prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
#!/usr/bin/env python # Original written in Python 3.5.2 # Based on various previous iterations of lte.py scripts written by <NAME> and <NAME> # Approximates an LTE (local thermdynamic equilibrium) mass to determine the amount of CO12 and CO13 is present in a given region of the sky from astropy.io import fits from astropy import constants as const from astropy import units as u import numpy as np import os import warnings import sys def lte(files = [], tfloor = 8., datainfo = '', tx_method = 'peak', onlywrite = [], indir = ''): # files are in this order: [incube12, incube13, inrms12, inrms13, inmask12] # tx_methods accounted for are 'cube' and 'peak' # datainfo should provide info on what source data is from and possibly a number corresponding to some form of iteration # file paths need to be absolute or defined properly in relation to working directory # for f in files: # if os.path.exists(f) == 1: # print('Found {}...'.format(f)) # continue # else: # print('File {} does not exist'.format(f)) # return # Declarations of input and output files if (indir != ''): indir = indir.rstrip('/') incube12 = indir + '/' + files[0] incube13 = indir + '/' + files[1] inrms12 = indir + '/' + files[2] inrms13 = indir + '/' + files[3] inmask12 = indir + '/' + files[4] else: incube12 = files[0] incube13 = files[1] inrms12 = files[2] inrms13 = files[3] inmask12 = files[4] outtex12 = datainfo + '_' + tx_method + '_tex12.fits.gz' outtau13 = datainfo + '_' + tx_method + '_tau13.fits.gz' outtau13err = datainfo + '_' + tx_method + '_tau13err.fits.gz' outtau13pk = datainfo + '_' + tx_method + '_tau13pk.fits.gz' outn13cube = datainfo + '_' + tx_method + '_n13cube.fits.gz' outn13cubeerr = datainfo + '_' + tx_method + '_n13cubeerr.fits.gz' outn13col = datainfo + '_' + tx_method + '_n13col.fits.gz' outn13colerr = datainfo + '_' + tx_method + '_n13colerr.fits.gz' outsnr13 = datainfo + '_' + tx_method + '_n13snr.fits.gz' # Load 12CO cube [units K] print('\nReading {0}...'.format(incube12)) t12cube, hd3d = fits.getdata(incube12, header = True) if 'RESTFREQ' in hd3d.keys(): freq12 = hd3d['RESTFREQ'] * u.Hz elif 'RESTFRQ' in hd3d.keys(): freq12 = hd3d['RESTFRQ'] * u.Hz print('The 12CO rest frequency is {0:.4f}'.format((freq12).to(u.GHz))) print('min/max values of 12CO [K] are {0:.2f} and {1:.2f}'.format( np.nanmin(t12cube), np.nanmax(t12cube))) # Load 12CO uncertainty [2D plane] print('\nReading {0}...'.format(inrms12)) # t12err, hd2d = fits.getdata(inrms12, header = True) # print('min/max values of 12CO uncertainty are {0:.3f} and {1:.3f}'.format( # np.nanmin(t12err), np.nanmax(t12err))) hd2d = fits.getheader(inrms12) if 'datamin' in hd2d and 'datamax' in hd2d: print('min/max values of 12CO uncertainty are {0:.3f} and {1:.3f}'.format( hd2d['datamin'], hd2d['datamax'])) if hd2d['naxis'] == 3: for k in list(hd2d['*3*'].keys()): hd2d.remove(k) for frq in list(hd2d['*frq*'].keys()): hd2d.remove(frq) # Load 12CO mask [3D cube or 2D plane] print('\nReading {0}...'.format(inmask12)) mask = fits.getdata(inmask12) print('Number of mask == 1 values: {0}'.format(np.count_nonzero( mask[~np.isnan(mask)] > 0))) print('Number of mask == 0 values: {0}'.format(np.count_nonzero( mask[~np.isnan(mask)] < 1))) print('Number of mask == NaN values: {0}'.format(np.count_nonzero( np.isnan(mask)))) mask3d = (mask == 0) mask2d = (np.nansum(mask, axis = 0) == 0) # Calculate Tex for Tex > Tfloor # Different methods are calculated slightly differently with np.errstate(invalid = 'ignore', divide = 'ignore'): if tx_method == 'peak': with warnings.catch_warnings(): warnings.simplefilter("ignore", RuntimeWarning) t12 = np.nanmax(t12cube, axis = 0) hdtx = hd2d t12[mask2d] = np.nan elif tx_method == 'cube': t12 = t12cube hdtx = hd3d t12[mask3d] = np.nan print('\nCalculating Tex [excitation temperature]...') tcmb = 2.73 * u.K t0_12 = (const.h * freq12 / const.k_B).to(u.K) Jtcmb = t0_12/(np.exp(t0_12/tcmb)-1) #tex = 11.06 / (np.log(1 + 11.06/(t12 + 0.187))) tex = t0_12 / (np.log(1 + t0_12/((t12*u.K) + Jtcmb))) tex[tex < (tfloor * u.K)] = (tfloor * u.K) print('min/max values of Tex [K] are {0:.2f} and {1:.2f}'.format( np.nanmin(tex), np.nanmax(tex))) if (len(onlywrite) == 0) or ('outtex12' in onlywrite) == True: hdtx['datamin'] =
np.nanmin(tex)
numpy.nanmin
import glob import logging import itertools import os import pickle import numpy as np import pandas as pd import time from sklearn.metrics import classification_report, matthews_corrcoef,\ accuracy_score, precision_recall_fscore_support from .plotter import Plotter from .config import init_logging from ..preparation import prepare_data from ..pipeline import run_pipeline from ..algorithms import Algorithm from ..utils import create_deep_dict class Evaluator: def __init__(self, name: str, datasets: list, get_predictors: callable, output_dir: {str}=None, create_log_file: bool=True, store: bool=False, n_train_samples: int=60000, n_test_samples: int=6000, downsample: bool=True): """ :param datasets: list of datasets :param predictors: callable that returns list of predictors """ self.name = name self.datasets = datasets self.dataset_names = [str(x) for x in self.datasets] assert np.unique(self.dataset_names).size == len(self.dataset_names),\ 'Some datasets have the same name!' self.get_predictors = get_predictors # Create instances to read out name and repr (incl. seed) temp_predictors = self.get_predictors(1) self.predictor_names = [repr(x) if isinstance(x, Algorithm) else x.__class__.__name__ for x in temp_predictors] self.pred_to_algo = dict((repr(p), p.name) for p in temp_predictors) assert np.unique(self.predictor_names).size == len(self.predictor_names),\ 'Some predictors have the same name!' # Algorithm names may not be unique since they do not contain a seed self.output_dir = output_dir or 'reports' if create_log_file: init_logging(os.path.join(self.output_dir, 'logs')) self.logger = logging.getLogger(__name__) self.metrics = None self.predictions = None # Temporary results if the pipeline breaks self._metrics = None self._predictions = None self.plotter = Plotter(self.output_dir, f'figures/exp-{name}') self.store = store self.downsample = downsample self.n_train_samples = n_train_samples self.n_test_samples = n_test_samples self._temp_pipelines = create_deep_dict(self.dataset_names, self.predictor_names) def __call__(self): multiindex = pd.MultiIndex.from_product([self.dataset_names, self.predictor_names], names=['datasets', 'predictors']) # metrics = create_deep_dict(self.dataset_names, self.predictor_names) self._metrics = pd.DataFrame(0, index=['prec', 'rec', 'f1', 'acc', 'mcc'], columns=multiindex) self._metrics.sort_index(axis=1, inplace=True) # Might be required if datasets have different sizes # predictions = create_deep_dict(self.dataset_names, self.predictor_names) self._predictions = pd.DataFrame(0, index=range(self.n_test_samples), columns=multiindex) for ds in self.datasets: self.logger.info(f"{'-'*10} Prepare dataset {'-'*10}") data = prepare_data(ds, self.n_train_samples, self.n_test_samples, downsample=self.downsample) n_features = len(data[0].columns.levels[1]) predictors = self.get_predictors(n_features) for predictor, predictor_name in zip(predictors, self.predictor_names): self._execute_predictor(ds, predictor, predictor_name, data) self.predictions = self._predictions self.metrics = self.get_metrics_conclusion() if self.store: self.export_results() self.metrics.to_csv(os.path.join(self.output_dir, f'custom/{self.name}.csv')) self.plot_histories() return self.metrics def _execute_predictor(self, ds, predictor, predictor_name, data): self.logger.info(f"{'-'*10} {predictor_name} | {ds} {'-'*10}") pipeline, y_pred = run_pipeline(predictor, data) time.sleep(1) # TODO: Why did I do this? y_pred = y_pred.clip(-1, 1) ev = self.measure_pipeline_run_results(data[3], y_pred) if len(y_pred) != self.n_test_samples: self.logger.warn( f'Not enough self._predictions are available. Check the data distribution!') self._predictions.loc[:len(y_pred)-1, (str(ds), predictor_name)] = y_pred assert all(self._metrics.index == list(ev.keys())) self._metrics.loc[:, (str(ds), predictor_name)] = ev.values() self._temp_pipelines[str(ds)][predictor_name] = pipeline, y_pred def measure_pipeline_run_results(self, y_true, y_pred): y_true = np.array(y_true) y_pred = np.array(y_pred) prec, rec, f1, _ = precision_recall_fscore_support(y_true, y_pred, average='weighted') acc = accuracy_score(y_true, y_pred) mcc = matthews_corrcoef(y_true, y_pred) target_names = np.array(['Down', 'Still', 'Up'])[np.unique(y_true).astype(int) + 1] self.logger.debug( f'\n{classification_report(y_true, y_pred, target_names=target_names)}\n\nMCC=' f'{mcc:.5f}, Accuracy={acc:.5f}, Precision={prec:.5f}, Recall={rec:.5f}, F1={f1:.5f}') return { 'prec': round(prec, 5), 'rec': round(rec, 5), 'f1': round(f1, 5), 'acc': round(acc, 5), 'mcc': round(mcc, 5) } # Merge runs with same algorithms but different seeds (represented by mean and std) def get_metrics_conclusion(self): metrics = self._metrics predictors = pd.DataFrame(list(metrics.columns), columns=['l1', 'l2']) predictors['algo'] = [self.pred_to_algo[p] for _, (_, p) in predictors.iterrows()] merged_metrics = [] for (ds, algo), matches in predictors.groupby(['l1', 'algo']): regarding_metrics = metrics[[(ds, x) for x in matches.l2]] if regarding_metrics.shape[1] == 1: merged_metrics.append((f'{ds} {algo}', *regarding_metrics.iloc[:, 0])) else: means = regarding_metrics.mean(axis=1).round(5) stds = regarding_metrics.std(axis=1).round(5) merged_metrics.append( (f'{ds} {algo}', *[f'{m} +- {s}' for m, s in zip(means, stds)])) merged_metrics = pd.DataFrame(merged_metrics, columns=['predictor', *metrics.index]) merged_metrics.index = merged_metrics.predictor merged_metrics = merged_metrics.T.iloc[1:] return merged_metrics def get_predictor(self, ds_i, predictor_i): ds_name = self.dataset_names[ds_i] if isinstance(ds_i, int) else ds_i pred_name = self.predictor_names[predictor_i] if \ isinstance(predictor_i, int) else predictor_i return self._temp_pipelines[ds_name][pred_name][0].steps[-1][1] # ----- Plotting --------------------------------------------------------- # def plot_histories(self, store=True): for ds, pred in itertools.product(self.dataset_names, self.predictor_names): predictor = self.get_predictor(ds, pred) if hasattr(predictor, 'history') and predictor.history is not None: self.plotter.plot_history(predictor.history, f'{pred} on {ds}', store=store) # ----- Utils ------------------------------------------------------------ # def get_model_summary(self, ds_i, predictor_i): return self.get_predictor(ds_i, predictor_i).model.summary() def get_models_input(self, ds_i, predictor_i): ds = self.datasets[ds_i] ds_name = self.dataset_names[ds_i] pred_name = self.predictor_names[predictor_i] data = prepare_data(ds, self.n_train_samples, self.n_test_samples) X_train = data[0] pipeline = self._temp_pipelines[ds_name][pred_name][0] X_train = pipeline.steps[0][1].transform(X_train) X_train = pipeline.steps[1][1].transform(X_train) X_train = pipeline.steps[2][1].transform(X_train) return X_train def get_mcc_metric(self, metrics=None): metrics = metrics or self.metrics mcc_flatten = metrics.loc['mcc'].reset_index() mcc = mcc_flatten.pivot(*mcc_flatten.columns) # index, column, value return mcc def export_results(self): output_dir = os.path.join(self.output_dir, 'evaluators') os.makedirs(output_dir, exist_ok=True) timestamp = time.strftime('%Y-%m-%d-%H%M%S') path = os.path.join(output_dir, f'{self.name}-{timestamp}.pkl') self.logger.info(f'Store evaluator results at {os.path.abspath(path)}') save_dict = { 'name': self.name, 'dataset_names': self.dataset_names, 'predictor_names': self.predictor_names, # 'pred_to_algo': self.pred_to_algo, 'output_dir': self.output_dir, '_metrics': self._metrics, 'predictions': self.predictions, 'downsample': self.downsample, 'n_train_samples': self.n_train_samples, 'n_test_samples': self.n_test_samples, } with open(path, 'wb') as f: pickle.dump(save_dict, f) return path # Import metrics & predictions if this evaluator uses the same datasets and predictors # If you want to import old evaluators (before 22.01.2019) you need to adapt the code: # The save_dict will only contain dataset_names, predictor_name, metrics and output_dir def import_results(self): output_dir = os.path.join(self.output_dir, 'evaluators') path_regex = os.path.join(output_dir, f'{self.name}-20*.pkl') # Wildcard should only match dates matches = glob.glob(path_regex) path = matches[-1] if len(matches) == 0: self.logger.error('No evaluator with this name was found in the output directory.') return elif len(matches) > 1: self.logger.info(f'Found {len(matches)} possible matches. Selecting the latest one.') self.logger.info(f'Read evaluator results at {os.path.abspath(path)}') with open(path, 'rb') as f: save_dict = pickle.load(f) assert np.array_equal(save_dict['dataset_names'], self.dataset_names), \ 'Datasets do not match' assert
np.array_equal(save_dict['predictor_names'], self.predictor_names)
numpy.array_equal
# Similarity-based Calibration methods # Also includes Platt scaling and temperature scaling # for comparison. # # <NAME> import sys import numpy as np import scipy from progressbar import ProgressBar, Bar, ETA from progressbar import Counter as pCounter from sklearn.metrics.pairwise import cosine_similarity, rbf_kernel, \ euclidean_distances from sklearn.neighbors import NearestNeighbors from sklearn.ensemble import RandomForestClassifier, IsolationForest from sklearn.preprocessing import StandardScaler # Find optimal A, B with NLL loss function # for Platt scaling applied to model scores def nll_platt_fn(param, *args): A = param[0] B = param[1] scores, labels = args # use A, B to convert scores to probs probs = 1 / (1 + np.exp(A * scores + B)) # NLL (per item); make it negative so optimizer # goes in the right direction nll = -np.sum(labels * np.log(probs) + (1 - labels) * np.log(1 - probs)) / len(probs) return nll # Scale test probabilities (of class 1) using # labeled data and their probs from the calibration set. def platt_scaling(probs, labels, test_probs): if len(probs.shape) > 1 and probs.shape[1] != 2: print('Error: Platt only works for binary problems.') sys.exit(1) if probs.shape[1] == 2: # Convert to single class prob (of class 1) probs = probs[:, 1] # Convert labels from 0/1 using Platt's recipe pos_labels = labels == 1 neg_labels = labels == 0 n_pos = np.sum(pos_labels) n_neg = np.sum(neg_labels) platt_labels = np.zeros((len(labels))) platt_labels[pos_labels] = (n_pos + 1) / (n_pos + 2) platt_labels[neg_labels] = 1.0 / (n_neg + 2) res = scipy.optimize.minimize(nll_platt_fn, #[0.0, np.log((n_neg + 1)/(n_pos + 1))], [1.0, np.log((n_neg + 1)/(n_pos + 1))], args=(probs, platt_labels), method='BFGS', tol=1e-12) A, B = res.x[0], res.x[1] test_probs_class1 = 1 / (1 + np.exp(A * test_probs[:, 1] + B)) new_test_probs = np.stack(((1 - test_probs_class1), test_probs_class1), axis=1) return new_test_probs # To optimize NLL for temperature scaling (Zhang et al., 2020) # https://github.com/zhang64-llnl/Mix-n-Match-Calibration def nll_fn(t, *args): # find optimal temperature with NLL loss function logit, label = args # adjust logits by T logit = logit / t # convert logits to probabilities n = np.sum(np.exp(logit), 1) probs = np.exp(logit) / n[:, None] # avoid values too close to 0 or 1 eps = 1e-20 probs = np.clip(probs, eps, 1 - eps) # NLL nll = -np.sum(label * np.log(probs)) / probs.shape[0] return nll # To optimize MSE for temperature scaling (Zhang et al., 2020) # https://github.com/zhang64-llnl/Mix-n-Match-Calibration def mse_fn(t, *args): ## find optimal temperature with MSE loss function logit, label = args # adjust logits by T logit = logit / t # convert logits to probabilities n = np.sum(np.exp(logit), 1) probs = np.exp(logit) / n[:, None] # MSE mse = np.mean((probs - label) ** 2) return mse # Use temperature scaling to modify logits, given labels. # This is a good entry point if using neural networks. # If test_logits is given, return calibrated probabilities. # Based on: # https://github.com/zhang64-llnl/Mix-n-Match-Calibration def temp_scaling(logits, labels, n_classes, test_logits=np.array(()), optim='mse'): y = np.eye(n_classes)[labels] # one-hot encoding if optim == 'mse': opt_fn = mse_fn elif optim == 'nll': opt_fn = nll_fn else: print('Error: unknown optimization method %s' % optim) sys.exit(1) t = scipy.optimize.minimize(opt_fn, 1.0, args=(logits, y), method='L-BFGS-B', bounds=((0.05, 5.0),), tol=1e-12) t = t.x # If provided, generate calibrated probs for the test set if len(test_logits) > 0: test_logits = test_logits / t new_test_probs = np.exp(test_logits) / \ np.sum(np.exp(test_logits), 1)[:, None] return t, new_test_probs return t # Use temperature scaling to modify probabilities, given labels. # This is a good entry point if you have probabilities # but not logits. # If test_probs is given, return its calibrated version too. def temp_scaling_probs(probs, labels, n_classes, test_probs=np.array(()), optim='mse'): eps = 1e-7 ts_probs = np.clip(probs, eps, 1 - eps) ts_logits = np.log(ts_probs) - np.log(1 - ts_probs) # If provided, generate calibrated probs for the test set if len(test_probs) > 0: test_probs = np.clip(test_probs, eps, 1 - eps) test_logits = np.log(test_probs) - np.log(1 - test_probs) else: test_logits = np.array(()) return temp_scaling(ts_logits, labels, n_classes, test_logits, optim=optim) # Compute similarity matrix (or prep for it) between X_test and X_cal # using y_cal if needed (for sim_method='RFprox'). # # Options: # - sim_method options: # 'RFprox': RF proximity # 'Isoprox': Isolation forest proximity # 'cosine': cosine sim. (kernel) # 'rbf': RBF kernel # 'sim_euclid': Euclidean distance (for sim) # (for testing purposes:) # 'all_one': all pairs of items have similarity 1 # '<method>-1NN': set nearest neighor to have sim. 1, else 0 # - sim: pre-computed similarity matrix (optional, used only by RFprox/Isoprox) # # Returns n x m array where n = |X_test| and m = |X_cal|, # or leaf assignments if sim_method == 'RFprox' or 'Isoprox'. def calc_sim(X_test, X_cal, y_cal=None, sim_method='sim_euclid', sim=None): """ >>> np.random.seed(0) >>> X_cal = np.random.rand(5, 3) >>> X_test = np.random.rand(2, 3) >>> calc_sim(X_test, X_cal) Euclid. sim: min -1.277106, max -0.341592 array([[-0.86543108, -0.63809564, -0.94847268, -0.88049546, -1.27710576], [-0.46672837, -0.60361979, -0.34159159, -0.6034734 , -0.93324293]]) >>> calc_sim(X_test, X_cal, sim_method='sim_euclid-1NN') Euclid. sim: min -1.277106, max -0.341592 array([[0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.]]) >>> calc_sim(X_test, X_cal, sim_method='cosine') Cosine sim: min 0.569869, max 0.996167 array([[0.81061331, 0.87508384, 0.87038602, 0.78490629, 0.56986892], [0.99616697, 0.99472739, 0.98846092, 0.98122596, 0.89717548]]) >>> calc_sim(X_test, X_cal, sim_method='cosine-1NN') Cosine sim: min 0.569869, max 0.996167 array([[0., 1., 0., 0., 0.], [1., 0., 0., 0., 0.]]) >>> calc_sim(X_test, X_cal, sim_method='rbf') RBF sim: min 0.000000, max 0.016007 array([[7.83897810e-09, 2.95034542e-07, 1.51550553e-07, 5.60989834e-06, 8.96936190e-12], [1.60068127e-02, 2.61365087e-03, 6.65707955e-04, 2.25654935e-05, 2.14475312e-03]]) >>> calc_sim(X_test, X_cal, sim_method='rbf-1NN') RBF sim: min 0.000000, max 0.016007 array([[0., 0., 0., 1., 0.], [1., 0., 0., 0., 0.]]) >>> calc_sim(X_test, X_cal, y_cal=[0, 0, 1, 1, 1], sim_method='RFprox') RFprox sim: min 0.090000, max 0.680000 array([[0.44, 0.58, 0.58, 0.47, 0.09], [0.55, 0.39, 0.67, 0.4 , 0.68]]) >>> calc_sim(X_test, X_cal, y_cal=[0, 0, 1, 1, 1], sim_method='RFprox-1NN') RFprox sim: min 0.090000, max 0.680000 array([[0., 1., 0., 0., 0.], [0., 0., 0., 0., 1.]]) >>> calc_sim(X_test, X_cal, sim_method='Isoprox') Isoprox sim: min 0.000000, max 0.470000 array([[0.02, 0.34, 0.27, 0.39, 0. ], [0.34, 0.11, 0.47, 0.01, 0.24]]) >>> calc_sim(X_test, X_cal, sim_method='Isoprox-1NN') Isoprox sim: min 0.000000, max 0.470000 array([[0., 0., 0., 1., 0.], [0., 0., 1., 0., 0.]]) >>> calc_sim(X_test, X_cal, sim_method='all_one') All pairwise similarities = 1.0 array([[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]]) """ if sim_method.startswith('RFprox'): if sim is None: # Train an RF for similarity estimation prox_clf = RandomForestClassifier(n_estimators=100, #ccp_alpha=0.001, random_state=0) prox_clf.fit(X_cal, y_cal) # Apply it to the calibration set cal_leaf_id = prox_clf.apply(X_cal).T # leaf assignments test_leaf_id = prox_clf.apply(X_test).T # leaf assignments # Convert to similarity n_test, n_cal = len(X_test), len(X_cal) sim = np.zeros((n_test, n_cal)) pbar_args = ['RFprox: ', pCounter(), '/%d' % n_test, Bar('='), ETA()] progress = ProgressBar(widgets=pbar_args) for i in progress(range(n_test)): for j in range(n_cal): sim[i, j] = np.mean(np.equal(cal_leaf_id[:, j], test_leaf_id[:, i])) print('RFprox sim: min %f, max %f' % (np.min(sim), np.max(sim))) elif sim_method.startswith('Isoprox'): if sim is None: # Train an isolation forest for similarity estimation iso_clf = IsolationForest(n_estimators=100, random_state=0) iso_clf.fit(X_cal) # Apply it to the calibration and test sets cal_leaf_id, test_leaf_id = [], [] for t in iso_clf.estimators_: cal_leaf_id += [t.apply(X_cal).T] # leaf assignments test_leaf_id += [t.apply(X_test).T] # leaf assignments cal_leaf_id = np.array(cal_leaf_id) test_leaf_id = np.array(test_leaf_id) # Convert to similarity n_test, n_cal = len(X_test), len(X_cal) sim = np.zeros((n_test, n_cal)) pbar_args = ['Isoprox: ', pCounter(), '/%d' % n_test, Bar('='), ETA()] progress = ProgressBar(widgets=pbar_args) for i in progress(range(n_test)): for j in range(n_cal): if np.sum(cal_leaf_id[:, j] != -1) > 0: sim[i, j] = (np.sum(np.equal(cal_leaf_id[:, j], test_leaf_id[:, i])) / np.sum(cal_leaf_id[:, j] != -1)) print('Isoprox sim: min %f, max %f' % (np.min(sim), np.max(sim))) elif sim_method.startswith('cosine'): # Normalize to range 0,1 instead of -1,1 sim = (cosine_similarity(X_test, X_cal) + 1) / 2.0 print('Cosine sim: min %f, max %f' % (np.min(sim),
np.max(sim)
numpy.max
import numpy as np import tensorflow as tf from collections import defaultdict class Greedy_Tracker(object): def __init__(self, cfg_tracker, cfg_train, tf_ops, tf_placeholders, session): self.network_type = cfg_tracker.network_type self.cls_thr = cfg_tracker.nn_gating_thr self.det_ratio_thr = cfg_tracker.det_ratio self.N_miss_max = cfg_tracker.N_miss_max self.img_height = cfg_tracker.IMAGE_HEIGHT self.img_width = cfg_tracker.IMAGE_WIDTH self.all_tracks = defaultdict(lambda: defaultdict(defaultdict)) self.track_num = 0 self.model_info = {} self.model_info['app_hidden_dim'] = cfg_train.APP_HIDDEN_DIM self.model_info['mot_hidden_dim'] = cfg_train.MOT_HIDDEN_DIM self.model_info['mot_input_dim'] = cfg_train.MOT_INPUT_DIM self.result = [] self.cfg_train = cfg_train self.cfg_tracker = cfg_tracker self.sess = session self.tf_ops = tf_ops self.tf_plh = tf_placeholders self.neg_mem_indices = self.precompute_neg_mem_indices() def precompute_neg_mem_indices(self): # get indices for online negative examples (i.e. other tracks in the scene) for each track # NOTE: need to be set again when the code is used for tracking more objects max_track_num = 200 max_det_num = 200 neg_mem_ind = np.zeros((max_track_num, max_det_num, max_track_num-1, 2)) for i in range(100): for j in range(100): xy_ind_tmp = np.zeros((max_track_num - 1, 2)) x_ind_tmp = np.arange(max_track_num, dtype=np.int32) xy_ind_tmp[:, 0] = x_ind_tmp[x_ind_tmp != i] xy_ind_tmp[:, 1] = j neg_mem_ind[i, j, :, :] = xy_ind_tmp return neg_mem_ind def build_neg_mem_indices(self, track_num, det_num): if track_num > 1: neg_mem_inds = self.neg_mem_indices[:track_num, :det_num, :(track_num-1), :] elif track_num == 1: neg_mem_inds = None else: raise NotImplementedError return neg_mem_inds def get_lstm_states(self, h_np, c_np, cur_detbb_num, is_track_state): h_np = np.reshape(h_np, (cur_detbb_num, cur_detbb_num, -1)) c_np = np.reshape(c_np, (cur_detbb_num, cur_detbb_num, -1)) if is_track_state == True: h_np = np.transpose(h_np, (1, 0, 2)) c_np = np.transpose(c_np, (1, 0, 2)) # loop can be commented out later to improve processing time # check lstm states h_np = np.reshape(h_np , (cur_detbb_num * cur_detbb_num, -1)) for kkk in range(1, cur_detbb_num): assert(np.array_equal(h_np[kkk*cur_detbb_num:(kkk+1)*cur_detbb_num, :], \ h_np[:cur_detbb_num, :])) h_np = h_np[:cur_detbb_num, :] # check lstm states c_np = np.reshape(c_np , (cur_detbb_num * cur_detbb_num, -1)) for kkk in range(1, cur_detbb_num): assert(np.array_equal(c_np[kkk*cur_detbb_num:(kkk+1)*cur_detbb_num, :], \ c_np[:cur_detbb_num, :])) c_np = c_np[:cur_detbb_num, :] return (h_np, c_np) def get_lstm_states_new(self, h_np, c_np, cur_detbb_num): h_np = np.reshape(h_np, (cur_detbb_num, -1)) c_np = np.reshape(c_np, (cur_detbb_num, -1)) h_np = h_np[:cur_detbb_num, :] c_np = c_np[:cur_detbb_num, :] return (h_np, c_np) def get_lstm_states_for_matched_tracks(self, matching, model_dim, h_np, c_np, trk_num, det_num): inds_sel1 = [] track_i_sel = [] # select lstm states for matched tracks if len(matching) > 0: h_np_tmp = np.zeros((len(matching), model_dim)) c_np_tmp = np.zeros((len(matching), 2 * model_dim)) h_np = np.reshape(h_np, (trk_num, det_num, -1)) c_np = np.reshape(c_np, (trk_num, det_num, -1)) for kkk in range(0, len(matching)): track_i = int(matching[kkk][0, 0]) detbb_i = int(matching[kkk][0, 1]) h_np_tmp[kkk, :] = h_np[track_i, detbb_i, :] c_np_tmp[kkk, :] = c_np[track_i, detbb_i, :] inds_sel1.append(detbb_i) track_i_sel.append(track_i) h_np = h_np_tmp c_np = c_np_tmp else: h_np = [] c_np = [] return (h_np, c_np, inds_sel1, track_i_sel) def precompute_app_features(self, imgs, bbs): cur_detbb_num = np.shape(imgs)[0] assert(cur_detbb_num == np.shape(bbs)[0]) feed_dict = { self.tf_plh['detbb_num']: cur_detbb_num, self.tf_plh['images']:imgs, self.tf_plh['is_training']: False, self.tf_plh['num_step_by_user']: 1, self.tf_plh['valid_app_data']: np.ones((cur_detbb_num, 1, 1), dtype=np.int32), self.tf_plh['indices_for_mapping']: np.reshape(np.arange(cur_detbb_num * 1, dtype=np.int32), (-1, 1)), self.tf_plh['image_batch_shape']: np.array([cur_detbb_num * 1, self.cfg_train.APP_LAYER_DIM]) } app_embed_np = self.sess.run(self.tf_ops['app_embed'], feed_dict=feed_dict) return app_embed_np def initialize_tracks( self, h, c, memory, bbs, bbs_norm, det_ids, frame, hidden_dim, is_dummy, network ): h = np.reshape(h, (-1, hidden_dim)) if network == 'app_blstm': assert(
np.shape(memory)
numpy.shape
import argparse import os import sys import time import numpy as np import torch import torch.optim as optim from model import Model from xin_feeder_baidu import Feeder from datetime import datetime import random import itertools CUDA_VISIBLE_DEVICES='0' os.environ["CUDA_VISIBLE_DEVICES"] = CUDA_VISIBLE_DEVICES def seed_torch(seed=0): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) # if you are using multi-GPU. torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True seed_torch() max_x = 1. max_y = 1. history_frames = 6 # 3 second * 2 frame/second future_frames = 6 # 3 second * 2 frame/second batch_size_train = 64 batch_size_val = 32 batch_size_test = 1 total_epoch = 1 base_lr = 0.01 lr_decay_epoch = 5 dev = 'cuda:0' work_dir = '../trained_models/' log_file = os.path.join(work_dir,'log_test_lyft.txt') test_result_file = 'prediction_result_lyft.txt' criterion = torch.nn.SmoothL1Loss() if not os.path.exists(work_dir): os.makedirs(work_dir) def my_print(pra_content): with open(log_file, 'a') as writer: print(pra_content) writer.write(pra_content+'\n') def display_result(pra_results, pra_pref='Train_epoch'): all_overall_sum_list, all_overall_num_list = pra_results overall_sum_time =
np.sum(all_overall_sum_list**0.5, axis=0)
numpy.sum
# -*- coding: utf-8 -*- # -- uvod -- from collections import Counter import math from IPython.display import Image import numpy as np from numpy.linalg import inv import scipy.linalg as la import scipy.stats as st from fractions import Fraction matice =
np.matrix([ [1/8, 1/16, 1/32, 1/32], [1/16, 1/8, 1/32, 1/32], [1/16, 1/16, 1/16, 1/16], [1/4, 0, 0, 0], ])
numpy.matrix
import sys import math import faiss import numpy as np import torch import torch.nn as nn sys.path.append('/cluster/yinan/met/') from metcode.utils.utils import * from metcode.classifiers.knn_classifier import * def train_contrastive_1epoch_virtual(model,criterion,optimizer,train_loader,epoch,vbsizemul): '''Train model with the contrastive loss for one-epoch. Supports virtual batch training with gradient accumulation in order to have larger batches with limited hardware. ''' # set model to train mode model.train() model.backbone.apply(set_batchnorm_eval) #don't change the statistics of the BN layers learned on ImageNet epoch_loss = 0.0 batch = 1 for i,(pair,targets) in enumerate(train_loader): targets = targets.cuda() #forward pass embeds = model(pair[0].cuda(),pair[1].cuda()) #loss calculation loss = criterion(embeds[0],embeds[1],targets)/vbsizemul #backward_pass loss.backward() #gradient descent if (i+1) % vbsizemul == 0 or (i+1) == len(train_loader): optimizer.step() optimizer.zero_grad() # print statistics progress(loss=loss.data.item(), epoch=epoch, batch=batch, batch_size=vbsizemul*train_loader.batch_size, dataset_size=len(train_loader.dataset)) batch +=1 epoch_loss += ((loss.item()*pair[0].size(0))/len(train_loader.dataset))*vbsizemul print("epoch : " + str(epoch) + " finished, train loss = " + str(epoch_loss)) return epoch_loss def save_checkpoint(state,filename,epoch): torch.save(state,filename + "_epoch:_" + str(epoch)) def set_batchnorm_eval(m): '''Credits to <NAME> (https://github.com/filipradenovic/cnnimageretrieval-pytorch) ''' classname = m.__class__.__name__ if classname.find('BatchNorm') != -1: # freeze running mean and std: # we do training one image at a time # so the statistics would not be per batch # hence we choose freezing (ie using imagenet statistics) m.eval() # # freeze parameters: # # in fact no need to freeze scale and bias # # they can be learned # # that is why next two lines are commented # for p in m.parameters(): # p.requires_grad = False def progress(loss, epoch, batch, batch_size, dataset_size): batches = math.ceil(float(dataset_size) / batch_size) count = batch * batch_size bar_len = 40 filled_len = int(round(bar_len * count / float(dataset_size))) bar = '=' * filled_len + '-' * (bar_len - filled_len) status = 'Epoch {}, Batch Loss: {:.8f}'.format(epoch, loss) _progress_str = "\r \r [{}] ...{}".format(bar, status) sys.stdout.write(_progress_str) sys.stdout.flush() if batch == batches: print() def validate(net,train_loader,train_labels,val_loader,val_labels,ret_train_descr = False,train_descr = None): print("Validation phase") #descriptor extraction (singlescale for validation) if train_descr is None: train_descr = extract_embeddings(net,train_loader,ms = [1],msp = 1.0) val_descr = extract_embeddings(net,val_loader,ms = [1],msp = 1.0) train_descr = np.ascontiguousarray(train_descr,dtype=np.float32) val_descr = np.ascontiguousarray(val_descr,dtype=np.float32) clf = KNN_Classifier(K = 1,t = 1) clf.fit(train_descr,train_labels) val_preds,val_confs = clf.predict(val_descr) val_gap,val_non_distr_gap,val_acc = evaluate(np.array(val_preds),np.array(val_confs),val_labels) if ret_train_descr: return val_gap,val_non_distr_gap,val_acc,train_descr else: return val_gap,val_non_distr_gap,val_acc def mine_negatives(image_paths,root,image_descrs,image_labels): image_descrs = np.ascontiguousarray(image_descrs,dtype=np.float32) index = faiss.IndexFlatIP(np.shape(image_descrs)[1]) index.add(image_descrs.astype("float32")) #find top 25 neighbors #they might contain images from the same class as the query, not all are negatives yet similarities,idxs = index.search(image_descrs.astype("float32"),25) negs_all = [] #clean those neighbors from the candidate positives #form a list for each sample with its 10 closest negatives for j,idx in enumerate(idxs): negs_one = [] i = 0 while len(negs_one)<10: if image_labels[idx[i]] != image_labels[j]: negs_one.append(image_paths[idx[i]]) i+=1 #pick one of the 10 closest neighbors indices = np.arange(10)
np.random.shuffle(indices)
numpy.random.shuffle
import numpy as np import pandas as pd def load_adult(normalize = True, bucket = 0): # dta description types = { 'age': 'int64', 'workclass': 'object', # Never-worked not in data 'fnlwgt': 'int64', 'education': 'object', 'education-num': 'int64', 'marital-status': 'object', 'occupation': 'object', 'relationship': 'object', 'race': 'object', 'sex': 'object', 'capital-gain': 'int64', 'capital-loss': 'int64', 'hours-per-week': 'int64', 'native-country': 'object', 'target': 'object' } names = list(types.keys()) # load data train = pd.read_csv('./adult/adult.data', names=names, na_values="?", dtype=types, index_col=False, skipinitialspace=True) test = pd.read_csv('./adult/adult.test', names=names, na_values="?", dtype=types, index_col=False, skipinitialspace=True, skiprows=1) # merge data so that we have info about all potential classes & can process everything at once train_size = len(train) tog = train.append(test) # clean data tog['target'] = tog['target'].str.rstrip('.') return process_dta(tog, train_size, normalize, bucket) def process_dta(tog, train_size, normalize=False, bucket = 0): # change object (string) columns to category type for col in tog.columns[
np.where(tog.dtypes == 'object')
numpy.where
"""This file implements the gym environment of Rex. """ import collections import math import time import gym import numpy as np import pybullet import pybullet_data from gym import spaces from gym.utils import seeding from ..model import rex, motor, mark_constants, rex_constants from ..model.terrain import Terrain from ..util import bullet_client MOTOR_ANGLE_OBSERVATION_INDEX = 0 OBSERVATION_EPS = 0.01 RENDER_HEIGHT = 360 RENDER_WIDTH = 480 SENSOR_NOISE_STDDEV = rex.SENSOR_NOISE_STDDEV DEFAULT_URDF_VERSION = "default" NUM_SIMULATION_ITERATION_STEPS = 300 REX_URDF_VERSION_MAP = { DEFAULT_URDF_VERSION: rex.Rex } def convert_to_list(obj): try: iter(obj) return obj except TypeError: return [obj] class RexGymEnv(gym.Env): """The gym environment for Rex. It simulates the locomotion of Rex, a quadruped robot. The state space include the angles, velocities and torques for all the motors and the action space is the desired motor angle for each motor. The reward function is based on how far Rex walks in 1000 steps and penalizes the energy expenditure. """ metadata = {"render.modes": ["human", "rgb_array"], "video.frames_per_second": 100} def __init__(self, debug=False, urdf_root=pybullet_data.getDataPath(), urdf_version=None, distance_weight=1.0, energy_weight=0.0005, shake_weight=0.005, drift_weight=2.0, distance_limit=float("inf"), observation_noise_stdev=SENSOR_NOISE_STDDEV, self_collision_enabled=False, motor_velocity_limit=np.inf, pd_control_enabled=False, leg_model_enabled=True, accurate_motor_model_enabled=False, remove_default_joint_damping=False, motor_kp=2.0, motor_kd=0.03, control_latency=0.0, pd_latency=0.0, torque_control_enabled=False, motor_overheat_protection=False, hard_reset=True, on_rack=False, render=True, num_steps_to_log=1000, action_repeat=1, control_time_step=None, env_randomizer=None, forward_reward_cap=float("inf"), reflection=True, log_path=None, target_orient=None, init_orient=None, target_position=None, start_position=None, base_y=0.0, base_z=0.0, base_roll=0.0, base_pitch=0.0, base_yaw=0.0, step_length=None, step_rotation=None, step_angle=None, step_period=None, backwards=None, signal_type="ik", terrain_type="plane", terrain_id=None, mark='base'): """ Initialize the rex gym environment. Args: urdf_root: The path to the urdf data folder. urdf_version: [DEFAULT_URDF_VERSION] are allowable versions. If None, DEFAULT_URDF_VERSION is used. distance_weight: The weight of the distance term in the reward. energy_weight: The weight of the energy term in the reward. shake_weight: The weight of the vertical shakiness term in the reward. drift_weight: The weight of the sideways drift term in the reward. distance_limit: The maximum distance to terminate the episode. observation_noise_stdev: The standard deviation of observation noise. self_collision_enabled: Whether to enable self collision in the sim. motor_velocity_limit: The velocity limit of each motor. pd_control_enabled: Whether to use PD controller for each motor. leg_model_enabled: Whether to use a leg motor to reparameterize the action space. accurate_motor_model_enabled: Whether to use the accurate DC motor model. remove_default_joint_damping: Whether to remove the default joint damping. motor_kp: proportional gain for the accurate motor model. motor_kd: derivative gain for the accurate motor model. control_latency: It is the delay in the controller between when an observation is made at some point, and when that reading is reported back to the Neural Network. pd_latency: latency of the PD controller loop. PD calculates PWM based on the motor angle and velocity. The latency measures the time between when the motor angle and velocity are observed on the microcontroller and when the true state happens on the motor. It is typically (0.001- 0.002s). torque_control_enabled: Whether to use the torque control, if set to False, pose control will be used. motor_overheat_protection: Whether to shutdown the motor that has exerted large torque (OVERHEAT_SHUTDOWN_TORQUE) for an extended amount of time (OVERHEAT_SHUTDOWN_TIME). See ApplyAction() in rex.py for more details. hard_reset: Whether to wipe the simulation and load everything when reset is called. If set to false, reset just place Rex back to start position and set its pose to initial configuration. on_rack: Whether to place Rex on rack. This is only used to debug the walk gait. In this mode, Rex's base is hanged midair so that its walk gait is clearer to visualize. render: Whether to render the simulation. num_steps_to_log: The max number of control steps in one episode that will be logged. If the number of steps is more than num_steps_to_log, the environment will still be running, but only first num_steps_to_log will be recorded in logging. action_repeat: The number of simulation steps before actions are applied. control_time_step: The time step between two successive control signals. env_randomizer: An instance (or a list) of EnvRandomizer(s). An EnvRandomizer may randomize the physical property of rex, change the terrrain during reset(), or add perturbation forces during step(). forward_reward_cap: The maximum value that forward reward is capped at. Disabled (Inf) by default. log_path: The path to write out logs. For the details of logging, refer to rex_logging.proto. Raises: ValueError: If the urdf_version is not supported. """ self.mark = mark self.num_motors = mark_constants.MARK_DETAILS['motors_num'][self.mark] self.motor_velocity_obs_index = MOTOR_ANGLE_OBSERVATION_INDEX + self.num_motors self.motor_torque_obs_index = self.motor_velocity_obs_index + self.num_motors self.base_orientation_obs_index = self.motor_torque_obs_index + self.num_motors # Set up logging. self._log_path = log_path # @TODO fix logging self.logging = None # PD control needs smaller time step for stability. if control_time_step is not None: self.control_time_step = control_time_step self._action_repeat = action_repeat self._time_step = control_time_step / action_repeat else: # Default values for time step and action repeat if accurate_motor_model_enabled or pd_control_enabled: self._time_step = 0.002 self._action_repeat = 5 else: self._time_step = 0.01 self._action_repeat = 1 self.control_time_step = self._time_step * self._action_repeat # TODO: Fix the value of self._num_bullet_solver_iterations. self._num_bullet_solver_iterations = int(NUM_SIMULATION_ITERATION_STEPS / self._action_repeat) self._urdf_root = urdf_root self._self_collision_enabled = self_collision_enabled self._motor_velocity_limit = motor_velocity_limit self._observation = [] self._true_observation = [] self._objectives = [] self._objective_weights = [distance_weight, energy_weight, drift_weight, shake_weight] self._env_step_counter = 0 self._num_steps_to_log = num_steps_to_log self._is_render = render self._is_debug = debug self._last_base_position = [0, 0, 0] self._last_base_orientation = [0, 0, 0, 1] self._distance_weight = distance_weight self._energy_weight = energy_weight self._drift_weight = drift_weight self._shake_weight = shake_weight self._distance_limit = distance_limit self._observation_noise_stdev = observation_noise_stdev self._action_bound = 1 self._pd_control_enabled = pd_control_enabled self._leg_model_enabled = leg_model_enabled self._accurate_motor_model_enabled = accurate_motor_model_enabled self._remove_default_joint_damping = remove_default_joint_damping self._motor_kp = motor_kp self._motor_kd = motor_kd self._torque_control_enabled = torque_control_enabled self._motor_overheat_protection = motor_overheat_protection self._on_rack = on_rack self._cam_dist = 1.0 self._cam_yaw = 0 self._cam_pitch = -30 self._forward_reward_cap = forward_reward_cap self._hard_reset = True self._last_frame_time = 0.0 self._control_latency = control_latency self._pd_latency = pd_latency self._urdf_version = urdf_version self._ground_id = None self._reflection = reflection self._env_randomizers = convert_to_list(env_randomizer) if env_randomizer else [] # @TODO fix logging self._episode_proto = None if self._is_render: self._pybullet_client = bullet_client.BulletClient(connection_mode=pybullet.GUI) else: self._pybullet_client = bullet_client.BulletClient() if self._urdf_version is None: self._urdf_version = DEFAULT_URDF_VERSION self._pybullet_client.setPhysicsEngineParameter(enableConeFriction=0) self._signal_type = signal_type # gait inputs self.step_length = step_length self.step_rotation = step_rotation self.step_angle = step_angle self.step_period = step_period # poses inputs self._base_x = 0.01 self._base_y = base_y self._base_z = base_z self._base_roll = base_roll self._base_pitch = base_pitch self._base_yaw = base_yaw # envs inputs self._target_orient = target_orient self._init_orient = init_orient self._target_position = target_position self._start_position = start_position # computation support params self._random_pos_target = False self._random_pos_start = False self._random_orient_target = False self._random_orient_start = False self._companion_obj = {} self._queue = collections.deque(["base_y", "base_z", "roll", "pitch", "yaw"]) self._ranges = { "base_x": (-0.02, 0.02, 0.01), "base_y": (-0.007, 0.007, 0), "base_z": (-0.048, 0.021, 0), "roll": (-np.pi / 4, np.pi / 4, 0), "pitch": (-np.pi / 4, np.pi / 4, 0), "yaw": (-np.pi / 4, np.pi / 4, 0) } self.seed() self._backwards = backwards self._terrain_type = "plane" self._terrain_id = terrain_id self.reset() self._terrain_type = terrain_type self.terrain = Terrain(self._terrain_type, self._terrain_id) if self._terrain_type is not "plane": self.terrain.generate_terrain(self) observation_high = (self._get_observation_upper_bound() + OBSERVATION_EPS) observation_low = (self._get_observation_lower_bound() - OBSERVATION_EPS) action_dim = self.num_motors action_high = np.array([self._action_bound] * action_dim) self.action_space = spaces.Box(-action_high, action_high) self.observation_space = spaces.Box(observation_low, observation_high) self.viewer = None self._hard_reset = hard_reset # This assignment need to be after reset() self.env_goal_reached = False def close(self): # @TODO fix logger # if self._env_step_counter > 0: # self.logging.save_episode(self._episode_proto) self.rex.Terminate() def add_env_randomizer(self, env_randomizer): self._env_randomizers.append(env_randomizer) def reset(self, initial_motor_angles=None, reset_duration=1.0): self.env_goal_reached = False self._pybullet_client.configureDebugVisualizer(self._pybullet_client.COV_ENABLE_RENDERING, 0) # @TODO fix logger # if self._env_step_counter > 0: # self.logging.save_episode(self._episode_proto) # self._episode_proto = rex_logging_pb2.RexEpisode() # rex_logging.preallocate_episode_proto(self._episode_proto, self._num_steps_to_log) if self._hard_reset: self._pybullet_client.resetSimulation() self._pybullet_client.setPhysicsEngineParameter( numSolverIterations=int(self._num_bullet_solver_iterations)) self._pybullet_client.setTimeStep(self._time_step) self._ground_id = self._pybullet_client.loadURDF("%s/plane.urdf" % self._urdf_root) if self._reflection: self._pybullet_client.changeVisualShape(self._ground_id, -1, rgbaColor=[1, 1, 1, 0.8]) self._pybullet_client.configureDebugVisualizer( self._pybullet_client.COV_ENABLE_PLANAR_REFLECTION, self._ground_id) self._pybullet_client.setGravity(0, 0, -10) acc_motor = self._accurate_motor_model_enabled motor_protect = self._motor_overheat_protection if self._urdf_version not in REX_URDF_VERSION_MAP: raise ValueError("%s is not a supported urdf_version." % self._urdf_version) else: self.rex = (REX_URDF_VERSION_MAP[self._urdf_version]( pybullet_client=self._pybullet_client, action_repeat=self._action_repeat, urdf_root=self._urdf_root, time_step=self._time_step, self_collision_enabled=self._self_collision_enabled, motor_velocity_limit=self._motor_velocity_limit, pd_control_enabled=self._pd_control_enabled, accurate_motor_model_enabled=acc_motor, remove_default_joint_damping=self._remove_default_joint_damping, motor_kp=self._motor_kp, motor_kd=self._motor_kd, control_latency=self._control_latency, pd_latency=self._pd_latency, observation_noise_stdev=self._observation_noise_stdev, torque_control_enabled=self._torque_control_enabled, motor_overheat_protection=motor_protect, on_rack=self._on_rack, terrain_id=self._terrain_id, mark=self.mark)) self.rex.Reset(reload_urdf=False, default_motor_angles=initial_motor_angles, reset_time=reset_duration) # Loop over all env randomizers. for env_randomizer in self._env_randomizers: env_randomizer.randomize_env(self) if self._terrain_type is not "plane": self.terrain.update_terrain() self._pybullet_client.setPhysicsEngineParameter(enableConeFriction=0) self._env_step_counter = 0 self._last_base_position = [0, 0, 0] self._last_base_orientation = [0, 0, 0, 1] self._objectives = [] self._pybullet_client.resetDebugVisualizerCamera(self._cam_dist, self._cam_yaw, self._cam_pitch, [0, 0, 0]) self._pybullet_client.configureDebugVisualizer(self._pybullet_client.COV_ENABLE_RENDERING, 1) # time.sleep(100) return self._get_observation() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def _transform_action_to_motor_command(self, action): if len(action) != mark_constants.MARK_DETAILS['motors_num'][self.mark]: # extend with arm rest pose action = np.concatenate((action, rex_constants.ARM_POSES["rest"])) return action def step(self, action): """Step forward the simulation, given the action. Args: action: A list of desired motor angles for eight motors. Returns: observations: The angles, velocities and torques of all motors. reward: The reward for the current state-action pair. done: Whether the episode has ended. info: A dictionary that stores diagnostic information. Raises: ValueError: The action dimension is not the same as the number of motors. ValueError: The magnitude of actions is out of bounds. """ self._last_base_position = self.rex.GetBasePosition() self._last_base_orientation = self.rex.GetBaseOrientation() if self._is_render: # Sleep, otherwise the computation takes less time than real time, # which will make the visualization like a fast-forward video. time_spent = time.time() - self._last_frame_time self._last_frame_time = time.time() time_to_sleep = self.control_time_step - time_spent if time_to_sleep > 0: time.sleep(time_to_sleep) base_pos = self.rex.GetBasePosition() # Keep the previous orientation of the camera set by the user. [yaw, pitch, dist] = self._pybullet_client.getDebugVisualizerCamera()[8:11] self._pybullet_client.resetDebugVisualizerCamera(dist, yaw, pitch, base_pos) for env_randomizer in self._env_randomizers: env_randomizer.randomize_step(self) action = self._transform_action_to_motor_command(action) self.rex.Step(action) reward = self._reward() done = self._termination() # @TODO fix logging # if self._log_path is not None: # rex_logging.update_episode_proto(self._episode_proto, self.rex, action, # self._env_step_counter) self._env_step_counter += 1 if done: self.rex.Terminate() return np.array(self._get_observation()), reward, done, {'action': action} def render(self, mode="rgb_array", close=False): if mode != "rgb_array": return np.array([]) base_pos = self.rex.GetBasePosition() view_matrix = self._pybullet_client.computeViewMatrixFromYawPitchRoll( cameraTargetPosition=base_pos, distance=self._cam_dist, yaw=self._cam_yaw, pitch=self._cam_pitch, roll=0, upAxisIndex=2) proj_matrix = self._pybullet_client.computeProjectionMatrixFOV(fov=60, aspect=float(RENDER_WIDTH) / RENDER_HEIGHT, nearVal=0.1, farVal=100.0) (_, _, px, _, _) = self._pybullet_client.getCameraImage( width=RENDER_WIDTH, height=RENDER_HEIGHT, renderer=self._pybullet_client.ER_BULLET_HARDWARE_OPENGL, viewMatrix=view_matrix, projectionMatrix=proj_matrix) rgb_array = np.array(px) rgb_array = rgb_array[:, :, :3] return rgb_array def get_rex_motor_angles(self): """Get the rex's motor angles. Returns: A numpy array of motor angles. """ return np.array(self._observation[MOTOR_ANGLE_OBSERVATION_INDEX:MOTOR_ANGLE_OBSERVATION_INDEX + self.num_motors]) def get_rex_motor_velocities(self): """Get the rex's motor velocities. Returns: A numpy array of motor velocities. """ return np.array( self._observation[self.motor_velocity_obs_index:self.motor_velocity_obs_index + self.num_motors]) def get_rex_motor_torques(self): """Get the rex's motor torques. Returns: A numpy array of motor torques. """ return np.array( self._observation[self.motor_torque_obs_index:self.motor_torque_obs_index + self.num_motors]) def get_rex_base_orientation(self): """Get the rex's base orientation, represented by a quaternion. Returns: A numpy array of rex's orientation. """ return np.array(self._observation[self.base_orientation_obs_index:]) def is_fallen(self): """Decide whether Rex has fallen. If the up directions between the base and the world is larger (the dot product is smaller than 0.85) or the base is very low on the ground (the height is smaller than 0.13 meter), rex is considered fallen. Returns: Boolean value that indicates whether rex has fallen. """ orientation = self.rex.GetBaseOrientation() rot_mat = self._pybullet_client.getMatrixFromQuaternion(orientation) local_up = rot_mat[6:] return np.dot(np.asarray([0, 0, 1]),
np.asarray(local_up)
numpy.asarray
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Nov 9 15:04:39 2018 @author: luoyuhao """ import numpy import numpy as np import cv2 import time import imageio from skimage import transform as trans imgSize = [112, 96]; coord5point = [[30.2946, 51.6963], [65.5318, 51.6963], [48.0252, 71.7366], [33.5493, 92.3655], [62.7299, 92.3655]] face_landmarks = [[259, 137], [319, 150], [284, 177], [253, 206], [297, 216]] def transformation_from_points(points1, points2): points1 = points1.astype(numpy.float64) points2 = points2.astype(numpy.float64) c1 = numpy.mean(points1, axis=0) c2 = numpy.mean(points2, axis=0) points1 -= c1 points2 -= c2 s1 =
numpy.std(points1)
numpy.std
import numpy as np import pandas as pd # calculate confidence {A} -> {B} def confidence(A, B): """ Calculate confidence {A} -> {B}. A and B are arrays that only contain boolean values. e.g. A=df["antecedent"], B=df["consequent"] """ support_A = A.mean() support_AB =
np.logical_and(A, B)
numpy.logical_and
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu May 18 17:02:08 2017 @author: wd """ import numpy as np import tensorflow as tf import random import itertools import PG_conv import PG_value import collections from collections import deque import matplotlib.pyplot as plt import matplotlib.patches as patches import gym # import dqn # from dqn_conv import DQN # import dqn_conv env = gym.make('ND-v0') input_size = 784 output_size = env.action_space.n # number of actions dis = 0.9 REPLAY_MEMORY = 1000 # Make batch of data and present value of reward def replay_train(mainDQN, targetDQN, train_batch): # mainDQN: .... # targetDQN: .... # train_batch: queue contains training information during batch learning. Refer 'for' statement at below. x_stack = np.empty(0).reshape(0, 784) h_stack = np.empty(0).reshape(0, 50) y_stack = np.empty(0).reshape(0, 1) # Get stored information from the buffer for state, action, reward, next_state, done, history_buffer in train_batch: if done == 1: Q = reward else: Q = reward + dis*np.mean(targetDQN.predict(next_state, history_buffer)) y_stack = np.vstack([y_stack, Q]) x_stack = np.vstack([x_stack,
np.reshape(state, 784)
numpy.reshape
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test for solve eigenvalues & eigen vectors""" import pytest import numpy as np from mindspore import Tensor from mindspore.scipy.ops import EighNet np.random.seed(0) def match(v, v_, error=0): if error > 0:
np.testing.assert_almost_equal(v, v_, decimal=error)
numpy.testing.assert_almost_equal
from copy import deepcopy import numpy as np """ This module defines the ranges of hyper-params to search upon """ # Define the high level configuration structure _all_config = {} _all_config['AWA1'] = {} _all_config['SUN'] = {} _all_config['CUB'] = {} _all_config['FLO'] = {} def get(dataset_name, combiner, metric_name, all_config=_all_config): assert(dataset_name in all_config) dataset_cfgs = all_config[dataset_name] if metric_name in dataset_cfgs: cfg = dataset_cfgs[metric_name].get(combiner, dataset_cfgs[metric_name]['default']) else: cfg = dataset_cfgs.get(combiner, dataset_cfgs['default']) # sanity check assert (len(cfg['anomaly_detector_threshold']) == 1) return deepcopy(cfg) def cast_to_lists(hyper_params): """ Put in a list (with len=1), if given as individual value """ hyper_params_as_lists = {} for k,v in hyper_params.items(): if not (isinstance(v, list) or isinstance(v, np.ndarray)) : v = [v,] hyper_params_as_lists[k] = list(v) return hyper_params_as_lists def _individual_cfg(hyper_params={}, anomaly_detector_threshold={}): assert( len(anomaly_detector_threshold) == 1 ) hyper_params_as_lists = cast_to_lists(hyper_params) threshold_as_list = cast_to_lists(anomaly_detector_threshold) return dict(hyper_params=hyper_params_as_lists, anomaly_detector_threshold=threshold_as_list) # Here we define defaults configurations CUB_default = _individual_cfg(hyper_params= dict( T_cond=[0.1, 0.3, 1, 3], ), anomaly_detector_threshold= dict(threshold=np.arange(-2.5, 2.5, 0.1)) ) _all_config['CUB']['default'] = deepcopy(CUB_default) SUN_default = _individual_cfg(hyper_params= dict( T_cond=[0.1, 0.3, 1, 3, 10], ), anomaly_detector_threshold= dict(threshold=np.arange(-2.5, 20, 0.2)) ) _all_config['SUN']['default'] = deepcopy(SUN_default) _all_config['SUN']['Confidence Based Gater: T = (3,)'] = {} _all_config['SUN']['Confidence Based Gater: T = (3,)']['adaptive_smoothing'] = \ _individual_cfg(hyper_params= dict( T_cond=[0.1, 0.3, 1, 3, 10], ), anomaly_detector_threshold= dict(threshold=
np.arange(0, 50, 0.2)
numpy.arange
# -*- coding: utf-8 -*- """ docstring goes here. :copyright: Copyright 2014 by the Elephant team, see AUTHORS.txt. :license: Modified BSD, see LICENSE.txt for details. """ import unittest import neo import numpy as np from numpy.testing.utils import assert_array_almost_equal import quantities as pq import elephant.conversion as cv def get_nearest(times, time): return (np.abs(times-time)).argmin() class binarize_TestCase(unittest.TestCase): def setUp(self): self.test_array_1d = np.array([1.23, 0.3, 0.87, 0.56]) def test_binarize_with_spiketrain_exact(self): st = neo.SpikeTrain(self.test_array_1d, units='ms', t_stop=10.0, sampling_rate=100) times = np.arange(0, 10.+.01, .01) target = np.zeros_like(times).astype('bool') for time in self.test_array_1d: target[get_nearest(times, time)] = True times = pq.Quantity(times, units='ms') res, tres = cv.binarize(st, return_times=True) assert_array_almost_equal(res, target, decimal=9) assert_array_almost_equal(tres, times, decimal=9) def test_binarize_with_spiketrain_exact_set_ends(self): st = neo.SpikeTrain(self.test_array_1d, units='ms', t_stop=10.0, sampling_rate=100) times = np.arange(5., 10.+.01, .01) target = np.zeros_like(times).astype('bool') times = pq.Quantity(times, units='ms') res, tres = cv.binarize(st, return_times=True, t_start=5., t_stop=10.) assert_array_almost_equal(res, target, decimal=9) assert_array_almost_equal(tres, times, decimal=9) def test_binarize_with_spiketrain_round(self): st = neo.SpikeTrain(self.test_array_1d, units='ms', t_stop=10.0, sampling_rate=10.0) times =
np.arange(0, 10.+.1, .1)
numpy.arange
import numpy as np from abc import ABC, abstractmethod from multiprocessing import Process, Pipe try: import ray except ImportError: pass from tianshou.env import EnvWrapper, CloudpickleWrapper class BaseVectorEnv(ABC): def __init__(self, env_fns): self._env_fns = env_fns self.env_num = len(env_fns) def __len__(self): return self.env_num @abstractmethod def reset(self): pass @abstractmethod def step(self, action): pass @abstractmethod def seed(self, seed=None): pass @abstractmethod def render(self, **kwargs): pass @abstractmethod def close(self): pass class VectorEnv(BaseVectorEnv): """docstring for VectorEnv""" def __init__(self, env_fns): super().__init__(env_fns) self.envs = [_() for _ in env_fns] def reset(self, id=None): if id is None: self._obs = np.stack([e.reset() for e in self.envs]) else: if np.isscalar(id): id = [id] for i in id: self._obs[i] = self.envs[i].reset() return self._obs def step(self, action): assert len(action) == self.env_num result = [e.step(a) for e, a in zip(self.envs, action)] self._obs, self._rew, self._done, self._info = zip(*result) self._obs = np.stack(self._obs) self._rew = np.stack(self._rew) self._done = np.stack(self._done) self._info = np.stack(self._info) return self._obs, self._rew, self._done, self._info def seed(self, seed=None): if np.isscalar(seed): seed = [seed + _ for _ in range(self.env_num)] elif seed is None: seed = [seed] * self.env_num result = [] for e, s in zip(self.envs, seed): if hasattr(e, 'seed'): result.append(e.seed(s)) return result def render(self, **kwargs): result = [] for e in self.envs: if hasattr(e, 'render'): result.append(e.render(**kwargs)) return result def close(self): for e in self.envs: e.close() def worker(parent, p, env_fn_wrapper): parent.close() env = env_fn_wrapper.data() try: while True: cmd, data = p.recv() if cmd == 'step': p.send(env.step(data)) elif cmd == 'reset': p.send(env.reset()) elif cmd == 'close': p.close() break elif cmd == 'render': p.send(env.render(**data) if hasattr(env, 'render') else None) elif cmd == 'seed': p.send(env.seed(data) if hasattr(env, 'seed') else None) else: p.close() raise NotImplementedError except KeyboardInterrupt: p.close() class SubprocVectorEnv(BaseVectorEnv): """docstring for SubProcVectorEnv""" def __init__(self, env_fns): super().__init__(env_fns) self.closed = False self.parent_remote, self.child_remote = \ zip(*[Pipe() for _ in range(self.env_num)]) self.processes = [ Process(target=worker, args=( parent, child, CloudpickleWrapper(env_fn)), daemon=True) for (parent, child, env_fn) in zip( self.parent_remote, self.child_remote, env_fns) ] for p in self.processes: p.start() for c in self.child_remote: c.close() def step(self, action): assert len(action) == self.env_num for p, a in zip(self.parent_remote, action): p.send(['step', a]) result = [p.recv() for p in self.parent_remote] self._obs, self._rew, self._done, self._info = zip(*result) self._obs = np.stack(self._obs) self._rew = np.stack(self._rew) self._done = np.stack(self._done) self._info = np.stack(self._info) return self._obs, self._rew, self._done, self._info def reset(self, id=None): if id is None: for p in self.parent_remote: p.send(['reset', None]) self._obs = np.stack([p.recv() for p in self.parent_remote]) return self._obs else: if np.isscalar(id): id = [id] for i in id: self.parent_remote[i].send(['reset', None]) for i in id: self._obs[i] = self.parent_remote[i].recv() return self._obs def seed(self, seed=None): if np.isscalar(seed): seed = [seed + _ for _ in range(self.env_num)] elif seed is None: seed = [seed] * self.env_num for p, s in zip(self.parent_remote, seed): p.send(['seed', s]) return [p.recv() for p in self.parent_remote] def render(self, **kwargs): for p in self.parent_remote: p.send(['render', kwargs]) return [p.recv() for p in self.parent_remote] def close(self): if self.closed: return for p in self.parent_remote: p.send(['close', None]) self.closed = True for p in self.processes: p.join() class RayVectorEnv(BaseVectorEnv): """docstring for RayVectorEnv""" def __init__(self, env_fns): super().__init__(env_fns) try: if not ray.is_initialized(): ray.init() except NameError: raise ImportError( 'Please install ray to support RayVectorEnv: pip3 install ray') self.envs = [ ray.remote(EnvWrapper).options(num_cpus=0).remote(e()) for e in env_fns] def step(self, action): assert len(action) == self.env_num result_obj = [e.step.remote(a) for e, a in zip(self.envs, action)] result = [ray.get(r) for r in result_obj] self._obs, self._rew, self._done, self._info = zip(*result) self._obs = np.stack(self._obs) self._rew = np.stack(self._rew) self._done =
np.stack(self._done)
numpy.stack
""" Slightly modified from https://github.com/peter3125/sentence2vec with some new methods for preprocessing sentences, calculating cosine similarity with sklearn, and a pipeline for comparing an input sentence against a corpus for some braindead question answering purposes """ from __future__ import print_function import time import gensim from gensim.corpora.wikicorpus import WikiCorpus from gensim.models.doc2vec import Doc2Vec import spacy import math import numpy as np import pandas as pd from sklearn.decomposition import PCA from sklearn.metrics.pairwise import cosine_similarity from typing import List nlp = spacy.load('en') gnews_model = gensim.models.KeyedVectors.load_word2vec_format('~/Downloads/GoogleNews-vectors-negative300.bin', binary=True) class Word: def __init__(self, text, vector): self.text = text self.vector = vector class Sentence: def __init__(self, word_list): self.word_list = word_list # return the length of a sentence def len(self): return(len(self.word_list)) def __str__(self): word_str_list = [word.text for word in self.word_list] return ' '.join(word_str_list) def __repr__(self): return self.__str__() def get_word_frequency(word_text, vec_model): wf = vec_model.vocab[word_text].count return(wf) def preloading_sentences(sentence_list, model): """ Converts a list of sentences into a list of Sentence (and Word) objects Pretty similar to what peter3125/sentence2vec.git does input: a list of sentences, embedding_size output: a list of Sentence objects, containing Word objects, which contain 'text' and word vector attributes """ embedding_size = 300 all_sent_info = [] for sentence in sentence_list: sent_info = [] spacy_sentence = nlp(sentence) for word in spacy_sentence: if word.text in model.vocab: sent_info.append(Word(word.text, model[word.text])) # todo: if sent_info > 0, append, else don't all_sent_info.append(Sentence(sent_info)) return(all_sent_info) def sentence_to_vec(sentence_list, embedding_size, a=1e-3): """ A SIMPLE BUT TOUGH TO BEAT BASELINE FOR SENTENCE EMBEDDINGS <NAME>, <NAME>, <NAME> Princeton University """ sentence_set = [] # intermediary list of sentence vectors before PCA sent_list = [] # return list of input sentences in the output for sentence in sentence_list: this_sent = [] vs = np.zeros(embedding_size) # add all w2v values into one vector for the sentence sentence_length = sentence.len() for word in sentence.word_list: this_sent.append(word.text) word_freq = get_word_frequency(word.text, gnews_model) a_value = a / (a + word_freq) # smooth inverse frequency, SIF vs = np.add(vs, np.multiply(a_value, word.vector)) # vs += sif * word_vector vs = np.divide(vs, sentence_length) # weighted average, normalized by sentence length sentence_set.append(vs) # add to our existing re-caculated set of sentences sent_list.append(' '.join(this_sent)) # calculate PCA of this sentence set pca = PCA(n_components=embedding_size) pca.fit(np.array(sentence_set)) u = pca.components_[0] # the PCA vector u = np.multiply(u, np.transpose(u)) # u x uT # pad the vector? (occurs if we have less sentences than embeddings_size) if len(u) < embedding_size: for i in range(embedding_size - len(u)): u = np.append(u, 0) # resulting sentence vectors, vs = vs -u * uT * vs sentence_vecs = [] for vs in sentence_set: sub =
np.multiply(u, vs)
numpy.multiply
"""The svm theta kernel as defined in :cite:`johansson2014global`.""" # Author: <NAME> <<EMAIL>> # License: BSD 3 clause import collections import warnings import numpy as np from scipy.linalg import eigvalsh from sklearn.svm import OneClassSVM from grakel.kernels import Kernel from grakel.graph import Graph from grakel.tools import distribute_samples positive_eigenvalue_limit = float("+1e-6") min_weight = float("1e-10") class SvmTheta(Kernel): """Calculate the SVM theta kernel. See :cite:`johansson2014global`. Parameters ---------- X,Y : *valid-graph-format* The pair of graphs on which the kernel is applied. n_samples : int, default=50 Number of samples. subsets_size_range : tuple, len=2, default=(2,8) (min, max) size of the vertex set of sampled subgraphs. metric : function (number, number -> number), default=:math:`f(x,y)=x*y` The applied metric between the svm_theta numbers of the two graphs. Attributes ---------- _n_samples : int Number of samples drawn for the computation of lovasz theta. _ssr : tuple, len=2 A tuple containing two integers designating the minimum and the maximum size of the vertex set of considered subgraphs. _base_kernel : function (number, number -> number) The applied base_kernel between features of the mean lovasz_theta numbers samples for all levels of the two graphs. """ _graph_format = "adjacency" def __init__(self, n_jobs=None, normalize=False, verbose=False, random_seed=42, n_samples=50, subsets_size_range=(2, 8), base_kernel=lambda x, y: x.T.dot(y)): """Initialise a lovasz_theta kernel.""" # setup valid parameters and initialise from parent super(SvmTheta, self).__init__(n_jobs=n_jobs, normalize=normalize, verbose=verbose) self.n_samples = n_samples self.subsets_size_range = subsets_size_range self.base_kernel = base_kernel self.random_seed = random_seed self.initialized_.update({"n_samples": False, "subsets_size_range": False, "base_kernel": False, "random_seed": False}) def initialized_(self): """Initialize all transformer arguments, needing initialization.""" super(SvmTheta, self).initialize_() if not self.initialized_["n_samles"]: if self.n_samples <= 0 or type(self.n_samples) is not int: raise TypeError('n_samples must an integer be bigger ' 'than zero') self.initialized_["n_samles"] = True if not self.initialized_["subsets_size_range"]: if (type(self.subsets_size_range) is not tuple or len(self.subsets_size_range) != 2 or any(type(i) is not int for i in self.subsets_size_range) or self.subsets_size_range[0] > self.subsets_size_range[1] or self.subsets_size_range[0] <= 0): raise TypeError('subsets_size_range subset size range' 'must be a tuple of two integers in ' 'increasing order, bigger than 1') self.initialized_["subsets_size_range"] = True if not self.initialized_["base_kernel"]: if not callable(self.base_kernel): raise TypeError('base_kernel between arguments' + 'must be a function') self.initialized_["base_kernel"] = True if not self.initialized_["random_seed"]: np.random.seed(self.random_seed) self.initialized_["random_seed"] = True def parse_input(self, X): """Parse and create features for svm_theta kernel. Parameters ---------- X : iterable For the input to pass the test, we must have: Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that correspond to the given graph format). A valid input also consists of graph type objects. Returns ------- out : list The lovasz metrics for the given input. """ if not isinstance(X, collections.Iterable): raise TypeError('input must be an iterable\n') else: i = 0 out = list() for (idx, x) in enumerate(iter(X)): is_iter = False if isinstance(x, collections.Iterable): x, is_iter = list(x), True if is_iter and len(x) in [0, 1, 2, 3]: if len(x) == 0: warnings.warn('Ignoring empty element ' + 'on index: '+str(idx)) continue else: x = Graph(x[0], {}, {}, self._graph_format) elif type(x) is not Graph: raise TypeError('each element of X must be either a ' + 'graph or an iterable with at least 1 ' + 'and at most 3 elements\n') i += 1 A = x.get_adjacency_matrix() dual_coeffs = _calculate_svm_theta_(A) out.append(self._calculate_svm_theta_levels_(A, dual_coeffs)) if i == 0: raise ValueError('parsed input is empty') return out def pairwise_operation(self, x, y): """Lovasz theta kernel as proposed in :cite:`johansson2014global`. Parameters ---------- x, y : dict Subgraph samples metric dictionaries for all levels. Returns ------- kernel : number The kernel value. """ return self.base_kernel(x, y) def _calculate_svm_theta_levels_(self, A, dual_coefs): """Calculate the svm_theta by levels for amaximum number of samples. Parameters ---------- A : np.array, ndim=2 The adjacency matrix. Returns ------- level_values : np.array, shape=(num_of_levels, 1) Returns for all levels the mean of lovasz_numbers for sampled subsets. """ # Calculate subsets n = A.shape[0] samples_on_subsets = distribute_samples(n, self.subsets_size_range, self.n_samples) # Calculate level dictionary with lovasz values phi = np.zeros(shape=(self.subsets_size_range[1] - self.subsets_size_range[0]+1, 1)) for (i, level) in enumerate(range(self.subsets_size_range[0], self.subsets_size_range[1]+1)): v = samples_on_subsets.get(level, None) if v is not None: level_values = list() for k in range(v): if level <= n: indexes =
np.random.choice(n, level, replace=False)
numpy.random.choice
#!/usr/bin/env python ''' mcu: Modeling and Crystallographic Utilities Copyright (C) 2019 <NAME>. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Email: <NAME> <<EMAIL>> ''' # This is the only place needed to be modified # The path for the libwannier90 library W90LIB = '/panfs/roc/groups/6/gagliard/phamx494/pyWannier90/src' import sys sys.path.append(W90LIB) import importlib found = importlib.util.find_spec('libwannier90') is not None if found == True: import libwannier90 else: print('WARNING: Check the installation of libwannier90 and its path in pyscf/pbc/tools/pywannier90.py') print('libwannier90 path: ' + W90LIB) print('libwannier90 can be found at: https://github.com/hungpham2017/pyWannier90') raise ImportError import numpy as np import scipy import mcu from mcu.vasp import const from mcu.cell import utils as cell_utils def angle(v1, v2): ''' Return the angle (in radiant between v1 and v2) ''' v1 = np.asarray(v1) v2 = np.asarray(v2) cosa = v1.dot(v2)/ np.linalg.norm(v1) / np.linalg.norm(v2) return np.arccos(cosa) def transform(x_vec, z_vec): ''' Construct a transformation matrix to transform r_vec to the new coordinate system defined by x_vec and z_vec ''' x_vec = x_vec/np.linalg.norm(np.asarray(x_vec)) z_vec = z_vec/np.linalg.norm(np.asarray(z_vec)) assert x_vec.dot(z_vec) == 0 # x and z have to be orthogonal to one another y_vec = np.cross(x_vec,z_vec) new = np.asarray([x_vec, y_vec, z_vec]) original = np.asarray([[1,0,0],[0,1,0],[0,0,1]]) tran_matrix = np.empty([3,3]) for row in range(3): for col in range(3): tran_matrix[row,col] = np.cos(angle(original[row],new[col])) return tran_matrix.T def cartesian_prod(arrays, out=None, order = 'C'): ''' This function is similar to lib.cartesian_prod of PySCF, except the output can be in Fortran or in C order ''' arrays = [np.asarray(x) for x in arrays] dtype = np.result_type(*arrays) nd = len(arrays) dims = [nd] + [len(x) for x in arrays] if out is None: out = np.empty(dims, dtype) else: out = np.ndarray(dims, dtype, buffer=out) tout = out.reshape(dims) shape = [-1] + [1] * nd for i, arr in enumerate(arrays): tout[i] = arr.reshape(shape[:nd-i]) return tout.reshape((nd,-1),order=order).T def periodic_grid(lattice, grid = [50,50,50], supercell = [1,1,1], order = 'C'): ''' Generate a periodic grid for the unit/computational cell in F/C order Note: coords has the same unit as lattice ''' ngrid = np.asarray(grid) qv = cartesian_prod([np.arange(-ngrid[i]*(supercell[i]//2),ngrid[i]*((supercell[i]+1)//2)) for i in range(3)], order=order) a_frac = np.einsum('i,ij->ij', 1./ngrid, lattice) coords = np.dot(qv, a_frac) # Compute weight ngrids = np.prod(grid) ncells = np.prod(supercell) weights = np.empty(ngrids*ncells) vol = abs(np.linalg.det(lattice)) weights[:] = vol / ngrids / ncells return coords, weights def R_r(r_norm, r = 1, zona = 1): ''' Radial functions used to compute \Theta_{l,m_r}(\theta,\phi) Note: r_norm has the unit of Bohr ''' if r == 1: R_r = 2 * zona**(3/2) * np.exp(-zona*r_norm) elif r == 2: R_r = 1 / 2 / np.sqrt(2) * zona**(3/2) * (2 - zona*r_norm) * np.exp(-zona*r_norm/2) else: R_r = np.sqrt(4/27) * zona**(3/2) * (1 - 2*zona*r_norm/3 + 2*(zona**2)*(r_norm**2)/27) * np.exp(-zona*r_norm/3) return R_r def theta(func, cost, phi): ''' Basic angular functions (s,p,d,f) used to compute \Theta_{l,m_r}(\theta,\phi) ''' if func == 's': # s theta = 1 / np.sqrt(4 * np.pi) * np.ones([cost.shape[0]]) elif func == 'pz': theta = np.sqrt(3 / 4 / np.pi) * cost elif func == 'px': sint = np.sqrt(1 - cost**2) theta = np.sqrt(3 / 4 / np.pi) * sint * np.cos(phi) elif func == 'py': sint = np.sqrt(1 - cost**2) theta = np.sqrt(3 / 4 / np.pi) * sint * np.sin(phi) elif func == 'dz2': theta = np.sqrt(5 / 16 / np.pi) * (3*cost**2 - 1) elif func == 'dxz': sint = np.sqrt(1 - cost**2) theta = np.sqrt(15 / 4 / np.pi) * sint * cost * np.cos(phi) elif func == 'dyz': sint = np.sqrt(1 - cost**2) theta = np.sqrt(15 / 4 / np.pi) * sint * cost * np.sin(phi) elif func == 'dx2-y2': sint = np.sqrt(1 - cost**2) theta = np.sqrt(15 / 16 / np.pi) * (sint**2) * np.cos(2*phi) elif func == 'pxy': sint = np.sqrt(1 - cost**2) theta = np.sqrt(15 / 16 / np.pi) * (sint**2) * np.sin(2*phi) elif func == 'fz3': theta = np.sqrt(7) / 4 / np.sqrt(np.pi) * (5*cost**3 - 3*cost) elif func == 'fxz2': sint = np.sqrt(1 - cost**2) theta = np.sqrt(21) / 4 / np.sqrt(2*np.pi) * (5*cost**2 - 1) * sint * np.cos(phi) elif func == 'fyz2': sint = np.sqrt(1 - cost**2) theta = np.sqrt(21) / 4 / np.sqrt(2*np.pi) * (5*cost**2 - 1) * sint * np.sin(phi) elif func == 'fz(x2-y2)': sint = np.sqrt(1 - cost**2) theta = np.sqrt(105) / 4 / np.sqrt(np.pi) * sint**2 * cost * np.cos(2*phi) elif func == 'fxyz': sint = np.sqrt(1 - cost**2) theta = np.sqrt(105) / 4 / np.sqrt(np.pi) * sint**2 * cost * np.sin(2*phi) elif func == 'fx(x2-3y2)': sint = np.sqrt(1 - cost**2) theta = np.sqrt(35) / 4 / np.sqrt(2*np.pi) * sint**3 * (np.cos(phi)**2 - 3*np.sin(phi)**2) * np.cos(phi) elif func == 'fy(3x2-y2)': sint = np.sqrt(1 - cost**2) theta = np.sqrt(35) / 4 / np.sqrt(2*np.pi) * sint**3 * (3*np.cos(phi)**2 - np.sin(phi)**2) * np.sin(phi) return theta def theta_lmr(l, mr, cost, phi): ''' Compute the value of \Theta_{l,m_r}(\theta,\phi) ref: Table 3.1 and 3.2 of Chapter 3, wannier90 User Guide ''' assert l in [0,1,2,3,-1,-2,-3,-4,-5] assert mr in [1,2,3,4,5,6,7] if l == 0: # s theta_lmr = theta('s', cost, phi) elif (l == 1) and (mr == 1): # pz theta_lmr = theta('pz', cost, phi) elif (l == 1) and (mr == 2): # px theta_lmr = theta('px', cost, phi) elif (l == 1) and (mr == 3): # py theta_lmr = theta('py', cost, phi) elif (l == 2) and (mr == 1): # dz2 theta_lmr = theta('dz2', cost, phi) elif (l == 2) and (mr == 2): # dxz theta_lmr = theta('dxz', cost, phi) elif (l == 2) and (mr == 3): # dyz theta_lmr = theta('dyz', cost, phi) elif (l == 2) and (mr == 4): # dx2-y2 theta_lmr = theta('dx2-y2', cost, phi) elif (l == 2) and (mr == 5): # pxy theta_lmr = theta('pxy', cost, phi) elif (l == 3) and (mr == 1): # fz3 theta_lmr = theta('fz3', cost, phi) elif (l == 3) and (mr == 2): # fxz2 theta_lmr = theta('fxz2', cost, phi) elif (l == 3) and (mr == 3): # fyz2 theta_lmr = theta('fyz2', cost, phi) elif (l == 3) and (mr == 4): # fz(x2-y2) theta_lmr = theta('fz(x2-y2)', cost, phi) elif (l == 3) and (mr == 5): # fxyz theta_lmr = theta('fxyz', cost, phi) elif (l == 3) and (mr == 6): # fx(x2-3y2) theta_lmr = theta('fx(x2-3y2)', cost, phi) elif (l == 3) and (mr == 7): # fy(3x2-y2) theta_lmr = theta('fy(3x2-y2)', cost, phi) elif (l == -1) and (mr == 1): # sp-1 theta_lmr = 1/np.sqrt(2) * (theta('s', cost, phi) + theta('px', cost, phi)) elif (l == -1) and (mr == 2): # sp-2 theta_lmr = 1/np.sqrt(2) * (theta('s', cost, phi) - theta('px', cost, phi)) elif (l == -2) and (mr == 1): # sp2-1 theta_lmr = 1/np.sqrt(3) * theta('s', cost, phi) - 1/np.sqrt(6) *theta('px', cost, phi) + 1/np.sqrt(2) * theta('py', cost, phi) elif (l == -2) and (mr == 2): # sp2-2 theta_lmr = 1/np.sqrt(3) * theta('s', cost, phi) - 1/np.sqrt(6) *theta('px', cost, phi) - 1/np.sqrt(2) * theta('py', cost, phi) elif (l == -2) and (mr == 3): # sp2-3 theta_lmr = 1/np.sqrt(3) * theta('s', cost, phi) + 2/np.sqrt(6) *theta('px', cost, phi) elif (l == -3) and (mr == 1): # sp3-1 theta_lmr = 1/2 * (theta('s', cost, phi) + theta('px', cost, phi) + theta('py', cost, phi) + theta('pz', cost, phi)) elif (l == -3) and (mr == 2): # sp3-2 theta_lmr = 1/2 * (theta('s', cost, phi) + theta('px', cost, phi) - theta('py', cost, phi) - theta('pz', cost, phi)) elif (l == -3) and (mr == 3): # sp3-3 theta_lmr = 1/2 * (theta('s', cost, phi) - theta('px', cost, phi) + theta('py', cost, phi) - theta('pz', cost, phi)) elif (l == -3) and (mr == 4): # sp3-4 theta_lmr = 1/2 * (theta('s', cost, phi) - theta('px', cost, phi) - theta('py', cost, phi) + theta('pz', cost, phi)) elif (l == -4) and (mr == 1): # sp3d-1 theta_lmr = 1/np.sqrt(3) * theta('s', cost, phi) - 1/np.sqrt(6) *theta('px', cost, phi) + 1/np.sqrt(2) * theta('py', cost, phi) elif (l == -4) and (mr == 2): # sp3d-2 theta_lmr = 1/np.sqrt(3) * theta('s', cost, phi) - 1/np.sqrt(6) *theta('px', cost, phi) - 1/np.sqrt(2) * theta('py', cost, phi) elif (l == -4) and (mr == 3): # sp3d-3 theta_lmr = 1/np.sqrt(3) * theta('s', cost, phi) + 2/np.sqrt(6) * theta('px', cost, phi) elif (l == -4) and (mr == 4): # sp3d-4 theta_lmr = 1/np.sqrt(2) (theta('pz', cost, phi) + theta('dz2', cost, phi)) elif (l == -4) and (mr == 5): # sp3d-5 theta_lmr = 1/np.sqrt(2) (-theta('pz', cost, phi) + theta('dz2', cost, phi)) elif (l == -5) and (mr == 1): # sp3d2-1 theta_lmr = 1/np.sqrt(6) * theta('s', cost, phi) - 1/np.sqrt(2) *theta('px', cost, phi) - 1/np.sqrt(12) *theta('dz2', cost, phi) \ + 1/2 *theta('dx2-y2', cost, phi) elif (l == -5) and (mr == 2): # sp3d2-2 theta_lmr = 1/np.sqrt(6) * theta('s', cost, phi) + 1/np.sqrt(2) *theta('px', cost, phi) - 1/np.sqrt(12) *theta('dz2', cost, phi) \ + 1/2 *theta('dx2-y2', cost, phi) elif (l == -5) and (mr == 3): # sp3d2-3 theta_lmr = 1/np.sqrt(6) * theta('s', cost, phi) - 1/np.sqrt(2) *theta('py', cost, phi) - 1/np.sqrt(12) *theta('dz2', cost, phi) \ - 1/2 *theta('dx2-y2', cost, phi) elif (l == -5) and (mr == 4): # sp3d2-4 theta_lmr = 1/np.sqrt(6) * theta('s', cost, phi) + 1/np.sqrt(2) *theta('py', cost, phi) - 1/np.sqrt(12) *theta('dz2', cost, phi) \ - 1/2 *theta('dx2-y2', cost, phi) elif (l == -5) and (mr == 5): # sp3d2-5 theta_lmr = 1/np.sqrt(6) * theta('s', cost, phi) - 1/np.sqrt(2) *theta('pz', cost, phi) + 1/np.sqrt(3) *theta('dz2', cost, phi) elif (l == -5) and (mr == 6): # sp3d2-6 theta_lmr = 1/np.sqrt(6) * theta('s', cost, phi) + 1/np.sqrt(2) *theta('pz', cost, phi) + 1/
np.sqrt(3)
numpy.sqrt
# With inspiration from https://medium.com/@tuzzer/cart-pole-balancing-with-q-learning-b54c6068d947 # -*- coding: utf-8 -*- import gym import gym_martyswing import numpy as np import time, math, random import matplotlib.pyplot as plt import matplotlib import itertools from PIL import Image import matplotlib.pyplot as plt # Create the MartySwing environment env = gym.make('MartySwing-v0') # Discrete actions numActions = env.action_space.n # (straight, kick) actionNames = ["Straight", "Kick", ""] ACTION_STRAIGHT = 0 ACTION_KICK = 1 # Bounds for each state stateBounds = (env.observation_space.low, env.observation_space.high) # Discrete bounds for observation xAccNumBins = 9 xAccBinBounds = np.linspace(stateBounds[0], stateBounds[1], xAccNumBins-1) xAccBinBounds = xAccBinBounds.flatten() # Directions numDirections = 2 # Q Table indexed by state-action pair qTable = np.zeros((xAccNumBins * numDirections, numActions)) # Learning rate and exploration settings EXPLORATION_RATE_MAX = 1 EXPLORATION_RATE_MIN = 0.01 EXPLORATION_RATE_DECAY_FACTOR = 10 LEARN_RATE_MAX = 1 LEARN_RATE_MIN = 0.1 LEARN_RATE_DECAY_FACTOR = 50 DISCOUNT_FACTOR = 0.9 # Goal and debug settings EPISODE_MAX = 2000 TIME_MAX = 1000 STREAK_LEN_WHEN_DONE = 50 REWARD_SUM_GOAL = 2500 LOG_DEBUG = False LOG_DEBUG_FILE = "testruns/martySwingQLearnSegLog.txt" SHOW_ALL_RENDERS = False GEN_GIF = True FIXED_ACTION = False PERMUTE_ACTION = True RENDER_LAST = True RENDER_BEST_PERMUTE = True GIF_BEST = True PERMUTE_BEST_INDEX = 124 MAX_SWING = False # Debug learnRateVals = [] exploreRateVals = [] # Main def learnToSwing(): # Set the learning and explore rates initially learningRate = getLearningRate(0) explorationRate = getExplorationRate(0) # Track progress in learning streaksNum = 0 rewardTotal = [] # Debug logDebugFile = None if LOG_DEBUG: debugActPrev = -1 try: logDebugFile = open(LOG_DEBUG_FILE, "w+") except: print(f"Cannot write to log file {LOG_DEBUG_FILE}") exit(0) # Iterate episodes for episode in range(EPISODE_MAX): # Reset the environment observation = env.reset() if MAX_SWING: env.l2 = .2 episodeRewardSum = 0 # Initial state statePrev = getObservationBinned(observation[0], xAccBinBounds) state = statePrev # Setup for permutation if PERMUTE_ACTION: permuteTableSetup(episode) # Run the experiment over time steps t = 0 rewardInState = 0 action = ACTION_STRAIGHT while True: # Render the scene if SHOW_ALL_RENDERS or (RENDER_LAST and streaksNum == STREAK_LEN_WHEN_DONE-1) or (PERMUTE_ACTION and RENDER_BEST_PERMUTE and episode == PERMUTE_BEST_INDEX): doRender(episode, streaksNum) # Execute the action observation, reward, done, info = env.step(action) t += 1 state = getObservationBinned(observation[0], xAccBinBounds) # Accumulate rewards in this state rewardInState += reward # Log data if logDebugFile is not None: logDebugFile.write(f"{actionNames[action]} --- Ep {episode} t {t} statePrev {statePrev} state {state} rew {rewardInState:.2f} {'[+]' if rewardInState > 0 else ('[~]' if rewardInState > -1 else '[-]')} PE {info['PE']:.2f} KE {info['KE']:.2f} TE {info['PE']+info['KE']:.2f} theta {info['theta']:.2f} thetaMax {info['thetaMax']:.2f} v {info['v']:.2f} explRate {explorationRate} learnRate {learningRate} Streaks {streaksNum} \n") # Check if there has been a change of state if state != statePrev: if not PERMUTE_ACTION: # Update the Q Table using the Bellman equation best_q = np.amax(qTable[state]) qTable[statePrev, action] += learningRate*(rewardInState + DISCOUNT_FACTOR*(best_q) - qTable[statePrev, action]) # Debug if logDebugFile is not None: logDebugFile.write(dumpQTable(qTable)) # Select a new action if FIXED_ACTION: action = actionSelectFix(episode, state, explorationRate) elif PERMUTE_ACTION: action = actionSelectPermute(episode, state, explorationRate) else: action = actionSelect(episode, state, explorationRate) # Sum rewards in episode episodeRewardSum += rewardInState rewardInState = 0 # Ready for next iteration statePrev = state # Add frame to GIF if GEN_GIF: addFrame(episode, streaksNum, info) # Check for episode done if done or t > TIME_MAX or (MAX_SWING and t > 120): rewardTotal.append(episodeRewardSum) logStr = f"Episode {episode} finished after {t} episodeRewardSum {episodeRewardSum:.2f} thetaMax {info['thetaMax']:.2f} learnRate {learningRate:.2f} exploreRate {explorationRate:.2f} streakLen {streaksNum}" if logDebugFile: logDebugFile.write("....." + logStr + "\n") if episode % 100 == 0: print(dumpQTable(qTable)) print(logStr) if (episodeRewardSum >= REWARD_SUM_GOAL): streaksNum += 1 else: streaksNum = 0 break # It's considered done when it's solved over 100 times consecutively if (streaksNum > STREAK_LEN_WHEN_DONE) or (PERMUTE_ACTION and permutesDone(episode)): break # Update parameters learnRateVals.append(learningRate) exploreRateVals.append(explorationRate) explorationRate = getExplorationRate(episode) learningRate = getLearningRate(episode) # Close debug log if logDebugFile: logDebugFile.close() # Save GIF if GEN_GIF: saveGIF() print(dumpQTable(qTable)) plt.plot(rewardTotal, 'p') if PERMUTE_ACTION: plt.xlabel('Pattern Permutation', fontsize=16) plt.suptitle("Marty Swing Exhaustive", fontsize=20) else: plt.suptitle("Marty Swing Q-Learning", fontsize=20) plt.xlabel('Training Episode', fontsize=16) plt.ylabel('Total Reward', fontsize=16) plt.show() # plt.plot(learnRateVals, 'g') # plt.plot(exploreRateVals, 'b') # plt.show() def actionSelect(episode, state, explorationRate): # The exploration rate determines the likelihood of taking a random # action vs the action with the best Q if random.random() < explorationRate: # Random action action = env.action_space.sample() else: # Action with best Q for current state action = np.argmax(qTable[state]) return action def actionSelectFix(episode, state, explorationRate): if state == 4 or state == 13: return ACTION_KICK return ACTION_STRAIGHT # Permutations of actions def actionSelectPermute(episode, state, explorationRate): return np.argmax(qTable[state]) # This is a list of tables which represent the action to perform in a specific state # So each table is like a Q-Table except that it contains the action number for the best action # It is used to populate the Q-Table permuteUsedBinStart = 2 permuteSecondDirectionBinEnd = xAccNumBins * 2 - permuteUsedBinStart - 1 permuteUsedBinCount = 10 permutationsTable = [perm for perm in itertools.product(range(numActions), repeat=permuteUsedBinCount)] def permuteTableSetup(episode): for i, perm in enumerate(permutationsTable[episode % len(permutationsTable)]): if i < permuteUsedBinCount // 2: qTable[i+permuteUsedBinStart][1] = perm else: qTable[permuteSecondDirectionBinEnd-(i-permuteUsedBinCount // 2)][1] = perm def permutesDone(episode): return episode > len(permutationsTable) def getExplorationRate(t): # Exploration rate is a log function reducing over time return max(EXPLORATION_RATE_MIN, EXPLORATION_RATE_MAX * (1.0 - math.log10(t/EXPLORATION_RATE_DECAY_FACTOR+1))) def getLearningRate(t): # Learning rate is a log function reducing over time return max(LEARN_RATE_MIN, LEARN_RATE_MAX * (1.0 - math.log10(t/LEARN_RATE_DECAY_FACTOR+1))) # Sensing direction (using a moving average) obsList = [] obsSum = 0 obsWindowLen = 3 def getObservationBinned(val, bins): global obsList, obsSum # Smooth the observations obsSumPrev = obsSum if len(obsList) >= obsWindowLen: obsSum -= obsList[0] else: obsList = [val] * (obsWindowLen-1) obsSum = val * (obsWindowLen-1) obsSumPrev = obsSum + val obsList = obsList[-(obsWindowLen-1):] obsList.append(val) obsSum += val discreteVal = np.digitize(val, bins) if obsSum >= obsSumPrev: return discreteVal return xAccNumBins * 2 - 1 - discreteVal def dumpQTable(qTable): dumpStr = "" for i, st in enumerate(qTable): for ac in st: dumpStr += f"{ac:0.4f}\t" if st[0] == st[1]: bestAct = 2 else: bestAct = np.argmax(st) dumpStr += f"{'RL ' if i < len(qTable)/2 else 'LR '} {actionNames[bestAct]}\n" return dumpStr indHueMin = 0/360 indHueMax = 100/360 kickIndicators = [] binBoundsAngles = [np.arcsin(np.clip(binBound / 9.81, -1, 1)) for binBound in xAccBinBounds] binCentreAngles = [(binBoundsAngles[binBoundsIdx]+binBoundsAngles[binBoundsIdx-1])/2 for binBoundsIdx in range(1,len(binBoundsAngles))] def doRender(episode, numStreaks, mode='human'): from gym.envs.classic_control import rendering oldViewer = env.viewer env.render(mode) if oldViewer is None: lineStart = -0.5 lineEnd = -1 textPosns = [-0.6, -0.9] for binBoundsAngle in binBoundsAngles: # Draw line x1 = np.sin(binBoundsAngle) * lineStart y1 =
np.cos(binBoundsAngle)
numpy.cos
import numpy as np import math def vec(matin): return matin.T.ravel() def mat(vecin, nr, nc): return np.reshape(vecin, (nc, nr)).T _sqrt2 = math.sqrt(2) def X_to_vec(X): n = X.shape[0] return X.T[np.tri(n, dtype=np.bool).T] def vec_to_X(v_X): n = int(math.sqrt(2 * len(v_X))) if len(v_X) != n * (n + 1) / 2: raise ValueError( "v_X is not the right shape for a vectorized lower triangular matrix. Tried to turn vector of size {} into matrix with width {} ".format(len(v_X), n)) Y = np.zeros((n, n)) Y[np.tri(n, dtype=np.bool).T] = v_X return Y + np.triu(Y, 1).T def dot(A, B, axes=(1, 0)): # I should document what happens to the order of the remaining axes if not isinstance(axes, tuple) or len(axes) != 2: raise ValueError("Incorrect axes parameter.") if A.shape[axes[0]] != B.shape[axes[1]]: raise ValueError("Dimension mismatch") rolled_A = np.rollaxis(A.transpose(), A.ndim - 1 - axes[0]).transpose() rolled_B = np.rollaxis(B.transpose(), B.ndim - 1 - axes[1], 1).transpose() return rolled_A.dot(rolled_B) def multiply_diag(A, D): # multiply a matrix A by diagonal tensor D n1, n2 = A.shape n3, n4, n5 = D.shape assert(n2 == n3) out = np.zeros((n1, n2, n4, n5)) for i in range(n4): for j in range(n5): out[:, :, i, j] = A * D[:, i, j] return out def P(v_X): X = vec_to_X(v_X) n = X.shape[0] # perform scaling _i = tuple(range(n)) X[_i, _i] *= _sqrt2 Lam, U = np.linalg.eigh(X) idx = np.argsort(Lam) Lam = Lam[idx] U = U[:, idx] Lam_max = np.maximum(Lam, 0.0) out = U.dot(np.diag(Lam_max).dot(U.T)) # undo scaling out[_i, _i] /= _sqrt2 return X_to_vec(out) def dU_dL_dX(Lam, U): # compute dU_dX and dL_dX given U and L n = len(Lam) _i = tuple(range(n)) idx = np.argsort(Lam) Lam = Lam[idx] U = U[:, idx] dU_dX = np.zeros((n, n, n, n)) for i, (l0, u0) in enumerate(zip(Lam, U.T)): d = (l0 - Lam) d[d != 0] = 1. / d[d != 0] inv = (U.dot(np.diag(d)).dot(U.T)) tmp = np.multiply.outer(inv, u0) tmp += np.rollaxis(tmp, 2, 1) tmp[:, _i, _i] /= 2.0 # for j in range(n): # tmp[:,j,j] /= 2.0 # set the ith column dU_dX[:, i, :, :] = tmp dL_dX = np.zeros((n, n, n)) for i, u0 in enumerate(U.T): tmp = 2 * np.multiply.outer(u0, u0) for j in range(n): tmp[j, j] /= 2.0 dL_dX[i, :, :] = tmp return dU_dX, dL_dX def J(v_X): X = vec_to_X(v_X) n = X.shape[0] # perform scaling _i = tuple(range(n)) X[_i, _i] *= _sqrt2 Lam, U = np.linalg.eigh(X) idx = np.argsort(Lam) Lam = Lam[idx] U = U[:, idx] L = np.diag(Lam) L_max =
np.maximum(L, 0.0)
numpy.maximum
#!/usr/bin/env python from __future__ import division, absolute_import, print_function import numpy as np import os as os from jams.date2dec import date2dec from jams.dec2date import dec2date import re def timestepcheck(indir, pat, outfile, begin, end, numhead=1, timeint=30, format='ascii', empty='-9999', delimiter=',', skiprows=0): ''' Checks ascii data files with first column being a time stamp in ascii of eng style for correctness. If for a given time interval time steps are missing, they will will be filled with the correct time stamp and empty values. A beginning and end for the output files can be set to which data should be kept or filled. Pat defines the file name pattern to consider in the check. Multiple files, which match the pat are concatenated. Definition ---------- timestepcheck(indir, pat, outfile, begin, end, numhead=1, timeint=30, format='ascii', empty='-9999', delimiter=',', skiprows=0): Input ----- indir str, path of the folder where the input files are pat str, name or regular expression of the input files outfile str, path and name of the output file begin str, start time of the output file, must be in the same format as time stamps in the input files end str, end time of the output file, must be in the same format as time stamps in the input files Optional Input -------------- numhead int, number of header lines in the input files (default: 1) timeint int, time interval of the input file in minutes (default: 30) format str, format of time stamps in input files. 'ascii' or 'eng' is possible (default: 'ascii') empty str, value for missing values (default: '-9999') delimiter str, delimiter of the input files (default: ',') skiprows int, rows to skip in input files, e.g. logger fuzzle before actual data header starts (default: 0) Output ------ outfile file with missing time steps filled with empty values cut from begin to end Restrictions ------------ TODO: tested thoroughly only for timeint=30 TODO: more bad value checks can be included, see sternchen and tuedelchen License ------- This file is part of the JAMS Python package, distributed under the MIT License. The JAMS Python package originates from the former UFZ Python library, Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany. Copyright (c) 2014 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. History ------- Written, AP, Aug 2014 ''' ########################################################################### # time interval list interval = range(0,60,timeint) #jdint = date2dec(yr=-4712,mo=1,dy=1,hr=12,mi=timeint) #jdmin = date2dec(yr=-4712,mo=1,dy=1,hr=12,mi=0,sc=30)# (=precision) jdint = date2dec(yr=1,mo=1,dy=1,hr=12,mi=timeint) % 1 jdmin = date2dec(yr=1,mo=1,dy=1,hr=12,mi=0,sc=30) % 1# (=precision) if format == 'ascii': jdbegin = date2dec(ascii = np.array([begin])) jdend = date2dec(ascii = np.array([end])) elif format == 'eng': jdbegin = date2dec(eng = np.array([begin])) jdend = date2dec(eng = np.array([end])) ########################################################################### # reading input directory pat = re.compile(pat) new = True filelist = os.listdir(indir) for file in filelist: if re.search(pat, file): if new: data = np.loadtxt('./%s/%s'%(indir, file), dtype='|S21',\ delimiter=delimiter, skiprows=skiprows) if data.shape[0] == 0: print('Warning: File %s is empty!' %(file)) else: if np.shape(data.shape)[0] == 1: data = data.reshape((1,-1)) new = False else: add_data = np.loadtxt('./%s/%s'%(indir, file), dtype='|S21', delimiter=delimiter, skiprows=numhead+skiprows) if add_data.shape[0] == 0: print('Warning: File %s is empty!' %(file)) elif np.shape(add_data.shape)[0] == 1: add_data = add_data.reshape((1,-1)) data = np.append(data, add_data, 0) else: data = np.append(data, add_data, 0) ########################################################################### # sternchen check :-D # replace with regular expression check data[data=='***********'] = empty #!!! uberprufen auf lange und re data[data=='********'] = empty #!!! uberprufen auf lange und re data[data=='*********'] = empty ########################################################################### # tuedelchen check :-D # replace with regular expression check if data[numhead,0][0] == '"': data[numhead:,0] = np.array([x[1:-1] for x in data[numhead:,0]]) ########################################################################### # "NAN" check :-D # replace with regular expression check data[data=='"NAN"'] = empty #!!! uberprufen auf lange und re ########################################################################### # leerzeilen check blankline = np.where(data[0:2,0]=='')[0] data = np.delete(data, blankline, 0) ########################################################################### # missing values check data[data==''] = empty data[data=='""'] = empty columns = np.shape(data)[1]-1 ########################################################################### # calculate julian date if format == 'ascii': import time jd = date2dec(ascii = data[numhead:,0]) elif format == 'eng': jd = date2dec(eng = data[numhead:,0]) ########################################################################### # wrong time stamp check diff = jd[1:] - jd[:-1] minute = np.array([x.split()[1][3:5] for x in data[numhead:,0]]).astype(int) nii = np.nonzero(~np.in1d(minute, interval))[0] ts = np.nonzero(np.less(diff, jdint-jdmin))[0] wrong = np.unique(np.append(nii, ts)) if data.shape[0]-numhead-2 in wrong: wrong = np.append(wrong, [data.shape[0]-numhead-1], 0) delete = [] for i in wrong: print('\nHERE IS SOMETHING WRONG:\n') print('BOF' if numhead+i-2<0 else data[numhead+i-2,:4]) print('BOF' if numhead+i-1<0 else data[numhead+i-1,:4]) print('-----------------------------------------------') print(data[numhead+i,:4]) print('-----------------------------------------------') print('EOF' if numhead+i+1>=np.shape(data)[0] else data[numhead+i+1,:4]) print('EOF' if numhead+i+2>=np.shape(data)[0] else data[numhead+i+2,:4]) do = raw_input("\n(d)elete entry, (s)et to empty, (t)ype in date, (i)gnore: ") if do == 'd': delete += [numhead+i] elif do == 's': data[numhead+i,1:] = empty elif do == 't': newdate = str(raw_input("\nreplace with: ")) data[numhead+i,0] = newdate # newmin = str(raw_input("\n%s"%(data[numhead+i,0][:-2]))) # data[numhead+i,0] = data[numhead+i,0][:-2] + newmin elif do == 'i': pass data = np.delete(data, delete, 0) ########################################################################### # calculate julian date again if format == 'ascii': jd = date2dec(ascii = data[numhead:,0]) elif format == 'eng': jd = date2dec(eng = data[numhead:,0]) ########################################################################### # check time step diff = jd[1:] - jd[:-1] ingap = np.where(np.greater(diff, jdint+jdmin))[0] nugap = np.rint((diff[ingap]/jdint)-1) ########################################################################### # insert missing time steps for i in range(np.size(ingap))[::-1]: where = np.ones(int(nugap[i]), dtype=int)*(ingap[i]+1+numhead) if format == 'ascii': span = np.arange(1,nugap[i]+1)*jdint + jd[ingap[i]] what = dec2date(span.astype('|S16').astype(float), ascii=True) elif format == 'eng': span = np.arange(1,nugap[i]+1)*jdint + jd[ingap[i]] what = dec2date(span.astype('|S16').astype(float), eng=True) what = np.array([x[:-3] for x in what]) miss = np.empty((int(nugap[i]),columns), dtype='|S11') miss[:] = empty what = np.append(np.reshape(what, (-1,1)), miss, 1) data = np.insert(data, where, what, 0) ########################################################################### # fill/cut up/off beginning and end start = np.where(data[:,0]==begin)[0] if start == numhead: pass elif start > numhead: data = np.delete(data, np.arange(numhead, start), 0) else: if format == 'ascii': tofill = int((date2dec(ascii = data[numhead,0]) - jdbegin)/jdint) span =
np.arange(0,tofill)
numpy.arange
""" In tabular MDP setting, evaluates the learning of optimal policy using different guidance discount factors On-policy means we run episodes, in each episode we generate roll-outs/trajectories of current policy and run algorithm to improve the policy. """ import numpy as np import matplotlib.pyplot as plt import seaborn as sns import argparse from copy import deepcopy import timeit import time from main_MRP import run_main_mrp from utils.common_utils import set_random_seed, create_result_dir, save_run_data, load_run_data, write_to_log, get_grid, start_ray, set_default_plot_params, save_fig set_default_plot_params() # ------------------------------------------------------------------------------------------- # Run mode # ------------------------------------------------------------------------------------------- load_run_data_flag = False # False/True If true just load results from dir, o.w run simulation result_dir_to_load = './saved/2020_02_04_06_19_35' # '2020_02_04_06_19_35' | '2020_02_03_21_45_36' save_PDF = False # False/True - save figures as PDF file local_mode = False # True/False - run non-parallel to get error messages and debugging # ------------------------------------------------------------------------------------------- # Set Parameters # ------------------------------------------------------------------------------------------- args = argparse.Namespace() # ----- Run Parameters ---------------------------------------------# args.run_name = '' # 'Name of dir to save results in (if empty, name by time)' args.seed = 1 # random seed args.n_reps = 1000 # default 1000 # number of experiment repetitions # how to create parameter grid: args.gam_grid_def = {'type': 'gamma_guidance', 'spacing': 'linspace', 'start': 0.9, 'stop': 0.99, 'num': 11, 'decimals': 10} args.l2_grid_def = {'type': 'l2_factor', 'spacing': 'linspace', 'start': 0., 'stop': 0.1, 'num': 11, 'decimals': 10} # ----- Problem Parameters ---------------------------------------------# args.mrp_def = {'type': 'GridWorld', 'N0': 4, 'N1': 4, 'reward_std': 0.5, 'forward_prob_distrb': 'uniform', 'goal_reward': 1, 'R_low': -0.5, 'R_high': 0.5, 'policy': 'uniform'} args.depth = 50 # default: 10 for 'chain', 100 for 'GridWorld' # Length of trajectory args.gammaEval = 0.99 # default: 0.99 # gammaEval args.initial_state_distrb_type = 'uniform' # 'uniform' | 'middle' args.n_trajectories = 2 # args.train_sampling_def = {'type': 'Trajectories'} # args.train_sampling_def = {'type': 'Generative_uniform'} # args.train_sampling_def = {'type': 'sample_all_s'} args.config_grid_def = {'type': 'None', 'spacing': 'list', 'list': [None]} args.evaluation_loss_type = 'L2_uni_weight' # 'rankings_kendalltau' | 'L2_uni_weight | 'L2' | 'one_pol_iter_l2_loss' # ----- Algorithm Parameters ---------------------------------------------# args.default_gamma = None # default: None # The default guidance discount factor (if None use gammaEval) args.alg_type = 'LSTD' # 'LSTD' | 'LSTD_Nested' | 'batch_TD_value_evaluation' | 'LSTD_Nested_Standard' | 'model_based_pol_eval' | 'model_based_known_P' args.use_reward_scaling = False # False | True. set False for LSTD args.base_lstd_l2_fp = 1e-5 args.base_lstd_l2_proj = 1e-4 # if batch_TD_value_evaluation is used: args.default_l2_TD = None # default: None # The default L2 factor for TD (if using discount regularization) args.TD_Init_type = 'zero' # How to initialize V # Options: 'Vmax' | 'zero' | 'random_0_1' | 'random_0_Vmax' | '0.5_'Vmax' | args.n_TD_iter = 5000 # Default: 500 for RandomMDP, 5000 for GridWorld # number of TD iterations args.learning_rate_def = {'type': 'a/(b+i_iter)', 'a': 500, 'b': 1000, 'scale': False} # ------------------------------------------------------------------------------------------- def run_simulations(args, local_mode): start_ray(local_mode) create_result_dir(args) write_to_log('local_mode == {}'.format(local_mode), args) start_time = timeit.default_timer() create_result_dir(args) set_random_seed(args.seed) l2_grid = get_grid(args.l2_grid_def) gam_grid = get_grid(args.gam_grid_def) grid_shape = (len(l2_grid), len(gam_grid)) loss_avg = np.zeros(grid_shape) loss_std = np.zeros(grid_shape) run_idx = 0 for i0 in range(grid_shape[0]): for i1 in range(grid_shape[1]): args_run = deepcopy(args) args_run.param_grid_def = {'type': 'l2_factor', 'spacing': 'list', 'list': [l2_grid[i0]]} args_run.default_gamma = gam_grid[i1] info_dict = run_main_mrp(args_run, save_result=False, plot=False, local_mode=local_mode) loss_avg[i0, i1] = info_dict['loss_avg'][0] loss_std[i0, i1] = info_dict['loss_std'][0] run_idx += 1 print("Finished {}/{}".format(run_idx, loss_avg.size)) # end for # end for grid_results_dict = {'l2_grid': l2_grid, 'gam_grid': gam_grid, 'loss_avg': loss_avg, 'loss_std': loss_std} save_run_data(args, grid_results_dict) stop_time = timeit.default_timer() write_to_log('Total runtime: ' + time.strftime("%H hours, %M minutes and %S seconds", time.gmtime(stop_time - start_time)), args) return grid_results_dict # ------------------------------------------------------------------------------------------- if __name__ == "__main__": if load_run_data_flag: args, grid_results_dict = load_run_data(result_dir_to_load) else: grid_results_dict = run_simulations(args, local_mode) l2_grid = grid_results_dict['l2_grid'] gam_grid = grid_results_dict['gam_grid'] loss_avg = grid_results_dict['loss_avg'] loss_std = grid_results_dict['loss_std'] ci_factor = 1.96 /
np.sqrt(args.n_reps)
numpy.sqrt
import numpy as np import matplotlib.pyplot as plt pageSpeeds = np.random.normal(3.0, 1.0, 1000) purchaseAmount = np.random.normal(50.0, 10.0, 1000) / pageSpeeds plt.scatter(pageSpeeds, purchaseAmount) # fit the data using 4th degree polynomial x =
np.array(pageSpeeds)
numpy.array
# coding: utf-8 # # Weather Prediction Using Recurrent Neural Networks # # ## Adrian, Ben, and Sai # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') from functools import reduce import datetime import pandas as pd from pandas import Series, DataFrame import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.contrib import rnn from sklearn.preprocessing import MinMaxScaler import timeit import random import sys import os # # Preprocessing ########################################################################################################################### ############# Preprocessing ############################################################################################## ########################################################################################################################### # ### Read in the files # In[2]: # Filenames city_file = 'city_attributes.csv' temp_file = 'temperature.csv' humid_file = 'humidity.csv' press_file = 'pressure.csv' desc_file = 'weather_description.csv' wdir_file = 'wind_direction.csv' wspeed_file = 'wind_speed.csv' # Load the files city_df = pd.read_csv(city_file) city_df.rename(str.lower, axis = 'columns', inplace = True) city_df.drop(['country'], axis = 1, inplace = True) city_df.set_index(['city'], inplace = True) temp_df = pd.read_csv(temp_file) humid_df = pd.read_csv(humid_file) press_df = pd.read_csv(press_file) desc_df = pd.read_csv(desc_file) wdir_df = pd.read_csv(wdir_file) wspeed_df = pd.read_csv(wspeed_file) # In[3]: # These are the cities that universally have > 1% missing across all weather values drop_city = set(temp_df.columns[temp_df.isna().sum() > 500]) & set(humid_df.columns[humid_df.isna().sum() > 500]) & set(press_df.columns[press_df.isna().sum() > 500]) & set(desc_df.columns[desc_df.isna().sum() > 500]) & set(wdir_df.columns[wdir_df.isna().sum() > 500]) & set(wspeed_df.columns[wspeed_df.isna().sum() > 500]) # In[4]: # Remove the undesired cities and melt the tables to be conducive for joining alt_temp_df = pd.melt(temp_df.drop(drop_city, axis = 1), id_vars = ['datetime'], var_name = 'city', value_name = 'temperature') alt_humid_df = pd.melt(humid_df.drop(drop_city, axis = 1), id_vars = ['datetime'], var_name = 'city', value_name = 'humidity') alt_press_df = pd.melt(press_df.drop(drop_city, axis = 1), id_vars = ['datetime'], var_name = 'city', value_name = 'pressure') alt_desc_df = pd.melt(desc_df.drop(drop_city, axis = 1), id_vars = ['datetime'], var_name = 'city', value_name = 'weather_description') alt_wdir_df = pd.melt(wdir_df.drop(drop_city, axis = 1), id_vars = ['datetime'], var_name = 'city', value_name = 'wind_direction') alt_wspeed_df = pd.melt(wspeed_df.drop(drop_city, axis = 1), id_vars = ['datetime'], var_name = 'city', value_name = 'wind_speed') # Set proper indices alt_temp_df = alt_temp_df.set_index(['city', 'datetime']) alt_humid_df = alt_humid_df.set_index(['city', 'datetime']) alt_press_df = alt_press_df.set_index(['city', 'datetime']) alt_desc_df = alt_desc_df.set_index(['city', 'datetime']) alt_wdir_df = alt_wdir_df.set_index(['city', 'datetime']) alt_wspeed_df = alt_wspeed_df.set_index(['city', 'datetime']) # ### Join tables together # In[5]: # Join tables on the city and datetime info dfs = [city_df, alt_temp_df, alt_humid_df, alt_press_df, alt_wspeed_df, alt_wdir_df, alt_desc_df] df_final = reduce(lambda left, right : pd.merge(left, right, left_index = True, right_index = True), dfs) # ### Deal with Missing Values # In[6]: # Get number of nulls for Charlotte - SUPER CONVOLUTED, but it works temp = df_final.reset_index() temp = temp[temp.city == "Charlotte"] temp.isnull().sum() #city 0 #datetime 0 #latitude 0 #longitude 0 #temperature 3 #humidity 589 #pressure 3 #wind_speed 2 #wind_direction 1 #weather_description 1 #dtype: int64 # INTERPOLATION HAPPENS HERE -- Break up by city df_final = df_final.groupby('city').apply(lambda group: group.interpolate(limit_direction = 'both')) # Need to do something special for weather_description arr, cat = df_final['weather_description'].factorize() df_final['weather_description'] = pd.Series(arr).replace(-1, np.nan).interpolate(method = 'nearest', limit_direction = 'both').interpolate(limit_direction = 'both').astype('category').cat.rename_categories(cat).astype('str').values # In[7]: # The whole purpose here is to encode wind direction. It's not continuous so don't really want to scale it # Also have more granularity in wind dir if need be. #dir_df = pd.DataFrame({'dir' : ['N', 'NNE', 'NE', 'ENE', 'E', 'ESE', 'SE', 'SSE', 'S', 'SSW', 'SW', 'WSW', 'W', 'WNW', 'NW', 'NNW', 'N'], # 'lower' : [348.75, 11.25, 33.75, 56.25, 78.75, 101.25, 123.75, 146.25, 168.75, 191.25, 213.75, 236.25, 258.75, 281.25, 303.75, 326.25, 0], # 'upper' : [360, 33.75, 56.25, 78.75, 101.25, 123.75, 146.25, 168.75, 191.25, 213.75, 236.25, 258.75, 281.25, 303.75, 326.25, 348.75, 11.25]}) dir_df = pd.DataFrame({'dir' : ['N', 'NE', 'E', 'SE', 'S', 'SW', 'W', 'NW', 'N'], 'lower' : [337.5, 22.5, 67.5, 112.5, 157, 202.5, 247.5, 292.5, 0], 'upper' : [360, 67.5, 112.5, 157, 202.5, 247.5, 292.5, 337.5, 22.5]}) # Make a copy to fool around in fill_this = df_final['wind_direction'].copy() # And overwrite the copy for i in reversed(range(len(dir_df))): # print(str(dir_df.loc[i,'lower']) + " and " + str(dir_df.loc[i,'upper'])) fill_this.loc[df_final['wind_direction'].between(dir_df.loc[i,'lower'], dir_df.loc[i,'upper'])] = i # This is a bit ugly here; but it maintains any missing values nicely df_final['wind_direction'] = dir_df.loc[fill_this, 'dir'].values # In[8]: # Go ahead and drop lat and long, we wont need them for now df_final.drop(["latitude", "longitude"], inplace=True, axis=1) # In[12]: # Convert the data to Farenheit and note the min and max values df_final["temperature"] = df_final["temperature"] * 9/5 - 459.67 # ### Normalize data through min-max scaling # In[13]: # Scaling happens here -- IMPUTATION MUST HAPPEN FIRST scale_df = df_final[['temperature', 'humidity', 'pressure', 'wind_speed']].values scaler = MinMaxScaler() # We have access to min and max so we can transform back and forth scale_df = scaler.fit_transform(scale_df) df_final_scaled = df_final.copy() df_final_scaled[['temperature', 'humidity', 'pressure', 'wind_speed']] = scale_df df_final_scaled.head() # In[14]: # Collapse a lot of these groupings weather_dict = {'scattered clouds' : 'partly_cloudy', 'sky is clear' : 'clear', 'few clouds' : 'partly_cloudy', 'broken clouds' : 'partly_cloudy', 'overcast clouds' : 'cloudy', 'mist' : 'cloudy', 'haze' : 'cloudy', 'dust' : 'other', 'fog' : 'cloudy', 'moderate rain' : 'rain', 'light rain' : 'rain', 'heavy intensity rain' : 'rain', 'light intensity drizzle' : 'rain', 'heavy snow' : 'snow', 'snow' : 'snow', 'light snow' : 'snow', 'very heavy rain' : 'rain', 'thunderstorm' : 'tstorm', 'proximity thunderstorm' : 'tstorm', 'smoke' : 'other', 'freezing rain' : 'snow', 'thunderstorm with light rain' : 'tstorm', 'drizzle' : 'rain', 'sleet' : 'snow', 'thunderstorm with rain' : 'tstorm', 'thunderstorm with heavy rain' : 'tstorm', 'squalls' : 'rain', 'heavy intensity drizzle' : 'rain', 'light shower snow' : 'snow', 'light intensity shower rain' : 'rain', 'shower rain' : 'rain', 'heavy intensity shower rain' : 'rain', 'proximity shower rain' : 'rain', 'proximity sand/dust whirls' : 'other', 'proximity moderate rain' : 'rain', 'sand' : 'other', 'shower snow' : 'snow', 'proximity thunderstorm with rain' : 'tstorm', 'sand/dust whirls' : 'other', 'proximity thunderstorm with drizzle' : 'tstorm', 'thunderstorm with drizzle' : 'tstorm', 'thunderstorm with light drizzle' : 'tstorm', 'light rain and snow' : 'snow', 'thunderstorm with heavy drizzle' : 'tstorm', 'ragged thunderstorm' : 'tstorm', 'tornado' : 'other', 'volcanic ash' : 'other', 'shower drizzle' : 'rain', 'heavy shower snow' : 'snow', 'light intensity drizzle rain' : 'rain', 'light shower sleet' : 'snow', 'rain and snow' : 'snow'} # In[15]: adj_weather = [weather_dict[val] for val in df_final_scaled['weather_description']] df_final_scaled['adj_weather'] = adj_weather df_final_scaled = df_final_scaled.drop('weather_description', axis = 1) # ### Make weather and wind direction dummy variables # In[16]: # And one-hot encode the wind_directions and weather df_final_scaled = pd.get_dummies(df_final_scaled, prefix=['wind_dir', 'weather'], columns=['wind_direction', 'adj_weather']) # In[17]: df_final_scaled = df_final_scaled.reset_index('city') # In[18]: # Write for distribution df_final_scaled.to_csv('df_weather_scaled_encoded.csv') # In[124]: # Clean up the local environment get_ipython().run_line_magic('reset', '') ########################################################################################################################### ############# Part 1: Temperature Prediction ############################################################################## ########################################################################################################################### # In[2]: # ## Split into train, test, and validation import pandas as pd from pandas import Series, DataFrame import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.contrib import rnn from sklearn.metrics import f1_score import random import timeit import sys from collections import defaultdict # In[2]: full_df = pd.read_csv("df_weather_scaled_encoded.csv") # In[3]: # Filter by the city of interest current_city = "Charlotte" full_df = full_df[full_df["city"] == current_city] min_dataset = 0.515 max_dataset = 99.95 # In[4]: # Extract years = np.array([y[0:4] for y in full_df.datetime]) train = full_df[years < '2016'] valid = full_df[years == '2016'] test = full_df[years > '2016'] if(train.shape[0] + valid.shape[0] + test.shape[0] != years.shape[0]): raise Exception("Partition did not work") # Drop the city and timestamp for all three train.drop(["city", "datetime"], inplace=True, axis=1) valid.drop(["city", "datetime"], inplace=True, axis=1) test.drop(["city", "datetime"], inplace=True, axis=1) # In[ ]: # Wrapper for data object # Modified from <NAME> class DataSet(object): def __init__(self, x, y, shuffle=True): self._num_examples = len(x) self._x = x self._y = y self._epochs_done = 0 self._index_in_epoch = 0 if shuffle: np.random.seed(123456) # Shuffle the data perm = np.arange(self._num_examples) np.random.shuffle(perm) self._x = [self._x[i] for i in perm] self._y = [self._y[i] for i in perm] random.seed(123456) @property def features(self): return self._x @property def response(self): return self._y @property def num_examples(self): return self._num_examples @property def epochs_done(self): return self._epochs_done def reset_batch_index(self): self._index_in_epoch = 0 def next_batch(self, batch_size): """Return the next `batch_size` examples from this data set.""" start = self._index_in_epoch self._index_in_epoch += batch_size done = False if self._index_in_epoch > self._num_examples: # After each epoch we update this self._epochs_done += 1 # Shuffle the data perm = np.arange(self._num_examples) np.random.shuffle(perm) self._x = self._x self._y = self._y start = 0 self._index_in_epoch = batch_size done = True assert batch_size <= self._num_examples end = self._index_in_epoch return self._x[start:end], self._y[start:end], done # ## Create baselines # ### Create observations using a sliding sequence window # In[26]: # Wrapper function to perform the entire creation of observations given the subset # data. Can specify sequence_size, lookahead, response (temp means 'temperature'), # and whether you want a greedy baseline. def create_observations(train, test, valid, seq_size = 24, lookahead = 1, temp = True, baseline=False): train_x = [] train_y = [] # If we are doing the temperature variable, extract that feature if temp: for i in range(train.shape[0] - seq_len - lookahead + 1): # Slide over input, storing each "sequence size" window train_x.append([x for x in train.iloc[i:i+seq_len, :].values]) train_y.append([y for y in train.iloc[i+lookahead:i+seq_len+lookahead, 0]]) # Otherwise, extract out the weather type else: for i in range(train.shape[0] - seq_len - lookahead + 1): train_x.append([x for x in train.iloc[i:i+seq_len, :].values]) train_y.append([y for y in train.iloc[i+lookahead:i+seq_len+lookahead, -7:].values]) # Convert to a Dataset object train_data = DataSet(train_x, train_y) # Repeat the above process on the validation set valid_x = [] valid_y = [] # If we are doing the temperature variable, extract that feature if temp: for i in range(valid.shape[0] - seq_len - lookahead + 1): # Slide over input, storing each "sequence size" window valid_x.append([x for x in valid.iloc[i:i+seq_len, :].values]) valid_y.append([y for y in valid.iloc[i+lookahead:i+seq_len+lookahead, 0]]) # Otherwise, extract out the weather type else: for i in range(valid.shape[0] - seq_len - lookahead + 1): valid_x.append([x for x in valid.iloc[i:i+seq_len, :].values]) valid_y.append([y for y in valid.iloc[i+lookahead:i+seq_len+lookahead, -7:].values]) valid_data = DataSet(valid_x, valid_y) # Repeat for test except also track the baseline prediction error test_x = [] test_y = [] test_baseline_err = [] if temp: for i in range(test.shape[0] - seq_len - lookahead + 1): test_x.append([x for x in test.iloc[i:i+seq_len, :].values]) test_y.append([y for y in test.iloc[i+lookahead:i+seq_len+lookahead, 0]]) # Get the baseline prediction error by taking the MSE between the current hour and the # temperature of the next hour. This is the trivial case where our prediction for temp # is just the current temp if baseline: test_baseline_err.append((
np.mean(test.iloc[i:i+seq_len, 0]*(max_dataset-min_dataset)+min_dataset)
numpy.mean
import argparse, random import numpy as np import glob import torch import torch.nn.functional as F import torch.optim as optim from torch.utils import data from tqdm import tqdm import multiprocessing as mp import os, pickle from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split import data_loader_nba import data_loader_carla import data_loader_boid from model_GDSW import GDSW from model_GVCRN import GVCRN from model_RNN import RNN from utils import batch_error, compute_x_ind, std_ste from torch.multiprocessing import Pool, Process, set_start_method HIDDEN_SIZE = 32 CUDA = True os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["HDF5_USE_FILE_LOCKING"]="FALSE" def compute_loss(a_or_ipw_outputs,f_outcome_out,x_out,fr_targets,targets,x_inputs_,L_kl,lengths,Pred_X,criterion,args,obs_w,batchSize,device,inference=False): a_or_ipw_loss = torch.zeros(1).to(device) outcome_loss = torch.zeros(1).to(device) fail_loss = torch.zeros(1).to(device) curve_loss = torch.zeros(1).to(device) L_recX = torch.zeros(1).to(device) time_length = x_inputs_.shape[1]-1 if not args.variable_length: non_nan = None mean_time_length = time_length-args.burn_in0-1 else: mean_time_length = torch.mean(lengths-1)-args.burn_in0-1 t_pred = 1 if args.y_pred else 0 if "B" in args.model or "RNN" in args.model: # GradientReversal or negative gradient if "B" in args.model: a_or_ipw_outputs = torch.cat(a_or_ipw_outputs, dim=1) ps = torch.sigmoid(a_or_ipw_outputs) for i in range(args.burn_in0+1,time_length): # time # propensity score if args.variable_length: non_nan = lengths>=obs_w-i if "Ne" in args.model: a_or_ipw_loss -= criterion(non_nan*ps[:,i], non_nan*fr_targets[:, i].float(), reduction='sum') else: a_or_ipw_loss += criterion(non_nan*ps[:,i], non_nan*fr_targets[:, i].float(), reduction='sum') else: if "Ne" in args.model: a_or_ipw_loss -= criterion(ps[:,i], fr_targets[:, i].float(), reduction='sum') else: a_or_ipw_loss += criterion(ps[:,i], fr_targets[:, i].float(), reduction='sum') a_or_ipw_loss = a_or_ipw_loss/mean_time_length/batchSize # y,x,fail x_dim = int(args.x_dim_permuted//args.n_agents) n_agents = args.n_agents n_agents_ = n_agents if "T" in args.model and args.dim_rec_global == 0 else n_agents+1 for i in range(args.burn_in0+1,time_length): # time if args.variable_length: non_nan = lengths>=obs_w-i outcome_loss += torch.sum(non_nan.squeeze()*torch.abs(f_outcome_out[:,i] - targets[:,i+t_pred]) ) if Pred_X: for k in range(n_agents_): # n_agents+args.dim_rec_global): if k < n_agents: if 'carla' in args.data: L_recX += batch_error(x_out[:,i,k*x_dim:k*x_dim+3], x_inputs_[:,i,k*x_dim:k*x_dim+3],index=non_nan) else: # nba L_recX += batch_error(x_out[:,i,k*x_dim:(k+1)*x_dim], x_inputs_[:,i,k*x_dim:(k+1)*x_dim],index=non_nan) else: k2 = args.x_dim_permuted+args.dim_rec_global L_recX += batch_error(x_out[:,i,args.x_dim_permuted:k2+1], x_inputs_[:,i,args.x_dim_permuted:k2+1],index=non_nan) if 'carla' in args.data and Pred_X: fail_loss += torch.sum(non_nan.squeeze()*torch.abs(x_out[:,i,-1] - x_inputs_[:,i+1,-1]) ) for k in range(n_agents_): curve_loss += batch_error(x_out[:,i,k*x_dim+3:k*x_dim+5], x_out[:,i-1,k*x_dim+3:k*x_dim+5],index=non_nan) else: outcome_loss += torch.sum(torch.abs(f_outcome_out[:,i] - targets[:,i+t_pred]) ) if Pred_X: for k in range(n_agents+args.dim_rec_global): if k < n_agents: if 'boid' in args.data: try: L_recX += batch_error(x_out[:,i,k*x_dim+2:k*x_dim+4], x_inputs_[:,i,k*x_dim+2:k*x_dim+4]) except: import pdb; pdb.set_trace() else: k2 = args.x_dim_permuted+k-n_agents L_recX += batch_error(x_out[:,i,k2:k2+1], x_inputs_[:,i,k2:k2+1]) L_recX /= mean_time_length*(n_agents+args.dim_rec_global)*batchSize # fail_loss /= mean_time_length*(n_agents-1)*batchSize curve_loss /= mean_time_length*(n_agents-1)*batchSize else: a_or_ipw_outputs = torch.cat(a_or_ipw_outputs, dim=1) ps = torch.sigmoid(a_or_ipw_outputs) weights = torch.zeros(a_or_ipw_outputs.shape) for i in range(args.burn_in0+1,time_length): a_or_ipw_pred_norm = a_or_ipw_outputs[:,i] if args.variable_length: non_nan = lengths>=obs_w-i a_or_ipw_loss += criterion(non_nan*a_or_ipw_pred_norm, non_nan*fr_targets[:, i].float(), reduction='sum') else: a_or_ipw_loss += criterion(a_or_ipw_pred_norm, fr_targets[:, i].float(), reduction='sum') for j in range(a_or_ipw_outputs.size(0)): # batch p_treated = torch.where(fr_targets[j] == 1)[0].size(0) / fr_targets.size(1) if fr_targets[j,i] != 0: weights[j,i] += p_treated / ps[j,i] if ps[j,i] > 1e-3 else p_treated / 1e-3 else: weights[j,i] += (1 - p_treated) / (1 - ps[j,i]) if 1-ps[j,i] > 1e-3 else (1 - p_treated) / 1e-3 weights2 = torch.where(weights[:,i] >= 100, torch.Tensor([100]), weights[:,i]) weights3 = torch.where(weights2 <= 0.01, torch.Tensor([0.01]), weights2) if args.variable_length: outcome_loss += torch.sum(weights3*torch.abs(non_nan*f_outcome_out[:,i] - non_nan*targets[:,i+t_pred]) ) else: outcome_loss += torch.sum(weights3*torch.abs(f_outcome_out[:,i] - targets[:,i+t_pred]) ) a_or_ipw_loss = a_or_ipw_loss/mean_time_length/batchSize outcome_loss = outcome_loss/mean_time_length/batchSize L_kl /= batchSize if torch.sum(torch.isnan(outcome_loss))>0: import pdb; pdb.set_trace() return a_or_ipw_loss, outcome_loss, fail_loss, curve_loss, L_recX, L_kl def display_loss(a_or_ipw_losses, outcome_losses, L_recXs, L_fails, L_curves, L_kls, epoch, args, Pred_X): epoch_losses_a_or_ipw = np.mean(a_or_ipw_losses) outcome_losses = np.mean(outcome_losses) if Pred_X and 'carla' in args.data: str_fail_loss = ', L_fail: {:.4f}'.format(np.mean(L_fails)) str_curve_loss = ', L_curve: {:.4f}'.format(np.mean(L_curves)) else: str_fail_loss = '' str_curve_loss = '' if not 'RNN' in args.model: print('Epoch: {}, a_or_ipw loss: {:.4f}, Outcome loss: {:.4f}'.format(epoch, epoch_losses_a_or_ipw, outcome_losses), flush=True) if Pred_X: L_recXs = np.mean(np.sqrt(L_recXs)) if 'V' in args.model: L_kls = np.mean(L_kls) print('Epoch: {}, L_kls: {:.4f}, L_recXs: {:.4f}'.format(epoch, L_kls, L_recXs)+str_fail_loss+str_curve_loss, flush=True) else: print('Epoch: {}, L_recXs: {:.4f}'.format(epoch, L_recXs)+str_fail_loss+str_curve_loss, flush=True) else: L_recXs = np.mean(L_recXs) print('Epoch: {}, Outcome train loss: {:.4f}, L_recXs: {:.4f}'.format(epoch, outcome_losses, L_recXs)+str_fail_loss+str_curve_loss, flush=True) def trainInitIPTW(train_loader, val_loader,test_loader, model, args, epochs, optimizer, criterion, use_cuda=False, save_model=None,TEST=False): if use_cuda: print("====> Using CUDA device: ", torch.cuda.current_device(), flush=True) model.cuda() model = model.to('cuda') torch.set_default_tensor_type('torch.cuda.FloatTensor') device = 'cuda' if torch.cuda.is_available() else 'cpu' burn_in = args.burn_in obs_w = args.observation_window # Train network best_loss_val = torch.tensor(float('inf')).to(device) if not TEST and not args.has_GT: CF = False else: CF = True Pred_X = True if 'V' in args.model or 'RNN' in args.model or 'X' in args.model else False if args.cont: print('args.cont = True') if os.path.exists(save_model): model = torch.load(save_model) print('best model was loaded') else: print('args.cont = True but file did not exist') no_update = 0 if not TEST: for epoch in range(epochs): a_or_ipw_losses = [] outcome_losses = [] L_kls = [] L_recXs = [] L_fails = [] L_curves = [] for x_inputs, x_static_inputs, x_fr_inputs, targets, lengths, _,_,_,_,_ in tqdm(train_loader): # train_loader # tqdm(train_loader): # x_all, x_fr_all, targets_all,x_fr_opt model.train() # train optimizer.zero_grad() fr_targets = x_fr_inputs if use_cuda: x_inputs, x_static_inputs, x_fr_inputs = x_inputs.cuda(), x_static_inputs.cuda(), x_fr_inputs.cuda() targets, fr_targets = targets.cuda(), fr_targets.cuda() if args.variable_length: lengths = lengths.cuda() if args.data == 'nba':# or args.data == 'carla': x_inputs_ = x_inputs[:,:,:-1] else: x_inputs_ = x_inputs x_inputs__ = x_inputs_ if not 'V' in args.model and not 'RNN' in args.model: a_or_ipw_outputs, f_outcome_out, _, _, x_out,_ = model(x_inputs_, x_static_inputs, fr_targets, targets, cf_treatment=None, lengths=lengths) L_kl = torch.zeros(1).to(device) else: a_or_ipw_outputs, f_outcome_out, _, _, L_kl, x_out,_ = model(x_inputs_, x_static_inputs, fr_targets, targets, cf_treatment=None, Train=True, lengths=lengths) f_treatment = torch.where(fr_targets.sum(1) > 0, torch.Tensor([1]), torch.Tensor([0])) f_outcome_out = torch.stack(f_outcome_out,dim=1).squeeze() batchSize = f_outcome_out.shape[0] a_or_ipw_loss, outcome_loss, fail_loss, curve_loss, L_recX, L_kl = compute_loss(a_or_ipw_outputs,f_outcome_out,x_out,fr_targets,targets,x_inputs__,L_kl,lengths,Pred_X,criterion,args,obs_w,batchSize,device) if not 'RNN' in args.model: loss = a_or_ipw_loss * args.lambda_weight + outcome_loss else: loss = outcome_loss if Pred_X: loss += L_recX[0]*args.lambda_X if 'V' in args.model: loss += L_kl[0]*args.lambda_KL if 'carla' in args.data: loss += fail_loss*args.lambda_event loss += curve_loss*args.lambda_event loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 20) optimizer.step() a_or_ipw_losses.append(a_or_ipw_loss.item()) outcome_losses.append(outcome_loss.item()) if Pred_X: L_recXs.append(L_recX.item()) if 'V' in args.model: L_kls.append(L_kl.item()) if 'carla' in args.data: L_fails.append(fail_loss.item()) L_curves.append(curve_loss.item()) display_loss(a_or_ipw_losses, outcome_losses, L_recXs, L_fails, L_curves, L_kls, epoch, args, Pred_X) # validation print('Validation:') pehe_val, _, mse_val, loss_val = model_eval(model, val_loader, criterion, args, epoch, eval_use_cuda=use_cuda, CF=CF) if loss_val < best_loss_val: best_loss_val = loss_val if save_model: print('Best model. Saving...\n') torch.save(model, save_model) elif np.isnan(loss_val) or (epoch==0 and loss_val == best_loss_val): print('loss is nan or inf') import pdb; pdb.set_trace() else: no_update += 1 if no_update >= 3: try: model = torch.load(save_model) except: import pdb; pdb.set_trace() print('since no update continues, best model was loaded') no_update = 0 else: epoch = 0 print('Test:') model = torch.load(save_model) rmse_y_CF_max,rmse_best_timing,rmse,_ = model_eval(model, test_loader,criterion, args, epoch, eval_use_cuda=use_cuda, save=True, TEST=True) def detach(data,eval_use_cuda): if eval_use_cuda: return data.to('cpu').detach().data.numpy() else: return data.detach().data.numpy() def transfer_data(model, dataloader, criterion, args, epoch, eval_use_cuda=False, save=False, TEST=False): burn_in = args.burn_in burn_in_test = args.burn_in_test obs_w = args.observation_window device = 'cuda' if torch.cuda.is_available() else 'cpu' print('TEST ='+str(TEST)) Pred_X = True if 'V' in args.model or 'RNN' in args.model or 'X' in args.model else False with torch.no_grad(): model.eval() a_or_ipw_losses = [] outcome_losses = [] L_kls = [] L_recXs = [] L_fails = [] L_curves = [] f_outcome_outputs = [] cf_outcome_outputs = [] f_outcome_outputs_long = [] f_outcome_true = [] cf_outcome_true = [] treatment_f = [] treatment_all = [] treatment_opts = [] a_or_ipw_true = [] loss_all = [] x_outs = [] x_outs_cf = [] x_outs_true = [] x_inputs_f, x_static_inputs_f, lengths_all,indices_all = [],[],[],[] for x_inputs, x_static_inputs, x_fr_inputs, targets, lengths, indices, x_fr_all, x_all, targets_all, x_fr_opt in dataloader: fr_targets = x_fr_inputs if eval_use_cuda: x_inputs, x_static_inputs, x_fr_inputs = x_inputs.cuda(), x_static_inputs.cuda(), x_fr_inputs.cuda() x_fr_all, targets, fr_targets = x_fr_all.cuda(), targets.cuda(), fr_targets.cuda() if args.variable_length: lengths = lengths.cuda() if args.has_GT: x_all, targets_all = x_all.cuda(), targets_all.cuda() if args.data == 'nba':# or args.data == 'carla': x_inputs_ = x_inputs[:,:,:-1].clone() x_all = x_all[:,:,:-1] else: x_inputs_ = x_inputs.clone() x_inputs__ = x_inputs_.clone() if not TEST and not args.has_GT: x_fr_all_ = None CF = False else: x_fr_all_ = x_fr_all CF = True # counterfactual treatments if not 'V' in args.model and not 'RNN' in args.model: a_or_ipw_outputs, f_outcome_out, cf_outcome_out, _, x_out, x_out_cf = model(x_inputs_, x_static_inputs, fr_targets, targets, cf_treatment=x_fr_all_, burn_in=burn_in, lengths=lengths) if not args.has_GT: # nba a_or_ipw_outputs, f_outcome_out2, _, _, x_out, _ = model(x_inputs_, x_static_inputs, fr_targets, targets, cf_treatment=None, burn_in=burn_in_test, lengths=lengths) L_kl = torch.zeros(1).to(device) else: a_or_ipw_outputs, f_outcome_out, cf_outcome_out, _, L_kl, x_out, x_out_cf = model(x_inputs_, x_static_inputs, fr_targets, targets, cf_treatment=x_fr_all_, burn_in=burn_in, lengths=lengths) if not args.has_GT: # nba a_or_ipw_outputs, f_outcome_out2, _, _, L_kl, x_out, _ = model(x_inputs_, x_static_inputs, fr_targets, targets, cf_treatment=None, burn_in=burn_in_test, lengths=lengths) if CF: cf_outcome_out = cf_outcome_out.permute(2,1,0,3) f_outcome_out = torch.stack(f_outcome_out,dim=1).squeeze() if not args.has_GT: # nba f_outcome_out_long = f_outcome_out.clone() f_outcome_out = torch.stack(f_outcome_out2,dim=1).squeeze() # x_out = torch.stack(x_out,dim=1) batchSize = f_outcome_out.shape[0] a_or_ipw_loss, outcome_loss, fail_loss, curve_loss, L_recX, L_kl = compute_loss(a_or_ipw_outputs,f_outcome_out,x_out,fr_targets,targets,x_inputs__,L_kl,lengths,Pred_X,criterion,args,obs_w,batchSize,device,inference=True) a_or_ipw_losses.append(a_or_ipw_loss.item()) outcome_losses.append(outcome_loss.item()) if Pred_X: L_recXs.append(L_recX.item()) if 'V' in args.model: L_kls.append(L_kl.item()) if 'carla' in args.data: L_fails.append(fail_loss.item()) L_curves.append(curve_loss.item()) if not 'RNN' in args.model: loss = a_or_ipw_loss * args.lambda_weight + outcome_loss else: loss = outcome_loss if Pred_X: loss += L_recX[0]*args.lambda_X if 'V' in args.model: loss += L_kl[0]*args.lambda_KL if 'carla' in args.data: loss += fail_loss*args.lambda_event loss += curve_loss*args.lambda_event a_or_ipw_losses.append(a_or_ipw_loss.item()) outcome_losses.append(outcome_loss.item()) if Pred_X: L_recXs.append(L_recX.item()) if 'V' in args.model: L_kls.append(L_kl.item()) if 'carla' in args.data: L_fails.append(fail_loss.item()) L_curves.append(curve_loss.item()) # detach for i in range(len(a_or_ipw_outputs)): try: a_or_ipw_outputs[i] = detach(a_or_ipw_outputs[i],eval_use_cuda) except: import pdb; pdb.set_trace() fr_targets = detach(fr_targets,eval_use_cuda) targets = detach(targets,eval_use_cuda) f_outcome_out = detach(f_outcome_out,eval_use_cuda) if CF: cf_outcome_out = detach(cf_outcome_out,eval_use_cuda) if not args.has_GT: # nba f_outcome_out_long = detach(f_outcome_out_long,eval_use_cuda) loss = detach(loss,eval_use_cuda) if args.has_GT: targets_all = detach(targets_all,eval_use_cuda) x_all = detach(x_all,eval_use_cuda) x_fr_all = detach(x_fr_all,eval_use_cuda) if Pred_X: x_out = detach(x_out,eval_use_cuda) x_out_cf = detach(x_out_cf,eval_use_cuda) x_inputs = detach(x_inputs,eval_use_cuda) x_static_inputs = detach(x_static_inputs,eval_use_cuda) # x_fr_inputs = detach(x_fr_inputs,eval_use_cuda) if args.variable_length: lengths = detach(lengths,eval_use_cuda) if save: indices = detach(indices,eval_use_cuda) # append treatment_f.append(fr_targets) treatment_all.append(x_fr_all) if args.has_GT: x_fr_opt = x_fr_opt.detach().data.numpy() treatment_opts.append(x_fr_opt) a_or_ipw_true.append(np.where(fr_targets.sum(1) > 0, 1, 0)) f_outcome_true.append(targets) if args.has_GT: cf_outcome_true.append(targets_all) f_outcome_outputs.append(f_outcome_out) if CF: cf_outcome_outputs.append(cf_outcome_out) if not args.has_GT: f_outcome_outputs_long.append(f_outcome_out_long) loss_all.append(loss) if Pred_X: x_outs.append(x_out) x_outs_cf.append(x_out_cf) x_outs_true.append(x_all) x_inputs_f.append(x_inputs) x_static_inputs_f.append(x_static_inputs) # x_fr_inputs_f.append(x_fr_inputs) if args.variable_length: lengths_all.append(lengths) indices_all.append(indices) display_loss(a_or_ipw_losses, outcome_losses, L_recXs, L_fails, L_curves, L_kls, epoch, args, Pred_X) # concatenate a_or_ipw_true = np.concatenate(a_or_ipw_true).transpose() f_outcome_true = np.concatenate(f_outcome_true) if args.has_GT: cf_outcome_true = np.concatenate(cf_outcome_true) treatment_opts = np.concatenate(treatment_opts) else: cf_outcome_true = None treatment_opts = None f_outcome_outputs = np.concatenate(f_outcome_outputs) if CF: cf_outcome_outputs = np.concatenate(cf_outcome_outputs) if not args.has_GT: f_outcome_outputs_long = np.concatenate(f_outcome_outputs_long) # loss_all = np.concatenate(loss_all) loss_all = np.mean(loss_all) if Pred_X: x_outs = np.concatenate(x_outs,0) x_outs_cf = np.concatenate(x_outs_cf,1) x_outs_true = np.concatenate(x_outs_true) else: x_outs = None x_outs_true = None x_inputs_f = np.concatenate(x_inputs_f) x_static_inputs_f = np.concatenate(x_static_inputs_f) if args.data == 'nba' or args.data == 'carla': lengths_all = np.concatenate(lengths_all) if save: indices_all = np.concatenate(indices_all) else: lengths_all,indices_all = [],[] # for saving if args.has_GT: outcomes = [f_outcome_true, cf_outcome_true, f_outcome_outputs, cf_outcome_outputs] else: outcomes = [f_outcome_true, cf_outcome_true, f_outcome_outputs, cf_outcome_outputs, f_outcome_outputs_long] covariates = [x_inputs_f, x_outs, x_outs_true, x_static_inputs_f, x_outs_cf] if save: others = [treatment_f, treatment_all, treatment_opts, lengths_all, indices_all, loss_all] else: others = [treatment_f, treatment_all, treatment_opts, lengths_all, loss_all] return outcomes, covariates, others def model_eval(model, dataloader, criterion, args, epoch, eval_use_cuda=False, save=False, TEST=False, CF=True): burn_in = args.burn_in #+ 1 burn_in_test = args.burn_in_test #+ 1 burn_in_ = burn_in if args.has_GT else burn_in_test Pred_X = True if 'V' in args.model or 'RNN' in args.model or 'X' in args.model else False outcomes, covariates, others = transfer_data(model, dataloader, criterion, args, epoch, eval_use_cuda, save=save, TEST=TEST) if args.has_GT: f_outcome_true, cf_outcome_true, f_outcome_outputs, cf_outcome_outputs = outcomes else: f_outcome_true, cf_outcome_true, f_outcome_outputs, cf_outcome_outputs, _ = outcomes x_inputs_f, x_outs, x_outs_true, x_static_inputs_f, x_outs_cf = covariates if save: treatment_f, treatment_all, treatment_opts, lengths_all, indices_all, loss_all = others else: treatment_f, treatment_all, treatment_opts, lengths_all, loss_all = others if args.data == 'nba': n_agents = args.n_agents - 1 x_dim_permuted_ = n_agents*2 if not args.vel else n_agents*4 # 4 args.x_dim_permuted-2 else: n_agents = args.n_agents x_dim_permuted_ = args.x_dim_permuted n_dim_each_permuted = int(x_dim_permuted_//n_agents) model = args.model std = False t_pred = 1 if args.y_pred else 0 if args.has_GT: # ouctome if args.y_pred: y_all_true = cf_outcome_true[:,burn_in_+1:].reshape((cf_outcome_true.shape[0],-1)) else: y_all_true = cf_outcome_true[:,burn_in_:-1].reshape((cf_outcome_true.shape[0],-1)) y_pred_true = cf_outcome_outputs[:,burn_in_:,:,0].reshape((cf_outcome_true.shape[0],-1)) rmse = mean_squared_error(y_all_true,y_pred_true, multioutput='raw_values',squared=False) # best timing if 'boid' in args.data: if args.y_pred: cfo_true_last = cf_outcome_true[:,burn_in_+1:,:] tau_true = cf_outcome_true[:,burn_in_+1:,:5] - np.repeat(cf_outcome_true[:,burn_in_+1:,-1,np.newaxis],5,axis=2) else: cfo_true_last = cf_outcome_true[:,burn_in_:-1,:] tau_true = cf_outcome_true[:,burn_in_:-1,:5] - np.repeat(cf_outcome_true[:,burn_in_:-1,-1,np.newaxis],5,axis=2) cfo_last = cf_outcome_outputs[:,burn_in_:,:,0] cfo_true_last = np.max(np.abs(cfo_true_last),1) cfo_last = np.max(np.abs(cfo_last),1) cfo_last_max_ind = np.argmax(cfo_last,1) best_timing_true = np.argmax(cfo_true_last,1) timing_or_diff = np.sqrt((best_timing_true-cfo_last_max_ind)**2) tau_pred = cf_outcome_outputs[:,burn_in_:,:5,0] - np.repeat(cf_outcome_outputs[:,burn_in_:,-1],5,axis=2) if args.data == 'carla': diff_f = cf_outcome_true[:,-2+t_pred,0] - cf_outcome_true[:,-2+t_pred,1] diff_cf = cf_outcome_outputs[:,-1,0,0] - cf_outcome_outputs[:,-1,1,0] timing_or_diff = np.abs(diff_f-diff_cf).reshape((cf_outcome_true.shape[0],-1)) if args.y_pred: tau_true = cf_outcome_true[:,burn_in_+1:,0:1] - cf_outcome_true[:,burn_in_+1:,1:] else: tau_true = cf_outcome_true[:,burn_in_:-1,0:1] - cf_outcome_true[:,burn_in_:-1,1:] tau_pred = cf_outcome_outputs[:,burn_in_:,0] - cf_outcome_outputs[:,burn_in_:,1] # PEHE N = tau_true.shape[0] PEHE = np.sqrt(np.sum((tau_true-tau_pred)**2,axis=0)/N).reshape(-1,) # ATE ATE = np.abs(np.sum(tau_true,axis=0)/N - np.sum(tau_pred,axis=0)/N).reshape(-1,) if args.data == 'carla': timing_or_diff = PEHE if not Pred_X: # rmse_max,rmse_best_timing_,rmse_ = result #if 'boid' in args.data: # timing_or_diff = rmse_best_timing print(model+': ' +' ' + '{:.3f}'.format(np.mean(rmse))+' $\pm$ '+'{:.3f}'.format(std_ste(rmse,std=std))+' &' +' ' + '{:.3f}'.format(np.mean(PEHE))+' $\pm$ '+'{:.3f}'.format(std_ste(PEHE,std=std))+' &' +' ' + '{:.3f}'.format(np.mean(timing_or_diff))+' $\pm$ '+'{:.3f}'.format(std_ste(timing_or_diff,std=std))+' & ---' ) rmse_cf_x = None if args.data == 'carla': loss_all = np.mean(rmse) + np.mean(timing_or_diff) # 1/10 elif 'boid' in args.data: loss_all = np.mean(rmse) + np.mean(PEHE) + np.mean(timing_or_diff) # 2/1 else: # rmse_max,rmse_best_timing_,rmse_,rmse_cf_x_ = result #if 'boid' in args.data: # timing_or_diff = rmse_best_timing n_dim_x = 2 n_agents = args.n_agents if args.data == 'carla': n_dim_agent = 7 ind_x = np.concatenate([np.arange(1,n_agents*n_dim_agent,n_dim_agent)[:,np.newaxis],
np.arange(2,n_agents*n_dim_agent,n_dim_agent)
numpy.arange
from __future__ import print_function from __future__ import division import numpy as np from pygame.transform import scale import config import espControl as led from virtualLed import VirtualLedTable phase = 0 amplitude = 3 reverseAmp = False reverseRGB = False count_frames = 1 rgb = [np.linspace(0, 128, 256), np.linspace(0, 128, 256), np.linspace(128, 0, 256)] def map1dto2d(pixels): width = 8 mapped_pixels = [] for color in pixels: rgb =
np.zeros(config.N_PIXELS)
numpy.zeros
# line plot # Print the last item from year and pop print(year[-1]) print(pop[-1]) # Import matplotlib.pyplot as plt import matplotlib.pyplot as plt # Make a line plot: year on the x-axis, pop on the y-axis plt.plot(year, pop) plt.show() # Print the last item of gdp_cap and life_exp print(gdp_cap[-1]) print(life_exp[-1]) # Make a line plot, gdp_cap on the x-axis, life_exp on the y-axis plt.plot(gdp_cap, life_exp) # Display the plot plt.show() # Change the line plot below to a scatter plot plt.scatter(gdp_cap, life_exp) # Put the x-axis on a logarithmic scale plt.xscale('log') # Show plot plt.show() # Build Histogram # Create histogram of life_exp data plt.hist(life_exp) # Display histogram plt.show() # Build histogram with 5 bins plt.hist(life_exp, bins=5) # Show and clean up plot plt.show() plt.clf() # Build histogram with 20 bins plt.hist(life_exp, bins=20) # Show and clean up again plt.show() plt.clf() # Histogram of life_exp, 15 bins plt.hist(life_exp, bins=15) # Show and clear plot plt.show() plt.clf() # Histogram of life_exp1950, 15 bins plt.hist(life_exp1950, bins=15) # Show and clear plot again plt.show() plt.clf() # Basic scatter plot, log scale plt.scatter(gdp_cap, life_exp) plt.xscale('log') # Strings xlab = 'GDP per Capita [in USD]' ylab = 'Life Expectancy [in years]' title = 'World Development in 2007' # Add axis labels plt.xlabel(xlab) plt.ylabel(ylab) plt.title(title) # Add title # After customizing, display the plot plt.show() # Scatter plot plt.scatter(gdp_cap, life_exp) # Previous customizations plt.xscale('log') plt.xlabel('GDP per Capita [in USD]') plt.ylabel('Life Expectancy [in years]') plt.title('World Development in 2007') # Definition of tick_val and tick_lab tick_val = [1000,10000,100000] tick_lab = ['1k','10k','100k'] # Adapt the ticks on the x-axis plt.xticks(tick_val, tick_lab) # After customizing, display the plot plt.show() # Import numpy as np import numpy as np # Store pop as a numpy array: np_pop np_pop = np.array(pop) # Double np_pop np_pop = np_pop * 2 # Update: set s argument to np_pop plt.scatter(gdp_cap, life_exp, s = np_pop) # Previous customizations plt.xscale('log') plt.xlabel('GDP per Capita [in USD]') plt.ylabel('Life Expectancy [in years]') plt.title('World Development in 2007') plt.xticks([1000, 10000, 100000],['1k', '10k', '100k']) # Display the plot plt.show() dict = { 'Asia':'red', 'Europe':'green', 'Africa':'blue', 'Americas':'yellow', 'Oceania':'black' } # Specify c and alpha inside plt.scatter() plt.scatter(x = gdp_cap, y = life_exp, s = np.array(pop) * 2, c = col, alpha = 0.8) # Previous customizations plt.xscale('log') plt.xlabel('GDP per Capita [in USD]') plt.ylabel('Life Expectancy [in years]') plt.title('World Development in 2007') plt.xticks([1000,10000,100000], ['1k','10k','100k']) # Show the plot plt.show() # Scatter plot plt.scatter(x = gdp_cap, y = life_exp, s = np.array(pop) * 2, c = col, alpha = 0.8) # Previous customizations plt.xscale('log') plt.xlabel('GDP per Capita [in USD]') plt.ylabel('Life Expectancy [in years]') plt.title('World Development in 2007') plt.xticks([1000,10000,100000], ['1k','10k','100k']) # Additional customizations plt.text(1550, 71, 'India') plt.text(5700, 80, 'China') # Add grid() call plt.grid(True) # Show the plot plt.show() ## intro to python for datascience ### numpy # Create list baseball baseball = [180, 215, 210, 210, 188, 176, 209, 200] # Import the numpy package as np import numpy as np # Create a Numpy array from baseball: np_baseball np_baseball = np.array(baseball) # Print out type of np_baseball print(type(np_baseball)) # height is available as a regular list # Import numpy import numpy as np # Create a Numpy array from height: np_height np_height = np.array(height) # Print out np_height print(np_height) # Convert np_height to m: np_height_m np_height_m = np_height * 0.0254 # Print np_height_m print(np_height_m) # height and weight are available as a regular lists # Import numpy import numpy as np # Create array from height with correct units: np_height_m np_height_m = np.array(height) * 0.0254 # Create array from weight with correct units: np_weight_kg np_weight_kg = np.array(weight) * 0.453592 # Calculate the BMI: bmi bmi = np_weight_kg / np_height_m ** 2 # Print out bmi print (bmi) # height and weight are available as a regular lists # Import numpy import numpy as np # Calculate the BMI: bmi np_height_m = np.array(height) * 0.0254 np_weight_kg = np.array(weight) * 0.453592 bmi = np_weight_kg / np_height_m ** 2 # Create the light array light = bmi < 21 # Print out light print(light) # Print out BMIs of all baseball players whose BMI is below 21 print(bmi[light]) In [2]:
np.array([True, 1, 2])
numpy.array
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ OpenAI GPT model fine-tuning script.""" import argparse import os import csv import random import json import logging import pandas as pd import shutil import spacy import time from tqdm import tqdm, trange import numpy as np import torch from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) from tensorboardX import SummaryWriter from pytorch_pretrained_bert import (OpenAIGPTDoubleHeadsModel, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer, OpenAIAdam, WEIGHTS_NAME, CONFIG_NAME, GPT2DoubleHeadsModel, GPT2LMHeadModel, GPT2Tokenizer) from pytorch_pretrained_bert.optimization import WarmupLinearSchedule DATA_DIR = '../data'.format(os.getenv('HOME')) q_sep = 'Q' a_sep = 'A' mc_task_names = {'rocstories'} logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) def accuracy(out, labels): outputs =
np.argmax(out, axis=1)
numpy.argmax
import collections import numpy as np import time import datetime import os import networkx as nx import pytz import cloudvolume import pandas as pd from multiwrapper import multiprocessing_utils as mu from . import mincut from google.api_core.retry import Retry, if_exception_type from google.api_core.exceptions import Aborted, DeadlineExceeded, \ ServiceUnavailable from google.auth import credentials from google.cloud import bigtable from google.cloud.bigtable.row_filters import TimestampRange, \ TimestampRangeFilter, ColumnRangeFilter, ValueRangeFilter, RowFilterChain, \ ColumnQualifierRegexFilter, RowFilterUnion, ConditionalRowFilter, \ PassAllFilter, BlockAllFilter, RowFilter from google.cloud.bigtable.column_family import MaxVersionsGCRule from typing import Any, Dict, Iterable, List, Optional, Sequence, Tuple, Union # global variables HOME = os.path.expanduser("~") N_DIGITS_UINT64 = len(str(np.iinfo(np.uint64).max)) LOCK_EXPIRED_TIME_DELTA = datetime.timedelta(minutes=2, seconds=00) UTC = pytz.UTC # Setting environment wide credential path os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = \ HOME + "/.cloudvolume/secrets/google-secret.json" def compute_indices_pandas(data) -> pd.Series: """ Computes indices of all unique entries Make sure to remap your array to a dense range starting at zero https://stackoverflow.com/questions/33281957/faster-alternative-to-numpy-where :param data: np.ndarray :return: pandas dataframe """ d = data.ravel() f = lambda x: np.unravel_index(x.index, data.shape) return pd.Series(d).groupby(d).apply(f) def log_n(arr, n): """ Computes log to base n :param arr: array or float :param n: int base :return: return log_n(arr) """ if n == 2: return np.log2(arr) elif n == 10: return np.log10(arr) else: return np.log(arr) / np.log(n) def pad_node_id(node_id: np.uint64) -> str: """ Pad node id to 20 digits :param node_id: int :return: str """ return "%.20d" % node_id def serialize_uint64(node_id: np.uint64) -> bytes: """ Serializes an id to be ingested by a bigtable table row :param node_id: int :return: str """ return serialize_key(pad_node_id(node_id)) # type: ignore def deserialize_uint64(node_id: bytes) -> np.uint64: """ De-serializes a node id from a BigTable row :param node_id: bytes :return: np.uint64 """ return np.uint64(node_id.decode()) # type: ignore def serialize_key(key: str) -> bytes: """ Serializes a key to be ingested by a bigtable table row :param key: str :return: bytes """ return key.encode("utf-8") def deserialize_key(key: bytes) -> str: """ Deserializes a row key :param key: bytes :return: str """ return key.decode() def row_to_byte_dict(row: bigtable.row.Row, f_id: str = None, idx: int = None ) -> Dict[int, Dict]: """ Reads row entries to a dictionary :param row: row :param f_id: str :param idx: int :return: dict """ row_dict = {} for fam_id in row.cells.keys(): row_dict[fam_id] = {} for row_k in row.cells[fam_id].keys(): if idx is None: row_dict[fam_id][deserialize_key(row_k)] = \ [c.value for c in row.cells[fam_id][row_k]] else: row_dict[fam_id][deserialize_key(row_k)] = \ row.cells[fam_id][row_k][idx].value if f_id is not None and f_id in row_dict: return row_dict[f_id] elif f_id is None: return row_dict else: raise Exception("Family id not found") def compute_bitmasks(n_layers: int, fan_out: int) -> Dict[int, int]: """ :param n_layers: int :return: dict layer -> bits for layer id """ bitmask_dict = {} for i_layer in range(n_layers, 0, -1): if i_layer == 1: # Lock this layer to an 8 bit layout to maintain compatibility with # the exported segmentation # n_bits_for_layers = np.ceil(log_n(fan_out**(n_layers - 2), fan_out)) n_bits_for_layers = 8 else: n_bits_for_layers = max(1, np.ceil(log_n(fan_out**(n_layers - i_layer), fan_out))) # n_bits_for_layers = fan_out ** int(np.ceil(log_n(n_bits_for_layers, fan_out))) n_bits_for_layers = int(n_bits_for_layers) assert n_bits_for_layers <= 8 bitmask_dict[i_layer] = n_bits_for_layers return bitmask_dict class ChunkedGraph(object): def __init__(self, table_id: str, instance_id: str = "pychunkedgraph", project_id: str = "neuromancer-seung-import", chunk_size: Tuple[int, int, int] = None, fan_out: Optional[int] = None, n_layers: Optional[int] = None, credentials: Optional[credentials.Credentials] = None, client: bigtable.Client = None, cv_path: str = None, is_new: bool = False) -> None: if client is not None: self._client = client else: self._client = bigtable.Client(project=project_id, admin=True, credentials=credentials) self._instance = self.client.instance(instance_id) self._table_id = table_id self._table = self.instance.table(self.table_id) if is_new: self.check_and_create_table() self._n_layers = self.check_and_write_table_parameters("n_layers", n_layers) self._fan_out = self.check_and_write_table_parameters("fan_out", fan_out) self._cv_path = self.check_and_write_table_parameters("cv_path", cv_path) self._chunk_size = self.check_and_write_table_parameters("chunk_size", chunk_size) self._bitmasks = compute_bitmasks(self.n_layers, self.fan_out) self._cv = None # Hardcoded parameters self._n_bits_for_layer_id = 8 self._cv_mip = 3 @property def client(self) -> bigtable.Client: return self._client @property def instance(self) -> bigtable.instance.Instance: return self._instance @property def table(self) -> bigtable.table.Table: return self._table @property def table_id(self) -> str: return self._table_id @property def instance_id(self): return self.instance.instance_id @property def project_id(self): return self.client.project @property def family_id(self) -> str: return "0" @property def incrementer_family_id(self) -> str: return "1" @property def log_family_id(self) -> str: return "2" @property def cross_edge_family_id(self) -> str: return "3" @property def fan_out(self) -> int: return self._fan_out @property def chunk_size(self) -> np.ndarray: return self._chunk_size @property def n_layers(self) -> int: return self._n_layers @property def bitmasks(self) -> Dict[int, int]: return self._bitmasks @property def cv_path(self) -> str: return self._cv_path @property def cv_mip(self) -> int: return self._cv_mip @property def cv(self) -> cloudvolume.CloudVolume: if self._cv is None: self._cv = cloudvolume.CloudVolume(self.cv_path, mip=self._cv_mip) return self._cv @property def root_chunk_id(self): return self.get_chunk_id(layer=int(self.n_layers), x=0, y=0, z=0) def check_and_create_table(self) -> None: """ Checks if table exists and creates new one if necessary """ table_ids = [t.table_id for t in self.instance.list_tables()] if not self.table_id in table_ids: self.table.create() f = self.table.column_family(self.family_id) f.create() f_inc = self.table.column_family(self.incrementer_family_id, gc_rule=MaxVersionsGCRule(1)) f_inc.create() f_log = self.table.column_family(self.log_family_id) f_log.create() f_ce = self.table.column_family(self.cross_edge_family_id, gc_rule=MaxVersionsGCRule(1)) f_ce.create() print("Table created") def check_and_write_table_parameters(self, param_key: str, value: Optional[np.uint64] = None ) -> np.uint64: """ Checks if a parameter already exists in the table. If it already exists it returns the stored value, else it stores the given value. It raises an exception if no value is passed and the parameter does not exist, yet. :param param_key: str :param value: np.uint64 :return: np.uint64 value """ ser_param_key = serialize_key(param_key) row = self.table.read_row(serialize_key("params")) if row is None or ser_param_key not in row.cells[self.family_id]: assert value is not None if param_key in ["fan_out", "n_layers"]: val_dict = {param_key: np.array(value, dtype=np.uint64).tobytes()} elif param_key in ["cv_path"]: val_dict = {param_key: serialize_key(value)} elif param_key in ["chunk_size"]: val_dict = {param_key: np.array(value, dtype=np.uint64).tobytes()} else: raise Exception("Unknown type for parameter") row = self.mutate_row(serialize_key("params"), self.family_id, val_dict) self.bulk_write([row]) else: value = row.cells[self.family_id][ser_param_key][0].value if param_key in ["fan_out", "n_layers"]: value = np.frombuffer(value, dtype=np.uint64)[0] elif param_key in ["cv_path"]: value = deserialize_key(value) elif param_key in ["chunk_size"]: value = np.frombuffer(value, dtype=np.uint64) else: raise Exception("Unknown key") return value def get_serialized_info(self): """ Rerturns dictionary that can be used to load this ChunkedGraph :return: dict """ info = {"table_id": self.table_id, "instance_id": self.instance_id, "project_id": self.project_id} try: info["credentials"] = self.client.credentials except: info["credentials"] = self.client._credentials return info def get_chunk_layer(self, node_or_chunk_id: np.uint64) -> int: """ Extract Layer from Node ID or Chunk ID :param node_or_chunk_id: np.uint64 :return: int """ return int(node_or_chunk_id) >> 64 - self._n_bits_for_layer_id def get_chunk_coordinates(self, node_or_chunk_id: np.uint64 ) -> np.ndarray: """ Extract X, Y and Z coordinate from Node ID or Chunk ID :param node_or_chunk_id: np.uint64 :return: Tuple(int, int, int) """ layer = self.get_chunk_layer(node_or_chunk_id) bits_per_dim = self.bitmasks[layer] x_offset = 64 - self._n_bits_for_layer_id - bits_per_dim y_offset = x_offset - bits_per_dim z_offset = y_offset - bits_per_dim x = int(node_or_chunk_id) >> x_offset & 2 ** bits_per_dim - 1 y = int(node_or_chunk_id) >> y_offset & 2 ** bits_per_dim - 1 z = int(node_or_chunk_id) >> z_offset & 2 ** bits_per_dim - 1 return np.array([x, y, z]) def get_chunk_id(self, node_id: Optional[np.uint64] = None, layer: Optional[int] = None, x: Optional[int] = None, y: Optional[int] = None, z: Optional[int] = None) -> np.uint64: """ (1) Extract Chunk ID from Node ID (2) Build Chunk ID from Layer, X, Y and Z components :param node_id: np.uint64 :param layer: int :param x: int :param y: int :param z: int :return: np.uint64 """ assert node_id is not None or \ all(v is not None for v in [layer, x, y, z]) if node_id is not None: layer = self.get_chunk_layer(node_id) bits_per_dim = self.bitmasks[layer] if node_id is not None: chunk_offset = 64 - self._n_bits_for_layer_id - 3 * bits_per_dim return np.uint64((int(node_id) >> chunk_offset) << chunk_offset) else: if not(x < 2 ** bits_per_dim and y < 2 ** bits_per_dim and z < 2 ** bits_per_dim): raise Exception("Chunk coordinate is out of range for" "this graph on layer %d with %d bits/dim." "[%d, %d, %d]; max = %d." % (layer, bits_per_dim, x, y, z, 2 ** bits_per_dim)) layer_offset = 64 - self._n_bits_for_layer_id x_offset = layer_offset - bits_per_dim y_offset = x_offset - bits_per_dim z_offset = y_offset - bits_per_dim return np.uint64(layer << layer_offset | x << x_offset | y << y_offset | z << z_offset) def get_chunk_ids_from_node_ids(self, node_ids: Iterable[np.uint64] ) -> np.ndarray: """ Extract a list of Chunk IDs from a list of Node IDs :param node_ids: np.ndarray(dtype=np.uint64) :return: np.ndarray(dtype=np.uint64) """ # TODO: measure and improve performance(?) return np.array(list(map(lambda x: self.get_chunk_id(node_id=x), node_ids)), dtype=np.uint64) def get_segment_id_limit(self, node_or_chunk_id: np.uint64) -> np.uint64: """ Get maximum possible Segment ID for given Node ID or Chunk ID :param node_or_chunk_id: np.uint64 :return: np.uint64 """ layer = self.get_chunk_layer(node_or_chunk_id) bits_per_dim = self.bitmasks[layer] chunk_offset = 64 - self._n_bits_for_layer_id - 3 * bits_per_dim return np.uint64(2 ** chunk_offset - 1) def get_segment_id(self, node_id: np.uint64) -> np.uint64: """ Extract Segment ID from Node ID :param node_id: np.uint64 :return: np.uint64 """ return node_id & self.get_segment_id_limit(node_id) def get_node_id(self, segment_id: np.uint64, chunk_id: Optional[np.uint64] = None, layer: Optional[int] = None, x: Optional[int] = None, y: Optional[int] = None, z: Optional[int] = None) -> np.uint64: """ (1) Build Node ID from Segment ID and Chunk ID (2) Build Node ID from Segment ID, Layer, X, Y and Z components :param segment_id: np.uint64 :param chunk_id: np.uint64 :param layer: int :param x: int :param y: int :param z: int :return: np.uint64 """ if chunk_id is not None: return chunk_id | segment_id else: return self.get_chunk_id(layer=layer, x=x, y=y, z=z) | segment_id def get_unique_segment_id_range(self, chunk_id: np.uint64, step: int = 1 ) -> np.ndarray: """ Return unique Segment ID for given Chunk ID atomic counter :param chunk_id: np.uint64 :param step: int :return: np.uint64 """ counter_key = serialize_key('counter') # Incrementer row keys start with an "i" followed by the chunk id row_key = serialize_key("i%s" % pad_node_id(chunk_id)) append_row = self.table.row(row_key, append=True) append_row.increment_cell_value(self.incrementer_family_id, counter_key, step) # This increments the row entry and returns the value AFTER incrementing latest_row = append_row.commit() max_segment_id_b = latest_row[self.incrementer_family_id][counter_key][0][0] max_segment_id = int.from_bytes(max_segment_id_b, byteorder="big") min_segment_id = max_segment_id + 1 - step segment_id_range = np.array(range(min_segment_id, max_segment_id + 1), dtype=np.uint64) return segment_id_range def get_unique_segment_id(self, chunk_id: np.uint64) -> np.uint64: """ Return unique Segment ID for given Chunk ID atomic counter :param chunk_id: np.uint64 :param step: int :return: np.uint64 """ return self.get_unique_segment_id_range(chunk_id=chunk_id, step=1)[0] def get_unique_node_id_range(self, chunk_id: np.uint64, step: int = 1 ) -> np.ndarray: """ Return unique Node ID range for given Chunk ID atomic counter :param chunk_id: np.uint64 :param step: int :return: np.uint64 """ segment_ids = self.get_unique_segment_id_range(chunk_id=chunk_id, step=step) node_ids = np.array([self.get_node_id(segment_id, chunk_id) for segment_id in segment_ids], dtype=np.uint64) return node_ids def get_unique_node_id(self, chunk_id: np.uint64) -> np.uint64: """ Return unique Node ID for given Chunk ID atomic counter :param chunk_id: np.uint64 :return: np.uint64 """ return self.get_unique_node_id_range(chunk_id=chunk_id, step=1)[0] def get_max_node_id(self, chunk_id: np.uint64) -> np.uint64: """ Gets maximal node id in a chunk based on the atomic counter This is an approximation. It is not guaranteed that all ids smaller or equal to this id exists. However, it is guaranteed that no larger id exist at the time this function is executed. :return: uint64 """ counter_key = serialize_key('counter') # Incrementer row keys start with an "i" row_key = serialize_key("i%s" % pad_node_id(chunk_id)) row = self.table.read_row(row_key) # Read incrementer value if row is not None: max_node_id_b = row.cells[self.incrementer_family_id][counter_key][0].value max_node_id = int.from_bytes(max_node_id_b, byteorder="big") else: max_node_id = 0 return np.uint64(max_node_id) def get_unique_operation_id(self) -> np.uint64: """ Finds a unique operation id atomic counter Operations essentially live in layer 0. Even if segmentation ids might live in layer 0 one day, they would not collide with the operation ids because we write information belonging to operations in a separate family id. :return: str """ counter_key = serialize_key('counter') # Incrementer row keys start with an "i" row_key = serialize_key("ioperations") append_row = self.table.row(row_key, append=True) append_row.increment_cell_value(self.incrementer_family_id, counter_key, 1) # This increments the row entry and returns the value AFTER incrementing latest_row = append_row.commit() operation_id_b = latest_row[self.incrementer_family_id][counter_key][0][0] operation_id = int.from_bytes(operation_id_b, byteorder="big") return np.uint64(operation_id) def get_max_operation_id(self) -> np.uint64: """ Gets maximal operation id based on the atomic counter This is an approximation. It is not guaranteed that all ids smaller or equal to this id exists. However, it is guaranteed that no larger id exist at the time this function is executed. :return: uint64 """ counter_key = serialize_key('counter') # Incrementer row keys start with an "i" row_key = serialize_key("ioperations") row = self.table.read_row(row_key) # Read incrementer value if row is not None: max_operation_id_b = row.cells[self.incrementer_family_id][counter_key][0].value max_operation_id = int.from_bytes(max_operation_id_b, byteorder="big") else: max_operation_id = 0 return np.uint64(max_operation_id) def get_cross_chunk_edges_layer(self, cross_edges): if len(cross_edges) == 0: return np.array([], dtype=np.int) cross_chunk_edge_layers = np.ones(len(cross_edges), dtype=np.int) * 2 cross_edge_coordinates = [] for cross_edge in cross_edges: cross_edge_coordinates.append( [self.get_chunk_coordinates(cross_edge[0]), self.get_chunk_coordinates(cross_edge[1])]) cross_edge_coordinates = np.array(cross_edge_coordinates, dtype=np.int) for layer in range(3, self.n_layers): cross_edge_coordinates = cross_edge_coordinates // self.fan_out edge_diff = np.sum(np.abs(cross_edge_coordinates[:, 0] - cross_edge_coordinates[:, 1]), axis=1) cross_chunk_edge_layers[edge_diff > 0] += 1 return cross_chunk_edge_layers def get_cross_chunk_edge_dict(self, cross_edges): cce_layers = self.get_cross_chunk_edges_layer(cross_edges) u_cce_layers = np.unique(cce_layers) cross_edge_dict = {} for l in range(2, self.n_layers): cross_edge_dict[l] = \ np.array([], dtype=np.uint64).reshape(-1, 2) val_dict = {} for cc_layer in u_cce_layers: layer_cross_edges = cross_edges[cce_layers == cc_layer] if len(layer_cross_edges) > 0: val_dict["atomic_cross_edges_%d" % cc_layer] = \ layer_cross_edges.tobytes() cross_edge_dict[cc_layer] = layer_cross_edges return cross_edge_dict def read_row(self, node_id: np.uint64, key: str, idx: int = 0, dtype: type = np.uint64, get_time_stamp: bool = False, fam_id: str = None) -> Any: """ Reads row from BigTable and takes care of serializations :param node_id: uint64 :param key: table column :param idx: column list index :param dtype: np.dtype :param get_time_stamp: bool :param fam_id: str :return: row entry """ key = serialize_key(key) if fam_id is None: fam_id = self.family_id row = self.table.read_row(serialize_uint64(node_id), filter_=ColumnQualifierRegexFilter(key)) if row is None or key not in row.cells[fam_id]: if get_time_stamp: return None, None else: return None cell_entries = row.cells[fam_id][key] if dtype is None: cell_value = cell_entries[idx].value else: cell_value = np.frombuffer(cell_entries[idx].value, dtype=dtype) if get_time_stamp: return cell_value, cell_entries[idx].timestamp else: return cell_value def mutate_row(self, row_key: bytes, column_family_id: str, val_dict: dict, time_stamp: Optional[datetime.datetime] = None ) -> bigtable.row.Row: """ Mutates a single row :param row_key: serialized bigtable row key :param column_family_id: str serialized column family id :param val_dict: dict :param time_stamp: None or datetime :return: list """ row = self.table.row(row_key) for column, value in val_dict.items(): row.set_cell(column_family_id=column_family_id, column=column, value=value, timestamp=time_stamp) return row def bulk_write(self, rows: Iterable[bigtable.row.DirectRow], root_ids: Optional[Union[np.uint64, Iterable[np.uint64]]] = None, operation_id: Optional[np.uint64] = None, slow_retry: bool = True, block_size: int = 2000) -> bool: """ Writes a list of mutated rows in bulk WARNING: If <rows> contains the same row (same row_key) and column key two times only the last one is effectively written to the BigTable (even when the mutations were applied to different columns) --> no versioning! :param rows: list list of mutated rows :param root_ids: list if uint64 :param operation_id: uint64 or None operation_id (or other unique id) that *was* used to lock the root the bulk write is only executed if the root is still locked with the same id. :param slow_retry: bool :param block_size: int """ if slow_retry: initial = 5 else: initial = 1 retry_policy = Retry( predicate=if_exception_type((Aborted, DeadlineExceeded, ServiceUnavailable)), initial=initial, maximum=15.0, multiplier=2.0, deadline=LOCK_EXPIRED_TIME_DELTA.seconds) if root_ids is not None and operation_id is not None: if isinstance(root_ids, int): root_ids = [root_ids] if not self.check_and_renew_root_locks(root_ids, operation_id): return False for i_row in range(0, len(rows), block_size): status = self.table.mutate_rows(rows[i_row: i_row + block_size], retry=retry_policy) if not all(status): raise Exception(status) return True def _range_read_execution(self, start_id, end_id, row_filter: RowFilter = None, n_retries: int = 100): """ Executes predefined range read (read_rows) :param start_id: np.uint64 :param end_id: np.uint64 :param row_filter: BigTable RowFilter :param n_retries: int :return: dict """ # Set up read range_read = self.table.read_rows( start_key=serialize_uint64(start_id), end_key=serialize_uint64(end_id), # allow_row_interleaving=True, end_inclusive=True, filter_=row_filter) range_read.consume_all() # Execute read consume_success = False # Retry reading if any of the writes failed i_tries = 0 while not consume_success and i_tries < n_retries: try: range_read.consume_all() consume_success = True except: time.sleep(i_tries) i_tries += 1 if not consume_success: raise Exception("Unable to consume range read: " "%d - %d -- n_retries = %d" % (start_id, end_id, n_retries)) return range_read.rows def range_read(self, start_id: np.uint64, end_id: np.uint64, n_retries: int = 100, max_block_size: int = 50000, row_keys: Optional[Iterable[str]] = None, row_key_filters: Optional[Iterable[str]] = None, time_stamp: datetime.datetime = datetime.datetime.max ) -> Union[ bigtable.row_data.PartialRowData, Dict[bytes, bigtable.row_data.PartialRowData]]: """ Reads all ids within a given range :param start_id: np.uint64 :param end_id: np.uint64 :param n_retries: int :param max_block_size: int :param row_keys: list of str more efficient read through row filters :param row_key_filters: list of str rows *with* this column will be ignored :param time_stamp: datetime.datetime :return: dict """ # Comply to resolution of BigTables TimeRange time_stamp -= datetime.timedelta( microseconds=time_stamp.microsecond % 1000) # Create filters: time and id range time_filter = TimestampRangeFilter(TimestampRange(end=time_stamp)) if row_keys is not None: filters = [] for k in row_keys: filters.append(ColumnQualifierRegexFilter(serialize_key(k))) if len(filters) > 1: row_filter = RowFilterUnion(filters) else: row_filter = filters[0] else: row_filter = None if row_filter is None: row_filter = time_filter else: row_filter = RowFilterChain([time_filter, row_filter]) if row_key_filters is not None: for row_key in row_key_filters: key_filter = ColumnRangeFilter( column_family_id=self.family_id, start_column=row_key, end_column=row_key, inclusive_start=True, inclusive_end=True) row_filter = ConditionalRowFilter(base_filter=key_filter, false_filter=row_filter, true_filter=BlockAllFilter(True)) max_block_size = np.uint64(max_block_size) block_start_ids = range(start_id, end_id, max_block_size) row_dict = {} for block_start_id in block_start_ids: block_end_id = np.uint64(block_start_id + max_block_size) if block_end_id > end_id: block_end_id = end_id block_row_dict = self._range_read_execution(start_id=block_start_id, end_id=block_end_id, row_filter=row_filter, n_retries=n_retries) row_dict.update(block_row_dict) return row_dict def range_read_chunk(self, layer: int, x: int, y: int, z: int, n_retries: int = 100, max_block_size: int = 1000000, row_keys: Optional[Iterable[str]] = None, row_key_filters: Optional[Iterable[str]] = None, time_stamp: datetime.datetime = datetime.datetime.max, ) -> Union[ bigtable.row_data.PartialRowData, Dict[bytes, bigtable.row_data.PartialRowData]]: """ Reads all ids within a chunk :param layer: int :param x: int :param y: int :param z: int :param n_retries: int :param max_block_size: int :param row_keys: list of str more efficient read through row filters :param row_key_filters: list of str rows *with* this column will be ignored :param time_stamp: datetime.datetime :return: dict """ chunk_id = self.get_chunk_id(layer=layer, x=x, y=y, z=z) if layer == 1: max_segment_id = self.get_segment_id_limit(chunk_id) max_block_size = max_segment_id + 1 else: max_segment_id = self.get_max_node_id(chunk_id=chunk_id) # Define BigTable keys start_id = self.get_node_id(
np.uint64(0)
numpy.uint64
import os import sys import glob import pandas as pd import numpy as np import simplejson as json import hi_processing.images as hip import matplotlib as mpl import matplotlib.pyplot as plt import PIL.Image as Image import scipy.stats as sps from datetime import datetime, timedelta import misc from data_helcats import HELCATS from data_stereo_hi import STEREOHI class CompareSolarStormsWorkflow: def __init__(self, data_loc, fig_loc): # set dirs for loc in [data_loc, fig_loc]: if not os.path.exists(loc): raise ValueError("path " + loc + " doesn't exist") self.data_loc = data_loc self.fig_loc = os.path.join(fig_loc, 'POPFSS') self.root = os.path.join(data_loc, 'POPFSS') for loc in [self.root, self.fig_loc]: if not os.path.exists(loc): os.mkdir(loc) # Zooniverse details self.workflow_name = 'Compare Solar Storms' self.workflow_id = 6496 # project data comes saved with '-' instead of ' ' in the name self.project_name = 'Protect our Planet from Solar Storms' self.project_save_name = 'protect-our-planet-from-solar-storms' self.project_id = 6480 # details of the different project phases, to split classifications self.diff = dict({'phase' : 1, 'workflow_version' : 19.32, 'subject_id_min' : 21571858, 'subject_id_max' : 27198377, 'classification_id_min' : 107482001, 'classification_id_max' : 134398497}) self.diff_be = dict({'phase' : 2, 'workflow_version' : 19.32, 'subject_id_min' : 34364886, 'subject_id_max' : 34387958, 'classification_id_min' : 172529512, 'classification_id_max' : 240608296}) self.norm = dict({'phase' : 3, 'workflow_version' : 19.32, 'subject_id_min' : 44304478, 'subject_id_max' : 46571066, 'classification_id_min' : 251146634}) ############### setting up the project def make_assets(self, img_type, camera='hi1', background_type=1): """ Function to loop over the HELCATS CMEs, find all relevant HI1A and HI1B 1-day background images, and produce plain, differenced and relative difference images. """ helcats = HELCATS(self.data_loc) hi_data = STEREOHI(self.data_loc) cme_list = helcats.find_cmes(te_track=True) for n, cme in enumerate(cme_list): print(cme) craft, time = helcats.get_cme_details(cme) start, mid, end, mid_el = helcats.get_te_track_times(cme, camera=camera) hi_data.make_img(cme, mid, craft, 'POPFSS', img_type, camera=camera, background_type=background_type) def find_comps(self, n, cycles='all', rounds=1, rn=0): """Finds pairwise comparisons to use in the manifest file. :param: n: number of objects to compare :param: cycles: number of cycles with n comparisons, must be between 1 and ceil(n/2) :param: rounds: number of files to split total comparisons over :param: rn: current round number, adds an offset to the cycle numbers run :returns: lists containing indexes of each asset to compare """ # calculate maximum values max_cycles = np.int(np.ceil(n/2))-1 max_ccs = n*max_cycles max_comps = np.int((n/2)*(n-1)) # if no number of cycles chosen, set at maximum if cycles == 'all': cycles = max_cycles if cycles != np.int(cycles): raise ValueError("number of cycles must be an integer") if cycles < 1: raise ValueError("must be at least one cycle") if cycles > max_cycles: raise ValueError("number of cycles cannot be greater than ceil(n/2)-1") if (cycles * rounds) > max_cycles: raise ValueError("cycles*rounds must be less than %s" %(max_cycles)) if rn > rounds: raise ValueError("round number cannot exceed number of rounds") # build nxn matrix matrix = np.zeros((n,n), dtype=int) spacing = np.int(np.floor(max_cycles/cycles)) cycle_nos = np.arange(1, np.int(np.ceil(n/2)), spacing)[0:cycles] # change dependant on round number for c in range(len(cycle_nos)): cycle_nos[c] = cycle_nos[c] + rn - 1 # each s is a loop with n comparisons # starts at diagonal under 1, as the 0 diagonal is the origin for s in cycle_nos: print(s) # change 0s to 1s for comparisons in this loop for i in range(0, n): j = np.mod(s+i, n) # Check this hasn't been compared already... if matrix[j, i] == 0: # Do this comparison matrix[i, j] = 1 print('cycles run: %s out of %s' %(cycles, max_cycles)) print('comparisons generated: %s out of %s' %(np.sum(matrix), max_ccs)) m = self.matrix_to_list(matrix) return m def matrix_to_list(self, matrix): """ Takes a matrix and returns a list of the rows/columns of the non-zero values. """ first = [] second = [] n = len(matrix) # loop over rows for i in range(0, n): # loop over values in row for j in range(0, n): if matrix[i, j] == 1: first.append(i) second.append(j) return first, second def make_manifest(self, img_type, cycles=16, m_files=30): """ This function produces the manifest to serve the ssw assets. This has the format of a CSV file with: asset_name,file1,file2,...fileN. Asset names will be given the form of sswN_helcatsM_craft_type_t1_t3, where t1 and t3 correspond to the times of the first and third image in sets of three. This works by searching the 'out_data/comp_assets' folder for assets and creating a manifest file for these assets. :param: m_files: number of manifest files to split comparisons into :return: Outputs a "manifest.csv" file in the event/craft/type directory of these images, or multiple files """ # Want list of all images from both craft sta_data_dir = os.path.join(self.data_loc, 'STEREO_HI', 'Images', 'POPFSS', img_type, 'sta') stb_data_dir = os.path.join(self.data_loc, 'STEREO_HI', 'Images', 'POPFSS', img_type, 'stb') sta_files = glob.glob(os.path.join(sta_data_dir, '*')) stb_files = glob.glob(os.path.join(stb_data_dir, '*')) # get only filename not full path, exclude extension sta_files = [os.path.basename(f) for f in sta_files] stb_files = [os.path.basename(f) for f in stb_files] images = np.append(sta_files, stb_files) images.sort() print("found %s images, generating comparisons..." %(len(images))) # Create manifest files for r in range(m_files): # Make the manifest file manifest_path = os.path.join(self.root, 'manifest'+str(r+1)+'.csv') with open(manifest_path, 'w') as manifest: # Add in manifest headers manifest.write("subject_id,asset_0,asset_1\n") # Get comparisons list for this manifest file comps = self.find_comps(len(images), cycles=cycles, rounds=m_files, rn=r+1) # returns lists of left and right images to compare # Write comparisons list into correct columns # loop over each comparison i = 0 # give each comparison a subject id sub_id = 0 while i < len(comps[0]): manifest_elements = [str(sub_id), images[comps[0][i]], images[comps[1][i]]] i = i + 1 sub_id += 1 # Write out as comma sep list manifest.write(",".join(manifest_elements) + "\n") def get_helcats_names(self, image_list): """returns HELCATS name string given image name e.g.ssw_067_helcats_HCME_B__20131128_02_stb_diff_20131129_005001.jpg returns HCME_B__20131128_02 """ helcats_name_list = [] for img in image_list: parts = img.split('_') hn = parts[3] + '_' + parts[4] + '__' + parts[6] + '_' + parts[7] helcats_name_list.append(hn) return helcats_name_list def analyse_manifest(self, manifest_name): df = pd.read_csv(os.path.join(self.root, manifest_name)) hc = HELCATS(self.data_loc) # add columns for helcats names, dates and craft of each image for n, side in enumerate(['left', 'right']): df[side + '_helcats_name'] = self.get_helcats_names(df['asset_' + str(n)]) craft_list, time_list = hc.get_cme_details_list(df[side + '_helcats_name']) df[side + '_craft'] = pd.Series(craft_list, index=df.index) df[side + '_time'] = pd.Series(time_list, index=df.index) # CME occurence as left or right image l_occurences = [] r_occurences = [] for cme in np.unique(df['left_helcats_name']): l = df[df['left_helcats_name'] == cme] r = df[df['right_helcats_name'] == cme] l_occurences.append(len(l)) r_occurences.append(len(r)) plt.figure(figsize=[9, 9]) plt.scatter(l_occurences, r_occurences) plt.xlabel("# times CME shown as left image", fontsize=16) plt.ylabel("# times CME shown as right image", fontsize=16) totals = [sum(x) for x in zip(l_occurences, r_occurences)] print("Each CME is compared to between %s and %s different CMEs." %(
np.min(totals)
numpy.min
from __future__ import division, print_function import os import numpy as np """ This module contains: - Polar: class to represent a polar (computes steady/unsteady parameters, corrections etc.) - blend: function to blend two polars - thicknessinterp_from_one_set: interpolate polars at different thickeness based on one set of polars JPJ 7/20 : This class can probably be combined with Polar() from airfoilprep.py. They do not have one-to-one matching for the methods. Because both are not tested extensively, we first need to write tests for both before attempting to combine them. """ class Polar(object): """ Defines section lift, drag, and pitching moment coefficients as a function of angle of attack at a particular Reynolds number. Different parameters may be computed and different corrections applied. Available routines: - cl_interp : cl at given alpha values - cd_interp : cd at given alpha values - cm_interp : cm at given alpha values - cn_interp : cn at given alpha values - f_st_interp : separation function (compared to fully separated polar) - cl_fs_interp : cl fully separated at given alpha values - cl_inv_interp : cl at given alpha values - correction3D : apply 3D rotatational correction - extrapolate : extend polar data set using Viterna's method - unsteadyParams : computes unsteady params e.g. needed by AeroDyn15 - plot : plots the polar - alpha0 : computes and returns alpha0, also stored in _alpha0 - linear_region : determines the alpha and cl values in the linear region - cl_max : cl_max - cl_linear_slope : linear slope and the linear region - cl_fully_separated : fully separated cl - dynaStallOye_DiscreteStep : compute aerodynamical force from aerodynamic data """ def __init__(self, Re, alpha, cl, cd, cm, compute_params=False, radians=None): """Constructor Parameters ---------- Re : float Reynolds number alpha : ndarray (deg) angle of attack cl : ndarray lift coefficient cd : ndarray drag coefficient cm : ndarray moment coefficient """ self.Re = Re self.alpha = np.array(alpha) self.cl = np.array(cl) self.cd = np.array(cd) self.cm = np.array(cm) self.f_st = None # separation function self.cl_fs = None # cl_fully separated self._linear_slope = None self._alpha0 = None if radians is None: # If the max alpha is above pi, most likely we are in degrees self._radians = np.mean(np.abs(self.alpha)) <= np.pi / 2 else: self._radians = radians # NOTE: method needs to be in harmony for linear_slope and the one used in cl_fully_separated if compute_params: self._linear_slope, self._alpha0 = self.cl_linear_slope(method="max") self.cl_fully_separated() self.cl_inv = self._linear_slope * (self.alpha - self._alpha0) def cl_interp(self, alpha): return np.interp(alpha, self.alpha, self.cl) def cd_interp(self, alpha): return np.interp(alpha, self.alpha, self.cd) def cm_interp(self, alpha): return np.interp(alpha, self.alpha, self.cm) def cn_interp(self, alpha): return np.interp(alpha, self.alpha, self.cn) def f_st_interp(self, alpha): if self.f_st is None: self.cl_fully_separated() return np.interp(alpha, self.alpha, self.f_st) def cl_fs_interp(self, alpha): if self.cl_fs is None: self.cl_fully_separated() return np.interp(alpha, self.alpha, self.cl_fs) def cl_inv_interp(self, alpha): if (self._linear_slope is None) and (self._alpha0 is None): self._linear_slope, self._alpha0 = self.cl_linear_slope() return self._linear_slope * (alpha - self._alpha0) @property def cn(self): """returns : Cl cos(alpha) + Cd sin(alpha) NOT: Cl cos(alpha) + (Cd-Cd0) sin(alpha) """ if self._radians: return self.cl * np.cos(self.alpha) + self.cd * np.sin(self.alpha) else: return self.cl * np.cos(self.alpha * np.pi / 180) + self.cd * np.sin(self.alpha * np.pi / 180) def correction3D(self, r_over_R, chord_over_r, tsr, alpha_max_corr=30, alpha_linear_min=-5, alpha_linear_max=5): """Applies 3-D corrections for rotating sections from the 2-D data. Parameters ---------- r_over_R : float local radial position / rotor radius chord_over_r : float local chord length / local radial location tsr : float tip-speed ratio alpha_max_corr : float, optional (deg) maximum angle of attack to apply full correction alpha_linear_min : float, optional (deg) angle of attack where linear portion of lift curve slope begins alpha_linear_max : float, optional (deg) angle of attack where linear portion of lift curve slope ends Returns ------- polar : Polar A new Polar object corrected for 3-D effects Notes ----- The Du-Selig method :cite:`Du1998A-3-D-stall-del` is used to correct lift, and the Eggers method :cite:`Eggers-Jr2003An-assessment-o` is used to correct drag. """ # rename and convert units for convenience alpha = np.radians(self.alpha) cl_2d = self.cl cd_2d = self.cd alpha_max_corr = np.radians(alpha_max_corr) alpha_linear_min = np.radians(alpha_linear_min) alpha_linear_max = np.radians(alpha_linear_max) # parameters in Du-Selig model a = 1 b = 1 d = 1 lam = tsr / (1 + tsr ** 2) ** 0.5 # modified tip speed ratio expon = d / lam / r_over_R # find linear region idx = np.logical_and(alpha >= alpha_linear_min, alpha <= alpha_linear_max) p = np.polyfit(alpha[idx], cl_2d[idx], 1) m = p[0] alpha0 = -p[1] / m # correction factor fcl = 1.0 / m * (1.6 * chord_over_r / 0.1267 * (a - chord_over_r ** expon) / (b + chord_over_r ** expon) - 1) # not sure where this adjustment comes from (besides AirfoilPrep spreadsheet of course) adj = ((np.pi / 2 - alpha) / (np.pi / 2 - alpha_max_corr)) ** 2 adj[alpha <= alpha_max_corr] = 1.0 # Du-Selig correction for lift cl_linear = m * (alpha - alpha0) cl_3d = cl_2d + fcl * (cl_linear - cl_2d) * adj # JPJ 7/20 : # This drag correction is what differs between airfoilprep's Polar and # this class. If we use the Du-Selig correction for drag here, # the `test_stall` results match exactly. # I'm leaving it as-is so dac.py and other untested scripts are not affected. # Eggers 2003 correction for drag delta_cl = cl_3d - cl_2d delta_cd = delta_cl * (np.sin(alpha) - 0.12 * np.cos(alpha)) / (np.cos(alpha) + 0.12 * np.sin(alpha)) cd_3d = cd_2d + delta_cd return type(self)(self.Re, np.degrees(alpha), cl_3d, cd_3d, self.cm) def extrapolate(self, cdmax, AR=None, cdmin=0.001, nalpha=15): """Extrapolates force coefficients up to +/- 180 degrees using Viterna's method :cite:`Viterna1982Theoretical-and`. Parameters ---------- cdmax : float maximum drag coefficient AR : float, optional aspect ratio = (rotor radius / chord_75% radius) if provided, cdmax is computed from AR cdmin: float, optional minimum drag coefficient. used to prevent negative values that can sometimes occur with this extrapolation method nalpha: int, optional number of points to add in each segment of Viterna method Returns ------- polar : Polar a new Polar object Notes ----- If the current polar already supplies data beyond 90 degrees then this method cannot be used in its current form and will just return itself. If AR is provided, then the maximum drag coefficient is estimated as >>> cdmax = 1.11 + 0.018*AR """ if cdmin < 0: raise Exception("cdmin cannot be < 0") # lift coefficient adjustment to account for assymetry cl_adj = 0.7 # estimate CD max if AR is not None: cdmax = 1.11 + 0.018 * AR self.cdmax = max(max(self.cd), cdmax) # extract matching info from ends alpha_high = np.radians(self.alpha[-1]) cl_high = self.cl[-1] cd_high = self.cd[-1] cm_high = self.cm[-1] alpha_low = np.radians(self.alpha[0]) cl_low = self.cl[0] cd_low = self.cd[0] if alpha_high > np.pi / 2: raise Exception("alpha[-1] > pi/2") return self if alpha_low < -np.pi / 2: raise Exception("alpha[0] < -pi/2") return self # parameters used in model sa = np.sin(alpha_high) ca = np.cos(alpha_high) self.A = (cl_high - self.cdmax * sa * ca) * sa / ca ** 2 self.B = (cd_high - self.cdmax * sa * sa) / ca # alpha_high <-> 90 alpha1 = np.linspace(alpha_high, np.pi / 2, nalpha) alpha1 = alpha1[1:] # remove first element so as not to duplicate when concatenating cl1, cd1 = self.__Viterna(alpha1, 1.0) # 90 <-> 180-alpha_high alpha2 = np.linspace(np.pi / 2, np.pi - alpha_high, nalpha) alpha2 = alpha2[1:] cl2, cd2 = self.__Viterna(np.pi - alpha2, -cl_adj) # 180-alpha_high <-> 180 alpha3 = np.linspace(np.pi - alpha_high, np.pi, nalpha) alpha3 = alpha3[1:] cl3, cd3 = self.__Viterna(np.pi - alpha3, 1.0) cl3 = (alpha3 - np.pi) / alpha_high * cl_high * cl_adj # override with linear variation if alpha_low <= -alpha_high: alpha4 = [] cl4 = [] cd4 = [] alpha5max = alpha_low else: # -alpha_high <-> alpha_low # Note: this is done slightly differently than AirfoilPrep for better continuity alpha4 = np.linspace(-alpha_high, alpha_low, nalpha) alpha4 = alpha4[1:-2] # also remove last element for concatenation for this case cl4 = -cl_high * cl_adj + (alpha4 + alpha_high) / (alpha_low + alpha_high) * (cl_low + cl_high * cl_adj) cd4 = cd_low + (alpha4 - alpha_low) / (-alpha_high - alpha_low) * (cd_high - cd_low) alpha5max = -alpha_high # -90 <-> -alpha_high alpha5 = np.linspace(-np.pi / 2, alpha5max, nalpha) alpha5 = alpha5[1:] cl5, cd5 = self.__Viterna(-alpha5, -cl_adj) # -180+alpha_high <-> -90 alpha6 = np.linspace(-np.pi + alpha_high, -np.pi / 2, nalpha) alpha6 = alpha6[1:] cl6, cd6 = self.__Viterna(alpha6 + np.pi, cl_adj) # -180 <-> -180 + alpha_high alpha7 = np.linspace(-np.pi, -np.pi + alpha_high, nalpha) cl7, cd7 = self.__Viterna(alpha7 + np.pi, 1.0) cl7 = (alpha7 + np.pi) / alpha_high * cl_high * cl_adj # linear variation alpha = np.concatenate((alpha7, alpha6, alpha5, alpha4, np.radians(self.alpha), alpha1, alpha2, alpha3)) cl = np.concatenate((cl7, cl6, cl5, cl4, self.cl, cl1, cl2, cl3)) cd = np.concatenate((cd7, cd6, cd5, cd4, self.cd, cd1, cd2, cd3)) cd = np.maximum(cd, cdmin) # don't allow negative drag coefficients # Setup alpha and cm to be used in extrapolation cm1_alpha = np.floor(self.alpha[0] / 10.0) * 10.0 cm2_alpha = np.ceil(self.alpha[-1] / 10.0) * 10.0 alpha_num = abs(int((-180.0 - cm1_alpha) / 10.0 - 1)) alpha_cm1 = np.linspace(-180.0, cm1_alpha, alpha_num) alpha_cm2 = np.linspace(cm2_alpha, 180.0, int((180.0 - cm2_alpha) / 10.0 + 1)) alpha_cm = np.concatenate( (alpha_cm1, self.alpha, alpha_cm2) ) # Specific alpha values are needed for cm function to work cm1 = np.zeros(len(alpha_cm1)) cm2 = np.zeros(len(alpha_cm2)) cm_ext = np.concatenate((cm1, self.cm, cm2)) if np.count_nonzero(self.cm) > 0: cmCoef = self.__CMCoeff(cl_high, cd_high, cm_high) # get cm coefficient cl_cm = np.interp(alpha_cm, np.degrees(alpha), cl) # get cl for applicable alphas cd_cm = np.interp(alpha_cm, np.degrees(alpha), cd) # get cd for applicable alphas alpha_low_deg = self.alpha[0] alpha_high_deg = self.alpha[-1] for i in range(len(alpha_cm)): cm_new = self.__getCM(i, cmCoef, alpha_cm, cl_cm, cd_cm, alpha_low_deg, alpha_high_deg) if cm_new is None: pass # For when it reaches the range of cm's that the user provides else: cm_ext[i] = cm_new cm = np.interp(np.degrees(alpha), alpha_cm, cm_ext) return type(self)(self.Re, np.degrees(alpha), cl, cd, cm) def __Viterna(self, alpha, cl_adj): """private method to perform Viterna extrapolation""" alpha = np.maximum(alpha, 0.0001) # prevent divide by zero cl = self.cdmax / 2 * np.sin(2 * alpha) + self.A * np.cos(alpha) ** 2 / np.sin(alpha) cl = cl * cl_adj cd = self.cdmax * np.sin(alpha) ** 2 + self.B * np.cos(alpha) return cl, cd def __CMCoeff(self, cl_high, cd_high, cm_high): """private method to obtain CM0 and CMCoeff""" found_zero_lift = False for i in range(len(self.cm) - 1): if abs(self.alpha[i]) < 20.0 and self.cl[i] <= 0 and self.cl[i + 1] >= 0: p = -self.cl[i] / (self.cl[i + 1] - self.cl[i]) cm0 = self.cm[i] + p * (self.cm[i + 1] - self.cm[i]) found_zero_lift = True break if not found_zero_lift: p = -self.cl[0] / (self.cl[1] - self.cl[0]) cm0 = self.cm[0] + p * (self.cm[1] - self.cm[0]) self.cm0 = cm0 alpha_high = np.radians(self.alpha[-1]) XM = (-cm_high + cm0) / (cl_high * np.cos(alpha_high) + cd_high * np.sin(alpha_high)) cmCoef = (XM - 0.25) / np.tan((alpha_high - np.pi / 2)) return cmCoef def __getCM(self, i, cmCoef, alpha, cl_ext, cd_ext, alpha_low_deg, alpha_high_deg): """private method to extrapolate Cm""" cm_new = 0 if alpha[i] >= alpha_low_deg and alpha[i] <= alpha_high_deg: return if alpha[i] > -165 and alpha[i] < 165: if abs(alpha[i]) < 0.01: cm_new = self.cm0 else: if alpha[i] > 0: x = cmCoef * np.tan(np.radians(alpha[i]) - np.pi / 2) + 0.25 cm_new = self.cm0 - x * ( cl_ext[i] * np.cos(np.radians(alpha[i])) + cd_ext[i] * np.sin(np.radians(alpha[i])) ) else: x = cmCoef * np.tan(-np.radians(alpha[i]) - np.pi / 2) + 0.25 cm_new = -( self.cm0 - x * (-cl_ext[i] * np.cos(-np.radians(alpha[i])) + cd_ext[i] * np.sin(-np.radians(alpha[i]))) ) else: if alpha[i] == 165: cm_new = -0.4 elif alpha[i] == 170: cm_new = -0.5 elif alpha[i] == 175: cm_new = -0.25 elif alpha[i] == 180: cm_new = 0 elif alpha[i] == -165: cm_new = 0.35 elif alpha[i] == -170: cm_new = 0.4 elif alpha[i] == -175: cm_new = 0.2 elif alpha[i] == -180: cm_new = 0 else: print("Angle encountered for which there is no CM table value " "(near +/-180 deg). Program will stop.") return cm_new def unsteadyParams(self, window_offset=None): """compute unsteady aero parameters used in AeroDyn input file TODO Questions to solve: - Is alpha 0 defined at zero lift or zero Cn? - Are Cn1 and Cn2 the stall points of Cn or the regions where Cn deviates from the linear region? - Is Cd0 Cdmin? - Should Cd0 be used in cn? - Should the TSE points be used? - If so, should we use the linear points or the points on the cn-curve - Should we prescribe alpha0cn when determining the slope? NOTE: alpha0Cl and alpha0Cn are usually within 0.005 deg of each other, less thatn 0.3% difference, with alpha0Cn > alpha0Cl. The difference increase thought towards the root of the blade Using the f=0.7 points doesnot change much for the lower point but it has quite an impact on the upper point % Parameters ---------- window_dalpha0: the linear region will be looked for in the region alpha+window_offset Returns ------- alpha0 : lift or 0 cn (TODO TODO) angle of attack (deg) alpha1 : angle of attack at f=0.7 (approximately the stall angle) for AOA>alpha0 (deg) alpha2 : angle of attack at f=0.7 (approximately the stall angle) for AOA<alpha0 (deg) cnSlope : slope of 2D normal force coefficient curve (1/rad) Cn1 : Critical value of C0n at leading edge separation. It should be extracted from airfoil data at a given Mach and Reynolds number. It can be calculated from the static value of Cn at either the break in the pitching moment or the loss of chord force at the onset of stall. It is close to the condition of maximum lift of the airfoil at low Mach numbers. Cn2 : As Cn1 for negative AOAs. Cd0 : Drag coefficient at zero lift TODO Cm0 : Moment coefficient at zero lift TODO """ if window_offset is None: dwin = np.array([-5, 10]) if self._radians: dwin = np.radians(dwin) cl = self.cl cd = self.cd alpha = self.alpha if self._radians: cn = cl * np.cos(alpha) + cd * np.sin(alpha) else: cn = cl * np.cos(alpha * np.pi / 180) + cd * np.sin(alpha * np.pi / 180) # --- Zero lift alpha0 = self.alpha0() cd0 = self.cd_interp(alpha0) cm0 = self.cm_interp(alpha0) # --- Zero cn if self._radians: window = [np.radians(-20), np.radians(20)] else: window = [-20, 20] alpha0cn = _find_alpha0(alpha, cn, window) # checks for inppropriate data (like cylinders) if len(np.unique(cl)) == 1: return (alpha0, 0.0, 0.0, 0.0, 0.0, 0.0, cd0, cm0) # --- cn "inflection" or "Max" points # These point are detected from slope changes of cn, positive of negative inflections # The upper stall point is the first point after alpha0 with a "hat" inflection # The lower stall point is the first point below alpha0 with a "v" inflection a_MaxUpp, cn_MaxUpp, a_MaxLow, cn_MaxLow = _find_max_points(alpha, cn, alpha0, method="inflections") # --- cn slope # Different method may be used. The max method ensures the the curve is always below its tangent # Leastsquare fit in the region alpha0cn+window_offset cnSlope_poly, a0cn_poly = _find_slope(alpha, cn, window=alpha0cn + dwin, method="leastsquare", x0=alpha0cn) cnSlope_poly, a0cn_poly = _find_slope(alpha, cn, window=alpha0cn + dwin, method="leastsquare") # Max (KEEP ME) # cnSlope_max,a0cn_max = _find_slope(alpha, cn, window=[alpha0cn,a_StallUpp], method='max', xi=alpha0cn) # Optim # cnSlope_optim,a0cn_optim = _find_slope(alpha, cn, window=[alpha0-5,alpha0+20], method='optim', x0=alpha0cn) ## FiniteDiff # cnSlope_FD,a0cn_FD = _find_slope(alpha, cn, method='finitediff_1c', xi=alpha0cn) # slopesRel=np.array([cnSlope_poly,cnSlope_max,cnSlope_optim,cnSlope_FD])*180/np.pi/(2*np.pi) cnSlope = cnSlope_poly # --- cn at "stall onset" (Trailling Edge Separation) locations, when cn deviates from the linear region a_TSELow, a_TSEUpp = _find_TSE_region(alpha, cn, cnSlope, alpha0cn, deviation=0.05) cn_TSEUpp_lin = cnSlope * (a_TSEUpp - alpha0cn) cn_TSELow_lin = cnSlope * (a_TSELow - alpha0cn) cn_TSEUpp = np.interp(a_TSEUpp, alpha, cn) cn_TSELow = np.interp(a_TSELow, alpha, cn) # --- cn at points where f=0.7 cn_f = cnSlope * (alpha - alpha0cn) * ((1 + np.sqrt(0.7)) / 2) ** 2 xInter, _ = _intersections(alpha, cn_f, alpha, cn) if len(xInter) == 3: a_f07_Upp = xInter[2] a_f07_Low = xInter[0] else: raise Exception("cn_f does not ntersect cn 3 times.") # alpha1 = abs(xInter[0]) # alpha2 = -abs(xInter[0]) # --- DEBUG plot # import matplotlib.pyplot as plt # plt.plot(alpha, cn,label='cn') # plt.xlim([-50,50]) # plt.ylim([-3,3]) # plt.plot([alpha0-5,alpha0-5] ,[-3,3],'k--') # plt.plot([alpha0+10,alpha0+10],[-3,3],'k--') # plt.plot([alpha0,alpha0],[-3,3],'r-') # plt.plot([alpha0cn,alpha0cn],[-3,3],'b-') # # plt.plot(alpha, cn_f,label='cn_f') # plt.plot(a_f07_Upp,self.cn_interp(a_f07_Upp),'d',label='Cn f07 Up') # plt.plot(a_f07_Low,self.cn_interp(a_f07_Low),'d',label='Cn f07 Low') # plt.plot(a_TSEUpp,cn_TSEUpp,'o',label='Cn TSEUp') # plt.plot(a_TSELow,cn_TSELow,'o',label='Cn TSELow') # plt.plot(a_TSEUpp,cn_TSEUpp_lin,'+',label='Cn TSEUp lin') # plt.plot(a_TSELow,cn_TSELow_lin,'+',label='Cn TSELow lin') # plt.plot(alpha,cnSlope *(alpha-alpha0cn),'--', label ='Linear') # # plt.plot(a_MaxUpp,cnMaxUpp,'o',label='Cn MaxUp') # # plt.plot(a_MaxLow,cnMaxLow,'o',label='Cn MaxLow') # # plt.plot(alpha,cnSlope_poly *(alpha-a0cn_poly),'--', label ='Polyfit '+sSlopes[0]) # # plt.plot(alpha,cnSlope_max *(alpha-a0cn_max),'--', label ='Max '+sSlopes[1]) # # plt.plot(alpha,cnSlope_optim*(alpha-a0cn_optim),'--', label ='Optim '+sSlopes[2]) # # plt.plot(alpha,cnSlope_FD *(alpha-a0cn_FD),'--', label ='FiniteDiff'+sSlopes[3]) # # # plt.plot(alpha , np.pi/180*cnSlope*(alpha-alpha0),label='cn lin') # # # plt.plot(alpha1, np.pi/180*cnSlope*(alpha1-alpha0),'o',label='cn Stall') # # # plt.plot(alpha2, np.pi/180*cnSlope*(alpha2-alpha0),'o',label='cn Stall') # plt.legend() # mng=plt.get_current_fig_manager() # mng.full_screen_toggle() # plt.show() # raise Exception() # --- Deciding what we return # Critical value of C0n at leading edge separation # cn1 = cn_TSEUpp_lin # cn2 = cn_TSELow_lin cn1 = cn_MaxUpp cn2 = cn_MaxLow # Alpha at f=0.7 # alpha1= a_TSEUpp # alpha2= a_TSELow alpha1 = a_f07_Upp alpha2 = a_f07_Low # if self._radians: alpha0 = np.degrees(alpha0) alpha1 = np.degrees(alpha1) alpha2 = np.degrees(alpha2) cnSlope = cnSlope else: cnSlope = cnSlope * 180 / np.pi return (alpha0, alpha1, alpha2, cnSlope, cn1, cn2, cd0, cm0) def plot(self): """plot cl/cd/cm polar Returns ------- figs : list of figure handles """ import matplotlib.pyplot as plt p = self figs = [] # plot cl fig = plt.figure() figs.append(fig) ax = fig.add_subplot(111) plt.plot(p.alpha, p.cl, label="Re = " + str(p.Re / 1e6) + " million") ax.set_xlabel("angle of attack (deg)") ax.set_ylabel("lift coefficient") ax.legend(loc="best") # plot cd fig = plt.figure() figs.append(fig) ax = fig.add_subplot(111) ax.plot(p.alpha, p.cd, label="Re = " + str(p.Re / 1e6) + " million") ax.set_xlabel("angle of attack (deg)") ax.set_ylabel("drag coefficient") ax.legend(loc="best") # plot cm fig = plt.figure() figs.append(fig) ax = fig.add_subplot(111) ax.plot(p.alpha, p.cm, label="Re = " + str(p.Re / 1e6) + " million") ax.set_xlabel("angle of attack (deg)") ax.set_ylabel("moment coefficient") ax.legend(loc="best") return figs def alpha0(self, window=None): """ Finds alpha0, angle of zero lift """ if window is None: if self._radians: window = [np.radians(-20), np.radians(20)] else: window = [-20, 20] window = _alpha_window_in_bounds(self.alpha, window) # print(window) # print(self.alpha) # print(self._radians) # print(self.cl) # print(window) return _find_alpha0(self.alpha, self.cl, window) def linear_region(self): slope, alpha0 = self.cl_linear_slope() alpha_linear_region = np.asarray(_find_TSE_region(self.alpha, self.cl, slope, alpha0, deviation=0.05)) cl_linear_region = (alpha_linear_region - alpha0) * slope return alpha_linear_region, cl_linear_region, slope, alpha0 def cl_max(self, window=None): """ Finds cl_max , returns (Cl_max,alpha_max) """ if window is None: if self._radians: window = [np.radians(-40), np.radians(40)] else: window = [-40, 40] # Constant case or only one value if np.all(self.cl == self.cl[0]) or len(self.cl) == 1: return self.cl, self.alpha # Ensuring window is within our alpha values window = _alpha_window_in_bounds(self.alpha, window) # Finding max within window iwindow = np.where((self.alpha >= window[0]) & (self.alpha <= window[1])) alpha = self.alpha[iwindow] cl = self.cl[iwindow] i_max = np.argmax(cl) if i_max == len(iwindow): raise Exception( "Max cl is at the window boundary ([{};{}]), increase window (TODO automatically)".format( window[0], window[1] ) ) pass cl_max = cl[i_max] alpha_cl_max = alpha[i_max] # alpha_zc,i_zc = _zero_crossings(x=alpha,y=cl,direction='up') # if len(alpha_zc)>1: # raise Exception('Cannot find alpha0, {} zero crossings of Cl in the range of alpha values: [{} {}] '.format(len(alpha_zc),window[0],window[1])) # elif len(alpha_zc)==0: # raise Exception('Cannot find alpha0, no zero crossing of Cl in the range of alpha values: [{} {}] '.format(window[0],window[1])) # # alpha0=alpha_zc[0] return cl_max, alpha_cl_max def cl_linear_slope(self, window=None, method="optim", radians=False): """Find slope of linear region Outputs: a 2-tuplet of: slope (in inverse units of alpha, or in radians-1 if radians=True) alpha_0 in the same unit as alpha, or in radians if radians=True """ # --- Return function def myret(sl, a0): # wrapper function to return degrees or radians if radians: return np.rad2deg(sl), np.deg2rad(a0) else: return sl, a0 # finding our alpha0 alpha0 = self.alpha0() # Constant case or only one value if np.all(self.cl == self.cl[0]) or len(self.cl) == 1: return myret(0, alpha0) if window is None: if np.nanmin(self.cl) > 0 or np.nanmax(self.cl) < 0: window = [self.alpha[0], self.alpha[-1]] else: # define a window around alpha0 if self._radians: window = alpha0 + np.radians(np.array([-5, +20])) else: window = alpha0 + np.array([-5, +20]) # Ensuring window is within our alpha values window = _alpha_window_in_bounds(self.alpha, window) if method == "max": slope, off = _find_slope(self.alpha, self.cl, xi=alpha0, window=window, method="max") elif method == "leastsquare": slope, off = _find_slope(self.alpha, self.cl, xi=alpha0, window=window, method="leastsquare") elif method == "leastsquare_constraint": slope, off = _find_slope(self.alpha, self.cl, x0=alpha0, window=window, method="leastsquare") elif method == "optim": # Selecting range of values within window idx = np.where((self.alpha >= window[0]) & (self.alpha <= window[1]) & ~np.isnan(self.cl))[0] cl, alpha = self.cl[idx], self.alpha[idx] # Selecting within the min and max of this window to improve accuracy imin = np.where(cl == np.min(cl))[0][-1] idx = np.arange(imin, np.argmax(cl) + 1) window = [alpha[imin], alpha[np.argmax(cl)]] cl, alpha = cl[idx], alpha[idx] # Performing minimization of slope slope, off = _find_slope(alpha, cl, x0=alpha0, window=None, method="optim") else: raise Exception("Method unknown for lift slope determination: {}".format(method)) # --- Safety checks if len(self.cl) > 10: # Looking at slope around alpha 0 to see if we are too far off slope_FD, off_FD = _find_slope(self.alpha, self.cl, xi=alpha0, window=window, method="finitediff_1c") if abs(slope - slope_FD) / slope_FD * 100 > 20: raise Exception( "Warning: More than 20% error between estimated slope ({:.4f}) and the slope around alpha0 ({:.4f}). The window for the slope search ([{} {}]) is likely wrong.".format( slope, slope_FD, window[0], window[-1] ) ) # print('slope ',slope,' Alpha range: {:.3f} {:.3f} - nLin {} nMin {} nMax {}'.format(alpha[iStart],alpha[iEnd],len(alpha[iStart:iEnd+1]),nMin,len(alpha))) return myret(slope, off) def cl_fully_separated(self): alpha0 = self.alpha0() ( cla, _, ) = self.cl_linear_slope(method="max") if cla == 0: cl_fs = self.cl # when f_st ==1 f_st = self.cl * 0 else: cl_ratio = self.cl / (cla * (self.alpha - alpha0)) cl_ratio[np.where(cl_ratio < 0)] = 0 f_st = (2 * np.sqrt(cl_ratio) - 1) ** 2 f_st[np.where(f_st < 1e-15)] = 0 # Initialize to linear region (in fact only at singularity, where f_st=1) cl_fs = self.cl / 2.0 # when f_st ==1 # Region where f_st<1, merge I = np.where(f_st < 1) cl_fs[I] = (self.cl[I] - cla * (self.alpha[I] - alpha0) * f_st[I]) / (1.0 - f_st[I]) # Outside region, use steady data iHig = np.ma.argmin(np.ma.MaskedArray(f_st, self.alpha < alpha0)) iLow = np.ma.argmin(np.ma.MaskedArray(f_st, self.alpha > alpha0)) cl_fs[0 : iLow + 1] = self.cl[0 : iLow + 1] cl_fs[iHig + 1 : -1] = self.cl[iHig + 1 : -1] # Ensuring everything is in harmony cl_inv = cla * (self.alpha - alpha0) f_st = (self.cl - cl_fs) / (cl_inv - cl_fs + 1e-10) f_st[np.where(f_st < 1e-15)] = 0 # Storing self.f_st = f_st self.cl_fs = cl_fs return cl_fs, f_st def dynaStallOye_DiscreteStep(self, alpha_t, tau, fs_prev, dt): # compute aerodynamical force from aerodynamic data # interpolation from data f_st = self.f_st_interp(alpha_t) Clinv = self.cl_inv_interp(alpha_t) Clfs = self.cl_fs_interp(alpha_t) # dynamic stall model fs = f_st + (fs_prev - f_st) * np.exp(-dt / tau) Cl = fs * Clinv + (1 - fs) * Clfs return Cl, fs def blend(pol1, pol2, weight): """Blend this polar with another one with the specified weighting Parameters ---------- pol1: (class Polar or array) first polar pol2: (class Polar or array) second polar weight: (float) blending parameter between 0 (first polar) and 1 (second polar) Returns ------- polar : (class Polar or array) a blended Polar """ bReturnObject = False if hasattr(pol1, "cl"): bReturnObject = True alpha1 = pol1.alpha M1 = np.zeros((len(alpha1), 4)) M1[:, 0] = pol1.alpha M1[:, 1] = pol1.cl M1[:, 2] = pol1.cd M1[:, 3] = pol1.cm else: alpha1 = pol1[:, 0] M1 = pol1 if hasattr(pol2, "cl"): bReturnObject = True alpha2 = pol2.alpha M2 = np.zeros((len(alpha2), 4)) M2[:, 0] = pol2.alpha M2[:, 1] = pol2.cl M2[:, 2] = pol2.cd M2[:, 3] = pol2.cm else: alpha2 = pol2[:, 0] M2 = pol2 # Define range of alpha, merged values and truncate if one set beyond the other range alpha = np.union1d(alpha1, alpha2) min_alpha = max(alpha1.min(), alpha2.min()) max_alpha = min(alpha1.max(), alpha2.max()) alpha = alpha[np.logical_and(alpha >= min_alpha, alpha <= max_alpha)] # alpha = np.array([a for a in alpha if a >= min_alpha and a <= max_alpha]) # Creating new output matrix to store polar M = np.zeros((len(alpha), M1.shape[1])) M[:, 0] = alpha # interpolate to new alpha and linearly blend for j in np.arange(1, M.shape[1]): v1 = np.interp(alpha, alpha1, M1[:, j]) v2 = np.interp(alpha, alpha2, M2[:, j]) M[:, j] = (1 - weight) * v1 + weight * v2 if hasattr(pol1, "Re"): Re = pol1.Re + weight * (pol2.Re - pol1.Re) else: Re = np.nan if bReturnObject: return type(pol1)(Re, M[:, 0], M[:, 1], M[:, 2], M[:, 3]) else: return M def thicknessinterp_from_one_set(thickness, polarList, polarThickness): """Returns a set of interpolated polars from one set of polars at known thicknesses and a list of thickness The nearest polar is used when the thickness is beyond the range of values of the input polars. """ thickness = np.asarray(thickness) polarThickness = np.asarray(polarThickness) polarList = np.asarray(polarList) tmax_in = np.max(thickness) tmax_pol = np.max(polarThickness) if (tmax_in > 1.2 and tmax_pol <= 1.2) or (tmax_in <= 1.2 and tmax_pol > 1.2): raise Exception( "Thicknesses of polars and input thickness need to be both in percent ([0-120]) or in fraction ([0-1.2])" ) # sorting thickness Isort = np.argsort(polarThickness) polarThickness = polarThickness[Isort] polarList = polarList[Isort] polars = [] for it, t in enumerate(thickness): ihigh = len(polarThickness) - 1 for ip, tp in enumerate(polarThickness): if tp > t: ihigh = ip break ilow = 0 for ip, tp in reversed(list(enumerate(polarThickness))): if tp < t: ilow = ip break if ihigh == ilow: polars.append(polarList[ihigh]) print("[WARN] Using nearest polar for section {}, t={} , t_near={}".format(it, t, polarThickness[ihigh])) else: if (polarThickness[ilow] > t) or (polarThickness[ihigh] < t): raise Exception("Implementation Error") weight = (t - polarThickness[ilow]) / (polarThickness[ihigh] - polarThickness[ilow]) # print(polarThickness[ilow],'<',t,'<',polarThickness[ihigh],'Weight',weight) pol = blend(polarList[ilow], polarList[ihigh], weight) polars.append(pol) # import matplotlib.pyplot as plt # fig=plt.figure() # plt.plot(polarList[ilow][: ,0],polarList[ilow][: ,2],'b',label='thick'+str(polarThickness[ilow])) # plt.plot(pol[:,0],pol[:,2],'k--',label='thick'+str(t)) # plt.plot(polarList[ihigh][:,0],polarList[ihigh][:,2],'r',label='thick'+str(polarThickness[ihigh])) # plt.legend() # plt.show() return polars def _alpha_window_in_bounds(alpha, window): """Ensures that the window of alpha values is within the bounds of alpha Example: alpha in [-30,30], window=[-20,20] => window=[-20,20] Example: alpha in [-10,10], window=[-20,20] => window=[-10,10] Example: alpha in [-30,30], window=[-40,10] => window=[-40,10] """ IBef = np.where(alpha <= window[0])[0] if len(IBef) > 0: im = IBef[-1] else: im = 0 IAft = np.where(alpha >= window[1])[0] if len(IAft) > 0: ip = IAft[0] else: ip = len(alpha) - 1 window = [alpha[im], alpha[ip]] return window def _find_alpha0(alpha, coeff, window): """Finds the point where coeff(alpha)==0 using interpolation. The search is narrowed to a window that can be specified by the user. The default window is yet enough for cases that make physical sense. The angle alpha0 is found by looking at a zero up crossing in this window, and interpolation is used to find the exact location. """ # Constant case or only one value if np.all(coeff == coeff[0]) or len(coeff) == 1: if coeff[0] == 0: return 0 else: return np.nan # Ensuring window is within our alpha values window = _alpha_window_in_bounds(alpha, window) # Finding zero up-crossing within window iwindow = np.where((alpha >= window[0]) & (alpha <= window[1])) alpha = alpha[iwindow] coeff = coeff[iwindow] alpha_zc, i_zc = _zero_crossings(x=alpha, y=coeff, direction="up") if len(alpha_zc) > 1: raise Exception( "Cannot find alpha0, {} zero crossings of Coeff in the range of alpha values: [{} {}] ".format( len(alpha_zc), window[0], window[1] ) ) elif len(alpha_zc) == 0: raise Exception( "Cannot find alpha0, no zero crossing of Coeff in the range of alpha values: [{} {}] ".format( window[0], window[1] ) ) alpha0 = alpha_zc[0] return alpha0 def _find_TSE_region(alpha, coeff, slope, alpha0, deviation): """Find the Trailing Edge Separation points, when the coefficient separates from its linear region These points are defined as the points where the difference is equal to +/- `deviation` Typically deviation is about 0.05 (absolute value) The linear region is defined as coeff_lin = slope (alpha-alpha0) returns: a_TSE: values of alpha at the TSE point (upper and lower) """ # How off are we from the linear region DeltaLin = slope * (alpha - alpha0) - coeff # Upper and lower regions bUpp = alpha >= alpha0 bLow = alpha <= alpha0 # Finding the point where the delta is equal to `deviation` a_TSEUpp = np.interp(deviation, DeltaLin[bUpp], alpha[bUpp]) a_TSELow = np.interp(-deviation, DeltaLin[bLow], alpha[bLow]) return a_TSELow, a_TSEUpp def _find_max_points(alpha, coeff, alpha0, method="inflections"): """Find upper and lower max points in `coeff` vector. if `method` is "inflection": These point are detected from slope changes of `coeff`, positive of negative inflections The upper stall point is the first point after alpha0 with a "hat" inflection The lower stall point is the first point below alpha0 with a "v" inflection """ if method == "inflections": dC = np.diff(coeff) IHatInflections = np.where(np.logical_and.reduce((dC[1:] < 0, dC[0:-1] > 0, alpha[1:-1] > alpha0)))[0] IVeeInflections = np.where(np.logical_and.reduce((dC[1:] > 0, dC[0:-1] < 0, alpha[1:-1] < alpha0)))[0] if len(IHatInflections) <= 0: raise Exception("Not able to detect upper stall point of curve") if len(IVeeInflections) <= 0: raise Exception("Not able to detect lower stall point of curve") a_MaxUpp = alpha[IHatInflections[0] + 1] c_MaxUpp = coeff[IHatInflections[0] + 1] a_MaxLow = alpha[IVeeInflections[-1] + 1] c_MaxLow = coeff[IVeeInflections[-1] + 1] else: raise NotImplementedError() return (a_MaxUpp, c_MaxUpp, a_MaxLow, c_MaxLow) # --------------------------------------------------------------------------------} # --- Generic curve handling functions # --------------------------------------------------------------------------------{ def _find_slope(x, y, xi=None, x0=None, window=None, method="max", opts=None): """Find the slope of a curve at x=xi based on a given method. INPUTS: x: array of x values y: array of y values xi: point where the slope is to be computed x0: point where y(x0)=0 if provided the constraint y(x0)=0 is added. window: If a `window` is provided the search is restrained to this region of x values. Typical windows for airfoils are: window=[alpha0,Clmax], or window=[-5,5]+alpha0 If window is None, the whole extent is used (window=[min(x),max(x)]) The methods available are: 'max' : returns the maximum slope within the window. Needs `xi` 'leastsquare': use leastsquare (or polyfit), to fit the curve within the window 'finitediff_1c': first order centered finite difference. Needs `xi` 'optim': find the slope by looking at all possible slope values, and try to find an optimal where the length of linear region is maximized. returns: (a,x0): such that the slope is a(x-x0) (x0=-b/a where y=ax+b) """ if window is not None: I = np.where(np.logical_and(x >= window[0], x <= window[1])) x = x[I] y = y[I] if len(y) <= 0: raise Exception("Cannot find slope, no data in y (after window selection)") if len(y) < 4 and method == "optim": method = "leastsquare" # print('[WARN] Not enought data to find slope with optim method, using leastsquare') if method == "max": if xi is not None: I = np.nonzero(x - xi) yi = np.interp(xi, x, y) a = max((y[I] - yi) / (x[I] - xi)) x0 = xi - yi / a else: raise Exception("For now xi needs to be set to find a slope with the max method") elif method == "finitediff_1c": # First order centered finite difference if xi is not None: im = np.where(x < xi)[0][-1] dx = x[im + 1] - x[im - 1] if np.abs(dx) > 1e-7: a = (y[im + 1] - y[im - 1]) / dx yi = np.interp(xi, x, y) x0 = xi - yi / a else: a = np.inf x0 = xi else: raise Exception("For now xi needs to be set to find a slope with the finite diff method") elif method == "leastsquare": if x0 is not None: try: a = np.linalg.lstsq((x - x0).reshape((-1, 1)), y.reshape((-1, 1)), rcond=None)[0][0][0] except: a = np.linalg.lstsq((x - x0).reshape((-1, 1)), y.reshape((-1, 1)))[0][0][0] else: p = np.polyfit(x, y, 1) a = p[0] x0 = -p[1] / a elif method == "optim": if opts is None: nMin = max(3, int(len(x) / 2)) else: nMin = opts["nMin"] a, x0, iStart, iEnd = _find_linear_region(x, y, nMin, x0) else: raise NotImplementedError() return a, x0 def _find_linear_region(x, y, nMin, x0=None): """Find a linear region by computing all possible slopes for all possible extent. The objective function tries to minimize the error with the linear slope and maximize the length of the linear region. nMin is the mimum number of points to be present in the region If x0 is provided, the function a*(x-x0) is fitted returns: slope : offset: iStart: index of start of linear region iEnd : index of end of linear region """ if x0 is not None: x = x.reshape((-1, 1)) - x0 y = y.reshape((-1, 1)) n = len(x) - nMin + 1 err = np.zeros((n, n)) * np.nan slp = np.zeros((n, n)) * np.nan off = np.zeros((n, n)) * np.nan spn = np.zeros((n, n)) * np.nan for iStart in range(n): for j in range(iStart, n): iEnd = j + nMin if x0 is not None: sl = np.linalg.lstsq(x[iStart:iEnd], y[iStart:iEnd], rcond=None)[0][0] slp[iStart, j] = sl off[iStart, j] = x0 y_lin = x[iStart:iEnd] * sl else: coefs = np.polyfit(x[iStart:iEnd], y[iStart:iEnd], 1) slp[iStart, j] = coefs[0] off[iStart, j] = -coefs[1] / coefs[0] y_lin = x[iStart:iEnd] * coefs[0] + coefs[1] err[iStart, j] = np.mean((y[iStart:iEnd] - y_lin) ** 2) spn[iStart, j] = iEnd - iStart spn = 1 / (spn - nMin + 1) err = (err) / (np.nanmax(err)) obj = np.multiply(spn, err) obj = err (iStart, j) = np.unravel_index(
np.nanargmin(obj)
numpy.nanargmin
"""Training and evaluation script""" import pickle import argparse import numpy as np import torch from cnn import YKCNNClassifier from utils import create_dataloader from train import train_model from evaluation import eval_model, accuracy def cli_parser(): parser = argparse.ArgumentParser() parser.add_argument( "pickle_path", help="Path to pickle file produced by `process_data.py`" ) parser.add_argument( "mode", default="static", choices=["static", "non_static", "random"], ) parser.add_argument("--cv_folds", type=int, default=10) parser.add_argument("--use_gpu", type=bool, default=False) return parser.parse_args() def load_data(pickle_file): """ For loading the pickle file created with process_data.py """ with open(pickle_file, "rb") as f: contents = pickle.load(f) return contents def get_id_from_sequence( sequence, word2id, max_sequence_length=56, pad_index=0 ): """ Transforms sentence into a list of indices. Pad with zeroes. """ x = np.zeros(max_sequence_length) + pad_index index = 0 for word in sequence.split(): if word in word2id: x[index] = word2id[word] index += 1 return x def get_train_test_inds(cv, splits): """ Returns training and test indices based on the split digit stored in the review object """ id_split = np.array(splits, dtype=np.int) bool_mask = id_split == cv train_inds =
np.where(~bool_mask)
numpy.where
# -*- coding: utf-8 -*- # vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright (C) 2012-2018 GEM Foundation # # OpenQuake is free software: you can redistribute it and/or modify it # under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # OpenQuake is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with OpenQuake. If not, see <http://www.gnu.org/licenses/>. """ Module :mod:`openquake.hazardlib.geo.line` defines :class:`Line`. """ import numpy from openquake.hazardlib.geo import geodetic from openquake.hazardlib.geo import utils class Line(object): """ This class represents a geographical line, which is basically a sequence of geographical points. A line is defined by at least one point. :param points: The sequence of points defining this line. :type points: list of :class:`~openquake.hazardlib.geo.point.Point` instances """ def __init__(self, points): self.points = utils.clean_points(points) if len(self.points) < 1: raise ValueError("One point needed to create a line!") def __eq__(self, other): """ >>> from openquake.hazardlib.geo.point import Point >>> points = [Point(1, 2), Point(3, 4)]; Line(points) == Line(points) True >>> Line(points) == Line(list(reversed(points))) False """ return self.points == other.points def __ne__(self, other): """ >>> from openquake.hazardlib.geo.point import Point >>> Line([Point(1, 2)]) != Line([Point(1, 2)]) False >>> Line([Point(1, 2)]) != Line([Point(2, 1)]) True """ return not self.__eq__(other) def __len__(self): return len(self.points) def __getitem__(self, key): return self.points.__getitem__(key) def on_surface(self): """ Check if this line is defined on the surface (i.e. all points are on the surfance, depth=0.0). :returns bool: True if this line is on the surface, false otherwise. """ return all(point.on_surface() for point in self.points) def horizontal(self): """ Check if this line is horizontal (i.e. all depths of points are equal). :returns bool: True if this line is horizontal, false otherwise. """ return all(p.depth == self[0].depth for p in self) def average_azimuth(self): """ Calculate and return weighted average azimuth of all line's segments in decimal degrees. Uses formula from http://en.wikipedia.org/wiki/Mean_of_circular_quantities >>> from openquake.hazardlib.geo.point import Point as P >>> '%.1f' % Line([P(0, 0), P(1e-5, 1e-5)]).average_azimuth() '45.0' >>> '%.1f' % Line([P(0, 0), P(0, 1e-5), P(1e-5, 1e-5)]).average_azimuth() '45.0' >>> line = Line([P(0, 0), P(-2e-5, 0), P(-2e-5, 1.154e-5)]) >>> '%.1f' % line.average_azimuth() '300.0' """ if len(self.points) == 2: return self.points[0].azimuth(self.points[1]) lons = numpy.array([point.longitude for point in self.points]) lats = numpy.array([point.latitude for point in self.points]) azimuths = geodetic.azimuth(lons[:-1], lats[:-1], lons[1:], lats[1:]) distances = geodetic.geodetic_distance(lons[:-1], lats[:-1], lons[1:], lats[1:]) azimuths = numpy.radians(azimuths) # convert polar coordinates to Cartesian ones and calculate # the average coordinate of each component avg_x = numpy.mean(distances * numpy.sin(azimuths)) avg_y = numpy.mean(distances * numpy.cos(azimuths)) # find the mean azimuth from that mean vector azimuth = numpy.degrees(
numpy.arctan2(avg_x, avg_y)
numpy.arctan2
import os from sys import byteorder import numpy as np from psana.psexp.smdreader_manager import SmdReaderManager from psana.psexp.eventbuilder_manager import EventBuilderManager from psana.psexp.event_manager import EventManager from psana.psexp.packet_footer import PacketFooter from psana.event import Event from psana.psexp.step import Step from psana import dgram from mpi4py import MPI comm = MPI.COMM_WORLD world_rank = comm.Get_rank() world_size = comm.Get_size() group = comm.Get_group() # This this the world group # Setting up group communications # Ex. PS_SMD_NODES=3 mpirun -n 13 # 1 4 7 10 # 0 2 5 8 11 # 3 6 9 12 #-smd_group- # -bd_main_group- # color # 0 0 0 0 # 1 1 1 1 # 2 2 2 2 # bd_main_rank bd_rank # 0 3 6 9 0 1 2 3 # 1 4 7 10 0 1 2 3 # 2 5 8 11 0 1 2 3 PS_SMD_NODES = int(os.environ.get('PS_SMD_NODES', 1)) smd_group = group.Incl(range(PS_SMD_NODES + 1)) bd_main_group = group.Excl([0]) smd_comm = comm.Create(smd_group) smd_rank = 0 smd_size = 0 if smd_comm != MPI.COMM_NULL: smd_rank = smd_comm.Get_rank() smd_size = smd_comm.Get_size() bd_main_comm = comm.Create(bd_main_group) bd_main_rank = 0 bd_main_size = 0 bd_rank = 0 bd_size = 0 color = 0 nodetype = None if bd_main_comm != MPI.COMM_NULL: bd_main_rank = bd_main_comm.Get_rank() bd_main_size = bd_main_comm.Get_size() # Split bigdata main comm to PS_SMD_NODES groups color = bd_main_rank % PS_SMD_NODES bd_comm = bd_main_comm.Split(color, bd_main_rank) bd_rank = bd_comm.Get_rank() bd_size = bd_comm.Get_size() if bd_rank == 0: nodetype = 'smd' else: nodetype = 'bd' if nodetype is None: nodetype = 'smd0' # if no nodetype assigned, I must be smd0 class UpdateManager(object): """ Keeps epics data and their send history. """ def __init__(self, client_size, n_smds): self.n_smds = n_smds self.bufs = [bytearray() for i in range(self.n_smds)] self.send_history = [] # Initialize no. of sent bytes to 0 for evtbuilder # [[offset_update0, offset_update1, ], [offset_update0, offset_update1, ], ...] # [ ---------evtbuilder0------------ , ---------evtbuilder1------------ , for i in range(1, client_size): self.send_history.append([0]*self.n_smds) def extend_buffers(self, views): for i, view in enumerate(views): self.bufs[i].extend(view) def get_buffer(self, client_id): """ Returns new epics data (if any) for this client then updates the sent record.""" update_chunk = bytearray() if self.n_smds: # do nothing if no epics data found indexed_id = client_id - 1 # rank 0 has no send history. pf = PacketFooter(self.n_smds) for i, buf in enumerate(self.bufs): current_buf = self.bufs[i] current_offset = self.send_history[indexed_id][i] current_buf_size = memoryview(current_buf).shape[0] pf.set_size(i, current_buf_size - current_offset) update_chunk.extend(current_buf[current_offset:]) self.send_history[indexed_id][i] = current_buf_size update_chunk.extend(pf.footer) return update_chunk class Smd0(object): """ Sends blocks of smds to smd_node Identifies limit timestamp of the slowest detector then sends all smds within that timestamp to an smd_node. """ def __init__(self, run): self.smdr_man = SmdReaderManager(run.smd_dm.fds, run.max_events) self.run = run self.epics_man = UpdateManager(smd_size, self.run.epics_store.n_files) self.run_mpi() def run_mpi(self): rankreq = np.empty(1, dtype='i') for (smd_chunk, update_chunk) in self.smdr_man.chunks(): # Creates a chunk from smd and epics data to send to SmdNode # Anatomy of a chunk (pf=packet_footer): # [ [smd0][smd1][smd2][pf] ][ [epics0][epics1][epics2][pf] ][ pf ] # ----- smd_chunk ------ ---------epics_chunk------- # -------------------------- chunk ------------------------------ # Read new epics data as available in the queue # then send only unseen portion of data to the evtbuilder rank. update_pf = PacketFooter(view=update_chunk) self.epics_man.extend_buffers(update_pf.split_packets()) smd_comm.Recv(rankreq, source=MPI.ANY_SOURCE) epics_chunk = self.epics_man.get_buffer(rankreq[0]) pf = PacketFooter(2) pf.set_size(0, memoryview(smd_chunk).shape[0]) pf.set_size(1, memoryview(epics_chunk).shape[0]) chunk = smd_chunk + epics_chunk + pf.footer smd_comm.Send(chunk, dest=rankreq[0]) for i in range(PS_SMD_NODES): smd_comm.Recv(rankreq, source=MPI.ANY_SOURCE) smd_comm.Send(bytearray(), dest=rankreq[0]) class SmdNode(object): """Handles both smd_0 and bd_nodes Receives blocks of smds from smd_0 then assembles offsets and dgramsizes into a numpy array. Sends this np array to bd_nodes that are registered to it.""" def __init__(self, run): self.n_bd_nodes = bd_comm.Get_size() - 1 self.run = run self.epics_man = UpdateManager(bd_size, self.run.epics_store.n_files) self._update_dgram_pos = 0 # bookkeeping for running in scan mode def pack(self, *args): pf = PacketFooter(len(args)) batch = bytearray() for i, arg in enumerate(args): pf.set_size(i, memoryview(arg).shape[0]) batch += arg batch += pf.footer return batch def run_mpi(self): rankreq =
np.empty(1, dtype='i')
numpy.empty
# Copyright 2018-2020 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for the TensorBox functional API in pennylane.math.fn """ import itertools import numpy as onp import pytest import pennylane as qml from pennylane import numpy as np from pennylane.math import fn tf = pytest.importorskip("tensorflow", minversion="2.1") torch = pytest.importorskip("torch") class TestGetMultiTensorbox: """Tests for the _get_multi_tensorbox utility function""" def test_exception_tensorflow_and_torch(self): """Test that an exception is raised if the sequence of tensors contains tensors from incompatible dispatch libraries""" x = tf.Variable([1.0, 2.0, 3.0]) y = onp.array([0.5, 0.1]) z = torch.tensor([0.6]) with pytest.raises(ValueError, match="Tensors contain mixed types"): fn._get_multi_tensorbox([x, y, z]) def test_warning_tensorflow_and_autograd(self): """Test that a warning is raised if the sequence of tensors contains both tensorflow and autograd tensors.""" x = tf.Variable([1.0, 2.0, 3.0]) y = np.array([0.5, 0.1]) with pytest.warns(UserWarning, match="Consider replacing Autograd with vanilla NumPy"): fn._get_multi_tensorbox([x, y]) def test_warning_torch_and_autograd(self): """Test that a warning is raised if the sequence of tensors contains both torch and autograd tensors.""" x = torch.tensor([1.0, 2.0, 3.0]) y = np.array([0.5, 0.1]) with pytest.warns(UserWarning, match="Consider replacing Autograd with vanilla NumPy"): fn._get_multi_tensorbox([x, y]) def test_return_tensorflow_box(self): """Test that TensorFlow is correctly identified as the dispatching library.""" x = tf.Variable([1.0, 2.0, 3.0]) y = onp.array([0.5, 0.1]) res = fn._get_multi_tensorbox([y, x]) assert res.interface == "tf" def test_return_torch_box(self): """Test that Torch is correctly identified as the dispatching library.""" x = torch.tensor([1.0, 2.0, 3.0]) y = onp.array([0.5, 0.1]) res = fn._get_multi_tensorbox([y, x]) assert res.interface == "torch" def test_return_autograd_box(self): """Test that autograd is correctly identified as the dispatching library.""" x = np.array([1.0, 2.0, 3.0]) y = [0.5, 0.1] res = fn._get_multi_tensorbox([y, x]) assert res.interface == "autograd" def test_return_numpy_box(self): """Test that NumPy is correctly identified as the dispatching library.""" x = onp.array([1.0, 2.0, 3.0]) y = [0.5, 0.1] res = fn._get_multi_tensorbox([y, x]) assert res.interface == "numpy" test_abs_data = [ (1, -2, 3 + 4j), [1, -2, 3 + 4j], onp.array([1, -2, 3 + 4j]), np.array([1, -2, 3 + 4j]), torch.tensor([1, -2, 3 + 4j], dtype=torch.complex128), tf.Variable([1, -2, 3 + 4j], dtype=tf.complex128), tf.constant([1, -2, 3 + 4j], dtype=tf.complex128), ] @pytest.mark.parametrize("t", test_abs_data) def test_abs(t): """Test that the absolute function works for a variety of input""" res = fn.abs_(t) assert fn.allequal(res, [1, 2, 5]) test_data = [ (1, 2, 3), [1, 2, 3], onp.array([1, 2, 3]), np.array([1, 2, 3]), torch.tensor([1, 2, 3]), tf.Variable([1, 2, 3]), tf.constant([1, 2, 3]), ] @pytest.mark.parametrize("t1,t2", list(itertools.combinations(test_data, r=2))) def test_allequal(t1, t2): """Test that the allequal function works for a variety of inputs.""" res = fn.allequal(t1, t2) if isinstance(t1, tf.Variable): t1 = tf.convert_to_tensor(t1) if isinstance(t2, tf.Variable): t2 = tf.convert_to_tensor(t2) expected = all(float(x) == float(y) for x, y in zip(t1, t2)) assert res == expected @pytest.mark.parametrize("t1,t2", list(itertools.combinations(test_data, r=2))) def test_allclose(t1, t2): """Test that the allclose function works for a variety of inputs.""" res = fn.allclose(t1, t2) if isinstance(t1, tf.Variable): t1 = tf.convert_to_tensor(t1) if isinstance(t2, tf.Variable): t2 = tf.convert_to_tensor(t2) expected = all(float(x) == float(y) for x, y in zip(t1, t2)) assert res == expected test_angle_data = [ [1.0, 1.0j, 1+1j], [1.0, 1.0j, 1+1j], onp.array([1.0, 1.0j, 1+1j]), np.array([1.0, 1.0j, 1+1j]), torch.tensor([1.0, 1.0j, 1+1j], dtype=torch.complex128), tf.Variable([1.0, 1.0j, 1+1j], dtype=tf.complex128), tf.constant([1.0, 1.0j, 1+1j], dtype=tf.complex128), ] @pytest.mark.parametrize("t", test_angle_data) def test_angle(t): """Test that the angle function works for a variety of input""" res = fn.angle(t) assert fn.allequal(res, [0, np.pi / 2, np.pi / 4]) test_arcsin_data = [ (1, 0.2, -0.5), [1, 0.2, -0.5], onp.array([1, 0.2, -0.5]), np.array([1, 0.2, -0.5]), torch.tensor([1, 0.2, -0.5], dtype=torch.float64), tf.Variable([1, 0.2, -0.5], dtype=tf.float64), tf.constant([1, 0.2, -0.5], dtype=tf.float64), ] @pytest.mark.parametrize("t", test_arcsin_data) def test_arcsin(t): """Test that the arcsin function works for a variety of input""" res = fn.arcsin(t) assert fn.allequal(res, np.arcsin([1, 0.2, -0.5])) class TestCast: """Tests for the cast function""" @pytest.mark.parametrize("t", test_data) def test_cast_numpy(self, t): """Test that specifying a NumPy dtype results in proper casting behaviour""" res = fn.cast(t, onp.float64) assert fn.get_interface(res) == fn.get_interface(t) if hasattr(res, "numpy"): # if tensorflow or pytorch, extract view of underlying data res = res.numpy() t = t.numpy() assert onp.issubdtype(onp.asarray(t).dtype, onp.integer) assert res.dtype.type is onp.float64 @pytest.mark.parametrize("t", test_data) def test_cast_numpy_dtype(self, t): """Test that specifying a NumPy dtype object results in proper casting behaviour""" res = fn.cast(t, onp.dtype("float64")) assert fn.get_interface(res) == fn.get_interface(t) if hasattr(res, "numpy"): # if tensorflow or pytorch, extract view of underlying data res = res.numpy() t = t.numpy() assert onp.issubdtype(onp.asarray(t).dtype, onp.integer) assert res.dtype.type is onp.float64 @pytest.mark.parametrize("t", test_data) def test_cast_numpy_string(self, t): """Test that specifying a NumPy dtype via a string results in proper casting behaviour""" res = fn.cast(t, "float64") assert fn.get_interface(res) == fn.get_interface(t) if hasattr(res, "numpy"): # if tensorflow or pytorch, extract view of underlying data res = res.numpy() t = t.numpy() assert onp.issubdtype(onp.asarray(t).dtype, onp.integer) assert res.dtype.type is onp.float64 def test_cast_tensorflow_dtype(self): """If the tensor is a TensorFlow tensor, casting using a TensorFlow dtype will also work""" t = tf.Variable([1, 2, 3]) res = fn.cast(t, tf.complex128) assert isinstance(res, tf.Tensor) assert res.dtype is tf.complex128 def test_cast_torch_dtype(self): """If the tensor is a Torch tensor, casting using a Torch dtype will also work""" t = torch.tensor([1, 2, 3], dtype=torch.int64) res = fn.cast(t, torch.float64) assert isinstance(res, torch.Tensor) assert res.dtype is torch.float64 cast_like_test_data = [ (1, 2, 3), [1, 2, 3], onp.array([1, 2, 3], dtype=onp.int64), np.array([1, 2, 3], dtype=np.int64), torch.tensor([1, 2, 3], dtype=torch.int64), tf.Variable([1, 2, 3], dtype=tf.int64), tf.constant([1, 2, 3], dtype=tf.int64), (1.0, 2.0, 3.0), [1.0, 2.0, 3.0], onp.array([1, 2, 3], dtype=onp.float64), np.array([1, 2, 3], dtype=np.float64), torch.tensor([1, 2, 3], dtype=torch.float64), tf.Variable([1, 2, 3], dtype=tf.float64), tf.constant([1, 2, 3], dtype=tf.float64), ] @pytest.mark.parametrize("t1,t2", list(itertools.combinations(cast_like_test_data, r=2))) def test_cast_like(t1, t2): """Test that casting t1 like t2 results in t1 being cast to the same datatype as t2""" res = fn.cast_like(t1, t2) # if tensorflow or pytorch, extract view of underlying data if hasattr(res, "numpy"): res = res.numpy() if hasattr(t2, "numpy"): t2 = t2.numpy() assert fn.allequal(res, t1) assert onp.asarray(res).dtype.type is
onp.asarray(t2)
numpy.asarray
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.lines import Line2D class Casino: def __init__(self): self.player = Player() self.sum = np.array([0] * 10) self.usable_ace = {"exist": False, "pos": -1, "flipped_pos": -1} self.threshold = 17 self.cards = np.append([1.0 / 13.0] * 9, (4.0 / 13.0)) def clear_hand_n_sum(self): self.sum = np.array([0] * 10) self.usable_ace = \ {"exist": False, "pos": -1, "flipped_pos": -1} def get_card(self): card = int(
np.random.choice(10, 1, p=self.cards)
numpy.random.choice
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import unittest os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorflow as tf import tensorlayer as tl from tensorlayer.layers import * from tensorlayer.models import Model from tensorflow.python.ops.rnn_cell import LSTMCell import numpy as np from tests.utils import CustomTestCase class LayerNode_Test(CustomTestCase): @classmethod def setUpClass(cls): pass @classmethod def tearDownClass(cls): pass def test_net1(self): print('-' * 20, 'test_net1', '-' * 20) def get_model(input_shape): ni = Input(input_shape) nii = Conv2d(32, filter_size=(3, 3), strides=(1, 1), name='conv1')(ni) nn = Dropout(keep=0.9, name='drop1')(nii) conv = Conv2d(32, filter_size=(3, 3), strides=(1, 1), name='conv2') tt = conv(nn) # conv2_node_0 nn = conv(nn) # conv2_node_1 # a branch na = Conv2d(64, filter_size=(3, 3), strides=(1, 1), name='conv3')(nn) na = MaxPool2d(name='pool1')(na) # b branch nb = MaxPool2d(name='pool2')(nn) nb = conv(nb) # conv2_node_2 out = Concat(name='concat')([na, nb]) M = Model(inputs=ni, outputs=[out, nn, nb]) gg = conv(nii) # this node will not be added since model fixed return M net = get_model([None, 24, 24, 3]) for k, v in enumerate(net._node_by_depth): print(k, [x.name for x in v], [x.in_tensors_idxes for x in v]) all_node_names = [] for k, v in enumerate(net._node_by_depth): all_node_names.extend([x.name for x in v]) self.assertNotIn('conv2_node_0', all_node_names) self.assertNotIn('conv2_node_3', all_node_names) self.assertEqual(len(net.all_layers), 8) print(net.all_layers) data = np.random.normal(size=[2, 24, 24, 3]).astype(np.float32) out, nn, nb = net(data, is_train=True) self.assertEqual(nn.shape, [2, 24, 24, 32]) self.assertEqual(nb.shape, [2, 12, 12, 32]) def test_net2(self): print('-' * 20, 'test_net2', '-' * 20) def get_unstack_model(input_shape): ni = Input(input_shape) nn = Dropout(keep=0.9)(ni) a, b, c = UnStack(axis=-1)(nn) b = Flatten()(b) b = Dense(10)(b) c = Flatten()(c) M = Model(inputs=ni, outputs=[a, b, c]) return M net = get_unstack_model([None, 24, 24, 3]) for k, v in enumerate(net._node_by_depth): print(k, [x.name for x in v], [x.in_tensors_idxes for x in v]) data = np.random.normal(size=[2, 24, 24, 3]).astype(np.float32) out = net(data, is_train=True) self.assertEqual(len(out), 3) def test_word2vec(self): print('-' * 20, 'test_word2vec', '-' * 20) def get_word2vec(): vocabulary_size = 800 batch_size = 10 embedding_size = 60 num_sampled = 25 inputs = tl.layers.Input([batch_size], dtype=tf.int32) labels = tl.layers.Input([batch_size, 1], dtype=tf.int32) emb_net = tl.layers.Word2vecEmbedding( vocabulary_size=vocabulary_size, embedding_size=embedding_size, num_sampled=num_sampled, activate_nce_loss=True, # nce loss is activated nce_loss_args={}, E_init=tl.initializers.random_uniform(minval=-1.0, maxval=1.0), nce_W_init=tl.initializers.truncated_normal(stddev=float(1.0 /
np.sqrt(embedding_size)
numpy.sqrt
# # Solver class using sundials with the KLU sparse linear solver # import pybamm import numpy as np import scipy.sparse as sparse import importlib idaklu_spec = importlib.util.find_spec("idaklu") if idaklu_spec is not None: idaklu = importlib.util.module_from_spec(idaklu_spec) idaklu_spec.loader.exec_module(idaklu) def have_idaklu(): return idaklu_spec is not None class IDAKLUSolver(pybamm.BaseSolver): """Solve a discretised model, using sundials with the KLU sparse linear solver. Parameters ---------- rtol : float, optional The relative tolerance for the solver (default is 1e-6). atol : float, optional The absolute tolerance for the solver (default is 1e-6). root_method : str, optional The method to use to find initial conditions (default is "lm") root_tol : float, optional The tolerance for the initial-condition solver (default is 1e-8). max_steps: int, optional The maximum number of steps the solver will take before terminating (default is 1000). """ def __init__( self, rtol=1e-6, atol=1e-6, root_method="casadi", root_tol=1e-6, max_steps=1000 ): if idaklu_spec is None: raise ImportError("KLU is not installed") super().__init__("ida", rtol, atol, root_method, root_tol, max_steps) self.name = "IDA KLU solver" def set_atol_by_variable(self, variables_with_tols, model): """ A method to set the absolute tolerances in the solver by state variable. This method attaches a vector of tolerance to the model. (i.e. model.atol) Parameters ---------- variables_with_tols : dict A dictionary with keys that are strings indicating the variable you wish to set the tolerance of and values that are the tolerances. model : :class:`pybamm.BaseModel` The model that is going to be solved. """ size = model.concatenated_initial_conditions.size atol = self._check_atol_type(self._atol, size) for var, tol in variables_with_tols.items(): variable = model.variables[var] if isinstance(variable, pybamm.StateVector): atol = self.set_state_vec_tol(atol, variable, tol) elif isinstance(variable, pybamm.Concatenation): for child in variable.children: if isinstance(child, pybamm.StateVector): atol = self.set_state_vec_tol(atol, child, tol) else: raise pybamm.SolverError( """Can only set tolerances for state variables or concatenations of state variables""" ) else: raise pybamm.SolverError( """Can only set tolerances for state variables or concatenations of state variables""" ) model.atol = atol def set_state_vec_tol(self, atol, state_vec, tol): """ A method to set the tolerances in the atol vector of a specific state variable. This method modifies self._atol Parameters ---------- state_vec : :class:`pybamm.StateVector` The state vector to apply to the tolerance to tol: float The tolerance value """ slices = state_vec.y_slices[0] atol[slices] = tol return atol def _check_atol_type(self, atol, size): """ This method checks that the atol vector is of the right shape and type. Parameters ---------- atol: double or np.array or list Absolute tolerances. If this is a vector then each entry corresponds to the absolute tolerance of one entry in the state vector. size: int The length of the atol vector """ if isinstance(atol, float): atol = atol * np.ones(size) elif isinstance(atol, list): atol =
np.array(atol)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 5 12:13:33 2018 @author: <NAME> (<EMAIL> / <EMAIL>) """ #Python dependencies from __future__ import division import pandas as pd import numpy as np from scipy.constants import codata from pylab import * from scipy.optimize import curve_fit import mpmath as mp from lmfit import minimize, Minimizer, Parameters, Parameter, report_fit #from scipy.optimize import leastsq pd.options.mode.chained_assignment = None #Plotting import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.ticker import LinearLocator, FormatStrFormatter import seaborn as sns import matplotlib.ticker as mtick mpl.rc('mathtext', fontset='stixsans', default='regular') mpl.rcParams.update({'axes.labelsize':22}) mpl.rc('xtick', labelsize=16) mpl.rc('ytick', labelsize=16) mpl.rc('legend',fontsize=14) from scipy.constants import codata F = codata.physical_constants['Faraday constant'][0] Rg = codata.physical_constants['molar gas constant'][0] ### Importing PyEIS add-ons from .PyEIS_Data_extraction import * from .PyEIS_Lin_KK import * from .PyEIS_Advanced_tools import * ### Frequency generator ## # def freq_gen(f_start, f_stop, pts_decade=7): ''' Frequency Generator with logspaced freqencies Inputs ---------- f_start = frequency start [Hz] f_stop = frequency stop [Hz] pts_decade = Points/decade, default 7 [-] Output ---------- [0] = frequency range [Hz] [1] = Angular frequency range [1/s] ''' f_decades = np.log10(f_start) - np.log10(f_stop) f_range = np.logspace(np.log10(f_start), np.log10(f_stop), num=np.around(pts_decade*f_decades).astype(int), endpoint=True) w_range = 2 * np.pi * f_range return f_range, w_range ### Simulation Element Functions ## # def elem_L(w, L): ''' Simulation Function: -L- Returns the impedance of an inductor <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] L = Inductance [ohm * s] ''' return 1j*w*L def elem_C(w,C): ''' Simulation Function: -C- Inputs ---------- w = Angular frequency [1/s] C = Capacitance [F] ''' return 1/(C*(w*1j)) def elem_Q(w,Q,n): ''' Simulation Function: -Q- Inputs ---------- w = Angular frequency [1/s] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] ''' return 1/(Q*(w*1j)**n) ### Simulation Curciuts Functions ## # def cir_RsC(w, Rs, C): ''' Simulation Function: -Rs-C- Inputs ---------- w = Angular frequency [1/s] Rs = Series resistance [Ohm] C = Capacitance [F] ''' return Rs + 1/(C*(w*1j)) def cir_RsQ(w, Rs, Q, n): ''' Simulation Function: -Rs-Q- Inputs ---------- w = Angular frequency [1/s] Rs = Series resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] ''' return Rs + 1/(Q*(w*1j)**n) def cir_RQ(w, R='none', Q='none', n='none', fs='none'): ''' Simulation Function: -RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit() <NAME> (<EMAIL> / <EMAIL>) Inputs ---------- w = Angular frequency [1/s] R = Resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] fs = Summit frequency of RQ circuit [Hz] ''' if R == 'none': R = (1/(Q*(2*np.pi*fs)**n)) elif Q == 'none': Q = (1/(R*(2*np.pi*fs)**n)) elif n == 'none': n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) return (R/(1+R*Q*(w*1j)**n)) def cir_RsRQ(w, Rs='none', R='none', Q='none', n='none', fs='none'): ''' Simulation Function: -Rs-RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit() <NAME> (<EMAIL> / <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Rs = Series resistance [Ohm] R = Resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase elelment exponent [-] fs = Summit frequency of RQ circuit [Hz] ''' if R == 'none': R = (1/(Q*(2*np.pi*fs)**n)) elif Q == 'none': Q = (1/(R*(2*np.pi*fs)**n)) elif n == 'none': n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) return Rs + (R/(1+R*Q*(w*1j)**n)) def cir_RC(w, C='none', R='none', fs='none'): ''' Simulation Function: -RC- Returns the impedance of an RC circuit, using RQ definations where n=1. see cir_RQ() for details <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] R = Resistance [Ohm] C = Capacitance [F] fs = Summit frequency of RC circuit [Hz] ''' return cir_RQ(w, R=R, Q=C, n=1, fs=fs) def cir_RsRQRQ(w, Rs, R='none', Q='none', n='none', fs='none', R2='none', Q2='none', n2='none', fs2='none'): ''' Simulation Function: -Rs-RQ-RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit() <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [Ohm] R = Resistance [Ohm] Q = Constant phase element [s^n/ohm] n = Constant phase element exponent [-] fs = Summit frequency of RQ circuit [Hz] R2 = Resistance [Ohm] Q2 = Constant phase element [s^n/ohm] n2 = Constant phase element exponent [-] fs2 = Summit frequency of RQ circuit [Hz] ''' if R == 'none': R = (1/(Q*(2*np.pi*fs)**n)) elif Q == 'none': Q = (1/(R*(2*np.pi*fs)**n)) elif n == 'none': n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if R2 == 'none': R2 = (1/(Q2*(2*np.pi*fs2)**n2)) elif Q2 == 'none': Q2 = (1/(R2*(2*np.pi*fs2)**n2)) elif n2 == 'none': n2 = np.log(Q2*R2)/np.log(1/(2*np.pi*fs2)) return Rs + (R/(1+R*Q*(w*1j)**n)) + (R2/(1+R2*Q2*(w*1j)**n2)) def cir_RsRQQ(w, Rs, Q, n, R1='none', Q1='none', n1='none', fs1='none'): ''' Simulation Function: -Rs-RQ-Q- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] Q1 = Constant phase element in (RQ) circuit [s^n/ohm] n1 = Constant phase elelment exponent in (RQ) circuit [-] fs1 = Summit frequency of RQ circuit [Hz] Q = Constant phase element of series Q [s^n/ohm] n = Constant phase elelment exponent of series Q [-] ''' return Rs + cir_RQ(w, R=R1, Q=Q1, n=n1, fs=fs1) + elem_Q(w,Q,n) def cir_RsRQC(w, Rs, C, R1='none', Q1='none', n1='none', fs1='none'): ''' Simulation Function: -Rs-RQ-C- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] Q1 = Constant phase element in (RQ) circuit [s^n/ohm] n1 = Constant phase elelment exponent in (RQ) circuit [-] fs1 = summit frequency of RQ circuit [Hz] C = Constant phase element of series Q [s^n/ohm] ''' return Rs + cir_RQ(w, R=R1, Q=Q1, n=n1, fs=fs1) + elem_C(w, C=C) def cir_RsRCC(w, Rs, R1, C1, C): ''' Simulation Function: -Rs-RC-C- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] C1 = Constant phase element in (RQ) circuit [s^n/ohm] C = Capacitance of series C [s^n/ohm] ''' return Rs + cir_RC(w, C=C1, R=R1, fs='none') + elem_C(w, C=C) def cir_RsRCQ(w, Rs, R1, C1, Q, n): ''' Simulation Function: -Rs-RC-Q- Inputs ---------- w = Angular frequency [1/s] Rs = Series Resistance [ohm] R1 = Resistance in (RQ) circuit [ohm] C1 = Constant phase element in (RQ) circuit [s^n/ohm] Q = Constant phase element of series Q [s^n/ohm] n = Constant phase elelment exponent of series Q [-] ''' return Rs + cir_RC(w, C=C1, R=R1, fs='none') + elem_Q(w,Q,n) def Randles_coeff(w, n_electron, A, E='none', E0='none', D_red='none', D_ox='none', C_red='none', C_ox='none', Rg=Rg, F=F, T=298.15): ''' Returns the Randles coefficient sigma [ohm/s^1/2]. Two cases: a) ox and red are both present in solution here both Cred and Dred are defined, b) In the particular case where initially only Ox species are present in the solution with bulk concentration C*_ox, the surface concentrations may be calculated as function of the electrode potential following Nernst equation. Here C_red and D_red == 'none' Ref.: - <NAME>., ISBN: 978-1-4614-8932-0, "Electrochemical Impedance Spectroscopy and its Applications" - <NAME>., ISBN: 0-471-04372-9, <NAME>. R. (2001) "Electrochemical methods: Fundamentals and applications". New York: Wiley. <NAME> (<EMAIL> // <EMAIL>) Inputs ---------- n_electron = number of e- [-] A = geometrical surface area [cm2] D_ox = Diffusion coefficent of oxidized specie [cm2/s] D_red = Diffusion coefficent of reduced specie [cm2/s] C_ox = Bulk concetration of oxidized specie [mol/cm3] C_red = Bulk concetration of reduced specie [mol/cm3] T = Temperature [K] Rg = Gas constant [J/molK] F = Faradays consntat [C/mol] E = Potential [V] if reduced specie is absent == 'none' E0 = formal potential [V] if reduced specie is absent == 'none' Returns ---------- Randles coefficient [ohm/s^1/2] ''' if C_red != 'none' and D_red != 'none': sigma = ((Rg*T) / ((n_electron**2) * A * (F**2) * (2**(1/2)))) * ((1/(D_ox**(1/2) * C_ox)) + (1/(D_red**(1/2) * C_red))) elif C_red == 'none' and D_red == 'none' and E!='none' and E0!= 'none': f = F/(Rg*T) x = (n_electron*f*(E-E0))/2 func_cosh2 = (np.cosh(2*x)+1)/2 sigma = ((4*Rg*T) / ((n_electron**2) * A * (F**2) * C_ox * ((2*D_ox)**(1/2)) )) * func_cosh2 else: print('define E and E0') Z_Aw = sigma*(w**(-0.5))-1j*sigma*(w**(-0.5)) return Z_Aw def cir_Randles(w, n_electron, D_red, D_ox, C_red, C_ox, Rs, Rct, n, E, A, Q='none', fs='none', E0=0, F=F, Rg=Rg, T=298.15): ''' Simulation Function: Randles -Rs-(Q-(RW)-)- Return the impedance of a Randles circuit with full complity of the warbug constant NOTE: This Randles circuit is only meant for semi-infinate linear diffusion <NAME> (<EMAIL> / <EMAIL>) Inputs ---------- n_electron = number of e- [-] A = geometrical surface area [cm2] D_ox = Diffusion coefficent of oxidized specie [cm2/s] D_red = Diffusion coefficent of reduced specie [cm2/s] C_ox = Concetration of oxidized specie [mol/cm3] C_red = Concetration of reduced specie [mol/cm3] T = Temperature [K] Rg = Gas constant [J/molK] F = Faradays consntat [C/mol] E = Potential [V] if reduced specie is absent == 'none' E0 = Formal potential [V] if reduced specie is absent == 'none' Rs = Series resistance [ohm] Rct = charge-transfer resistance [ohm] Q = Constant phase element used to model the double-layer capacitance [F] n = expononent of the CPE [-] Returns ---------- The real and imaginary impedance of a Randles circuit [ohm] ''' Z_Rct = Rct Z_Q = elem_Q(w,Q,n) Z_w = Randles_coeff(w, n_electron=n_electron, E=E, E0=E0, D_red=D_red, D_ox=D_ox, C_red=C_red, C_ox=C_ox, A=A, T=T, Rg=Rg, F=F) return Rs + 1/(1/Z_Q + 1/(Z_Rct+Z_w)) def cir_Randles_simplified(w, Rs, R, n, sigma, Q='none', fs='none'): ''' Simulation Function: Randles -Rs-(Q-(RW)-)- Return the impedance of a Randles circuit with a simplified NOTE: This Randles circuit is only meant for semi-infinate linear diffusion <NAME> (<EMAIL> / <EMAIL>) ''' if R == 'none': R = (1/(Q*(2*np.pi*fs)**n)) elif Q == 'none': Q = (1/(R*(2*np.pi*fs)**n)) elif n == 'none': n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) Z_Q = 1/(Q*(w*1j)**n) Z_R = R Z_w = sigma*(w**(-0.5))-1j*sigma*(w**(-0.5)) return Rs + 1/(1/Z_Q + 1/(Z_R+Z_w)) # Polymer electrolytes def cir_C_RC_C(w, Ce, Cb='none', Rb='none', fsb='none'): ''' Simulation Function: -C-(RC)-C- This circuit is often used for modeling blocking electrodes with a polymeric electrolyte, which exhibts a immobile ionic species in bulk that gives a capacitance contribution to the otherwise resistive electrolyte Ref: - <NAME>., and <NAME>. "Polymer Electrolyte Reviews - 1" Elsevier Applied Science Publishers LTD, London, Bruce, P. "Electrical Measurements on Polymer Electrolytes" <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Ce = Interfacial capacitance [F] Rb = Bulk/series resistance [Ohm] Cb = Bulk capacitance [F] fsb = summit frequency of bulk (RC) circuit [Hz] ''' Z_C = elem_C(w,C=Ce) Z_RC = cir_RC(w, C=Cb, R=Rb, fs=fsb) return Z_C + Z_RC def cir_Q_RQ_Q(w, Qe, ne, Qb='none', Rb='none', fsb='none', nb='none'): ''' Simulation Function: -Q-(RQ)-Q- Modified cir_C_RC_C() circuits that can be used if electrodes and bulk are not behaving like ideal capacitors <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] Qe = Interfacial capacitance modeled with a CPE [F] ne = Interfacial constant phase element exponent [-] Rb = Bulk/series resistance [Ohm] Qb = Bulk capacitance modeled with a CPE [s^n/ohm] nb = Bulk constant phase element exponent [-] fsb = summit frequency of bulk (RQ) circuit [Hz] ''' Z_Q = elem_Q(w,Q=Qe,n=ne) Z_RQ = cir_RQ(w, Q=Qb, R=Rb, fs=fsb, n=nb) return Z_Q + Z_RQ def tanh(x): ''' As numpy gives errors when tanh becomes very large, above 10^250, this functions is used for np.tanh ''' return (1-np.exp(-2*x))/(1+np.exp(-2*x)) def cir_RCRCZD(w, L, D_s, u1, u2, Cb='none', Rb='none', fsb='none', Ce='none', Re='none', fse='none'): ''' Simulation Function: -RC_b-RC_e-Z_D This circuit has been used to study non-blocking electrodes with an ioniocally conducting electrolyte with a mobile and immobile ionic specie in bulk, this is mixed with a ionically conducting salt. This behavior yields in a impedance response, that consists of the interfacial impendaces -(RC_e)-, the ionically conducitng polymer -(RC_e)-, and the diffusional impedance from the dissolved salt. Refs.: - <NAME>. and <NAME>., Electrochimica Acta, 27, 1671-1675, 1982, "Conductivity, Charge Transfer and Transport number - An AC-Investigation of the Polymer Electrolyte LiSCN-Poly(ethyleneoxide)" - <NAME>., and <NAME>. "Polymer Electrolyte Reviews - 1" Elsevier Applied Science Publishers LTD, London Bruce, P. "Electrical Measurements on Polymer Electrolytes" <NAME> (<EMAIL> || <EMAIL>) Inputs ---------- w = Angular frequency [1/s] L = Thickness of electrode [cm] D_s = Diffusion coefficient of dissolved salt [cm2/s] u1 = Mobility of the ion reacting at the electrode interface u2 = Mobility of other ion Re = Interfacial resistance [Ohm] Ce = Interfacial capacitance [F] fse = Summit frequency of the interfacial (RC) circuit [Hz] Rb = Bulk/series resistance [Ohm] Cb = Bulk capacitance [F] fsb = Summit frequency of the bulk (RC) circuit [Hz] ''' Z_RCb = cir_RC(w, C=Cb, R=Rb, fs=fsb) Z_RCe = cir_RC(w, C=Ce, R=Re, fs=fse) alpha = ((w*1j*L**2)/D_s)**(1/2) Z_D = Rb * (u2/u1) * (tanh(x=alpha)/alpha) return Z_RCb + Z_RCe + Z_D # Transmission lines def cir_RsTLsQ(w, Rs, L, Ri, Q='none', n='none'): ''' Simulation Function: -Rs-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - <NAME>. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] Q = Interfacial capacitance of non-faradaic interface [F/cm] n = exponent for the interfacial capacitance [-] ''' Phi = 1/(Q*(w*1j)**n) X1 = Ri # ohm/cm Lam = (Phi/X1)**(1/2) #np.sqrt(Phi/X1) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers Z_TLsQ = Lam * X1 * coth_mp return Rs + Z_TLsQ def cir_RsRQTLsQ(w, Rs, R1, fs1, n1, L, Ri, Q, n, Q1='none'): ''' Simulation Function: -Rs-RQ-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance(Q) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = Exponent for RQ circuit [-] Q1 = Constant phase element of RQ circuit [s^n/ohm] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] Q = Interfacial capacitance of non-faradaic interface [F/cm] n = Exponent for the interfacial capacitance [-] Output ----------- Impdance of Rs-(RQ)1-TLsQ ''' Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) Phi = 1/(Q*(w*1j)**n) X1 = Ri Lam = (Phi/X1)**(1/2) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) Z_TLsQ = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLsQ def cir_RsTLs(w, Rs, L, Ri, R='none', Q='none', n='none', fs='none'): ''' Simulation Function: -Rs-TLs- TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - <NAME>. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] R = Interfacial Charge transfer resistance [ohm*cm] fs = Summit frequency of interfacial RQ circuit [Hz] n = Exponent for interfacial RQ circuit [-] Q = Constant phase element of interfacial capacitance [s^n/Ohm] Output ----------- Impedance of Rs-TLs(RQ) ''' Phi = cir_RQ(w, R, Q, n, fs) X1 = Ri Lam = (Phi/X1)**(1/2) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_TLs def cir_RsRQTLs(w, Rs, L, Ri, R1, n1, fs1, R2, n2, fs2, Q1='none', Q2='none'): ''' Simulation Function: -Rs-RQ-TLs- TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ) The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance). Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - Bisquert J. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> / <EMAIL>) Inputs ----------- Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = Exponent for RQ circuit [-] Q1 = Constant phase element of RQ circuit [s^n/(ohm * cm)] L = Length/Thickness of porous electrode [cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] R2 = Interfacial Charge transfer resistance [ohm*cm] fs2 = Summit frequency of interfacial RQ circuit [Hz] n2 = Exponent for interfacial RQ circuit [-] Q2 = Constant phase element of interfacial capacitance [s^n/Ohm] Output ----------- Impedance of Rs-(RQ)1-TLs(RQ)2 ''' Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) Phi = cir_RQ(w=w, R=R2, Q=Q2, n=n2, fs=fs2) X1 = Ri Lam = (Phi/X1)**(1/2) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLs ### Support function def sinh(x): ''' As numpy gives errors when sinh becomes very large, above 10^250, this functions is used instead of np/mp.sinh() ''' return (1 - np.exp(-2*x))/(2*np.exp(-x)) def coth(x): ''' As numpy gives errors when coth becomes very large, above 10^250, this functions is used instead of np/mp.coth() ''' return (1 + np.exp(-2*x))/(1 - np.exp(-2*x)) ### def cir_RsTLQ(w, L, Rs, Q, n, Rel, Ri): ''' Simulation Function: -R-TLQ- (interfacial non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - Bisquert J. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] Q = Constant phase element for the interfacial capacitance [s^n/ohm] n = exponenet for interfacial RQ element [-] Rel = electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL ''' #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_TL def cir_RsRQTLQ(w, L, Rs, Q, n, Rel, Ri, R1, n1, fs1, Q1='none'): ''' Simulation Function: -R-RQ-TLQ- (interfacial non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = exponent for RQ circuit [-] Q1 = constant phase element of RQ circuit [s^n/(ohm * cm)] Q = Constant phase element for the interfacial capacitance [s^n/ohm] n = exponenet for interfacial RQ element [-] Rel = electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL ''' #The impedance of the series resistance Z_Rs = Rs #The (RQ) circuit in series with the transmission line Z_RQ1 = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_RQ1 + Z_TL def cir_RsTL(w, L, Rs, R, fs, n, Rel, Ri, Q='none'): ''' Simulation Function: -R-TL- (interfacial reacting, i.e. non-blocking) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - <NAME>. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R = Interfacial charge transfer resistance [ohm * cm] fs = Summit frequency for the interfacial RQ element [Hz] n = Exponenet for interfacial RQ element [-] Q = Constant phase element for the interfacial capacitance [s^n/ohm] Rel = Electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = Thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL ''' #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Phi = cir_RQ(w, R=R, Q=Q, n=n, fs=fs) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL(w, L, Rs, R1, fs1, n1, R2, fs2, n2, Rel, Ri, Q1='none', Q2='none'): ''' Simulation Function: -R-RQ-TL- (interfacial reacting, i.e. non-blocking) Transmission line w/ full complexity, which both includes Ri and Rel Ref.: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R1 = Charge transfer resistance of RQ circuit [ohm] fs1 = Summit frequency for RQ circuit [Hz] n1 = exponent for RQ circuit [-] Q1 = constant phase element of RQ circuit [s^n/(ohm * cm)] R2 = interfacial charge transfer resistance [ohm * cm] fs2 = Summit frequency for the interfacial RQ element [Hz] n2 = exponenet for interfacial RQ element [-] Q2 = Constant phase element for the interfacial capacitance [s^n/ohm] Rel = electronic resistance of electrode [ohm/cm] Ri = Ionic resistance inside of flodded pores [ohm/cm] L = thickness of porous electrode [cm] Output -------------- Impedance of Rs-TL ''' #The impedance of the series resistance Z_Rs = Rs #The (RQ) circuit in series with the transmission line Z_RQ1 = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) # The Interfacial impedance is given by an -(RQ)- circuit Phi = cir_RQ(w, R=R2, Q=Q2, n=n2, fs=fs2) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_RQ1 + Z_TL # Transmission lines with solid-state transport def cir_RsTL_1Dsolid(w, L, D, radius, Rs, R, Q, n, R_w, n_w, Rel, Ri): ''' Simulation Function: -R-TL(Q(RW))- Transmission line w/ full complexity, which both includes Ri and Rel Warburg element is specific for 1D solid-state diffusion Refs: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Illig, J., Physically based Impedance Modelling of Lithium-ion Cells, KIT Scientific Publishing (2014) - Scipioni, et al., ECS Transactions, 69 (18) 71-80 (2015) <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R = particle charge transfer resistance [ohm*cm^2] Q = Summit frequency peak of RQ element in the modified randles element of a particle [Hz] n = exponenet for internal RQ element in the modified randles element of a particle [-] Rel = electronic resistance of electrode [ohm/cm] Ri = ionic resistance of solution in flooded pores of electrode [ohm/cm] R_w = polarization resistance of finite diffusion Warburg element [ohm] n_w = exponent for Warburg element [-] L = thickness of porous electrode [cm] D = solid-state diffusion coefficient [cm^2/s] radius = average particle radius [cm] Output -------------- Impedance of Rs-TL(Q(RW)) ''' #The impedance of the series resistance Z_Rs = Rs #The impedance of a 1D Warburg Element time_const = (radius**2)/D x = (time_const*w*1j)**n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) Z_w = R_w * np.array(warburg_coth_mp)/x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R Z_Q = elem_Q(w,Q=Q,n=n) Z_Randles = 1/(1/Z_Q + 1/(Z_Rct+Z_w)) #Ohm # The Impedance of the Transmission Line lamb = (Z_Randles/(Rel+Ri))**(1/2) x = L/lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/sinh(x))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL_1Dsolid(w, L, D, radius, Rs, R1, fs1, n1, R2, Q2, n2, R_w, n_w, Rel, Ri, Q1='none'): ''' Simulation Function: -R-RQ-TL(Q(RW))- Transmission line w/ full complexity, which both includes Ri and Rel Warburg element is specific for 1D solid-state diffusion Refs: - <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973) - Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes" - <NAME>. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution" - Illig, J., Physically based Impedance Modelling of Lithium-ion Cells, KIT Scientific Publishing (2014) - Scipioni, et al., ECS Transactions, 69 (18) 71-80 (2015) <NAME> (<EMAIL>) <NAME> (<EMAIL> || <EMAIL>) Inputs ------------------ Rs = Series resistance [ohm] R1 = charge transfer resistance of the interfacial RQ element [ohm*cm^2] fs1 = max frequency peak of the interfacial RQ element[Hz] n1 = exponenet for interfacial RQ element R2 = particle charge transfer resistance [ohm*cm^2] Q2 = Summit frequency peak of RQ element in the modified randles element of a particle [Hz] n2 = exponenet for internal RQ element in the modified randles element of a particle [-] Rel = electronic resistance of electrode [ohm/cm] Ri = ionic resistance of solution in flooded pores of electrode [ohm/cm] R_w = polarization resistance of finite diffusion Warburg element [ohm] n_w = exponent for Warburg element [-] L = thickness of porous electrode [cm] D = solid-state diffusion coefficient [cm^2/s] radius = average particle radius [cm] Output ------------------ Impedance of R-RQ-TL(Q(RW)) ''' #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1) #The impedance of a 1D Warburg Element time_const = (radius**2)/D x = (time_const*w*1j)**n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) Z_w = R_w * np.array(warburg_coth_mp)/x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R2 Z_Q = elem_Q(w,Q=Q2,n=n2) Z_Randles = 1/(1/Z_Q + 1/(Z_Rct+Z_w)) #Ohm # The Impedance of the Transmission Line lamb = (Z_Randles/(Rel+Ri))**(1/2) x = L/lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/sinh(x))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_RQ + Z_TL ### Fitting Circuit Functions ## # def elem_C_fit(params, w): ''' Fit Function: -C- ''' C = params['C'] return 1/(C*(w*1j)) def elem_Q_fit(params, w): ''' Fit Function: -Q- Constant Phase Element for Fitting ''' Q = params['Q'] n = params['n'] return 1/(Q*(w*1j)**n) def cir_RsC_fit(params, w): ''' Fit Function: -Rs-C- ''' Rs = params['Rs'] C = params['C'] return Rs + 1/(C*(w*1j)) def cir_RsQ_fit(params, w): ''' Fit Function: -Rs-Q- ''' Rs = params['Rs'] Q = params['Q'] n = params['n'] return Rs + 1/(Q*(w*1j)**n) def cir_RC_fit(params, w): ''' Fit Function: -RC- Returns the impedance of an RC circuit, using RQ definations where n=1 ''' if str(params.keys())[10:].find("R") == -1: #if R == 'none': Q = params['C'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("C") == -1: #elif Q == 'none': R = params['R'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("n") == -1: #elif n == 'none': R = params['R'] Q = params['C'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("fs") == -1: #elif fs == 'none': R = params['R'] Q = params['C'] return cir_RQ(w, R=R, Q=C, n=1, fs=fs) def cir_RQ_fit(params, w): ''' Fit Function: -RQ- Return the impedance of an RQ circuit: Z(w) = R / (1+ R*Q * (2w)^n) See Explanation of equations under cir_RQ() The params.keys()[10:] finds the names of the user defined parameters that should be interated over if X == -1, if the paramter is not given, it becomes equal to 'none' <NAME> (<EMAIL> / <EMAIL>) ''' if str(params.keys())[10:].find("R") == -1: #if R == 'none': Q = params['Q'] n = params['n'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("Q") == -1: #elif Q == 'none': R = params['R'] n = params['n'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("n") == -1: #elif n == 'none': R = params['R'] Q = params['Q'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("fs") == -1: #elif fs == 'none': R = params['R'] n = params['n'] Q = params['Q'] return R/(1+R*Q*(w*1j)**n) def cir_RsRQ_fit(params, w): ''' Fit Function: -Rs-RQ- Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RsRQ_fit() <NAME> (<EMAIL> / <EMAIL>) ''' if str(params.keys())[10:].find("R") == -1: #if R == 'none': Q = params['Q'] n = params['n'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("Q") == -1: #elif Q == 'none': R = params['R'] n = params['n'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("n") == -1: #elif n == 'none': R = params['R'] Q = params['Q'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("fs") == -1: #elif fs == 'none': R = params['R'] Q = params['Q'] n = params['n'] Rs = params['Rs'] return Rs + (R/(1+R*Q*(w*1j)**n)) def cir_RsRQRQ_fit(params, w): ''' Fit Function: -Rs-RQ-RQ- Return the impedance of an Rs-RQ circuit. See details under cir_RsRQRQ() <NAME> (<EMAIL> / <EMAIL>) ''' if str(params.keys())[10:].find("'R'") == -1: #if R == 'none': Q = params['Q'] n = params['n'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("'Q'") == -1: #elif Q == 'none': R = params['R'] n = params['n'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("'n'") == -1: #elif n == 'none': R = params['R'] Q = params['Q'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("'fs'") == -1: #elif fs == 'none': R = params['R'] Q = params['Q'] n = params['n'] if str(params.keys())[10:].find("'R2'") == -1: #if R == 'none': Q2 = params['Q2'] n2 = params['n2'] fs2 = params['fs2'] R2 = (1/(Q2*(2*np.pi*fs2)**n2)) if str(params.keys())[10:].find("'Q2'") == -1: #elif Q == 'none': R2 = params['R2'] n2 = params['n2'] fs2 = params['fs2'] Q2 = (1/(R2*(2*np.pi*fs2)**n2)) if str(params.keys())[10:].find("'n2'") == -1: #elif n == 'none': R2 = params['R2'] Q2 = params['Q2'] fs2 = params['fs2'] n2 = np.log(Q2*R2)/np.log(1/(2*np.pi*fs2)) if str(params.keys())[10:].find("'fs2'") == -1: #elif fs == 'none': R2 = params['R2'] Q2 = params['Q2'] n2 = params['n2'] Rs = params['Rs'] return Rs + (R/(1+R*Q*(w*1j)**n)) + (R2/(1+R2*Q2*(w*1j)**n2)) def cir_Randles_simplified_Fit(params, w): ''' Fit Function: Randles simplified -Rs-(Q-(RW)-)- Return the impedance of a Randles circuit. See more under cir_Randles_simplified() NOTE: This Randles circuit is only meant for semi-infinate linear diffusion <NAME> (<EMAIL> || <EMAIL>) ''' if str(params.keys())[10:].find("'R'") == -1: #if R == 'none': Q = params['Q'] n = params['n'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("'Q'") == -1: #elif Q == 'none': R = params['R'] n = params['n'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("'n'") == -1: #elif n == 'none': R = params['R'] Q = params['Q'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("'fs'") == -1: #elif fs == 'none': R = params['R'] Q = params['Q'] n = params['n'] Rs = params['Rs'] sigma = params['sigma'] Z_Q = 1/(Q*(w*1j)**n) Z_R = R Z_w = sigma*(w**(-0.5))-1j*sigma*(w**(-0.5)) return Rs + 1/(1/Z_Q + 1/(Z_R+Z_w)) def cir_RsRQQ_fit(params, w): ''' Fit Function: -Rs-RQ-Q- See cir_RsRQQ() for details ''' Rs = params['Rs'] Q = params['Q'] n = params['n'] Z_Q = 1/(Q*(w*1j)**n) if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) if str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ = (R1/(1+R1*Q1*(w*1j)**n1)) return Rs + Z_RQ + Z_Q def cir_RsRQC_fit(params, w): ''' Fit Function: -Rs-RQ-C- See cir_RsRQC() for details ''' Rs = params['Rs'] C = params['C'] Z_C = 1/(C*(w*1j)) if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) if str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ = (R1/(1+R1*Q1*(w*1j)**n1)) return Rs + Z_RQ + Z_C def cir_RsRCC_fit(params, w): ''' Fit Function: -Rs-RC-C- See cir_RsRCC() for details ''' Rs = params['Rs'] R1 = params['R1'] C1 = params['C1'] C = params['C'] return Rs + cir_RC(w, C=C1, R=R1, fs='none') + elem_C(w, C=C) def cir_RsRCQ_fit(params, w): ''' Fit Function: -Rs-RC-Q- See cir_RsRCQ() for details ''' Rs = params['Rs'] R1 = params['R1'] C1 = params['C1'] Q = params['Q'] n = params['n'] return Rs + cir_RC(w, C=C1, R=R1, fs='none') + elem_Q(w,Q,n) # Polymer electrolytes def cir_C_RC_C_fit(params, w): ''' Fit Function: -C-(RC)-C- See cir_C_RC_C() for details <NAME> (<EMAIL> || <EMAIL>) ''' # Interfacial impedance Ce = params['Ce'] Z_C = 1/(Ce*(w*1j)) # Bulk impendance if str(params.keys())[10:].find("Rb") == -1: #if R == 'none': Cb = params['Cb'] fsb = params['fsb'] Rb = (1/(Cb*(2*np.pi*fsb))) if str(params.keys())[10:].find("Cb") == -1: #elif Q == 'none': Rb = params['Rb'] fsb = params['fsb'] Cb = (1/(Rb*(2*np.pi*fsb))) if str(params.keys())[10:].find("fsb") == -1: #elif fs == 'none': Rb = params['Rb'] Cb = params['Cb'] Z_RC = (Rb/(1+Rb*Cb*(w*1j))) return Z_C + Z_RC def cir_Q_RQ_Q_Fit(params, w): ''' Fit Function: -Q-(RQ)-Q- See cir_Q_RQ_Q() for details <NAME> (<EMAIL> || <EMAIL>) ''' # Interfacial impedance Qe = params['Qe'] ne = params['ne'] Z_Q = 1/(Qe*(w*1j)**ne) # Bulk impedance if str(params.keys())[10:].find("Rb") == -1: #if R == 'none': Qb = params['Qb'] nb = params['nb'] fsb = params['fsb'] Rb = (1/(Qb*(2*np.pi*fsb)**nb)) if str(params.keys())[10:].find("Qb") == -1: #elif Q == 'none': Rb = params['Rb'] nb = params['nb'] fsb = params['fsb'] Qb = (1/(Rb*(2*np.pi*fsb)**nb)) if str(params.keys())[10:].find("nb") == -1: #elif n == 'none': Rb = params['Rb'] Qb = params['Qb'] fsb = params['fsb'] nb = np.log(Qb*Rb)/np.log(1/(2*np.pi*fsb)) if str(params.keys())[10:].find("fsb") == -1: #elif fs == 'none': Rb = params['Rb'] nb = params['nb'] Qb = params['Qb'] Z_RQ = Rb/(1+Rb*Qb*(w*1j)**nb) return Z_Q + Z_RQ def cir_RCRCZD_fit(params, w): ''' Fit Function: -RC_b-RC_e-Z_D See cir_RCRCZD() for details <NAME> (<EMAIL> || <EMAIL>) ''' # Interfacial impendace if str(params.keys())[10:].find("Re") == -1: #if R == 'none': Ce = params['Ce'] fse = params['fse'] Re = (1/(Ce*(2*np.pi*fse))) if str(params.keys())[10:].find("Ce") == -1: #elif Q == 'none': Re = params['Rb'] fse = params['fsb'] Ce = (1/(Re*(2*np.pi*fse))) if str(params.keys())[10:].find("fse") == -1: #elif fs == 'none': Re = params['Re'] Ce = params['Ce'] Z_RCe = (Re/(1+Re*Ce*(w*1j))) # Bulk impendance if str(params.keys())[10:].find("Rb") == -1: #if R == 'none': Cb = params['Cb'] fsb = params['fsb'] Rb = (1/(Cb*(2*np.pi*fsb))) if str(params.keys())[10:].find("Cb") == -1: #elif Q == 'none': Rb = params['Rb'] fsb = params['fsb'] Cb = (1/(Rb*(2*np.pi*fsb))) if str(params.keys())[10:].find("fsb") == -1: #elif fs == 'none': Rb = params['Rb'] Cb = params['Cb'] Z_RCb = (Rb/(1+Rb*Cb*(w*1j))) # Mass transport impendance L = params['L'] D_s = params['D_s'] u1 = params['u1'] u2 = params['u2'] alpha = ((w*1j*L**2)/D_s)**(1/2) Z_D = Rb * (u2/u1) * (tanh(alpha)/alpha) return Z_RCb + Z_RCe + Z_D # Transmission lines def cir_RsTLsQ_fit(params, w): ''' Fit Function: -Rs-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q) See more under cir_RsTLsQ() <NAME> (<EMAIL> / <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] Q = params['Q'] n = params['n'] Phi = 1/(Q*(w*1j)**n) X1 = Ri # ohm/cm Lam = (Phi/X1)**(1/2) #np.sqrt(Phi/X1) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # # Z_TLsQ = Lam * X1 * coth_mp Z_TLsQ = Lam * X1 * coth(x) return Rs + Z_TLsQ def cir_RsRQTLsQ_Fit(params, w): ''' Fit Function: -Rs-RQ-TLsQ- TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q) See more under cir_RsRQTLsQ <NAME> (<EMAIL> / <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] Q = params['Q'] n = params['n'] if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) if str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ = (R1/(1+R1*Q1*(w*1j)**n1)) Phi = 1/(Q*(w*1j)**n) X1 = Ri Lam = (Phi/X1)**(1/2) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers Z_TLsQ = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLsQ def cir_RsTLs_Fit(params, w): ''' Fit Function: -Rs-RQ-TLs- TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ) See mor under cir_RsTLs() <NAME> (<EMAIL> / <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] if str(params.keys())[10:].find("R") == -1: #if R == 'none': Q = params['Q'] n = params['n'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("Q") == -1: #elif Q == 'none': R = params['R'] n = params['n'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("n") == -1: #elif n == 'none': R = params['R'] Q = params['Q'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("fs") == -1: #elif fs == 'none': R = params['R'] n = params['n'] Q = params['Q'] Phi = R/(1+R*Q*(w*1j)**n) X1 = Ri Lam = (Phi/X1)**(1/2) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_TLs def cir_RsRQTLs_Fit(params, w): ''' Fit Function: -Rs-RQ-TLs- TLs = Simplified Transmission Line with a faradaic interfacial impedance (RQ) See more under cir_RsRQTLs() <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) if str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ = (R1/(1+R1*Q1*(w*1j)**n1)) if str(params.keys())[10:].find("R2") == -1: #if R == 'none': Q2 = params['Q2'] n2 = params['n2'] fs2 = params['fs2'] R2 = (1/(Q2*(2*np.pi*fs2)**n2)) if str(params.keys())[10:].find("Q2") == -1: #elif Q == 'none': R2 = params['R2'] n2 = params['n2'] fs2 = params['fs2'] Q2 = (1/(R2*(2*np.pi*fs2)**n1)) if str(params.keys())[10:].find("n2") == -1: #elif n == 'none': R2 = params['R2'] Q2 = params['Q2'] fs2 = params['fs2'] n2 = np.log(Q2*R2)/np.log(1/(2*np.pi*fs2)) if str(params.keys())[10:].find("fs2") == -1: #elif fs == 'none': R2 = params['R2'] n2 = params['n2'] Q2 = params['Q2'] Phi = (R2/(1+R2*Q2*(w*1j)**n2)) X1 = Ri Lam = (Phi/X1)**(1/2) x = L/Lam x_mp = mp.matrix(x) #x in mp.math format coth_mp = [] for i in range(len(Lam)): coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers Z_TLs = Lam * X1 * coth_mp return Rs + Z_RQ + Z_TLs def cir_RsTLQ_fit(params, w): ''' Fit Function: -R-TLQ- (interface non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] Rel = params['Rel'] Q = params['Q'] n = params['n'] #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_TL def cir_RsRQTLQ_fit(params, w): ''' Fit Function: -R-RQ-TLQ- (interface non-reacting, i.e. blocking electrode) Transmission line w/ full complexity, which both includes Ri and Rel <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] Rel = params['Rel'] Q = params['Q'] n = params['n'] #The impedance of the series resistance Z_Rs = Rs #The (RQ) circuit in series with the transmission line if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) if str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) if str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ1 = (R1/(1+R1*Q1*(w*1j)**n1)) # The Interfacial impedance is given by an -(RQ)- circuit Phi = elem_Q(w, Q=Q, n=n) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_RQ1 + Z_TL def cir_RsTL_Fit(params, w): ''' Fit Function: -R-TLQ- (interface reacting, i.e. non-blocking) Transmission line w/ full complexity, which both includes Ri and Rel See cir_RsTL() for details <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] Rel = params['Rel'] #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R") == -1: #if R == 'none': Q = params['Q'] n = params['n'] fs = params['fs'] R = (1/(Q*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("Q") == -1: #elif Q == 'none': R = params['R'] n = params['n'] fs = params['fs'] Q = (1/(R*(2*np.pi*fs)**n)) if str(params.keys())[10:].find("n") == -1: #elif n == 'none': R = params['R'] Q = params['Q'] fs = params['fs'] n = np.log(Q*R)/np.log(1/(2*np.pi*fs)) if str(params.keys())[10:].find("fs") == -1: #elif fs == 'none': R = params['R'] n = params['n'] Q = params['Q'] Phi = (R/(1+R*Q*(w*1j)**n)) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL_fit(params, w): ''' Fit Function: -R-RQ-TL- (interface reacting, i.e. non-blocking) Transmission line w/ full complexity including both includes Ri and Rel <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] Rel = params['Rel'] #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) elif str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) elif str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) elif str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ1 = (R1/(1+R1*Q1*(w*1j)**n1)) # # # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R2") == -1: #if R == 'none': Q2 = params['Q2'] n2 = params['n2'] fs2 = params['fs2'] R2 = (1/(Q2*(2*np.pi*fs2)**n2)) elif str(params.keys())[10:].find("Q2") == -1: #elif Q == 'none': R2 = params['R2'] n2 = params['n2'] fs2 = params['fs2'] Q2 = (1/(R2*(2*np.pi*fs2)**n1)) elif str(params.keys())[10:].find("n2") == -1: #elif n == 'none': R2 = params['R2'] Q2 = params['Q2'] fs2 = params['fs2'] n2 = np.log(Q2*R2)/np.log(1/(2*np.pi*fs2)) elif str(params.keys())[10:].find("fs2") == -1: #elif fs == 'none': R2 = params['R2'] n2 = params['n2'] Q2 = params['Q2'] Phi = (R2/(1+R2*Q2*(w*1j)**n2)) X1 = Ri X2 = Rel Lam = (Phi/(X1+X2))**(1/2) x = L/Lam # x_mp = mp.matrix(x) #x in mp.math format # coth_mp = [] # sinh_mp = [] # for i in range(len(Lam)): # coth_mp.append(float(mp.coth(x_mp[i]).real)+float((mp.coth(x_mp[i]).imag))*1j) #Handles coth with x having very large or very small numbers # sinh_mp.append(float(((1-mp.exp(-2*x_mp[i]))/(2*mp.exp(-x_mp[i]))).real) + float(((1-mp.exp(-2*x_mp[i]))/(2*mp.exp(-x_mp[i]))).real)*1j) # sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float((mp.sinh(x_mp[i]).imag))*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/sinh(x))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_RQ1 + Z_TL def cir_RsTL_1Dsolid_fit(params, w): ''' Fit Function: -R-TL(Q(RW))- Transmission line w/ full complexity See cir_RsTL_1Dsolid() for details <NAME> (<EMAIL>) <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] radius = params['radius'] D = params['D'] R = params['R'] Q = params['Q'] n = params['n'] R_w = params['R_w'] n_w = params['n_w'] Rel = params['Rel'] Ri = params['Ri'] #The impedance of the series resistance Z_Rs = Rs #The impedance of a 1D Warburg Element time_const = (radius**2)/D x = (time_const*w*1j)**n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) Z_w = R_w * np.array(warburg_coth_mp)/x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R Z_Q = elem_Q(w=w, Q=Q, n=n) Z_Randles = 1/(1/Z_Q + 1/(Z_Rct+Z_w)) #Ohm # The Impedance of the Transmission Line lamb = (Z_Randles/(Rel+Ri))**(1/2) x = L/lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/sinh(x))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_TL def cir_RsRQTL_1Dsolid_fit(params, w): ''' Fit Function: -R-RQ-TL(Q(RW))- Transmission line w/ full complexity, which both includes Ri and Rel. The Warburg element is specific for 1D solid-state diffusion See cir_RsRQTL_1Dsolid() for details <NAME> (<EMAIL>) <NAME> (<EMAIL> || <EMAIL>) ''' Rs = params['Rs'] L = params['L'] Ri = params['Ri'] radius = params['radius'] D = params['D'] R2 = params['R2'] Q2 = params['Q2'] n2 = params['n2'] R_w = params['R_w'] n_w = params['n_w'] Rel = params['Rel'] Ri = params['Ri'] #The impedance of the series resistance Z_Rs = Rs # The Interfacial impedance is given by an -(RQ)- circuit if str(params.keys())[10:].find("R1") == -1: #if R == 'none': Q1 = params['Q1'] n1 = params['n1'] fs1 = params['fs1'] R1 = (1/(Q1*(2*np.pi*fs1)**n1)) elif str(params.keys())[10:].find("Q1") == -1: #elif Q == 'none': R1 = params['R1'] n1 = params['n1'] fs1 = params['fs1'] Q1 = (1/(R1*(2*np.pi*fs1)**n1)) elif str(params.keys())[10:].find("n1") == -1: #elif n == 'none': R1 = params['R1'] Q1 = params['Q1'] fs1 = params['fs1'] n1 = np.log(Q1*R1)/np.log(1/(2*np.pi*fs1)) elif str(params.keys())[10:].find("fs1") == -1: #elif fs == 'none': R1 = params['R1'] n1 = params['n1'] Q1 = params['Q1'] Z_RQ1 = (R1/(1+R1*Q1*(w*1j)**n1)) #The impedance of a 1D Warburg Element time_const = (radius**2)/D x = (time_const*w*1j)**n_w x_mp = mp.matrix(x) warburg_coth_mp = [] for i in range(len(w)): warburg_coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) Z_w = R_w * np.array(warburg_coth_mp)/x # The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2 Z_Rct = R2 Z_Q = elem_Q(w,Q=Q2,n=n2) Z_Randles = 1/(1/Z_Q + 1/(Z_Rct+Z_w)) #Ohm # The Impedance of the Transmission Line lamb = (Z_Randles/(Rel+Ri))**(1/2) x = L/lamb # lamb_mp = mp.matrix(x) # sinh_mp = [] # coth_mp = [] # for j in range(len(lamb_mp)): # sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j) # coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j) # # Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp) Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/sinh(x))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * coth(x) return Z_Rs + Z_RQ1 + Z_TL ### Least-Squares error function def leastsq_errorfunc(params, w, re, im, circuit, weight_func): ''' Sum of squares error function for the complex non-linear least-squares fitting procedure (CNLS). The fitting function (lmfit) will use this function to iterate over until the total sum of errors is minimized. During the minimization the fit is weighed, and currently three different weigh options are avaliable: - modulus - unity - proportional Modulus is generially recommended as random errors and a bias can exist in the experimental data. <NAME> (<EMAIL> || <EMAIL>) Inputs ------------ - params: parameters needed for CNLS - re: real impedance - im: Imaginary impedance - circuit: The avaliable circuits are shown below, and this this parameter needs it as a string. - C - Q - R-C - R-Q - RC - RQ - R-RQ - R-RQ-RQ - R-RQ-Q - R-(Q(RW)) - R-(Q(RM)) - R-RC-C - R-RC-Q - R-RQ-Q - R-RQ-C - RC-RC-ZD - R-TLsQ - R-RQ-TLsQ - R-TLs - R-RQ-TLs - R-TLQ - R-RQ-TLQ - R-TL - R-RQ-TL - R-TL1Dsolid (reactive interface with 1D solid-state diffusion) - R-RQ-TL1Dsolid - weight_func Weight function - modulus - unity - proportional ''' if circuit == 'C': re_fit = elem_C_fit(params, w).real im_fit = -elem_C_fit(params, w).imag elif circuit == 'Q': re_fit = elem_Q_fit(params, w).real im_fit = -elem_Q_fit(params, w).imag elif circuit == 'R-C': re_fit = cir_RsC_fit(params, w).real im_fit = -cir_RsC_fit(params, w).imag elif circuit == 'R-Q': re_fit = cir_RsQ_fit(params, w).real im_fit = -cir_RsQ_fit(params, w).imag elif circuit == 'RC': re_fit = cir_RC_fit(params, w).real im_fit = -cir_RC_fit(params, w).imag elif circuit == 'RQ': re_fit = cir_RQ_fit(params, w).real im_fit = -cir_RQ_fit(params, w).imag elif circuit == 'R-RQ': re_fit = cir_RsRQ_fit(params, w).real im_fit = -cir_RsRQ_fit(params, w).imag elif circuit == 'R-RQ-RQ': re_fit = cir_RsRQRQ_fit(params, w).real im_fit = -cir_RsRQRQ_fit(params, w).imag elif circuit == 'R-RC-C': re_fit = cir_RsRCC_fit(params, w).real im_fit = -cir_RsRCC_fit(params, w).imag elif circuit == 'R-RC-Q': re_fit = cir_RsRCQ_fit(params, w).real im_fit = -cir_RsRCQ_fit(params, w).imag elif circuit == 'R-RQ-Q': re_fit = cir_RsRQQ_fit(params, w).real im_fit = -cir_RsRQQ_fit(params, w).imag elif circuit == 'R-RQ-C': re_fit = cir_RsRQC_fit(params, w).real im_fit = -cir_RsRQC_fit(params, w).imag elif circuit == 'R-(Q(RW))': re_fit = cir_Randles_simplified_Fit(params, w).real im_fit = -cir_Randles_simplified_Fit(params, w).imag elif circuit == 'R-(Q(RM))': re_fit = cir_Randles_uelectrode_fit(params, w).real im_fit = -cir_Randles_uelectrode_fit(params, w).imag elif circuit == 'C-RC-C': re_fit = cir_C_RC_C_fit(params, w).real im_fit = -cir_C_RC_C_fit(params, w).imag elif circuit == 'Q-RQ-Q': re_fit = cir_Q_RQ_Q_Fit(params, w).real im_fit = -cir_Q_RQ_Q_Fit(params, w).imag elif circuit == 'RC-RC-ZD': re_fit = cir_RCRCZD_fit(params, w).real im_fit = -cir_RCRCZD_fit(params, w).imag elif circuit == 'R-TLsQ': re_fit = cir_RsTLsQ_fit(params, w).real im_fit = -cir_RsTLsQ_fit(params, w).imag elif circuit == 'R-RQ-TLsQ': re_fit = cir_RsRQTLsQ_Fit(params, w).real im_fit = -cir_RsRQTLsQ_Fit(params, w).imag elif circuit == 'R-TLs': re_fit = cir_RsTLs_Fit(params, w).real im_fit = -cir_RsTLs_Fit(params, w).imag elif circuit == 'R-RQ-TLs': re_fit = cir_RsRQTLs_Fit(params, w).real im_fit = -cir_RsRQTLs_Fit(params, w).imag elif circuit == 'R-TLQ': re_fit = cir_RsTLQ_fit(params, w).real im_fit = -cir_RsTLQ_fit(params, w).imag elif circuit == 'R-RQ-TLQ': re_fit = cir_RsRQTLQ_fit(params, w).real im_fit = -cir_RsRQTLQ_fit(params, w).imag elif circuit == 'R-TL': re_fit = cir_RsTL_Fit(params, w).real im_fit = -cir_RsTL_Fit(params, w).imag elif circuit == 'R-RQ-TL': re_fit = cir_RsRQTL_fit(params, w).real im_fit = -cir_RsRQTL_fit(params, w).imag elif circuit == 'R-TL1Dsolid': re_fit = cir_RsTL_1Dsolid_fit(params, w).real im_fit = -cir_RsTL_1Dsolid_fit(params, w).imag elif circuit == 'R-RQ-TL1Dsolid': re_fit = cir_RsRQTL_1Dsolid_fit(params, w).real im_fit = -cir_RsRQTL_1Dsolid_fit(params, w).imag else: print('Circuit is not defined in leastsq_errorfunc()') error = [(re-re_fit)**2, (im-im_fit)**2] #sum of squares #Different Weighing options, see Lasia if weight_func == 'modulus': weight = [1/((re_fit**2 + im_fit**2)**(1/2)), 1/((re_fit**2 + im_fit**2)**(1/2))] elif weight_func == 'proportional': weight = [1/(re_fit**2), 1/(im_fit**2)] elif weight_func == 'unity': unity_1s = [] for k in range(len(re)): unity_1s.append(1) #makes an array of [1]'s, so that the weighing is == 1 * sum of squres. weight = [unity_1s, unity_1s] else: print('weight not defined in leastsq_errorfunc()') S = np.array(weight) * error #weighted sum of squares return S ### Fitting Class class EIS_exp: ''' This class is used to plot and/or analyze experimental impedance data. The class has three major functions: - EIS_plot() - Lin_KK() - EIS_fit() - EIS_plot() is used to plot experimental data with or without fit - Lin_KK() performs a linear Kramers-Kronig analysis of the experimental data set. - EIS_fit() performs complex non-linear least-squares fitting of the experimental data to an equivalent circuit <NAME> (<EMAIL> || <EMAIL>) Inputs ----------- - path: path of datafile(s) as a string - data: datafile(s) including extension, e.g. ['EIS_data1', 'EIS_data2'] - cycle: Specific cycle numbers can be extracted using the cycle function. Default is 'none', which includes all cycle numbers. Specific cycles can be extracted using this parameter, insert cycle numbers in brackets, e.g. cycle number 1,4, and 6 are wanted. cycle=[1,4,6] - mask: ['high frequency' , 'low frequency'], if only a high- or low-frequency is desired use 'none' for the other, e.g. maks=[10**4,'none'] ''' def __init__(self, path, data, cycle='off', mask=['none','none']): self.df_raw0 = [] self.cycleno = [] for j in range(len(data)): if data[j].find(".mpt") != -1: #file is a .mpt file self.df_raw0.append(extract_mpt(path=path, EIS_name=data[j])) #reads all datafiles elif data[j].find(".DTA") != -1: #file is a .dta file self.df_raw0.append(extract_dta(path=path, EIS_name=data[j])) #reads all datafiles elif data[j].find(".z") != -1: #file is a .z file self.df_raw0.append(extract_solar(path=path, EIS_name=data[j])) #reads all datafiles else: print('Data file(s) could not be identified') self.cycleno.append(self.df_raw0[j].cycle_number) if np.min(self.cycleno[j]) <= np.max(self.cycleno[j-1]): if j > 0: #corrects cycle_number except for the first data file self.df_raw0[j].update({'cycle_number': self.cycleno[j]+np.max(self.cycleno[j-1])}) #corrects cycle number # else: # print('__init__ Error (#1)') #currently need to append a cycle_number coloumn to gamry files # adds individual dataframes into one if len(self.df_raw0) == 1: self.df_raw = self.df_raw0[0] elif len(self.df_raw0) == 2: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1]], axis=0) elif len(self.df_raw0) == 3: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2]], axis=0) elif len(self.df_raw0) == 4: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3]], axis=0) elif len(self.df_raw0) == 5: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4]], axis=0) elif len(self.df_raw0) == 6: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5]], axis=0) elif len(self.df_raw0) == 7: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6]], axis=0) elif len(self.df_raw0) == 8: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7]], axis=0) elif len(self.df_raw0) == 9: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8]], axis=0) elif len(self.df_raw0) == 10: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9]], axis=0) elif len(self.df_raw0) == 11: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10]], axis=0) elif len(self.df_raw0) == 12: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11]], axis=0) elif len(self.df_raw0) == 13: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11], self.df_raw0[12]], axis=0) elif len(self.df_raw0) == 14: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11]], self.df_raw0[12], self.df_raw0[13], axis=0) elif len(self.df_raw0) == 15: self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3], self.df_raw0[4], self.df_raw0[5], self.df_raw0[6], self.df_raw0[7], self.df_raw0[8], self.df_raw0[9], self.df_raw0[10], self.df_raw0[11]], self.df_raw0[12], self.df_raw0[13], self.df_raw0[14], axis=0) else: print("Too many data files || 15 allowed") self.df_raw = self.df_raw.assign(w = 2*np.pi*self.df_raw.f) #creats a new coloumn with the angular frequency #Masking data to each cycle self.df_pre = [] self.df_limited = [] self.df_limited2 = [] self.df = [] if mask == ['none','none'] and cycle == 'off': for i in range(len(self.df_raw.cycle_number.unique())): #includes all data self.df.append(self.df_raw[self.df_raw.cycle_number == self.df_raw.cycle_number.unique()[i]]) elif mask == ['none','none'] and cycle != 'off': for i in range(len(cycle)): self.df.append(self.df_raw[self.df_raw.cycle_number == cycle[i]]) #extracting dataframe for each cycle elif mask[0] != 'none' and mask[1] == 'none' and cycle == 'off': self.df_pre = self.df_raw.mask(self.df_raw.f > mask[0]) self.df_pre.dropna(how='all', inplace=True) for i in range(len(self.df_pre.cycle_number.unique())): #Appending data based on cycle number self.df.append(self.df_pre[self.df_pre.cycle_number == self.df_pre.cycle_number.unique()[i]]) elif mask[0] != 'none' and mask[1] == 'none' and cycle != 'off': # or [i for i, e in enumerate(mask) if e == 'none'] == [0] self.df_limited = self.df_raw.mask(self.df_raw.f > mask[0]) for i in range(len(cycle)): self.df.append(self.df_limited[self.df_limited.cycle_number == cycle[i]]) elif mask[0] == 'none' and mask[1] != 'none' and cycle == 'off': self.df_pre = self.df_raw.mask(self.df_raw.f < mask[1]) self.df_pre.dropna(how='all', inplace=True) for i in range(len(self.df_raw.cycle_number.unique())): #includes all data self.df.append(self.df_pre[self.df_pre.cycle_number == self.df_pre.cycle_number.unique()[i]]) elif mask[0] == 'none' and mask[1] != 'none' and cycle != 'off': self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1]) for i in range(len(cycle)): self.df.append(self.df_limited[self.df_limited.cycle_number == cycle[i]]) elif mask[0] != 'none' and mask[1] != 'none' and cycle != 'off': self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1]) self.df_limited2 = self.df_limited.mask(self.df_raw.f > mask[0]) for i in range(len(cycle)): self.df.append(self.df_limited[self.df_limited2.cycle_number == cycle[i]]) elif mask[0] != 'none' and mask[1] != 'none' and cycle == 'off': self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1]) self.df_limited2 = self.df_limited.mask(self.df_raw.f > mask[0]) for i in range(len(self.df_raw.cycle_number.unique())): self.df.append(self.df_limited[self.df_limited2.cycle_number == self.df_raw.cycle_number.unique()[i]]) else: print('__init__ error (#2)') def Lin_KK(self, num_RC='auto', legend='on', plot='residuals', bode='off', nyq_xlim='none', nyq_ylim='none', weight_func='Boukamp', savefig='none'): ''' Plots the Linear Kramers-Kronig (KK) Validity Test The script is based on Boukamp and Schōnleber et al.'s papers for fitting the resistances of multiple -(RC)- circuits to the data. A data quality analysis can hereby be made on the basis of the relative residuals Ref.: - Schōnleber, M. et al. Electrochimica Acta 131 (2014) 20-27 - Boukamp, B.A. J. Electrochem. Soc., 142, 6, 1885-1894 The function performs the KK analysis and as default the relative residuals in each subplot Note, that weigh_func should be equal to 'Boukamp'. <NAME> (<EMAIL> || <EMAIL>) Optional Inputs ----------------- - num_RC: - 'auto' applies an automatic algorithm developed by Schōnleber, M. et al. Electrochimica Acta 131 (2014) 20-27 that ensures no under- or over-fitting occurs - can be hardwired by inserting any number (RC-elements/decade) - plot: - 'residuals' = plots the relative residuals in subplots correspoding to the cycle numbers picked - 'w_data' = plots the relative residuals with the experimental data, in Nyquist and bode plot if desired, see 'bode =' in description - nyq_xlim/nyq_xlim: Change the x/y-axis limits on nyquist plot, if not equal to 'none' state [min,max] value - legend: - 'on' = displays cycle number - 'potential' = displays average potential which the spectra was measured at - 'off' = off bode = Plots Bode Plot - options: 'on' = re, im vs. log(freq) 'log' = log(re, im) vs. log(freq) 're' = re vs. log(freq) 'log_re' = log(re) vs. log(freq) 'im' = im vs. log(freq) 'log_im' = log(im) vs. log(freq) ''' if num_RC == 'auto': print('cycle || No. RC-elements || u') self.decade = [] self.Rparam = [] self.t_const = [] self.Lin_KK_Fit = [] self.R_names = [] self.KK_R0 = [] self.KK_R = [] self.number_RC = [] self.number_RC_sort = [] self.KK_u = [] self.KK_Rgreater = [] self.KK_Rminor = [] M = 2 for i in range(len(self.df)): self.decade.append(np.log10(np.max(self.df[i].f))-np.log10(np.min(self.df[i].f))) #determine the number of RC circuits based on the number of decades measured and num_RC self.number_RC.append(M) self.number_RC_sort.append(M) #needed for self.KK_R self.Rparam.append(KK_Rnam_val(re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]))[0]) #Creates intial guesses for R's self.t_const.append(KK_timeconst(w=self.df[i].w, num_RC=int(self.number_RC[i]))) #Creates time constants values for self.number_RC -(RC)- circuits self.Lin_KK_Fit.append(minimize(KK_errorfunc, self.Rparam[i], method='leastsq', args=(self.df[i].w.values, self.df[i].re.values, self.df[i].im.values, self.number_RC[i], weight_func, self.t_const[i]) )) #maxfev=99 self.R_names.append(KK_Rnam_val(re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]))[1]) #creates R names for j in range(len(self.R_names[i])): self.KK_R0.append(self.Lin_KK_Fit[i].params.get(self.R_names[i][j]).value) self.number_RC_sort.insert(0,0) #needed for self.KK_R for i in range(len(self.df)): self.KK_R.append(self.KK_R0[int(np.cumsum(self.number_RC_sort)[i]):int(np.cumsum(self.number_RC_sort)[i+1])]) #assigns resistances from each spectra to their respective df self.KK_Rgreater.append(np.where(np.array(self.KK_R)[i] >= 0, np.array(self.KK_R)[i], 0) ) self.KK_Rminor.append(np.where(np.array(self.KK_R)[i] < 0, np.array(self.KK_R)[i], 0) ) self.KK_u.append(1-(np.abs(np.sum(self.KK_Rminor[i]))/np.abs(np.sum(self.KK_Rgreater[i])))) for i in range(len(self.df)): while self.KK_u[i] <= 0.75 or self.KK_u[i] >= 0.88: self.number_RC_sort0 = [] self.KK_R_lim = [] self.number_RC[i] = self.number_RC[i] + 1 self.number_RC_sort0.append(self.number_RC) self.number_RC_sort = np.insert(self.number_RC_sort0, 0,0) self.Rparam[i] = KK_Rnam_val(re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]))[0] #Creates intial guesses for R's self.t_const[i] = KK_timeconst(w=self.df[i].w, num_RC=int(self.number_RC[i])) #Creates time constants values for self.number_RC -(RC)- circuits self.Lin_KK_Fit[i] = minimize(KK_errorfunc, self.Rparam[i], method='leastsq', args=(self.df[i].w.values, self.df[i].re.values, self.df[i].im.values, self.number_RC[i], weight_func, self.t_const[i]) ) #maxfev=99 self.R_names[i] = KK_Rnam_val(re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC[i]))[1] #creates R names self.KK_R0 = np.delete(np.array(self.KK_R0), np.s_[0:len(self.KK_R0)]) self.KK_R0 = [] for q in range(len(self.df)): for j in range(len(self.R_names[q])): self.KK_R0.append(self.Lin_KK_Fit[q].params.get(self.R_names[q][j]).value) self.KK_R_lim = np.cumsum(self.number_RC_sort) #used for KK_R[i] self.KK_R[i] = self.KK_R0[self.KK_R_lim[i]:self.KK_R_lim[i+1]] #assigns resistances from each spectra to their respective df self.KK_Rgreater[i] = np.where(np.array(self.KK_R[i]) >= 0, np.array(self.KK_R[i]), 0) self.KK_Rminor[i] = np.where(np.array(self.KK_R[i]) < 0, np.array(self.KK_R[i]), 0) self.KK_u[i] = 1-(np.abs(np.sum(self.KK_Rminor[i]))/np.abs(np.sum(self.KK_Rgreater[i]))) else: print('['+str(i+1)+']'+' '+str(self.number_RC[i]),' '+str(np.round(self.KK_u[i],2))) elif num_RC != 'auto': #hardwired number of RC-elements/decade print('cycle || u') self.decade = [] self.number_RC0 = [] self.number_RC = [] self.Rparam = [] self.t_const = [] self.Lin_KK_Fit = [] self.R_names = [] self.KK_R0 = [] self.KK_R = [] for i in range(len(self.df)): self.decade.append(np.log10(np.max(self.df[i].f))-np.log10(np.min(self.df[i].f))) #determine the number of RC circuits based on the number of decades measured and num_RC self.number_RC0.append(np.round(num_RC * self.decade[i])) self.number_RC.append(np.round(num_RC * self.decade[i])) #Creats the the number of -(RC)- circuits self.Rparam.append(KK_Rnam_val(re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC0[i]))[0]) #Creates intial guesses for R's self.t_const.append(KK_timeconst(w=self.df[i].w, num_RC=int(self.number_RC0[i]))) #Creates time constants values for self.number_RC -(RC)- circuits self.Lin_KK_Fit.append(minimize(KK_errorfunc, self.Rparam[i], method='leastsq', args=(self.df[i].w.values, self.df[i].re.values, self.df[i].im.values, self.number_RC0[i], weight_func, self.t_const[i]) )) #maxfev=99 self.R_names.append(KK_Rnam_val(re=self.df[i].re, re_start=self.df[i].re.idxmin(), num_RC=int(self.number_RC0[i]))[1]) #creates R names for j in range(len(self.R_names[i])): self.KK_R0.append(self.Lin_KK_Fit[i].params.get(self.R_names[i][j]).value) self.number_RC0.insert(0,0) # print(report_fit(self.Lin_KK_Fit[i])) # prints fitting report self.KK_circuit_fit = [] self.KK_rr_re = [] self.KK_rr_im = [] self.KK_Rgreater = [] self.KK_Rminor = [] self.KK_u = [] for i in range(len(self.df)): self.KK_R.append(self.KK_R0[int(np.cumsum(self.number_RC0)[i]):int(np.cumsum(self.number_RC0)[i+1])]) #assigns resistances from each spectra to their respective df self.KK_Rx = np.array(self.KK_R) self.KK_Rgreater.append(np.where(self.KK_Rx[i] >= 0, self.KK_Rx[i], 0) ) self.KK_Rminor.append(np.where(self.KK_Rx[i] < 0, self.KK_Rx[i], 0) ) self.KK_u.append(1-(np.abs(np.sum(self.KK_Rminor[i]))/np.abs(np.sum(self.KK_Rgreater[i])))) #currently gives incorrect values print('['+str(i+1)+']'+' '+str(np.round(self.KK_u[i],2))) else: print('num_RC incorrectly defined') self.KK_circuit_fit = [] self.KK_rr_re = [] self.KK_rr_im = [] for i in range(len(self.df)): if int(self.number_RC[i]) == 2: self.KK_circuit_fit.append(KK_RC2(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 3: self.KK_circuit_fit.append(KK_RC3(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 4: self.KK_circuit_fit.append(KK_RC4(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 5: self.KK_circuit_fit.append(KK_RC5(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 6: self.KK_circuit_fit.append(KK_RC6(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 7: self.KK_circuit_fit.append(KK_RC7(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 8: self.KK_circuit_fit.append(KK_RC8(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 9: self.KK_circuit_fit.append(KK_RC9(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 10: self.KK_circuit_fit.append(KK_RC10(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 11: self.KK_circuit_fit.append(KK_RC11(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 12: self.KK_circuit_fit.append(KK_RC12(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 13: self.KK_circuit_fit.append(KK_RC13(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 14: self.KK_circuit_fit.append(KK_RC14(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 15: self.KK_circuit_fit.append(KK_RC15(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 16: self.KK_circuit_fit.append(KK_RC16(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 17: self.KK_circuit_fit.append(KK_RC17(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 18: self.KK_circuit_fit.append(KK_RC18(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 19: self.KK_circuit_fit.append(KK_RC19(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 20: self.KK_circuit_fit.append(KK_RC20(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 21: self.KK_circuit_fit.append(KK_RC21(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 22: self.KK_circuit_fit.append(KK_RC22(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 23: self.KK_circuit_fit.append(KK_RC23(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 24: self.KK_circuit_fit.append(KK_RC24(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 25: self.KK_circuit_fit.append(KK_RC25(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 26: self.KK_circuit_fit.append(KK_RC26(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 27: self.KK_circuit_fit.append(KK_RC27(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 28: self.KK_circuit_fit.append(KK_RC28(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 29: self.KK_circuit_fit.append(KK_RC29(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 30: self.KK_circuit_fit.append(KK_RC30(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 31: self.KK_circuit_fit.append(KK_RC31(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 32: self.KK_circuit_fit.append(KK_RC32(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 33: self.KK_circuit_fit.append(KK_RC33(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 34: self.KK_circuit_fit.append(KK_RC34(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 35: self.KK_circuit_fit.append(KK_RC35(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 36: self.KK_circuit_fit.append(KK_RC36(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 37: self.KK_circuit_fit.append(KK_RC37(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 38: self.KK_circuit_fit.append(KK_RC38(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 39: self.KK_circuit_fit.append(KK_RC39(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 40: self.KK_circuit_fit.append(KK_RC40(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 41: self.KK_circuit_fit.append(KK_RC41(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 42: self.KK_circuit_fit.append(KK_RC42(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 43: self.KK_circuit_fit.append(KK_RC43(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 44: self.KK_circuit_fit.append(KK_RC44(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 45: self.KK_circuit_fit.append(KK_RC45(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 46: self.KK_circuit_fit.append(KK_RC46(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 47: self.KK_circuit_fit.append(KK_RC47(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 48: self.KK_circuit_fit.append(KK_RC48(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 49: self.KK_circuit_fit.append(KK_RC49(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 50: self.KK_circuit_fit.append(KK_RC50(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 51: self.KK_circuit_fit.append(KK_RC51(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 52: self.KK_circuit_fit.append(KK_RC52(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 53: self.KK_circuit_fit.append(KK_RC53(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 54: self.KK_circuit_fit.append(KK_RC54(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 55: self.KK_circuit_fit.append(KK_RC55(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 56: self.KK_circuit_fit.append(KK_RC56(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 57: self.KK_circuit_fit.append(KK_RC57(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 58: self.KK_circuit_fit.append(KK_RC58(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 59: self.KK_circuit_fit.append(KK_RC59(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 60: self.KK_circuit_fit.append(KK_RC60(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 61: self.KK_circuit_fit.append(KK_RC61(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 62: self.KK_circuit_fit.append(KK_RC62(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 63: self.KK_circuit_fit.append(KK_RC63(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 64: self.KK_circuit_fit.append(KK_RC64(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 65: self.KK_circuit_fit.append(KK_RC65(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 66: self.KK_circuit_fit.append(KK_RC66(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 67: self.KK_circuit_fit.append(KK_RC67(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 68: self.KK_circuit_fit.append(KK_RC68(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 69: self.KK_circuit_fit.append(KK_RC69(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 70: self.KK_circuit_fit.append(KK_RC70(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 71: self.KK_circuit_fit.append(KK_RC71(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 72: self.KK_circuit_fit.append(KK_RC72(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 73: self.KK_circuit_fit.append(KK_RC73(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 74: self.KK_circuit_fit.append(KK_RC74(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 75: self.KK_circuit_fit.append(KK_RC75(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 76: self.KK_circuit_fit.append(KK_RC76(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 77: self.KK_circuit_fit.append(KK_RC77(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 78: self.KK_circuit_fit.append(KK_RC78(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 79: self.KK_circuit_fit.append(KK_RC79(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) elif int(self.number_RC[i]) == 80: self.KK_circuit_fit.append(KK_RC80(w=self.df[i].w, Rs=self.Lin_KK_Fit[i].params.get('Rs').value, R_values=self.KK_R[i], t_values=self.t_const[i])) else: print('RC simulation circuit not defined') print(' Number of RC = ', self.number_RC) self.KK_rr_re.append(residual_real(re=self.df[i].re, fit_re=self.KK_circuit_fit[i].to_numpy().real, fit_im=-self.KK_circuit_fit[i].to_numpy().imag)) #relative residuals for the real part self.KK_rr_im.append(residual_imag(im=self.df[i].im, fit_re=self.KK_circuit_fit[i].to_numpy().real, fit_im=-self.KK_circuit_fit[i].to_numpy().imag)) #relative residuals for the imag part ### Plotting Linear_kk results ## # ### Label functions self.label_re_1 = [] self.label_im_1 = [] self.label_cycleno = [] if legend == 'on': for i in range(len(self.df)): self.label_re_1.append("Z' (#"+str(i+1)+")") self.label_im_1.append("Z'' (#"+str(i+1)+")") self.label_cycleno.append('#'+str(i+1)) elif legend == 'potential': for i in range(len(self.df)): self.label_re_1.append("Z' ("+str(np.round(np.average(self.df[i].E_avg), 2))+' V)') self.label_im_1.append("Z'' ("+str(np.round(np.average(self.df[i].E_avg), 2))+' V)') self.label_cycleno.append(str(np.round(np.average(self.df[i].E_avg), 2))+' V') if plot == 'w_data': fig = figure(figsize=(6, 8), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.5, bottom=0.1, top=0.95) ax = fig.add_subplot(311, aspect='equal') ax1 = fig.add_subplot(312) ax2 = fig.add_subplot(313) colors = sns.color_palette("colorblind", n_colors=len(self.df)) colors_real = sns.color_palette("Blues", n_colors=len(self.df)+2) colors_imag = sns.color_palette("Oranges", n_colors=len(self.df)+2) ### Nyquist Plot for i in range(len(self.df)): ax.plot(self.df[i].re, self.df[i].im, marker='o', ms=4, lw=2, color=colors[i], ls='-', alpha=.7, label=self.label_cycleno[i]) ### Bode Plot if bode == 'on': for i in range(len(self.df)): ax1.plot(np.log10(self.df[i].f), self.df[i].re, color=colors_real[i+1], marker='D', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_re_1[i]) ax1.plot(np.log10(self.df[i].f), self.df[i].im, color=colors_imag[i+1], marker='s', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_im_1[i]) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("Z', -Z'' [$\Omega$]") if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) elif bode == 're': for i in range(len(self.df)): ax1.plot(np.log10(self.df[i].f), self.df[i].re, color=colors_real[i+1], marker='D', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_cycleno[i]) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("Z' [$\Omega$]") if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) elif bode == 'log_re': for i in range(len(self.df)): ax1.plot(np.log10(self.df[i].f), np.log10(self.df[i].re), color=colors_real[i+1], marker='D', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_cycleno[i]) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("log(Z') [$\Omega$]") if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) elif bode == 'im': for i in range(len(self.df)): ax1.plot(np.log10(self.df[i].f), self.df[i].im, color=colors_imag[i+1], marker='s', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_cycleno[i]) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("-Z'' [$\Omega$]") if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) elif bode == 'log_im': for i in range(len(self.df)): ax1.plot(np.log10(self.df[i].f), np.log10(self.df[i].im), color=colors_imag[i+1], marker='s', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_cycleno[i]) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("log(-Z'') [$\Omega$]") if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) elif bode == 'log': for i in range(len(self.df)): ax1.plot(np.log10(self.df[i].f), np.log10(self.df[i].re), color=colors_real[i+1], marker='D', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_re_1[i]) ax1.plot(np.log10(self.df[i].f), np.log10(self.df[i].im), color=colors_imag[i+1], marker='s', ms=3, lw=2.25, ls='-', alpha=.7, label=self.label_im_1[i]) ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("log(Z', -Z'') [$\Omega$]") if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ### Kramers-Kronig Relative Residuals for i in range(len(self.df)): ax2.plot(np.log10(self.df[i].f), self.KK_rr_re[i]*100, color=colors_real[i+1], marker='D', ls='--', ms=6, alpha=.7, label=self.label_re_1[i]) ax2.plot(np.log10(self.df[i].f), self.KK_rr_im[i]*100, color=colors_imag[i+1], marker='s', ls='--', ms=6, alpha=.7, label=self.label_im_1[i]) ax2.set_xlabel("log(f) [Hz]") ax2.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and write 'KK-Test' on RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if np.min(self.KK_rr_im_min) > np.min(self.KK_rr_re_min): ax2.set_ylim(np.min(self.KK_rr_re_min)*100*1.5, np.max(np.abs(self.KK_rr_re_min))*100*1.5) ax2.annotate('Lin-KK', xy=[np.min(np.log10(self.df[0].f)), np.max(self.KK_rr_re_max)*100*.9], color='k', fontweight='bold') elif np.min(self.KK_rr_im_min) < np.min(self.KK_rr_re_min): ax2.set_ylim(np.min(self.KK_rr_im_min)*100*1.5, np.max(self.KK_rr_im_max)*100*1.5) ax2.annotate('Lin-KK', xy=[np.min(np.log10(self.df[0].f)), np.max(self.KK_rr_im_max)*100*.9], color='k', fontweight='bold') ### Figure specifics if legend == 'on' or legend == 'potential': ax.legend(loc='best', fontsize=10, frameon=False) ax.set_xlabel("Z' [$\Omega$]") ax.set_ylabel("-Z'' [$\Omega$]") if nyq_xlim != 'none': ax.set_xlim(nyq_xlim[0], nyq_xlim[1]) if nyq_ylim != 'none': ax.set_ylim(nyq_ylim[0], nyq_ylim[1]) #Save Figure if savefig != 'none': fig.savefig(savefig) ### Illustrating residuals only elif plot == 'residuals': colors = sns.color_palette("colorblind", n_colors=9) colors_real = sns.color_palette("Blues", n_colors=9) colors_imag = sns.color_palette("Oranges", n_colors=9) ### 1 Cycle if len(self.df) == 1: fig = figure(figsize=(12, 3.8), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax = fig.add_subplot(231) ax.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax.set_xlabel("log(f) [Hz]") ax.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]") if legend == 'on' or legend == 'potential': ax.legend(loc='best', fontsize=10, frameon=False) ax.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and write 'KK-Test' on RR subplot self.KK_rr_im_min = np.min(self.KK_rr_im) self.KK_rr_im_max = np.max(self.KK_rr_im) self.KK_rr_re_min = np.min(self.KK_rr_re) self.KK_rr_re_max = np.max(self.KK_rr_re) if self.KK_rr_re_max > self.KK_rr_im_max: self.KK_ymax = self.KK_rr_re_max else: self.KK_ymax = self.KK_rr_im_max if self.KK_rr_re_min < self.KK_rr_im_min: self.KK_ymin = self.KK_rr_re_min else: self.KK_ymin = self.KK_rr_im_min if np.abs(self.KK_ymin) > self.KK_ymax: ax.set_ylim(self.KK_ymin*100*1.5, np.abs(self.KK_ymin)*100*1.5) if legend == 'on': ax.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin)*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin)*100*1.3], color='k', fontweight='bold') elif np.abs(self.KK_ymin) < self.KK_ymax: ax.set_ylim(np.negative(self.KK_ymax)*100*1.5, np.abs(self.KK_ymax)*100*1.5) if legend == 'on': ax.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax*100*1.3], color='k', fontweight='bold') #Save Figure if savefig != 'none': fig.savefig(savefig) ### 2 Cycles elif len(self.df) == 2: fig = figure(figsize=(12, 5), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) #cycle 1 ax1.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax1.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ax1.axhline(0, ls='--', c='k', alpha=.5) #cycle 2 ax2.plot(np.log10(self.df[1].f), self.KK_rr_re[1]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax2.plot(np.log10(self.df[1].f), self.KK_rr_im[1]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax2.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim(self.KK_ymin[0]*100*1.5, np.abs(self.KK_ymin[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.3], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0])*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax[0]*100*1.3], color='k', fontweight='bold') if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim(self.KK_ymin[1]*100*1.5, np.abs(self.KK_ymin[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.3], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim(np.negative(self.KK_ymax[1])*100*1.5, np.abs(self.KK_ymax[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.3], color='k', fontweight='bold') #Save Figure if savefig != 'none': fig.savefig(savefig) ### 3 Cycles elif len(self.df) == 3: fig = figure(figsize=(12, 5), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) ax3 = fig.add_subplot(233) #cycle 1 ax1.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax1.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax1.set_xlabel("log(f) [Hz]") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ax1.axhline(0, ls='--', c='k', alpha=.5) # Cycle 2 ax2.plot(np.log10(self.df[1].f), self.KK_rr_re[1]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax2.plot(np.log10(self.df[1].f), self.KK_rr_im[1]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax2.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) # Cycle 3 ax3.plot(np.log10(self.df[2].f), self.KK_rr_re[2]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax3.plot(np.log10(self.df[2].f), self.KK_rr_im[2]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax3.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax3.legend(loc='best', fontsize=10, frameon=False) ax3.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim(self.KK_ymin[0]*100*1.5, np.abs(self.KK_ymin[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.3], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0])*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax[0]*100*1.3], color='k', fontweight='bold') if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim(self.KK_ymin[1]*100*1.5, np.abs(self.KK_ymin[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.3], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim(np.negative(self.KK_ymax[1])*100*1.5, np.abs(self.KK_ymax[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.3], color='k', fontweight='bold') if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim(self.KK_ymin[2]*100*1.5, np.abs(self.KK_ymin[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.3], color='k', fontweight='bold') elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2])*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK, ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), self.KK_ymax[2]*100*1.3], color='k', fontweight='bold') #Save Figure if savefig != 'none': fig.savefig(savefig) ### 4 Cycles elif len(self.df) == 4: fig = figure(figsize=(12, 3.8), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) ax3 = fig.add_subplot(223) ax4 = fig.add_subplot(224) #cycle 1 ax1.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax1.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ax1.axhline(0, ls='--', c='k', alpha=.5) # Cycle 2 ax2.plot(np.log10(self.df[1].f), self.KK_rr_re[1]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax2.plot(np.log10(self.df[1].f), self.KK_rr_im[1]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax2.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) # Cycle 3 ax3.plot(np.log10(self.df[2].f), self.KK_rr_re[2]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax3.plot(np.log10(self.df[2].f), self.KK_rr_im[2]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax3.set_xlabel("log(f) [Hz]") ax3.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == 'on' or legend == 'potential': ax3.legend(loc='best', fontsize=10, frameon=False) ax3.axhline(0, ls='--', c='k', alpha=.5) # Cycle 4 ax4.plot(np.log10(self.df[3].f), self.KK_rr_re[3]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax4.plot(np.log10(self.df[3].f), self.KK_rr_im[3]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax4.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax4.legend(loc='best', fontsize=10, frameon=False) ax4.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim(self.KK_ymin[0]*100*1.5, np.abs(self.KK_ymin[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax[0]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim(self.KK_ymin[1]*100*1.5, np.abs(self.KK_ymin[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim(np.negative(self.KK_ymax[1])*100*1.5, np.abs(self.KK_ymax[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim(self.KK_ymin[2]*100*1.5, np.abs(self.KK_ymin[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK, ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), self.KK_ymax[2]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]: ax4.set_ylim(self.KK_ymin[3]*100*1.5, np.abs(self.KK_ymin[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]: ax4.set_ylim(np.negative(self.KK_ymax[3])*100*1.5, np.abs(self.KK_ymax[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymax[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK, ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), self.KK_ymax[3]*100*1.2], color='k', fontweight='bold') #Save Figure if savefig != 'none': fig.savefig(savefig) ### 5 Cycles elif len(self.df) == 5: fig = figure(figsize=(12, 3.8), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) ax3 = fig.add_subplot(233) ax4 = fig.add_subplot(234) ax5 = fig.add_subplot(235) #cycle 1 ax1.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax1.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ax1.axhline(0, ls='--', c='k', alpha=.5) # Cycle 2 ax2.plot(np.log10(self.df[1].f), self.KK_rr_re[1]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax2.plot(np.log10(self.df[1].f), self.KK_rr_im[1]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) # Cycle 3 ax3.plot(np.log10(self.df[2].f), self.KK_rr_re[2]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax3.plot(np.log10(self.df[2].f), self.KK_rr_im[2]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax3.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax3.legend(loc='best', fontsize=10, frameon=False) ax3.axhline(0, ls='--', c='k', alpha=.5) # Cycle 4 ax4.plot(np.log10(self.df[3].f), self.KK_rr_re[3]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax4.plot(np.log10(self.df[3].f), self.KK_rr_im[3]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18) ax4.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax4.legend(loc='best', fontsize=10, frameon=False) ax4.axhline(0, ls='--', c='k', alpha=.5) # Cycle 5 ax5.plot(np.log10(self.df[4].f), self.KK_rr_re[4]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax5.plot(np.log10(self.df[4].f), self.KK_rr_im[4]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax5.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax5.legend(loc='best', fontsize=10, frameon=False) ax5.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim(self.KK_ymin[0]*100*1.5, np.abs(self.KK_ymin[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax[0]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim(self.KK_ymin[1]*100*1.5, np.abs(self.KK_ymin[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim(np.negative(self.KK_ymax[1])*100*1.5, np.abs(self.KK_ymax[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim(self.KK_ymin[2]*100*1.5, np.abs(self.KK_ymin[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK, ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), self.KK_ymax[2]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]: ax4.set_ylim(self.KK_ymin[3]*100*1.5, np.abs(self.KK_ymin[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]: ax4.set_ylim(np.negative(self.KK_ymax[3])*100*1.5, np.abs(self.KK_ymax[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymax[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK, ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), self.KK_ymax[3]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[4]) > self.KK_ymax[4]: ax5.set_ylim(self.KK_ymin[4]*100*1.5, np.abs(self.KK_ymin[4])*100*1.5) if legend == 'on': ax5.annotate('Lin-KK, #5', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax5.annotate('Lin-KK ('+str(np.round(np.average(self.df[4].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[4]) < self.KK_ymax[4]: ax5.set_ylim(np.negative(self.KK_ymax[4])*100*1.5, np.abs(self.KK_ymax[4])*100*1.5) if legend == 'on': ax5.annotate('Lin-KK, #5', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymax[4])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax5.annotate('Lin-KK, ('+str(np.round(np.average(self.df[4].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[4].f)), self.KK_ymax[4]*100*1.2], color='k', fontweight='bold') #Save Figure if savefig != 'none': fig.savefig(savefig) ### 6 Cycles elif len(self.df) == 6: fig = figure(figsize=(12, 3.8), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) ax3 = fig.add_subplot(233) ax4 = fig.add_subplot(234) ax5 = fig.add_subplot(235) ax6 = fig.add_subplot(236) #cycle 1 ax1.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax1.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15) if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ax1.axhline(0, ls='--', c='k', alpha=.5) # Cycle 2 ax2.plot(np.log10(self.df[1].f), self.KK_rr_re[1]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax2.plot(np.log10(self.df[1].f), self.KK_rr_im[1]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) # Cycle 3 ax3.plot(np.log10(self.df[2].f), self.KK_rr_re[2]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax3.plot(np.log10(self.df[2].f), self.KK_rr_im[2]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") if legend == 'on' or legend == 'potential': ax3.legend(loc='best', fontsize=10, frameon=False) ax3.axhline(0, ls='--', c='k', alpha=.5) # Cycle 4 ax4.plot(np.log10(self.df[3].f), self.KK_rr_re[3]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax4.plot(np.log10(self.df[3].f), self.KK_rr_im[3]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax4.set_xlabel("log(f) [Hz]") ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15) if legend == 'on' or legend == 'potential': ax4.legend(loc='best', fontsize=10, frameon=False) ax4.axhline(0, ls='--', c='k', alpha=.5) # Cycle 5 ax5.plot(np.log10(self.df[4].f), self.KK_rr_re[4]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax5.plot(np.log10(self.df[4].f), self.KK_rr_im[4]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax5.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax5.legend(loc='best', fontsize=10, frameon=False) ax5.axhline(0, ls='--', c='k', alpha=.5) # Cycle 6 ax6.plot(np.log10(self.df[5].f), self.KK_rr_re[5]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax6.plot(np.log10(self.df[5].f), self.KK_rr_im[5]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax6.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax6.legend(loc='best', fontsize=10, frameon=False) ax6.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim(self.KK_ymin[0]*100*1.5, np.abs(self.KK_ymin[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax[0]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim(self.KK_ymin[1]*100*1.5, np.abs(self.KK_ymin[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim(np.negative(self.KK_ymax[1])*100*1.5, np.abs(self.KK_ymax[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim(self.KK_ymin[2]*100*1.5, np.abs(self.KK_ymin[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK, ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), self.KK_ymax[2]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]: ax4.set_ylim(self.KK_ymin[3]*100*1.5, np.abs(self.KK_ymin[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]: ax4.set_ylim(np.negative(self.KK_ymax[3])*100*1.5, np.abs(self.KK_ymax[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymax[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK, ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), self.KK_ymax[3]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[4]) > self.KK_ymax[4]: ax5.set_ylim(self.KK_ymin[4]*100*1.5, np.abs(self.KK_ymin[4])*100*1.5) if legend == 'on': ax5.annotate('Lin-KK, #5', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax5.annotate('Lin-KK ('+str(np.round(np.average(self.df[4].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[4]) < self.KK_ymax[4]: ax5.set_ylim(np.negative(self.KK_ymax[4])*100*1.5, np.abs(self.KK_ymax[4])*100*1.5) if legend == 'on': ax5.annotate('Lin-KK, #5', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymax[4])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax5.annotate('Lin-KK, ('+str(np.round(np.average(self.df[4].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[4].f)), self.KK_ymax[4]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[5]) > self.KK_ymax[5]: ax6.set_ylim(self.KK_ymin[5]*100*1.5, np.abs(self.KK_ymin[5])*100*1.5) if legend == 'on': ax6.annotate('Lin-KK, #6', xy=[np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymin[5])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax6.annotate('Lin-KK ('+str(np.round(np.average(self.df[5].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymin[5])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[5]) < self.KK_ymax[5]: ax6.set_ylim(np.negative(self.KK_ymax[5])*100*1.5, np.abs(self.KK_ymax[5])*100*1.5) if legend == 'on': ax6.annotate('Lin-KK, #6', xy=[np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymax[5])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax6.annotate('Lin-KK, ('+str(np.round(np.average(self.df[5].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[5].f)), self.KK_ymax[5]*100*1.2], color='k', fontweight='bold') #Save Figure if savefig != 'none': fig.savefig(savefig) ### 7 Cycles elif len(self.df) == 7: fig = figure(figsize=(12, 5), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax1 = fig.add_subplot(331) ax2 = fig.add_subplot(332) ax3 = fig.add_subplot(333) ax4 = fig.add_subplot(334) ax5 = fig.add_subplot(335) ax6 = fig.add_subplot(336) ax7 = fig.add_subplot(337) #cycle 1 ax1.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax1.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15) if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ax1.axhline(0, ls='--', c='k', alpha=.5) # Cycle 2 ax2.plot(np.log10(self.df[1].f), self.KK_rr_re[1]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax2.plot(np.log10(self.df[1].f), self.KK_rr_im[1]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) # Cycle 3 ax3.plot(np.log10(self.df[2].f), self.KK_rr_re[2]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax3.plot(np.log10(self.df[2].f), self.KK_rr_im[2]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax3.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax3.legend(loc='best', fontsize=10, frameon=False) ax3.axhline(0, ls='--', c='k', alpha=.5) # Cycle 4 ax4.plot(np.log10(self.df[3].f), self.KK_rr_re[3]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax4.plot(np.log10(self.df[3].f), self.KK_rr_im[3]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15) if legend == 'on' or legend == 'potential': ax4.legend(loc='best', fontsize=10, frameon=False) ax4.axhline(0, ls='--', c='k', alpha=.5) # Cycle 5 ax5.plot(np.log10(self.df[4].f), self.KK_rr_re[4]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax5.plot(np.log10(self.df[4].f), self.KK_rr_im[4]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax5.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax5.legend(loc='best', fontsize=10, frameon=False) ax5.axhline(0, ls='--', c='k', alpha=.5) # Cycle 6 ax6.plot(np.log10(self.df[5].f), self.KK_rr_re[5]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax6.plot(np.log10(self.df[5].f), self.KK_rr_im[5]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax6.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax6.legend(loc='best', fontsize=10, frameon=False) ax6.axhline(0, ls='--', c='k', alpha=.5) # Cycle 7 ax7.plot(np.log10(self.df[6].f), self.KK_rr_re[6]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax7.plot(np.log10(self.df[6].f), self.KK_rr_im[6]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax7.set_xlabel("log(f) [Hz]") ax7.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15) if legend == 'on' or legend == 'potential': ax7.legend(loc='best', fontsize=10, frameon=False) ax7.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim(self.KK_ymin[0]*100*1.5, np.abs(self.KK_ymin[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymin[0])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax1.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(np.log10(self.df[0].f)), np.abs(self.KK_ymax[0])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax1.annotate('Lin-KK, ('+str(np.round(np.average(self.df[0].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[0].f)), self.KK_ymax[0]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]: ax2.set_ylim(self.KK_ymin[1]*100*1.5, np.abs(self.KK_ymin[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.3], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), np.max(np.abs(self.KK_ymin[1]))*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]: ax2.set_ylim(np.negative(self.KK_ymax[1])*100*1.5, np.abs(self.KK_ymax[1])*100*1.5) if legend == 'on': ax2.annotate('Lin-KK, #2', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax2.annotate('Lin-KK ('+str(np.round(np.average(self.df[1].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[1].f)), self.KK_ymax[1]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]: ax3.set_ylim(self.KK_ymin[2]*100*1.5, np.abs(self.KK_ymin[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymin[2])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]: ax3.set_ylim(np.negative(self.KK_ymax[0])*100*1.5, np.abs(self.KK_ymax[2])*100*1.5) if legend == 'on': ax3.annotate('Lin-KK, #3', xy=[np.min(np.log10(self.df[2].f)), np.abs(self.KK_ymax[2])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax3.annotate('Lin-KK, ('+str(np.round(np.average(self.df[2].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[2].f)), self.KK_ymax[2]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]: ax4.set_ylim(self.KK_ymin[3]*100*1.5, np.abs(self.KK_ymin[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymin[3])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]: ax4.set_ylim(np.negative(self.KK_ymax[3])*100*1.5, np.abs(self.KK_ymax[3])*100*1.5) if legend == 'on': ax4.annotate('Lin-KK, #4', xy=[np.min(np.log10(self.df[3].f)), np.abs(self.KK_ymax[3])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax4.annotate('Lin-KK, ('+str(np.round(np.average(self.df[3].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[3].f)), self.KK_ymax[3]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[4]) > self.KK_ymax[4]: ax5.set_ylim(self.KK_ymin[4]*100*1.5, np.abs(self.KK_ymin[4])*100*1.5) if legend == 'on': ax5.annotate('Lin-KK, #5', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax5.annotate('Lin-KK ('+str(np.round(np.average(self.df[4].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymin[4])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[4]) < self.KK_ymax[4]: ax5.set_ylim(np.negative(self.KK_ymax[4])*100*1.5, np.abs(self.KK_ymax[4])*100*1.5) if legend == 'on': ax5.annotate('Lin-KK, #5', xy=[np.min(np.log10(self.df[4].f)), np.abs(self.KK_ymax[4])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax5.annotate('Lin-KK, ('+str(np.round(np.average(self.df[4].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[4].f)), self.KK_ymax[4]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[5]) > self.KK_ymax[5]: ax6.set_ylim(self.KK_ymin[5]*100*1.5, np.abs(self.KK_ymin[5])*100*1.5) if legend == 'on': ax6.annotate('Lin-KK, #6', xy=[np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymin[5])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax6.annotate('Lin-KK ('+str(np.round(np.average(self.df[5].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymin[5])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[5]) < self.KK_ymax[5]: ax6.set_ylim(np.negative(self.KK_ymax[5])*100*1.5, np.abs(self.KK_ymax[5])*100*1.5) if legend == 'on': ax6.annotate('Lin-KK, #6', xy=[np.min(np.log10(self.df[5].f)), np.abs(self.KK_ymax[5])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax6.annotate('Lin-KK, ('+str(np.round(np.average(self.df[5].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[5].f)), self.KK_ymax[5]*100*1.2], color='k', fontweight='bold') if np.abs(self.KK_ymin[6]) > self.KK_ymax[6]: ax7.set_ylim(self.KK_ymin[6]*100*1.5, np.abs(self.KK_ymin[6])*100*1.5) if legend == 'on': ax7.annotate('Lin-KK, #7', xy=[np.min(np.log10(self.df[6].f)), np.abs(self.KK_ymin[6])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax7.annotate('Lin-KK ('+str(np.round(np.average(self.df[6].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[6].f)), np.abs(self.KK_ymin[6])*100*1.2], color='k', fontweight='bold') elif np.abs(self.KK_ymin[6]) < self.KK_ymax[6]: ax7.set_ylim(np.negative(self.KK_ymax[6])*100*1.5, np.abs(self.KK_ymax[6])*100*1.5) if legend == 'on': ax7.annotate('Lin-KK, #7', xy=[np.min(np.log10(self.df[6].f)), np.abs(self.KK_ymax[6])*100*1.2], color='k', fontweight='bold') elif legend == 'potential': ax7.annotate('Lin-KK, ('+str(np.round(np.average(self.df[6].E_avg),2))+' V)', xy=[np.min(np.log10(self.df[6].f)), self.KK_ymax[6]*100*1.2], color='k', fontweight='bold') #Save Figure if savefig != 'none': fig.savefig(savefig) ### 8 Cycles elif len(self.df) == 8: fig = figure(figsize=(12, 5), dpi=120, facecolor='w', edgecolor='k') fig.subplots_adjust(left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95) ax1 = fig.add_subplot(331) ax2 = fig.add_subplot(332) ax3 = fig.add_subplot(333) ax4 = fig.add_subplot(334) ax5 = fig.add_subplot(335) ax6 = fig.add_subplot(336) ax7 = fig.add_subplot(337) ax8 = fig.add_subplot(338) #cycle 1 ax1.plot(np.log10(self.df[0].f), self.KK_rr_re[0]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax1.plot(np.log10(self.df[0].f), self.KK_rr_im[0]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=14) if legend == 'on' or legend == 'potential': ax1.legend(loc='best', fontsize=10, frameon=False) ax1.axhline(0, ls='--', c='k', alpha=.5) # Cycle 2 ax2.plot(np.log10(self.df[1].f), self.KK_rr_re[1]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax2.plot(np.log10(self.df[1].f), self.KK_rr_im[1]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") if legend == 'on' or legend == 'potential': ax2.legend(loc='best', fontsize=10, frameon=False) ax2.axhline(0, ls='--', c='k', alpha=.5) # Cycle 3 ax3.plot(np.log10(self.df[2].f), self.KK_rr_re[2]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax3.plot(np.log10(self.df[2].f), self.KK_rr_im[2]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") if legend == 'on' or legend == 'potential': ax3.legend(loc='best', fontsize=10, frameon=False) ax3.axhline(0, ls='--', c='k', alpha=.5) # Cycle 4 ax4.plot(np.log10(self.df[3].f), self.KK_rr_re[3]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax4.plot(np.log10(self.df[3].f), self.KK_rr_im[3]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=14) if legend == 'on' or legend == 'potential': ax4.legend(loc='best', fontsize=10, frameon=False) ax4.axhline(0, ls='--', c='k', alpha=.5) # Cycle 5 ax5.plot(np.log10(self.df[4].f), self.KK_rr_re[4]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax5.plot(np.log10(self.df[4].f), self.KK_rr_im[4]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") if legend == 'on' or legend == 'potential': ax5.legend(loc='best', fontsize=10, frameon=False) ax5.axhline(0, ls='--', c='k', alpha=.5) # Cycle 6 ax6.plot(np.log10(self.df[5].f), self.KK_rr_re[5]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax6.plot(np.log10(self.df[5].f), self.KK_rr_im[5]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax6.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax6.legend(loc='best', fontsize=10, frameon=False) ax6.axhline(0, ls='--', c='k', alpha=.5) # Cycle 7 ax7.plot(np.log10(self.df[6].f), self.KK_rr_re[6]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax7.plot(np.log10(self.df[6].f), self.KK_rr_im[6]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax7.set_xlabel("log(f) [Hz]") ax7.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=14) if legend == 'on' or legend == 'potential': ax7.legend(loc='best', fontsize=10, frameon=False) ax7.axhline(0, ls='--', c='k', alpha=.5) # Cycle 8 ax8.plot(np.log10(self.df[7].f), self.KK_rr_re[7]*100, color=colors_real[3], marker='D', ls='--', ms=6, alpha=.7, label="$\Delta$Z'") ax8.plot(np.log10(self.df[7].f), self.KK_rr_im[7]*100, color=colors_imag[3], marker='s', ls='--', ms=6, alpha=.7, label="$\Delta$-Z''") ax8.set_xlabel("log(f) [Hz]") if legend == 'on' or legend == 'potential': ax8.legend(loc='best', fontsize=10, frameon=False) ax8.axhline(0, ls='--', c='k', alpha=.5) ### Setting ylims and labeling plot with 'KK-Test' in RR subplot self.KK_rr_im_min = [] self.KK_rr_im_max = [] self.KK_rr_re_min = [] self.KK_rr_re_max = [] self.KK_ymin = [] self.KK_ymax = [] for i in range(len(self.df)): self.KK_rr_im_min.append(np.min(self.KK_rr_im[i])) self.KK_rr_im_max.append(np.max(self.KK_rr_im[i])) self.KK_rr_re_min.append(np.min(self.KK_rr_re[i])) self.KK_rr_re_max.append(np.max(self.KK_rr_re[i])) if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]: self.KK_ymax.append(self.KK_rr_re_max[i]) else: self.KK_ymax.append(self.KK_rr_im_max[i]) if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]: self.KK_ymin.append(self.KK_rr_re_min[i]) else: self.KK_ymin.append(self.KK_rr_im_min[i]) if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]: ax1.set_ylim(self.KK_ymin[0]*100*1.5, np.abs(self.KK_ymin[0])*100*1.5) if legend == 'on': ax1.annotate('Lin-KK, #1', xy=[np.min(
np.log10(self.df[0].f)
numpy.log10
import sys from copy import deepcopy import pytest import numpy as np from numpy.random import random, randint from flare import env, struc, gp from flare.kernels.mc_sephyps import _str_to_kernel as stk from flare.kernels.utils import from_mask_to_args, str_to_kernel_set from .fake_gp import generate_hm, generate_envs def test_force_en_multi_vs_simple(): """Check that the analytical kernel matches the one implemented in mc_simple.py""" cutoffs = np.ones(3, dtype=np.float64) delta = 1e-8 env1_1, env1_2, env1_3, env2_1, env2_2, env2_3 = generate_envs(cutoffs, delta) # set hyperparameters d1 = 1 d2 = 2 tol = 1e-4 hyps, hm, cut = generate_hm(1, 1, cutoffs, False) # mc_simple kernel0, kg0, en_kernel0, force_en_kernel0 = str_to_kernel_set("2+3+mb+mc", False) hyps = np.ones(7, dtype=np.float64) args0 = (hyps, cutoffs) # mc_sephyps kernel, kg, en_kernel, force_en_kernel = str_to_kernel_set("2+3+mb+mc", True) args1 = from_mask_to_args(hyps, hm, cutoffs) funcs = [[kernel0, kg0, en_kernel0, force_en_kernel0], [kernel, kg, en_kernel, force_en_kernel]] i = 0 reference = funcs[0][i](env1_1, env2_1, d1, d2, *args0) result = funcs[1][i](env1_1, env2_1, d1, d2, *args1) assert(np.isclose(reference, result, atol=tol)) i = 1 reference = funcs[0][i](env1_1, env2_1, d1, d2, *args0) result = funcs[1][i](env1_1, env2_1, d1, d2, *args1) assert(np.isclose(reference[0], result[0], atol=tol)) assert(np.isclose(reference[1], result[1], atol=tol).all()) i = 2 reference = funcs[0][i](env1_1, env2_1, *args0) result = funcs[1][i](env1_1, env2_1, *args1) assert(np.isclose(reference, result, atol=tol)) i = 3 reference = funcs[0][i](env1_1, env2_1, d1, *args0) result = funcs[1][i](env1_1, env2_1, d1, *args1) assert(np.isclose(reference, result, atol=tol)) @pytest.mark.parametrize('kernel_name, nbond, ntriplet, constraint', [ ('two_body_mc', 2, 0, True), ('two_body_mc', 2, 0, False), ('three_body_mc', 0, 2, True), ('three_body_mc', 0, 2, False), ('two_plus_three_mc', 2, 2, True), ('two_plus_three_mc', 2, 2, False) ] ) def test_force_en(kernel_name, nbond, ntriplet, constraint): """Check that the analytical force/en kernel matches finite difference of energy kernel.""" cutoffs = np.array([1, 1]) delta = 1e-8 env1_1, env1_2, env1_3, env2_1, env2_2, env2_3 = generate_envs(cutoffs, delta) # set hyperparameters d1 = 1 hyps, hm, cut = generate_hm(nbond, ntriplet, cutoffs, constraint) args0 = from_mask_to_args(hyps, hm, cutoffs) force_en_kernel = stk[kernel_name+"_force_en"] en_kernel = stk[kernel_name+"_en"] if bool('two' in kernel_name) != bool('three' in kernel_name): # check force kernel calc1 = en_kernel(env1_2, env2_1, *args0) calc2 = en_kernel(env1_1, env2_1, *args0) kern_finite_diff = (calc1 - calc2) / delta if ('two' in kernel_name): kern_finite_diff /= 2 else: kern_finite_diff /= 3 else: en2_kernel = stk['two_body_mc_en'] en3_kernel = stk['three_body_mc_en'] # check force kernel hm2 = deepcopy(hm) hm3 = deepcopy(hm) if ('map' in hm): hm2['original'] = np.hstack([hm2['original'][0:nbond*2], hm2['original'][-1]]) hm2['map'] = np.array([1, 3, 4]) hm3['original'] = hm3['original'][nbond*2:] hm3['map'] = np.array([1, 3, 4]) nbond = 1 hm2['ntriplet']=0 hm3['nbond']=0 args2 = from_mask_to_args(hyps[0:nbond*2], hm2, cutoffs) calc1 = en2_kernel(env1_2, env2_1, *args2) calc2 = en2_kernel(env1_1, env2_1, *args2) kern_finite_diff = (calc1 - calc2) / 2.0 / delta args3 = from_mask_to_args(hyps[nbond*2:-1], hm3, cutoffs) calc1 = en3_kernel(env1_2, env2_1, *args3) calc2 = en3_kernel(env1_1, env2_1, *args3) kern_finite_diff += (calc1 - calc2) / 3.0 / delta kern_analytical = force_en_kernel(env1_1, env2_1, d1, *args0) tol = 1e-4 assert(np.isclose(-kern_finite_diff, kern_analytical, atol=tol)) @pytest.mark.parametrize('kernel_name, nbond, ntriplet, constraint', [ ('two_body_mc', 2, 0, True), ('two_body_mc', 2, 0, False), ('three_body_mc', 0, 2, True), ('three_body_mc', 0, 2, False), ('two_plus_three_mc', 2, 2, True), ('two_plus_three_mc', 2, 2, False) ] ) def test_force(kernel_name, nbond, ntriplet, constraint): """Check that the analytical force kernel matches finite difference of energy kernel.""" # create env 1 delta = 1e-5 cutoffs = np.array([1, 1]) env1_1, env1_2, env1_3, env2_1, env2_2, env2_3 = generate_envs(cutoffs, delta) # set hyperparameters hyps, hm, cut = generate_hm(nbond, ntriplet, cutoffs, constraint) args0 = from_mask_to_args(hyps, hm, cutoffs) d1 = 1 d2 = 2 kernel = stk[kernel_name] if bool('two' in kernel_name) != bool('three' in kernel_name): en_kernel = stk[kernel_name+"_en"] else: en_kernel = stk['two_plus_three_mc_en'] # check force kernel calc1 = en_kernel(env1_2, env2_2, *args0) calc2 = en_kernel(env1_3, env2_3, *args0) calc3 = en_kernel(env1_2, env2_3, *args0) calc4 = en_kernel(env1_3, env2_2, *args0) kern_finite_diff = (calc1 + calc2 - calc3 - calc4) / (4*delta**2) kern_analytical = kernel(env1_1, env2_1, d1, d2, *args0) tol = 1e-4 assert(np.isclose(kern_finite_diff, kern_analytical, atol=tol)) @pytest.mark.parametrize('kernel_name, nbond, ntriplet, constraint', [ ('two_body_mc', 2, 0, True), ('two_body_mc', 2, 0, False), ('three_body_mc', 0, 2, True), ('three_body_mc', 0, 2, False), ('two_plus_three_mc', 2, 2, True), ('two_plus_three_mc', 2, 2, False) ] ) def test_hyps_grad(kernel_name, nbond, ntriplet, constraint): np.random.seed(0) delta = 1e-8 cutoffs =
np.array([1, 1])
numpy.array
""" Tests for saving helper. """ import os import unittest import numpy as np import pytest pd = pytest.importorskip("pandas") tables = pytest.importorskip("tables") from gpso.saving_helper import ( ALL_RUNS_KEY, EXTRAS_KEY, RUN_PREFIX, TableSaver, table_reader, ) from gpso.utils import H5_EXT class TestTableSaver(unittest.TestCase): FILENAME = "test" EXTRAS = { "a": "b", "c": 12, "d": 0.54e-4, "e": [1, 2, 3], "f": np.array([1, 2, 3]), } def test_init(self): saver = TableSaver(filename=self.FILENAME) saver.close() self.assertTrue(os.path.exists(self.FILENAME + H5_EXT)) os.remove(self.FILENAME + H5_EXT) def test_write_extras(self): saver = TableSaver(filename=self.FILENAME, extras=self.EXTRAS) saver.close() # test saved extras saved = tables.open_file(self.FILENAME + H5_EXT) for key, value in self.EXTRAS.items(): saved_val = saved.root[EXTRAS_KEY][key].read() if isinstance(saved_val, bytes): saved_val = saved_val.decode() if isinstance(saved_val, np.ndarray): np.testing.assert_equal(value, saved_val) else: self.assertEqual(value, saved_val) # proper exit saved.close() os.remove(self.FILENAME + H5_EXT) def test_write_single_result(self): np.random.seed(42) ARRAY = np.random.rand(12, 3) PARAMS = {"a": 1.0, "b": 0.1} SCORE = 0.8 saver = TableSaver(filename=self.FILENAME) saver.save_runs(ARRAY, SCORE, PARAMS) saver.close() # test saved run saved = tables.open_file(self.FILENAME + H5_EXT) # check parameters for key, value in PARAMS.items(): saved_val = saved.root[ALL_RUNS_KEY][f"{RUN_PREFIX}0"]["params"][ key ].read() self.assertEqual(saved_val, value) # check result itself np.testing.assert_equal( ARRAY, saved.root[ALL_RUNS_KEY][f"{RUN_PREFIX}0"]["result"][ "result" ].read(), ) self.assertEqual( SCORE, saved.root[ALL_RUNS_KEY][f"{RUN_PREFIX}0"]["result"][ "score" ].read(), ) # proper exit saved.close() os.remove(self.FILENAME + H5_EXT) def test_write_multiple_df_results(self): np.random.seed(42) PD_COLUMNS = ["a", "b", "c"] DFS = [ pd.DataFrame(
np.random.rand(12, 3)
numpy.random.rand
''' This code is refered to https://www.kaggle.com/chattob/intel-mobileodt-cervical-cancer-screening/cervix-segmentation-gmm/notebook ''' import matplotlib.pyplot as plt # matplotlib inline import numpy as np import pandas as pd import cv2 import math import argparse from sklearn import mixture from sklearn.utils import shuffle from skimage import measure from glob import glob import os from multiprocessing import Pool, cpu_count from functools import partial from subprocess import check_output from tqdm import tqdm def get_image_data(image_path): """ Method to get image data as np.array specifying image id and type """ img = cv2.imread(image_path) assert img is not None, "Failed to read image : %s" % (image_path) return img def maxHist(hist): maxArea = (0, 0, 0) height = [] position = [] for i in range(len(hist)): if (len(height) == 0): if (hist[i] > 0): height.append(hist[i]) position.append(i) else: if (hist[i] > height[-1]): height.append(hist[i]) position.append(i) elif (hist[i] < height[-1]): while (height[-1] > hist[i]): maxHeight = height.pop() area = maxHeight * (i-position[-1]) if (area > maxArea[0]): maxArea = (area, position[-1], i) last_position = position.pop() if (len(height) == 0): break position.append(last_position) if (len(height) == 0): height.append(hist[i]) elif(height[-1] < hist[i]): height.append(hist[i]) else: position.pop() while (len(height) > 0): maxHeight = height.pop() last_position = position.pop() area = maxHeight * (len(hist) - last_position) if (area > maxArea[0]): maxArea = (area, len(hist), last_position) return maxArea def maxRect(img): maxArea = (0, 0, 0) addMat = np.zeros(img.shape) for r in range(img.shape[0]): if r == 0: addMat[r] = img[r] area = maxHist(addMat[r]) if area[0] > maxArea[0]: maxArea = area + (r,) else: addMat[r] = img[r] + addMat[r-1] addMat[r][img[r] == 0] *= 0 area = maxHist(addMat[r]) if area[0] > maxArea[0]: maxArea = area + (r,) return (int(maxArea[3]+1-maxArea[0]/abs(maxArea[1]-maxArea[2])), maxArea[2], maxArea[3], maxArea[1], maxArea[0]) def cropCircle(img): ''' there many imaged taken thresholded, which means many images is present as a circle with black surrounded. This function is to find the largest inscribed rectangle to the thresholed image and then crop the image to the rectangle. input: img - the cv2 module return: img_crop, rectangle, tile_size ''' if(img.shape[0] > img.shape[1]): tile_size = (int(img.shape[1]*256/img.shape[0]),256) else: tile_size = (256, int(img.shape[0]*256/img.shape[1])) img = cv2.resize(img, dsize=tile_size) gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY); _, thresh = cv2.threshold(gray, 10, 255, cv2.THRESH_BINARY) _, contours, _ = cv2.findContours(thresh.copy(),cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE) main_contour = sorted(contours, key = cv2.contourArea, reverse = True)[0] ff = np.zeros((gray.shape[0],gray.shape[1]), 'uint8') cv2.drawContours(ff, main_contour, -1, 1, 15) ff_mask = np.zeros((gray.shape[0]+2,gray.shape[1]+2), 'uint8') cv2.floodFill(ff, ff_mask, (int(gray.shape[1]/2), int(gray.shape[0]/2)), 1) rect = maxRect(ff) rectangle = [min(rect[0],rect[2]), max(rect[0],rect[2]), min(rect[1],rect[3]), max(rect[1],rect[3])] img_crop = img[rectangle[0]:rectangle[1], rectangle[2]:rectangle[3]] cv2.rectangle(ff,(min(rect[1],rect[3]),min(rect[0],rect[2])),(max(rect[1],rect[3]),max(rect[0],rect[2])),3,2) return [img_crop, rectangle, tile_size] def Ra_space(img, Ra_ratio, a_threshold): ''' Extract the Ra features by converting RGB to LAB space. The higher is a value, the "redder" is the pixel. ''' imgLab = cv2.cvtColor(img, cv2.COLOR_RGB2LAB); w = img.shape[0] h = img.shape[1] Ra = np.zeros((w*h, 2)) for i in range(w): for j in range(h): R = math.sqrt((w/2-i)*(w/2-i) + (h/2-j)*(h/2-j)) Ra[i*h+j, 0] = R Ra[i*h+j, 1] = min(imgLab[i][j][1], a_threshold) Ra[:,0] /= max(Ra[:,0]) Ra[:,0] *= Ra_ratio Ra[:,1] /= max(Ra[:,1]) return Ra def get_and_crop_image(image_path): ''' Input: image_path: the absolute file path of the input image Return: the rectangle TODO: add more comments and rename the variable for the code is hard to read ''' # get image img = get_image_data(image_path) initial_shape = img.shape # TODO: review cropCircle [img, rectangle_cropCircle, tile_size] = cropCircle(img) # convert RGB to LAB and get the Ra space value imgLab = cv2.cvtColor(img, cv2.COLOR_RGB2LAB); w = img.shape[0] h = img.shape[1] Ra = Ra_space(imgLab, 1.0, 150) a_channel =
np.reshape(Ra[:,1], (w,h))
numpy.reshape
import numpy as np from scipy import special import scipy as sp from tqdm import tqdm def interpolant(t): return t * t * t * (t * (t * 6 - 15) + 10) def norm_to_uniform(im, scale=None): if scale is None: scale = [im.min(), im.max()] im = (im - np.mean(im)) / np.std(im) im = 1 / 2 * sp.special.erfc(-im / np.sqrt(2)) im = (im - im.min()) / (im.max() - im.min()) im = im * (scale[1] - scale[0]) + scale[0] return im def generate_perlin_noise_2d(shape, res): def f(t): return 6 * t ** 5 - 15 * t ** 4 + 10 * t ** 3 delta = (res[0] / shape[0], res[1] / shape[1]) d = (shape[0] // res[0], shape[1] // res[1]) grid = np.mgrid[0 : res[0] : delta[0], 0 : res[1] : delta[1]].transpose(1, 2, 0) % 1 # Gradients angles = 2 * np.pi * np.random.rand(res[0] + 1, res[1] + 1) gradients = np.dstack((np.cos(angles), np.sin(angles))) g00 = gradients[0:-1, 0:-1].repeat(d[0], 0).repeat(d[1], 1) g10 = gradients[1:, 0:-1].repeat(d[0], 0).repeat(d[1], 1) g01 = gradients[0:-1, 1:].repeat(d[0], 0).repeat(d[1], 1) g11 = gradients[1:, 1:].repeat(d[0], 0).repeat(d[1], 1) # Ramps n00 =
np.sum(grid * g00, 2)
numpy.sum
# -*- coding: utf-8 -*- import sys import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC sys.path.append("..") from sklearn.metrics import classification_report, plot_confusion_matrix, confusion_matrix from utils.base import save_fig from global_variable import MODEL_OUTPUT_IMAGE_PATH from sklearn.model_selection import train_test_split class ClassificationWorkflowBase(object): X = None y = None name = None common_function = ["Model Score", "Confusion Matrix"] special_function = None @classmethod def show_info(cls): print("*-*" * 2, cls.name, "is running ...", "*-*" * 2) print("Expected Functionality:") function = cls.common_function + cls.special_function for i in range(len(function)): print("+ ", function[i]) def __init__(self, random_state: int= 42) -> None: self.random_state = random_state self.model = None self.naming = None @staticmethod def data_split(X_data, y_data, test_size=0.2, random_state=42): ClassificationWorkflowBase.X = X_data ClassificationWorkflowBase.y = y_data X_train, X_test, y_train, y_test = train_test_split(ClassificationWorkflowBase.X, ClassificationWorkflowBase.y, test_size=test_size, random_state=random_state) return X_train, X_test, y_train, y_test def fit(self, X_train, y_train): self.model.fit(X_train, y_train) def predict(self, X_test): y_test_prediction = self.model.predict(X_test) return y_test_prediction @staticmethod def score(y_test, y_test_prediction): print("-----* Model Score *-----") print(classification_report(y_test, y_test_prediction)) def confusion_matrix_plot(self, X_test, y_test, y_test_prediction): print("-----* Confusion Matrix *-----") print(confusion_matrix(y_test, y_test_prediction)) plot_confusion_matrix(self.model, X_test, y_test) save_fig(f"Confusion Matrix - {self.naming}", MODEL_OUTPUT_IMAGE_PATH) class SVMClassification(ClassificationWorkflowBase): name = "Support Vector Machine" special_function = [] def __init__( self, C=1.0, kernel="rbf", degree=3, gamma="scale", coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape="ovr", break_ties=False, random_state=None ): super().__init__(random_state) self.C = C self.kernel = kernel self.degree = degree self.gamma = gamma self.coef0 = coef0 self.shrinking = shrinking self.probability = probability self.tol = tol self.cache_size = cache_size self.class_weight = class_weight self.verbose = verbose self.max_iter = max_iter self.decision_function_shape = decision_function_shape self.break_ties = break_ties self.random_state = random_state self.model = SVC(C=self.C, kernel=self.kernel, degree=self.degree, gamma=self.gamma, coef0=self.coef0, shrinking=self.shrinking, probability=self.probability, tol=self.tol, cache_size=self.cache_size, class_weight=self.class_weight, verbose=self.verbose, max_iter=self.max_iter, decision_function_shape=self.decision_function_shape, break_ties=self.break_ties, random_state=self.random_state) self.naming = SVMClassification.name def plot_ready(self): self.X = ClassificationWorkflowBase().X self.y = ClassificationWorkflowBase().y y = np.array(self.y) X = np.array(self.X) y = np.squeeze(y) clf = self.model.fit(X, y) plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', s=50, cmap="rainbow") return clf def plot_svc_function(self, data, ax=None): if ax is None: ax = plt.gca() xlim = ax.get_xlim() ylim = ax.get_ylim() x = np.linspace(xlim[0], xlim[1], 30) y = np.linspace(ylim[0], ylim[1], 30) Y, X =
np.meshgrid(y, x)
numpy.meshgrid
import sys import numpy as np import datetime from collections import defaultdict import os # from sklearn.metrics import confusion_matrix import glob import keras from Bio import pairwise2 import _pickle as cPickle import copy from ..features.helpers import scale_clean, scale_clean_two from .helper import lrd import csv import keras.backend as K from ..models.model_reverse import build_models if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--Nbases', type=int, choices=[4, 5, 8], default=4) parser.add_argument('--root', type=str, default="data/training/") parser.add_argument('--test', dest='test', action='store_true') parser.add_argument('--size', type=int, default=20) parser.add_argument('directories', type=str, nargs='*') parser.add_argument('--from-pre-trained', dest='from_pre_trained', action='store_true') parser.add_argument('--pre-trained-weight', dest='pre_trained_weight', type=str, default=None) parser.add_argument('--pre-trained-dir-list', dest='pre_trained_dir_list', type=str) parser.add_argument('--deltaseq', dest='deltaseq', type=int, default=10) parser.add_argument('--forcelength', dest='forcelength', type=float, default=0.5) parser.add_argument('--oversampleb', dest='oversampleb', type=int, default=3) parser.add_argument('--ctc', dest='ctc', action="store_true") parser.add_argument('--n-input', dest="n_input", type=int, default=1) parser.add_argument('--n-output', dest="n_output", type=int, default=1) parser.add_argument('--n-output-network', dest="n_output_network", type=int, default=1) parser.add_argument('--force-clean', dest="force_clean", action="store_true") parser.add_argument('--filter', nargs='+', dest="filter", type=str, default=[]) parser.add_argument('--ctc-length', dest="ctc_length", type=int, default=20) parser.add_argument('--lr', dest="lr", type=float, default=0.01) parser.add_argument('--clean', dest="clean", action="store_true") parser.add_argument('--attention', dest="attention", action="store_true") parser.add_argument('--residual', dest="res", action="store_true") parser.add_argument('--all-file', nargs='+', dest="allignment_files", default=[], type=str) parser.add_argument('--simple', dest="simple", action="store_true") parser.add_argument('--all-T', dest="all_T", action="store_true") parser.add_argument('--hybrid', dest="hybrid", action="store_true") parser.add_argument('--feat', dest='feat', type=str) parser.add_argument('--hot', dest='hot', action="store_true") parser.add_argument('--nepoch', dest="nepoch", default=1000, type=int) parser.add_argument('--correct-ref', dest="correct_ref", action="store_true") args = parser.parse_args() allf = args.allignment_files root = "data/raw/20170908-R9.5/" from ..data.dataset import Dataset from ..features.helpers import scale_simple D = Dataset(samfile=root + "BTF_AG_ONT_1_FAH14273_A-select.sam", root_files=root + "AG-basecalled/") maxf = None if args.test: maxf = 3 D.populate(maxf=maxf, filter_not_alligned=True, filter_ch=range(1, 11)) data_x = [] data_y = [] correct_ref = args.correct_ref for strand in D.strands: if args.correct_ref: try: strand.segmentation(w=8) transfered = strand.transfer(strand.signal_bc, strand.segments) # map the transefered: ref = strand.get_ref("".join(transfered["seq"].replace("N", "")), correct=True) # allign the ref on the transefered al = strand.score("".join(transfered["seq"]).replace("N", ""), ref, all_info=True) mapped_ref = strand.give_map("".join(transfered["seq"]), al[:2]) transfered["seq"] = np.array([s for s in mapped_ref]) except: print("Failed") else: strand.segmentation(w=8) transfered = strand.transfer(strand.signal_bc, strand.segments) select = transfered["seq"] != "N" data_x.append(scale_simple(transfered)[select]) data_y.append(
np.array(transfered["seq"][select])
numpy.array
import test_helpers import numpy as np import pytest from trecs.components import Users, Items from trecs.models import SocialFiltering, ContentFiltering, PopularityRecommender, BassModel from trecs.metrics import ( InteractionSpread, MSEMeasurement, DiffusionTreeMeasurement, StructuralVirality, InteractionMeasurement, RecSimilarity, InteractionSimilarity, AverageFeatureScoreRange, RMSEMeasurement, ) class MeasurementUtils: @classmethod def assert_valid_length(self, measurements, timesteps): # there are as many states as the timesteps for which we ran the # system, plus one to account for the initial state for _, value in measurements.items(): assert len(value) == timesteps + 1 @classmethod def assert_valid_final_measurements( self, measurements, model_attribute, key_mappings, timesteps ): for key, value in key_mappings.items(): if key in measurements.keys(): assert np.array_equal(measurements[key][timesteps], value) else: assert value not in model_attribute @classmethod def test_generic_metric(self, model, metric, timesteps): if metric not in model.metrics: model.add_metrics(metric) assert metric in model.metrics for t in range(1, timesteps + 1): model.run(timesteps=1) measurements = model.get_measurements() self.assert_valid_length(measurements, t) class TestMeasurementModule: """Test basic functionalities of MeasurementModule""" def test_measurement_module(self): # Create model, e.g., SocialFiltering s = SocialFiltering() # Add Interaction Spread old_metrics = s.metrics.copy() s.add_metrics(InteractionSpread()) assert len(old_metrics) + 1 == len(s.metrics) with pytest.raises(ValueError): s.add_metrics("wrong type") with pytest.raises(ValueError): s.add_metrics(MSEMeasurement(), print) with pytest.raises(ValueError): s.add_metrics() assert len(old_metrics) + 1 == len(s.metrics) def test_system_state_module(self): s = SocialFiltering() with pytest.raises(ValueError): s.add_state_variable("wrong type") with pytest.raises(ValueError): s.add_state_variable(MSEMeasurement(), print) with pytest.raises(ValueError): s.add_state_variable() def test_default_measurements(self, timesteps=None): if timesteps is None: timesteps = np.random.randint(2, 100) s = SocialFiltering(record_base_state=True) for t in range(1, timesteps + 1): s.run(timesteps=1) system_state = s.get_system_state() state_mappings = { "predicted_users": s.users_hat.value, "actual_user_scores": s.users.actual_user_scores.value, "predicted_items": s.items_hat.value, "predicted_user_scores": s.predicted_scores.value, } MeasurementUtils.assert_valid_final_measurements( system_state, s._system_state, state_mappings, t ) MeasurementUtils.assert_valid_length(system_state, t) s = SocialFiltering() s.add_metrics(MSEMeasurement()) for t in range(1, timesteps + 1): s.run(timesteps=1) measurements = s.get_measurements() MeasurementUtils.assert_valid_length(measurements, t) class TestInteractionSpread: def test_generic(self, timesteps=None): if timesteps is None: timesteps = np.random.randint(2, 100) MeasurementUtils.test_generic_metric(SocialFiltering(), InteractionSpread(), timesteps) MeasurementUtils.test_generic_metric( PopularityRecommender(), InteractionSpread(), timesteps ) class TestRecSimilarity: def test_generic(self, timesteps=None): if timesteps is None: timesteps = np.random.randint(2, 100) # default # of users is 100 pairs = [np.random.choice(100, 2, replace=False) for i in range(50)] MeasurementUtils.test_generic_metric(SocialFiltering(), RecSimilarity(pairs), timesteps) MeasurementUtils.test_generic_metric( PopularityRecommender(), RecSimilarity(pairs), timesteps ) class TestInteractionSimilarity: def test_generic(self, timesteps=None): if timesteps is None: timesteps = np.random.randint(2, 100) # default # of users is 100 pairs = [np.random.choice(100, 2, replace=False) for i in range(50)] MeasurementUtils.test_generic_metric( SocialFiltering(), InteractionSimilarity(pairs), timesteps ) MeasurementUtils.test_generic_metric( PopularityRecommender(), RecSimilarity(pairs), timesteps ) def test_functionality(self): num_users = 2 users = np.eye(num_users) items = np.zeros((2, 1)) # only one item so the jaccard similarity should be 1 pairs = [(0, 1)] content = ContentFiltering( actual_user_representation=users, actual_item_representation=items, num_items_per_iter=1 ) content.add_metrics(InteractionSimilarity(pairs)) content.run(5) final_jacc = content.get_measurements()["interaction_similarity"][-1] assert final_jacc == 1 # both users have the item interaction index new_items = np.eye(num_users) content = ContentFiltering( user_representation=users, item_representation=new_items, actual_user_representation=users, actual_item_representation=new_items, num_items_per_iter=2, ) content.add_metrics(InteractionSimilarity(pairs)) content.run(5) final_jacc = content.get_measurements()["interaction_similarity"][-1] assert final_jacc == 0 # users have no interactions in common # alter items such that both users prefer the first item new_items[:, 0] = np.ones(2) new_items[:, 1] = np.zeros(2) content.items = Items(new_items) # force users to recalculate scores content.users.compute_user_scores(new_items) content.run(1) final_jacc = content.get_measurements()["interaction_similarity"][-1] assert final_jacc == 0.5 # users should now have 1 interaction item in common class TestMSEMeasurement: def test_generic(self, timesteps=None): if timesteps is None: timesteps = np.random.randint(2, 100) MeasurementUtils.test_generic_metric(SocialFiltering(), MSEMeasurement(), timesteps) MeasurementUtils.test_generic_metric(PopularityRecommender(), MSEMeasurement(), timesteps) def test_numeric(self): pop = PopularityRecommender() pop.add_metrics(MSEMeasurement()) pop.run(5) mse = np.array(pop.get_measurements()["mse"][1:]) assert not np.isnan(mse).any() assert not np.isinf(mse).any() class TestRMSEMeasurement: def test_generic(self, timesteps=None): if timesteps is None: timesteps = np.random.randint(2, 100) MeasurementUtils.test_generic_metric(SocialFiltering(), RMSEMeasurement(), timesteps) MeasurementUtils.test_generic_metric(PopularityRecommender(), RMSEMeasurement(), timesteps) def test_functionality(self): num_users, num_attrs, num_items = 100, 20, 100 user_profiles =
np.random.randint(2, size=(num_users, num_attrs))
numpy.random.randint
# -*- coding: utf-8 -*- """ Steady-State Memetic Algorithm """ # Author: <NAME> <<EMAIL>> # # License: BSD 3 clause import random import numpy as np from sklearn.utils.validation import check_X_y from sklearn.neighbors.classification import KNeighborsClassifier from ..base import InstanceReductionMixin class SSMA(InstanceReductionMixin): """Steady State Memetic Algorithm The Steady-State Memetic Algorithm is an evolutionary prototype selection algorithm. It uses a memetic algorithm in order to perform a local search in the code. Parameters ---------- n_neighbors : int, optional (default = 3) Number of neighbors to use by default for :meth:`k_neighbors` queries. alpha : float (default = 0.6) Parameter that ponderates the fitness function. max_loop : int (default = 1000) Number of maximum loops performed by the algorithm. threshold : int (default = 0) Threshold that regulates the substitution condition; chromosomes_count: int (default = 10) number of chromosomes used to find the optimal solution. Attributes ---------- `X_` : array-like, shape = [indeterminated, n_features] Selected prototypes. `y_` : array-like, shape = [indeterminated] Labels of the selected prototypes. `reduction_` : float, percentual of reduction. Examples -------- >>> from protopy.selection.ssma import SSMA >>> import numpy as np >>> X = np.array([[i] for i in range(100)]) >>> y = np.asarray(50 * [0] + 50 * [1]) >>> ssma = SSMA() >>> ssma.fit(X, y) SSMA(alpha=0.6, chromosomes_count=10, max_loop=1000, threshold=0) >>> print ssma.predict([[40],[60]]) [0 1] >>> print ssma.reduction_ 0.98 See also -------- sklearn.neighbors.KNeighborsClassifier: nearest neighbors classifier References ---------- <NAME>, <NAME>, and <NAME>. Stratified prototype selection based on a steady-state memetic algorithm: a study of scalability. Memetic Computing, 2(3):183–199, 2010. """ def __init__(self, n_neighbors=1, alpha=0.6, max_loop=1000, threshold=0, chromosomes_count=10): self.n_neighbors = n_neighbors self.alpha = alpha self.max_loop = max_loop self.threshold = threshold self.chromosomes_count = chromosomes_count self.evaluations = None self.chromosomes = None self.best_chromosome_ac = -1 self.best_chromosome_rd = -1 self.classifier = KNeighborsClassifier(n_neighbors = n_neighbors) def accuracy(self, chromosome, X, y): mask = np.asarray(chromosome, dtype=bool) cX, cy = X[mask], y[mask] #print len(cX), len(cy), sum(chromosome) self.classifier.fit(cX, cy) labels = self.classifier.predict(X) accuracy = (labels == y).sum() return float(accuracy)/len(y) def fitness(self, chromosome, X, y): #TODO add the possibility of use AUC for factor1 ac = self.accuracy(chromosome, X, y) rd = 1.0 - (float(sum(chromosome))/len(chromosome)) return self.alpha * ac + (1.0 - self.alpha) * rd def fitness_gain(self, gain, n): return self.alpha * (float(gain)/n) + (1 - self.alpha) * (1.0 / n) def update_threshold(self, X, y): best_index = np.argmax(self.evaluations) chromosome = self.chromosomes[best_index] best_ac = self.accuracy(chromosome, X, y) best_rd = 1.0 - float(sum(chromosome))/len(y) if best_ac <= self.best_chromosome_ac: self.threshold = self.threshold + 1 if best_rd <= self.best_chromosome_rd: self.threshold = self.threshold - 1 self.best_chromosome_ac = best_ac self.best_chromosome_rd = best_rd def index_nearest_neighbor(self, S, X, y): classifier = KNeighborsClassifier(n_neighbors=1) U = [] S_mask = np.array(S, dtype=bool, copy=True) indexs = np.asarray(range(len(y)))[S_mask] X_tra, y_tra = X[S_mask], y[S_mask] for i in range(len(y)): real_indexes = np.asarray(range(len(y)))[S_mask] X_tra, y_tra = X[S_mask], y[S_mask] #print len(X_tra), len(y_tra) classifier.fit(X_tra, y_tra) [[index]] = classifier.kneighbors(X[i], return_distance=False) U = U + [real_indexes[index]] return U def memetic_looper(self, S, R): c = 0 for i in range(len(S)): if S[i] == 1 and i not in R: c = c + 1 if c == 2: return True return False def memetic_select_j(self, S, R): indexs = [] for i in range(len(S)): if i not in R and S[i] == 1: indexs.append(i) # if list is empty wlil return error return np.random.choice(indexs) def generate_population(self, X, y): self.chromosomes = [[np.random.choice([0,1]) for i in range(len(y))] for c in range(self.chromosomes_count)] self.evaluations = [self.fitness(c, X, y) for c in self.chromosomes] self.update_threshold(X, y) def select_parents(self, X, y): parents = [] for i in range(2): samples = random.sample(self.chromosomes, 2) parents = parents + [samples[0] if self.fitness(samples[0], X, y) > self.fitness(samples[1], X, y) else samples[1]] return np.array(parents, copy=True) def crossover(self, parent_1, parent_2): size = len(parent_1) mask = [0] * (size/2) + [1] * (size - size/2) mask = np.asarray(mask, dtype=bool) np.random.shuffle(mask) off_1 = parent_1 * mask + parent_2 * ~mask off_2 = parent_2 * mask + parent_1 * ~mask return np.asarray([off_1, off_2]) def mutation(self, offspring): for i in range(len(offspring)): if
np.random.uniform(0,1)
numpy.random.uniform
import matplotlib.pyplot as plt import os import numpy as np # from nest_elephant_tvb.simulation.file_tvb.Zerlaut import ZerlautAdaptationSecondOrder as model from tvb.simulator.integrators import HeunDeterministic test1=False from nest_elephant_tvb.Tvb.modify_tvb.Zerlaut import ZerlautAdaptationFirstOrder as model # test1=True # from nest_elephant_tvb.simulation.file_tvb.Zerlaut_test_1 import ZerlautAdaptationFirstOrder as model # excitatory parameter should came from the parameter file excitatory={ 'C_m':200.0, 't_ref':5.0, 'V_reset':-64.5, 'E_L':-64.5, 'g_L':10.0, 'I_e':0.0, 'a':0.0, 'b':0.0, 'Delta_T':2.0, 'tau_w':500.0, 'V_th':-50.0, 'E_ex':0.0, 'tau_syn_ex':5.0, 'E_in':-80.0, 'tau_syn_in':5.0, 'V_peak': 10.0, 'N_tot':10**4, 'p_connect':0.05, 'g':0.2, 'Q_e':1.0, 'Q_i':3.5, } #inhibitory inhibitory={ 'C_m':200.0, 't_ref':5.0, 'V_reset':-65.0, 'E_L':-65., 'g_L':10.0, 'I_e':0.0, 'a':0.0, 'b':0.0, 'Delta_T':0.5, 'tau_w':1.0, 'V_th':-50.0, 'E_ex':0.0, 'tau_syn_ex':5.0, 'E_in':-80.0, 'tau_syn_in':5.0, 'V_peak': 10.0, 'N_tot':10**4, 'p_connect':0.05, 'g':0.2, 'Q_e':1.0, 'Q_i':3.5 } def compute_rate(data,begin,end,nb): """ Compute the firing rate :param data: the spike of all neurons between end and begin :param begin: the time of the first spike :param end: the time of the last spike :return: the mean firing rate """ #get data n_fil = data[:, 0] n_fil = n_fil.astype(int) #count the number of the same id count_of_n = np.bincount(n_fil) #compute the rate rate_each_n_incomplet = count_of_n / (end - begin) #fill the table with the neurons which are not firing rate_each_n = np.concatenate( (rate_each_n_incomplet, np.zeros(-np.shape(rate_each_n_incomplet)[0] + nb +1))) #save the value return rate_each_n[1:] def load_event(events): """ Get the id of the neurons which create the spike and time :param events: id and time of each spikes :return: The spike of all neurons """ data_concatenated = np.concatenate(([events['senders']],[events['times']])) if data_concatenated.size < 5: print('empty file') return None data_raw = data_concatenated[np.argsort(data_concatenated[:, 1])] return np.swapaxes(data_raw,0,1) def load_spike(path): """ Get the id of the neurons which create the spike and time :param path: the path to the file :return: The spike of all neurons """ if not os.path.exists(path + "/spike_detector.gdf"): print('no file') return None data_concatenated = np.loadtxt(path + "/spike_detector.gdf") if data_concatenated.size < 5: print('empty file') return None data_raw = data_concatenated[np.argsort(data_concatenated[:, 1])] return data_raw def create_model_integration(parameter_ex,parameter_in,k,test1): ''' create the mean field model from the parameters :param parameter_ex: parameters for excitatory neurons :param parameter_in: parameters for inhibitory neurons :param k: number of external connections :return: function for fitting polynome ''' model_test = model() model_test.g_L = np.array(parameter_ex['g_L']) model_test.E_L_e = np.array(parameter_ex['E_L']) model_test.E_L_i = np.array(parameter_in['E_L']) model_test.C_m = np.array(parameter_ex['C_m']) model_test.b_e = np.array(parameter_ex['b']) model_test.a_e = np.array(parameter_ex['a']) model_test.b_i = np.array(parameter_in['b']) model_test.a_i = np.array(parameter_in['a']) model_test.tau_w_e = np.array(parameter_ex['tau_w']) model_test.tau_w_i = np.array(parameter_in['tau_w']) model_test.E_e = np.array(parameter_ex['E_ex']) model_test.E_i = np.array(parameter_ex['E_in']) model_test.Q_e = np.array(parameter_ex['Q_e']) model_test.Q_i = np.array(parameter_ex['Q_i']) model_test.tau_e = np.array(parameter_ex['tau_syn_ex']) model_test.tau_i = np.array(parameter_ex['tau_syn_in']) model_test.N_tot = np.array(parameter_ex['N_tot']) model_test.p_connect = np.array(parameter_ex['p_connect']) model_test.g = np.array(parameter_ex['g']) model_test.T = np.array(parameter_ex['t_ref']) model_test.external_input_in_in = np.array(0.0) model_test.external_input_in_ex = np.array(0.0) model_test.external_input_ex_in = np.array(0.0) model_test.external_input_ex_ex = np.array(0.0) model_test.K_ext_e=np.array(k) model_test.K_ext_i=np.array(0) integrator = HeunDeterministic(dt=0.1) integrator.configure() if test1: def function(p,fe,fi,f_ext,w): model_test.P_e = p[:15] model_test.P_i = p[15:] x = np.concatenate([fe,fi,w,np.zeros((fe.size))]).reshape((4,fe.size,1,1)) coupling = np.array([f_ext]).reshape((1,f_ext.size,1,1)) local_coupling=np.array([0.]) stimulus=np.array([0.]) return integrator.scheme(x,model_test.dfun,coupling,local_coupling,stimulus) else: def function(p,fe,fi,f_ext,w): model_test.P_e = p[:10] model_test.P_i = p[10:] x = np.concatenate([fe,fi,w,np.zeros((fe.size))]).reshape((4,fe.size,1,1)) coupling = np.array([f_ext]).reshape((1,f_ext.size,1,1)) local_coupling=np.array([0.]) stimulus=
np.array([0.])
numpy.array
import itertools import matplotlib.pyplot as plt from matplotlib import cm import networkx as nx import numpy as np from scipy.spatial import Voronoi ######################################################################################################################## # # # Trees # # # ######################################################################################################################## def make_random_tree(num_nodes, x_lim, y_lim, max_degree=4, edge_stretch_interval=None, seed=None ): """ Create a tree from random points in a rectangle by using Kruskal on complete graph with Euclidean edge weights. Each node can have at most a degree of max_degree. """ if seed is not None: np.random.seed(seed) points = make_random_points(num_nodes, x_lim, y_lim) dist = {(i, j): np.linalg.norm(points[i] - points[j]) for i, j in itertools.combinations(range(len(points)), r=2)} tree = max_degree_kruskal(dist, max_degree) pos = {i: list(p) for i, p in enumerate(points)} nx.set_node_attributes(tree, pos, name='pos') # stretch edge lengths #################################### if edge_stretch_interval is not None: random_stretch_edge_lengths(tree, stretch_interval=edge_stretch_interval, seed=seed) return tree def max_degree_kruskal(dist, max_degree): """ adjusted from networkx for max_degree """ subtrees = nx.utils.UnionFind() edges = sorted((d, e[0], e[1]) for e, d in dist.items()) tree = nx.Graph() max_degree_nodes = set() for wt, u, v in edges: if u in max_degree_nodes or v in max_degree_nodes: continue if subtrees[u] != subtrees[v]: tree.add_edge(u, v, length=round(wt, 2)) for node in [u, v]: if tree.degree[node] == max_degree: max_degree_nodes.add(node) subtrees.union(u, v) return tree ######################################################################################################################## # # # Voronoi graphs # # # ######################################################################################################################## def make_voronoi_graph(num_voronoi_points, x_lim, y_lim, random_leaves_frac=0.4, num_nodes=None, edge_stretch_interval=None, seed=None, ): """ Create a Voronoi diagram and consider the graph that is spanned by the ridges between the Voronoi cells. The is our basic Voronoi graph with Euclidean edge lengths. Now, we can add additional random leaves (according to random_leaves_frac), split the edges to obtain a specified number of nodes, or stretch each edge by a random factor. :param num_voronoi_points: int: number of points to build Voronoi regions :param x_lim: float: upper x-range bound for box in which we generate Voronoi points (lower bound=0) :param y_lim: float: upper y-range bound for box in which we generate Voronoi points (lower bound=0) :param random_leaves_frac: float: add this percentage of additional leaves to the voronoi graph :param num_nodes: int (or None): split edges such that the returned graph has num_nodes many nodes :param edge_stretch_interval: tuple of length 2 (or None): choose random stretch factor in this interval for each edge :param seed: random seed for reproducible results :return: networkx.Graph """ if seed is not None: np.random.seed(seed) # basic Voronoi graph #################################### points = make_random_points(num_voronoi_points, x_lim, y_lim) vor = Voronoi(points) graph = nx.Graph() in_box_vertices = {i: v for i, v in enumerate(vor.vertices) if all(v >= (0, 0)) and all(v <= (x_lim, y_lim))} in_box_edges = [(u, v) for u, v in vor.ridge_vertices if u in in_box_vertices and v in in_box_vertices] my_edges = [(u, v, round(np.linalg.norm(in_box_vertices[u] - in_box_vertices[v]), 2)) for u, v in in_box_edges] graph.add_weighted_edges_from(my_edges, weight='length') nx.set_node_attributes(graph, in_box_vertices, name='pos') graph = nx.convert_node_labels_to_integers(graph) # additional leaves #################################### if random_leaves_frac: _num_nodes = graph.number_of_nodes() for i in range(int(_num_nodes * random_leaves_frac)): u = _num_nodes + i + 1 u_pos = make_random_points(1, x_lim, y_lim)[0] v, d = find_nearest_node_without_intersection(graph, u_pos) graph.add_node(u, pos=u_pos) graph.add_edge(u, v, length=round(d, 2)) # split edges for given num_nodes #################################### if num_nodes is not None: num_splits = num_nodes - graph.number_of_nodes() split_edges(graph=graph, num_splits=num_splits) # stretch edge lengths #################################### if edge_stretch_interval is not None: random_stretch_edge_lengths(graph, stretch_interval=edge_stretch_interval, seed=seed) return graph ######################################################################################################################## # # # Two-level Voronoi networks # # # ######################################################################################################################## def make_two_level_voronoi_graph(n_level_1_voronoi_points, n_level_2_voronoi_points, x_lim, y_lim, random_leaves_frac_l1=0, random_leaves_frac_l2=0.6, n_level_1_nodes=None, num_nodes=None, edge_stretch_interval=None, length_factor_level_1=0.5, seed=None, ): """ The two level network consists of two nested Voronoi graphs. The level 1 layer is a priority network where travelling is generally faster (adjust with length_factor_level_1). Therefore, an additional edge attribute 'weight' is introduced. :param n_level_1_voronoi_points: int: number of points to build level 1 Voronoi regions :param n_level_2_voronoi_points: int: number of points to build level 2 Voronoi regions :param x_lim: loat: upper x-range bound for box in which we generate Voronoi points (lower bound=0) :param y_lim: float: upper y-range bound for box in which we generate Voronoi points (lower bound=0) :param random_leaves_frac_l1: float: add this percentage of additional leaves to the level 1 voronoi graph :param random_leaves_frac_l2: float: add this percentage of additional leaves to the level 2 voronoi graph :param n_level_1_nodes: int (or None): split edges such that the level 1 graph has num_nodes many nodes :param num_nodes: int (or None): split edges such that the returned graph has num_nodes many nodes :param edge_stretch_interval: tuple of length 2 (or None): choose random stretch factor in this interval for each edge :param length_factor_level_1: float: travelling on level 1 graph is faster by this factor (a new edge attribute 'weight' is introduced) :param seed: random seed for reproducible results :return: networkx.Graph """ level_1_layer = make_voronoi_graph(num_voronoi_points=n_level_1_voronoi_points, x_lim=x_lim, y_lim=y_lim, random_leaves_frac=random_leaves_frac_l1, num_nodes=None, edge_stretch_interval=None, seed=seed) level_2_layer = make_voronoi_graph(num_voronoi_points=n_level_2_voronoi_points, x_lim=x_lim, y_lim=y_lim, random_leaves_frac=random_leaves_frac_l2, num_nodes=None, edge_stretch_interval=None, seed=seed) # map level_1_layer to level_2_layer #################################### v2_list, pos2_list = zip(*level_2_layer.nodes(data='pos')) l1_to_l2_nodes = {} for v1, pos1 in level_1_layer.nodes(data='pos'): i = find_closest_point(pos1, pos2_list) l1_to_l2_nodes[v1] = v2_list[i] level_1_edges = set() for u, v in level_1_layer.edges: sh_path = nx.dijkstra_path(level_2_layer, l1_to_l2_nodes[u], l1_to_l2_nodes[v], weight='length') for e in zip(sh_path[:-1], sh_path[1:]): level_1_edges.add(tuple(sorted(e))) level_2_edges = set(e for e in level_2_layer.edges if e not in level_1_edges) two_level_network = level_2_layer level = {e: 1 + int(e in level_2_edges) for e in two_level_network.edges} nx.set_edge_attributes(two_level_network, level, name='level') # split level 1 edges #################################### if n_level_1_nodes is not None: num_splits = n_level_1_nodes - len(set(l1_to_l2_nodes.values())) split_edges(graph=two_level_network, num_splits=num_splits, no_split_edges=level_2_edges) # travelling on level_1_graph is faster #################################### weight = {(u, v): l * length_factor_level_1 if (u, v) in level_1_edges else l for u, v, l in two_level_network.edges(data='length')} nx.set_edge_attributes(two_level_network, weight, name='weight') # split level 2 edges #################################### if num_nodes is not None: num_splits = num_nodes - two_level_network.number_of_nodes() no_split_edges = [e for e in two_level_network.edges if two_level_network.edges[e]['level'] == 1] split_edges(graph=two_level_network, num_splits=num_splits, no_split_edges=no_split_edges) # stretch edge lengths #################################### if edge_stretch_interval is not None: random_stretch_edge_lengths(two_level_network, stretch_interval=edge_stretch_interval, seed=seed) return two_level_network ######################################################################################################################## # # # general functions # # # ######################################################################################################################## def make_random_graph(graph_params, seed=None): """ Detect based on graph_params, which graph should be built and call the respective function. """ make_graph_function = { 'tree': make_random_tree, 'voronoi': make_voronoi_graph, 'two_level_voronoi': make_two_level_voronoi_graph } variant = graph_params['variant'] assert variant in make_graph_function graph_params = {k: v for k, v in graph_params.items() if k != 'variant'} graph = make_graph_function[variant](**graph_params, seed=seed) pos = {v: [round(p[0], 4), round(p[1], 4)] for v, p in graph.nodes(data='pos')} nx.set_node_attributes(graph, pos, 'pos') return graph def make_random_points(num_points, x_lim, y_lim): points = [] for i in range(num_points): pos_x = round(np.random.random() * x_lim, 4) pos_y = round(np.random.random() * y_lim, 4) points.append((pos_x, pos_y)) points = np.array(points) return points def find_nearest_node_without_intersection(graph, u_pos): """ Return the nearest node in graph to u_pos, such that the direct line between the two does not intersect any edge of the graph. """ def ccw(A, B, C): """ code from: https://stackoverflow.com/questions/3838329/how-can-i-check-if-two-segments-intersect (ccw stands for counterclockwise) """ x, y = 0, 1 return (C[y] - A[y]) * (B[x] - A[x]) > (B[y] - A[y]) * (C[x] - A[x]) def intersect(A, B, C, D): """ Returns true if line segments AB and CD intersect. code from: https://stackoverflow.com/questions/3838329/how-can-i-check-if-two-segments-intersect """ return ccw(A, C, D) != ccw(B, C, D) and ccw(A, B, C) != ccw(A, B, D) pos = dict(graph.nodes(data='pos')) dists = sorted([(
np.linalg.norm(pos[v] - u_pos)
numpy.linalg.norm
# Importing the relevant modules from pyspark import * from pyspark.sql import SQLContext from pyspark.sql.types import FloatType import torch from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from torch.optim import lr_scheduler from torch import nn, device, manual_seed, optim from torchvision import transforms from PIL import Image Image.MAX_IMAGE_PIXELS = 1000000000 import argparse import numpy as np import os import time import dataset import model import utils def main(args): model_path = args.output_dir + args.experiment_name + '/' ## Configuring Spark spark_conf = SparkConf().setAppName("Artist Detector") spark_context = SparkContext.getOrCreate(conf = spark_conf) spark_context.setLogLevel("ERROR") sqlContext = SQLContext(spark_context) ## ETL: Preparing the data # Read Input annotations and store in dataframe df = sqlContext.read.format("csv").option("header", "true").load(args.csv_filepath) df.createOrReplaceTempView('artists') # Splitting train and test sets df_train = sqlContext.sql("""SELECT * from artists where in_train='True'""") df_train.createOrReplaceTempView('train_set') df_test = sqlContext.sql("""SELECT * from artists where in_train='False'""") df_test.createOrReplaceTempView('test_set') # Defining date cleansing function sqlContext.udf.register("kdo", lambda s: utils.keep_date_only(s), FloatType()) # Cleaning inputs and selecting relevant columns for generating Train, Validation and Test Set train_val_df_ori = sqlContext.sql("""SELECT date, kdo(date) as kdo_date, new_filename from train_set where date is not null""") train_val_df_ori.createOrReplaceTempView('train_val_df_ori') train_val_df = sqlContext.sql("""SELECT kdo_date as date, new_filename as filename from train_val_df_ori where kdo_date is not null and kdo_date > 1000 """) test_df_ori = sqlContext.sql("""SELECT date, kdo(date) as kdo_date, new_filename from test_set where date is not null""") test_df_ori.createOrReplaceTempView('test_df_ori') test_df = sqlContext.sql("""SELECT kdo_date as date, new_filename as filename from test_df_ori where kdo_date is not null and kdo_date > 1000 """) # Converting dataframes to Pandas p_test_df = test_df.toPandas() p_train_val_df = train_val_df.toPandas() # Splitting Train and Validation Set p_train_df = p_train_val_df.sample(frac=0.8, random_state=args.random_seed) #random state is a seed value p_val_df = p_train_val_df.drop(p_train_df.index) # Let's print some statistiscs print('TRAINING FIELDS & TYPES: ') train_val_df.printSchema() print('\nTRAINING ENTRIES: {}'.format(len(p_train_df))) print('VALIDATIO ENTRIES: {}'.format(len(p_val_df))) print('TEST ENTRIES: {}'.format(len(p_test_df))) # Let's normalize the input dates train_date_mean =
np.mean(p_train_df.date)
numpy.mean
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import absolute_import, division, print_function import pyLikelihood as pyLike import numpy as np from astropy.coordinates import SkyCoord from astropy.table import Table, Column from astropy.io import fits from fermipy import utils from fermipy import spectrum from fermipy import irfs from fermipy import skymap from fermipy.ltcube import LTCube class SensitivityCalc(object): """Class for evaluating LAT source flux sensitivity. Parameters ---------- gdiff : `~fermipy.skymap.SkyMap` Galactic diffuse map cube object. iso : `~numpy.ndarray` Array of background isotropic intensity vs. energy. ltc : `~fermipy.ltcube.LTCube` ebins : `~numpy.ndarray` Energy bin edges in MeV used for differential sensitivity. event_class : str Name of the IRF/event class (e.g. P8R2_SOURCE_V6). event_types : list List of lists of event type strings defining the event type selection to be used. Each event type list will be combined. A selection for a combined FRONT/BACK analysis is defined with [['FRONT','BACK']]. A selection for joint FRONT/BACK analysis is defined with [['FRONT'],['BACK']]. """ def __init__(self, gdiff, iso, ltc, ebins, event_class, event_types=None, gdiff_fit=None, iso_fit=None, spatial_model='PointSource', spatial_size=None): self._gdiff = gdiff self._gdiff_fit = gdiff_fit self._iso = iso self._iso_fit = iso_fit self._ltc = ltc self._ebins = ebins self._log_ebins = np.log10(ebins) self._ectr = np.exp(utils.edge_to_center(np.log(self._ebins))) self._event_class = event_class self._spatial_model = spatial_model self._spatial_size = spatial_size if event_types is None: self._event_types = [['FRONT'], ['BACK']] else: self._event_types = event_types self._psf = [] self._exp = [] ebins = 10**np.linspace(1.0, 6.0, 5 * 8 + 1) skydir = SkyCoord(0.0, 0.0, unit='deg') for et in self._event_types: self._psf += [irfs.PSFModel.create(skydir.icrs, self._ltc, self._event_class, et, ebins)] self._exp += [irfs.ExposureMap.create(self._ltc, self._event_class, et, ebins)] @property def ebins(self): return self._ebins @property def ectr(self): return self._ectr @property def spatial_model(self): return self._spatial_model @property def spatial_size(self): return self._spatial_size def compute_counts(self, skydir, fn, ebins=None): """Compute signal and background counts for a point source at position ``skydir`` with spectral parameterization ``fn``. Parameters ---------- skydir : `~astropy.coordinates.SkyCoord` ebins : `~numpy.ndarray` Returns ------- sig : `~numpy.ndarray` Signal counts array. Dimensions are energy, angular separation, and event type. bkg : `~numpy.ndarray` Background counts array. Dimensions are energy, angular separation, and event type. """ if ebins is None: ebins = self.ebins ectr = self.ectr else: ectr = np.exp(utils.edge_to_center(np.log(ebins))) skydir_cel = skydir.transform_to('icrs') skydir_gal = skydir.transform_to('galactic') sig = [] bkg = [] bkg_fit = None if self._gdiff_fit is not None: bkg_fit = [] for psf, exp in zip(self._psf, self._exp): coords0 = np.meshgrid(*[skydir_cel.ra.deg, ectr], indexing='ij') coords1 = np.meshgrid(*[skydir_cel.dec.deg, ectr], indexing='ij') # expv = exp.interpolate(skydir_cel.icrs.ra.deg, # skydir_cel.icrs.dec.deg, # ectr) expv = exp.interpolate(coords0[0], coords1[0], coords0[1]) coords0 = np.meshgrid(*[skydir_gal.l.deg, ectr], indexing='ij') coords1 = np.meshgrid(*[skydir_gal.b.deg, ectr], indexing='ij') bkgv = self._gdiff.interpolate(np.ravel(coords0[0]), np.ravel(coords1[0]), np.ravel(coords0[1])) bkgv = bkgv.reshape(expv.shape) # bkgv = self._gdiff.interpolate( # skydir_gal.l.deg, skydir_gal.b.deg, ectr) isov = np.exp(np.interp(np.log(ectr), np.log(self._iso[0]), np.log(self._iso[1]))) bkgv += isov s0, b0 = irfs.compute_ps_counts(ebins, expv, psf, bkgv, fn, egy_dim=1, spatial_model=self.spatial_model, spatial_size=self.spatial_size) sig += [s0] bkg += [b0] if self._iso_fit is not None: isov_fit = np.exp(np.interp(np.log(ectr), np.log(self._iso_fit[0]), np.log(self._iso_fit[1]))) else: isov_fit = isov if self._gdiff_fit is not None: bkgv_fit = self._gdiff_fit.interpolate(np.ravel(coords0[0]), np.ravel(coords1[0]), np.ravel(coords0[1])) bkgv_fit = bkgv_fit.reshape(expv.shape) bkgv_fit += isov_fit s0, b0 = irfs.compute_ps_counts(ebins, expv, psf, bkgv_fit, fn, egy_dim=1, spatial_model=self.spatial_model, spatial_size=self.spatial_size) bkg_fit += [b0] sig = np.concatenate([np.expand_dims(t, -1) for t in sig]) bkg = np.concatenate([np.expand_dims(t, -1) for t in bkg]) if self._gdiff_fit is not None: bkg_fit = np.concatenate([np.expand_dims(t, -1) for t in bkg_fit]) return sig, bkg, bkg_fit def diff_flux_threshold(self, skydir, fn, ts_thresh, min_counts): """Compute the differential flux threshold for a point source at position ``skydir`` with spectral parameterization ``fn``. Parameters ---------- skydir : `~astropy.coordinates.SkyCoord` Sky coordinates at which the sensitivity will be evaluated. fn : `~fermipy.spectrum.SpectralFunction` ts_thresh : float Threshold on the detection test statistic (TS). min_counts : float Threshold on the minimum number of counts. """ sig, bkg, bkg_fit = self.compute_counts(skydir, fn) norms = irfs.compute_norm(sig, bkg, ts_thresh, min_counts, sum_axes=[2, 3], rebin_axes=[10, 1], bkg_fit=bkg_fit) npred = np.squeeze(
np.apply_over_axes(np.sum, norms * sig, [2, 3])
numpy.apply_over_axes
import numpy as np from mnist import download_mnist, read_mnist def image_to_vec(images): """Flatten image datasets from 3D to 2D.""" return images.reshape((images.shape[0], images.shape[1] * images.shape[2])) def one_hot_encode(labels, n_classes=10): n_samples = labels.shape[1] encoded = np.zeros((n_classes, n_samples)) encoded[labels,
np.arange(n_samples)
numpy.arange
""" Functions and classes for testing data augmentation approaches. """ # Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # License: new BSD import scipy import scipy.stats import pytest import numpy as np import fatf from fatf.exceptions import IncompatibleModelError, IncorrectShapeError import fatf.utils.array.tools as fuat import fatf.utils.data.augmentation as fuda import fatf.utils.distances as fud import fatf.utils.models as fum # yapf: disable NUMERICAL_NP_ARRAY = np.array([ [0, 0, 0.08, 0.69], [1, 0, 0.03, 0.29], [0, 1, 0.99, 0.82], [2, 1, 0.73, 0.48], [1, 0, 0.36, 0.89], [0, 1, 0.07, 0.21]]) NUMERICAL_STRUCT_ARRAY = np.array( [(0, 0, 0.08, 0.69), (1, 0, 0.03, 0.29), (0, 1, 0.99, 0.82), (2, 1, 0.73, 0.48), (1, 0, 0.36, 0.89), (0, 1, 0.07, 0.21)], dtype=[('a', 'i'), ('b', 'i'), ('c', 'f'), ('d', 'f')]) CATEGORICAL_NP_ARRAY = np.array([ ['a', 'b', 'c'], ['a', 'f', 'g'], ['b', 'c', 'c'], ['b', 'f', 'c'], ['a', 'f', 'c'], ['a', 'b', 'g']]) CATEGORICAL_STRUCT_ARRAY = np.array( [('a', 'b', 'c'), ('a', 'f', 'g'), ('b', 'c', 'c'), ('b', 'f', 'c'), ('a', 'f', 'c'), ('a', 'b', 'g')], dtype=[('a', 'U1'), ('b', 'U1'), ('c', 'U1')]) MIXED_ARRAY = np.array( [(0, 'a', 0.08, 'a'), (0, 'f', 0.03, 'bb'), (1, 'c', 0.99, 'aa'), (1, 'a', 0.73, 'a'), (0, 'c', 0.36, 'b'), (1, 'f', 0.07, 'bb')], dtype=[('a', 'i'), ('b', 'U1'), ('c', 'f'), ('d', 'U2')]) NUMERICAL_NP_RESULTS = np.array([ [0.370, 0.762, 0.658, 0.829], [-0.103, -0.117, 0.361, 0.571], [0.483, -0.117, -0.092, 0.570]]) NUMERICAL_STRUCT_RESULTS = np.array( [(0.180, -0.281, -0.252, 0.632), (-1.426, -0.506, -0.437, 0.707), (-1.286, 0.157, 0.616, 0.324)], dtype=[('a', 'f'), ('b', 'f'), ('c', 'f'), ('d', 'f')]) NUMERICAL_NP_CAT_RESULTS = np.array([ [0., 0.267, 0.268, 0.986], [0., 0.723, 0.526, 0.551], [0., -0.662, 0.334, 1.007]]) NUMERICAL_STRUCT_CAT_RESULTS = np.array( [(0, -0.362, 0.149, 0.623), (1, -0.351, 0.458, 0.702), (2, -0.047, -0.244, 0.860)], dtype=[('a', 'i'), ('b', 'f'), ('c', 'f'), ('d', 'f')]) CATEGORICAL_NP_RESULTS = np.array([ ['a', 'f', 'c'], ['a', 'b', 'c'], ['a', 'b', 'c']]) CATEGORICAL_STRUCT_RESULTS = np.array( [('a', 'c', 'c'), ('b', 'b', 'g'), ('a', 'f', 'g')], dtype=[('a', 'U1'), ('b', 'U1'), ('c', 'U1')]) MIXED_RESULTS = np.array( [(0.254, 'a', 0.429, 'a'), (0.071, 'c', -0.310, 'aa',), (0.481, 'f', 0.180, 'bb')], dtype=[('a', '<f8'), ('b', 'U1'), ('c', '<f8'), ('d', 'U2')]) NUMERICAL_NP_0_CAT_VAL = np.array([0, 1, 2]) NUMERICAL_NP_0_CAT_FREQ = np.array([0.5, 0.3, 0.2]) # yapf: enable def test_validate_input(): """ Tests :func:`fatf.utils.data.augmentation._validate_input` function. """ incorrect_shape_data = ('The input dataset must be a 2-dimensional numpy ' 'array.') type_error_data = 'The input dataset must be of a base type.' incorrect_shape_gt = ('The ground_truth array must be 1-dimensional. (Or ' 'None if it is not required.)') type_error_gt = 'The ground_truth array must be of a base type.' incorrect_shape_instances = ('The number of labels in the ground_truth ' 'array is not equal to the number of data ' 'points in the dataset array.') index_error_cidx = ('The following indices are invalid for the input ' 'dataset: {}.') type_error_cidx = ('The categorical_indices parameter must be a Python ' 'list or None.') type_error_itf = 'The int_to_float parameter has to be a boolean.' with pytest.raises(IncorrectShapeError) as exin: fuda._validate_input(np.array([0, 4, 3, 0])) assert str(exin.value) == incorrect_shape_data with pytest.raises(TypeError) as exin: fuda._validate_input(np.array([[0, 4], [None, 0]])) assert str(exin.value) == type_error_data # with pytest.raises(IncorrectShapeError) as exin: fuda._validate_input(MIXED_ARRAY, MIXED_ARRAY) assert str(exin.value) == incorrect_shape_gt with pytest.raises(TypeError) as exin: fuda._validate_input(MIXED_ARRAY, np.array([1, 2, 3, None, 4, 5])) assert str(exin.value) == type_error_gt with pytest.raises(IncorrectShapeError) as exin: fuda._validate_input(MIXED_ARRAY, np.array([1, 2, 3])) assert str(exin.value) == incorrect_shape_instances # with pytest.raises(TypeError) as exin: fuda._validate_input(NUMERICAL_NP_ARRAY, categorical_indices=0) assert str(exin.value) == type_error_cidx with pytest.raises(IndexError) as exin: fuda._validate_input(MIXED_ARRAY, categorical_indices=['f']) assert str(exin.value) == index_error_cidx.format(['f']) with pytest.raises(IndexError) as exin: fuda._validate_input(MIXED_ARRAY, categorical_indices=[1]) assert str(exin.value) == index_error_cidx.format([1]) # with pytest.raises(TypeError) as exin: fuda._validate_input(NUMERICAL_NP_ARRAY, int_to_float='True') assert str(exin.value) == type_error_itf # assert fuda._validate_input( MIXED_ARRAY, categorical_indices=['a', 'b'], ground_truth=np.array([1, 2, 3, 4, 5, 6]), int_to_float=False) class TestAugmentation(object): """ Tests :class:`fatf.utils.data.augmentation.Augmentation` abstract class. """ class BrokenAugmentor1(fuda.Augmentation): """ A broken data augmentation implementation. This class does not have a ``sample`` method. """ def __init__(self, dataset, categorical_indices=None): """ Dummy init method. """ super().__init__( # pragma: nocover dataset, categorical_indices=categorical_indices) class BrokenAugmentor2(fuda.Augmentation): """ A broken data augmentation implementation. This class does not have a ``sample`` method. """ class BaseAugmentor(fuda.Augmentation): """ A dummy data augmentation implementation. For :func:`fatf.utils.data.augmentation._validate_input` and :func:`~fatf.utils.data.augmentation.Augmentation._validate_sample_input` testing. """ def __init__(self, dataset, categorical_indices=None, int_to_float=True): """ Dummy init method. """ super().__init__( dataset, categorical_indices=categorical_indices, int_to_float=int_to_float) def sample(self, data_row=None, samples_number=10): """ Dummy sample method. """ self._validate_sample_input(data_row, samples_number) return np.ones((samples_number, self.features_number)) def test_augmentation_class_init(self): """ Tests :class:`fatf.utils.data.augmentation.Augmentation` class init. """ abstract_method_error = ("Can't instantiate abstract class " '{} with abstract methods sample') user_warning = ( 'Some of the string-based columns in the input dataset were not ' 'selected as categorical features via the categorical_indices ' 'parameter. String-based columns cannot be treated as numerical ' 'features, therefore they will be also treated as categorical ' 'features (in addition to the ones selected with the ' 'categorical_indices parameter).') with pytest.raises(TypeError) as exin: self.BrokenAugmentor1(NUMERICAL_NP_ARRAY) msg = abstract_method_error.format('BrokenAugmentor1') assert str(exin.value) == msg with pytest.raises(TypeError) as exin: self.BrokenAugmentor2(NUMERICAL_NP_ARRAY) msg = abstract_method_error.format('BrokenAugmentor2') assert str(exin.value) == msg with pytest.raises(TypeError) as exin: fuda.Augmentation(NUMERICAL_NP_ARRAY) assert str(exin.value) == abstract_method_error.format('Augmentation') # Test for a categorical index warning with pytest.warns(UserWarning) as warning: augmentor = self.BaseAugmentor(CATEGORICAL_NP_ARRAY, [0]) assert len(warning) == 1 assert str(warning[0].message) == user_warning assert np.array_equal(augmentor.categorical_indices, [0, 1, 2]) # with pytest.warns(UserWarning) as warning: augmentor = self.BaseAugmentor(CATEGORICAL_STRUCT_ARRAY, ['a']) assert len(warning) == 1 assert str(warning[0].message) == user_warning assert np.array_equal(augmentor.categorical_indices, np.array(['a', 'b', 'c'])) # with pytest.warns(UserWarning) as warning: augmentor = self.BaseAugmentor(MIXED_ARRAY, ['b']) assert len(warning) == 1 assert str(warning[0].message) == user_warning assert np.array_equal(augmentor.categorical_indices, ['b', 'd']) # Validate internal variables categorical_np_augmentor = self.BaseAugmentor(CATEGORICAL_NP_ARRAY) assert np.array_equal(categorical_np_augmentor.dataset, CATEGORICAL_NP_ARRAY) assert not categorical_np_augmentor.is_structured assert categorical_np_augmentor.ground_truth is None assert categorical_np_augmentor.categorical_indices == [0, 1, 2] assert categorical_np_augmentor.numerical_indices == [] assert categorical_np_augmentor.features_number == 3 categorical_struct_augmentor = self.BaseAugmentor( CATEGORICAL_STRUCT_ARRAY) assert np.array_equal(categorical_struct_augmentor.dataset, CATEGORICAL_STRUCT_ARRAY) assert categorical_struct_augmentor.is_structured assert categorical_struct_augmentor.ground_truth is None assert (categorical_struct_augmentor.categorical_indices == ['a', 'b', 'c']) # yapf: disable assert categorical_struct_augmentor.numerical_indices == [] assert categorical_struct_augmentor.features_number == 3 mixed_augmentor = self.BaseAugmentor(MIXED_ARRAY) assert np.array_equal(mixed_augmentor.dataset, MIXED_ARRAY) assert mixed_augmentor.is_structured assert mixed_augmentor.ground_truth is None assert mixed_augmentor.categorical_indices == ['b', 'd'] assert mixed_augmentor.numerical_indices == ['a', 'c'] assert mixed_augmentor.features_number == 4 numerical_np_augmentor = self.BaseAugmentor(NUMERICAL_NP_ARRAY, [0, 1]) assert np.array_equal(numerical_np_augmentor.dataset, NUMERICAL_NP_ARRAY) assert not numerical_np_augmentor.is_structured assert numerical_np_augmentor.ground_truth is None assert numerical_np_augmentor.categorical_indices == [0, 1] assert numerical_np_augmentor.numerical_indices == [2, 3] assert numerical_np_augmentor.features_number == 4 # Test type generalisation assert numerical_np_augmentor.sample_dtype == np.float64 # dtype = mixed_augmentor.sample_dtype assert len(dtype) == 4 for i in range(4): assert len(dtype[i]) == 2 assert dtype[0][0] == 'a' assert dtype[0][1] == np.float64 assert dtype[1][0] == 'b' assert dtype[1][1] == 'U1' assert dtype[2][0] == 'c' assert dtype[2][1] == np.float64 assert dtype[3][0] == 'd' assert dtype[3][1] == 'U2' # # Test type generalisation numerical_struct_augmentor_i2f = self.BaseAugmentor( NUMERICAL_STRUCT_ARRAY, int_to_float=True) dtype = numerical_struct_augmentor_i2f.sample_dtype assert len(dtype) == 4 for i, name in enumerate(['a', 'b', 'c', 'd']): assert len(dtype[i]) == 2 assert dtype[i][0] == name assert dtype[i][1] == np.float64 # numerical_struct_augmentor = self.BaseAugmentor( NUMERICAL_STRUCT_ARRAY, int_to_float=False) dtype = numerical_struct_augmentor.sample_dtype assert len(dtype) == 4 for i in range(4): assert len(dtype[i]) == 2 assert dtype[0][0] == 'a' assert dtype[0][1] == np.int64 assert dtype[1][0] == 'b' assert dtype[1][1] == np.int64 assert dtype[2][0] == 'c' assert dtype[2][1] == np.float64 assert dtype[3][0] == 'd' assert dtype[3][1] == np.float64 def test_augmentation_sample_validation(self): """ Tests :func:`~fatf.utils.data.augmentation.Augmentation.sample` method. This function test validation of input for the ``sample`` method. """ incorrect_shape_data_row = ('The data_row must either be a ' '1-dimensional numpy array or numpy void ' 'object for structured rows.') type_error_data_row = ('The dtype of the data_row is different to the ' 'dtype of the data array used to initialise ' 'this class.') incorrect_shape_features = ('The data_row must contain the same ' 'number of features as the dataset used ' 'to initialise this class.') # value_error_samples_number = ('The samples_number parameter must be a ' 'positive integer.') type_error_samples_number = ('The samples_number parameter must be an ' 'integer.') # Validate sample input rows numerical_np_augmentor = self.BaseAugmentor(NUMERICAL_NP_ARRAY) categorical_np_augmentor = self.BaseAugmentor(CATEGORICAL_NP_ARRAY) numerical_struct_augmentor = self.BaseAugmentor(NUMERICAL_STRUCT_ARRAY) categorical_struct_augmentor = self.BaseAugmentor( CATEGORICAL_STRUCT_ARRAY, categorical_indices=['a', 'b', 'c']) # data_row shape with pytest.raises(IncorrectShapeError) as exin: numerical_np_augmentor.sample(NUMERICAL_NP_ARRAY) assert str(exin.value) == incorrect_shape_data_row with pytest.raises(IncorrectShapeError) as exin: numerical_struct_augmentor.sample(NUMERICAL_STRUCT_ARRAY) assert str(exin.value) == incorrect_shape_data_row # data_row type with pytest.raises(TypeError) as exin: numerical_np_augmentor.sample(np.array(['a', 'b', 'c', 'd'])) assert str(exin.value) == type_error_data_row with pytest.raises(TypeError) as exin: numerical_struct_augmentor.sample(MIXED_ARRAY[0]) assert str(exin.value) == type_error_data_row with pytest.raises(TypeError) as exin: categorical_np_augmentor.sample(np.array([0.1])) assert str(exin.value) == type_error_data_row # Structured too short with pytest.raises(TypeError) as exin: numerical_struct_augmentor.sample(MIXED_ARRAY[['a', 'b']][0]) assert str(exin.value) == type_error_data_row # data_row features number with pytest.raises(IncorrectShapeError) as exin: numerical_np_augmentor.sample(np.array([0.1, 1, 2])) assert str(exin.value) == incorrect_shape_features with pytest.raises(IncorrectShapeError) as exin: categorical_np_augmentor.sample(np.array(['a', 'b'])) assert str(exin.value) == incorrect_shape_features # samples_number type with pytest.raises(TypeError) as exin: numerical_np_augmentor.sample(np.array([0, 0, 0.08, 0.69]), 'a') assert str(exin.value) == type_error_samples_number with pytest.raises(TypeError) as exin: numerical_np_augmentor.sample(np.array([0, 0, 0.08, 0.69]), 5.5) assert str(exin.value) == type_error_samples_number # samples_number value with pytest.raises(ValueError) as exin: numerical_np_augmentor.sample(np.array([0, 0, 0.08, 0.69]), -1) assert str(exin.value) == value_error_samples_number with pytest.raises(ValueError) as exin: numerical_np_augmentor.sample(np.array([0, 0, 0.08, 0.69]), 0) assert str(exin.value) == value_error_samples_number # All OK ones_30 = np.ones((10, 3)) ones_40 = np.ones((10, 4)) ones_300 = np.ones((100, 3)) ones_400 = np.ones((100, 4)) assert np.array_equal( numerical_np_augmentor.sample(NUMERICAL_NP_ARRAY[0, :]), ones_40) assert np.array_equal( numerical_np_augmentor.sample(samples_number=100), ones_400) assert np.array_equal( numerical_np_augmentor.sample( NUMERICAL_NP_ARRAY[0, :], samples_number=100), ones_400) assert np.array_equal( categorical_struct_augmentor.sample(CATEGORICAL_STRUCT_ARRAY[0]), ones_30) assert np.array_equal( categorical_struct_augmentor.sample(samples_number=100), ones_300) assert np.array_equal( categorical_struct_augmentor.sample( CATEGORICAL_STRUCT_ARRAY[0], samples_number=100), ones_300) class TestNormalSampling(object): """ Tests :class:`fatf.utils.data.augmentation.NormalSampling` class. """ numerical_np_0_augmentor = fuda.NormalSampling(NUMERICAL_NP_ARRAY, [0]) numerical_np_augmentor = fuda.NormalSampling(NUMERICAL_NP_ARRAY) numerical_struct_a_augmentor = fuda.NormalSampling(NUMERICAL_STRUCT_ARRAY, ['a']) numerical_struct_augmentor = fuda.NormalSampling(NUMERICAL_STRUCT_ARRAY) numerical_struct_augmentor_f = fuda.NormalSampling( NUMERICAL_STRUCT_ARRAY, int_to_float=False) categorical_np_augmentor = fuda.NormalSampling(CATEGORICAL_NP_ARRAY) categorical_np_012_augmentor = fuda.NormalSampling(CATEGORICAL_NP_ARRAY, [0, 1, 2]) categorical_struct_abc_augmentor = fuda.NormalSampling( CATEGORICAL_STRUCT_ARRAY, ['a', 'b', 'c']) mixed_augmentor = fuda.NormalSampling(MIXED_ARRAY, ['b', 'd']) def test_init(self): """ Tests :class:`fatf.utils.data.augmentation.NormalSampling` class init. """ # Test class inheritance assert (self.numerical_np_0_augmentor.__class__.__bases__[0].__name__ == 'Augmentation') # Test calculating numerical and categorical indices assert self.numerical_np_0_augmentor.categorical_indices == [0] assert self.numerical_np_0_augmentor.numerical_indices == [1, 2, 3] # assert self.numerical_np_augmentor.categorical_indices == [] assert self.numerical_np_augmentor.numerical_indices == [0, 1, 2, 3] # assert self.numerical_struct_a_augmentor.categorical_indices == ['a'] assert (self.numerical_struct_a_augmentor.numerical_indices == ['b', 'c', 'd']) # yapf: disable # assert self.categorical_np_augmentor.categorical_indices == [0, 1, 2] assert self.categorical_np_augmentor.numerical_indices == [] # Test attributes unique to NormalSampling csv = self.numerical_np_0_augmentor.categorical_sampling_values nsv = self.numerical_np_0_augmentor.numerical_sampling_values # assert len(csv) == 1 assert 0 in csv assert len(csv[0]) == 2 assert np.array_equal(csv[0][0], np.array([0, 1, 2])) assert np.allclose( csv[0][1], np.array([3 / 6, 2 / 6, 1 / 6]), atol=1e-3) # assert len(nsv) == 3 assert 1 in nsv and 2 in nsv and 3 in nsv assert len(nsv[1]) == 2 and len(nsv[2]) == 2 and len(nsv[3]) == 2 assert nsv[1][0] == pytest.approx(.5, abs=1e-3) assert nsv[1][1] == pytest.approx(.5, abs=1e-3) assert nsv[2][0] == pytest.approx(.377, abs=1e-3) assert nsv[2][1] == pytest.approx(.366, abs=1e-3) assert nsv[3][0] == pytest.approx(.563, abs=1e-3) assert nsv[3][1] == pytest.approx(.257, abs=1e-3) def test_sample(self): """ Tests :func:`~fatf.utils.data.augmentation.NormalSampling.sample`. """ fatf.setup_random_seed() # Pure numerical sampling of a data point # ...numpy array results samples = self.numerical_np_augmentor.sample( NUMERICAL_NP_ARRAY[0, :], samples_number=3) assert np.allclose(samples, NUMERICAL_NP_RESULTS, atol=1e-3) # ...structured array results samples_struct = self.numerical_struct_augmentor.sample( NUMERICAL_STRUCT_ARRAY[0], samples_number=3) for i in samples_struct.dtype.names: assert np.allclose( samples_struct[i], NUMERICAL_STRUCT_RESULTS[i], atol=1e-3) # ...numpy array results mean samples = self.numerical_np_augmentor.sample( NUMERICAL_NP_ARRAY[0, :], samples_number=1000) assert np.allclose( samples.mean(axis=0), NUMERICAL_NP_ARRAY[0, :], atol=1e-1) assert np.allclose( samples.std(axis=0), NUMERICAL_NP_ARRAY.std(axis=0), atol=1e-1) # ...structured array results mean samples_struct = self.numerical_struct_augmentor.sample( NUMERICAL_STRUCT_ARRAY[0], samples_number=1000) for i in samples_struct.dtype.names: assert np.allclose( np.mean(samples_struct[i]), NUMERICAL_STRUCT_ARRAY[0][i], atol=1e-1) assert np.allclose( np.std(samples_struct[i]), np.std(NUMERICAL_STRUCT_ARRAY[i]), atol=1e-1) # Pure numerical sampling of the mean of the data # ...numpy array mean samples = self.numerical_np_augmentor.sample(samples_number=1000) assert np.allclose( samples.mean(axis=0), NUMERICAL_NP_ARRAY.mean(axis=0), atol=1e-1) assert np.allclose( samples.std(axis=0), NUMERICAL_NP_ARRAY.std(axis=0), atol=1e-1) # ...structured array mean samples_struct = self.numerical_struct_augmentor.sample( samples_number=1000) for i in samples_struct.dtype.names: assert np.allclose( np.mean(samples_struct[i]), np.mean(NUMERICAL_STRUCT_ARRAY[i]), atol=1e-1) assert np.allclose( np.std(samples_struct[i]), np.std(NUMERICAL_STRUCT_ARRAY[i]), atol=1e-1) ####################################################################### # Numerical sampling with one categorical index defined # ...numpy array results samples = self.numerical_np_0_augmentor.sample( NUMERICAL_NP_ARRAY[0, :], samples_number=3) assert np.allclose(samples, NUMERICAL_NP_CAT_RESULTS, atol=1e-3) # ...structured array results samples_struct = self.numerical_struct_a_augmentor.sample( NUMERICAL_STRUCT_ARRAY[0], samples_number=3) for i in samples_struct.dtype.names: assert np.allclose( samples_struct[i], NUMERICAL_STRUCT_CAT_RESULTS[i], atol=1e-3) # ...numpy array results mean samples = self.numerical_np_0_augmentor.sample( NUMERICAL_NP_ARRAY[0, :], samples_number=100) # ......numerical assert np.allclose( samples.mean(axis=0)[1:], NUMERICAL_NP_ARRAY[0, 1:], atol=1e-1) assert np.allclose( samples.std(axis=0)[1:], NUMERICAL_NP_ARRAY.std(axis=0)[1:], atol=1e-1) # ......categorical val, freq = np.unique(samples[:, 0], return_counts=True) freq = freq / freq.sum() assert np.array_equal(val, NUMERICAL_NP_0_CAT_VAL) assert np.allclose(freq, NUMERICAL_NP_0_CAT_FREQ, atol=1e-1) # ...structured array results mean samples_struct = self.numerical_struct_a_augmentor.sample( NUMERICAL_STRUCT_ARRAY[0], samples_number=100) # ......numerical for i in samples_struct.dtype.names[1:]: assert np.allclose( np.mean(samples_struct[i]), NUMERICAL_STRUCT_ARRAY[0][i], atol=1e-1) assert np.allclose( np.std(samples_struct[i]), np.std(NUMERICAL_STRUCT_ARRAY[i]), atol=1e-1) # ......categorical val_struct, freq_struct = np.unique( samples_struct['a'], return_counts=True) freq_struct = freq_struct / freq_struct.sum() assert np.array_equal(val_struct, NUMERICAL_NP_0_CAT_VAL) assert np.allclose(freq_struct, NUMERICAL_NP_0_CAT_FREQ, atol=1e-1) # ...numpy array mean samples = self.numerical_np_0_augmentor.sample(samples_number=1000) # ......numerical assert np.allclose( samples.mean(axis=0)[1:], NUMERICAL_NP_ARRAY.mean(axis=0)[1:], atol=1e-1) # ......categorical val, freq = np.unique(samples[:, 0], return_counts=True) freq = freq / freq.sum() assert np.array_equal(val, NUMERICAL_NP_0_CAT_VAL) assert np.allclose(freq, NUMERICAL_NP_0_CAT_FREQ, atol=1e-1) # ...structured array mean samples_struct = self.numerical_struct_a_augmentor.sample( samples_number=1000) # ......numerical for i in samples_struct.dtype.names[1:]: assert np.allclose( np.mean(samples_struct[i]), np.mean(NUMERICAL_STRUCT_ARRAY[i]), atol=1e-1) assert np.allclose( np.std(samples_struct[i]), np.std(NUMERICAL_STRUCT_ARRAY[i]), atol=1e-1) # ......categorical val_struct, freq_struct = np.unique( samples_struct['a'], return_counts=True) freq_struct = freq_struct / freq_struct.sum() assert np.array_equal(val_struct, NUMERICAL_NP_0_CAT_VAL) assert np.allclose(freq_struct, NUMERICAL_NP_0_CAT_FREQ, atol=1e-1) ####################################################################### ####################################################################### # Pure categorical sampling # ...numpy array samples = self.categorical_np_012_augmentor.sample( CATEGORICAL_NP_ARRAY[0], samples_number=3) assert np.array_equal(samples, CATEGORICAL_NP_RESULTS) # ...structured array samples_struct = self.categorical_struct_abc_augmentor.sample( CATEGORICAL_STRUCT_ARRAY[0], samples_number=3) assert np.array_equal(samples_struct, CATEGORICAL_STRUCT_RESULTS) vals = [['a', 'b'], ['b', 'c', 'f'], ['c', 'g']] # ...numpy array proportions and values samples = self.categorical_np_012_augmentor.sample( CATEGORICAL_NP_ARRAY[0], samples_number=100) # proportions = [ np.array([0.62, 0.38]), np.array([0.31, 0.17, 0.52]), np.array([0.63, 0.37]) ] for i, index in enumerate([0, 1, 2]): val, freq = np.unique(samples[:, index], return_counts=True) freq = freq / freq.sum() assert np.array_equal(val, vals[i]) assert np.allclose(freq, proportions[i], atol=1e-2) # ...structured array proportions and values samples_struct = self.categorical_struct_abc_augmentor.sample( CATEGORICAL_STRUCT_ARRAY[0], samples_number=100) # proportions = [ np.array([0.74, 0.26]), np.array([0.38, 0.12, 0.50]), np.array([0.63, 0.37]) ] for i, index in enumerate(['a', 'b', 'c']): val, freq = np.unique(samples_struct[index], return_counts=True) freq = freq / freq.sum() assert np.array_equal(val, vals[i]) assert np.allclose(freq, proportions[i], atol=1e-2) # No need to check for mean of dataset since categorical features are # sampled from the distribution of the entire dataset and not centered # on the data_row. ####################################################################### ####################################################################### # Mixed array with categorical indices auto-discovered vals = [['a', 'c', 'f'], ['a', 'aa', 'b', 'bb']] proportions = [ np.array([0.33, 0.33, 0.33]), np.array([0.33, 0.16, 0.16, 0.33]) ] # Instance samples = self.mixed_augmentor.sample(MIXED_ARRAY[0], samples_number=3) # ...categorical assert np.array_equal(samples[['b', 'd']], MIXED_RESULTS[['b', 'd']]) # ...numerical for i in ['a', 'c']: assert np.allclose(samples[i], MIXED_RESULTS[i], atol=1e-3) # Instance mean samples = self.mixed_augmentor.sample( MIXED_ARRAY[0], samples_number=1000) # ...numerical for i in ['a', 'c']: assert np.allclose( np.mean(samples[i]), MIXED_ARRAY[0][i], atol=1e-1) assert np.allclose( np.std(samples[i]), np.std(MIXED_ARRAY[i]), atol=1e-1) # ...categorical for i, index in enumerate(['b', 'd']): val, freq = np.unique(samples[index], return_counts=True) freq = freq / freq.sum() assert np.array_equal(val, vals[i]) assert np.allclose(freq, proportions[i], atol=1e-1) # Dataset mean samples = self.mixed_augmentor.sample(samples_number=1000) # ...numerical for i in ['a', 'c']: assert np.allclose( np.mean(samples[i]), np.mean(MIXED_ARRAY[i]), atol=1e-1) assert np.allclose( np.std(samples[i]), np.std(MIXED_ARRAY[i]), atol=1e-1) # ...categorical for i, index in enumerate(['b', 'd']): val, freq = np.unique(samples[index], return_counts=True) freq = freq / freq.sum() assert np.array_equal(val, vals[i]) assert np.allclose(freq, proportions[i], atol=1e-1) ####################################################################### # Sample without float cast samples = self.numerical_struct_augmentor_f.sample(samples_number=5) samples_answer = np.array( [(-1, 0, 0.172, 0.624), (1, 1, 0.343, 0.480), (0, 0, 0.649, 0.374), (0, 0, 0.256, 0.429), (0, 0, 0.457, 0.743)], dtype=NUMERICAL_STRUCT_ARRAY.dtype) # yapf: disable for i in ['a', 'b', 'c', 'd']: assert np.allclose(samples[i], samples_answer[i], atol=1e-3) # Cast to float on in the tests to compare (this ouput was generated # with self.numerical_struct_augmentor) samples = self.numerical_struct_augmentor_f.sample(samples_number=5) samples_answer = np.array( [(1.250, 0.264, 0.381, 0.479), (-0.181, 1.600, 0.602, 0.345), (0.472, 0.609, -0.001, 1.026), (0.105, 1.091, 0.384, 0.263), (1.263, -0.007, 0.762, 0.603)], dtype=NUMERICAL_STRUCT_ARRAY.dtype) # yapf: disable for i in ['a', 'b', 'c', 'd']: assert np.allclose(samples[i], samples_answer[i], atol=1e-3) def test_validate_input_mixup(): """ Tests :func:`fatf.utils.data.augmentation._validate_input_mixup` function. """ type_error_out = ('The beta_parameters parameter has to be a tuple with ' 'two numbers or None to use the default parameters ' 'value.') type_error_in = 'The {} beta parameter has to be a numerical type.' value_error_out = ('The beta_parameters parameter has to be a 2-tuple ' '(a pair) of numbers.') value_error_in = 'The {} beta parameter cannot be a negative number.' with pytest.raises(TypeError) as exin: fuda._validate_input_mixup('tuple') assert str(exin.value) == type_error_out with pytest.raises(ValueError) as exin: fuda._validate_input_mixup(('tuple', )) assert str(exin.value) == value_error_out with pytest.raises(TypeError) as exin: fuda._validate_input_mixup(('1', 2)) assert str(exin.value) == type_error_in.format('first') with pytest.raises(TypeError) as exin: fuda._validate_input_mixup((1, '2')) assert str(exin.value) == type_error_in.format('second') with pytest.raises(ValueError) as exin: fuda._validate_input_mixup((0, 0)) assert str(exin.value) == value_error_in.format('first') with pytest.raises(ValueError) as exin: fuda._validate_input_mixup((0.1, 0)) assert str(exin.value) == value_error_in.format('second') assert fuda._validate_input_mixup(None) assert fuda._validate_input_mixup((.1, .1)) class TestMixup(object): """ Tests :class:`fatf.utils.data.augmentation.Mixup` class. """ numerical_labels = np.array([0, 1, 0, 0, 0, 1]) categorical_labels = np.array(['b', 'a', 'a', 'a', 'a', 'b']) numerical_np_augmentor = fuda.Mixup(NUMERICAL_NP_ARRAY, int_to_float=False) numerical_struct_augmentor = fuda.Mixup( NUMERICAL_STRUCT_ARRAY, categorical_labels, beta_parameters=(3, 6), int_to_float=False) categorical_np_augmentor = fuda.Mixup( CATEGORICAL_NP_ARRAY, int_to_float=False) categorical_struct_augmentor = fuda.Mixup( CATEGORICAL_STRUCT_ARRAY, categorical_indices=['a', 'b', 'c'], int_to_float=False) mixed_augmentor = fuda.Mixup( MIXED_ARRAY, numerical_labels, int_to_float=False) mixed_augmentor_i2f = fuda.Mixup(MIXED_ARRAY, numerical_labels) def test_init(self): """ Tests :class:`fatf.utils.data.augmentation.Mixup` class initialisation. """ # Test class inheritance assert (self.numerical_np_augmentor.__class__.__bases__[0].__name__ == 'Augmentation') # yapf: disable # Check threshold assert self.mixed_augmentor.threshold == 0.5 # Check beta parameters assert self.numerical_struct_augmentor.beta_parameters == (3, 6) assert self.mixed_augmentor.beta_parameters == (2, 5) # Check ground_truth_unique, ground_truth_frequencies, # indices_per_label and ground_truth_probabilities assert self.numerical_np_augmentor.ground_truth is None assert self.numerical_np_augmentor.ground_truth_unique is None assert self.numerical_np_augmentor.ground_truth_frequencies is None assert self.numerical_np_augmentor.ground_truth_probabilities is None assert self.numerical_np_augmentor.indices_per_label is None # assert np.array_equal(self.numerical_struct_augmentor.ground_truth, self.categorical_labels) assert np.array_equal( self.numerical_struct_augmentor.ground_truth_unique, np.array(['a', 'b'])) assert np.array_equal( self.numerical_struct_augmentor.ground_truth_frequencies, np.array([4 / 6, 2 / 6])) assert np.array_equal( self.numerical_struct_augmentor.ground_truth_probabilities, np.array([[0, 1], [1, 0], [1, 0], [1, 0], [1, 0], [0, 1]])) assert len(self.numerical_struct_augmentor.indices_per_label) == 2 assert np.array_equal( self.numerical_struct_augmentor.indices_per_label[0], np.array([1, 2, 3, 4])) assert np.array_equal( self.numerical_struct_augmentor.indices_per_label[1], np.array([0, 5])) def test_sample_errors(self): """ Tests for errors in :func:`~fatf.utils.data.augmentation.Mixup.sample`. """ not_implemented_error = ('Sampling around the data mean is not yet ' 'implemented for the Mixup class.') type_error_probs = 'return_probabilities parameter has to be boolean.' type_error_replace = 'with_replacement parameter has to be boolean.' type_error_target = ('The data_row_target parameter should either be ' 'None or a string/number indicating the target ' 'class.') value_error_target = ('The value of the data_row_target parameter is ' 'not present in the ground truth labels used to ' 'initialise this class. The data row target ' 'value is not recognised.') user_warning = ('This Mixup class has not been initialised with a ' 'ground truth vector. The value of the ' 'data_row_target parameter will be ignored, therefore ' 'target values samples will not be returned.') with pytest.raises(TypeError) as exin: self.numerical_np_augmentor.sample(data_row_target=('4', '2')) assert str(exin.value) == type_error_target with pytest.raises(ValueError) as exin: self.numerical_struct_augmentor.sample(data_row_target='1') assert str(exin.value) == value_error_target with pytest.warns(UserWarning) as warning: with pytest.raises(NotImplementedError) as exin: self.numerical_np_augmentor.sample(data_row_target='1') assert str(exin.value) == not_implemented_error assert len(warning) == 1 assert str(warning[0].message) == user_warning with pytest.raises(TypeError) as exin: self.numerical_np_augmentor.sample(return_probabilities=1) assert str(exin.value) == type_error_probs with pytest.raises(TypeError) as exin: self.numerical_np_augmentor.sample(with_replacement=1) assert str(exin.value) == type_error_replace with pytest.raises(NotImplementedError) as exin: self.numerical_np_augmentor.sample() assert str(exin.value) == not_implemented_error def test_sample(self): """ Tests :func:`~fatf.utils.data.augmentation.Mixup.sample` method. """ user_warning_gt = ( 'This Mixup class has not been initialised with a ground truth ' 'vector. The value of the data_row_target parameter will be ' 'ignored, therefore target values samples will not be returned.') user_warning_strat = ( 'Since the ground truth vector was not provided while ' 'initialising the Mixup class it is not possible to get a ' 'stratified sample of data points. Instead, Mixup will choose ' 'data points at random, which is equivalent to assuming that the ' 'class distribution is balanced.') fatf.setup_random_seed() # Mixed array with ground truth and probabilities samples = self.mixed_augmentor_i2f.sample( MIXED_ARRAY[0], 0, 5, return_probabilities=True) assert len(samples) == 2 answer_sample = np.array( [(0.000, 'a', 0.332, 'a'), (0.000, 'a', 0.080, 'a'), (0.780, 'a', 0.587, 'a'), (0.992, 'a', 0.725, 'a'), (0.734, 'a', 0.073, 'a')], dtype=[('a', '<f4'), ('b', '<U1'), ('c', '<f4'), ('d', '<U2')]) # yapf: disable answer_sample_gt = np.array([[1, 0], [1, 0], [1, 0], [1, 0], [0.266, 0.734]]) assert np.allclose(samples[1], answer_sample_gt, atol=1e-3) for i in ['a', 'c']: assert np.allclose(samples[0][i], answer_sample[i], atol=1e-3) for i in ['b', 'd']: assert np.array_equal(samples[0][i], answer_sample[i]) # Mixed array with ground truth and probabilities samples = self.mixed_augmentor.sample( MIXED_ARRAY[0], 1, 5, return_probabilities=True) assert len(samples) == 2 answer_sample = np.array( [(0, 'a', 0.829, 'a'), (0, 'a', 0.601, 'a'), (0, 'a', 0.255, 'a'), (0, 'a', 0.377, 'a'), (0, 'a', 0.071, 'a')], dtype=[('a', '<i4'), ('b', '<U1'), ('c', '<f4'), ('d', '<U2')]) # yapf: disable answer_sample_gt = np.array([[0.823, 0.177], [0.802, 0.198], [0.624, 0.376], [0.457, 0.543], [0, 1]]) assert np.allclose(samples[1], answer_sample_gt, atol=1e-3) for i in ['a', 'c']: assert np.allclose(samples[0][i], answer_sample[i], atol=1e-3) for i in ['b', 'd']: assert np.array_equal(samples[0][i], answer_sample[i]) # Numpy array without ground truth -- categorical with pytest.warns(UserWarning) as warning: samples = self.categorical_np_augmentor.sample( CATEGORICAL_NP_ARRAY[0], samples_number=5) assert len(warning) == 1 assert str(warning[0].message) == user_warning_strat # answer_sample = np.array([['a', 'b', 'c'], ['a', 'b', 'c'], ['a', 'b', 'c'], ['a', 'b', 'c'], ['a', 'b', 'c']]) assert np.array_equal(samples, answer_sample) # Numpy array without ground truth -- numerical -- test for warning with pytest.warns(UserWarning) as warning: samples = self.numerical_np_augmentor.sample( NUMERICAL_NP_ARRAY[0], data_row_target=1, samples_number=5) assert len(warning) == 2 assert str(warning[0].message) == user_warning_gt assert str(warning[1].message) == user_warning_strat # answer_sample = np.array([[0.792, 0.000, 0.040, 0.373], [0.000, 0.000, 0.080, 0.690], [1.220, 0.610, 0.476, 0.562], [0.000, 0.000, 0.080, 0.690], [1.389, 0.694, 0.531, 0.544]]) assert np.allclose(samples, answer_sample, atol=1e-3) # Structured array with ground truth -- numerical -- no probabilities samples = self.numerical_struct_augmentor.sample( NUMERICAL_STRUCT_ARRAY[0], samples_number=5, data_row_target='b') assert len(samples) == 2 answer_sample = np.array( [(0, 0, 0.039, 0.358), (1, 0, 0.544, 0.540), (1, 0, 0.419, 0.580), (0, 0, 0.080, 0.690), (0, 0, 0.080, 0.690)], dtype=[('a', '<i4'), ('b', '<i4'), ('c', '<f4'), ('d', '<f4')]) # yapf: disable answer_sample_gt = np.array(['a', 'a', 'a', 'b', 'b']) assert np.array_equal(samples[1], answer_sample_gt) for index in ['a', 'b', 'c', 'd']: assert np.allclose( samples[0][index], answer_sample[index], atol=1e-3) def get_truncated_mean_std(minimum, maximum, original_mean, original_std): """ Computes the theoretical mean and standard deviation of a truncated normal distribution from its initialisation parameters: the original normal mean and standard deviation, and the minimum and maximum within which values are truncated. Equations for calculating these -- implemented by this function -- can be found here_. .. _here: https://en.wikipedia.org/wiki/Truncated_normal_distribution """ def cdf(epsilon): return (1 / 2) * (1 + scipy.special.erf(epsilon / np.sqrt(2))) def norm(episilon): return 1 / np.sqrt(2 * np.pi) * np.exp(-1 / 2 * episilon**2) alpha = (minimum - original_mean) / original_std beta = (maximum - original_mean) / original_std z_phi = cdf(beta) - cdf(alpha) n_ab = norm(alpha) - norm(beta) computed_mean = original_mean + (n_ab / z_phi) * original_std computed_var = (original_std**2 * (1 + (alpha * norm(alpha) - beta * norm(beta)) / z_phi - (n_ab / z_phi)**2 ) ) # yapf: disable computed_std = np.sqrt(computed_var) return computed_mean, computed_std class TestTruncatedNormalSampling(object): """ Tests :class:`fatf.utils.data.augmentation.TruncatedNormalSampling` class. """ numerical_np_augmentor = fuda.TruncatedNormalSampling(NUMERICAL_NP_ARRAY) numerical_np_0_augmentor = fuda.TruncatedNormalSampling( NUMERICAL_NP_ARRAY, [0]) numerical_struct_augmentor = fuda.TruncatedNormalSampling( NUMERICAL_STRUCT_ARRAY) numerical_struct_a_augmentor = fuda.TruncatedNormalSampling( NUMERICAL_STRUCT_ARRAY, ['a']) numerical_struct_augmentor_f = fuda.TruncatedNormalSampling( NUMERICAL_STRUCT_ARRAY, int_to_float=False) categorical_np_augmentor = fuda.TruncatedNormalSampling( CATEGORICAL_NP_ARRAY) categorical_np_012_augmentor = fuda.TruncatedNormalSampling( CATEGORICAL_NP_ARRAY, [0, 1, 2]) categorical_struct_abc_augmentor = fuda.TruncatedNormalSampling( CATEGORICAL_STRUCT_ARRAY, ['a', 'b', 'c']) mixed_augmentor = fuda.TruncatedNormalSampling(MIXED_ARRAY, ['b', 'd']) def test_init(self): """ Tests ``TruncatedNormalSampling`` class initialisation. """ # Test class inheritance assert (self.numerical_np_0_augmentor.__class__.__bases__[0].__name__ == 'Augmentation') # Test calculating numerical and categorical indices assert self.numerical_np_0_augmentor.categorical_indices == [0] assert self.numerical_np_0_augmentor.numerical_indices == [1, 2, 3] # assert self.numerical_np_augmentor.categorical_indices == [] assert self.numerical_np_augmentor.numerical_indices == [0, 1, 2, 3] # assert self.numerical_struct_a_augmentor.categorical_indices == ['a'] assert (self.numerical_struct_a_augmentor.numerical_indices == ['b', 'c', 'd']) # yapf: disable # assert self.categorical_np_augmentor.categorical_indices == [0, 1, 2] assert self.categorical_np_augmentor.numerical_indices == [] # Test attributes unique to TruncatedNormalSampling csv = self.numerical_np_0_augmentor.categorical_sampling_values nsv = self.numerical_np_0_augmentor.numerical_sampling_values # assert len(csv) == 1 assert 0 in csv assert len(csv[0]) == 2 assert np.array_equal(csv[0][0], np.array([0, 1, 2])) assert np.allclose( csv[0][1], np.array([3 / 6, 2 / 6, 1 / 6]), atol=1e-3) # assert len(nsv) == 3 assert 1 in nsv and 2 in nsv and 3 in nsv assert len(nsv[1]) == 4 and len(nsv[2]) == 4 and len(nsv[3]) == 4 assert nsv[1][0] == pytest.approx(.5, abs=1e-3) assert nsv[1][1] == pytest.approx(.5, abs=1e-3) assert nsv[1][2] == pytest.approx(0., abs=1e-3) assert nsv[1][3] == pytest.approx(1., abs=1e-3) assert nsv[2][0] == pytest.approx(.377, abs=1e-3) assert nsv[2][1] == pytest.approx(.366, abs=1e-3) assert nsv[2][2] == pytest.approx(0.03, abs=1e-3) assert nsv[2][3] == pytest.approx(0.99, abs=1e-3) assert nsv[3][0] == pytest.approx(.563, abs=1e-3) assert nsv[3][1] == pytest.approx(.257, abs=1e-3) assert nsv[3][2] == pytest.approx(0.21, abs=1e-3) assert nsv[3][3] == pytest.approx(0.89, abs=1e-3) def test_sample(self): """ Tests ``sample`` for the ``TruncatedNormalSampling`` augmenter. """ fatf.setup_random_seed() # yapf: disable numerical_np_truncated_results = np.array([ [0.361, 0.396, 0.0593, 0.731], [1.423, 0.094, 0.595, 0.258], [0.816, 0.094, 0.356, 0.871]]) numerical_struct_truncated_results = np.array( [(1.014, 0.111, 0.254, 0.408), (0.199, 0.186, 0.178, 0.517), (0.170, 0.338, 0.364, 0.560)], dtype=[('a', 'f'), ('b', 'f'), ('c', 'f'), ('d', 'f')]) numerical_np_truncated_cat_results = np.array([ [1., 0.531, 0.269, 0.587], [1., 0.154, 0.136, 0.751], [1., 0.696, 0.594, 0.653]]) numerical_struct_truncated_cat_results = np.array( [(0, 0.243, 0.048, 0.697), (1, 0.066, 0.591, 0.842), (1, 0.728, 0.214, 0.418)], dtype=[('a', 'i'), ('b', 'f'), ('c', 'f'), ('d', 'f')]) categorical_np_results = np.array([ ['a', 'f', 'c'], ['a', 'f', 'c'], ['b', 'f', 'g']]) categorical_struct_results = np.array( [('a', 'b', 'g'), ('a', 'f', 'c'), ('a', 'f', 'c')], dtype=[('a', 'U1'), ('b', 'U1'), ('c', 'U1')]) mixed_results = np.array( [(0.668, 'a', 0.522, 'bb'), (0.195, 'c', 0.075, 'a'), (0.266, 'f', 0.586, 'b')], dtype=[('a', '<f8'), ('b', 'U1'), ('c', '<f8'), ('d', 'U2')]) # yapf: enable # Calculate what the mean and std of truncated normals should be min_ = NUMERICAL_NP_ARRAY.min(axis=0) max_ = NUMERICAL_NP_ARRAY.max(axis=0) mean = NUMERICAL_NP_ARRAY.mean(axis=0) std = NUMERICAL_NP_ARRAY.std(axis=0) nt_results_mean, nt_results_std = get_truncated_mean_std( min_, max_, NUMERICAL_NP_ARRAY[0], std) nt_results_data_mean, nt_results_data_std = get_truncated_mean_std( min_, max_, mean, std) mixed_numerical_values = fuat.structured_to_unstructured( MIXED_ARRAY[['a', 'c']]) min_ = mixed_numerical_values.min(axis=0) max_ = mixed_numerical_values.max(axis=0) std = mixed_numerical_values.std(axis=0) mean = mixed_numerical_values.mean(axis=0) nt_mixed_results_mean, nt_mixed_results_std = get_truncated_mean_std( min_, max_, mixed_numerical_values[0], std) nt_mixed_results_data = get_truncated_mean_std(min_, max_, mean, std) nt_mixed_results_data_mean = nt_mixed_results_data[0] nt_mixed_results_data_std = nt_mixed_results_data[1] # Pure numerical sampling of a data point # ...numpy array results samples = self.numerical_np_augmentor.sample( NUMERICAL_NP_ARRAY[0, :], samples_number=3) assert np.allclose(samples, numerical_np_truncated_results, atol=1e-3) # ...structured array results samples_struct = self.numerical_struct_augmentor.sample( NUMERICAL_STRUCT_ARRAY[0], samples_number=3) for i in samples_struct.dtype.names: assert np.allclose( samples_struct[i], numerical_struct_truncated_results[i], atol=1e-3) # ...numpy array results mean samples = self.numerical_np_augmentor.sample( NUMERICAL_NP_ARRAY[0, :], samples_number=1000) assert np.allclose(samples.mean(axis=0), nt_results_mean, atol=1e-1) assert np.allclose(samples.std(axis=0), nt_results_std, atol=1e-1) # ...structured array results mean samples_struct = self.numerical_struct_augmentor.sample( NUMERICAL_STRUCT_ARRAY[0], samples_number=1000) for i, name in enumerate(samples_struct.dtype.names): assert np.allclose( np.mean(samples_struct[name]), nt_results_mean[i], atol=1e-1) assert np.allclose( np.std(samples_struct[name]), nt_results_std[i], atol=1e-1) # Pure numerical sampling from the mean of the data # ...numpy array mean samples = self.numerical_np_augmentor.sample(samples_number=1000) assert np.allclose( samples.mean(axis=0), nt_results_data_mean, atol=1e-1) assert np.allclose(samples.std(axis=0), nt_results_data_std, atol=1e-1) # ...structured array mean samples_struct = self.numerical_struct_augmentor.sample( samples_number=1000) for i, name in enumerate(samples_struct.dtype.names): assert np.allclose( np.mean(samples_struct[name]), nt_results_data_mean[i], atol=1e-1) assert np.allclose( np.std(samples_struct[name]), nt_results_data_std[i], atol=1e-1) ####################################################################### # Numerical sampling with one categorical index defined # ...numpy array results samples = self.numerical_np_0_augmentor.sample( NUMERICAL_NP_ARRAY[0, :], samples_number=3) assert np.allclose( samples, numerical_np_truncated_cat_results, atol=1e-3) # ...structured array results samples_struct = self.numerical_struct_a_augmentor.sample( NUMERICAL_STRUCT_ARRAY[0], samples_number=3) for i in samples_struct.dtype.names: assert np.allclose( samples_struct[i], numerical_struct_truncated_cat_results[i], atol=1e-3) # ...numpy array results mean # ......numerical samples = self.numerical_np_0_augmentor.sample( NUMERICAL_NP_ARRAY[0, :], samples_number=100) assert np.allclose( samples.mean(axis=0)[1:], nt_results_mean[1:], atol=1e-1) assert np.allclose( samples.std(axis=0)[1:], nt_results_std[1:], atol=1e-1) # ......categorical val, freq = np.unique(samples[:, 0], return_counts=True) freq = freq / freq.sum() assert np.array_equal(val, NUMERICAL_NP_0_CAT_VAL) assert np.allclose(freq, NUMERICAL_NP_0_CAT_FREQ, atol=1e-1) # ...structured array results mean samples_struct = self.numerical_struct_a_augmentor.sample( NUMERICAL_STRUCT_ARRAY[0], samples_number=100) # ......numerical for i, name in enumerate(samples_struct.dtype.names[1:]): assert np.allclose( np.mean(samples_struct[name]), nt_results_mean[1:][i], atol=1e-1) assert np.allclose( np.std(samples_struct[name]), nt_results_std[1:][i], atol=1e-1) # ......categorical val_struct, freq_struct = np.unique( samples_struct['a'], return_counts=True) freq_struct = freq_struct / freq_struct.sum() assert np.array_equal(val_struct, NUMERICAL_NP_0_CAT_VAL) assert np.allclose(freq_struct, NUMERICAL_NP_0_CAT_FREQ, atol=1e-1) # ...numpy array mean samples = self.numerical_np_0_augmentor.sample(samples_number=1000) # ......numerical assert np.allclose( samples.mean(axis=0)[1:], nt_results_data_mean[1:], atol=1e-1) assert np.allclose( samples.std(axis=0)[1:], nt_results_data_std[1:], atol=1e-1) # ......categorical val, freq = np.unique(samples[:, 0], return_counts=True) freq = freq / freq.sum() assert np.array_equal(val, NUMERICAL_NP_0_CAT_VAL) assert np.allclose(freq, NUMERICAL_NP_0_CAT_FREQ, atol=1e-1) # ...structured array mean samples_struct = self.numerical_struct_a_augmentor.sample( samples_number=1000) # ......numerical for i, name in enumerate(samples_struct.dtype.names[1:]): assert np.allclose( np.mean(samples_struct[name]), nt_results_data_mean[1:][i], atol=1e-1) assert np.allclose( np.std(samples_struct[name]), nt_results_data_std[1:][i], atol=1e-1) # ......categorical val_struct, freq_struct = np.unique( samples_struct['a'], return_counts=True) freq_struct = freq_struct / freq_struct.sum() assert np.array_equal(val_struct, NUMERICAL_NP_0_CAT_VAL) assert np.allclose(freq_struct, NUMERICAL_NP_0_CAT_FREQ, atol=1e-1) ####################################################################### ####################################################################### # Pure categorical sampling # ...numpy array samples = self.categorical_np_012_augmentor.sample( CATEGORICAL_NP_ARRAY[0], samples_number=3) assert np.array_equal(samples, categorical_np_results) # ...structured array samples_struct = self.categorical_struct_abc_augmentor.sample( CATEGORICAL_STRUCT_ARRAY[0], samples_number=3) assert np.array_equal(samples_struct, categorical_struct_results) vals = [['a', 'b'], ['b', 'c', 'f'], ['c', 'g']] # ...numpy array proportions and values samples = self.categorical_np_012_augmentor.sample( CATEGORICAL_NP_ARRAY[0], samples_number=100) # proportions = [ np.array([0.62, 0.38]), np.array([0.31, 0.17, 0.52]), np.array([0.63, 0.37]) ] for i, index in enumerate(range(CATEGORICAL_NP_ARRAY.shape[1])): val, freq = np.unique(samples[:, index], return_counts=True) freq = freq / freq.sum() assert np.array_equal(val, vals[i]) assert np.allclose(freq, proportions[i], atol=1e-1) # ...structured array proportions and values samples_struct = self.categorical_struct_abc_augmentor.sample( CATEGORICAL_STRUCT_ARRAY[0], samples_number=100) # proportions = [ np.array([0.74, 0.26]), np.array([0.38, 0.12, 0.50]), np.array([0.63, 0.37]) ] for i, index in enumerate(CATEGORICAL_STRUCT_ARRAY.dtype.names): val, freq = np.unique(samples_struct[index], return_counts=True) freq = freq / freq.sum() assert np.array_equal(val, vals[i]) assert np.allclose(freq, proportions[i], atol=1e-1) # No need to check for mean of the datasets since categorical features # are sampled from the distribution of the entire dataset and not # centered on the data_row. ####################################################################### ####################################################################### # Mixed array with categorical indices auto-discovered vals = [['a', 'c', 'f'], ['a', 'aa', 'b', 'bb']] proportions = [ np.array([0.33, 0.33, 0.33]), np.array([0.33, 0.16, 0.16, 0.33]) ] mixed_cat, mixed_num = ['b', 'd'], ['a', 'c'] # Instance samples = self.mixed_augmentor.sample(MIXED_ARRAY[0], samples_number=3) # ...categorical assert np.array_equal(samples[mixed_cat], mixed_results[mixed_cat]) # ...numerical for i in mixed_num: assert np.allclose(samples[i], mixed_results[i], atol=1e-3) # Instance mean samples = self.mixed_augmentor.sample( MIXED_ARRAY[0], samples_number=1000) # ...numerical for i, name in enumerate(mixed_num): assert np.allclose( np.mean(samples[name]), nt_mixed_results_mean[i], atol=1e-1) assert np.allclose( np.std(samples[name]), nt_mixed_results_std[i], atol=1e-1) # ...categorical for i, index in enumerate(mixed_cat): val, freq = np.unique(samples[index], return_counts=True) freq = freq / freq.sum() assert np.array_equal(val, vals[i]) assert np.allclose(freq, proportions[i], atol=1e-1) # Dataset mean samples = self.mixed_augmentor.sample(samples_number=1000) # ...numerical for i, name in enumerate(mixed_num): assert np.allclose( np.mean(samples[name]), nt_mixed_results_data_mean[i], atol=1e-1) assert np.allclose( np.std(samples[name]), nt_mixed_results_data_std[i], atol=1e-1) # ...categorical for i, index in enumerate(mixed_cat): val, freq = np.unique(samples[index], return_counts=True) freq = freq / freq.sum() assert np.array_equal(val, vals[i]) assert np.allclose(freq, proportions[i], atol=1e-1) ####################################################################### # Sample without float cast samples = self.numerical_struct_augmentor_f.sample(samples_number=5) samples_answer = np.array( [(0, 0, 0.345, 0.442), (1, 0, 0.311, 0.338), (1, 0, 0.040, 0.553), (0, 0, 0.886, 0.822), (0, 0, 0.164, 0.315)], dtype=NUMERICAL_STRUCT_ARRAY.dtype) # yapf: disable for i in NUMERICAL_STRUCT_ARRAY.dtype.names: assert np.allclose(samples[i], samples_answer[i], atol=1e-3) # Compare with the same augmentation but with int_to_float=False and # casted to integers afterwards (generated with # self.numerical_struct_augmentor). samples = self.numerical_struct_augmentor_f.sample(samples_number=5) samples_answer = np.array([(0.718, 0.476, 0.449, 0.615), (0.047, 0.883, 0.205, 0.329), (1.255, 0.422, 0.302, 0.627), (1.024, 0.512, 0.122, 0.790), (1.123, 0.670, 0.386, 0.471)], dtype=NUMERICAL_STRUCT_ARRAY.dtype) for i in NUMERICAL_STRUCT_ARRAY.dtype.names: assert np.allclose(samples[i], samples_answer[i], atol=1e-3) def test_validate_input_normalclassdiscovery(): """ Tests the ``_validate_input_normalclassdiscovery`` function. Tests the :func:`fatf.utils.data.augmentation._validate_input_normalclassdiscovery` function. """ predictive_function_model = ('The predictive function must take exactly ' '*one* required parameter: a data array to ' 'be predicted.') predictive_function_type = ('The predictive_function should be a Python ' 'callable, e.g., a Python function.') classes_number_type = ('The classes_number parameter is neither None nor ' 'an integer.') classes_number_value = ('The classes_number parameter has to be an ' 'integer larger than 1 (at least a binary ' 'classification problem).') class_proportion_type = ('The class_proportion_threshold parameter is not ' 'a number.') class_proportion_value = ('The class_proportion_threshold parameter must ' 'be a number between 0 and 1 (not inclusive).') standard_deviation_init_type = ('The standard_deviation_init parameter is ' 'not a number.') standard_deviation_init_value = ('The standard_deviation_init parameter ' 'must be a positive number (greater than ' '0).') standard_deviation_increment_type = ('The standard_deviation_increment ' 'parameter is not a number.') standard_deviation_increment_value = ('The standard_deviation_increment ' 'parameter must be a positive ' 'number (greater than 0).') def invalid_predict_proba(self, x, y): pass # pragma: no cover model = fum.KNN(k=3) with pytest.raises(TypeError) as exin: fuda._validate_input_normalclassdiscovery(None, None, None, None, None) assert str(exin.value) == predictive_function_type with pytest.raises(IncompatibleModelError) as exin: fuda._validate_input_normalclassdiscovery(invalid_predict_proba, None, None, None, None) assert str(exin.value) == predictive_function_model with pytest.raises(TypeError) as exin: fuda._validate_input_normalclassdiscovery(model.predict, '1', None, None, None) assert str(exin.value) == classes_number_type with pytest.raises(ValueError) as exin: fuda._validate_input_normalclassdiscovery(model.predict, 1, None, None, None) assert str(exin.value) == classes_number_value with pytest.raises(TypeError) as exin: fuda._validate_input_normalclassdiscovery(model.predict, 2, None, None, None) assert str(exin.value) == class_proportion_type with pytest.raises(ValueError) as exin: fuda._validate_input_normalclassdiscovery(model.predict, None, 0, None, None) assert str(exin.value) == class_proportion_value with pytest.raises(ValueError) as exin: fuda._validate_input_normalclassdiscovery(model.predict, None, 1.0, None, None) assert str(exin.value) == class_proportion_value with pytest.raises(TypeError) as exin: fuda._validate_input_normalclassdiscovery(model.predict_proba, 3, 0.9, None, None) assert str(exin.value) == standard_deviation_init_type with pytest.raises(ValueError) as exin: fuda._validate_input_normalclassdiscovery(model.predict, None, 0.1, 0, None) assert str(exin.value) == standard_deviation_init_value with pytest.raises(ValueError) as exin: fuda._validate_input_normalclassdiscovery(model.predict, None, 0.1, -5, None) assert str(exin.value) == standard_deviation_init_value with pytest.raises(TypeError) as exin: fuda._validate_input_normalclassdiscovery(model.predict_proba, None, 0.5, 6, None) assert str(exin.value) == standard_deviation_increment_type with pytest.raises(ValueError) as exin: fuda._validate_input_normalclassdiscovery(model.predict_proba, None, 0.5, 6, 0) assert str(exin.value) == standard_deviation_increment_value with pytest.raises(ValueError) as exin: fuda._validate_input_normalclassdiscovery(model.predict_proba, None, 0.5, 6, -0.5) assert str(exin.value) == standard_deviation_increment_value class TestNormalClassDiscovery(object): """ Tests :class:`fatf.utils.data.augmentation.NormalClassDiscovery` class. """ numerical_labels = np.array([0, 1, 0, 1, 1, 0]) numerical_classifier = fum.KNN(k=3) numerical_classifier.fit(NUMERICAL_NP_ARRAY, numerical_labels) # numerical_np_augmentor = fuda.NormalClassDiscovery( NUMERICAL_NP_ARRAY, numerical_classifier.predict_proba) numerical_np_0_augmentor = fuda.NormalClassDiscovery( NUMERICAL_NP_ARRAY, numerical_classifier.predict, [0]) numerical_struct_classifier = fum.KNN(k=3) numerical_struct_classifier.fit(NUMERICAL_STRUCT_ARRAY, numerical_labels) # numerical_struct_augmentor = fuda.NormalClassDiscovery( NUMERICAL_STRUCT_ARRAY, numerical_struct_classifier.predict_proba, standard_deviation_init=0.5, standard_deviation_increment=0.2, class_proportion_threshold=0.1) numerical_struct_augmentor_f = fuda.NormalClassDiscovery( NUMERICAL_STRUCT_ARRAY, numerical_struct_classifier.predict, int_to_float=False, classes_number=2) numerical_struct_a_augmentor = fuda.NormalClassDiscovery( NUMERICAL_STRUCT_ARRAY, numerical_struct_classifier.predict, ['a'], classes_number=2) categorical_classifier = fum.KNN(k=3) categorical_classifier.fit(CATEGORICAL_NP_ARRAY, numerical_labels) # categorical_np_augmentor = fuda.NormalClassDiscovery( CATEGORICAL_NP_ARRAY, categorical_classifier.predict, classes_number=2) categorical_np_012_augmentor = fuda.NormalClassDiscovery( CATEGORICAL_NP_ARRAY, categorical_classifier.predict, [0, 1, 2], classes_number=2) categorical_struct_classifier = fum.KNN(k=3) categorical_struct_classifier.fit(CATEGORICAL_STRUCT_ARRAY, numerical_labels) # categorical_struct_abc_augmentor = fuda.NormalClassDiscovery( CATEGORICAL_STRUCT_ARRAY, categorical_struct_classifier.predict, ['a', 'b', 'c'], classes_number=2) mixed_classifier = fum.KNN(k=3) mixed_classifier.fit(MIXED_ARRAY, numerical_labels) # mixed_augmentor = fuda.NormalClassDiscovery( MIXED_ARRAY, mixed_classifier.predict, ['b', 'd'], classes_number=2) def test_init(self, caplog): """ Tests ``NormalClassDiscovery`` class initialisation. """ runtime_error_class_n = ('For the specified (classification) ' 'predictive function, classifying the input ' 'dataset provided only one target class. To ' 'use this augmenter please initialise it ' 'with the classes_number parameter.') logger_info = ('The number of classes was not specified by the user. ' 'Based on *classification* of the input dataset {} ' 'classes were found.') runtime_error_prop = ('The lower bound on the proportion of each ' 'class must be smaller than 1/(the number of ' 'classes) for this sampling implementation. ' '(Please see the documentation of the ' 'NormalClassDiscovery augmenter for more ' 'information.') # Test class inheritance assert (self.numerical_np_0_augmentor.__class__.__bases__[0].__name__ == 'Augmentation') # Test calculating numerical and categorical indices assert self.numerical_np_0_augmentor.categorical_indices == [0] assert self.numerical_np_0_augmentor.numerical_indices == [1, 2, 3] # assert self.numerical_np_augmentor.categorical_indices == [] assert self.numerical_np_augmentor.numerical_indices == [0, 1, 2, 3] # assert self.numerical_struct_a_augmentor.categorical_indices == ['a'] assert (self.numerical_struct_a_augmentor.numerical_indices == ['b', 'c', 'd']) # yapf: disable # assert self.categorical_np_augmentor.categorical_indices == [0, 1, 2] assert self.categorical_np_augmentor.numerical_indices == [] # Test for non-probabilistic # ...successful class number inference logging assert len(caplog.records) == 0 _ = fuda.NormalClassDiscovery(NUMERICAL_NP_ARRAY, self.numerical_classifier.predict) assert len(caplog.records) == 1 assert caplog.records[0].levelname == 'INFO' assert caplog.records[0].getMessage() == logger_info.format(2) # ...failed class number inference with pytest.raises(RuntimeError) as exin: fuda.NormalClassDiscovery( np.array([[2, 1, 0.73, 0.48], [1, 0, 0.36, 0.89]]), self.numerical_classifier.predict) assert str(exin.value) == runtime_error_class_n # Impossible class proportion threshold with pytest.raises(RuntimeError) as exin: fuda.NormalClassDiscovery( NUMERICAL_NP_ARRAY, self.numerical_classifier.predict, class_proportion_threshold=0.5) assert str(exin.value) == runtime_error_prop # Test attributes unique to NormalClassDiscovery... # ...numpy probabilistic assert (self.numerical_np_augmentor.predictive_function == self.numerical_classifier.predict_proba) # yapf: disable assert self.numerical_np_augmentor.is_probabilistic is True assert self.numerical_np_augmentor.classes_number == 2 assert self.numerical_np_augmentor.standard_deviation_init == 1 assert self.numerical_np_augmentor.standard_deviation_increment == 0.1 assert self.numerical_np_augmentor.class_proportion_threshold == 0.05 assert not self.numerical_np_augmentor.categorical_sampling_values # ...numpy classifier assert (self.numerical_np_0_augmentor.predictive_function == self.numerical_classifier.predict) # yapf: disable assert self.numerical_np_0_augmentor.is_probabilistic is False assert self.numerical_np_0_augmentor.classes_number == 2 assert self.numerical_np_0_augmentor.standard_deviation_init == 1 assert self.numerical_np_0_augmentor.standard_deviation_increment == .1 assert self.numerical_np_0_augmentor.class_proportion_threshold == .05 # csv = self.numerical_np_0_augmentor.categorical_sampling_values assert len(csv) == 1 assert 0 in csv assert len(csv[0]) == 2 assert np.array_equal(csv[0][0], np.array([0, 1, 2])) assert np.allclose( csv[0][1], np.array([3 / 6, 2 / 6, 1 / 6]), atol=1e-3) # ...structured probabilistic assert ( self.numerical_struct_augmentor.predictive_function == self.numerical_struct_classifier.predict_proba ) # yapf: disable assert self.numerical_struct_augmentor.is_probabilistic is True assert self.numerical_struct_augmentor.classes_number == 2 assert (self.numerical_struct_augmentor.standard_deviation_init == 0.5) # yapf: disable assert (self.numerical_struct_augmentor.standard_deviation_increment == 0.2) # yapf: disable assert (self.numerical_struct_augmentor.class_proportion_threshold == 0.1) # yapf: disable assert not self.numerical_struct_augmentor.categorical_sampling_values # ...structured classifier assert (self.categorical_struct_abc_augmentor.predictive_function == self.categorical_struct_classifier.predict) # yapf: disable assert self.categorical_struct_abc_augmentor.is_probabilistic is False assert self.categorical_struct_abc_augmentor.classes_number == 2 assert ( self.categorical_struct_abc_augmentor.standard_deviation_init == 1) assert ( self.categorical_struct_abc_augmentor.standard_deviation_increment == 0.1) # yapf: disable assert ( self.categorical_struct_abc_augmentor.class_proportion_threshold == 0.05) # yapf: disable csv = self.categorical_struct_abc_augmentor.categorical_sampling_values assert len(csv) == 3 assert 'a' in csv and 'b' in csv and 'c' in csv # assert len(csv['a']) == 2 assert np.array_equal(csv['a'][0], np.array(['a', 'b'])) assert np.allclose(csv['a'][1], np.array([4 / 6, 2 / 6]), atol=1e-3) # assert len(csv['b']) == 2 assert np.array_equal(csv['b'][0], np.array(['b', 'c', 'f'])) assert np.allclose( csv['b'][1], np.array([2 / 6, 1 / 6, 3 / 6]), atol=1e-3) # assert len(csv['c']) == 2 assert np.array_equal(csv['c'][0], np.array(['c', 'g'])) assert np.allclose(csv['c'][1], np.array([4 / 6, 2 / 6]), atol=1e-3) def test_sample(self): """ Tests :func:`fatf.utils.data.augmentation.NormalClassDiscovery.sample`. """ fatf.setup_random_seed() max_iter_type = 'The max_iter parameter is not a positive integer.' max_iter_value = 'The max_iter parameter must be a positive number.' runtime_msg = ('The maximum number of iterations was reached ' 'without sampling enough data points for each ' 'class. Please try increasing the max_iter ' 'parameter or decreasing the ' 'class_proportion_threshold parameter. ' 'Increasing the standard_deviation_init and ' 'standard_deviation_increment parameters may also ' 'help.') with pytest.raises(TypeError) as exin: self.numerical_np_0_augmentor.sample( NUMERICAL_NP_ARRAY[0], max_iter='a') assert str(exin.value) == max_iter_type with pytest.raises(ValueError) as exin: self.numerical_np_0_augmentor.sample( NUMERICAL_NP_ARRAY[0], max_iter=-1) assert str(exin.value) == max_iter_value # yapf: disable numerical_samples = np.array([ [0.088, 0.024, -0.505, 0.934], [-0.175, -0.471, -0.049, -0.155], [-2.289, -1.651, -0.110, -2.343], [0.8346353, -1.189, -0.435, -1.269]]) numerical_0_samples = np.array([ [1, -0.196, 1.378, 1.608], [0, -0.451, -0.908, 1.016], [0, 1.588, 0.976, 1.275], [2, 0.033, 2.253, 1.130]]) numerical_struct_samples = np.array( [(0.637, -1.328, -0.118, 0.916), (-0.146, 0.173, -0.065, 0.607), (1.396, -1.405, 1.552, 1.498), (-2.150, -2.201, 2.599, 2.582)], dtype=[('a', 'f'), ('b', 'f'), ('c', 'f'), ('d', 'f')]) numerical_struct_0_samples = np.array( [(0, -1.461, -0.580, -2.496), (1, -0.728, 1.033, 1.372), (1, -1.509, -0.972, -0.833), (0, -0.943, -0.142, -3.236)], dtype=[('a', 'i'), ('b', 'f'), ('c', 'f'), ('d', 'f')]) categorical_samples = np.array([ ['a', 'b', 'g'], ['a', 'f', 'g'], ['b', 'b', 'g'], ['a', 'f', 'c']]) categorical_012_samples = np.array([ ['a', 'c', 'c'], ['a', 'f', 'g'], ['a', 'c', 'c'], ['a', 'f', 'g']]) categorical_struct_samples = np.array( [('a', 'f', 'c'), ('b', 'b', 'c'), ('a', 'b', 'g'), ('a', 'f', 'g')], dtype=CATEGORICAL_STRUCT_ARRAY.dtype) mixed_samples = np.array( [(0.690, 'a', -1.944, 'b'), (0.124, 'a', -1.102, 'bb'), (1.445, 'c', -1.224, 'bb'), (2.122, 'c', -0.028, 'aa')], dtype=[('a', '<f8'), ('b', 'U1'), ('c', '<f8'), ('d', 'U2')]) numerical_samples_mean = np.array([ [-0.299, 1.016, -1.442, 0.611], [0.159, -1.271, -0.347, 0.698], [1.402, -2.630, 0.346, 0.754], [-1.389, -0.431, 0.716, -0.882]]) numerical_0_samples_mean = np.array([ [0, 0.220, 0.733, 0.239], [2, 0.325, 0.180, 3.161], [0, 0.795, -0.818, 3.386], [1, 0.907, -1.070, 2.265]]) numerical_struct_samples_mean = np.array( [(0.215, -0.429, 0.723, 0.341), (-0.808, 0.515, 0.586, 0.570), (-0.920, 0.673, 0.546, -0.382), (0.359, 0.131, -0.254, 1.302)], dtype=[('a', 'f'), ('b', 'f'), ('c', 'f'), ('d', 'f')]) numerical_struct_0_samples_mean = np.array( [(0, -0.146, -0.832, 1.089), (0, 0.462, -0.683, 2.174), (2, 0.439, -1.637, 1.484), (1, 1.292, -1.461, 4.102)], dtype=[('a', 'i'), ('b', 'f'), ('c', 'f'), ('d', 'f')]) categorical_samples_mean = np.array([ ['b', 'f', 'c'], ['b', 'b', 'c'], ['a', 'f', 'g'], ['a', 'b', 'c']]) categorical_012_samples_mean = np.array([ ['a', 'c', 'c'], ['b', 'f', 'c'], ['b', 'f', 'g'], ['a', 'c', 'c']]) categorical_struct_samples_mean = np.array( [('a', 'f', 'c'), ('a', 'b', 'c'), ('a', 'b', 'c'), ('a', 'f', 'c')], dtype=CATEGORICAL_STRUCT_ARRAY.dtype) mixed_samples_mean = np.array( [(-1.250, 'c', 2.623, 'bb'), (2.352, 'c', -1.269, 'a'), (0.489, 'f', -0.604, 'bb'), (3.556, 'a', -0.741, 'bb')], dtype=[('a', '<f8'), ('b', 'U1'), ('c', '<f8'), ('d', 'U2')]) # yapf: enable samples = self.numerical_np_augmentor.sample( NUMERICAL_NP_ARRAY[0], samples_number=4) assert np.allclose(samples, numerical_samples, atol=1e-3) samples = self.numerical_np_0_augmentor.sample( NUMERICAL_NP_ARRAY[0], samples_number=4) assert np.allclose(samples, numerical_0_samples, atol=1e-3) samples = self.numerical_struct_augmentor.sample( NUMERICAL_STRUCT_ARRAY[0], samples_number=4) for i in samples.dtype.names: assert np.allclose( samples[i], numerical_struct_samples[i], atol=1e-3) samples = self.numerical_struct_a_augmentor.sample( NUMERICAL_STRUCT_ARRAY[0], samples_number=4) for i in samples.dtype.names: assert np.allclose( samples[i], numerical_struct_0_samples[i], atol=1e-3) samples = self.categorical_np_augmentor.sample( CATEGORICAL_NP_ARRAY[0], samples_number=4) assert np.array_equal(samples, categorical_samples) samples = self.categorical_np_012_augmentor.sample( CATEGORICAL_NP_ARRAY[0], samples_number=4) assert np.array_equal(samples, categorical_012_samples) samples = self.categorical_struct_abc_augmentor.sample( CATEGORICAL_STRUCT_ARRAY[0], samples_number=4) for i in samples.dtype.names: assert np.array_equal(samples[i], categorical_struct_samples[i]) samples = self.mixed_augmentor.sample(MIXED_ARRAY[0], samples_number=4) assert np.array_equal(samples[['b', 'd']], mixed_samples[['b', 'd']]) for i in ['a', 'c']: assert np.allclose(samples[i], mixed_samples[i], atol=1e-3) # Test if minimum_per_class works samples = self.numerical_np_augmentor.sample( NUMERICAL_NP_ARRAY[0], samples_number=1000) predictions = self.numerical_classifier.predict(samples) _, counts = np.unique(predictions, return_counts=True) assert np.all(counts >= 0.05 * 1000) samples = self.numerical_np_0_augmentor.sample( NUMERICAL_NP_ARRAY[0], samples_number=1000) predictions = self.numerical_classifier.predict(samples) _, counts = np.unique(predictions, return_counts=True) assert np.all(counts > 0.05 * 1000) # Initialised with higher rate samples = self.numerical_struct_augmentor.sample( NUMERICAL_STRUCT_ARRAY[0], samples_number=1000) predictions = self.numerical_struct_classifier.predict(samples) _, counts = np.unique(predictions, return_counts=True) assert np.all(counts > 0.1 * 1000) samples = self.numerical_struct_a_augmentor.sample( NUMERICAL_STRUCT_ARRAY[0], samples_number=1000) predictions = self.numerical_struct_classifier.predict(samples) _, counts = np.unique(predictions, return_counts=True) assert np.all(counts > 0.05 * 1000) ####################################################################### # Get averages and proportions vals = [['a', 'b'], ['b', 'c', 'f'], ['c', 'g']] proportions = [ np.array([0.676, 0.324]), np.array([0.333, 0.151, 0.516]), np.array([0.667, 0.333]) ] ### samples = self.categorical_np_augmentor.sample( CATEGORICAL_NP_ARRAY[0], samples_number=1000) predictions = self.categorical_classifier.predict(samples) _, counts = np.unique(predictions, return_counts=True) assert np.all(counts > 0.05 * 1000) for i, index in enumerate(range(CATEGORICAL_NP_ARRAY.shape[1])): val, freq = np.unique(samples[:, index], return_counts=True) freq = freq / freq.sum() assert np.array_equal(val, vals[i]) assert np.allclose(freq, proportions[i], atol=1e-3) ### proportions = [ np.array([0.665, 0.335]), np.array([0.357, 0.158, 0.485]), np.array([0.645, 0.355]) ] samples = self.categorical_np_012_augmentor.sample( CATEGORICAL_NP_ARRAY[0], samples_number=1000) predictions = self.categorical_classifier.predict(samples) _, counts = np.unique(predictions, return_counts=True) assert
np.all(counts > 0.05 * 1000)
numpy.all
import os # os.environ['NUMBA_DISABLE_JIT'] = '1' #SHOULD WORK WITH 0 ALSO import pytest from pyequion import create_equilibrium, solve_equilibrium import pyequion from pyequion import reactions_species_builder as rbuilder from pyequion import ClosingEquationType from pyequion import symbolic_computations as mod_sym # from xtest_pychemeq import assert_solution_result, compare_with_expected_perc_tuple from utils_tests import ( assert_solution_result, compare_with_expected_perc_tuple, ) import numpy as np import sympy # from pyequion import caco3_specific_study # -------------------------------------------- # TAGS BASED GENERATION # -------------------------------------------- EXAMPLE_SPECIES = [ "H2O", "NaHCO3", "CaCl2", "H+", "OH-", "Na+", "NaOH", "HCO3-", "CO2", "CO2(g)", "CO3--", "NaCO3-", "Na2CO3", "Ca++", "CaHCO3+", "CaCO3", "CaOH+", "Cl-", ] EXAMPLE_REACTIONS = [ {"H+": -1, "H2O": 1, "OH-": -1, "type": "rev"}, {"HCO3-": -1, "Na+": -1, "NaHCO3": 1, "type": "rev"}, {"H+": 1, "H2O": -1, "Na+": -1, "NaOH": 1, "type": "rev"}, {"CO3--": -1, "H+": -1, "HCO3-": 1, "type": "rev"}, {"CO2": -1, "H+": 1, "HCO3-": 1, "type": "rev"}, {"CO2": 1, "CO2(g)": -1, "type": "henry"}, {"CO3--": -1, "Na+": -1, "NaCO3-": 1, "type": "rev"}, {"CO3--": -1, "Na+": -2, "Na2CO3": 1, "type": "rev"}, {"Ca++": -1, "CaCl2": 1, "Cl-": -2, "type": "irrev"}, {"Ca++": -1, "CaHCO3+": 1, "HCO3-": -1, "type": "rev"}, {"CO3--": -1, "Ca++": -1, "CaCO3": 1, "type": "rev"}, {"Ca++": -1, "CaOH+": 1, "H+": 1, "H2O": -1, "type": "rev"}, ] def test_nahco3_open(): initial_comp = ["H2O", "NaHCO3", "CO2(g)"] E_SPECIES = [ "H2O", "NaHCO3", "H+", "OH-", "Na+", "NaOH", "HCO3-", "CO2", "CO2(g)", "CO3--", "NaCO3-", "Na2CO3", ] E_REACTIONS = [ {"H+": -1, "H2O": 1, "OH-": -1, "id_db": 10, "type": "rev"}, {"HCO3-": -1, "Na+": -1, "NaHCO3": 1, "id_db": 2, "type": "rev"}, {"H+": 1, "H2O": -1, "Na+": -1, "NaOH": 1, "id_db": 0, "type": "rev"}, {"CO3--": -1, "H+": -1, "HCO3-": 1, "id_db": 9, "type": "rev"}, {"CO2": -1, "H+": 1, "HCO3-": 1, "id_db": 8, "type": "rev"}, {"CO2": 1, "CO2(g)": -1, "id_db": 7, "type": "henry"}, {"CO3--": -1, "Na+": -1, "NaCO3-": 1, "id_db": 1, "type": "rev"}, {"CO3--": -1, "Na+": -2, "Na2CO3": 1, "id_db": 3, "type": "rev"}, ] species, reactions = rbuilder.get_species_reactions_from_compounds( initial_comp ) for s in species: assert s in E_SPECIES assert len(E_REACTIONS) == len(reactions) assert len(E_SPECIES) == len(species) def test_cacl2_open(): initial_comp = ["H2O", "CaCl2", "CO2(g)"] E_SPECIES = [ "H2O", "CaCl2", "CO2(g)", "H+", "OH-", "Ca++", "CaOH+", "Cl-", "CO2", "HCO3-", "CO3--", "CaCO3", "CaHCO3+", ] E_REACTIONS = [ {"H+": -1, "H2O": 1, "OH-": -1, "id_db": 10, "type": "rev"}, {"Ca++": -1, "CaCl2": 1, "Cl-": -2, "id_db": -1, "type": "irrev"}, { "Ca++": -1, "CaOH+": 1, "H+": 1, "H2O": -1, "id_db": 4, "type": "rev", }, {"CO2": 1, "CO2(g)": -1, "id_db": 7, "type": "henry"}, {"CO2": -1, "H+": 1, "HCO3-": 1, "id_db": 8, "type": "rev"}, {"CO3--": -1, "H+": -1, "HCO3-": 1, "id_db": 9, "type": "rev"}, {"CO3--": -1, "Ca++": -1, "CaCO3": 1, "id_db": 12, "type": "rev"}, {"Ca++": -1, "CaHCO3+": 1, "HCO3-": -1, "id_db": 11, "type": "rev"}, ] species, reactions = rbuilder.get_species_reactions_from_compounds( initial_comp ) for s in species: assert s in E_SPECIES assert len(E_REACTIONS) == len(reactions) assert len(E_SPECIES) == len(species) def test_cacl2_nahco3(): initial_comp = ["H2O", "NaHCO3", "CaCl2"] E_SPECIES = [ "H2O", "NaHCO3", "CaCl2", "H+", "OH-", "Na+", "NaOH", "HCO3-", "CO2", "CO2(g)", "CO3--", "NaCO3-", "Na2CO3", "Ca++", "CaHCO3+", "CaCO3", "CaOH+", "Cl-", ] E_REACTIONS = [ {"H+": -1, "H2O": 1, "OH-": -1, "id_db": 10, "type": "rev"}, {"HCO3-": -1, "Na+": -1, "NaHCO3": 1, "id_db": 2, "type": "rev"}, {"H+": 1, "H2O": -1, "Na+": -1, "NaOH": 1, "id_db": 0, "type": "rev"}, {"CO3--": -1, "H+": -1, "HCO3-": 1, "id_db": 9, "type": "rev"}, {"CO2": -1, "H+": 1, "HCO3-": 1, "id_db": 8, "type": "rev"}, {"CO2": 1, "CO2(g)": -1, "id_db": 7, "type": "henry"}, {"CO3--": -1, "Na+": -1, "NaCO3-": 1, "id_db": 1, "type": "rev"}, {"CO3--": -1, "Na+": -2, "Na2CO3": 1, "id_db": 3, "type": "rev"}, {"Ca++": -1, "CaCl2": 1, "Cl-": -2, "id_db": -1, "type": "irrev"}, {"Ca++": -1, "CaHCO3+": 1, "HCO3-": -1, "id_db": 11, "type": "rev"}, {"CO3--": -1, "Ca++": -1, "CaCO3": 1, "id_db": 12, "type": "rev"}, { "Ca++": -1, "CaOH+": 1, "H+": 1, "H2O": -1, "id_db": 4, "type": "rev", }, ] species, reactions = rbuilder.get_species_reactions_from_compounds( initial_comp ) for s in species: assert s in E_SPECIES assert len(E_REACTIONS) == len(reactions) assert len(E_SPECIES) == len(species) def test_identify_element_in_species_list(): tags_list = { "H+", "OH-", "CO2", "CO3--", "HCO3-", "Na+", "NaOH", "NaCO3-", "NaHCO3", "Na2CO3", "CaOH+", "CaHCO3+", "CaCO3", "Ca++", "Cl-", "H2O", } tags_coefs = rbuilder.get_species_tags_with_an_element(tags_list, "Na") assert len(tags_coefs) == 5 for el in ["Na+", "NaOH", "NaCO3-", "NaHCO3", "Na2CO3"]: assert el in tags_coefs assert tags_coefs["Na2CO3"] == 2 assert tags_coefs["NaHCO3"] == 1 # -------------------------------------------- # ENGINE DEFINITIONS # -------------------------------------------- # def test_create_list_of_species_engine_nahco3(): # initial_comp = ['H2O', 'NaHCO3', 'CO2(g)'] # known_tag = ['H2O', 'CO2(g)'] # species, reactions = rbuilder.get_species_reactions_from_compounds(initial_comp) # species_conv = convert_species_tag_for_engine(species) # engine_species = create_list_of_species_engine(species_conv, species) # engine_idxs = create_Indexes_instance(species_conv, len(known_tag)) # names = [sp.name for sp in engine_species] # print(names) # assert len(engine_species) > 0 # assert engine_idxs.size == 10 # # Deterministic: - Keep order # assert names == ['H2O', 'NaHCO3', 'CO2g', 'Hp', 'OHm', 'Nap', 'NaOH', 'HCO3m', 'CO2', 'CO3mm', 'NaCO3m', 'Na2CO3'] # def test_create_list_of_reactions_engine_nahco3(): # initial_comp = ['H2O', 'NaHCO3', 'CO2(g)'] # species, reactions = rbuilder.get_species_reactions_from_compounds(initial_comp) # species_conv = convert_species_tag_for_engine(species) # reactions_conv = convert_species_tags_for_reactions(reactions) # # engine_species, engine_idxs = create_list_of_species_engine(species_conv) # dict_indexes_species = get_dict_indexes_of_species_to_variable_position(species_conv) # engine_reactions = create_list_of_reactions_engine(reactions_conv, dict_indexes_species) # assert isinstance(engine_reactions[0], pyequion.EqReaction) # assert len(engine_reactions) == 7 # assert engine_reactions[0].idx_reaction_db >= 0 # assert engine_reactions[0].idx_species[0] >= 0 # def test_create_list_of_mass_balances_engine_nahco3(): # feed_compounds = ['NaHCO3'] # initial_comp = ['H2O', 'NaHCO3', 'CO2(g)'] # element = ['Na'] # species, reactions = rbuilder.get_species_reactions_from_compounds(initial_comp) # mb_list_engine = create_list_of_mass_balances_engine(species, element, # feed_compounds) # assert len(mb_list_engine) == 1 # assert mb_list_engine[0].idx_feed == [(0, 1.0)] # species_conv = convert_species_tag_for_engine(species) # dict_indexes_species = get_dict_indexes_of_species_to_variable_position(species_conv) # assert_list_in_numba(mb_list_engine[0].idx_species, dict_indexes_species['Nap']) # pass # -------------------------------------------- # APPLYED CASES # -------------------------------------------- def test_engine_nahco3_solve_15mM_open(): EXPECTED = { "sc": (1336.4, -15.0), "I": (16.073e-3, 0.1), "pH": (9.24, 1.0), "DIC": (1.34e01 * 1e-3, -1), } TK = 25.0 + 273.15 cNaHCO3 = 15e-3 args = (np.array([cNaHCO3]), TK, pyequion.pCO2_ref) feed_compounds = ["NaHCO3"] initial_feed_mass_balance = None element_mass_balance = None closing_equation_type = ClosingEquationType.OPEN sys_eq = create_equilibrium( feed_compounds, closing_equation_type, element_mass_balance, initial_feed_mass_balance, ) # x_guess = np.full(nahco3_eq.idx.size, -1.0) solution = solve_equilibrium( sys_eq, args=args, # jac=nahco3_residual_jacobian ) assert_solution_result(solution, EXPECTED) def test_engine_cacl2_solve_open_0p01(): EXPECTED = { "sc": (1336.4, -200), "I": (16.073e-3, 200), # ONLY PH KOWN "pH": (5.61, 1.0), "DIC": (1.34e01 * 1e-3, -1), } TK = 25.0 + 273.15 c_feed = 5 * 1e-3 # Forcing to be an array args = (np.array([c_feed]), TK, pyequion.pCO2_ref) """ Big Issue: How to automate the known-mass-balance - A specie is removed (CaCl2) - A specie is still a variable (Ca) - A specie is placed as known (Cl) """ feed_compounds = ["CaCl2"] initial_feed_mass_balance = ["Cl-"] closing_equation_type = ClosingEquationType.OPEN sys_eq = create_equilibrium( feed_compounds, closing_equation_type, initial_feed_mass_balance=initial_feed_mass_balance, ) # x_guess = np.full(nahco3_eq.idx.size, -1.0) idx = sys_eq.idx_control.idx x_guess = np.full(idx["size"], -1e-3) x_guess[idx["Ca++"]] = np.log10(c_feed) solution = solve_equilibrium( sys_eq, x_guess=x_guess, args=args, # jac=nahco3_residual_jacobian ) pyequion.print_solution(solution) assert_solution_result(solution, EXPECTED) def test_engine_with_parenthesis_Mn(): EXPECTED = { "sc": (1336.4, -15.0), "I": (17.959e-3, 3.0), "pH": (9.18, 1.0), "DIC": (1.56e02 * 1e-3, 1.0), "SI": { "Pyrochroite": (0.61, 1.0), "Rhodochrosite": (4.65, 50.0), # error in thisone... }, } TK = 25.0 + 273.15 cNaHCO3 = 150e-3 args = (np.array([cNaHCO3]), TK, pyequion.pCO2_ref) feed_compounds = ["MnCO3"] initial_feed_mass_balance = None # initial_feed_mass_balance = ['Cl-'] element_mass_balance = None closing_equation_type = ClosingEquationType.OPEN sys_eq = create_equilibrium( feed_compounds, closing_equation_type, element_mass_balance, initial_feed_mass_balance, ) # x_guess = np.full(nahco3_eq.idx.size, -1.0) solution = solve_equilibrium( sys_eq, args=args, # jac=nahco3_residual_jacobian ) meanMnCO3 = pyequion.get_mean_activity_coeff(solution, feed_compounds[0]) assert np.isclose( meanMnCO3, solution.gamma[sys_eq.idx_control.idx["Mn++"]], 1e-2 ) assert_solution_result(solution, EXPECTED) assert compare_with_expected_perc_tuple( solution.saturation_index["Pyrochroite"], EXPECTED["SI"]["Pyrochroite"] ) assert compare_with_expected_perc_tuple( solution.saturation_index["Rhodochrosite"], EXPECTED["SI"]["Rhodochrosite"], ) def test_engine_mix_solve_closed(): EXPECTED = { "sc": (1339.4, 20.0), "I": (16.102e-3, 1.0), "pH": (9.24, 1.0), "DIC": (1.34e01 * 1e-3, -1), } TK = 25.0 + 273.15 cNaHCO3 = 15e-3 cCaCl2 = 0.02e-3 carbone_total = EXPECTED["DIC"][0] # 1.34e+01 * 1e-3 args = ( np.array([cNaHCO3, cCaCl2]), TK, carbone_total, ) # Instead of pCO2->DIC feed_compounds = ["NaHCO3", "CaCl2"] initial_feed_mass_balance = ["Cl-"] closing_equation_type = ClosingEquationType.CARBON_TOTAL sys_eq = create_equilibrium( feed_compounds, closing_equation_type, initial_feed_mass_balance=initial_feed_mass_balance, ) x_guess = np.full(sys_eq.idx_control.idx["size"], -1e-4) solution = solve_equilibrium( sys_eq, x_guess=x_guess, args=args, # jac=nahco3_residual_jacobian ) pyequion.print_solution(solution) # input('') assert_solution_result(solution, EXPECTED) def test_engine_mix_closed_add_IS(): EXPECTED = { "sc": (1314.9, 15), "I": (15.083e-3, 1.0), "pH": (8.2, 1.0), "DIC": (1.5e01 * 1e-3, -1), "SI": { "Calcite": (-0.53, 5.0), "Aragonite": (-0.67, 5.0), "Halite": (-7.91, 5.0), }, } TK = 25.0 + 273.15 cNaHCO3 = 15e-3 cCaCl2 = 0.02e-3 carbone_total = cNaHCO3 args = ( np.array([cNaHCO3, cCaCl2]), TK, carbone_total, ) # Instead of pCO2->DIC feed_compounds = ["NaHCO3", "CaCl2"] initial_feed_mass_balance = ["Cl-"] sys_eq = create_equilibrium( feed_compounds, initial_feed_mass_balance=initial_feed_mass_balance ) x_guess = np.full(sys_eq.idx_control.idx["size"], -1e-4) solution = solve_equilibrium( sys_eq, x_guess=x_guess, args=args, # jac=nahco3_residual_jacobian ) pyequion.print_solution(solution) assert_solution_result(solution, EXPECTED) assert compare_with_expected_perc_tuple( solution.saturation_index["Halite"], EXPECTED["SI"]["Halite"] ) assert compare_with_expected_perc_tuple( solution.saturation_index["Calcite"], EXPECTED["SI"]["Calcite"] ) assert compare_with_expected_perc_tuple( solution.saturation_index["Aragonite"], EXPECTED["SI"]["Aragonite"] ) def test_engine_mix_closed_add_IS_dic_modified(): EXPECTED = { "sc": (1339.4, 15), "I": (16.102e-3, 1.0), "pH": (9.24, 1.0), "DIC": (1.34e01 * 1e-3, -1), "SI": (0.20, 200.0), # FIXME: High error! } TK = 25.0 + 273.15 cNaHCO3 = 15e-3 cCaCl2 = 0.02e-3 carbone_total = EXPECTED["DIC"][0] # 1.34e+01 * 1e-3 args = ( np.array([cNaHCO3, cCaCl2]), TK, carbone_total, ) # Instead of pCO2->DIC feed_compounds = ["NaHCO3", "CaCl2"] initial_feed_mass_balance = ["Cl-"] closing_equation_type = ClosingEquationType.CARBON_TOTAL sys_eq = create_equilibrium( feed_compounds, closing_equation_type, initial_feed_mass_balance=initial_feed_mass_balance, ) x_guess = np.full(sys_eq.idx_control.idx["size"], -1e-4) solution = solve_equilibrium( sys_eq, x_guess=x_guess, args=args, # jac=nahco3_residual_jacobian ) pyequion.print_solution(solution) assert_solution_result(solution, EXPECTED) assert compare_with_expected_perc_tuple( solution.saturation_index["Calcite"], EXPECTED["SI"] ) def test_engine_mix_default_feed_mb_closed(): EXPECTED = { "sc": (1339.4, 15), "I": (16.102e-3, 1.0), "pH": (9.24, 1.0), "DIC": (1.34e01 * 1e-3, -1), } TK = 25.0 + 273.15 cNaHCO3 = 15e-3 cCaCl2 = 0.02e-3 carbone_total = EXPECTED["DIC"][0] # 1.34e+01 * 1e-3 args = ( np.array([cNaHCO3, cCaCl2]), TK, carbone_total, ) # Instead of pCO2->DIC feed_compounds = ["NaHCO3", "CaCl2"] initial_feed_mass_balance = ["Cl-"] # element_mass_balance = ['Na', 'Ca'] closing_equation_type = ClosingEquationType.CARBON_TOTAL sys_eq = create_equilibrium( feed_compounds, closing_equation_type, element_mass_balance=None, initial_feed_mass_balance=initial_feed_mass_balance, ) x_guess = np.full(sys_eq.idx_control.idx["size"], -1e-4) solution = solve_equilibrium( sys_eq, x_guess=x_guess, args=args, # jac=nahco3_residual_jacobian ) assert_solution_result(solution, EXPECTED) # def test_engine_mix_solve_near_saturation_closed(): # EXPECTED = { # 'sc': (1488.7, -200), # 'I': (17.305e-3, 1.0), # 'pH': (8.1, 1.0), # 'DIC': (1.40e+01*1e-3, -1), # 'SI': (1.13, 5.0), # } # solution, dict_map_idx = solve_near_saturation_mix_case(EXPECTED['DIC'][0]) # assert_solution_result(solution, EXPECTED) # assert compare_with_expected_perc_tuple(solution.SI[1], EXPECTED['SI']) def test_engine_baco3_solve_1mM_open(): EXPECTED = { # AQION "sc": (198.5, 15), # FIXME: add parameters for BaCO3 conductivity "I": (2.9652e-3, 4.0), "pH": (8.48, 2.0), "DIC": (1.97e-3, 5.0), "SI": (0.85, 3.0), } TK = 25.0 + 273.15 cFeed = 1e-3 args = (np.array([cFeed]), TK, pyequion.pCO2_ref) feed_compounds = ["BaCO3"] # initial_feed_mass_balance = None # element_mass_balance = ['Ba'] closing_equation_type = ClosingEquationType.OPEN sys_eq = create_equilibrium( feed_compounds, closing_equation_type=closing_equation_type ) # x_guess = np.full(nahco3_eq.idx.size, -1.0) solution = solve_equilibrium( sys_eq, args=args, # jac=nahco3_residual_jacobian ) pyequion.print_solution(solution) assert_solution_result(solution, EXPECTED) assert compare_with_expected_perc_tuple( solution.saturation_index["Witherite"], EXPECTED["SI"] ) def test_engine_baco3_solve_1mM_closed(): EXPECTED = { # AQION "sc": (241.8, 15), # FIXME: add parameters for BaCO3 conductivity "I": (3.092e-3, 4.0), "pH": (10.48, 2.0), "DIC": (1e-3, -1), "SI": (2.0, 3.0), } TK = 25.0 + 273.15 cFeed = 1e-3 DIC = EXPECTED["DIC"][0] args = (np.array([cFeed]), TK, DIC) feed_compounds = ["BaCO3"] # initial_feed_mass_balance = None # element_mass_balance = ['Ba'] # closing_equation_type = ClosingEquationType.CARBONE_TOTAL sys_eq = create_equilibrium(feed_compounds) # x_guess = np.full(nahco3_eq.idx.size, -1.0) solution = solve_equilibrium( sys_eq, args=args, # jac=nahco3_residual_jacobian ) pyequion.print_solution(solution) assert_solution_result(solution, EXPECTED) assert compare_with_expected_perc_tuple( solution.saturation_index["Witherite"], EXPECTED["SI"] ) def test_engine_baco3_nahco3_solve_1mM_each_closed(): EXPECTED = { # AQION "sc": (300.1, 15), # FIXME: add parameters for BaCO3 conductivity "I": (4.16e-3, 4.0), "pH": (10.04, 2.0), "DIC": (2e-3, -1), "SI": (2.08, 3.0), } TK = 25.0 + 273.15 DIC = EXPECTED["DIC"][0] cNaHCO3 = 1e-3 cBaCO3 = 1e-3 args = (np.array([cNaHCO3, cBaCO3]), TK, DIC) feed_compounds = ["NaHCO3", "BaCO3"] # initial_feed_mass_balance = None # element_mass_balance = ['Na', 'Ba'] # closing_equation_type = ClosingEquationType.CARBONE_TOTAL sys_eq = create_equilibrium(feed_compounds) # x_guess = np.full(nahco3_eq.idx.size, -1.0) solution = solve_equilibrium( sys_eq, args=args, # jac=nahco3_residual_jacobian ) assert_solution_result(solution, EXPECTED) assert compare_with_expected_perc_tuple( solution.saturation_index["Witherite"], EXPECTED["SI"] ) def test_engine_baco3_cacl2_solve_5_2_mM_closed(): EXPECTED = { # AQION "sc": (1099.5, 15), # FIXME: add parameters for BaCO3 conductivity "I": (15.457e-3, 15.0), "pH": (10.71, 2.0), "DIC": (5e-3, -1), "SI-CaCO3-Calcite": (2.30, 10.0), "SI-BaCO3": (2.99, 10.0), # Include Vaterite, Aragonite, Amorph, Ikaite (6H2O) } sys_eq = pyequion.create_equilibrium( feed_compounds=["CaCl2", "BaCO3"], initial_feed_mass_balance=["Cl-"] ) TK = 25.0 + 273.15 cCaCl2 = 2e-3 cBaCO3 = 5e-3 DIC = 5e-3 args = (np.array([cCaCl2, cBaCO3]), TK, DIC) solution = pyequion.solve_equilibrium(sys_eq, args=args) pyequion.print_solution(solution) assert_solution_result(solution, EXPECTED) assert compare_with_expected_perc_tuple( solution.saturation_index["Calcite"], EXPECTED["SI-CaCO3-Calcite"] ) assert compare_with_expected_perc_tuple( solution.saturation_index["Witherite"], EXPECTED["SI-BaCO3"] ) solution = pyequion.solve_equilibrium( sys_eq, args=args, allow_precipitation=True ) pyequion.print_solution(solution) def test_engine_zemaits_na2so4_caso4(): # flake8: noqa "Was not able to get good aggrement" EXPECTED = { # AQION "sc": (1099.5, 15), # FIXME: add parameters for BaCO3 conductivity "I": (15.457e-3, 15.0), "pH": (10.71, 2.0), "DIC": (5e-3, -1), "SI-CaCO3-Calcite": (2.30, 10.0), "SI-BaCO3": (2.99, 10.0), # Include Vaterite, Aragonite, Amorph, Ikaite (6H2O) } sys_eq = pyequion.create_equilibrium(feed_compounds=["Na2SO4", "CaSO4"]) TK = 25.0 + 273.15 cNa2SO4 = 94.8e-3 cCaSO4 = 21.8e-3 args = (np.array([cNa2SO4, cCaSO4]), TK, np.nan) # solution = pyequion.solve_equilibrium(sys_eq, args=args) # pyequion.print_solution(solution) # assert_solution_result(solution, EXPECTED) # assert compare_with_expected_perc_tuple(solution.saturation_index['Calcite'], EXPECTED['SI-CaCO3-Calcite']) # assert compare_with_expected_perc_tuple(solution.saturation_index['Witherite'], EXPECTED['SI-BaCO3']) solution = pyequion.solve_equilibrium( sys_eq, args=args, allow_precipitation=True ) pyequion.print_solution(solution) def test_engine_greg_andr_caso4(): sys_eq = pyequion.create_equilibrium(feed_compounds=["CaSO4"]) TK = 25.0 + 273.15 # cNa2SO4 = 94.8e-3 cCaSO4 = 15.6e-3 args = (np.array([cCaSO4]), TK, np.nan) solution = pyequion.solve_equilibrium(sys_eq, args=args) pyequion.print_solution(solution) # assert_solution_result(solution, EXPECTED) # assert compare_with_expected_perc_tuple(solution.saturation_index['Calcite'], EXPECTED['SI-CaCO3-Calcite']) # assert compare_with_expected_perc_tuple(solution.saturation_index['Witherite'], EXPECTED['SI-BaCO3']) solution = pyequion.solve_equilibrium( sys_eq, args=args, allow_precipitation=True ) pyequion.print_solution(solution) def test_engine_baco3_cacl2_nahco3_solve_1mM_each_closed(): EXPECTED = { # AQION "sc": (484.5, 15), # FIXME: add parameters for BaCO3 conductivity "I": (6.213e-3, 15.0), "pH": (9.89, 2.0), "DIC": (2e-3, -1), "SI-Calcite": (1.73, 5.0), "SI-BaCO3": (1.91, 5.0), } TK = 25.0 + 273.15 DIC = EXPECTED["DIC"][0] cCaCl2 = 1e-3 cBaCO3 = 1e-3 cNaHCO3 = 1e-3 args = (np.array([cCaCl2, cBaCO3, cNaHCO3]), TK, DIC) feed_compounds = ["CaCl2", "BaCO3", "NaHCO3"] initial_feed_mass_balance = ["Cl-"] # element_mass_balance = ['Ca', 'Ba', 'Na'] sys_eq = create_equilibrium( feed_compounds, initial_feed_mass_balance=initial_feed_mass_balance, ) # x_guess = np.full(nahco3_eq.idx.size, -1.0) solution = solve_equilibrium( sys_eq, args=args, # jac=nahco3_residual_jacobian ) pyequion.print_solution(solution) assert_solution_result(solution, EXPECTED) assert compare_with_expected_perc_tuple( solution.saturation_index["Calcite"], EXPECTED["SI-Calcite"] ) assert compare_with_expected_perc_tuple( solution.saturation_index["Witherite"], EXPECTED["SI-BaCO3"] ) # -------------------------------------------- # APPYED CASE - WITH IONS SPECIES # -------------------------------------------- def test_engine_nap_hco3m_closed(): EXPECTED = { "sc": (1310.8, -15.0), "I": (15.032e-3, 0.1), "pH": (8.2, 1.0), "DIC": (15 * 1e-3, -1), } TK = 25.0 + 273.15 cNap = 15e-3 cHCO3m = 15e-3 carbone_total = 15e-3 args = (np.array([cNap, cHCO3m]), TK, carbone_total) feed_compounds = ["Na+", "HCO3-"] # initial_feed_mass_balance = None # element_mass_balance = ['Na'] # closing_equation_type = ClosingEquationType.CARBONE_TOTAL sys_eq = create_equilibrium(feed_compounds) # closing_equation_type, element_mass_balance, # initial_feed_mass_balance) # x_guess = np.full(nahco3_eq.idx.size, -1.0) solution = solve_equilibrium( sys_eq, args=args, # jac=nahco3_residual_jacobian ) assert_solution_result(solution, EXPECTED) @pytest.mark.xfail(reason="Expected value for higher T to be obtained.") def test_engine_nap_hco3m_higher_T_closed(): EXPECTED = { "sc": (1310.8, -15.0), "I": (15.032e-3, 0.1), "pH": (8.2, 1.0), "DIC": (15 * 1e-3, -1), } TK = 80.0 + 273.15 cNap = 15e-3 cHCO3m = 15e-3 carbone_total = 15e-3 args = (np.array([cNap, cHCO3m]), TK, carbone_total) feed_compounds = ["Na+", "HCO3-"] # initial_feed_mass_balance = None # element_mass_balance = ['Na'] # closing_equation_type = ClosingEquationType.CARBONE_TOTAL sys_eq = create_equilibrium(feed_compounds) # closing_equation_type, element_mass_balance, # initial_feed_mass_balance) # x_guess = np.full(nahco3_eq.idx.size, -1.0) solution = solve_equilibrium( sys_eq, args=args, # jac=nahco3_residual_jacobian ) assert_solution_result(solution, EXPECTED) def test_engine_nap_hco3m_capp_clm_open(): EXPECTED = { "sc": (1525.3, 25), # FIXME "I": (20.3e-3, 3.0), "pH": (8.06, 1.0), "DIC": (15.0 * 1e-3, 5), "IS(s)": (2.39, -1), # TODO nao incluido ainda } TK = 25.0 + 273.15 cNap = 15e-3 cHCO3m = 15e-3 cBapp = 2e-3 cClpp = 2 * 2e-3 carbone_total = 15e-3 # args = (np.array([cNap, cHCO3m, cBaqpp]), TK, carbone_total) args = (np.array([cNap, cHCO3m, cBapp, cClpp]), TK, carbone_total) feed_compounds = ["Na+", "HCO3-", "Ca++", "Cl-"] fixed_elements = ["Cl-"] closing_equation_type = ClosingEquationType.CARBON_TOTAL sys_eq = create_equilibrium( feed_compounds, closing_equation_type, # element_mass_balance, fixed_elements=fixed_elements, ) # x_guess = np.full(nahco3_eq.idx.size, -1.0) solution = solve_equilibrium( sys_eq, args=args, # jac=nahco3_residual_jacobian ) pyequion.print_solution(solution) assert_solution_result(solution, EXPECTED) # assert compare_with_expected_perc_tuple(solution.c_molal[sys_eq.idx.BaCO3s], EXPECTED['BaCO3(s)']) def test_engine_nap_hco3m_bacl2_open(): EXPECTED = { "sc": (1525.3, 25), # FIXME "I": (20.776e-3, 3.0), "pH": (9.22, 1.0), "DIC": (13.2 * 1e-3, 5), "IS(s)": (2.39, -1), # TODO nao incluido ainda } TK = 25.0 + 273.15 cNap = 15e-3 cHCO3m = 15e-3 cBaqpp = 2e-3 # carbone_total = 15e-3 # args = (np.array([cNap, cHCO3m, cBaqpp]), TK, carbone_total) args = (np.array([cNap, cHCO3m, cBaqpp]), TK, pyequion.pCO2_ref) feed_compounds = ["Na+", "HCO3-", "BaCl2"] initial_feed_mass_balance = ["Cl-"] # element_mass_balance = ['Na', 'Ba'] closing_equation_type = ClosingEquationType.OPEN sys_eq = create_equilibrium( feed_compounds, closing_equation_type, # element_mass_balance, initial_feed_mass_balance=initial_feed_mass_balance, ) # x_guess = np.full(nahco3_eq.idx.size, -1.0) solution = solve_equilibrium( sys_eq, args=args, # jac=nahco3_residual_jacobian ) pyequion.print_solution(solution) assert_solution_result(solution, EXPECTED) # assert compare_with_expected_perc_tuple(solution.c_molal[sys_eq.idx.BaCO3s], EXPECTED['BaCO3(s)']) def test_engine_water_co2_solve_closed(): EXPECTED = { # from-aqion "sc": (8.2, -15.0), "I": (0.021e-3, 1.0), "pH": (4.68, 1.0), "DIC": (1e-3, -1), } TK = 25.0 + 273.15 # cFeed = 15e-3 carbone_total = EXPECTED["DIC"][0] # mM args = (np.array([]), TK, carbone_total) feed_compounds = ["CO2"] initial_feed_mass_balance = None element_mass_balance = [] closing_equation_type = ClosingEquationType.CARBON_TOTAL sys_eq = create_equilibrium( feed_compounds, closing_equation_type, element_mass_balance, initial_feed_mass_balance, ) # x_guess = np.full(nahco3_eq.idx.size, -1.0) solution = solve_equilibrium( sys_eq, args=args, # jac=nahco3_residual_jacobian ) assert_solution_result(solution, EXPECTED) pass # -------------------------------------------- # APPYED CASE - ENGINE - CO2(aq) CO32- AND H2O # -------------------------------------------- def test_engine_water_co2_solve_fixed_pH_closing_equation(): EXPECTED = { # from-aqion "sc": (8.2, -15.0), "I": (0.021e-3, 1.0), "pH": (4.68, 1.0), "DIC": (1e-3, -1), } TK = 25.0 + 273.15 # cFeed = 15e-3 pH_fixed = EXPECTED["pH"][0] # mM args = (np.array([]), TK, pH_fixed) feed_compounds = ["CO2"] initial_feed_mass_balance = None element_mass_balance = [] closing_equation_type = ClosingEquationType.PH # closing_equation_type=ClosingEquationType.NONE sys_eq = create_equilibrium( feed_compounds, closing_equation_type, element_mass_balance, initial_feed_mass_balance, ) x_guess = np.full(sys_eq.idx_control.idx["size"], -2) solution, fsol, _ = solve_equilibrium( sys_eq, args=args, x_guess=x_guess, ret_fsol=True ) print(fsol.message) assert_solution_result(solution, EXPECTED) pass def test_engine_nap_hco3m_Capp_clm_closed(): EXPECTED = { "sc": (1339.4, -200), "I": (16.102e-3, 1.0), "pH": (9.24, 1.0), "DIC": (1.34e01 * 1e-3, -1), } TK = 25.0 + 273.15 cNap = 15e-3 cHCO3m = 15e-3 cCapp = 0.02e-3 cClm = 0.02e-3 carbone_total = EXPECTED["DIC"][0] # args = (np.array([cNap, cHCO3m, cBaqpp]), TK, carbone_total) feed_compounds = ["Na+", "HCO3-", "Ca++", "Cl-"] # initial_feed_mass_balance = ['Cl-'] fixed_elements = ["Cl-"] allow_precipitation = False # element_mass_balance = ['Na', 'Ca'] closing_equation_type = ClosingEquationType.CARBON_TOTAL sys_eq = create_equilibrium( feed_compounds, # closing_equation_type, element_mass_balance, closing_equation_type, allow_precipitation=allow_precipitation, fixed_elements=fixed_elements, ) args = (np.array([cNap, cHCO3m, cCapp, cClm]), TK, carbone_total) # x_guess = np.full(nahco3_eq.idx.size, -1.0) solution = solve_equilibrium( sys_eq, args=args, # jac=nahco3_residual_jacobian ) pyequion.print_solution(solution) assert_solution_result(solution, EXPECTED) def test_engine_nap_hco3m_Capp_clm_check_hco3_conc_closed(): EXPECTED = { "sc": (1272.0, -1), "I": (15.885e-3, 1.0), "pH": (7.92, 1.0), } TK = 25.0 + 273.15 cNap = 1e-3 cHCO3m = 1e-3 cCapp = 5e-3 cClm = 10e-3 # CAREFUL HERE-> !! STOIC CL*2 carbone_total = cHCO3m # args = (np.array([cNap, cHCO3m, cBaqpp]), TK, carbone_total) feed_compounds = ["Na+", "HCO3-", "Ca++", "Cl-"] # initial_feed_mass_balance = ['Cl-'] fixed_elements = ["Cl-"] allow_precipitation = False # element_mass_balance = ['Na', 'Ca'] sys_eq = create_equilibrium( feed_compounds, # element_mass_balance, allow_precipitation=allow_precipitation, fixed_elements=fixed_elements, ) args = (np.array([cNap, cHCO3m, cCapp, cClm]), TK, carbone_total) # x_guess = np.full(nahco3_eq.idx.size, -1.0) solution = solve_equilibrium( sys_eq, args=args, # jac=nahco3_residual_jacobian ) pyequion.print_solution(solution) assert_solution_result(solution, EXPECTED) def test_engine_mix_solve_1_and_5_closed(): EXPECTED = { "sc": (1272.0, -1), "I": (15.885e-3, 1.0), "pH": (7.92, 1.0), } TK = 25.0 + 273.15 cNaHCO3 = 1e-3 cCaCl2 = 5e-3 carbone_total = cNaHCO3 # 1.34e+01 * 1e-3 args = ( np.array([cNaHCO3, cCaCl2]), TK, carbone_total, ) # Instead of pCO2->DIC feed_compounds = ["NaHCO3", "CaCl2"] initial_feed_mass_balance = ["Cl-"] # closing_equation_type = ClosingEquationType.CARBONE_TOTAL sys_eq = create_equilibrium( feed_compounds, initial_feed_mass_balance=initial_feed_mass_balance ) x_guess = np.full(sys_eq.idx_control.idx["size"], -1e-4) solution = solve_equilibrium( sys_eq, x_guess=x_guess, args=args, # jac=nahco3_residual_jacobian ) pyequion.print_solution(solution) assert_solution_result(solution, EXPECTED) def test_two_irreversible_cacl2_bacl2(): EXPECTED = { "sc": (3417.7, -1), "I": (43.02e-3, 3.0), "pH": (7.91, 1.0), } feed_compounds = ["NaHCO3", "CaCl2", "BaCl2"] initial_feed_mass_balance = ["Cl-"] # closing_eq = ClosingEquationType.CARBON_TOTAL sys_eq = create_equilibrium( feed_compounds, initial_feed_mass_balance=initial_feed_mass_balance ) TK = 25.0 + 273.15 cNaHCO3 = 15e-3 cCaCl2 = 5e-3 cBaCl2 = 5e-3 carbone_total = cNaHCO3 args = (np.array([cNaHCO3, cCaCl2, cBaCl2]), TK, carbone_total) solution = solve_equilibrium(sys_eq, args=args) pyequion.print_solution(solution) assert_solution_result(solution, EXPECTED) def test_engine_mix_solve_1_and_5_closed_precipitation(): EXPECTED = { "sc": (6977.5, -1), "I": (99.779e-3, 1.0), "pH": (8.85, 1.0), "SI": { "Calcite": (0.00, 1.0), "Aragonite": (-0.14, 1.0), "Vaterite": (-0.57, 1.0), }, "sat-conc": { "Calcite": (80.0e-3, 1.0), "Aragonite": (0.0, -1.0), "Vaterite": (0.0, -1.0), }, } TK = 25.0 + 273.15 cCaCO3 = 80e-3 cCaCl2 = 33.25e-3 carbone_total = cCaCO3 # 1.34e+01 * 1e-3 args = ( np.array([cCaCO3, cCaCl2]), TK, carbone_total, ) # Instead of pCO2->DIC feed_compounds = ["CaCO3", "CaCl2"] initial_feed_mass_balance = ["Cl-"] allow_precipitation = True closing_equation_type = ClosingEquationType.CARBON_TOTAL sys_eq = create_equilibrium( feed_compounds, closing_equation_type, initial_feed_mass_balance=initial_feed_mass_balance, ) # This was with an old API, the create_equilibrium is created without solid reaction and # only in the solution function the code is adjust to treat the precipitation # x_guess = np.full(sys_eq.idx_control.idx['size'], -1e-1) solution = solve_equilibrium( sys_eq, args=args, # jac=nahco3_residual_jacobian allow_precipitation=allow_precipitation, ) pyequion.print_solution(solution) assert_solution_result(solution, EXPECTED) for tag in EXPECTED["SI"]: assert compare_with_expected_perc_tuple( solution.saturation_index[tag], EXPECTED["SI"][tag] ) assert compare_with_expected_perc_tuple( solution.preciptation_conc[tag], EXPECTED["sat-conc"][tag] ) def test_engine_activity_external_ideal(): EXPECTED = { "pH": (8.2806817914915, 10.0), # IDEAL } TK = 25.0 + 273.15 cNaHCO3 = 15e-3 cCaCl2 = 0.02e-3 carbone_total = cNaHCO3 c_feed = np.array([cNaHCO3, cCaCl2]) args = (c_feed, TK, carbone_total) # Instead of pCO2->DIC feed_compounds = ["NaHCO3", "CaCl2"] initial_feed_mass_balance = ["Cl-"] element_mass_balance = ["Na", "Ca"] closing_equation_type = ClosingEquationType.CARBON_TOTAL sys_eq = create_equilibrium( feed_compounds, closing_equation_type, element_mass_balance, initial_feed_mass_balance, ) # setup_log_gamma(sys_eq, TK, c_feed) x_guess = np.full(sys_eq.idx_control.idx["size"], -1e-4) solution = solve_equilibrium( sys_eq, x_guess=x_guess, args=args, setup_log_gamma_func=pyequion.setup_log_gamma_ideal, calc_log_gamma=pyequion.calc_log_gamma_ideal, # jac=nahco3_residual_jacobian ) pyequion.print_solution(solution) assert np.isclose(EXPECTED["pH"][0], solution.pH) def test_engine_activity_external_debye_huckel(): EXPECTED = { "pH": (8.2, 1.0), } TK = 25.0 + 273.15 cNaHCO3 = 15e-3 cCaCl2 = 0.02e-3 carbone_total = cNaHCO3 c_feed = np.array([cNaHCO3, cCaCl2]) args = (c_feed, TK, carbone_total) # Instead of pCO2->DIC feed_compounds = ["NaHCO3", "CaCl2"] initial_feed_mass_balance = ["Cl-"] element_mass_balance = ["Na", "Ca"] closing_equation_type = ClosingEquationType.CARBON_TOTAL sys_eq = create_equilibrium( feed_compounds, closing_equation_type, element_mass_balance, initial_feed_mass_balance, ) # setup_log_gamma(sys_eq, TK, c_feed) x_guess = np.full(sys_eq.idx_control.idx["size"], -1e-4) solution = solve_equilibrium( sys_eq, x_guess=x_guess, args=args # jac=nahco3_residual_jacobian ) pyequion.print_solution(solution) assert np.isclose(EXPECTED["pH"][0], solution.pH, 1e-2) def test_engine_activity_external_debye_huckel_mean_coef_for_neutral(): EXPECTED = { "pH": (8.2, 1.0), } TK = 25.0 + 273.15 cNaHCO3 = 15e-3 cCaCl2 = 0.02e-3 carbone_total = cNaHCO3 c_feed = np.array([cNaHCO3, cCaCl2]) args = (c_feed, TK, carbone_total) # Instead of pCO2->DIC feed_compounds = ["NaHCO3", "CaCl2"] initial_feed_mass_balance = ["Cl-"] element_mass_balance = ["Na", "Ca"] closing_equation_type = ClosingEquationType.CARBON_TOTAL sys_eq = create_equilibrium( feed_compounds, closing_equation_type, element_mass_balance, initial_feed_mass_balance, ) # setup_log_gamma(sys_eq, TK, c_feed) x_guess = np.full(sys_eq.idx_control.idx["size"], -1e-4) solution = solve_equilibrium( sys_eq, x_guess=x_guess, args=args, # setup_log_gamma_func=pyequion.act.setup_log_gamma_bdot_mean_activity_neutral, # calc_log_gamma=pyequion.act.calc_log_gamma_dh_bdot_mean_activity_neutral activity_model_type=pyequion.TypeActivityCalculation.DEBYE_MEAN # jac=nahco3_residual_jacobian ) pyequion.print_solution(solution) assert np.isclose(EXPECTED["pH"][0], solution.pH, 1e-2) def test_engine_caco3_cacl2_pitzer(): TK = 25.0 + 273.15 cNaHCO3 = 80e-3 cCaCl2 = 33.25e-3 args = (np.array([cNaHCO3, cCaCl2]), TK, pyequion.pCO2_ref) feed_compounds = ["CaCO3", "CaCl2"] initial_feed_mass_balance = ["Cl-"] closing_equation_type = ClosingEquationType.OPEN sys_eq = create_equilibrium( feed_compounds, closing_equation_type, initial_feed_mass_balance=initial_feed_mass_balance, ) x_guess =
np.full(sys_eq.idx_control.idx["size"], -1e-2)
numpy.full
# Copyright (c) 2020-2021 impersonator.org authors (<NAME> and <NAME>). All rights reserved. import cv2 import numpy as np import torchvision from typing import Union, List import torch from scipy.spatial.transform import Rotation as R def compute_scaled_size(origin_size, control_size): """ Args: origin_size (tuple or List): (h, w) or [h, w] control_size (int or float): the final size of the min(h, w) Returns: scaled_size (tuple or List): (h', w') """ scale_rate = np.sqrt(control_size * control_size / (origin_size[0] * origin_size[1])) scaled_size = (int(origin_size[0] * scale_rate), int(origin_size[1] * scale_rate)) return scaled_size def read_cv2_img(path): """ Read color images Args: path (str): Path to image Returns: img (np.ndarray): color images with RGB channel, and its shape is (H, W, 3). """ img = cv2.imread(path, -1) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img def load_images(images_paths: Union[str, List[str]], image_size): """ Args: images_paths (Union[str, List[str]]): Returns: images (np.ndarray): shape is (ns, 3, H, W), channel is RGB, and color space is [-1, 1]. """ if isinstance(images_paths, str): images_paths = [images_paths] images = [] for image_path in images_paths: image = read_cv2_img(image_path) image = normalize_img(image, image_size=image_size, transpose=True) images.append(image) images = np.stack(images, axis=0) # (ns, 3, H, W) return images def read_mask(path, image_size): """ Read mask Args: path (str): Path to mask Returns: mask (np.ndarray): mask image with grayscale, and its shape is (1, H, W) in the range of [0, 1] """ mask = cv2.imread(path, cv2.IMREAD_GRAYSCALE) mask = cv2.resize(mask, (image_size, image_size)) mask = mask.astype(np.float32) / 255 mask = np.expand_dims(mask, 0) return mask def load_parse(parse_path, image_size): mask = cv2.imread(parse_path, cv2.IMREAD_GRAYSCALE) mask = cv2.resize(mask, (image_size, image_size)) mask = mask.astype(np.float32) / 255 mask = np.expand_dims(mask, 0) return mask def load_img_parse(img_path, parse_path, image_size): image = transform_img(read_cv2_img(img_path), transpose=True) mask = load_parse(parse_path, image_size) return image, mask def save_cv2_img(img, path, image_size=None, normalize=False, transpose=True): if transpose: img = np.transpose(img, (1, 2, 0)) if normalize: img = (img + 1) / 2.0 * 255 img = img.astype(np.uint8) if len(img.shape) == 3: img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) if image_size is not None: img = cv2.resize(img, (image_size, image_size)) cv2.imwrite(path, img) return img def transform_img(image, image_size=None, transpose=False): if image_size is not None and image_size != image.shape[0]: image = cv2.resize(image, (image_size, image_size)) image = image.astype(np.float32) image /= 255.0 if transpose: image = image.transpose((2, 0, 1)) return image def normalize_img(image, image_size=None, transpose=False): image = transform_img(image, image_size, transpose) image *= 2 image -= 1 return image def resize_img(img, scale_factor): new_size = (np.floor(np.array(img.shape[0:2]) * scale_factor)).astype(int) new_img = cv2.resize(img, (new_size[1], new_size[0])) # This is scale factor of [height, width] i.e. [y, x] actual_factor = [ new_size[0] / float(img.shape[0]), new_size[1] / float(img.shape[1]) ] return new_img, actual_factor def tensor2im(img, imtype=np.uint8, unnormalize=True, idx=0, nrows=None): # select a sample or create grid if img is a batch if len(img.shape) == 4: nrows = nrows if nrows is not None else int(np.sqrt(img.size(0))) img = img[idx] if idx >= 0 else torchvision.utils.make_grid(img, nrows) img = img.cpu().float() if unnormalize: img += 1.0 img /= 2.0 image_numpy = img.numpy() # image_numpy = np.transpose(image_numpy, (1, 2, 0)) image_numpy *= 255.0 return image_numpy.astype(imtype) def kp_to_bbox_param(kp, vis_thresh=0, diag_len=150.0): """ Finds the bounding box parameters from the 2D keypoints. Args: kp (Kx3): 2D Keypoints. vis_thresh (float): Threshold for visibility. diag_len(float): diagonal length of bbox of each person Returns: [center_x, center_y, scale] """ if kp is None: return if kp.shape[1] == 3: vis = kp[:, 2] > vis_thresh if not np.any(vis): return min_pt = np.min(kp[vis, :2], axis=0) max_pt = np.max(kp[vis, :2], axis=0) else: min_pt = np.min(kp, axis=0) max_pt = np.max(kp, axis=0) person_height = np.linalg.norm(max_pt - min_pt) if person_height < 0.5: return center = (min_pt + max_pt) / 2. scale = diag_len / person_height return np.append(center, scale) def process_hmr_img(im_path, bbox_param, rescale=None, image=None, image_size=256, proc=False): """ Args: im_path (str): the path of image. image (np.ndarray or None): if it is None, then loading the im_path, else use image. bbox_param (3,) : [cx, cy, scale]. rescale (float, np.ndarray or None): rescale factor. proc (bool): the flag to return processed image or not. image_size (int): Returns: proc_img (np.ndarray): if proc is True, return the process image, else return the original image. """ if image is None: image = cv2.imread(im_path) orig_h, orig_w = image.shape[0:2] center = bbox_param[:2] scale = bbox_param[2] if rescale is not None: scale = rescale if proc: image_scaled, scale_factors = resize_img(image, scale) resized_h, resized_w = image_scaled.shape[:2] else: scale_factors = [scale, scale] resized_h = orig_h * scale resized_w = orig_w * scale center_scaled = np.round(center * scale_factors).astype(np.int) if proc: # Make sure there is enough space to crop image_size x image_size. image_padded = np.pad( array=image_scaled, pad_width=((image_size,), (image_size,), (0,)), mode='edge' ) padded_h, padded_w = image_padded.shape[0:2] else: padded_h = resized_h + image_size * 2 padded_w = resized_w + image_size * 2 center_scaled += image_size # Crop image_size x image_size around the center. margin = image_size // 2 start_pt = (center_scaled - margin).astype(int) end_pt = (center_scaled + margin).astype(int) end_pt[0] = min(end_pt[0], padded_w) end_pt[1] = min(end_pt[1], padded_h) if proc: proc_img = image_padded[start_pt[1]:end_pt[1], start_pt[0]:end_pt[0], :] # height, width = image_scaled.shape[:2] else: # height, width = end_pt[1] - start_pt[1], end_pt[0] - start_pt[0] proc_img = cv2.resize(image, (image_size, image_size)) # proc_img = None center_scaled -= start_pt return { # return original too with info. 'image': proc_img, 'im_path': im_path, 'im_shape': (orig_h, orig_w), 'center': center_scaled, 'scale': scale, 'start_pt': start_pt, } def cam_denormalize(cam, N): # This is camera in crop image coord. new_cam = np.hstack([N * cam[0] * 0.5, cam[1:] + (2. / cam[0]) * 0.5]) return new_cam def cam_init2orig(cam, scale, start_pt, N=224): """ Args: cam (3,): (s, tx, ty) scale (float): scale = resize_h / orig_h start_pt (2,): (lt_x, lt_y) N (int): hmr_image_size (224) or IMG_SIZE Returns: cam_orig (3,): (s, tx, ty), camera in original image coordinates. """ # This is camera in crop image coord. cam_crop = np.hstack([N * cam[0] * 0.5, cam[1:] + (2. / cam[0]) * 0.5]) # This is camera in orig image coord cam_orig = np.hstack([ cam_crop[0] / scale, cam_crop[1:] + (start_pt - N) / cam_crop[0] ]) # print('cam crop', cam_crop) # print('cam orig', cam_orig) return cam_orig def cam_orig2crop_center(cam, scale, start_pt, N=256, normalize=True): """ Args: cam (3,): (s, tx, ty), camera in orginal image coordinates. scale (float): scale = resize_h / orig_h or (resize_w / orig_w) start_pt (2,): (lt_x, lt_y) N (int): hmr_image_size (224) or IMG_SIZE normalize (bool) Returns: """ cam_recrop = np.hstack([ cam[0] * scale, cam[1:] + (N - start_pt) / (scale * cam[0]) ]) # print('cam re-crop', cam_recrop) if normalize: cam_norm = np.hstack([ cam_recrop[0] * (2. / N), cam_recrop[1:] - N / (2 * cam_recrop[0]) ]) # print('cam norm', cam_norml) else: cam_norm = cam_recrop return cam_norm def cam_orig2boxcrop(cam, scale, start_pt, N=256, normalize=True): """ Args: cam (3,): (s, tx, ty), camera in orginal image coordinates. scale (float): scale = resize_h / orig_h or (resize_w / orig_w) start_pt (2,): (lt_x, lt_y) N (int): hmr_image_size (224) or IMG_SIZE normalize (bool) Returns: """ cam_recrop = np.hstack([ cam[0] * scale, cam[1:] - start_pt / cam[0] ]) # print('cam re-crop', cam_recrop) if normalize: cam_norm = np.hstack([ cam_recrop[0] * 2. / N, cam_recrop[1:] - N / (2 * cam_recrop[0]) ]) # print('cam norm', cam_norm) else: cam_norm = cam_recrop return cam_norm def cam_process(cam_init, scale_150, start_pt_150, scale_proc, start_pt_proc, HMR_IMG_SIZE=224, IMG_SIZE=256): """ Args: cam_init: scale_150: start_pt_150: scale_proc: start_pt_proc: HMR_IMG_SIZE: IMG_SIZE: Returns: """ # print(HMR_IMG_SIZE, IMG_SIZE) cam_orig = cam_init2orig(cam_init, scale=scale_150, start_pt=start_pt_150, N=HMR_IMG_SIZE) cam_crop = cam_orig2crop_center(cam_orig, scale=scale_proc, start_pt=start_pt_proc, N=IMG_SIZE, normalize=True) return cam_orig, cam_crop def intrinsic_mtx(f, c): """ Obtain intrisic camera matrix. Args: f: np.array, 1 x 2, the focus lenth of camera, (fx, fy) c: np.array, 1 x 2, the center of camera, (px, py) Returns: - cam_mat: np.array, 3 x 3, the intrisic camera matrix. """ return np.array([[f[1], 0, c[1]], [0, f[0], c[0]], [0, 0, 1]], dtype=np.float32) def extrinsic_mtx(rt, t): """ Obtain extrinsic matrix of camera. Args: rt: np.array, 1 x 3, the angle of rotations. t: np.array, 1 x 3, the translation of camera center. Returns: - ext_mat: np.array, 3 x 4, the extrinsic matrix of camera. """ # R is (3, 3) R = cv2.Rodrigues(rt)[0] t = np.reshape(t, newshape=(3, 1)) Rc = np.dot(R, t) ext_mat =
np.hstack((R, -Rc))
numpy.hstack
# from imports import * import threading import pandas as pd # from plyfile import PlyData from sklearn.decomposition import PCA from multiprocessing import Process import random import os from time import time import numpy as np import ezdxf import open3d as o3d from math import sqrt, floor import laspy from shapely.geometry.collection import GeometryCollection from shapely.geometry.polygon import Polygon from shapely.geometry import Point, MultiPoint, LineString from shapely import ops from shapely.geometry.multilinestring import MultiLineString def SaveRenderOptions(vis): print("Saving camera parameters") params = vis.get_view_control().convert_to_pinhole_camera_parameters() o3d.io.write_pinhole_camera_parameters("./data/camera.json", params) return False def MaskTrajectoryFile(vis): trajectory_file = "./data/camera_trajectory.json" mask_trajectory_file = "./data/camera_trajectory.json.mask" if(os.path.exists(trajectory_file)): os.rename(trajectory_file, mask_trajectory_file) elif(os.path.exists(mask_trajectory_file)): os.rename(mask_trajectory_file, trajectory_file) return False class TrajectoryRecorder(): def __init__(self): self.trajectory = [] self.trajectory_file = "./data/camera_trajectory.json" if(os.path.exists(self.trajectory_file)): os.remove(self.trajectory_file) def record(self, vis): params = vis.get_view_control().convert_to_pinhole_camera_parameters() self.trajectory.append(params) def save(self, vis): trajectory = o3d.camera.PinholeCameraTrajectory() trajectory.parameters = self.trajectory o3d.io.write_pinhole_camera_trajectory(self.trajectory_file, trajectory) def delete(self, vis): self.trajectory = [] if(os.path.exists(self.trajectory_file)): os.remove(self.trajectory_file) def AppendCameraTrajectory(vis): print("Append camera trajectory.") params = vis.get_view_control().convert_to_pinhole_camera_parameters() trajectory = o3d.camera.PinholeCameraTrajectory() if(os.path.exists("./data/camera_trajectory.json")): trajectory = o3d.io.read_pinhole_camera_trajectory("./data/camera_trajectory.json") trajectory.parameters = trajectory.parameters + [params] o3d.io.write_pinhole_camera_trajectory("./data/camera_trajectory.json", trajectory) return False def LoadRenderOptions(vis, returnVis = False): # time.sleep(1) # sleep 1 second paramsFile = "./data/camera.json" if(not os.path.exists(paramsFile)): return False print("Loading camera parameters") params = o3d.io.read_pinhole_camera_parameters(paramsFile) vis.get_view_control().convert_from_pinhole_camera_parameters(params) if(returnVis): return vis else: return False def AnimationCallBack(vis): ctr = vis.get_view_control() ctr.rotate(0.2, 0.0) # ctr.scale(1/80) return False class PlayTrajectory(): def __init__(self): assert(os.path.exists("./data/camera_trajectory.json")) self.trajectory = o3d.io.read_pinhole_camera_trajectory("./data/camera_trajectory.json").parameters self.i = 0 self.time = time() def StepTrajectory(self, vis): if(self.i < len(self.trajectory)): # and time() - self.time > 1): ctr = vis.get_view_control() ctr.convert_from_pinhole_camera_parameters(self.trajectory[self.i]) self.time = time() self.i += 1 class DataTool: def __init__(self, piece_size = 1000000, threads_allowed = 1000, pointSize = 5): self.piece_size = piece_size self.threads_allowed = threads_allowed self.vis = None self.bBox = None self.pointCloud = None self.displayCloud = None self.pointSize = pointSize def ReadPointCloudTxt(self, path, pcData): t = time() pcFile = open(path, 'r') self.pointCloud = None threads = [None] * self.threads_allowed points_read = 0 thread_index = 0 while True: if(threads[thread_index] is not None and threads[thread_index].isAlive()): print("Wait for thread {}".format(thread_index), end=" \r") threads[thread_index].join() chunk = pcFile.readlines(self.piece_size) if(len(chunk) < 1): break if(pcData.shape[0] <= points_read + len(chunk)): if(pcData.shape[0] == 0): pcData.resize((points_read + len(chunk))*2, axis=0) else: pcData.resize(pcData.shape[0]*2, axis=0) # if(type(self.pointCloud) is np.ndarray): # self.pointCloud = np.append(self.pointCloud, np.zeros(shape=(len(chunk), 7), dtype="float32"), axis=0) # else: # self.pointCloud = np.zeros(shape=(len(chunk), 7), dtype="float32") threads[thread_index] = threading.Thread(target= self.__ReadPCChunkTxt, args=(chunk, points_read, pcData)) threads[thread_index].start() points_read += len(chunk) thread_index += 1 if(thread_index >= self.threads_allowed): thread_index = 0 print("{0} points read".format(points_read), end='\r') for i in range(self.threads_allowed): if(threads[i] is not None): print("Join thread {}".format(i), end=" \r") threads[i].join() pcData.resize(points_read, axis=0) pcFile.close() print("PC Finished reading {} points in {:.2f} min".format(pcData.shape[0], (time() - t)/60)) return self.pointCloud def __ReadPCChunkTxt(self, chunk, start_index, pcData): for i in range(len(chunk)): if(chunk[i] != ""): flts = chunk[i].replace('\n','').split() # self.pointCloud[start_index + i] = np.array([float(flts[0]), float(flts[1]), float(flts[2]), float(flts[3]), # float(flts[4]), float(flts[5]), float(flts[6])]) pcData[start_index + i] = np.array([float(flts[0]), float(flts[1]), float(flts[2]), float(flts[3]), float(flts[4]), float(flts[5]), float(flts[6])]) del chunk def ReadPointLabelsTxt(self, path): t = time() labelsFile = open(path, 'r') labelsArr = labelsFile.read().split('\n') if(labelsArr[-1] == ''): del labelsArr[-1] self.labels = np.array(labelsArr, dtype='int') print("Finished reading {} labels in {:.2f} min".format(self.labels.shape[0], (time() - t)/60)) return self.labels def ConvertToBin(self, path_to_pointcloud, path_to_pointlabels, output_path, extension = ".hdf5"): if(os.path.isfile(output_path+extension)): return else: print("Converting: ",output_path) t = time() pointcloud = np.array(pd.read_csv(path_to_pointcloud, sep=" ", dtype=np.float32, header=None), dtype=np.float32) h5File = None if(extension == ".hdf5"): h5File = h5py.File(output_path+".hdf5", 'w') h5File.create_dataset("pointcloud", data=pointcloud, dtype='float32', compression="lzf") del pointcloud if(path_to_pointlabels): labels = np.array(pd.read_csv(path_to_pointlabels, dtype=np.int8, header=None)) if(extension == ".hdf5"): h5File.create_dataset("labels", data=labels, dtype='int8', compression="lzf") elif(extension == ".npy"): pointcloud = np.concatenate((pointcloud, labels.astype(np.float32)), 1) del labels print("Done reading") if(extension == ".hdf5"): h5File.close() elif(extension == ".npy"): np.save(output_path, pointcloud, allow_pickle=False) print("done in {}:{} min.".format(int((time() - t)/60), int((time() - t)%60))) def ConvertDatasets(self, folder, outputFolder): pcFiles = [f for f in listdir(folder) if isfile(join(folder, f)) and f.endswith('.txt')] os.makedirs(outputFolder, exist_ok=True) for file in pcFiles: name = file.replace('.txt', '') if(not isfile(join(folder, name+'.labels'))): self.ConvertToBin(join(folder, name+'.txt'), None, join(outputFolder, name)) else: self.ConvertToBin(join(folder, name+'.txt'), join(folder, name+'.labels'), join(outputFolder, name)) def createWindow(self, windowName = "Pointcloud"): # vis = o3d.visualization.Visualizer() self.vis = o3d.visualization.VisualizerWithKeyCallback() self.vis.create_window(windowName, 800, 800) opt = self.vis.get_render_option() # opt.line_width = 100 opt.point_size = self.pointSize # opt.background_color = np.asarray([0, 0, 0]) def addPointCloud(self, pointCloud, downSample = False, color = None): pc = o3d.geometry.PointCloud() pc.points = o3d.utility.Vector3dVector(pointCloud) if(color != None): pc.paint_uniform_color(np.asarray(color)) if(downSample): pc = o3d.geometry.voxel_down_sample(pc, voxel_size=0.02) self.vis.add_geometry(pc) def setPointCloud(self, pointCloud, downSample = False, color = None): pc = o3d.geometry.PointCloud() pc.points = o3d.utility.Vector3dVector(pointCloud) if(downSample): pc = o3d.geometry.voxel_down_sample(pc, voxel_size=0.02) if(self.pointCloud == None): self.pointCloud = pc else: self.pointCloud.points = pc.points if(color != None): self.pointCloud.paint_uniform_color(np.asarray(color)) def addBoundingBox(self, bBox, color = []): self.addBbox(self.vis, bBox, color) def addPolyline(self, points, color = []): self.addLine(self.vis, points, color) @staticmethod def addLine(vis, points, color = []): lines = [] for i in range(len(points)-1): lines.append([i, i+1]) colors = [color for _ in range(len(lines))] line_set = o3d.geometry.LineSet() line_set.points = o3d.utility.Vector3dVector(np.array(points)) line_set.lines = o3d.utility.Vector2iVector(np.array(lines)) line_set.colors = o3d.utility.Vector3dVector(np.array(colors)) vis.add_geometry(line_set) @staticmethod def addBbox(vis, bBox, color = []): lines = [[0, 1], [0, 2], [1, 3], [2, 3], [4, 5], [4, 6], [5, 7], [6, 7],[0, 4], [1, 5], [2, 6], [3, 7]] box = [[bBox[0], bBox[2], bBox[4]], [bBox[1], bBox[2], bBox[4]], [bBox[0], bBox[3], bBox[4]], [bBox[1], bBox[3], bBox[4]], [bBox[0], bBox[2], bBox[5]], [bBox[1], bBox[2], bBox[5]], [bBox[0], bBox[3], bBox[5]], [bBox[1], bBox[3], bBox[5]]] if(len(color) == 0): colors = [[1,0,0] for _ in range(len(lines))] else: colors = [color for _ in range(len(lines))] line_set = o3d.geometry.LineSet() line_set.points = o3d.utility.Vector3dVector(np.array(box)) line_set.lines = o3d.utility.Vector2iVector(np.array(lines)) line_set.colors = o3d.utility.Vector3dVector(np.array(colors)) vis.add_geometry(line_set) def setBoundingBox(self, bBox, color = None): box = [[bBox[0], bBox[2], bBox[4]], [bBox[1], bBox[2], bBox[4]], [bBox[0], bBox[3], bBox[4]], [bBox[1], bBox[3], bBox[4]], [bBox[0], bBox[2], bBox[5]], [bBox[1], bBox[2], bBox[5]], [bBox[0], bBox[3], bBox[5]], [bBox[1], bBox[3], bBox[5]]] if(color == None): colors = [[1,0,0] for _ in range(12)] #len(lines) else: colors = [color for _ in range(12)] if(self.bBox == None): lines = [[0, 1], [0, 2], [1, 3], [2, 3], [4, 5], [4, 6], [5, 7], [6, 7],[0, 4], [1, 5], [2, 6], [3, 7]] line_set = o3d.geometry.LineSet() line_set.lines = o3d.utility.Vector2iVector(np.array(lines)) line_set.points = o3d.utility.Vector3dVector(np.array(box)) line_set.colors = o3d.utility.Vector3dVector(np.array(colors)) self.bBox = line_set else: self.bBox.points = o3d.utility.Vector3dVector(np.array(box)) self.bBox.colors = o3d.utility.Vector3dVector(np.array(colors)) def setDisplayedCloud(self, bBox): if(self.pointCloud == None or bBox == None): return points = np.asarray(self.pointCloud.points) rows = np.where((points[:,0] >= bBox[0]) & (points[:,0] <= bBox[1]) & (points[:,1] >= bBox[2]) & (points[:,1] <= bBox[3]) & (points[:,2] >= bBox[4]) & (points[:,2] <= bBox[5]) ) if(self.displayCloud == None): self.displayCloud = o3d.geometry.PointCloud() self.displayCloud.points = o3d.utility.Vector3dVector(points[rows]) def VisualizePointCloudAsync(self, dataset = [], dataColors = None, downSample = False, deleteZeros = False, bBoxes = None, lines = None, boxesColors = [], linesColors = [], windowName = None, animationFunction = None, loadCameraSettings = False, recordTrajectory = False): p = Process(target=self.VisualizePointCloud, args=(dataset, dataColors, downSample, deleteZeros, bBoxes, lines, boxesColors, linesColors, windowName, animationFunction, loadCameraSettings, recordTrajectory)) p.start() def VisualizePointCloud(self, dataset, dataColors = None, downSample = False, deleteZeros = False, bBoxes = None, lines = None, boxesColors = [], linesColors = [], windowName = None, animationFunction = None, loadCameraSettings = False, recordTrajectory = False): # if(len(dataset) == 0): # return if(windowName is None): pointCount = sum(0 if (data is None) else len(data) for data in dataset) windowName = f"Point count: {pointCount}" self.createWindow(windowName=windowName) for i in range(len(dataset)): if(dataset[i] is None): continue if(len(dataset[i]) == 0): continue dataset[i] = np.array(dataset[i]) if (deleteZeros): if(len(dataset[i][0]) == 3): indexes = np.where((dataset[i][:, 0] == 0.0) & (dataset[i][:, 1] == 0.0) & (dataset[i][:, 2] == 0.0)) else: indexes = np.where((dataset[i][:, 0] == 0.0) & (dataset[i][:, 1] == 0.0) & (dataset[i][:, 2] == 0.0) & (dataset[i][:, 3] == 0.0)) dataset[i] = np.delete(dataset[i], indexes, axis=0) print("Adding dataset {}/{} to visualization ".format(i+1, len(dataset)), end = '\r') pc = o3d.geometry.PointCloud() if(len(dataset[i][0]) == 3): pc.points = o3d.utility.Vector3dVector(dataset[i]) else: pc.points = o3d.utility.Vector3dVector(dataset[i][:,:3]) if(not (dataColors is None)): if(not (dataColors[i] is None)): if(len(dataColors[i]) == len(dataset[i]) and len(dataset[i]) != 3): pc.colors = o3d.utility.Vector3dVector(np.asarray(dataColors[i])) elif(len(dataColors) == len(dataset)): pc.paint_uniform_color(np.asarray(dataColors[i])) if(not (downSample is None) and downSample != False): if(not isinstance(downSample, float)): downSample = 0.02 pc = o3d.geometry.PointCloud.voxel_down_sample(pc, voxel_size=downSample) self.vis.add_geometry(pc) print("") if(bBoxes is not None): print("Adding {} bBoxes to visualization".format(len(bBoxes)), end = '\r') for i in range(len(bBoxes)): # print("Adding bBox {}/{} to visualization".format(i+1, len(bBoxes)), end = '\r') color = [] if(len(boxesColors) > i and boxesColors[i] is not None): color = boxesColors[i] self.addBoundingBox(bBoxes[i], color) if(not lines is None): opt = self.vis.get_render_option() opt.point_size = 2 for i in range(len(lines)): print("Adding {}/{} line to visualization".format(i, len(lines)), end = '\r') color = [1.0, 0.0, 0.0] if linesColors is None or len(linesColors)-1 < i else linesColors[i] self.addPolyline(lines[i], color) self.vis.register_key_callback(ord("s"), SaveRenderOptions) self.vis.register_key_callback(ord("S"), SaveRenderOptions) self.vis.register_key_callback(ord("l"), LoadRenderOptions) self.vis.register_key_callback(ord("L"), LoadRenderOptions) self.vis.register_key_callback(ord("m"), MaskTrajectoryFile) self.vis.register_key_callback(ord("M"), MaskTrajectoryFile) if recordTrajectory: recorder = TrajectoryRecorder() self.vis.register_key_callback(ord("a"), recorder.record) self.vis.register_key_callback(ord("A"), recorder.record) self.vis.register_key_callback(ord("r"), recorder.save) self.vis.register_key_callback(ord("R"), recorder.save) self.vis.register_key_callback(ord("d"), recorder.delete) self.vis.register_key_callback(ord("D"), recorder.delete) # paramFiles = "./data/camera.json" # if(os.path.exists(paramFiles)): # os.remove(paramFiles) if not (animationFunction is None): self.vis.register_animation_callback(animationFunction) if(loadCameraSettings): self.vis = LoadRenderOptions(self.vis, returnVis=True) self.vis.run() self.vis.destroy_window() def DoBoxesQA(self, pointcloud = None, bBoxes = None, downSamplePC = False): if(len(pointcloud) == 0 and len(self.pointCloud) == 0): return elif(len(pointcloud) != 0): self.setPointCloud(pointcloud, downSamplePC) acceptedBoxes = [] def darkMode(vis): opt = vis.get_render_option() opt.background_color = np.asarray([0, 0, 0]) return False def acceptBox(vis): print("Accept") acceptedBoxes.append(bBoxes[self.boxIndex]) vis.close() return False def discardBox(vis): print("Discard") vis.close() return False key_to_callback = {} key_to_callback[ord("Y")] = acceptBox key_to_callback[ord("N")] = discardBox key_to_callback[ord("D")] = darkMode self.boxIndex = 0 for box in bBoxes: self.setDisplayedCloud(box) self.setBoundingBox(box) o3d.visualization.draw_geometries_with_key_callbacks([self.displayCloud, self.bBox], key_to_callback, "QA", 800, 800) self.boxIndex += 1 print("QA done") return acceptedBoxes def QAResults(self, dataFolder, boxesFolder, boxesExportFolder, override = True): pcFiles = [f for f in listdir(boxesFolder) if isfile(join(boxesFolder, f)) and f.endswith('.txt')] for file in pcFiles: name = file.replace('.txt', '').replace('BBOXES_', '') boxesFile = join(boxesFolder, 'BBOXES_'+name+'.txt') dataFile = join(dataFolder, name+'.hdf5') newBoxPath = join(boxesExportFolder, 'BBOXES_'+name+'.txt') if(isfile(dataFile)): if(override == False and isfile(newBoxPath)): print("Already done: "+dataFile) continue print("QA: "+dataFile) pc = self.ReadHDF5XYZ(dataFile) boxes = ReadBoundingBoxes(boxesFile) newBoxes = self.DoBoxesQA(pc, boxes, True) SaveBoundingBoxes(newBoxPath, newBoxes) def SaveHDF5(pointcloud, labels, output_path): if(not output_path.endswith(".hdf5")): output_path += ".hdf5" print("Converting: ",output_path) t = time() h5File = h5py.File(output_path, 'w') h5File.create_dataset("pointcloud", data=pointcloud, dtype='float32', compression="lzf") h5File.create_dataset("labels", data=labels, dtype='int8', compression="lzf") h5File.close() print("done in {}:{} min.".format(int((time() - t)/60), int((time() - t)%60))) def ReadHDF5(path, with_labels = True): print("Reading '{}'".format(path)) t=time() h5File = h5py.File(path, 'r') pointCloud = np.array(h5File["pointcloud"], dtype="float32") if(with_labels): labels = np.array(h5File["labels"], dtype="float32") labels = np.expand_dims(labels, 1) pointCloud = np.append(pointCloud, labels, axis=1) del labels print("Finished reading in {:.2f} min. Shape = {}".format((time() - t)/60, pointCloud.shape)) return pointCloud def ReadXYZ(file, dataName = "pointcloud", verbose = False, readFormat=None): if(verbose): print("Reading pointcloud of '{}'".format(path)) t=time() xyz = None if(file.endswith(".hdf5")): h5File = h5py.File(file, 'r') pc = h5File["pointcloud"] xyz = pc[:, :3] h5File.close() if(file.endswith(".npy") or readFormat == ".npy"): pc = np.load(file) xyz = pc[:, :3] elif(file.endswith(".las")): import laspy lasFile = laspy.file.File(file, mode = "r") xyz = np.concatenate((np.expand_dims(lasFile.x,1), np.expand_dims(lasFile.y,1), np.expand_dims(lasFile.z,1)), 1) # xyz *= np.array(lasFile.header.scale) lasFile.close() elif(file.endswith(".ply")): plydata = PlyData.read(file) x = plydata["vertex"].data["x"].astype(np.float32) y = plydata["vertex"].data["y"].astype(np.float32) z = plydata["vertex"].data["z"].astype(np.float32) xyz = np.concatenate((np.expand_dims(x,1), np.expand_dims(y,1), np.expand_dims(z,1)), axis=1) if(verbose): print("Finished reading pointcloud in {:.2f} min. Shape = {}".format((time() - t)/60, xyz.shape)) return xyz def ReadRGB(file, dataName = "pointcloud", verbose = False): t=time() rgb = None if(file.endswith(".hdf5")): h5File = h5py.File(file, 'r') pc = h5File["pointcloud"] rgb = pc[:, 4:7] h5File.close() if(file.endswith(".npy")): pts = np.load(file) rgb = pts[:, 3:6] elif(file.endswith(".las")): import laspy lasFile = laspy.file.File(file, mode = "r") rgb = np.concatenate((np.expand_dims(lasFile.Red,1), np.expand_dims(lasFile.Green,1), np.expand_dims(lasFile.Blue,1)), 1) rgb = rgb/65536 #[0,1] lasFile.close() print("Finished reading RGB values in {:.2f} min. Shape = {}".format((time() - t)/60, rgb.shape)) return rgb def PointsInBlock(pts, pt, blocksize): if(not isinstance(blocksize,list) and not isinstance(blocksize, np.ndarray)): blocksize = [blocksize, blocksize] mask_x = np.logical_and(pts[:,0]<pt[0]+blocksize[0]/2, pts[:,0]>pt[0]-blocksize[0]/2) mask_y = np.logical_and(pts[:,1]<pt[1]+blocksize[1]/2, pts[:,1]>pt[1]-blocksize[1]/2) pts = pts[np.where(mask_x & mask_y)[0]] if(len(blocksize) == 3): mask_z = np.logical_and(pts[:,2]<pt[2]+blocksize[2]/2, pts[:,2]>pt[2]-blocksize[2]/2) return pts[np.where(mask_z)[0]] else: return pts def PointsInRange(pts, pt, pointcloud_range, filter_height = True): """ pointcloud_range = [minX, mixY, minZ, maxX, maxY, maxZ] X and Z are relative to pt Z values are just clipped minX, mixY, minZ - negative values """ if(len(pointcloud_range) == 6): minX, minY, minZ, maxX, maxY, maxZ = pointcloud_range else: range_X, range_Y, range_Z, = pointcloud_range minX = -range_X/2 minY = -range_Y/2 minZ = -range_Z/2 maxX = range_X/2 maxY = range_Y/2 maxZ = range_Z/2 mask_x = np.logical_and(pts[:,0]<pt[0]+maxX, pts[:,0]>pt[0]+minX) mask_y = np.logical_and(pts[:,1]<pt[1]+maxY, pts[:,1]>pt[1]+minY) pts = pts[np.where(mask_x & mask_y)[0]] if(len(pts) == 0): return pts if(filter_height): # mask_z = np.logical_and(pts[:,2]<pt[2]+maxZ, pts[:,2]>pt[2]+minZ) mask_z = pts[:,2]<(min(pts[:,2])+(maxZ-minZ)) pts = pts[np.where(mask_z)[0]] return pts def crop_lines(chunk_center, chunk_size, lines, min_z, max_z): min_x = chunk_center[0]-chunk_size[0]/2 max_x = chunk_center[0]+chunk_size[0]/2 min_y = chunk_center[1]-chunk_size[1]/2 max_y = chunk_center[1]+chunk_size[1]/2 coords = ( (min_x, min_y, max_z), (min_x, max_y, max_z), (max_x, max_y, max_z), (max_x, min_y, max_z), (min_x, min_y, min_z), (min_x, max_y, min_z), (max_x, max_y, min_z), (max_x, min_y, min_z), ) polygon = Polygon(coords).convex_hull # multi_line = MultiLineString([ops.clip_by_rect(LineString(line) for line in lines]) # cropped_lines = np.array(ops.clip_by_rect(multi_line, min_x, min_y, max_x, max_y).coords) # cropped_lines = [np.array(line.coords) for line in multi_line.geoms] cropped_lines = [] for line in lines: # new_line = ops.clip_by_rect(LineString(line), min_x, min_y, max_x, max_y) linestring = line if isinstance(line, LineString) else LineString(line) new_line = polygon.intersection(linestring) if(isinstance(new_line, MultiLineString)): split_lines = [np.array(geom.coords) for geom in new_line.geoms] cropped_lines.extend(split_lines) elif(isinstance(new_line, GeometryCollection)): for geom in new_line.geoms: split_lines.append(np.array(geom.coords)) else: cropped_lines.append(np.array(new_line.coords)) # DataTool().VisualizePointCloudAsync([xyz], lines = cropped_lines) # DataTool().VisualizePointCloudAsync([xyz], lines = lines) # return [line[np.logical_not(np.isnan(line).any(1))] for line in cropped_lines if len(line)>0] return [line[1:-1] for line in cropped_lines if len(line)>0] def SelectPointsFromBlock(pts, pt, blocksize, npoints = None): selectedPts = PointsInBlock(pts, pt, blocksize) if(len(selectedPts) == 0): return np.zeros((0, 3)) if(npoints is None): return selectedPts else: return selectedPts[np.random.choice(len(selectedPts), npoints, replace=True)] def TemplatesInBlock(templates, pt, blocksize): if(not isinstance(blocksize,list) and not isinstance(blocksize, np.ndarray)): blocksize = [blocksize, blocksize] mask_x = np.logical_and(templates[:,:,0]<pt[0]+blocksize[0]/2, templates[:,:,0]>pt[0]-blocksize[0]/2) mask_y = np.logical_and(templates[:,:,1]<pt[1]+blocksize[1]/2, templates[:,:,1]>pt[1]-blocksize[1]/2) mask = (mask_x & mask_y).any(axis=1) templates = templates[np.where(mask)[0]] if(len(blocksize) == 3): mask_z = np.logical_and(templates[:,:,2]<pt[2]+blocksize[2]/2, templates[:,:,2]>pt[2]-blocksize[2]/2) mask_z = mask_z.any(axis=1) return templates[np.where(mask_z)[0]] else: return templates def SelectTemplatesFromBlock(templates, pt, blocksize): return TemplatesInBlock(templates, pt, blocksize) def ReadPoints(fileList, curbLabel): ptsList = [] curbPtsList = [] for file in fileList: pts = np.load(os.path.join(Paths.Curbs.forDelineation, (file if file.endswith(".npy") else file+".npy"))) curbPtsIdx = np.where(pts[:,3] == curbLabel) otherPts = np.where(pts[:,3] == 2) curbPtsList.append(pts[curbPtsIdx][:,:3]) ptsList.append(pts[otherPts][:,:3]) return ptsList, curbPtsList def ReadLinesPoint(fileList): linePtsList = [] for file in fileList: file = os.path.basename(file) if not file.endswith(".npy"): file += ".npy" file = os.path.join(Paths.Curbs.denseLines, file) linePtsList.append(np.load(file)) return linePtsList def ReadXYZRGB(file): xyz = ReadXYZ(file) rgb = ReadRGB(file) return xyz.astype(np.float32), rgb.astype(np.float32) def ReadPolyLines(file): dwg = ezdxf.readfile(file, errors = "ignore") lines = [] for entity in dwg.entities: # print(entity.dxftype()) points = [] if(entity.dxftype() == 'LINE'): points = [entity.dxf.start.xyz, entity.dxf.end.xyz] else: for i, point in enumerate(entity.points()): points.append(point.xyz) # print(f"{i} : {x}, {y}, {z}") lines.append(np.array(points)) return lines def ReadLine(points_file, line_file): xyz = ReadXYZ(points_file) # rgb = ReadRGB(points_file) line = np.load(line_file) return xyz, None, line def GroupTiles(xyz, centers, tile_size): tiles = [] for pt in centers: pts = PointsInBlock(xyz, pt, tile_size) if(len(pts) > 0): tiles.append(pts) return tiles def FillTiles(tiles, numberOfPoints): return [pts[np.random.randint(0, len(pts), numberOfPoints)] for pts in tiles] def CalculateTileBoxes(minZ, maxZ, centers, tile_size): bboxes = [BoundingBoxFromVoxel([pt[0], pt[1], 0], tile_size, minZ, maxZ) for pt in centers] return bboxes def CalculateTileCenters(xyz, line, step): points = np.concatenate([xyz, line], axis=0)[:,:2] return np.unique(np.round(points[:,:2] / step) * step, axis=0) def ReadCurbData(line_file, shift = True): cloud_file = os.path.join(Paths.Curbs.forDelineation, os.path.basename(line_file)) if(not os.path.exists(cloud_file) or not os.path.exists(line_file)): return None, None, None xyz, _, line = ReadLine(cloud_file, line_file) if(shift): minXYZ = np.concatenate([xyz, line],axis=-2).min(axis=0) xyz -= minXYZ line -= minXYZ # Prepare point cloud tiles # tiles, centers = SplitCurbIntoTiles(xyz, line, tile_size) # if(visualize): # bboxes = CalculateTileBoxes(tiles, centers, tile_size) # DataTool().VisualizePointCloudAsync(tiles, lines=[line], bBoxes=bboxes) # org_pts_count = sum([len(tile) for tile in tiles]) # tiles = [tile[np.random.randint(len(tile), size=points_in_tile)] for tile in tiles] # sampled_pts_count = sum([len(tile) for tile in tiles]) # Prepare curb line # if(visualize): # DataTool(pointSize=20).VisualizePointCloudAsync([line], dataColors=[[0,0,1]], lines=[line], bBoxes=bboxes) # distances = [] # for i in range(len(line)-1): # distances.append(Distance(line[i], line[i+1])) # print(f"avg distance between points: {np.mean(distances)}") return xyz, np.array(line) def ReadLines(file_name): files = [os.path.splitext(file)[0] for file in os.listdir(Paths.Curbs.forDelineation) if file.startswith(file_name) and os.path.splitext(file)[0][-1].isdigit()] points = [] # colors = [] lines = [] for file in files: pts_file = os.path.join(Paths.Curbs.forDelineation, file+".npy") line_file = os.path.join(Paths.Curbs.denseLines, file+".npy") xyz, _, line = ReadLine(pts_file, line_file) points.append(xyz) lines.append(line) DataTool().VisualizePointCloudAsync(points, [np.random.uniform(0,1,(3,)) for _ in range(len(points))], lines=lines) def NormalizeVector(vec): vec = np.array(vec) length = sqrt(np.sum(vec**2)) return vec / length def Distance2D(a, b): return Distance(a[:2], b[:2]) def Distance(a, b): return np.sqrt(np.sum((a - b)**2, axis=-1)) def DensifyLines(lines, maxGap): newLines = [] for points in lines: newPoints = [points[0]] for i in range(len(points)-1): a = points[i] b = points[i+1] distance = Distance(a, b) addPoints = [] if(distance > maxGap): dirVec = NormalizeVector(b - a) addPoints = [a + (dirVec * dist) for dist in np.linspace(0, distance, num=floor(distance / maxGap)+2, dtype=np.float64)[1:-1]] addPoints.append(b) newPoints = newPoints + addPoints newLines.append(np.array(newPoints)) return newLines def ReadTemplates(fileList, nodes:int, densify = True): templateList = [] separateCurbs = [] for file in fileList: name = os.path.splitext(os.path.basename(file))[0] curbs = [] curbIdx = 0 while True: fileName = os.path.join(Paths.Curbs.denseLines, f"{name}_{curbIdx}.npy") if(os.path.exists(fileName)): curbs.append(np.load(fileName)) curbIdx += 1 else: break assert(len(curbs) > 0) templates = np.zeros((0, nodes, 3)) for curb in curbs: curb_templates = [] for i in range(len(curb[0])): template = [curb[y][i] for y in range(nodes)] curb_templates.append(template) if(densify): curb_templates = DensifyTemplates(curb_templates) templates = np.concatenate([templates, np.array(curb_templates)], axis=0) separateCurbs.append(curb_templates) templateList.append(templates) return templateList, separateCurbs def DensifyTemplates(templates, maxGap = 0.01): newTemplates = [] for i in range(len(templates)-1): ta = templates[i] tb = templates[i+1] lines = [[ta[i], tb[i]] for i in range(len(ta))] lines = DensifyLines(lines, maxGap) # DataTool().VisualizePointCloudAsync(lines, windowName="a") minLen = np.min([len(line) for line in lines]) lines = [line[np.linspace(0, len(line)-1, minLen, dtype=int)] for line in lines] # DataTool().VisualizePointCloudAsync(lines, windowName="b") for i in range(len(lines[0])): template = [lines[y][i] for y in range(len(lines))] newTemplates.append(template) # DataTool().VisualizePointCloudAsync(lines = newTemplates, windowName="c") return newTemplates def ReadCurbs(file, selectOnly = None): nodes = ["node0", "node1", "node2", "node3"] if(not (selectOnly is None)): nodes = [selectOnly] allLines = [] for node in nodes: dwg = ezdxf.readfile(os.path.join(Paths.Curbs.lines, file+"_"+node+".dxf")) lines = [] for entity in dwg.entities: points = [] if(entity.dxftype() == 'LINE'): points = [entity.dxf.start.xyz, entity.dxf.end.xyz] else: for point in entity.points(): points.append(point.xyz) lines.append(np.array(points)) allLines.append(lines) curbs = [] for i in range(len(allLines[0])): curb = np.array([lines[i] for lines in allLines]) curbs.append(curb) return curbs def ConstructCurbPatterns(curbs): patterns = [] for curb in curbs: for i in range(curb.shape[1]): pattern = [curb[y][i] for y in range(curb.shape[0])] patterns.append(np.array(pattern)) return patterns def ConstructCurbLines(curbs): lines = [] for curb in curbs: for points in curb: lines.append(points) return lines def ConstructLinesOutOfTemplates(templates): lines = np.zeros((templates.shape[1], templates.shape[0], templates.shape[2])) for i in range(len(lines)): lines[i] = templates[:, i] return lines def WritePolyLines(lines, file): dwg = ezdxf.new() msp = dwg.modelspace() for line in lines: msp.add_lwpolyline(line) dwg.saveas(file) return lines def NormalizeVector(vec): vec = np.array(vec) length = sqrt(np.sum(vec**2)) return vec / length def sign(points, p2, p3): return (points[:, 0] - p3[0]) * (p2[1] - p3[1]) - (p2[0] - p3[0]) * (points[:, 1] - p3[1]); def PointInTriangle(points, v1, v2, v3): b1 = sign(points, v1, v2) < 0 b2 = sign(points, v2, v3) < 0 b3 = sign(points, v3, v1) < 0 return (b1 == b2) & (b2 == b3) def PointsInRectangle(points, A, B, C, D): a = PointInTriangle(points, A, B, C) b = PointInTriangle(points, A, D, C) return np.where(a | b)[0] def PointsInRectangle(points, start, end, edge): A, B, C, D = CalculateBox(start, end, edge/2) a = PointInTriangle(points, A, B, C) b = PointInTriangle(points, A, D, C) return np.where(a | b)[0] def CalculateBox(start, end, edge): dir = NormalizeVector(end - start) right = np.cross(dir, (0,0,1)) left = np.cross(dir, (0,0,-1)) A = end + left * edge B = end + right * edge C = start + right * edge D = start + left * edge return A, B, C, D def LabelWirePoints(points, lines, maxDistance = 2): labels = np.zeros((len(points),), np.uint8) goodLbl = [] for line in tqdm(lines): start = line[0] end = line[-1] boxPtsIdx = PointsInRectangle(points, start, end, 5) boxPts = points[boxPtsIdx] for i in range(len(line)-1): a = line[i] b = line[i+1] segmentPtsIdx = PointsInRectangle(boxPts, a, b, maxDistance) segmentPts = boxPts[segmentPtsIdx] segmentGoodPtsIdx = np.where((segmentPts[:, 2] >= (np.min([a[2], b[2]])-maxDistance/2)) & (segmentPts[:, 2] <= (np.max([a[2], b[2]])+maxDistance/2))) labels[boxPtsIdx[segmentPtsIdx[segmentGoodPtsIdx]]] = 1 goodLbl += list(boxPtsIdx[segmentPtsIdx[segmentGoodPtsIdx]]) return labels def CutPointsAroundLine(points, line, width, height): a = np.logical_and(points[:, 0] >= np.min(line[:,0])-width, points[:, 0] <= np.max(line[:,0])+width) b = np.logical_and(points[:, 1] >= np.min(line[:,1])-width, points[:, 1] <= np.max(line[:,1])+width) c = np.logical_and(points[:, 2] >= np.min(line[:,2])-height, points[:, 2] <= np.max(line[:,2])+height) idx = np.where(np.logical_and(np.logical_and(a,b), c))[0] pts = points[idx] return pts, idx def LabelCurbPoints(labels, points, lines, width = 0.5, height = 0.7, class_number = 1, margin = 0): if(isinstance(labels, np.ndarray)): labels = [labels] assert(isinstance(labels, list)) # multiple numpy arrays of labels with instance numbers for id, wholeLine in tqdm(enumerate(lines)): id += 1 tempIdx = list(range(len(wholeLine))) size = 20 step = size-1 # one point overlap for lineIdx in [tempIdx[i : i + size] for i in range(0, len(tempIdx), step)]: line = wholeLine[lineIdx] pts, idx = CutPointsAroundLine(points, line, width, height) # for i in tqdm(range(len(line)-1)): for i in range(len(line)-1): a = line[i] b = line[i+1] if(margin > 0): vec = NormalizeVector(a - b)*margin a -= vec b += vec segmentPtsIdx = PointsInRectangle(pts, a, b, width) segmentPts = pts[segmentPtsIdx] # segmentPtsIdx = PointsInRectangle(points, a, b, width) # segmentPts = points[segmentPtsIdx] segmentGoodPtsIdx = np.where((segmentPts[:, 2] >= (np.min([a[2], b[2]])-height/2)) & (segmentPts[:, 2] <= (np.max([a[2], b[2]])+height/2))) for i in range(len(labels)): labels[i][idx[segmentPtsIdx[segmentGoodPtsIdx]]] = [class_number, id] # for pt in tqdm(line): for pt in line: dist = np.sqrt(np.sum(np.power(pts - pt, 2), axis=1)) segmentGoodPtsIdx = np.where(dist <= width/2)[0] for i in range(len(labels)): labels[i][idx[segmentGoodPtsIdx]] = [class_number, id] if(len(labels) == 1): labels = labels[0] return labels # import scipy.spatial as spatial from sklearn.neighbors import KDTree def BuildPointTree(points): print("Building KDTree...") t = time() tree = KDTree(points, leaf_size=10) print("Done in {}:{} min.".format(int((time() - t)/60), int((time() - t)%60))) return tree def LabelNearestPoints(labels, tree, lines, radius, class_number = 1): print("Quering KDTree...") for pt in tqdm(lines): idx = tree.query_radius(pt[:3], radius) if(isinstance(labels, list)): for i in range(len(labels)): labels[i][idx] = class_number else: labels[idx] = class_number return labels def LabelPointsInDistance(labels, src_pts, lines, radius_lbl): src_pts = src_pts[:,:3] for pt in tqdm(lines): dist = np.sqrt(np.sum(np.power(src_pts - pt, 2), axis=1)) for radius, lbl in radius_lbl: idx = np.where(dist <= radius)[0] if(isinstance(labels, list)): for i in range(len(labels)): labels[i][idx] = class_number else: labels[idx] = class_number return labels def CenterOfPoints(pts): return (np.max(pts, axis=0) + np.min(pts, axis=0))/2 # return np.min(pts, axis=0) def NormalizePoints(pts, centerPoint): if(isinstance(pts, list)): return [points - centerPoint for points in pts] else: return pts - centerPoint def ReadLabels(file, verbose = False, readFormat=None): if(verbose): print("Reading labels of '{}'".format(file)) t=time() lbl = None if(file.endswith(".hdf5") or readFormat == ".hdf5"): h5File = h5py.File(file, 'r') lbl = np.array(h5File["labels"]) h5File.close() elif(file.endswith(".las") or readFormat == ".las"): import laspy lasFile = laspy.file.File(file, mode = "r") lbl = lasFile.Classification lasFile.close() elif(file.endswith(".labels") or file.endswith(".txt") or readFormat == ".txt" or readFormat == ".labels"): lbl = np.array(pd.read_csv(file, dtype=np.int8, header=None)) elif(file.endswith(".ply") or readFormat == ".ply"): plydata = PlyData.read(file) lbl = plydata["vertex"].data["class"].astype(np.float32) elif(file.endswith(".npy") or readFormat == ".npy"): pc = np.load(file) if(pc.shape[1] == 7): lbl = pc[:, 6] if(pc.shape[1] == 5): lbl = pc[:, 4] if(pc.shape[1] == 4): lbl = pc[:, 3] lbl = np.expand_dims(lbl, 1) if(len(lbl.shape) == 1): lbl = np.expand_dims(lbl, 1) print("Finished reading labels in {:.2f} min. Shape = {}".format((time() - t)/60, lbl.shape)) return lbl def ReadXYZL(file, lblFile = None, verbose = False): if(verbose): printline("Reading: '{}'".format(os.path.basename(file))) t=time() xyz = None lbl = None if(file.endswith(".hdf5")): h5File = h5py.File(file, 'r') pc = h5File["pointcloud"] xyz = pc[:, :3] if(lblFile is None): lbl = h5File["labels"] h5File.close() elif(file.endswith(".las")): import laspy lasFile = laspy.file.File(file, mode = "r") xyz = np.concatenate((np.expand_dims(lasFile.x,1), np.expand_dims(lasFile.y,1), np.expand_dims(lasFile.z,1)), 1) if(lblFile is None): lbl = lasFile.Classification lasFile.close() elif(file.endswith(".ply")): plydata = PlyData.read(file) x = plydata["vertex"].data["x"].astype(np.float32) y = plydata["vertex"].data["y"].astype(np.float32) z = plydata["vertex"].data["z"].astype(np.float32) xyz = np.concatenate((np.expand_dims(x,1), np.expand_dims(y,1), np.expand_dims(z,1)), axis=1) lbl = plydata["vertex"].data["class"].astype(np.float32) if(not (lblFile is None) and lblFile.endswith(".labels")): lbl = ReadLabels(lblFile) if(len(lbl.shape) == 1): lbl = np.expand_dims(lbl, 1) xyzl = np.concatenate((xyz, lbl), 1) printline("Finished in {:.2f} min. Shape = {}".format((time() - t)/60, xyzl.shape)) return xyzl def ReadHDF5Boxes(path): h5File = h5py.File(path, 'r') boxesPos = np.array(h5File["boxes"]) boundindBoxes = [] for vox in boxesPos: boundindBoxes.append(BoundingBoxFromVoxel(Point(vox[0], vox[1], vox[2]), Const.voxelSize)) return boundindBoxes class DataReader: threads = [] dataset = [] def ReadFiles(self, files, pointsDataSet = "points", silent=True, positionData = False): if(type(files) is not list): files = [files] points = [] labels = [] position = [] t=time() count = 0 for f in files: count+=1 h5File = h5py.File(f, 'r') tempLabels = np.asarray(h5File["labels"], dtype="int8") if(tempLabels.shape[1] == 1): tempLabels = np.eye(Const.numOfCategories, dtype="int8")[tempLabels] tempLabels = np.squeeze(tempLabels, axis=2) if(len(points) == 0): points = np.asarray(h5File[pointsDataSet], dtype="float32") labels = tempLabels if(positionData): position = np.asarray(h5File["position"], dtype="float32") else: points = np.concatenate((points, np.asarray(h5File[pointsDataSet], dtype="float32"))) labels = np.concatenate((labels, tempLabels)) if(positionData): position = np.concatenate((position, np.asarray(h5File["position"], dtype="float32"))) if(not silent): print("Read file {}/{}. Voxels got: {}.".format(count, len(files), len(points))) if(not silent): elapsed = round(time() - t) print("{} dataset read in {:.0f} min {:.0f} sec".format(len(files), (elapsed - (elapsed % 60))/60, elapsed % 60)) if(positionData): return points, position, labels else: return points, labels class Point: def __init__(self, x, y, z, label = -1): self.x = x self.y = y self.z = z self.label = label @staticmethod def from_XYZL(XYZL): return Point(XYZL[0], XYZL[1], XYZL[2], XYZL[3]) @staticmethod def from_XYZ(XYZ): return Point(XYZ[0], XYZ[1], XYZ[2]) def GetPointsInBoundingBox(points, boundingBox): if(len(boundingBox) != 6): return None rows = GetPointsIndexInBoundingBox(points, boundingBox) return points[rows] def CountPointsInBox(points, boundingBox): if(len(boundingBox) != 6): return None indices = GetPointsIndexInBoundingBox(points, boundingBox) return len(indices[0]) def GetPointsIndexInBoundingBox(points, boundingBox): if(len(boundingBox) != 6): return None return np.where((points[:,0] >= boundingBox[0]) & (points[:,0] <= boundingBox[1]) & (points[:,1] >= boundingBox[2]) & (points[:,1] <= boundingBox[3]) & (points[:,2] >= boundingBox[4]) & (points[:,2] <= boundingBox[5])) def BoundingBoxFromVoxel(vxlCntr, vxlEdge, minZ = 0, maxZ = 0): if(not(type(vxlCntr) is Point)): vxlCntr = Point(vxlCntr[0], vxlCntr[1], vxlCntr[2]) if type(vxlEdge) is int or type(vxlEdge) is float or type(vxlEdge) is np.float64: subEdgeX = vxlEdge/2 subEdgeY = vxlEdge/2 subEdgeZ = vxlEdge/2 elif(len(vxlEdge) == 3): subEdgeX = vxlEdge[0]/2 subEdgeY = vxlEdge[1]/2 subEdgeZ = vxlEdge[2]/2 minX = vxlCntr.x - subEdgeX maxX = vxlCntr.x + subEdgeX minY = vxlCntr.y - subEdgeY maxY = vxlCntr.y + subEdgeY if(minZ == 0): minZ = vxlCntr.z - subEdgeZ if(maxZ == 0): maxZ = vxlCntr.z + subEdgeZ return [minX, maxX, minY, maxY, minZ, maxZ] def GetGlobalBoundingBox(points, discardZeros = False): if(discardZeros): points = np.array(points) indexes = np.where(points[:] == [0, 0, 0]) points = np.delete(points, indexes, axis=0) mins = np.amin(points, axis = 0) maxs = np.amax(points, axis = 0) return [mins[0], maxs[0], mins[1], maxs[1], mins[2], maxs[2]] def hex_to_RGB(hex): ''' "#FFFFFF" -> [255,255,255] ''' # Pass 16 to the integer function for change of base return [int(hex[i:i+2], 16) for i in range(1,6,2)] def RGB_to_hex(RGB): ''' [255,255,255] -> "#FFFFFF" ''' # Components need to be integers for hex to make sense RGB = [int(x) for x in RGB] return "#"+"".join(["0{0:x}".format(v) if v < 16 else "{0:x}".format(v) for v in RGB]) def LinearGradient(start_hex, finish_hex="#FFFFFF", n=10): ''' returns a gradient list of (n) colors between two hex colors. start_hex and finish_hex should be the full six-digit color string, inlcuding the number sign ("#FFFFFF") ''' # Starting and ending colors in RGB form s = hex_to_RGB(start_hex) f = hex_to_RGB(finish_hex) # Initilize a list of the output colors with the starting color RGB_list = [s] # Calcuate a color at each evenly spaced value of t from 1 to n for t in range(1, n): # Interpolate RGB vector for color at the current value of t curr_vector = [ int(s[j] + (float(t)/(n-1))*(f[j]-s[j])) for j in range(3) ] # Add it to our list of output colors RGB_list.append(curr_vector) return RGB_list def SaveBoundingBoxes(file_path, bBoxes): file = open(file_path,"w") for box in bBoxes: file.write(str(box[0])+" "+str(box[1])+" "+str(box[2])+" "+str(box[3])+" "+str(box[4])+" "+str(box[5])+"\n") file.close() def SaveVoxels(file_path, voxels): file = open(file_path,"w") for vox in voxels: file.write(str(vox[0])+" "+str(vox[1])+" "+str(vox[2])+" "+str(vox[3])+" "+str(vox[4])+" "+str(vox[5])+" "+str(vox[6])+"\n") file.close() def ReadBoundingBoxes(file_path): file = open(file_path,"r") boundingBoxes = [] for line in file: fl = line.split() floats = [] for l in fl: floats.append(float(l)) boundingBoxes.append(floats) file.close() return boundingBoxes def DownsampleAndAddclass(points, classNum, voxelSize = -1): if(voxelSize != -1): pointCloud = o3d.geometry.PointCloud() pointCloud.points = o3d.utility.Vector3dVector(points) pointCloud = o3d.geometry.voxel_down_sample(pointCloud, voxel_size=voxelSize) points = np.asarray(pointCloud.points) labels = np.full((len(points), 1), classNum) points = np.append(points, labels, axis = 1) return points def PrepPointCloud(dataIN, objectLabel, noObjectLabel, downSampleVoxel = -1, verbose = False): dataTool = DataTool() print("Reading: {}".format(dataIN)) worldPoints = ReadXYZ(dataIN) pointLabels = ReadLabels(dataIN) indexes = np.nonzero(pointLabels == Label.cars) carPoints = worldPoints[indexes] worldPoints = np.delete(worldPoints, indexes, axis=0) carPoints = DownsampleAndAddclass(carPoints, objectLabel, downSampleVoxel) worldPoints = DownsampleAndAddclass(worldPoints, noObjectLabel, downSampleVoxel) pointCloud = np.concatenate((carPoints, worldPoints)) #pointCloud = carPoints if(verbose): print("Points left: {}".format(len(pointCloud))) return pointCloud def FilterSpecClassVoxels(voxels, classLabel, noClassLabel, minPointCount = 0): accepted = [] rejected = [] avgPointsCountInVoxel = 0 avgClassPointCount = 0 for vox in voxels: points = np.array(vox) indexes = np.where(points[:,3] == classLabel)[0] avgPointsCountInVoxel += len(vox) avgClassPointCount += len(indexes) if(len(indexes) >= minPointCount): accepted.append(vox) else: rejected.append(vox) return np.array(accepted), np.array(rejected) def GetBoundingBoxesOfPoint(voxels, verbose = False, discardZeros = True): boxes = [] maxx = 0 maxy = 0 maxz = 0 for vox in voxels: box = GetGlobalBoundingBox(vox, discardZeros) boxes.append(box) if(verbose): maxx = max(maxx, box[1]-box[0]) maxy = max(maxy, box[3]-box[2]) maxz = max(maxz, box[5]-box[4]) if(verbose): print("max x len: {}, max y len: {}, max z len: {}".format(maxx, maxy, maxz)) return boxes def AddNoise(batch_data): return batch_data.shape def GetPointsAndLabels(voxels, numOfPointInSample): points = [] labels = [] for vox in voxels: if(len(vox) < numOfPointInSample): zeros = np.zeros((numOfPointInSample-len(vox), 4)) vox = np.concatenate((vox, zeros)) #shuffle indexes = np.random.choice(len(vox), numOfPointInSample, replace = False) vox = vox[indexes] points.append(vox[..., 0:3]) labels.append(vox[..., 3]) return np.array(points), np.array(labels) def GetPointsAndAns(voxels, numOfPointInSample, classLabel, minCountOfTrue = 100): points = [] labels = np.zeros(shape=(len(voxels), 2), dtype = np.float32) avgPointsInVoxel = 0 acceptedCarVoxels = 0 avgCarPointsInVoxels = 0 i = 0 for vox in voxels: avgPointsInVoxel += len(vox) res = np.where(vox[..., 3] == classLabel) if(len(res[0]) >= minCountOfTrue): labels[i] = [1.0, 0.0] avgCarPointsInVoxels += len(res[0]) acceptedCarVoxels += 1 else: labels[i] = [0.0, 1.0] if(len(vox) < numOfPointInSample): zeros = np.zeros((numOfPointInSample-len(vox), 4)) vox = np.concatenate((vox, zeros)) #shuffle indexes = np.random.choice(len(vox), numOfPointInSample, replace = False) points.append(vox[indexes, 0:3]) i+=1 avgPointsInVoxel /= len(voxels) avgCarPointsInVoxels /= acceptedCarVoxels acceptedCarVoxels /= len(voxels) return np.array(points), labels, avgPointsInVoxel, acceptedCarVoxels, avgCarPointsInVoxels def CreateCheckPointFile(): open(Paths.checkPointFilePath, "w") def CreatePausePointFile(): open(Paths.pausePointFilePath, "w") def DeleteCheckPointFile(): if(IsCheckPointFileExists()): remove(Paths.checkPointFilePath) def DeletePausePointFile(): remove(Paths.pausePointFilePath) def IsCheckPointFileExists(): return isfile(Paths.checkPointFilePath) def IsPausePointFileExists(): if(not isfile(Paths.pausePointFilePath)): print("Press enter to continue") input() CreatePausePointFile() def modelPath(): if(not exists(Paths.dataPath)): return None pcFiles = [Paths.dataPath+"/"+f for f in listdir(Paths.dataPath) if isfile(join(Paths.dataPath, f)) and f.startswith('model')] if(len(pcFiles) == 0): return None assert len(pcFiles) == 1, "More than one model in data folder" return pcFiles[0] def FireBaseStuff(): # def writeMessageToFirebase(): # from firebase import Firebase # config = { # "apiKey": "<KEY>", # "authDomain": "online-app-600.firebaseapp.com", # "databaseURL": "https://online-app-600.firebaseio.com", # "storageBucket": "online-app-600.appspot.com" # } # firebase = Firebase(config) # auth = firebase.auth() # #auth.create_user_with_email_and_password("<EMAIL>", "<PASSWORD>") # #user = auth.sign_in_with_email_and_password("<EMAIL>", "<PASSWORD>") # user = auth.sign_in_with_email_and_password("<EMAIL>", "<PASSWORD>") # print(auth.get_account_info(user['idToken'])) # #auth.send_email_verification(user['idToken']) # db = firebase.database() # data = db.child("duomenys").get() # #storage = firebase.storage() # #data = storage.child("images/google-services.json").get_url(None) # print(data.val()) # def readMessagesFromFirestore(): # users_ref = firestoreDB.collection('duomenys') # docs = users_ref.stream() # for doc in docs: # data = doc.to_dict() # print('{} => {}'.format(data["name"], data["text"])) # def writeMessageToFirestore(): # newDocKey = firestoreDB.collection('duomenys').document(); # doc_ref = firestoreDB.collection('duomenys').document(newDocKey.id) # doc_ref.set({ # 'name': 'Jonas', # 'test': 'works from python', # }) return 0 def PostMessage(dictData, training): message = "" for key, value in dictData.items(): if(type(value) is float): message += "{}:{:.3f}. ".format(str(key), value) else: message += "{}:{}. ".format(str(key), value) print(message) if(training): file = open(Paths.trainLogPath, "a") #newDocRef = firestoreDB.collection(FireStroreCollection.train).document() #col_ref = firestoreDB.collection(FireStroreCollection.train).document(newDocRef.id) else: file = open(Paths.dataProcPath, "a") #newDocRef = firestoreDB.collection(FireStroreCollection.dataProc).document() #col_ref = firestoreDB.collection(FireStroreCollection.dataProc).document(newDocRef.id) file.write(message+"\n") try: notifyDevice.send(message) #col_ref.set(dictData) except: print("Online message error") def UpSampleBatchSize(points, labels, numOfPoints): points = np.array(points) labels = np.array(labels) newPoint = [] newLabels = [] for batch, labels in zip(points, labels): zeros = np.zeros((numOfPoints-len(batch), len(batch[0]))) batch = np.concatenate((batch, zeros)) zeros = np.zeros((numOfPoints-len(batch), len(labels[0]))) labels = np.concatenate((labels, zeros)) indexes = np.random.choice(len(points[0]), numOfPoints, replace = False) newPoint.append(batch[indexes]) newLabels.append(labels[indexes]) return np.array(newPoint), np.array(newLabels) class memoryCheck(): """Checks memory of a given system""" def __init__(self): if os.name == "posix": self.value = self.linuxRam() elif os.name == "nt": self.value = self.windowsRam() def windowsRam(self): """Uses Windows API to check RAM in this OS""" kernel32 = ctypes.windll.kernel32 c_ulong = ctypes.c_ulong class MEMORYSTATUS(ctypes.Structure): _fields_ = [ ("dwLength", c_ulong), ("dwMemoryLoad", c_ulong), ("dwTotalPhys", c_ulong), ("dwAvailPhys", c_ulong), ("dwTotalPageFile", c_ulong), ("dwAvailPageFile", c_ulong), ("dwTotalVirtual", c_ulong), ("dwAvailVirtual", c_ulong) ] memoryStatus = MEMORYSTATUS() memoryStatus.dwLength = ctypes.sizeof(MEMORYSTATUS) kernel32.GlobalMemoryStatus(ctypes.byref(memoryStatus)) return int(memoryStatus.dwTotalPhys/1024**2) def linuxRam(self): """Returns the RAM of a linux system""" totalMemory = os.popen("free -m").readlines()[1].split()[1] return int(totalMemory) def GetLabelPoint(points, label): indexes = np.where(points[:,3] == label) return points[indexes], indexes def VisualizeDataset(dataPath, markEachClass = False, pointsDataSet = "points", hasBoxesData = False): print("Visualize Dataset") points = [] downSample = False dataTool = DataTool() if(pointsDataSet == "points"): h5File = h5py.File(dataPath, 'r') pointcloud = np.array(np.asarray(h5File[pointsDataSet])) pointsCount = len(pointcloud)*len(pointcloud[0]) pointcloud = pointcloud.reshape(pointsCount, pointcloud.shape[2]) if(markEachClass): labels = np.array(np.asarray(h5File["labels"], dtype="int8")) if(len(labels[0,0]) == 9): labels = labels.reshape(pointsCount, 9) labels = np.argmax(labels, axis=1) else: labels = labels.reshape(pointsCount, 1) labels = np.expand_dims(labels, 1) pointcloud = np.append(pointcloud, labels, axis=1) indexes = np.where(pointcloud[:, :3] == [0., 0., 0.]) points = np.delete(pointcloud, indexes, axis=0) print("Nonzero values {:.3f} => {}".format(len(points)/pointsCount, len(points))) print(GetGlobalBoundingBox(points)) else: points = ReadXYZL(dataPath) downSample = True boundingBoxes = [] if(hasBoxesData): if(pointsDataSet == "points"): boundingBoxes = ReadHDF5Boxes(dataPath) else: boundingBoxes = ReadHDF5Boxes("G:/PointCloud DataSets/semenatic3d/processedTest/test_bildstein_station3_xyz_intensity_rgb.hdf5") if(markEachClass): print("Set colors for each label") # manMadeTerrain, naturalTerrain, highVegetation, lowVegetation, buildings, hardScape, cars, unlabeled = SeparateEachClass(points) manMadeTerrain, naturalTerrain, highVegetation, lowVegetation, buildings, hardScape, cars = SeparateEachClass(points) dataTool.VisualizePointCloud( [manMadeTerrain, naturalTerrain, highVegetation, lowVegetation, buildings, hardScape, cars], [[1,0.5,0], [0,1,0.5], [0,1,0], [0.2, 1, 0.3], [0,0,1], [0.5,0,1], [1,0,0]], downSample, boundingBoxes) else: dataTool.VisualizePointCloud([points], [None], downSample, boundingBoxes) def SeparateEachClass(points): count = np.max(points[:,3]) classesPoints = [] for i in range(1, int(count)+1): pts, _ = GetLabelPoint(points, i) classesPoints.append(pts) return classesPoints def GetOffsetArray(pointCloud): mins = [0,0,0] if(len(pointCloud.shape) == 2): mins = np.amin(pointCloud, axis=0) elif(len(pointCloud.shape) == 3): mins = np.amin(pointCloud, axis=1) assert False else: return 0 minX = mins[0] minY = mins[1] minZ = mins[2] offset = np.array([minX, minY, minZ]) for i in range(len(offset)): if(offset[i] > 0): offset[i] *= -1 else: offset[i] = abs(offset[i]) return offset def printline(message): addSpaces = max(60 - len(message), 0) print(message, end = " " * addSpaces + "\r") def VoxelizeDataset(path, WindowXYZ, MinPointCountInWindow, PointCountInWindow, PointComponents, discardPoints = True): pointCloud = ReadXYZL(path) pointCloud = pointCloud.astype(np.float32) printline("Voxelizing {} points".format(len(pointCloud))) t=time() pointLabels = pointCloud[:, 3] pointCloud = np.delete(pointCloud, 3, 1) pointCloud = pointCloud + GetOffsetArray(pointCloud) voxel_index = np.floor(pointCloud[:] / WindowXYZ).astype(np.int32) indices = np.expand_dims(np.arange(len(voxel_index)), axis=1) voxel_index = np.concatenate((voxel_index, indices), axis=1) printline("Sorting points") voxel_index = voxel_index[np.lexsort((voxel_index[:,2], voxel_index[:,1], voxel_index[:,0]))] pointCloud = np.concatenate((pointCloud[voxel_index[:,3]], np.expand_dims(pointLabels[voxel_index[:,3]], axis=1)), axis=1) voxel_index = np.delete(voxel_index, 3, 1) printline("Dividing points into voxels") uniqueVoxels, indexes, counts = np.unique(voxel_index, axis=0, return_counts= True, return_index=True) indexes = indexes[1:] pointCloud = np.split(pointCloud, indexes, axis=0) # pointLabels = np.split(pointLabels, indexes, axis=0) if(discardPoints): delIndexes =
np.where(counts[:] < MinPointCountInWindow)
numpy.where
import numpy as np import copy as cp from scipy.linalg import expm from . import cmanif class ManifoldPointArray: def __init__(self, manifold): self._manifold = cp.deepcopy(manifold) self._coords = np.array([]) def __str__(self): return "Array of {num} points of the manifold: ".format(num=len(self._coords))+ str(self._manifold) @property def manifold(self): return self._manifold @property def coords(self): return self._coords @coords.setter def coords(self, coords): self._coords = self._manifold.project_on_manifold(coords) class ManifoldPointArrayParameterized(ManifoldPointArray): def __init__(self, manifold): assert manifold.parameterized self._local_coords = np.array([]) ManifoldPointArray.__init__(self,manifold) @property def coords(self): return self._coords @coords.setter def coords(self, coords): ManifoldPointArray.coords.fset(self,coords) self._local_coords = self._manifold.compute_inverse_parameterization(self._coords) #self._local_coords = np.empty([coords.shape[0],self._manifold.local_dim]) #inverse_parameterization = self._manifold.compute_inverse_parameterization #for i, point in enumerate(self._coords): # self._local_coords[i] = inverse_parameterization(point) @property def local_coords(self): return self._local_coords @local_coords.setter def local_coords(self, local_coords): self._local_coords = np.empty(local_coords.shape) self._local_coords[:] = local_coords self._coords = self._manifold.compute_parameterization(local_coords) class TangentVectorArray: def __init__(self, manifold_point_array): self._base_point_array = cp.deepcopy(manifold_point_array) self._coords = np.zeros(self._base_point_array.coords.shape) def __str__(self): return "Array of {num} tangent vectors of the manifold: ".format(num=len(self._coords)) \ + str(self._base_point_array.manifold) @property def base_point_array(self): return self._base_point_array @property def manifold(self): return self._base_point_array.manifold @property def coords(self): return self._coords @coords.setter def coords(self, coords): self._coords = self.manifold.project_on_tangent_space(self._base_point_array.coords,coords) def perform_geodesic_step(self, step_length=1): self._base_point_array._coords, self._coords = self.manifold.geodesic_step(self._base_point_array.coords, self.coords, step=step_length) def normal_vector_coords(self): return self.manifold.normal_vector(self._base_point_array._coords,self._coords) def christoffel_matrix_lin_comb_mult(self, coeffs): christoffel_lin_comb = self.manifold.christoffel_matrix_lin_comb base_coords = self._base_point_array._coords mult_coords = np.empty(self._coords.shape) for i, tangent_coords in enumerate(self._coords): matrix = christoffel_lin_comb(base_coords[i], coeffs[i]) mult_coords[i] = np.dot(matrix, tangent_coords) return mult_coords class TangentVectorArrayParameterized(TangentVectorArray): def __init__(self, manifold_point_array): assert manifold_point_array.manifold.parameterized TangentVectorArray.__init__(self,manifold_point_array) self._local_coords = np.zeros(self._base_point_array.local_coords.shape) def perform_geodesic_step(self, step_length=1): TangentVectorArray.perform_geodesic_step(self, step_length) self._base_point_array._local_coords = self.manifold.compute_inverse_parameterization(self._base_point_array._coords) jacobi_matrix = self.manifold.compute_jacobi_matrix(self._base_point_array._local_coords) inverse_riemannian_matrix = self.manifold.compute_inverse_riemannian_matrix(self._base_point_array._local_coords) jacobi_transp_dot_coords = np.zeros([self._coords.shape[0],self.manifold.local_dim]) for i in range(self.manifold.local_dim): for j in range(self.manifold.ambient_dim): jacobi_transp_dot_coords[:,i] += jacobi_matrix[:,j,i]*self._coords[:,j] self._local_coords = np.zeros([self._coords.shape[0],self.manifold.local_dim]) for i in range(self.manifold.local_dim): for j in range(self.manifold.local_dim): self._local_coords[:,i] += inverse_riemannian_matrix[:,i,j] * jacobi_transp_dot_coords[:,j] @property def coords(self): return self._coords @coords.setter def coords(self, coords): TangentVectorArray.coords.fset(self,coords) jacobi_matrix = self.manifold.compute_jacobi_matrix(self._base_point_array._local_coords) inverse_riemannian_matrix = self.manifold.compute_inverse_riemannian_matrix(self._base_point_array._local_coords) jacobi_transp_dot_coords = np.zeros([coords.shape[0],self.manifold.local_dim]) for i in range(self.manifold.local_dim): for j in range(self.manifold.ambient_dim): jacobi_transp_dot_coords[:,i] += jacobi_matrix[:,j,i]*coords[:,j] self._local_coords = np.zeros([coords.shape[0],self.manifold.local_dim]) for i in range(self.manifold.local_dim): for j in range(self.manifold.local_dim): self._local_coords[:,i] += inverse_riemannian_matrix[:,i,j] * jacobi_transp_dot_coords[:,j] @property def local_coords(self): return self._local_coords @local_coords.setter def local_coords(self, local_coords): self._local_coords = local_coords jacobi_matrix = self.manifold.compute_jacobi_matrix(self._base_point_array._local_coords) for i, base_point in enumerate(self._base_point_array.local_coords): self._coords[i] = np.dot(jacobi_matrix[i,:,:], local_coords[i]) class Manifold: def __init__(self): # set to True if a parameterization is implemented, (e.g. see Shpere2) self._parameterized = False def __str__(self): return self._description def __eq__(self, other): if isinstance(other, Manifold): return self._description == other._description return NotImplemented @property def ambient_dim(self): return self._dim @property def local_dim(self): return self._local_dim @property def parameterized(self): return self._parameterized def christoffel_matrices(self, base_point_coords): """ Slow fallback implementation of computing christoffel matrices from normal vectors, which should be reimplemented explicitly for performance reasons (see for instance implementations on the Sphere, Rotation Group, or Grassmannian) """ dim = self._dim cm = np.empty([dim,dim,dim]) basis = np.identity(dim) for i in range(dim): v_i = self.project_on_tangent_space(base_point_coords, basis[i]) n_i = self.normal_vector(base_point_coords, v_i) cm[:,i,i] = - n_i for j in range(i,dim): v_j = self.project_on_tangent_space(base_point_coords, basis[j]) n_ipj = self.normal_vector(base_point_coords, v_i + v_j) n_imj = self.normal_vector(base_point_coords, v_i - v_j) cm[:,i,j] = (n_imj - n_ipj)/4 cm[:,j,i] = cm[:,i,j] return cm def christoffel_matrix_lin_comb(self, base_point_coords, coeffs): """ Slow fallback implementation of computing a linear combination of christoffel matrices, which should be reimplemented explicitly for performance reasons (see for instance implementations on the Sphere, Rotation Group, or Grassmannian) """ cm = self.christoffel_matrices(base_point_coords) return np.asmatrix(np.tensordot(coeffs, cm, axes=(0,0))) class EuclideanSpace(Manifold): def __init__(self, d): self._dim=d self._local_dim=d self._description = "Euclidean Space R^{dim}".format(dim=self._dim) Manifold.__init__(self) def project_on_manifold(self, vector): return np.array(vector) def project_on_tangent_space(self, base_point_coords, vector): return np.array(vector) def geodesic_step(self, base_point_coords, tangent_vector_coords, step=1.0): new_base_point_coords = base_point_coords + step * tangent_vector_coords new_tangent_vector_coords = np.array(tangent_vector_coords) return new_base_point_coords, new_tangent_vector_coords def normal_vector(self, base_point_coords, tangent_vector_coords): return
np.zeros(tangent_vector_coords.shape)
numpy.zeros
import os import time import numpy as np import pyccl as ccl from scipy.interpolate import interp1d import pytest T0 = 0.0 T0_CLS = 0.0 @pytest.fixture(scope='module', params=['fftlog', 'bessel']) def corr_method(request): errfacs = {'fftlog': 0.2, 'bessel': 0.1} return request.param, errfacs[request.param] @pytest.fixture(scope='module', params=['analytic', 'histo']) def set_up(request): t0 = time.time() nztyp = request.param dirdat = os.path.dirname(__file__) + '/data/' cosmo = ccl.Cosmology(Omega_c=0.30, Omega_b=0.00, Omega_g=0, Omega_k=0, h=0.7, sigma8=0.8, n_s=0.96, Neff=0, m_nu=0.0, w0=-1, wa=0, T_CMB=2.7, transfer_function='bbks', mass_function='tinker', matter_power_spectrum='linear') cosmo.cosmo.gsl_params.INTEGRATION_LIMBER_EPSREL = 2.5E-5 cosmo.cosmo.gsl_params.INTEGRATION_EPSREL = 2.5E-5 # Ell-dependent correction factors # Set up array of ells fl = {} lmax = 10000 nls = (lmax - 400)//20+141 ells = np.zeros(nls) ells[:101] = np.arange(101) ells[101:121] = ells[100] + (np.arange(20) + 1) * 5 ells[121:141] = ells[120] + (np.arange(20) + 1) * 10 ells[141:] = ells[140] + (np.arange(nls - 141) + 1) * 20 fl['lmax'] = lmax fl['ells'] = ells # Initialize tracers if nztyp == 'analytic': # Analytic case zmean_1 = 1.0 sigz_1 = 0.15 zmean_2 = 1.5 sigz_2 = 0.15 z1, tmp_a1 = np.loadtxt(dirdat + "ia_amp_analytic_1.txt", unpack=True) z2, tmp_a2 = np.loadtxt(dirdat + "ia_amp_analytic_2.txt", unpack=True) pz1 = np.exp(-0.5 * ((z1 - zmean_1) / sigz_1)**2) pz2 = np.exp(-0.5 * ((z2 - zmean_2) / sigz_2)**2) elif nztyp == 'histo': # Histogram case z1, pz1 = np.loadtxt(dirdat + "bin1_histo.txt", unpack=True)[:, 1:] _, tmp_a1 = np.loadtxt(dirdat + "ia_amp_histo_1.txt", unpack=True) z2, pz2 = np.loadtxt(dirdat + "bin2_histo.txt", unpack=True)[:, 1:] _, tmp_a2 = np.loadtxt(dirdat + "ia_amp_histo_2.txt", unpack=True) else: raise ValueError("Wrong Nz type " + nztyp) bz = np.ones_like(pz1) # Renormalize the IA amplitude to be consistent with A_IA D1 = ccl.growth_factor(cosmo, 1./(1+z1)) D2 = ccl.growth_factor(cosmo, 1./(1+z2)) rho_m = ccl.physical_constants.RHO_CRITICAL * cosmo['Omega_m'] a1 = - tmp_a1 * D1 / (5e-14 * rho_m) a2 = - tmp_a2 * D2 / (5e-14 * rho_m) # Initialize tracers trc = {} trc['g1'] = ccl.NumberCountsTracer(cosmo, False, (z1, pz1), (z2, bz)) trc['g2'] = ccl.NumberCountsTracer(cosmo, False, (z2, pz2), (z2, bz)) trc['l1'] = ccl.WeakLensingTracer(cosmo, (z1, pz1)) trc['l2'] = ccl.WeakLensingTracer(cosmo, (z2, pz2)) trc['i1'] = ccl.WeakLensingTracer(cosmo, (z1, pz1), has_shear=False, ia_bias=(z1, a1)) trc['i2'] = ccl.WeakLensingTracer(cosmo, (z2, pz2), has_shear=False, ia_bias=(z2, a2)) trc['ct'] = ccl.CMBLensingTracer(cosmo, 1100.) # Read benchmarks def read_bm(fname): th, xi =
np.loadtxt(fname, unpack=True)
numpy.loadtxt
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ This module implements representations of slabs and surfaces, as well as algorithms for generating them. If you use this module, please consider citing the following work:: <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, "Surface Energies of Elemental Crystals", Scientific Data, 2016, 3:160080, doi: 10.1038/sdata.2016.80. as well as:: <NAME>.; <NAME>. Efficient creation and convergence of surface slabs, Surface Science, 2013, 617, 53–59, doi:10.1016/j.susc.2013.05.016. """ from functools import reduce from math import gcd import math import itertools import logging import warnings import copy import os import json import numpy as np from scipy.spatial.distance import squareform from scipy.cluster.hierarchy import linkage, fcluster from monty.fractions import lcm from pymatgen.core.periodic_table import get_el_sp from pymatgen.core.structure import Structure from pymatgen.core.lattice import Lattice from pymatgen.core.sites import PeriodicSite from pymatgen.symmetry.analyzer import SpacegroupAnalyzer from pymatgen.util.coord import in_coord_list from pymatgen.analysis.structure_matcher import StructureMatcher __author__ = "<NAME>, <NAME>, <NAME>, <NAME>" __copyright__ = "Copyright 2014, The Materials Virtual Lab" __version__ = "0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __date__ = "6/10/14" logger = logging.getLogger(__name__) class Slab(Structure): """ Subclass of Structure representing a Slab. Implements additional attributes pertaining to slabs, but the init method does not actually implement any algorithm that creates a slab. This is a DUMMY class who's init method only holds information about the slab. Also has additional methods that returns other information about a slab such as the surface area, normal, and atom adsorption. Note that all Slabs have the surface normal oriented perpendicular to the a and b lattice vectors. This means the lattice vectors a and b are in the surface plane and the c vector is out of the surface plane (though not necessarily perpendicular to the surface). .. attribute:: miller_index Miller index of plane parallel to surface. .. attribute:: scale_factor Final computed scale factor that brings the parent cell to the surface cell. .. attribute:: shift The shift value in Angstrom that indicates how much this slab has been shifted. """ def __init__(self, lattice, species, coords, miller_index, oriented_unit_cell, shift, scale_factor, reorient_lattice=True, validate_proximity=False, to_unit_cell=False, reconstruction=None, coords_are_cartesian=False, site_properties=None, energy=None): """ Makes a Slab structure, a structure object with additional information and methods pertaining to slabs. Args: lattice (Lattice/3x3 array): The lattice, either as a :class:`pymatgen.core.lattice.Lattice` or simply as any 2D array. Each row should correspond to a lattice vector. E.g., [[10,0,0], [20,10,0], [0,0,30]] specifies a lattice with lattice vectors [10,0,0], [20,10,0] and [0,0,30]. species ([Species]): Sequence of species on each site. Can take in flexible input, including: i. A sequence of element / species specified either as string symbols, e.g. ["Li", "Fe2+", "P", ...] or atomic numbers, e.g., (3, 56, ...) or actual Element or Species objects. ii. List of dict of elements/species and occupancies, e.g., [{"Fe" : 0.5, "Mn":0.5}, ...]. This allows the setup of disordered structures. coords (Nx3 array): list of fractional/cartesian coordinates of each species. miller_index ([h, k, l]): Miller index of plane parallel to surface. Note that this is referenced to the input structure. If you need this to be based on the conventional cell, you should supply the conventional structure. oriented_unit_cell (Structure): The oriented_unit_cell from which this Slab is created (by scaling in the c-direction). shift (float): The shift in the c-direction applied to get the termination. scale_factor (np.ndarray): scale_factor Final computed scale factor that brings the parent cell to the surface cell. reorient_lattice (bool): reorients the lattice parameters such that the c direction is along the z axis. validate_proximity (bool): Whether to check if there are sites that are less than 0.01 Ang apart. Defaults to False. reconstruction (str): Type of reconstruction. Defaults to None if the slab is not reconstructed. coords_are_cartesian (bool): Set to True if you are providing coordinates in cartesian coordinates. Defaults to False. site_properties (dict): Properties associated with the sites as a dict of sequences, e.g., {"magmom":[5,5,5,5]}. The sequences have to be the same length as the atomic species and fractional_coords. Defaults to None for no properties. energy (float): A value for the energy. """ self.oriented_unit_cell = oriented_unit_cell self.miller_index = tuple(miller_index) self.shift = shift self.reconstruction = reconstruction self.scale_factor =
np.array(scale_factor)
numpy.array
import numpy as np def rotate_pos(pos, angle): """ Transformation the coordinate in the angle Args: pos (numpy.ndarray): local state, shape(data_size, 2) angle (float): rotate angle, in radians Returns: rotated_pos (numpy.ndarray): shape(data_size, 2) """ rot_mat = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle),
np.cos(angle)
numpy.cos
# coding: utf-8 # 2021/4/5 @ liujiayu import logging import numpy as np import pickle from tqdm import tqdm from collections import namedtuple from collections import defaultdict from EduKTM import KTM hyper_para = namedtuple("hyperparameters", ["r", "D", "deltaT", "S", "lambda_U_1", "lambda_U", "lambda_P", "lambda_S"]) default_hyper = hyper_para(6, 2, 1, 5, 0.01, 2, 2, 0.01) def init_parameters(stu_num, prob_num, know_num, time_window_num): u_latent = np.random.normal(0.5, 0.01, size=(time_window_num, stu_num, know_num)) i_latent = 0.1 * np.random.uniform(0, 1, size=(prob_num, know_num)) # problems' latent vector(V) alpha = np.random.uniform(0, 1, size=stu_num) B = 0.01 * np.random.normal(0, 1, size=prob_num) return u_latent, i_latent, alpha, B def stu_curve(u_latent, alpha, r, D, deltaT, S, time_freq): # learning and forgetting curve freq_norm = D * time_freq / (time_freq + r) learn_factor = u_latent * freq_norm forget_factor = u_latent * np.exp(-deltaT / S) pred_u = learn_factor * np.expand_dims(alpha, axis=1) + forget_factor * np.expand_dims(1 - alpha, axis=1) return pred_u, freq_norm class EKPT(KTM): """ EKPT model, training (MAP) and testing methods Parameters ---------- q_m: array Q matrix, shape = (prob_num, know_num) stu_num: int number of students prob_num: int number of problems know_num: int number of knowledge time_window_num: int number of time windows args: namedtuple all hyper-parameters ---------- """ def __init__(self, q_m, stu_num, prob_num, know_num, time_window_num, args=default_hyper): super(EKPT, self).__init__() self.args = args self.q_m = q_m self.stu_num, self.prob_num, self.know_num = stu_num, prob_num, know_num self.time_window_num = time_window_num self.u_latent, self.i_latent, self.alpha, self.B = init_parameters(stu_num, prob_num, know_num, time_window_num) # partial order of knowledge in each problem self.par_mat = np.zeros(shape=(prob_num, know_num, know_num)) for i in range(prob_num): for o1 in range(know_num): if self.q_m[i][o1] == 0: continue for o2 in range(know_num): if self.q_m[i][o2] == 0: self.par_mat[i][o1][o2] = 1 # exercise relation self.exer_neigh = (np.dot(self.q_m, self.q_m.transpose()) > 0).astype(int) def train(self, train_data, epoch, lr=0.001, lr_b=0.0001, epsilon=1e-3, init_method='mean') -> ...: # train_data(list): response data, length = time_window_num, e.g.[[{'user_id':, 'item_id':, 'score':},...],...] assert self.time_window_num == len(train_data), 'number of time windows conflicts' u_latent, i_latent = np.copy(self.u_latent), np.copy(self.i_latent) alpha, B = np.copy(self.alpha), np.copy(self.B) # mean score of each student in train_data sum_score = np.zeros(shape=self.stu_num) sum_count = np.zeros(shape=self.stu_num) # knowledge frequency in each time window time_freq = np.zeros(shape=(self.time_window_num, self.stu_num, self.know_num)) for t in range(self.time_window_num): for record in train_data[t]: user, item, rating = record['user_id'], record['item_id'], record['score'] time_freq[t][user][np.where(self.q_m[item] == 1)[0]] += 1 sum_score[user] += rating sum_count[user] += 1 # initialize student latent with mean score if init_method == 'mean': u_latent = np.random.normal(20 * np.expand_dims(sum_score / (sum_count + 1e-9), axis=1) / self.know_num, 0.01, size=(self.time_window_num, self.stu_num, self.know_num)) for iteration in range(epoch): u_latent_tmp, i_latent_tmp = np.copy(u_latent), np.copy(i_latent) alpha_tmp, B_tmp = np.copy(alpha), np.copy(B) i_gradient = np.zeros(shape=(self.prob_num, self.know_num)) b_gradient = np.zeros(shape=self.prob_num) alpha_gradient = np.zeros(shape=self.stu_num) for t in range(self.time_window_num): u_gradient_t = np.zeros(shape=(self.stu_num, self.know_num)) record_num_t = len(train_data[t]) users = [record['user_id'] for record in train_data[t]] items = [record['item_id'] for record in train_data[t]] ratings = [record['score'] for record in train_data[t]] pred_R = [np.dot(u_latent[t][users[i]], i_latent[items[i]]) - B[items[i]] for i in range(record_num_t)] pred_u, freq_norm = stu_curve(u_latent, alpha, self.args.r, self.args.D, self.args.deltaT, self.args.S, time_freq) # both shape are (time_window_num, stu_num, know_num) for i in range(record_num_t): user, item, rating = users[i], items[i], ratings[i] R_diff = pred_R[i] - rating b_gradient[item] -= R_diff u_gradient_t[user] += R_diff * i_latent[item] i_gradient[item] += R_diff * u_latent[t][user] + self.args.lambda_S * i_latent[item] i_gradient[item] -= self.args.lambda_S * np.sum( np.expand_dims(self.exer_neigh[item], axis=1) * i_latent, axis=0) / sum(self.exer_neigh[item]) if t == 0: u_gradient_t[user] += self.args.lambda_U_1 * u_latent[0][user] else: u_gradient_t[user] += self.args.lambda_U * (u_latent[t][user] - pred_u[t - 1][user]) alpha_gradient[user] += np.dot(pred_u[t - 1][user] - u_latent[t][user], u_latent[t][user] * ( freq_norm[t - 1][user] - np.exp(-self.args.deltaT / self.args.S))) if t < self.time_window_num - 1: u_gradient_t[user] += self.args.lambda_U * (pred_u[t][user] - u_latent[t + 1][user]) * ( alpha[user] * freq_norm[t][user] + (1 - alpha[user]) * np.exp( - self.args.deltaT / self.args.S)) o1, o2 = np.where(self.par_mat[item] == 1) for j in range(len(o1)): i_gradient[item][o1[j]] -= self.args.lambda_P * 0.5 * (1 - np.tanh( 0.5 * (i_latent[item][o1[j]] - i_latent[item][o2[j]]))) i_gradient[item][o2[j]] += self.args.lambda_P * 0.5 * (1 - np.tanh( 0.5 * (i_latent[item][o1[j]] - i_latent[item][o2[j]]))) u_latent[t] -= lr * u_gradient_t i_latent -= lr * i_gradient B -= lr_b * b_gradient alpha = np.clip(alpha - lr * alpha_gradient, 0, 1) change = max(np.max(np.abs(u_latent - u_latent_tmp)), np.max(np.abs(i_latent - i_latent_tmp)), np.max(np.abs(alpha - alpha_tmp)), np.max(np.abs(B - B_tmp))) if iteration > 20 and change < epsilon: break self.u_latent, self.i_latent, self.alpha, self.B = u_latent, i_latent, alpha, B def eval(self, test_data) -> tuple: test_rmse, test_mae = [], [] for i in tqdm(test_data, "evaluating"): stu, test_id, true_score = i['user_id'], i['item_id'], i['score'] predict_rating = np.clip(np.dot(self.u_latent[-1][stu], self.i_latent[test_id]) - self.B[test_id], 0, 1) test_rmse.append((predict_rating - true_score) ** 2) test_mae.append(abs(predict_rating - true_score)) return np.sqrt(
np.average(test_rmse)
numpy.average
# -*- coding: utf-8 -*- u""" Beta regression for modeling rates and proportions. References ---------- Grün, Bettina, <NAME>, and <NAME>. Extended beta regression in R: Shaken, stirred, mixed, and partitioned. No. 2011-22. Working Papers in Economics and Statistics, 2011. Smithson, Michael, and <NAME>. "A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables." Psychological methods 11.1 (2006): 54. """ import numpy as np from scipy.special import gammaln as lgamma import patsy import statsmodels.base.wrapper as wrap import statsmodels.regression.linear_model as lm from statsmodels.tools.decorators import cache_readonly from statsmodels.base.model import ( GenericLikelihoodModel, GenericLikelihoodModelResults, _LLRMixin) from statsmodels.genmod import families _init_example = """ Beta regression with default of logit-link for exog and log-link for precision. >>> mod = BetaModel(endog, exog) >>> rslt = mod.fit() >>> print(rslt.summary()) We can also specify a formula and a specific structure and use the identity-link for precision. >>> from sm.families.links import identity >>> Z = patsy.dmatrix('~ temp', dat, return_type='dataframe') >>> mod = BetaModel.from_formula('iyield ~ C(batch, Treatment(10)) + temp', ... dat, exog_precision=Z, ... link_precision=identity()) In the case of proportion-data, we may think that the precision depends on the number of measurements. E.g for sequence data, on the number of sequence reads covering a site: >>> Z = patsy.dmatrix('~ coverage', df) >>> formula = 'methylation ~ disease + age + gender + coverage' >>> mod = BetaModel.from_formula(formula, df, Z) >>> rslt = mod.fit() """ class BetaModel(GenericLikelihoodModel): """Beta Regression. The Model is parameterized by mean and precision. Both can depend on explanatory variables through link functions. Parameters ---------- endog : array_like 1d array of endogenous response variable. exog : array_like A nobs x k array where `nobs` is the number of observations and `k` is the number of regressors. An intercept is not included by default and should be added by the user (models specified using a formula include an intercept by default). See `statsmodels.tools.add_constant`. exog_precision : array_like 2d array of variables for the precision. link : link Any link in sm.families.links for mean, should have range in interval [0, 1]. Default is logit-link. link_precision : link Any link in sm.families.links for precision, should have range in positive line. Default is log-link. **kwds : extra keywords Keyword options that will be handled by super classes. Not all general keywords will be supported in this class. Notes ----- Status: experimental, new in 0.13. Core results are verified, but api can change and some extra results specific to Beta regression are missing. Examples -------- {example} See Also -------- :ref:`links` """.format(example=_init_example) def __init__(self, endog, exog, exog_precision=None, link=families.links.Logit(), link_precision=families.links.Log(), **kwds): etmp = np.array(endog) assert np.all((0 < etmp) & (etmp < 1)) if exog_precision is None: extra_names = ['precision'] exog_precision = np.ones((len(endog), 1), dtype='f') else: extra_names = ['precision-%s' % zc for zc in (exog_precision.columns if hasattr(exog_precision, 'columns') else range(1, exog_precision.shape[1] + 1))] kwds['extra_params_names'] = extra_names super(BetaModel, self).__init__(endog, exog, exog_precision=exog_precision, **kwds) self.link = link self.link_precision = link_precision # not needed, handled by super: # self.exog_precision = exog_precision # inherited df do not account for precision params self.nobs = self.endog.shape[0] self.df_model = self.nparams - 1 self.df_resid = self.nobs - self.nparams assert len(self.exog_precision) == len(self.endog) self.hess_type = "oim" if 'exog_precision' not in self._init_keys: self._init_keys.extend(['exog_precision']) self._init_keys.extend(['link', 'link_precision']) self._null_drop_keys = ['exog_precision'] self.results_class = BetaResults self.results_class_wrapper = BetaResultsWrapper @classmethod def from_formula(cls, formula, data, exog_precision_formula=None, *args, **kwargs): if exog_precision_formula is not None: if 'subset' in kwargs: d = data.ix[kwargs['subset']] Z = patsy.dmatrix(exog_precision_formula, d) else: Z = patsy.dmatrix(exog_precision_formula, data) kwargs['exog_precision'] = Z return super(BetaModel, cls).from_formula(formula, data, *args, **kwargs) def predict(self, params, exog=None, exog_precision=None, which="mean"): """Predict values for mean or precision Parameters ---------- Parameters ---------- params : array_like The model parameters. exog : array_like Array of predictor variables for mean. exog_precision : array_like Array of predictor variables for precision. which : str - "mean" : mean, conditional expectation E(endog | exog) - "precision" : predicted precision - "linpred" : linear predictor for the mean function - "linpred_precision" : linear predictor for the precision function Returns ------- ndarray, predicted values """ k_mean = self.exog.shape[1] if which in ["mean", "linpred"]: if exog is None: exog = self.exog params_mean = params[:k_mean] # Zparams = params[k_mean:] linpred = np.dot(exog, params_mean) if which == "mean": mu = self.link.inverse(linpred) return mu else: return linpred elif which in ["precision", "linpred_precision"]: if exog_precision is None: exog_precision = self.exog_precision params_prec = params[k_mean:] linpred_prec =
np.dot(exog_precision, params_prec)
numpy.dot
# This file is part of GridCal. # # GridCal is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GridCal is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GridCal. If not, see <http://www.gnu.org/licenses/>. import numpy as np import pandas as pd from scipy.sparse.linalg import splu from scipy.sparse import csr_matrix as sparse from enum import Enum from warnings import warn from matplotlib import pyplot as plt class DiffEqSolver(Enum): EULER = 1, RUNGE_KUTTA = 2 class DynamicModels(Enum): NoModel = 0, SynchronousGeneratorOrder4 = 1, # fourth order synchronous machine SynchronousGeneratorOrder6 = 2, # sixth order synchronous machine VoltageSourceConverter = 3, # voltage source converter ExternalGrid = 4, # external grid AsynchronousSingleCageMotor = 5, # single cage asynchronous motor AsynchronousDoubleCageMotor = 6 # double cage asynchronous motor class TransientStabilityEvents: def __init__(self): self.time = list() self.event_type = list() self.object = list() self.params = list() self.events_available = ['Bus short circuit', 'Bus recovery', 'Line failure', 'Line recovery'] def add(self, t, evt_type, obj, param): """ Add elements :param t: time in seconds :param evt_type: event type :param obj: object selected :param param: extra parameters """ if evt_type not in self.events_available: raise Exception('Event not supported!') self.time.append(t) self.event_type.append(evt_type) self.object.append(obj) self.params.append(param) def remove_at(self, i): """ Remove the elements at a position :param i: index """ self.time.pop(i) self.event_type.pop(i) self.object.pop(i) self.params.pop(i) class TransientStabilityResults: def __init__(self): self.name = "Transient stability" self.voltage = None self.omega = None self.time = None self.available_results = ['Bus voltage'] def plot(self, result_type, ax=None, indices=None, names=None, LINEWIDTH=2): """ Plot the results :param result_type: :param ax: :param indices: :param names: :return: """ if ax is None: fig = plt.figure() ax = fig.add_subplot(111) if indices is None: indices = np.array(range(len(names))) if len(indices) > 0: labels = names[indices] y_label = '' title = '' if result_type == 'Bus voltage': y = np.abs(self.voltage[:, indices]) y_label = '(p.u.)' title = 'Bus voltage module' else: pass df = pd.DataFrame(data=y, columns=labels, index=self.time) df.fillna(0, inplace=True) if len(df.columns) > 10: df.plot(ax=ax, linewidth=LINEWIDTH, legend=False) else: df.plot(ax=ax, linewidth=LINEWIDTH, legend=True) ax.set_title(title) ax.set_ylabel(y_label) ax.set_xlabel('Time') return df else: return None class SynchronousMachineOrder4: """ 4th Order Synchronous Machine Model https://wiki.openelectrical.org/index.php?title=Synchronous_Machine_Models#4th_Order_.28Two-Axis.29_Model Copyright (C) 2014-2015 <NAME>. All rights reserved. typical values: Ra = 0.0 Xa = 0.0 Xd = 1.68 Xq = 1.61 Xdp = 0.32 Xqp = 0.32 Xdpp = 0.2 Xqpp = 0.2 Td0p = 5.5 Tq0p = 4.60375 Td0pp = 0.0575 Tq0pp = 0.0575 H = 2 """ def __init__(self, H, Ra, Xd, Xdp, Xdpp, Xq, Xqp, Xqpp, Td0p, Tq0p, base_mva, Sbase, bus_idx, fn=50, speed_volt=False, solver=DiffEqSolver.RUNGE_KUTTA): """ :param H: is the machine inertia constant (MWs/MVA) :param Ra: armature resistance (pu) :param Xd: d-axis reactance (p.u.) :param Xdp: d-axis transient reactance (p.u.) :param Xdpp:is the d-axis subtransient reactance (pu) :param Xq: q-axis reactance (p.u.) :param Xqp: q-axis transient reactance (p.u.) :param Xqpp: is the q-axis subtransient reactance (pu) :param Td0p: d-axis transient open loop time constant (s) :param Tq0p: q-axis transient open loop time constant (s) :param base_mva: machine base power :param Sbase: system base power (100 MVA usually) :param fn: frequency :param speed_volt: include speed-voltage term option? :param solver: DiffEqSolver """ self.solver = solver self.bus_idx = bus_idx self.Vfd = 0.0 self.Id = 0.0 self.Iq = 0.0 # stator voltage (d, q axis) self.Vd = 0.0 self.Vq = 0.0 self.Vt = 0.0 self.P = 0.0 self.Q = 0.0 self.Pm = 0.0 self.omega = 0.0 self.delta = 0.0 self.Eqp = 0.0 self.Edp = 0.0 self.Vang = 0.0 self.Tm = 0.0 self.In = 0.0 self.Im = 0.0 self.omega_prev = 0.0 self.delta_prev = 0.0 self.Eqp_prev = 0.0 self.Edp_prev = 0.0 self.arr_Eqp = np.zeros(3) self.arr_Edp = np.zeros(3) self.arr_omega = np.zeros(3) self.arr_delta = np.zeros(3) self.Td0p = Td0p self.Tq0p = Tq0p # angular speed (w = 2·pi·f) self.omega_n = 2.0 * np.ones_like(H) * np.pi * fn # Check for speed-voltage term option self.speed_volt = speed_volt # True / False # Convert impedances and H to system MVA base self.H = H * base_mva / Sbase self.Ra = Ra * Sbase / base_mva self.Xd = Xd * Sbase / base_mva self.Xdp = Xdp * Sbase / base_mva self.Xdpp = Xdpp * Sbase / base_mva self.Xq = Xq * Sbase / base_mva self.Xqp = Xqp * Sbase / base_mva self.Xqpp = Xqpp * Sbase / base_mva # Equivalent Norton impedance for Ybus self.Yg = self.get_yg() def get_yg(self): """ Get the generator admittance :return: shunt admittance """ return (self.Ra - 1j * 0.5 * (self.Xdp + self.Xqp)) / (self.Ra ** 2.0 + (self.Xdp * self.Xqp)) def initialise(self, vt0, S0): """ Initialise machine signals and states based on load flow voltage and complex power injection :param vt0: complex initial voltage :param S0: complex initial power :return: """ # Calculate initial armature current Ia0 = np.conj(S0 / vt0) phi0 = np.angle(Ia0) # Calculate steady state machine emf (i.e. voltage behind synchronous reactance) Eq0 = vt0 + (self.Ra + 1j * self.Xq) * Ia0 self.delta = np.angle(Eq0) # Convert currents to rotor reference frame self.Id =
np.abs(Ia0)
numpy.abs
import sys from os.path import join, dirname from tqdm import tqdm import numpy as np import scipy as sp sys.path.append(join(dirname(__file__), "../..")) from src.utils.factory import calc_acc , calc_loss_NTK class LearningCurve: def __init__(self, cfg, lr, NTK_train, train_label, f_train_0, f_test_0): self.time_range = np.arange(0, cfg.GENERAL.EPOCH, 1) self.n_train = int(cfg.DATA.DATA_NUM * (1 - cfg.DATA.SPLIT_RATIO)) self.n_class = cfg.DATA.CLASS self.NTK_train = NTK_train self.train_label = train_label self.f_train_0 = f_train_0 self.f_test_0 = f_test_0 self.id_mat = np.eye(self.n_train) self.lr = lr self.diff, self.P, self.D = self.prepare() def prepare(self): diff = self.f_train_0 - self.train_label mat = self.id_mat - self.lr * self.NTK_train / (self.n_train * self.n_class) diag, P = np.linalg.eigh(mat) D = np.diag(diag) return diff, P, D def basic_calc(self, epoch, split, label, NTK_prod=None): if epoch == 0: p_mat = self.id_mat else: p_mat = self.P @ (self.D**epoch) @ self.P.T if split == 'train': output =
np.dot(p_mat, self.diff)
numpy.dot
import numpy as np; from numpy.linalg import inv from numpy.linalg import svd from numpy.linalg import eig from numpy.linalg import det from scipy.optimize import leastsq,least_squares,fmin import pandas as pd import numpy as np import time import random import os.path import argparse from epipolar_geometry import EpipolarGeometry from model import RecModel from image_sequence import ImageSequence class UncalibratedReconstruction: ''' Class that contains high level methods to perform 3D reconstruction from a sequence of uncalibrated images. ''' def __init__(self,sequence_length,width,height,triang_method=0,opt_triang=0,opt_f=1,self_foc=0): ''' Constructor Args: sequence_length: number of images (views) width: width of the images height: height of the images triang_method: triangulation method (0: standard, 1: polynomial) opt_triang: optimize initial 3D point estimate opt_f: optimize fundamental matrix estimation self_foc: for self-calibration, type of focal length expected across views (0: fixed, 1: varying ) ''' self._eg_utils=EpipolarGeometry() #things that are needed throught the class self._sequence_length=sequence_length self._width=width; self._height=height; self._mm=(width+height)/2; self._triangulation_method=triang_method self._optimize_triangulation=opt_triang self._optimize_f=opt_f self._self_foc=self_foc def two_view_geometry_computation(self,view1_feat2D,view2_feat2D): ''' Method to compute the fundamental matrix and epipoles for two views Args: view1_feat2D: 2D feature coordinates in view 1 view2_feat2D: 2D feature coordinates in view 2 Returns: F: the fundamental matrix epipole_1: view1 epipole epipole_2: view2 epipoles ''' F=self._eg_utils.fundamental_matrix(view1_feat2D,view2_feat2D,self._optimize_f) epipole_1=self._eg_utils.get_epipole(F) epipole_2=self._eg_utils.get_epipole(np.transpose(F)) return F,epipole_1,epipole_2 def compute_reference_frame(self,epipole,F): ''' Method to compute the reference frame of the reconstruction (i.e. plane at infinity in an affine or metric space). Args: epipole: the epipole F: the fundamental matrix Returns: p: the reference plane h: the homography [e]xF ''' H=self._eg_utils.compute_homography(epipole,F) #compute the homography [e]xF # get the reference plane p = np.sum(np.divide(np.eye(3)-H, np.transpose(np.asarray([epipole, epipole, epipole]))),axis=0)/3 # adjust reference plane to make the first two projection matrices as equal as possible p=fmin(self.init_plane,np.append(p,1),xtol=1e-25,ftol=1e-25,args=(H.real,epipole.real)); p=p[0:3] return p, H def init_plane(self,p,H,epi): ''' Error function to make the difference between the first two projection matrices as small as possible Note: assuming that the two views used for the initial reconstruction are not too far apart (this their projection matrices are almost equal), has proven to give good results Args: p: the reference plane (i.e. plane at infinity) H: homography [e]x[F] epi: epipola Returns: error: difference between two projection matrices ''' epi=np.reshape(epi,(3,1)); p=np.reshape(p,(1,4)); t=p[0,0:3] t=np.reshape(t,(1,3)) error =sum(sum(abs(H+epi.dot(t)-p[0,3]*np.eye(3)))); return error def estimate_initial_projection_matrices(self,H,epipole_2,p): ''' Method to estimate the projection matrices for the two views (i.e. P1=[I | 0], P2=[H+epi1|e]) Args: H: homography [e]x[F] epipole_2: epipole in the 2nd view p: the reference plane of the reconstruction (i.e. plane at infinity) Returns: P: projection matrices for these two views ''' P=np.zeros((3,4,self._sequence_length)) P[:,:,0] = [[1,0,0,0],[0,1,0,0],[0,0,1,0]]; # P1=[I | 0], i.e. frist frame aligned with world frame epi_tmp=np.reshape(epipole_2,(3,1)); # P2=[H+epi1|e] P[:,:3,1]=H+epi_tmp.dot(np.reshape(p,(1,3))) P[:,3,1]= epipole_2 P[:,:,1]= P[:,:,1]/P[2,2,1] return P def get_initial_structure(self,feat_2D,P,epipole_1,epipole_2,F): ''' Method to get an initial 3D structure (i.e. 3D point cloud), from the first two projection matrices through triangulation. Args: feat_2D: 2D feature coordinates for all images P: projection matrices for all views (only the first two views are used) epipole_1: view 1 epipole epipole_2: view 2 epipole F: fundamental matrix Returns: points3D: 3D point cloud ''' number_of_features=feat_2D.shape[2] points3D=np.zeros(shape=[number_of_features,4]); for i in range(0,number_of_features): if (self._triangulation_method==0): x=self._eg_utils.triangulate_points(feat_2D[0,:,i],feat_2D[1,:,i],P[:,:,0],P[:,:,1]); x=x[0:3] elif (self._triangulation_method==1): x=self._eg_utils.polynomial_triangulation(feat_2D[1,:,i],feat_2D[1,:,i],epipole_1,epipole_2,F,P[:,:,0],P[:,:,1]) x=x[0:3]/x[3] # normalize if (self._optimize_triangulation==1): #refine 3D point estimation (due to noise, lines of sight may not intersect perfectly). Minimizations should be carried out in the images # and not in the projective 3D space, thus the reprojection error is used. x=fmin(self.refine_3d_point,x, xtol=1e-25,ftol=1e-25, full_output=0, args=(P[:,:,0],P[:,:,1],feat_2D[0,:,i],feat_2D[1,:,i])) points3D[i,:]=np.append(x,1) return points3D def refine_3d_point(self,point3D,P1,P2,view1_feat2D,view2_feat2D): ''' Method to compute the reprojection error of a 3D point in two views Args: point3D: 3D point cloud P1: projection matrix of view 1 P2: projection matrix of view 2 view1_feat2D: 2D feature coordinates in view 1 view2_feat2D: 2D feature coordinates in view 1 Returns: error: the reprojection error ''' point3D=np.append(point3D,1); error=sum(self.compute_reprojection_error_point(P1,point3D,view1_feat2D)+self.compute_reprojection_error_point(P2,point3D,view2_feat2D)) # sdfds return error def projective_pose_estimation(self,feat_2D,P,points3D): ''' Method to add views using an initial 3D structure, i.e. compute the projection matrices for all the additional views (the first two are already estimated in previous steps) Args: feat_2D: 2D feature coordinates for all images P: projection matrices points3d: 3D point cloud Returns: P: projection matrices for all views ''' number_of_features=feat_2D.shape[2] AA=np.zeros(shape=[2*number_of_features,12]); for i in range(2,self._sequence_length): for j in range(0,number_of_features): AA[2*j,0:4]=points3D[j]; AA[2*j,8:12]=-feat_2D[i,0,j]*points3D[j] AA[2*j+1,4:8]=points3D[j]; AA[2*j+1,8:12]=-feat_2D[i,1,j]*points3D[j] U, s, Vh = svd(AA) V=np.transpose(Vh) VV=V[0:12,11] VV=VV/VV[10] VV=np.delete(VV,10) #refine the estimate for the i-th projection matrix result=least_squares(self._eg_utils.refine_projection_matrix,VV, args=(points3D,feat_2D[i,:,:])) VV=result.x Pr=np.zeros(shape=[3,4]); Pr[0,:]=VV[0:4] Pr[1,:]=VV[4:8] Pr[2,:]=np.append(np.append(VV[8:10],1),VV[10]) P[:,:,i]=Pr return P def bundle_adjustment(self,feat_2D,P,feat3D): ''' Method to refine structure and motion, i.e. refine the projection matrices and 3D points using the reprojection error Args: feat_2D: 2D feature coordinates for all images P: projection matrices points3d: 3D point cloud Returns: P: the refined projection matrices feat3D: the refined 3D point cloud error: the reprojection error ''' number_of_features=feat_2D.shape[2] #The vector to be optimized X=np.reshape(P[:,:,0],(1,12)); # Append the projection matrices... for i in range(1,self._sequence_length): X=np.append(X,np.reshape(P[:,:,i],(1,12))) X=np.delete(X,[10,22,(self._sequence_length-1)*12+10]) # ...and then append the 3D points X=np.append(X,np.reshape(feat3D[:,0:3],number_of_features*self._sequence_length)) # Optimize using Levenberg-Marquardt result=least_squares(self._eg_utils.overall_reprojection_error,X, max_nfev=1000,method='lm',args=([feat_2D])) X=result.x error=np.power(sum(self._eg_utils.overall_reprojection_error(X,feat_2D)),2) #get the refined projection matrices from the optimal vector for i in range(0,self._sequence_length): P[:,:,i]=np.reshape(X[0+i*11:12+i*11],(3,4)); P[2,3,i]=P[2,2,i] P[2,2,i]=1 #get the refined 3D coordinates from the optimal vector feat3D[:,0:3]=np.reshape(X[self._sequence_length*11:self._sequence_length*11+self._sequence_length*number_of_features*3],(number_of_features,3)) Tp1= np.vstack([P[:,:,0],[0,0,0,1]]); for i in range(0,self._sequence_length): P[:,:,i]=P[:,:,i].dot(inv(Tp1)) feat3D=Tp1.dot(np.transpose(feat3D)) feat3D=np.transpose(feat3D/feat3D[3,:]); return P,feat3D,error def self_calibration(self,P): ''' Self calibration using the procedure described in <NAME>, <NAME> and <NAME>, "Self-Calibration and Metric Reconstruction in spite of Varying and Unknown Internal Camera Parameters", Proc. International Conference on Computer Vision, Narosa Publishing House, pp.90-95, 1998. Args: P: projection matrices Returns: Tm: transformation matrix that will transform from the projective space to metric space K: camera intrisic parameters for each view error: the reprojection error ''' # setup the system of equations AAA=np.zeros(shape=[4*self._sequence_length-4,6]); for i in range(0,self._sequence_length-1): P_tmp=P[:,:,i+1] AAA[0+4*i,:]=[(-np.power(P_tmp[1, 1],2)+np.power(P_tmp[0, 1],2)-np.power(P_tmp[1, 0],2)+np.power(P_tmp[0, 0],2)) ,(-2*P_tmp[1, 0]*P_tmp[1, 3]+2*P_tmp[0, 0]*P_tmp[0, 3]),(-2*P_tmp[1, 1]*P_tmp[1, 3]+2*P_tmp[0, 1]*P_tmp[0, 3]),(2*P_tmp[0, 2]*P_tmp[0, 3]-2*P_tmp[1, 2]*P_tmp[1, 3]),(-
np.power(P_tmp[1, 3],2)
numpy.power
""" Name: Transfer Matrix Author: <NAME> Contact: <EMAIL> Affiliation: Nara Institute of Science and Technology """ import argparse import csv import importlib.resources as pkg_resources import multiprocessing import numpy as np import os import sys from ruamel.yaml import YAML import scipy.constants as const from scipy import interpolate import time from tqdm import tqdm from pistachio.data import refractive_index_data yaml = YAML() class Layer: """ Contains information and functions associated with a single, planar layer. Attributes ---------- material : string Name of the material comprising this layer. thickness : float Thickness of the layer (in meters). refractive_index : [...,...,...] 1d array Real part of the complex refractive index. extinction_coeff : [..., ..., ...] 1d array Imaginary part of the complex refractive index. """ def __init__(self, material="Air", thickness=1.0e-3, num_points=100): self.material = material self.thickness = thickness self.wavelengths = [] self.refractive_index = [] self.extinction_coeff = [] self.set_complex_refractive(self.refractive_index, self.extinction_coeff) self.kx = [] self.kz = [] self.transfer_matrices = [] def set_complex_refractive(self, n_real=None, n_imag=None): """ Sets the complex refractive index. Parameters ---------- n_real : [...,...,...] 1d array of floats List of real part of the refractive index for different wavelengths. n_imag : [...,...,...] 1 array of floats List of imaginary part of the refractive index for different wavelengths. Returns ------- None """ n_complex = [] for ii in range(len(n_real)): n_complex.append(n_real[ii] + 1j * n_imag[ii]) self.complex_refractive = np.array(n_complex) def get_data_from_csv(self, refractive_filename): """ Extracts refractive index data associated with a layer material from file downloaded from refractiveindex.info and sets wavelength, real refractive index, and extinction coefficient (if present). Parameters ---------- refractive_filename : str Name of the .csv file in data/refractive_index_data from which to extract refractive index data. Returns ------- None Notes ---- The data from refractiveindex.info uses micrometers for wavelength units. This function assumes the file is left as is and converts to meters. """ with pkg_resources.path(refractive_index_data, refractive_filename) as params: params = os.path.abspath(params) wavelen = [] n_real = [] n_imag = [] with open(params, 'r', encoding='utf-8') as csv_file: csvreader = csv.reader(csv_file) next(csvreader, None) for row in csvreader: # wavelen.append(float(row[0]) * 10**-6) wavelen.append(float(row[0])) n_real.append(float(row[1])) try: n_imag.append(float(row[2])) except IndexError: n_imag.append(0.0) self.wavelengths = np.array(wavelen) self.refractive_index = np.array(n_real) self.extinction_coeff = np.array(n_imag) self.set_complex_refractive(n_real, n_imag) def make_datapoints(self, wavelengths): """ Makes a new set of data points from user-defined num_points and max/min wavelength, and uses SciPy interpolation to match spacing and number of data points for refractive index so that array lengths are consistent between layers. SciPy's interpolate.interp1d uses x and y values to generate a function whose argument uses interpolation to find the value of new points. f(x) = y See the documentation for details. https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d Parameters ---------- wavelengths: [..., ..., ...] 1d array List of user-defined wavelengths of light (in meters) via max, min wavelength in yaml config file. Returns ------- None Notes ----- Interpolation of the refractive index passes unit testing for values in the middle of the new values for x (wavelengths) passed into the interpolation functions. Original refractive index and extinction coefficients are usually given to about three decimal places. Interpolated values sometimes preserve the original value to the full precision, but sometimes differ past the first or second demical place. This is something the user ought to be aware of. The user should conduct independent tests of the accuracy of their own data. Furthermore, data near the edges of x are unstable and deviate a few percent from the reference data. When constructing new wavelength data using this function, DO NOT use wavelengths outside of any reference refractive index data that you provide. The function will extrapolate that data instead of raising an error, and the new refractive indices may be unphysical. """ num_points = len(wavelengths) if len(self.refractive_index) == 1: self.refractive_index =
np.full(num_points, self.refractive_index)
numpy.full
# -*- coding: utf-8 -*- import numpy as np import tensorflow as tf def _rand_rectangle(H,W): """ pick a random rectangle in a (H,W) image """ dh = np.random.randint(int(H/16)+1, int(H/4)) dw = np.random.randint(int(W/16)+1, int(W/4)) top = np.random.randint(0, H-dh-1) left = np.random.randint(0, W-dw-1) return top, left, top+dh, left+dw def _circle_mask_generator(imshape, intensity=3): """ Generator that yields circular masks :imsize: 2-tuple of image dimensions :intensity: poisson intensity for number of circles to draw """ xx, yy = np.meshgrid(np.arange(imshape[0]), np.arange(imshape[1])) while True: num_circles = np.random.poisson(3) mask = np.zeros(imshape, dtype=np.float32) for n in range(num_circles): x0 = np.random.randint(0, imshape[1]) y0 = np.random.randint(0, imshape[0]) r = np.random.uniform(10, (imshape[0]+imshape[1])/8) clip = (xx - x0)**2 +(yy - y0)**2 <= r**2 mask[clip] = 1 yield np.expand_dims(mask, 2) def _splotch_mask_generator(imshape): """ Generator that yields splotchy masks :imshape: 2-tuple of image dimensions """ xx, yy = np.meshgrid(
np.arange(imshape[0])
numpy.arange
import random import operator import time import numpy as np import tensorflow as tf from multiprocessing import Process, Pipe def safemean(xs): return np.nan if len(xs) == 0 else np.mean(xs) def tf_sum(x, axis=None, keepdims=False): axis = None if axis is None else [axis] return tf.reduce_sum(x, axis=axis, keep_dims=keepdims) class Pd(object): """ A particular probability distribution """ def flatparam(self): raise NotImplementedError def mode(self): raise NotImplementedError def neglogp(self, x): # Usually it's easier to define the negative logprob raise NotImplementedError def kl(self, other): raise NotImplementedError def entropy(self): raise NotImplementedError def sample(self): raise NotImplementedError def logp(self, x): return - self.neglogp(x) class PdType(object): """ Parametrized family of probability distributions """ def pdclass(self): raise NotImplementedError def pdfromflat(self, flat): return self.pdclass()(flat) def param_shape(self): raise NotImplementedError def sample_shape(self): raise NotImplementedError def sample_dtype(self): raise NotImplementedError def param_placeholder(self, prepend_shape, name=None): return tf.placeholder(dtype=tf.float32, shape=prepend_shape+self.param_shape(), name=name) def sample_placeholder(self, prepend_shape, name=None): return tf.placeholder(dtype=self.sample_dtype(), shape=prepend_shape+self.sample_shape(), name=name) class DiagGaussianPdType(PdType): def __init__(self, size): self.size = size def pdclass(self): return DiagGaussianPd def param_shape(self): return [2*self.size] def sample_shape(self): return [self.size] def sample_dtype(self): return tf.float32 class DiagGaussianPd(Pd): def __init__(self, flat): self.flat = flat mean, logstd = tf.split(axis=len(flat.shape)-1, num_or_size_splits=2, value=flat) self.mean = mean self.logstd = logstd self.std = tf.exp(logstd) def flatparam(self): return self.flat def mode(self): return self.mean def neglogp(self, x): return 0.5 * tf_sum(tf.square((x - self.mean) / self.std), axis=-1) \ + 0.5 * np.log(2.0 * np.pi) * tf.to_float(tf.shape(x)[-1]) \ + tf_sum(self.logstd, axis=-1) def kl(self, other): assert isinstance(other, DiagGaussianPd) return tf_sum(other.logstd - self.logstd + (tf.square(self.std) + tf.square(self.mean - other.mean)) / (2.0 * tf.square(other.std)) - 0.5, axis=-1) def entropy(self): return tf_sum(self.logstd + .5 * np.log(2.0 * np.pi * np.e), axis=-1) def sample(self): return self.mean + self.std * tf.random_normal(tf.shape(self.mean)) @classmethod def fromflat(cls, flat): return cls(flat) class VecEnv(object): """ Vectorized environment base class """ def step(self, vac): """ Apply sequence of actions to sequence of environments actions -> (observations, rewards, news) where 'news' is a boolean vector indicating whether each element is new. """ raise NotImplementedError def reset(self): """ Reset all environments """ raise NotImplementedError def close(self): pass class DummyVecEnv(VecEnv): def __init__(self, env_fns): self.envs = [fn() for fn in env_fns] env = self.envs[0] self.action_space = env.action_space self.observation_space = env.observation_space self.ts = np.zeros(len(self.envs), dtype='int') def step(self, action_n): results = [env.step(a) for (a,env) in zip(action_n, self.envs)] obs, rews, dones, infos = map(np.array, zip(*results)) self.ts += 1 for (i, done) in enumerate(dones): if done: obs[i] = self.envs[i].reset() self.ts[i] = 0 return np.array(obs), np.array(rews), np.array(dones), infos def reset(self): results = [env.reset() for env in self.envs] return np.array(results) def render(self): return self.envs[0].render() @property def num_envs(self): return len(self.envs) class DummyVecTestEnv(VecEnv): def __init__(self, env_fns): self.envs = [fn() for fn in env_fns] env = self.envs[0] self.action_space = env.action_space self.observation_space = env.observation_space self.ts = np.zeros(len(self.envs), dtype='int') def step(self, action_n): results = [env.step(a) for (a,env) in zip(action_n, self.envs)] obs, rews, dones, infos = map(np.array, zip(*results)) return np.array(obs), np.array(rews), np.array(dones), infos def reset(self): results = [env.reset() for env in self.envs] return np.array(results) def render(self): return self.envs[0].render() @property def num_envs(self): return len(self.envs) class VecNormalize(VecEnv): """ Vectorized environment base class """ def __init__(self, venv, ob=True, ret=False, clipob=10., cliprew=10., gamma=0.99, epsilon=1e-8): self.venv = venv self._observation_space = self.venv.observation_space self._action_space = venv.action_space self.ob_rms = RunningMeanStd(shape=self._observation_space.shape) if ob else None self.ret_rms = RunningMeanStd(shape=()) if ret else None self.clipob = clipob self.cliprew = cliprew self.ret = np.zeros(self.num_envs) self.gamma = gamma self.epsilon = epsilon def step(self, vac): """ Apply sequence of actions to sequence of environments actions -> (observations, rewards, news) where 'news' is a boolean vector indicating whether each element is new. """ obs, rews, news, infos = self.venv.step(vac) self.ret = self.ret * self.gamma + rews obs = self._obfilt(obs) if self.ret_rms: self.ret_rms.update(self.ret) rews = np.clip(rews / np.sqrt(self.ret_rms.var + self.epsilon), -self.cliprew, self.cliprew) return obs, rews, news, infos def _obfilt(self, obs): if self.ob_rms: self.ob_rms.update(obs) obs = np.clip((obs - self.ob_rms.mean) / np.sqrt(self.ob_rms.var + self.epsilon), -self.clipob, self.clipob) return obs else: return obs def reset(self): """ Reset all environments """ obs = self.venv.reset() return self._obfilt(obs) @property def action_space(self): return self._action_space @property def observation_space(self): return self._observation_space def close(self): self.venv.close() @property def num_envs(self): return self.venv.num_envs class VecNormalizeTest(VecEnv): def __init__(self, venv, mean, var, clipob=10., epsilon=1e-8): self.venv = venv self._observation_space = self.venv.observation_space self._action_space = venv.action_space self.mean = mean self.var = var self.clipob = clipob self.epsilon = epsilon def render(self): return self.venv.render() def step(self, vac): obs, rews, dones, infos = self.venv.step(vac) obs = self._obfilt(obs) return obs, rews, dones, infos def _obfilt(self, obs): obs = np.clip((obs - self.mean) / np.sqrt(self.var + self.epsilon), -self.clipob, self.clipob) return obs def reset(self): obs = self.venv.reset() return self._obfilt(obs) @property def action_space(self): return self._action_space @property def observation_space(self): return self._observation_space def close(self): self.venv.close() @property def num_envs(self): return self.venv.num_envs def worker(remote, parent_remote, env_fn_wrapper): parent_remote.close() env = env_fn_wrapper.x() while True: cmd, data = remote.recv() if cmd == 'step': ob, reward, done, info = env.step(data) if done: ob = env.reset() remote.send((ob, reward, done, info)) elif cmd == 'reset': ob = env.reset() remote.send(ob) elif cmd == 'reset_task': ob = env.reset_task() remote.send(ob) elif cmd == 'close': remote.close() break elif cmd == 'get_spaces': remote.send((env.action_space, env.observation_space)) else: raise NotImplementedError class CloudpickleWrapper(object): """ Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle) """ def __init__(self, x): self.x = x def __getstate__(self): import cloudpickle return cloudpickle.dumps(self.x) def __setstate__(self, ob): import pickle self.x = pickle.loads(ob) class SubprocVecEnv(VecEnv): def __init__(self, env_fns): """ envs: list of gym environments to run in subprocesses """ self.closed = False nenvs = len(env_fns) self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)]) self.ps = [Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn))) for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)] for p in self.ps: p.daemon = True # if the main process crashes, we should not cause things to hang p.start() for remote in self.work_remotes: remote.close() self.remotes[0].send(('get_spaces', None)) self.action_space, self.observation_space = self.remotes[0].recv() def step(self, actions): for remote, action in zip(self.remotes, actions): remote.send(('step', action)) results = [remote.recv() for remote in self.remotes] obs, rews, dones, infos = zip(*results) return np.stack(obs), np.stack(rews), np.stack(dones), infos def reset(self): for remote in self.remotes: remote.send(('reset', None)) return np.stack([remote.recv() for remote in self.remotes]) def reset_task(self): for remote in self.remotes: remote.send(('reset_task', None)) return np.stack([remote.recv() for remote in self.remotes]) def close(self): if self.closed: return for remote in self.remotes: remote.send(('close', None)) for p in self.ps: p.join() self.closed = True @property def num_envs(self): return len(self.remotes) class SegmentTree(object): def __init__(self, capacity, operation, neutral_element): """Build a Segment Tree data structure. https://en.wikipedia.org/wiki/Segment_tree Can be used as regular array, but with two important differences: a) setting item's value is slightly slower. It is O(lg capacity) instead of O(1). b) user has access to an efficient `reduce` operation which reduces `operation` over a contiguous subsequence of items in the array. Paramters --------- capacity: int Total size of the array - must be a power of two. operation: lambda obj, obj -> obj and operation for combining elements (eg. sum, max) must for a mathematical group together with the set of possible values for array elements. neutral_element: obj neutral element for the operation above. eg. float('-inf') for max and 0 for sum. """ assert capacity > 0 and capacity & (capacity - 1) == 0, "capacity must be positive and a power of 2." self._capacity = capacity self._value = [neutral_element for _ in range(2 * capacity)] self._operation = operation def _reduce_helper(self, start, end, node, node_start, node_end): if start == node_start and end == node_end: return self._value[node] mid = (node_start + node_end) // 2 if end <= mid: return self._reduce_helper(start, end, 2 * node, node_start, mid) else: if mid + 1 <= start: return self._reduce_helper(start, end, 2 * node + 1, mid + 1, node_end) else: return self._operation( self._reduce_helper(start, mid, 2 * node, node_start, mid), self._reduce_helper(mid + 1, end, 2 * node + 1, mid + 1, node_end) ) def reduce(self, start=0, end=None): """Returns result of applying `self.operation` to a contiguous subsequence of the array. self.operation(arr[start], operation(arr[start+1], operation(... arr[end]))) Parameters ---------- start: int beginning of the subsequence end: int end of the subsequences Returns ------- reduced: obj result of reducing self.operation over the specified range of array elements. """ if end is None: end = self._capacity if end < 0: end += self._capacity end -= 1 return self._reduce_helper(start, end, 1, 0, self._capacity - 1) def __setitem__(self, idx, val): # index of the leaf idx += self._capacity self._value[idx] = val idx //= 2 while idx >= 1: self._value[idx] = self._operation( self._value[2 * idx], self._value[2 * idx + 1] ) idx //= 2 def __getitem__(self, idx): assert 0 <= idx < self._capacity return self._value[self._capacity + idx] class SumSegmentTree(SegmentTree): def __init__(self, capacity): super(SumSegmentTree, self).__init__( capacity=capacity, operation=operator.add, neutral_element=0.0 ) def sum(self, start=0, end=None): """Returns arr[start] + ... + arr[end]""" return super(SumSegmentTree, self).reduce(start, end) def find_prefixsum_idx(self, prefixsum): """Find the highest index `i` in the array such that sum(arr[0] + arr[1] + ... + arr[i - i]) <= prefixsum if array values are probabilities, this function allows to sample indexes according to the discrete probability efficiently. Parameters ---------- perfixsum: float upperbound on the sum of array prefix Returns ------- idx: int highest index satisfying the prefixsum constraint """ assert 0 <= prefixsum <= self.sum() + 1e-5 idx = 1 while idx < self._capacity: # while non-leaf if self._value[2 * idx] > prefixsum: idx = 2 * idx else: prefixsum -= self._value[2 * idx] idx = 2 * idx + 1 return idx - self._capacity class MinSegmentTree(SegmentTree): def __init__(self, capacity): super(MinSegmentTree, self).__init__( capacity=capacity, operation=min, neutral_element=float('inf') ) def min(self, start=0, end=None): """Returns min(arr[start], ..., arr[end])""" return super(MinSegmentTree, self).reduce(start, end) class ReplayBuffer(object): def __init__(self, size): """Create Prioritized Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. """ self._storage = [] self._maxsize = size self._next_idx = 0 def __len__(self): return len(self._storage) def add(self, obs_t, action, reward, obs_tp1, done): data = (obs_t, action, reward, obs_tp1, done) if self._next_idx >= len(self._storage): self._storage.append(data) else: self._storage[self._next_idx] = data self._next_idx = (self._next_idx + 1) % self._maxsize def _encode_sample(self, idxes): obses_t, actions, rewards, obses_tp1, dones = [], [], [], [], [] for i in idxes: data = self._storage[i] obs_t, action, reward, obs_tp1, done = data obses_t.append(np.array(obs_t, copy=False)) actions.append(np.array(action, copy=False)) rewards.append(reward) obses_tp1.append(np.array(obs_tp1, copy=False)) dones.append(done) return np.array(obses_t),
np.array(actions)
numpy.array
# Copyright 2014 Diamond Light Source Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. module:: vo_centering_iterative :platform: Unix :synopsis: A plugin to find the center of rotation per frame .. moduleauthor:: <NAME> <<EMAIL>> """ import math import logging import numpy as np import scipy.ndimage as ndi import scipy.ndimage.filters as filter import pyfftw.interfaces.scipy_fftpack as fft from scipy import signal from savu.plugins.utils import register_plugin from savu.data.plugin_list import CitationInformation from savu.plugins.filters.base_filter import BaseFilter from savu.plugins.driver.iterative_plugin import IterativePlugin # :u*param search_area: Search area in pixels from horizontal approximate \ # centre of the image. Default: (-50, 50). @register_plugin class VoCenteringIterative(BaseFilter, IterativePlugin): """ A plugin to calculate the centre of rotation using the Vo Method :param ratio: The ratio between the size of object and FOV of \ the camera. Default: 0.5. :param row_drop: Drop lines around vertical center of the \ mask. Default: 20. :param search_radius: Use for fine searching. Default: 6. :param step: Step of fine searching. Default: 0.5. :param expand_by: The number of pixels to expand the search region by \ on each iteration. Default: 5 :param boundary_distance: Accepted distance of minima from the boundary of\ the listshift in the coarse search. Default: 3. :u*param preview: A slice list of required frames (sinograms) to use in \ the calulation of the centre of rotation (this will not reduce the data \ size for subsequent plugins). Default: []. :param datasets_to_populate: A list of datasets which require this \ information. Default: []. :param out_datasets: The default \ names. Default: ['cor_raw','cor_fit', 'reliability']. :u*param start_pixel: The approximate centre. If value is None, take the \ value from .nxs file else set to image centre. Default: None. """ def __init__(self): super(VoCenteringIterative, self).__init__("VoCenteringIterative") self.search_area = (-20, 20) self.peak_height_min = 50000 # arbitrary self.min_dist = 3 # min distance deamed acceptible from boundary self.expand_by = 5 # expand the search region by this amount self.list_shift = None self.warning_level = 0 self.final = False self.at_boundary = False self.list_metric = [] self.expand_direction = None def _create_mask(self, Nrow, Ncol, obj_radius): du, dv = 1.0/Ncol, (Nrow-1.0)/(Nrow*2.0*math.pi) cen_row, cen_col = int(np.ceil(Nrow/2)-1), int(np.ceil(Ncol/2)-1) drop = self.parameters['row_drop'] mask = np.zeros((Nrow, Ncol), dtype=np.float32) for i in range(Nrow): num1 = np.round(((i-cen_row)*dv/obj_radius)/du) p1, p2 = (np.clip(np.sort((-num1+cen_col, num1+cen_col)), 0, Ncol-1)).astype(int) mask[i, p1:p2+1] = np.ones(p2-p1+1, dtype=np.float32) if drop < cen_row: mask[cen_row-drop:cen_row+drop+1, :] = \ np.zeros((2*drop + 1, Ncol), dtype=np.float32) mask[:, cen_col-1:cen_col+2] = np.zeros((Nrow, 3), dtype=np.float32) return mask def _get_start_shift(self, centre): if self.parameters['start_pixel'] is not None: shift = centre - int(self.parameters['start_pixel']/self.downlevel) else: in_mData = self.get_in_meta_data()[0] shift = centre - in_mData['centre'] if 'centre' in \ in_mData.get_dictionary().keys() else 0 return int(shift) def _coarse_search(self, sino, list_shift): # search minsearch to maxsearch in 1 pixel steps list_metric = np.zeros(len(list_shift), dtype=np.float32) (Nrow, Ncol) = sino.shape # check angles to determine if a sinogram should be chopped off. # Copy the sinogram and flip left right, to make a full [0:2Pi] sino sino2 = np.fliplr(sino[1:]) # This image is used for compensating the shift of sino2 compensateimage = np.zeros((Nrow-1, Ncol), dtype=np.float32) # Start coarse search in which the shift step is 1 compensateimage[:] = np.flipud(sino)[1:] mask = self._create_mask(2*Nrow-1, Ncol, 0.5*self.parameters['ratio']*Ncol) count = 0 for i in list_shift: sino2a = np.roll(sino2, i, axis=1) if i >= 0: sino2a[:, 0:i] = compensateimage[:, 0:i] else: sino2a[:, i:] = compensateimage[:, i:] list_metric[count] = np.sum( np.abs(fft.fftshift(fft.fft2(
np.vstack((sino, sino2a))
numpy.vstack
import numpy # import autograd.numpy as numpy # Thinly-wrapped numpy # from autograd import value_and_grad # The only autograd function you may ever need # from autograd import grad #from autograd.differential_operators import jacobian import scipy.stats import scipy.special import shared.statHelper as statHelper import scipy.optimize import shared.analyzeHelper as analyzeHelper import time from collections import defaultdict import pickle import showResultsText import rpy2 print("rpy2 version = " + rpy2.__version__) import rpy2.robjects as ro import rpy2.robjects.numpy2ri rpy2.robjects.numpy2ri.activate() ro.r('source(\'imports.R\')') ro.r('set.seed(8985331)') # set a fixed random seed to make results of glasso, stars etc reproducible # import warnings # import scipy.linalg # from SpikeAndSlabNonContinuous_MCMC import SpikeAndSlabProposed as SpikeAndSlabProposed_nonContinuousMCMC import samplingHelper class SpikeAndSlabProposedModelSearch: allDelta = [0.8, 0.5, 0.05, 0.01, 0.001, 0.0] # hyper-parameters for response variance ETA_SQUARE_R = 1.0 NU_R = 1.0 # hyper-parameters for the relevant regression coefficients ETA_SQUARE_1 = 100.0 NU_1 = 1.0 def __init__(self, allObservedResponses, allObservedCovariates, delta): self.delta = delta self.nu1 = SpikeAndSlabProposedModelSearch.NU_1 self.etaSquare1 = SpikeAndSlabProposedModelSearch.ETA_SQUARE_1 if self.delta > 0.0: deltaToSigmaSquare0 = pickle.load(open( "deltaToSigmaSquare0", "rb" ) ) self.sigmaSquare0 = deltaToSigmaSquare0[delta] else: self.sigmaSquare0 = None self.fullp = allObservedCovariates.shape[1] self.y = allObservedResponses self.n = allObservedResponses.shape[0] self.setX(allObservedCovariates) return @staticmethod def getSigmaSquareR_reducedModel(allObservedResponses, allObservedCovariates, delta, selectedVars, NUMBER_OF_MCMC_SAMPLES_TOTAL): allObservedCovariates_sub = allObservedCovariates[:, selectedVars] subModel = SpikeAndSlabProposedModelSearch(allObservedResponses, allObservedCovariates_sub, delta) return subModel.getSigmaSquareR_fullModel_fromCurrentModel(NUMBER_OF_MCMC_SAMPLES_TOTAL) # checked # calculates p(beta = delta | relevantVariable, nu1, etaSquare1) @staticmethod def getBetaGivenNu1EtaSquare1(delta, NUMBER_OF_SAMPLES): allLogProbs = numpy.zeros(NUMBER_OF_SAMPLES) for i in range(NUMBER_OF_SAMPLES): sigmaSquare = samplingHelper.getScaledInvChiSquareSample(nu = SpikeAndSlabProposedModelSearch.NU_1, etaSquare = SpikeAndSlabProposedModelSearch.ETA_SQUARE_1, numberOfSamples = 1)[0] allLogProbs[i] = - ((delta ** 2) / (2.0 * sigmaSquare)) - samplingHelper.exactLogNormalizationConstant_O_static(delta, sigmaSquare) logProbEstimate = scipy.special.logsumexp(allLogProbs) - numpy.log(NUMBER_OF_SAMPLES) return logProbEstimate @staticmethod def getSigmaSquare0(delta, NUMBER_OF_SAMPLES): sigmaSquare0 = 1.0 logProbDelta_relevant = SpikeAndSlabProposedModelSearch.getBetaGivenNu1EtaSquare1(delta, NUMBER_OF_SAMPLES) logProbAtDelta_notRelevant = samplingHelper.truncatedNormal_not_relevant_logDensity(delta, sigmaSquare0, delta) print("logProbDelta_relevant = ", logProbDelta_relevant) print("logProbAtDelta_notRelevant = ", logProbAtDelta_notRelevant) ERROR_TOLERANCE = 0.001 previousDirectionDown = True assert(logProbAtDelta_notRelevant > logProbDelta_relevant) base = 1.0 iterations = 0 while numpy.abs(logProbDelta_relevant - logProbAtDelta_notRelevant) > ERROR_TOLERANCE: if logProbAtDelta_notRelevant > logProbDelta_relevant: if not previousDirectionDown: base = base / 2.0 previousDirectionDown = True sigmaSquare0 = sigmaSquare0 / (1.0 + base) else: if previousDirectionDown: base = base / 2.0 previousDirectionDown = False sigmaSquare0 = sigmaSquare0 * (1.0 + base) logProbAtDelta_notRelevant = samplingHelper.truncatedNormal_not_relevant_logDensity(delta, sigmaSquare0, delta) iterations += 1 if iterations >= 1000: print("ERROR: DID NOT CONVERGE !") assert(False) print("FINAL ESTIMATE:") print("logProbDelta_relevant = ", logProbDelta_relevant) print("logProbAtDelta_notRelevant = ", logProbAtDelta_notRelevant) print("sigmaSquare0 = ", sigmaSquare0) return sigmaSquare0 def setX(self, allObservedCovariates): self.p = allObservedCovariates.shape[1] assert(allObservedCovariates.shape[0] == self.n) self.X = allObservedCovariates self.XTX = numpy.matmul(self.X.transpose(), self.X) self.yX = numpy.matmul(self.y.transpose(), self.X) self.invXTX_regularized = numpy.linalg.inv(self.XTX + numpy.eye(self.p)) return # checked2 def sampleFullBeta(self, z, sigmaSquareR, slabVariance): fullBeta = numpy.zeros(self.p) if numpy.sum(z) == 0: return fullBeta fullX = self.X[:, z == 1] mu, sigma, _ = SpikeAndSlabProposedModelSearch.getFullNormalParameters(self.y, fullX, sigmaSquareR, slabVariance) betaNonZero = numpy.random.multivariate_normal(mu, sigma) fullBeta[z == 1] = betaNonZero return fullBeta # checked2 # gets the parameters of the normal which specifies p(beta | y, fullX, sigmaSquareR, slabVariance) @staticmethod def getFullNormalParameters(y, fullX, sigmaSquareR, slabVariance): invSigma = (1.0 / sigmaSquareR) * numpy.matmul(fullX.transpose(), fullX) + (1.0 / slabVariance) * numpy.eye(fullX.shape[1]) sigma = numpy.linalg.inv(invSigma) mu = (1.0 / sigmaSquareR) * numpy.matmul( numpy.matmul(y.transpose(), fullX), sigma) return mu, sigma, invSigma # reading checked2 # returns the mean and variance of p(beta_{s+1} | beta_1, ..., beta_s, sigmaSquareR, slabVariance) # j specifies the index of the new beta coefficient (i.e. corresponds to s+1) # conditionedBeta corresponds to beta_1, ..., beta_s def getNormalParamertersForU(self, z, j, fullBeta, sigmaSquareR, slabVariance): zWithoutJ = numpy.copy(z) zWithoutJ[j] = 0 conditionedBeta = fullBeta[zWithoutJ == 1] sPlusOneIndicies = numpy.where(zWithoutJ == 1)[0] sPlusOneIndicies = numpy.append([j], sPlusOneIndicies) s = numpy.sum(zWithoutJ) assert(conditionedBeta.shape[0] == s) assert(len(sPlusOneIndicies) == s + 1) fullX = self.X[:, sPlusOneIndicies] assert(fullX.shape[1] == len(sPlusOneIndicies)) mu, sigma, invSigma = SpikeAndSlabProposedModelSearch.getFullNormalParameters(self.y, fullX, sigmaSquareR, slabVariance) invSimga22 = numpy.linalg.inv( sigma[1:(s+1), 1:(s+1)] ) sigma12 = sigma[0,1:(s+1)] tmpVec = numpy.matmul(sigma12, invSimga22) newMean = mu[0] + numpy.dot(tmpVec, conditionedBeta - mu[1:(s+1)]) newVariance = 1.0 / invSigma[0,0] assert(newVariance > 0.0) return newMean, newVariance # reading checked2 # calculates log p(beta, sigmaSquareR, sigmaSquare, y | X, S) def getJointLogProb_forRJMCMC(self, z, fullBeta, sigmaSquareR, slabVariance): assert(sigmaSquareR > 0.0) restrictedX = self.X[:, z == 1] restrictedBeta = fullBeta[z == 1] s = restrictedBeta.shape[0] assert(s == numpy.sum(z)) jointLogProb = - (float(self.n) / 2.0) * numpy.log(2.0 * numpy.pi) jointLogProb -= (((SpikeAndSlabProposedModelSearch.NU_R + self.n) / 2.0) + 1.0) * numpy.log(sigmaSquareR) jointLogProb -= (1.0 / (2.0 * sigmaSquareR)) * (SpikeAndSlabProposedModelSearch.NU_R * SpikeAndSlabProposedModelSearch.ETA_SQUARE_R + numpy.sum(numpy.square(self.y - numpy.matmul(restrictedX, restrictedBeta)))) jointLogProb -= s * numpy.log(2.0 * numpy.pi * slabVariance) jointLogProb -= (1.0 / (2.0 * slabVariance)) * numpy.sum(numpy.square(restrictedBeta)) # add prior on z jointLogProb += SpikeAndSlabProposedModelSearch.getLogPriorZ(s, self.fullp) return jointLogProb # reading checked2 # calculates log p(beta, sigmaSquareR, sigmaSquare, y | X, S) def getJointLogProb_forSimple(self, z, restrictedBeta, sigmaSquareR, slabVariance): assert(sigmaSquareR > 0.0) assert(numpy.sum(z) == restrictedBeta.shape[0]) restrictedX = self.X[:, z == 1] s = restrictedBeta.shape[0] assert(s == numpy.sum(z)) jointLogProb = - (float(self.n) / 2.0) * numpy.log(2.0 * numpy.pi) jointLogProb -= (((SpikeAndSlabProposedModelSearch.NU_R + self.n) / 2.0) + 1.0) * numpy.log(sigmaSquareR) jointLogProb -= (1.0 / (2.0 * sigmaSquareR)) * (SpikeAndSlabProposedModelSearch.NU_R * SpikeAndSlabProposedModelSearch.ETA_SQUARE_R + numpy.sum(numpy.square(self.y - numpy.matmul(restrictedX, restrictedBeta)))) jointLogProb -= s * numpy.log(2.0 * numpy.pi * slabVariance) jointLogProb -= (1.0 / (2.0 * slabVariance)) * numpy.sum(numpy.square(restrictedBeta)) # add prior on z jointLogProb += SpikeAndSlabProposedModelSearch.getLogPriorZ(s, self.fullp) return jointLogProb # reading checked2 # use this if delta = 0.0 # def sampleZjConditionedOnRest_RJMCMC(self, sigmaSquareR, slabVariance, fullBeta, z, j): # # zWithoutJ = numpy.copy(z) # zWithoutJ[j] = 0 # logJointProbWithoutJ = self.getJointLogProb_forRJMCMC(zWithoutJ, fullBeta, sigmaSquareR, slabVariance) # # uMean, uVariance = self.getNormalParamertersForU(z, j, fullBeta, sigmaSquareR, slabVariance) # # if z[j] == 1: # # try to traverse to model with z[j] = 0 # logJointProbWithJ = self.getJointLogProb_forRJMCMC(z, fullBeta, sigmaSquareR, slabVariance) # logG_toHigherDimension = scipy.stats.norm.logpdf(fullBeta[j], loc=uMean, scale=numpy.sqrt(uVariance)) # # logRatio = (logJointProbWithoutJ + logG_toHigherDimension) - logJointProbWithJ # # self.totalSamplingCount_RJMCMC += 1.0 # self.totalAcceptanceRate_RJMCMC += numpy.min([1.0, numpy.exp(logRatio)]) # # if numpy.random.uniform() < numpy.exp(logRatio): # return 0 # else: # return 1 # # else: # # try to traverse to model with z[j] = 1 # fullBeta[j] = scipy.stats.norm.rvs(loc=uMean, scale=numpy.sqrt(uVariance)) # logG_toHigherDimension = scipy.stats.norm.logpdf(fullBeta[j], loc=uMean, scale=numpy.sqrt(uVariance)) # # zWithJ = numpy.copy(z) # zWithJ[j] = 1 # logJointProbWithJ = self.getJointLogProb_forRJMCMC(zWithJ, fullBeta, sigmaSquareR, slabVariance) # # logRatio = logJointProbWithJ - (logJointProbWithoutJ + logG_toHigherDimension) # # self.totalSamplingCount_RJMCMC += 1.0 # self.totalAcceptanceRate_RJMCMC += numpy.min([1.0, numpy.exp(logRatio)]) # # if numpy.random.uniform() < numpy.exp(logRatio): # return 1 # else: # return 0 # returns p(z, sigmaSquareR, slabVariance, y) # def getJointLogProbZ_Sigma_y(self, sigmaSquareR, slabVariance, z): # assert(self.delta == 0.0) # # # print("z = ", z) # # print("self.X.shape = ", self.X.shape) # # restrictedX = self.X[:, z == 1] # mu, _, invSigma = SpikeAndSlabProposedModelSearch.getFullNormalParameters(self.y, restrictedX, sigmaSquareR, slabVariance) # # jointLogProb = self.getJointLogProb_forSimple(z, mu, sigmaSquareR, slabVariance) # posteriorLogProb = -0.5 * (invSigma.shape[0] * numpy.log(2.0 * numpy.pi) - idcHelper.getLogDet(invSigma)) # # # posteriorLogProb = scipy.stats.multivariate_normal.logpdf(mu, mean=mu, cov=sigma) # # print("mu = ", mu) # # print("posteriorLogProb = ", posteriorLogProb) # # posteriorLogProb = -0.5 * (sigma.shape[0] * numpy.log(2.0 * numpy.pi) - idcHelper.getLogDet(invSigma)) # # print("posteriorLogProb = ", posteriorLogProb) # # assert(False) # # return jointLogProb - posteriorLogProb # def sampleZjConditionedOnRest_delta0_simple(self, sigmaSquareR, slabVariance, z, j): # # unnormalizedLogProbZ = numpy.zeros(2) # # zWithoutJ = numpy.copy(z) # zWithoutJ[j] = 0 # unnormalizedLogProbZ[0] = self.getJointLogProbZ_Sigma_y(sigmaSquareR, slabVariance, zWithoutJ) # # zWithJ = numpy.copy(z) # zWithJ[j] = 1 # unnormalizedLogProbZ[1] = self.getJointLogProbZ_Sigma_y(sigmaSquareR, slabVariance, zWithJ) # # logNormalization = scipy.special.logsumexp(unnormalizedLogProbZ) # zProbs = numpy.exp(unnormalizedLogProbZ - logNormalization) # newZj = numpy.random.choice(numpy.arange(2), p=zProbs) # # return newZj def sampleZ(self, NUMBER_OF_MCMC_SAMPLES_TOTAL): invEst = numpy.linalg.inv(self.X.transpose() @ self.X + 1.0 * numpy.eye(self.p)) ridgeBetaEst = (invEst @ self.X.transpose()) @ self.y z = numpy.zeros(self.p, dtype = numpy.int) z[numpy.absolute(ridgeBetaEst) > self.delta] = 1 beta = ridgeBetaEst # get a sparse initial solution in order to ensure faster convergence maxNrInitialSelectedVars = int(self.p * 0.01) if maxNrInitialSelectedVars > 0 and numpy.sum(z) > maxNrInitialSelectedVars: largestIds = numpy.argsort(-numpy.absolute(ridgeBetaEst))[0:maxNrInitialSelectedVars] z = numpy.zeros(self.p, dtype = numpy.int) z[largestIds] = 1 beta[z == 0] = 0 sigmaSquareR = numpy.mean(numpy.square(self.y - self.X @ beta)) print("beta = ") print(beta) print("sigmaSquareR = ") print(sigmaSquareR) print("z = ") print(z) BURN_IN_SAMPLES = int(0.1 * NUMBER_OF_MCMC_SAMPLES_TOTAL) assert(BURN_IN_SAMPLES >= 1) NUMBER_OF_MCMC_SAMPLES_USED = NUMBER_OF_MCMC_SAMPLES_TOTAL - BURN_IN_SAMPLES print("BURN_IN_SAMPLES = ", BURN_IN_SAMPLES) print("NUMBER_OF_MCMC_SAMPLES_USED = ", NUMBER_OF_MCMC_SAMPLES_USED) posteriorAssignments = numpy.zeros((NUMBER_OF_MCMC_SAMPLES_USED, self.p)) averagePosteriorBeta = numpy.zeros(self.p) averageSigmaSquareR = 0.0 spikeAndSlabVar = numpy.asarray([self.sigmaSquare0, self.etaSquare1]) print("spikeAndSlabVar = ", spikeAndSlabVar) for mcmcIt in range(NUMBER_OF_MCMC_SAMPLES_TOTAL): print("mcmcIt = ", mcmcIt) # if self.delta > 0: for j in range(self.p): # sample p(z_j | beta, z_-j, y, sigmaSquareR, X) z[j] = self.sampleZjConditionedOnRest(sigmaSquareR, spikeAndSlabVar, beta, z, j) # sample p(beta_j | beta_-j, z, y, sigmaSquareR, X) meanTilde, sigmaSquareTilde, _ = self.getMeanAndVarOfBetaConditional(sigmaSquareR, spikeAndSlabVar, beta, z, j) beta[j] = SpikeAndSlabProposedModelSearch.sampleTruncatedBeta(self.delta, meanTilde, sigmaSquareTilde, z[j] == 1) if self.delta == 0: # safety check for delta == 0 assert(numpy.all(beta[z == 0] == 0) and numpy.all(beta[z == 1] != 0)) # sample p(sigmaSquareR | beta, z, y, X) etaSquareForsigmaSquareR = (SpikeAndSlabProposedModelSearch.NU_R * SpikeAndSlabProposedModelSearch.ETA_SQUARE_R + numpy.sum(numpy.square(self.y - numpy.matmul(self.X, beta)))) / (SpikeAndSlabProposedModelSearch.NU_R + self.n) sigmaSquareR = samplingHelper.getScaledInvChiSquareSample(nu = SpikeAndSlabProposedModelSearch.NU_R + self.n, etaSquare = etaSquareForsigmaSquareR, numberOfSamples = 1)[0] # sample p(sigmaSquare_0 | beta, z, y, X) and p(sigmaSquare_1 | beta, z, y, X) spikeAndSlabVar[1] = self.sampleSigmaSquareConditional(True, beta, z) print("slab variance = ", spikeAndSlabVar[1]) if mcmcIt >= BURN_IN_SAMPLES: posteriorAssignments[mcmcIt - BURN_IN_SAMPLES] = z averagePosteriorBeta += beta averageSigmaSquareR += sigmaSquareR averagePosteriorBeta = averagePosteriorBeta / float(NUMBER_OF_MCMC_SAMPLES_USED) averageSigmaSquareR = averageSigmaSquareR / float(NUMBER_OF_MCMC_SAMPLES_USED) # print("posteriorAssignments = ") # print(posteriorAssignments) # print("averagePosteriorBeta = ") # print(averagePosteriorBeta) countAssignments = defaultdict(lambda: 0) for mcmcIt in range(NUMBER_OF_MCMC_SAMPLES_USED): nonZeroPos = numpy.where(posteriorAssignments[mcmcIt] != 0)[0] nonZeroPosAsStr = [str(num) for num in nonZeroPos] nonZeroPosAsStr = " ".join(nonZeroPosAsStr) countAssignments[nonZeroPosAsStr] += 1 sortedAssignmentsByFrequency = sorted(countAssignments.items(), key=lambda kv: kv[1], reverse = True) print("sortedAssignmentsByFrequency = ") print(sortedAssignmentsByFrequency) mostFrequentAssignment = showResultsText.getNumpyArray(sortedAssignmentsByFrequency[0][0]) # print("mostFrequentAssignment = ", mostFrequentAssignment) # see "Optimal predictive model selection", 2004 assignmentProbs = numpy.mean(posteriorAssignments, axis = 0) medianProbabilityModel = numpy.where(assignmentProbs > 0.5)[0] # print("assignmentProbs = ", assignmentProbs) # print("medianProbabilityModel = ", medianProbabilityModel) return mostFrequentAssignment, medianProbabilityModel, assignmentProbs, averagePosteriorBeta, averageSigmaSquareR, sortedAssignmentsByFrequency # BRAND-NEW CHECKED # get mean and variance of p(beta_j | beta_-j, z, y, sigmaSquareR, X) def getMeanAndVarOfBetaConditional(self, sigmaSquareR, spikeAndSlabVar, beta, z, j): if self.delta == 0 and z[j] == 0: assert(spikeAndSlabVar[z[j]] is None) return None, None, None minusJ = numpy.delete(numpy.arange(self.p), j) betaMinusJ = beta[minusJ] XminusJ = self.X[:, minusJ] yTilde = self.y - numpy.matmul(XminusJ, betaMinusJ) xJ = self.X[:,j] yTildeTimesXj = numpy.dot(yTilde, xJ) sigmaSquareTilde = sigmaSquareR / (numpy.sum(numpy.square(xJ)) + (sigmaSquareR / spikeAndSlabVar[z[j]])) meanTilde = (sigmaSquareTilde / sigmaSquareR) * yTildeTimesXj additionalStatisticForCondZ = (meanTilde / (2.0 * sigmaSquareR)) * yTildeTimesXj return meanTilde, sigmaSquareTilde, additionalStatisticForCondZ # BRAND-NEW CHECKED # sample p(z_j | beta, z_-j, y, sigmaSquareR, X) def sampleZjConditionedOnRest(self, sigmaSquareR, spikeAndSlabVar, beta, originalZ, j): unnormalizedLogProbZ = numpy.zeros(2) for sspInd in [0,1]: z = numpy.copy(originalZ) z[j] = sspInd if self.delta > 0.0 or sspInd == 1: meanTilde, sigmaSquareTilde, additionalStatisticForCondZ = self.getMeanAndVarOfBetaConditional(sigmaSquareR, spikeAndSlabVar, beta, z, j) unnormalizedLogProbZ[sspInd] += additionalStatisticForCondZ unnormalizedLogProbZ[sspInd] += SpikeAndSlabProposedModelSearch.getTruncatedNormalLogConstant(sspInd, self.delta, sigmaSquareTilde, meanTilde) unnormalizedLogProbZ[sspInd] -= SpikeAndSlabProposedModelSearch.getTruncatedNormalLogConstant(sspInd, self.delta, spikeAndSlabVar[sspInd], 0.0) else: assert(sspInd == 0 and self.delta == 0.0) # nothing to do # add p(z) unnormalizedLogProbZ[sspInd] += SpikeAndSlabProposedModelSearch.getLogPriorZ(numpy.sum(z), self.fullp) if numpy.all(unnormalizedLogProbZ == float("-inf")): print(unnormalizedLogProbZ) assert(False) logNormalization = scipy.special.logsumexp(unnormalizedLogProbZ) zProbs = numpy.exp(unnormalizedLogProbZ - logNormalization) newZj = numpy.random.choice(numpy.arange(2), p=zProbs) # print("unnormalizedLogProbZ = ") # print(unnormalizedLogProbZ) # print("zProbs = ", zProbs) # print("numpy.arange(2) = ", numpy.arange(2)) # print("newZj = ", newZj) return newZj # BRAND-NEW CHECKED @staticmethod def getTruncatedNormalLogConstant(sspIndicator, delta, sigmaSquare, mean): assert(sspIndicator == 0 or sspIndicator == 1) if sspIndicator == 1: return samplingHelper.exactLogNormalizationConstant_O_static(delta, sigmaSquare, mean) else: # print("sigmaSquare = ", str(sigmaSquare) + ", mean = " + str(mean)) return samplingHelper.exactLogNormalizationConstant_I_static(delta, sigmaSquare, mean) # BRAND-NEW CHECKED # sample p(beta_j | beta_-j, z, y, sigmaSquareR, X) @staticmethod def sampleTruncatedBeta(delta, mean, sigmaSquare, relevant): if relevant: # RELEVANT if delta == 0.0: return scipy.stats.norm.rvs(loc=mean, scale=numpy.sqrt(sigmaSquare)) # newBetaJ = sampleTruncatedNormalNaive(True, mean, sigmaSquareTilde) newBetaJ = SpikeAndSlabProposedModelSearch.sampleTruncatedNormalAdvanced_outerInterval(delta, mean, sigmaSquare) # print("j = ", j) # print("newBetaJ = ", newBetaJ) assert(newBetaJ <= -delta or newBetaJ >= delta) return newBetaJ else: # NOT RELEVANT if delta == 0.0: return 0.0 ro.globalenv['sd'] = numpy.sqrt(sigmaSquare) ro.globalenv['mean'] = mean ro.globalenv['a'] = -delta ro.globalenv['b'] = delta newBetaJ = ro.r('rtruncnorm(n = 1, a=a , b=b, mean = mean, sd = sd)')[0] assert(newBetaJ >= -delta and newBetaJ <= delta) return newBetaJ # must check whether this is really correct ! @staticmethod def sampleTruncatedNormalAdvanced_outerInterval(delta, mean, sigmaSquare): # p(beta < -delta) lowerBoundIntegral = scipy.stats.norm.logcdf(-delta, loc=mean, scale=numpy.sqrt(sigmaSquare)) # p(beta > delta) upperBoundIntegral = scipy.stats.norm.logsf(delta, loc=mean, scale=numpy.sqrt(sigmaSquare)) normalization = scipy.special.logsumexp([lowerBoundIntegral, upperBoundIntegral]) pLowerProb = numpy.exp(lowerBoundIntegral - normalization) pUpperProb = numpy.exp(upperBoundIntegral - normalization) # print("pLowerProb = ", pLowerProb) # print("pUpperProb = ", pUpperProb) rndUniform = scipy.stats.uniform.rvs() if rndUniform < pLowerProb: ro.globalenv['a'] = float("-inf") ro.globalenv['b'] = -delta else: ro.globalenv['a'] = delta ro.globalenv['b'] = float("+inf") ro.globalenv['sd'] = numpy.sqrt(sigmaSquare) ro.globalenv['mean'] = mean # print("ro.globalenv['a'] = ", ro.globalenv['a']) # print("ro.globalenv['b'] = ", ro.globalenv['b']) # print("ro.globalenv['sd'] = ", ro.globalenv['sd']) # print("ro.globalenv['mean'] = ", ro.globalenv['mean']) newBetaJ = ro.r('rtruncnorm(n = 1, a=a , b=b, mean = mean, sd = sd)')[0] return newBetaJ # REVISED # reading checked + experiment check # samples from p(sigma_j^2 | beta_j, y, X, S) # a slice sampler as in Bayesian Methods for Data Analysis, Carlin et al Third Edition, page 139 def sampleSigmaSquareConditional(self, relevantVariable, beta, z): if relevantVariable: # SUFFIENTLY GOOD !! # sigma >> 1 and delta << 1 usedBetaCount = numpy.sum(z) betaSquareSum = numpy.sum(numpy.square(beta[z == 1])) etaSquarePrior = self.etaSquare1 priorNu = self.nu1 assumeTruncatedNorm_NotRelevant_isConstant = None nu = priorNu + usedBetaCount etaSquare = (priorNu * etaSquarePrior + betaSquareSum) / nu else: # SUFFIENTLY GOOD !! # sigma << 1 and interval is I betaSquareSum = numpy.sum(numpy.square(beta[z == 0])) etaSquarePrior = self.etaSquare0 priorNu = self.nu0 usedBetaCount = self.p - numpy.sum(z) if self.delta >= 0.01: assumeTruncatedNorm_NotRelevant_isConstant = False nu = priorNu + usedBetaCount etaSquare = (priorNu * etaSquarePrior + betaSquareSum) / nu else: assumeTruncatedNorm_NotRelevant_isConstant = True nu = priorNu # nu = self.nu # etaSquare = (self.nu * self.etaSquare0 + singleBeta ** 2 - self.delta ** 2) / self.nu etaSquare = (priorNu * etaSquarePrior + betaSquareSum - usedBetaCount * ((self.delta / 2.0) ** 2)) / nu # initialize with mode sigmaSquare = (nu * etaSquare) / (nu + 2) assert(sigmaSquare > 0.0) numberOfSamples = 1 BURN_IN = 10 acceptanceCount = 0 # only for checking acceptance ratio nrIterations = 0 acquiredSamples = [] while len(acquiredSamples) < numberOfSamples: nrIterations += 1 u = scipy.stats.uniform.rvs(loc=0, scale=1, size=1)[0] * self.h(relevantVariable, sigmaSquare, usedBetaCount, assumeTruncatedNorm_NotRelevant_isConstant) newSigmaSquare = samplingHelper.getScaledInvChiSquareSample(nu, etaSquare, 1)[0] if nrIterations >= 2000: print("WARNING QUIT WITHOUT PROPER ACCEPTANCE") print("relevantVariable = ", relevantVariable) print("mode = ", ( (nu * etaSquare) / (nu + 2)) ) print("usedBetaCount = ", usedBetaCount) acquiredSamples.append(newSigmaSquare) break if u < self.h(relevantVariable, newSigmaSquare, usedBetaCount, assumeTruncatedNorm_NotRelevant_isConstant): acceptanceCount += 1 sigmaSquare = newSigmaSquare if acceptanceCount >= BURN_IN: acquiredSamples.append(newSigmaSquare) # assert(acceptanceRatio > 0.01) # should be larger than 1% (if numberOfSamples = 1, then by chance we might have sometimes low acceptance ratios of the first 100.) # assert(acceptanceRatio > 0.0) # if (acceptanceRatio <= 0.2): # print("relevantVariable = ", relevantVariable) # print("singleBeta = ", singleBeta) # acceptanceRatio = (acceptanceCount / nrIterations) # print("nrIterations = ", nrIterations) # print("acceptance ratio = ", acceptanceRatio) # assert(False) # print("acquiredSamples = ", acquiredSamples) assert(len(acquiredSamples) == 1) return acquiredSamples[0] # REVISED # reading checked def h(self, relevantVariable, sigmaSquare, usedBetaCount, assumeTruncatedNorm_NotRelevant_isConstant): assert(sigmaSquare > 0.0) assert(numpy.isscalar(sigmaSquare)) if relevantVariable: # ALWAYS WINNER # sigma >> 1 and interval is O return numpy.exp( usedBetaCount * (numpy.log(numpy.sqrt(2.0 * numpy.pi * sigmaSquare)) - samplingHelper.exactLogNormalizationConstant_O_static(self.delta, sigmaSquare))) else: # sigma << 1 and interval is I if assumeTruncatedNorm_NotRelevant_isConstant: return numpy.exp( usedBetaCount * (- ((self.delta / 2) ** 2) / (2.0 * sigmaSquare) - samplingHelper.exactLogNormalizationConstant_I_static(self.delta, sigmaSquare))) # assumes that Z(N, sigma) is roughly constant # return numpy.exp( - (usedBetaCount * SpikeAndSlabProposed_nonContinuousMCMC.exactLogNormalizationConstant_I_static(self.delta, sigmaSquare))) else: # assumes that sqrt(2.0 * numpy.pi * sigmaSquare) / Z(N, sigma) is roughly constant return numpy.exp( usedBetaCount * (numpy.log( numpy.sqrt(2.0 * numpy.pi * sigmaSquare) ) - samplingHelper.exactLogNormalizationConstant_I_static(self.delta, sigmaSquare))) # ***************************************************************** # ********** METHODS FOR MARGINAL LIKELIHOOD ESTIMATION *********** # ***************************************************************** @staticmethod def truncateToValidBeta(delta, z, beta): assert(z.shape[0] == beta.shape[0]) truncatedBeta = numpy.copy(beta) for j in range(beta.shape[0]): if z[j] == 1: if (beta[j] > - delta) and (beta[j] < delta): if beta[j] <= 0.0: truncatedBeta[j] = -delta else: truncatedBeta[j] = delta else: if (beta[j] < -delta) or (beta[j] > delta): if beta[j] <= 0.0: truncatedBeta[j] = -delta else: truncatedBeta[j] = delta return truncatedBeta # checked def estimateErrorInMSE(self, selectedVars, NUMBER_OF_MCMC_SAMPLES_TOTAL): z = numpy.zeros(self.p, dtype = numpy.int) z[selectedVars] = 1 numberOfFreeBeta = self.p fixedBetaPart = numpy.zeros(self.p - numberOfFreeBeta) fixedSigmaSquareR = None fixedSlabVar = None posteriorBeta, posteriorSigmaSquareR, posteriorSlabVar = self.posteriorParameterSamples(z, NUMBER_OF_MCMC_SAMPLES_TOTAL, fixedSlabVar, fixedSigmaSquareR, numberOfFreeBeta, fixedBetaPart) irrelevantPositions = numpy.delete(numpy.arange(self.p), selectedVars) irrelevantBetaSamples = posteriorBeta[:,irrelevantPositions] irrelevantX = self.X[:,irrelevantPositions] sampleCovX_irrelevant = numpy.cov(irrelevantX.transpose(), bias=True) sampleCovBeta_irrelevant = numpy.cov(irrelevantBetaSamples.transpose(), bias=True) sampleCovX_irrelevant = numpy.atleast_2d(sampleCovX_irrelevant) sampleCovBeta_irrelevant = numpy.atleast_2d(sampleCovBeta_irrelevant) estimatedAdditionalMSE = numpy.trace(numpy.matmul(sampleCovBeta_irrelevant, sampleCovX_irrelevant)) estimatedSigmaSquareR = numpy.mean(posteriorSigmaSquareR) return estimatedSigmaSquareR, estimatedAdditionalMSE def getSigmaSquareR_fullModel_fromCurrentModel(self, NUMBER_OF_MCMC_SAMPLES_TOTAL): z = numpy.ones(self.p, dtype = numpy.int) numberOfFreeBeta = self.p fixedBetaPart = numpy.zeros(self.p - numberOfFreeBeta) fixedSigmaSquareR = None fixedSlabVar = None posteriorBeta, posteriorSigmaSquareR, posteriorSlabVar = self.posteriorParameterSamples(z, NUMBER_OF_MCMC_SAMPLES_TOTAL, fixedSlabVar, fixedSigmaSquareR, numberOfFreeBeta, fixedBetaPart) return numpy.mean(posteriorSigmaSquareR) # z is always considered fixed def posteriorParameterSamples(self, z, NUMBER_OF_MCMC_SAMPLES_TOTAL, fixedSlabVar, fixedSigmaSquareR, numberOfFreeBeta, fixedBetaPart): assert(fixedSlabVar is None or fixedSlabVar > 0.0) assert(fixedSigmaSquareR is None or fixedSigmaSquareR > 0.0) assert(numberOfFreeBeta + fixedBetaPart.shape[0] == self.p) invEst = numpy.linalg.inv(self.X.transpose() @ self.X + 1.0 * numpy.eye(self.p)) ridgeBetaEst = (invEst @ self.X.transpose()) @ self.y beta = SpikeAndSlabProposedModelSearch.truncateToValidBeta(self.delta, z, ridgeBetaEst) beta[numberOfFreeBeta:self.p] = fixedBetaPart if fixedSigmaSquareR is None: sigmaSquareR = numpy.mean(numpy.square(self.y - self.X @ ridgeBetaEst)) else: sigmaSquareR = fixedSigmaSquareR # print("z = ") # print(z) # print("beta = ") # print(beta) # assert(False) # print("sigmaSquareR = ") # print(sigmaSquareR) BURN_IN_SAMPLES = int(0.1 * NUMBER_OF_MCMC_SAMPLES_TOTAL) assert(BURN_IN_SAMPLES >= 1) NUMBER_OF_MCMC_SAMPLES_USED = NUMBER_OF_MCMC_SAMPLES_TOTAL - BURN_IN_SAMPLES # print("BURN_IN_SAMPLES = ", BURN_IN_SAMPLES) # print("NUMBER_OF_MCMC_SAMPLES_USED = ", NUMBER_OF_MCMC_SAMPLES_USED) posteriorBeta = numpy.zeros((NUMBER_OF_MCMC_SAMPLES_USED, self.p)) posteriorSigmaSquareR = numpy.zeros(NUMBER_OF_MCMC_SAMPLES_USED) posteriorSlabVar = numpy.zeros(NUMBER_OF_MCMC_SAMPLES_USED) spikeAndSlabVar = numpy.asarray([self.sigmaSquare0, self.etaSquare1]) if fixedSlabVar is not None: spikeAndSlabVar[1] = fixedSlabVar for mcmcIt in range(NUMBER_OF_MCMC_SAMPLES_TOTAL): print("mcmcIt = ", mcmcIt) for j in range(numberOfFreeBeta): # sample p(beta_j | beta_-j, z, y, sigmaSquareR, X) meanTilde, sigmaSquareTilde, _ = self.getMeanAndVarOfBetaConditional(sigmaSquareR, spikeAndSlabVar, beta, z, j) beta[j] = SpikeAndSlabProposedModelSearch.sampleTruncatedBeta(self.delta, meanTilde, sigmaSquareTilde, z[j] == 1) if fixedSigmaSquareR is None: # sample p(sigmaSquareR | beta, z, y, X) etaSquareForsigmaSquareR = (SpikeAndSlabProposedModelSearch.NU_R * SpikeAndSlabProposedModelSearch.ETA_SQUARE_R + numpy.sum(numpy.square(self.y - numpy.matmul(self.X, beta)))) / (SpikeAndSlabProposedModelSearch.NU_R + self.n) sigmaSquareR = samplingHelper.getScaledInvChiSquareSample(nu = SpikeAndSlabProposedModelSearch.NU_R + self.n, etaSquare = etaSquareForsigmaSquareR, numberOfSamples = 1)[0] if fixedSlabVar is None: # sample p(sigmaSquare_1 | beta, z, y, X) spikeAndSlabVar[1] = self.sampleSigmaSquareConditional(True, beta, z) # print("spikeAndSlabVar = ", spikeAndSlabVar) if mcmcIt >= BURN_IN_SAMPLES: posteriorBeta[mcmcIt - BURN_IN_SAMPLES] = beta posteriorSigmaSquareR[mcmcIt - BURN_IN_SAMPLES] = sigmaSquareR posteriorSlabVar[mcmcIt - BURN_IN_SAMPLES] = spikeAndSlabVar[1] return posteriorBeta, posteriorSigmaSquareR, posteriorSlabVar # REVISED @staticmethod def truncatedBetaLogDensity(betaJVal, delta, mean, sigmaSquare, relevant): if relevant: if not (betaJVal <= -delta or betaJVal >= delta): print("!!!! ERROR HERE !!!!") print("delta = ", delta) print("betaJVal = ", betaJVal) assert(betaJVal <= -delta or betaJVal >= delta) logProb = - samplingHelper.exactLogNormalizationConstant_O_static(delta, sigmaSquare, mean) else: assert(betaJVal >= -delta and betaJVal <= delta) logProb = - samplingHelper.exactLogNormalizationConstant_I_static(delta, sigmaSquare, mean) if isinstance(logProb, numpy.ndarray): # ensure that it is not an array assert(len(logProb) == 1) logProb = logProb[0] logProb -= 0.5 * (1.0 / sigmaSquare) * ( (betaJVal - mean)**2) assert(logProb > float("-inf") and logProb < float("inf")) assert(not numpy.isnan(logProb)) return logProb def getLogProbBetaJGivenRest(self, sigmaSquareR, spikeAndSlabVar, beta, z, j): meanTilde, sigmaSquareTilde, _ = self.getMeanAndVarOfBetaConditional(sigmaSquareR, spikeAndSlabVar, beta, z, j) return SpikeAndSlabProposedModelSearch.truncatedBetaLogDensity(beta[j], self.delta, meanTilde, sigmaSquareTilde, z[j] == 1) # REVISED # calculates log p(beta, sigmaSquareR, sigmaSquare, y | X, S) def getJointLogProb_forMarginalCalculation(self, z, beta, sigmaSquareR, spikeAndSlabVar, checkValidBeta = True): assert(sigmaSquareR > 0.0) jointLogProb = - (float(self.n) / 2.0) * numpy.log(2.0 * numpy.pi) jointLogProb -= (((SpikeAndSlabProposedModelSearch.NU_R + self.n) / 2.0) + 1.0) * numpy.log(sigmaSquareR) jointLogProb -= (1.0 / (2.0 * sigmaSquareR)) * (SpikeAndSlabProposedModelSearch.NU_R * SpikeAndSlabProposedModelSearch.ETA_SQUARE_R + numpy.sum(numpy.square(self.y - numpy.matmul(self.X, beta)))) jointLogProb -= SpikeAndSlabProposedModelSearch.getScaledInvChiSquareLogNormalizer(SpikeAndSlabProposedModelSearch.ETA_SQUARE_R, SpikeAndSlabProposedModelSearch.NU_R) for j in range(self.p): priorSigmaSquare = spikeAndSlabVar[z[j]] assert(priorSigmaSquare > 0.0) if z[j] == 1: if checkValidBeta and ((beta[j] > -self.delta) and (beta[j] < self.delta)): return float("-inf") jointLogProb -= samplingHelper.exactLogNormalizationConstant_O_static(self.delta, priorSigmaSquare) else: if checkValidBeta and ((beta[j] < -self.delta) or (beta[j] > self.delta)): return float("-inf") jointLogProb -= samplingHelper.exactLogNormalizationConstant_I_static(self.delta, priorSigmaSquare) jointLogProb -= (1.0 / (2.0 * priorSigmaSquare)) * (beta[j] ** 2) # add prior on simgaSquareRelevant # jointLogProb += SpikeAndSlabProposedModelSearch.getScaledInvChiSquareLogDensity(spikeAndSlabVar[1], self.etaSquare1, self.nu1) # add prior on z jointLogProb += SpikeAndSlabProposedModelSearch.getLogPriorZ(
numpy.sum(z)
numpy.sum
"""Helper methods for learning examples.""" import numpy import xarray from gewittergefahr.gg_utils import grids from gewittergefahr.gg_utils import geodetic_utils from gewittergefahr.gg_utils import projections from gewittergefahr.gg_utils import interp from gewittergefahr.gg_utils import time_periods from gewittergefahr.gg_utils import longitude_conversion as lng_conversion from gewittergefahr.gg_utils import error_checking from ml4tc.io import ships_io from ml4tc.utils import satellite_utils from ml4tc.utils import general_utils GRID_SPACING_METRES = satellite_utils.GRID_SPACING_METRES STORM_INTENSITY_KEY = ships_io.STORM_INTENSITY_KEY SATELLITE_GRID_ROW_DIM = satellite_utils.GRID_ROW_DIM SATELLITE_GRID_COLUMN_DIM = satellite_utils.GRID_COLUMN_DIM SATELLITE_TIME_DIM = satellite_utils.TIME_DIM SATELLITE_PREDICTOR_UNGRIDDED_DIM = 'satellite_predictor_name_ungridded' SATELLITE_PREDICTOR_GRIDDED_DIM = 'satellite_predictor_name_gridded' SHIPS_FORECAST_HOUR_DIM = ships_io.FORECAST_HOUR_DIM SHIPS_THRESHOLD_DIM = ships_io.THRESHOLD_DIM SHIPS_LAG_TIME_DIM = ships_io.LAG_TIME_DIM SHIPS_VALID_TIME_DIM = ships_io.VALID_TIME_DIM SHIPS_PREDICTOR_LAGGED_DIM = 'ships_predictor_name_lagged' SHIPS_PREDICTOR_FORECAST_DIM = 'ships_predictor_name_forecast' SATELLITE_PREDICTORS_UNGRIDDED_KEY = 'satellite_predictors_ungridded' SATELLITE_PREDICTORS_GRIDDED_KEY = 'satellite_predictors_gridded' SHIPS_PREDICTORS_LAGGED_KEY = 'ships_predictors_lagged' SHIPS_PREDICTORS_FORECAST_KEY = 'ships_predictors_forecast' SATELLITE_METADATA_KEYS = [ satellite_utils.SATELLITE_NUMBER_KEY, satellite_utils.BAND_NUMBER_KEY, satellite_utils.BAND_WAVELENGTH_KEY, satellite_utils.SATELLITE_LONGITUDE_KEY, satellite_utils.CYCLONE_ID_KEY, satellite_utils.STORM_TYPE_KEY, satellite_utils.STORM_NAME_KEY, satellite_utils.STORM_LATITUDE_KEY, satellite_utils.STORM_LONGITUDE_KEY, satellite_utils.STORM_INTENSITY_NUM_KEY, satellite_utils.GRID_LATITUDE_KEY, satellite_utils.GRID_LONGITUDE_KEY ] SHIPS_METADATA_KEYS = [ ships_io.CYCLONE_ID_KEY, ships_io.STORM_LATITUDE_KEY, ships_io.STORM_LONGITUDE_KEY, ships_io.STORM_TYPE_KEY, ships_io.FORECAST_LATITUDE_KEY, ships_io.FORECAST_LONGITUDE_KEY, ships_io.VORTEX_LATITUDE_KEY, ships_io.VORTEX_LONGITUDE_KEY, ships_io.THRESHOLD_EXCEEDANCE_KEY ] SHIPS_METADATA_AND_FORECAST_KEYS = [ships_io.FORECAST_LATITUDE_KEY] def merge_data(satellite_table_xarray, ships_table_xarray): """Merges satellite and SHIPS data. :param satellite_table_xarray: Table returned by `satellite_io.read_file`. :param ships_table_xarray: Table returned by `ships_io.read_file`. :return: example_table_xarray: Table created by merging inputs. Metadata in table should make fields self-explanatory. """ # Ensure that both tables contain data for the same cyclone. satellite_cyclone_id_strings = numpy.array( satellite_table_xarray[satellite_utils.CYCLONE_ID_KEY].values ) assert len(numpy.unique(satellite_cyclone_id_strings)) == 1 ships_cyclone_id_strings = numpy.array( ships_table_xarray[ships_io.CYCLONE_ID_KEY].values ) assert len(numpy.unique(ships_cyclone_id_strings)) == 1 try: satellite_cyclone_id_string = ( satellite_cyclone_id_strings[0].decode('UTF-8') ) except AttributeError: satellite_cyclone_id_string = satellite_cyclone_id_strings[0] try: ships_cyclone_id_string = ships_cyclone_id_strings[0].decode('UTF-8') except AttributeError: ships_cyclone_id_string = ships_cyclone_id_strings[0] assert satellite_cyclone_id_string == ships_cyclone_id_string # Do actual stuff. satellite_metadata_dict = satellite_table_xarray.to_dict()['coords'] example_metadata_dict = dict() for this_key in satellite_metadata_dict: example_metadata_dict[this_key] = ( satellite_metadata_dict[this_key]['data'] ) ships_metadata_dict = ships_table_xarray.to_dict()['coords'] del ships_metadata_dict[ships_io.STORM_OBJECT_DIM] for this_key in ships_metadata_dict: example_metadata_dict[this_key] = ( ships_metadata_dict[this_key]['data'] ) satellite_dict = satellite_table_xarray.to_dict()['data_vars'] example_dict = dict() satellite_predictor_names_ungridded = [] satellite_predictor_matrix_ungridded = numpy.array([]) for this_key in satellite_dict: if this_key in SATELLITE_METADATA_KEYS: example_dict[this_key] = ( satellite_dict[this_key]['dims'], satellite_dict[this_key]['data'] ) continue if this_key == satellite_utils.BRIGHTNESS_TEMPERATURE_KEY: these_dim = ( satellite_dict[this_key]['dims'] + (SATELLITE_PREDICTOR_GRIDDED_DIM,) ) example_dict[SATELLITE_PREDICTORS_GRIDDED_KEY] = ( these_dim,
numpy.expand_dims(satellite_dict[this_key]['data'], axis=-1)
numpy.expand_dims
from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.neighbors import NearestNeighbors from multiprocessing import Pool import numpy as np class NearestNeighborsFeats(BaseEstimator, ClassifierMixin): ''' This class should implement KNN features extraction ''' def __init__(self, n_jobs, k_list, metric, n_classes=None, n_neighbors=None, eps=1e-6): self.n_jobs = n_jobs self.k_list = k_list self.metric = metric if n_neighbors is None: self.n_neighbors = max(k_list) else: self.n_neighbors = n_neighbors self.eps = eps self.n_classes_ = n_classes self.n_classes = None def fit(self, X, y): ''' Set's up the train set and self.NN object ''' # Create a NearestNeighbors (NN) object. We will use it in `predict` function self.NN = NearestNeighbors(n_neighbors=max(self.k_list), metric=self.metric, n_jobs=1, algorithm='brute' if self.metric=='cosine' else 'auto') self.NN.fit(X) # Store labels self.y_train = y # Save how many classes we have self.n_classes = np.unique(y).shape[0] if self.n_classes_ is None else self.n_classes_ def predict(self, X): ''' Produces KNN features for every object of a dataset X ''' if self.n_jobs == 1: test_feats = [] for i in range(X.shape[0]): test_feats.append(self.get_features_for_one(X[i:i+1])) else: ''' *Make it parallel* Number of threads should be controlled by `self.n_jobs` You can use whatever you want to do it For Python 3 the simplest option would be to use `multiprocessing.Pool` (but don't use `multiprocessing.dummy.Pool` here) You may try use `joblib` but you will most likely encounter an error, that you will need to google up (and eventually it will work slowly) For Python 2 I also suggest using `multiprocessing.Pool` You will need to use a hint from this blog http://qingkaikong.blogspot.ru/2016/12/python-parallel-method-in-class.html I could not get `joblib` working at all for this code (but in general `joblib` is very convenient) ''' # YOUR CODE GOES HERE # test_feats = # YOUR CODE GOES HERE # YOUR CODE GOES HERE # test_feats = Parallel(n_jobs=self.n_jobs)(delayed(self.get_features_for_one)(x) for x in X) p = Pool(self.n_jobs) test_feats = p.map(self.get_features_for_one,[[x] for x in X]) p.close() p.join() # assert False, 'You need to implement it for n_jobs > 1' return np.vstack(test_feats) def get_features_for_one(self, x): ''' Computes KNN features for a single object `x` ''' NN_output = self.NN.kneighbors(x) # Vector of size `n_neighbors` # Stores indices of the neighbors # NN_output = distances,indices neighs = NN_output[1][0] # Vector of size `n_neighbors` # Stores distances to corresponding neighbors neighs_dist = NN_output[0][0] # Vector of size `n_neighbors` # Stores labels of corresponding neighbors neighs_y = self.y_train[neighs] ## ========================================== ## ## YOUR CODE BELOW ## ========================================== ## # We will accumulate the computed features here # Eventually it will be a list of lists or np.arrays # and we will use np.hstack to concatenate those return_list = [] ''' 1. Fraction of objects of every class. It is basically a KNNСlassifiers predictions. Take a look at `np.bincount` function, it can be very helpful Note that the values should sum up to one ''' # print("1. [*] Fraction of object in every class") for k in self.k_list: # YOUR CODE GOES HERE feats = [] bcount = {c:v for c,v in enumerate(np.bincount(neighs_y[:k]))} for c in range(self.n_classes): if c in bcount: feats.append(bcount[c]) else: feats.append(0) feats /= np.sum(feats) assert len(feats) == self.n_classes return_list += [feats] ''' 2. Same label streak: the largest number N, such that N nearest neighbors have the same label What can help you: `np.where` ''' # print("2. [*] Longest streak of same label") run_ends = np.where(np.diff(neighs_y))[0] + 1 offset =
np.hstack((0,run_ends,neighs_y.size))
numpy.hstack
from torch.utils.data import Dataset import numpy as np import os from PIL import Image from datasets.data_io import * import cv2 class MVSDataset(Dataset): def __init__(self, datapath, listfile, mode, nviews, img_wh=(1600, 1200), **kwargs): super(MVSDataset, self).__init__() self.stages = 4 self.datapath = datapath self.listfile = listfile self.mode = mode self.nviews = nviews self.img_wh = img_wh assert self.mode == "test" self.metas = self.build_list() def build_list(self): metas = [] with open(self.listfile) as f: scans = f.readlines() scans = [line.rstrip() for line in scans][0:1] for scan in scans: pair_file = "{}/pair.txt".format(scan) # read the pair file with open(os.path.join(self.datapath, pair_file)) as f: num_viewpoint = int(f.readline()) # viewpoints (49) for view_idx in range(num_viewpoint): ref_view = int(f.readline().rstrip()) src_views = [int(x) for x in f.readline().rstrip().split()[1::2]] metas.append((scan, ref_view, src_views)) print("dataset", self.mode, "metas:", len(metas)) return metas def __len__(self): return len(self.metas) def read_cam_file(self, filename): with open(filename) as f: lines = f.readlines() lines = [line.rstrip() for line in lines] # extrinsics: line [1,5), 4x4 matrix extrinsics = np.fromstring(' '.join(lines[1:5]), dtype=np.float32, sep=' ').reshape((4, 4)) # intrinsics: line [7-10), 3x3 matrix intrinsics = np.fromstring(' '.join(lines[7:10]), dtype=np.float32, sep=' ').reshape((3, 3)) depth_min = float(lines[11].split()[0]) depth_max = float(lines[11].split()[1]) return intrinsics, extrinsics, depth_min, depth_max def read_img(self, filename): img = Image.open(filename) # scale 0~255 to 0~1 np_img = np.array(img, dtype=np.float32) / 255. np_img = cv2.resize(np_img, self.img_wh, interpolation=cv2.INTER_LINEAR) h, w, _ = np_img.shape np_img_ms = { "stage_3": cv2.resize(np_img, (w//8, h//8), interpolation=cv2.INTER_LINEAR), "stage_2": cv2.resize(np_img, (w//4, h//4), interpolation=cv2.INTER_LINEAR), "stage_1": cv2.resize(np_img, (w//2, h//2), interpolation=cv2.INTER_LINEAR), "stage_0": np_img } return np_img_ms def __getitem__(self, idx): meta = self.metas[idx] scan, ref_view, src_views = meta # use only the reference view and first nviews-1 source views view_ids = [ref_view] + src_views[:self.nviews - 1] img_w = 1600 img_h = 1200 imgs_0 = [] imgs_1 = [] imgs_2 = [] imgs_3 = [] depth_min = None depth_max = None proj_matrices_0 = [] proj_matrices_1 = [] proj_matrices_2 = [] proj_matrices_3 = [] for i, vid in enumerate(view_ids): img_filename = os.path.join(self.datapath, '{}/images/{:0>8}.jpg'.format(scan, vid)) proj_mat_filename = os.path.join(self.datapath, '{}/cams_1/{:0>8}_cam.txt'.format(scan, vid)) imgs = self.read_img(img_filename) imgs_0.append(imgs['stage_0']) imgs_1.append(imgs['stage_1']) imgs_2.append(imgs['stage_2']) imgs_3.append(imgs['stage_3']) intrinsics, extrinsics, depth_min_, depth_max_ = self.read_cam_file(proj_mat_filename) intrinsics[0] *= self.img_wh[0]/img_w intrinsics[1] *= self.img_wh[1]/img_h # multiply intrinsics and extrinsics to get projection matrix proj_mat = extrinsics.copy() intrinsics[:2,:] *= 0.125 proj_mat[:3, :4] = np.matmul(intrinsics, proj_mat[:3, :4]) proj_matrices_3.append(proj_mat) proj_mat = extrinsics.copy() intrinsics[:2,:] *= 2 proj_mat[:3, :4] = np.matmul(intrinsics, proj_mat[:3, :4]) proj_matrices_2.append(proj_mat) proj_mat = extrinsics.copy() intrinsics[:2,:] *= 2 proj_mat[:3, :4] = np.matmul(intrinsics, proj_mat[:3, :4]) proj_matrices_1.append(proj_mat) proj_mat = extrinsics.copy() intrinsics[:2,:] *= 2 proj_mat[:3, :4] =
np.matmul(intrinsics, proj_mat[:3, :4])
numpy.matmul
from __future__ import division, absolute_import, print_function import sys import pytest import numpy as np from numpy.ctypeslib import ndpointer, load_library, as_array from numpy.distutils.misc_util import get_shared_lib_extension from numpy.testing import assert_, assert_array_equal, assert_raises, assert_equal try: cdll = None if hasattr(sys, 'gettotalrefcount'): try: cdll = load_library('multiarray_d', np.core.multiarray.__file__) except OSError: pass if cdll is None: cdll = load_library('multiarray', np.core.multiarray.__file__) _HAS_CTYPE = True except ImportError: _HAS_CTYPE = False @pytest.mark.skipif(not _HAS_CTYPE, reason="ctypes not available in this python") @pytest.mark.skipif(sys.platform == 'cygwin', reason="Known to fail on cygwin") class TestLoadLibrary(object): def test_basic(self): try: # Should succeed load_library('multiarray', np.core.multiarray.__file__) except ImportError as e: msg = ("ctypes is not available on this python: skipping the test" " (import error was: %s)" % str(e)) print(msg) def test_basic2(self): # Regression for #801: load_library with a full library name # (including extension) does not work. try: try: so = get_shared_lib_extension(is_python_ext=True) # Should succeed load_library('multiarray%s' % so, np.core.multiarray.__file__) except ImportError: print("No distutils available, skipping test.") except ImportError as e: msg = ("ctypes is not available on this python: skipping the test" " (import error was: %s)" % str(e)) print(msg) class TestNdpointer(object): def test_dtype(self): dt = np.intc p = ndpointer(dtype=dt) assert_(p.from_param(np.array([1], dt))) dt = '<i4' p = ndpointer(dtype=dt) assert_(p.from_param(np.array([1], dt))) dt = np.dtype('>i4') p = ndpointer(dtype=dt) p.from_param(np.array([1], dt)) assert_raises(TypeError, p.from_param, np.array([1], dt.newbyteorder('swap'))) dtnames = ['x', 'y'] dtformats = [np.intc, np.float64] dtdescr = {'names': dtnames, 'formats': dtformats} dt = np.dtype(dtdescr) p = ndpointer(dtype=dt) assert_(p.from_param(np.zeros((10,), dt))) samedt = np.dtype(dtdescr) p = ndpointer(dtype=samedt) assert_(p.from_param(np.zeros((10,), dt))) dt2 = np.dtype(dtdescr, align=True) if dt.itemsize != dt2.itemsize: assert_raises(TypeError, p.from_param, np.zeros((10,), dt2)) else: assert_(p.from_param(np.zeros((10,), dt2))) def test_ndim(self): p = ndpointer(ndim=0) assert_(p.from_param(np.array(1))) assert_raises(TypeError, p.from_param, np.array([1])) p = ndpointer(ndim=1) assert_raises(TypeError, p.from_param, np.array(1)) assert_(p.from_param(np.array([1]))) p = ndpointer(ndim=2) assert_(p.from_param(np.array([[1]]))) def test_shape(self): p = ndpointer(shape=(1, 2)) assert_(p.from_param(np.array([[1, 2]]))) assert_raises(TypeError, p.from_param, np.array([[1], [2]])) p = ndpointer(shape=()) assert_(p.from_param(np.array(1))) def test_flags(self): x = np.array([[1, 2], [3, 4]], order='F') p = ndpointer(flags='FORTRAN') assert_(p.from_param(x)) p = ndpointer(flags='CONTIGUOUS') assert_raises(TypeError, p.from_param, x) p = ndpointer(flags=x.flags.num) assert_(p.from_param(x)) assert_raises(TypeError, p.from_param, np.array([[1, 2], [3, 4]])) def test_cache(self): a1 = ndpointer(dtype=np.float64) a2 = ndpointer(dtype=np.float64) assert_(a1 == a2) @pytest.mark.skipif(not _HAS_CTYPE, reason="ctypes not available on this python installation") class TestAsArray(object): def test_array(self): from ctypes import c_int pair_t = c_int * 2 a = as_array(pair_t(1, 2)) assert_equal(a.shape, (2,)) assert_array_equal(a, np.array([1, 2])) a = as_array((pair_t * 3)(pair_t(1, 2), pair_t(3, 4), pair_t(5, 6))) assert_equal(a.shape, (3, 2)) assert_array_equal(a, np.array([[1, 2], [3, 4], [5, 6]])) def test_pointer(self): from ctypes import c_int, cast, POINTER p = cast((c_int * 10)(*range(10)), POINTER(c_int)) a = as_array(p, shape=(10,)) assert_equal(a.shape, (10,)) assert_array_equal(a, np.arange(10)) a = as_array(p, shape=(2, 5)) assert_equal(a.shape, (2, 5)) assert_array_equal(a,
np.arange(10)
numpy.arange
# Copyright 2016 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test for custom tensorflow operators.""" import os import unittest import tempfile import numpy as np import skimage.color as skcolor import tensorflow as tf import hdrnet.hdrnet_ops as ops class BilateralSliceTest(tf.test.TestCase): def run_bilateral_slice(self, dev, grid_data, guide_data): with tf.device(dev): grid_tensor = tf.convert_to_tensor( grid_data, name='grid', dtype=tf.float32) guide_tensor = tf.convert_to_tensor( guide_data, name='guide', dtype=tf.float32) output_tensor = ops.bilateral_slice(grid_tensor, guide_tensor) with self.test_session() as sess: output_data = sess.run(output_tensor) return output_data def test_shape_is_correct(self): batch_size = 3 grid_shape = [batch_size, 10, 6, 8, 12] guide_shape = [batch_size, 101, 60] grid_data = np.random.rand(*grid_shape).astype(np.float32) guide_data = np.random.rand(*guide_shape).astype(np.float32) for dev in ['/cpu:0', '/gpu:0']: output_data = self.run_bilateral_slice(dev, grid_data, guide_data) output_shape = list(output_data.shape) self.assertEqual(len(output_shape), 4) self.assertEqual(output_shape[0], guide_shape[0]) self.assertEqual(output_shape[1], guide_shape[1]) self.assertEqual(output_shape[2], guide_shape[2]) self.assertEqual(output_shape[3], grid_shape[4]) def test_interpolate(self): for dev in ['/gpu:0']: batch_size = 3 h = 3 w = 4 d = 3 grid_shape = [batch_size, h, w, d, 1] grid_data = np.zeros(grid_shape).astype(np.float32) grid_data[:, :, :, 1 :] = 1.0 grid_data[:, :, :, 2 :] = 2.0 guide_shape = [batch_size, 5, 9] target_shape = [batch_size, 5, 9, 1] for val in range(d): target_data = val*np.ones(target_shape) target_data = target_data.astype(np.float32) guide_data = ((val+0.5)/(1.0*d))*np.ones(guide_shape).astype(np.float32) output_data = self.run_bilateral_slice(dev, grid_data, guide_data) diff = np.amax(np.abs(target_data-output_data)) self.assertEqual(target_shape, list(output_data.shape)) self.assertLess(diff, 5e-4) def test_grid_gradient(self): for dev in ['/gpu:0']: batch_size = 3 h = 8 w = 5 gh = 6 gw = 3 d = 7 nchans = 4 grid_shape = [batch_size, gh, gw, d, nchans] guide_shape = [batch_size, h, w] output_shape = [batch_size, h, w, nchans] grid_data = np.random.rand(*grid_shape).astype(np.float32) guide_data = np.random.rand(*guide_shape).astype(np.float32) with tf.device(dev): grid_tensor = tf.convert_to_tensor(grid_data, name='data', dtype=tf.float32) guide_tensor = tf.convert_to_tensor(guide_data, name='data', dtype=tf.float32) output_tensor = ops.bilateral_slice(grid_tensor, guide_tensor) with self.test_session(): err = tf.test.compute_gradient_error( grid_tensor, grid_shape, output_tensor, output_shape) self.assertLess(err, 1e-4) def test_guide_gradient(self): for dev in ['/gpu:0']: batch_size = 2 h = 7 w = 8 d = 5 gh = 3 gw = 4 nchans = 2 grid_shape = [batch_size, gh, gw, d, nchans] guide_shape = [batch_size, h, w] output_shape = [batch_size, h, w, nchans] grid_data = np.random.randn(*grid_shape).astype(np.float32) guide_data = np.random.rand(*guide_shape).astype(np.float32) with tf.device(dev): grid_tensor = tf.convert_to_tensor(grid_data, name='data', dtype=tf.float32) guide_tensor = tf.convert_to_tensor(guide_data, name='data', dtype=tf.float32) output_tensor = ops.bilateral_slice(grid_tensor, guide_tensor) with self.test_session(): th, num = tf.test.compute_gradient( guide_tensor, guide_shape, output_tensor, output_shape, delta=1e-4) print(th) print(num) thresh = 5e-3 diff = np.abs(th-num) x, y = np.where(diff>thresh) for i in range(len(x)): in_x = x[i] % w in_y = x[i] / w out_c = y[i] % nchans out_x = (y[i]/nchans) % w out_y = (y[i]/nchans) / w print("output ({},{},{}) - input ({},{})\n guide: {:f}\n theoretical: {:f}\n numerical: {:f}".format( out_y, out_x, out_c, in_y, in_x, np.ravel(guide_data)[x[i]], th[x[i], y[i]], num[x[i],y[i]])) print(len(x), 'of', len(np.ravel(diff)), 'errors') print('gradient shape', th.shape) print('guide shape', guide_data.shape) print('grid shape', grid_data.shape) print('output shape', output_shape) self.assertLess(np.amax(diff), thresh) def l2_optimizer(self, target, output, lr=1e-2): loss = tf.reduce_sum(tf.square(target-output)) global_step = tf.Variable( 0, name='global_step', trainable=False, collections=['global_step', tf.GraphKeys.GLOBAL_VARIABLES]) optimizer = tf.train.GradientDescentOptimizer(lr).minimize( loss, global_step=global_step) return optimizer, loss def test_grid_optimize(self): for dev in ['/gpu:0']: bs= 1 h = 1 w = 32 nchans = 1 gh = 1 gw = 16 gd = 8 guide_data = np.linspace(0, 1, w).astype(np.float32) guide_data = guide_data[np.newaxis, np.newaxis, :] guide_data = np.tile(guide_data, [bs, h, 1]) grid_data = np.random.rand(bs, gh, gw, gd, nchans).astype(np.float32) target_data = np.sin(np.linspace(0, 2*np.pi, w)).astype(np.float32) target_data = target_data[np.newaxis, np.newaxis, :, np.newaxis] target_data = np.tile(target_data, [bs, h, 1, 1]) grid = tf.Variable(grid_data) guide = tf.convert_to_tensor(guide_data) target = tf.convert_to_tensor(target_data) output = ops.bilateral_slice(grid, guide) checkpoint_dir = tempfile.mkdtemp() opt, loss = self.l2_optimizer(target, output) with self.test_session() as sess: tf.global_variables_initializer().run() for step in range(10000): _, l_ = sess.run([opt, loss]) if step % 100 == 0: print("Step {}, loss = {:.5f}".format(step, l_)) out_, target_ = sess.run([output, target]) out_ = np.squeeze(out_) target_ = np.squeeze(target_) assert np.sum(np.square(out_-target_)) < 0.0085 def test_guide_optimize(self): for dev in ['/gpu:0']: bs= 1 h = 1 w = 32 nchans = 1 gh = 1 gw = 8 gd = 2 guide_data = np.linspace(0.5/gd, 1-0.5/gd, w).astype(np.float32) guide_data = guide_data[np.newaxis, np.newaxis, :] guide_data = np.tile(guide_data, [bs, h, 1]) grid_data = np.linspace(-1, 1, gd).astype(np.float32) grid_data = grid_data[np.newaxis, np.newaxis, np.newaxis, :, np.newaxis ] grid_data = np.tile(grid_data, [bs, gh, gw, 1, nchans]) target_data = np.sin(np.linspace(0, 2*np.pi, w)).astype(np.float32) target_data = target_data[np.newaxis, np.newaxis, :, np.newaxis] target_data =
np.tile(target_data, [bs, h, 1, 1])
numpy.tile
#!/usr/bin/python ######################################################################################################################## # # Copyright (c) 2014, Regents of the University of California # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the # following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following # disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the # following disclaimer in the documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ######################################################################################################################## """ The GridLayoutGenerator module implements classes to generate full-custom layout on 'abstract' grid. It allows designers to describe layout generation scripts in Python language and automate the layout process, abstracting design rules for easier implementation and process portability. All numerical parameters are given in integer numbers and they are converted to physical numbers internally and designers don't need to deal with complex design rules in modern CMOS process. Example ------- For layout export, type below command in ipython console. $ run laygo/labs/lab2_b_gridlayoutgenerator_layoutexercise.py """ __author__ = "<NAME>" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Prototype" from .BaseLayoutGenerator import * from .TemplateDB import * from .GridDB import * from . import PrimitiveUtil as ut import numpy as np import logging #TODO: support path routing class GridLayoutGenerator(BaseLayoutGenerator): """ The GridLayoutGenerator class implements functions and variables for full-custom layout generations on abstract grids. Parameters ---------- physical_res : float physical grid resolution config_file : str laygo configuration file path templates : laygo.TemplateDB.TemplateDB template database grids : laygo.GridDB.GridDB grid database layers: dict layer dictionary. metal, pin, text, prbnd are used as keys """ templates = None """laygo.TemplateDB.TemplateDB: template database""" grids = None """laygo.GridDB.GridDB: grid database""" use_phantom=False #phantom cell usage """bool: true if phantom cells are exported (not real cells)""" layers = {'metal':[], 'pin':[], 'text':[], 'prbnd':[]} """dict: layer dictionary. Keys are metal, pin, text, prbnd""" def __init__(self, physical_res=0.005, config_file=None): """ Constructor """ self.templates = TemplateDB() self.grids = GridDB() if not config_file==None: #config file exists with open(config_file, 'r') as stream: techdict = yaml.load(stream) self.tech = techdict['tech_lib'] self.physical_res = techdict['physical_resolution'] physical_res=self.physical_res self.layers['metal'] = techdict['metal_layers'] self.layers['pin'] = techdict['pin_layers'] self.layers['text'] = techdict['text_layer'] self.layers['prbnd'] = techdict['prboundary_layer'] print(self.tech + " loaded sucessfully") BaseLayoutGenerator.__init__(self, res=physical_res) #aux functions def _bbox_xy(self, xy): """ Find a bbox of xy coordinates. ex) _bbox_xy([[4, 1], [3, 5], [2, 3]])=np.array([[2, 1], [4, 5]]) Parameters ---------- xy : np.array([[int, int], [int, int]]) or point matrix. List can be also used. Returns ------- np.array([[int, int], [int, int]]) bbox matrix """ xy = np.asarray(xy) bx = sorted(xy[:, 0].tolist()) by = sorted(xy[:, 1].tolist()) ll = np.array([bx[0], by[0]]) # lower-left ur = np.array([bx[-1], by[-1]]) # upper-right bnd = np.vstack([ll, ur]) return bnd #Placement functions def place(self, name, templatename, gridname, xy, template_libname=None, shape=np.array([1, 1]), spacing=None, offset=np.array([0, 0]), transform='R0', annotate_text=None, libname=None): """ Place an instance on abstract grid. Use relplace instead Parameters ---------- name : str Name of the instance. templatename : str Name of the template for the instance. gridname : str Grid name for the instance placement. xy : np.array([int, int]) or [int, int] Placement coordinate on the grid, specified by gridname. libname : str, optional Template library name. If not specified, self.templates.plib is used. shape : np.array([x0, y0]) or None, optional array shape parameter. If None, the instance is not considered as array. Default is None transform : str ('R0', 'MX', 'MY'), optional Transform parameter Returns ------- laygo.layoutObject.Instance generated instance Other Parameters ---------------- template_libname: str, optional, deprecated Replaced with libname spacing : np.array([int, int]), optional Array spacing parameter for the instance. If None, the size of the instance of is used. offset : np.array([float, float]), optional Offset in physical coordinate. annotate_text : str, optional text to be annotated. Use None if no annotation is required """ ### preprocessing starts ### xy = np.asarray(xy) # convert to a numpy array if shape is None: _shape = np.array([1, 1]) else: _shape = np.asarray(shape) if not spacing==None: spacing = np.asarray(spacing) offset = np.asarray(offset) if not libname is None: template_libname = libname if template_libname is None: template_libname = self.templates.plib ### preprocessing ends ### t=self.templates.get_template(templatename, template_libname) xy_phy=self.grids.get_phygrid_xy(gridname, xy)+offset # instantiation if not isinstance(spacing,np.ndarray): spacing=t.size inst = self.add_inst(name=name, libname=template_libname, cellname=t.name, xy=xy_phy, shape=shape, spacing=spacing, transform=transform, template=t) if not annotate_text==None: #annotation self.add_text(None, text=annotate_text, xy=np.vstack((xy_phy, xy_phy+0.5*np.dot(t.size*_shape, ut.Mt(transform).T))), layer=self.layers['prbnd']) if self.use_phantom == True: #phantom cell placement self.add_rect(None, xy=np.vstack((xy_phy, xy_phy+np.dot(t.size*_shape, ut.Mt(transform).T))), layer=self.layers['prbnd']) for pinname, pin in t.pins.items(): #pin abstract for x in range(_shape[0]): for y in range(_shape[1]): self.add_rect(None, xy=np.vstack((xy_phy+np.dot(pin['xy'][0]+t.size*np.array([x, y]), ut.Mt(transform).T), xy_phy+np.dot(pin['xy'][1]+t.size*np.array([x, y]), ut.Mt(transform).T))), layer=self.layers['prbnd']) self.add_text(None, text=pinname+'/'+pin['netname'], xy=xy_phy, layer=self.layers['prbnd']) self.add_text(None, text=inst.name+"/"+t.name, xy=xy_phy, layer=self.layers['prbnd']) return inst def relplace(self, name=None, templatename=None, gridname=None, refinstname=None, direction='right', xy=np.array([0, 0]), offset=np.array([0, 0]), template_libname=None, shape=None, spacing=None, transform='R0', refobj=None, libname=None, cellname=None): """ Place an instance on abstract grid, bound from a reference object. If reference object is not specified, [0, 0]+offset is used as the reference point. Equation = xy+refobj_xy+0.5*(Mt@refobj_size+Md@(refobj_size+inst_size)-Mti@inst_size). Parameters ---------- name : str Name of the instance. cellname : str Template name (cellname) of the instance. gridname : str Grid name for the placement. xy : np.array([x, y]) or [int, int], optional Placement coordinate on the grid, specified by gridname. If not specified, [0, 0] is used. refobj : LayoutObject.Instance, optional Reference instance handle, if None, refinstname is used. Will be extended to support other objects. direction : str, optional Direction of placement, bound from refobj. For example, if the instance will be place on top of refobj, direction='top' is used shape : np.array([x0, y0]) or None, optional array shape parameter. If None, the instance is not considered as array. Default is None transform : str ('R0', 'MX', 'MY') Transform parameter. 'R0' is used by default. libname : str, optional Template library name. If not specified, self.templates.plib is used. Returns ------- laygo.layoutObject.Instance generated instance Other Parameters ---------------- refinstname : str, optional, deprecated Reference instance name, if None, [0, 0] is used for the reference point. templatename : str, deprecated Replaced with cellname template_libname: str, optional, deprecated Replaced with libname spacing : np.array([int, int]) or [int, int] Array spacing parameter for the instance. If none, the size of the instance of is used. offset : np.array([float, float]), optional Placement offset in physical coordinate. See Also -------- place : substrate function of relplace """ #TODO: Alignment option, bottom/top-left/right directions # cellname handling if not cellname is None: templatename=cellname # check if it's multiple placement if isinstance(templatename, list): # multiple placement flag_recursive=False #recursive placement flag. If True, next placement refer the current placement # preprocessing arguments len_inst = len(templatename) #number of instance to be placed (for multiple placements) if name is None: name = [None] * len_inst #extend Name list to be matched with templatename if refinstname is None: #for backward compatibility. Use refobj instead of refinstname if possible if refobj is None: flag_recursive=True _refinstname=[None for i in range(len_inst)] else: #check if refobj is list. If so, do a recursive placement if isinstance(refobj, list): _refinstname=[i.name for i in refobj] else: flag_recursive=True _refinstname=[refobj.name]+[None for i in range(len_inst-1)] else: #check if refinstname is list. If so, do a recursive placement if isinstance(refinstname, list): _refinstname=refinstname else: flag_recursive=True _refinstname=[refinstname]+[None for i in range(len_inst-1)] if isinstance(xy[0], (int, np.int64)): xy = [xy] * len_inst if isinstance(direction, str): direction = [direction] * len_inst if shape == None: shape = [shape] * len_inst else: if isinstance(shape[0], (int, np.int64)): shape = [shape] * len_inst if spacing is None: spacing = [None] * len_inst elif isinstance(spacing[0], (int, np.int64)): spacing = [spacing] * len_inst else: if not isinstance(spacing, list): spacing = [spacing] * len_inst if isinstance(transform, str): transform = [transform] * len_inst return_inst_list = [] for i, nm, _refi_name, _xy, tl, dr, sh, sp, tr in zip(range(len_inst), name, _refinstname, xy, templatename, direction, shape, spacing, transform): #row placement refi = GridLayoutGenerator.relplace(self, nm, tl, gridname, refinstname=_refi_name, direction=dr, xy=_xy, offset=offset, template_libname=template_libname, shape=sh, spacing=sp, transform=tr)#, refobj=refobj) return_inst_list.append(refi) if flag_recursive is True: if not i == len_inst-1: _refinstname[i+1] = refi.name return return_inst_list else: # single placement ### preprocessing starts ### if shape is None: _shape = np.array([1, 1]) else: _shape = np.asarray(shape) if not spacing == None: spacing = np.asarray(spacing) xy = np.asarray(xy) offset = np.asarray(offset) if not libname is None: template_libname = libname if template_libname is None: template_libname = self.templates.plib ### preprocessing ends ### t_size_grid = self.get_template_xy(templatename, gridname, libname=template_libname) t_size_grid = t_size_grid*_shape #reference instance check if (refobj is None) and (refinstname is None): ir_xy_grid = np.array([0, t_size_grid[1]/2.0]) tr_size_grid = np.array([0, 0]) mtr = ut.Mt('R0') mti = ut.Mt('R0') else: if not refobj is None: if isinstance(refobj, Instance): ir = refobj elif isinstance(refobj, InstanceArray): ir = refobj elif isinstance(refobj, Pointer): ir = refobj.master direction = refobj.name else: ir = self.get_inst(refinstname) tr = self.templates.get_template(ir.cellname, libname=ir.libname) #get abstract grid coordinates ir_xy_grid = self.get_absgrid_xy(gridname, ir.xy) tr_size_grid = self.get_absgrid_xy(gridname, tr.size+(ir.shape-np.array([1,1]))*ir.spacing) mtr = ut.Mt(ir.transform) mti = ut.Mt(transform) #direction md = ut.Md(direction) i_xy_grid = ir_xy_grid + 0.5 * (np.dot(tr_size_grid, mtr.T) + np.dot(tr_size_grid + t_size_grid, md.T) - np.dot(t_size_grid, mti.T)) return GridLayoutGenerator.place(self, name=name, templatename=templatename, gridname=gridname, xy=i_xy_grid+xy, offset=offset, template_libname=template_libname, shape=shape, spacing=spacing, transform=transform) def via(self, name=None, xy=np.array([0, 0]), gridname=None, refobj=None, refobjindex=np.array([0, 0]), offset=np.array([0, 0]), refinstname=None, refinstindex=np.array([0, 0]), refpinname=None, transform='R0', overwrite_xy_phy=None, overlay=None): """ Place a via on abstract grid, bound from a reference object. If reference object is not specified, [0, 0]+offset is used as the reference point. Parameters ---------- name : str Name of the via xy : np.array([int, int]) or [int, int] xy coordinate of the via gridname : str Grid name of the via refobj : LayoutObject.LayoutObject Reference object(Instance/Pin/Rect) handle. If None, refinstiname is used. overlay : LayoutObject.LayoutObject Layout object for via placement at intersection (via will be placed at the overlaid point btn refobj and overlay) Use with refobj only. Not compatible with legacy reference parameters (refinstname) transform : str ('R0', 'MX', 'MY'), optional Transform parameter for grid. Overwritten by transform of refinstname if not specified. Returns ------- laygo.layoutObject.Instance generated via instance Other Parameters ---------------- offset : np.array([float, float]), optional Offset on the physical grid, bound from xy overwrite_xy_phy : None or np.array([float, float]), optional If specified, final xy physical coordinates are overwritten by the argument. refobjindex : np.array([int, int]), optional, deprecated Index of refobj if it is a mosaic instance. refinstname : str, optional, deprecated Reference instance name for xy. If None, origin([0,0]) is used as the reference point. refinstindex : str, optional, deprecated Index of refinstname if it is a mosaic instance refpinname : str, optional, deprecated Reference pin of refinstname for reference point of xy. If None, the origin of refinstname0 is used. """ if isinstance(refobj, np.ndarray) or isinstance(overlay, np.ndarray): #mutiple placement if isinstance(refobj, np.ndarray) and isinstance(overlay, np.ndarray): #both array _refobj = refobj.flat _overlay = overlay.flat elif isinstance(refobj, np.ndarray): _refobj = refobj.flat _overlay = np.empty(refobj.shape, dtype=overlay.__class__) for i, o in np.ndenumerate(_overlay): _overlay[i] = overlay _overlay = _overlay.flat elif isinstance(overlay, np.ndarray): _overlay = overlay.flat _refobj = np.empty(overlay.shape, dtype=refobj.__class__) for i, o in np.ndenumerate(_refobj): _refobj[i] = refobj _refobj = _refobj.flat return_via_list = [] for r0, o0 in zip(_refobj, _overlay): refv = GridLayoutGenerator.via(self, name=name, xy=xy, gridname=gridname, refobj=r0, offset=offset, transform=transform, overwrite_xy_phy=overwrite_xy_phy, overlay=o0) return_via_list.append(refv) return return_via_list else: ### preprocessing arguments starts ### xy = np.asarray(xy) offset = np.asarray(offset) refinstindex = np.asarray(refinstindex) # reading coordinate information from the reference objects # this needs to be cleaned up refinst = None refrect0 = None refrect1 = None if not refobj is None: if isinstance(refobj, Instance): refinst = refobj refinstindex=refobjindex elif isinstance(refobj, InstanceArray): refinst = refobj refinstindex=refobjindex elif isinstance(refobj, Pin): refinst = refobj.master refinstindex=refobjindex refpinname=refobj.name elif isinstance(refobj, Rect): refrect0 = refobj else: if not refinstname is None: refinst = self.get_inst(refinstname) if not overlay is None: if isinstance(overlay, Rect): refrect1 = overlay ### preprocessing arguments ends ### # get physical grid coordinates # need to be refactored if not refinst is None: reftemplate = self.templates.get_template(refinst.cellname, libname=refinst.libname) offset = offset + refinst.xy + np.dot(refinst.spacing * refinstindex, ut.Mt(refinst.transform).T) if not refpinname == None: #if pin reference is specified pin_xy_phy=reftemplate.pins[refpinname]['xy'] bbox=pin_xy_phy if not refrect1 is None: #overlay bbox0=pin_xy_phy bbox1=np.dot(refrect1.xy - refinst.xy, ut.Mtinv(refinst.transform).T) sx=sorted([bbox0[0][0], bbox0[1][0], bbox1[0][0], bbox1[1][0]]) sy=sorted([bbox0[0][1], bbox0[1][1], bbox1[0][1], bbox1[1][1]]) bbox=np.array([[sx[1], sy[1]], [sx[2], sy[2]]]) #pin_xy_abs=self.get_absgrid_region(gridname, pin_xy_phy[0], pin_xy_phy[1])[0,:] pin_xy_abs=self.get_absgrid_region(gridname, bbox[0], bbox[1])[0,:] xy=xy+pin_xy_abs transform=refinst.transform #overwrite transform variable if not refrect0 is None: xy=xy+self.get_absgrid_region(gridname, refrect0.xy0, refrect0.xy1)[0,:] if not refrect1 is None: #TODO: implement overlay function using refrect1 pass vianame = self.grids.get_vianame(gridname, xy) if overwrite_xy_phy is None: xy_phy=np.dot(self.grids.get_phygrid_xy(gridname, xy), ut.Mt(transform).T)+offset else: xy_phy=overwrite_xy_phy inst=self.add_inst(name=name, libname=self.grids.plib, cellname=vianame, xy=xy_phy, transform=transform) if self.use_phantom==True: size=self.grids.get_route_width_xy(gridname, xy) self.add_rect(None, xy=np.vstack((xy_phy-0.5*size, xy_phy+0.5*size)), layer=self.layers['text']) self.add_text(None, text=vianame, xy=xy_phy, layer=self.layers['text']) return inst # Route functions def route(self, name=None, layer=None, xy0=np.array([0, 0]), xy1=np.array([0, 0]), gridname0=None, gridname1=None, direction='omni', refobj0=None, refobj1=None, refobjindex0=np.array([0, 0]), refobjindex1=np.array([0, 0]), refinstname0=None, refinstname1=None, refinstindex0=np.array([0, 0]), refinstindex1=np.array([0, 0]), refpinname0=None, refpinname1=None, offset0=np.array([0,0]), offset1=None, transform0='R0', transform1=None, endstyle0="truncate", endstyle1="truncate", via0=None, via1=None, netname=None): """ Route on abstract grid, bound from reference objects. If reference objects are not specified, [0, 0]+offset is used as reference points. This function is a bit messy because originally its main arguments were refinst/refinstindex/refpinname, and switched to refobj/refobjindex, and to refobj only. At some point all the codes need to be rewritten. Parameters ---------- name : str Route name. If None, the name will be automatically assigned by genid. layer : [str, str], optional Routing layer [name, purpose]. If None, it figures out the layer from grid and coordinates xy0 : np.array([int, int]) or [int, int] xy coordinate for start point. xy1 : np.array([int, int]) or [int, int] xy coordinate for end point. gridname0 : str Grid name0 gridname1 : str, optional Grid name1 direction : str, optional Routing direction (omni, x, y, ...). It will be used as the input argument of GridLayoutGenerator.Md. refobj0 : LayoutObject.LayoutObject Reference object(Instance/Pin/Rect) handle. If None, refinstiname0 is used. refobj1 : LayoutObject.LayoutObject Reference object(Instance/Pin/Rect) handle. If None, refinstiname1 is used. transform0 : str, optional Transform parameter for grid0. Overwritten by transform of refinstname0 if not specified. transform1 : str, optional Transform parameter for grid1. Overwritten by transform of refinstname1 if not specified. endstyle0 : str ('extend', 'truncate'), optional End style of xy0 (extend the edge by width/2 if endstyle=='extend') endstyle1 : str ('extend', 'truncate'), optional End style of xy1 (extend the edge by width/2 if endstyle=='extend') via0 : None or np.array([x, y]) or np.array([[x0, y0], [x1, y1], [x2, y2], ...]), optional Offset coordinates for via placements, bound from xy0 ex) if xy0 = [1, 2], xy1 = [1, 5], via0 = [0, 2] then a via will be placed at [1, 4] via1 : None or np.array([x, y]) or np.array([[x0, y0], [x1, y1], [x2, y2], ...]), optional Offset coordinates for via placements, bound from xy1 ex) if xy0 = [1, 2], xy1 = [1, 5], via1 = [0, 2] then a via will be placed at [1, 7] netname : str, optional net name of the route Returns ------- laygo.layoutObject.Rect generated route Other Parameters ---------------- offset0 : np.array([float, float]), optional Coordinate offset from xy0, on the physical grid. offset1 : np.array([float, float]), optional Coordinate offset from xy1, on the physical grid. refobjindex0 : np.array([int, int]), optional, deprecated Index of refobj0 if it is a mosaic instance. refobjindex1 : np.array([int, int]), optional, deprecated Index of refobj1 if it is a mosaic instance. refinstname0 : str, optional, deprecated Reference instance name for start point. If None, origin([0,0]) is used as the reference point. refinstname1 : str, optional, deprecated Reference instance name for end point. If None, origin([0,0]) is used as the reference point. refinstindex0 : np.array([int, int]), optional, deprecated Index of refinstname0 if it is a mosaic instance. refinstindex1 : np.array([int, int]), optional, deprecated Index of refinstname1 if it is a mosaic instance. refpinname0 : str, optional, deprecated Reference pin of refinstname0 for reference point of xy0. If None, the origin of refinstname0 is used. refpinname1 : str, optional, deprecated Reference pin of refinstname1 for reference point of xy1. If None, the origin of refinstname1 is used. """ bool_r0 = isinstance(refobj0, np.ndarray) or isinstance(refobj0, InstanceArray) bool_r1 = isinstance(refobj1, np.ndarray) or isinstance(refobj1, InstanceArray) if bool_r0 or bool_r1: #mutiple placement if bool_r0 and bool_r1: #both array _refobj0 = refobj0.flat _refobj1 = refobj1.flat elif bool_r0: _refobj0 = refobj0.flat _refobj1 = np.empty(refobj0.shape, dtype=refobj1.__class__) for i, o in np.ndenumerate(_refobj1): _refobj1[i] = refobj1 _refobj1 = _refobj1.flat elif bool_r1: _refobj1 = refobj1.flat _refobj0 = np.empty(refobj1.shape, dtype=refobj0.__class__) for i, o in np.ndenumerate(_refobj0): _refobj0[i] = refobj0 _refobj0 = _refobj0.flat return_rect_list = [] for r0, r1 in zip(_refobj0, _refobj1): refr = GridLayoutGenerator.route(self, name=name, layer=layer, xy0=xy0, xy1=xy1, gridname0=gridname0, gridname1=gridname1, direction=direction, refobj0=r0, refobj1=r1, offset0=offset0, offset1=offset1, transform0=transform0, transform1=transform1, endstyle0=endstyle0, endstyle1=endstyle1, via0=via0, via1=via1, netname=netname) #Used GridLayoutGenerator for abstracting the function in GridLayoutGenerator2 return_rect_list.append(refr) return return_rect_list else: # exception handling if xy0 is None: raise ValueError('GridLayoutGenerator.route - specify xy0') if xy1 is None: raise ValueError('GridLayoutGenerator.route - specify xy1') if gridname0 is None: raise ValueError('GridLayoutGenerator.route - specify gridname0') ### preprocessing arguments starts ### xy0 = np.asarray(xy0) xy1 = np.asarray(xy1) refinstindex0 = np.asarray(refinstindex0) refinstindex1 = np.asarray(refinstindex1) refinst0 = None refinst1 = None offset0 = np.asarray(offset0) if not offset1 is None: offset1 =
np.asarray(offset1)
numpy.asarray
# # Test GeoImage # from unittest import TestCase, main import tempfile import shutil # Numpy import numpy as np # GDAL from osgeo.gdal import __version__ as gdal_version # Project from gimg import GeoImage from gimg.common import get_dtype from gimg.GeoImage import compute_geo_extent, compute_geo_transform from .create_synthetic_images import create_synthetic_image_file, create_virt_image from . import check_metadata class TestGeoImage(TestCase): def setUp(self): self.gdal_version_major = int(gdal_version[0]) # Create local temp directory self.local_temp_folder = tempfile.mkdtemp() def tearDown(self): # Delete temp directory shutil.rmtree(self.local_temp_folder) def test_with_synthetic_image(self): is_complex = False shape = (120, 100, 2) depth = 2 filepath, data, geo_extent, metadata, geo_transform, epsg = create_synthetic_image_file(self.local_temp_folder, shape, depth, is_complex) gimage = GeoImage(filepath) if self.gdal_version_major > 1: self.assertTrue(check_metadata(metadata, gimage.metadata), "{} vs {}".format(metadata, gimage.metadata)) self.assertLess(np.sum(np.abs(geo_extent - gimage.geo_extent)), 1e-10) self.assertEqual(epsg, gimage.get_epsg()) gimage_data = gimage.get_data() self.assertEqual(shape, gimage_data.shape) self.assertEqual(get_dtype(depth, is_complex), gimage_data.dtype) # verify data self.assertLess(np.sum(np.abs(data - gimage_data)), 1e-10) def test_with_synthetic_image_with_select_bands(self): is_complex = False shape = (120, 100, 5) depth = 2 filepath, data, geo_extent, metadata, geo_transform, epsg = create_synthetic_image_file(self.local_temp_folder, shape, depth, is_complex) gimage = GeoImage(filepath) if self.gdal_version_major > 1: self.assertTrue(check_metadata(metadata, gimage.metadata), "{} vs {}".format(metadata, gimage.metadata)) self.assertLess(np.sum(np.abs(geo_extent - gimage.geo_extent)), 1e-10) self.assertEqual(epsg, gimage.get_epsg()) select_bands = [0, 2, 4] gimage_data = gimage.get_data(select_bands=select_bands) self.assertEqual(shape[:2], gimage_data.shape[:2]) self.assertEqual(len(select_bands), gimage_data.shape[2]) self.assertEqual(get_dtype(depth, is_complex), gimage_data.dtype) # verify data self.assertLess(np.sum(np.abs(data[:, :, select_bands] - gimage_data)), 1e-10) def test_with_virtual_image(self): dataset, data = create_virt_image(100, 120, 2, np.uint16) gimage = GeoImage.from_dataset(dataset) gimage_data = gimage.get_data(nodata_value=0) # verify shape and dtype: self.assertEqual(data.shape, gimage_data.shape) self.assertEqual(data.dtype, gimage_data.dtype) # verify data self.assertLess(np.sum(np.abs(data - gimage_data)), 1e-10) def test_with_virtual_image2(self): dataset, data = create_virt_image(100, 120, 2, np.float32) gimage = GeoImage.from_dataset(dataset) gimage_data = gimage.get_data(nodata_value=-123) # verify shape and dtype: self.assertEqual(data.shape, gimage_data.shape) self.assertEqual(data.dtype, gimage_data.dtype) # verify data self.assertLess(np.sum(np.abs(data - gimage_data)), 1e-10) def test_from_dataset_with_select_bands(self): dataset, data = create_virt_image(100, 120, 5, np.float32) gimage = GeoImage.from_dataset(dataset) select_bands = [0, 2, 4] gimage_data = gimage.get_data(nodata_value=-123, select_bands=select_bands) # verify shape and dtype: self.assertEqual(data.shape[:2], gimage_data.shape[:2]) self.assertEqual(len(select_bands), gimage_data.shape[2]) self.assertEqual(data.dtype, gimage_data.dtype) # verify data self.assertLess(np.sum(
np.abs(data[:, :, select_bands] - gimage_data)
numpy.abs
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/05_cli.ipynb (unless otherwise specified). __all__ = ['logger', 'URLs', 'download', 'VWORDS', 'N_IMGS', 'N_FRAMES_TO_KEEP', 'FPS', 'BEST_DL_MODELS', 'BEST_IR_MODELS', 'BEST_MODEL_CONFIGS', 'reproduce', 'tango'] # Cell import logging import io import pickle import pprint import random import requests import subprocess import time import zipfile import numpy as np import pandas as pd from fastcore.script import call_parse, Param from pathlib import Path from .prep import * from .features import * from .eval import * from .model import * from .approach import * from .combo import * from tqdm.auto import tqdm logger = logging.getLogger() logger.setLevel(logging.INFO) # Cell URLs = { "tango_reproduction_package": "https://zenodo.org/record/4453765/files/tango_reproduction_package.zip", } # Cell # @call_parse def _download( out_path ): """Function for downloading all data and results related to this tool's paper""" out_path = Path(out_path) out_path.mkdir(parents=True, exist_ok=True) logging.info(f"Downloading and extracting datasets and models to {str(out_path)}.") r = requests.get(URLs["tango_reproduction_package"]) z = zipfile.ZipFile(io.BytesIO(r.content)) z.extractall(out_path) # Cell @call_parse def download( out_path: Param("The output path to save and unzip all files.", str) ): _download(out_path) # Cell # all hyperparameters used VWORDS = [1_000, 5_000, 10_000] N_IMGS = 15_000 N_FRAMES_TO_KEEP = [1, 5] FPS = 30 # Fix naming issue and number of models reported... BEST_DL_MODELS= [ "SIFT-10000vw-1ftk-bovw_weighted_lcs", "SimCLR-1000vw-5ftk-bovw", "SimCLR-5000vw-5ftk-bovw_lcs", "SimCLR-5000vw-5ftk-bovw_weighted_lcs", "SimCLR-1000vw-5ftk-bovw_weighted_lcs" ] BEST_IR_MODELS = [ "ocr+ir-1ftk-all_text", "ocr+ir-5ftk-all_text", "ocr+ir-5ftk-unique_frames", "ocr+ir-5ftk-unique_words" ] BEST_MODEL_CONFIGS = { "SimCLR": "SimCLR-1000vw-5ftk-bovw", "SIFT": "SIFT-10000vw-1ftk-bovw_weighted_lcs", "OCR+IR": "ocr+ir-5ftk-all_text" } # Cell def _generate_vis_results(vid_ds, out_path, art_path, vis_model): if vis_model == "SimCLR": simclr = SimCLRModel.load_from_checkpoint( checkpoint_path = str( art_path/"models"/"SimCLR"/"checkpointepoch=98.ckpt" ) ).eval() model = SimCLRExtractor(simclr) sim_func = simclr_frame_sim else: model = SIFTExtractor(cv2.xfeatures2d.SIFT_create(nfeatures = 10)) sim_func = sift_frame_sim logging.info(f"Computing rankings and calculating metrics for {vis_model} visual model.") for vw in tqdm(VWORDS): for ftk in tqdm(N_FRAMES_TO_KEEP): evaluation_metrics = {} cb_path = art_path/"models"/vis_model/f"cookbook_{vis_model}_{vw}vw.model" codebook = pickle.load(open(cb_path, "rb")) start = time.time() vid_ds_features = gen_extracted_features(vid_ds, model, FPS, ftk) end = time.time() feature_gen_time = end - start df, bovw_vid_ds_sims = gen_bovw_similarity( vid_ds, vid_ds_features, model, codebook, vw, ftk ) lcs_vid_ds_sims = gen_lcs_similarity( vid_ds, vid_ds_features, sim_func, model, codebook, df, vw, ftk ) rankings = approach( vid_ds, vid_ds_features, bovw_vid_ds_sims, lcs_vid_ds_sims, model, sim_func, codebook, df, vw, fps = FPS, ftk = ftk, ) for k, v in rankings.items(): evaluation_metrics[k] = evaluate(rankings[k]) id_name = f"user_{N_IMGS}n_{vw}vw_{FPS}fps_{ftk}ftk" results_path = out_path/"results"/vis_model results_path.mkdir(parents=True, exist_ok=True) logging.info(f"Saving rankings and metrics to {str(results_path)}.") with open(results_path/f"rankings_{id_name}.pkl", "wb") as f: pickle.dump(rankings, f, protocol=pickle.HIGHEST_PROTOCOL) with open(results_path/f"evaluation_metrics_{id_name}.pkl", 'wb') as f: pickle.dump(evaluation_metrics, f, protocol=pickle.HIGHEST_PROTOCOL) # Cell def _generate_txt_results(vid_ds, out_path, art_path, vis_model): logging.info("Computing rankings and calculating metrics for textual model.") csv_file_path = art_path/"user_assignment.csv" settings_path = out_path/"evaluation_settings" settings_path.mkdir(parents=True, exist_ok=True) video_data = read_video_data(csv_file_path) generate_setting2(video_data, settings_path) convert_results_format(out_path/"results", settings_path, out_path, [vis_model]) # Check if files already exist and skip if they do because it takes a long time txt_out_path = out_path/"extracted_text" for ftk in N_FRAMES_TO_KEEP: if not (txt_out_path/f"text_{ftk}").exists(): get_all_texts(vid_ds, txt_out_path, fps = ftk) txt_path = art_path/"models"/"OCR+IR" subprocess.check_output( ["sh", "build_run.sh", str(txt_out_path), str(settings_path)], cwd=str(txt_path), ) # Cell def _get_single_model_performance(pkl_path, technique): evals = pickle.load(open(fname, 'rb')) mRRs = [] mAPs = [] mean_Rs = [] for app in evals[technique]: mRRs.append(evals[technique][app]["App mRR"]) mAPs.append(evals[technique][app]["App mAP"]) mean_Rs.append(evals[technique][app]["App mean rank"]) return np.mean(mRRs), np.mean(mAPs), np.mean(mean_Rs) # Cell def _print_performance(model, mRR, mAP, mean_R): print( f"""\ Model: {model} Overall mRR: {mRR} Overall mAP: {mAP} Overall Mean Rank: {mean_R} """ ) def _output_performance(out_path, dl_model_config, ir_model_config): all_results = pd.read_csv( out_path/"combined"/"tango_comb_results"/"all_results.csv", sep=";" ) # Print the comb model results comb_results = all_results[ all_results["model_config"] == f"({dl_model_config},{ir_model_config})" ][all_results["weight"] == "0.2-0"] _print_performance( f"{dl_model_config},{ir_model_config},weight=0.2-0", np.mean(comb_results['recip_rank'].values), np.mean(comb_results['avg_precision'].values), np.mean(comb_results['first_rank'].values) ) # Print the vis model results vis_singl_results = all_results[ all_results["model_config"] == f"({dl_model_config},{ir_model_config})" ][all_results["weight"] == "0.0"] _print_performance( f"{dl_model_config}", np.mean(vis_singl_results['recip_rank'].values), np.mean(vis_singl_results['avg_precision'].values),
np.mean(vis_singl_results['first_rank'].values)
numpy.mean
import argparse import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from scipy import stats plt.style.use('seaborn') def parse_input(): parser = argparse.ArgumentParser() parser.add_argument('--cpg_file', help='Path to the cpg file', required=True) parser.add_argument('--output_folder', help='Path of the output folder', required=False) args = parser.parse_args() return args def global_cpg_info(df): # Give some statistics on the data num_of_pmd = df.groupby(["chromosome", "pmd_index"]).ngroups num_of_unique_seq = len(df["sequence"].unique()) print("We have a total of %s CpG" % df.shape[0]) print("We have a total of %s PMDs" % num_of_pmd) print("We have %s unique sequences" % num_of_unique_seq) solo = [seq for seq in df["sequence"] if seq.count("CG") == 1] weak_solo = [seq for seq in solo if seq[73] in ["A", "T"] and seq[76] in ["A", "T"]] strong_solo = [seq for seq in solo if seq[73] in ["C", "G"] and seq[76] in ["C", "G"]] print("We have %s solo CpG which is %s" % (len(solo), len(solo) / df.shape[0] * 100)) print("Include %s WCGW solo and %s SCGS solo" % (len(weak_solo), len(strong_solo))) def histogram_of_coverage_across_patients(df): # Create histogram of the coverage of covariance between different patients cov_columns = df[["cov01", "cov11", "cov13"]] values = pd.notnull(cov_columns).sum(axis=1).values _ = plt.hist(values, bins='auto') plt.style.use('ggplot') plt.title("Covariance coverage across samples") plt.xlabel("Covered by X patients") plt.ylabel("Amount of CpG") plt.savefig("hist_of_covariance_cov_across_samples.png") plt.close() def histogram_of_num_of_cg(df): # Histogram of the number of CG in the data num_of_cg = [seq.count("CG") for seq in df["sequence"]] _ = plt.hist(num_of_cg) plt.style.use('ggplot') plt.title("Number of CpG in seq include middle. Median (%s)" % np.median(num_of_cg)) plt.xlabel("Number of CpG") plt.ylabel("Amount") plt.savefig("num_of_cg_in_seq_include_middle_all.png") plt.close() num_of_cg = [i for i in num_of_cg if i < 5] _ = plt.hist(num_of_cg) plt.style.use('ggplot') plt.title("Number of CpG in seq include middle less than 5. Median (%s)" % np.median(num_of_cg)) plt.xlabel("Number of CpG") plt.ylabel("Amount") plt.savefig("num_of_cg_in_seq_include_middle_lower_than_5.png") plt.close() def histogram_on_numb_of_cpg_per_pmd(df): # Histogram of the number of CpG in PMD values = df.groupby(["chromosome", "pmd_index"]).count()["sequence"].values values.sort() _ = plt.hist(values) plt.style.use('ggplot') plt.title("Hist of valid CpG per PMD. Median(%s)" % np.median(values)) plt.xlabel("Number of CpG") plt.ylabel("Amount") plt.savefig("num_of_valid_cpg_per_pmd_all.png") plt.close() lower_values = [i for i in values if i <= 5000] _ = plt.hist(lower_values) plt.style.use('ggplot') plt.title("Hist of valid CpG per PMD less than 5000 seq. Median (%s)" % np.median(lower_values)) plt.xlabel("Number of CpG") plt.ylabel("Amount") plt.savefig("num_of_valid_cpg_per_pmd_less_than_5000_seq.png") plt.close() def plot_methylation_vs_covariance(df): # Plot 2d histogram, scatter plot and density plot meth = df["meth_mean"] cov = df["cov_mean"] outliers_ind = np.abs(stats.zscore(cov)) < 3 df_i = df[outliers_ind] meth_i = meth[outliers_ind] cov_i = cov[outliers_ind] # Draw 2d plot h = plt.hist2d(meth_i, cov_i) plt.colorbar(h[3]) plt.savefig("2dhist_methylation_vs_covariance_global.png") plt.close() # Draw only PMD ind = df_i["pmd_index"] > 0 meth_ip = meth_i[ind] cov_ip = cov_i[ind] plt.plot(meth_ip, cov_ip, linestyle='', marker='o', markersize=0.5) plt.title("Methylation level vs Covariance in PMD") plt.xlabel("Avg methylation level") plt.ylabel("Covariance in window") plt.savefig("methylation_vs_covariance_pmds.png") plt.close() v = np.vstack((meth_ip.values, cov_ip.values)) dfs = pd.DataFrame(v.T, columns=["meth", "cov"]) sns_plot = sns.jointplot(x="meth", y="cov", data=dfs, kind="kde") sns_plot.savefig("methylation_vs_covariance_pmds_cluster.png") plt.close() def plot_methylation_vs_covariance_solo(df, patient): cov_label = "cov%s" % patient meth_label = "meth%s" % patient solo_rows = df[df["sequence"].str.count("CG") == 1] solo_rows = solo_rows[~solo_rows[meth_label].isnull()] solo_rows = solo_rows[solo_rows["pmd_index"] <= 100] meth_mean = solo_rows[meth_label] cov_mean = solo_rows[cov_label] # meth_mean = np.round(meth_mean * 500).astype(np.int) / 500 # z_cov = np.abs(stats.zscore(cov_mean.values)) # outliers_ind = z_cov > 0 # plt.plot(meth_mean[outliers_ind], cov_mean[outliers_ind], linestyle='', marker='o', markersize=0.5) plt.plot(meth_mean, cov_mean, linestyle='', marker='.', markersize=0.2) plt.title("Methylation level vs Covariance in solo CpG for patient %s" % patient, fontsize=20) plt.xlabel("Methylation level", fontsize=16) plt.ylabel("Covariance", fontsize=16) plt.savefig("solo_meth_vs_cov_scatter_patient%s.png" % patient) plt.close() # # v = np.vstack((meth_mean[outliers_ind].values, cov_mean[outliers_ind].values)) # dfs = pd.DataFrame(v.T, columns=["meth", "cov"]) # sns_plot = sns.jointplot(x="meth", y="cov", data=dfs, kind="kde") # plt.title("Methylation level vs Covariance in solo CpG for patient %s" %patient) # sns_plot.savefig("solo_meth_vs_cov_patient%s.png" %patient) # plt.close() def check_flip_seq(df): # Some code to create the reverse compl to all the sequence and check how much data it's add sequences = df["sequence"] seq_uniq = set(sequences) print("We have %s uniq seq to beging with" % len(seq_uniq)) translation_table = {84: 65, 65: 84, 67: 71, 71: 67} flipped = [] for s in seq_uniq: seq_translated = s.translate(translation_table) seq_flipped = seq_translated[::-1] flipped.append(seq_flipped) flipped_uniq = set(flipped) comb = flipped_uniq | seq_uniq print("Combined: %s" % len(comb)) def plot_methylation_vs_covariance_solo_vs_non_solo(df): pmd_df = df[df["pmd_index"] <= 10] solo_rows = pmd_df[pmd_df["sequence"].str.count("CG") == 1] non_solo_rows = pmd_df[pmd_df["sequence"].str.count("CG") > 1] solo_meth = solo_rows["meth_mean"] solo_cov = solo_rows["cov_mean"] nsolo_meth = non_solo_rows["meth_mean"] nsolo_cov = non_solo_rows["cov_mean"] solo_z_cov = np.abs(stats.zscore(solo_cov.values)) solo_outliers_ind = solo_z_cov < 3 nsolo_z_cov = np.abs(stats.zscore(nsolo_cov.values)) nsolo_outliers_ind = nsolo_z_cov < 3 solo = plt.scatter(solo_meth[solo_outliers_ind], solo_cov[solo_outliers_ind], marker='x', color='r') nsolo = plt.scatter(nsolo_meth[nsolo_outliers_ind], nsolo_cov[nsolo_outliers_ind], marker='o', color='b', alpha=0.05) plt.title("Methylation level vs Covariance in solo(red) vs non-solo (blue)") plt.xlabel("Avg methylation level") plt.ylabel("Covariance in window") plt.savefig("methylation_vs_covariance_solo_vs_non_solo.png") plt.close() def plot_methylation_vs_covariance_solo_weak_vs_strong(df): pmd_df = df[df["pmd_index"] <= 10] solo_rows = pmd_df[pmd_df["sequence"].str.count("CG") == 1] ou = np.abs(stats.zscore(solo_rows["cov_mean"].values)) < 3 solo_rows = solo_rows[ou] strong_rows = solo_rows[solo_rows["sequence"].str.contains("[CG]CG[CG]", regex=True)] weak_rows = solo_rows[solo_rows["sequence"].str.contains("[AT]CG[AT]", regex=True)] weak_meth = weak_rows["meth_mean"] weak_cov = weak_rows["cov_mean"] weak_z_cov = np.abs(stats.zscore(weak_cov.values)) weak_outliers_ind = weak_z_cov < 3 weak_meth_i = weak_meth weak_cov_i = weak_cov strong_meth = strong_rows["meth_mean"] strong_cov = strong_rows["cov_mean"] strong_z_cov = np.abs(stats.zscore(strong_cov.values)) strong_outliers_ind = strong_z_cov < 3 strong_meth_i = strong_meth strong_cov_i = strong_cov solo = plt.scatter(weak_meth, weak_cov, marker='x', color='r') nsolo = plt.scatter(strong_meth, strong_cov, marker='o', color='b', alpha=0.05) plt.title("Methylation level vs Covariance in WSCW(red) vs SCGS(blue)") plt.xlabel("Avg methylation level") plt.ylabel("Covariance in window") plt.savefig("methylation_vs_covariance_strong_vs_weak.png") plt.close() def plot_cov_density(df): pmd_df = df[np.logical_and(df["meth01"] >= 0.4, df["meth01"] <= 0.6)] # not really, just middle lines # pmd_df = pmd_df [~pmd_df ["cov01"].isnull()] solo_rows = pmd_df[pmd_df["sequence"].str.count("CG") == 1] cov_solo = solo_rows["cov01"] nsolo_rows = pmd_df[pmd_df["sequence"].str.count("CG") > 1] cov_nsolo = nsolo_rows["cov01"] weak_rows = solo_rows[solo_rows["sequence"].str.contains("[AT]CG[AT]", regex=True)] strong_rows = solo_rows[solo_rows["sequence"].str.contains("[CG]CG[CG]", regex=True)] cov_weak = weak_rows["cov01"] cov_strong = strong_rows["cov01"] sns.distplot(cov_nsolo, hist=False, kde=True, kde_kws={'linewidth': 3}, label="not solo") sns.distplot(cov_solo, hist=False, kde=True, kde_kws={'linewidth': 3}, label="solo") sns.distplot(cov_strong, hist=False, kde=True, kde_kws={'linewidth': 3}, label="SCGS") sns.distplot(cov_weak, hist=False, kde=True, kde_kws={'linewidth': 3}, label="WSCW") plt.show() def plot_meth_density(df, meth_v): # pmd_df = df[np.logical_and(df["meth01"] >=0.4, df["meth01"] <= 0.6)]# not really, just middle lines pmd_df = df[~df[meth_v].isnull()] x = [] solo_rows = pmd_df[pmd_df["sequence"].str.count("CG") == 1] cov_solo = solo_rows[meth_v] nsolo_rows = pmd_df[pmd_df["sequence"].str.count("CG") > 1] cov_nsolo = nsolo_rows[meth_v] weak_rows = solo_rows[solo_rows["sequence"].str.contains("[AT]CG[AT]", regex=True)] strong_rows = solo_rows[solo_rows["sequence"].str.contains("[CG]CG[CG]", regex=True)] cov_weak = weak_rows[meth_v] cov_strong = strong_rows[meth_v] sns.distplot(cov_nsolo, hist=False, kde=True, kde_kws={'linewidth': 3}, label="not solo") sns.distplot(cov_solo, hist=False, kde=True, kde_kws={'linewidth': 3}, label="solo") sns.distplot(cov_strong, hist=False, kde=True, kde_kws={'linewidth': 3}, label="SCGS") sns.distplot(cov_weak, hist=False, kde=True, kde_kws={'linewidth': 3}, label="WSCW") if meth_v != "meth_mean": plt.title("Methylation density for CRC%s" % meth_v[-2:]) else: plt.title("Methylation density - avg") plt.savefig("methylation_dens_for_%s.png" % (meth_v)) plt.close() def plot_patients_meth(df): solo_rows = df[df["sequence"].str.count("CG") == 1] cov1 = solo_rows["meth13"] cov11 = solo_rows["meth11"] v = np.vstack((cov1.values, cov11.values)) dfs = pd.DataFrame(v.T, columns=["meth13", "meth11"]) sample = dfs.sample(frac=0.005) plt.scatter(sample["meth13"], sample["meth11"]) plt.xlabel("meth13") plt.ylabel("meth11") plt.title("sample of meth01 and meth11 methylation") plt.show() plt.close() def get_num_of_seq_in_extreme_meth(df): # Only create solo solo_rows = df[df["sequence"].str.count("CG") == 1] methylation_columns = solo_rows[["meth01", "meth11", "meth13"]] solo_rows["min_meth"] = np.min(methylation_columns, axis=1) solo_rows["max_meth"] = np.max(methylation_columns, axis=1) extreme_index = np.logical_or(solo_rows["max_meth"] <= 0.2, solo_rows["min_meth"] >= 0.8) extreme_rows = solo_rows[extreme_index] print("We will be using %s/%s of seq" % (extreme_rows.shape[0], solo_rows.shape[0])) def plot_densitiy_met_cov_for_cpg_numb(df, patient): # df = df[df["chromosome"] =="1"] for density in range(1, 7): pmd_df = df[~df["meth%s" % patient].isnull()] rows = pmd_df[pmd_df["sequence"].str.count("CG") == density] meth_values = rows["meth%s" % patient] weak_rows = rows[rows["small_seq"].str.contains("[AT]CG[AT]", regex=True)] strong_rows = rows[rows["small_seq"].str.contains("[CG]CG[CG]", regex=True)] meth_weak = weak_rows["meth%s" % patient] meth_strong = strong_rows["meth%s" % patient] sns.distplot(meth_values, hist=False, kde=True, kde_kws={'linewidth': 3}, label="any") sns.distplot(meth_strong, hist=False, kde=True, kde_kws={'linewidth': 3}, label="SCGS") sns.distplot(meth_weak, hist=False, kde=True, kde_kws={'linewidth': 3}, label="WSCW") plt.title("Methylation density for CRC%swith cpg=%s" % (patient, density)) plt.savefig("methylation_dens_for_%s_cpg%s.png" % (patient, density)) plt.close() pmd_df = df[~df["cov%s" % patient].isnull()] rows = pmd_df[pmd_df["sequence"].str.count("CG") == density] cov_values = rows["cov%s" % patient] weak_rows = rows[rows["small_seq"].str.contains("[AT]CG[AT]", regex=True)] strong_rows = rows[rows["small_seq"].str.contains("[CG]CG[CG]", regex=True)] cov_weak = weak_rows["cov%s" % patient] cov_strong = strong_rows["cov%s" % patient] sns.distplot(cov_values, hist=False, kde=True, kde_kws={'linewidth': 3}, label="any") sns.distplot(cov_strong, hist=False, kde=True, kde_kws={'linewidth': 3}, label="SCGS") sns.distplot(cov_weak, hist=False, kde=True, kde_kws={'linewidth': 3}, label="WSCW") plt.title("Cov density for CRC%swith cpg=%s" % (patient, density)) plt.savefig("cov_dens_for_%s_cpg%s.png" % (patient, density)) plt.close() def plot_densitiy_cov_between_02_to_06(df): meth_v = "meth01" pmd_df = df[np.logical_and(df["meth01"] >= 0.2, df["meth01"] <= 0.6)] # not really, just middle lines solo_rows = pmd_df[pmd_df["sequence"].str.count("CG") == 1] cov_solo = solo_rows["cov01"] nsolo_rows = pmd_df[pmd_df["sequence"].str.count("CG") > 1] cov_nsolo = nsolo_rows["cov01"] weak_rows = solo_rows[solo_rows["small_seq"].str.contains("[AT]CG[AT]", regex=True)] strong_rows = solo_rows[solo_rows["small_seq"].str.contains("[CG]CG[CG]", regex=True)] cov_weak = weak_rows["cov01"] cov_strong = strong_rows["cov01"] sns.distplot(cov_nsolo[np.abs(stats.zscore(cov_nsolo.values)) < 3], hist=False, kde=True, kde_kws={'linewidth': 3}, label="not solo") sns.distplot(cov_solo[np.abs(stats.zscore(cov_solo.values)) < 3], hist=False, kde=True, kde_kws={'linewidth': 3}, label="solo") sns.distplot(cov_strong[np.abs(stats.zscore(cov_strong.values)) < 3], hist=False, kde=True, kde_kws={'linewidth': 3}, label="SCGS") sns.distplot(cov_weak[np.abs(stats.zscore(cov_weak.values)) < 3], hist=False, kde=True, kde_kws={'linewidth': 3}, label="WSCW") if meth_v != "meth_mean": plt.title("Methylation density for CRC%s" % meth_v[-2:]) else: plt.title("Methylation density - avg") plt.savefig("methylation_dens_for_%s_02_to_06.png" % (meth_v)) plt.close() def plot_densitiy_met_cov_01_to_03_for_cpg(df, patient): for density in range(1, 6): pmd_df = df[~df["cov%s" % patient].isnull()] pmd_df = pmd_df[
np.logical_and(pmd_df["cov%s" % patient] >= -0.01, pmd_df["cov%s" % patient] <= 0.03)
numpy.logical_and
#!/usr/bin/env python3 import sys import numpy as np from interfaceBuilder import utils as ut def len2mat(vec, ang): """ Transforms cell lengths and angles to cell vectors. vec in order [a, b, c] ang in order [alpha, beta, gamma], (conventionally defined) """ """Round it to have e.g. cos(90) be 0 and not XE-17""" prec = 10 """M = [A, B, C]""" mat = np.zeros((3, 3)) """A = [ax; 0; 0]""" mat[0, 0] = vec[0] """B = [bx; by; 0]""" mat[0, 1] = vec[1] * np.round(np.cos(np.deg2rad(ang[2])), prec) mat[1, 1] = vec[1] * np.round(np.sin(np.deg2rad(ang[2])), prec) """C = [cx; cy; cz]""" mat[0, 2] = vec[2] * np.round(np.cos(np.deg2rad(ang[1])), prec) mat[1, 2] = vec[2] * np.round((np.cos(np.deg2rad(ang[0])) - \ np.cos(np.deg2rad(ang[2])) * \ np.cos(np.deg2rad(ang[1]))) / \ np.sin(np.deg2rad(ang[2])), prec) mat[2, 2] = np.round(np.sqrt(vec[2]**2 - mat[0, 2]**2 - mat[1, 2]**2), prec) return mat def mat2LammpsBox(mat): """Function for transforming a set of basis vectors to a lammps simulation box""" lx = mat[0, 0] ly = mat[1, 1] lz = mat[2, 2] xy = mat[0, 1] xz = mat[0, 2] yz = mat[1, 2] x_lo_b = np.min([0, lx]) + np.min([0, xy, xz, xy + xz]) x_hi_b = np.max([0, lx]) + np.max([0, xy, xz, xy + xz]) y_lo_b = np.min([0, ly]) + np.min([0, yz]) y_hi_b = np.max([0, ly]) + np.max([0, yz]) z_lo_b = np.min([0, lz]) z_hi_b = np.max([0, lz]) box = [x_lo_b, x_hi_b, y_lo_b, y_hi_b, z_lo_b, z_hi_b] return box def writeKPTS(cell, density = 2, N1 = None, N2 = None, N3 = None, version = "Gamma",\ S1 = 0, S2 = 0, S3 = 0, verbose = 1): """Function to write a vasp KPOINTS file based on cell parameters""" """Calculate the x-y area of the cell""" area = np.linalg.norm(np.cross(cell[:, 0], cell[:, 1])) """Forms a vasp reciprical cell, without 2*pi and not Transposed vs. the deafult cartesian cell used in the structure class""" r_cell = np.linalg.inv(cell) r_area = np.linalg.norm(np.cross(r_cell[0, :], r_cell[1, :])) total_kpts = np.ceil(r_area * density) """The rows make up the lattice vectors""" r_norm = np.linalg.norm(r_cell, axis = 1) if version.lower()[0] == "g": cmp = 0 elif version.lower()[0] == "m": cmp = 1 if N1 is None: N1 = np.ceil(r_norm[0] * density) if N1 % 2 == cmp: N1 += 1 if N2 is None: N2 = np.ceil(r_norm[1] * density) if N2 % 2 == cmp: N2 += 1 if N3 is None: N3 =
np.ceil(r_norm[2] * density)
numpy.ceil
#!/usr/bin/env python3 """Regressions against experimental/reference values. This also tests the high-level application programming interface.""" import numpy as np import pytest from scipy import stats import overreact as rx from overreact import _constants as constants from overreact import _datasets as datasets # TODO(schneiderfelipe): transfer all comparisons with experimental/reference # values to this file. def test_basic_example_for_solvation_equilibria(): """Reproduce literature data for AcOH(g) <=> AcOH(aq). Data is as cited in DOI:10.1021/jp810292n and DOI:10.1063/1.1416902, and is experimental except when otherwise indicated in the comments. """ model = rx.parse_model("data/acetate/Orca4/model.k") temperature = 298.15 pK = 4.756 # DOI:10.1063/1.1416902 acid_energy = -constants.R * temperature * np.log(10 ** -pK) / constants.kcal solv_energy = ( -229.04018997 - -229.075245654407 + -228.764256345282 - (-229.02825429 - -229.064152538732 + -228.749485597775) ) * (constants.hartree * constants.N_A / constants.kcal) charged_solv_energy = ( -228.59481510 - -228.617274320359 + -228.292486796947 - (-228.47794098 - -228.500117698893 + -228.169992151890) ) * (constants.hartree * constants.N_A / constants.kcal) delta_freeenergies_ref = [ acid_energy, -acid_energy, solv_energy, -solv_energy, charged_solv_energy, -charged_solv_energy, ] concentration_correction = -temperature * rx.change_reference_state( temperature=temperature ) for qrrho in [False, (False, True), True]: # TODO(schneiderfelipe): log the contribution of reaction symmetry delta_freeenergies = rx.get_delta( model.scheme.A, rx.get_freeenergies(model.compounds, temperature=temperature, qrrho=qrrho), ) - temperature * rx.get_reaction_entropies( model.scheme.A, temperature=temperature ) assert delta_freeenergies / constants.kcal == pytest.approx( delta_freeenergies_ref, 7e-3 ) # the following tests the solvation free energy from DOI:10.1021/jp810292n assert delta_freeenergies[2] / constants.kcal == pytest.approx( -6.70 + concentration_correction / constants.kcal, 1.5e-1 ) # the following tests the reaction free energy from DOI:10.1063/1.1416902 assert delta_freeenergies[0] == pytest.approx(27.147 * constants.kilo, 7e-3) assert delta_freeenergies[0] == pytest.approx( -constants.R * temperature * np.log(10 ** -pK), 7e-3 ) k = rx.get_k( model.scheme, model.compounds, temperature=temperature, qrrho=qrrho ) assert -np.log10(k[0] / k[1]) == pytest.approx(pK, 7e-3) def test_basic_example_for_solvation_phase_kinetics(): """Reproduce literature data for NH3(w) + OH·(w) -> NH2·(w) + H2O(w). This uses raw data from from DOI:10.1002/qua.25686 and no calls from overreact.api. """ temperatures = np.array([298.15, 300, 310, 320, 330, 340, 350]) delta_freeenergies = np.array([10.5, 10.5, 10.8, 11.1, 11.4, 11.7, 11.9]) # 3-fold symmetry TS sym_correction = ( -temperatures * rx.change_reference_state(3, 1, temperature=temperatures) / constants.kcal ) assert delta_freeenergies + sym_correction == pytest.approx( [9.8, 9.9, 10.1, 10.4, 10.6, 10.9, 11.2], 8e-3 ) delta_freeenergies -= ( temperatures * rx.change_reference_state(temperature=temperatures) / constants.kcal ) # 1 atm to 1 M assert delta_freeenergies == pytest.approx( [8.6, 8.6, 8.8, 9.0, 9.2, 9.4, 9.6], 6e-3 ) # only concentration correction, no symmetry and no tunneling k = rx.rates.eyring(delta_freeenergies * constants.kcal, temperature=temperatures) assert k == pytest.approx([3.3e6, 3.4e6, 4.0e6, 4.7e6, 5.5e6, 6.4e6, 7.3e6], 8e-2) assert np.log10(k) == pytest.approx( np.log10([3.3e6, 3.4e6, 4.0e6, 4.7e6, 5.5e6, 6.4e6, 7.3e6]), 6e-3 ) # only concentration correction and symmetry, no tunneling delta_freeenergies += sym_correction assert delta_freeenergies == pytest.approx( [7.9, 7.9, 8.1, 8.3, 8.5, 8.7, 8.8], 7e-3 ) k = rx.rates.eyring(delta_freeenergies * constants.kcal, temperature=temperatures) assert k == pytest.approx([9.8e6, 1.0e7, 1.2e7, 1.4e7, 1.7e7, 1.9e7, 2.2e7], 8e-2) assert np.log10(k) == pytest.approx( np.log10([9.8e6, 1.0e7, 1.2e7, 1.4e7, 1.7e7, 1.9e7, 2.2e7]), 5e-3 ) # concentration correction, symmetry and tunneling included kappa = rx.tunnel.eckart( 986.79, 3.3 * constants.kcal, 16.4 * constants.kcal, temperature=temperatures ) assert kappa == pytest.approx([2.3, 2.3, 2.2, 2.1, 2.0, 1.9, 1.9], 9e-2) k *= kappa assert k == pytest.approx([2.3e7, 2.4e7, 2.7e7, 3.0e7, 3.3e7, 3.7e7, 4.1e7], 1.1e-1) assert np.log10(k) == pytest.approx( np.log10([2.3e7, 2.4e7, 2.7e7, 3.0e7, 3.3e7, 3.7e7, 4.1e7]), 6e-3 ) def test_basic_example_for_gas_phase_kinetics(): """Reproduce literature data for CH4 + Cl⋅ -> CH3· + HCl. This uses raw data from from DOI:10.1002/qua.25686 and no calls from overreact.api. """ temperatures = np.array([200, 298.15, 300, 400]) delta_freeenergies = np.array([8.0, 10.3, 10.3, 12.6]) # 4-fold symmetry TS sym_correction = ( -temperatures * rx.change_reference_state(4, 1, temperature=temperatures) / constants.kcal ) assert delta_freeenergies + sym_correction == pytest.approx( [7.4, 9.4, 9.5, 11.5], 9e-3 ) delta_freeenergies -= ( temperatures * rx.change_reference_state(temperature=temperatures) / constants.kcal ) # 1 atm to 1 M assert delta_freeenergies == pytest.approx([6.9, 8.4, 8.4, 9.9], 8e-3) # only concentration correction, no symmetry and no tunneling k = rx.rates.eyring(delta_freeenergies * constants.kcal, temperature=temperatures) k = rx.rates.convert_rate_constant(k, "cm3 particle-1 s-1", molecularity=2) assert 1e16 * k == pytest.approx( 1e16 * np.array([2.2e-16, 7.5e-15, 7.9e-15, 5.6e-14]), 7e-2 ) assert np.log10(k) == pytest.approx( np.log10([2.2e-16, 7.5e-15, 7.9e-15, 5.6e-14]), 2e-3 ) # only concentration correction and symmetry, no tunneling delta_freeenergies += sym_correction assert delta_freeenergies == pytest.approx([6.3, 7.6, 7.6, 8.8], 9e-3) k = rx.rates.eyring(delta_freeenergies * constants.kcal, temperature=temperatures) k = rx.rates.convert_rate_constant(k, "cm3 particle-1 s-1", molecularity=2) assert 1e16 * k == pytest.approx( 1e16 * np.array([8.8e-16, 3.0e-14, 3.1e-14, 2.2e-13]), 8e-2 ) assert np.log10(k) == pytest.approx( np.log10([8.8e-16, 3.0e-14, 3.1e-14, 2.2e-13]), 3e-3 ) # concentration correction, symmetry and tunneling included kappa = rx.tunnel.wigner(1218, temperature=temperatures) assert kappa[0] == pytest.approx(4.2, 3e-4) assert kappa[2] == pytest.approx(2.4, 1e-2) kappa = rx.tunnel.eckart( 1218, 4.1 * constants.kcal, 3.4 * constants.kcal, temperature=temperatures ) assert kappa == pytest.approx([17.1, 4.0, 3.9, 2.3], 2.1e-2) k *= kappa assert 1e16 * k == pytest.approx( 1e16 * np.array([1.5e-14, 1.2e-13, 1.2e-13, 5.1e-13]), 7e-2 ) assert np.log10(k) == pytest.approx( np.log10([1.5e-14, 1.2e-13, 1.2e-13, 5.1e-13]), 3e-3 ) def test_rate_constants_for_hickel1992(): """Reproduce literature data for NH3(w) + OH·(w) -> NH2·(w) + H2O(w). Data is as cited in DOI:10.1002/qua.25686 and is experimental except when otherwise indicated in the comments. Those tests check for consistency with the literature in terms of reaction rate constants. """ theory = "UM06-2X" basisset = "6-311++G(d,p)" model = rx.parse_model(f"data/hickel1992/{theory}/{basisset}/model.k") temperatures = np.array([298.15, 300, 310, 320, 330, 340, 350]) k_cla_ref = np.array([9.8e6, 1.0e7, 1.2e7, 1.4e7, 1.7e7, 1.9e7, 2.2e7]) k_eck_ref = np.array([2.3e7, 2.4e7, 2.7e7, 3.0e7, 3.3e7, 3.7e7, 4.1e7]) k_cla = [] k_eck = [] for temperature in temperatures: k_cla.append( rx.get_k( model.scheme, model.compounds, tunneling=None, qrrho=(False, True), scale="M-1 s-1", temperature=temperature, )[0] ) k_eck.append( rx.get_k( model.scheme, model.compounds, # tunneling="eckart", # this is default qrrho=(False, True), scale="M-1 s-1", temperature=temperature, )[0] ) k_cla = np.asarray(k_cla).flatten() k_eck = np.asarray(k_eck).flatten() assert k_eck / k_cla == pytest.approx([2.3, 2.3, 2.2, 2.1, 2.0, 1.9, 1.9], 7e-2) assert k_cla == pytest.approx(k_cla_ref, 1.2e-1) assert k_eck == pytest.approx(k_eck_ref, 9e-2) assert np.log10(k_cla) == pytest.approx(np.log10(k_cla_ref), 8e-3) assert np.log10(k_eck) == pytest.approx(np.log10(k_eck_ref), 5e-3) for k, k_ref, tols in zip( [k_cla, k_eck], [k_cla_ref, k_eck_ref], [(1.0e-1, 0.62, 2e-3, 5e-8, 3e-2), (1.1e-1, 0.75, 2e-3, 3e-8, 2e-2)], ): linregress = stats.linregress(np.log10(k), np.log10(k_ref)) assert linregress.slope == pytest.approx(1.0, tols[0]) assert linregress.intercept == pytest.approx(0.0, abs=tols[1]) assert linregress.rvalue ** 2 == pytest.approx(1.0, tols[2]) assert linregress.pvalue == pytest.approx(0.0, abs=tols[3]) assert linregress.pvalue < 0.01 assert linregress.stderr == pytest.approx(0.0, abs=tols[4]) def test_rate_constants_for_tanaka1996(): """Reproduce literature data for CH4 + Cl⋅ -> CH3· + HCl. Data is as cited in DOI:10.1007/BF00058703 and DOI:10.1002/qua.25686 and is experimental except when otherwise indicated in the comments. Those tests check for consistency with the literature in terms of reaction rate constants. """ theory = "UMP2" basisset = "cc-pVTZ" # not the basis used in the ref., but close enough model = rx.parse_model(f"data/tanaka1996/{theory}/{basisset}/model.k") temperatures = np.array( [ 200.0, # 210.0, # 220.0, # 230.0, # 240.0, # 250.0, # 260.0, # 270.0, # 280.0, # 290.0, 298.15, 300.0, 400.0, ] ) k_cla_ref = np.array([8.8e-16, 3.0e-14, 3.1e-14, 2.2e-13]) k_eck_ref = np.array([1.5e-14, 1.2e-13, 1.2e-13, 5.1e-13]) k_exp = np.array( [ 1.0e-14, # 1.4e-14, # 1.9e-14, # 2.5e-14, # 3.22e-14, # 4.07e-14, # 5.05e-14, # 6.16e-14, # 7.41e-14, # 8.81e-14, 10.0e-14, 10.3e-14, # no data for 400K? ] ) k_cla = [] k_wig = [] k_eck = [] for temperature in temperatures: k_cla.append( rx.get_k( model.scheme, model.compounds, tunneling=None, qrrho=True, scale="cm3 particle-1 s-1", temperature=temperature, )[0] ) k_wig.append( rx.get_k( model.scheme, model.compounds, tunneling="wigner", qrrho=True, scale="cm3 particle-1 s-1", temperature=temperature, )[0] ) k_eck.append( rx.get_k( model.scheme, model.compounds, # tunneling="eckart", # this is default qrrho=True, scale="cm3 particle-1 s-1", temperature=temperature, )[0] ) k_cla = np.asarray(k_cla).flatten() k_wig = np.asarray(k_wig).flatten() k_eck = np.asarray(k_eck).flatten() assert k_eck / k_cla == pytest.approx([17.1, 4.0, 3.9, 2.3], 1.7e-1) assert 1e16 * k_cla == pytest.approx(1e16 * k_cla_ref, 1.9e-1) assert 1e16 * k_eck == pytest.approx(1e16 * k_eck_ref, 3.2e-1) assert 1e16 * k_eck[:-1] == pytest.approx(1e16 * k_exp, 8e-2) assert np.log10(k_cla) == pytest.approx(np.log10(k_cla_ref), 6e-3) assert np.log10(k_eck) == pytest.approx(np.log10(k_eck_ref), 2e-2) assert np.log10(k_eck[:-1]) == pytest.approx(np.log10(k_exp), 3e-3) for k, k_ref, tols in zip( [k_cla, k_eck, k_eck[:-1]], [k_cla_ref, k_eck_ref, k_exp], [ (2e-2, 0.08, 9e-6, 5e-6, 3e-3), (5e-2, 0.52, 4e-4, 2e-4, 2e-2), (5e-2, 0.60, 3e-6, 2e-3, 2e-3), ], ): linregress = stats.linregress(np.log10(k), np.log10(k_ref)) assert linregress.slope == pytest.approx(1.0, tols[0]) assert linregress.intercept == pytest.approx(0.0, abs=tols[1]) assert linregress.rvalue ** 2 == pytest.approx(1.0, tols[2]) assert linregress.pvalue == pytest.approx(0.0, abs=tols[3]) assert linregress.pvalue < 0.01 assert linregress.stderr == pytest.approx(0.0, abs=tols[4]) def test_delta_energies_for_hickel1992(): """Reproduce literature data for NH3(w) + OH·(w) -> NH2·(w) + H2O(w). Data is as cited in DOI:10.1002/qua.25686 and is experimental except when otherwise indicated in the comments. Those tests check for consistency with the literature in terms of chemical kinetics and thermochemistry. """ theory = "UM06-2X" basisset = "6-311++G(d,p)" model = rx.parse_model(f"data/hickel1992/{theory}/{basisset}/model.k") temperatures = np.array([298.15, 300, 310, 320, 330, 340, 350]) delta_freeenergies_ref = [9.8, 9.9, 10.1, 10.4, 10.6, 10.9, 11.2] delta_freeenergies = [] for temperature in temperatures: freeenergies = rx.get_freeenergies( model.compounds, temperature=temperature, qrrho=(False, True) ) delta_freeenergy = ( rx.get_delta(model.scheme.B, freeenergies) - temperature * rx.get_reaction_entropies(model.scheme.B, temperature=temperature) )[0] delta_freeenergies.append(delta_freeenergy) delta_freeenergies = np.asarray(delta_freeenergies) assert delta_freeenergies / constants.kcal == pytest.approx( delta_freeenergies_ref - temperatures * rx.change_reference_state(temperature=temperatures) / constants.kcal, 2e-2, ) # M06-2X/6-311++G(d,p) from DOI:10.1002/qua.25686 # extra symmetry is required for this reaction since the transition state # is nonsymmetric assert model.compounds["NH3·OH#(w)"].symmetry == 3 delta_freeenergies_ref = [7.9, 7.9, 8.1, 8.3, 8.5, 8.7, 8.8] assert delta_freeenergies / constants.kcal == pytest.approx( delta_freeenergies_ref, 2e-2 ) # M06-2X/6-311++G(d,p) from DOI:10.1002/qua.25686 def test_delta_energies_for_tanaka1996(): """Reproduce literature data for CH4 + Cl⋅ -> CH3· + HCl. Data is as cited in DOI:10.1007/BF00058703 and DOI:10.1002/qua.25686 and is experimental except when otherwise indicated in the comments. Those tests check for consistency with the literature in terms of chemical kinetics and thermochemistry. """ theory = "UMP2" basisset = "6-311G(2d,p)" model = rx.parse_model(f"data/tanaka1996/{theory}/{basisset}/model.k") temperatures = [0.0] delta_freeenergies_ref = [5.98] delta_freeenergies = [] for temperature in temperatures: freeenergies = rx.get_freeenergies(model.compounds, temperature=temperature) delta_freeenergy = ( rx.get_delta(model.scheme.B, freeenergies) - temperature * rx.get_reaction_entropies(model.scheme.B, temperature=temperature)[0] )[0] delta_freeenergies.append(delta_freeenergy) delta_freeenergies = np.asarray(delta_freeenergies) assert delta_freeenergies / constants.kcal == pytest.approx( delta_freeenergies_ref, 4e-2 ) # UMP2/6-311G(2d,p) DOI:10.1007/BF00058703 # testing now another level of theory! basisset = "cc-pVTZ" # not the basis used in the ref., but close enough model = rx.parse_model(f"data/tanaka1996/{theory}/{basisset}/model.k") # no extra symmetry required for this reaction since the transition state # is symmetric assert model.compounds["H3CHCl‡"].symmetry is None temperatures =
np.array([200, 298.15, 300, 400])
numpy.array
"""Define the API for geneparse.""" # This file is part of geneparse. # # The MIT License (MIT) # # Copyright (c) 2017 Pharmacogenomics Centre # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import io import numpy as np from .exceptions import InvalidChromosome VALID_CHROMOSOMES = set( [str(i + 1) for i in range(22)] + ["X", "Y", "XY", "MT"] ) _NUCLEOTIDE_COMPLEMENT = {"A": "T", "T": "A", "C": "G", "G": "C"} class Chromosome(object): __slots__ = ("name") def __init__(self, name): self.name = str(name) def __repr__(self): return "{}".format(self.name) def __hash__(self): return hash(self.name) def __eq__(self, other): other_name = getattr(other, "name", str(other)) if self.name == "?" or other_name == "?": return False return self.name == other_name VALID_CHROMOSOMES = {k: Chromosome(k) for k in VALID_CHROMOSOMES} UNKNOWN_CHROMOSOME = Chromosome("?") class Variant(object): # Subclasses should declare a __slots__ containing only the additional # slots. __slots__ = ("name", "chrom", "pos", "alleles") def __init__(self, name, chrom, pos, alleles): self.name = str(name) if name is not None else None self.chrom = Variant._encode_chr(chrom) self.pos = int(pos) self.alleles = self._encode_alleles(alleles) @staticmethod def _encode_chr(chrom): # Accept instances of Chromosome as is (useful for contigs or non # default chromosomes). if isinstance(chrom, Chromosome): return chrom # We have a special value for unknown chromosome. elif chrom is None: return UNKNOWN_CHROMOSOME # See if the Chromosome is already known. chrom = str(chrom).upper() if chrom.startswith("CHR"): chrom = chrom[3:] if chrom not in VALID_CHROMOSOMES: raise InvalidChromosome(chrom) return VALID_CHROMOSOMES[chrom] @staticmethod def _encode_alleles(iterable): if iterable is None: return None return tuple(sorted(str(s).upper() for s in iterable)) def copy(self): return Variant(self.name, self.chrom, self.pos, self.alleles) def complementary_strand_copy(self): alleles = [complement_alleles(i) for i in self.alleles] return Variant(self.name, self.chrom, self.pos, alleles) def __hash__(self): # Two variants will have the same hash if they have the same # chromosome and position and **exactly the same alleles**. # Is this the behaviour we want? return hash((self.chrom, self.pos, self.alleles)) def alleles_ambiguous(self): return self.alleles == ("C", "G") or self.alleles == ("A", "T") @property def alleles_set(self): if self.alleles is None: return None return set(self.alleles) def primitive_locus_eq(self, chrom, pos): return self.chrom == chrom and self.pos == pos def locus_eq(self, other): return self.primitive_locus_eq(other.chrom, other.pos) def iterable_alleles_eq(self, alleles): return self.alleles == self._encode_alleles(alleles) def alleles_eq(self, other): return self.iterable_alleles_eq(other.alleles) def complement_alleles(self): """Complement the alleles of this variant. This will call this module's `complement_alleles` function. Note that this will not create a new object, but modify the state of the current instance. """ self.alleles = self._encode_alleles( [complement_alleles(i) for i in self.alleles] ) def __eq__(self, other): """Tests for the equality between two variants. If any variant has undefined alleles, we return the locus equality. Else, we return True if at least two alleles are the same in both variants. """ locus_match = self.locus_eq(other) if self.alleles is None or other.alleles is None: return locus_match overlap = len(self.alleles_set & other.alleles_set) >= 2 return locus_match and overlap def __repr__(self): return "<{} chr{}:{}_{}>".format(self.__class__.__name__, self.chrom, self.pos, self.alleles) class ImputedVariant(Variant): __slots__ = ("quality", ) def __init__(self, name, chrom, pos, alleles, quality): super().__init__(name, chrom, pos, alleles) self.quality = float(quality) if not 0 <= self.quality <= 1: raise ValueError( "The 'quality' field for ImputedVariant instances is expected " "to be a float value between 0 and 1." ) class Genotypes(object): __slots__ = ("variant", "genotypes", "reference", "coded", "multiallelic") def __init__(self, variant, genotypes, reference, coded, multiallelic): """Class holding information on a variant as well as a vector of genotypes. The "reference" allele corresponds to 0 and the "coded" allele corresponds to 1. """ self.variant = variant self.genotypes = genotypes self.reference = str(reference).upper() self.multiallelic = multiallelic if variant.alleles and (self.reference not in variant.alleles): raise ValueError( "reference allele not in the known alleles for the variant " "({} not in {}).".format(self.reference, variant.alleles) ) self.coded = str(coded).upper() if variant.alleles and (self.coded not in variant.alleles): raise ValueError( "coded allele not in the known alleles for the variant " "({} not in {}).".format(self.coded, variant.alleles) ) def copy(self): return Genotypes( self.variant, np.copy(self.genotypes), self.reference, self.coded, self.multiallelic ) def flip(self): """Flips the reference and coded alleles of this instance.""" self.flip_coded() def flip_coded(self): """Flips the coding of the alleles.""" self.genotypes = 2 - self.genotypes self.reference, self.coded = self.coded, self.reference def flip_strand(self): """Flips the strand of the alleles.""" self.reference = complement_alleles(self.reference) self.coded = complement_alleles(self.coded) self.variant.complement_alleles() def maf(self): freq = self.coded_freq() if freq > 0.5: return 1 - freq else: return freq def coded_freq(self): """Gets the frequency of the coded allele.""" return np.nanmean(self.genotypes) / 2 def code_minor(self): """Encode the genotypes with respect to the minor allele. This confirms that "reference" is the major allele and that "coded" is the minor allele. In other words, this function can be used to make sure that the genotype value is the number of minor alleles for an individual. """ coded_freq = self.coded_freq() if coded_freq > 0.5: self.flip_coded() def __eq__(self, other): # If not the same locus, not equals. if not self.variant.locus_eq(other.variant): return False # If same alleles, return the genotype comparison as-is. alleles_eq = (self.reference == other.reference and self.coded == other.coded) if alleles_eq: return _np_eq(self.genotypes, other.genotypes) # Check if it's the same alleles but they are flipped. if self.reference == other.coded and self.coded == other.reference: return _np_eq(self.genotypes, (2 - other.genotypes)) raise RuntimeError("Failed equality check between genotypes.") def __repr__(self): return ( "<Genotypes for {} Reference:{} Coded:{}, {}>" "".format(self.variant, self.reference, self.coded, self.genotypes) ) def __setstate__(self, state): for field in self.__slots__: if field != "genotypes": setattr(self, field, state[field]) self.genotypes = np.load(io.BytesIO(state["genotypes_data"]))["arr_0"] def __getstate__(self): state = {} for field in self.__slots__: if field != "genotypes": state[field] = getattr(self, field) genotypes_file = io.BytesIO() np.savez_compressed(genotypes_file, self.genotypes) state["genotypes_data"] = genotypes_file.getvalue() return state class SplitChromosomeReader(object): def __init__(self, chrom_to_reader): """Reader to handle genotype access using files split by chromosome. A dict mapping chromosomes to instances of GenotypesReader should be passed. """ self.chrom_to_reader = chrom_to_reader samples = None self.n_vars = 0 for chrom, reader in self.chrom_to_reader.items(): # Keep track of the total number of variants. self.n_vars += reader.get_number_variants() # Check that the sample order is the same. cur_samples = reader.get_samples() if samples is None: samples = cur_samples else: if samples != cur_samples: raise ValueError( "Not all sub-readers have the same sample order." ) samples = cur_samples self.samples = samples @staticmethod def _unknown_chrom_message(chrom): return ( "Unable to find a reader instance for chromosome '{}'." "".format(chrom) ) def iter_variants(self): for chrom, reader in self.chrom_to_reader.items(): for v in reader.iter_variants(): yield v def iter_genotypes(self): for chrom, reader in self.chrom_to_reader.items(): for g in reader.iter_genotypes(): yield g def get_variant_genotypes(self, variant): try: return self.chrom_to_reader[ variant.chrom ].get_variant_genotypes(variant) except KeyError: raise ValueError(self._unknown_chrom_message(variant.chrom)) def get_variant_by_name(self, name): out = [] for chrom, reader in self.chrom_to_reader.items(): out.extend(reader.get_variant_by_name(name)) return out def get_variants_in_region(self, chrom, start, end): try: return self.chrom_to_reader[ chrom ].get_variants_in_region(chrom, start, end) except KeyError: raise ValueError(self._unknown_chrom_message(chrom)) def get_samples(self): return self.samples def get_number_samples(self): return len(self.samples) def get_number_variants(self): return self.n_vars class GenotypesReader(object): def __init__(self): """Abstract class to read genotypes data.""" raise NotImplementedError() def __enter__(self): return self def __exit__(self, *args): self.close() def close(self): pass def __repr__(self): return "<{} {:,d} samples; {:,d} variants>".format( self.__class__.__name__, self.get_number_samples(), self.get_number_variants(), ) # API methods def iter_variants(self): """Iterate over variants without reading the actual genotypes. This is a generator of Variant instances. Also not that subclasses can define their own Variant subclasses to represent additional fields. To improve consistency, the ImputedVariant class is provided. It defines a single additional field ("quality") containing a float between 0 and 1. """ raise NotImplementedError() def iter_genotypes(self): """Iterate over variants and read the genotypes. This method yields instances of Genotypes. """ raise NotImplementedError() def get_variant_genotypes(self, variant): """Get the genotypes for a given variant. Args: variant (Variant): A variant for which to retrieve genotypes. Returns: list: A list of Genotypes. This is a list because for multi-allelics the representation needs multiple entries. """ raise NotImplementedError() def get_variant_by_name(self, name): """Get the genotypes for a given variant (by name). Args: name (str): The name of the variant to retrieve the genotypes. Returns: list: A list of Genotypes. This is a list in order to keep the same behaviour as the other functions. """ raise NotImplementedError() def iter_variants_by_names(self, names): """Iterates over the genotypes for variants using a list of names. Args: names (list): The list of names for variant extraction. """ for name in names: for result in self.get_variant_by_name(name): yield result def get_variants_in_region(self, chrom, start, end): """Get the variants in a region. Args: chrom (str): The chromosome (e.g. 'X' or '3'). start (int): The start position for the region. end (int): The end position for the region. """ raise NotImplementedError() def get_samples(self): """Get an ordered collection of the samples in the genotype container. """ raise NotImplementedError() def get_number_samples(self): """Return the number of samples.""" raise NotImplementedError() def get_number_variants(self): """Return the number of variants in the file.""" raise NotImplementedError() def complement_alleles(s): """Complement an allele string. This will apply the following translation table to the alleles: A -> T G -> C and vice versa. Other characters will be left as-is. """ trans = str.maketrans("ATGCatgc", "TACGtacg") return s.translate(trans)[::-1] def _np_eq(a, b): nan_a =
np.isnan(a)
numpy.isnan
from collections import OrderedDict import numpy as np from robosuite.models.arenas.bins_arena import BinArena from robosuite.utils.transform_utils import convert_quat from robosuite.utils.mjcf_utils import CustomMaterial from robosuite.environments.manipulation.single_arm_env import SingleArmEnv from robosuite.models.arenas import TableArena from robosuite.models.objects import BoxObject from robosuite.models.tasks import ManipulationTask from robosuite.utils.placement_samplers import UniformRandomSampler from robosuite.utils.observables import Observable, sensor class BinDividerPick(SingleArmEnv): """ This class corresponds to the lifting task for a single robot arm. Args: robots (str or list of str): Specification for specific robot arm(s) to be instantiated within this env (e.g: "Sawyer" would generate one arm; ["Panda", "Panda", "Sawyer"] would generate three robot arms) Note: Must be a single single-arm robot! env_configuration (str): Specifies how to position the robots within the environment (default is "default"). For most single arm environments, this argument has no impact on the robot setup. controller_configs (str or list of dict): If set, contains relevant controller parameters for creating a custom controller. Else, uses the default controller for this specific task. Should either be single dict if same controller is to be used for all robots or else it should be a list of the same length as "robots" param gripper_types (str or list of str): type of gripper, used to instantiate gripper models from gripper factory. Default is "default", which is the default grippers(s) associated with the robot(s) the 'robots' specification. None removes the gripper, and any other (valid) model overrides the default gripper. Should either be single str if same gripper type is to be used for all robots or else it should be a list of the same length as "robots" param initialization_noise (dict or list of dict): Dict containing the initialization noise parameters. The expected keys and corresponding value types are specified below: :`'magnitude'`: The scale factor of uni-variate random noise applied to each of a robot's given initial joint positions. Setting this value to `None` or 0.0 results in no noise being applied. If "gaussian" type of noise is applied then this magnitude scales the standard deviation applied, If "uniform" type of noise is applied then this magnitude sets the bounds of the sampling range :`'type'`: Type of noise to apply. Can either specify "gaussian" or "uniform" Should either be single dict if same noise value is to be used for all robots or else it should be a list of the same length as "robots" param :Note: Specifying "default" will automatically use the default noise settings. Specifying None will automatically create the required dict with "magnitude" set to 0.0. table_full_size (3-tuple): x, y, and z dimensions of the table. table_friction (3-tuple): the three mujoco friction parameters for the table. use_camera_obs (bool): if True, every observation includes rendered image(s) use_object_obs (bool): if True, include object (cube) information in the observation. reward_scale (None or float): Scales the normalized reward function by the amount specified. If None, environment reward remains unnormalized reward_shaping (bool): if True, use dense rewards. placement_initializer (ObjectPositionSampler): if provided, will be used to place objects on every reset, else a UniformRandomSampler is used by default. has_renderer (bool): If true, render the simulation state in a viewer instead of headless mode. has_offscreen_renderer (bool): True if using off-screen rendering render_camera (str): Name of camera to render if `has_renderer` is True. Setting this value to 'None' will result in the default angle being applied, which is useful as it can be dragged / panned by the user using the mouse render_collision_mesh (bool): True if rendering collision meshes in camera. False otherwise. render_visual_mesh (bool): True if rendering visual meshes in camera. False otherwise. render_gpu_device_id (int): corresponds to the GPU device id to use for offscreen rendering. Defaults to -1, in which case the device will be inferred from environment variables (GPUS or CUDA_VISIBLE_DEVICES). control_freq (float): how many control signals to receive in every second. This sets the amount of simulation time that passes between every action input. horizon (int): Every episode lasts for exactly @horizon timesteps. ignore_done (bool): True if never terminating the environment (ignore @horizon). hard_reset (bool): If True, re-loads model, sim, and render object upon a reset call, else, only calls sim.reset and resets all robosuite-internal variables camera_names (str or list of str): name of camera to be rendered. Should either be single str if same name is to be used for all cameras' rendering or else it should be a list of cameras to render. :Note: At least one camera must be specified if @use_camera_obs is True. :Note: To render all robots' cameras of a certain type (e.g.: "robotview" or "eye_in_hand"), use the convention "all-{name}" (e.g.: "all-robotview") to automatically render all camera images from each robot's camera list). camera_heights (int or list of int): height of camera frame. Should either be single int if same height is to be used for all cameras' frames or else it should be a list of the same length as "camera names" param. camera_widths (int or list of int): width of camera frame. Should either be single int if same width is to be used for all cameras' frames or else it should be a list of the same length as "camera names" param. camera_depths (bool or list of bool): True if rendering RGB-D, and RGB otherwise. Should either be single bool if same depth setting is to be used for all cameras or else it should be a list of the same length as "camera names" param. Raises: AssertionError: [Invalid number of robots specified] """ def __init__( self, robots, env_configuration="default", controller_configs=None, gripper_types="default", initialization_noise="default", bin1_pos=(0, 0.0, 0.8), table_full_size=(0.8, 0.8, 0.05), table_friction=(1., 5e-3, 1e-4), use_camera_obs=True, use_object_obs=True, reward_scale=1.0, reward_shaping=False, placement_initializer=None, placement_initializer_kwargs=None, has_renderer=False, has_offscreen_renderer=True, render_camera="frontview", render_collision_mesh=False, render_visual_mesh=True, render_gpu_device_id=-1, control_freq=20, horizon=1000, ignore_done=False, hard_reset=True, camera_names="agentview", camera_heights=256, camera_widths=256, camera_depths=False, use_cube_shift_left_reward=False, use_reaching_reward=False, use_grasping_reward=False, ): self.use_cube_shift_left_reward = use_cube_shift_left_reward self.use_reaching_reward = use_reaching_reward self.use_grasping_reward = use_grasping_reward # settings for table top self.table_full_size = table_full_size self.table_friction = table_friction self.table_offset = np.array((0, 0, 0.8)) # settings for bin position self.bin1_pos = np.array(bin1_pos) # reward configuration self.reward_scale = reward_scale self.reward_shaping = reward_shaping # whether to use ground-truth object states self.use_object_obs = use_object_obs # object placement initializer self.placement_initializer = placement_initializer self.placement_initializer_kwargs = placement_initializer_kwargs super().__init__( robots=robots, env_configuration=env_configuration, controller_configs=controller_configs, mount_types="default", gripper_types=gripper_types, initialization_noise=initialization_noise, use_camera_obs=use_camera_obs, has_renderer=has_renderer, has_offscreen_renderer=has_offscreen_renderer, render_camera=render_camera, render_collision_mesh=render_collision_mesh, render_visual_mesh=render_visual_mesh, render_gpu_device_id=render_gpu_device_id, control_freq=control_freq, horizon=horizon, ignore_done=ignore_done, hard_reset=hard_reset, camera_names=camera_names, camera_heights=camera_heights, camera_widths=camera_widths, camera_depths=camera_depths, ) def reward(self, action=None): """ Reward function for the task. Sparse un-normalized reward: - a discrete reward of 2.25 is provided if the cube is lifted Un-normalized summed components if using reward shaping: - Reaching: in [0, 1], to encourage the arm to reach the cube - Grasping: in {0, 0.25}, non-zero if arm is grasping the cube - Lifting: in {0, 1}, non-zero if arm has lifted the cube The sparse reward only consists of the lifting component. Note that the final reward is normalized and scaled by reward_scale / 2.25 as well so that the max score is equal to reward_scale Args: action (np array): [NOT USED] Returns: float: reward value """ reward = 0. # sparse completion reward if self._check_success(): reward = 2.25 # use a shaping reward elif self.reward_shaping: # reaching reward cube_pos = self.sim.data.body_xpos[self.cube_body_id] gripper_site_pos = self.sim.data.site_xpos[self.robots[0].eef_site_id] dist = np.linalg.norm(gripper_site_pos - cube_pos) reaching_reward = 1 - np.tanh(10.0 * dist) if self.use_reaching_reward: reward += reaching_reward*0.5 if self.use_cube_shift_left_reward: if cube_pos[1] > -.04: reward += (1 - np.tanh(10.0 * cube_pos[1]))*.5 # grasping reward if self.use_grasping_reward and self._check_grasp(gripper=self.robots[0].gripper, object_geoms=self.cube): reward += 0.5 # Scale reward if requested if self.reward_scale is not None: reward *= self.reward_scale / 2.25 return reward def _load_model(self): """ Loads an xml model, puts it in self.model """ super()._load_model() # Adjust base pose accordingly xpos = self.robots[0].robot_model.base_xpos_offset["table"](self.table_full_size[0]) self.robots[0].robot_model.set_base_xpos(xpos) self.robots[0].init_qpos = np.array([ 0.107, 0.426 , 0.076 ,-2.055 ,-0.1 , 2.501, 0.999]) # load model for table top workspace # mujoco_arena = TableArena( # table_full_size=self.table_full_size, # table_friction=self.table_friction, # table_offset=self.table_offset, # ) mujoco_arena = BinArena( bin1_pos=self.bin1_pos, table_offset=self.table_offset, table_full_size=self.table_full_size, table_friction=self.table_friction ) # Arena always gets set to zero origin mujoco_arena.set_origin([0, 0, 0]) # initialize objects of interest tex_attrib = { "type": "cube", } mat_attrib = { "texrepeat": "1 1", "specular": "0.4", "shininess": "0.1", } redwood = CustomMaterial( texture="WoodRed", tex_name="redwood", mat_name="redwood_mat", tex_attrib=tex_attrib, mat_attrib=mat_attrib, ) self.cube = BoxObject( name="cube", size_min=[0.025, 0.025, 0.025], # [0.015, 0.015, 0.015], size_max=[0.025, 0.025, 0.025], # [0.018, 0.018, 0.018]) rgba=[168/255, 127/255, 214/255, 1], # material=redwood, ) # Create placement initializer if self.placement_initializer is not None: self.placement_initializer.reset() self.placement_initializer.add_objects(self.cube) elif self.placement_initializer_kwargs is not None: self.placement_initializer = UniformRandomSampler(**self.placement_initializer_kwargs) self.placement_initializer.reset() self.placement_initializer.add_objects(self.cube) else: self.placement_initializer = UniformRandomSampler( name="ObjectSampler", mujoco_objects=self.cube, x_range=[-0.165, .165], y_range=[0.035, 0.165], rotation=0, ensure_object_boundary_in_range=False, ensure_valid_placement=True, reference_pos=self.table_offset, z_offset=0.12, ) # task includes arena, robot, and objects of interest self.model = ManipulationTask( mujoco_arena=mujoco_arena, mujoco_robots=[robot.robot_model for robot in self.robots], mujoco_objects=self.cube, ) def _setup_references(self): """ Sets up references to important components. A reference is typically an index or a list of indices that point to the corresponding elements in a flatten array, which is how MuJoCo stores physical simulation data. """ super()._setup_references() # Additional object references from this env self.cube_body_id = self.sim.model.body_name2id(self.cube.root_body) def _setup_observables(self): """ Sets up observables to be used for this environment. Creates object-based observables if enabled Returns: OrderedDict: Dictionary mapping observable names to its corresponding Observable object """ observables = super()._setup_observables() # low-level object information if self.use_object_obs: # Get robot prefix and define observables modality pf = self.robots[0].robot_model.naming_prefix modality = "object" # cube-related observables @sensor(modality=modality) def cube_pos(obs_cache): return
np.array(self.sim.data.body_xpos[self.cube_body_id])
numpy.array
#! /usr/bin/env python3 # This Python analysis script is part of the code Hipace++ # # It compares the transverse field By with the theoretical value, plots both # the simulation result and the theory on the same plot, and asserts that the # difference is small. # # To use it, run the simulation and execute this script with # > ../../build/bin/hipace inputs_SI # > python analysis.py # Note: the simulation may take some time, as the box size must be high to have # decent agreement import matplotlib.pyplot as plt import matplotlib import numpy as np import scipy.constants as scc import argparse import sys from openpmd_viewer import OpenPMDTimeSeries parser = argparse.ArgumentParser(description='Script to analyze the correctness of the beam in vacuum') parser.add_argument('--normalized-units', dest='norm_units', action='store_true', default=False, help='Run the analysis in normalized units') parser.add_argument('--do-plot', dest='do_plot', action='store_true', default=False, help='Plot figures and save them to file') parser.add_argument('--output-dir', dest='output_dir', default='diags/hdf5', help='Path to the directory containing output files') args = parser.parse_args() ts = OpenPMDTimeSeries(args.output_dir) if args.norm_units: c = 1. jz0 = -1. rho0 = -1. mu_0 = 1. eps_0 = 1. R = 1. else: # Density of the can beam dens = 2.8239587008591567e23 # at this density, 1/kp = 10um, allowing for an easy comparison with normalized units # Define array for transverse coordinate and theory for By and Bx jz0 = - scc.e * scc.c * dens rho0 = - scc.e * dens c = scc.c mu_0 = scc.mu_0 eps_0 = scc.epsilon_0 # Radius of the can beam R = 10.e-6 # Load Hipace++ data for By in SI units Bx_sim, Bx_meta = ts.get_field(field='Bx', iteration=0, slice_across=['x','z'], slice_relative_position=[0,0]) By_sim, By_meta = ts.get_field(field='By', iteration=0, slice_across=['y','z'], slice_relative_position=[0,0]) jz_sim = ts.get_field(field='jz_beam', iteration=0, slice_across=['y','z'], slice_relative_position=[0,0])[0] rho_sim = ts.get_field(field='rho', iteration=0, slice_across=['y','z'], slice_relative_position=[0,0])[0] Ex_sim = ts.get_field(field='ExmBy', iteration=0, slice_across=['y','z'], slice_relative_position=[0,0])[0] + c*By_sim Ey_sim = ts.get_field(field='EypBx', iteration=0, slice_across=['x','z'], slice_relative_position=[0,0])[0] - c*Bx_sim y = Bx_meta.y x = By_meta.x By_th = mu_0 * jz0 * x / 2. By_th[abs(x)>=R] = mu_0 * jz0 * R**2/(2*x[abs(x)>R]) Ex_th = rho0 / eps_0 * x / 2. Ex_th[abs(x)>=R] = rho0 / eps_0 * R**2/(2*x[abs(x)>R]) Bx_th = -mu_0 * jz0 * y / 2. Bx_th[abs(y)>=R] = -mu_0 * jz0 * R**2/(2*y[abs(y)>R]) Ey_th = rho0 / eps_0 * y / 2. Ey_th[abs(y)>=R] = rho0 / eps_0 * R**2/(2*y[abs(y)>R]) jz_th = np.ones_like(x) * jz0 jz_th[abs(x)>=R] = 0. rho_th = np.ones_like(x) * rho0 rho_th[abs(x)>=R] = 0. # Plot simulation result and theory if args.do_plot: matplotlib.rcParams.update({'font.size': 14}) plt.figure(figsize=(12,4)) if not args.norm_units: plt.subplot(131) plt.plot(1.e6*y, Bx_sim, '+-', label='Hipace++') plt.plot(1.e6*y, Bx_th, 'k--', label='theory') plt.grid() plt.legend() plt.xlim(-50., 50.) plt.xlabel('y (um)') plt.ylabel('Bx (T)') plt.subplot(132) plt.plot(1.e6*x, By_sim, '+-', label='Hipace++') plt.plot(1.e6*x, By_th, 'k--', label='theory') plt.grid() plt.legend() plt.xlim(-50., 50.) plt.xlabel('x (um)') plt.ylabel('By (T)') plt.subplot(133) plt.plot(1.e6*x, jz_sim, '+-', label='Hipace++') plt.plot(1.e6*x, jz_th, 'k--', label='theory') plt.grid() plt.legend() plt.xlim(-50., 50.) plt.xlabel('x (um)') plt.ylabel('jz (A/m2)') else: plt.subplot(131) plt.plot(y, Bx_sim, '+-', label='Hipace++') plt.plot(y, Bx_th, 'k--', label='theory') plt.grid() plt.legend() plt.xlim(-5., 5.) plt.xlabel('kp y') plt.ylabel('c Bx / E0') plt.subplot(132) plt.plot(x, By_sim, '+-', label='Hipace++') plt.plot(x, By_th, 'k--', label='theory') plt.grid() plt.legend() plt.xlim(-5., 5.) plt.xlabel('kp x') plt.ylabel('c By / E0') plt.subplot(133) plt.plot(x, jz_sim, '+-', label='Hipace++') plt.plot(x, jz_th, 'k--', label='theory') plt.grid() plt.legend() plt.xlim(-5., 5.) plt.xlabel('kp x') plt.ylabel('jz /IA') plt.tight_layout() plt.savefig("beam_in_vacuum.png", bbox_inches="tight") # Assert that the simulation result is close enough to theory error_jz = np.sum((jz_sim-jz_th)**2) / np.sum((jz_th)**2) print("total relative error jz: " + str(error_jz) + " (tolerance = 0.1)") error_Bx =
np.sum((Bx_sim-Bx_th)**2)
numpy.sum
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Graph algorithm generators. Currently implements the following: - Depth-first search (Moore, 1959) - Breadth-first search (Moore, 1959) - Topological sorting (Knuth, 1973) - Articulation points - Bridges - Kosaraju's strongly-connected components (Aho et al., 1974) - Kruskal's minimum spanning tree (Kruskal, 1956) - Prim's minimum spanning tree (Prim, 1957) - Bellman-Ford's single-source shortest path (Bellman, 1958) - Dijkstra's single-source shortest path (Dijkstra, 1959) - DAG shortest path - Floyd-Warshall's all-pairs shortest paths (Floyd, 1962) - Edmonds-Karp bipartite matching (Edmund & Karp, 1972) See "Introduction to Algorithms" 3ed (CLRS3) for more information. """ # pylint: disable=invalid-name from typing import Tuple import chex from clrs._src import probing from clrs._src import specs import numpy as np _Array = np.ndarray _Out = Tuple[_Array, probing.ProbesDict] _OutputClass = specs.OutputClass def dfs(A: _Array) -> _Out: """Depth-first search (Moore, 1959).""" chex.assert_rank(A, 2) probes = probing.initialize(specs.SPECS['dfs']) A_pos = np.arange(A.shape[0]) probing.push( probes, specs.Stage.INPUT, next_probe={ 'pos': np.copy(A_pos) * 1.0 / A.shape[0], 'A': np.copy(A), 'adj': probing.graph(np.copy(A)) }) color = np.zeros(A.shape[0], dtype=np.int32) pi = np.arange(A.shape[0]) d = np.zeros(A.shape[0]) f = np.zeros(A.shape[0]) s_prev = np.arange(A.shape[0]) time = 0 for s in range(A.shape[0]): if color[s] == 0: s_last = s u = s v = s probing.push( probes, specs.Stage.HINT, next_probe={ 'pi_h': np.copy(pi), 'color': probing.array_cat(color, 3), 'd': np.copy(d), 'f': np.copy(f), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]), 'time': time }) while True: if color[u] == 0 or d[u] == 0.0: time += 0.01 d[u] = time color[u] = 1 probing.push( probes, specs.Stage.HINT, next_probe={ 'pi_h': np.copy(pi), 'color': probing.array_cat(color, 3), 'd': np.copy(d), 'f': np.copy(f), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]), 'time': time }) for v in range(A.shape[0]): if A[u, v] != 0: if color[v] == 0: pi[v] = u color[v] = 1 s_prev[v] = s_last s_last = v probing.push( probes, specs.Stage.HINT, next_probe={ 'pi_h': np.copy(pi), 'color': probing.array_cat(color, 3), 'd': np.copy(d), 'f': np.copy(f), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]), 'time': time }) break if s_last == u: color[u] = 2 time += 0.01 f[u] = time probing.push( probes, specs.Stage.HINT, next_probe={ 'pi_h': np.copy(pi), 'color': probing.array_cat(color, 3), 'd': np.copy(d), 'f': np.copy(f), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]), 'time': time }) if s_prev[u] == u: assert s_prev[s_last] == s_last break pr = s_prev[s_last] s_prev[s_last] = s_last s_last = pr u = s_last probing.push(probes, specs.Stage.OUTPUT, next_probe={'pi': np.copy(pi)}) probing.finalize(probes) return pi, probes def bfs(A: _Array, s: int) -> _Out: """Breadth-first search (Moore, 1959).""" chex.assert_rank(A, 2) probes = probing.initialize(specs.SPECS['bfs']) A_pos = np.arange(A.shape[0]) probing.push( probes, specs.Stage.INPUT, next_probe={ 'pos': np.copy(A_pos) * 1.0 / A.shape[0], 's': probing.mask_one(s, A.shape[0]), 'A': np.copy(A), 'adj': probing.graph(np.copy(A)) }) reach = np.zeros(A.shape[0]) pi = np.arange(A.shape[0]) reach[s] = 1 while True: prev_reach = np.copy(reach) probing.push( probes, specs.Stage.HINT, next_probe={ 'reach_h': np.copy(prev_reach), 'pi_h': np.copy(pi) }) for i in range(A.shape[0]): for j in range(A.shape[0]): if A[i, j] > 0 and prev_reach[i] == 1: if pi[j] == j and j != s: pi[j] = i reach[j] = 1 if np.all(reach == prev_reach): break probing.push(probes, specs.Stage.OUTPUT, next_probe={'pi': np.copy(pi)}) probing.finalize(probes) return pi, probes def topological_sort(A: _Array) -> _Out: """Topological sorting (Knuth, 1973).""" chex.assert_rank(A, 2) probes = probing.initialize(specs.SPECS['topological_sort']) A_pos = np.arange(A.shape[0]) probing.push( probes, specs.Stage.INPUT, next_probe={ 'pos': np.copy(A_pos) * 1.0 / A.shape[0], 'A': np.copy(A), 'adj': probing.graph(np.copy(A)) }) color = np.zeros(A.shape[0], dtype=np.int32) topo = np.arange(A.shape[0]) s_prev = np.arange(A.shape[0]) topo_head = 0 for s in range(A.shape[0]): if color[s] == 0: s_last = s u = s v = s probing.push( probes, specs.Stage.HINT, next_probe={ 'topo_h': np.copy(topo), 'topo_head_h': probing.mask_one(topo_head, A.shape[0]), 'color': probing.array_cat(color, 3), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]) }) while True: if color[u] == 0: color[u] = 1 probing.push( probes, specs.Stage.HINT, next_probe={ 'topo_h': np.copy(topo), 'topo_head_h': probing.mask_one(topo_head, A.shape[0]), 'color': probing.array_cat(color, 3), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]) }) for v in range(A.shape[0]): if A[u, v] != 0: if color[v] == 0: color[v] = 1 s_prev[v] = s_last s_last = v probing.push( probes, specs.Stage.HINT, next_probe={ 'topo_h': np.copy(topo), 'topo_head_h': probing.mask_one(topo_head, A.shape[0]), 'color': probing.array_cat(color, 3), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]) }) break if s_last == u: color[u] = 2 if color[topo_head] == 2: topo[u] = topo_head topo_head = u probing.push( probes, specs.Stage.HINT, next_probe={ 'topo_h': np.copy(topo), 'topo_head_h': probing.mask_one(topo_head, A.shape[0]), 'color': probing.array_cat(color, 3), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]) }) if s_prev[u] == u: assert s_prev[s_last] == s_last break pr = s_prev[s_last] s_prev[s_last] = s_last s_last = pr u = s_last probing.push( probes, specs.Stage.OUTPUT, next_probe={ 'topo': np.copy(topo), 'topo_head': probing.mask_one(topo_head, A.shape[0]) }) probing.finalize(probes) return topo, probes def articulation_points(A: _Array) -> _Out: """Articulation points.""" chex.assert_rank(A, 2) probes = probing.initialize(specs.SPECS['articulation_points']) A_pos = np.arange(A.shape[0]) probing.push( probes, specs.Stage.INPUT, next_probe={ 'pos': np.copy(A_pos) * 1.0 / A.shape[0], 'A': np.copy(A), 'adj': probing.graph(np.copy(A)) }) color = np.zeros(A.shape[0], dtype=np.int32) pi = np.arange(A.shape[0]) d = np.zeros(A.shape[0]) f = np.zeros(A.shape[0]) s_prev = np.arange(A.shape[0]) time = 0 low = np.zeros(A.shape[0]) child_cnt = np.zeros(A.shape[0]) is_cut = np.zeros(A.shape[0]) for s in range(A.shape[0]): if color[s] == 0: s_last = s u = s v = s probing.push( probes, specs.Stage.HINT, next_probe={ 'is_cut_h': np.copy(is_cut), 'pi_h': np.copy(pi), 'color': probing.array_cat(color, 3), 'd': np.copy(d), 'f': np.copy(f), 'low': np.copy(low), 'child_cnt': np.copy(child_cnt), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]), 'time': time }) while True: if color[u] == 0 or d[u] == 0.0: time += 0.01 d[u] = time low[u] = time color[u] = 1 probing.push( probes, specs.Stage.HINT, next_probe={ 'is_cut_h': np.copy(is_cut), 'pi_h': np.copy(pi), 'color': probing.array_cat(color, 3), 'd': np.copy(d), 'f': np.copy(f), 'low': np.copy(low), 'child_cnt': np.copy(child_cnt), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]), 'time': time }) for v in range(A.shape[0]): if A[u, v] != 0: if color[v] == 0: pi[v] = u color[v] = 1 s_prev[v] = s_last s_last = v child_cnt[u] += 0.01 probing.push( probes, specs.Stage.HINT, next_probe={ 'is_cut_h': np.copy(is_cut), 'pi_h': np.copy(pi), 'color': probing.array_cat(color, 3), 'd': np.copy(d), 'f': np.copy(f), 'low': np.copy(low), 'child_cnt': np.copy(child_cnt), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]), 'time': time }) break elif v != pi[u]: low[u] = min(low[u], d[v]) probing.push( probes, specs.Stage.HINT, next_probe={ 'is_cut_h': np.copy(is_cut), 'pi_h': np.copy(pi), 'color': probing.array_cat(color, 3), 'd': np.copy(d), 'f': np.copy(f), 'low': np.copy(low), 'child_cnt': np.copy(child_cnt), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]), 'time': time }) if s_last == u: color[u] = 2 time += 0.01 f[u] = time for v in range(A.shape[0]): if pi[v] == u: low[u] = min(low[u], low[v]) if pi[u] != u and low[v] >= d[u]: is_cut[u] = 1 if pi[u] == u and child_cnt[u] > 0.01: is_cut[u] = 1 probing.push( probes, specs.Stage.HINT, next_probe={ 'is_cut_h': np.copy(is_cut), 'pi_h': np.copy(pi), 'color': probing.array_cat(color, 3), 'd': np.copy(d), 'f': np.copy(f), 'low': np.copy(low), 'child_cnt': np.copy(child_cnt), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]), 'time': time }) if s_prev[u] == u: assert s_prev[s_last] == s_last break pr = s_prev[s_last] s_prev[s_last] = s_last s_last = pr u = s_last probing.push( probes, specs.Stage.OUTPUT, next_probe={'is_cut': np.copy(is_cut)}, ) probing.finalize(probes) return is_cut, probes def bridges(A: _Array) -> _Out: """Bridges.""" chex.assert_rank(A, 2) probes = probing.initialize(specs.SPECS['bridges']) A_pos = np.arange(A.shape[0]) adj = probing.graph(np.copy(A)) probing.push( probes, specs.Stage.INPUT, next_probe={ 'pos': np.copy(A_pos) * 1.0 / A.shape[0], 'A': np.copy(A), 'adj': adj }) color = np.zeros(A.shape[0], dtype=np.int32) pi = np.arange(A.shape[0]) d = np.zeros(A.shape[0]) f = np.zeros(A.shape[0]) s_prev = np.arange(A.shape[0]) time = 0 low = np.zeros(A.shape[0]) is_bridge = ( np.zeros((A.shape[0], A.shape[0])) + _OutputClass.MASKED.value + adj) for s in range(A.shape[0]): if color[s] == 0: s_last = s u = s v = s probing.push( probes, specs.Stage.HINT, next_probe={ 'is_bridge_h': np.copy(is_bridge), 'pi_h': np.copy(pi), 'color': probing.array_cat(color, 3), 'd': np.copy(d), 'f': np.copy(f), 'low': np.copy(low), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]), 'time': time }) while True: if color[u] == 0 or d[u] == 0.0: time += 0.01 d[u] = time low[u] = time color[u] = 1 probing.push( probes, specs.Stage.HINT, next_probe={ 'is_bridge_h': np.copy(is_bridge), 'pi_h': np.copy(pi), 'color': probing.array_cat(color, 3), 'd': np.copy(d), 'f': np.copy(f), 'low': np.copy(low), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]), 'time': time }) for v in range(A.shape[0]): if A[u, v] != 0: if color[v] == 0: pi[v] = u color[v] = 1 s_prev[v] = s_last s_last = v probing.push( probes, specs.Stage.HINT, next_probe={ 'is_bridge_h': np.copy(is_bridge), 'pi_h': np.copy(pi), 'color': probing.array_cat(color, 3), 'd': np.copy(d), 'f': np.copy(f), 'low': np.copy(low), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]), 'time': time }) break elif v != pi[u]: low[u] = min(low[u], d[v]) probing.push( probes, specs.Stage.HINT, next_probe={ 'is_bridge_h': np.copy(is_bridge), 'pi_h': np.copy(pi), 'color': probing.array_cat(color, 3), 'd': np.copy(d), 'f': np.copy(f), 'low': np.copy(low), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]), 'time': time }) if s_last == u: color[u] = 2 time += 0.01 f[u] = time for v in range(A.shape[0]): if pi[v] == u: low[u] = min(low[u], low[v]) if low[v] > d[u]: is_bridge[u, v] = 1 is_bridge[v, u] = 1 probing.push( probes, specs.Stage.HINT, next_probe={ 'is_bridge_h': np.copy(is_bridge), 'pi_h': np.copy(pi), 'color': probing.array_cat(color, 3), 'd': np.copy(d), 'f': np.copy(f), 'low': np.copy(low), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]), 'time': time }) if s_prev[u] == u: assert s_prev[s_last] == s_last break pr = s_prev[s_last] s_prev[s_last] = s_last s_last = pr u = s_last probing.push( probes, specs.Stage.OUTPUT, next_probe={'is_bridge': np.copy(is_bridge)}, ) probing.finalize(probes) return is_bridge, probes def strongly_connected_components(A: _Array) -> _Out: """Kosaraju's strongly-connected components (Aho et al., 1974).""" chex.assert_rank(A, 2) probes = probing.initialize( specs.SPECS['strongly_connected_components']) A_pos = np.arange(A.shape[0]) probing.push( probes, specs.Stage.INPUT, next_probe={ 'pos': np.copy(A_pos) * 1.0 / A.shape[0], 'A': np.copy(A), 'adj': probing.graph(np.copy(A)) }) scc_id = np.arange(A.shape[0]) color = np.zeros(A.shape[0], dtype=np.int32) d = np.zeros(A.shape[0]) f = np.zeros(A.shape[0]) s_prev = np.arange(A.shape[0]) time = 0 A_t = np.transpose(A) for s in range(A.shape[0]): if color[s] == 0: s_last = s u = s v = s probing.push( probes, specs.Stage.HINT, next_probe={ 'scc_id_h': np.copy(scc_id), 'A_t': probing.graph(np.copy(A_t)), 'color': probing.array_cat(color, 3), 'd': np.copy(d), 'f': np.copy(f), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]), 'time': time, 'phase': 0 }) while True: if color[u] == 0 or d[u] == 0.0: time += 0.01 d[u] = time color[u] = 1 probing.push( probes, specs.Stage.HINT, next_probe={ 'scc_id_h': np.copy(scc_id), 'A_t': probing.graph(np.copy(A_t)), 'color': probing.array_cat(color, 3), 'd': np.copy(d), 'f': np.copy(f), 's_prev': np.copy(s_prev), 's': probing.mask_one(s, A.shape[0]), 'u': probing.mask_one(u, A.shape[0]), 'v': probing.mask_one(v, A.shape[0]), 's_last': probing.mask_one(s_last, A.shape[0]), 'time': time, 'phase': 0 }) for v in range(A.shape[0]): if A[u, v] != 0: if color[v] == 0: color[v] = 1 s_prev[v] = s_last s_last = v probing.push( probes, specs.Stage.HINT, next_probe={ 'scc_id_h': np.copy(scc_id), 'A_t': probing.graph(np.copy(A_t)), 'color': probing.array_cat(color, 3), 'd': np.copy(d), 'f': np.copy(f), 's_prev':
np.copy(s_prev)
numpy.copy
""" Main Data Structure of the topoGenesis """ import numpy as np import pyvista as pv import itertools import concurrent.futures import warnings import os __author__ = "<NAME>, and <NAME>" __copyright__ = "???" __credits__ = ["<NAME>", "<NAME>"] __license__ = "???" __version__ = "0.0.2" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Dev" file_directory = os.path.dirname(os.path.abspath(__file__)) class lattice(np.ndarray): def __new__(subtype, bounds, unit=1, dtype=float, buffer=None, offset=0, strides=None, order=None, default_value=None): # extracting min and max from bound and discrtizing it bounds = np.array(bounds) minbound = np.rint(bounds[0] / unit).astype(int) maxbound = np.rint(bounds[1] / unit).astype(int) bounds = np.array([minbound, maxbound])*unit # unit np array unit = np.array(unit) # raise value error if the size of unit is neighter 1 nor the length of the minimum if unit.size != 1 and unit.size != minbound.size: raise ValueError( 'the length of unit array needs to be either 1 or equal to the min/max arrays') # calculating shape based on bounds and unit shape = 1 + maxbound - minbound # set default value if default_value != None: buffer = np.tile( default_value, shape) #obj = obj * 0 + default_value # Create the ndarray instance of our type, given the usual # ndarray input arguments. This will call the standard # ndarray constructor, but return an object of our type. # It also triggers a call to lattice.__array_finalize__ obj = super(lattice, subtype).__new__(subtype, shape, dtype, buffer, offset, strides, order) # set the 'bounds' attribute obj.bounds = bounds # set the attribute 'unit' to itself if it has the same size as the minimum, # if the size is 1, tile it with the size of minimum vector obj.unit = unit if unit.size == minbound.size else np.tile( unit, minbound.size) # init an empty connectivity obj.connectivity = None # Finally, we must return the newly created object: return obj def __array_finalize__(self, obj): # ``self`` is a new object resulting from # ndarray.__new__(lattice, ...), therefore it only has # attributes that the ndarray.__new__ constructor gave it - # i.e. those of a standard ndarray. # # We could have got to the ndarray.__new__ call in 3 ways: # From an explicit constructor - e.g. lattice(): # obj is None # (we're in the middle of the lattice.__new__ # constructor, and self.bounds will be set when we return to # lattice.__new__) if obj is None: return # From view casting - e.g arr.view(lattice): # obj is arr # (type(obj) can be lattice) # From new-from-template - e.g lattice[:3] # type(obj) is lattice # # Note that it is here, rather than in the __new__ method, # that we set the default value for 'bounds', because this # method sees all creation of default objects - with the # lattice.__new__ constructor, but also with # arr.view(lattice). self.bounds = getattr(obj, 'bounds', None) self.bounds = getattr(obj, 'bounds', None) self.unit = getattr(obj, 'unit', None) self.connectivity = getattr(obj, 'connectivity', None) # We do not need to return anything @property def minbound(self): return self.bounds[0] @property def maxbound(self): return self.bounds[1] @property def centroids(self): # extract the indices of the True values # with sparse matrix we don't need to search point_array = np.argwhere(self == True) # convert to float point_array = point_array.astype(float) # multiply by unit point_array *= self.unit # move to minimum point_array += self.minbound # return as a point cloud return cloud(point_array, dtype=float) def fast_vis(self, plot, show_outline=True, show_centroids=True): # Set the grid dimensions: shape + 1 because we want to inject our values on the CELL data grid = pv.UniformGrid() grid.dimensions = np.array(self.shape) + 1 # The bottom left corner of the data set grid.origin = self.minbound - self.unit * 0.5 grid.spacing = self.unit # These are the cell sizes along each axis # Add the data values to the cell data grid.cell_arrays["values"] = self.flatten( order="F").astype(float) # Flatten the array! # filtering the voxels threshed = grid.threshold([0.9, 1.1]) # adding the voxels: light red plot.add_mesh(threshed, show_edges=True, color="#ff8fa3", opacity=0.3, label="Cells") if show_outline: # adding the boundingbox wireframe plot.add_mesh(grid.outline(), color="grey", label="Domain") if show_centroids: # adding the voxel centeroids: red plot.add_mesh(pv.PolyData(self.centroids), color='#ff244c', point_size=5, render_points_as_spheres=True, label="Cell Centroidss") return plot def fast_notebook_vis(self, plot, show_outline=True, show_centroids=True): # Set the grid dimensions: shape + 1 because we want to inject our values on the CELL data grid = pv.UniformGrid() grid.dimensions = np.array(self.shape) + 1 # The bottom left corner of the data set grid.origin = self.minbound - self.unit * 0.5 grid.spacing = self.unit # These are the cell sizes along each axis # Add the data values to the cell data grid.cell_arrays["values"] = self.flatten( order="F").astype(float) # Flatten the array! # filtering the voxels threshed = grid.threshold([0.9, 1.1]) # adding the voxels: light red plot.add_mesh(threshed, color="#ff8fa3", opacity=0.3) # plot.add_mesh(threshed, show_edges=True, color="#ff8fa3", opacity=0.3, label="Cells") if show_outline: # adding the boundingbox wireframe plot.add_mesh(grid.outline(), color="grey") # plot.add_mesh(grid.outline(), color="grey", label="Domain") if show_centroids: # adding the voxel centeroids: red plot.add_points(pv.PolyData(self.centroids), color='#ff244c') # plot.add_mesh(pv.PolyData(self.centroids), color='#ff244c', point_size=5, render_points_as_spheres=True, label="Cell Centroidss") return plot def boolean_marching_cubes(self): # construct the boolean_marching_cubes stencil mc_stencil = create_stencil("boolean_marching_cube", 1) # getting shifts by expanding the stencil in the Fortran Order shifts = mc_stencil.expand('F') # pad the volume with zero in every direction # TODO make this an option instead of default volume = np.pad(self, (1, 1), mode='constant', constant_values=(0, 0)) # the id of voxels (0,1,2, ... n) volume_inds = np.arange(volume.size).reshape(volume.shape) # gattering all the replacements in the collumns replaced_columns = [ np.roll(volume_inds, shift, np.arange(3)).ravel() for shift in shifts] # stacking the columns cell_corners = np.stack(replaced_columns, axis=-1) # converting volume value (TODO: this needs to become a method of its own) volume_flat = volume.ravel() volume_flat[volume_flat > 0.5] = 1 volume_flat[volume_flat < 0.5] = 0 # replace neighbours by their value in volume neighbor_values = volume_flat[cell_corners] # computing the cell tile id # the powers of 2 in an array legend = 2**np.arange(8) # multiply the corner with the power of two, sum them, and reshape to the original volume shape tile_id = np.sum(legend * neighbor_values, axis=1).reshape(volume.shape) # drop the last column, row and page (since cube-grid is 1 less than the voxel grid in every dimension) # TODO consider that removing padding would eliminate the need for this line cube_grid = tile_id[:-1, :-1, :-1] # initializing the lattice cube_lattice = lattice([self.minbound, self.maxbound + self.unit], unit=self.unit, dtype=np.uint8, buffer=cube_grid, default_value=False) # set the values that are bigger than 0 (transfering values) cube_lattice[cube_grid > 0] = cube_grid[cube_grid > 0] return cube_lattice def find_connectivity(self, stencil): raise NotImplementedError class cloud(np.ndarray): def __new__(subtype, point_array, dtype=float, buffer=None, offset=0, strides=None, order=None): # extracting the shape from point_array shape = point_array.shape # using the point_array as the buffer buffer = point_array.flatten(order="C") # Create the ndarray instance of our type, given the usual # ndarray input arguments. This will call the standard # ndarray constructor, but return an object of our type. # It also triggers a call to cloud.__array_finalize__ obj = super(cloud, subtype).__new__(subtype, shape, dtype, buffer, offset, strides, order) # set the 'bounds' attribute obj.bounds = np.array([obj.min(axis=0), obj.max(axis=0)]) # Finally, we must return the newly created object: return obj def __array_finalize__(self, obj): # ``self`` is a new object resulting from # ndarray.__new__(cloud, ...), therefore it only has # attributes that the ndarray.__new__ constructor gave it - # i.e. those of a standard ndarray. # # We could have got to the ndarray.__new__ call in 3 ways: # From an explicit constructor - e.g. cloud(): # obj is None # (we're in the middle of the cloud.__new__ # constructor, and self.bounds will be set when we return to # cloud.__new__) if obj is None: return # From view casting - e.g arr.view(cloud): # obj is arr # (type(obj) can be cloud) # From new-from-template - e.g cloud[:3] # type(obj) is cloud # # Note that it is here, rather than in the __new__ method, # that we set the default value for 'bounds', because this # method sees all creation of default objects - with the # cloud.__new__ constructor, but also with # arr.view(cloud). self.bounds = getattr(obj, 'bounds', None) # We do not need to return anything @property def minbound(self): return self.bounds[0] @property def maxbound(self): return self.bounds[1] def regularize(self, unit, **kwargs): """[summary] Arguments: unit {[float or array of floats]} -- [the unit separation between cells of lattice] Keyword Arguments: closed {[Boolean]} -- [False by default. If the cell intervals are closed intervals or not.] Raises: ValueError: [unit needs to be either a float or an array of floats that has the same dimension of the points in the point cloud] Returns: [lattice] -- [a boolian latice representing the rasterization of point cloud] """ #################################################### # INPUTS #################################################### unit = np.array(unit) if unit.size != 1 and unit.size != self.bounds.shape[1]: raise ValueError( 'the length of unit array needs to be either 1 or equal to the dimension of point cloud') elif unit.size == 1: unit = np.tile(unit, (1, self.bounds.shape[1])) closed = kwargs.get('closed', False) #################################################### # PROCEDURE #################################################### if closed: # retrieve the identity matrix as a list of main axes axes = np.identity(unit.size).astype(int) # R3 to Z3 : finding the closest voxel to each point point_scaled = self / unit # shift the hit points in each 2-dimension (n in 1-axes) backward and formard (s in [-1,1]) and rint all the possibilities vox_ind = [np.rint(point_scaled + unit * n * s * 0.001) for n in (1-axes) for s in [-1, 1]] print([unit * n * s for n in (1-axes) for s in [-1, 1]]) vox_ind = np.vstack(vox_ind) print("close") else: vox_ind = np.rint(self / unit).astype(int) print("here") # removing repetitions unique_vox_ind = np.unique(vox_ind, axis=0).astype(int) # mapping the voxel indices to real space reg_pnt = unique_vox_ind * unit # initializing the volume l = lattice([self.minbound, self.maxbound], unit=unit, dtype=bool, default_value=False) # map the indices to start from zero mapped_ind = unique_vox_ind - np.rint(l.bounds[0]/l.unit).astype(int) # setting the occupied voxels to True l[mapped_ind[:, 0], mapped_ind[:, 1], mapped_ind[:, 2]] = True #################################################### # OUTPUTS #################################################### return l def fast_vis(self, plot, color='#2499ff'): # adding the original point cloud: blue plot.add_mesh(pv.PolyData(self), color=color, point_size=3, render_points_as_spheres=True, label="Point Cloud") return plot def fast_notebook_vis(self, plot, color='#2499ff'): # adding the original point cloud: blue plot.add_points(pv.PolyData(self), color=color) return plot class stencil(np.ndarray): def __new__(subtype, point_array, ntype="Custom", origin=np.array([0, 0, 0]), dtype=int, buffer=None, offset=0, strides=None, order=None): # extracting the shape from point_array shape = point_array.shape # using the point_array as the buffer buffer = point_array.flatten(order="C") # Create the ndarray instance of our type, given the usual # ndarray input arguments. This will call the standard # ndarray constructor, but return an object of our type. # It also triggers a call to stencil.__array_finalize__ obj = super(stencil, subtype).__new__(subtype, shape, dtype, buffer, offset, strides, order) # set the neighbourhood type obj.ntype = ntype # set the origin obj.origin = origin # set the 'bounds' attribute shape_arr = np.array(shape) obj.bounds = np.array([shape_arr * 0, shape_arr - 1]) - origin # Finally, we must return the newly created object: return obj def __array_finalize__(self, obj): # ``self`` is a new object resulting from # ndarray.__new__(stencil, ...), therefore it only has # attributes that the ndarray.__new__ constructor gave it - # i.e. those of a standard ndarray. # # We could have got to the ndarray.__new__ call in 3 ways: # From an explicit constructor - e.g. stencil(): # obj is None # (we're in the middle of the stencil.__new__ # constructor, and self.bounds will be set when we return to # stencil.__new__) if obj is None: return # From view casting - e.g arr.view(stencil): # obj is arr # (type(obj) can be stencil) # From new-from-template - e.g stencil[:3] # type(obj) is stencil # # Note that it is here, rather than in the __new__ method, # that we set the default value for 'properties', because this # method sees all creation of default objects - with the # stencil.__new__ constructor, but also with # arr.view(stencil). self.bounds = getattr(obj, 'bounds', None) self.ntype = getattr(obj, 'ntype', None) self.origin = getattr(obj, 'origin', None) # We do not need to return anything def __array_wrap__(self, array, context=None): temp = np.array(array) # checking if the array has any value other than 0, and 1 np.place(temp, temp > 0.5, [1]) np.place(temp, temp < 0.5, [0]) return stencil(temp, ntype="custom", origin=self.origin) @property def minbound(self): return self.bounds[0] @property def maxbound(self): return self.bounds[1] def expand(self, sort="dist"): # list the locations locations = self.origin - np.argwhere(self) # check the sorting method if sort == "dist": # Sorted Based on the distance from origin # calculating the distance of each neighbour sums = np.abs(locations).sum(axis=1) # sorting to identify the main cell order = np.argsort(sums) elif sort == "F": # Fortran Sort, used for Boolean Marching Cubes order = np.arange(self.size).reshape(self.shape).flatten('F') # sort and return return locations[order].astype(int) def set_index(self, index, value): ind = np.array(index) + self.origin if ind.size != 3: raise ValueError(" the index needs to have three components") self[ind[0], ind[1], ind[2]] = value def create_stencil(type_str, steps, clip=None): # check if clip is specified. if it is not, set it to the steps if clip == None: clip = steps # von neumann neighborhood if type_str == "von_neumann": # https://en.wikipedia.org/wiki/Von_Neumann_neighborhood # claculating all the possible shifts to apply to the array shifts = np.array(list(itertools.product( list(range(-clip, clip+1)), repeat=3))) # the number of steps that the neighbour is appart from the cell (setp=1 : 6 neighbour, step=2 : 18 neighbours, step=3 : 26 neighbours) shift_steps = np.sum(np.absolute(shifts), axis=1) # check the number of steps chosen_shift_ind = np.argwhere(shift_steps <= steps).ravel() # select the valid indices from shifts variable, transpose them to get separate indicies in rows, add the number of steps to make this an index locs = np.transpose(shifts[chosen_shift_ind]) + clip # inilize the stencil s = np.zeros((clip*2+1, clip*2+1, clip*2+1)).astype(int) # fill in the stencil s[locs[0], locs[1], locs[2]] = 1 return stencil(s, ntype=type_str, origin=np.array([clip, clip, clip])) elif type_str == "moore": # https://en.wikipedia.org/wiki/Moore_neighborhood # claculating all the possible shifts to apply to the array shifts = np.array(list(itertools.product( list(range(-clip, clip+1)), repeat=3))) # the number of steps that the neighbour is appart from the origin cell shift_steps = np.max(np.absolute(shifts), axis=1) # check the number of steps chosen_shift_ind = np.argwhere(shift_steps <= steps).ravel() # select the valid indices from shifts variable, transpose them to get separate indicies in rows, add the number of steps to make this an index locs = np.transpose(shifts[chosen_shift_ind]) + clip # inilize the stencil s = np.zeros((clip*2+1, clip*2+1, clip*2+1)).astype(int) # fill in the stencil s[locs[0], locs[1], locs[2]] = 1 return stencil(s, ntype=type_str, origin=np.array([clip, clip, clip])) elif type_str == "boolean_marching_cube": # # shifts to check 8 corner of cube (multiply by -1 since shift goes backward) # shifts = np.array([ # [0, 0, 0], # 1 # [1, 0, 0], # 2 # [0, 1, 0], # 4 # [1, 1, 0], # 8 # [0, 0, 1], # 16 # [1, 0, 1], # 32 # [0, 1, 1], # 64 # [1, 1, 1] # 128 # ])*-1 # # the number of steps that the neighbour is appart from the origin cell # shift_steps = np.max(np.absolute(shifts), axis=1) # # check the number of steps # chosen_shift_ind = np.argwhere(shift_steps <= steps).ravel() # # select the valid indices from shifts variable, transpose them to get separate indicies in rows, add the number of steps to make this an index # locs = np.transpose(shifts[chosen_shift_ind]) + clip # inilize the stencil s = np.ones((2, 2, 2)).astype(int) # # fill in the stencil # s[locs[0], locs[1], locs[2]] = 1 return stencil(s, ntype=type_str, origin=np.array([0, 0, 0])) else: raise ValueError( 'non-valid neighborhood type for stencil creation') def scatter(bounds, count): """[summary] Arguments: bounds {[2d array]} -- [array of two vectors, indicating the bounding box of the scattering envelope with a minimum and maximum of the bounding box] count {[int]} -- [number of the points to scatter within the bounding box] Returns: [cloud] -- [returns a cloud object countaing the coordinates of the scattered points] """ point_array = np.random.uniform( bounds[0], bounds[1], (count, bounds.shape[1])) return cloud(point_array) def cloud_from_csv(file_path, delimiter=','): point_array = np.genfromtxt(file_path, delimiter=delimiter) return cloud(point_array) def lattice_from_csv(file_path): # read the voxel 3-dimensional indices ind_flat = np.genfromtxt(file_path, delimiter=',', skip_header=8, usecols=(0, 1, 2)).astype(int) # read the voxel values vol_flat = np.genfromtxt( file_path, delimiter=',', skip_header=8, usecols=(3)).astype(int) # read volume meta data meta = np.genfromtxt( file_path, delimiter='-', skip_header=1, max_rows=3, usecols=(1, 2, 3)) unit = meta[0] min_bound = meta[1] volume_shape = meta[2].astype(int) max_bound = min_bound + unit * volume_shape # reshape the 1d array to get 3d array vol = vol_flat.reshape(volume_shape) # initializing the lattice l = lattice([min_bound, max_bound], unit=unit, dtype=bool, default_value=False) # setting the latice equal to volume l[ind_flat[:, 0], ind_flat[:, 1], ind_flat[:, 2] ] = vol[ind_flat[:, 0], ind_flat[:, 1], ind_flat[:, 2]] return l def find_neighbours(lattice, stencil): # flatten the lattice lattice_flat = lattice.ravel() # the id of voxels (0,1,2, ... n) lattice_inds = np.arange(lattice.size).reshape(lattice.shape) # removing the indecies that are not filled in the volume lattice_inds = ((lattice_inds + 1) * lattice) - 1 # offset the 1-dimensional indices of the voxels that is rshaped to volume shape with value -1 lattice_inds_paded = np.pad(lattice_inds, (1, 1), mode='constant', constant_values=(-1, -1)) # flatten lattice_inds_paded_flat = lattice_inds_paded.ravel() # index of padded cells in flatten origin_flat_ind = np.argwhere(lattice_inds_paded_flat != -1).ravel() # retrievig all the possible shifts corresponding to the neighbours defined in stencil shifts = expand_stencil(stencil) # gattering all the replacements in the collumns replaced_columns = [ np.roll(lattice_inds_paded, shift, np.arange(3)).ravel() for shift in shifts] # stacking the columns and removing the pads (and also removing the neighbours of the empty voxels since we have tagged them -1 like paddings) cell_neighbors = np.stack(replaced_columns, axis=-1)[origin_flat_ind] return cell_neighbors def marching_cube_vis(p, cube_lattice, style_str): # extract cube indicies cube_ind = np.transpose(np.indices(cube_lattice.shape), (1, 2, 3, 0)).reshape(-1, 3) # extract cube positions cube_pos = (cube_ind - 0.5) * cube_lattice.unit + cube_lattice.minbound # extract cube tid cube_tid = cube_lattice.ravel() # remove the cube position and tid where tid is 0 filled_cube_pos = cube_pos[cube_tid > 0] filled_cube_tid = cube_tid[cube_tid > 0] if style_str != "chamfer": raise ValueError( "Meshing style is not valid. Valid styles are: ['chamfer']") # load tiles tiles = [0] for i in range(1, 256): tile_path = os.path.join( file_directory, "resources/mc_tiles", style_str, "Tile_{0:03d}.obj".format(i)) tile = pv.read(tile_path) tile.points *= cube_lattice.unit tiles.append(tile) new_points = tiles[filled_cube_tid[0]].points + filled_cube_pos[0] new_faces = tiles[filled_cube_tid[0]].faces.reshape(-1, 4) # merge tiles for i in range(1, filled_cube_tid.size): tile = tiles[filled_cube_tid[i]] # add the faces list, changing the point numbers new_faces = np.concatenate( (new_faces, tile.faces.reshape(-1, 4) + np.array([0, 1, 1, 1])*new_points.shape[0]), axis=0) # add the new points, change the position based on the location new_points = np.concatenate( (new_points, tile.points + filled_cube_pos[i]), axis=0) # construct the new mesh and add it to plot new_tile = pv.PolyData(new_points, new_faces) p.add_mesh(new_tile, color='#abd8ff') return p def mesh_sampling(mesh, unit, tol=1e-06, **kwargs): """This algorithm samples a mesh based on unit size Args: geo_mesh ([COMPAS Mesh]): [description] unit ([numpy array]): [Unit represents the unit size in the sampling grid. It needs to be one float value or an array-like with three elements. In case that a scalar is given it will used for all three dimensions] tol ([type], optional): [description]. Defaults to 1e-06. Returns: [type]: [description] """ #################################################### # INPUTS #################################################### unit =
np.array(unit)
numpy.array
import numpy as np import numexpr as ne def score(Y): ''' Returns the score function evaluated for each sample ''' return ne.evaluate('tanh(Y / 2)') def score_der(psiY): ''' Returns the derivative of the score ''' return ne.evaluate('(- psiY ** 2 + 1.) / 2.') def loss(Y, W): ''' Computes the loss function for (Y, W) ''' T = Y.shape[1] log_det = np.linalg.slogdet(W)[1] logcoshY = np.sum(ne.evaluate('abs(Y) + 2. * log1p(exp(-abs(Y)))')) return - log_det + logcoshY / float(T) def gradient(Y, psiY): ''' Returns the gradient at Y, using the score psiY ''' N, T = Y.shape return np.inner(psiY, Y) / float(T) - np.eye(N) def compute_h(Y, psidY, precon=2): ''' Returns the diagonal coefficients of H 1/ H2 in a N x N matrix ''' N, T = Y.shape if precon == 2: return np.inner(psidY, Y ** 2) / float(T) else: Y_squared = Y ** 2 sigma2 = np.mean(Y_squared, axis=1) psidY_mean = np.mean(psidY, axis=1) h1 = psidY_mean[:, None] * sigma2[None, :] diagonal_term = np.mean(Y_squared * psidY) h1[np.diag_indices_from(h1)] = diagonal_term return h1 def regularize_h(h, lambda_min, mode=0): ''' Regularizes the hessian approximation h using the constant lambda_min. Mode selects the regularization algorithm 0 -> Shift each eigenvalue below lambda_min to lambda_min 1 -> add lambda_min x Id to h ''' if mode == 0: # Compute the eigenvalues of the Hessian eigenvalues = 0.5 * (h + h.T - np.sqrt((h-h.T) ** 2 + 4.)) # Regularize problematic_locs = eigenvalues < lambda_min
np.fill_diagonal(problematic_locs, False)
numpy.fill_diagonal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Oct 18 17:26:25 2019 @author: ben """ import numpy as np import pointCollection as pc import os import h5py class data(pc.data): def __init__(self, bin_W=[1.e4, 1.e4], **kwargs): self.bin_W=bin_W super().__init__(**kwargs) def to_file(self, D, out_file, time_field='time', append=True, ind_fields=['x','y','time']): y_bin_function=np.round(D.y/self.bin_W[0]) x_bin_function=np.round(D.x/self.bin_W[1]) # 6/23/21: added +1 to the scales (so that max(x_bin_fn)-min(x_bin_fn)<x_scale) x_scale=np.nanmax(x_bin_function)-np.nanmin(x_bin_function)+1 t=getattr(D, time_field) t_scale=np.nanmax(t)-np.nanmin(t)+1 xy_bin_function=(y_bin_function-np.nanmin(y_bin_function))*x_scale+(x_bin_function-np.nanmin(x_bin_function)) xyt_bin_function= xy_bin_function + (t-np.nanmin(t))/t_scale ind=np.argsort(xyt_bin_function) bin_dict={} xy_bin_fn_sort=xy_bin_function[ind] fn_delta=np.concatenate([[-1], np.flatnonzero(np.diff(xy_bin_fn_sort)), [xy_bin_fn_sort.size]]) for ii in range(len(fn_delta)-1): this_ind=ind[(fn_delta[ii]+1):(fn_delta[ii+1]+1)] bin_dict[(x_bin_function[this_ind[0]], y_bin_function[this_ind[0]])]=this_ind key_arr=np.array([key for key in bin_dict.keys()]) key_order=np.argsort(key_arr[:,1]-
np.min(key_arr[:,1])
numpy.min
from os.path import join, dirname import numpy as np from bokeh.io import curdoc from bokeh.layouts import column, row from bokeh.models import ColumnDataSource, Slider, TextInput from bokeh.plotting import figure import os #os.chdir(r'C:\Users\user\Desktop\POSMOT\DISSERTACAO\ARTIGO_PERIODIC_BEAM') def beam(lC1, lC2, wi, hC1, hC2): Ia = wi*hC1**3/12 Ib = wi*hC2**3/12 Aa = wi*hC1 Ab = wi*hC2 E = 69e9 La = lC1/5 Lb = lC2/5 rho = 2700 N = 1000 omega = np.linspace(0,50000,N) #freq = omega/(2*np.pi) def periodic_beam(w, E, I, L, A, rho): K = (E*I/L**3)* np.array([[12,6*L,-12,6*L],[6*L,4*L**2,-6*L,2*L**2],[-12,-6*L,12,-6*L],[6*L,2*L**2,-6*L,4*L**2]]) M = (rho*A*L/420)*np.array([[156,22*L,54,-13*L],[22*L,4*L**2,13*L,-3*L**2],[54,13*L,156,-22*L],[-13*L,-3*L**2,-22*L,4*L**2]]) D = K - w**2*M Dlr = np.array([[ D[0][2], D[0][3]], [D[1][2], D[1][3]]]) Drl = np.array([[ D[2][0], D[2][1]], [D[3][0], D[3][1]]]) Dll = np.array([[ D[0][0], D[0][1]], [D[1][0], D[1][1]]]) Drr = np.array([[ D[2][2], D[2][3]], [D[3][2], D[3][3]]]) T1 = np.matmul(-np.linalg.inv(Dlr) ,Dll) T2 = np.linalg.inv(Dlr) T3 = np.matmul(np.matmul(Drr ,np.linalg.inv(Dlr)) , Dll) - Drl T4 = np.matmul(-Drr , np.linalg.inv(Dlr)) T = np.zeros(shape=(4,4), dtype=complex) T[0:2, 0:2] = T1 T[0:2, 2:4] = T2 T[2:4, 0:2] = T3 T[2:4, 2:4] = T4 return T final = np.zeros(shape=(N,4), dtype=complex) i = 0 for w in omega: eq1= periodic_beam(w, E, Ia, La, Aa, rho) eq2 = periodic_beam(w, E ,Ib, Lb, Ab,rho) Tfinal = eq1@eq1@ eq1 @ eq1 @ eq1@ eq2 @ eq2@eq2@eq2@eq2 eig_final = np.linalg.eigvals(Tfinal) eig_final =
np.sort(eig_final)
numpy.sort
# Runs various registration algorithms # start with the setup import importlib.util import os import sys sys.path.insert(0,os.path.abspath('..')) sys.path.insert(0,os.path.abspath('../mermaid')) sys.path.insert(0,os.path.abspath('../mermaid/libraries')) import unittest import torch from mermaid.data_wrapper import AdaptVal import numpy as np import numpy.testing as npt import random import mermaid.example_generation as eg import mermaid.module_parameters as pars import mermaid.multiscale_optimizer as MO import mermaid.smoother_factory as SF try: importlib.util.find_spec('HtmlTestRunner') foundHTMLTestRunner = True import HtmlTestRunner except ImportError: foundHTMLTestRunner = False # test it class Test_registration_algorithms(unittest.TestCase): def createImage(self,ex_len=64): example_img_len = ex_len dim = 2 szEx = np.tile(example_img_len, dim) # size of the desired images: (sz)^dim I0, I1, self.spacing = eg.CreateSquares(dim).create_image_pair(szEx,self.params) # create a default image size with two sample squares self.sz = np.array(I0.shape) # create the source and target image as pyTorch variables self.ISource = AdaptVal(torch.from_numpy(I0.copy())) self.ITarget = AdaptVal(torch.from_numpy(I1)) # smooth both a little bit self.params[('image_smoothing', {}, 'image smoothing settings')] self.params['image_smoothing'][('smooth_images', True, '[True|False]; smoothes the images before registration')] self.params['image_smoothing'][('smoother', {}, 'settings for the image smoothing')] self.params['image_smoothing']['smoother'][('gaussian_std', 0.05, 'how much smoothing is done')] self.params['image_smoothing']['smoother'][('type', 'gaussian', "['gaussianSpatial'|'gaussian'|'diffusion']")] cparams = self.params['image_smoothing'] s = SF.SmootherFactory(self.sz[2::], self.spacing).create_smoother(cparams) self.ISource = s.smooth(self.ISource) self.ITarget = s.smooth(self.ITarget) def setUp(self): torch.manual_seed(2019) torch.cuda.manual_seed(2019) np.random.seed(2019) random.seed(2019) def tearDown(self): pass def test_svf_image_single_scale(self): self.params = pars.ParameterDict() self.params.load_JSON('./json/test_svf_image_single_scale_config.json') self.createImage( 32 ) so = MO.SimpleSingleScaleRegistration( self.ISource, self.ITarget, self.spacing, self.sz, self.params) so.get_optimizer().set_visualization(False) so.register() # E=[ 1.80229616], similarityE=[ 0.71648604], regE=[ 1.08581007], relF=[ 0.0083105] energy = so.get_energy() npt.assert_almost_equal( energy[0], 1.7919, decimal=1 ) npt.assert_almost_equal( energy[1], 0.5309, decimal=1 ) npt.assert_almost_equal( energy[2], 1.2610, decimal=1 ) def test_lddmm_shooting_scalar_momentum_image_single_scale(self): self.params = pars.ParameterDict() self.params.load_JSON('./json/test_lddmm_shooting_scalar_momentum_image_single_scale_config.json') self.createImage() so = MO.SimpleSingleScaleRegistration(self.ISource, self.ITarget, self.spacing, self.sz, self.params) so.get_optimizer().set_visualization(False) so.register() # E = [0.03198373], similarityE = [0.0210261], regE = [0.01095762], relF = [0.] energy = so.get_energy() npt.assert_almost_equal(energy[0], 0.0319, decimal=4 ) npt.assert_almost_equal(energy[1], 0.0210, decimal=4 ) npt.assert_almost_equal(energy[2], 0.0110, decimal=4 ) def test_lddmm_shooting_image_single_scale(self): self.params = pars.ParameterDict() self.params.load_JSON('./json/test_lddmm_shooting_image_single_scale_config.json') self.createImage() so = MO.SimpleSingleScaleRegistration(self.ISource, self.ITarget, self.spacing, self.sz, self.params) so.get_optimizer().set_visualization(False) so.register() # E=[ 0.02896098], similarityE=[ 0.0170299], regE=[ 0.01193108], relF=[ 0.00193194] energy = so.get_energy() npt.assert_almost_equal(energy[0], 0.0308, decimal=2 ) npt.assert_almost_equal(energy[1], 0.0187, decimal=2 ) npt.assert_almost_equal(energy[2], 0.0121, decimal=2 ) def test_lddmm_shooting_scalar_momentum_image_multi_scale(self): self.params = pars.ParameterDict() self.params.load_JSON('./json/test_lddmm_shooting_scalar_momentum_image_multi_scale_config.json') self.createImage() mo = MO.SimpleMultiScaleRegistration(self.ISource, self.ITarget, self.spacing, self.sz, self.params) mo.get_optimizer().set_visualization(False) mo.register() # E=[ 0.03197587], similarityE=[ 0.02087387], regE=[ 0.01110199], relF=[ 0.00138645] energy = mo.get_energy() npt.assert_almost_equal(energy[0], 0.0318, decimal=4 ) npt.assert_almost_equal(energy[1], 0.0207, decimal=4 ) npt.assert_almost_equal(energy[2], 0.0111, decimal=4 ) def test_lddmm_shooting_image_multi_scale(self): self.params = pars.ParameterDict() self.params.load_JSON('./json/test_lddmm_shooting_image_multi_scale_config.json') self.createImage() mo = MO.SimpleMultiScaleRegistration(self.ISource, self.ITarget, self.spacing, self.sz, self.params) mo.get_optimizer().set_visualization(False) mo.register() # E = [0.04338037], similarityE = [0.03070126], regE = [0.01267911], relF = [0.01936091] energy = mo.get_energy() npt.assert_almost_equal(energy[0], 0.0432, decimal=4 ) npt.assert_almost_equal(energy[1], 0.0306, decimal=4 ) npt.assert_almost_equal(energy[2], 0.0127, decimal=4 ) def test_lddmm_shooting_scalar_momentum_map_multi_scale(self): self.params = pars.ParameterDict() self.params.load_JSON('./json/test_lddmm_shooting_scalar_momentum_map_multi_scale_config.json') self.createImage() mo = MO.SimpleMultiScaleRegistration(self.ISource, self.ITarget, self.spacing, self.sz, self.params) mo.get_optimizer().set_visualization(False) mo.register() # E = [0.08930502], simE = [0.08034889], regE = [0.00895613], optParE = [0.], relF = [0.03883468] energy = mo.get_energy() npt.assert_almost_equal(energy[0], 0.0434, decimal=4 ) npt.assert_almost_equal(energy[1], 0.0324, decimal=4 ) npt.assert_almost_equal(energy[2], 0.0110, decimal=4 ) def test_lddmm_shooting_map_multi_scale(self): self.params = pars.ParameterDict() self.params.load_JSON('./json/test_lddmm_shooting_map_multi_scale_config.json') self.createImage() mo = MO.SimpleMultiScaleRegistration(self.ISource, self.ITarget, self.spacing, self.sz, self.params) mo.get_optimizer().set_visualization(False) mo.register() # E = [0.07970674], simE = [0.06657108], regE = [0.01313565], optParE = [0.], relF = [0.02088663] energy = mo.get_energy() npt.assert_almost_equal(energy[0], 0.0721, decimal=4 ) npt.assert_almost_equal(energy[1], 0.0580, decimal=4 ) npt.assert_almost_equal(energy[2], 0.0141, decimal=4 ) def test_svf_map_single_scale(self): self.params = pars.ParameterDict() self.params.load_JSON('./json/test_svf_map_single_scale_config.json') self.createImage( 32 ) so = MO.SimpleSingleScaleRegistration( self.ISource, self.ITarget, self.spacing, self.sz, self.params) so.get_optimizer().set_visualization(False) so.register() # E = [36.42594528], similarityE = [16.22630882], regE = [20.19963646], relF = [0.0422723] energy = so.get_energy() npt.assert_almost_equal( energy[0], 16.9574, decimal=0 ) npt.assert_almost_equal( energy[1], 6.7187, decimal=0 ) npt.assert_almost_equal( energy[2], 10.2387, decimal=0 ) def test_lddmm_shooting_scalar_momentum_map_single_scale(self): self.params = pars.ParameterDict() self.params.load_JSON('./json/test_lddmm_shooting_scalar_momentum_map_single_scale_config.json') self.createImage() so = MO.SimpleSingleScaleRegistration( self.ISource, self.ITarget, self.spacing, self.sz, self.params) so.get_optimizer().set_visualization(False) so.register() # E=[ 0.04196917], similarityE=[ 0.03112457], regE=[ 0.0108446], relF=[ 5.37358646e-05] energy = so.get_energy() npt.assert_almost_equal( energy[0], 0.0419, decimal=4 ) npt.assert_almost_equal( energy[1], 0.0311, decimal=4 ) npt.assert_almost_equal( energy[2], 0.0108, decimal=4 ) def test_lddmm_shooting_map_single_scale(self): self.params = pars.ParameterDict() self.params.load_JSON('./json/test_lddmm_shooting_map_single_scale_config.json') self.createImage() so = MO.SimpleSingleScaleRegistration( self.ISource, self.ITarget, self.spacing, self.sz, self.params) so.get_optimizer().set_visualization(False) so.register() # E = [0.05674197], similarityE = [0.04364978], regE = [0.01309219], relF = [0.01391943] energy = so.get_energy() npt.assert_almost_equal( energy[0], 0.0549, decimal=3) npt.assert_almost_equal( energy[1], 0.0415, decimal=3) npt.assert_almost_equal( energy[2], 0.0133, decimal=3) def test_svf_scalar_momentum_image_single_scale(self): self.params = pars.ParameterDict() self.params.load_JSON('./json/svf_momentum_base_config.json') self.params['model']['deformation']['use_map'] = False self.params['model']['registration_model']['type'] = 'svf_scalar_momentum_image' self.createImage() so = MO.SimpleSingleScaleRegistration(self.ISource, self.ITarget, self.spacing, self.sz, self.params) so.get_optimizer().set_visualization(False) so.register() # E=[0.12413108], simE=[0.11151054], regE=0.012620546855032444 energy = so.get_energy() npt.assert_almost_equal(energy[0], 0.1242, decimal=4)
npt.assert_almost_equal(energy[1], 0.1116, decimal=4)
numpy.testing.assert_almost_equal
## load packages import numpy as np import scipy import pickle import os, sys, glob, time from scipy.ndimage.interpolation import shift, map_coordinates ## Load other sub-packages from .. import visual_tools, get_img_info, corrections, alignment_tools from .. import _image_dtype ## Load shared parameters from . import _distance_zxy, _image_size, _allowed_colors, _corr_channels, _correction_folder from . import _num_buffer_frames, _num_empty_frames from .crop import decide_starting_frames, translate_crop_by_drift def get_num_frame(dax_filename, frame_per_color=_image_size[0], buffer_frame=10, verbose=False): """Function to extract image size and number of colors""" ## check input if '.dax' not in dax_filename: raise ValueError( f"Wrong input type, .dax file expected for {dax_filename}") if not os.path.isfile(dax_filename): raise IOError(f"input file:{dax_filename} doesn't exist!") _info_filename = dax_filename.replace('.dax', '.inf') with open(_info_filename, 'r') as _info_hd: _infos = _info_hd.readlines() # get frame number and color information _num_frame, _num_color = 0, 0 _dx, _dy = 0, 0 for _line in _infos: _line = _line.rstrip() if "number of frames" in _line: _num_frame = int(_line.split('=')[1]) _num_color = (_num_frame - 2*buffer_frame) / frame_per_color if _num_color != int(_num_color): raise ValueError("Wrong num_color, should be integer!") _num_color = int(_num_color) if "frame dimensions" in _line: _dx = int(_line.split('=')[1].split('x')[0]) _dy = int(_line.split('=')[1].split('x')[1]) _im_shape = [_num_frame, _dx, _dy] return _im_shape, _num_color # used by the old pipline def multi_crop_image_fov(filename, channels, crop_limit_list, all_channels=_allowed_colors, single_im_size=_image_size, num_buffer_frames=10, num_empty_frames=0, drift=np.array([0,0,0]), shift_order=1, return_limits=False, verbose=False): """Function to load images for multiple cells in a fov Inputs: filename: .dax filename for given image, string of filename channels: color_channels for the specific data, list of int or str crop_limit_list: list of 2x2 or 3x2 array specifying where to crop, list of np.ndarray all_channels: all allowed colors in given data, list (default: _allowed_colors) single_im_size: image size for single color full image, list/array of 3 (default:[30,2048,2048]) num_buffer_frame: number of frames before z-scan starts, int (default:10) num_empty_frames: number of empty frames at beginning of zscan, int (default: 0) drift: drift to ref-frame of this image, np.array of 3 (default:[0,0,0]) return_limits: whether return drifted limits for cropping, bool (default: False) verbose: say something!, bool (default:False) Outputs: _cropped_im_list: cropped image list by crop_limit_list x channels list of len(crop_limit_list) x size of channels (optional) _drifted_limits: drifted list of crop limits """ # load if 'DaxReader' not in locals(): from ..visual_tools import DaxReader if 'get_num_frame' not in locals(): from ..get_img_info import get_num_frame ## 0. Check inputs # filename if not os.path.isfile(filename): raise ValueError(f"file {filename} doesn't exist!") # channels if isinstance(channels, list): _channels = [str(ch) for ch in channels] elif isinstance(channels, int) or isinstance(channels, str): _channels = [str(channels)] else: raise TypeError(f"Wrong input type for channels:{type(channels)}, should be list/str/int") # check channel values in all_channels for _ch in _channels: if _ch not in all_channels: raise ValueError(f"Wrong input for channel:{_ch}, should be among {all_channels}") # check num_buffer_frames and num_empty_frames num_buffer_frames = int(num_buffer_frames) num_empty_frames = int(num_empty_frames) ## 1. Load image if verbose: print(f"-- crop {len(crop_limit_list)} images with channels:{_channels}") # extract image info _full_im_shape, _num_channels = get_num_frame(filename, frame_per_color=single_im_size[0], buffer_frame=num_buffer_frames) # load the whole image if verbose: print(f"--- load image from file:{filename}", end=', ') _load_start = time.time() _full_im = DaxReader(filename, verbose=verbose).loadAll() # splice buffer frames _start_frames = decide_starting_frames(_channels, _num_channels, all_channels=all_channels, num_buffer_frames=num_buffer_frames, num_empty_frames=num_empty_frames, verbose=verbose) _splitted_ims = [_full_im[_sf:-num_buffer_frames:_num_channels] for _sf in _start_frames] if verbose: print(f"in {time.time()-_load_start}s") ## 2. Prepare crops if verbose: print(f"-- start cropping: ", end='') _start_time = time.time() _old_crop_list = [] _drift_crop_list = [] for _crop in crop_limit_list: if len(_crop) == 2: _n_crop = np.array([
np.array([0, single_im_size[0]])
numpy.array
""" Copyright (C) 2019 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). """ import torch.utils.data as data from PIL import Image import torchvision.transforms as transforms import numpy as np import random class BaseDataset(data.Dataset): def __init__(self): super(BaseDataset, self).__init__() @staticmethod def modify_commandline_options(parser, is_train): return parser def initialize(self, opt, path_and_nodules, mode): pass def get_params(opt, size): w, h = size new_h = h new_w = w if opt.preprocess_mode == 'resize_and_crop': new_h = new_w = opt.load_size elif opt.preprocess_mode == 'scale_width_and_crop': new_w = opt.load_size new_h = opt.load_size * h // w elif opt.preprocess_mode == 'scale_shortside_and_crop': ss, ls = min(w, h), max(w, h) # shortside and longside width_is_shorter = w == ss ls = int(opt.load_size * ls / ss) new_w, new_h = (ss, ls) if width_is_shorter else (ls, ss) x = random.randint(0, np.maximum(0, new_w - opt.crop_size)) y = random.randint(0,
np.maximum(0, new_h - opt.crop_size)
numpy.maximum
""" Module to create plots from automated analysis of motion on the centerlines Reads Excel output per patient Created November 2017 Copyright 2017-2019, <NAME> """ from stentseg.utils import PointSet import openpyxl from stentseg.utils.datahandling import select_dir import sys, os import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np import itertools from matplotlib import gridspec from lspeas.analysis.utils_analysis import _initaxis from lspeas.utils.normality_statistics import normality_check, independent_samples_ttest class ExcelAnalysisNellix(): """ Create graphs from excel data """ # exceldir = select_dir(r'F:\Nellix_chevas\CT_SSDF\SSDF') exceldir = select_dir(r'F:\Nellix_chevas\CT_SSDF\SSDF_automated', r'D:\Nellix_chevas_BACKUP\CT_SSDF\SSDF_automated') dirsaveIm = select_dir(r'C:\Users\Maaike\Desktop','D:\Profiles\koenradesma\Desktop') def __init__(self): self.exceldir = ExcelAnalysisNellix.exceldir self.dirsaveIm = ExcelAnalysisNellix.dirsaveIm self.workbook_analysis = 'ChevasStoreOutput' self.patients =['chevas_01', 'chevas_02', 'chevas_03', 'chevas_04', 'chevas_05', 'chevas_06', 'chevas_07', 'chevas_08', 'chevas_10', 'chevas_09', # reintervention of pt 1 'chevas_11' # reintervention of pt 7 ] self.distsAll = [] # distances between all stents that were analyzed self.distsRelAll = [] # relative from avgreg distance self.posAll = [] self.relPosAll = [] self.fontsize1 = 16 # 14 self.fontsize2 = 16 # 15 self.fontsize3 = 10.3 def get_angle_change(self, patients=None, analysis='ChimNel', chimneys=['LRA', 'RRA', 'SMA'], angletype='pointdeflection'): """ Read angle change for the chimneys or for the angle between prox chimney and nellix or for angle between dist chimney and vessel (end-stent angle) Analysis: 'ChimNel' or 'Chim' or 'ChimVessel' chimneys: ['LRA', 'RRA', 'SMA'] or ['LRA'] get single chimney angletype: 'pointdeflection' --> point with greatest angle change 'peakangle' --> max diff between peak angle over phases """ if patients == None: patients = self.patients self.angleChange = [] self.angleMin = [] self.angleMax = [] self.locationOnChimney = [] # location on chimney as percentage distance from prox / length chimney self.locationChange = [] # location change of peak angle self.lengthchimneys = [] # read workbooks for patient in patients: workbook_stent = os.path.join(self.exceldir,patient, self.workbook_analysis+patient[7:]+'.xlsx') # read sheet wb = openpyxl.load_workbook(workbook_stent, data_only=True) sheetnames = wb.get_sheet_names() if analysis == 'Chim': # chimney angle for a in chimneys: # set row for type of angle for chim angle analysis if angletype == 'pointdeflection': row1 = 3 # see which sheetname, not known if NelL or NelR for sheetname in sheetnames: if sheetname.startswith('Ang_'+a): sheet = wb.get_sheet_by_name(sheetname) # read change angchange = readMaxChange(sheet, row=row1, colStart=1) self.angleChange.append(angchange) # where was point of max deflection on ccl? pointlocation, distfromproxendchimney, lengthchimney = readLocationPointDeflection(sheet, row=9, colStart=1) self.locationOnChimney.append(pointlocation) # percentage of chimney length self.lengthchimneys.append(lengthchimney) break # next a elif angletype == 'peakangle': row1 = 16 # see which sheetname, not known if NelL or NelR for sheetname in sheetnames: if sheetname.startswith('Ang_'+a): sheet = wb.get_sheet_by_name(sheetname) # read change angchange = readMaxChange(sheet, row=row1, colStart=1) self.angleChange.append(angchange) angmin, angmax = readMinMax(sheet, row=row1+1, colStart=1, correctorientation=True) self.angleMin.append(angmin) self.angleMax.append(angmax) # how did location of peakangle change during cycle? locationchange = readLocationChange(sheet, row=19, colStart=1, nphases=10) self.locationChange.append(locationchange) # where was point of peak angle at mid cycle? pointlocation, distfromproxendchimney, lengthchimney = readLocationPointDeflection(sheet, row=24, colStart=1) self.locationOnChimney.append(pointlocation) # percentage of chimney length self.lengthchimneys.append(lengthchimney) break # next a elif analysis == 'ChimNel': # chimney-to-Nellix angle for a in chimneys: # see which sheetname, not known if NelL or NelR for sheetname in sheetnames: if sheetname.startswith('Ang_'+a+'_Nel'): sheet = wb.get_sheet_by_name(sheetname) # read change angchange = readMaxChange(sheet, row=4, colStart=1) self.angleChange.append(angchange) angmin, angmax = readMinMax(sheet, row=5, colStart=1, correctorientation=True) self.angleMin.append(angmin) self.angleMax.append(angmax) break # next a elif analysis == 'ChimVessel': # chimney-to-Nellix angle for a in chimneys: # see which sheetname, not known if NelL or NelR for sheetname in sheetnames: if sheetname.startswith('Ang_'+a+'_Vessel'): sheet = wb.get_sheet_by_name(sheetname) # read change angchange = readMaxChange(sheet, row=4, colStart=1) self.angleChange.append(angchange) angmin, angmax = readMinMax(sheet, row=5, colStart=1, correctorientation=True) self.angleMin.append(angmin) self.angleMax.append(angmax) break # next a # check normality anglechange W, pValue, normality = normality_check(self.angleChange, alpha=0.05, showhist=False) print('') print('AngleChange distribution normal:{} (pValue of {:.3f})'.format(normality, pValue)) print('') print('Average maximum angle change: {:.1f} ± {:.1f} ({:.1f}-{:.1f})'.format( np.mean(self.angleChange), np.std(self.angleChange), np.min(self.angleChange), np.max(self.angleChange) )) # location and min max peak angle if analysis == 'Chim': print('') print('Average location on chimney as percentage: {:.1f} ± {:.1f} ({:.1f}-{:.1f})'.format( np.mean(self.locationOnChimney), np.std(self.locationOnChimney), np.min(self.locationOnChimney), np.max(self.locationOnChimney) )) # for peakangle this is at mid cardiac cycle print('Average length of chimney stents (mm): {:.1f} ± {:.1f} ({:.1f}-{:.1f})'.format( np.mean(self.lengthchimneys), np.std(self.lengthchimneys), np.min(self.lengthchimneys), np.max(self.lengthchimneys) )) if angletype == 'peakangle': print('Average location change of peak angle: {:.1f} ± {:.1f} ({:.1f}-{:.1f})'.format( np.mean(self.locationChange), np.std(self.locationChange), np.min(self.locationChange), np.max(self.locationChange) )) print('') print('Average minimum Peak angle cycle: {:.1f} ± {:.1f} ({:.1f}-{:.1f})'.format( np.mean(self.angleMin), np.std(self.angleMin), np.min(self.angleMin), np.max(self.angleMin) )) print('') print('Average maximum Peak angle cycle: {:.1f} ± {:.1f} ({:.1f}-{:.1f})'.format( np.mean(self.angleMax),
np.std(self.angleMax)
numpy.std
# -*- coding: utf-8 -*- # @Author: <NAME> # @Email: <EMAIL> # @Date: 2020-08-05 17:42:12 # @Last Modified by: <NAME> # @Last Modified time: 2020-08-05 20:31:11 ''' Create Cm lookup table. ''' import os import logging import numpy as np from PySONIC.utils import logger, isIterable, alert from PySONIC.core import BilayerSonophore, Batch, Lookup, AcousticDrive from PySONIC.parsers import MechSimParser @alert def computeCmLookup(bls, fref, Aref, mpi=False, loglevel=logging.INFO): descs = {'f': 'US frequencies', 'A': 'US amplitudes'} # Populate reference vectors dictionary refs = { 'f': fref, # Hz 'A': Aref # Pa } # Check validity of all reference vectors for key, values in refs.items(): if not isIterable(values): raise TypeError(f'Invalid {descs[key]} (must be provided as list or numpy array)') if not all(isinstance(x, float) for x in values): raise TypeError(f'Invalid {descs[key]} (must all be float typed)') if len(values) == 0: raise ValueError(f'Empty {key} array') if key == 'f' and min(values) <= 0: raise ValueError(f'Invalid {descs[key]} (must all be strictly positive)') if key == 'A' and min(values) < 0: raise ValueError(f'Invalid {descs[key]} (must all be positive or null)') # Get references dimensions dims = np.array([x.size for x in refs.values()]) # Create simulation queue drives = AcousticDrive.createQueue(fref, Aref) queue = [[drive, 0.] for drive in drives] # Run simulations and populate outputs logger.info(f'Starting Cm simulation batch for {bls}') batch = Batch(bls.getRelCmCycle, queue) rel_Cm_cycles = batch(mpi=mpi, loglevel=loglevel) # Make sure outputs size matches inputs dimensions product nout, nsamples = len(rel_Cm_cycles), rel_Cm_cycles[0].size assert nout == dims.prod(), 'Number of outputs does not match number of combinations' dims = np.hstack([dims, nsamples]) refs['t'] = np.linspace(0., 1., nsamples) # Reshape effvars into nD arrays and add them to lookups dictionary logger.info('Reshaping output into lookup table') rel_Cm_cycles = np.array(rel_Cm_cycles).reshape(dims) # Construct and return lookup object return Lookup(refs, {'Cm_rel': rel_Cm_cycles}) def main(): parser = MechSimParser(outputdir='.') parser.addTest() parser.defaults['radius'] = 32.0 # nm parser.defaults['freq'] = np.array([20., 100., 500., 1e3, 2e3, 3e3, 4e3]) # kHz parser.defaults['amp'] = np.insert( np.logspace(np.log10(0.1),
np.log10(600)
numpy.log10
# Workaround to disable Intel Fortran Control+C console event handler installed by scipy from os import environ as os_env os_env['FOR_DISABLE_CONSOLE_CTRL_HANDLER'] = 'T' import numpy as np from scipy.signal import convolve2d as conv2 import torch import torch.nn as nn from models.modules.architectures.CEM.imresize_CEM import calc_strides, ImRes import collections class CEMnet: def __init__(self, conf, upscale_kernel=None): self.conf = conf self.ds_factor = np.array(conf.scale_factor, dtype=np.int32) assert np.round(self.ds_factor)==self.ds_factor,'Currently only supporting integer scale factors' assert upscale_kernel is None or isinstance(upscale_kernel, (str, np.ndarray)),'To support given kernels, change the Return_Invalid_Margin_Size_in_LR function and make sure everything else works' self.imres = ImRes(None, [self.ds_factor, self.ds_factor], kernel=upscale_kernel, alg=self.conf.default_kernel_alg) self.ds_kernel = self.imres.return_upscale_kernel(self.ds_factor) self.ds_kernel_invalidity_half_size_LR = self.Return_Invalid_Margin_Size_in_LR('ds_kernel', self.conf.filter_pertubation_limit) self.compute_inv_hTh() self.invalidity_margins_LR = 2 * self.ds_kernel_invalidity_half_size_LR + self.inv_hTh_invalidity_half_size self.invalidity_margins_HR = self.ds_factor * self.invalidity_margins_LR def Return_Invalid_Margin_Size_in_LR(self, filter, max_allowed_perturbation): TEST_IM_SIZE = 100 assert filter in ['ds_kernel','inv_hTh'] if filter=='ds_kernel': output_im = self.imres.resize(np.ones([self.ds_factor*TEST_IM_SIZE, self.ds_factor*TEST_IM_SIZE]), [1/self.ds_factor], use_zero_padding=True) elif filter=='inv_hTh': output_im = conv2(np.ones([TEST_IM_SIZE, TEST_IM_SIZE]), self.inv_hTh, mode='same') output_im /= output_im[int(TEST_IM_SIZE/2), int(TEST_IM_SIZE/2)] output_im[output_im <= 0] = max_allowed_perturbation/2 # Negative output_im are invalid and would not be identified as such without this line since I'm taking their log. invalidity_mask = np.exp(-np.abs(np.log(output_im))) < max_allowed_perturbation # Finding invalid shoulder size, by searching for the index of the deepest invalid pixel, to accomodate cases of non-conitinous invalidity: margin_sizes = [np.argwhere(invalidity_mask[:int(TEST_IM_SIZE/2), int(TEST_IM_SIZE/2)])[-1][0]+1, np.argwhere(invalidity_mask[int(TEST_IM_SIZE/2), :int(TEST_IM_SIZE/2)])[-1][0]+1] margin_sizes = np.max(margin_sizes)*np.ones([2]).astype(margin_sizes[0].dtype) return np.max(margin_sizes) def Pad_LR_Batch(self, batch, num_recursion=1): for i in range(num_recursion): batch = 1.0*np.pad(batch, pad_width=((0, 0), (self.invalidity_margins_LR, self.invalidity_margins_LR), (self.invalidity_margins_LR, self.invalidity_margins_LR), (0, 0)), mode='edge') return batch def Unpad_HR_Batch(self, batch, num_recursion=1): margins_2_remove = (self.ds_factor**(num_recursion))*self.invalidity_margins_LR*num_recursion return batch[:, margins_2_remove:-margins_2_remove, margins_2_remove:-margins_2_remove, :] def DT_Satisfying_Upscale(self, LR_image): margin_size = 2*self.inv_hTh_invalidity_half_size+self.ds_kernel_invalidity_half_size_LR LR_image = Pad_Image(LR_image,margin_size) HR_image = self.imres.resize(np.stack([conv2(LR_image[:,:,channel_num], self.inv_hTh, mode='same') for channel_num in range(LR_image.shape[-1])], -1), scale_factor=[self.ds_factor]) return Unpad_Image(HR_image,self.ds_factor*margin_size) def WrapArchitecture(self, model=None, training_patch_size=None, only_padders=False): invalidity_margins_4_test_LR = self.invalidity_margins_LR invalidity_margins_4_test_HR = self.ds_factor*invalidity_margins_4_test_LR self.LR_padder = torch.nn.ReplicationPad2d((invalidity_margins_4_test_LR, invalidity_margins_4_test_LR,invalidity_margins_4_test_LR, invalidity_margins_4_test_LR)) self.HR_padder = torch.nn.ReplicationPad2d((invalidity_margins_4_test_HR, invalidity_margins_4_test_HR,invalidity_margins_4_test_HR, invalidity_margins_4_test_HR)) self.HR_unpadder = lambda x: x[:, :, invalidity_margins_4_test_HR:-invalidity_margins_4_test_HR, invalidity_margins_4_test_HR:-invalidity_margins_4_test_HR] self.LR_unpadder = lambda x: x[:, :, invalidity_margins_4_test_LR:-invalidity_margins_4_test_LR, invalidity_margins_4_test_LR:-invalidity_margins_4_test_LR] # Debugging tool self.loss_mask = None if training_patch_size is not None: self.loss_mask = np.zeros([1, 1, training_patch_size, training_patch_size]) invalidity_margins = self.invalidity_margins_HR self.loss_mask[:, :, invalidity_margins:-invalidity_margins, invalidity_margins:-invalidity_margins] = 1 assert np.mean(self.loss_mask) > 0, 'Loss mask completely nullifies image.' print('Using only only %.3f of patch area for learning. The rest is considered to have boundary effects' % (np.mean(self.loss_mask))) # TODO: while training will normally be on CUDA, pass device here instead of hardcoded cuda tensor self.loss_mask = torch.from_numpy(self.loss_mask).type(torch.cuda.FloatTensor) if only_padders: return else: returnable = CEM(self, model) self.OP_names = [m[0] for m in returnable.named_modules() if 'Filter_OP' in m[0]] return returnable def Mask_Invalid_Regions(self, im1, im2): assert self.loss_mask is not None, 'Mask not defined, probably didn''t pass patch size' return self.loss_mask*im1, self.loss_mask*im2 def Enforce_DT_on_Image_Pair(self, LR_source, HR_input): same_scale_dimensions = [LR_source.shape[i] == HR_input.shape[i] for i in range(LR_source.ndim)] LR_scale_dimensions = [self.ds_factor * LR_source.shape[i] == HR_input.shape[i] for i in range(LR_source.ndim)] assert np.all(np.logical_or(same_scale_dimensions, LR_scale_dimensions)) LR_source = self.DT_Satisfying_Upscale(LR_source) if np.any(LR_scale_dimensions) else self.Project_2_ortho_2_NS(LR_source) HR_projected_2_h_subspace = self.Project_2_ortho_2_NS(HR_input) return HR_input - HR_projected_2_h_subspace + LR_source def Project_2_ortho_2_NS(self, HR_input): downscaled_input = imresize(HR_input, scale_factor=[1/self.ds_factor]) if downscaled_input.ndim < HR_input.ndim: # In case input was of size self.ds_factor in at least one of its axes: downscaled_input = np.reshape(downscaled_input, list(HR_input.shape[:2]//self.ds_factor) + ([HR_input.shape[2]] if HR_input.ndim > 2 else [])) return self.DT_Satisfying_Upscale(downscaled_input) # def Supplement_Pseudo_CEM(self, input_t): # return self.Learnable_Upscale_OP(self.Conv_LR_with_Learnable_OP(self.Learnable_DownscaleOP(input_t))) def compute_inv_hTh(self, NFFT_add=36): hTh = conv2(self.ds_kernel, np.rot90(self.ds_kernel, 2)) * self.ds_factor**2 hTh = Aliased_Down_Sampling(hTh, self.ds_factor) pad_pre = pad_post = np.array(NFFT_add/2, dtype=np.int32) hTh_fft = np.fft.fft2(np.pad(hTh, ((pad_pre, pad_post), (pad_pre, pad_post)), mode='constant', constant_values=0)) # When ds_kernel is wide, some frequencies get completely wiped out, which causes instability when hTh is inverted. # Therefore this filter's magnitude is bounded from below in the Fourier domain: magnitude_increasing_map = np.maximum(1, self.conf.lower_magnitude_bound/np.abs(hTh_fft)) hTh_fft = hTh_fft * magnitude_increasing_map # Now inverting the filter (calculating (HH^T)^-1): # Note: the ringing happens in this step when using estimated kernels (KernelGAN). # the estimated kernels can be zeroing out some low frequency content. Inverting # these zero-valued parts of the kernel's FFT when calculating (HH^T)^-1 results # in high values in self.inv_hTh (max > 2, ~30 ; min < -1, ~-20), which in turn cause # these ringing artifacts. # Cropping the estimated kernels to smaller sizes and increasing lower_magnitude_bound # reduce the magnitude of these high values self.inv_hTh = np.real(np.fft.ifft2(1/hTh_fft)) # Making sure the filter's maximal value sits in its middle: max_row = np.argmax(self.inv_hTh)//self.inv_hTh.shape[0] max_col = np.mod(np.argmax(self.inv_hTh), self.inv_hTh.shape[0]) if not np.all(np.equal(np.ceil(np.array(self.inv_hTh.shape)/2), np.array([max_row,max_col])-1)): half_filter_size = np.min([self.inv_hTh.shape[0]-max_row-1, self.inv_hTh.shape[0]-max_col-1, max_row, max_col]) self.inv_hTh = self.inv_hTh[max_row-half_filter_size:max_row+half_filter_size+1, max_col-half_filter_size:max_col+half_filter_size+1] self.inv_hTh_invalidity_half_size = self.Return_Invalid_Margin_Size_in_LR('inv_hTh', self.conf.filter_pertubation_limit) margins_2_drop = self.inv_hTh.shape[0]//2-self.Return_Invalid_Margin_Size_in_LR('inv_hTh', self.conf.desired_inv_hTh_energy_portion) if margins_2_drop > 0: self.inv_hTh = self.inv_hTh[margins_2_drop:-margins_2_drop, margins_2_drop:-margins_2_drop] class Filter_Layer(nn.Module): def __init__(self, filter, pre_filter_func, post_filter_func=None): super(Filter_Layer, self).__init__() self.Filter_OP = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=filter.shape, bias=False, groups=3) # TODO: while training will normally be on CUDA, pass device here instead of hardcoded cuda tensor self.Filter_OP.weight = nn.Parameter(data=torch.from_numpy(np.tile(np.expand_dims(np.expand_dims(filter, 0), 0), reps=[3, 1, 1, 1])).type(torch.cuda.FloatTensor), requires_grad=False) self.Filter_OP.filter_layer = True self.pre_filter_func = pre_filter_func self.post_filter_func = (lambda x:x) if post_filter_func is None else post_filter_func def forward(self, x): return self.post_filter_func(self.Filter_OP(self.pre_filter_func(x))) class CEM(nn.Module): def __init__(self, CEMnet, model): super(CEM, self).__init__() self.ds_factor = CEMnet.ds_factor self.conf = CEMnet.conf self.generated_image_model = model inv_hTh_padding = np.floor(np.array(CEMnet.inv_hTh.shape)/2).astype(np.int32) Replication_Padder = nn.ReplicationPad2d((inv_hTh_padding[1], inv_hTh_padding[1], inv_hTh_padding[0], inv_hTh_padding[0])) self.Conv_LR_with_Inv_hTh_OP = Filter_Layer(CEMnet.inv_hTh, pre_filter_func=Replication_Padder) downscale_antialiasing =
np.rot90(CEMnet.ds_kernel, 2)
numpy.rot90
import numpy as np import matplotlib.pyplot as plt from random import randrange import copy import csv from sklearn.linear_model import Ridge, Lasso from sklearn.model_selection import GridSearchCV import warnings import pickle # Column Transformations mapSex = lambda x : 0 if x == "I" else (1 if x == "M" else -1) scaleElement = lambda x, min, max : (x-min)/(max-min) # Function to Apply column transformations def applyTransformation(arr, column, transformation): arr[:,column] = [transformation(x) for x in arr[:,column]] # Read data from file def readData(filename): file = open(filename, "r") rawData = [] for line in file: rawData.append(line.split()) return np.array(rawData) # Normalize data def minMaxScale(X, m, n): for j in range(n-1): max = -float('inf') min = float('inf') for i in range(m): curE = X[i][j] if(curE > max): max = curE if(curE < min): min = curE if(min == max): X[:,j] = [0 * m] else: X[:,j] = [scaleElement(e, min, max) for e in X[:,j]] return X # Generate KFold splits def generateKFolds(dataset, folds): datasetCopy = list(dataset) datasetSplit = [] foldSize = len(dataset) // folds for i in range(folds): fold = [] while foldSize > len(fold): j = randrange(len(datasetCopy)) fold.append(datasetCopy.pop(j)) datasetSplit.append(fold) return np.array(datasetSplit) # Hypothesis def hypothesis(theta, X): return np.matmul(X, theta) def getRmseCost(predict, actual): m = predict.shape[0] return (sum(np.square(np.subtract(predict, actual))) / m) ** 0.5 def signBits(X): signArr = np.zeros((X.shape[0], 1)) for i in range(X.shape[0]): e = X[i] val = 0 if(e > 0): val = 1 elif(e < 0): val = -1 signArr[i] = val return signArr def gradientDescent(X, y, X_test, y_test, n, alpha, nIterations, l1=None, l2=None): cost = np.zeros(nIterations) cost_test = np.zeros(nIterations) m = X.shape[0] m_test = X_test.shape[0] theta = np.zeros((n, 1)) h = hypothesis(theta, X) h_test = hypothesis(theta, X_test) for i in range(nIterations): oldTheta = copy.deepcopy(theta) oldTheta[0] = 0 if(l1): theta = theta - (alpha/m) * np.transpose(np.matmul(np.transpose(h - y), X)) - (l1 * alpha / m) / 2 * signBits(oldTheta) elif(l2): theta = theta - (alpha/m) * np.transpose(np.matmul(np.transpose(h - y), X)) - (l2 * alpha / m) * oldTheta else: theta = theta - (alpha/m) * np.transpose(np.matmul(np.transpose(h - y), X)) h = hypothesis(theta, X) h_test = hypothesis(theta, X_test) cost[i] = getRmseCost(h, y) cost_test[i] = getRmseCost(h_test, y_test) return theta, cost, cost_test # Train and Test cost applying linear regression def linearRegression(X_train, y_train, X_test, y_test, n, alpha, nIterations): return gradientDescent(X_train, y_train, X_test, y_test, n, alpha, nIterations) def normalEquation(X, y): X_t = np.transpose(X) A = np.matmul(X_t, X) B = np.matmul(X_t, y) return np.matmul(np.linalg.inv(A), B) def linearRegressionLoader(useSavedModels): print("-" * 10 + "Part A" + "-" * 10) print("Collecting data...") rawData = readData("./q1dataset/abalone.data") m, n = rawData.shape # Clean Data applyTransformation(rawData, 0, mapSex) rawData = rawData.astype('float64') normalData = minMaxScale(rawData, m, n-1) # Create KFolds nIterations = 500 alpha = 0.1 kFold = 5 print("Generating splits...") splitData = generateKFolds(normalData, kFold) listSplits = list(splitData) # Apply Linear Regression on KFolds rmseLinear_train = [] rmseLinear_test = [] rmseNormal_train = [] rmseNormal_test = [] normalThetas = [] if(not useSavedModels): print("Running Model...") for i in range(kFold): testData = np.array(listSplits[i]) trainSplits = listSplits[:i] + listSplits[i+1:] trainData = [] for split in trainSplits: for element in split: trainData.append(element) trainData = np.array(trainData) # Split output & input X_train, y_train = trainData[:,:n-1], trainData[:,n-1] X_test, y_test = testData[:,:n-1], testData[:,n-1] # Append 1s in start oneCol = np.ones((X_train.shape[0], 1)) X_train = np.concatenate((oneCol, X_train), axis=1) oneCol = np.ones((X_test.shape[0], 1)) X_test = np.concatenate((oneCol, X_test), axis=1) y_train = y_train.reshape((X_train.shape[0], 1)) y_test = y_test.reshape((X_test.shape[0], 1)) theta, rmse_train, rmse_test = linearRegression(X_train, y_train, X_test, y_test, n, alpha, nIterations) rmseLinear_train.append(rmse_train) rmseLinear_test.append(rmse_test) thetaNormal = normalEquation(X_train, y_train) normalThetas.append(thetaNormal) hNormal_train = hypothesis(thetaNormal, X_train) hNormal_test = hypothesis(thetaNormal, X_test) rmseNormal_train.append(getRmseCost(hNormal_train, y_train)) rmseNormal_test.append(getRmseCost(hNormal_test, y_test)) pickle.dump(rmseLinear_train, open('./q1amodels/rmseLinear_train.sav', 'wb')) pickle.dump(rmseLinear_test, open('./q1amodels/rmseLinear_test.sav', 'wb')) pickle.dump(rmseNormal_train, open('./q1amodels/rmseNormal_train.sav', 'wb')) pickle.dump(rmseNormal_test, open('./q1amodels/rmseNormal_test.sav', 'wb')) pickle.dump(normalThetas, open('./q1amodels/normalThetas.sav', 'wb')) else: print("Loading Saved Models...") rmseLinear_train = pickle.load(open('./q1amodels/rmseLinear_train.sav', 'rb')) rmseLinear_test = pickle.load(open('./q1amodels/rmseLinear_test.sav', 'rb')) rmseNormal_train = pickle.load(open('./q1amodels/rmseNormal_train.sav', 'rb')) rmseNormal_test = pickle.load(open('./q1amodels/rmseNormal_test.sav', 'rb')) normalThetas = pickle.load(open('./q1amodels/normalThetas.sav', 'rb')) meanRmse_train = np.mean(rmseLinear_train, axis = 0) meanRmse_test = np.mean(rmseLinear_test, axis = 0) print("Plotting curves...") xIteraitons = [x for x in range(1, int(nIterations + 1))] plt.plot(xIteraitons, list(meanRmse_train), 'b') plt.plot(xIteraitons, list(meanRmse_test), 'r') plt.xlabel('No. of iterations') plt.ylabel('Mean RMSE Values') plt.gca().legend(("Training Set", "Testing Set")) plt.title("Gradient Descent Error vs Iterations") fig = plt.gcf() fig.canvas.set_window_title('Gradient Descent Error vs Iterations') plt.show() print("Press Enter", end="") input() print("-" * 10 + "Part B" + "-" * 10) print("Normal Equation RMSE") for i in range(len(normalThetas)): print("Train: " + str(rmseNormal_train[i]) + " Test: " + str(rmseNormal_test[i])) print("Press Enter", end="") input() print("-" * 10 + "Part C" + "-" * 10) print("Comparision of both RMSE Values") print(" " * 10,"Gradient Descent".center(25), "Normal Equation".center(20)) print("Train".center(10), str(round(meanRmse_train[-1], 7)).center(25), str(round(np.mean(rmseNormal_train), 7)).center(20)) print("Test".center(10), str(round(meanRmse_test[-1], 7)).center(25), str(round(np.mean(rmseNormal_test), 7)).center(20)) def regularisationLoader(useSavedModels): print("-" * 10 + "" + "-" * 10) print("Collecting data...") rawData = readData("./q1dataset/abalone.data") m, n = rawData.shape # Clean Data applyTransformation(rawData, 0, mapSex) rawData = rawData.astype('float64') normalData = minMaxScale(rawData, m, n-1) # Create KFolds nIterations = 500 alpha = 0.1 kFold = 5 print("Generating splits...") splitData = generateKFolds(normalData, kFold) listSplits = list(splitData) # Apply Linear Regression on KFolds rmseLinear_train = [] rmseLinear_test = [] rmseNormal_train = [] rmseNormal_test = [] normalThetas = [] if(not useSavedModels): print("Running Model...") for i in range(kFold): testData = np.array(listSplits[i]) trainSplits = listSplits[:i] + listSplits[i+1:] trainData = [] for split in trainSplits: for element in split: trainData.append(element) trainData = np.array(trainData) # Split output & input X_train, y_train = trainData[:,:n-1], trainData[:,n-1] X_test, y_test = testData[:,:n-1], testData[:,n-1] # Append 1s in start oneCol = np.ones((X_train.shape[0], 1)) X_train = np.concatenate((oneCol, X_train), axis=1) oneCol = np.ones((X_test.shape[0], 1)) X_test = np.concatenate((oneCol, X_test), axis=1) y_train = y_train.reshape((X_train.shape[0], 1)) y_test = y_test.reshape((X_test.shape[0], 1)) theta, rmse_train, rmse_test = linearRegression(X_train, y_train, X_test, y_test, n, alpha, nIterations) rmseLinear_train.append(rmse_train) rmseLinear_test.append(rmse_test) thetaNormal = normalEquation(X_train, y_train) normalThetas.append(thetaNormal) hNormal_train = hypothesis(thetaNormal, X_train) hNormal_test = hypothesis(thetaNormal, X_test) rmseNormal_train.append(getRmseCost(hNormal_train, y_train)) rmseNormal_test.append(getRmseCost(hNormal_test, y_test)) pickle.dump(rmseLinear_train, open('./q1bmodels/rmseLinear_train.sav', 'wb')) pickle.dump(rmseLinear_test, open('./q1bmodels/rmseLinear_test.sav', 'wb')) pickle.dump(rmseNormal_train, open('./q1bmodels/rmseNormal_train.sav', 'wb')) pickle.dump(rmseNormal_test, open('./q1bmodels/rmseNormal_test.sav', 'wb')) pickle.dump(normalThetas, open('./q1bmodels/normalThetas.sav', 'wb')) else: print("Loading Saved Models...") rmseLinear_train = pickle.load(open('./q1bmodels/rmseLinear_train.sav', 'rb')) rmseLinear_test = pickle.load(open('./q1bmodels/rmseLinear_test.sav', 'rb')) rmseNormal_train = pickle.load(open('./q1bmodels/rmseNormal_train.sav', 'rb')) rmseNormal_test = pickle.load(open('./q1bmodels/rmseNormal_test.sav', 'rb')) normalThetas = pickle.load(open('./q1bmodels/normalThetas.sav', 'rb')) print("Getting RMSE...") xIteraitons = [x for x in range(1, int(nIterations + 1))] rmseLinear_train = np.array(rmseLinear_train) minSplitIndex = np.argmin(rmseLinear_train[:,-1]) print("Splitting 80%...") splittedDataset = listSplits[:minSplitIndex] + listSplits[minSplitIndex+1:] sparceDataset = [] for split in splittedDataset: for element in split: sparceDataset.append(element) sparceDataset = np.array(sparceDataset) X, y = sparceDataset[:,:n-1], sparceDataset[:,n-1] oneCol = np.ones((X.shape[0], 1)) X = np.concatenate((oneCol, X), axis=1) y = y.reshape((X.shape[0], 1)) L2 = None rmseL2 = None rmseL2_test = None if(not useSavedModels): print("Running L2, Ridge...") print("-" * 10 + "Part A" + "-" * 10) params = {'alpha': np.linspace(0.1, 1.0, num=200)} rdg_reg = Ridge() clf = GridSearchCV(rdg_reg, params, cv=5, scoring = 'neg_mean_squared_error') clf.fit(X, y) L2 = round(clf.best_params_['alpha'], 5) print("L2, Ridge Param: " + str(L2)) else: L2 = pickle.load(open('./q1bmodels/L2.sav', 'rb')) rmseL2 = pickle.load(open('./q1bmodels/rmseL2.sav', 'rb')) rmseL2_test = pickle.load(open('./q1bmodels/rmseL2_test.sav', 'rb')) print("-" * 10 + "Part A" + "-" * 10) print("L2, Ridge Param: " + str(L2)) L1 = None rmseL1 = None rmseL1_test = None if(not useSavedModels): print("Running L1, Lasso...") print("-" * 10 + "Part B" + "-" * 10) params = {'alpha': np.linspace(0.0001, 0.005, num=100)} rdg_reg = Lasso() clf = GridSearchCV(rdg_reg, params, cv=5, scoring = 'neg_mean_squared_error') clf.fit(X, y) L1 = round(clf.best_params_['alpha'], 5) print("L1, Lasso Param: " + str(L1)) else: L1 = pickle.load(open('./q1bmodels/L1.sav', 'rb')) rmseL1 = pickle.load(open('./q1bmodels/rmseL1.sav', 'rb')) rmseL1_test = pickle.load(open('./q1bmodels/rmseL1_test.sav', 'rb')) print("-" * 10 + "Part B" + "-" * 10) print("L1, Lasso Param: " + str(L2)) print("-" * 10 + "" + "-" * 10) testDataset = listSplits[minSplitIndex] X_test, y_test = testDataset[:,:n-1], testDataset[:,n-1] oneCol = np.ones((X_test.shape[0], 1)) X_test = np.concatenate((oneCol, X_test), axis=1) y_test = y_test.reshape((X_test.shape[0], 1)) if(not useSavedModels): print("Getting L1 Theta...") theta, rmseL1, rmseL1_test = gradientDescent(X, y, X_test, y_test, n, alpha, nIterations, l1=L1) pickle.dump(L1, open('./q1bmodels/L1.sav', 'wb')) pickle.dump(rmseL1, open('./q1bmodels/rmseL1.sav', 'wb')) pickle.dump(rmseL1_test, open('./q1bmodels/rmseL1_test.sav', 'wb')) print("Test RMSE with L1: " + str(round(rmseL1_test[-1], 7))) print("Plotting L1 Curve...") plt.plot(xIteraitons, list(rmseL1), 'b') plt.plot(xIteraitons, list(rmseL1_test), 'r') plt.xlabel('No. of iterations') plt.ylabel('L1 Regularisation RMSE Values') plt.gca().legend(("Training Set", "Testing Set")) plt.title("L1 Regularisation Error vs Iterations") fig = plt.gcf() fig.canvas.set_window_title('L1 Regularisation Error vs Iterations') plt.show() print("-" * 10 + "" + "-" * 10) if(not useSavedModels): print("Getting L2 Theta...") theta, rmseL2, rmseL2_test = gradientDescent(X, y, X_test, y_test, n, alpha, nIterations, l2=L2) pickle.dump(L2, open('./q1bmodels/L2.sav', 'wb')) pickle.dump(rmseL2, open('./q1bmodels/rmseL2.sav', 'wb')) pickle.dump(rmseL2_test, open('./q1bmodels/rmseL2_test.sav', 'wb')) print("Test RMSE with L2: " + str(round(rmseL2_test[-1], 7))) print("Plotting L2 Curve...") plt.plot(xIteraitons, list(rmseL2), 'b') plt.plot(xIteraitons, list(rmseL2_test), 'r') plt.xlabel('No. of iterations') plt.ylabel('L2 Regularisation RMSE Values') plt.gca().legend(("Training Set", "Testing Set")) plt.title("L2 Regularisation Error vs Iterations") fig = plt.gcf() fig.canvas.set_window_title('L2 Regularisation Error vs Iterations') plt.show() def readCSV(filename): raw = [] with open(filename, 'rt') as f: data = csv.reader(f) for row in data: raw.append(row) return raw def linearRegressionLine(X, Y, n, alpha, nIterations): theta = np.zeros((n, 1)) h = hypothesis(theta, X) return gradientDescentLine(theta, h, X, Y, n, alpha, nIterations) def gradientDescentRegularizedLine(X, y, n, alpha, nIterations, l1=None, l2=None): m = X.shape[0] theta =
np.zeros((n, 1))
numpy.zeros
import pandas as pd import numpy as np from .preference import ProbitPreferenceGP from .validations import check_x_m class ProbitBayesianOptimization(ProbitPreferenceGP): """ Parameters ---------- X : array-like, shape = (n_samples, n_features) Training data consisting of numeric real positive values. M : array-like, shape = (n_samples, n_preferences) Target choices. A preference is an array of positive integers of shape = (2,). preference[0], r, is an index of X preferred over preference[1], c, which is an index of X. """ def __init__(self, X, M, GP_params={}): super().__init__(**GP_params) self.X = X self.M = M def interactive_optimization(self, bounds, method="L-BFGS-B", n_init=1, n_solve=1, f_prior=None, max_iter=1e4, print_suggestion=True): """Bayesian optimization via preferences inputs. Parameters ---------- bounds: dictionary Bounds of the search space for the acquisition function. method: str or callable, optional Type of solver. n_init: integer, optional Number of initialization points for the solver. Obtained by randomly sampling the acquisition function. n_solve: integer, optional The solver will be run n_solve times. Cannot be superior to n_init. f_prior: array-like, shape = (n_samples, 1), optional (default: None) Flat prior with mean zero is applied by default. max_iter: integer, optional (default: 1e4) Maximum number of iterations to be performed for the bayesian optimization. print_suggestion: Boolean, optional (default: True) If set to false, max_iter must be equal to 1. Returns ------- optimal_values : array-like, shape = (n_features, ) suggestion : array-like, shape = (n_features, ) X : array-like, shape = (n_samples, n_features) Feature values in training data. M : array-like, shape = (n_samples - 1, 2) Target choices. A preference is an array of positive integers of shape = (2,). preference[0], r, is an index of X preferred over preference[1], c, which is an index of X. f_posterior : array-like, shape = (n_samples, 1) Posterior distribution of the Gaussian Process. Examples -------- >>> from GPro.kernels import Matern >>> from GPro.posterior import Laplace >>> from GPro.acquisitions import UCB >>> from GPro.optimization import ProbitBayesianOptimization >>> import numpy as np >>> GP_params = {'kernel': Matern(length_scale=1, nu=2.5), ... 'post_approx': Laplace(s_eval=1e-5, max_iter=1000, ... eta=0.01, tol=1e-3), ... 'acquisition': UCB(kappa=2.576), ... 'random_state': None} >>> X = np.random.sample(size=(2, 3)) * 10 >>> M = np.array([0, 1]).reshape(-1, 2) >>> gpr_opt = ProbitBayesianOptimization(X, M, GP_params) >>> bounds = {'x0': (0, 10)} >>> console_opt = gpr_opt.interactive_optimization(bounds=bounds, n_solve=1, ... n_init=100) >>> optimal_values, suggestion, X_post, M_post, f_post = console_opt >>> print('optimal values: ', optimal_values) >>> # Use posterior as prior >>> gpr_opt = ProbitBayesianOptimization(X_post, M_post, GP_params) >>> console_opt = gpr_opt.interactive_optimization(bounds=bounds, n_solve=1, ... n_init=100, ... f_prior=f_post) >>> optimal_values, suggestion, X_post, M_post, f_post = console_opt >>> print('optimal values: ', optimal_values) """ if not max_iter: raise ValueError('max_iter must be superior to 0.') if not print_suggestion and max_iter > 1: raise ValueError('When print_suggestion is set to False, ' 'max_iter must be set to 1.') X, M = check_x_m(self.X, self.M) features = list(bounds.keys()) M_ind_cpt = M.shape[0] - 1 pd.set_option('display.max_columns', None) iteration = 0 while iteration < max_iter: self.fit(X, M, f_prior) x_optim = self.bayesopt(bounds, method, n_init, n_solve) f_optim = self.predict(x_optim) f_prior = np.concatenate((self.posterior, f_optim)) X = np.concatenate((X, x_optim)) # current preference index in X. M_ind_current = M[M.shape[0] - 1][0] # suggestion index in X. M_ind_proposal = M_ind_cpt + 2 # current preference vs suggestion. df = pd.DataFrame(data=np.concatenate((X[[M_ind_current]], X[[M_ind_proposal]])), columns=features, index=['preference', 'suggestion']) if print_suggestion: print(df) input_msg = "Iteration %d, preference (p) or suggestion (s)? " \ "(Q to quit): " % M_ind_cpt preference_input = input(input_msg) if preference_input == 'Q': break # left index is preferred over right index as a convention. elif preference_input == 'p': new_pair = np.array([M_ind_current, M_ind_proposal]) elif preference_input == 's': new_pair = np.array([M_ind_proposal, M_ind_current]) else: break M = np.vstack((M, new_pair)) M_ind_cpt += 1 iteration += 1 else: break pd.set_option('display.max_columns', 0) optimal_values = df.loc['preference'].values suggestion = df.loc['suggestion'].values f_posterior = f_prior return optimal_values, suggestion, X, M, f_posterior def function_optimization(self, f, bounds, max_iter=1, method="L-BFGS-B", n_init=100, n_solve=1, f_prior=None): """Bayesian optimization via function evaluation. Parameters ---------- f: function object A function to be optimized. bounds: dictionary Bounds of the search space for the acquisition function. max_iter: integer, optional Maximum number of iterations to be performed for the bayesian optimization. method: str or callable, optional Type of solver. n_init: integer, optional Number of initialization points for the solver. Obtained by randomly sampling the acquisition function. n_solve: integer, optional The solver will be run n_solve times. Cannot be superior to n_init. f_prior : array-like, shape = (n_samples, 1), optional (default: None) Flat prior with mean zero is applied by default. Returns ------- optimal_values : array-like, shape = (n_features, ) X : array-like, shape = (n_samples, n_features) Feature values in training data. M : array-like, shape = (n_samples - 1, 2) Target choices. A preference is an array of positive integers of shape = (2,). preference[0], r, is an index of X preferred over preference[1], c, which is an index of X. f_posterior : array-like, shape = (n_samples, 1) Posterior distribution of the Gaussian Process. Examples -------- >>> from GPro.kernels import Matern >>> from GPro.posterior import Laplace >>> from GPro.acquisitions import UCB >>> from GPro.optimization import ProbitBayesianOptimization >>> from scipy.stats import multivariate_normal >>> import numpy as np >>> from sklearn import datasets >>> import matplotlib.cm as cm >>> import matplotlib.pyplot as plt >>> # function optimization example. >>> def random_sample(n, d, bounds, random_state=None): >>> # Uniform sampling given bounds. >>> if random_state is None: >>> random_state = np.random.randint(1e6) >>> random_state = np.random.RandomState(random_state) >>> sample = random_state.uniform(bounds[:, 0], bounds[:, 1], ... size=(n, d)) >>> return sample >>> def sample_normal_params(n, d, bounds, scale_sigma=1, random_state=None): >>> # Sample parameters of a multivariate normal distribution >>> # sample centroids. >>> mu = random_sample(n=n, d=d, bounds=np.array(list(bounds.values())), ... random_state=random_state) >>> # sample covariance matrices. >>> sigma = datasets.make_spd_matrix(d, random_state) * scale_sigma >>> theta = {'mu': mu, 'sigma': sigma} >>> return theta >>> d = 2 >>> bounds = {'x' + str(i): (0, 10) for i in range(0, d)} >>> theta = sample_normal_params(n=1, d=d, bounds=bounds, scale_sigma=10, random_state=12) >>> f = lambda x: multivariate_normal.pdf(x, mean=theta['mu'][0], cov=theta['sigma']) >>> # X, M, init >>> X = random_sample(n=2, d=d, bounds=np.array(list(bounds.values()))) >>> X = np.asarray(X, dtype='float64') >>> M = sorted(range(len(f(X))), key=lambda k: f(X)[k], reverse=True) >>> M = np.asarray([M], dtype='int8') >>> GP_params = {'kernel': Matern(length_scale=1, nu=2.5), ... 'post_approx': Laplace(s_eval=1e-5, max_iter=1000, ... eta=0.01, tol=1e-3), ... 'acquisition': UCB(kappa=2.576), ... 'alpha': 1e-5, ... 'random_state': 2020} >>> gpr_opt = ProbitBayesianOptimization(X, M, GP_params) >>> function_opt = gpr_opt.function_optimization(f=f, bounds=bounds, max_iter=d*10, ... n_init=1000, n_solve=1) >>> optimal_values, X_post, M_post, f_post = function_opt >>> print('optimal values: ', optimal_values) >>> # rmse >>> print('rmse: ', .5 * sum(np.sqrt((optimal_values - theta['mu'][0]) ** 2))) >>> # 2d plot >>> if d == 2: >>> resolution = 10 >>> x_min, x_max = bounds['x0'][0], bounds['x0'][1] >>> y_min, y_max = bounds['x1'][0], bounds['x1'][1] >>> x = np.linspace(x_min, x_max, resolution) >>> y = np.linspace(y_min, y_max, resolution) >>> X, Y = np.meshgrid(x, y) >>> grid = np.empty((resolution ** 2, 2)) >>> grid[:, 0] = X.flat >>> grid[:, 1] = Y.flat >>> Z = f(grid) >>> plt.imshow(Z.reshape(-1, resolution), interpolation="bicubic", ... origin="lower", cmap=cm.rainbow, extent=[x_min, x_max, y_min, y_max]) >>> plt.scatter(optimal_values[0], optimal_values[1], color='black', s=10) >>> plt.title('Target function') >>> plt.colorbar() >>> plt.show() """ X, M = check_x_m(self.X, self.M) new_pair = M[M.shape[0] - 1] for M_ind_cpt in range((M.shape[0] - 1), max_iter + (M.shape[0] - 1)): self.fit(X, M, f_prior) x_optim = self.bayesopt(bounds, method, n_init, n_solve) f_optim = self.predict(x_optim) f_prior =
np.concatenate((self.posterior, f_optim))
numpy.concatenate
""" Module defining halo model components for halo exclusion. """ import numpy as np from hmf import Component from cached_property import cached_property from scipy import integrate as intg import warnings from hmf._internals import pluggable try: from numba import jit USE_NUMBA = True except ImportError: # pragma: no cover USE_NUMBA = False warnings.warn( "Warning: Some Halo-Exclusion models have significant speedup when using Numba" ) # =============================================================================== # UTILITIES # =============================================================================== def outer(a, b): r""" Calculate the outer product of two vectors. """ return np.outer(a, b).reshape(a.shape + b.shape) def dbltrapz(X, dx, dy=None): """ Double-integral over the last two dimensions of X using trapezoidal rule. """ dy = dy or dx out = X.copy() out[..., 1:-1, :] *= 2 out[..., :, 1:-1] *= 2 return dx * dy * np.sum(out, axis=(-2, -1)) / 4.0 def makeW(nx, ny): r""" Return a window matrix for double-intergral. """ W = np.ones((nx, ny)) W[1 : nx - 1 : 2, :] *= 4 W[:, 1 : ny - 1 : 2] *= 4 W[2 : nx - 1 : 2, :] *= 2 W[:, 2 : ny - 1 : 2] *= 2 return W if USE_NUMBA: @jit(nopython=True) def dblsimps_(X, dx, dy): # pragma: no cover """ Double-integral of X **FOR SYMMETRIC FUNCTIONS**. """ nx = X.shape[-2] ny = X.shape[-1] W = makeW_(nx, ny) # only upper tot = np.zeros_like(X[..., 0, 0]) for ix in range(nx): tot += W[ix, ix] * X[..., ix, ix] for iy in range(ix + 1, ny): tot += 2 * W[ix, iy] * X[..., ix, iy] return dx * dy * tot / 9.0 @jit(nopython=True) def makeW_(nx, ny): # pragma: no cover r""" Return a window matrix for symmetric double-intergral. """ W = np.ones((nx, ny)) if nx % 2 == 0: for ix in range(1, nx - 2, 2): W[ix, -1] *= 4 W[-1, ix] *= 4 for iy in range(ny - 1): W[ix, iy] *= 4 W[iy, ix] *= 4 for ix in range(2, nx - 2, 2): W[ix, -1] *= 2 W[-1, ix] *= 2 for iy in range(ny - 1): W[ix, iy] *= 2 W[iy, ix] *= 2 for ix in range(nx): W[ix, -2] *= 2.5 W[ix, -1] *= 1.5 W[-2, ix] *= 2.5 W[-1, ix] *= 1.5 else: for ix in range(1, nx - 1, 2): for iy in range(ny): W[ix, iy] *= 4 W[iy, ix] *= 4 for ix in range(2, nx - 1, 2): for iy in range(ny): W[ix, iy] *= 2 W[iy, ix] *= 2 return W @jit(nopython=True) def makeH_(nx, ny): # pragma: no cover """Return the window matrix for trapezoidal intergral.""" H = np.ones((nx, ny)) for ix in range(1, nx - 1): for iy in range(ny): H[ix, iy] *= 2 H[iy, ix] *= 2 return H @jit(nopython=True) def dbltrapz_(X, dx, dy): # pragma: no cover """Double-integral of X for the trapezoidal method.""" nx = X.shape[-2] ny = X.shape[-1] H = makeH_(nx, ny) tot = np.zeros_like(X[..., 0, 0]) for ix in range(nx): tot += H[ix, ix] * X[ix, ix] for iy in range(ix + 1, ny): tot += 2 * H[ix, iy] * X[ix, iy] return dx * dy * tot / 4.0 # =============================================================================== # Halo-Exclusion Models # =============================================================================== @pluggable class Exclusion(Component): """ Base class for exclusion models. All models will need to perform single or double integrals over arrays that may have an extra two dimensions. The maximum possible size is k*r*m*m, which for normal values of the vectors equates to ~ 1000*50*500*500 = 12,500,000,000 values, which in 64-bit reals is 1e11 bytes = 100GB. We thus limit this to a maximum of either k*r*m or r*m*m, both of which should be less than a GB of memory. It is possibly better to limit it to k*r or m*m, which should be quite memory efficient, but then without accelerators (ie. Numba), these will be very slow. """ def __init__(self, m, density, Ifunc, bias, r, delta_halo, mean_density): self.density = density # 1d, (m) self.m = m # 1d, (m) self.Ifunc = Ifunc # 2d, (k,m) self.bias = bias # 1d (m) or 2d (r,m) self.r = r # 1d (r) self.mean_density = mean_density self.delta_halo = delta_halo self.dlnx = np.log(m[1] / m[0]) def raw_integrand(self) -> np.ndarray: """ Return either a 2d (k,m) or 3d (r,k,m) array with the general integrand. """ if self.bias.ndim == 1: return self.Ifunc * self.bias * self.m # *m since integrating in logspace else: return np.einsum("ij,kj->kij", self.Ifunc * self.m, self.bias) def integrate(self): """ Integrate the :meth:`raw_integrand` over mass. This should pass back whatever is multiplied by P_m(k) to get the two-halo term. Often this will be a square of an integral, sometimes a Double-integral. """ pass class NoExclusion(Exclusion): r"""A model where there's no halo exclusion.""" def integrate(self): """Integrate the :meth:`raw_integrand` over mass.""" return intg.simps(self.raw_integrand(), dx=self.dlnx) ** 2 class Sphere(Exclusion): r"""Spherical halo exclusion model. Only halo pairs where the virial radius of either halo is smaller than half of the seperation, i.e.: .. math:: R_{\rm vir} \le r/2 will be accounted for. """ def raw_integrand(self): """ Return either a 2d (k,m) or 3d (r,k,m) array with the general integrand. """ if self.bias.ndim == 1: # *m since integrating in logspace return outer(np.ones_like(self.r), self.Ifunc * self.bias * self.m) else: return np.einsum("ij,kj->kij", self.Ifunc * self.m, self.bias) @cached_property def density_mod(self): """The modified density, under new limits.""" density = np.outer(np.ones_like(self.r), self.density * self.m) density[self.mask] = 0 return intg.simps(density, dx=self.dlnx, even="first") @cached_property def mask(self): """Elements that should be set to zero.""" return (np.outer(self.m, np.ones_like(self.r)) > self.mlim).T @property def mlim(self): """The mass threshold for the mask.""" return 4 * np.pi * (self.r / 2) ** 3 * self.mean_density * self.delta_halo / 3 def integrate(self): """ Integrate the :meth:`raw_integrand` over mass. """ integ = self.raw_integrand() # r,k,m integ.transpose((1, 0, 2))[:, self.mask] = 0 return intg.simps(integ, dx=self.dlnx, even="first") ** 2 class DblSphere(Sphere): r"""Double Sphere model of halo exclusion. Only halo pairs for which the sum of virial radii is smaller than the separation, i.e.: .. math:: R_{\rm vir,1}+R_{\rm vir,2} \le r will be accounted for. """ @property def r_halo(self): """The virial radius of the halo""" return (3 * self.m / (4 * np.pi * self.delta_halo * self.mean_density)) ** ( 1.0 / 3.0 ) @cached_property def mask(self): """Elements that should be set to zero (r,m,m).""" rvir = self.r_halo return (outer(np.add.outer(rvir, rvir), np.ones_like(self.r)) > self.r).T @cached_property def density_mod(self): """The modified density, under new limits.""" out = np.zeros_like(self.r) for i, r in enumerate(self.r): integrand = np.outer(self.density * self.m, np.ones_like(self.density)) integrand[self.mask[i]] = 0 out[i] = intg.simps( intg.simps(integrand, dx=self.dlnx, even="first"), dx=self.dlnx, even="first", ) return np.sqrt(out) def integrate(self): """ Integrate the :meth:`raw_integrand` over mass. """ integ = self.raw_integrand() # (r,k,m) return integrate_dblsphere(integ, self.mask, self.dlnx) def integrate_dblsphere(integ, mask, dx): """ Integration function for double sphere model. """ out = np.zeros_like(integ[:, :, 0]) integrand = np.zeros_like(mask, dtype=float) for ik in range(integ.shape[1]): for ir in range(mask.shape[0]): integrand[ir] = np.outer(integ[ir, ik, :], integ[ir, ik, :]) integrand[mask] = 0 out[:, ik] = intg.simps( intg.simps(integrand, dx=dx, even="first"), dx=dx, even="first" ) return out if USE_NUMBA: @jit(nopython=True) def integrate_dblsphere_(integ, mask, dx): # pragma: no cover r""" The same as :func:`integrate_dblsphere`, but uses NUMBA to speed up. """ nr = integ.shape[0] nk = integ.shape[1] nm = mask.shape[1] out = np.zeros((nr, nk)) integrand = np.zeros((nm, nm)) for ir in range(nr): for ik in range(nk): for im in range(nm): for jm in range(im, nm): if mask[ir, im, jm]: integrand[im, jm] = 0 else: integrand[im, jm] = integ[ir, ik, im] * integ[ir, ik, jm] out[ir, ik] = dblsimps_(integrand, dx, dx) return out class DblSphere_(DblSphere): # pragma: no cover r""" The same as :class:`DblSphere`. But uses NUMBA to speed up the integration. """ def integrate(self): """Integrate the :meth:`raw_integrand` over mass.""" integ = self.raw_integrand() # (r,k,m) return integrate_dblsphere_(integ, self.mask, self.dlnx) class DblEllipsoid(DblSphere): r""" Double Ellipsoid model of halo exclusion. Assuming a lognormal distribution of ellipticities for halos, the probability of halo pairs **not** excluded is: .. math:: P(y) = 3 y^2 - 2 y^3 ,\; y = (x-0.8)/0.29,\; x = r/(R_{\rm vir,1}+R_{\rm vir,2}) taken from [1]_. References ---------- .. [1] <NAME> al., " On the Mass-to-Light Ratio of Large-Scale Structure", https://ui.adsabs.harvard.edu/abs/2005ApJ...631...41T. """ @cached_property def mask(self): "Unecessary for this approach." return None @cached_property def prob(self): """ The probablity distribution used in calculating double integral. """ rvir = self.r_halo x = outer(self.r, 1 / np.add.outer(rvir, rvir)) x = (x - 0.8) / 0.29 # this is y but we re-use the memory np.clip(x, 0, 1, x) return 3 * x ** 2 - 2 * x ** 3 @cached_property def density_mod(self): """The modified density, under new limits.""" integrand = self.prob * outer( np.ones_like(self.r),
np.outer(self.density * self.m, self.density * self.m)
numpy.outer
# -*- coding: utf-8 -*- """ Imaginary part of Phase Locking Value Imaginary Phase Locking Value (*IPLV*) was proposed to resolve PLV's sensitivity to volume conduction and common reference effects. IPLV is computed similarly as PLV, but taking the imaginary part of the summation: .. math:: ImPLV = \\frac{1}{N} \\left | Im \\left ( \\sum_{t=1}^{N} e^{i (\phi_{j1}(t) - \phi_{j2}(t))} \\right ) \\right | | ----- .. [Sadaghiani2012] <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2012). Alpha-band phase synchrony is related to activity in the fronto-parietal adaptive control network. The Journal of Neuroscience, 32(41), 14305-14310. """ # Author: <NAME> <<EMAIL>> from .estimator import Estimator from ..analytic_signal import analytic_signal import numpy as np def iplv_fast(data, pairs=None): """ Imaginary part of Phase Locking Value """ _, n_samples = np.shape(data) _, u_phases = analytic_signal(data) Q = np.exp(1j * u_phases) Q =
np.matrix(Q)
numpy.matrix