate_flow.utils.config_adapter.JobRuntimeConfigAdapter", "fate_flow.utils.model_utils.compare_version", "fate_flow.pipelined_model.pipelined_model.PipelinedModel", "fate_flow.db.db_models.DB.connection_context", "fate_flow.settings.stat_logger.exception", "fate_flow.utils.model_utils.gen_party_model_id", "fate_flow.utils.model_utils.gen_model_id" ]
[((2493, 2596), 'fate_flow.pipelined_model.pipelined_model.PipelinedModel', 'pipelined_model.PipelinedModel', ([], {'model_id': "config['model_id']", 'model_version': "config['model_version']"}), "(model_id=config['model_id'], model_version=\n config['model_version'])\n", (2523, 2596), False, 'from fate_flow.pipelined_model import pipelined_model\n'), ((1257, 1285), 'fate_arch.common.file_utils.get_project_base_directory', 'get_project_base_directory', ([], {}), '()\n', (1283, 1285), False, 'from fate_arch.common.file_utils import get_project_base_directory\n'), ((3040, 3187), 'fate_flow.utils.model_utils.gen_party_model_id', 'model_utils.gen_party_model_id', ([], {'model_id': "config_data['model_id']", 'role': "config_data['local']['role']", 'party_id': "config_data['local']['party_id']"}), "(model_id=config_data['model_id'], role=\n config_data['local']['role'], party_id=config_data['local']['party_id'])\n", (3070, 3187), False, 'from fate_flow.utils import model_utils\n'), ((3311, 3415), 'fate_flow.pipelined_model.pipelined_model.PipelinedModel', 'pipelined_model.PipelinedModel', ([], {'model_id': 'party_model_id', 'model_version': "config_data['model_version']"}), "(model_id=party_model_id, model_version=\n config_data['model_version'])\n", (3341, 3415), False, 'from fate_flow.pipelined_model import pipelined_model\n'), ((4863, 4930), 'shutil.copytree', 'shutil.copytree', ([], {'src': 'model.model_path', 'dst': 'migrate_model.model_path'}), '(src=model.model_path, dst=migrate_model.model_path)\n', (4878, 4930), False, 'import shutil\n'), ((5151, 5190), 'fate_arch.common.base_utils.json_loads', 'json_loads', (['pipeline.train_runtime_conf'], {}), '(pipeline.train_runtime_conf)\n', (5161, 5190), False, 'from fate_arch.common.base_utils import json_loads, json_dumps\n'), ((5350, 5393), 'fate_flow.utils.config_adapter.JobRuntimeConfigAdapter', 'JobRuntimeConfigAdapter', (['train_runtime_conf'], {}), '(train_runtime_conf)\n', (5373, 5393), False, 'from fate_flow.utils.config_adapter import JobRuntimeConfigAdapter\n'), ((5695, 5736), 'fate_arch.common.base_utils.json_dumps', 'json_dumps', (['train_runtime_conf'], {'byte': '(True)'}), '(train_runtime_conf, byte=True)\n', (5705, 5736), False, 'from fate_arch.common.base_utils import json_loads, json_dumps\n'), ((3708, 3731), 'fate_flow.db.db_models.DB.connection_context', 'DB.connection_context', ([], {}), '()\n', (3729, 3731), False, 'from fate_flow.db.db_models import DB, MachineLearningModelInfo as MLModel\n'), ((3748, 3835), 'fate_flow.db.db_models.MachineLearningModelInfo.get_or_none', 'MLModel.get_or_none', (["(MLModel.f_model_version == config_data['unify_model_version'])"], {}), "(MLModel.f_model_version == config_data[\n 'unify_model_version'])\n", (3767, 3835), True, 'from fate_flow.db.db_models import DB, MachineLearningModelInfo as MLModel\n'), ((5963, 6022), 'fate_flow.utils.model_utils.compare_version', 'model_utils.compare_version', (['pipeline.fate_version', '"""1.5.0"""'], {}), "(pipeline.fate_version, '1.5.0')\n", (5990, 6022), False, 'from fate_flow.utils import model_utils\n'), ((6309, 6362), 'os.path.join', 'os.path.join', (['migrate_model.model_path', '"""pipeline.pb"""'], {}), "(migrate_model.model_path, 'pipeline.pb')\n", (6321, 6362), False, 'import os\n'), ((6388, 6487), 'os.path.join', 'os.path.join', (['migrate_model.model_path', '"""variables"""', '"""data"""', '"""pipeline"""', '"""pipeline"""', '"""Pipeline"""'], {}), "(migrate_model.model_path, 'variables', 'data', 'pipeline',\n 'pipeline', 'Pipeline')\n", (6400, 6487), False, 'import os\n'), ((6636, 6655), 'ruamel.yaml.safe_load', 'yaml.safe_load', (['fin'], {}), '(fin)\n', (6650, 6655), False, 'from ruamel import yaml\n'), ((8046, 8087), 'os.path.abspath', 'os.path.abspath', (['migrate_model.model_path'], {}), '(migrate_model.model_path)\n', (8061, 8087), False, 'import os\n'), ((8806, 8830), 'fate_flow.settings.stat_logger.exception', 'stat_logger.exception', (['e'], {}), '(e)\n', (8827, 8830), False, 'from fate_flow.settings import stat_logger\n'), ((5464, 5516), 'fate_flow.utils.model_utils.gen_model_id', 'model_utils.gen_model_id', (["train_runtime_conf['role']"], {}), "(train_runtime_conf['role'])\n", (5488, 5516), False, 'from fate_flow.utils import model_utils\n'), ((6527, 6595), 'os.path.join', 'os.path.join', (['migrate_model.model_path', '"""define"""', '"""define_meta.yaml"""'], {}), "(migrate_model.model_path, 'define', 'define_meta.yaml')\n", (6539, 6595), False, 'import os\n'), ((8565, 8594), 'os.path.abspath', 'os.path.abspath', (['archive_path'], {}), '(archive_path)\n', (8580, 8594), False, 'import os\n'), ((8738, 8767), 'os.path.abspath', 'os.path.abspath', (['archive_path'], {}), '(archive_path)\n', (8753, 8767), False, 'import os\n'), ((4368, 4421), 'fate_flow.utils.model_utils.gen_model_id', 'model_utils.gen_model_id', (["config_data['migrate_role']"], {}), "(config_data['migrate_role'])\n", (4392, 4421), False, 'from fate_flow.utils import model_utils\n'), ((2930, 2944), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2942, 2944), False, 'from datetime import datetime\n')]
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os from flask import Flask, request from arch.api.utils import file_utils from fate_flow.settings import JOB_MODULE_CONF from fate_flow.settings import stat_logger, CLUSTER_STANDALONE_JOB_SERVER_PORT from fate_flow.utils.api_utils import get_json_result, request_execute_server from fate_flow.utils.job_utils import generate_job_id, get_job_directory, new_runtime_conf, run_subprocess from fate_flow.utils import detect_utils from fate_flow.entity.constant_config import WorkMode from fate_flow.entity.runtime_config import RuntimeConfig manager = Flask(__name__) @manager.errorhandler(500) def internal_server_error(e): stat_logger.exception(e) return get_json_result(retcode=100, retmsg=str(e)) @manager.route('/<data_func>', methods=['post']) def download_upload(data_func): request_config = request.json _job_id = generate_job_id() stat_logger.info('generated job_id {}, body {}'.format(_job_id, request_config)) _job_dir = get_job_directory(_job_id) os.makedirs(_job_dir, exist_ok=True) module = data_func required_arguments = ['work_mode', 'namespace', 'table_name'] if module == 'upload': required_arguments.extend(['file', 'head', 'partition']) elif module == 'download': required_arguments.extend(['output_path']) else: raise Exception('can not support this operating: {}'.format(module)) detect_utils.check_config(request_config, required_arguments=required_arguments) job_work_mode = request_config['work_mode'] # todo: The current code here is redundant with job_app/submit_job, the next version of this function will be implemented by job_app/submit_job if job_work_mode != RuntimeConfig.WORK_MODE: if RuntimeConfig.WORK_MODE == WorkMode.CLUSTER and job_work_mode == WorkMode.STANDALONE: # use cluster standalone job server to execute standalone job return request_execute_server(request=request, execute_host='{}:{}'.format(request.remote_addr, CLUSTER_STANDALONE_JOB_SERVER_PORT)) else: raise Exception('server run on standalone can not support cluster mode job') if module == "upload": if not os.path.isabs(request_config['file']): request_config["file"] = os.path.join(file_utils.get_project_base_directory(), request_config["file"]) try: conf_file_path = new_runtime_conf(job_dir=_job_dir, method=data_func, module=module, role=request_config.get('local', {}).get("role"), party_id=request_config.get('local', {}).get("party_id", '')) file_utils.dump_json_conf(request_config, conf_file_path) progs = ["python3", os.path.join(file_utils.get_project_base_directory(), JOB_MODULE_CONF[module]["module_path"]), "-j", _job_id, "-c", conf_file_path ] try: p = run_subprocess(config_dir=_job_dir, process_cmd=progs) except Exception as e: stat_logger.exception(e) p = None return get_json_result(retcode=(0 if p else 101), job_id=_job_id, data={'table_name': request_config['table_name'], 'namespace': request_config['namespace'], 'pid': p.pid if p else ''}) except Exception as e: stat_logger.exception(e) return get_json_result(retcode=-104, retmsg="failed", job_id=_job_id)
[ "fate_flow.utils.job_utils.run_subprocess", "fate_flow.utils.detect_utils.check_config", "fate_flow.utils.job_utils.generate_job_id", "fate_flow.settings.stat_logger.exception", "fate_flow.utils.api_utils.get_json_result", "fate_flow.utils.job_utils.get_job_directory" ]
[((1174, 1189), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (1179, 1189), False, 'from flask import Flask, request\n'), ((1253, 1277), 'fate_flow.settings.stat_logger.exception', 'stat_logger.exception', (['e'], {}), '(e)\n', (1274, 1277), False, 'from fate_flow.settings import stat_logger, CLUSTER_STANDALONE_JOB_SERVER_PORT\n'), ((1464, 1481), 'fate_flow.utils.job_utils.generate_job_id', 'generate_job_id', ([], {}), '()\n', (1479, 1481), False, 'from fate_flow.utils.job_utils import generate_job_id, get_job_directory, new_runtime_conf, run_subprocess\n'), ((1582, 1608), 'fate_flow.utils.job_utils.get_job_directory', 'get_job_directory', (['_job_id'], {}), '(_job_id)\n', (1599, 1608), False, 'from fate_flow.utils.job_utils import generate_job_id, get_job_directory, new_runtime_conf, run_subprocess\n'), ((1613, 1649), 'os.makedirs', 'os.makedirs', (['_job_dir'], {'exist_ok': '(True)'}), '(_job_dir, exist_ok=True)\n', (1624, 1649), False, 'import os\n'), ((2004, 2089), 'fate_flow.utils.detect_utils.check_config', 'detect_utils.check_config', (['request_config'], {'required_arguments': 'required_arguments'}), '(request_config, required_arguments=required_arguments\n )\n', (2029, 2089), False, 'from fate_flow.utils import detect_utils\n'), ((3252, 3309), 'arch.api.utils.file_utils.dump_json_conf', 'file_utils.dump_json_conf', (['request_config', 'conf_file_path'], {}), '(request_config, conf_file_path)\n', (3277, 3309), False, 'from arch.api.utils import file_utils\n'), ((3727, 3911), 'fate_flow.utils.api_utils.get_json_result', 'get_json_result', ([], {'retcode': '(0 if p else 101)', 'job_id': '_job_id', 'data': "{'table_name': request_config['table_name'], 'namespace': request_config[\n 'namespace'], 'pid': p.pid if p else ''}"}), "(retcode=0 if p else 101, job_id=_job_id, data={'table_name':\n request_config['table_name'], 'namespace': request_config['namespace'],\n 'pid': p.pid if p else ''})\n", (3742, 3911), False, 'from fate_flow.utils.api_utils import get_json_result, request_execute_server\n'), ((2792, 2829), 'os.path.isabs', 'os.path.isabs', (["request_config['file']"], {}), "(request_config['file'])\n", (2805, 2829), False, 'import os\n'), ((3568, 3622), 'fate_flow.utils.job_utils.run_subprocess', 'run_subprocess', ([], {'config_dir': '_job_dir', 'process_cmd': 'progs'}), '(config_dir=_job_dir, process_cmd=progs)\n', (3582, 3622), False, 'from fate_flow.utils.job_utils import generate_job_id, get_job_directory, new_runtime_conf, run_subprocess\n'), ((4009, 4033), 'fate_flow.settings.stat_logger.exception', 'stat_logger.exception', (['e'], {}), '(e)\n', (4030, 4033), False, 'from fate_flow.settings import stat_logger, CLUSTER_STANDALONE_JOB_SERVER_PORT\n'), ((4049, 4111), 'fate_flow.utils.api_utils.get_json_result', 'get_json_result', ([], {'retcode': '(-104)', 'retmsg': '"""failed"""', 'job_id': '_job_id'}), "(retcode=-104, retmsg='failed', job_id=_job_id)\n", (4064, 4111), False, 'from fate_flow.utils.api_utils import get_json_result, request_execute_server\n'), ((2881, 2920), 'arch.api.utils.file_utils.get_project_base_directory', 'file_utils.get_project_base_directory', ([], {}), '()\n', (2918, 2920), False, 'from arch.api.utils import file_utils\n'), ((3368, 3407), 'arch.api.utils.file_utils.get_project_base_directory', 'file_utils.get_project_base_directory', ([], {}), '()\n', (3405, 3407), False, 'from arch.api.utils import file_utils\n'), ((3666, 3690), 'fate_flow.settings.stat_logger.exception', 'stat_logger.exception', (['e'], {}), '(e)\n', (3687, 3690), False, 'from fate_flow.settings import stat_logger, CLUSTER_STANDALONE_JOB_SERVER_PORT\n')]
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from fate_arch.common import EngineType from fate_arch.common import engine_utils from fate_arch.common.base_utils import json_dumps, current_timestamp from fate_arch.computing import ComputingEngine from fate_flow.controller.task_controller import TaskController from fate_flow.db.job_default_config import JobDefaultConfig from fate_flow.db.runtime_config import RuntimeConfig from fate_flow.entity import RunParameters from fate_flow.entity.run_status import JobStatus, EndStatus from fate_flow.entity.types import InputSearchType, WorkerName from fate_flow.manager.provider_manager import ProviderManager from fate_flow.manager.resource_manager import ResourceManager from fate_flow.manager.worker_manager import WorkerManager from fate_flow.operation.job_saver import JobSaver from fate_flow.operation.job_tracker import Tracker from fate_flow.protobuf.python import pipeline_pb2 from fate_flow.settings import USE_AUTHENTICATION, USE_DATA_AUTHENTICATION, ENGINES from fate_flow.utils import job_utils, schedule_utils, data_utils from fate_flow.utils.authentication_utils import authentication_check from fate_flow.utils.authentication_utils import data_authentication_check from fate_flow.utils.log_utils import schedule_logger class JobController(object): @classmethod def create_job(cls, job_id, role, party_id, job_info): # parse job configuration dsl = job_info['dsl'] runtime_conf = job_info['runtime_conf'] train_runtime_conf = job_info['train_runtime_conf'] if USE_AUTHENTICATION: authentication_check(src_role=job_info.get('src_role', None), src_party_id=job_info.get('src_party_id', None), dsl=dsl, runtime_conf=runtime_conf, role=role, party_id=party_id) dsl_parser = schedule_utils.get_job_dsl_parser(dsl=dsl, runtime_conf=runtime_conf, train_runtime_conf=train_runtime_conf) job_parameters = dsl_parser.get_job_parameters(runtime_conf) schedule_logger(job_id).info('job parameters:{}'.format(job_parameters)) dest_user = job_parameters.get(role, {}).get(party_id, {}).get('user', '') user = {} src_party_id = int(job_info['src_party_id']) if job_info.get('src_party_id') else 0 src_role = job_info.get('src_role', '') src_user = job_parameters.get(src_role, {}).get(src_party_id, {}).get('user', '') if src_role else '' for _role, party_id_item in job_parameters.items(): user[_role] = {} for _party_id, _parameters in party_id_item.items(): user[_role][_party_id] = _parameters.get("user", "") schedule_logger(job_id).info('job user:{}'.format(user)) if USE_DATA_AUTHENTICATION: job_args = dsl_parser.get_args_input() schedule_logger(job_id).info('job args:{}'.format(job_args)) dataset_dict = cls.get_dataset(False, role, party_id, runtime_conf.get("role"), job_args) dataset_list = [] if dataset_dict.get(role, {}).get(party_id): for k, v in dataset_dict[role][party_id].items(): dataset_list.append({"namespace": v.split('.')[0], "table_name": v.split('.')[1]}) data_authentication_check(src_role=job_info.get('src_role'), src_party_id=job_info.get('src_party_id'), src_user=src_user, dest_user=dest_user, dataset_list=dataset_list) job_parameters = RunParameters(**job_parameters.get(role, {}).get(party_id, {})) # save new job into db if role == job_info["initiator_role"] and party_id == job_info["initiator_party_id"]: is_initiator = True else: is_initiator = False job_info["status"] = JobStatus.READY job_info["user_id"] = dest_user job_info["src_user"] = src_user job_info["user"] = user # this party configuration job_info["role"] = role job_info["party_id"] = party_id job_info["is_initiator"] = is_initiator job_info["progress"] = 0 cls.create_job_parameters_on_party(role=role, party_id=party_id, job_parameters=job_parameters) # update job parameters on party job_info["runtime_conf_on_party"]["job_parameters"] = job_parameters.to_dict() JobSaver.create_job(job_info=job_info) initialized_result, provider_group = cls.initialize_tasks(job_id=job_id, role=role, party_id=party_id, run_on_this_party=True, initiator_role=job_info["initiator_role"], initiator_party_id=job_info["initiator_party_id"], job_parameters=job_parameters, dsl_parser=dsl_parser) for provider_key, group_info in provider_group.items(): for cpn in group_info["components"]: dsl["components"][cpn]["provider"] = provider_key roles = job_info['roles'] cls.initialize_job_tracker(job_id=job_id, role=role, party_id=party_id, job_parameters=job_parameters, roles=roles, is_initiator=is_initiator, dsl_parser=dsl_parser) job_utils.save_job_conf(job_id=job_id, role=role, party_id=party_id, dsl=dsl, runtime_conf=runtime_conf, runtime_conf_on_party=job_info["runtime_conf_on_party"], train_runtime_conf=train_runtime_conf, pipeline_dsl=None) return {"components": initialized_result} @classmethod def set_federated_mode(cls, job_parameters: RunParameters): if not job_parameters.federated_mode: job_parameters.federated_mode = ENGINES["federated_mode"] @classmethod def set_engines(cls, job_parameters: RunParameters, engine_type=None): engines = engine_utils.get_engines() if not engine_type: engine_type = {EngineType.COMPUTING, EngineType.FEDERATION, EngineType.STORAGE} for k in engine_type: setattr(job_parameters, f"{k}_engine", engines[k]) @classmethod def create_common_job_parameters(cls, job_id, initiator_role, common_job_parameters: RunParameters): JobController.set_federated_mode(job_parameters=common_job_parameters) JobController.set_engines(job_parameters=common_job_parameters, engine_type={EngineType.COMPUTING}) JobController.fill_default_job_parameters(job_id=job_id, job_parameters=common_job_parameters) JobController.adapt_job_parameters(role=initiator_role, job_parameters=common_job_parameters, create_initiator_baseline=True) @classmethod def create_job_parameters_on_party(cls, role, party_id, job_parameters: RunParameters): JobController.set_engines(job_parameters=job_parameters) cls.fill_party_specific_parameters(role=role, party_id=party_id, job_parameters=job_parameters) @classmethod def fill_party_specific_parameters(cls, role, party_id, job_parameters: RunParameters): cls.adapt_job_parameters(role=role, job_parameters=job_parameters) engines_info = cls.get_job_engines_address(job_parameters=job_parameters) cls.check_parameters(job_parameters=job_parameters, role=role, party_id=party_id, engines_info=engines_info) @classmethod def fill_default_job_parameters(cls, job_id, job_parameters: RunParameters): keys = {"task_parallelism", "auto_retries", "auto_retry_delay", "federated_status_collect_type"} for key in keys: if hasattr(job_parameters, key) and getattr(job_parameters, key) is None: if hasattr(JobDefaultConfig, key): setattr(job_parameters, key, getattr(JobDefaultConfig, key)) else: schedule_logger(job_id).warning(f"can not found {key} job parameter default value from job_default_settings") @classmethod def adapt_job_parameters(cls, role, job_parameters: RunParameters, create_initiator_baseline=False): ResourceManager.adapt_engine_parameters( role=role, job_parameters=job_parameters, create_initiator_baseline=create_initiator_baseline) if create_initiator_baseline: if job_parameters.task_parallelism is None: job_parameters.task_parallelism = JobDefaultConfig.task_parallelism if job_parameters.federated_status_collect_type is None: job_parameters.federated_status_collect_type = JobDefaultConfig.federated_status_collect_type if create_initiator_baseline and not job_parameters.computing_partitions: job_parameters.computing_partitions = job_parameters.adaptation_parameters[ "task_cores_per_node"] * job_parameters.adaptation_parameters["task_nodes"] @classmethod def get_job_engines_address(cls, job_parameters: RunParameters): engines_info = {} engine_list = [ (EngineType.COMPUTING, job_parameters.computing_engine), (EngineType.FEDERATION, job_parameters.federation_engine), (EngineType.STORAGE, job_parameters.storage_engine) ] for engine_type, engine_name in engine_list: engine_info = ResourceManager.get_engine_registration_info( engine_type=engine_type, engine_name=engine_name) job_parameters.engines_address[engine_type] = engine_info.f_engine_config if engine_info else {} engines_info[engine_type] = engine_info return engines_info @classmethod def check_parameters(cls, job_parameters: RunParameters, role, party_id, engines_info): status, cores_submit, max_cores_per_job = ResourceManager.check_resource_apply( job_parameters=job_parameters, role=role, party_id=party_id, engines_info=engines_info) if not status: msg = "" msg2 = "default value is fate_flow/settings.py#DEFAULT_TASK_CORES_PER_NODE, refer fate_flow/examples/simple/simple_job_conf.json" if job_parameters.computing_engine in {ComputingEngine.EGGROLL, ComputingEngine.STANDALONE}: msg = "please use task_cores job parameters to set request task cores or you can customize it with eggroll_run job parameters" elif job_parameters.computing_engine in {ComputingEngine.SPARK}: msg = "please use task_cores job parameters to set request task cores or you can customize it with spark_run job parameters" raise RuntimeError( f"max cores per job is {max_cores_per_job} base on (fate_flow/settings#MAX_CORES_PERCENT_PER_JOB * conf/service_conf.yaml#nodes * conf/service_conf.yaml#cores_per_node), expect {cores_submit} cores, {msg}, {msg2}") @classmethod def gen_updated_parameters(cls, job_id, initiator_role, initiator_party_id, input_job_parameters, input_component_parameters): # todo: check can not update job parameters job_configuration = job_utils.get_job_configuration(job_id=job_id, role=initiator_role, party_id=initiator_party_id) updated_job_parameters = job_configuration.runtime_conf["job_parameters"] updated_component_parameters = job_configuration.runtime_conf["component_parameters"] if input_job_parameters: if input_job_parameters.get("common"): common_job_parameters = RunParameters(**input_job_parameters["common"]) cls.create_common_job_parameters(job_id=job_id, initiator_role=initiator_role, common_job_parameters=common_job_parameters) for attr in {"model_id", "model_version"}: setattr(common_job_parameters, attr, updated_job_parameters["common"].get(attr)) updated_job_parameters["common"] = common_job_parameters.to_dict() # not support role updated_components = set() if input_component_parameters: cls.merge_update(input_component_parameters, updated_component_parameters) return updated_job_parameters, updated_component_parameters, list(updated_components) @classmethod def merge_update(cls, inputs: dict, results: dict): if not isinstance(inputs, dict) or not isinstance(results, dict): raise ValueError(f"must both dict, but {type(inputs)} inputs and {type(results)} results") for k, v in inputs.items(): if k not in results: results[k] = v elif isinstance(v, dict): cls.merge_update(v, results[k]) else: results[k] = v @classmethod def update_parameter(cls, job_id, role, party_id, updated_parameters: dict): job_configuration = job_utils.get_job_configuration(job_id=job_id, role=role, party_id=party_id) job_parameters = updated_parameters.get("job_parameters") component_parameters = updated_parameters.get("component_parameters") if job_parameters: job_configuration.runtime_conf["job_parameters"] = job_parameters job_parameters = RunParameters(**job_parameters["common"]) cls.create_job_parameters_on_party(role=role, party_id=party_id, job_parameters=job_parameters) job_configuration.runtime_conf_on_party["job_parameters"] = job_parameters.to_dict() if component_parameters: job_configuration.runtime_conf["component_parameters"] = component_parameters job_configuration.runtime_conf_on_party["component_parameters"] = component_parameters job_info = {} job_info["job_id"] = job_id job_info["role"] = role job_info["party_id"] = party_id job_info["runtime_conf"] = job_configuration.runtime_conf job_info["runtime_conf_on_party"] = job_configuration.runtime_conf_on_party JobSaver.update_job(job_info) @classmethod def initialize_task(cls, role, party_id, task_info: dict): task_info["role"] = role task_info["party_id"] = party_id initialized_result, provider_group = cls.initialize_tasks(components=[task_info["component_name"]], **task_info) return initialized_result @classmethod def initialize_tasks(cls, job_id, role, party_id, run_on_this_party, initiator_role, initiator_party_id, job_parameters: RunParameters = None, dsl_parser=None, components: list = None, **kwargs): common_task_info = {} common_task_info["job_id"] = job_id common_task_info["initiator_role"] = initiator_role common_task_info["initiator_party_id"] = initiator_party_id common_task_info["role"] = role common_task_info["party_id"] = party_id common_task_info["run_on_this_party"] = run_on_this_party common_task_info["federated_mode"] = kwargs.get("federated_mode", job_parameters.federated_mode if job_parameters else None) common_task_info["federated_status_collect_type"] = kwargs.get("federated_status_collect_type", job_parameters.federated_status_collect_type if job_parameters else None) common_task_info["auto_retries"] = kwargs.get("auto_retries", job_parameters.auto_retries if job_parameters else None) common_task_info["auto_retry_delay"] = kwargs.get("auto_retry_delay", job_parameters.auto_retry_delay if job_parameters else None) common_task_info["task_version"] = kwargs.get("task_version") if dsl_parser is None: dsl_parser = schedule_utils.get_job_dsl_parser_by_job_id(job_id) provider_group = ProviderManager.get_job_provider_group(dsl_parser=dsl_parser, components=components) initialized_result = {} for group_key, group_info in provider_group.items(): initialized_config = {} initialized_config.update(group_info) initialized_config["common_task_info"] = common_task_info if run_on_this_party: code, _result = WorkerManager.start_general_worker(worker_name=WorkerName.TASK_INITIALIZER, job_id=job_id, role=role, party_id=party_id, initialized_config=initialized_config, run_in_subprocess=False if initialized_config["if_default_provider"] else True) initialized_result.update(_result) else: cls.initialize_task_holder_for_scheduling(role=role, party_id=party_id, components=initialized_config["components"], common_task_info=common_task_info, provider_info=initialized_config["provider"]) return initialized_result, provider_group @classmethod def initialize_task_holder_for_scheduling(cls, role, party_id, components, common_task_info, provider_info): for component_name in components: task_info = {} task_info.update(common_task_info) task_info["component_name"] = component_name task_info["component_module"] = "" task_info["provider_info"] = provider_info task_info["component_parameters"] = {} TaskController.create_task(role=role, party_id=party_id, run_on_this_party=common_task_info["run_on_this_party"], task_info=task_info) @classmethod def initialize_job_tracker(cls, job_id, role, party_id, job_parameters: RunParameters, roles, is_initiator, dsl_parser): tracker = Tracker(job_id=job_id, role=role, party_id=party_id, model_id=job_parameters.model_id, model_version=job_parameters.model_version, job_parameters=job_parameters) if job_parameters.job_type != "predict": tracker.init_pipeline_model() partner = {} show_role = {} for _role, _role_party in roles.items(): if is_initiator or _role == role: show_role[_role] = show_role.get(_role, []) for _party_id in _role_party: if is_initiator or _party_id == party_id: show_role[_role].append(_party_id) if _role != role: partner[_role] = partner.get(_role, []) partner[_role].extend(_role_party) else: for _party_id in _role_party: if _party_id != party_id: partner[_role] = partner.get(_role, []) partner[_role].append(_party_id) job_args = dsl_parser.get_args_input() dataset = cls.get_dataset( is_initiator, role, party_id, roles, job_args) tracker.log_job_view( {'partner': partner, 'dataset': dataset, 'roles': show_role}) @classmethod def get_dataset(cls, is_initiator, role, party_id, roles, job_args): dataset = {} dsl_version = 1 if job_args.get('dsl_version'): if job_args.get('dsl_version') == 2: dsl_version = 2 for _role, _role_party_args in job_args.items(): if _role == "dsl_version": continue if is_initiator or _role == role: for _party_index in range(len(_role_party_args)): _party_id = roles[_role][_party_index] if is_initiator or _party_id == party_id: dataset[_role] = dataset.get(_role, {}) dataset[_role][_party_id] = dataset[_role].get( _party_id, {}) if dsl_version == 1: for _data_type, _data_location in _role_party_args[_party_index]['args']['data'].items(): dataset[_role][_party_id][_data_type] = '{}.{}'.format( _data_location['namespace'], _data_location['name']) else: for key in _role_party_args[_party_index].keys(): for _data_type, _data_location in _role_party_args[_party_index][key].items(): search_type = data_utils.get_input_search_type(parameters=_data_location) if search_type is InputSearchType.TABLE_INFO: dataset[_role][_party_id][key] = '{}.{}'.format(_data_location['namespace'], _data_location['name']) elif search_type is InputSearchType.JOB_COMPONENT_OUTPUT: dataset[_role][_party_id][key] = '{}.{}.{}'.format(_data_location['job_id'], _data_location['component_name'], _data_location['data_name']) else: dataset[_role][_party_id][key] = "unknown" return dataset @classmethod def query_job_input_args(cls, input_data, role, party_id): min_partition = data_utils.get_input_data_min_partitions( input_data, role, party_id) return {'min_input_data_partition': min_partition} @classmethod def start_job(cls, job_id, role, party_id, extra_info=None): schedule_logger(job_id).info( f"try to start job on {role} {party_id}") job_info = { "job_id": job_id, "role": role, "party_id": party_id, "status": JobStatus.RUNNING, "start_time": current_timestamp() } if extra_info: schedule_logger(job_id).info(f"extra info: {extra_info}") job_info.update(extra_info) cls.update_job_status(job_info=job_info) cls.update_job(job_info=job_info) schedule_logger(job_id).info( f"start job on {role} {party_id} successfully") @classmethod def update_job(cls, job_info): """ Save to local database :param job_info: :return: """ return JobSaver.update_job(job_info=job_info) @classmethod def update_job_status(cls, job_info): update_status = JobSaver.update_job_status(job_info=job_info) if update_status and EndStatus.contains(job_info.get("status")): ResourceManager.return_job_resource( job_id=job_info["job_id"], role=job_info["role"], party_id=job_info["party_id"]) return update_status @classmethod def stop_jobs(cls, job_id, stop_status, role=None, party_id=None): if role and party_id: jobs = JobSaver.query_job( job_id=job_id, role=role, party_id=party_id) else: jobs = JobSaver.query_job(job_id=job_id) kill_status = True kill_details = {} for job in jobs: kill_job_status, kill_job_details = cls.stop_job( job=job, stop_status=stop_status) kill_status = kill_status & kill_job_status kill_details[job_id] = kill_job_details return kill_status, kill_details @classmethod def stop_job(cls, job, stop_status): tasks = JobSaver.query_task( job_id=job.f_job_id, role=job.f_role, party_id=job.f_party_id, reverse=True) kill_status = True kill_details = {} for task in tasks: kill_task_status = TaskController.stop_task( task=task, stop_status=stop_status) kill_status = kill_status & kill_task_status kill_details[task.f_task_id] = 'success' if kill_task_status else 'failed' if kill_status: job_info = job.to_human_model_dict(only_primary_with=["status"]) job_info["status"] = stop_status JobController.update_job_status(job_info) return kill_status, kill_details # Job status depends on the final operation result and initiator calculate @classmethod def save_pipelined_model(cls, job_id, role, party_id): schedule_logger(job_id).info(f"start to save pipeline model on {role} {party_id}") job_configuration = job_utils.get_job_configuration(job_id=job_id, role=role, party_id=party_id) runtime_conf_on_party = job_configuration.runtime_conf_on_party job_parameters = runtime_conf_on_party.get('job_parameters', {}) if role in job_parameters.get("assistant_role", []): return model_id = job_parameters['model_id'] model_version = job_parameters['model_version'] job_type = job_parameters.get('job_type', '') roles = runtime_conf_on_party['role'] initiator_role = runtime_conf_on_party['initiator']['role'] initiator_party_id = runtime_conf_on_party['initiator']['party_id'] if job_type == 'predict': return dsl_parser = schedule_utils.get_job_dsl_parser(dsl=job_configuration.dsl, runtime_conf=job_configuration.runtime_conf, train_runtime_conf=job_configuration.train_runtime_conf) components_parameters = {} tasks = JobSaver.query_task(job_id=job_id, role=role, party_id=party_id, only_latest=True) for task in tasks: components_parameters[task.f_component_name] = task.f_component_parameters predict_dsl = schedule_utils.fill_inference_dsl(dsl_parser, origin_inference_dsl=job_configuration.dsl, components_parameters=components_parameters) pipeline = pipeline_pb2.Pipeline() pipeline.inference_dsl = json_dumps(predict_dsl, byte=True) pipeline.train_dsl = json_dumps(job_configuration.dsl, byte=True) pipeline.train_runtime_conf = json_dumps(job_configuration.runtime_conf, byte=True) pipeline.fate_version = RuntimeConfig.get_env("FATE") pipeline.model_id = model_id pipeline.model_version = model_version pipeline.parent = True pipeline.loaded_times = 0 pipeline.roles = json_dumps(roles, byte=True) pipeline.initiator_role = initiator_role pipeline.initiator_party_id = initiator_party_id pipeline.runtime_conf_on_party = json_dumps( runtime_conf_on_party, byte=True) pipeline.parent_info = json_dumps({}, byte=True) tracker = Tracker(job_id=job_id, role=role, party_id=party_id, model_id=model_id, model_version=model_version, job_parameters=RunParameters(**job_parameters)) tracker.save_pipeline_model(pipeline_buffer_object=pipeline) if role != 'local': tracker.save_machine_learning_model_info() schedule_logger(job_id).info(f"save pipeline on {role} {party_id} successfully") @classmethod def clean_job(cls, job_id, role, party_id, roles): schedule_logger(job_id).info(f"start to clean job on {role} {party_id}") # todo schedule_logger(job_id).info(f"job on {role} {party_id} clean done")
[ "fate_flow.operation.job_saver.JobSaver.update_job_status", "fate_flow.utils.data_utils.get_input_data_min_partitions", "fate_flow.manager.resource_manager.ResourceManager.adapt_engine_parameters", "fate_flow.manager.resource_manager.ResourceManager.get_engine_registration_info", "fate_flow.utils.schedule_utils.get_job_dsl_parser_by_job_id", "fate_flow.manager.resource_manager.ResourceManager.return_job_resource", "fate_flow.controller.task_controller.TaskController.create_task", "fate_flow.manager.provider_manager.ProviderManager.get_job_provider_group", "fate_flow.utils.data_utils.get_input_search_type", "fate_flow.protobuf.python.pipeline_pb2.Pipeline", "fate_flow.utils.schedule_utils.fill_inference_dsl", "fate_flow.utils.schedule_utils.get_job_dsl_parser", "fate_flow.operation.job_tracker.Tracker", "fate_flow.utils.job_utils.save_job_conf", "fate_flow.entity.RunParameters", "fate_flow.controller.task_controller.TaskController.stop_task", "fate_flow.operation.job_saver.JobSaver.create_job", "fate_flow.operation.job_saver.JobSaver.update_job", "fate_flow.utils.job_utils.get_job_configuration", "fate_flow.operation.job_saver.JobSaver.query_task", "fate_flow.operation.job_saver.JobSaver.query_job", "fate_flow.utils.log_utils.schedule_logger", "fate_flow.manager.resource_manager.ResourceManager.check_resource_apply", "fate_flow.db.runtime_config.RuntimeConfig.get_env", "fate_flow.manager.worker_manager.WorkerManager.start_general_worker" ]
[((2404, 2516), 'fate_flow.utils.schedule_utils.get_job_dsl_parser', 'schedule_utils.get_job_dsl_parser', ([], {'dsl': 'dsl', 'runtime_conf': 'runtime_conf', 'train_runtime_conf': 'train_runtime_conf'}), '(dsl=dsl, runtime_conf=runtime_conf,\n train_runtime_conf=train_runtime_conf)\n', (2437, 2516), False, 'from fate_flow.utils import job_utils, schedule_utils, data_utils\n'), ((5030, 5068), 'fate_flow.operation.job_saver.JobSaver.create_job', 'JobSaver.create_job', ([], {'job_info': 'job_info'}), '(job_info=job_info)\n', (5049, 5068), False, 'from fate_flow.operation.job_saver import JobSaver\n'), ((5850, 6083), 'fate_flow.utils.job_utils.save_job_conf', 'job_utils.save_job_conf', ([], {'job_id': 'job_id', 'role': 'role', 'party_id': 'party_id', 'dsl': 'dsl', 'runtime_conf': 'runtime_conf', 'runtime_conf_on_party': "job_info['runtime_conf_on_party']", 'train_runtime_conf': 'train_runtime_conf', 'pipeline_dsl': 'None'}), "(job_id=job_id, role=role, party_id=party_id, dsl=\n dsl, runtime_conf=runtime_conf, runtime_conf_on_party=job_info[\n 'runtime_conf_on_party'], train_runtime_conf=train_runtime_conf,\n pipeline_dsl=None)\n", (5873, 6083), False, 'from fate_flow.utils import job_utils, schedule_utils, data_utils\n'), ((6653, 6679), 'fate_arch.common.engine_utils.get_engines', 'engine_utils.get_engines', ([], {}), '()\n', (6677, 6679), False, 'from fate_arch.common import engine_utils\n'), ((8948, 9087), 'fate_flow.manager.resource_manager.ResourceManager.adapt_engine_parameters', 'ResourceManager.adapt_engine_parameters', ([], {'role': 'role', 'job_parameters': 'job_parameters', 'create_initiator_baseline': 'create_initiator_baseline'}), '(role=role, job_parameters=\n job_parameters, create_initiator_baseline=create_initiator_baseline)\n', (8987, 9087), False, 'from fate_flow.manager.resource_manager import ResourceManager\n'), ((10606, 10735), 'fate_flow.manager.resource_manager.ResourceManager.check_resource_apply', 'ResourceManager.check_resource_apply', ([], {'job_parameters': 'job_parameters', 'role': 'role', 'party_id': 'party_id', 'engines_info': 'engines_info'}), '(job_parameters=job_parameters, role=\n role, party_id=party_id, engines_info=engines_info)\n', (10642, 10735), False, 'from fate_flow.manager.resource_manager import ResourceManager\n'), ((11888, 11988), 'fate_flow.utils.job_utils.get_job_configuration', 'job_utils.get_job_configuration', ([], {'job_id': 'job_id', 'role': 'initiator_role', 'party_id': 'initiator_party_id'}), '(job_id=job_id, role=initiator_role,\n party_id=initiator_party_id)\n', (11919, 11988), False, 'from fate_flow.utils import job_utils, schedule_utils, data_utils\n'), ((13735, 13811), 'fate_flow.utils.job_utils.get_job_configuration', 'job_utils.get_job_configuration', ([], {'job_id': 'job_id', 'role': 'role', 'party_id': 'party_id'}), '(job_id=job_id, role=role, party_id=party_id)\n', (13766, 13811), False, 'from fate_flow.utils import job_utils, schedule_utils, data_utils\n'), ((15062, 15091), 'fate_flow.operation.job_saver.JobSaver.update_job', 'JobSaver.update_job', (['job_info'], {}), '(job_info)\n', (15081, 15091), False, 'from fate_flow.operation.job_saver import JobSaver\n'), ((16756, 16845), 'fate_flow.manager.provider_manager.ProviderManager.get_job_provider_group', 'ProviderManager.get_job_provider_group', ([], {'dsl_parser': 'dsl_parser', 'components': 'components'}), '(dsl_parser=dsl_parser, components=\n components)\n', (16794, 16845), False, 'from fate_flow.manager.provider_manager import ProviderManager\n'), ((19203, 19373), 'fate_flow.operation.job_tracker.Tracker', 'Tracker', ([], {'job_id': 'job_id', 'role': 'role', 'party_id': 'party_id', 'model_id': 'job_parameters.model_id', 'model_version': 'job_parameters.model_version', 'job_parameters': 'job_parameters'}), '(job_id=job_id, role=role, party_id=party_id, model_id=\n job_parameters.model_id, model_version=job_parameters.model_version,\n job_parameters=job_parameters)\n', (19210, 19373), False, 'from fate_flow.operation.job_tracker import Tracker\n'), ((22724, 22792), 'fate_flow.utils.data_utils.get_input_data_min_partitions', 'data_utils.get_input_data_min_partitions', (['input_data', 'role', 'party_id'], {}), '(input_data, role, party_id)\n', (22764, 22792), False, 'from fate_flow.utils import job_utils, schedule_utils, data_utils\n'), ((23735, 23773), 'fate_flow.operation.job_saver.JobSaver.update_job', 'JobSaver.update_job', ([], {'job_info': 'job_info'}), '(job_info=job_info)\n', (23754, 23773), False, 'from fate_flow.operation.job_saver import JobSaver\n'), ((23858, 23903), 'fate_flow.operation.job_saver.JobSaver.update_job_status', 'JobSaver.update_job_status', ([], {'job_info': 'job_info'}), '(job_info=job_info)\n', (23884, 23903), False, 'from fate_flow.operation.job_saver import JobSaver\n'), ((24852, 24953), 'fate_flow.operation.job_saver.JobSaver.query_task', 'JobSaver.query_task', ([], {'job_id': 'job.f_job_id', 'role': 'job.f_role', 'party_id': 'job.f_party_id', 'reverse': '(True)'}), '(job_id=job.f_job_id, role=job.f_role, party_id=job.\n f_party_id, reverse=True)\n', (24871, 24953), False, 'from fate_flow.operation.job_saver import JobSaver\n'), ((25815, 25891), 'fate_flow.utils.job_utils.get_job_configuration', 'job_utils.get_job_configuration', ([], {'job_id': 'job_id', 'role': 'role', 'party_id': 'party_id'}), '(job_id=job_id, role=role, party_id=party_id)\n', (25846, 25891), False, 'from fate_flow.utils import job_utils, schedule_utils, data_utils\n'), ((26597, 26769), 'fate_flow.utils.schedule_utils.get_job_dsl_parser', 'schedule_utils.get_job_dsl_parser', ([], {'dsl': 'job_configuration.dsl', 'runtime_conf': 'job_configuration.runtime_conf', 'train_runtime_conf': 'job_configuration.train_runtime_conf'}), '(dsl=job_configuration.dsl, runtime_conf=\n job_configuration.runtime_conf, train_runtime_conf=job_configuration.\n train_runtime_conf)\n', (26630, 26769), False, 'from fate_flow.utils import job_utils, schedule_utils, data_utils\n'), ((26922, 27008), 'fate_flow.operation.job_saver.JobSaver.query_task', 'JobSaver.query_task', ([], {'job_id': 'job_id', 'role': 'role', 'party_id': 'party_id', 'only_latest': '(True)'}), '(job_id=job_id, role=role, party_id=party_id,\n only_latest=True)\n', (26941, 27008), False, 'from fate_flow.operation.job_saver import JobSaver\n'), ((27141, 27280), 'fate_flow.utils.schedule_utils.fill_inference_dsl', 'schedule_utils.fill_inference_dsl', (['dsl_parser'], {'origin_inference_dsl': 'job_configuration.dsl', 'components_parameters': 'components_parameters'}), '(dsl_parser, origin_inference_dsl=\n job_configuration.dsl, components_parameters=components_parameters)\n', (27174, 27280), False, 'from fate_flow.utils import job_utils, schedule_utils, data_utils\n'), ((27296, 27319), 'fate_flow.protobuf.python.pipeline_pb2.Pipeline', 'pipeline_pb2.Pipeline', ([], {}), '()\n', (27317, 27319), False, 'from fate_flow.protobuf.python import pipeline_pb2\n'), ((27353, 27387), 'fate_arch.common.base_utils.json_dumps', 'json_dumps', (['predict_dsl'], {'byte': '(True)'}), '(predict_dsl, byte=True)\n', (27363, 27387), False, 'from fate_arch.common.base_utils import json_dumps, current_timestamp\n'), ((27417, 27461), 'fate_arch.common.base_utils.json_dumps', 'json_dumps', (['job_configuration.dsl'], {'byte': '(True)'}), '(job_configuration.dsl, byte=True)\n', (27427, 27461), False, 'from fate_arch.common.base_utils import json_dumps, current_timestamp\n'), ((27500, 27553), 'fate_arch.common.base_utils.json_dumps', 'json_dumps', (['job_configuration.runtime_conf'], {'byte': '(True)'}), '(job_configuration.runtime_conf, byte=True)\n', (27510, 27553), False, 'from fate_arch.common.base_utils import json_dumps, current_timestamp\n'), ((27586, 27615), 'fate_flow.db.runtime_config.RuntimeConfig.get_env', 'RuntimeConfig.get_env', (['"""FATE"""'], {}), "('FATE')\n", (27607, 27615), False, 'from fate_flow.db.runtime_config import RuntimeConfig\n'), ((27791, 27819), 'fate_arch.common.base_utils.json_dumps', 'json_dumps', (['roles'], {'byte': '(True)'}), '(roles, byte=True)\n', (27801, 27819), False, 'from fate_arch.common.base_utils import json_dumps, current_timestamp\n'), ((27967, 28011), 'fate_arch.common.base_utils.json_dumps', 'json_dumps', (['runtime_conf_on_party'], {'byte': '(True)'}), '(runtime_conf_on_party, byte=True)\n', (27977, 28011), False, 'from fate_arch.common.base_utils import json_dumps, current_timestamp\n'), ((28056, 28081), 'fate_arch.common.base_utils.json_dumps', 'json_dumps', (['{}'], {'byte': '(True)'}), '({}, byte=True)\n', (28066, 28081), False, 'from fate_arch.common.base_utils import json_dumps, current_timestamp\n'), ((10145, 10243), 'fate_flow.manager.resource_manager.ResourceManager.get_engine_registration_info', 'ResourceManager.get_engine_registration_info', ([], {'engine_type': 'engine_type', 'engine_name': 'engine_name'}), '(engine_type=engine_type,\n engine_name=engine_name)\n', (10189, 10243), False, 'from fate_flow.manager.resource_manager import ResourceManager\n'), ((14210, 14251), 'fate_flow.entity.RunParameters', 'RunParameters', ([], {}), "(**job_parameters['common'])\n", (14223, 14251), False, 'from fate_flow.entity import RunParameters\n'), ((16679, 16730), 'fate_flow.utils.schedule_utils.get_job_dsl_parser_by_job_id', 'schedule_utils.get_job_dsl_parser_by_job_id', (['job_id'], {}), '(job_id)\n', (16722, 16730), False, 'from fate_flow.utils import job_utils, schedule_utils, data_utils\n'), ((18829, 18968), 'fate_flow.controller.task_controller.TaskController.create_task', 'TaskController.create_task', ([], {'role': 'role', 'party_id': 'party_id', 'run_on_this_party': "common_task_info['run_on_this_party']", 'task_info': 'task_info'}), "(role=role, party_id=party_id, run_on_this_party=\n common_task_info['run_on_this_party'], task_info=task_info)\n", (18855, 18968), False, 'from fate_flow.controller.task_controller import TaskController\n'), ((23218, 23237), 'fate_arch.common.base_utils.current_timestamp', 'current_timestamp', ([], {}), '()\n', (23235, 23237), False, 'from fate_arch.common.base_utils import json_dumps, current_timestamp\n'), ((23989, 24110), 'fate_flow.manager.resource_manager.ResourceManager.return_job_resource', 'ResourceManager.return_job_resource', ([], {'job_id': "job_info['job_id']", 'role': "job_info['role']", 'party_id': "job_info['party_id']"}), "(job_id=job_info['job_id'], role=\n job_info['role'], party_id=job_info['party_id'])\n", (24024, 24110), False, 'from fate_flow.manager.resource_manager import ResourceManager\n'), ((24290, 24353), 'fate_flow.operation.job_saver.JobSaver.query_job', 'JobSaver.query_job', ([], {'job_id': 'job_id', 'role': 'role', 'party_id': 'party_id'}), '(job_id=job_id, role=role, party_id=party_id)\n', (24308, 24353), False, 'from fate_flow.operation.job_saver import JobSaver\n'), ((24404, 24437), 'fate_flow.operation.job_saver.JobSaver.query_job', 'JobSaver.query_job', ([], {'job_id': 'job_id'}), '(job_id=job_id)\n', (24422, 24437), False, 'from fate_flow.operation.job_saver import JobSaver\n'), ((25073, 25133), 'fate_flow.controller.task_controller.TaskController.stop_task', 'TaskController.stop_task', ([], {'task': 'task', 'stop_status': 'stop_status'}), '(task=task, stop_status=stop_status)\n', (25097, 25133), False, 'from fate_flow.controller.task_controller import TaskController\n'), ((2700, 2723), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['job_id'], {}), '(job_id)\n', (2715, 2723), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((3355, 3378), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['job_id'], {}), '(job_id)\n', (3370, 3378), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((12405, 12452), 'fate_flow.entity.RunParameters', 'RunParameters', ([], {}), "(**input_job_parameters['common'])\n", (12418, 12452), False, 'from fate_flow.entity import RunParameters\n'), ((17220, 17473), 'fate_flow.manager.worker_manager.WorkerManager.start_general_worker', 'WorkerManager.start_general_worker', ([], {'worker_name': 'WorkerName.TASK_INITIALIZER', 'job_id': 'job_id', 'role': 'role', 'party_id': 'party_id', 'initialized_config': 'initialized_config', 'run_in_subprocess': "(False if initialized_config['if_default_provider'] else True)"}), "(worker_name=WorkerName.TASK_INITIALIZER,\n job_id=job_id, role=role, party_id=party_id, initialized_config=\n initialized_config, run_in_subprocess=False if initialized_config[\n 'if_default_provider'] else True)\n", (17254, 17473), False, 'from fate_flow.manager.worker_manager import WorkerManager\n'), ((22956, 22979), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['job_id'], {}), '(job_id)\n', (22971, 22979), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((23480, 23503), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['job_id'], {}), '(job_id)\n', (23495, 23503), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((25704, 25727), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['job_id'], {}), '(job_id)\n', (25719, 25727), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((28243, 28274), 'fate_flow.entity.RunParameters', 'RunParameters', ([], {}), '(**job_parameters)\n', (28256, 28274), False, 'from fate_flow.entity import RunParameters\n'), ((28436, 28459), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['job_id'], {}), '(job_id)\n', (28451, 28459), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((28598, 28621), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['job_id'], {}), '(job_id)\n', (28613, 28621), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((28694, 28717), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['job_id'], {}), '(job_id)\n', (28709, 28717), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((3511, 3534), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['job_id'], {}), '(job_id)\n', (3526, 3534), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((23283, 23306), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['job_id'], {}), '(job_id)\n', (23298, 23306), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((8707, 8730), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['job_id'], {}), '(job_id)\n', (8722, 8730), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((21914, 21973), 'fate_flow.utils.data_utils.get_input_search_type', 'data_utils.get_input_search_type', ([], {'parameters': '_data_location'}), '(parameters=_data_location)\n', (21946, 21973), False, 'from fate_flow.utils import job_utils, schedule_utils, data_utils\n')]
# Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import datetime import errno import os import sys import threading import typing from fate_arch.common import file_utils, FederatedMode from fate_arch.common.base_utils import json_dumps, fate_uuid, current_timestamp from fate_flow.utils.log_utils import schedule_logger from fate_flow.db.db_models import DB, Job, Task from fate_flow.entity import JobConfiguration from fate_flow.entity.run_status import JobStatus, TaskStatus from fate_flow.entity import RunParameters from fate_flow.db.job_default_config import JobDefaultConfig from fate_flow.settings import FATE_BOARD_DASHBOARD_ENDPOINT from fate_flow.db.service_registry import ServiceRegistry from fate_flow.utils import detect_utils, process_utils from fate_flow.utils import session_utils from fate_flow.utils.base_utils import get_fate_flow_directory class JobIdGenerator(object): _lock = threading.RLock() def __init__(self, initial_value=0): self._value = initial_value self._pre_timestamp = None self._max = 99999 def next_id(self): ''' generate next job id with locking ''' #todo: there is duplication in the case of multiple instances deployment now = datetime.datetime.now() with JobIdGenerator._lock: if self._pre_timestamp == now: if self._value < self._max: self._value += 1 else: now += datetime.timedelta(microseconds=1) self._pre_timestamp = now self._value = 0 else: self._pre_timestamp = now self._value = 0 return "{}{}".format(now.strftime("%Y%m%d%H%M%S%f"), self._value) job_id_generator = JobIdGenerator() def generate_job_id(): return job_id_generator.next_id() def generate_task_id(job_id, component_name): return '{}_{}'.format(job_id, component_name) def generate_task_version_id(task_id, task_version): return "{}_{}".format(task_id, task_version) def generate_session_id(task_id, task_version, role, party_id, suffix=None, random_end=False): items = [task_id, str(task_version), role, str(party_id)] if suffix: items.append(suffix) if random_end: items.append(fate_uuid()) return "_".join(items) def generate_task_input_data_namespace(task_id, task_version, role, party_id): return "input_data_{}".format(generate_session_id(task_id=task_id, task_version=task_version, role=role, party_id=party_id)) def get_job_directory(job_id, *args): return os.path.join(get_fate_flow_directory(), 'jobs', job_id, *args) def get_job_log_directory(job_id, *args): return os.path.join(get_fate_flow_directory(), 'logs', job_id, *args) def get_task_directory(job_id, role, party_id, component_name, task_id, task_version, **kwargs): return get_job_directory(job_id, role, party_id, component_name, task_id, task_version) def get_general_worker_directory(worker_name, worker_id, *args): return os.path.join(get_fate_flow_directory(), worker_name, worker_id, *args) def get_general_worker_log_directory(worker_name, worker_id, *args): return os.path.join(get_fate_flow_directory(), 'logs', worker_name, worker_id, *args) def check_config(config: typing.Dict, required_parameters: typing.List): for parameter in required_parameters: if parameter not in config: return False, 'configuration no {} parameter'.format(parameter) else: return True, 'ok' def check_job_runtime_conf(runtime_conf: typing.Dict): detect_utils.check_config(runtime_conf, ['initiator', 'role']) detect_utils.check_config(runtime_conf['initiator'], ['role', 'party_id']) # deal party id runtime_conf['initiator']['party_id'] = int(runtime_conf['initiator']['party_id']) for r in runtime_conf['role'].keys(): for i in range(len(runtime_conf['role'][r])): runtime_conf['role'][r][i] = int(runtime_conf['role'][r][i]) def runtime_conf_basic(if_local=False): job_runtime_conf = { "dsl_version": 2, "initiator": {}, "job_parameters": { "common": { "federated_mode": FederatedMode.SINGLE }, }, "role": {}, "component_parameters": {} } if if_local: job_runtime_conf["initiator"]["role"] = "local" job_runtime_conf["initiator"]["party_id"] = 0 job_runtime_conf["role"]["local"] = [0] return job_runtime_conf def new_runtime_conf(job_dir, method, module, role, party_id): if role: conf_path_dir = os.path.join(job_dir, method, module, role, str(party_id)) else: conf_path_dir = os.path.join(job_dir, method, module, str(party_id)) os.makedirs(conf_path_dir, exist_ok=True) return os.path.join(conf_path_dir, 'runtime_conf.json') def save_job_conf(job_id, role, party_id, dsl, runtime_conf, runtime_conf_on_party, train_runtime_conf, pipeline_dsl=None): path_dict = get_job_conf_path(job_id=job_id, role=role, party_id=party_id) dump_job_conf(path_dict=path_dict, dsl=dsl, runtime_conf=runtime_conf, runtime_conf_on_party=runtime_conf_on_party, train_runtime_conf=train_runtime_conf, pipeline_dsl=pipeline_dsl) return path_dict def save_task_using_job_conf(task: Task): task_dir = get_task_directory(job_id=task.f_job_id, role=task.f_role, party_id=task.f_party_id, component_name=task.f_component_name, task_id=task.f_task_id, task_version=str(task.f_task_version)) return save_using_job_conf(task.f_job_id, task.f_role, task.f_party_id, config_dir=task_dir) def save_using_job_conf(job_id, role, party_id, config_dir): path_dict = get_job_conf_path(job_id=job_id, role=role, party_id=party_id, specified_dir=config_dir) job_configuration = get_job_configuration(job_id=job_id, role=role, party_id=party_id) dump_job_conf(path_dict=path_dict, dsl=job_configuration.dsl, runtime_conf=job_configuration.runtime_conf, runtime_conf_on_party=job_configuration.runtime_conf_on_party, train_runtime_conf=job_configuration.train_runtime_conf, pipeline_dsl=None) return path_dict def dump_job_conf(path_dict, dsl, runtime_conf, runtime_conf_on_party, train_runtime_conf, pipeline_dsl=None): os.makedirs(os.path.dirname(path_dict.get('dsl_path')), exist_ok=True) os.makedirs(os.path.dirname(path_dict.get('runtime_conf_on_party_path')), exist_ok=True) for data, conf_path in [(dsl, path_dict['dsl_path']), (runtime_conf, path_dict['runtime_conf_path']), (runtime_conf_on_party, path_dict['runtime_conf_on_party_path']), (train_runtime_conf, path_dict['train_runtime_conf_path']), (pipeline_dsl, path_dict['pipeline_dsl_path'])]: with open(conf_path, 'w+') as f: f.truncate() if not data: data = {} f.write(json_dumps(data, indent=4)) f.flush() return path_dict @DB.connection_context() def get_job_configuration(job_id, role, party_id) -> JobConfiguration: jobs = Job.select(Job.f_dsl, Job.f_runtime_conf, Job.f_train_runtime_conf, Job.f_runtime_conf_on_party).where(Job.f_job_id == job_id, Job.f_role == role, Job.f_party_id == party_id) if jobs: job = jobs[0] return JobConfiguration(**job.to_human_model_dict()) def get_task_using_job_conf(task_info: dict): task_dir = get_task_directory(**task_info) return read_job_conf(task_info["job_id"], task_info["role"], task_info["party_id"], task_dir) def read_job_conf(job_id, role, party_id, specified_dir=None): path_dict = get_job_conf_path(job_id=job_id, role=role, party_id=party_id, specified_dir=specified_dir) conf_dict = {} for key, path in path_dict.items(): config = file_utils.load_json_conf(path) conf_dict[key.rstrip("_path")] = config return JobConfiguration(**conf_dict) def get_job_conf_path(job_id, role, party_id, specified_dir=None): conf_dir = get_job_directory(job_id) if not specified_dir else specified_dir job_dsl_path = os.path.join(conf_dir, 'job_dsl.json') job_runtime_conf_path = os.path.join(conf_dir, 'job_runtime_conf.json') if not specified_dir: job_runtime_conf_on_party_path = os.path.join(conf_dir, role, str(party_id), 'job_runtime_on_party_conf.json') else: job_runtime_conf_on_party_path = os.path.join(conf_dir, 'job_runtime_on_party_conf.json') train_runtime_conf_path = os.path.join(conf_dir, 'train_runtime_conf.json') pipeline_dsl_path = os.path.join(conf_dir, 'pipeline_dsl.json') return {'dsl_path': job_dsl_path, 'runtime_conf_path': job_runtime_conf_path, 'runtime_conf_on_party_path': job_runtime_conf_on_party_path, 'train_runtime_conf_path': train_runtime_conf_path, 'pipeline_dsl_path': pipeline_dsl_path} @DB.connection_context() def get_upload_job_configuration_summary(upload_tasks: typing.List[Task]): jobs_run_conf = {} for task in upload_tasks: jobs = Job.select(Job.f_job_id, Job.f_runtime_conf_on_party, Job.f_description).where(Job.f_job_id == task.f_job_id) job = jobs[0] jobs_run_conf[job.f_job_id] = job.f_runtime_conf_on_party["component_parameters"]["role"]["local"]["0"]["upload_0"] jobs_run_conf[job.f_job_id]["notes"] = job.f_description return jobs_run_conf @DB.connection_context() def get_job_parameters(job_id, role, party_id): jobs = Job.select(Job.f_runtime_conf_on_party).where(Job.f_job_id == job_id, Job.f_role == role, Job.f_party_id == party_id) if jobs: job = jobs[0] return job.f_runtime_conf_on_party.get("job_parameters") else: return {} @DB.connection_context() def get_job_dsl(job_id, role, party_id): jobs = Job.select(Job.f_dsl).where(Job.f_job_id == job_id, Job.f_role == role, Job.f_party_id == party_id) if jobs: job = jobs[0] return job.f_dsl else: return {} def job_pipeline_component_name(): return "pipeline" def job_pipeline_component_module_name(): return "Pipeline" @DB.connection_context() def list_job(limit): if limit > 0: jobs = Job.select().order_by(Job.f_create_time.desc()).limit(limit) else: jobs = Job.select().order_by(Job.f_create_time.desc()) return [job for job in jobs] @DB.connection_context() def list_task(limit): if limit > 0: tasks = Task.select().order_by(Task.f_create_time.desc()).limit(limit) else: tasks = Task.select().order_by(Task.f_create_time.desc()) return [task for task in tasks] def check_job_process(pid): if pid < 0: return False if pid == 0: raise ValueError('invalid PID 0') try: os.kill(pid, 0) except OSError as err: if err.errno == errno.ESRCH: # ESRCH == No such process return False elif err.errno == errno.EPERM: # EPERM clearly means there's a process to deny access to return True else: # According to "man 2 kill" possible error values are # (EINVAL, EPERM, ESRCH) raise else: return True def check_job_is_timeout(job: Job): job_parameters = job.f_runtime_conf_on_party["job_parameters"] timeout = job_parameters.get("timeout", JobDefaultConfig.job_timeout) now_time = current_timestamp() running_time = (now_time - job.f_create_time)/1000 if running_time > timeout: schedule_logger(job.f_job_id).info(f'run time {running_time}s timeout') return True else: return False def start_session_stop(task): job_parameters = RunParameters(**get_job_parameters(job_id=task.f_job_id, role=task.f_role, party_id=task.f_party_id)) session_manager_id = generate_session_id(task.f_task_id, task.f_task_version, task.f_role, task.f_party_id) if task.f_status != TaskStatus.WAITING: schedule_logger(task.f_job_id).info(f'start run subprocess to stop task sessions {session_manager_id}') else: schedule_logger(task.f_job_id).info(f'task is waiting, pass stop sessions {session_manager_id}') return task_dir = os.path.join(get_job_directory(job_id=task.f_job_id), task.f_role, task.f_party_id, task.f_component_name, 'session_stop') os.makedirs(task_dir, exist_ok=True) process_cmd = [ sys.executable or 'python3', sys.modules[session_utils.SessionStop.__module__].__file__, '--session', session_manager_id, '--computing', job_parameters.computing_engine, '--federation', job_parameters.federation_engine, '--storage', job_parameters.storage_engine, '-c', 'stop' if task.f_status == JobStatus.SUCCESS else 'kill' ] p = process_utils.run_subprocess(job_id=task.f_job_id, config_dir=task_dir, process_cmd=process_cmd) p.wait() p.poll() def get_timeout(job_id, timeout, runtime_conf, dsl): try: if timeout > 0: schedule_logger(job_id).info(f'setting job timeout {timeout}') return timeout else: default_timeout = job_default_timeout(runtime_conf, dsl) schedule_logger(job_id).info(f'setting job timeout {timeout} not a positive number, using the default timeout {default_timeout}') return default_timeout except: default_timeout = job_default_timeout(runtime_conf, dsl) schedule_logger(job_id).info(f'setting job timeout {timeout} is incorrect, using the default timeout {default_timeout}') return default_timeout def job_default_timeout(runtime_conf, dsl): # future versions will improve timeout = JobDefaultConfig.job_timeout return timeout def get_board_url(job_id, role, party_id): board_url = "http://{}:{}{}".format( ServiceRegistry.FATEBOARD.get("host"), ServiceRegistry.FATEBOARD.get("port"), FATE_BOARD_DASHBOARD_ENDPOINT).format(job_id, role, party_id) return board_url
[ "fate_flow.utils.base_utils.get_fate_flow_directory", "fate_flow.db.db_models.DB.connection_context", "fate_flow.db.db_models.Job.select", "fate_flow.db.db_models.Job.f_create_time.desc", "fate_flow.db.db_models.Task.select", "fate_flow.entity.JobConfiguration", "fate_flow.db.service_registry.ServiceRegistry.FATEBOARD.get", "fate_flow.utils.log_utils.schedule_logger", "fate_flow.db.db_models.Task.f_create_time.desc", "fate_flow.utils.detect_utils.check_config", "fate_flow.utils.process_utils.run_subprocess" ]
[((8246, 8269), 'fate_flow.db.db_models.DB.connection_context', 'DB.connection_context', ([], {}), '()\n', (8267, 8269), False, 'from fate_flow.db.db_models import DB, Job, Task\n'), ((10386, 10409), 'fate_flow.db.db_models.DB.connection_context', 'DB.connection_context', ([], {}), '()\n', (10407, 10409), False, 'from fate_flow.db.db_models import DB, Job, Task\n'), ((10902, 10925), 'fate_flow.db.db_models.DB.connection_context', 'DB.connection_context', ([], {}), '()\n', (10923, 10925), False, 'from fate_flow.db.db_models import DB, Job, Task\n'), ((11348, 11371), 'fate_flow.db.db_models.DB.connection_context', 'DB.connection_context', ([], {}), '()\n', (11369, 11371), False, 'from fate_flow.db.db_models import DB, Job, Task\n'), ((11818, 11841), 'fate_flow.db.db_models.DB.connection_context', 'DB.connection_context', ([], {}), '()\n', (11839, 11841), False, 'from fate_flow.db.db_models import DB, Job, Task\n'), ((12066, 12089), 'fate_flow.db.db_models.DB.connection_context', 'DB.connection_context', ([], {}), '()\n', (12087, 12089), False, 'from fate_flow.db.db_models import DB, Job, Task\n'), ((1470, 1487), 'threading.RLock', 'threading.RLock', ([], {}), '()\n', (1485, 1487), False, 'import threading\n'), ((4348, 4410), 'fate_flow.utils.detect_utils.check_config', 'detect_utils.check_config', (['runtime_conf', "['initiator', 'role']"], {}), "(runtime_conf, ['initiator', 'role'])\n", (4373, 4410), False, 'from fate_flow.utils import detect_utils, process_utils\n'), ((4415, 4489), 'fate_flow.utils.detect_utils.check_config', 'detect_utils.check_config', (["runtime_conf['initiator']", "['role', 'party_id']"], {}), "(runtime_conf['initiator'], ['role', 'party_id'])\n", (4440, 4489), False, 'from fate_flow.utils import detect_utils, process_utils\n'), ((5533, 5574), 'os.makedirs', 'os.makedirs', (['conf_path_dir'], {'exist_ok': '(True)'}), '(conf_path_dir, exist_ok=True)\n', (5544, 5574), False, 'import os\n'), ((5586, 5634), 'os.path.join', 'os.path.join', (['conf_path_dir', '"""runtime_conf.json"""'], {}), "(conf_path_dir, 'runtime_conf.json')\n", (5598, 5634), False, 'import os\n'), ((9384, 9413), 'fate_flow.entity.JobConfiguration', 'JobConfiguration', ([], {}), '(**conf_dict)\n', (9400, 9413), False, 'from fate_flow.entity import JobConfiguration\n'), ((9583, 9621), 'os.path.join', 'os.path.join', (['conf_dir', '"""job_dsl.json"""'], {}), "(conf_dir, 'job_dsl.json')\n", (9595, 9621), False, 'import os\n'), ((9650, 9697), 'os.path.join', 'os.path.join', (['conf_dir', '"""job_runtime_conf.json"""'], {}), "(conf_dir, 'job_runtime_conf.json')\n", (9662, 9697), False, 'import os\n'), ((9981, 10030), 'os.path.join', 'os.path.join', (['conf_dir', '"""train_runtime_conf.json"""'], {}), "(conf_dir, 'train_runtime_conf.json')\n", (9993, 10030), False, 'import os\n'), ((10055, 10098), 'os.path.join', 'os.path.join', (['conf_dir', '"""pipeline_dsl.json"""'], {}), "(conf_dir, 'pipeline_dsl.json')\n", (10067, 10098), False, 'import os\n'), ((13100, 13119), 'fate_arch.common.base_utils.current_timestamp', 'current_timestamp', ([], {}), '()\n', (13117, 13119), False, 'from fate_arch.common.base_utils import json_dumps, fate_uuid, current_timestamp\n'), ((14060, 14096), 'os.makedirs', 'os.makedirs', (['task_dir'], {'exist_ok': '(True)'}), '(task_dir, exist_ok=True)\n', (14071, 14096), False, 'import os\n'), ((14514, 14614), 'fate_flow.utils.process_utils.run_subprocess', 'process_utils.run_subprocess', ([], {'job_id': 'task.f_job_id', 'config_dir': 'task_dir', 'process_cmd': 'process_cmd'}), '(job_id=task.f_job_id, config_dir=task_dir,\n process_cmd=process_cmd)\n', (14542, 14614), False, 'from fate_flow.utils import detect_utils, process_utils\n'), ((1812, 1835), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1833, 1835), False, 'import datetime\n'), ((3353, 3378), 'fate_flow.utils.base_utils.get_fate_flow_directory', 'get_fate_flow_directory', ([], {}), '()\n', (3376, 3378), False, 'from fate_flow.utils.base_utils import get_fate_flow_directory\n'), ((3471, 3496), 'fate_flow.utils.base_utils.get_fate_flow_directory', 'get_fate_flow_directory', ([], {}), '()\n', (3494, 3496), False, 'from fate_flow.utils.base_utils import get_fate_flow_directory\n'), ((3803, 3828), 'fate_flow.utils.base_utils.get_fate_flow_directory', 'get_fate_flow_directory', ([], {}), '()\n', (3826, 3828), False, 'from fate_flow.utils.base_utils import get_fate_flow_directory\n'), ((3956, 3981), 'fate_flow.utils.base_utils.get_fate_flow_directory', 'get_fate_flow_directory', ([], {}), '()\n', (3979, 3981), False, 'from fate_flow.utils.base_utils import get_fate_flow_directory\n'), ((9293, 9324), 'fate_arch.common.file_utils.load_json_conf', 'file_utils.load_json_conf', (['path'], {}), '(path)\n', (9318, 9324), False, 'from fate_arch.common import file_utils, FederatedMode\n'), ((9894, 9950), 'os.path.join', 'os.path.join', (['conf_dir', '"""job_runtime_on_party_conf.json"""'], {}), "(conf_dir, 'job_runtime_on_party_conf.json')\n", (9906, 9950), False, 'import os\n'), ((12464, 12479), 'os.kill', 'os.kill', (['pid', '(0)'], {}), '(pid, 0)\n', (12471, 12479), False, 'import os\n'), ((2877, 2888), 'fate_arch.common.base_utils.fate_uuid', 'fate_uuid', ([], {}), '()\n', (2886, 2888), False, 'from fate_arch.common.base_utils import json_dumps, fate_uuid, current_timestamp\n'), ((8352, 8453), 'fate_flow.db.db_models.Job.select', 'Job.select', (['Job.f_dsl', 'Job.f_runtime_conf', 'Job.f_train_runtime_conf', 'Job.f_runtime_conf_on_party'], {}), '(Job.f_dsl, Job.f_runtime_conf, Job.f_train_runtime_conf, Job.\n f_runtime_conf_on_party)\n', (8362, 8453), False, 'from fate_flow.db.db_models import DB, Job, Task\n'), ((10985, 11024), 'fate_flow.db.db_models.Job.select', 'Job.select', (['Job.f_runtime_conf_on_party'], {}), '(Job.f_runtime_conf_on_party)\n', (10995, 11024), False, 'from fate_flow.db.db_models import DB, Job, Task\n'), ((11424, 11445), 'fate_flow.db.db_models.Job.select', 'Job.select', (['Job.f_dsl'], {}), '(Job.f_dsl)\n', (11434, 11445), False, 'from fate_flow.db.db_models import DB, Job, Task\n'), ((12004, 12028), 'fate_flow.db.db_models.Job.f_create_time.desc', 'Job.f_create_time.desc', ([], {}), '()\n', (12026, 12028), False, 'from fate_flow.db.db_models import DB, Job, Task\n'), ((12258, 12283), 'fate_flow.db.db_models.Task.f_create_time.desc', 'Task.f_create_time.desc', ([], {}), '()\n', (12281, 12283), False, 'from fate_flow.db.db_models import DB, Job, Task\n'), ((8172, 8198), 'fate_arch.common.base_utils.json_dumps', 'json_dumps', (['data'], {'indent': '(4)'}), '(data, indent=4)\n', (8182, 8198), False, 'from fate_arch.common.base_utils import json_dumps, fate_uuid, current_timestamp\n'), ((10553, 10625), 'fate_flow.db.db_models.Job.select', 'Job.select', (['Job.f_job_id', 'Job.f_runtime_conf_on_party', 'Job.f_description'], {}), '(Job.f_job_id, Job.f_runtime_conf_on_party, Job.f_description)\n', (10563, 10625), False, 'from fate_flow.db.db_models import DB, Job, Task\n'), ((11982, 11994), 'fate_flow.db.db_models.Job.select', 'Job.select', ([], {}), '()\n', (11992, 11994), False, 'from fate_flow.db.db_models import DB, Job, Task\n'), ((12235, 12248), 'fate_flow.db.db_models.Task.select', 'Task.select', ([], {}), '()\n', (12246, 12248), False, 'from fate_flow.db.db_models import DB, Job, Task\n'), ((13214, 13243), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['job.f_job_id'], {}), '(job.f_job_id)\n', (13229, 13243), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((13656, 13686), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['task.f_job_id'], {}), '(task.f_job_id)\n', (13671, 13686), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((13778, 13808), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['task.f_job_id'], {}), '(task.f_job_id)\n', (13793, 13808), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((15561, 15598), 'fate_flow.db.service_registry.ServiceRegistry.FATEBOARD.get', 'ServiceRegistry.FATEBOARD.get', (['"""host"""'], {}), "('host')\n", (15590, 15598), False, 'from fate_flow.db.service_registry import ServiceRegistry\n'), ((15608, 15645), 'fate_flow.db.service_registry.ServiceRegistry.FATEBOARD.get', 'ServiceRegistry.FATEBOARD.get', (['"""port"""'], {}), "('port')\n", (15637, 15645), False, 'from fate_flow.db.service_registry import ServiceRegistry\n'), ((2044, 2078), 'datetime.timedelta', 'datetime.timedelta', ([], {'microseconds': '(1)'}), '(microseconds=1)\n', (2062, 2078), False, 'import datetime\n'), ((11918, 11942), 'fate_flow.db.db_models.Job.f_create_time.desc', 'Job.f_create_time.desc', ([], {}), '()\n', (11940, 11942), False, 'from fate_flow.db.db_models import DB, Job, Task\n'), ((12169, 12194), 'fate_flow.db.db_models.Task.f_create_time.desc', 'Task.f_create_time.desc', ([], {}), '()\n', (12192, 12194), False, 'from fate_flow.db.db_models import DB, Job, Task\n'), ((14737, 14760), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['job_id'], {}), '(job_id)\n', (14752, 14760), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((14922, 14945), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['job_id'], {}), '(job_id)\n', (14937, 14945), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((15172, 15195), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['job_id'], {}), '(job_id)\n', (15187, 15195), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((11896, 11908), 'fate_flow.db.db_models.Job.select', 'Job.select', ([], {}), '()\n', (11906, 11908), False, 'from fate_flow.db.db_models import DB, Job, Task\n'), ((12146, 12159), 'fate_flow.db.db_models.Task.select', 'Task.select', ([], {}), '()\n', (12157, 12159), False, 'from fate_flow.db.db_models import DB, Job, Task\n')]
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import json import requests from arch.api.utils import file_utils from flask import jsonify from flask import Response from arch.api.utils.log_utils import audit_logger from fate_flow.entity.constant_config import WorkMode from fate_flow.settings import DEFAULT_GRPC_OVERALL_TIMEOUT, CHECK_NODES_IDENTITY,\ FATE_MANAGER_GET_NODE_INFO_ENDPOINT, HEADERS, SERVER_CONF_PATH, SERVERS from fate_flow.utils.grpc_utils import wrap_grpc_packet, get_proxy_data_channel, forward_grpc_packet from fate_flow.utils.service_utils import ServiceUtils from fate_flow.entity.runtime_config import RuntimeConfig def get_json_result(retcode=0, retmsg='success', data=None, job_id=None, meta=None): result_dict = {"retcode": retcode, "retmsg": retmsg, "data": data, "jobId": job_id, "meta": meta} response = {} for key, value in result_dict.items(): if not value and key != "retcode": continue else: response[key] = value return jsonify(response) def error_response(response_code, retmsg): return Response(json.dumps({'retmsg': retmsg, 'retcode': response_code}), status=response_code, mimetype='application/json') def federated_api(job_id, method, endpoint, src_party_id, dest_party_id, src_role, json_body, work_mode, overall_timeout=DEFAULT_GRPC_OVERALL_TIMEOUT): if int(dest_party_id) == 0: return local_api(job_id=job_id, method=method, endpoint=endpoint, json_body=json_body) if work_mode == WorkMode.STANDALONE: return local_api(job_id=job_id, method=method, endpoint=endpoint, json_body=json_body) elif work_mode == WorkMode.CLUSTER: return remote_api(job_id=job_id, method=method, endpoint=endpoint, src_party_id=src_party_id, src_role=src_role, dest_party_id=dest_party_id, json_body=json_body, overall_timeout=overall_timeout) else: raise Exception('{} work mode is not supported'.format(work_mode)) def remote_api(job_id, method, endpoint, src_party_id, dest_party_id, src_role, json_body, overall_timeout=DEFAULT_GRPC_OVERALL_TIMEOUT): json_body['src_role'] = src_role if CHECK_NODES_IDENTITY: get_node_identity(json_body, src_party_id) _packet = wrap_grpc_packet(json_body, method, endpoint, src_party_id, dest_party_id, job_id, overall_timeout=overall_timeout) try: channel, stub = get_proxy_data_channel() _return = stub.unaryCall(_packet) audit_logger(job_id).info("grpc api response: {}".format(_return)) channel.close() json_body = json.loads(_return.body.value) return json_body except Exception as e: tips = '' if 'Error received from peer' in str(e): tips = 'Please check if the fate flow server of the other party is started. ' if 'failed to connect to all addresses' in str(e): tips = 'Please check whether the rollsite service(port: 9370) is started. ' raise Exception('{}rpc request error: {}'.format(tips,e)) def local_api(method, endpoint, json_body, job_id=None): try: url = "http://{}{}".format(RuntimeConfig.JOB_SERVER_HOST, endpoint) audit_logger(job_id).info('local api request: {}'.format(url)) action = getattr(requests, method.lower(), None) response = action(url=url, json=json_body, headers=HEADERS) audit_logger(job_id).info(response.text) response_json_body = response.json() audit_logger(job_id).info('local api response: {} {}'.format(endpoint, response_json_body)) return response_json_body except Exception as e: raise Exception('local request error: {}'.format(e)) def request_execute_server(request, execute_host): try: endpoint = request.base_url.replace(request.host_url, '') method = request.method url = "http://{}/{}".format(execute_host, endpoint) audit_logger().info('sub request: {}'.format(url)) action = getattr(requests, method.lower(), None) response = action(url=url, json=request.json, headers=HEADERS) return jsonify(response.json()) except requests.exceptions.ConnectionError as e: return get_json_result(retcode=999, retmsg='please start fate flow server: {}'.format(execute_host)) except Exception as e: raise Exception('local request error: {}'.format(e)) def get_node_identity(json_body, src_party_id): params = { 'partyId': int(src_party_id), 'federatedId': file_utils.load_json_conf_real_time(SERVER_CONF_PATH).get(SERVERS).get('fatemanager', {}).get('federatedId') } try: response = requests.post(url="http://{}:{}{}".format( ServiceUtils.get_item("fatemanager", "host"), ServiceUtils.get_item("fatemanager", "port"), FATE_MANAGER_GET_NODE_INFO_ENDPOINT), json=params) json_body['appKey'] = response.json().get('data').get('appKey') json_body['appSecret'] = response.json().get('data').get('appSecret') json_body['_src_role'] = response.json().get('data').get('role') except Exception as e: raise Exception('get appkey and secret failed: {}'.format(str(e))) def forward_api(job_id, method, endpoint, src_party_id, dest_party_id, json_body, role, overall_timeout=DEFAULT_GRPC_OVERALL_TIMEOUT): _packet = forward_grpc_packet(json_body, method, endpoint, src_party_id, dest_party_id, job_id=job_id, role=role, overall_timeout=overall_timeout) channel, stub = get_proxy_data_channel() _return = stub.unaryCall(_packet) channel.close() json_body = json.loads(_return.body.value) return json_body
[ "fate_flow.utils.grpc_utils.forward_grpc_packet", "fate_flow.utils.grpc_utils.get_proxy_data_channel", "fate_flow.utils.service_utils.ServiceUtils.get_item", "fate_flow.utils.grpc_utils.wrap_grpc_packet" ]
[((1588, 1605), 'flask.jsonify', 'jsonify', (['response'], {}), '(response)\n', (1595, 1605), False, 'from flask import jsonify\n'), ((2856, 2975), 'fate_flow.utils.grpc_utils.wrap_grpc_packet', 'wrap_grpc_packet', (['json_body', 'method', 'endpoint', 'src_party_id', 'dest_party_id', 'job_id'], {'overall_timeout': 'overall_timeout'}), '(json_body, method, endpoint, src_party_id, dest_party_id,\n job_id, overall_timeout=overall_timeout)\n', (2872, 2975), False, 'from fate_flow.utils.grpc_utils import wrap_grpc_packet, get_proxy_data_channel, forward_grpc_packet\n'), ((6011, 6151), 'fate_flow.utils.grpc_utils.forward_grpc_packet', 'forward_grpc_packet', (['json_body', 'method', 'endpoint', 'src_party_id', 'dest_party_id'], {'job_id': 'job_id', 'role': 'role', 'overall_timeout': 'overall_timeout'}), '(json_body, method, endpoint, src_party_id,\n dest_party_id, job_id=job_id, role=role, overall_timeout=overall_timeout)\n', (6030, 6151), False, 'from fate_flow.utils.grpc_utils import wrap_grpc_packet, get_proxy_data_channel, forward_grpc_packet\n'), ((6203, 6227), 'fate_flow.utils.grpc_utils.get_proxy_data_channel', 'get_proxy_data_channel', ([], {}), '()\n', (6225, 6227), False, 'from fate_flow.utils.grpc_utils import wrap_grpc_packet, get_proxy_data_channel, forward_grpc_packet\n'), ((6302, 6332), 'json.loads', 'json.loads', (['_return.body.value'], {}), '(_return.body.value)\n', (6312, 6332), False, 'import json\n'), ((1671, 1727), 'json.dumps', 'json.dumps', (["{'retmsg': retmsg, 'retcode': response_code}"], {}), "({'retmsg': retmsg, 'retcode': response_code})\n", (1681, 1727), False, 'import json\n'), ((3036, 3060), 'fate_flow.utils.grpc_utils.get_proxy_data_channel', 'get_proxy_data_channel', ([], {}), '()\n', (3058, 3060), False, 'from fate_flow.utils.grpc_utils import wrap_grpc_packet, get_proxy_data_channel, forward_grpc_packet\n'), ((3222, 3252), 'json.loads', 'json.loads', (['_return.body.value'], {}), '(_return.body.value)\n', (3232, 3252), False, 'import json\n'), ((3111, 3131), 'arch.api.utils.log_utils.audit_logger', 'audit_logger', (['job_id'], {}), '(job_id)\n', (3123, 3131), False, 'from arch.api.utils.log_utils import audit_logger\n'), ((3827, 3847), 'arch.api.utils.log_utils.audit_logger', 'audit_logger', (['job_id'], {}), '(job_id)\n', (3839, 3847), False, 'from arch.api.utils.log_utils import audit_logger\n'), ((4023, 4043), 'arch.api.utils.log_utils.audit_logger', 'audit_logger', (['job_id'], {}), '(job_id)\n', (4035, 4043), False, 'from arch.api.utils.log_utils import audit_logger\n'), ((4117, 4137), 'arch.api.utils.log_utils.audit_logger', 'audit_logger', (['job_id'], {}), '(job_id)\n', (4129, 4137), False, 'from arch.api.utils.log_utils import audit_logger\n'), ((4559, 4573), 'arch.api.utils.log_utils.audit_logger', 'audit_logger', ([], {}), '()\n', (4571, 4573), False, 'from arch.api.utils.log_utils import audit_logger\n'), ((5352, 5396), 'fate_flow.utils.service_utils.ServiceUtils.get_item', 'ServiceUtils.get_item', (['"""fatemanager"""', '"""host"""'], {}), "('fatemanager', 'host')\n", (5373, 5396), False, 'from fate_flow.utils.service_utils import ServiceUtils\n'), ((5410, 5454), 'fate_flow.utils.service_utils.ServiceUtils.get_item', 'ServiceUtils.get_item', (['"""fatemanager"""', '"""port"""'], {}), "('fatemanager', 'port')\n", (5431, 5454), False, 'from fate_flow.utils.service_utils import ServiceUtils\n'), ((5154, 5207), 'arch.api.utils.file_utils.load_json_conf_real_time', 'file_utils.load_json_conf_real_time', (['SERVER_CONF_PATH'], {}), '(SERVER_CONF_PATH)\n', (5189, 5207), False, 'from arch.api.utils import file_utils\n')]
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from fate_arch.common.base_utils import current_timestamp, serialize_b64, deserialize_b64 from fate_flow.utils.log_utils import schedule_logger from fate_flow.db import db_utils from fate_flow.db.db_models import (DB, TrackingMetric) from fate_flow.entity import Metric from fate_flow.utils import job_utils class MetricManager: def __init__(self, job_id: str, role: str, party_id: int, component_name: str, task_id: str = None, task_version: int = None): self.job_id = job_id self.role = role self.party_id = party_id self.component_name = component_name self.task_id = task_id self.task_version = task_version @DB.connection_context() def read_metric_data(self, metric_namespace: str, metric_name: str, job_level=False): metrics = [] for k, v in self.read_metrics_from_db(metric_namespace, metric_name, 1, job_level): metrics.append(Metric(key=k, value=v)) return metrics @DB.connection_context() def insert_metrics_into_db(self, metric_namespace: str, metric_name: str, data_type: int, kv, job_level=False): try: model_class = self.get_model_class() tracking_metric = model_class() tracking_metric.f_job_id = self.job_id tracking_metric.f_component_name = ( self.component_name if not job_level else job_utils.job_pipeline_component_name()) tracking_metric.f_task_id = self.task_id tracking_metric.f_task_version = self.task_version tracking_metric.f_role = self.role tracking_metric.f_party_id = self.party_id tracking_metric.f_metric_namespace = metric_namespace tracking_metric.f_metric_name = metric_name tracking_metric.f_type = data_type default_db_source = tracking_metric.to_dict() tracking_metric_data_source = [] for k, v in kv: db_source = default_db_source.copy() db_source['f_key'] = serialize_b64(k) db_source['f_value'] = serialize_b64(v) db_source['f_create_time'] = current_timestamp() tracking_metric_data_source.append(db_source) db_utils.bulk_insert_into_db(model_class, tracking_metric_data_source, schedule_logger(self.job_id)) except Exception as e: schedule_logger(self.job_id).exception( "An exception where inserted metric {} of metric namespace: {} to database:\n{}".format( metric_name, metric_namespace, e )) @DB.connection_context() def read_metrics_from_db(self, metric_namespace: str, metric_name: str, data_type, job_level=False): metrics = [] try: tracking_metric_model = self.get_model_class() tracking_metrics = tracking_metric_model.select(tracking_metric_model.f_key, tracking_metric_model.f_value).where( tracking_metric_model.f_job_id == self.job_id, tracking_metric_model.f_component_name == ( self.component_name if not job_level else job_utils.job_pipeline_component_name()), tracking_metric_model.f_role == self.role, tracking_metric_model.f_party_id == self.party_id, tracking_metric_model.f_metric_namespace == metric_namespace, tracking_metric_model.f_metric_name == metric_name, tracking_metric_model.f_type == data_type ) for tracking_metric in tracking_metrics: yield deserialize_b64(tracking_metric.f_key), deserialize_b64(tracking_metric.f_value) except Exception as e: schedule_logger(self.job_id).exception(e) raise e return metrics @DB.connection_context() def clean_metrics(self): tracking_metric_model = self.get_model_class() operate = tracking_metric_model.delete().where( tracking_metric_model.f_task_id == self.task_id, tracking_metric_model.f_task_version == self.task_version, tracking_metric_model.f_role == self.role, tracking_metric_model.f_party_id == self.party_id ) return operate.execute() > 0 @DB.connection_context() def get_metric_list(self, job_level: bool = False): metrics = {} tracking_metric_model = self.get_model_class() if tracking_metric_model.table_exists(): tracking_metrics = tracking_metric_model.select( tracking_metric_model.f_metric_namespace, tracking_metric_model.f_metric_name ).where( tracking_metric_model.f_job_id == self.job_id, tracking_metric_model.f_component_name == (self.component_name if not job_level else 'dag'), tracking_metric_model.f_role == self.role, tracking_metric_model.f_party_id == self.party_id ).distinct() for tracking_metric in tracking_metrics: metrics[tracking_metric.f_metric_namespace] = metrics.get(tracking_metric.f_metric_namespace, []) metrics[tracking_metric.f_metric_namespace].append(tracking_metric.f_metric_name) return metrics @DB.connection_context() def read_component_metrics(self): try: tracking_metric_model = self.get_model_class() tracking_metrics = tracking_metric_model.select().where( tracking_metric_model.f_job_id == self.job_id, tracking_metric_model.f_component_name == self.component_name, tracking_metric_model.f_role == self.role, tracking_metric_model.f_party_id == self.party_id, tracking_metric_model.f_task_version == self.task_version ) return [tracking_metric for tracking_metric in tracking_metrics] except Exception as e: schedule_logger(self.job_id).exception(e) raise e @DB.connection_context() def reload_metric(self, source_metric_manager): component_metrics = source_metric_manager.read_component_metrics() for component_metric in component_metrics: model_class = self.get_model_class() tracking_metric = model_class() tracking_metric.f_job_id = self.job_id tracking_metric.f_component_name = self.component_name tracking_metric.f_task_id = self.task_id tracking_metric.f_task_version = self.task_version tracking_metric.f_role = self.role tracking_metric.f_party_id = self.party_id tracking_metric.f_metric_namespace = component_metric.f_metric_namespace tracking_metric.f_metric_name = component_metric.f_metric_name tracking_metric.f_type = component_metric.f_type tracking_metric.f_key = component_metric.f_key tracking_metric.f_value = component_metric.f_value tracking_metric.save() def get_model_class(self): return db_utils.get_dynamic_db_model(TrackingMetric, self.job_id)
[ "fate_flow.utils.job_utils.job_pipeline_component_name", "fate_flow.db.db_models.DB.connection_context", "fate_flow.db.db_utils.get_dynamic_db_model", "fate_flow.utils.log_utils.schedule_logger", "fate_flow.entity.Metric" ]
[((1340, 1363), 'fate_flow.db.db_models.DB.connection_context', 'DB.connection_context', ([], {}), '()\n', (1361, 1363), False, 'from fate_flow.db.db_models import DB, TrackingMetric\n'), ((1647, 1670), 'fate_flow.db.db_models.DB.connection_context', 'DB.connection_context', ([], {}), '()\n', (1668, 1670), False, 'from fate_flow.db.db_models import DB, TrackingMetric\n'), ((3319, 3342), 'fate_flow.db.db_models.DB.connection_context', 'DB.connection_context', ([], {}), '()\n', (3340, 3342), False, 'from fate_flow.db.db_models import DB, TrackingMetric\n'), ((4589, 4612), 'fate_flow.db.db_models.DB.connection_context', 'DB.connection_context', ([], {}), '()\n', (4610, 4612), False, 'from fate_flow.db.db_models import DB, TrackingMetric\n'), ((5055, 5078), 'fate_flow.db.db_models.DB.connection_context', 'DB.connection_context', ([], {}), '()\n', (5076, 5078), False, 'from fate_flow.db.db_models import DB, TrackingMetric\n'), ((6071, 6094), 'fate_flow.db.db_models.DB.connection_context', 'DB.connection_context', ([], {}), '()\n', (6092, 6094), False, 'from fate_flow.db.db_models import DB, TrackingMetric\n'), ((6818, 6841), 'fate_flow.db.db_models.DB.connection_context', 'DB.connection_context', ([], {}), '()\n', (6839, 6841), False, 'from fate_flow.db.db_models import DB, TrackingMetric\n'), ((7874, 7932), 'fate_flow.db.db_utils.get_dynamic_db_model', 'db_utils.get_dynamic_db_model', (['TrackingMetric', 'self.job_id'], {}), '(TrackingMetric, self.job_id)\n', (7903, 7932), False, 'from fate_flow.db import db_utils\n'), ((1594, 1616), 'fate_flow.entity.Metric', 'Metric', ([], {'key': 'k', 'value': 'v'}), '(key=k, value=v)\n', (1600, 1616), False, 'from fate_flow.entity import Metric\n'), ((2051, 2090), 'fate_flow.utils.job_utils.job_pipeline_component_name', 'job_utils.job_pipeline_component_name', ([], {}), '()\n', (2088, 2090), False, 'from fate_flow.utils import job_utils\n'), ((2700, 2716), 'fate_arch.common.base_utils.serialize_b64', 'serialize_b64', (['k'], {}), '(k)\n', (2713, 2716), False, 'from fate_arch.common.base_utils import current_timestamp, serialize_b64, deserialize_b64\n'), ((2756, 2772), 'fate_arch.common.base_utils.serialize_b64', 'serialize_b64', (['v'], {}), '(v)\n', (2769, 2772), False, 'from fate_arch.common.base_utils import current_timestamp, serialize_b64, deserialize_b64\n'), ((2818, 2837), 'fate_arch.common.base_utils.current_timestamp', 'current_timestamp', ([], {}), '()\n', (2835, 2837), False, 'from fate_arch.common.base_utils import current_timestamp, serialize_b64, deserialize_b64\n'), ((2983, 3011), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['self.job_id'], {}), '(self.job_id)\n', (2998, 3011), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((3056, 3084), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['self.job_id'], {}), '(self.job_id)\n', (3071, 3084), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((3913, 3952), 'fate_flow.utils.job_utils.job_pipeline_component_name', 'job_utils.job_pipeline_component_name', ([], {}), '()\n', (3950, 3952), False, 'from fate_flow.utils import job_utils\n'), ((4374, 4412), 'fate_arch.common.base_utils.deserialize_b64', 'deserialize_b64', (['tracking_metric.f_key'], {}), '(tracking_metric.f_key)\n', (4389, 4412), False, 'from fate_arch.common.base_utils import current_timestamp, serialize_b64, deserialize_b64\n'), ((4414, 4454), 'fate_arch.common.base_utils.deserialize_b64', 'deserialize_b64', (['tracking_metric.f_value'], {}), '(tracking_metric.f_value)\n', (4429, 4454), False, 'from fate_arch.common.base_utils import current_timestamp, serialize_b64, deserialize_b64\n'), ((4498, 4526), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['self.job_id'], {}), '(self.job_id)\n', (4513, 4526), False, 'from fate_flow.utils.log_utils import schedule_logger\n'), ((6750, 6778), 'fate_flow.utils.log_utils.schedule_logger', 'schedule_logger', (['self.job_id'], {}), '(self.job_id)\n', (6765, 6778), False, 'from fate_flow.utils.log_utils import schedule_logger\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ################################################################################ # # ################################################################################ # ============================================================================= # HeteroSecureBoostingGuest # ============================================================================= import functools from operator import itemgetter import numpy as np from federatedml.tree.tree_core.predict_cache import PredictDataCache from federatedml.util.io_check import assert_io_num_rows_equal from numpy import random from arch.api.utils import log_utils from fate_flow.entity.metric import Metric from fate_flow.entity.metric import MetricMeta from federatedml.feature.binning.quantile_binning import QuantileBinning from federatedml.feature.fate_element_type import NoneType from federatedml.loss import FairLoss from federatedml.loss import HuberLoss from federatedml.loss import LeastAbsoluteErrorLoss from federatedml.loss import LeastSquaredErrorLoss from federatedml.loss import LogCoshLoss from federatedml.loss import SigmoidBinaryCrossEntropyLoss from federatedml.loss import SoftmaxCrossEntropyLoss from federatedml.loss import TweedieLoss from federatedml.optim.convergence import converge_func_factory from federatedml.param.evaluation_param import EvaluateParam from federatedml.param.feature_binning_param import FeatureBinningParam from federatedml.protobuf.generated.boosting_tree_model_meta_pb2 import BoostingTreeModelMeta from federatedml.protobuf.generated.boosting_tree_model_meta_pb2 import ObjectiveMeta from federatedml.protobuf.generated.boosting_tree_model_meta_pb2 import QuantileMeta from federatedml.protobuf.generated.boosting_tree_model_param_pb2 import BoostingTreeModelParam from federatedml.protobuf.generated.boosting_tree_model_param_pb2 import FeatureImportanceInfo from federatedml.secureprotol import IterativeAffineEncrypt from federatedml.secureprotol import PaillierEncrypt from federatedml.secureprotol.encrypt_mode import EncryptModeCalculator from federatedml.statistic import data_overview from federatedml.transfer_variable.transfer_class.hetero_secure_boost_transfer_variable import \ HeteroSecureBoostingTreeTransferVariable from federatedml.tree import BoostingTree from federatedml.tree import HeteroDecisionTreeGuest from federatedml.util import consts from federatedml.util.classify_label_checker import ClassifyLabelChecker from federatedml.util.classify_label_checker import RegressionLabelChecker LOGGER = log_utils.getLogger() class HeteroSecureBoostingTreeGuest(BoostingTree): def __init__(self): super(HeteroSecureBoostingTreeGuest, self).__init__() self.convegence = None self.y = None self.F = None self.predict_F = None self.data_bin = None self.loss = None self.init_score = None self.classes_dict = {} self.classes_ = [] self.num_classes = 0 self.classify_target = "binary" self.feature_num = None self.encrypter = None self.grad_and_hess = None self.tree_dim = 1 self.tree_meta = None self.trees_ = [] self.history_loss = [] self.bin_split_points = None self.bin_sparse_points = None self.encrypted_mode_calculator = None self.predict_data_cache = PredictDataCache() self.feature_importances_ = {} self.role = consts.GUEST self.transfer_variable = HeteroSecureBoostingTreeTransferVariable() self.data_alignment_map = {} def set_loss(self, objective_param): loss_type = objective_param.objective params = objective_param.params LOGGER.info("set objective, objective is {}".format(loss_type)) if self.task_type == consts.CLASSIFICATION: if loss_type == "cross_entropy": if self.num_classes == 2: self.loss = SigmoidBinaryCrossEntropyLoss() else: self.loss = SoftmaxCrossEntropyLoss() else: raise NotImplementedError("objective %s not supported yet" % (loss_type)) elif self.task_type == consts.REGRESSION: if loss_type == "lse": self.loss = LeastSquaredErrorLoss() elif loss_type == "lae": self.loss = LeastAbsoluteErrorLoss() elif loss_type == "huber": self.loss = HuberLoss(params[0]) elif loss_type == "fair": self.loss = FairLoss(params[0]) elif loss_type == "tweedie": self.loss = TweedieLoss(params[0]) elif loss_type == "log_cosh": self.loss = LogCoshLoss() else: raise NotImplementedError("objective %s not supported yet" % (loss_type)) else: raise NotImplementedError("objective %s not supported yet" % (loss_type)) def convert_feature_to_bin(self, data_instance): LOGGER.info("convert feature to bins") param_obj = FeatureBinningParam(bin_num=self.bin_num) if self.use_missing: binning_obj = QuantileBinning(param_obj, abnormal_list=[NoneType()]) else: binning_obj = QuantileBinning(param_obj) binning_obj.fit_split_points(data_instance) self.data_bin, self.bin_split_points, self.bin_sparse_points = binning_obj.convert_feature_to_bin(data_instance) LOGGER.info("convert feature to bins over") def set_y(self): LOGGER.info("set label from data and check label") self.y = self.data_bin.mapValues(lambda instance: instance.label) self.check_label() def generate_flowid(self, round_num, tree_num): LOGGER.info("generate flowid, flowid {}".format(self.flowid)) return ".".join(map(str, [self.flowid, round_num, tree_num])) def check_label(self): LOGGER.info("check label") if self.task_type == consts.CLASSIFICATION: self.num_classes, self.classes_ = ClassifyLabelChecker.validate_label(self.data_bin) if self.num_classes > 2: self.classify_target = "multinomial" self.tree_dim = self.num_classes range_from_zero = True for _class in self.classes_: try: if _class >= 0 and _class < self.num_classes and isinstance(_class, int): continue else: range_from_zero = False break except: range_from_zero = False self.classes_ = sorted(self.classes_) if not range_from_zero: class_mapping = dict(zip(self.classes_, range(self.num_classes))) self.y = self.y.mapValues(lambda _class: class_mapping[_class]) else: RegressionLabelChecker.validate_label(self.data_bin) self.set_loss(self.objective_param) def generate_encrypter(self): LOGGER.info("generate encrypter") if self.encrypt_param.method.lower() == consts.PAILLIER.lower(): self.encrypter = PaillierEncrypt() self.encrypter.generate_key(self.encrypt_param.key_length) elif self.encrypt_param.method.lower() == consts.ITERATIVEAFFINE.lower(): self.encrypter = IterativeAffineEncrypt() self.encrypter.generate_key(self.encrypt_param.key_length) else: raise NotImplementedError("encrypt method not supported yes!!!") self.encrypted_calculator = EncryptModeCalculator(self.encrypter, self.calculated_mode, self.re_encrypted_rate) @staticmethod def accumulate_f(f_val, new_f_val, lr=0.1, idx=0): f_val[idx] += lr * new_f_val return f_val def update_feature_importance(self, tree_feature_importance): for fid in tree_feature_importance: if fid not in self.feature_importances_: self.feature_importances_[fid] = 0 self.feature_importances_[fid] += tree_feature_importance[fid] def update_f_value(self, new_f=None, tidx=-1, mode="train"): LOGGER.info("update tree f value, tree idx is {}".format(tidx)) if mode == "train" and self.F is None: if self.tree_dim > 1: self.F, self.init_score = self.loss.initialize(self.y, self.tree_dim) else: self.F, self.init_score = self.loss.initialize(self.y) else: accumulate_f = functools.partial(self.accumulate_f, lr=self.learning_rate, idx=tidx) if mode == "train": self.F = self.F.join(new_f, accumulate_f) else: self.predict_F = self.predict_F.join(new_f, accumulate_f) def compute_grad_and_hess(self): LOGGER.info("compute grad and hess") loss_method = self.loss if self.task_type == consts.CLASSIFICATION: self.grad_and_hess = self.y.join(self.F, lambda y, f_val: \ (loss_method.compute_grad(y, loss_method.predict(f_val)), \ loss_method.compute_hess(y, loss_method.predict(f_val)))) else: self.grad_and_hess = self.y.join(self.F, lambda y, f_val: (loss_method.compute_grad(y, f_val), loss_method.compute_hess(y, f_val))) def compute_loss(self): LOGGER.info("compute loss") if self.task_type == consts.CLASSIFICATION: loss_method = self.loss y_predict = self.F.mapValues(lambda val: loss_method.predict(val)) loss = loss_method.compute_loss(self.y, y_predict) elif self.task_type == consts.REGRESSION: if self.objective_param.objective in ["lse", "lae", "logcosh", "tweedie", "log_cosh", "huber"]: loss_method = self.loss loss = loss_method.compute_loss(self.y, self.F) else: loss_method = self.loss y_predict = self.F.mapValues(lambda val: loss_method.predict(val)) loss = loss_method.compute_loss(self.y, y_predict) return float(loss) def get_grad_and_hess(self, tree_idx): LOGGER.info("get grad and hess of tree {}".format(tree_idx)) grad_and_hess_subtree = self.grad_and_hess.mapValues( lambda grad_and_hess: (grad_and_hess[0][tree_idx], grad_and_hess[1][tree_idx])) return grad_and_hess_subtree def check_convergence(self, loss): LOGGER.info("check convergence") if self.convegence is None: self.convegence = converge_func_factory("diff", self.tol) return self.convegence.is_converge(loss) def sample_valid_features(self): LOGGER.info("sample valid features") if self.feature_num is None: self.feature_num = self.bin_split_points.shape[0] choose_feature = random.choice(range(0, self.feature_num), \ max(1, int(self.subsample_feature_rate * self.feature_num)), replace=False) valid_features = [False for i in range(self.feature_num)] for fid in choose_feature: valid_features[fid] = True return valid_features def sync_tree_dim(self): LOGGER.info("sync tree dim to host") self.transfer_variable.tree_dim.remote(self.tree_dim, role=consts.HOST, idx=-1) def sync_stop_flag(self, stop_flag, num_round): LOGGER.info("sync stop flag to host, boost round is {}".format(num_round)) self.transfer_variable.stop_flag.remote(stop_flag, role=consts.HOST, idx=-1, suffix=(num_round,)) def sync_predict_start_round(self, num_round): LOGGER.info("sync predict start round {}".format(num_round)) self.transfer_variable.predict_start_round.remote(num_round, role=consts.HOST, idx=-1) def fit(self, data_inst, validate_data=None): LOGGER.info("begin to train secureboosting guest model") self.gen_feature_fid_mapping(data_inst.schema) self.validation_strategy = self.init_validation_strategy(data_inst, validate_data) data_inst = self.data_alignment(data_inst) self.convert_feature_to_bin(data_inst) self.set_y() self.update_f_value() self.generate_encrypter() self.sync_tree_dim() self.callback_meta("loss", "train", MetricMeta(name="train", metric_type="LOSS", extra_metas={"unit_name": "iters"})) for i in range(self.num_trees): self.compute_grad_and_hess() for tidx in range(self.tree_dim): LOGGER.info("start to fit, boost round: {}, tree index: {}".format(i, tidx)) tree_inst = HeteroDecisionTreeGuest(self.tree_param) tree_inst.set_inputinfo(self.data_bin, self.get_grad_and_hess(tidx), self.bin_split_points, self.bin_sparse_points) valid_features = self.sample_valid_features() tree_inst.set_valid_features(valid_features) tree_inst.set_encrypter(self.encrypter) tree_inst.set_encrypted_mode_calculator(self.encrypted_calculator) tree_inst.set_flowid(self.generate_flowid(i, tidx)) tree_inst.set_host_party_idlist(self.component_properties.host_party_idlist) tree_inst.set_runtime_idx(self.component_properties.local_partyid) tree_inst.fit() tree_meta, tree_param = tree_inst.get_model() self.trees_.append(tree_param) if self.tree_meta is None: self.tree_meta = tree_meta self.update_f_value(new_f=tree_inst.predict_weights, tidx=tidx) self.update_feature_importance(tree_inst.get_feature_importance()) loss = self.compute_loss() self.history_loss.append(loss) LOGGER.debug("boost round {} loss is {}".format(i, loss)) self.callback_metric("loss", "train", [Metric(i, loss)]) if self.validation_strategy: self.validation_strategy.validate(self, i) if self.validation_strategy.need_stop(): LOGGER.debug('early stopping triggered') break if self.n_iter_no_change is True: if self.check_convergence(loss): self.sync_stop_flag(True, i) LOGGER.debug("check loss convergence on boost round {}".format(i)) break else: self.sync_stop_flag(False, i) LOGGER.debug("history loss is {}".format(self.history_loss)) self.callback_meta("loss", "train", MetricMeta(name="train", metric_type="LOSS", extra_metas={"Best": min(self.history_loss)})) if self.validation_strategy and self.validation_strategy.has_saved_best_model(): self.load_model(self.validation_strategy.cur_best_model) LOGGER.info("end to train secureboosting guest model") def predict_f_value(self, data_inst, cache_dataset_key): LOGGER.debug("predict tree f value, there are {} trees".format(len(self.trees_))) init_score = self.init_score last_round = self.predict_data_cache.predict_data_last_round(cache_dataset_key) rounds = len(self.trees_) // self.tree_dim if last_round == -1: self.predict_F = data_inst.mapValues(lambda v: init_score) else: LOGGER.debug("hit cache, cached round is {}".format(last_round)) if last_round >= rounds - 1: LOGGER.debug("predict data cached, rounds is {}, total cached round is {}".format(rounds, last_round)) self.predict_F = self.predict_data_cache.predict_data_at(cache_dataset_key, min(rounds - 1, last_round)) self.sync_predict_start_round(last_round + 1) for i in range(last_round + 1, rounds): for tidx in range(self.tree_dim): LOGGER.info("start to predict, boost round: {}, tree index: {}".format(i, tidx)) tree_inst = HeteroDecisionTreeGuest(self.tree_param) tree_inst.load_model(self.tree_meta, self.trees_[i * self.tree_dim + tidx]) # tree_inst.set_tree_model(self.trees_[i * self.tree_dim + tidx]) tree_inst.set_flowid(self.generate_flowid(i, tidx)) tree_inst.set_runtime_idx(self.component_properties.local_partyid) tree_inst.set_host_party_idlist(self.component_properties.host_party_idlist) predict_data = tree_inst.predict(data_inst) self.update_f_value(new_f=predict_data, tidx=tidx, mode="predict") self.predict_data_cache.add_data(cache_dataset_key, self.predict_F) @assert_io_num_rows_equal def predict(self, data_inst): LOGGER.info("start predict") cache_dataset_key = self.predict_data_cache.get_data_key(data_inst) if cache_dataset_key in self.data_alignment_map: data_inst = self.data_alignment_map[cache_dataset_key] else: data_inst = self.data_alignment(data_inst) header = [None] * len(self.feature_name_fid_mapping) for idx, col in self.feature_name_fid_mapping.items(): header[idx] = col data_inst = data_overview.header_alignment(data_inst, header) self.data_alignment_map[cache_dataset_key] = data_inst self.predict_f_value(data_inst, cache_dataset_key) if self.task_type == consts.CLASSIFICATION: loss_method = self.loss if self.num_classes == 2: predicts = self.predict_F.mapValues(lambda f: float(loss_method.predict(f))) else: predicts = self.predict_F.mapValues(lambda f: loss_method.predict(f).tolist()) elif self.task_type == consts.REGRESSION: if self.objective_param.objective in ["lse", "lae", "huber", "log_cosh", "fair", "tweedie"]: predicts = self.predict_F else: raise NotImplementedError("objective {} not supported yet".format(self.objective_param.objective)) if self.task_type == consts.CLASSIFICATION: classes_ = self.classes_ if self.num_classes == 2: threshold = self.predict_param.threshold predict_result = data_inst.join(predicts, lambda inst, pred: [inst.label, classes_[1] if pred > threshold else classes_[0], pred, {"0": 1 - pred, "1": pred}]) else: predict_label = predicts.mapValues(lambda preds: classes_[np.argmax(preds)]) predict_result = data_inst.join(predicts, lambda inst, preds: [inst.label, classes_[np.argmax(preds)], np.max(preds), dict(zip(map(str, classes_), preds))]) elif self.task_type == consts.REGRESSION: predict_result = data_inst.join(predicts, lambda inst, pred: [inst.label, float(pred), float(pred), {"label": float(pred)}]) else: raise NotImplementedError("task type {} not supported yet".format(self.task_type)) LOGGER.info("end predict") return predict_result def get_feature_importance(self): return self.feature_importances_ def get_model_meta(self): model_meta = BoostingTreeModelMeta() model_meta.tree_meta.CopyFrom(self.tree_meta) model_meta.learning_rate = self.learning_rate model_meta.num_trees = self.num_trees model_meta.quantile_meta.CopyFrom(QuantileMeta(bin_num=self.bin_num)) model_meta.objective_meta.CopyFrom(ObjectiveMeta(objective=self.objective_param.objective, param=self.objective_param.params)) model_meta.task_type = self.task_type # model_meta.tree_dim = self.tree_dim model_meta.n_iter_no_change = self.n_iter_no_change model_meta.tol = self.tol # model_meta.num_classes = self.num_classes # model_meta.classes_.extend(map(str, self.classes_)) # model_meta.need_run = self.need_run meta_name = "HeteroSecureBoostingTreeGuestMeta" return meta_name, model_meta def set_model_meta(self, model_meta): self.tree_meta = model_meta.tree_meta self.learning_rate = model_meta.learning_rate self.num_trees = model_meta.num_trees self.bin_num = model_meta.quantile_meta.bin_num self.objective_param.objective = model_meta.objective_meta.objective self.objective_param.params = list(model_meta.objective_meta.param) self.task_type = model_meta.task_type # self.tree_dim = model_meta.tree_dim # self.num_classes = model_meta.num_classes self.n_iter_no_change = model_meta.n_iter_no_change self.tol = model_meta.tol # self.classes_ = list(model_meta.classes_) # self.set_loss(self.objective_param) def get_model_param(self): model_param = BoostingTreeModelParam() model_param.tree_num = len(list(self.trees_)) model_param.tree_dim = self.tree_dim model_param.trees_.extend(self.trees_) model_param.init_score.extend(self.init_score) model_param.losses.extend(self.history_loss) model_param.classes_.extend(map(str, self.classes_)) model_param.num_classes = self.num_classes model_param.best_iteration = -1 if self.validation_strategy is None else self.validation_strategy.best_iteration feature_importances = list(self.get_feature_importance().items()) feature_importances = sorted(feature_importances, key=itemgetter(1), reverse=True) feature_importance_param = [] for (sitename, fid), _importance in feature_importances: feature_importance_param.append(FeatureImportanceInfo(sitename=sitename, fid=fid, importance=_importance)) model_param.feature_importances.extend(feature_importance_param) model_param.feature_name_fid_mapping.update(self.feature_name_fid_mapping) param_name = "HeteroSecureBoostingTreeGuestParam" return param_name, model_param def set_model_param(self, model_param): self.trees_ = list(model_param.trees_) self.init_score = np.array(list(model_param.init_score)) self.history_loss = list(model_param.losses) self.classes_ = list(map(int, model_param.classes_)) self.tree_dim = model_param.tree_dim self.num_classes = model_param.num_classes self.feature_name_fid_mapping.update(model_param.feature_name_fid_mapping) def get_metrics_param(self): if self.task_type == consts.CLASSIFICATION: if self.num_classes == 2: return EvaluateParam(eval_type="binary", pos_label=self.classes_[1], metrics=self.metrics) else: return EvaluateParam(eval_type="multi", metrics=self.metrics) else: return EvaluateParam(eval_type="regression", metrics=self.metrics) def export_model(self): if self.need_cv: return None meta_name, meta_protobuf = self.get_model_meta() param_name, param_protobuf = self.get_model_param() return {meta_name: meta_protobuf, param_name: param_protobuf} def load_model(self, model_dict): model_param = None model_meta = None for _, value in model_dict["model"].items(): for model in value: if model.endswith("Meta"): model_meta = value[model] if model.endswith("Param"): model_param = value[model] LOGGER.info("load model") self.set_model_meta(model_meta) self.set_model_param(model_param) self.set_loss(self.objective_param)
[ "fate_flow.entity.metric.MetricMeta", "fate_flow.entity.metric.Metric" ]
[((3203, 3224), 'arch.api.utils.log_utils.getLogger', 'log_utils.getLogger', ([], {}), '()\n', (3222, 3224), False, 'from arch.api.utils import log_utils\n'), ((4045, 4063), 'federatedml.tree.tree_core.predict_cache.PredictDataCache', 'PredictDataCache', ([], {}), '()\n', (4061, 4063), False, 'from federatedml.tree.tree_core.predict_cache import PredictDataCache\n'), ((4171, 4213), 'federatedml.transfer_variable.transfer_class.hetero_secure_boost_transfer_variable.HeteroSecureBoostingTreeTransferVariable', 'HeteroSecureBoostingTreeTransferVariable', ([], {}), '()\n', (4211, 4213), False, 'from federatedml.transfer_variable.transfer_class.hetero_secure_boost_transfer_variable import HeteroSecureBoostingTreeTransferVariable\n'), ((5748, 5789), 'federatedml.param.feature_binning_param.FeatureBinningParam', 'FeatureBinningParam', ([], {'bin_num': 'self.bin_num'}), '(bin_num=self.bin_num)\n', (5767, 5789), False, 'from federatedml.param.feature_binning_param import FeatureBinningParam\n'), ((8294, 8382), 'federatedml.secureprotol.encrypt_mode.EncryptModeCalculator', 'EncryptModeCalculator', (['self.encrypter', 'self.calculated_mode', 'self.re_encrypted_rate'], {}), '(self.encrypter, self.calculated_mode, self.\n re_encrypted_rate)\n', (8315, 8382), False, 'from federatedml.secureprotol.encrypt_mode import EncryptModeCalculator\n'), ((21287, 21310), 'federatedml.protobuf.generated.boosting_tree_model_meta_pb2.BoostingTreeModelMeta', 'BoostingTreeModelMeta', ([], {}), '()\n', (21308, 21310), False, 'from federatedml.protobuf.generated.boosting_tree_model_meta_pb2 import BoostingTreeModelMeta\n'), ((22964, 22988), 'federatedml.protobuf.generated.boosting_tree_model_param_pb2.BoostingTreeModelParam', 'BoostingTreeModelParam', ([], {}), '()\n', (22986, 22988), False, 'from federatedml.protobuf.generated.boosting_tree_model_param_pb2 import BoostingTreeModelParam\n'), ((5941, 5967), 'federatedml.feature.binning.quantile_binning.QuantileBinning', 'QuantileBinning', (['param_obj'], {}), '(param_obj)\n', (5956, 5967), False, 'from federatedml.feature.binning.quantile_binning import QuantileBinning\n'), ((6730, 6780), 'federatedml.util.classify_label_checker.ClassifyLabelChecker.validate_label', 'ClassifyLabelChecker.validate_label', (['self.data_bin'], {}), '(self.data_bin)\n', (6765, 6780), False, 'from federatedml.util.classify_label_checker import ClassifyLabelChecker\n'), ((7593, 7645), 'federatedml.util.classify_label_checker.RegressionLabelChecker.validate_label', 'RegressionLabelChecker.validate_label', (['self.data_bin'], {}), '(self.data_bin)\n', (7630, 7645), False, 'from federatedml.util.classify_label_checker import RegressionLabelChecker\n'), ((7816, 7839), 'federatedml.util.consts.PAILLIER.lower', 'consts.PAILLIER.lower', ([], {}), '()\n', (7837, 7839), False, 'from federatedml.util import consts\n'), ((7870, 7887), 'federatedml.secureprotol.PaillierEncrypt', 'PaillierEncrypt', ([], {}), '()\n', (7885, 7887), False, 'from federatedml.secureprotol import PaillierEncrypt\n'), ((9236, 9305), 'functools.partial', 'functools.partial', (['self.accumulate_f'], {'lr': 'self.learning_rate', 'idx': 'tidx'}), '(self.accumulate_f, lr=self.learning_rate, idx=tidx)\n', (9253, 9305), False, 'import functools\n'), ((11396, 11435), 'federatedml.optim.convergence.converge_func_factory', 'converge_func_factory', (['"""diff"""', 'self.tol'], {}), "('diff', self.tol)\n", (11417, 11435), False, 'from federatedml.optim.convergence import converge_func_factory\n'), ((13575, 13660), 'fate_flow.entity.metric.MetricMeta', 'MetricMeta', ([], {'name': '"""train"""', 'metric_type': '"""LOSS"""', 'extra_metas': "{'unit_name': 'iters'}"}), "(name='train', metric_type='LOSS', extra_metas={'unit_name': 'iters'}\n )\n", (13585, 13660), False, 'from fate_flow.entity.metric import MetricMeta\n'), ((18840, 18889), 'federatedml.statistic.data_overview.header_alignment', 'data_overview.header_alignment', (['data_inst', 'header'], {}), '(data_inst, header)\n', (18870, 18889), False, 'from federatedml.statistic import data_overview\n'), ((21507, 21541), 'federatedml.protobuf.generated.boosting_tree_model_meta_pb2.QuantileMeta', 'QuantileMeta', ([], {'bin_num': 'self.bin_num'}), '(bin_num=self.bin_num)\n', (21519, 21541), False, 'from federatedml.protobuf.generated.boosting_tree_model_meta_pb2 import QuantileMeta\n'), ((21586, 21681), 'federatedml.protobuf.generated.boosting_tree_model_meta_pb2.ObjectiveMeta', 'ObjectiveMeta', ([], {'objective': 'self.objective_param.objective', 'param': 'self.objective_param.params'}), '(objective=self.objective_param.objective, param=self.\n objective_param.params)\n', (21599, 21681), False, 'from federatedml.protobuf.generated.boosting_tree_model_meta_pb2 import ObjectiveMeta\n'), ((25100, 25159), 'federatedml.param.evaluation_param.EvaluateParam', 'EvaluateParam', ([], {'eval_type': '"""regression"""', 'metrics': 'self.metrics'}), "(eval_type='regression', metrics=self.metrics)\n", (25113, 25159), False, 'from federatedml.param.evaluation_param import EvaluateParam\n'), ((8009, 8039), 'federatedml.util.consts.ITERATIVEAFFINE.lower', 'consts.ITERATIVEAFFINE.lower', ([], {}), '()\n', (8037, 8039), False, 'from federatedml.util import consts\n'), ((8070, 8094), 'federatedml.secureprotol.IterativeAffineEncrypt', 'IterativeAffineEncrypt', ([], {}), '()\n', (8092, 8094), False, 'from federatedml.secureprotol import IterativeAffineEncrypt\n'), ((13982, 14022), 'federatedml.tree.HeteroDecisionTreeGuest', 'HeteroDecisionTreeGuest', (['self.tree_param'], {}), '(self.tree_param)\n', (14005, 14022), False, 'from federatedml.tree import HeteroDecisionTreeGuest\n'), ((17595, 17635), 'federatedml.tree.HeteroDecisionTreeGuest', 'HeteroDecisionTreeGuest', (['self.tree_param'], {}), '(self.tree_param)\n', (17618, 17635), False, 'from federatedml.tree import HeteroDecisionTreeGuest\n'), ((23614, 23627), 'operator.itemgetter', 'itemgetter', (['(1)'], {}), '(1)\n', (23624, 23627), False, 'from operator import itemgetter\n'), ((23790, 23863), 'federatedml.protobuf.generated.boosting_tree_model_param_pb2.FeatureImportanceInfo', 'FeatureImportanceInfo', ([], {'sitename': 'sitename', 'fid': 'fid', 'importance': '_importance'}), '(sitename=sitename, fid=fid, importance=_importance)\n', (23811, 23863), False, 'from federatedml.protobuf.generated.boosting_tree_model_param_pb2 import FeatureImportanceInfo\n'), ((24850, 24938), 'federatedml.param.evaluation_param.EvaluateParam', 'EvaluateParam', ([], {'eval_type': '"""binary"""', 'pos_label': 'self.classes_[1]', 'metrics': 'self.metrics'}), "(eval_type='binary', pos_label=self.classes_[1], metrics=self.\n metrics)\n", (24863, 24938), False, 'from federatedml.param.evaluation_param import EvaluateParam\n'), ((25012, 25066), 'federatedml.param.evaluation_param.EvaluateParam', 'EvaluateParam', ([], {'eval_type': '"""multi"""', 'metrics': 'self.metrics'}), "(eval_type='multi', metrics=self.metrics)\n", (25025, 25066), False, 'from federatedml.param.evaluation_param import EvaluateParam\n'), ((4622, 4653), 'federatedml.loss.SigmoidBinaryCrossEntropyLoss', 'SigmoidBinaryCrossEntropyLoss', ([], {}), '()\n', (4651, 4653), False, 'from federatedml.loss import SigmoidBinaryCrossEntropyLoss\n'), ((4708, 4733), 'federatedml.loss.SoftmaxCrossEntropyLoss', 'SoftmaxCrossEntropyLoss', ([], {}), '()\n', (4731, 4733), False, 'from federatedml.loss import SoftmaxCrossEntropyLoss\n'), ((4955, 4978), 'federatedml.loss.LeastSquaredErrorLoss', 'LeastSquaredErrorLoss', ([], {}), '()\n', (4976, 4978), False, 'from federatedml.loss import LeastSquaredErrorLoss\n'), ((15370, 15385), 'fate_flow.entity.metric.Metric', 'Metric', (['i', 'loss'], {}), '(i, loss)\n', (15376, 15385), False, 'from fate_flow.entity.metric import Metric\n'), ((5044, 5068), 'federatedml.loss.LeastAbsoluteErrorLoss', 'LeastAbsoluteErrorLoss', ([], {}), '()\n', (5066, 5068), False, 'from federatedml.loss import LeastAbsoluteErrorLoss\n'), ((5888, 5898), 'federatedml.feature.fate_element_type.NoneType', 'NoneType', ([], {}), '()\n', (5896, 5898), False, 'from federatedml.feature.fate_element_type import NoneType\n'), ((5136, 5156), 'federatedml.loss.HuberLoss', 'HuberLoss', (['params[0]'], {}), '(params[0])\n', (5145, 5156), False, 'from federatedml.loss import HuberLoss\n'), ((20366, 20382), 'numpy.argmax', 'np.argmax', (['preds'], {}), '(preds)\n', (20375, 20382), True, 'import numpy as np\n'), ((20583, 20596), 'numpy.max', 'np.max', (['preds'], {}), '(preds)\n', (20589, 20596), True, 'import numpy as np\n'), ((5223, 5242), 'federatedml.loss.FairLoss', 'FairLoss', (['params[0]'], {}), '(params[0])\n', (5231, 5242), False, 'from federatedml.loss import FairLoss\n'), ((20485, 20501), 'numpy.argmax', 'np.argmax', (['preds'], {}), '(preds)\n', (20494, 20501), True, 'import numpy as np\n'), ((5312, 5334), 'federatedml.loss.TweedieLoss', 'TweedieLoss', (['params[0]'], {}), '(params[0])\n', (5323, 5334), False, 'from federatedml.loss import TweedieLoss\n'), ((5405, 5418), 'federatedml.loss.LogCoshLoss', 'LogCoshLoss', ([], {}), '()\n', (5416, 5418), False, 'from federatedml.loss import LogCoshLoss\n')]
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
3